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Introduction

These notes are an introduction to set theory and topology.  They are the result of teaching a two-
semester course sequence on these topics for many years at Washington University in St. Louis.
Typically the students were advanced undergraduate mathematics majors, a few beginning
graduate students in mathematics, and some graduate students from other areas that included
economics and engineering.
Over time my lecture notes evolved into written outlines for students, then written versions of the
more involved proofs.  The full set of notes was a project completed during the years 2003-2007
with small revisions thereafter.
The usual background for the material is an introductory undergraduate analysis course, mostly
because it provides a solid introduction to Euclidean space  and practice with rigorous
arguments in particular, about continuity.  Strictly speaking, however, the material is mostly
self-contained.  Examples are taken now and then from analysis, but they are not logically
necessary for the development of the material.  The only real prerequisite is the level of
mathematical interest, maturity and patience needed to handle abstract ideas and to read and
write careful proofs.  A few very capable students have taken this course before introductory
analysis (even, rarely, outstanding university freshmen) and invariably they have commented
later on how material eased their way into analysis.
The material on set theory is not done axiomatically.  However, we do try to provide some
informal insights into why an axiomatization of the subject might be valuable and what some of
the most important results are.  A student with a good grasp of the set-theoretic material
 scattered throughout the notes, but heavily concentrated in Chapters I and VIII will know
all the informal set theory that most mathematicians ever need and will be in a strong position to
continue on to a study of axiomatic set theory.
The topological material is lies within the area traditionally labeled “general topology.”  No
topics from algebraic topology are included.  This was a conscious choice that reflects my own
training and tastes, as well as a conviction that students are usually rushed too quickly through
the basics of topology in order to get to “where the action is.”  It is certainly true that general
topology has not been the scene of much research for several decades, and most of the research
that does still continue is closely related to set theory and mathematical logic.  Nevertheless,
general topology contains a set of tools that most mathematicians need, whether for work in
analysis or other parts of topology.
Many of those basic tools (such as “compactness” and the “product topology”) seem very
abstract when a student first meets them.  It takes time to develop an ownership of these tools.
This includes a sense of their significance, an appropriate “feel” for how they behave, and good
technique in short, all the things necessary to make using a compactness argument, say, into a
completely routine tool.  I believe this “absorption” process is often short-circuited in the rush to
move students along to algebraic topology.  The result then can be an introduction to algebraic
topology where many tedious details are (appropriately) omitted and the student is ill-equipped
to fill them in or even to feel confident that the omissions are genuinely routine.  When that
happens, a student can begin to feel that the subject has a vague, hand-waving quality about it.



These notes are designed to give the student the necessary practice and build up intuition. They
begin with the more concrete material (metric spaces) and move outward to the more general
ideas.  The basic notions about topological spaces are introduced in the middle of the study of
metric spaces to illustrate the idea of increasing abstraction and to highlight some important
properties of metric spaces against a background where these properties fail.  The result is an
exposition that is not as efficient as it could be if the more general definitions were stated in the
first place. In particular, many of the basic ideas about metric spaces (Chapter II) are revisited in
the introductory chapter on topological spaces (Chapter III).
Just as in any mathematics course, solving problems is essential.  There are many exercises in the
notes, particularly in the early chapters.  They vary in difficulty but it is fair to say that a majority
of the problems require some thought.  Few, if any, could be genuinely called “trivial.”  For
example, in Chapter I (Sets) there are no problems of the sort: prove that     
       .  It is assumed that students are sufficiently sophisticated not to need that

sort of drill.
There are “Chapter Reviews” at the end of each chapter.  A review consists of a list of
statements, each of which requires either an explanation or a counterexample.  Presented with
statements whose truth is uncertain, students can develop confidence and intuition, learn to make
thoughtful connections and guesses, and build a tool chest of examples and counterexamples.
Nearly every review statement requires only an insight, a use of an earlier result in a new
situation, or the application of a more abstract result to a concrete situation.  For almost every
true statement, an appropriate justification consists of at most a few sentences.
These notes were a “labor of love” over many years and are intended as an aid for students, not
as a work for publication.  Such originality as there is lies in the selection of material and its
organization.  Many proofs and exercises have been refashioned or polished, but others are more-
or-less standard fare drawn from sources some of which are now forgotten.  Readers familiar
with the material will probably recognize overtones of my predecessors and contemporaries such
as Arthur H. Stone, Leonard Gillman, Robert McDowell and Stephen Willard.  My thanks to
them for all their insights and contributions, and to a few hundred students who have worked
with various parts of these notes over the years.  Of course, any errors are my own.
The notes are organized into ten chapters (I, II,..., X) and each chapter is divided into sections (1,
2,..., ).  Definitions, theorems, and examples are numbered consecutively within each of these
sections for example, Definition 4.1, Theorem 4.2, Theorem 4.3,  Example 4.4, ....  For
example, a reference to Theorem 6.4 refers to the 4  numbered item in Section 6 of the currentth
chapter.  A reference to an item outside the current chapter would include the chapter number:
for example, Theorem III.6.4  means the 4  item in Section 6 of Chapter III.th

Exercises are numbered consecutively within each chapter: E1, E2, ... .  A reference to an
exercise outside the current chapter would include the chapter number for example, Exercise
III.E8.

      Ronald C. Freiwald
      St. Louis, Missouri
      May 2014
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Chapter I
The Basics of Set Theory

1.  Introduction

Every mathematician needs a working knowledge of set theory. The purpose of this chapter is to
provide some of the basic information.  Some additional set theory will be discussed in Chapter
VIII.
Sets are a useful vocabulary in many areas of mathematics. They provide a  for stating1language
interesting results.  For example, in analysis:  “a monotone function from  to  is continuous 
except, at most, on a countable set of points.”  In fact, set theory had its origins in analysis, with
work done in the late 19 century by Georg Cantor (1845-1918) on Fourier series. This workth
played an important role in the development of topology, and all the basics of the subject are
written in the language of set theory. However sets are not just a tool; like many other
mathematical ideas, “set theory” has grown into a fruitful research area of its own.
In addition, on the philosophical side, most mathematicians accept set theory as a foundation for
mathematics  this means that the notions of “set” and “membership in a set” can be taken as
the most primitive notions of mathematics, in terms of which all (or nearly all) others can be
defined.  From this point of view, “every object in mathematics is a set.”  To put it another way,
most mathematicians believe that “mathematics can be embedded in set theory.”
So, you ask, what is a set?  There are several different ways to try to answer. Intuitively and
this is good enough for most of our work in this course  a set is a collection of objects, called
its or .  For example, we may speak of “the set of United States citizens” orelements members
“the set of all real numbers.”  The idea seems clear enough.  However, this is not really a
satisfactory definition of a set:  to say “a set is a collection of objects...” seems almost circular.
After all, what is a “collection” ?
In the early days of the subject, writers tried to give definitions of “set,” just as Euclid attempted
to give definitions for such things as “point” and “straight line” (“a line which lies evenly with
the points on itself ”).  And, as in Euclid's case, these attempts did not really clarify things very
much.  For example, according to Cantor

Unter einer Menge verstehen wir jede Zusammenfassung  von bestimmten
wohlunterschiedenen Objekten in unserer Anschauung oder unseres Denkens (welche die
Elemente von  genannt werden) zu einem Ganzen   [By a set we are to understand any
collection into a whole  of definite and separate objects (called the elements of ) ofM 
our perception or thought.]   ( )German seems to be a good language for this kind of talk.
More compactly, Felix Hausdorff, around 1914, stated that a set is “a plurality thought of
as a unit.”



2

So there are several ways we could proceed. One possibility is simply to use our intuitive, informal
notion of a set, move on from there and ignore any more subtle issues just as we would not worry
about having definitions for “point” and “line” when we begin to study geometry.  Another option
might be to try to make a formal definition of “set” in terms of some other mathematical objects
(assuming, implicitly, that these objects are “more fundamental” and intuitively understood).  As a
third approach, we could take the notions of “set” and “set membership” as primitive undefined terms
and simply write down a collection of formal axioms that prescribe how “sets” behave.
The first approach is sometimes called . (“Naive” refers only to the startingnaive set theory
point naive set theory gets quite complicated.)  Historically, this is the way set theory began.  The
third option would take us into the subject of .  Although an enormous amount ofaxiomatic set theory
interesting and useful naive set theory exists, almost all research work in set theory nowadays requires
the axiomatic approach (as well as some understanding of mathematical logic).
We are going to take the naive approach.  For one thing, the axiomatic approach is not worth doing if it
isn't done carefully, and that is a whole course in itself.  In addition, axiomatic set theory isn't much fun
unless one has learned enough naive set theory to appreciate why some sort of axiomatization is
important. It's more interesting to try to make things absolutely precise after we have a good overview.
However as we go along, we will add some tangential comments about the axiomatic approach to help
keep things in a more modern perspective.

2.  Preliminaries and Notation
Informal Definition 2.1  A  is a collection of objects called its  (or ).  If  is a setset elements members 
and  is an element of , we write .  Otherwise, we write       A
As the informal definition suggests, we may also use the word “collection” (or other similar words
such as “family” ) in place of “set.”  Strictly speaking, these words will be viewed as synonymous.  We
sometimes interchange these words just for variety, and often we will switch these words for emphasis:
for example, we might refer to a set whose elements are also sets as a “collection of sets” or a “family
of sets,” rather than a “set of sets” even though these all mean the same thing.
Here are two ways to describe sets:

By  the elements: this is most useful for a small finite set or an infinite set whose elementslisting
can be referred to using an ellipsis  “...” 

For example:    
   , the set of        natural numbers
   , , the set of          integers

By   this means that we specify a property that describes exactly what elements are inabstraction:
the set. We do this by writing something like has a certain property .   

For example:  is a real number , the set of all  numbers      real
   :  and  0}, the set of  numbers         p

q p q rational
    and }, the set of  numbers         irrational
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Suppose we write  and  or  and   No real number is actually a              
member of either set both sets are .  The empty set is usually denoted by the symbol it is empty
occasionally also denoted by  . Sometimes the empty set is also called the “null set,” although that 
term is more often used as a technical term for a certain kind of set in measure theory. (By the way,  is
a Danish letter,  a Greek phi  or not    ).
It may seem odd to talk about an empty set and even to give it a special symbol; but otherwise we
would need to say to say that  and , which  perfectly well-formed, is not a         looks
set at all.  Even worse:  consider and , where and  are irrational .  Do you           
know whether or not there are any such rational numbers ?  If you're not sure and if we did not allow
an empty set, then you would not be able to decide whether or not  is a set!  It's much more
convenient simply to agree that and , where and  are irrational   a set and          is
allow the possibility that it  be empty.might
In our informal approach, a member of a set could be any object.  In mathematics, however, it's not
likely that we would be interested in a set whose members are aardvarks.  We will only use sets that
contain various mathematical objects.  For example, a set of functions
  is a continuous real-valued function with domain        
or a  such asset of sets
  ,  or , or , .       
Of course, if “everything object in mathematics is a set,” then all sets in mathematics can only have
other sets as members (because nothing else is available to be a member).

Once we start thinking that everything in mathematics is a set, then an interesting thought comes up.  If 
is a set, then either  or there is an element .  Since  is a set, either  or there is a set           
   , and so on.  Is it possible to find a set for which there is an “infinite descending chain” of
members

     ...  ?           

We say that  if for all , that is, two sets  if  and  have               and  are equal
precisely the same elements.  For example,  and .  Two sets whose        
descriptions look very different on the surface may turn out, on closer examination, to have exactly the
same elements and therefore be equal.  For example,  and         
        and and a scrupulous reader could verify that

  and 0} = { 7, 2, 1, 5}.                     

We say that , and write provided that each element of  is also a member ofA Bis a subset of A B   
                , that is, for all  .  If but , then we say is a  of .proper subset
Clearly,  if and only if   and  are both true.   ( “ ”        A Note: if and only if is often
abbreviated by “iff”. )
Note that  and  implies that .        
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You should look carefully at each of the following  statements to be sure the notation is clear:true
        iff      
        (the set of complex numbers)     
                                   
                    for any set                     A
       , but      (so             

doesn't
               imply   

               
Note that .  The set on the left is empty, while the set on the right has one member,  
namely the set .  This might be clearer with the alternate notation: .  The set on      
the left is analogous to an empty paper bag, while the set on the right is analogous to a bag
with an empty bag inside it.

We define the  of a set , written as , to be the set of all subsets of .  In symbols,power set   A
      .
 Since  is a subset of every set, we have  for every set .    
 Since , we also have  for every set .      

          
      

      
 The last three examples suggest that a set  with  elements has 2  subsets   Why?  To
define a
 subset  of  we must decide, for each , whether or not to put  into the subset        
 So for each element in  there are two choices “yes”or “no.”  So there are 2   
ways to
  pick the elements to form a subset 
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Exercises
E1.   to prove that if a set  has  elements, then  has  elements.Use induction     

E2.  Use Exercise 1 to explain the meaning of the identity
   ( )             
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3.  Paradoxes
The naive approach to sets seems to work fine until someone really starts trying to cause trouble.
The first person to do this was Bertrand Russell who discovered  in 1901:Russell's Paradox

It makes sense to ask whether a set is one of its own members that is, for a given set , to 
ask whether  is true or false.  The statement  is false for the sets you immediately     
think of: for example   However, is the infinite set    

                    
  
a member of itself?  How about an even more complicated infinite set?  Could it happen that
  ?  Whatever the answer, it makes sense to ask.
If we simply follow our naive approach, we can define a set  by writing ,       
so that  is the set of all sets which are not members of themselves.  Then, we ask, is    
true or false?  If , then  must satisfy the requirement for being a member of , that is    
      .  On the other hand, if , then  does meet the membership requirement for , so
        .  Thus, each of the only two possibilities about the set  (that  or )  leads
to a contradiction!

Russell's Paradox illustrates that dilemmas can arise if we use the method of abstraction too
casually to a define set. One way out is to refuse to call  a set.  To do that, in practice, we will
insist that whenever we define a set by abstraction, we only form subsets of sets that already
exist.  That is, in defining a set by abstraction, we should always write  and  or,     
for short, where  is some set that we already have. The result is a subset of        X.
Since the preceding definition of  doesn't follow this form,  is not guaranteed to be a set. 
This is the route taken in axiomatic set theory, and we see that it eliminates Russell's paradox.  If
           is a set and we consider the set , the dilemma vanishes  means  
either or that  (a contradiction)  that  — an alternative conclusion that we can live    
with.
Russell's Paradox has the same flavor as many “self-referential” paradoxes in logic.  For
example, some books mention themselves in the preface the author might say, “In this book, I
will discuss ... ”.  Other books make no mention of themselves.  Suppose Library wants to
make a book listing all books that do not mention themselves.  Should the new book list itself?
That is Russell's Paradox: if it doesn't mention itself, then it should; and if it does mention itself,
then it shouldn't. The resolution of the paradox is that the new book really is intended to list “all
books  which do not mention themselves”— that is, in forming the new book, one isin 
restricted to considering only those books already in the collection . With this additional
qualification, the paradox disappears. Think about the same paradox in the dedication at the front
of these notes: are the notes dedicated to Freiwald?
In everyday mathematics, we usually don't have to worry about this kind of paradox.  Almost
always, when we form a new set, we have (at least in the back of our minds) a larger set of
which it is a subset.  Therefore, indulging in a bit of sloppiness, we may sometimes write
       ... } rather than the more correct  ... } simply because the set  could be supplied
on demand, and the notation is simpler.
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There is another kind of difficulty we can get into when defining sets by abstraction.  It arises
from the nature of the description “ ... ”  when we write   ... }.  This is illustrated by   
Richard's Paradox:

Consider   is definable in English using less than 10000 characters .  There are      
only finitely many English character strings with length < 10000 (a very large number, but finite).
Most of these character strings are gibberish, but some of them define a positive integer.  So the set
  is finite. Therefore there must be natural numbers not in , and we can pick the smallest such
natural number  call it . 
But if  is a well-defined set, then the preceding paragraph has precisely defined , using fewer 
than 10000 characters  (count them!), so   in  ! is

To resolve this paradox carefully involves developing a little more formal machinery than we
want to bother with here, but the idea is easy enough. The idea involves requiring that only a
certain precise kind of description can be used for the property “ ... ” when defining a set
     ... }.
Roughly, these are the descriptions we can form using existing sets, , the logical
quantifiers  and , and the familiar logical connectives , , and  .  When         
all this is made precise (using first order predicate calculus), the “set”  above is not allowed
as a set because the description “ ... ” we used for  is not a “legal” description. 
Fortunately, the sets we want to write down in mathematics can be described by “legal”
expressions.  For example, we could define the set of positive real numbers by
                     
To summarize:  there are dangers in a completely naive, casual formation of “sets.”  One of the
reasons for doing axiomatic set theory is to avoid these dangers by giving a list of axioms that lay
out precise initial assumptions about sets and how they are formed.  But fortunately, with some
common sense and a little feeling acquired in practice, such dangerous situations rarely arise in
the everyday practice of mathematics.

4.  Elementary Operations on Sets
We want to have operations that we can use to combine old sets into new ones.  The simplest
operations are  and .union intersection
Informally, the  of two sets is the set consisting of all elements in  or in   (union   Note: when a
mathematician says “either p or q”, this  “either p or q .”  This is called the “inclusive”means or both
use of the word “or.” )
The  of two sets is the set of all elements belonging to both  and .  In symbols,intersection  
 the  of  and  is    or },   andunion             
 the  of  and  is  {  and }.intersection             
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Note:  You might expect, after the discussion of paradoxes, that the definition of union should
read:    or  and then ask “given  and , what is ?”               
 
In practice, the sets  and  that we combine are always subsets of some larger set   Then  
there is no need to worry because , we understand, could be written more properly as 
          or .  But to cover all possible situations, axiomatic set theory adds a
separate axiom (see A5 on p. 12) to guarantee that unions always exist.
This issue doesn't come up for intersections.  For example, given sets  and , we can always 
write  .         

Examples  4.1                  1,2 2,3 = 1,2,3  1,2 2,3 = 2       
                       
The union and intersection of two sets can be pictured with “Venn diagrams” 

              

We want to be able to combine more than just two sets, perhaps even infinitely many.  To express this,
we use the idea of an .index set
Definition 4.2  Suppose that for each  in some set , a set  is given.  We then say that the  collection  is  by . We might write  more informally as  or even             indexed merely as  if the index set is clearly understood.  
Examples  4.3    1)  is indexed by the set         

     2) Let  be the interval  of real numbers. Then , 0            
  is indexed by the set of nonnegative real numbers. 
     3)  is indexed by              

     4)  iff   can be indexed by      
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Definition 4.4     Suppose .  The  of the family  is the set        union
           for some , , also written { } or  more simply  just as .        
(So  iff  is an element of an element of )    
  The  of the family  is the set  for all }intersection         also written as  or  more simply  just as .         
  When the specific set  is understood or irrelevant, we may ignore the “ ” and  
just write  or . When , we might also write and                    

  

Examples 4.5     1) Suppose  We can write the union of this family of sets in         several different ways:                 
    

  2) If , then [0, ) and ,                      
  and       

     3) Let , where , 1 +                1 1 n n  Then  [ ] and               


                 


     4) If  then   and              
 

   
     5)  Suppose each set If , then  is an empty family.             
  Then  and .              For the intersection: if  , then  is in   
  every can you name an that doesn't contain  ? so                

If this argument bothers you, then you can consider the statement       
 to be a just a convention about the intersection of an empty family—motivated by
the idea that “the fewer sets in the family, the larger the intersection should be, so that
when , the intersection should be as large as possible.”  

Theorem 4.6   1) ,  and .         
  2) , and .  More                     
  generally,
 
                                                    ,
   which we could also write in an alternate form
   
                          
  The same equations hold with “ ” replacing “ ” everywhere. 
  3) , and .                         
  
  More generally,

                               and
   (                        
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Proof  To prove two sets are equal we show that they have the same elements; the most basic way to
do this is to show that if  is in the set on the left hand side (LHS) of the proposed equation, then  
must also be in the set on the right hand side (RHS)  ( ) and vice-versa.thereby proving LHS RHS
All parts of the theorem are easy to prove; we illustrate by proving the last equality:
   (                       

If LHS, then  or  .           

 If , then  for every , so  for every  and every                   
  , so  RHS.    
 If then  for every , so  for every and every              ,    
 , so RHS.    
Therefore LHS RHS.
Conversely, suppose  and  are nonempty. If LHS, then and so             ,  there exist indices and  such that  and .  Then so RHS.                   , 
Therefore RHS LHS, so RHS LHS.  ( ? )   What happens if or      

Remarks  Part 1) of the theorem states the  laws for union and intersection.commutative
  Part 2) states the  laws.  associative
  Part 3) states the  laws.distributive
  Exercise  Try to write a generalization of the commutative laws for infinite families.

Definition 4.7     If  and  are sets, then  is called the            complement of in
  .  If the set  is clearly understood, we might simply refer to  as the ,   complement of
sometimes written as  or  or .   

Theorem 4.8 (DeMorgan's Laws)   For sets  and , 

   1) ,    and               
   2)                
Proof   Exercise  ( )DeMorgan's Laws are very simple but  tools for manipulating sets.important

Definition 4.9   The set  and  is called the  of  and .  This            product
definition can be extended in an obvious way to any finite product of sets: for example
                
If  then we sometimes write  for .  For example, = .  Note that  and         
    are usually not the same.  )In fact,   iff   ...  ?   



11

 is a set of ordered pairs, and if every object in mathematics is a set) an ordered pair should
itself be defined as a set.  The characteristic behavior of ordered pairs is that  iff        
and .  So we want to define  to be a set having this property. Any set that behaves in this    
way would be as good as any other to use as the official definition of an ordered pair; defining
     would  work.  The most commonly used definition is due to the Polish topologistnot
Kazimierz Kuratowski 1896-1980):  we define
         
If we use this definition then we can prove that  iff   and .   (           Try it and
remember, in your argument, that  may not be distinct!    )
Exercise:  There are other ways one could define an ordered pair.  For example, a possible alternate
definition is due to the American mathematician Norbert Wiener (1894-1964): we could define
    .     
Using this definition, prove that iff  and .          

Note   In the discussion of paradoxes, we stated that sets should only be defined as subsets of  other sets.      
Therefore, a careful definition of  should read: 

       and .             
So, if we were doing axiomatic set theory, we would have to provide, as part of the definition, a set 
which we know exists and define  to be a subset of .  Given  and , how in general would we    
supply ?   To give the flavor of how axiomatic set theory proceeds, we'll elaborate on this point.

Axiomatic set theory begins with some axioms: the variables refer to sets and  refers   
to the membership relation.  In axiomatic set theory, everything is a set   so members of sets are
other sets.  Therefore we see notation like  in the axioms: “the set  is a member of the set   
.”   A partial list of these axioms includes:
A1) : more formally,  two sets are equal iff they have exactly the same elements
                
A2)  :  more formally,there is an empty set
         (
( )Notice, by A1, this set  is unique, so we can give this set a name:   
A3)  :any two sets and  can be “paired” to create a new set     
more formally,
               
A4)   :  more formally,every set  has a power set  
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A5) :  more formally,the union u of any set x exists
                 
The last axiom to be mentioned here, A6, is a little harder to write precisely, so we will simply
state an informal version of  it:
A6) for any set , there is a subset  of  whose members are all the elements in  that   
satisfy an appropriate “legal” description “...”     Roughly,
               “...”             
A6) is a  fancier (but still somewhat vague) version of saying that we are allowed to define a set
 by writing:
                                “ ...”      
These axioms and three others A7) A9) which we will not state here are called the  
Zermelo-Fraenkel Axioms, or ZF for short.  (One of the additional axioms, for example, implies
that no set is an element of itself.)   The resulting system (the axioms and all the theorems that
can be proved from the axioms) is called .ZF set theory
In ZF, by using these axioms, we can make a complete definition of  Suppose  and    
         .  By axiom A3), the sets and  exist so, by axiom A3) again,
the set  also exists.     
By axiom A5) the union of the set  exists, and by axiom 4), the sets       
and  exist.  Using these sets, we then notice that    

       and ,    so                
       and ,  so                    
       and ,  so                      
      ,    so               
                         

Therefore each pair  that we want to put in the set to be called  happens to be a      
member of the set  whose existence follows from the axioms.  Of course, not   
every element of  is an ordered pair.  Putting all this together, we could then make  
the definition

                      
In the rest of these notes we will usually not refer to the ZF axioms.  However, we will occasionally make
comments about the axioms when something interesting is going on.
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Exercises
E3.    Which of the following are true when “ ” is inserted in the blank space?  Which are
true
when “ ” is    inserted?
  a)   ___ ,     
  b)   ___ ,   
  c) ___ ,   
  d)  ___ ,   
  e)  ___ , , }   

E4.   a) Suppose  and  are sets and .  Prove, or give a counterexample, to each of the   
following statements:
   i)      
      ii)      
   iii)        
 
         b) Let ,  and .  What is  ?               
 
  c) Give an example of a set  which has more than one element and such that whenever
  , then  .  (Such a set is called .)      transitive

E5.    Explain why the following statement is or is not true:
  If ,  then  =                 

E6.   a) Prove that if and only if  or                
   .
        b) State and prove a theorem of the form:
   if and only if  ...          
        c) For any sets  and  it is true that  and that          
     .        
State and prove a theorem of the form:  
    if and only if  ...        

E7.    Suppose  are sets with ,  and .                 
Prove that .    
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E8.    Suppose and  are sets, with and .  Show that if       
   ,             
then either  and   or   and            

E9.    Let , ,..., ,... be subsets of .  Define     .           
 lim  

 lim is read “lim inf” .  In expanded form, the notation means that
lim                                ( ...)    ( ...)   ( ...)

 ...  .
Similarly, define lim       ( lim is read “lim  sup”)     

  
            a)  Prove that       is in all but at most finitely many  and thatlim           lim    is in infinitely many of the .       

     b)  Prove that  lim    
          lim

     c)  Assume that all the 's are subsets of a set .  Prove that 

   ( )  lim lim       

     d) Prove that    lim  if either  ...  or  ... .lim                      

 
E10.   Suppose and are nonempty sets satisfying  
    and         
Prove that
~
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5.  Functions
Suppose  and are sets.  Informally, a  (or , or )   is a rule that  function mapping map from into  
assigns to each element  in  a unique element  in .  We call  the  and call  a     image of 
preimage of . We write , and we denote the function by . This informal       
definition is usually good enough for our purposes.
     is called the  of  dom   The  of  ran  is the setdomain range 
     for some .          
We can think of giving an “input”  to  and the corresponding “output” is  Then dom( ) is     . 
the set of “all allowed inputs” and ran( ) is the “set of all outputs” corresponding to those inputs.
      is sometimes referred to as the  of .  Of course, ran , but ran  may not be thecodomain
whole codomain .  When ran the codomain , we say that  is a function from   , or      onto
simply that .  In some books, an onto function is also called a . is onto surjection
If different inputs always produce different outputs, we say that  is a one-to-one (or 1-1) function.
More formally:   if, whenever dom( ) and , then .  In some is one-to-one         
books, a one-to-one function is also called an .injection
If  is both one-to-one and onto, we call a .  A bijection sets up a perfect  bijection between  and  
one-to-one correspondence between the elements of the two sets  and .  Intuitively, a bijection can 
exist if and only if  and  have the same number of elements. 

Examples 5.1  (verify the details as needed)
  1) Suppose  and  is given by   This bijection is called the            identity
map on , sometimes denoted by .  

  2) If  and , then we can define a new function  by  for               
     ;   is called the , denoted .  If  is one-to-one then so is  but restriction of to  g   
may not be onto even if  is onto. Note that we consider and  to be  functions when      different
   because dom( ) dom ).
             For example, sin is a bijection between  and                  

   

  3) Let  by the rule .  Then  is one-to-one by the Fundamental             
Theorem of Arithmetic (which states that each natural number has a prime factorization that is unique
except for order of the factors). But  is not onto because, for example, 35 ran   

  4) Let the interval 1,  and  .  Define (           1t     This definition
makes sense since the improper integral converges for each .   )    For example, 2    1t  
 .  Then  is one-to-one but not onto (why?).    
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  5) Let . where “the least integer 2 which divides .”          
For example, and   The function is                  
not one-to-one because , and  is not onto because ran the set of prime      
numbers.

  6) Define  by the  prime number. For example 1 , 3,            nth
      3 5, and 4 7.  The function  is clearly one-to-one but not onto.

  7) Let  be the set of prime numbers and  using the same rule as in Example 6.    
Then  is a bijection between  and .  This illustrates that whether  is onto depends on the      
codomain .  If you know the domain of  and a rule that defines , then these completely    determine
the range do not determine the codomain of , but they  of . So without naming the set , we cannot  
say whether a function  is onto.

  8) Define  by “the number of primes ”.  Thus, ,                  
           2 1, 2.5 1, and 5.6 3.  The function  is onto (why?) but not one-to-one.
This function appears in the famous Prime Number Theorem which states that

         lim 1.    

ln 

A proof of the Prime Number Theorem is quite difficult.  However, a much simpler fact is that
 lim .  Why is this simpler fact true?  And does it also follow  the Prime Number      from
Theorem?
  9) Define  by   .  This function is one-to-one but not onto.  (Why?)      

 


!

  10) Let  be a set and define  by       
  “the set of all subsets of  containing ” .           
For example, if , then  .              
This function is one-to-one.  To see this, suppose that ; then  and , so         
  .  Is the function onto?
  11) Define  by called the ”   When is           projection of  to    
this projection function 1 1?   Must  be onto? 
  12)  Let  is a rectifiable curve in the plane (      A rectifiable curve is one for which
an arc-length is defined C.) Let  by “the length of the curve .”    Is  one-to-       
one?  onto? 
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Our informal definition of function is good enough for most purposes.  However in the spirit of “every
object in mathematics is a set,” we should be able to give a more precise definition of a “function 
from  into ” as a set.  To do this, we begin by using sets to define a  .  relation
Definition 5.2     A  ( or ) is a subset of .  If ,relation from to between and           
we write , meaning that “  is related to ” (by the relation ).   
Example 5.3   Consider for some , .  This set of ordered pairs is               
a relation from  to .  We can call this relation , but it actually has a more familiar name,     
  for some ,                  

The relation  is a set.  The statement “ ” means that the pair     that for each         Notice
                 there are 's for which   for example ...many 
   
 The relation  is a set.  What sets are the familiar relations and Exercise:       
 between  and ? 

A function  is a special kind of relation from  to :  one in which   is related by  to      every only one
    in   The relation in example 5.3 is  a function.not
Definition 5.4 A function from into   , denoted   is a set   (          so  is a
relation from  to   ) with the additional properties that:
      a) for  , there is a  such that , andevery          
      b)  if  and , then .          
   is called the  of  and the  of  is the setdomain range
   there exists an for which           
If  is a function from  to  and , then we will use standard function notation and write      
    rather than use the relation notation .
Condition a) states that a function  from  into  is defined at each point of , and condition b)   
states that  is  can't have more than one value for a particular . For functions   single-valued
   , condition b) just states the familiar precalculus condition that a vertical line cannot
intersect the graph of a function  in more than one point.

Example 5.5   Let  be the squaring function, .  By our formal definition, this       
function is a subset of :  .   Picturing this set of ordered pairs in   gives              
the parabola: .  In precalculus, this set is called the  of the function, but in our formal   graph
definition, the set literally  the function that is,  is  to be the  which, inis   : defined set of pairs
precalculus, is called its graph.
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Example 5.6   For sets  and , we write to represent the set of all functions from  to .  For    
example,   is the set of all real-valued functions of a real variable.

      .If , then there is exactly one function in the empty function     
  (Check:    and   satisfies the conditions a) and b) in Definition 5.4 )      
  So   

     , so .If  and , then there are no functions in          
  (Since , the only relation from to  is , so  is the only “candidate” for        
  a function from  to .  But since ,  fails to satisfy part a) in Definition 5.4 )      
      If  has  elements and  has  elements ( ), then there are functions       
   (Why?  For each  how many choices are there for ? )in      

It is usually not necessary to think of a function as a set of ordered pairs; the informal view of a
function as a “rule” usually is good enough. The formal definition is included partly to reiterate the
point of view that “every object in mathematics is a set.” But sometimes this point of view is also
useful notationally:  if  and  are functions then, since  and  are sets, it makes sense to form the sets   
      and .  Sometimes these sets are new functions.
  
  1) Suppose  and  are given by  and              
    As sets,  and  Then the set                   
   is a function with domain .  For ?          
      Is the set  a function?  If so, what is its domain and what is a formula for    
  the function?
    In general, if  and  are functions, must  and   be functions?         always
  If not, then what conditions must  and  satisfy so that  and  are functions?       
  If they are functions, what is the domain of each?
Example 5.7   As another illustration of how “every object in mathematics is a set,” consider the real
number system   it consists of the set , two operations called addition ( ) and multiplication ( ),
and an order relation . ( Subtraction and division are defined in terms of addition and
multiplication.)  Notice that the operations and  are   and  .       functions     
   

Therefore,  and, for example,    In function notation this         
would be written , but instead we usually write:          

The functions  and  are required to obey certain axioms such as iff ,  that         
is  .   The order relation is also just a certain subset of see Example 5.3 .          

Therefore we can think of the real number , its elements and all its ordering and arithmeticsystem  
as being “captured” in the 4 sets:   and , and we can gather all this together into a single     
object: the 4-tuple of sets:         
But this 4-tuple can be viewed as just a complicated ordered pair:  .  Since each       
ordered pair is just a set, we conclude: the whole real number system, with all its ordering and
operations, can be thought of as one single (complicated) set.
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6.  More About Functions
Suppose  and that , . The denoted ; it is the set of           image of the set is
all images of the elements of .  More precisely,   for some .  A            
little less formally we could also write .       
The is denoted ; it is the subset of  consisting of all preimages of allinverse image set of    
the elements from .   More precisely, .          

Example 6.1               Suppose  is the squaring function, .  Then       

                               

              4 2 2             

      9                             

   The function  is not onto since .     
When  is a one point set such as 4 , we will often write 4  or even 4  rather than the more         
formal 4 .  Be careful when using this more informal notation in which  is a          
set, not a number.

The next theorem gives some properties of image and inverse image sets that are frequently used.

Theorem 6.2   Suppose , that  and       ( )             
 
   1)  and        1 )  and ]                    

   2) if , then ]   2 ) if , then                                  

   3)           3 )                       

   4)           4 )                       

Proof   The proof of each part is extremely simple.  As an example, we prove 4 ).

 Let LHS and RHS denote the left and right sides of 4 ).  Then LHS iff   iff      
             for every  iff  for every  iff RHS.  Thus LHS and RHS have   
the same members and are equal. 
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Example 6.3     In part 4) of Theorem 6.2, LHS RHS . For example, suppose may be false
                       and let  be the constant function .  Then
                              , so , but .
 Can you think of an additional hypothesis about the function  that would guarantee that
“ ” holds in part 4) ?
Definition 6.4            Suppose  and  are functions.  Their   is a            composition
function from  to  formed by first applying , then .  More precisely, the     composition
(  is defined by .           

              
           |________ 
                                                            
If we have another function , we can form the “triple compositions”  and        
       .  It is easy to check that these functions  are the same.  In other words, the
associative law holds for composition of functions and we may write  without worrying about    
parentheses.

          
         |_____________ 
                                                             
Here is a useful observation about compositions and inverse image sets:  if , then  
     ]         

To check this, note that RHS iff  iff  iff  iff LHS.               

If  is a , then  gives a perfect one-to-one correspondence between the elements of     bijection
       and .  In that case, we can define a function  as follows.
 Suppose Then  for some  ( ) and there is only one            because  is onto
 such  ( ).  Define    Then  and  if and           because  is one-to-one
 only if   
More formally, .  Because  is a bijection, the inverse image set             
     contains exactly one member, so b) in Definition 5.4 is true.
                                       
                                                             

 .
           
It follows that  and , that is,   .                        and
The function  defined above is clearly the only possible function with both of these properties.g
Of course,  is also a bijection and the whole discussion could be carried out starting with  and using 
it to “get back” the function , which has the property that           
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Definition 6.5       Suppose  and  and that  and .  Then we                    say  and  are  to each other.  We write  and            inverse functions    
( )The idea is that inverse functions “undo” each other.

The preceding discussion proves the first part of the following theorem.
Theorem 6.6   Suppose . Then   
  1) If  is a bijection, there is a unique bijection  for which  and                            .    
  2) If  has an inverse function , then  is a bijection.  
Proof  To prove part 2), notice that if ,  then ).  But , so this           implies that , so is one-to-one.  Also, for any  we have , and since           
              , we get that .  Therefore  is the image of the point , so  is
onto. 

Comment on notation:   For  function  and , we can write the  any set        inverse image
    , whether or not  is bijective and has an inverse function.  In particular, for  function  weany
might write  as a shorthand for  the inverse image  of the one-point set .       set
If happens to be bijective,   then the notation  is ambiguous:  “ ” might mean the inverse    
image operation for which , or “ ” might mean the inverse function, in which case     
    .
This double use of the symbol  to denote the inverse image set operation (defined for  function) any
and also to denote the inverse function (   ) usually causes no confusion in practicewhen is bijective 
the intended meaning is clear from the context.
In a situation where the ambiguity might cause confusion, we simply avoid the shorthand and use the
more awkward notation  for the inverse image set.  .
As a simple exercise in notation, convince yourself that  is bijective iff   is a one-element subset  
of   for every     

Examples 6.7        In each part, verify the details.)
  1) Let ln  be defined by ln    ( . This function is          

1
bijective (why?) and therefore has an inverse function ln .  The function ln  is often   
called exp, so exp ln  and exp(ln  for every   Similarly,          
ln exp  and ln exp  for each              It turns out, of course, that exp , although  
that requires proof.)
  2) The function  given by  is bijective; its inverse          
function is  given by  .      e2
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  3) A  function  can be expressed as multiplication by some linear        
matrix : .  Then  is bijective iff det(  and, in that case,  is               
multiplication by the inverse matrix and

             
   
   


   

 
   
 

These are facts you should know from linear algebra.
Exercise ( )  Prove that if  is continuous and onto,if you have had an analysis course    
then  has an inverse iff  is strictly monotone. 
Hint: Remember the Intermediate Value Theorem If  is not strictly monotone, then there.  
must exist three points  such that  is either or both of  and .         

If we look carefully, we see that part 1) of Theorem 6.6 can be broken into two pieces.
Theorem 6.8 1)  is one-to-one iff there exists a function  such that        
        (  , , and ; ? )              unless why

          2)  is onto iff there exists a function  such that .             
Proof The ideas are quite similar to the argument establishing the existence of an inverse for a
bijection.  The proof of 1) is left as an exercise.  We will illustrate by proving part 2), which is of
special interest because of a subtle point that comes up.
 If such a  exists, then for each  we have , so  is the image of the point       
     .  Therefore  is onto.
  Conversely suppose  is onto so that, for each ,  we know that .  Choose an       
arbitrary element  and define .  Clearly, .  (Note that if , then we               must have  and .  The description above then defines , and  is still               true.)   

The subtle point of the proof lies in the definition of which in set notation, :  
     is an element   from          arbitrarily chosen  

In discussing paradoxes, we stated that a set  could only be formed by abstraction as
         ... “some legal description”... .  If one is doing axiomatic set
theory, the phrase “an arbitrarily chosen element” is not legal; it is “too vague ”  More
precisely, the description cannot be properly written in the language of first order
predicate calculus and therefore the “definition”of the function  would be invalid in ZF
set theory.
The axioms for set theory (ZF) tell us that certain sets exist , for example  and give 
methods to create new sets from old ones.  Roughly, these methods are of two types:
 i ) “ from the top down” forming a subset of a given set
 ii) “from the bottom up” somehow piecing together a new set from old ones (for
example, by union, or by pairing) It is understood that the “piecing together” must be
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done in a finite number of steps for example, we cannot say “apply the Pairing Axiom
infinitely many times to get the set  ...”
In the present situation ,
 i)    we tried to define  (“from the top down”) by describing  as a certain subset 
of ; the problem is that we can't say precisely  to pick each  and therefore we   how
can't use the Subset Axiom A6.
 ii)   if we tried to define  “from the bottom up,” we could begin by using the fact
that  is onto:  this means that
         

Therefore for any particular , we can form an ordered pair with .        
But if there are infinitely many pairs , we have no axiom that allows us to “gather” 
these pairs into a single set 
Also, none of the ZF axioms A7) A9) (which we didn't state) is any help here, so we seem
to be stuck.  But in spite of all this, our informal description of  seems intuitively sound,
so another axiom called the  (AC, for short) is usually added to the setAxiom of Choice
theory axioms ZF to justify our intuitive argument. The system ZF together with the Axiom
of Choice is referred to as ZFC set theory for short.
In one of its many equivalent forms, the axiom of choice reads:
 [ ]AC   If  is a family of nonempty sets, then there exists a                   function  such that, for each , .               

AC guarantees the existence of a function (set)  that “chooses” an element  from each 
set  and that's just what we need here.   If we use the sets ,  then AC gives us      
the “choice function” , and we can then use  to define 
                
Comment not always special: Defining the function  is such a delicate matter In some   .  
cases, we can avoid the whole problem and don't need AC.  For example:
 i) if , we could quite specifically define  by saying “let  be the smallest   
element in .”  In other words, we could write, without AC, a perfectly precise 
definition of g “from the top down” using  the language of first order predicate calculus:

            .                       

 ii) if  were finite, we could index its elements so that  for           some    Then we could proceed “from the bottom up” to write the  list of   finite
statements
       
       
   .
    
   .
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Using these  we can write a definition of        

                               (The description is “legal” since it involves only finitely many terms.)
Generally speaking, AC is required to create a set when it is necessary to choose an
element from each nonempty set in an  family  there is no way to describeinfinite and
precisely which element to choose from each set.  When the choice can be explicitly stated
(as when  above), AC is not necessary.  
To borrow a non-mathematical example from the philosopher Bertrand Russell: if you have
an infinite collection of pairs of socks, you need AC to create a set consisting of one sock
from each pair, but if you have an infinite collection of pairs of shoes, you don't need AC to
create a set containing one shoe form each pair— because you can precisely describe each
choice: “from each pair,  pick the left shoe.”

  
The Axiom of Choice, when added to the other axioms of set theory, makes it possible to
prove some very nice results.  For example, in real analysis, AC can be used to show the
existence of a “nonmeasurable” set of real numbers. AC can also be used to show that
every vector space (even one that's not finite dimensional) has a basis.  AC is  toequivalent
a mathematical statement called Zorn's Lemma (see Chapter VIII) which you may have met
in another course.
The cost of adding AC to the axioms ZF is that it also makes it possible to prove some very
counter-intuitive results about infinite sets.  Here is a famous example:

The Banach-Tarski paradox (1924) states that it is possible to divide a solid ball
into six pieces which can be reassembled by rigid motions to form two balls of the
same size as the original. The number of pieces was subsequently reduced to five
by R. M. Robinson in 1944, although the pieces are extremely complicated.
(Actually, it can be done with just four pieces if the single point at the center of the
ball is ignored..)

Most mathematicians are content to include AC with the other along with the other axioms
and simply to be amused by some of the strange results it can produce.  This is because AC
seems intuitively very plausible and because many important mathematical results rely on
it.  We will adopt this attitude and use AC freely when it's needed (and perhaps even when
it isn't!),  usually without calling attention to the fact.

Definition 6.9      A  in a set  is a function .  The  of the sequence aresequence terms    
         1, , ... , , ... .  We often denote a sequence informally by the n
notation . 
For example, the function  defines the sequence whose terms are 3, 5, 7, 9, ...  The      n
term of the sequence is 2 , and we might refer to the sequence as ) or ( ).        

In the spirit of “every object in mathematics is a set”:  since a sequence in  is a function from  to , 
a sequence (formally) is just a set  in this case, a special subset of . Of course, we usually 
think of a sequence, informally, as an infinite list of objects:  And usually, this is good          enough.
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Exercises
E11. a)  Show that if  , then  and           
           b)  Show that if  is a function, then dom   and ran    
       c)   Show that if , then           

E12.   Let  denote the real numbers and  and  be given by         
                      3 2 1 and |2 1|.  Find the range of , and .

E13.   a)  How many bijections exist from the set 1, 3, 5,..., 99  to the set   
   2, 4, 6,..., 100 ?
      b) How many 1-1 maps are there from 1, 3, 5..., 99  into 2, 4, 6,...., 10 ?       
      c) How many 1-1 maps are there from 1, 3, 5..., 99  into 1, 2, 3, ..., 10 ?       
 
E14.   Define  by .  Prove that  is onto if and                  
only if one of the sets  or  contains no more than one point. 

E15.   Let be the set of all continuous functions Define a function       
          by Is one-to-one ?  onto?



  
E16.   Suppose  is a one-to-one map from  into .  Define a new map     
      3 by ( ) = .  Prove that  is one-to-one.q t q

E17.     Let  be the set of straight lines in  which do not pass through the origin  Describe   
geometrically a bijection   .      

E18.   Let and let  denote the result of composing  with itself  times.           n
Suppose that for every , there exists an   such that  ( )   (note that  may depend on      n n 
 ).  Prove that  is a bijection.

E19.  Let  ( ) denote the set of all continuous real-valued functions with domain , that is,  
       ( )  and  is continuous}. Define a map ( ) ) as follows:      I
  for ( ),  is the function given by          .
Is  one-to-one?  onto? (I Hint: The Fundamental Theorem of Calculus is useful here.)
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E20.   Let  be the bijection between the set of nonnegative integers and the set  of all integers 
defined by

        
2(

2
 ,   if  is even

 , if  is odd


 

Now define a mapping  as follows:   
For any integer  we can factor  in a unique way into a product of primes   
          

      , where  and each  is a positive integer.  For each , let
       

  ( )

Define ,  and, for negative integers , define .            
Prove that  is a bijection between  and .  

E21.   Let  and for  define .  Show that the function            


 


            given by  is a bijection.

E22.   Let  be the collection of infinite subsets of .  Define (  as follows:  for  ,         
             the “ binary decimal”  0.  where  if  and 0 if .        ... ...
For example,  and            base 2

Prove or disprove that  is onto.

E23.    In elementary measure theory, are defined. These lead to the Lebesguemeasurable sets in 
integral a kind of integration that is more general than the Riemann integration used in beginning
calculus and analysis. Each measurable subset  is assigned a number  that “measures” the size 
of the set and satisfies certain rules.  For example, , and if  is a measurable subset of      
      , then 
In fact, there must exist  sets not every subset of can be measurable but provingnonmeasurable  
this is nontrivial. However, the following argument  to be a very simple proof that aclaims
nonmeasurable subset of  must exist.  Find the error in the argument.  (  Of course, the argument
should look very suspicious because it seems like it doesn't matter that you don't know the definition
of “measurable set.”)

Assume that every subset  of  is measurable and has Lebesgue measure    
Then  and the number  may or may not be in the set .   Let      
                 and .  Since  our assumption tells us
that  is measurable.
But  if and only if , which is impossible.  Therefore not every      
     can be measurable.  
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7.  Infinite Sets

We can classify sets as either finite or infinite and, as we will see later, infinite sets can be further
classified into different “sizes.”  We have already used the words “finite” and “infinite” informally, but
now we want to make a more careful definition.
Definition 7.1  The sets  and  are , written , if there exists a bijection .       equivalent
Clearly, ;   implies ; and if  and , then .                 

Definition 7.2  The set  is called  if there is a one-to-one map .   is called  if     infinite finite
 is not infinite.
If  is infinite, then  is a subset of  equivalent to , so we could say that  is infinite iff       
contains a “copy” of  the set .
Since we have defined “finite” as “not infinite ” we should prove some things about finite sets using
that definition.  For example:
    is finite iff  or  is equivalent to  for some .           
   A subset of a finite set is finite.
   A union of a finite number of finite sets is finite.
   The image of a finite set under a map  is finite.
   The power set of a finite set is finite.
These statements are easy to believe and the proofs are not really difficult but they are tedious
induction arguments and will be omitted.
Examples 7.3
  
  1)  is equivalent to .  To see this, consider the function given by  
    .
   2) The mapping given by  is a bijection, so            
  .  Thus, an infinite set may be equivalent to a  subset of itself.  (proper This fact was noted by
Galileo in the 17th century.)  In fact, the next theorem shows that this property actually characterizes
infinite sets.

Theorem 7.4         is infinite if and only if  is equivalent to a proper subset of itself.  
Proof  Suppose  is infinite.  Then there is a one-to-one map .  Let .  Break          into two pieces:  .  Then define         
  by        if 

if                
         


This  is a bijection between  and , so  is equivalent to a proper subset of itself.      



28

  Conversely, suppose there is a bijection where  but .  Then          
          so we can pick a point .  Starting with  apply  repeatedly to get a sequence                      
        All the terms  must be different.  To see this, suppose that two of these points are equal, say   
                       for some .  Then (because  is one-to-one) we have ,
                2 , .. ,  and so on until we get to = .  But this is impossible because
                 is in  and  is not.  Therefore the map  given by  is one-to-one, so
  is infinite.  
Definition 7.5   The set  is called   if there exists a one-to-one map .  countable 
Thus, a countable set is one which is equivalent to a subset of  (namely, the range of ).  A countable 
set may be finite or infinite. (In some books, the word “countable” is defined to mean “countable and
infinite.”)
   
Examples 7.6
  
  1)  If , then  is countable (because         
  2) Any countable set  is either finite or equivalent to . 
   Proof:  Suppose , where  is infinite.  Let  be the least element of ,  let                be the least element in , ... , and in general let the least element in the set
                    .  Then the map  given by  is a bijection, so .  Therefore 
  .
       By (2),  is countable and infinite if and only if there is a bijection .  The    
function  is a one-to-one sequence whose range is Therefore   a countable infinite set is one whose
elements can be listed as a sequence: with no repeated terms.             

   3) The set  is countable.  This is the first really surprising        
example: there is a bijection  so This means that                    we can list all the positive rationals in a sequence. It is not at all clear, at first, how this can done. In the
usual order on , there is a third rational between any two rationals so we can't simply list the
rationals, for example, in order of increasing size.  But the definition of “countable” doesn't require that
our list have any connection to size.
     One way to create the list is to use the “diagonal argument” invented by Cantor.
Begin by imagining all the positive rationals arranged into the following “infinite matrix” :
   
             . . . . .1 2 3 4 5 6 7 81 1 1 1 1 1 1 1 
                                          
             . . . . .1 2 3 4 5 6 7 82 2 2 2 2 2 2 2                                    
            . . . . .1 2 3 4 5 6 7 73 3 3 3 3 3 3 3                                 
            . . . . .1 2 3 4 5 6 7 84 4 4 4 4 4 4 4   . . . . . . . .
   . . . . . . . .
   . . . . . . . .
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Then create a bijection  by moving back and forth along the diagonals (skipping over a   
rational from the matrix if it has been listed previously): the sequence begins        

                                 
       

Of course, we can't picture the whole “infinite matrix” and we don't have a formula for .  
However we have described a definite function using a computational procedure:  you would have no
trouble finding 1 , and you could find  with enough time and patience.   The function  is   
clearly one-to-one and onto  (for example, with some effort you could find the  for which
  



 Those who prefer formulas can consider the following alternate approach.  Each natural number has a
 unique representation in base 11, using the numerals 0,1,2,3,...,9, /   with the symbol /  representing(

10 .  For a positive rational  reduced to lowest terms, we may reinterpret the symbol string “ ” as)  
a natural number by thinking of it as a base 11 numeral.  For example, 23/31 would be interpreted  in
base  as 2(11) + 3(11) + 10(11) + 3(11) + 1(11) 34519 (in base 10).  In this way, we define a     
one-to-one function   from  into .  For example, 23/31) 34519.  So the set  is countable.     

  
We can show that the set of negative rationals, , is countable using a similar diagonal argument.  Or,
we can notice that the function given by  is a bijection;  since  is          
equivalent to a countable set,  is also countable.

 
Of course, introducing the term “countable” would be a waste of words if all sets were countable.
Cantor also proved that countable infinite sets exist.  This means that not all infinite sets areun
equivalent.  Some are “bigger” than others!
Theorem 7.7         The interval of real numbers  is uncountable. 
The heart of the proof is another “diagonal” argument. A technical detail in the proof depends on the
following fact about decimal representations of real numbers:

Sometimes two  decimal expansions can represent the  real number.  Fordifferent same
example, 0.10000... 0.09999... (why?).  However, two different decimal expansions can
represent the same real number  if one of the expansions ends in an infinite string of 0'sonly
and the other ends in an infinite string of 9's.

Proof   Consider  function .  We will show   be onto and therefore noany cannot     
bijection exists between  and . To begin, write decimal expansions of all the numbers    
     in ran( ):
  
     0.                        0.                        .                       
           .                                           
where each  is one of the digits Now define a real number by                  

   if 1
if     
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Then  and  is not equal to any of the numbers   To see that  notice that            

 i) by construction, the decimal expression for  differs from  in the  decimal place; and   
 ii)  is not an alternate decimal representation of  because  does not end in an infinite string  of 's or 's. 
Therefore  ran ( ), so  is not onto.      
Of course, we could start over, adding  to the original list. But then the same construction could be
repeated.  The list can never be complete, that is,  ran  is impossible.   

A different way to try to dodge the technical difficulty about non-uniqueness of  representations might
be: whenever a number  has two different decimal representations, include both in the list and then
define .   Is there any problem with that approach?

The next theorem tells us some important properties of countable sets.
Theorem 7.8   1) Any subset of a countable set is countable.
    2) If  is countable for each , then  is countable.    

 
    3) If  are countable, then  is countable.                

Proof To show that a set is countable, we need to produce a one-to-one map  of the set into . 
   1)  If  is countable, we have, by definition, a one-to-one map .  If ,       
then   is also one-to-one, so  is also countable.        
   2)  Consider the sets ,  , ,                            By part 1), each  is countable, and for any , . It's easy to check that             

       , so we need to prove that  is countable.  All this amounts to saying that
we will not lose any generality if we just assume, at the beginning of the proof, that the 's aredisjoint from each other.
  
For each , there is a  one-to-one function .  Let  denote the  prime number and         
define  as follows:   

  

  if , then  is in exactly one set  and using that , let .        
    

Then  is well-defined because the 's are disjoint, and is one-to-one ( ).   why?
   3) Let    be the first  primes and, as before, let  be a one-to-one map from           into .   Define    by            

      . . .               
             

The function  function is one-to-one ( ).     why?
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Example 7.9
  1)   A union of a finite number of countable sets , ... ,  is countable:  just let  
             

   and then use part 2) of Theorem 7.8 to conclude that  is 
countable.
        We can combine this result with Theorem 7.8.2 to state:  if is a countable index
set and  is a countable set (for each ), then  is countable..  Stated more informally:           a
union of countably many countable sets is countable.
  
    2) The set  is countable because it is the union of three countable      
sets.
 
    3) If  and  is uncountable, then  is uncountable because if  were      
countable, then its subset  would be countable by Theorem 7.8.1.
      For example, the set  of real numbers is uncountable because its subset  is  
uncountable.  This means that you  index the real numbers using :  you  sensibly writecannot cannot
“Let .”           

    4)  where is the set of irrational numbers.  Since  is uncountable and        
is countable, the set  must be uncountable.  Thus there are “more” irrational numbers than rationals.

    5)   (  is uncountable, because it contains an uncountable subset: for example,   
the “ -axis” , a subset which is clearly equivalent to .        

    6) Suppose   ,   and that .  Let  be the open interval                  
centered at  with length   , that is,   .  Then , and the               

  
     

total length of all the intervals  is  .   This shows that   
    

 2   any countable subset of 
can be “covered” by a sequence of open intervals whose total length is arbitrarily small.  (If this does
not seem surprising, suppose  and if you think that  must be , try to prove that       

 must be in )
  

More informally: take a piece of string with length . Cut it in half and lay one half on  with its
 

center at . Cut the remaining piece in half again and lay one half on  with center at  Continue   
in this way: cut the remaining piece of string in half and lay it down on  so that its center is on top of
the next element in the list of elements of . (Of course, some of the pieces of string, when laid down,
may overlap with earlier pieces.)  In the end, all of  is covered with pieces of the original string.
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Exercises
E24.   Prove or give a counterexample:
 a) if  and , then  .          
 b) if  and , then .            
 c) if , then   .      
 d) if  , then      B A .
 e) if and  are nonempty sets and , then .          
 f) if  is infinite and  is countable, then .     
 g) if  is infinite and  is countable, then .     

E25.  Prove that if  is uncountable and  is countable, then .     

E26.   a) Give an explicit formula for a bijection between the intervals (  and .  
 b) Give an explicit formula for a bijection between the sets and .     

E27.  Prove that the set of all real numbers in the interval that have a decimal expansion using 
only even digits is uncountable.

E28.   Is the following statement true?  If not, what additional assumptions about  and  will make 
it true?
 iff there is a set  such that each element of  and              
 each element of  occur in exactly one pair   

E29.  A subset  of  is called  if  is countable and  if  is finite.   cocountable cofinite  
( )The names are shorthand:   mplement is .cocountable co countable
 a) Prove that if  and  are cocountable subsets of , then  and  are also      
cocountable.   Is the analogous result true for cofinite sets?  For infinite unions and intersections?
      b) Show how to write the set of irrational numbers, , as an intersection of countably many
cofinite subsets of 

E30.    A collection  of sets is called  if whenever  and , then pairwise disjoint     
     For each statement, provide a proof or a counterexample:
 a)  If  is a collection of pairwise disjoint circles in the plane, then  is countable. 
 b)  If  is a collection of pairwise disjoint circular disks in the plane, then  
 is countable.
E31. Prove that there cannot exist an uncountable collection of pairwise disjoint open intervals
in .
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E32.   Let  be a straight line in the plane.  Prove that the set  ( ) is either empty, contains    
exactly one point, or is countably infinite.  In each case, give an equation for a specific line  to
illustrate.
 
 
E33.    Suppose that  has the following property:     
  there is a  constant,  such that for every finite set fixed M,               the following inequality is true:
   |  ( )  ( ) |         

  a) Give an example of such a function where ran  is infinite. 
  b) Prove that for such a function ,  0, 1 0  is countable.         

E34.   What is wrong with the following argument?
For each irrational number , pick an open interval a ,b with rational endpoints      centered at .  Since the interval a ,b  is centered at p, the function  given          
by a ,b  is one-to one. There are only countably many possible pairs a ,b( )        because     is countable.    Therefore  is equivalent to a subset of  , so  is      
countable.

E35.  a) A sequence  in  is called an   if   such that          arithmetic progression  for every   Prove that the set of arithmetic progressions in  is countable.   
    b) A sequence  in  is called  if   such that for all           eventually constant Prove that the set of eventually constant sequences in  is countable.
 c) A sequence  in  is called  if   such that  for all       eventually periodic  
    Prove that the set of all eventually periodic sequences in  is countable.   Note: the set of  all
sequences in  is uncountable, but we have not proved that yet.
E36.   For a set , let (            We can think of  as an “alphabet” and
 as the set of all “finite sequences” or “words” that can be formed from this alphabet.)

 Prove that if  is countable, then  is countable. 

E37.   Let  be an uncountable subset of .  Prove that there is a sequence of  elements  distinct
           

in  such that  diverges. 1

E38.   Let  be a set and, for each , suppose .  Let  be a function  such             g
that, for every , the set  is countable.  Prove that there is a point              such that for all , .        

        What property of  makes the proof work?
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E39.   Suppose  and .  Let  denote the “translated set” .              
 a)  Show that if  is countable, then  such that         
 b)  For sequences  and  in   (that is, for  ), let  be the sequence defineds t          
by .  Show that if  is a countable subset of , then   such that              
       for every .

E40.  Give a proof or a counterexample for the following statement:
  If is a collection of open intervals in  with the property         that  , then .     

E41.  a)  Show how to write  as the union of infinitely many pairwise disjoint infinite sets.
  b) Show how to write  as the union of uncountably many sets with the property that, given
any two of them, one is a subset of the other.
         c) Show how to write  as the union of uncountably many sets with the property that any two
of them have finite intersection.  ( )Such sets are called almost .disjoint
(Hint:  These statements that actually are true if is replaced by any infinite countable set.  For parts
b) and c), you may find it easier to solve the problem first for , and then use a bijection to“convert”
your solution for  into a solution for the set .  )

E42.   a)  Imagine an infinite rubber stamp which, when applied to the plane, inks over all concentric
circles with irrational radii around its center.  What is the minimum number of stampings necessary to
ink over the whole plane?
        b) What if the stamp, instead, inks over all concentric circles with rational radii around its
center?
 
E43.   Suppose .  Let   lim  exists but is not equal to   Prove             a
that  is countable.
             Hint: One way to start is to define, for r ,  = a    lim   and 

                      


     lim    Then     (why?).  Prove that
r 

    and  are countable.
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E44.  Let  be a countable set of points in the plane, .   Prove there exist sets  and  such thatD   
   , where the set  has finite intersection with every horizontal line in the plane and  has 
finite intersection with every vertical line in the plane.
Notes:  1) This problem is fairly hard.  You might get an idea by starting the with an easy special case:
   

2) The statement that “every  can be written as , where  has countable       
intersection with every horizontal line and  has countable intersection with every vertical line”
is actually  to the continuum hypothesis see p. 40 and Exercise VIII.E.26equivalent ( ).

E45. We say that a function has a  at  if there exists an open interval        local maximum
containing  such that  for all in other words,  is the (absolute)         
maximum value of  on the interval .  
 a) Give an example of a nonconstant  which has a local maximum at every point.  Then
modify your example, if necessary, to get an example where ran  is infinite.
    Is it possible that ran the set of positive rational numbers?  the set of all rational 
numbers?  Is it possible, for every countable , to find an  having a local maximum at every  
point  and ran  ?    
  b) Suppose  has a local maximum at every point   Prove that ran  is countable.    
(Hint: if ran( ), pick an interval  with rational endpoints containing  and such that       
    is the maximum of  on . )
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8.  Two Mathematical Applications
The relatively simple facts that we know about countable and uncountable sets are enough to prove an
interesting fact about the real numbers.
Definition 8.1     A real number  is called  if  is a root to a nonconstant polynomial equation algebraic
             (*)                 

where the coefficients    are all integers.  (      It is clearly equivalent to require that the
coefficients be rational numbers because we could multiply both sides by some integer to “clear the
fractions” and arrive at a polynomial equation that has integer coefficients and exactly the same
roots.)
(Complex roots complex algebraic numbers of (*) are called .)
A real number is rational if and only if it is the root of a  polynomial equation with integerfirst degree
coefficients: the rational  is a root of the equation .  Therefore rational numbers are

     
algebraic.  The algebraic numbers are a natural generalization to include certain irrationals: for
example,   is algebraic, since it is a root of the quadratic equation ;   and  is           
algebraic because it is a root of A reasonable question would be: are there any         
nonalgebraic real numbers?

Theorem 8.2         The set  of all algebraic real numbers is countable.
Proof  For each , let  be the set of all polynomials with integer coefficients and degree .     Suppose .  Let    be the -tuple of coefficients of .                Then    is in the set , which is countable. Since the function                 
given by   is a bijection, is countable.              For each polynomial , let  be the set of real roots of the equation .   is a       
finite set. Then  is a union of countably many finite sets (each with at most        
  elements),  so is countable.  ( For any particular  is the set of all algebraic numbers     that are roots of an equation (*) that has degree for example,  .       )
 By Theorem 7.8(2),   is countable.      

 

Definition 8.3       A real number which is not algebraic is called .transcendental
(Euler called these numbers “transcendental” because they “transcend the power of algebraic
methods.”  To be more politically correct, we might call these numbers “polynomially challenged.”  )
Corollary 8.4         Transcendental numbers exist.
Proof  Let  be the set of transcendental numbers. Since  and  is countable,  cannot be      
empty. 
In fact, this short proof shows much more: not only is  nonempty, but  must be uncountable!  There 
are “more” transcendental numbers than algebraic numbers.  This is an example of a “pure existence
proof” meaning that the proof does not give us any particular transcendental numbers, nor does it
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give us a way to construct one. To do that is harder.  Transcendental numbers were first shown to exist
(using different methods) by Liouville in 1844.  The numbers  (Hermite, 1873) and  (Lindemann, 
1882) are transcendental. One method for producing transcendental numbers is contained in a theorem
of Gelfand (1934) from algebraic number theory; it states that

ff  is an algebraic number, , and  is an algebraic irrational, then  is      
transcendental.

For example, the theorem implies that is transcendental. The number  is also transcendental.     
This follows from Gelfand's Theorem (which also allows  algebraic numbers) because:complex
 
 =  and    cos sin  So ,  which is                          
 transcendental by Gelfand's Theorem

As a second application to a different part of mathematics, we will prove a simple theorem from
analysis.
Theorem 8.5           A monotone function  has at most countably many points     
of discontinuity. (Since  is uncountable, this implies that a monotone function on    
must be continuous at “most” points.)
Proof  Assume  implies .   (      If  is decreasing, simply apply the following argument
to the increasing function .  )   Therefore, at each point  we have   
  lim     lim   (  ?)           why must these one-sided limits exist

Let  denote the “jump of  at ” lim lim .   Since  is increasing, ,                
and  is discontinuous at  if and only if  .    
Let  }. The set  is finite because the sum of any set of jumps cannot be          

1
more than .  Furthermore, if  then  for some sufficiently large , so        1

        for some .  Therefore every point  of discontinuity of  in (  must be in the countable set
   . (The function might also be discontinuous at an endpoint  or , but the set of discontinuities

would still be countable.)  

Corollary 8.6             A monotone function  has at most countably many points of discontinuity.   
Proof For every , the set  of discontinuities of  in the interval  is countable, by        Theorem 8.5.  So  ,  the set of all discontinuities,  is countable.     

As a sort of “converse,”  it is possible to prove that if  is  countable subset of , then there exists any 
a monotone function  for which  is precisely the set of points of discontinuity.  (You can    
find an argument in  (Boas, p. 129) or see Exercise E65 below.)A Primer of Real Functions 
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9.  More About Equivalent Sets
So far, we have seen two kinds of infinite set, countable and uncountable.  In this section, we explore
uncountable sets in more detail.  Notice that we have no reason to assume that two uncountable sets
must be equivalent.
There are many equivalent uncountable subsets of . The following theorem gives some examples.
(The proof could be made much easier by using the Cantor-Schroeder-Bernstein Theorem, which we
will discuss on p. 42.  However, at this stage, it is instructive to give a direct proof.)
Theorem 9.1       Suppose .  The following intervals in  are all equivalent:   
                       
             0              
           ,                 
       .       
Theorem 9.1 says that all  intervals in  are equivalent.  (infinite  For technical reasons that we will
discuss later, it is convenient to consider  and all one-point sets  as intervals.  It turns out that 
these are the only finite intervals.)
Proof The linear map  can be used to show that      
                            
 The bijection tan  proves that            

     
 To show that , define functions:    
       for  for each           3

    1 1 

  
Each  is a bijection from   to  , as illustrated above.  Let .    

   1 1 1 1
      , , 

The graph of  consists of all the separate pieces, shown above, taken together. )
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Then  is a function  with dom  dom(  and ran   ran( )            why?   
  

    It is easy to check that  is a bijection.  (Of course,  is not continuous, but that is not
required in the definition of set equivalence.)
   We can  the definition of  to prove that . Specifically, use  to define aextend       
function  by      
    if

if      
   

Since  is a bijection, so is . 

   It is very simple to show that ( , that , and that         
             :  just use the maps  and .

   The function ln  proves that .     

   We can use a “projection” to show that  is equivalent to .  Imagine a ray of light  
that emanates from ( , passes through the point  on the -axis ( ) and then hits the         
       -axis at a point that we call .  ( ).  Then  is aSee the following illustration
bijection.
 

   
             Those who prefer formulas can check that a formula for  is  .          



The few remaining equivalences such as  are left for the reader to prove.   

At this point, we might ask “ t?”Are all uncountable sets are equivalen
Example 9.2       The set  is not equivalent to .  To see this, we use an argument whose flavor is 
similar to the “diagonal argument” used by Cantor to prove that  is uncountable. 
 Consider  function .  We will show that   be onto, and therefore noany cannot     
 bijection can exist between  and  If , then Note that  is not a            
 number:  is a  from  into ; to emphasize this, we will temporarily write   function



40

 Then for , it makes sense to evaluate the function  at a point  to get            a number .   
 Now we define a function  by the formula  

   if 
if      

    




 We claim that for each , This is because the two functions  and            have different values at the point because of the way  was defined.      Therefore ran( , so  is not onto.   
 It is also clear, then, that of  can be equivalent to .  To see this, suppose no subset     
 and that  .  If  were onto, we could use  to create an onto map  from  to           
 (which is impossible!) as follows:  pick any function and define  

   if 
if . 

     
    

  
 Therefore  is an uncountable set which is not equivalent to any subset of .  In particular, 
  is not equivalent to .  Intuitively,  is “bigger” than any subset of .    

The fact that not all uncountable sets are equivalent leads to an interesting question.  We have already
seen ( ) that every subset of  is either finite or equivalent to the whole set — thereExample 7.6(2)  
are no “intermediate-sized” subsets of .  How about for ?  Could there be a subset of  which is  
uncountable but still not equivalent to ?  Intuitively, such an infinite set would be “bigger than  but 
smaller than .”  It turns out that this question is “undecidable” !
An old word for the real number line is “continuum,” and the  (or , for short)continuum hypothesis CH
is a conjecture of Cantor that dates from about 1878.  CH says that the answer to the question is “no”—
that is, CH states that every subset of  is either countable or equivalent to . Cantor was unable to 
prove his conjecture.  In an address to the International Congress of Mathematicians in 1900, David
Hilbert presented a list of research problems he considered most important for mathematicians to solve
in the new century and the very the first problem on his list was CH.
Now if one believes (philosophically) that the set of real numbers actually exists “somewhere out
there” (in some Platonic sense, or, say, in the mind of God) then any proposition about these real
numbers, such as CH, must be either we simply have to figure out which.  But to true or false  prove
such a proposition mathematically requires an argument based on some set of assumptions (axioms)
and theorems in terms of which we have made our mathematical definition of . Since  is defined 
mathematically in terms of set theory, a proof of CH (or of its negation) needs to be a proof derived
from the axioms of set theory.
The usual collection of axioms for set theory we have seen some of these axioms is called the 
Zermelo-Fraenkel system (ZF) If the Axiom of Choice is added for good measure, the axiom system is
referred to as ZFC.  The fact is that the standard axioms for set theory (ZFC) are not sufficient to prove
either or CH  its negation.  Since CH cannot be proven from ZFC, we say CH is  of ZFC.independent
But, since the denial of CH also cannot be proven from these axioms, we say that CH is also consistent
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with ZFC. Taken together, these statements say that CH is  in ZFC: one can add either CHundecidable
or CH as an additional axiom to ZFC without fear of introducing a contradiction. The consistency
of CH was proved by Kurt Gödel (1906-1978) in 1939, and in 1963 Paul J. Cohen (1934-2007) showed
that ZFC could not prove CH the independence of CH.

“In the early 1960's, a brash, young and extremely brilliant Fourier analyst named Paul J. Cohen
(people who knew him in high school assure me he was always brash and brilliant) chatted with a group
of colleagues at Stanford about whether he would become more famous by solving a certain Hilbert
problem or by proving that CH is independent of  ZFC.  This (informal) committee decided that the latter
problem was the ticket.  (To be fair, Cohen had been interested in logic and recursive functions for
several years; he may have conducted this séance just for fun.)  Cohen went off and learned the
necessary logic and, in less than a year, had proved the independence. This is certainly one of the most
amazing intellectual achievements of the twentieth century, and Cohen was awarded the Fields Medal
for the work.  But there is more.
Proof in hand, Cohen flew off to Princeton to the Institute for Advanced Study to have his result checked
by Kurt Godel.  Godel was naturally skeptical, as Cohen was not the first person to claim to have solved¨ ¨
the problem; and Cohen was not even a logician!  Godel was also at this time beginning his phobic¨
period. (Toward the end of his life, Godel became convinced that he was being poisoned, and he ended¨
up starving himself to death.)  When Cohen went to Godel's home and knocked on the door, it was¨
opened six inches and a hoary hand snatched the manuscript and slammed the door.  Perplexed, Cohen
departed.  However, two days later, Cohen received an invitation for tea at Godel's home.  His proof was¨
correct: the master had certified it.”

   ,Mathematical Anecdotes
   Steven G. Krantz, Mathematical Intelligencer, v. 12, No. 4,
   1990, pp. 35-36)

By a curious coincidence, Cohen was an analyst interested in Fourier series, and it was Cantor's work
on Fourier series that led to his creation of set theory in the first place.
Therefore CH has a status, with respect to ZFC, like that of the parallel postulate in Euclidean
geometry: the other axioms are not sufficient to prove or disprove it.  To the other axioms for
Euclidean geometry, you can either add the parallel postulate (to get Euclidean geometry) or, instead,
add an axiom which denies the parallel postulate (to get some kind of non-Euclidean geometry).
Likewise, to ZFC, one may consistently add CH as additional axiom, or get a “different set theory” by
adding an axiom which denies CH.
Unlike the situation with AC, most mathematicians prefer to avoid assuming CH or its negation in a
proof whenever possible. The reason is that CH (in contrast to AC) does not seem to command
intuitive belief and, moreover, no central mathematical results depend on CH.  When the use of CH use
seems necessary, it is customary to call attention to the fact that it is being used.
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To reiterate one last point:  if you believe that, in some sense, the real numbers actually exist “out
there” beyond ourselves, then you believe that the set , as defined mathematically within ZFC, is just
a mathematical model of the “real” real number system.  This model may be an inaccurate or
incomplete fit to reality.  You may therefore continue to believe that for the “real” real numbers, CH is
either true or false as a matter of fact.  People with this point of view would say that the undecidability
of CH within ZFC simply reflects the inadequacy of the axiom system ZFC.  Gödel himself seemed to
feel that ZFC is inadequate, although for perhaps different reasons:

“I believe that ... one has good reason for suspecting that the role of the continuum problem in set theory
will be to lead to the discovery of new axioms which will make it possible to  Cantor'sdisprove
conjecture.”

  Kurt Gödel, “What is Cantor's Continuum Problem?”, , ed.Philosophy of Mathematics
  Benacerraf & Putnam, Prentice-Hall, 1964, p. 268
         

10.  The Cantor-Schroeder-Bernstein Theorem
The Cantor-Schroeder-Bernstein Theorem (CSB for short) gives a way to prove that two sets are
equivalent  the work of actually constructing a bijection between them.  It states that two setswithout
are equivalent if each is equivalent to a subset of the other.

Theorem 10.2 (CSB)            Suppose there exist one-to-one functions  and .  Then         
  .
Proof     We divide the set  into three subsets in the following way.  For a point , we say “     
has 0 ancestors” if  ( ).     which is, of course, always true, so   has 0 ancestorsevery  
We say “  has  1 ancestor” if , that “  has 2 ancestors” if , and so              
on.  In general, “  has  ancestors” if the inverse image set resulting from the alternating  
application of first , then , then , ...,  times produces a nonempty set.  We say “  has      
exactly  ancestors” if  has   ancestors but  does not have   ancestors.  We say “  has         
infinitely many ancestors” if  has  ancestors for every .  Let      
      has an even number of ancestors ,             =  has an odd number of ancestors ,    and           =  has an infinite number of ancestors      

Clearly, these sets are disjoint and .  Define ancestors for a point  in a         similar way, beginning the definition with an application of  rather than  and divide  into the   
sets , , and .  The maps  and  are bijections (why?).                        

The function  maps   , but it may not be onto (why?).   However,  the map      into
                    is a bijection, so it has an inverse bijection  .  We can now
define a bijection  from  to  by piecing these maps together:  
                        
More explicitly,
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       if
if                  

       
 

Our previous examples of equivalent sets were exactly that: merely , and they were not usedexamples
in proving the CSB Theorem.  Therefore, without circular reasoning, we can now revisit some earlier
examples and use the CSB Theorem to give simpler proofs of many of those equivalences.  The
following two examples illustrate this.
Examples 10.3
  1) Suppose .  Then  by .  If  is not finite, then the          
definition of “infinite” says that there is  a one-to-one map .  In that case, by CSB, wealso    
conclude that .  So  is either finite or equivalent to .   
    2)   since each set is equivalent to a subset of the other:    
    and       
    is easily seen to be equivalent to ,  ( )     1 14 2 use a linear map
    3) .   Why? ) is a one-to-one map of the interval into the        12square.  In the opposite direction, we can easily define a one-to-one map in the opposite direction as
follows:
   for , write the  expansions of and        binary
   and                             

   choosing, in both cases, a binary expansion that does not end with an
   infinite string of 's.  Then define  by “interlacing”       
   the digits to create a  decimal:base 
                      

The function  is one-to-one:  suppose . Then  and  have different                
decimal expansions.  Neither decimal expansion ends in an infinite string of 9's, so and       
are different real numbers.  ( )What was the point of writing  expansions of  and ?binary  
    4) It is very easy to show that if  and , then  ( ).          check!
Then, because , we can immediately write down such equivalences as         
      ( .  And since                          
it follows that
                 

Similarly, we can see that  for any .      
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Example 10.4          (A tangential comment)  Although , there cannot be a  bijection   continuous
between them. In fact, if  is continuous then   even be one-to-one.   The proof is an      cannot
exercise in the use of the Intermediate Value Theorem from calculus.

Define a function  of one variable by holding constant one variable in : for convenience, 
say  .  Let  and .  We can assume                     
(if ,  is not one-to-one and we're done).  Since  is continuous, so is .  By the     
Intermediate Value Theorem,  assumes  values between  and ; in particular, for some all  
       .  



For  , define .  Because  is continuous at 0,  is close tothat        
             

  for  close to 0.  Therefore, we know that  for all  in some
sufficiently short interval ( .  In particular, then ) .         2
But we know that  assumes all values between  and so  for some  in .          2Therefore .  Since ( ,  is not one-to-one.                   2 2 

Note: we did not even use the full strength of the assumption that  is continuous.  We needed
only to know that  and  were continuous a weaker statement, as you should know from  
advanced calculus.  This means there cannot even be a one-to-one map of the plane to the line
which is continuous in each variable separately.

A similar argument shows that there cannot be a one-to-one continuous map .      
Therefore, in particular, there cannot be a continuous bijection from  to .   

However, in the “opposite” direction, it is possible to construct a continuous map       
which is .  Such a map is called a , and such a map is often constructed in anonto space-filling curve
beginning analysis course.
Is there be a continuous  map from  ?onto   
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11.  More About Subsets

We have already seen that there is more than one “size” of infinite set:  some are countable, others are
uncountable.  Moreover, we have seen uncountable sets of two different sizes:  and .  In fact, there 
are infinitely many different sizes.  We will see this using the power set operation .  But first we will
prove a result about subsets of countable sets that frequently is useful to know.
Theorem 11.1            The collection  of all  subsets of a countable set  is countable.  finite
Proof  If  is finite, it has only finitely many subsets. So assume  is countable and infinite. For 
convenience, we assume  is the set of all prime numbers ( be sure you understand why there is no loss
of generality in making this assumption! ). Then each finite  is a set of primes and we can define  
     by

   if 
the product of the primes in if      

   
By the Fundamental Theorem of Arithmetic,  is one-to-one; so  is countable.    

Recall that  denotes the set of all functions from  into .  When , we will also use the      
notation  for the set .  Thus,  is the set of all “binary functions” with domain .  The      
following theorem gives us two important facts.
Theorem 11.2             For any set ,
      1)     
      2)   is  equivalent to   ( so      not  

Proof  1) For each , define the     characteristic function of 

    by if 
if     

   
Define  by .  The function  pairs each subset of  with its characteristic           function. The function  is a bijection: it is clearly one-to-one because different subsets have different
characteristic functions. And  is also onto because every function   the characteristic       is
function of a subset of , where . So .                     

   2) Consider any function .  We will show that  cannot be onto. For each     
         is a subset of , so it makes sense to ask whether or not .  Let 
            .  Of course, .
        Suppose .  If , then , so .  But if , then                    
so again, .  Either way,  , so ran .               
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We use the notation  for  and, more generally,  for .  The preceding            
theorem says that no set is equivalent to its power set, so  is not equivalent to .  We can   
prove even a bit more.

Corollary 11.3   No two of the sets in the sequence , , , ... , , ... are equivalent.      

Proof  To begin, notice that for each , there is a one-to-one function          
given by .    Now suppose there were a bijection  for some .  Then we would        
have the following maps:
                                                                                       ........              1
         ________________________________________________ 
                                                          
Then        and                              
are both one-to-one.  But then the CSB Theorem would imply that , which is    
impossible by Theorem 11.2(2).   

Therefore, using repeated applications of the power set operation, we can generate an infinite sequence
of sets no two of which are equivalent for example, , , ... , , ... . In the            
“exponential” notation of Theorem 11.2(1), we can also write this sequence as , 2 , , ... .   Thus  
we have infinitely many different “sizes” of infinite set.

Examples 11.4
   1) so we conclude that              the set of all binary sequences is
uncountable.

    2) Because  is uncountable and because  has only countably many finite subsets   
(Theorem 11.1), we conclude that  has uncountably many infinite subsets.  It follows that every
infinite set has uncountably many infinite subsets ( ).explain the details!

    3) Using the CSB Theorem, we can create another paradox similar to Russell's:
 Let  is a set , so  is the “set of all one-element sets.” Then the      
  maps  and  given (in both directions!) by { } are         
 one-to-one. Then the CSB Theorem gives that .  

What's wrong?  ( )The paradox is dealt with in the same way as Russell's Paradox.
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Since , we can ask whether  is equivalent to some other familiar set.  The next theorem   
answers this question.
Theorem 11.5            
Proof  We use the CSB Theorem. Define  as follows:   if , then               

so we can define where In other words,   is the         
    , 10 10  

real number whose decimal expansion is . ...  .  If ,  then  and  have       a a  ... a       
different decimal expansions, and neither expansion ends in a string of 's  ( ). each  is either  or   Therefore , so is one-to-one.        

   To get a one-to-one function from  into , we begin by defining a function 
                     : for each let   The function  is clearly one-to-one.
Since , there is a bijection  ( Then  is one-to-                  see Theorem 11.2)
one.
   By the CSB Theorem, .      
For , it is fairly easy to generalize Theorem 11.5 replacing  with , where  is short for       
        .

12.  Cardinal Numbers

To each finite set  we can assign, in principle, a number called the  or  of cardinal number cardinality
  .  It answers the question: “How many elements does  have?”  The symbol  represents the
cardinal number of .  For example, , and  In practice, of course,  this          
might be difficult.  For example, if  is prime and , then ?            
Of course, there must be a correct value for but actually finding it would be hard.  ( You could
make a rough estimate using the Prime Number Theorem see Example 5.1(8), p. 16:
       

ln       
We have already stated informally that nonequivalent infinite sets have “different sizes ”  To make this
more precise, we will  that to each set  there is associated an “object” denoted | and calledassume   
the  (or  for short), and that this is done in such a way that cardinal number of cardinal of    
if and only if .  

Note: How to justify this assumption precisely doesn't matter right now.  That question belongs in a
more advanced set theory course.  It turns out that  can be precisely defined in ZFC.  Like every
object in mathematics,  is itself a certain set and, of course,  is defined in terms of the given set .    
For these notes, though, it is enough to know that two sets have the same cardinal number if and only if
the sets are equivalent.
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There are standard symbols for the cardinal numbers associated to certain everyday sets:
       
    (Of course,  for any , because )           
     (Of course,  for any )              
     
       (So  is the cardinal number for every countable infinite set;          for example, )                    
The symbols  and  were chosen by Cantor in his original work.  The symbol  is “aleph,” the first  
letter of the Hebrew alphabet ( ). We read  as “aleph-zero”  (orbut Cantor was raised as a Lutheran the more British “aleph-nought” or “aleph-null.”)
Cantor chose “  for  since  is the first letter of the word “continuum” c” an old word for the real   
line ).  Because we know that the following sets are equivalent, we can write, for example, that
                          .
What is ?  Why?  (  You  give a definite answer for this, but be careful: you can't assume that ancan
uncountable subset of must be equivalent to .  See the discussion of CH on pp. 40-42.  )

13.  Ordering the Cardinals
We have talked informally about some infinite sets being “bigger” than others.  We can make this
precise by defining an order “ ” between cardinal numbers.   Throughout this section,  are  
sets with  and   (  is not necessarily the set natural numbers, ).                
We say that the sets  and   the cardinal numbers  and .    represent
Definition 13.1   1)   means that  is equivalent to a subset of .       We also write
    as      
   2)   or  means that  but .             We also write
    as      
Thus  means that  is equivalent to a  of  but  is not equivalent to .  According to      subset
the CSB Theorem, this is the same as saying that  is equivalent to a subset of  but  is not  
equivalent to a subset of .
There is a detail to check.  The relation  is defined  the sets  and . Another person    using
might choose different sets, say  and  to represent the cardinal numbers.  Would that        
person necessarily come to the same conclusion that ?  We need to check that our definition is  
independent of which sets are chosen to represent the cardinals , and   or, in other words, that 
has been .   This is easy to do.well-defined
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Suppose  and  also represent  and . Then  and , so there are            
bijections  as shown below.  If  is equivalent to a subset of , then there is also a one-to-    
one map  as pictured below:
             
          

    
           
                    
               

So  is a one-to-one map , so  is equivalent to a subset of .                 
Therefore the question “Is ?” does  depend on which representing sets we use that   not
is, the relation  is well-defined.

Theorem 13.2         For any cardinal numbers  and  : 
     1)      
     2)   and  implies         
     3)   and  implies         
     4)   and  implies         
     5)   of the relations , , and  holdsat most one         
     6*)   of the relations , , and  holds.at least one         
Proof  The proofs of 1) and 2) are obvious.
   For 3), notice that we are given that each of  and  is equivalent to a subset of the other. 
Then  (by the CSB Theorem), so .     
   4)  If , then  so, by part 2), .  If , then  and therefore                  
by part 3).  But this contradicts the hypothesis that   Therefore , so         
   5)  By definition of  excludes  and  And if  and                 
were both true, then  and , so , which is impossible.        
   6*) The proof is postponed.  

It seems like the proof of part 6*  of the theorem shouldn't be difficult.  Informally, you simply)
pair an element of  with an element of , and keep repeating this process until either a 
bijection is created between  and  or until one of the sets has no remaining elements.  If one 
of the sets is used up before the other, then it has the smaller cardinal.  In fact, this works for
finite sets, but for infinite sets it is hard to make precise what “keep repeating this process until
...” means.  To make the argument precise, the Axiom of Choice has to be used in some form. We
could develop the machinery to complete the proof here, but it would digress too much from the
main ideas. So for use in our examples, we'll simply assume part 6* for no) w.

From parts 5) and 6*) of the theorem, we immediately get the following corollary.
Corollary 13.3    For any two cardinals  and ,  of the relations   or           exactly one
is true.
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Examples 13.4
  1) If  is a finite cardinal, then  is equivalent to a subset of  but  is not      
equivalent to . And if  is an infinite cardinal number, there is a one-to-one function .     
These observations show that , so  is the  infinite cardinal number.       smallest
    2)            Explain

14.  The Arithmetic of Cardinal Numbers
We want to define exponentiation, addition and multiplication for cardinal numbers.  Of course, for
finite cardinals, these operations will agree with the usual arithmetic operations in .
We begin with exponentiation.  As in the previous section,  and  will denote cardinals 
represented by sets and . 
Definition 14.1          

Thus,  is the number of functions from the set  into the set .  As with the definition of the order  
relation , we must check that exponentiation is well-defined. (That is, if one person calculates  

using  and another person uses , will they get the same answer?)      

Assume | |  and .  We must show that , that is, we                   

must produce a bijection .        

By hypothesis, we have bijections  and .  For , define a function              
             .
 is one-to-one:  Suppose  Then for some ,            
Let Then  and             
                                             
But and  is one-to-one so               
Therefore the functions  and  have different values at , so .  Therefore  is         
one-to-one.
 is onto:  Exercise.

Examples 14.2
    1)          

    2) , since .  Thus, there are  different binary sequences.           
As remarked earlier, it is not hard to generalize this to show that  is true for any integer      

Students sometimes confuse the  that  with the continuum hypothesis.  The continuumfact   

hypothesis states that there is no cardinal  such that .        
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In other words, CH states that  is the immediate successor (in terms of size) of the cardinal

number .  Here is still another way of putting it: let us   to be the immediate  define
successor of   assuming for now that an immediate successor must exist .  Then CH simply ( )
states that .  To go a little further, the    for short   generalized continuum hypothesis GCH( )
states that for any infinite cardinal , its “immediate successor”  is  . 

(Since ZFC cannot prove CH, certainly ZFC cannot prove the stronger statement GCH. In fact,
GCH is undecidable in ZFC.)

    3) For any set  is equivalent to which is a subset of        
Therefore . But  because  is not equivalent to .  Therefore  for all             
cardinals . It follows that  ...  ... is an infinite increasing sequence of            

infinite cardinals.   In particular, for , we have                  

We now define multiplication and addition of cardinal numbers.
Definition 14.3         Suppose  and ,     
     1)    (or simply ) means      
     2)  means , where  and  are  sets representing  and        disjoint

Part 2) requires that to add  and , we choose  representing sets M and  disjoint
This is  because if , we can replace  and  by thealways possible      
equivalent  sets  and .disjoint      

You should check that multiplication and addition are well-defined that is, the operations are
independent of the sets chosen to represent the cardinals  and . 

Theorem 14.4             For cardinal numbers , , and    
     1)           1 )        
     2)           2 ) ( ) ( )              
      3)      
     If  and , then     
     4)            4 )         
       
Proof  The proofs are all simple. For example, we will prove 4 ).

 Suppose  are represented by the sets Since  and , there are           
one-to-one functions and Define by                 
          Then  is one-to-one ( ), so .   why?
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Addition Examples 14.5   
  1)  For any    because .          
    
     2)  For finite     because the union of two countable                  sets is countable.
  3)  For finite   .              

    is true because .  Then write           
   the inequalities
       and                    
   Add these inequalities and apply Theorem 14.4(4) to get
     
    .            

   But , so we conclude that .                 

  4)  If  is infinite, then .    

   To see this, pick  so that  and .   is infinite so there        
   is a one-to-one map  and we can write .              
   Because  is countable, so is .  Therefore we have a bijection        
   .  We can then define a bijection  by                 
     
     if 

if         
      

 
The following two facts about addition are also true, but the proofs require more complicated
arguments that involve AC.  We omit the proofs and, for now, simply assume 5*  and 6*) ).
  5*)  If  or  is infinite, then max :  that is, a sum involving an      
  infinite cardinal number equals the larger of the two cardinals.
  6*)  If  and , then .           

 This result deserves a word of .  For infinite cardinals, it is  true in generalcaution not
  that if  and q, then  !  For example,  and                   but             

  It fits the tune better7) The World's Longest Song:  “ Bottles of Beer on the Wall"  (    with the British pronunciation “Aleph-nought.” )
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Multiplication Examples 14.6   
  1) For any :    and     because          
     and           
     2)  .      If we view  as shorthand for , the equation is true because        .   But an alert reader might point out that we could also   
   interpret  as an exponentiation, that is, as . However, this gives   
   to the same result because .  (     Mapping each function  
    to the pair  is a bijection.         )
 
     3)  If  is finite and , then .            To see this, begin with the inequalities
                                    

   Multiplying and applying Theorem 14.4  gives 

                           

   Since , we get that                

    4)    because         

   5)  If  is finite and , then .             
   To see this begin with the inequalities
                                              and multiply to get      
                       

   Since ,  we conclude that             

One additional fact about multiplication of cardinals will be assumed, for now, without proof:
    6*) If  is infinite and , then max .  In particular, for an infinite      
cardinal , we have  .   

In algebraic systems (such as ,  or ) where subtraction is defined, the definition of subtraction is  
always given in terms of addition:   is  to mean   This shows why         defined
subtraction cannot be sensibly defined for infinite cardinal numbers:  should we say      because ?  or   because ? or   because                           
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? Similarly, division is usually defined in terms of multiplication:  means 

Think about why .there is also no sensible definition for division involving infinite cardinal numbers

The proof of the next theorem is an excellent check on whether you understand “function notation.”
Theorem 14.7           For cardinals  and           

Proof   We want to define a bijection .       

 If , then  is a function .  If  then  , so  is a                 
function .  Therefore, for ,  makes sense: it is an element of .  So we can       
define a function  by the rule .       

   is :  if , let  be the function defined by ( .  Then onto              
               and   because for any pair ,  we have  
  .

   is :  if   and ,  then for some , .  Because one-to-one                
        and  are different functions , there must be some  for which
           .  But this says that , so  .     

Examples 14.8     
  1)                      

     2)   ,  so              
   

     3)                  

Caution:  We now know that          


     but that       

So we might be tempted to conjecture that if , then .  But this is .       false
In fact,  for every cardinal number , it is possible
   to find an  for which  and       also
   to find a   for which .     

The proof of this is a little too complicated to look at now.
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Exercises
E46.  Prove or disprove:  Let  be the set of algebraic numbers.  Then every open interval in  
contains a point of . 

E47.  a) Suppose  is a countable subset of .  Prove that there exists a fixed real number,  such 
that is transcendental for every S.    
 b) For any set  and , we write  for the set   Find a set              
                       for which   and  for all 

E48.  You and I play the following infinite game.  We take turns (you go first) picking “ ” or “ ” and 
use our choices as the consecutive digits of a binary decimal which, when completed, represents a real
number in the interval   You win if this number is transcendental; I win if it is algebraic.  Explain 
how to make your choices so that you are guaranteed to win, no matter what choices I make.  (Hint:
Consider the binary expansions of the algebraic numbers in .  Look at the “diagonal  proof” that 
shows  is uncountable.  )

E49.   Find the cardinal number of each of the following sets:
 
 a)    the set of all convergent sequences of real numbers
  b)   the set of all straight lines  in the plane for which         
  c)  the set of all sequences  that are eventually constant  (    Note:  is  eventually
constant if there are natural numbers  and  such that  for all n m.        )
  d)   the set of all differentiable functions    
Hint: if  are differentiable and , what can you say about  and  ?         
 e)    the set of all geometric progressions in   ( A sequence  in  is a    geometric
progression  if  there exists a real number r  such that  f every .        )
  f)  the set of all strictly increasing sequences   (    Note:  is  ifstrictly increasing
          and   )
  g)    the set of all countable subsets of   Hint: part f) could be used.
Note: Often one proves  by using two separate arguments, one to show  and the other     
to show | | .  Sometimes one of these arguments is much easier than the other.  
E50.  Find a subset of  that is equivalent to the set of all binary sequences , or explain why no  asuch subset exists .
E51.  Explain why the following statement is true:

The set of all real numbers  which have a decimal expansion of the form
        ( )            may depend on 
is countable.
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E52.  Prove that for any collection of sets ,  there must exist a set  such that      
| for every . .             Hint:  use the fact that 

E53.   Is the following statement true or false?  Prove the statement, or give a counterexample.
  If  is an uncountable collection of uncountable subsets of , then at least two sets 
  in  must have an uncountable intersection.

E54.  Prove that if and  are cardinals, then  
 a)        
 b)          

E55.  Prove or disprove:
 a)     
 b)  2      
 c)  if  2  , then         

 d)  if  is infinite and , then           

E56.  a) Prove that  has  countable subsets. 
 b) Prove or disprove:  If  and  have the same number of countable subsets, then .    

E57.  Prove or disprove:  there are exactly  sequences of the form  where each          
 is a subset of .

E58. Find all unjustified steps in the following “proof” of the continuum hypothesis:
   If CH is false, then  for some cardinal .  Since c , we              

    

   have c  , so  .  Therefore  , so  ,                             

   which  is impossible because   Therefore no such  can exist, so CH is true.   

E59.  Find all unjustified steps in the following “disproof” of the continuum hypothesis:
   We know .  However,     because  .                     

        
   Since , we have  .  Therefore c  , so CH is false.              
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E60.  Since  is countable and , we know that  is uncountable.  But that does not     
automatically mean that .      unless you assume CH, you might think that       
    a) Without using the properties 5*), 6*) of cardinal addition or multiplication and without
using CH, prove that:
  if  and is a countable subset of , then  |        
(Hints: Obviously   One way to show :  without loss of generality, you           can assume .  Then consider vertical lines in   Of course, there are other approaches.   )
      b)  Using a), deduce that    

E61.  Prove that for any infinite set , there is an infinite sequence of disjoint subsets , , ,...     such that   and | | for all .      
 n n n

(Hint: You can assume he multiplication rule in Example 14.6(6*) It implies that  for any      infinite cardinal . . )

E62.  Call a function  “double-rooted” if  | ) for every .  Find the number            
of double-rooted functions .   

E63.   Assume the generalized continuum hypothesis (see p. 51).  Then
        ( ):    implies .True or false explain       

E64.   Say that a pair of sets  has property (*) if all three of the following conditions are true:
  i)     
  ii) every horizontal line intersects  in only finitely many points
  iii) every vertical line intersects  in only finitely many points.
We saw in Exercise E44 that such pairs  exist.
Prove or disprove:  there are exactly  different pairs  with property (*).c 

E65.  Let  be a countable subset of  and choose positive numbers  for            
which   Define by    Clearly  if . 




  
                

            Prove that  is discontinuous at each point in  and continuous at each point in .  
In Theorem 8.5,  that a monotone function  has a countable set of discontinuities; we saw    
this result is a “sort of” converse.  Note that this  is continuous from the right at every point.   )  
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15.  A Final Digression
Let  denote the sphere .                
We will prove the following surprising (or not so surprising?) result.  Informally stated:

 If a countable set  is removed from , it is possible to write the remainder  as    
 the union of two subsets  and  which, when rotated, give the whole sphere  back  
 again.

For a point , we use vector notation and write .                

Since  is uncountable ( ), we can choose a point  for which            why?
             Then neither  nor  is in   Change the coordinate axes so that the -axis goes

through  and  (so the “north and south poles” of  are not in )     

For any , write  to represent the set obtained by rotating  on the surface around the       
   -axis through angle  .  In other words, a point in  comes from taking a point in  and adding   
to its “longitude” on .  With this notation, the precise statement of what we want to prove is:

 Suppose  is a countable subset of Then there are subsets  and  of , and there are      
 real numbers  and  such that 
   i)     and    
   ii)          

First, we claim that we can choose a  that makes the sets                       
all pairwise disjoint.  For any point  (other than the north and south poles), let arg  be the     
longitude of  measured from the great circle through  ( the “Greenwich meridian”).        
and ( ) can intersect only if there are points  such that     
      arg arg      ( , )       (**)                 

This means  and  can intersect   satisfies the equation  .       only if arg arg 




But there are only countably to pick a “5-tuple” of values  to plug into the right side of the    
equation because .  So there are only countably many values  for which a pair of the sets     
                   could intersect.   any  different from theseChoose
countably many values; then the sets will be pairwise disjoint.
Now, define                        


         and                              



A rotation through  moves each set  onto the set , so .                
Let .  Then                     

Since  and , we have                          
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Chapter I Review
For each statement, decide whether it is true or false.  Then prove it, or provide a counterexample.

1.       

2. The continuum hypothesis (CH), which states that , is independent of the other usual axioms  

of the set theory.

3.  If  is strictly decreasing, then there are at least  points at which  is continuous.      

4. There exists a straight line  in the plane such that  contains exactly three points  where both   
  and  are rational.

5. In , it is possible to find uncountably many “solid balls” of the form

                     
such that any two of them are disjoint.

6. The continuum hypothesis is true iff the set of all sequences of 's and 's has cardinality .  

7. There are  different infinite sets of prime numbers.

8. Let  be the set of all sequences ( ) where  and such that  is infinite          a a  for each   Then  is countable.      

9. If  is an uncountable collection of uncountable subsets of  , then at least two sets in  must have  
uncountable intersection.  ( )Hint: recall that c 

10. The set of real numbers which are not transcendental is uncountable.

11.       
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12. Let  denote the unit sphere  and  There exists                     
a continuous bijection   ( ! )        The values of  are in , not    

13. Assume that for infinite cardinals ,  there is never a cardinal strictly between  and  (the  
Generalized Continuum Hypothesis ).  Then  implies .      

14. There are exactly  sequences of the form  where each  is a subset of .             

15. There is an algebraic number between any two real numbers.

16. Let  every horizontal line and every vertical line intersects  in exactly one point .      
Then    

17. There are  subsets of  none of which contains an interval of positive length. 
 
18. Let  by  . Then is one-to-one.           



19. Suppose a nonempty set  can be “factored” as .  Then  and  are unique.       

20. Suppose  and are infinite sets and that   Then  or            
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Chapter II
Metric and Pseudometric Spaces

1. Introduction
By itself, a set doesn't have any structure.  For two arbitrary sets  and we can ask questions like 
“Is ?” or “Is  equivalent to a subset of ?” but not much more.  If we add additional structure    
to a set, it becomes more interesting. For example, if we define a “multiplication operation”  in    
that satisfies certain axioms such as , then  becomes an algebraic structure             
called a group and a whole area of mathematics known as group theory begins.
We are not interested in making a set  into an algebraic system.  Rather, we want additional structure
on a set  so that we can talk about “nearness” in . This is what we need to begin topology; 
“nearness” lets us discuss topics like “convergence” and “continuity.”  For example, “  is continuous
at ” means (roughly) that “if  is near , then is near ”    
The simplest way to talk about “nearness” is to equip the set  with a distance function  to tell us 
“how far apart” two elements of  are.
Note:  As we proceed we may use some ideas taken from elementary analysis, such as the continuity of
a function  as a source for  or  although these ideas will not be      motivation examples
carefully defined until later in this chapter

2.  Metric and Pseudometric Spaces
Definition 2.1  Suppose  and that for all :              
   1)     
   2)     
   3)     ( )     symmetry
   4)   ( the )        triangle inequality
Such a “distance function”  is called a  .  The pair  is called a   pseudometric on pseudometric
space.  If also satisfies
       5) when , then       
then  is called a  on  and (  is called a .  Of course,    metric every metric space ismetric space
automatically a pseudometric space.

If a pseudometric space  is not a metric space it is because there are at least two points      
for which In most situations this doesn't happen; metrics come up in mathematics more   
often than pseudometrics. However pseudometrics  occasionally arise in a natural way.  Moreover,do
many definitions and proofs actually only require using properties 1)-4).  Therefore we will state our
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results in terms of pseudometrics when possible.  But, of course, anything we prove about
pseudometric spaces is automatically true for metric spaces.

Example 2.2
 1) The  on  is   Clearly, properties 1) - 5) are true.  In fact,usual metric       
properties 1) -5) are deliberately chosen so that a metric imitates the usual distance function.
 2)  The  on is defined as follows:  if  andusual metric            
                     



 are in then .  You should already know that  has 
properties 1) - 5). But the details to verify the triangle inequality are a little tricky, so we will go
through the steps.  First, we prove another useful inequality.

Suppose  and are points in Define                        
                    

   

   
       

      is a quadratic function of  and  because  is a sum of squares.
Therefore the equation  has at most one real root, so it follows from the  
quadratic formula that

  ,   which gives              
  

  
     

   |  
  

  
               

This last inequality is called the .  In vector notation itCauchy-Schwarz inequality
could be written in the form       

Then if ,  and are in we can                                    
calculate
                     

 

 
      

                                  
  

  
        

                                  
  

  
        

                                       
   

   
            

    .   Taking the square root of both sides gives     

    .       
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Example 2.3  We can also put other “unusual” metrics on the set 
 1) Let  be the usual metric on  and define .  Then  is also a metric         
on   In , the “usual” distances are stretched by a factor of 100.  This is just a rescaling of       
distances as if we changed the units of measurement from meters to centimeters, and that change
shouldn't matter in any important way.  In fact, it's easy to check that if  is any metric (or
pseudometric) on a set  and , then  is also a metric (or pseudometric) on .        

 2) If ,    are points in define                        

            



It is easy to check that  satisfies properties 1) - 5) so  is a metric space.  We call the        taxicab
metric on   ( For , this means that distances are measured as if you had to move along a  
rectangular grid of city streets from  to  the taxi cannot cut diagonally across a city block   ).

 3)  If ,    are points in define                        
   max                 

Then  is also a metric space.  We will refer to as the  on          max metric
When of course,   and are exactly the same metric on .       

We will see later that “for topological” purposes” ,  are all “equivalent” metrics on  .      
Roughly, this means that whichever of these metrics is used to measure nearness in exactly the
same functions turn out to be continuous and exactly the same sequences converge.
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 4)  The “unit sphere” is the set of points in  that are at distance 1 from the origin.  Sketch 
the unit sphere in  using the metrics , and         
       Since there are only two coordinates, we will write a point in  in the usual way as   
rather than .    

 For ,  we get             For we get  
                                                                  
               

               
 For , we get

              
 max       

 
Of course for the metric ,  has the same shape as for the metric , but the sphere is     
reduced in size by a scaling factor of .



Switching among the metrics  , produces unit spheres in with different  and .        sizes shapes
In other words, changing the metric on  may cause dramatic changes in the  of the space geometry
 for example, “areas” may change and “spheres” may no longer be “round.” Changing the metric can
also affect  features of the space spheres may turn out to have sharp corners .  But it turnssmoothness  
out, as mentioned earlier, that ,  and are “equivalent”  for “topological purposes.”  For    topology, “size,” “geometrical shape,” and “smoothness” don't matter.
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For working with the usual metric  is the default that is, we always assume that , or any    
subset of , has the usual metric  unless a different metric is explicitly stated. 
Example 2.4  For each part, verify that  satisfies the properties of a pseudometric or metric.
 1) For a set ,  define for all    We call  the  on :          trivial pseudometric
all distances are 0. ( )Under what circumstances is this  a metric?

 2) For a set , define  . We call  the  on .if  
if         

    discrete unit metric
To verify the triangle inequality: for points ,  certainly is true if            
                ; and if , then  and .

Definition 2.5 Suppose  is a pseudometric space, that  and . Then       
                 is called .the ball of radius with center at 
              If there  an  such that , then we say that  is an exists              isolated
point in ( 

Example 2.6
 1) In ,  is the interval .  More generally,  in  is just the usual                   
spherical ball with radius  and center at  (  including the boundary surface)   If the metric  is    not
used in then  is the interior of a “diamond-shaped” region centered at .           See the earlier
sketches of :  in , ,  is the region “inside” the diamond-shaped            
     In  with the usual metric , then ,                     


  

 2) If is the trivial pseudometric on and then for every              

 If  is the discrete unit metric on , then  .   Thereforeif  
if            

     


every point  in  is isolated.  If we rescale and replace  by the metric  where , then         
it is still true that every point is isolated.
 4) Let is continuous . For define             

       (*)       
It is easy to check that  is a pseudometric on .  In fact  is a metric:  if , then there must      
be a point where .  By continuity,  for 's near ,                     that is, on some interval where  (c ).               arefully explain why! 
Let min  ( ).  Then , so        why does  exist?

                         
  

Therefore,  is a metric on   
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 is a subset of the larger set is integrable . We can define a        
distance function  on  using the same formula (*).  In this case,  is a pseudometric on  but  a    not
metric.  For, example, let
   for all , and if 

if         
   




  Then  but             
This example shows how a pseudometric that is not a metric can arise naturally in analysis.
 5) On  we can also define another metric  by  

  sup |             
   max |         
(Replacing “sup” with “max” makes sense because a theorem from analysis says that the continuous
function  a maximum value on the closed interval     has .)
Then if and only if  at every point , so we can picture  in                 
         as the set of all functions  whose graph lies entirely inside a “tube of width
 ” containing the graph of that is, iff  is “uniformly within  of  on .”    See the         following figure.

      
How are the metrics  and  from Examples 4) and 5) related?  Notice that for all :       

 max                             
    

We abbreviate this observation by writing It follows that  :  so,             
 for a given

      (the larger metric produces the smaller ball. Note: the superscript notation on the balls
indicates which metric is being used in each case.)
The following figure shows a function  and the graph of a function .  The graph         

of   with the graph of , except for a tall spike: the spike takes the graph of  outside the “ -  coincides 
tube” around the graph of , but the spike is so thin that the            “the total area between the graphs of  and ” .
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 6) Let converges .  If we write  and use the more informal           


  
sequence notation, then and converges .  Thus,  is the set of all “square-            




 

summable” sequences of real numbers.
   Suppose and  are in  and that  We claim that the sequence               
  is also in   To see this, look at partial sums:           

            
      

      
                                        

 ( )                    
   

   
       by the Cauchy-Schwarz inequality

    (                      
   

   
        all the series converge

     because      

                Therefore the nonnegative series  converges because it has bounded partial



     

     sums.  This means that       
In particular, if we now know that so  converges.  Therefore it                



  
makes sense to define    You should check that  is a metric on .           




   

(  For the triangle inequality, notice that                      
  

  
          

by the triangle inequality in .  Letting  gives the triangle inequality for .     ) 
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 7) Suppose  are pseudometric spaces , and that  and                  
                  are points in the product   Then each of the following is a
pseudometric on  
                      

 

 
      

  max                 

If each  is a metric, then so are  and   Notice that if each and each  is the usual            
metric on , then  and  are just the usual metric, the taxicab metric, and the max metric on        
As we shall see, it turns out that these metrics on  are all equivalent for “topological purposes.”

Definition 2.7      Suppose  is a pseudometric space and .  We say that  if       is open in
for each  there is an  such that .  ( )          Of course,  may depend on . 
For example,
  i)  The sets  and  are open in any space    
  ii) The intervals , and are open in .          
(Fortunately this terminology is consistent with the fact that these intervals are called “open intervals”
in calculus books. )
     But notice that the interval , when viewed as a subset of the -axis in , is     not
open in .  Similarly,  is an open set in , but  (viewed as the -axis) is  open in .      not
  iii)  The intervals  and  are not open in But the sets  and           
are open in the metric space .  
Examples ii) and iii) illustrate that “open” is not a property that depends just on the set :  whether or
not a set  is open depends on the larger space in which it “lives” that is, “open” is a relative term. 
The next theorem tells us that the   balls in are “building blocks” from which all open sets can be 
constructed.
Theorem 2.8   A set  is open in  if and only if  is a union of a collection of balls.     
Proof   If  is open, then for each  there is an  such that  and therefore we          can write     

 Conversely,  suppose  for some indexing set    We must show that if                          , then for some  Since we know that  for some     
Then .  Let  and consider  If , then                  

       
                                

                 so   Therefore .                      

Corollary 2.9 a) Each ball  is open in .   

  b) A point  in a pseudometric space  is isolated iff  is an open set.     
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Definition 2.10      Suppose  is a pseudometric space. The     is the  topology  generated by 
collection of all open sets in .  In other words,   is open in is a           union of balls

Theorem 2.11     Let  be the topology in   Then         
   i)      ii) if  for each  then           
   iii)  if then                   
(Conditions ii) and iii) say that the collection  is “closed under unions” and “closed under finiteintersections.” )
Proof  is the union of the empty collection of open balls, and  , so .        
 Suppose  where each .  Then  is in one of these open sets, say          
                 .  So for some .  Therefore  is open, that is,  
 To verify iii), suppose  and that .  For each                    
                    there is an  such that .  Let min .  Then                                .  Therefore  

Example 2.12   The set  is open in  for every .  However,  is            
  

  
not infinitely many open in :  so an intersection of  open sets might not be open.  ( Where does the
proof for part iii) in Theorem 2.11 break down if we intersect infinitely many open sets? )
Notice that  on a set   For example, if  is adifferent pseudometrics can produce the same topology  
metric on  and we set , then  and  produce the same collection of balls (with radii      
measured differently):  for each , the ball  is the same set as the ball .  If we get the        



same balls from each metric, then we must also get the same open sets:   ( ).    see Theorem 2.8
We can see a less trivial example in .  Let  and   be the usual metric, the taxicab metric, and    
the max metric on .  Clearly any set which is a union of -balls (or  balls) can also be written as a  
union of -balls, and vice-versa.  ( ) Explain why! See the following picture for .



70

   
Therefore all three metrics produce the same topology:  even though the balls are      
different for each metric.  It turns out that the open sets in  are the most important objects from a 
topological point of view, so in that sense these metrics are all equivalent.   (As mentioned earlier,
these metrics do change the “shape” and “smoothness” of the balls and therefore these metrics are not
equivalent geometrically.)
Definition 2.13  Suppose  and  are two pseudometrics (or metrics) on a set .  We say that  and      
are  (written  if  , that is, if  and  generate the same collection of openequivalent           
sets.
 
Example 2.14
 1) If  is the discrete unit metric on , then each singleton set is a ball, so each     
           is open equivalently, every point  is isolated in   If , then  is openbecause  is a union of balls.  Therefore , called the .  This is the    discrete topology on 
largest possible topology on .

 If   on a set , then , where  is the discrete unit metric.if 
if           

    
More generally,  for any , and all of these metrics generate the discrete topology.     
 2) Let .  Let  be the usual metric on and let  be the discrete unit metric         

 
on  For each ,   if we choose a sufficiently small .  Therefore, just as in part 1),         

  
every subset of  is open in   But every subset in  also is open, so  (even though         
  and  are not constant multiples of each other).

 3) Let  be the trivial pseudometric on a set .  Are there any other pseudometrics  on    
for which  ?  

3.  The topology of 
What do the open sets in  look like?   Since -balls in  are intervals of the form ( , the         
open sets are precisely the sets which are unions of open intervals.  But we can actually say more to
make the situation even clearer.  We begin by making a precise definition for the term “interval.”
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Definition 3.1  A subset  of  is if whenever  and , then .  A convexI  convex            
subset of  is called an . interval
It is easy to give examples of intervals in . The following theorem states that the obvious examples
are the only examples.
 
Theorem 3.2        is an interval iff has one of the following forms (where ):
       ( ,  ( ,  ( ,  , ,  , ,  ),  ,   ,         (*)                 ,b
Proof  It is clear that each of the sets in the list is convex and therefore each is an interval.

Conversely, we need to show that every interval  has one of these forms.  Clearly, if    
then  or If  then the definition of interval implies that  must be infinite. The         
remainder of the proof uses the completeness property ( “least upper bound property”  of , and the  
argument falls into several cases:

  
  Case I:   is bounded both above and below.  Then  has a least upper bound and a 
greatest lower bound:  let inf  and sup   Of course  and  might or might not be  .        in
      a) if ,   we claim        
      b) if but ,  we claim          
      c) if  but ,  we claim          
      d) if ,   we claim        
  
  Case II:   is bounded below but not above.  In this case, let inf   
      a) if ,   we claim      
      b) if    we claim      
  Case III: is bounded above but not below.  In this case, let sup        
    a) if ,   we claim        
    b) if ,   we claim        
  Case IV:  is not bounded above or below.  In this case, we claim     
In all cases, the proofs are similar and use properties of sups and infs.  To illustrate, we prove case Ic):

If then sup Also, inf and because we get               
      .   So 
 
We still need to show that , so suppose . Then inf           
     so  is not a lower bound for . This means that there is a point  such
that   Then where , and  is convex, so                
Therefore  , so             
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Note:  We used the completeness property to prove Theorem 3.2.  In fact, Theorem 3.2 is  toequivalent
the completeness property.  To see this 
  Assume Theorem 3.2 is true and that  is a nonempty subset of   that has an upper 
  bound.  Let  for some Then  is an interval suppose            
   where . Then z  for some ; therefore , by                 
  definition of , .    
  Since   must be infinite.  An upper bound for  must also be an upper     
  bound for .  Since I is an interval with an upper bound,  I must have one of the forms
  ,b Then it's not hard to check that( ,  ( ),  ,             
   has a least upper bound, namely sup   
  
This is an observation I owe to Professor Robert McDowell

It is clear that an intersection of intervals in  is an interval ( ?).  But a union of intervals might not why
be an interval: for example, . However, if every pair of intervals in a collection “overlap,”    
then the union  an interval.  The following theorem makes this precise.is
Theorem 3.3   Suppose  is a collection of intervals in  and that for every pair , we have    
      .  Then  is an interval.  In particular, if , then is an interval.    
Proof   Let  and suppose that .  We need to show that             
 Pick intervals  in  with and , and choose a point .  If , then               
               and we are done.  Otherwise, either  or   Therefore   is eithereither
between two points of  and so ;   is between two points of , so .  Either way, we        or
conclude that        

We can now give a more careful description of the open sets in .
Theorem 3.4   Suppose .   is open in  if and only if  is the union of a  collection   O O countable
of  open intervals.pairwise disjoint
Proof      ( ) Open intervals in  are open sets, and a union of any collection of open sets is open. 
 ( )   Suppose  is open in .  For each , there is an open interval (ball)  such that     
                   .  Let   is an open interval and .  Then . 
By Theorem 3.3, is also an open interval  ( in fact,  is the  open interval containing  and  largest
inside ; why? ).  It is easy to see that there can be distinct points  for which . In fact,       we claim that if , then either  or .             

If , then there is a point . By Theorem 3.3,  is              an open interval, a subset of , and containing both  and .  Therefore      is a set in the collection whose union is .  Therefore .  Similarly,       
           , so 
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Removing any repetitions, we let  be the collection of the intervals that arise in this way. distinct Clearly,  and  is countable because the members of  are pairwise disjoint:    
 for each , we can pick a rational number , and these 's are distinct. So there can        be no more 's in  than there are rational numbers.   (  More formally, the function    
 given by  is one-to-one.   )    

We are now able to count the open sets in .
Corollary 3.5   There are exactly  open sets in        c .

Proof Let  be the usual topology on . We want to prove that       
For each , the interval , so             

Let  be the set of  open intervals in . Then   ( .   For each ,   a sequence   all pick      why? 
             

   for which .   (  We could also choose the 's to be pairwise disjoint,but that is unnecessary in this argument the important thing here is that there are only countably
many 's. )  Then we have a function given by .  The function                
           is clearly one-to-one, so     
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Exercises
E1    The following two statements refer to a metric space .  Either prove or give a  
counterexample for each statement.  (These statements illustrate the danger of assuming that familiar
features of necessarily carry over to arbitrary pseudometric spaces. )
    a)   implies  (i.e., “a ball can't have two centers”)          
  b) The diameter of  must be bigger than .      The diameter of a set A in a metric
                      space is defined to be sup .         
E2  The “taxicab” metric on  is defined by  | | | |.  Draw    d                    
the set of points in ,  that are equidistant from  and       d

E3.   Suppose  is a metric space  
      Define ( min .  Prove that  is also a metric on ,  and          
 that .    

 b)  Define (  .  Prove that  is also a metric on  and that          
     

 Hint: Let be a metric on  and suppose  is a function from the nonnegative real numbers  
to the nonnegative real numbers for which:   , and         
               for all nonnegative   Prove that  is also a metric on
    Then consider the particular function 



Note: For all  in ,  d (  and that is, d  and are  metrics on .                  bounded
Thus any metric d on  can be replaced by an equivalent bounded metric that is, a bounded metric 
that generates the same topology.  “Boundedness” is a property determined by the particular metric, not
by the topology.
E4.  Suppose .  Let  be the usual metric on , and  the usual metric on .  Define a        
new distance function  on  by .   Prove that  is a metric on               
.
 Must  be equivalent to  ?  If not, can you ( ) describe conditions  precisely, or informally
which will guarantee that  ?  

E5.  Suppose a function  satisfies conditions 1), 2), 3), and 5) in the definition of a     
metric,  but that the triangle inequality is replaced by:       

        
Prove that   
E6.    Suppose  is a finite open set in a metric space .  Prove that every point of  is isolated   
in  
E7.   Suppose  is a metric space and   Prove that the following two statements are    
equivalent:
  i)  is not an isolated point of  
  ii) every open set that contains  is infinite.
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E8.   The definition of an open set in  reads:  is open if for all there is an  such       
that .  In this definition,  may depend on .     
 Suppose we define  to be   if there is an such that for all ,     uniformly open 
           that is, the same  works for every   “Uniformly open” is  a standard term.not 
 a)  What are the uniformly open subsets of  ?
 b)  What are the uniformly open sets in  if  is the trivial pseudometric?  
 c)  What are the uniformly open sets in  if  is the discrete unit metric?  

E9.  Let  be a fixed prime number.  We define the   |  |   (sometimes calledp -adic absolute value the -adic norm) on the set of rational numbers  as follows: 

If 0 , write for integers , where  does not divide  or  and define     p m
n
k  k,m,n p m n,

| |  | |        
 .  ( ).  Also, define Of course,  may be negative.

Prove that  “behaves the way an absolute value (norm) should” that is, for all       
 
  a)  and  iff              b)            c)            

  actually satisfies an inequality  than the one in part c).  Prove thatstronger
  d) max                   

Whenever we have an absolute value (norm), we can use it to define a distance function:
  
   for let             

  e) Prove that  is a metric on , and show that  actually satisfies an inequality  
stronger than the usual triangle inequality, namely:
   for all ,  max                

  f) Give a specific example for  for which   
   max            
(Hint: It might be convenient to be able to refer to the exponent “ ” associated with a particular .  If 
  p m

n
k , then  roughly refers to the “number of 's that can be factored out of ” so we can call   

              Prove that (a b)  min  whenever a,b  with a,b 0 and a b.  Note
that strict inequality can occur here: for example, when p 3, (8) (2) 0, but   
 (8 2) (6) 1.   )
  g) Suppose Calculate What are  and  ?                  

 lim lim
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4.  Closed Sets and Operators on Sets

Definition 4.1    Suppose  is a pseudometric space and that   We say that  is          . closed in
       if   is open in .
From the definitions:    is closed in     
         iff  is open in       
         iff for all ,  there is an 0 for which                         iff for all ,  there is an 0 for which  ( ) .            x
The open sets in  completely determine the closed sets, and vice-versa. This means that, in some
sense, the topology (the collection of open sets) and the collection of closed sets contain exactly thesame “information” about a space . 

The close connection between the closed sets and the open sets is reflected in the following theorem.
Theorem 4.2     In any pseudometric space ,      
   i)    and  are closed 
   ii)  if  is closed for each then is closed               (“an intersection of closed sets is closed”)
   iii) if  are closed, then  is closed      


         (“a finite union of closed sets is closed”)
Proof These statements follow from the corresponding properties of open sets just by taking
complements.  Since  and  are open, their complements  and  are closed.          
 Suppose  is closed for each .  Then each set  is open, so  is             open, and therefore its complement  is                       closed.
 The proof of part iii) is similar to that for part ii) and uses the fact that a finite  ofintersection
open sets is open.   
Exercise: Give an example to show that an  union of closed sets might not be closed.infinite

Example 4.3
 1) The interval  is closed in  because its complement            
 is open.  Equivalently, we could say that  is closed because for each there     
 is an  for which                     

 2) A set might be  open  closed: as examples, consider the following subsets of :neither nor 
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  3) A set can be  open and closed that is, these terms are . Suchboth not mutually exclusive
sets in  are called  sets.  For example,  and  are clopen in every pseudometric space   clopen
  .  Sometimes  contains other clopen sets and sometimes not.  For example:
  
  a)  in , for example,  and  are the  clopen subsets  (  only This fact is not too hard to
prove but it is also not obvious the proof depends on the completeness property “least upper  
bound property”  in We will prove this fact later when we need it in Chapter V. . )
  
  b)  in the space  with the usual metric , the set  is clopen.         
 
 4) In any pseudometric space , the set is a closed set.   To           
see this, suppose ,  Then   Let .  Then                       (If , then we would have ,                           which is false.)
      is called the         closed ball centered at  with radius . 
For example,  is the “closed ball” centered at                    

   

 5)  Let  with the usual metric .       
  Both and  are clopen sets in     
  but  is neither open nor closed in   
Notice again that “open” and “closed” are not absolute terms: whether a set  is open (or closed)
is relative to the larger space  that contains . 

 6) Let  be the discrete unit metric.  Then  is the  and every subset of  is  discrete topology
open.  Then every subset of  is clopen.
 7) Let  be the trivial pseudometric on   For every and every  the ball      
      . In this space, a union of balls must be either  or  (for the union of an empty collection
of balls).  Therefore .  This is called the  on .   trivial topology
    Since  and  must be open in any space , the trivial topology is the  possible    smallest
topology on .  In  the only closed sets are  and .    

Using open and closed sets in , we can define some useful “operators” on subsets of  An  
“operator” creates a new subset of  from an old one.
Definition 4.4   Suppose  is a pseudometric space and     
  the      int  is open and interior of  in              
  the      cl  is closed and }closure of  in X          
  the     Fr  cl  cl (frontier (or boundary) of  in         
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We will omit the subscript “ ” when the context makes clear the space  in which the operations are 
being performed.  Sometimes int  and cl are denoted ° and  respectively.  Some books use the_   
notation  for Fr , but the symbol has a different meaning in algebraic topology so we will avoid  
using it here.

Theorem 4.5       Suppose  is a pseudometric space and that Then    
         1) a) int  is the largest open subset of   (that is, if  is open and , then   O O
                        O int ). 
           ,b)  is open iff int  (since int the equality is equivalent to int .        
  c) int    iff  there is an open set  such that         
      iff   0 such that .      

     Informally, we can think of 1c) as saying that the interior of  consist of those
   points “comfortably inside”  (“surrounded by a small cushion”).  These are the   
          points not “on the boundary of .”
  2)   a) cl  is the smallest closed set that contains  (that is, if  is closed and ,    
               then cl )  
         b)  is closed  iff cl    (since cl the equality is equivalent      
                        to cl )   
    c) cl    iff  for every open set  containing ,          
         iff  for every , .        

  Informally, 2c) states that consists of the points in  that can be approximated 
                        arbitrarily closely by points from within the set 
  3)   a) Fr  is closed and Fr   Fr .     
  b  is clopen iff Fr .    
           c) Fr iff for every open set  containing ,  and               
  Informally, 3c) states that Fr  consists of those points in that can be   

  approximated arbitrarily closely both by points from within  and by points from
  outside .
Proof  1)  a) int  is a union of open sets, so it is open and, by definition int .   
    If is open and , then  is one of the sets whose union gives int ,     
    so int .  
                   b)  If int , then  is open.   
    Conversely, if  is open, then  is clearly the largest open subset of , so int     
  
              c) Since int  is a union of open sets, it is clear that int  iff  for some        
  open set  Since a open set is open iff it is a union of -balls, the remainder of the 
  assertion is obviously true. 
         2)  Exercise
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 3) a) Fr  is closed because it is an intersection of two closed sets, and
 
          Fr cl cl cl cl Fr                    
 

  b) If  is clopen, then so is .  Therefore  Fr cl cl         
         
      Conversely, if  Fr cl cl ,  then cl cl              
  , so  is closed.       
      Similarly we show that is closed, so  is clopen.  
 
  c) Fr  iff  in both cl  and cl .  By 2c), this is true iff each open set       
  containing  intersects both  and    
                       Since an open set is a union of -balls, the remainder of the assertion is clearly true.   
Notice that in each part of Theorem 4.5, item c) gives you a criterion (not -that uses only the open sets 
balls!) to decide whether or not int , cl , or Fr .    It means that if         This is important!
we change the  to an  pseudometric , then int , cl , and Fr  do  change, since  and     equivalent not
  produce the same open sets.  In other words, we can say that int, cl, and Fr are  operators:topological
they depend on only the topology, and not on the particular metric that produces the topology. For
example if , then  will have the same interior, same closure, and same frontier whether we  
measure distances using the usual metric , the taxicab metric , or the max-metric .   

Example 4.6  ( )Be sure you understand each statement!
 1) In :  int    cl     Fr        
   int   cl     Fr        
   int     cl         
   Fr  Fr Fr Fr            
  
In any space , it is obviously true that int int int and cl cl cl . But this need not be         
true for Fr, as the last example shows.  ( It  true that Fr Fr Fr  Fr Fr  in any space is       
However, this is not a useful fact, and it is also not very interesting to prove.)
 2)   (with the usual metric)   
   cl       int          
   cl       int          
   Fr .             Note that Fr  because        cannot be “approximated arbitrarily closely” by points from .   
 3)  Suppose  is the discrete unit metric on .   If , then  is clopen so we get          
 cl , int , and Fr        
      On the other hand,  is the trivial pseudometric on .  If  is any  
 nonempty, proper subset of , then cl , int , and Fr         
  4)  In  let  be the set of sequences with all terms rational:   
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   that cl in other words, that any point  can beWe claim              approximated arbitrarily closely by a point from .    So let .  We must show  
  that      

Since  converges, we can pick an  such that  


 
  


     

 . Using this value of
           , choose rational numbers so that for    


Define   Then  and               

                   

  
       



         


 
  

           
   

  Therefore      

   that int   To prove this, we need to show that if We also claim           then no ball centered at  is a subset of .  To see this, pick   and choose   any 
  an irrational such that  Create a new point  from  by changing             
   to so that   Clearly,  and                             
   so .      

  What is Fr  ?

  5) In any pseudometric space ,   is a subset of the closed set     .  Therefore cl                         But these two sets are :  the closed ball is largernot necessarily equal sometimes
  than the closure of the open ball !  For example, suppose  is the discrete unit    metric on a set  where Then   
       cl                     

  
Definition 4.7  Let  be a pseudometric space and  We say that  is  in if cl       dense
    X X.  The space  is called  if it possible to find a countable dense set in .separable
( )Note the spelling: “sep rable,”  “sep rable.”a not e
Notice that “separable” is defined in terms of closure “cl” and the closure operator depends only on the
topology, not the particular metric that generates the topology.  Therefore separability is a topological
property:  if  is separable and  , then  is also separable.        
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More informally, “  is dense in ” means that each point  can be approximated arbitrarily    
closely by a point from .  If is uncountable, then a countable dense set  in (if one exists) is a   
relatively small set which we can use to approximate any point in  arbitrarily closely.
Example 4.8
  1)  is separable because  is a countable dense set in in particular,  is a     
countable dense set in , so  is separable.   is an example of an  dense subset of .   uncountable
  2) If  is countable, then  is automatically separable, because  is dense in .    
  3) Suppose  is the discrete topology on .  Then every subset of  is closed, so a  
subset  is dense iff . Therefore  is separable iff  is countable.      
     Suppose  is the trivial topology on . Then cl  for  nonempty subset     every
    since the only closed set containing  is . So every nonempty subset  is dense and therefore
    is separable because, for example, any one-point set  is dense.
  4) The set is dense in  ( ).  This set  is        see Example 4.6(4)
uncountable because every sequence of rationals  with  is in ( ), and there are  such        

 why?
sequences ( ).  However,   separable.  Can you find a  dense set ?why?     is countable
 The computation in Example 4.6.4 might give you an idea.   
  
Definition 4.9  Let  be a pseudometric space and suppose  are nonempty subsets of .   
We define the distance between  and  by 

dist inf  and           
We usually abbreviate dist  by  even though this is an “abuse of notation.” 
If , then clearly . But : if , you  conclude that           notice cannot
      ,  if  and  are both closed sets.  For example, let  be the -axis in  andnot even 
              

 .  Then  and are disjoint,  sets but closed
We also go one step further and abbreviate  as “the distance from  to set .”     
If , then clearly  But the converse may not be true.  For example,     
let  Then  even though                

  

We can use “distance from a point to a set” to describe the closure of a set.
Theorem 4.10  Suppose  is a pseudometric space and that .  Then cl iff       
  
Proof cl   iff for every ,               iff for every  there is a with         
   iff       
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Exercises
E10.  Let  be a pseudometric space.  Prove or disprove each statement. 
 a)   is never a closed set.      b)  If , then Fr cl int      
 c)  For any , diam diam (cl     
   The diameter of a set A in a metric space is defined to be sup .        
 d)  For any , diam diam (int     
 e)  For any , int int int         
 f)  For every  and cl  =                  
 
E11.  a)  Give an example of a metric space   that contains a proper nonempty clopen subset. 
     b) Give an example of a metric space  and a subset that is neither open nor closed. 
     c) Give an example of a metric space  and a subset  for which every point in  is a   
 limit point of .  ( Note: a point  is called a   if, for every open set   limit point of a set
 containing , .        )
    d) Give an example of a metric space  and a nonempty subset  such that every point is  A
 a limit point of  but int .  Can you also arrange that  is closed in ?A A X  
    e) For each of the following subsets of , find the interior, closure and frontier (“boundary”)
 in . Which points of the set are isolated in  ? which points of the set are isolated in the set ?   
   i)          
   ii)          

  
E12. An infinite union of closed sets need not be closed. However if infinitely many closed sets are
“spread out” enough from each other, then their union is closed.  Parts a) and b) illustrate this.
 a) Suppose that for each  is a closed set in  and that .            Prove that  is closed in .

  
 b) More generally, suppose  is a closed set in  for each  in some index set   
 ; suppose also that for each point  there is an  such that                's.for all but at most finitely many 
                Prove that  is closed in .  ( )    Notice that b) a). Why?

E13.  a) Give an example of  subsets of all of which have the same closure   Do the same in .   
    b) Prove or disprove: there exist  subsets of  such that any two have different closures. 
 Is the situation the same in ?

E14.   The , , is a subset of :    Prove that  is closedHilbert cube H H            1i in .   Prove or disprove:   is open in .  H
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E15.   In  a subset  is called a set if  can be written as a countable intersection of open     sets;  and  is called an  set if  can be written as a countable union of closed sets.  

Note: Open sets are often denoted using letters like , , or  (from pen, and from the   o
French ert), and sometimes by the letter — from older literature where the Germanouv 
word was “Gebiet.”  Closed sets often are denoted by the letter F — from the French
“ erme.”  Preferring these particular letters, of course, is just a common tradition butf 
many topologists follow it and most would wince to read something like “let  be an open
set.”
       The names  and  go back to the classic book  by the German   Mengenlehre
mathematician Felix Hausdorff.  The  and the  in the notation come from the German 
words used for union and intersection:  Summe and Durchschnitt.

     a) Prove that every closed set in a pseudometric space (  is a  set, and every open set is  an  set.
 b) Prove that the set of irrationals, , is a  set in . 

 c) Find the error in the following argument which “proves” that every subset of  is a G  set: 

  Let A . For A, let J B .  J  is open for each n .               Since  B , it follows that A J , so A is a countable     
    intersection of open sets, that is, A is a G  set.

 c) In part b), the truth is that ?
 J 

 d) Suppose we list the members of :    .  Let  where, of                
 course, is the interval .  Is ?               

   
 
E16.   Let  be a pseudometric space. Suppose that for every , there exists a countable   
subset  of  with the following property:    such that .   Prove thatD X          
  is separable.

E17.   Suppose that  is an uncountable set and  is any metric on  which produces the discrete  
topology. (Such a metric d might not be a constant multiple of the discrete unit metric: compare
Example 2.14.2).  Show that for some  there is an uncountable subset  of  such that    
        for all 

 
E18.   Let  be an infinite metric space.  Prove that there exists an open set  such that both    
and  are infinite.      Hint: Consider a non-isolated point, if one exists.
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E19.  A metric space  is called  if the closure of every open set is  extremally disconnected
open.  ( Note: “extremally” is the correct spelling; it is not the same as the everyday word
“extremely.” )

Prove that if  is extremally disconnected, then the topology  is the discrete topology.  

E20.  In Definition 4.9, the function “dist” provides a measure of “distance” between nonempty
subsets of   Is dist  a metric (or pseudometric) space?      

E21.   Suppose is a sequence in .  We say that  is a  of  if for every        cluster point
open set  containing  and for all such that . (            This is clearly equivalent to
saying that  and  such that                   .)  Informally,  is a cluster point of( ) if the sequence is “frequently in every open set containing .”  

  a) Show that there is a sequence in  for which every real number  is a cluster point. 
  b) A neurotic mathematician is walking along  from 0 toward 1.  Halfway to 1, she  
 remembers that she forgot something at 0 and starts back.  Halfway back to 0, she decides to
 go to 1 anyway and turns around, only to change her mind again after traveling half the
 remaining distance to . She continues in this back-and-forth fashion forever.  Find the cluster
 point(s) of the sequence , where  is the point where she reverses direction for the      th
 time.
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5.  Continuity
Suppose  and that    In elementary calculus, the set  is usually an interval, and          
the idea of continuity at a point in is introduced very informally. Roughly, it means that “if  is a  
point in the domain and near , then  is near ” In advanced calculus or analysis, the idea of  
“continuity of  at ” is defined carefully. The intuitive version of continuity stated in terms of  
“nearness”  is made precise by measuring distances:
  is continuous at  means: 
      such that if  and , then                     
The important thing to notice here is that we use the distance function in  to write the definition:
              and .  Since we have a way to measure distances in
pseudometric spaces, we can make an a completely analogous definition of continuity for functions
from one pseudometric space to another.
Definition 5.1     et , where  and are pseudometric spaces, and We say       L             
that  if:  is continuous at  
     such that if and , then                    
Notice that the sets  and  may have completely unrelated metrics  and :   measures distances in    
     and  measures distances in .  But the idea is exactly the same as in calculus: “continuity of  at ”
means, roughly, that “if is near  in the domain  then the image is near  in .”     
Theorem 5.2     uppose  and are pseudometric spaces   If and then the      S               , 
following statements are equivalent:
   1)   is continuous at  a
   2)   such that                 
   3)                 
   4) :  if ( ) int , then int [ ].       a a N

Proof It is clear that conditions 1) - ) - 3) are just equivalent restatements the definition of continuity
at  in terms of images and inverse images of balls.  Condition 4), however, seems a bit strange.  We
will show that 3) and 4) are equivalent.
 3) 4) Suppose int   By definition of interior, there is an  such that     
            , so that   By 3), we can pick  so that  
                . Since the -ball at  is an open subset of , we get that
   int , as desired.

 4) 3)   Suppose  is given. Let  Then  is open and            
           int   We conclude from 4) that int int   Therefore for some    
            int , so 3) holds.   
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Definition 5.3   If and int  then is called a in         neighborhood of 
Thus, is a neighborhood of  if there is an open set  such that .       
Notice that:
 1) The term “neighborhood” goes together with a point   We might say “  is an open   
set in ,” but we would never say “  is a neighborhood in ” but rather “ is a neighborhood      of
 in ” where  is some point in int   
 2) .  However, be aware that in some books “aA neighborhood  of  need not be an open set 
neighborhood of ” means “an open set containing .”  It's not really important which way we make 
the definition of neighborhood (each version has its own technical advantages), but it is important that
we all agree in these notes.
    So in , for example, we say that the closed ball  is a          
neighborhood of ; in fact is a neighborhood of each point  in its interior.  A point  for which   
      is  , but  is not a neighborhood of such a point .in
 
The following observation is almost trivial but it is important enough to state and remember.
Theorem 5.4   A subset  in  is open  iff  is a neighborhood of each of its points.   
Proof   Suppose  is open. Then int , so each point  of is automatically in int   So  is a        
neighborhood of each of its points.
 Conversely, if  is a neighborhood of each of its points, then for every we have   
          int   Therefore int , so int  and  is open.  

With this new terminology, we can restate the equivalence of 1) and 4) in Theorem 5.2 as:
  is continuous at   iff 
 whenever  is a neighborhood of , then  is a neighborhood of  .        in in 

This tells us something very important. Interiors (and therefore neighborhoods of points) are defined in
terms of the open sets in without needing to mention the distance function. This means that the 
neighborhoods of a point  depend only on the topology, not on the specific metric that generates the
topology.  Therefore whether or not  is continuous at  does not actually depend on the specific 
metrics but only on the topologies in the domain and range.  In other words, “  is continuous at ” is a 
topological property.
For example, the function sin   is continuous at each point  in , and this is remains true if    
we measure distances in the domain with, say, the taxicab metric and distances in the range with themax-metric since these are both equivalent to the usual metric on .   
We now define  “  is a continuous function” in the usual way.
Definition 5.5   Suppose  and  are pseudometric spaces.  We say that is               
continuous if  is continuous at each point of . 
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Theorem 5.6   Suppose where  and  are pseudometric spaces.                 
The following are equivalent:
   1)   is continuous
   2) if  is open in , then   is open in     
   3)  if  is closed in , then  is closed in .     

Proof 1) 2) Suppose  is open in  and that .  Since  is a neighborhood of  and        
     is continuous at , we know from Theorem 5.2 that  is a neighborhood of . Therefore
     is a neighborhood of each of its points, so  is open.
 2) 3)  If  is closed in , then  is open.  By 2),   is open                
in so  is closed in .             

 3) 2)   Exercise
 2) 1) Suppose and that  is a neighborhood of  in , so that      
                int  By 2), int is open in , and int .  Therefore  
        is a neighborhood of   Therefore  is continuous at .  Since  was an arbitrary point in ,
  is continuous.  

Notice again: Theorem 5.6 shows that continuity is completely described in terms of the open sets (or
equivalently, the closed sets), and the proof of the theorem is phrased entirely in terms of open (closed)
sets, without any explicit mention of the pseudometrics on  and .  Replacing  and  with   
equivalent pseudometrics would not affect the continuity of .
Theorem 5.7   Suppose ,  and  are pseudometric spaces and that and              
            If  is continuous at  and  is continuous at ( ) , then  is continuous ata g  a  
a.  (Therefore, if  and  are continuous, so is )     
Proof If  is a neighborhood of , then  is a neighborhood of , because  is     
continuous at .  Since  is continuous at ,  is a neighborhood of .  But       
               so is continuous at .  

Example 5.8 
  1) Suppose  is given by  Then (  is aif 

if             
       

 
  neighborhood of but  is not a neighborhood of   Therefore       
   is not continuous at 0.   To see the same thing using slightly different language:
  is not continuous at  because, choosing   there is no choice of  such      

  that           
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  2)  If  is a constant function, then  is continuous.  To see this,        
  suppose  for every .   If  is open in , then  .  if 

if             
    

  In both cases,  is open. 

  3)   Suppose  is given by .  Then  is not continuousif 
if        

    


  at any point  (why?).  However  is continuous at every point         
  of , because  is a constant function. 
   There is a curious old result called  which states:Blumberg's Theorem
       For any , there exists a dense set such that      
            is continuous.       
  
   Blumberg's Theorem is rather difficult to prove, and not very useful.
  
  4)  Suppose  where  is a pseudometric space.  Since these       
  functions are real-valued, it makes sense to define functions and        
  in the obvious way.  For example, , where the “ ” on

        
  the right is ordinary addition in .
       If  and  are continuous at a point then the functions and          
   are also continuous at ; and is continuous at  if 0.   The proofs are      

  just like those given in calculus where    
   For example, consider :  given , then (because  are continuous       
   at )  we can find  and  so that        

    if then and         


    if then         


         Let min Then if , we have          

                  
   | |           

  
         You can find at the other proofs in any analysis textbook.   
   
  5) For , define  by (                            is a
  “projection” of   onto    )  Then  is continuous at .   To see this, suppose ,   
  and let   If , then                  
    ,                       



    
  so .      

  A similar argument shows that each projection  is also continuous,    and an argument only slightly more complicated would show, for example, that the
  projection function given by  is continuous.              
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  6) If  is an isolated point in , then every function  is          
  continuous at   To see this, suppose  is a neighborhood of .  Then  
   . But  is open in ,  so  is a neighborhood of .           
       If  happens to be the discrete topology, then  point in  is isolated, so every 
   is continuous   ( In this case, we could argue instead that whenever  is open in  
  then  must be open in because every subset of  is open.     )
  
  7) A function  is called an  if it preserves        isometry of  into  
  distances, that is, if  for all    An isometry is         
  clearly continuous (given , choose ).    
       Note that if  is a , then  one-to-one ( ).  If  happens to be a bijection,  metric  Why?
  we say that and  are  to each other.  In that case, it is clear that     isometric
  the inverse function  is also an isometry, so  is also continuous.  
 
Theorem 5.9   If  is a  space and , then there exist open sets  and  such that        metric
          , and   ( More informally: distinct points in a metric space can be separated
by disjoint open sets.)
Proof   Since   Let  and   These sets are open, and if                  there were a point , we would have a contradiction :    
   .                 

 

Theorem 5.9 may not be true if  is not a metric.  For example, if  is the trivial pseudometric on ,  
then the only open sets containing  and  are         )

Example 5.10  
  1) Suppose , where  is the trivial pseudometric on  and  is          
  any  space.  We already know that if  is constant, then  is continuous.metric  
      If  is not constant, then there are points  for which        
  Since  is a metric, we can pick disjoint open sets and  in  with   
  and Then (because )

(because )                
      


  Since , we see that is not open so  is not continuous.      
        So, in this situation we conclude that:    is continuous   is constant. iff
 
  2) Suppose   is the usual metric and  is the discrete unit metric on .  Let  
   is the identity map   For every open set  in the                 
  image set  is open in , but this is not the criterion for continuity:  in fact, this   
  function  is .  The criterion for continuity is that the not continuous at any point inverse
  image of every open set must be open.
 
Example 5.10.2 leads us to a definition.
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Definition 5.11 A function  is called an  or  if:        open function open mapping
whenever is open in then the image set is open in . Similarly, we call  a O       closed
mapping if whenever is closed in , then the image set  is closed in .    
The identity mapping  in Example 5.10.2 is  open and closed but  is not continuous.  You can both
convince yourself fairly easily that the projection function given by  is open         
and continuous, but it is not closed for example, the set  is a closed set in          
but  is not closed in . The general point is that              for a function
the properties “open”, “closed”, and “continuous” are completely independent.  You should provide
other examples: for instance, a function that is continuous but not open or closed.
With just the basic ideas about continuous functions, we can already prove some rather interesting
results.
Theorem 5.12  Suppose , where  is a pseudometric and  is a .  Let  be            metric
a dense subset of   If  and  are continuous and  then .  (         , More informally:
if two continuous functions with values in a metric space agree on a dense set, then they agree
everywhere.)
Proof   Suppose   Then, for some point , we have    Since  is a metric, we          
can find  open sets  and  in  with  and Since  and  are continuousdisjoint            
at , there are open sets  and  in  that contain  and that satisfy  and .               

                  is an open set containing . Since cl , there must be a point .
Then  because  and   Therefore                       
Example 5.13   If  and , then  by Theorem 5.12.  In other words, the              
mapping  given by  is one-to-one. Therefore                
           .
              On the other hand, each  function  is in , so constant          
It follows that .  In other words, .    there are exactly  continuous functions from  to   
Example 5.14 Find all continuous functions that satisfy the functional equation   
    for all                       
Simple induction shows that for                     

By ,
   , so .           
Let .  Then  
               
                      
                
Continuing, we see that  for every   Similarly, for each we have          
    so                             

            
      terms
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      terms
So far, we have shown that a function  satisfying must have the formula for every    
positive rational   



Since    we get that                  
   

                     
   

Therefore,  for every      
So far, we have not used the hypothesis that  is continuous.  Let  be defined by .       
Since  and  are continuous and , Theorem 5.12  tells us that , that is,  for            
all .  
 The continuous functions satisfying the functional equation  were first described by
 Cauchy in 1821. It turns out that there are also discontinuous functions  satisfying  , 
 but they are not easy to find.  In fact, they must satisfy a nasty condition called
 “nonmeasurability” (which makes them “extremely discontinuous”). 

In calculus, another important is the idea of a convergent sequence (in  or ).  We can generalize the 
idea of a convergent sequence in to any pseudometric space.

Definition 5.15    A   if any one of the following (clearly       sequence in converges to       
equivalent) conditions holds:
   1)   such that if then           n N,        (that is, if the sequence of numbers  in )     
   2) if  is open and ,  then  such that if then       X n N,     

   3)  if  is a neighborhood of then  such that if then .W , n N, W      

If  converges to , we write        

Condition  2) and 3) describe the convergence of sequences in terms of open sets (or neighborhoods)
rather than directly using the distance functions. Therefore replacing  with an equivalent metric  
does not affect which sequences converge to which points: sequential convergence is a topological
property.
If a sequence  has a certain property  for all some , we say that “   has         eventually
property .”  For example, the sequence (0,3,1,7,7,7,7,...) is ; the sequence eventually constant
                  is .   Using this terminology, we caneventually increasing
give a completely precise definition of convergence by saying:  converges to  if  is     eventually in each neighborhood of .



92

Example 5.16 1)  In ,     


  2) Suppose  is the discrete unit metric on .  Then each set  is open so       iff  is eventually in each neighborhood of  iff  is eventually in  In other words,      
         iff   eventually  Every convergent sequence is eventually constant.
    At the other extreme, suppose  is the trivial pseudometric on .  Then   every
sequence  converges to  point  (since the only neighborhood of is ).       every

Example 5.16.2 shows that limits of sequences in a pseudometric space do not have to be unique: the
same sequence can have many limits.  However if  is a , then sequential limits in must be  metric
unique,  as the following theorem shows.
Theorem 5.17  A sequence in a  space  has at most one limit.    metric
Proof   Suppose  and let  be disjoint open sets with and If ,                 then  must be eventually in   Since  and  are disjoint, this means that  cannot be        eventually in  ( , so         in fact, the sequence must be eventually outside  

In a pseudometric space, sequences can be used to describe the closure of a set.
Theorem 5.18   Suppose , where  is a pseudometric space.  Then cl  iff there is a       
sequence in  for which .       

Proof  First, suppose there is a sequence in  for which .  If  is any neighborhood of        
          , then  is eventually in .  Therefore , so cl Conversely, suppose cl .  Then for each ,  so we can choose a           
point .  Then   (because .                    

Note: the sequence  is actually a function  with the property that      
         .  Informally, the existence of such a function is completely clear.
But to be precise, this argument actually depends on the Axiom of Choice.  The proof
as written doesn't describe how to pick specific 's:  it depends on making “arbitrarychoices.”   But using AC gives us a function  which “chooses” one point from each
set in the collection         

Theorem 5.18 tells us something   about the role of sequences in pseudometric spaces.very important
The set  is closed iff cl .  But cl  is always true, so we can say is closed iff       
cl .  But that is true iff the limits of convergent sequences  from  must also be in .      Therefore a complete knowledge about what sequences converge to what points in  would let 
you determine which sets are closed (and therefore, by taking complements, which sets are open).  In
other words, all the information about “which sets in  are open or closed?”  is revealed by the 
convergent sequences. We summarize this by saying that in a pseudometric space sequences 
are sufficient to describe the topology.
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Example 5.19  If is a pseudometric on , then  defined by ( min  is also a          
pseudometric on .  It is clear that  iff .  In other words, the metrics               and  produce exactly the same convergent sequences and limits in   Since sequences are  
sufficient to determine the topology in pseudometric spaces, we conclude that  and  are equivalent  
pseudometrics on 
  This example also shows that for any given  there is always an equivalent 
pseudometric  on  for which all distances are :      every pseudometric is equivalent to a bounded
pseudometric.
  Another modification of  that accomplishes the same thing is .     

 This time, it is a little harder to verify that  is in fact a pseudometric the triangle inequality for    
takes a bit of work.   Clearly , and  iff . So                         



Definition 5.20  The  of a set  in  is defined by diam supdiameter            
( .  If has finite diameter, we say that is a we allow the possibility that diam     bounded
set
It is an easy exercise to show that  is bounded iff   for some sufficiently large where          can be any point in 
The diameter of a set depends on the particular metric being used.  Since we can always replace  by
an equivalent metric  or for which diam ,  .      boundedness is not a topological property

The fact that the convergent sequences determine the topology in gives us an upper bound on 
the size of certain metric spaces.
Theorem 5.21   If  is a dense set in a  space , then   In particular, for a      metric 

separable metric space , it must be true that       


Proof   For each , pick a sequence  in  such that   This sequence is actually a          function  Since a sequence in a metric space has at most one limit, the mapping    
                 given by  is one-to-one, so    

Note:  If  , do not jump to the (possibly false) conclusion that    
     .   See the note of caution in Chapter I at the end of Example I.14.8.

Theorem 5.21 is  true if  is merely a pseudometric space.  For example, let  be annot   
uncountable set (with arbitrarily large cardinality)  and let  be the trivial pseudometric on .  Then 
any singleton  is dense, but .  In this case, where does the proof of Theorem 5.21 fall     

apart?

Sequences are sufficient to determine the topology in a pseudometric space, and continuity is
characterized in terms of open sets, so it should not be a surprise that sequences can be used to decide
whether or not a function  between pseudometric spaces is continuous.
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Theorem 5.22 Suppose and  are pseudometric spaces, and that .  Then                 
            is continuous at  iff   for  sequence . every
Proof   Suppose  is continuous at  and consider any sequence .  If  is a neighborhood of      
           then  is a neighborhood of ,  so  is eventually in .  This implies that   is eventually in , so     

           Conversely, if  is  continuous at , then    ,             not    that is,   .                        For this  and we have that .  So for each  we can choose a          
  

point  for which  Then (because ),                      
 

but   (because  for all ). Therefore  is not continuous at .                 
Note: the  of the proof is phrased completely in terms of neighborhoods of and first half   that part of the proof is topological.  However the second half makes explicit use
of the metric.  In fact, as we shall see later, the second half of the proof  involve a littlemust
more than just the open sets.
Notice also that the second half of the proof makes uses the Axiom of Choice (the function
   “chooses”  for each .

The following theorem and its corollaries are often technically useful.  Moreover, they show us that
a pseudometric space has lots of “built-in” continuous functions these functions can be  
defined using  pseudometric .
Theorem 5.23    In  a pseudometric space : 
  if  and then  .                 

Proof Given , pick  large enough so that  implies that  and                 
 

are both true.  Since  ,  we get that                             

  if  ,                          
  

Similarly, , so that                   
  if  ,                       

     
Combining  and  gives that  if  , so .                       

Corollary 5.24   Let  be a pseudometric space and   If  in , then          
        (in ).
Proof   In Theorem 5.23, let be the constant sequence where  for every .         
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Corollary 5.25 Suppose .  Define  by   Then is continuous.            
Proof Let  be a point in   If , then by Corollary 5.24,  , that is                
         .   So  is continuous at  (by Theorem 5.22 ).   

Recall that for a nonempty subset  of we defined inf .          
The following theorem is also useful.

Theorem 5.26  If  is a nonempty subset of the pseudometric space , then the function  
       defined by  is continuous.
Proof  We show that  is continuous at each point .  Let .  Then the following      inequalities are true for every :  
                            

Apply  “inf ” to each inequality to get

   or                           or                        

so for all ,  | .   In other words,             

     for all ,  |    *                  

So for , we can choose . Then if , we have  Therefore  is                  continuous at . 

Comments on the proof:
  i) For a given :  the   can be used at every point .  A function  that      same choice satisfies this condition stronger than mere continuity is called .  We will say  uniformly continuous
more about  uniform continuity in Chapter IV. )
 ii) From the last inequality (*) we could have argued instead: for any sequence      we have and this forces Therefore  is continuous at              ,         However this argument obscures the observation about “uniform continuity” made in i).
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Exercises
E22.   Suppose  and that   We said that  is continuous at  if           
      such that if   and ,   then                      
The  is important What functions are described by each of the followingorder of the quantifiers .  
modifications of the definition?
 a)       such that if   and ,  then                    
 b)       such that if   and ,  then                    
 c)       such that if   and ,  then                     
In each case, what happens if the restriction  “ ” is dropped on either  or  ?   

E23.   Suppose  and that What does each of the following statements tell us      
about ? Throughout this exercise, “interval” always means “a bounded open interval  
 a) For every interval  containing  and every interval  containing , .       
 b) There exists an interval  containing  and there exists an interval  containing  such   
 that .   
 c) There exists an interval  containing  such that for every interval  containing ,   
    
 d) There exists an interval  containing  such for every interval  containing ,         /
. e) For every interval  containing , there exists an interval  containing  such that       
 f) There exists an interval  containing  such that for every interval  containing ,         
E24. ( )  The Pasting Lemma, easy version The two parts of the problem give conditions when a
collection of continuous functions defined on subsets of  can be “united” ( “pasted together”) to 
form a new continuous function. Let sets be open in , where (an indexing set of any     
size ; and let   be closed in            
 a)  If functions  are continuous and                          for all  and  in  ), then   (that is, and  agree where their domains overlap   prove that   is continuous.          
 b)  If functions  are continuous for each  and               ( )  for all  and  (                  that is,  and  agree where their domains   overlap), then prove that  is continuous.        

  

 c) Give an example to show that b) may be false for an  collection of functionsinfinite
 defined on closed subsets of ,   the domains  are pairwise disjoint.       even if
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E25.  A point  in  is   if for every neighborhood  of         a cluster point of the sequence
and for all such that .  (          When this condition is true, we say that “  is frequently in every neighborhood of ”  )

 Prove that if  is continuous and  is a cluster point of  in , then           
    is a cluster point of the sequence  in . 

E26.  The  of a set  is defined by if 
if characteristic function         

    
For which sets  is continuous?    

E27.  Show that a set  is open in  if and only if there is a continuous function        
and an open set  in  such that       

E28.  Let , where  is a pesudometric space.  Suppose  is a sequence in  such that       
           for  .  Either prove that ,  or  give a example to show thatevery
this may be false.

E29.  Let  be the usual metric on .  If possible, find a metric  on  such that with       respect to iff  with respect to , but  is not equivalent to .         

E30.  a) Suppose  is a closed set in the pseudometric space  and that . Prove that     there is a continuous function  such that  and   (              Hint: Consider the
function “distance to the set .” )
     b) Suppose  and  are disjoint closed sets in .  Prove that there exists a continuous   
function  such that  and .             Hint: Consider 

 
      c) Using b) ( ) prove that if  and  are disjoint closed sets in ,or by some other method    
then there exist open sets  and  such that  and   Can  and  always be              
chosen so that cl cl ?    
    
E31.   function ( , ) is called an if  preserves       isometry of  into     
distances: that is, if for all  Such an  is also called an            isometric
embedding.
 If  is also , we say that  and  are  to each other. Otherwise,  is       onto isometric
isometric to a subset of   
 Let  and  have their usual metrics. 

 a) Prove that  and  are not isometric to each other. 
 b) Let .  Prove that there are exactly two isometries from  onto  which hold the point     
fixed (that is, for which ).  
 c) Give an example of a metric space which is isometric to a proper subset of itself. 



98

E32.  Use convergent sequences to prove the theorem that two continuous functions  and  from 
   into a metric space are identical if they agree on a dense set in .

E33.   Suppose .  Then we can define by , so that ran  is             
the graph of .
 a) Prove that the following statements are equivalent:
  i)  is continuous
  ii)  is continuous
  iii) The sets  and  are both closed in .            

 b) Prove that if  is continuous, then its graph is a closed set in . Give a proof or a 
 counterexample for the converse.

E34.   Suppose  is a four point set.     
  a)  Show that there is one and only one metric on  that satisfies the following conditions:
s s z s s s                 and s .
  b) Show that  cannot be isometrically embedded into the plane  (with its usual metric). s 

  c) Prove or disprove:  can be isometrically embedded in , where  is the usual     metric on .

E35. Suppose  is a metric space for which  and in which  and  are the only clopen      X
sets.  Prove that .  
  (Hint: First prove that there must be a nonconstant continuous function .  What    
can you say about the range of  ? )

E36.   Let  be a  set and let be the set of all bounded continuous functions from  into  finite  
.  Let  denote the “uniform metric” on  given by sups C             
  a) Prove that  is separable.  

 b) If , is part a) still true?  

E37.    Find all continuous functions is continuous that satisfy the functional equation   
           for all 
 Hint: let  What simpler functional equation does  satisfy?  What is       
when  is rational? )
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Chapter II Review
Explain why each statement is true, or provide a counterexample.

1. A finite set in a metric space must be closed.
2.  For  write where  is an integer not divisible by 2.          

 Let if    
      

Then  is a pseudometric on . 
3. Consider the set with the metric  .  Let  have its usual metric  and    3

3 3
 

   
define  by “the largest integer ”.  Then  is continuous.        
4. If  and  are neighborhoods of  in , then  is also a neighborhood of         N N N
5. For any open subset  of a metric space ,  int cl      
6. The metric |  | on  is equivalent to the usual metric on .  1 1

   
7. Define  by the  digit of the decimal expansion of . Then  is continuous.        

8. The set of all real numbers with a decimal expansion of the form  is         dense in  
9. There are exactly  countable dense subsets of . 
10. Suppose we measure distances in  using the metric  .  Then the function        

    cos  is continuous at every point .     
11. A subset  in a pseudometric space  is dense if and only if int .       
12. Let  denote the “taxicab” metric | on .   is dense in ( .              

      
13. If  is a countable subset of , then  is dense in .   
14. If  and cl , then int .          
15. Let : }.   The discrete unit metric produces the same topology on  as the usual     1

 
metric.
16. In a pseudometric space , cl cl  if and only if  is clopen.       A
17. If  is an open set in  and , then .U U    
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18. There is a sequence of open sets  in  such that     
 

19. If , then int cl ( .          
20. There are exactly  continuous functions c     
21. Let  have the metric  and let  .  Then ( ) 1 in the space .         | |

1 | | + 1
 
    nn


 a

22. Suppose  is a metric on  with the following property:  for every sequence  in     
   with respect to  if and only if  with respect to            

Then the usual metric on      
23. Suppose .  If  cl cl ,  int int , and Fr Fr ,  then .                 
24. Suppose  has the metric  | | and define  by           f g  
    .  Then  is continuous.
25. Let  be the trivial pseudometric on . In  each real number  is the limit of a sequence of     
irrational numbers.
26. Suppose  and  are continuous and that .  Then there must exist a point           
          where  and a point  where 
27. Suppose  is continuous  , and suppose  is an open set in             at the point
with .  Then  is an open set containing .     

28. If every convergent sequence in a metric space  is eventually constant, then ).    

29. Let   Suppose  is a sequence such that for every continuous          
       .  Then .

30. For , let sup |  .  Let be a sequence such                      that  in , where  is the function               
Then there is an  such that whenever we  have  for all              

31.  If   is continuous, then the graph of  is a closed subset of .     

32.  If the graph of a function  is closed subset of , then  is continuous.     

33.  The are exactly  different metrics  on  for which the usual topology on .    

34. In , the interval  can be written as a countable intersection of open sets.    
35. For any then there is a continuous function  such that           



101

36. Let  be the usual metric on  and  the discrete unit metric.  Suppose ) is             
continuous.  Then  is constant.
37. If  then there are infinitely many different metrics  on  for which  is the discrete     topology.
38. The space  of irrational numbers is separable.
39. Suppose  and  are pseudometric spaces and that  is continuous at   If           
     , then  is also continuous at .
40. If  and  are subsets of , then int int int .          
41. Let  be the “max metric” on   and let  be the “taxicab metric” on .   For  , let      
             cos ( ).  Then  is continuous.   
42. Let  be a pseudometric on the set .  Then either  or  .           

43. Suppose  is continuous and  for each  .  Then               irrational
44. A finite set in a metric space must be closed.
45. If  is continuous and , then there must exist an irrational number  for which       
  .
46.  In a metric space , it cannot happen that .        

47. The discrete unit metric produces the same topology on  as the usual metric on . 
48. If  is an uncountable dense subset of  and  is countable, then  is dense in .D C D C 
49. Suppose that  is continuous and that for whenever  is any sequence in  that         
is eventually 0.  Then           

  

50. If  is continuous and onto, and  is separable, then  is separable.          

51. In a pseudometric space ,  cl int  if and only if  is clopen.     
52. There exists a dense subset, , of  such that every infinite countable subset of  is dense in .  
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Chapter IIITopological Spaces
1. Introduction
In Chapter I we looked at properties of sets, and in Chapter II we added some additional structure
to a set a distance function to create a pseudometric space.  We then saw some of the most  
basic fundamental definitions and properties of pseudometric spaces. There is much more, and
some of the most useful and interesting properties of pseudometric spaces will be discussed in
Chapter IV. But in Chapter III we look at an important generalization.
We observed, early in Chapter II, that the idea of continuity (in calculus) depends on talking
about “nearness,” so we used a distance function  to make the idea of “nearness” precise. In that
way, we were able to extend the definition of continuity from  to pseudometric spaces. The
distance function  also led us to the idea of open sets in a pseudometric space.  From there we
developed properties of closed sets, closures, interiors, frontiers, dense sets, continuity, and
sequential convergence.
An important observation in Chapter II was that open (or closed) sets are really all that we
require to talk about many of these ideas. In other words, we can often do what's necessary using
the open sets  knowing which specific  generated the open sets: the topology is whatwithout  really matters. For example, int  is defined in in terms of the open sets so int  doesn't    
change if  is replaced with a different but equivalent metric one that generates the same  
open sets. Similarly, changing  to an equivalent metric  doesn't affect closures, continuity, or 
convergent sequences.  In summary: for many purposes  is logically unnecessary once  has 
done the job of creating the topology  (although having  might still be convenient). 
This suggests a way to generalize our work.  For a particular set  we can simply assign a
topology that is, a collection of “open” sets given without any mention of a pseudometric that
might have generated them.  Of course when we do this, we want the “open sets” to “behave the
way open sets should behave” as described in Theorem II.2.11. This leads us to the definition of
a topological space.

2. Topological Spaces
Definition 2.1  A  on a set  is a collection of subsets of  such thattopology   
   i)   
   ii) if  for each  then             iii)  if then                 
A set  is called  if  . The pair is called a .      open   topological space
Sometimes we will just refer to “a topological space .” In that case, it is assumed that there is    
some topology  on  but, for short, we are just not bothering to write down the “ ”) 
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We emphasize that in a topological space there is  : therefore phrases likeno distance function 
“distance between two points” and “ -ball”  in   There is no preconceived make no sense  
idea about what “open” means: to say “  is open” means nothing more or less than  “ .”   

In a topological space , we can go on to define closed sets and isolated points just as we 
did in pseudometric spaces.
Definition 2.2  A subset  in  is called  if   is open, that is, if .       closed X  
Definition 2.3   A point is called  if } is open, that is, if         isolated
The proof of the following theorem is the same as it was for pseudometric spaces; we just take
complements and apply properties of open sets.
Theorem 2.4    In any topological space       
   i)    and  are closed 
   ii)  if  is closed for each then is closed         iii) if  are closed, then  is closed.      


More informally, ii) and iii) state that intersections and finite unions of closed sets are closed.
Proof   Read the proof for Theorem II.4.2.   

For a particular topological space , it  be possible to find a  might or might not
pseudometric  on  that “creates” this topology that is, one for which      

Definition 2.5 A topological space is called if there exists a  pseudometrizable
pseudometric  on  for which If  is a metric, then  is called          metrizable.

Examples 2.6
 1) Suppose  is a set and  is called the  topology on  and it is     trivial
 the smallest possible topology on . is called a trivial topological space. The  
 only open (or closed) sets are  and   If we put the trivial pseudometric  on , then   
 So a trivial topological space turns out to be pseudometrizable.   
   At the opposite extreme, suppose . Then is called the  on    discrete topology
  and it is the largest possible topology on    is called a discrete topological   
 space. Every subset is open (and also closed). Every point of  is isolated. If we put the
 discrete unit metric  (or any equivalent metric) on , then So a discrete     topological space is metrizable.
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 2)  Suppose and let .   is a topological space called         
 .  In this case it is  possible to find a pseudometric  on  for whichSierpinski space not  
 , so Sierpinski space is not pseudometrizable.  To see this, consider any  
 pseudometric  on . 
       If , then  is the trivial pseudometric on  and  .         

  If , then the open ball so                     (In this case  is actually the discrete topology:  is just a rescaling of the 
  discrete unit metric.)
 Another possible topology on } is , although and         
  seem very much alike:  both are two-point spaces, each with containing exactly  
 one isolated point. One space can be obtained from the other simply renaming “ ” and
 “ ” as “ ” and “ ” respectively. Such “topologically identical” spaces are called  
 “homeomorphic.” (We will give a precise definition later in this chapter.)
 3) For a set , let  or  is finite   is a topology on               
  i)  Clearly, and .    
        ii) Suppose for each  If  then .                 Otherwise there is at least one .  Then  is finite, so         .  Therefore   is                        also finite, so .   
       iii) If  and some , then  so .                 

   
  Otherwise each  is nonempty, so each  is finite  Then       is finite, so .                    

   
 In , a set  is closed iff  or  is finite. Because the open sets are  and the       
 mplements of  sets,  is called the  on .co finite cofinite topology 
 If  is a finite set, then the cofinite topology is the same as the discrete topology on . 
 ( ) In  is infinite, then no point in  is isolated.Why?   
 
 Suppose  is an infinite set with the cofinite topology   If  and  are nonempty   
 open sets, then  and  must be finite so             
  is finite.  Since  is infinite, this means that             in fact,
  must be infinite     . Therefore every pair of  nonempty open sets in  has
  nonempty intersection!  This shows us that an infinite cofinite space  is not 
 pseudometrizable:

 
   i)  if  is the trivial pseudometric on , then certainly , and   

      ii) if  is not the trivial pseudometric on , then there exist points 
    for which .  In that case,  and                  would be  nonempty open sets in so disjoint      
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 4)  On , let : , .  It is easy to verify that  is a topology           
 on , called the .   Is metrizable or pseudometrizable?  right-ray topology    

If , then  is the only possible topology on , and  is the only         
possible topology on a singleton set . But for , there are many possible     
topologies on .  For example, there are four possible topologies on the set .  These    
are the trivial topology, the discrete topology,  and  although, as   
mentioned earlier, the last two can be considered as “topologically identical.”
If  is a topology on , then  is a collection of subsets of so .  This means that      
          , so | |  is an upper bound for the number of possible topologies 

on .  For example, there are   topologies on a set  with 7      no more than  

elements.  But this upper bound is actually very crude, as the following table (given without
proof) indicates:
    Actual number of distinct  
     topologies on 
   0  1
   1  1
   2  4
   3  29
   4  355
   5  6942
   6  209527
   7  9535241  ( )many less than 
Counting topologies on finite sets is really a question about combinatorics and we will not pursue
this topic.
Each concept we defined for pseudometric spaces can be carried over directly to topological
spaces that is  in terms of open (or closed) sets.if the concept was defined in topological terms  
This applies, for example, to the definitions of interior, closure, and frontier in pseudometric
spaces, so these definitions can also be carried over verbatim to a topological space  

Definition 2.7   Suppose .  We define   
  int the  is open and }  interior of  in         
  cl the   is closed and    closure of  in       
  Fr the cl cl    frontier (or boundary) of  in        
As before, we will drop the subscript “ ” when the context makes it clear.
The properties for the operators cl, int, and Fr (except those that mention a pseudometric  or
an -ball) remain true.  The proofs in the preceding chapter were deliberately phrased in
topological terms so they would carry over to the more general setting of topological spaces.
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Theorem 2.8  Suppose .  Then   
         1) a) int  is the largest open subset of   (that is, if  is open and , then    O
        int ).
           Note: int  is true for  set  so web)  is open  iff  int          every
  could say:  is open iff int   
  c) int   iff  there is an open set  such that        
   a) cl  is the smallest closed set containing  (that is, if  is closed and , 2)       

             then cl ).  
        Note: cl  is true for  set , so web)  is closed  iff cl            every
  could say:   is closed iff cl   
    c) cl   iff  for every open set  containing ,         
       closed and Fr Fr ( ). 3)   a) Fr  is    X 
  b) Fr   iff  for every open set  containing ,  and        
                        
 c  is clopen  iff  Fr .      
    
See the proof of Theorem II.4.5
At this point, we add a few additional facts about these operators.  Some of the proofs are left as
exercises.

Theorem 2.9   Suppose ,  are subsets of a topological space   Then   
   1) cl cl cl        
   2) cl Fr       
   3)  int Fr cl        
   4) Fr cl int   
   5) int Fr int , and these 3 sets are disjoint.       X  
Proof 1)  so, from the definition of closure, we have cl cl .        
Similarly,  cl cl   Therefore cl cl cl           
 On the other hand,  cl cl  is the union of two closed sets, so cl cl  is closed     
and cl cl ,  so cl cl cl .  (             As an exercise, try proving 1) instead
using the characterization of closures given above in Theorem 2.8.2c.)
     Is 1)  true if “ ” is replaced by “ ” ? 
 2) Suppose cl  but   If  is any open set containing , then             
(because cl ) and  because the intersection contains ).  Therefore           
     Fr , so FrA A
 Conversely, suppose Fr .  If , then cl And if , then             
             Fr cl cl , so cl Therefore cl   FrA A A
The proofs of 3) 5) are left as exercises.    
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Theorem 2.9 shows us that complements, closures, interiors and frontiers are interrelated and
therefore some of these operators are redundant. That is, if we wanted to very “economical,” we
could discard some of them. For example, we could avoid using “Fr” and “int” and just use “cl”
and complement because Fr cl cl  and int Fr          
       cl cl . Of course, the most economical way of doing things is not

necessarily the most convenient.  (Could we get by only using complements and “Fr” that is,
can we define “int” and “”cl” in terms of “Fr” and complements?  Or could
we use just “int” and complements? )
Here is a famous related problem from the early days of topology:  for , is there an   
upper bound for the number of different subsets of  which might created from    using only
complements and closures, repeated in any order?  (As we just observed, using the interior and
frontier operators would not help to create any additional sets.)  For example, one might start
with  and then consider such sets as cl , cl  cl cl  and so on.  An old         
theorem of Kuratowski (1922) says that for  set  in  space , the upper bound isany any  
14.  Moreover, this upper bound is “sharp” there  a set  from which 14 different sets  is 
can actually be obtained!  Can you find such a set?

Definition 2.10   Suppose  is a topological space and .  is called  in  if       dense
cl   The space is called  if there exists a countable dense set  in .       separable

Example 2.11   Let  be the cofinite topology on .  Let        
 
 int , because each nonempty open set  has finite complement and therefore   
 In fact, for any   if  is infinite, then int/           
     
 cl  because the only closed set containing  is . Therefore  is separable.        
 In fact, any infinite set  is dense.
 Fr cl cl               
  
  is not pseudometrizable ( )    why?

Example 2.12  Let  be the right-ray topology on . In ( ,    
 int  
 cl , so  is separable      
 Fr 
 Any two nonempty open sets intersect, so is not metrizable.  Is it   
   pseudometrizable?
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3.  Subspaces
There is a natural way to create a new topological space from a subset of a given topological
space. The new space is called a sub  (not merely a sub ) of the original space.space set
Definition 3.1  Suppose  is a topological space and that .  The      subspace topology
on subspace is defined as } and is called a  of              
We sometimes call  the “restriction of  to ” or the  “trace of  on ”     
You should check the conditions in Definition 2.1 are satisfied: in other words, that reallyis a topology on When we say that  is a subspace of , we mean that  is a subset of    . 
    the subspace topology   To indicate that  is a subspace, we sometimes writewith 
       rather than 
Example 3.2   Consider , where  has its usual topology.  For each , the interval     
               is open in . Therefore  is open in the subspace , so  
every point  is isolated in the subspace. The subspace topology is the discrete topology. Notice:
the subspace topology on  is the same as what we get if we use the usual metric on  to 
generate open sets in .  Similarly, it is easy to check that in  the subspace topology on the -  
axis is the same as the usual metric topology on .
More generally: suppose , where  is a pseudometric space.  Then we can think of    
two ways to make  into a topological space.
  i)  gives a topology  on .  Take the open sets in  and intersect them     with .  This gives us the subspace topology on , which we call  and       is a subspace of        

  2)  Or, we could view  as a pseudometric space by using  to measure distances 
  in . To be very precise,  , so we make a “new” pseudometric      
   defined by .  Then  is a pseudometric space and we can          
  use  to generate open sets in : the topology     
     Usually, we would be less compulsive about notation and continue to
  use the name “d” also for the pseudometric on . But for a moment it will be
  helpful to distinguish carefully between  and       .
Fortunately, it turns out that 1) and 2) produce the same open sets in the open sets in     
are just the open sets from  restricted to   That's just what Theorem 3.3 says, in “fancier”  
notation.
Theorem 3.3   Suppose where is a pseudometric space. Then   .           

Proof    If , then  where . Let .  There is an  such that                   
                              Since , we get that , so .


 Conversely, suppose   For each  there is an  such that         

                
      and Let an open set in   Since  

                          
    , we get  

              
    Therefore 
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Exercise  Verify that in any topological space  
       i) If  is open in   and  is an open set in the subspace then is open in        
( )“An open subset of an open set is open.”
        ii) If  is closed in    and  is a closed set in the subspace  then  is closed in .       
( )“A closed subset of a closed set is closed.”

4.  Neighborhoods
Definition 4.1 Let  be a topological space and suppose If int , then we       
say that  is a N neighborhood of  
  The collection is a neighborhood of  is called the      
neighborhood system at 
Note that
  1)   , because every point  has at least one neighborhood for example,    
      2)   If  and , then int int ( ) int .                  why?
  Therefore      .
  3)  If  and then int int , so  (that is, if               , 
   contains a neighborhood of , then  is also a neighborhood of .)    

Just as in pseudometric spaces, it is clear that   a set  in is open iff  is a neighborhood   O
of each of its points.  ( )See Theorem II.5.4
In a pseudometric space, we use the -balls centered at  to measure “nearness” to . For  
example, if “every -ball in  centered at  contains an irrational number,”  this tells us that  
“there are irrational numbers arbitrarily near to .”  Of course, we could convey the same
information in terms of neighborhoods by saying “every neighborhood of  in  contains an 
irrational number.”  Or, instead, we could say it in terms of “open sets”:  “every open set in 
containing  contains an irrational number.”  These are all equivalent ways to say “there are
irrational numbers arbitrarily near to .”  This isn't that surprising since open sets and
neighborhoods in were defined in terms of -balls.  
In a topological space  we don't have -balls, but we still have open sets and  
neighborhoods.  We now think of the neighborhoods in (or, if we prefer, the collection ofopen sets containing ) as the tool we use to talk about “nearness to .” 
For example, suppose  has the trivial topology . For any the only neighborhood of     
is : therefore    the neighborhoods of  are unable    every in is in every neighborhood of 
to “separate”  and , and that's  to having  (if we had a pseudometric).  In     analogous
that sense, all points in  are “very close together”: so close together, in fact, that they are 
“indistinguishable.”   The neighborhoods of  tell us this.
At the opposite extreme, suppose  has the discrete topology  and that  If  then      
( ),  is a neighborhood of .  The  neighborhood of  is .  Sosince  is open      smallest
every point  has a neighborhood that  :  for every , we could     excludes all other points
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say “  is not within the neighborhood  of .”  This is  to saying “  is not within  of   analogous 
    ” (if we had a pseudometric).  Because  point  is “within  of ” we call  isolated. Theno
neighborhoods of  tell us this.
Of course, if we prefer, we could use “  is an open set containing ” instead of  “  is a  
neighborhood of ” to talk about nearness to . 
The complete neighborhood system of a point often contains more neighborhoods than we 
actually need to talk about nearness to .  For example, the open balls  in a pseudometric  space  are enough to let us talk about continuity at . Therefore, we introduce the idea of a  
neighborhood base at  to choose a smaller collection of  neighborhoods of  that is
  i) good enough for all our purposes, and
  ii) from which all the other neighborhoods of  can be obtained if we want them.
Definition 4.2 A collection  is called a  at  if for every   neighborhood base
neighborhood  of , there is a neighborhood  such that .  We refer to the        
sets in as  of . basic neighborhoods 
According to the definition, each set in  must  a neighborhood of , but the collection   be 
may be much simpler than the whole neighborhood system  The crucial thing is that every neighborhood  of  must contain a basic neighborhood  of .   
Example 4.3  In , possible ways to choose a neighborhood base at  include:  
  i)      the collection of all balls ,  or     ii)     the collection of all balls  , where  is a positive rational,  or      iii)    the collection of all balls  for ,  or      
  iv)     (   The neighborhood system is always a base for itself, but it
     is not an “efficient” choice; the goal is to get a base      that's much simpler than .)
Which  to use is our choice: each of i)-iv) gives a neighborhood base at .  But  ii) or iii) 
might be more convenient because ii) and iii) are  neighborhood bases .  ( countable  If
   , for example, with the usual metric , then the collections  in i) and iv) areuncountable.)  Of the four,  iii) is probably the simplest choice for .

Suppose we want to check whether some property that involves neighborhoods of  is true.
Often all we need to do is to check whether the property holds for neighborhoods in the simpler
collection .   For example, in   is open iff  contains a neighborhood of each     O
        But that is true iff  contains a set  around each of its points .

Similarly, cl  iff for every  iff for every For      A   .          example, suppose we want to check, in , that cl .  It is  just to check that   sufficient
                  for each , because this implies that  for  every 

Therefore it's often desirable to make an “efficient” choice of neighborhood base at each  point   .
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Definition 4.4  We say that a space satisfies the  (or, more  first axiom of countability
simply, that  is ) if at each point , it is possible to choose a countable     first countable
neighborhood base 
Example 4.5
 1) The preceding Example 4.3 shows that every pseudometric space is first countable.
 2) If  is the discrete topology on then  is first countable.  In fact, at each   
point , we can choose a neighborhood base that consists of a single set:    

 3) Let  be the cofinite topology on an uncountable set .  For any , there      cannot
be a countable neighborhood base at . 
  We prove this by “contradiction”: suppose there were a countable neighborhood
  base at some point   call it             For any  is closed  so  is a neighborhood of .  Then, by the        
  definition of neighborhood base, there is some  for which
   int .  Therefore  int .             


  But int  so int .       

    
    Then int int . Since int is                   

     finite ( ?), this would mean that  is countable  which is impossible.why    
Since any pseudometric space  first countable, the example gives us another way to see that thisis
space   is not pseudometrizable. 

In , the neighborhood system  at each point  is     completely determined by the
topology , but  is not.  As the preceding examples illustrate, there are usually many possible choices for .  ( Can you describe all the spaces  for which  is uniquely determined at  each point  ?)
On the other hand, if we were  at each point  we couldgiven    
  1) “reconstruct” the whole neighborhood system :

   such that , and  we could              then
  2) “reconstruct” the whole topology :
    is a neighborhood of each of its points     
   , that is,                 is open iff  contains a basic neighborhood of each of its points. 
This illustrates one method of describing a topology:  by telling the neighborhood basis  ateach point.  Various effective methods to describe topologies are discussed in the next section.
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5.  Describing Topologies
How can a topological space be described?  If , it is simple to give a topology by just   
writing   However, describing all the sets in  explicitly is often not the easiest   
way to go.
In this section we look at three important different but closely related ways to define a 
topology on a set. All of the will be used throughout the course.  A fourth method by using a 
“closure operator”  is not used much nowadays.  It is included just as an historical curiosity.

A.  Basic neighborhoods at each point
Suppose that at each point we have picked a neighborhood base .  As mentioned    above, the collections  implicitly contain all the information about the topology: a set  is in 
  iff   contains a basic neighborhood of each of its points. This suggests that if we start withO
just a  , then we could define a topology on  if we  by saying what the 's shouldset begin  be.  Of course, we can't just put “random” sets in the sets in each  must “act the way  
basic neighborhoods are supposed to act.”  And how is that?  The next theorem describes the
crucial behavior of a collection of basic neighborhoods at  in any topological space.

Theorem 5.1 Suppose  is a topological space and that for each point  is a     neighborhood base.
  1)  and           
  2) if  and , then   such that                   
  3) if , then   such that  and,        
  such that   I,  B B I         

  4)      such that .O O B B O         
Proof 1) Since  is a neighborhood of , there is a  such that . Therefore        
             .  If , then  is a neighborhood of , so int .  B
 2) The intersection of the two neighborhoods  and  of  is a neighborhood of .    Therefore, by the definition of a neighborhood base, there is a set  such that         .
 3) Let int Then  and because  is open,  is a neighborhood of each its    . I B I I
points .  Since  is a neighborhood base at there is a set such that .       ,      

 4) : If is open, then  is a neighborhood of each of its points .  Therefore for each O O
          there must be a set such that   : The condition implies that  contains a neighborhood of each of its points. O
Therefore   a neighborhood of each of its points, so  is open.     is
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Theorem 5.1 lists the crucial features of the behavior of a neighborhood base at . The next
theorem tells us that we can put a topology on a set  by assigning a “properly behaved"
collection of sets to become the basic neighborhoods at each point .

Theorem 5.2  (The Neighborhood Base Theorem)  Let  be a .  Suppose that for each set
    we give a collection  of subsets  of  in such a way that conditions 1) - 3) of Theorem5.1 are true.  { :   such that }     is aD Thenefine         O O O    topology on and  is now a neighborhood base at  in     

Note: In Theorem 5.2, we do not ask that the 's satisfy condition 4) of Theorem 5.1 since   
is a  with no topology (yet), condition 4) would be meaningless. Rather, Condition 4) becomesset
the motivation for how to  a topology using the 's.define  

Proof We need to prove three things:  a)   a topology is
     b) each  is now a neighborhood                 of  in , and               
     c) the collection  is now a neighborhood base at . 
 a)  Clearly, .  If  then, by condition 1), we can choose any  and             Therefore . 
       Suppose  for all .  If { : }, then O  for someO O                        .  By definition of there is a set  such that { : }, so  B O O  { : } .O    
    To finish a), it is sufficient to show that if and , then .        Suppose By the definition of there are sets  and  such that      .  ,                        and , so .  By condition 2), there is a set            such that .  Therefore .          O O O O
Therefore   a topology on so now we have a topological space and we must is     
show that  is a neighborhood base at  in .  Doing so involves the awkward-looking    
condition 3) which we have not yet used.
  
 b)  If , then  (by condition 1) and (by condition 3), there is a set       X
such that  and  .  The underlined phrase         ,        such that
states that  satisfies the condition for , so  is open.  Since  is open and            , is
a neighborhood of , that is, .   

 c)   To complete the proof, we have to check that  is a neighborhood  at .  If base 
       is a neighborhood of , then int .  Since int  is open, int  must satisfy the criterion
for membership in , so there is a set  such that int .  Therefore           
forms a neighborhood base at .   
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Example 5.3  For each , let .  We can easily check the conditions         1) - 3) from Theorem 5.2:
  1)  For each , certainly and  for each set                2)  If  and  are in , then (in this example) we can                    choose , where min                     
  3)  If , then (in this example) we can let               If pick  so . Then and                             
According to Theorem 5.2,  such that is a                   
topology on  and is a neighborhood base at  in .  The space  is called the            
Sorgenfrey line.
Notice that  each set : that is, the sets in  turn out to be open notin this example     merely neighborhoods of   This does not always happen.
It is easy to check that sets of form  and are open, so         
        is open.  Therefore  is also closed.  So at each point  in the Sorgenfrey line,

there is a neighborhood base consisting of clopen sets.

We can write , so  is open in the Sorgenfrey line.  Because every        
 

usual every usual open set in open set in  is a union of sets of the form , we conclude that   
 is also open in the Sorgenfrey line. The usual topology on  is strictly smaller that the
Sorgenfrey topology:  .  
  is dense in the Sorgenfrey line:  if , then every basic neighborhood  of  intersects    
 , so cl   Therefore the Sorgenfrey line is separable. It is also clear that the Sorgenfrey  
line is first countable: at each point  the collection  is a countable        

 
neighborhood base.
 
Example 5.4   Similarly, we can define the  by putting a new topology on .Sorgenfrey plane 
At each point , let .  The families                     satisfy the conditions in the Neighborhood Base Theorem, so they give a topology  for which
   is a neighborhood base at   A set  is open iff:  for each , there are       
                  and such that    You should check thatMake a sketch!
the sets  are actually clopen in the Sorgenfrey plane.  It is also easy to      check the usual topology on the plane is strictly smaller that the Sorgenfrey topology. It isclear that  is dense, so  is separable.  Is the Sorgenfrey plane first countable?     

Example 5.5   At each point , let  and define              
         .  It is easy to check that the conditions 1) - 3) of Theorem 5.2 are
satisfied.   The topology generated by the 's is justFor in condition 3), let I      the usual topology the sets in are basic  of  in the usual topology as they   neighborhoods
should be  but the sets in  did  turn out to be open sets.  not
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Example 5.6   Let the “closed upper half-plane.”         

   For a point  with let                      For a point let     
   is a usual open disc in the upper half-plane, tangent to the -axis at         

It is easy to check that the collections satisfy the conditions 1) - 3) of Theorem 5.2 andtherefore give a topology on .  In this topology, the sets in turn out to be  neighborhoods  open
of .
The space , with this topology, is called the “ .”  Notice that  is separable and first Moore plane
countable.  The subspace topology on the -axis is the discrete topology.  ( Verify these
statements! )  

B.  Base for the topology

Definition 5.7     A collection of  sets in  is called a  if eachopen   base for the topology 
            is a union of sets from   More precisely,  is a base if  and for each 
there exists a subfamily  such that .   We also call  a  and       base for the open sets
we refer to the open sets in  as . basic open sets
If  is a base, then it is easy to see that:  iff   such that .  This         O O 
means that if we were given , we could use it to decide which sets are open and thus
“reconstruct” .
Of course, one example of a base is : every topology  is a base for itself.  But usually  
there are many ways to choose a base, and the idea is that a simpler base  would be easier to
work with.  For example, the set of  is a base for the topology  in any pseudometricall balls space a different base would be the set containing only the   balls with positive rational
radii.    ( ?)Can you describe those topological spaces for which  is the  base for  only
The following theorem tells us the crucial properties of a base  in   
Theorem 5.8   If  is a topological space with a base  for , then   
    1)        
    2) if  and  and ,  then there is a set                   such that .       
Proof  1) Certainly  and since  is open the definition of base implies that  is the      
union of a subfamily of .  Therefore    

2)  If and , then  is open so  must be the union of some sets            
from .  Therefore, if ,  there must be a set  such that .                    
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The next theorem tells us that if we are given a collection  of subsets of a set  with properties 
1) and 2), we can use it to define a topology.
Theorem 5.9 (The Base Theorem)   Suppose  is a  and that  is a collection of subsets of set 
   that satisfies conditions 1) and 2) in Theorem 5.8.    is a union of setsDefine  O O  
from such that .                
Then  is a topology on  and  is a base for .  
Proof   First we show that   a topology on .  Since  is the union of the empty subfamily of is  
  , we get that , and condition 1) simply states that .   
If   ( ), then  is a union of sets each of which is itself a union ofO           
sets from .  Then clearly is a union of sets from , so  .              

Suppose  and  and that .  For each such  we can use 2) to pick a setO O O               such that .   Then  is the union of all the 's chosen in this   O O O O B  way, so .O O    
Now we know that we have a topology, , on . By definition of  it is clear that  and    
that each set in  is a union of sets from   Therefore  is a base for .      

Example 5.10   The collections  
    ,              
    ,  and    

         
   ,                    
each satisfy the conditions 1) - 2) in Theorem 5.9, so each collection is the base for a topology on
     In fact, all three are bases for the same topology on that is, the usual topology check
this!   Of the three,  is the simplest choice it is a  base for the usual topology.  countable

Example 5.11  Suppose  and are topological spaces. Let the set of “open        
boxes” in  and  (               Verify that  satisfies conditions 1) and
2) of The Base Theorem.)   The  on the set is the topology for which  isproduct topology    
a base.      unless something else is stated.We always assume that has the product topology  
Therefore a set is open (in the product topology) iff   for all  there are         
open sets  and  such that                 Note that  itself might not be a
“box.”
Let  be the “projection” defined by .  If  is any open set in ,             
then .  Therefore  is open.   Similarly, for  defined                    
by if is open in , then  is open in   (                   As we see in
Section 8, this means that the projection maps are continuous. It is not hard to show that
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the projection maps  and  are also open maps: that is, the image of open sets in the  product is open).
If  is dense in  and  is dense in , we claim that  is dense in . If                     , where  is open, then there are nonempty open sets  and  for which
                    Since cl , we know that ; and similarly   Therefore , so                               Therefore cl   So  is dense in .  In particular, this shows that             the product of two separable spaces is separable.

Example 5.12    The open intervals  form a base for the usual topology in ,  so each set  
      is  the base  for the product topology on .  It is easy to see that in every  
“open box”  in  can be written as a union of “simple open boxes” like .       
Therefore  also is a (simpler) base for the product topology             
on .  From this, it is clear that the product topology on  is the usual topology on the    
plane ( ). see Example 5.10

In general, the open sets  and  in the base for the product topology on can be    
replaced by sets “  chosen from a base for ” and “  chosen from a base for ,” as in   
this example.  So in the definition of the product topology, it is sufficient to say that basic
open sets are of the form where V are  basic open sets from  and from         

Definition 5.13  We say that a space satisfies the  (or, more  second axiom of countability
simply, that is a  space) if it is possible to find a countable base  for  second countable
the topology .
For example,  is second countable because, for example,  is a countable         
base.  Is  is second countable ( ) ? why or why not

Example 5.14 The collection  is a base for the Sorgenfrey             
topology on .  But the collection  is  a countable base for the            

 not
Sorgenfrey topology.  Why not?
Since the sets in a base may be simpler than arbitrary open sets, they are often more convenient
to work with, and working with the basic open sets is often all that is necessary not a surprise
since all the information about the open sets in contained in the base . For example, you should
check that
 1) If  is a base for , then cl  iff each  open set  containing  satisfies      basic
    
 2) If  and is a base for the topology on , then is             
continuous iff  is open for each .  This means that we needn't check the inverse    
images of  open sets to verify that  is continuous.all 
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C.  Subbase for the topology
Definition 5.15  Suppose  is a topological space.  A family  of  sets is called a   open
subbase for the topology all finite intersections  if the collection  of  of sets from  is a base  
for .   ( .) Clearly, if  is a base for , then  is automatically a subbase for    
Examples  i)  The collection  or  is a subbase for               
a topology on .  All intervals of the form  are in , so  is a base         
for the usual topology on .
 
     ii) The collection  of all sets  and for open in  and open in )          
is a subbase for the product topology on :  these sets are open in  and the     
collection  of all finite intersections of sets in  includes all the open boxes 
 .            

We can define a topology on a set  by giving a collection of subsets as the subbase for a 
topology. Surprisingly, any collection  can be used: no special conditions on are required. 
Theorem 5.16  (The Subbase Theorem)   Suppose  is a set and  is  collection of subsets  any
of .  Let  be the collection of all finite intersections of sets from .  Then  is a base for a   
topology , and  is a subbase for .  
Proof    First we show that  satisfies conditions 1) and 2) of The Base Theorem.
  1)  since  is the intersection of the empty subcollection of  (    this follows
the convention that the intersection of an empty family of subsets of  is  itself. See Example 
I.4.5.5 : ).  Since certainly { }         
  2) Suppose  and , and .   We know that ...                 S S
and for some so     S ... S  S ,..., S , ..., S ,      
  ... ...                       
Therefore  is a union of sets from  is a topology, and  is a base for .  By       
definition of  and , we have  and each set in  is a union of finite intersections of      
sets from .  Therefore  is a subbase for .      

Example 5.17
  1) Let  and  is a subbase for a topology on              
  .   A base for this topology is the collection  of all finite intersections of sets in :
   , .         
The not-very-interesting topology  generated by the base  is collection of all possible unions 
of sets from :
   , , }, {2}, {1,2}, ,        
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 2) For each let   The collection  is                     a subbase for a topology on .  Here,  where max ,  so the collection of           all finite intersections from  is just  itself.  So  is actually a base for a topology.  The   
topology is .   

 3) Let  is a straight line in in .  For every point ,  is the            
intersection of two sets from , so  is a subbase for the discrete topology on .      

 4) Let  is a vertical line in   generates a topology on  for which        
             }  is a base and   is a union of vertical lines

 5) Let be a collection of subsets of  and suppose that  is  topology on  for   any
which   Since  is a topology, it must contain all finite intersections of sets in , and     
therefore must contain all possible unions of such intersections.  Therefore  contains the 
topology  for which  is a subbase.  To put it another way,   the topology for which  is a
subbase is in the smallest topology on  containing the collection  .  In fact, as an exercise, you
can check that
   and  is a topology on .           

Caution   We said earlier that for some purposes it is sufficient (and simpler) to work with basic
open sets, rather than  open sets for example to check whether cl , it is sufficientarbitrary    
to check whether  for every  open set  that contains .  However, it is       basic not
always subbasic sufficient to work with  open sets.  Some caution is necessary.
   For example,  or  is a subbase for the               
usual topology on .   We have  for every  open set  containing , but     subbasic 


  cl

D. The closure operator

Usually we describe a topology by giving a subbase , a base , or by giving collections  to   be the basic neighborhoods at each point .  In the early history of general topology, one other
method was sometimes used.  We will never actually use it, but we include it here as a curiosity.
Let cl  be the closure operator in   (   normally, we would just write “cl” for the closure
operator; here we write “cl ” to emphasize that this closure operator comes from the topology  on ).  It gives us all the information about .  That is, using cl we can decide whether any  set  is closed  (by asking “is cl ? ”)  and therefore can decide whether any set  is open    (by asking “is  closed ?”).  It should be not be a surprise, then, that we can define a   
topology on a  if we are start with an “operator” which “behaves like a closure operator.”set 
How is that?  Our first theorem tells us the crucial properties of a closure operator.
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Theorem 5.18   Suppose is a topological space and are subsets of .    Then   
    1)  cl   
    2)  cl      3)   is closed iff cl         4) cl cl cl     
    5)  cl cl cl       B
Proof   1) Since  is closed, cl   

           2)  is closed and cl           

           3) :  If  is closed, then  itself is one of the closed sets  used in the definition   
cl is closed and  so cl            .

        :  If cl then  is closed because cl is an intersection of closed sets.      ,  
           4)  cl  is closed, so by 3), cl cl cl      
          5) , so cl cl Similarly, cl cl               .   .
           Therefore cl cl cl .          
               On the other hand, cl cl  is a closed set that contains , and therefore     
           cl cl cl .           

The next theorem tells us that we can use an operator “cl” to create a topology on a set.
   
Theorem 5.19  (The Closure Operator Theorem)  Suppose  is a  and that for each set
      , a subset cl  is defined (  ) in such a way that is, we have a function cl   
that conditions 1), 2), 4) and 5) of Theorem 5.18 are satisfied.  {Define    
cl }.  Then  is a topology on , and cl is the closure operator for this      
topology ( ).that is, cl cl 

Note:  i)  Such a function cl is called a “Kuratowski closure operator,” or just “closure
operator” for short.
   ii) The Closure Operator Theorem does not ask that cl satisfy condition 3):  initially,
there is no topology on the given set , so 3) would be meaningless.  But 3) motivates the
definition of as the collection of sets whose complements are unchanged when “cl” is
applied..
Proof   ( )Numbers in parentheses refer to properties of “cl”
First note that:
  (*)   if , then cl cl cl  cl cl(5)             
  has the properties required for a topology on the set  
 i) cl , so cl  Therefore cl cl , so .                    
                Also, cl cl , so therefore (1)           
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 ii) Suppose  for each .  For each particular , we haveO       

 cl cl  because .   This is true for (*)         O O O O       every
  , so cl ) .            O O O  
 But by 2),  we know that  cl .      O O 

 Therefore cl , so .        O O O   

 iii) If  and  are in , then cl ( clO O O O O O                
 cl cl    (since  and )(5)               O O O O O O      
  ( ).   Therefore .    Therefore  is a topology on .     O O O O    
Having this topology  now gives us an associated closure operator cl  and we want to show that cl cl.  First, we observe that for  sets in     closed 
  
        (**)  cl   iff  is closed in        
                       iff  iff  cl iff cl .               
To finish, we must show that  cl cl for  .      every
      cl , so (*) gives that cl cl cl . But cl  is closed in ,            
      so using cl  in (**) gives cl cl cl .  Therefore cl cl .           
      On the other hand, cl cl cl , so using  cl  in (**)  gives(4)    
      that cl  is closed in   
                 But cl , so cl  is one of the closed sets in the intersection that defines(2)   
      cl .  Therefore cl cl  Therefore cl cl .            
Example 5.20
 1) Let  be a set.  For , define cl  .if  is finite

if  is infinite    
    

Then cl satisfies the conditions in the Closure Operator Theorem.   Since cl  iff  is finite   
or , the closed sets in the topology generated by cl are precisely  and the finite   
sets that is, cl generates the cofinite topology on . 
 2) For each subset  of , define 
 cl there is a sequence  in  with each  and | .                  

It is easy to check that cl satisfies the hypotheses of the Closure Operator Theorem.  Moreover, a
set  is open in the corresponding topology iff     such that .  Therefore          
the topology generated by cl is the Sorgenfrey topology on . What happens in this example if
“ ” is replaced by “ ” in the definition of cl ? 
Since closures, interiors and Frontiers are all related, it shouldn't be surprising that we can also
describe a topology by defining an appropriate “int” operator or “Fr” operator on a set .
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Exercises
E1.  Let .  For , let             
  
  the number of elements in [ Then define           
           or   and lim 1) .              



 a) Prove that  is a topology on . 
 b)  In any topological space:  a point  is called a  if limit point of the set 
  for every neighborhood  of .           Informally,  is a limit point of  
 means that there are points of  other than  itself  arbitrarily close to .      Prove that
 in any topological space, a set  is closed iff  contains all of its limit points. 
 c) For  as defined in a):  prove that  is a limit point of  if and only if .      

E2.  Suppose  is a topological space and that  for each .       

 a) Prove that if  cl  is closed,  then      
  cl  cl             
 ( )Note that “ ” is true for  collection of sets . any 

 b) A family  of subsets of  is called  if      locally finite
 each point  has a neighborhood  such that  for only         finitely many 's.  Prove that if  is locally finite, then    

  cl  cl             
 c) Prove that in , the union of a locally finite family of closed sets  is closed. 

E3.   Suppose   Let  be a  for the topology  and let  be a          base   for   Prove or disprove:  is continuous iff   is open for all  iffsubbase        
  is open for all      
E4.   A space  is called a  if  is closed for every       -space
        a) Give an example where is not a -space and  is not the trivial topology.    b) Prove that  is a -space if and only if, given any two distinct points , each              point is contained in an open set not containing the other point.
         c) Prove that in a -space, each set  can be written as an intersection of open sets.  d) Prove that a subspace of a -space is a -space.   e) Prove that if a pseudometric space  is a -space, then  must in fact be a    metric.
 f) Prove that if  and  are -spaces, so is       
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E5.    is called a  ( or ) if whenever  and , then          -space eHausdorff spac
 there exist disjoint open sets  and  with  and .       
 a) Give an example of a space which is a -space but not a -space  ( ) .      see E4.
 b) Prove that a subspace of a Hausdorff space is Hausdorff.
 c) Prove that if  and  are Hausdorff, then so is .    

E6.   Prove that every infinite -space contains an infinite discrete subspace that is, a  subset which is discrete in the subspace topology  ( ).see E5

E7.  Suppose that  and  are topological spaces.  Recall that the        product
  on  is the topology for which a  is the collection of “open boxes”topology base  
               

 Therefore a set  is open in the product topology iff for all , there        
 exist open sets  in  and  in  such that   (            Note that the
 product topology on  is the usual topology on .  (We always assume that the   
 topology used on a product of two spaces  is the product topology unless  
 something different is explicitly stated. )
 a) Verify that  is, in fact, a base for a topology on .   
 b) Consider the projection map .  Prove that if  is any open set in       
  , then  is open in .  (      not necessarily a “box” We say  is an .  open map
 The same is true for the projection )  c) Prove that if  and , then cl cl cl   Use this to              explain why “the product of two closed sets is closed in .”  
 d) Show that has a countable base iff each of  and  has a countable base.    
 e) Show that there is a countable neighborhood base at iff there is a     
 countable neighborhood base at and a countable neighborhood base at    
    
 f) Suppose  and  are pseudometric spaces.  Define a pseudometric  on the         set  by  
                               

 Prove that the product topology on  is the same as the topology .   
 :  is the analogue of the taxicab metric in  There are other equivalentNote  
 pseudometrics that produce the product topology on , for example  
                                      and 
   max                               



125

E8.   Suppose The set  is called  if int cl  and  is           regular open regular
   if cl (int ).closed   
 
 a) Show that for any subset 
   i)   cl   int     
   ii)   int   cl     
 b) Give an example of a closed subset of  which is not regular closed.
 c) Show that the complement of a regular open set in is regular closed 
 and vice-versa.
  d) Show that the interior of any closed set in  is regular open. 
 e) Show that the intersection of two regular open sets in  is regular open. 
 f) Give an example of the union of two regular open sets that is not regular open.

E9.  In each part, prove the statement or provide a counterexample:
        a) For any  in a topological space  is equal to the intersection of all   

 open sets containing .
 

 b) In a topological space, a finite set must always be closed.
 

 c) Suppose we have topologies on , one for each .  Then { : } is        
 also a topology on .

 
 d) If  and  are topologies on , then there is a unique smallest topology  on     X X

 such that .     
 

 e) Suppose, for each , that  is a topology on .  Then there is a unique smallest    topology on  such that for each ,       

E10. Assume that natural number, except , can be factored into primes; you shouldn't need
any other information about prime numbers.  For and , let    
                           
and let             

 a) Prove that  is a base for a topology  on   
 b) Show that each set  is closed in      
 c) What is the set  is a prime number ?    d)  Part c) tells you what famous fact about the set of prime numbers?
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6.  Countability Properties of Spaces
Countable sets are often easier to work with than uncountable sets, so it is not surprising that
spaces with certain “countability properties” are viewed as desirable. Most of these properties
have already been defined, but the definitions are collected together here for convenience.
Definition 6.1     is called

first countable if we can choose a countable neighborhood base  at every point .   
 ( )We also say that  satisfies the . first axiom of countability

second countable if there is a countable base  for the topology .  (  We also say that 
 satisfies the .second axiom of countability )

separable if there is a countable dense set  in  
Lindelöf if whenever  is a collection of open sets for which , then there is   

 a countable subcollection  for which                
   is called an  of , and  is called a  from .  Thus,  is  open cover subcover 
  Lindelöf if  “ .”)every open cover has a countable subcover
Example 6.2 
 1) A countable discrete space  is second countable because  is        
a countable base.  Is  first countable?  separable?  Lindelöf ?
 2)  is second countable because  is a countable base. Similarly,         
        is second countable since the  collection  of boxes  with               
rational endpoints is a countable base ( )check!
 3) Let  be a countable set with the cofinite topology .   has only countably many 
finite subsets ( ) so there are only countably many sets in .  is secondsee Theorem I.11.1   
countable because we could choose  as a countable base. 

The following theorem implies that each of the spaces in Example 6.2 is  first countable,also
separable, and Lindelöf.  (However, it is really worthwhile to try to verify these properties, in
each example, directly from the definitions.)
Theorem 6.3  A second countable topological space (  is also separable, first countable, 
and Lindelöf.
Proof    Let  be a countable base for .           
 i) For each , pick a point and let .  The countable set  is              
dense.  To see this, notice that if  is  nonempty open set in , then for some ,  any
            so .  Therefore  is separable.
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 ii) For each let { .  Clearly  is a neighborhood base at ,             so  is first countable.
 iii) Let  be any open cover of .  If , then some set   For each , we          can then pick a basic open set  such that .   Let Since                
each there can be only countably many  sets : that is,  may contain     different
“repeats.”  Eliminate any “repeats” and list only the different sets in , so
                         where   Every  is in one of the sets , so
                 is a countable subcover from .   Therefore  is Lindelöf.   

The following examples show that  among the countability propertiesno other implications exist
in Theorem 6.3.
Example 6.4
 1) Suppose  is uncountable and let  be the cofinite topology on . 
   is separable since  infinite set is dense.  any
      is Lindelöf.   To see this  let  be an open cover of .  Pick any one    
  nonempty set . Then  is finite, say  For                 each  pick a set  with  Then                        
  is a countable (actually, ) subcover chosen from .finite 
     However is not first countable (Example 4.5.3), and therefore, by
  Theorem 6.3,  is also not second countable.
 2) Suppose  is uncountable.  Define  or is countable .            
  
      a topology on  ( ) called the  topology.  A set is is cocountable   check!
  closed iff  or  is countable.  (    This is an “upscale” analogue of the
  cofinite topology.)
  An argument very similar to the one in the preceding example shows that  
  is Lindelöf.  But  is not separable every countable subset is closed  
  and therefore not dense.  By Theorem 6.3,  also cannot be second 
  countable.
 3) Suppose  is uncountable set and choose a particular point    
 Define or .  ( )            Check  that  is a topology.
   is separable because  is dense.  
   is not Lindelöf because the cover   has no          
  countable subcover.
  Is  first countable? 
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 4)  Suppose is uncountable and let  be the discrete topology on .       Then is
     because  is a neighborhood base at first countable    
    because each open set  would have to be in a base not second countable  
     because cl  for any countable set not separable      
      because the cover has no countablenot Lindelöf       
     subcover. (In fact, not a single set can be omitted from
     :   has no proper subcover  
For “special” topological spaces pseudometrizable ones, for example it turns out that things 
are better behaved.  For example, we noted earlier that  pseudometric space  is every first 
countable ( ). The following theorem shows that in  the other three countabilityExample 4.3  
properties are equivalent to each other: that is, either all of them are true in  or none are 
true.
Theorem 6.5   Any pseudometric space  is first countable.   is second countable iff   
    is separable iff  is Lindelöf.
Proof i)  Second countable Lindelöf:   by Theorem 6.3, this implication is true in any
topological space.
 ii) Lindelöf separable:  suppose  is Lindelöf.    For each , let     
                .  For each ,  is an open cover so  has a countable
subcover that is, for each  we can find countably many -balls that cover  say   

             
      Let  be the set of centers of all these balls:    For

any  and every ,  we have  for some , so  .  Therefore, for                
every , in other words, can be approximated arbitrarily closely by points        from .  Therefore  is dense, so is separable.   

 iii) Separable second countable:  suppose  is separable and that  
                      is a countable dense set.  Let .   is a  countable collection of open balls and we claim  is a base for the topology  
  Suppose   By the definition of “open,”  there is an  > 0 for which      
  .   Pick  so that and pick so that                

   
  Then    (because                   
  ).                       

  
 

It's  to call a metric space that has these three equivalent properties a “separablecustomary
metric space” rather than a “second countable metric space” or “Lindelof metric space.”¨
Theorem 6.5  that the spaces in parts 1), 2), 3) of Example 6.4 are not pseudometrizable.implies
In general, to show a space is  pseudometrizable we can  i) show that it fails to have  not
some property shared by all pseudometric spaces (for example, first countability), or  ii) show
that it has  of the properties “second countable,” “Lindelöf,” or “separable.”one but not all
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Exercises
E11.  Define  is open in the usual topology on  and .          
  a) Show that  is a topology on .  If  is irrational, describe an “efficient”  
neighborhood base at  .  Do the same if  is rational. 
  b)  Is  first countable? second countable? Lindelöf ? separable?   
The space  is called the “scattered line.”  We could change the definition of by    
replacing  with some other set .  This creates a space in which the set  is “scattered.”   
Hint: See Example I.7.9.6. It is possible to find open intervals  such that     

 
and for which 



 length .   

E12.  A point  is called a   if every neighborhood of  is     condensation point
uncountable.
  a) Let  be the set of all condensation points in  Prove that  is closed.  
  b) Prove that if  is second countable, then  is countable.  

E13.   Suppose is a second countable space and let  be a countable base for the  
topology.  Suppose is another base (   ) for  containing  open sets all  not necessarily countable
of which have some property .  (For example,  “ ” could be “clopen” or “separable.”)  Show 
that there is a  base consisting of open sets with property countable    
Hint: think about the Lindelof property.¨

E14.   A space  is called  if every subspace of  is Lindelöf    hereditarily Lindelof ¨
  a)  Prove that a second countable space is hereditarily Lindelöf.
In any space, a point  is called a  if   for every       limit point of the set 
neighborhood  of   Informally,  is a limit point of  if there are points in  different    
from  and arbitrarily close to .  )
  b) Suppose  is hereditarily Lindelöf    Prove that  the set 
        is not a limit point of  is countable.
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E15.   A space  is said to satisfy the (  if every    countable chain condition CCC
family of disjoint open sets must be countable.
        a)  Prove that a separable space  satisfies the CCC. 
        b) Give an example of a space that satisfies the CCC but that is not separable.  (It is not
 necessary to do so, but can you find an example which is a metric space?)

E16.  Suppose  is a topological space and that  and  are two bases for the topology   
  , and that  and   are infinite.
 a) Prove that there is a subfamily such that  is also a base and  .           
(Hint: For each pair , pick, if possible, a set  such that           
       ;  otherwise set  )
 b) Use part a) to prove that the Sorgenfrey line is not second countable.
(Hint: Show that otherwise there would be a countable base of sets of the form  but 
that this is impossible. 
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7.  More About Subspaces

Suppose  is a topological space   In Definition 3.1, we defined the subspace topology    on     .  In this section we explore some simple but important           properties of subspaces.
If , there are  ways to put a topology on       two
 1) we can give  the subspace topology  from , or 
 2) we can give  the subspace topology , and then give  the subspace topology from  the space that is, we can give  the topology          

In other words, we can think of  as a subspace of  or as a subspace of the subspace .  
Fortunately, the next theorem says that these two topologies are the same.  More informally,
Theorem 7.1 says that in a space “a subspace of a subspace is a subspace.”
Theorem 7.1  If , and  is a topology on , then   ( ) .          

Proof   iff  for some  iff  iff  .                      But  , so the last equation holds iff  .             

We always assume a subset  has the subspace topology (unless something else is explicitly
stated).  The notation  emphasizes that  is considered a sub , not merely a     space
subset
By definition, a set is open in the subspace topology on  iff it is the intersection with  of an 
open set in .  The same is also true for closed sets.

Theorem 7.2  Suppose .   is closed in  iff where  is closed             
in .
Proof              is closed in  iff  is open in  iff  (for some open set in )
iff (where  is a closed set in ).                       

Theorem 7.3  Suppose .   
 1) Let .  If  is a neighborhood base at  in , then  is aa a           neighborhood base at in  
 
 2)  If  is a base for , then  is a base for          

With a slight abuse of notation, we can informally write these collections as   and.    
Why is this an “abuse?”  What do mean if taken literally   and  ?  
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Proof    1) Suppose  and that  is a neighborhood of  in . Then int , so          there is an open set in  such that int                      Since  is a neighborhood base at  in , there is a neighborhood  such that     
                     Then int .  Since int  is open in , we  
see that  is a  of  in .  And since int , we                neighborhood see that   is a neighborhood  at  in .       base
 2) Exercise 
Theorem 7.3 tells us that in the subspace  we can get a neighborhood base at a point by 
choosing a neighborhood base at  in  are then restricting all its sets to ; and that the same  
applies to a base for the subspace topology.
Corollary 7.4  Every subspace of a first countable (or second countable) space  is first 
countable (or second countable).

Example 7.5   Suppose  is a circle in and that   is a                  neighborhood base at  in ,  and therefore  is a neighborhood base at  in the subspace     
      .  The sets in  are “open arcs on containing .”  (See the figure,)

 
The following theorem relates closure in a subspace to closure in the larger space.  It turns out to
be a very useful technical observation.
Theorem 7.6   Suppose then cl cl          ,  

Proof   cl  is a closed set in  that contains so cl cl           

 On the other hand, suppose cl .  To show that cl , pick an open set          in  that contains .  We need to show .  There is an open set  in  such that        
                      .  Since cl , we have that 
   .  
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Example 7.7 1)  cl cl      

  2)  cl cl                 

  3) The analogous calculations are not necessarily not true for interiors and
  .  For example:boundaries
    int int  ,  and        

    Fr Fr         
Why does “cl” have a privileged position here?  Is there a “reason” why you would expect a
better connection between closures in  and closures in  than you would expect between 
interiors in and interiors in ? 
Definition 7.8   A property  of topological spaces is called  if whenever a space  hereditary
has property , then every subspace  also has property .  
For example, Corollary 7.4 tells us that first and second countability are hereditary properties.
Other hereditary properties include “finite cardinality” and “pseudometrizability.”  On the other
hand, “infinite cardinality” is not a hereditary property.
Example 7.9
 
 1) Separability is not a hereditary property.  For example, consider the Sorgenfrey plane
   see Example 5.4)    is separable because  is dense.
     Consider the subspace . The set                      
is open in  so if then  is open in the subspace  Therefore  is           
a discrete subspace of , and an uncountable discrete space is not separable.
   Similarly, the Moore place  is separable ( ); the -axis in  is an see Example 5.6 
uncountable discrete subspace which is not separable.
 2) The Lindelöf property is not heredity.  Let  be an uncountable set and let
       , where  is any additional point not in . Put a topology on  by giving a
neighborhood base at each point.
      for 

and  is finite

    
        

( )Check that the collections  satisfy the hypotheses of the Neighborhood Base Theorem 5.2.

If  is an open cover of ,  then for some .  By ii), every neighborhood of  in         
has a finite complement, so  is finite. For each  in the finite set ,  we can choose a      
set with Then  is a countable (in fact, finite)                    
subcover from ,  so  is Lindelöf. 
The definition of  implies that each point of  is isolated in ; that is,  is an uncountable   
discrete subspace.  Then is an open cover of  that has no countable       
subcover.  Therefore the subspace  is not Lindelöf.
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Even when a property is not hereditary, it is sometimes “inherited” by certain
subspaces perhaps, for example, by closed subspaces, or by open subspaces.  The next theorem
illustrates this.
Theorem 7.10  A  subspace of a Lindelöf space is Lindelöf (closed so we say that  the Lindelof¨
property is “closed hereditary” ).
Proof   Suppose  is a closed subspace of the Lindelöf space .  Let   be a       cover of  by sets  that are open .  For each , there is an open set  in  such that    in  
     

Since  is closed,  is open and  is an open cover of             But  is Lindelöf, so  has a countable subcover from , say              ( )  Clearly then, theThe set  might not be needed in  , but it can't hurt to include it.   
collection  is a countable subcover of  from .           
Note:
 1.  A little reflection on the proof shows that to prove  is Lindelof, it would be¨
 equivalent to  show that every cover of  by sets open has a countable subcover in  
 2.  A space  with the property that every open cover has a a  subcover is called finite
 .  See, for example, the space in Example 6.4.1.compact
     An obvious “tweak” to the proof for Theorem 7.10 shows that a closed subspace of
 a compact space is compact.  We will look at the properties of compact spaces in much
 more detail in Chapter 4 and beyond.
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8.  Continuity
We first defined continuous functions between pseudometric spaces by using the distance
function  to mimic the definition of continuity given in calculus. But then we saw that our
definition could be restated in other equivalent ways in terms of open sets, closed sets, or
neighborhoods. For topological spaces, we do not have available any distance functions to use to
define continuity.  But we can still make a definition using neighborhoods (or open set, or closed
sets) since the neighborhoods of  describe “nearness” to , and, of course, the definition 
parallels the way neighborhoods describe continuity in pseudometric spaces.
Definition 8.1  A function  is  if whenever  is a           continuous at   
neighborhood of , then  is a neighborhood of .   We say  is  if  is      continuous
continuous at each point of .
The statement that  is continuous at  is clearly equivalent to each of the following statements: : 
 i)   for each neighborhood  of  there is a neighborhood  of  such   
 that     
 ii)  for each open set  containing  there is an open set  containing  such   
 that     
 iii) for each basic open set  containing  there is a basic open set   
 containing  such that .     
In the following theorem, the conditions i) - iii) for continuity are the same as those in Theorem
II.5.6 for pseudometric spaces.  Condition iv) was not mentioned in Chapter II, but it is
sometimes handy.
Theorem 8.2   Suppose .  The following are equivalent.         

 i)  is continuous
 ii) if then   ( )        the inverse image of an open set is open
 iii)  if  is closed in , then  is closed in    (      the inverse image of a
        closed set is closed)
 iv)  for every  cl cl .          

Proof The proof that i) - iii) are equivalent is identical to the proof for Theorem II.5.6 for
pseudometric spaces.  That proof was deliberately worded in terms of open sets, closed sets, and
neighborhoods so that it would carry over to this new situation.
 iii iv)  cl .  Since cl  is closed in iii) tells                  us that cl  is a closed set in  that contains Therefore cl cl ,              so cl cl       

 iv i)  Suppose and that  is a neighborhood of   Let             
and cl   is open, and we claim that which will show             
that  is a neighborhood of , completing the proof.  So we need to show that  
     cl .   But this is clear because:   if  cl , then using iv) would give us that 
             cl cl , which is impossible since    
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Example 8.3 Sometimes we want to know whether a certain property is “preserved by
continuous functions” that is, if  has property  and  is continuous and ,        onto
must the image also have the property ? 
 For example, condition iv) in Theorem 8.2 implies that continuous maps preserve
separability.  Suppose  is a countable dense set in .  Then  is countable and  is    
dense in  because cl cl        
 By contrast, : for example, let continuous maps do not preserve first countability   
be  topological space.  Let  be the discrete topology on .   is first countable andany      
the identity map  is continuous and onto. Thus,   is the              every space
continuous image of a first countable space.
 Do continuous maps preserve other properties that we have studied such as Lindelöf,
second countable, or metrizable?
The following theorem makes a few simple and useful observations about continuity.
Theorem 8.4  Suppose .         

  1) Let ran Then  is continuous iff  is continuous.                In other words, the range of  f a subspace of the codomain  is what matters    
 for the continuity of ; points of not in  (if any) are irrelevant.  For example, the  
 function   is continuous iff the function  is continuous.sin sin         
  2) Let .  If  is continuous, then  is continuous           
 That is, the restriction of a continuous function to a subspace is continuous.
            For example, sin  is continuous, so sin  is continuous.         
 (The second function is really sin , but it's abbreviated here to just “sin”.
  3) If  is a subbase for  (in particular, if  is a base), then  is continuous iff       
 is open whenever .  In other words, t   o check continuity,  it is sufficient to show
 that the inverse image of every basic open set is open.
Proof   1) Exercise: the crucial observation is that if , then .          

            2)  If  is open in , then which is an open set in .           

            3)  Exercise:  the proof depends only on the definition of a subbase and set theory:
     and                
                                                      
Example 8.5
 1)  For  topological spaces  and , every constant function  must beany       
  continuous.  ( )Suppose  for all . If  is open in , then  ?         
 If has the discrete topology and  is any topological space, then every function 
 is continuous.    
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 2)  Suppose  has the trivial topology and that .  If  is  constant, then      not
 there are points  for which  Let  be an open set in  containing        
  but not   Then  is not open in so  is not continuous.  We conclude     
 that  is continuous iff  is constant. 
 In this example,  we could replace  by any metric space ;  or, for that matter,   
 by any  topological space  that has what property?  

 3)  Let  be a rectangle inscribed inside a circle  centered at .  For , let     
 be the point where the ray from  through  intersects .  (    The function  is called
 a “central projection.” ).  Then both  and are continuous         
 bijections.

    
Example 8.6 (Weak topologies)  Suppose  is a set.  Let  be a collection of      functions where each   If we put the discrete topology on , then all of the functions      
   will be continuous. But a topology on smaller than the discrete topology might also make
all the 's continuous. The  topology on  that makes all the given 's continuous is   smallest
called the  .weak topology on  generated by the collection  
How can we describe that topology more directly?  makes all the 's continuous iff for each open  and each , the set  is in .  Therefore the weak topology generated by       
  is the  topology that contains all these sets.  According to Example 5.17.5, this meanssmallest
that weak topology  is the one for which the collection  open in ,          
is a subbase.  (It is clearly sufficient here to use only basic open sets  from that is, open 
intervals why ?  Would using all open sets  put any additional sets into ?      )
For example, suppose  and that  contains the two projection maps          
                    and .  For an open interval ,  is the “open
vertical strip” ;  and  is the “open horizontal strip” .  Therefore a subbase       for the weak topology on  generated by  consists of all such open horizontal or vertical 
strips.  Two such strips intersect in an “open box”  in , so it is easy to see that     
the weak topology is the product topology on , that is, the usual topology of .   

Suppose  and that  is the identity function What is the weak topology         
on the domain  generated by the collection ?  
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Definition 8.7  A mapping  is called         

     if whenever  is open in , then  is open in ,   andopen    
     if whenever  is closed in , then  is closed in .closed     
Suppose .  Let  be the discrete topology on  and let be the trivial topology on .       
The identity map  is continuous but neither open nor closed, and        
         is both open and closed but not continuous.  Open and closed maps are
quite different from continuous maps even when the mapping is a bijection!  Here are some
examples that are more interesting.
Example 8.8
 1)  given by cos , sin .                            
It is easy to check that  is continuous, one-to-one, and onto.  The set  is closed in       
                          but  is  closed in .  Also,  is open in but  is not not
open in .    A continuous, one-to-one, onto mapping does not need to be open or closed
 2) Suppose  and  are topological spaces and that  is a .  Then       bijection
there is an inverse function , and  is continuous iff  is open. To check         
this, consider an open set  in . Then iff  iff , so              
             .  So  is open iff  is open.  So, for a ,  is open iff  isbijection
continuous.
    If  is replaced in the argument by a closed set , then similar reasoning shows   
that a   is closed iff  is continuous.bijection  
   In part 1), the bijection  is not open and therefore  is not         
continuous.  ( )Explain directly, without part 2), why  is not continuous.

 
Definition 8.9  A mapping  is called a  if  is a bijection           homeomorphism
and  and  are  continuous.  If a homeomorphism  exists, we say that  and  are     both
homeomorphic and write .  
   Note: The term is “hom omorphism,”  “homomorphism” (a term from algebra)   Thee not 
   etymologies are closely related: “-morphism” comes from the Greek word for   
 “shape” or “form.”  The prefixes “homo” and “homeo” come from Greek words meaning
  same” and “similar” respectively.  There was a major dispute in western religious history,
  mostly during the 4 century AD, that hinged on the distinction between “homeo” and “homo.”

As noted in the preceding example, we could also describe a homeomorphism as a “continuous
open bijection” or a “continuous closed bijection.”
It is obvious that among topological spaces, homeomorphism is an equivalence relation, that is,     
for topological spaces  and     
    i)    
    , ii)  if then     
     , .iii) if and then        
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Example 8.10

 1) The function  given by cos ,sin  is  a               not
 homeomorphism even though  is continuous, one-to-one, and onto.

 2) The “central projection” from the rectangle to the circle ( ) is aExample 8.5.3
 homeomorphism.

 3) It is easy to see that any two open intervals in  are homeomorphic (just use  
 a linear map of one interval onto the other).
     The mapping tan  is a homeomorphism, so that each      

  
 nonempty open interval in  is actually homeomorphic to  itself. 

 3)  If  is an isometry (onto)  between metric spaces, then both  and        
  are continuous, so  is a homeomorphism. 

 4)  If  and  are equivalent metrics (so , then the identity map       
  is a homeomorphism.  Notice, however, that  doesn't preserve        
 distances (unless ).  
      In general, a homeomorphism between metric spaces need not be an isometry. But, of 
 course, an isometry is automatically a homeomorphism 

 5)  The function  given by  is a homeomorphism              
   both

 spaces have the discrete topology! ) , these spaces are the identical: bothTopologically
           are just countable infinite sets with the discrete topology.   is not an isometry
          In general, two  spaces  and  are homeomorphic iff they have the samediscrete  
 cardinality:any bijection between them is a homeomorphism.  Roughly speaking, “size is
 the only possible topological difference between two discrete spaces.”
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 6)  Let  denote the “north pole” of the sphere
                     
The function  illustrated below is a “stereographic projection”.  The arrow starts at ,  runs for 
a while inside the sphere and then exits through the surface of the sphere at a point .  Let  
     be the point where the tip of the arrow hits the -plane .  In this way  maps each
point in  to a point in .  The function   is a homeomorphism. (     See the figure below.
Consider the images or inverse images of open sets.)

 
In general, what is the significance of a homeomorphism ?    
 i)  is a bijection so it sets up a perfect one-to-one correspondence between the points in
         and :   .  We can imagine that  just “renames” the points in .  There is also
a perfect one-to-one correspondence between the subsets  and  of  and :                .  Because  is a bijection, each subset  corresponds in this way to
one and only one subset .  

 ii)  is a bijection, so  treats unions, intersections and complements “nicely”: 
  a)                   
  b)  , and                
      c)                       
  d)        and               
  e)                                   
( )Actually a), b), c) are true for  function ; but d) and e) depend on  being a bijection.any 

These properties say that this correspondence between subsets preserves unions:  if each
                   then   .  Similarly,  preserves intersection and   
complements.
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iii) Finally if and are continuous, then open (closed) sets in  correspond to open  
(closed) sets in  and vice-versa.

The total effect is that all the “topological structure” in  is exactly “duplicated” in  and vice 
versa: we can think of points, subsets, open sets and closed sets in  are just “renamed” copies
of their counterparts in .  Moreover  preserves unions, intersections and complements, so   
also preserves all properties of  that can defined be using unions, intersections and
complements of open sets.  For example, we can check that if  is a homeomorphism and
                , then int int ,  that cl cl , and that Fr Fr     That is,  takes interiors to interiors, closures to closures, and boundaries to boundaries.

Definition 8.11  A property  of topological spaces is called a  if, wheneverP topological property
a space  has property  and , then the space  also has property .     
If  and  are homeomorphic, then the very definition of “topological property” says that  and  
   have the same topological properties.  , if two topological spaces  and  have theConversely
same topological properties, then  and  must be homeomorphic.  (  Why? Let  be the property
“is homeomorphic to .”   is a  property because if  has  (that is, if )      topological
and  then  also has .   Moreover,  has this property , because .  So if we          
assume that  has  topological properties as , then  has the property , that is,  is    the same
homeomorphic to . )
So we think of two homeomorphic spaces as “topologically identical”  they are homeomorphic
iff they have exactly the same topological properties.  We can show that two spaces are not
homeomorphic by naming a topological property of one space that the other space doesn't
possess.
Example 8.12  Let  be the property that “every continuous real-valued function achieves a
maximum value.”  Suppose a space  has property  and that   is a homeomorphism.      
We claim that  also has property . 

Let  be any continuous real-valued function defined on . 
Then  is continuous      

        
                        
               
                  
By assumption,  achieves a maximum value at some point , and we claim       
that  must achieve a maximum value at the point  If not, then there is a      
point  where .  Let   Then         

           ,             

which contradicts the fact that  achieves a maximum value at . 
Therefore  is a topological property.  
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For example, the closed interval  has property  discussed in Example 8.12 (   this is a well-
known fact from elementary analysis which we will prove later ).  But  and do not   
have this property  ( ).  So we can conclude that is not homeomorphic to either     why?
or  
Some other simple examples of topological properties are cardinality, first and second
countability, Lindelöf, separability, and (pseudo)metrizability. In the case of metrizability, for
example:
 If is a metric space and  is a homeomorphism, then we can         
 define a metric  on  as  for .  You then need                
 to check that  (using the properties of a homeomorphism and the definition of   
 ).  This shows that  is metrizable.  Be sure you can do this!    

9.  Sequences
In Chapter II we saw that sequences are a useful tool for working with pseudometric spaces.  In
fact, sequences are sufficient to describe the topology in a pseudometric space because the
convergent sequences in  determine the closure of a set. 
We can easily define convergent sequences in any topological space .  But, as we will see, 
sequences need to be used with more care in spaces that are not pseudometrizable.  Whether or
not a sequence converges to a particular point  is a “local” question it depends on “the   
   's approaching nearer and nearer to ” and in the absence of a distance function, we use the
neighborhoods of  to determine “nearness to .” If the neighborhood system is “too large”  or “too complicated,” then it may be impossible for a sequence to “get arbitrarily close” to .
Soon we will see a specific example where such a difficulty actually occurs.  But first, we look at
some of the things that  work out just as nicely for topological spaces as they do indo
pseudometric spaces.

Definition 9.1   Suppose  is a sequence in .  We say that   if, for       converges to 
every neighborhood  of ,  such that  when .  In this case we write          
           .  More informally, we can say that  if  is eventually in every
neighborhood  of . 
Clearly, we can replace “every neighborhood of ” in the definition with “every basic 
neighborhood of ” or “every open set containing .”  Be sure you are convinced of   
this.

In a pseudometric space a sequence can converge to more than one point, but we proved that in a
metric space limits of convergent sequences must be unique.  A similar distinction holds in
topological spaces:  the important issue is whether we can “separate points by open sets.”
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Definition 9.2             is a -space if whenever  there exist open sets  and such that ,     (            and that is, each point is in an open set that does not
contain the other point).
     is a -space (or  ) if whenever  there exist         Hausdorff space
disjoint open sets  and  such that  and .       
It is easy to check that   i)   is a -space iff for every ,  is closed,  that        ii)  every -space is a -space     iii) every metric space  is a  -space (Hausdorff space)  

There is a hierarchy of ever stronger “separation axioms” called and             that a topological space might satisfy. Eventually we will look at all of them.
Each condition is stronger than the preceding ones in the list for example,      The letter “ ” is used  here because in the early (German) literature, the word
for “separation axioms” was “Trennungsaxiome.”

Theorem 9.3  In a  space , a sequence can converge to at most one point.Hausdorff  
Proof    Suppose .  Choose disjoint open sets  and  with and .  If            
              , then  is eventually in , so  is not eventually in .  Therefore  does not
also converge to .   
When we try to generalize results from pseudometric spaces to topological spaces, we often get a
better insight about where the heart of a proof lies. For example, to prove that limits of sequences
are unique it is the Hausdorff property that is important, not the presence of a metric. Here is
another example: for a pseudometric space  we proved that cl  iff  is a limit of a     
sequence in .  That proof ( ) used the fact that there was a countable   see Theorem II.5.18
neighborhood base  at each point . We can see now that the countable       
neighborhood base was the crucial fact because we can prove the same result in any  first
countable topological space . 

But first, two technical lemmas are helpful.
Lemma 9.4   Suppose is a countable neighborhood base at .  Define            
                      int .  Then  is also a neighborhood base at .
Proof                        is a neighborhood of , so int  Therefore  is a
open neighborhood of .  If  is  neighborhood of , then  for some , so then        any            .  Therefore the 's are a neighborhood  at base
The exact formula for the 's in Lemma 9.4 doesn't matter; the important thing is that we get a“much improved” neighborhood base one in which the 's are open and             
            . This new neighborhood base at  plays a role like the neighborhood
base   in a pseudometric space.  We call                        an open,  neighborhood base at shrinking 
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Lemma 9.5   Suppose  is a shrinking neighborhood base at  and that          
          for each .  Then 
Proof If  is any neighborhood of , then there is a  such that .  Since the 's         are a  neighborhood base, we have that for any .  Soshrinking                

Theorem 9.6  Suppose  is first countable and Then cl  iff there is a       .  
sequence  in  such that .     (        More informally, “sequences are sufficient” to
describe the topology in a first countable topological space.)
Proof   ( )  Suppose  is a sequence in  and that . For each neighborhood  of         
          ,   is eventually in .  Therefore so , so cl   ( This half of the proof works
in  topological space: it does not depend on first countability.any )
         ( ) Suppose cl   Using Lemma 9.4, choose a countable  neighborhood    shrinking
base  at   Since cl , we can choose a point  for each .  By                  Lemma 9.5,  .      

We can use Theorem 9.6 to get an upper bound on the size of certain topological spaces,
analogous to what we did for pseudometric spaces. This result is not very important,  itbut
illustrates that in Theorem II.5.21 the properties that are really important are “first countability”
and “Hausdorff,”  not the actual presence of a metric .
Corollary 9.7  If  is a dense subset in a first countable Hausdorff space , then  
    . In particular, If  is a separable, first countable Hausdorff space, then
    



Proof   is first countable  so for each  we can pick a sequence  in  such that       
              ; formally, this sequence is a function , so   Since  is Hausdorff, 
a sequence cannot converge to two different points: so if , then .  Therefore        the function given by  is one-to-one, so                   

The conclusion in Theorem 9.6 may not be true if  is not first countable:  sequences are  not
always “sufficient to describe the topology” of that is, convergent sequences cannot always 
determine the closure of a set.
 
Example 9.8 (the space )
Let , and let  be “the  column of ,” that is                 th
               We put a topology on  by giving a neighborhood base at each
point  

 
         

             if 
{ and C  is finite for all but finitely many if 
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(Check that this definition satisfies the conditions in the Neighborhood Base Theorem 5.2 and
therefore does describe a topology for . )
If  then  is isolated in . A basic neighborhood of  is a set which contains          
and which, we could say, contains “most of the points from most of the columns.”   With this
topology, is a Hausdorff space.
Certainly cl , but                no sequence from converges to
To see this, consider any sequence ) in :     

 i) if there is a column that contains infinitely many of the terms then       is a neighborhood of and is not eventually              in .
 ii) if every column  contains only finitely many 's,   then  is a neighborhood of  and ) is            
 not eventually in   (in fact, the sequence is  in ). never

In , sequences are not sufficient to describe the topology: convergent sequences can't show us
that cl .  According to Theorem 9.6, this means that  cannot be first       
countable there  a countable  neighborhood base at each point   at       is but not
The neighborhood system at  “measures nearness to”  but the ordering relationship   
     among the basic neighborhoods at is very complicated much more complicated
than the neat, simple nested chain of neighborhoods that could form a          base at  in a first countable space. Roughly, the complexity of the neighborhood system is the
reason why the terms of a sequence can't get “arbitrarily close” to  

Sequences  suffice to describe the topology in a first countable space, so it is not surprisingdo
that we  use sequences to determine the continuity of a function defined on a first countablecan
space .
Theorem 9.9  Suppose  is first countable and .  Then  is             
continuous at   iff  whenever , then            

Proof   ( )  If  is continuous at  and  is a neighborhood of , then  is a       
neighborhood of .  Therefore  is eventually in , so  is eventually in           
(This half of the proof is valid for any topological space : continuous functions always
“preserve convergent sequences.”)
               ( )   Let  be a shrinking neighborhood base at .  If  is not         continuous at , then there is a neighborhood  of  such that for every , .        For each , choose a point .  Then (since the 's are shrinking) we have          
             but  fails to converge to  because is  in .    never
             ( )Compare this to the proof of Theorem II.5.22.
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10.  Subsequences
Definition 10.1  Suppose  is a sequence in  and that  is strictly         
increasing. The composition  is called a  of .       subsequence
                                                                 
      

    
     
If we write  and , then We write the sequence                   .  informally as and the subsequence  as ( .  Since  is increasing,  we have that              as 
For example, if , then  is the subsequence written informally as       
                       , that is, the subsequence   But if 1  for all , then
             is  a subsequence: informally,  is not a subsequence ofnot    
                   Every sequence  is a subsequence of itself: just let .

Theorem 10.2 Suppose . Then  iff every subsequence              

Proof  ( )  This is clear because is a subsequence of itself.   ( ) Suppose  and that  is a subsequence.  If  is any neighborhood of                  , then for all some .  Since the 's are strictly increasing,  for all               some   Therefore  is eventually in , so    

Definition 10.3  Suppose  We say that  is a  of the sequence  if        cluster point for each neighborhood  of  and , for which   More     for each there is an       .
informally, we say that  is a cluster point of  if the sequence is    frequently in every
neighborhood  of   .
Definition 10.4  Suppose  and  We say that  is a  of if         limit point
          for every neighborhood  of  that is, every neighborhood of  contains
points of  to   from .arbitrarily close but different 
Example 10.5.
 1) Suppose  and Then for every neighborhood               
 of  ,  but  is not a limit point of because  is a neighborhood of  in          
 and    Each  is a limit point of  and also a limit point            
 of .  Since  is open in ,  is also not a limit point of .    
 2) Every point  in  is a limit point of .  If , then  has no limit points (in  or      
 in ).
 3) If then  is a cluster point of   More generally, if  has a           subsequence  that converges to , then  is a cluster point of   ( )       Why?
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 4) A sequence can have many cluster points.  For example, if the sequence  lists all  the elements of , then   is a cluster point of  every    

 5) In , the sequence  has exactly two cluster points:  and .           
 But the   has no limit points in   set The set of cluster            
 points of a sequence is not always the same as the set of limit points of the set of terms in
 !  ( )the sequence Is one of these sets always a subset of the other?

Theorem 10.6  Suppose  is a cluster point of  in a  space .  Then there     first countable 
is a subsequence .   

Proof   Let  be a countable shrinking neighborhood base at    Since  is             frequently in , we can pick so that .   Since  is frequently in , we can pick            an  so that  Continue inductively:  having chosen  so that                                             ... , we can then choose so that   Then  is a
subsequence of  and           

Example 10.7 (the space , revisited)
Let  be the space in Example 9.8 and let be a sequence which lists all the elements of  
   
Every basic neighborhood  of  is infinite, so must contain terms  for arbitrarily    large .  This means that is frequently in , so is a cluster point of         

But    because we showed in Example 9.8 that nono subsequence of can converge to    sequence whatsoever from  can converge to Therefore       Theorem 10.6 may
not be true if the space  is not first countable .
Consider any sequence  in .  If there were infinitely many , then we          could form the subsequence that contains those terms, and that subsequence would be a sequence
in  that converges to which is impossible.  Therefore we conclude that      
eventually .   

Suppose now that  is any bijection, and let         
   whenever a sequence  in , then  in  (                because,
 by the preceding paragraph,  eventually)          the topology on  is discrete so  is a neighborhood of , but   
  is not a neighborhood of .  Therefore  is  continuous        not
 at  
Theorem 9.9 does not apply to :  if a space is not first countable,  sequences may be inadequate
to check whether a function  is continuous at a point .
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Exercises
E17. Suppose  are continuous functions, that  is dense in , and             that    Prove that if  is Hausdorff, then   (        This generalizes the result in
Chapter 2, Theorem 5.12.)

E18.   A function  is called  if      lower semicontinuous
             ( , ) is open for every ,
and  is called  if upper semicontinuous
  [ ( , ) ]  is open for each .          
 a) Show that  is continuous iff is both upper and lower semicontinuous. 
 b) Give an example of a lower semicontinuous  which is not continuous.   
 Do the same for upper semicontinuous.
  c) Suppose Prove that the characteristic function  is lower semicontinuous    if  is open in  and upper semicontinuous if  is closed in .   

E19.   Suppose  is an infinite set with the cofinite topology, and that  has the property that 
every singleton  is a closed set.  ( You might want to check: this is equivalent to saying that
is a -space:  see Definition 9.2 ).   Prove that if  is continuous and onto, then   
either or  is constant   is homeomorphic to .  
 1) Note: the problem does  say that if   is not constant, then  is a homeomorphism.not  
 2) Hint: Prove first that if is not constant, then  Then examine the topology    
  of  .

E20.   Suppose  is a countable set with the cofinite topology.  State and prove a theorem that
completely answers the question:  “what sequences in  converge to what points?” 

E21.     Suppose that  and  are topological spaces.  Recall  that the        product
topology on  is the topology for which the collection of “open boxes”  
     is a base.            

 a) The “projection maps” and  are defined by             
     and          
 We showed in Example 5.11 that  and are continuous.  Prove that and  are         open maps.  Give examples to show that  and  might not be closed.   
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 b) Suppose that  is a topological space and that  Prove that          
  is continuous iff both compositions   and  are               continuous.  (Informally: a mapping into a product is continuous iff its composition with
 each projection is continuous.)
 c) Prove that   iff in  and  in .                        For this reason, the product topology is sometimes called the “topology of
  coordinatewise convergence.”
 d) Prove that  is homeomorphic to      
 ( )Topological products are commutative.
 e) Prove that  is homeomorphic to           
 ( )Topological products are associative.

E22.   Let  and (  be topological spaces. Suppose . Let          
    = “ the graph of . ”            
Prove that the map  defined by  is a homeomorphism if and only      
if  is continuous.
 
Note: if we think of  as a set of ordered pairs, the “graph of ”  .  More informally,  is
however, the problem states a function is continuous iff its graph is homeomorphic to its domain.

E23.   In , a family of sets  is called  if each point          locally finite
        has a neighborhood  such that  for only finitely many 's.  (  Part b) was
also in Exercise E2.)
 a) Suppose (  is a metric space and that  is a family of  sets.  Suppose there   closed
 is an  such that ( , )  for all , .  Prove that  is locally finite.             

  b) Prove that if  is a locally finite family of sets in , then  
 cl ( cl ( .  Explain why this implies that if all the s are closed,         '
 then  is closed.  ( ).   This would apply, for example, to the sets in part a  See also  Exercise E2.)
  c) ( )   Let and  beThe Pasting Lemmas: compare Exercise II.E24       
 topological spaces.  For each ,  suppose , that  is a             continuous function, and that for all  Then                    
  is a function and    (             Informally: each pair of functions
  and  agree wherever their domains overlap; this allows use to define  by “pasting    together” all the “function pieces”)
  i) Show that if all the 's are open, then  is continuous. 
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  ii) Show that if there are only finitely many 's and they are all closed, then    is continuous. (Hint: use a characterization of continuity in terms of closed
  sets.)  
  iii) Give an example to show that  might not be continuous when there are
  infinitely many 's all of which are closed.

  iv) Show that if  is a  family of closed sets, then  is continuous. locally finite 
  ( ).Of course, iv) ii) 

Note: the most common use of the Pasting Lemma is when the index set  is finite 
For example, suppose
   is continuous  and           

   is continuous, and           
   for all             

 

 
      is defined on the lower closed half of the box  is defined on the upper closed half,
and they agree on the “overlap” that is, on the horizontal line segment   Part b)     

 or part c  says that the two functions can be pieced together into a ) continuous function
             where , that is

  if 
if         
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Chapter III Review
Explain why each statement is true, or provide a counterexample.  If nothing else is mentioned,
  and  are topological spaces with no other properties assumed.

1. For every possible topology , the space   is pseudometrizable.    

2. A convergent sequence in a first countable topological space has at most one limit.

3. A one point set  in a pseudometric space  is closed.  

4. Suppose  and are topologies on  and that for every subset  of , cl cl .          
Then   

5. Suppose  and .  If  is continuous, then  is continuous at each            
point of .

6. Suppose is a subbase for the topology on  and that .  If  for every        
   , then  is dense in .

7. If  is dense in  and  is another topology on  with , then  is dense         
in .  

8. If  is both continuous and open, then  is also closed.    

9. Every space is a continuous image of a first countable space

10. Let  with topology 1 .  There are exactly 3 continuous       
functions        

11. If  and  are subspaces of  and both  and  are discrete in the subspace topology,     
then  is discrete in the subspace topology. 

12. If  and  is separable, then  is separable.     
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13. If  is the cofinite topology on . Every bijection  is a        
homeomorphism.

14. If  has the cofinite topology, then the closure of any open set in  is open.X X

15. A continuous bijection from  to  must be a homeomorphism. 

16. For every cardinal , there is a separable topological space ) with .      

17. If every family of disjoint open sets in  is countable, then  is separable.    

18. For  and , let  .  Let  be the topology on  for                    which the collection   is a subbasis.  Let   be the usual topology on .           
Then the function  given by (sin , sin )  is continuous.                 

19. If  and each point of  is isolated in , then cl  must be countable.    

20. Consider the separation property every minimal nonempty closed set is a singleton.  
     is a nonempty closed set means:  if  is a nonempty closed set and , thenminimal 
        If  is a -space, then  has property .

21. A one-to-one, continuous, onto map  must be a homeomorphism.         

22. An uncountable closed set in  must contain an interval of positive length.

23. A countable metric space has a base consisting of clopen sets.

24. Suppose and that  is dense in .  If  is  topology on  with , thenD             
D is dense in .  

25. If  and  is discrete in the subspace topology, then  is countable.   

26. The Sorgenfrey plane has a subspace homeomorphic to  (with its usual topology).
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27. In , let                 and {  At each point , the 's satisfy theconditions in the Neighborhood Base Theorem and therefore describe a topology on .

28. At each point , let   At each point , the 's                   satisfy the conditions in the Neighborhood Base Theorem and therefore describe a topology
on .

29. Suppose has a base  with  Then has a dense set  with             

30.  Suppose has a base  with  Then at each point , there is a          
neighborhood base with .   

31. Suppose  is an infinite set. Let be the cofinite topology on  and let be the discrete   topology on   If a function is continuous, then  is also              continuous.

32. Let  be the “right-ray topology” on , that is, , .  The space            
     is first countable.
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Chapter IVCompleteness and Compactness
1.  Introduction
In Chapter III we introduced topological spaces as a generalization of pseudometric spaces.  This
allowed us to see how certain ideas continuity, for example can be extended into a setting 
where there is no “distance” between points. Continuity does not really depend on the
pseudometric  but only on the topology.
Looking at topological spaces also highlighted the particular properties of pseudometric spaces
that were really important for certain purposes. For example, it turned out that first countability
is the crucial ingredient for proving that sequences are sufficient to describe a topology, and that
Hausdorff property, not the metric , is what matters to prove that limits of sequences are unique.
We also looked at some properties that are distinct in topological spaces but equivalent in the
special case of pseudometric spaces for example, second countability and separability.
Most of the earlier definitions and theorems are just basic “tools” for our work. Now we look at
some deeper properties of pseudometric spaces and some significant theorems related to them.

2.  Complete Pseudometric Spaces
Definition 2.1   A sequence  in a pseudometric space  is called a     Cauchy sequence
if    such that if , then .               N  

Informally, a sequence  is Cauchy if its terms “get closer and closer to each other.”  It should be intuitively clear that this happens if the sequence converges, as the next theorem confirms.
Theorem 2.2  If   in ,  then  is Cauchy.        

Proof   Let .  Because , there is an  such that  for .                 


So if , we get . Therefore  is                        
  

Cauchy.    
However, a Cauchy sequence does not always converge.  For example, look at the space   
where   is the usual metric.  Consider a sequence in  that converges to in for example,   
we could use .        

   Since  is convergent  is a Cauchy sequence in   (      in   “Cauchy” depends
only on  and the numbers , not whether we are thinking of these 's as elements of   or .     
   Why?  To say that “ ” is  of the answer.  But  has no limit in .  ( )        part
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Definition 2.3  A pseudometric space  is called  if every Cauchy sequence in  complete
  has a limit in .
Example 2.4  In all parts of this example,  is the usual metric on subsets of  . 
 
 1)  is complete (   for the moment, we assume this as a simple fact from analysis;
however we will prove it soon) but  and  are not complete: completeness is not a      
hereditary property !
 2) If  is a Cauchy sequence in , then there is some  such that 1            
for .  Because the 's are integers, this implies that  for  that is,                  is eventually constant and therefore converges. Therefore  is complete.
 3) Consider  with the equivalent metric .  (         

      because both
metrics produce the discrete topology on .)
 In  the sequence  is  Cauchy, and if , then      ,            

                   
   as  , so  . So the space  is not complete./  

              Since  has the discrete topology, the map  is a homeomorphism       

between  and the complete space (  So .       completeness is not a topological property
   A homeomorphism takes convergent sequences to convergent sequences and
nonconvergent sequences to nonconvergent sequences.  For example,  does not converge in
            and  does not converge in .  These two homeomorphic metric spaces
have exactly the same convergent sequences but they do not have the same Cauchy sequences .
Changing a metric  to a equivalent metric  does not change the open sets and therefore does  

not change which sequences converge.  But the change might  Cauchy sequencescreate or destroy
because the Cauchy property does depend specifically on how distances are measured.
         Another similar example: we know that any open interval  is homeomorphic to .  
However, with the usual metric on each space,  is complete and  is not complete.  
 4) In light of the observations in 3) we can ask:  if  is not complete, might there be 
some  metric  for which   complete?   To take a specific example: could weequivalent is    
find some metric  on so but for which   complete?  We could also ask this           is
question about   Later in this chapter we will see the answer and perhaps surprisingly,   
the answers for  and are different  
 5)  and  are countable discrete spaces, so they are           

homeomorphic.  But (even better!) the function  is actually an  between these  
 isometry

spaces because  An isometry  a homeomorphism, but           
  is

since it preserves distances, an isometry also takes Cauchy sequences to Cauchy sequences and
non-Cauchy sequences to non-Cauchy sequences. Therefore if there is an  between twoisometry
pseudometric spaces, then one space is complete iff the other space is complete.
     For example, the sequence  is Cauchy in  and the isometry  carries          

                 
  to the Cauchy sequence  in .  It is clear that  has no limit

in the domain and  has no limit in the range.      and  “look exactly alike” not just topologically but as metric             
spaces.  We can think of  as simply renaming the points in a distance-preserving way.
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Theorem 2.5   If  is a cluster point of a Cauchy sequence  in ,  then .         

Proof   Let .  Pick  so that when   Since  clusters at , we                 


can pick a  so that .  Then for this  and for                                  
  

so .      

Corollary 2.6    In a pseudometric space : a Cauchy sequence converges iff  has      a cluster point.
Corollary 2.7   In a  space , a Cauchy sequence can have at most one cluster point.metric  

Theorem 2.8   A Cauchy sequence  in  is bounded that is, the set    
           has finite diameter.
Proof   Pick  so that ,  when .  Then  for all                     Let max   Therefore, for all  we have                      
                                   , so diam

Now we will prove that  (with its usual metric ) is complete. The proof depends on the 
completeness property (also known as the “least upper bound property”) of .  We start with two
lemmas which might be familiar from analysis.  A sequence is called weakly increasing if 
          for all , and weakly decreasing if  for all .  A monotone sequence is one
that is either weakly increasing or weakly decreasing.
Lemma 2.9   If   is a bounded monotone sequence in , then  converges.    
Proof  Suppose  is weakly increasing.  Since  is bounded, has a least           
upper bound in .  Let sup .  We claim                Let .  Since  we know that  is  for .               not an upper bound Therefore  for some Since  is weakly increasing and  is an upper           bound for  it follows that  for all . Therefore                  
             for all so .
         If  is weakly decreasing, then the sequence  is a weakly increasing, so      
              for some ;  then 

Lemma 2.10  Every sequence  in  has a monotone subsequence.  
Proof  Call a  of if  for all .  We consider two cases.           peak point
 i)  If  has only finitely many peak points, then there is a last peak point  in .      Then  is  a peak point for   Pick an .  Since  is not a peak point, there is            not an  with   Since  is not a peak point, there is an  with                         . . We continue in this way to pick an increasing subsequence of .    
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  ii) If  has infinitely many peak points, then list the peak points as a subsequence 
               (where .  Since each of these points is a peak point, we have
              for each , so  is a weakly decreasing subsequence of .   

Theorem 2.11    is complete.
Proof   Let be a Cauchy sequence in .  By Theorem 2.8,  is bounded and by       
Lemma 2.10,  has a monotone subsequence  which is, of course, also bounded.  By    Lemma 2.9, converges to some point .  Therefore  is a cluster point of the Cauchy     
sequence , so           

Corollary 2.12    is complete.
Proof  Exercise
(Hint:  For , the sequence  in is Cauchy iff both sequences  and              
are Cauchy sequences in . If  and , then  in .                    )

3.  Subspaces of Complete Spaces
Theorem 3.1  Let  be a  space suppose .    metric
 1)  If is complete and  is closed, then  is complete.    
 2)  If  is complete, then  is closed in .    
Proof   1) Let  be a Cauchy sequence in . Then  is also Cauchy in the complete space     
           , so  for some   But  is closed, so this limit  must be in , that is,
        .  Therefore  is complete.
 2) If cl , we can pick a sequence in  such that .  Since  converges,          it is a Cauchy sequence in .  But  is complete, so we know  for some      
       .  Since limits of sequences are unique in  spaces, we conclude that .metric
Therefore if cl , then .  So  is closed.          
Part 1) of the proof  is valid when  is a pseudometric, but the proof of part 2) requires
that  be a metric.  Can you give an example of a pseudometric space  for which  
part 2) of the theorem is false?

The definition of completeness is stated in terms of the  of limits for Cauchy sequences.existence
The following theorem gives a different characterization in terms of the  of points in existence
certain intersections. This illustrates an important idea:  the completeness property for  can 
be expressed in different ways, but each characterization somehow asserts the  ofexistence
certain points.
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Theorem 3.2 (The Cantor Intersection Theorem)  The following are equivalent for a metric
space  
  1)  is complete 
  2) Whenever is a decreasing sequence of nonempty        ... ... 
  closed sets with diam , then  for some           


Proof  1 2   For each , pick a point .  Since diam , the sequence  is               Cauchy so  for some        , the subsequence .  Since the 's areFor each               decreasing, this subsequence is inside the closed set , so .  Therefore .        


 If , then diam  for every   Since diam( ,             

   this means that  Therefore , and so .         
 

 2 1   Suppose 1) is false, and let be a nonconvergent Cauchy sequence .       We will construct sets  which violate condition 2).  Without loss of generality, we may assumethat all the 's are distinct. (Why? If any value  were repeated infinitely often, then  would be a cluster point   of  and we would have .  Therefore each term of can  occur only finitely often,         and we can pick a subsequence from  whose terms are distinct. This subsequence is also a nonconvergent Cauchy sequence. We could now construct the 's using the terms of thesubsequence. But to keep the notation a bit simpler, we might as well assume all the terms in the
original sequence are distinct.)
 Let the “  tail” of the sequence .  Then                   
each and  For , we can pick  so that                   


  

if .  Then diam  and for diam diam .                 
So diam    We claim that these 's are closed which will contradict 2) and complete the proof. If some particular  were not closed, then there would be a point cl  and we         could find a sequence of distinct terms in  that converges to .  But such a sequence is automatically a subsequence of the original sequence , so  would be a cluster point of  
     which is impossible since a nonconvergent Cauchy sequence can't have a cluster
point. 
How would Theorem 3.2 be different if  were only a pseudometric? How would the  proof
change?
Example 3.3
 1) In the complete space  consider: a)              b)     

       c)       


 In each case, .  Do these examples contradict Theorem 3.2? Why not?
   

 2) Let .  The 's satisfy all the                 
   

 hypotheses in Theorem 3.2), but  .  Does this contradict Theorem 3.2?
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Example 3.4  Here is a proof, using the Cantor Intersection Theorem, that the closed interval
  is uncountable.

If  were countable, we could list its elements in a sequence   Pick a subinterval   
        

 of  with length less than  and excluding .  Then pick an interval
             

 of length less than  and excluding .  Continuing inductively, choose
an interval  of length less than and excluding .   Then             


                        and these sets clearly satisfy the conditions in
part 2) of the Cantor Intersection Theorem.  But .  This is impossible

       
since is complete. 

The following theorem has some interesting consequences.  In addition, the proof is a very nice
application of Cantor's Intersection Theorem in it, completeness is used to prove the existence
of “very many” points in .
Theorem 3.6  Suppose  is a nonempty complete metric space with no isolated points. 
Then   
To prove Theorem 3.5, we will use the following lemma.
Lemma 3.5  Suppose  is a metric space that If int  and  then we           
can find disjoint closed balls  and  (centered at  and ) with int  and int            

Proof   Let .  Since int we can choose positive radii  and  so that          
          

 int  and int .  In addition, we can choose both  and  less than    Let min   Then we can use the closed balls  and                 
          .   

Proof of Theorem 3.6   The idea of the proof is to construct, inductively,  different descending
sequences of closed sets, each of which satisfies condition 2) in the Cantor Intersection Theorem,
and to do this in a way that the intersection of each sequence gives a  point in .  It thendifferent 
follows that  The idea is simple but the notation gets a bit complicated.  First we will  
give the idea of how the construction is done.  The actual details of the induction step are
relegated to the end of the proof.
   is nonempty and has no isolated points, so there must exist two pointsStage 1 
             . Pick disjoint closed balls  and , centered at  and , each with
diameter     Since int  and  is not isolated, we can pick distinct points and Stage 2           (both ) in int  and use Lemma 3.5 to pick disjoint closed balls  and  (centered at              and ) and both int We can then shrink the balls, if necessary, so that each has
diameter  

 We can repeat similar steps inside since int  and  is not isolated, we can        pick distinct points and (both ) in int  and use the Lemma 3.5 to pick disjoint        closed balls  and  (centered at and ) and both int We can then shrink the           
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balls, if necessary, so that each has diameter   At the end of Stage 2, we have 4 disjoint 
closed balls:               We now repeat the same construction inside  of the 4 sets .Stage 3 each          For example,  we can pick distinct points and (both ) in int  and use the        Lemma 3.5 pick disjoint closed balls  and  (centered at and ) and both int        

    
Then we can shrink the balls, if necessary, so that each has diameter    See the figure

below.   

After Stage 3, we have 8 disjoint closed balls:  We have the beginnings of 8         descending sequences of closed balls at this stage.  In each sequence, at the  “stage,” the setsth
have diameter . 

         
      



                             .... etc.         
       



                  
and 
         
      



                                  ....  etc.          
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We continue inductively ( ) in this way at a given stage, each descendingsee the details below 
sequence of closed balls splits into two “disjoint branches.”  The “split” happens when we
choose two new nonempty disjoint closed balls inside the current one, making sure that their
diameters keep shrink toward .
In the end,    we will have afor each binary sequence                
corresponding descending sequence of nonempty closed sets whose diameters : 
                            

For example, the binary sequence  corresponds to the descending          
sequence of closed sets
                    

The Cantor Intersection theorem tells us ,  there is an such thatfor each    

                             


           
For two different binary sequences, say ,                       there is a   for which .   Then  and  .  Sincesmallest                            these sets are disjoint, we have .  Thus, mapping  gives a one-to-one function        from  into .  We conclude that            

Here are the details of the formal induction step in the proof..
Induction Hypothesis: Suppose we have completed  stages that is, for each 
               and for each -tuple we have defined points and   

 ...closed balls centered at , with diam  and so that          
      ...

 for each ,                        

Induction step:  We must construct the sets for stage   For each -tuple     
               , we need to define a point and a closed ball       in such a way that the conditions in the induction hypothesis remain true with
    replacing .
     For any :  we have int .  Since is not                    isolated, we can pick distinct points  and  (both ) in int                    ...and use the Lemma 3.5 to pick disjoint closed balls  and  (centered at         ... ...
                and ) and both int .  We can then shrink the balls, if necessary,...so that each has diameter   

  

Corollary 3.7   If  is a nonempty complete separable metric space with no isolated points, 
then .  
Proof  Theorem II.5.21 (using separability) tells us that ;  Theorem 3.6 gives us  
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The following corollary gives us another variation on the basic result.
Corollary 3.8  If is an uncountable complete separable metric space, then .    
(So we might say that “the Continuum Hypothesis holds among complete separable metric
spaces.” )
Proof   Since is separable, Theorem II.5.21 gives us .  If we knew that  had no     
isolated points, then Theorem 3.6 (or Corollary 3.7) would complete the proof. But  might have
isolated points, so a little more work is needed.
 Call a point  a  if every neighborhood of  is uncountable.  Let   condensation point
       be the set of all condensation points in .  Each point  has a countable open
neighborhood . Each point of  is also a non-condensation point, so .       
Therefore  is open so  is closed, and therefore  is a complete metric space.    
 Since  is separable (and therefore second countable),  is also second    
countable and therefore Lindelöf.  Since  can be covered by countable open sets, it can be 
covered by countably many of them, so  is countable:  therefore  (in fact,  must     
be uncountable).
 Finally,  has no isolated points in :  if  were isolated , then there      in 
would be an open set  in  with .  Since ,  would be             
countable which is impossible since  is a condensation point. 
 Therefore Corollary 3.7 therefore applies to , and therefore        
Why was the idea of a “condensation point” introduced in the example?  Will the argument
work if, throughout, we replace “condensation point” with “non-isolated point?” If not,
precisely where would the proof break down?

The next corollary answers a question we raised earlier: is there a metric  on  which is  
equivalent to the usual metric  but for which  is complete that is, is  “completely      
metrizable?”
 
Corollary 3.9    is not completely metrizable.
Proof   Suppose  is a metric on   to the usual metric , so that Then       equivalent 
              is a nonempty metric space and, since , the space  has no isolated points
(no set  is in “isolated point” is a  notion.).  If  were complete,           topological
Theorem 3.6 would imply that  is uncountable.     
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Exercises

E1.  Prove that in a metric space , the following statements are equivalent: 
 a)   every Cauchy sequence is eventually constant
 b)    is complete  and   is the discrete topology   c)   every subspace of is complete 

E2.  Suppose that  is a dense subspace of the pseudometric space  and that every CauchyX   
sequence in  converges to some point in .  Prove that  is complete.X    

E3.  Suppose that  is a metric space and that  is a Cauchy sequence with only finitely   many distinct terms.  Prove that  is eventually constant, i.e., that for some ,    
     

E4.   Let  be a fixed prime number.  The |  |   is defined on  by:p -adic norm  

For , write for integers , where  does not divide  or . (          p m
n
k  p Of

course,  may be negative. ) Define | | .  .  We define  | |        


For all ,   
  a)  and  iff              b)            c)              d) max            

    is shares properties a), b) and c) with the ordinary norm (or absolute value),  on  .  But
d) is a condition stronger than the usual triangle inequality: that is, d)  c)
The   is defined on  by  -adic metric          
Because of d), the metric  satisfies a strengthened version of the triangle inequality for metricspaces: what is this stronger inequality ?  For ,        

Prove or disprove   ( ) is complete. 
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E5.   Suppose is complete and that  is a sequence of closed sets in         ... ...
          for which diam 0.  Prove that if  is a Hausdorff space and  is continuous,  

          .

E6. A metric space is called  if every point  has a neighborhood   locally complete (necessarily closed) which is complete.
 a) Give an example of a metric space  that is locally complete but not complete. 
 
 b) Prove that if  is a locally complete dense subspace the complete metric space 
 , then  is open in .   
 Hint: it may be helpful to notice  if O is open and D is dense, then  cl ( ) = cl(O). 
 This is true in any topological space . 

E7.   Suppose  is an uncountable subset of   with   (      Of course, there is no such
set  if the Continuum Hypothesis is assumed. )   Is it possible for  to be closed?  Explain.



165

4.  The Contraction Mapping Theorem

Definition 4.1  A point  is called a  of the function   if           fixed point
We say that a topological space  has the  if every continuous      fixed point property
has a fixed point.
The fixed point property is a topological property ( )this is easy to check; do it!
Example 4.2
 1) A function  has a fixed point if and only if the graph of  intersects the    
line .  
   If , then is the set of fixed points for some function: for example  
       where  is the characteristic function of .   Is every set  the set of  
fixed points for some  function  ?  Are there any restrictions on thecontinuous    
cardinality of ?
 2)  The interval  has the fixed point property: a continuous  must        
have a fixed point.  Certainly this is true if or .  So assume that  and        
                and define .   Then  is continuous, and
      .  By the Intermediate Value Theorem (from analysis) there must be a point
              where , that is, 
 3) The  states that  has theBrouwer Fixed Point Theorem          
fixed point property. For the proof of  Brouwer's theorem is rather difficult;  the usual  
proofs use techniques from algebraic topology. For ,  is homeomorphic to ,  so     
Brouwer's Theorem generalizes part 2) of this example.
     In fact, Brouwer's Theorem can be generalized as the Schauder Fixed Point
Theorem: every nonempty compact convex subset  of a Banach space has the fixed point
property.

Definition 4.3          is a  (for short, a ) if there iscontraction mapping contraction
a constant  such that  for all .             
Notice that a contraction  is automatically continuous:  for , choose .  Then, for all     
               implies .  In fact, this choice of  depends  on only
and not the point .  When that is true, we say that  is .  uniformly continuous
 The definition of  for on  reads:uniform continuity  
                 
 Compare this to the weaker requirement for  to be continuous on : 
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Example 4.4
 1) The function  given by   is a contraction because for any           

  
                        

  , we have .
 2) However, the function  given by  is  a contraction.  For  to         not
be a contraction, there would have to be some  for which   
    for all   in , and this would imply that            
         for all   (which is false).      
   We could also argue that  is not a contraction by noticing that is      not
uniformly continuous.  For example, if we choose , then no  will satisfy the condition    
               .  For example, given , we can let  and  


          

 
 .  Then .

Theorem 4.5 (The Contraction Mapping Theorem)   If  is a nonempty complete metric 
space and  is a contraction, then has a unique fixed point.  (      “Nonempty” is included
in the hypothesis because the empty function  from the complete space  to  is a contraction  
with no fixed point.)
A fixed point provided by the Contraction Mapping Theorem can be useful, as we will soon see
in Theorem 4.9 (Picard's Theorem).  The  of the Contraction Mapping Theorem is alsoproof
useful because it shows how to make some handy numerical estimates (see the example following
Picard's Theorem.)
Proof   Suppose  and that  for all . Pick  point               any
     and apply the function  repeatedly to define
                       
    
              
    
We claim that this sequence  is Cauchy and that its limit in  is a fixed point for .  (    Here
you can imagine a “control system” where the initial input is  and each output becomes thenew input in a “feedback loop.” This system approaches a “steady state” where
“input output.” )
Suppose .  We want to show that for large enough   Assume .             Applying the “contraction property”  times gives:
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Using the triangle inequality and the contraction property again,  we get
                    

                                        

                                    

                                


    as .     


    


So  if some  Then if


    
                    .  Therefore  is

Cauchy.  Since is complete  for some .        

By continuity, .  But also  because .  Because a              sequence in a metric space can have at most one limit. we get that .   (   If  were just a
pseudometric,  might not actually be a fixed point: we could only say that .     )
If  is also a fixed point for , then .  Since , this               
implies that , so that is, the fixed point  is unique.  (         If  were just a
pseudometric,  could have several fixed points at distance  from each other.     )

Notes about the proof
 1) The proof gives us that if , then  for each .  If  we           


    
 

fix  and let , Then , so .  Thus we have a computable             


    
bound on how well  approximates the fixed point . 

 2) For large  we can think of  as an “approximate fixed point” in the sense that    doesn't move the point  very much.  To be more precise,

                              

                    

    as .         


    


Example 4.6  Consider the following functions that map the complete space  into itself:
 1) :   is (uniformly) continuous,  is not a contraction, and  has  a       
 unique fixed point:    
 2)  is not a contraction and has no fixed point.    
 3) sin has infinitely many fixed points.    
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We are going to use the Contraction Mapping Theorem to prove a fundamental theorem about
the existence and uniqueness of a solution to a certain kind of initial value problem in differential
equations. We will use the Contraction Mapping Theorem applied to the complete space in the
following example.
Example 4.7 Let  be a topological space and  be the set of  continuous real-   bounded
valued functions , with the metric sup .  (              Since   
are bounded, so is  and therefore this sup is always a real number.  It is easy to check  
that  is a metric .)  The metric  is called the “metric of uniform convergence” because
        implies that  is “uniformly close” to 
      at every point               

In the specific case of , the statement that  is equivalent the statement (in          
analysis) that “  converges to  uniformly on .”   
 
Theorem 4.8    is complete.   
Proof   Suppose that  is a Cauchy sequence in : given , there is some  so          
that  whenever .  This implies ( )  that for each ,             see * , above 
             whenever .  For any fixed , then,  is a Cauchy sequence
of real numbers, so some .  Define  by . To complete              
the proof, we claim that  and that         


 
First we argue that  is bounded.  Pick  so that  whenever  .            Using , this gives  for  and therefore  for every                      
     .  Now let , to get that
 for every       ,      

 so, for every  .         

Since is bounded, there is a constant  such that        

     for every .      

Adding the last two inequalities shows that  is bounded because, for every  
   .     

We now claim that .  (   
 Technically, this is an abuse of notation because  is defined 

on  and we don't yet know that  is in ! However, the same definition for  makes      
sense on any collection of  real-valued functions, continuous or not.  We are using thisbounded
“extended definition” of  here. )  Let  and pick  so that  whenever          


               .  Then  for every  whenever .  Letting , we  


get that for all  and all .  Therefore  if .                
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Finally, we show that  is continuous at every point .  Let .  For  and            
we have
                       

Since , we can choose  large enough to make   This implies that           
  

               
 and .  Since  is continuous at , we can choose a

neighborhood  of  so that  for all   Then for  we have               


   , so  is continuous at .               
   

Theorem 4.9 (Picard's Theorem)  Let  be an interior point of a closed box  in , and      
suppose that  is continuous.  In addition, suppose that there is a constant  such that    
for all  and  in :           

       (L)                   Then
  i) there exists an interval and                    ii) there exists a unique differentiable function     

such that   for      
        

 
In other words, on some interval  centered at , there is a unique solution  to the    initial value problem
        

    
 

Before beginning the proof, we want to make some comments about the hypotheses.
 1) The “strange” condition (L) says that “  satisfies a  Lipschitz condition in the variable
  on .”  For our purposes, it's enough to notice that (L) will be true when the partial derivative
   exists and is continuous on the closed box .  In that case, we know (from analysis) that
| | some constant  on .  Then, if we think of  as a single-variable function of         and use the ordinary Mean Value Theorem, we get a point  between  and  for which   

  |                                   

 2) Consider a specific example:  ,  , and                
           .   Since , the preceding comment tells us that condition (L) is true.
     Consider the initial value problem .  Picard's Theorem states that there     

  


is a unique differentiable function , defined on some interval  that solves this      
system:  and  that is, .  As we will see, the proofs of              
Picard's Theorem and the Contraction Mapping Theorem can actually help us to  thisfind
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solution.  Of course, once a solution is actually found, a direct check might show that the
solution is actually valid on an interval larger than the interval  that comes up in the proof.

Proof (Picard's Theorem)  We begin by changing the initial value problem  into an
equivalent problem that involves an integral equation rather than a differential equation.
Let be a continuous function defined on an interval   :           

   (*):   is continuous, so  is continuous. ( )Suppose  satisfies       Why?
 Therefore the Fundamental Theorem of Calculus tells us for all ,     
    
   , ,  so             

  
     

    ,         (**)       



  (**):  then ) , .  Since  isSuppose  satisfies             




 continuous, the Fundamental Theorem gives that for all ,   = .      
 Therefore the function  satisfies (*).
  
Therefore a function continuous  on  satisfies *  iff  satisfies ** .  (       Note that the initial
condition is “built into” the single equation       )  Now we show that a unique
solution   to (**) exists on some interval centered at    
First, we establish some notation:
  
 We are given a constant  in the Lipschitz condition (L).
   
 Pick a constant  so that  for all .  (         We will prove later in this
 chapter that a continuous real-valued function on a closed box in  must be bounded.
 For now, we assume that fact from analysis.)
   
 Because int , we can pick a constant  so that             

   i)  ,  and                      ii)    
   
 Let                    
We consider , where  is the metric of uniform convergence.  By Theorem 4.8, this    
space is complete.  Let  .                

 For an arbitrary ,  might be so large that   But if we look        
 only at the functions in , we avoid this problem: if  and , then           
 because of how we chose .  So for , we know that   is defined for all     
   )
Notice that  since the  function  is certainly in .      constant 
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 is closed in : if cl , then there is sequence of functions  in  such that        
              in the metric .  Therefore for all , and subtracting  gives
   .           

Since  for each , then  for each .  Therefore                    
     , so  is closed.   So is a . nonempty complete metric space
  
For , define on  a function  using the formula      
   ( ) .           




Notice that  is continuous (in fact, differentiable) and that, for every ,   
                      | | | | | | | |  | |  ,     

    
  

so  is bounded.  Therefore .   But in fact, even  is true:  ,           more
because
  ,  | | | |                     




Now we claim that  is a contraction.  To see this, we simply compute       
distances:   if  and  , then    

                    ,  sup  | | 
   sup  | |                   sup  | | |  |                  sup  | |  |         (from Condition L)                 sup |  |              
   sup                                 ,  where   1.         

Then the Contraction Mapping Theorem gives us a unique function  for which .     
From the definition of , that simply means:
  ,   ,           




which is precisely condition (**).    
  
Example 4.10  If we combine the method in the proof of Picard's Theorem with the numerical
estimates in the proof of the Contraction Mapping Theorem, we can get useful information about
a specific initial value problem.  To illustrate, we consider

           
  



and find a solution that is valid on some interval containing 0.
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We begin by choosing a box  with  in its interior: we select (rather arbitrarily)        the box   Since  on , we can use                        
         in the proof.  Because  throughout , the Lipschitz condition (L) issatisfied with    
 
Following the proof of Picard's Theorem, we now choose a constant  so that
 
   i)  and              
   ii)        
Again rather arbitrarily, we choose , so that .                

   
Then |  for all .                             

 

Finally, we choose  function ; to make things as simple as possible, we might as wellany   choose  to be the constant function  on .  (           
  If for simplicity we use a constant

    , then  is the “best possible” choice since its graph goes through the point
       

According to the proof of the Contraction Mapping Theorem, the sequence of functions
           will converge (with respect to the metric ) to , where  is a fixed point for ;
 will be the solution to our initial value problem.  We calculate:
                         

   
  




                       
    

       

 
                        

       
             

and, in general,
                 

  
  

The functions  converge uniformly to the solution . 

In this particular problem, moreover, we are lucky enough to recognize that the functions  
are just the partial sums of the series   Therefore  

  
               

       is a solution of our initial value problem, and we know it is valid for all
        

  .  (You can check by substitution that the solution is correct , after the and
fact, that the solution actually is valid for 's in the much larger interval .  )
Even if we couldn't recognize a neat formula for the limit , we could still make some useful
approximations. From the proof of the Contraction Mapping Theorem, we know that
  ( , so that (           


 


   

  



  


  
.  In this example 

                      
         

sup .  Therefore, on the interval ,
   

 is  within distance  of the exact solution uniformly 
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Finally, recall that our initial choice of was arbitrary. Since sin , we know that      sin ,  and we could just as well have chosen sin .  Then the functions         computed as would be quite different                   try computing  and   but it would still be true that   uniformly on  this must be              same
limit  because the solution  is unique.     

The Contraction Mapping Theorem can be used to prove other results for example, the Implicit
Function Theorem.  ( )You can see details in , by James Dugundji.Topology
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Exercises
E8. Suppose  is differentiable and that there is a constant 1 such that      
| |  for all   Prove that  is a contraction (and therefore has a unique fixed point.)     

       b) Give an example of a continuous function  such that   
   |   for all   (**)           
for all  but such that  has no fixed point.    
Note:  The function  is not a contraction mapping.  If we allow  in the definition of  
contraction, your example shows that Contraction Mapping Theorem may not be true not even
if  (as above) we  “compensate” by using “ ” instead of  “ ”  in the definition. 
      soc)  Find an example satisfying (**) where  and  is not a contraction (       
compactness + (**) doesn't force to be a contraction )
      d) (Edelstein's Theorem)  Show that if satisfies  and  is compact,        
then  has a unique fixed point  and that where  is any point of  and      lim  
        Hints:  has a minimum value at some point   Show that      
     is the unique fixed point of .  Without loss of generality, assume all ; then             Prove that  At some point, use the fact that each sequence in 
has a convergent subsequence.
 
E9.  Let , where  is a nonempty complete metric space.  Let denote          
the “  iteration of ” that is,  composed with itself   times.kth    
 
 a) Suppose that  for which  is a contraction.  Then, by the Contraction   
Mapping Theorem,  has a unique fixed point .  Prove that  is also the unique fixed point for  
 .
  b) Prove that the function cos  is not a contraction.  
  c) Prove that for some , cos is a contraction .     Hint: the Mean Value Theorem
may be helpful. )
  d) Pick  so that cos  is a contraction and let  be the unique fixed point of .      
By a),  is also the unique solution of the equation cos .  Start with 0 as a “first   
approximation” for  and use the technique in the proof of the Contraction Mapping Theorem to
find an  so that | < 0.00001.       
  e) For this , use a computer or calculator to evaluate .  (   This “solves” the equation
cos    with Error  0.00001      .)
E10.  Consider the differential equation with the initial condition . Choose a       
suitable rectangle  and suitable constants  and  as in the proof of Picard's Theorem. Use  
the technique in the proof of the contraction mapping theorem to find a solution for the initial
value problem.  Identify the interval  in the proof.  Is the solution you found actually valid on an
interval larger than ?
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5.  Completions
The set of rationals  (with the usual metric ) is not complete.  However,  is a dense subspace 
of the complete space ( . This is a model for the definition of a  for a metric  completion
space.  We will focus on the important case of metric spaces, but make a few additional
comments along the way about pseudometric spaces where slight adjustments are necessary.
Definition 5.1          ,  is a  of  if:     is completecompletion  ,
       , and     
        is a dense subspace of . 
Since  on , we will simplify and slightly abuse the notation by also using  to refer      
to the metric on Occasionally, if it's helpful to distinguish between  and the “extended” .  
metric on ,  we may revert to more precise notation and use a different name, such as ,  
for the extended metric on .

Loosely speaking, a completion of contains the additional points necessary and no  
others) to provide limits for Cauchy sequences that fail to converge in .  In the case of 
      ,  the additional points are the irrational numbers, and the resulting completion is 
If a metric space  is already complete, what would its completion look like?  In that case, 
        is a complete subspace of , , so  must be closed in .  But  must also be dense
in , so that is, a complete metric space is its own completion.     

If  is a   space, then  might not be closed in and might  complete pseudometric   
contain additional points . But each  is the limit of a (Cauchy) sequence    
             from , and  already has a limit , so   Any new points  in
  are “unnecessary additions” because every Cauchy sequence in  already has a
limit in and each of these “unnecessary additions”  is at distance  from a point in .,   

Of course different spaces might have the same completion for example,  is a completion   
for both  and       
Notice that a completion of   depends on ,  just the topology  For example,       not  and ,  are  homeomorphic topological spaces (countable sets, each with the     

 
discrete topology).  But the completion of itself!) is  homeomorphic to the     not
completion  of               

  
One way to create a completion onto:  recall that if is an ( ) isometry between two metric spaces
           and , then  and  can be regarded as “the same” metric space  We can
think of  as just “assigning new names” to the points of .  If  is an         
isometry from   , we can   with an “exact metric copy” of       into identify
           inside If  happens to be complete, then  is dense in the complete
space cl .  We agree to identify  with  and call cl  a             completion of  even though  is not literally a subset of cl . To find a completion of   
       , then, it is  to find an isometry  from   any complete space  .sufficient into
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Example 5.2 Consider with the metric .  is isometric to            
 (  where  is the usual metric on in fact, the mapping  is an          

  
isometry.  So these spaces are “exact metric copies” of the other.
  Because  is a completion of its dense subspace       

 
( , we can also think of  as a completion of even                   

    
though  is not literally a subspace of        



The next theorem tells us every metric space has a completion and, as we will see later, it is
essentially unique (so the method for creating it usually doesn't matter).
Theorem 5.3   Every metric space has a completion. 
Proof By our earlier comments, it is sufficient to find an isometry of   some complete  into
metric space.  We will use  where, as usual,  is the metric of uniform convergence    
( )see Example 4.7 and Theorem 4.8
 The theorem is trivial if so we assume that we can pick a point .  For each     
point , define a function using the formula   Each               map  is continuous because it is a difference of continuous functions and, for each ,   
                  , so  is bounded.  Therefore 
 Define by We complete the proof by showing that             
 is an isometry.  This just involves computing some distances: for any ,   
  sup                        sup               
   sup         
  For every , ,  and        
  letting  gives .  Therefore          
  sup                        

The completion of  given by this proof is cl , .  The proof is “slick” but it has       
very little intuitive content.  For example, if we apply the proof to , it is not at all clear that  
the resulting completion is isometric to  (as we would expect).  In fact, there is another  
more intuitive way to construct a completion of , but verifying all the details is much more 
tedious. (To reiterate: In Theorem 5.4, we will see that the method doesn't matter: the completion
of no matter what method is used to construct it always comes out “the same.”   
We will simply sketch this alternate construction here, and in the discussion it's probably clearer
if we use to refer to the metric  extended to .   

We call two Cauchy sequences and  in   if It is              equivalent
easy to check that is an equivalence relation among Cauchy sequences in .  
Clearly, if then any equivalent Cauchy sequence also converges to .      And if two nonconvergent Cauchy sequences are equivalent, then they are “trying to
converge to the same point” but that point is “missing” in .
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We denote the equivalence class of a Cauchy sequence  by  and let  be the     
set of equivalence classes.  Define the distance  between two equivalence classes by
         

   lim   ( )  It is easy to check thatWhy must this limit exist?
 does not depend on the choice of representative sequences from the equivalence
classes, and that is a metric on .   One then checks (this is most tedious part) that~ 
           is complete: any -Cauchy sequence of equivalence classes  must
converge to an equivalence class in  .    

For each , the sequence  is Cauchy, and so .            
The mapping given by  is an isometry, and it               
is easy to check that  is dense in so that  is a completion for             
 

This method is one of the standard ways to construct the real numbers from the rationals:   is
defined as the set of these equivalence classes of Cauchy sequences of rational numbers.  Note:
  can also be constructed as a completion of  by using a method called Dedekind cuts
in .  However that approach makes use of the  in  so we cannot imitate this ordering  
construction in the general setting of metric spaces where no ordering of elements exists.
The next theorem gives us the good news that it doesn't really matter, in the end,   wehow
construct a completion because the completion of is “essentially” unique: all  
completions are isometric, and in a “special” way!  We state the theorem for metric spaces and in
the proof it is clearer to give the metrics on the completions new names not referring to them
as .  ( Are there modifications of the statement and proof to handle the case where  is merely a
pseudometric? )
Theorem 5.4  The completion of  is unique in the following sense:  if  and       
are both complete metric spaces containing  as a dense subspace, then there is an (onto)
isometry such that  is the identity map on .  (           In other words, not only
are the completions  and  isometric, but there is an isometry between them that holds   
fixed.  The isometry merely “renames” the new points in the “outgrowth”   )
Proof For each ,  we can pick a sequence  in  which converges to .  Since  is         convergent,  is Cauchy in and therefore also in  since both  and  agree with         
             on .  Because is complete, some point , and we can define .(It is easy to check that  is well-defined that is, we get the same  no         
matter which sequence  we first chose converging to    .)
 For what is ?  We can choose to be the constant sequence ,  and         therefore .  So  is the identity map on .    
 We need to verify that  is an isometry.  Suppose  and we choose .         Then
    and                
              , so                      
              
 
According to Theorem 5.4, the space is  completion     no matter how we construct it the
of the space .  
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6.  Category
There are many different mathematical ways to compare the “size” of sets, and these methods are
used for different purposes. One of the simplest ways is to say that one set is “bigger” if it has
“more points” than another set that is, by comparing their cardinal numbers.
In a totally different spirit, we might call one subset of  “bigger” than another if it has a larger
area, and in analysis there is a further a generalization of area.  A certain collection  of subsets
of  contains sets that are called , and for each set  a nonnegative real  measurable  
number is assigned.   is called the “measure of ” and we can think of  as a kind     
of “generalized area.”  A set with a larger measure is “bigger.”
In this section, we will look at a third completely different and topologically useful idea for
comparing the size of certain sets.  The most interesting results in this section will be about
complete metric spaces, but the basic definitions make sense in any topological space  

Definition 6.1  A subset  of a topological space  is called     nowhere dense in 
if int (cl )   ( .)     In some books, a nowhere dense set is called rare
A set has empty interior iff its complement is dense. Therefore we also can say that  is nowhere
dense in  iff  cl  is dense.   

Intuitively, we can think of an open set as including some “elbow room” around each of its
points if , then all sufficiently near points are also in .  Then we think of a nowhere    
dense set as being “skinny” so skinny that  does it contain no “elbow room” around not only
any of its points, but even its closure contains no “elbow room” around any of its points.

Example 6.2
 
 1) A  set  is nowhere dense in  iff int  iff   is dense in .  Inclosed         
particular, if a singleton set  is a  set in , then  is nowhere dense   is   closed unless
isolated in 
 2)  Suppose   is nowhere dense iff cl  contains no interval      
    For example, each singleton set  is nowhere dense in .  In particular, for     
  } is nowhere dense .  But note that  is  nowhere dense , because  is isolated inin not in  
. Whether a set is nowhere dense is relative to the space in which a set “lives.”
     If , then int cl int cl .  Therefore if  is nowhere dense in             
  , then is also nowhere dense .  However, the set  might not be nowhere dense .in in  
For example, consider     
      is nowhere dense in .    

  
      and  are not nowhere dense in  (   the awkward “double negative” in English is
      one reason why some authors prefer to use the term “rare” for “nowhere dense.”
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 3) Since cl cl cl , the set on the left side has empty interior iff the set on the     
right side has empty interior that is  is nowhere dense in  iff cl  is nowhere dense in .     

Theorem 6.3   Let  be a topological space and .  If  is nowhere dense in ,        
then  is nowhere dense in . 
Proof   Suppose not. Then there is a point int cl cl .  Since int cl  is an           open set containing  and cl , then int cl .            So int cl int cl cl cl .                     But int cl  is a nonempty open set in , so int cl which contradicts the            
hypothesis that is nowhere dense in .    
The following technical results are sometimes useful for handling manipulations involving open
sets and dense sets.
Lemma 6.4    In a topological space : 
 1)  If  is dense in  and  is open in , then cl cl       
 2)  If  is dense in  and  is open in , then  is dense in .      
 3)  If  is dense in  and  is open and dense in , then  is dense in .      
 In particular, the intersection of two and therefore finitely many dense open sets is 
 dense.  ( )But this is  true for countable intersections; can you provide an example?not
Proof  1) To show cl cl , suppose cl .  If  is any open set containing , then        
                  .  Since  is dense, this implies that .  Therefore
    cl
 2) Using part 1), we have cl cl cl cl                   
 3) If  is dense, then part 1) gives cl cl .          

Theorem 6.5  A  union of nowhere dense sets in is nowhere dense in .finite   
Proof We will prove this for the union of two nowhere dense sets.  The general case follows
using a simple induction.  If  and  are nowhere dense in , then   

  cl cl cl cl cl .                           

The last two sets are open and dense, so Lemma 6.4(3) gives that cl  is dense.      Therefore  is nowhere dense.      

Notice that Theorem 6.5 is :  for each ,  is nowhere dense in ,false for infinite unions    
but  is not nowhere dense in .   
Definition 6.6 In , a subset  is called a  if  can be written as a     first category set in 
countable union of sets that are nowhere dense in If  is not first category in , we say thatX.   
 is .  (second category in  Books that use the terminology   for nowhere dense sets usuallyrare
use the word  for first category sets.meager )
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If we think of a nowhere dense set in  as “skinny,” then a first category set is a bit
larger merely “thin.”
Example 6.7
  If  is nowhere dense in , then  is first category in .   
 
 2)  is a first category set in . 
 3 If  and  is first category in , then  is first category in .  However         
       may not be first category in , as the example  shows.   However, using
Theorem 6.3, we can easily prove that if  is first category in , then  is also first category in  
.
 4) A countable union of first category sets in  is first category in . 
 5)  .   is nowhere dense (and therefore first category) in ; but         

  
    is second category because any subset of  that contains  is not nowhere dense in .in 
 6) Cardinality and category are totally independent ways to talk about the “size” of a set.
  a) Consider the right-ray topology   on .           
   is uncountable, but , where Each  is nowhere        

     dense in , so  is first category in .         
  b) On the other hand,  is countable but  (with the usual topology)  is second 
  category in .
 7) Let  A straight line is nowhere dense in , so a countable union of straight   
lines in is first category in .  (   Can  be written as a countable union of straight lines?
The answer follows immediately from the Baire Category Theorem, proved below. But, in fact,
the answer is clear from a simple argument using countable and uncountable sets.)

 More generally, when , a countable union of -dimensional linear subspaces of   
   is first category in  ( ? ) Can a countable union of -dimensional linear subspaces  

It is not always easy to say what the “category” of a set is.  Is  a first or second category set in
  ?  For that matter, is  first or second category in ?  (If you know the answer to either of
these questions, you also know the answer to the other: why are the questions equivalent? )

As we observed in Lemma 6.4, the intersection of two (and therefore, finitely many) dense open
sets is dense.  , however, the intersection of a countable collection of dense open setsSometimes
is dense.  The following theorem discusses this condition and leads us to a definition.
Theorem 6.8  In any topological space , the following two statements are :  equivalent
  1) If  is first category in , then  is dense in     
  2) For each sequence , ,..., ,...  of dense open sets,  the intersection       


       is also dense.
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Proof  (1 2)  Let , ,..., ,... be a sequence of dense open sets.  Each  is closed        and nowhere dense, so  is first category.  By 1),     
               

is dense.
 (2  Let  be a first category set, say , where each is nowhere      

  dense in .  Then each cl  is dense so, by 2), cl  is dense.  Since           
    

                     cl cl ,  we see that  is dense.  

Definition 6.9   A space is called a Baire space if one (therefore both) of the conditions 
in Theorem 6.8 holds.
Intuitively we can think of a nonempty Baire space as one which is “thick,” at least in some
places.  A “thin” first category set  can't “fill up” in fact, its complement  is dense     
(and therefore nonempty). This fact is the basis for how a Baire space is often used in
“applications”: if you want to prove that there is an element in a Baire space  with a certain
property , you can consider  does  have property .  If you can show that        not
      is first category in , it follows that .
Clearly, a space homeomorphic to a Baire space is a Baire space:  being a Baire space is a
topological property.
The following theorem tells us a couple of important facts.
Theorem 6.10  Suppose  is an open set in a Baire Space   
 1) If  then  is second category in .   In particular, a  Baire space      nonempty
 is second category in itself.
 2)  is a Baire space.
 
Proof   1) If  were first category in , then (by definition of a Baire space)  would be   
dense in ;  since  is closed, it would follow that , and therefore          
 2) Suppose  is open in the Baire space , and let  be a first category set .  We   in 
must show that  is dense in .  Suppose , where  is nowhere dense in .      

  By Theorem 6.3,  is also nowhere dense in .  Therefore  is first category in  so  is     dense in .  Since  is open,  is dense in  by part 2) of Lemma 6.4.              
Example 6.11  By Theorem 6.10.1, a nonempty Baire space is second category in itself.  The
converse is false. To see this, let , with its usual topology.  If we write       
    

   , then the isolated point “2” must be in some , so  is not nowhere dense.
Therefore  is second category in itself.  If  were Baire, then, by Theorem 6.10, the open 
subspace  would also be Baire and therefore second category in itself.  However this is   
false since  is a countable union of (nowhere dense) singleton sets.   
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To make use of properties of Baire spaces, it would be helpful to have a “large supply” of Baire
spaces.  The next theorem provides us with many Baire spaces.
Theorem 6.12 (The Baire Category Theorem)   A complete metric space is a Baire 
space.  (and by 6.10, therefore, a nonempty complete metric space must be second category in
itself.)
Proof   If then  is Baire, so we assume       
 Let , where  is nowhere dense.  We must show that  is dense in     

  
          .  Suppose   The closed balls of the form form a neighborhood base  
at .  Let  be such a closed ball, centered at  with radius   We will be done if we can       
show   We do that by using the Cantor Intersection Theorem.       Since int  (it contains ) and since  is nowhere dense, we know that      int  is not a subset of cl .  Therefore we can choose a point in the  set     open
int cl .  Pick a closed ball , centered at , so that int cl .                     If necessary, choose  even smaller so that diam      

 (This is the first step of an inductive construction.  We could now move to the induction step, but
actually include “step two” to be sure the process is clear. )
 Since int  (it contains ) and since  is nowhere dense, we know that      int  is not a subset of cl .  Therefore we can choose a point in the  set     open
int cl .  Pick a closed ball , centered at , so that int cl .                     If necessary, choose  even smaller so that diam      



For the induction step: suppose we have defined closed balls  centered at points      
                         

 , with diam  and so that int cl .
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Since int  (it contains ) and since  is nowhere dense, we know that int  is not a        subset of cl .  Therefore we can choose a point  in the  set int cl .  Pick       open
a closed ball , centered at , so that int cl . If necessary,                choose  even smaller so that diam .     

  

By induction, the closed sets  are defined for all , diam  and      
                Since  is complete, the Cantor Intersection Theorem says that
there is a point  For each ,  int cl , so cl ,                  

      so Therefore , so  and we are done.                         


Example 6.13
 1) Now we can see another reason why  is not completely metrizable.  If  is    
complete, then  is a Baire space.  But , with the usual metric  is not a Baire space.     
Therefore  so /       

 2) Suppose  is a nonempty complete metric space without isolated points. We 
proved in Theorem 3.6 that .  We can now see even more: that every point in  must be   
a condensation point.
             Otherwise, there would be a non-condensation point , and there would be some  countable (possibly finite) open set   Since each  is non-isolated,               the singleton sets are nowhere dense in , so  is first category in .  Since      
      is Baire, this would mean that the closed set  is dense which is impossible.
   Notice that this example illustrates  that  cannot be completely metrizable: if itsagain 
topology were produced by a some complete metric, then each point in  would have to be a
condensation point.
 3) The set  is a second category set in : if not, we could write , so that       
would be a first category set in which contradicts the Baire Category Theorem.  ( Is  second
category in  ?
 4) Recall that a subset  of  is called an set if  can be written as a countable      union of closed sets, and that is a set if it can be written countable intersection of open sets. The complement of a set is an  set and vice-versa.       is not an  set in .  To see this, suppose that , where the 's are      

  closed in .  Since  is second category in , one of these 's must be not nowhere dense in .   This  must therefore contain an open interval .  But then , which is         
impossible because there are rational numbers in any interval  
    Taking complements, we see that  is not a -set in .  
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Example 6.14  Suppose is continuous.  Then  has an antiderivative , by the       Fundamental Theorem of Calculus. Since  is differentiable (therefore continuous), it has anantiderivative .  Continuing in this way, let  denote an antiderivative of .  It is a trivial    observation that:
       for all                
We will use the Baire Category Theorem to prove a much less obvious fact:
      for all  in    (*)            

In other words, if  is not identically 0 on , then there must exist a point  such      that every antiderivative      

The hypothesis in (*) lets us write , where               
   

        ;  these are closed sets in  because each  is continuous.  Since  is second
category in itself, one of the sets  is not nowhere dense and therefore contains an interval         .  Since  is identically  on ,  is identically  on 

We can repeat the same argument on any closed subinterval by letting       
         and , we can conclude that  contains an open interval on which  is identically .  , each closed subinterval  contains a point  at which     In particular
            .  Therefore  is dense in .  Since  is continuous and  is  on a
dense set,  must be  everywhere in . )    See Theorem II.5.12 and Exercise III.E.16.

Example 6.15  (The Banach-Mazur Game)  The equipment for the game consists of two disjoint
sets  where Set  belongs to Andy and set  belongs to Beth.    Andy gets       
the first “move” and selects a closed interval .  Beth then chooses a closed interval   
              

, where  has length   Andy then selects a closed interval , where  has
length .  They continue back-and-forth in this way forever.  ( 

 Of course, to finish in a finite
time they must make their choices faster and faster.)  When all is done, they look at

         If , Andy wins; if Beth wins.  We claim that if  is first category,
then Beth can always win.
Suppose , where  is nowhere dense in   Let Andy's  choice be        

   th
             .  Of course,  is nowhere dense in ;  but actually  is also nowhere
dense :in the interval 
  If int cl , then cl  must contain an nonempty open             
  interval   But then 
    cl cl cl cl ,                      which contradicts the fact that  is nowhere dense in .  

Then the open set  int cl  is nonempty and Beth can make her  choice  to  be         
a closed interval int cl .  This implies that , since                

  int cl int                             

Therefore  and Beth wins!  
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Example 6.16  The Baire Category Theorem can also be used to prove the existence of a
continuous function on  that is nowhere differentiable.  The details can be found, for 
example, in (S. Willard).  Roughly, one looks at the space  with theGeneral Topology   
uniform metric , and argues that the set  of functions which have a derivative   at one or more
points is a (“thin”) first category set in  But the complete space  is a        
(“thick”) Baire space.  Therefore it is second category in itself so .  In fact,      
               is  in   Any function in  does the trick.dense

7.  Complete Metrizability
Which metric spaces are completely metrizable that is, when does there exist a metric  
          on  for which  is complete and  ?  We have already seen, using the Baire
Category Theorem, that  is not completely metrizable, and that certain familiar spaces like
    
   are completely metrizable.  In this section, we will answer to this question.

Lemma 7.1  Let be a pseudometric space. If  continuous and ( )        g a
then  is continuous at .1g     a
Proof  The proof is a perfect “mimic” of the proof in analysis (where  or ).   

Our first theorem tells us that certain subspaces of complete spaces are completely metrizable.
Theorem 7.2  If  is complete and  is open in , then there is a metric  on  such    d   
that ,  is complete that is,  is completely metrizable.  O d 
If  is not already complete,  it is because there are some nonconvergent Cauchy sequences 
in .  But those Cauchy sequences  have limits in they converge to points outside     do
but in Fr .  The idea of the proof is to create a new metric on  that is equivalent to , and   
which “blows up distances” near the boundary of : in other words, the new metric destroys the
“Cauchyness” of the nonconvergent Cauchy sequences.
Here is a concrete (but slightly simpler) example to illustrate the idea.

Let  be the usual metric on the interval   The sequence               
    

is a nonconvergent Cauchy sequence in The function tan  is a     
homeomorphism for which    

                   tan tan  defines a new metric on , and tan  is an
isometry because tan tan tan tan  Since  is                 
complete, so in         The sequence is still nonconvergent in  because   
        but  in , it is no longer a Cauchy sequence.
In the proof of Theorem 7.2, we will not have a homeomorphism like “tan” to use.
Instead, we define a continuous  and use to create a new metric  on         
that destroys Cauchy sequences  when they approach Fr  
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Proof of 7.2    Define .  Since  is open, the denominator is never  for        so  is continuous, by Lemma 7.1.  On , define                
It is easy to check that  is a metric on . 

Since sequences are sufficient to determine the topology in pseudometric spaces, we can show
that  on  by showing that they produce the same convergent sequences in .  Suppose    
        is a sequence in  and 
 If , then since  we get  .                

 If , then  (since  is continuous), so .                    

             is complete suppose is a -Cauchy sequence in .  Since , the sequence
            is also -Cauchy, so some .   But, in fact, this  must be  in
 If  then  and so   In particular, this means               that for every  we can find  for which   Then            , so .  This contradicts the assumption that  is                    
 -Cauchy. 

Therefore .  Since  on ,   and so  is complete.                         

The next theorem generalizes this result, but the really interesting idea is actually in Theorem
7.2.  The proof of Theorem 7.3 just uses Theorem 7.2 repeatedly to “patch together” a more
general result.
Theorem 7.3 (Alexandroff)  If  is complete metric space and  is a  in , then there is    a metric  on , with  on , for which  is complete.  In other words: a  subset of a        complete space is completely metrizable.

Proof   Let  , where  is open in .  Let  be a metric on , equivalent to  on ,        



   



such that ,  is complete.  Let min .  Then  on , and                    
  

      is complete.  (Note that  and  are identical for distances smaller than one: this is  


why they produce the same convergent sequences and the same Cauchy sequences. )
 
For , define     (the series converges since all ).            



   
2

  is a metric on :
  
  Exercise
     on :
  We show that  and  produce the same convergent sequences in   
   



187

   Suppose .  Let  .  For every ,   on ,                 
  so   .  Pick  so that       .  For each ... , ,  we           

 


 12 2


  can pick  so if  then   Then if               


 
2 2

  max { ..., , we get ,               


      


     
 2 2

    +   ,  so .          2 2  

   Conversely, if , then for , we can pick  so that        
 

         , so                 


     
2 2

       But on , so .                   
  
    is complete:
  Let  be -Cauchy in .  Let . For any , we can choose  so that          
        if , then , and therefore .                  2 ,

  Therefore  is Cauchy in the complete space  and there is a point       
   such that .  But  on , so .                              

    This is true for each . But  can have only one limit , so we        conclude that ...    ...    Since  for each , we               
  have , so ( .  But  on , so ( .  Therefore                   
   is complete.    
Corollary 7.4   is completely metrizable (and therefore  is a Baire space, so  is second  
category ).in 
Proof        , so  is an  set in .  So, taking complements, we get that
             is a  set in .            

In fact, a sort of “converse” to Alexandroff's Theorem is also true.
Theorem 7.5  For any metric space , the following are :  equivalent
  i)    is completely metrizable 
  ii)   is homeomorphic to a  set in some complete metric space      G 
  iii) If  is any metric space and  is a                 
  homeomorphism then  is a  set in    (        therefore we say that “  is
  an absolute  set among metric spaces” )
  iv)   is a  set in the completion , .     
Various parts of Theorem 7.5 are due to Mazurkiewicz (1916) & Alexandroff (1924).
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The proof of one of the implications in Theorem 7.5 requires a technical result whose proof we
will omit. (See, for example Willard, )General Topology
Theorem 7.6 (Lavrentiev)   Suppose  and  are complete metric spaces with     
           and .  Let  be a homeomorphism from  onto .  Then there exist  sets  in 
             and  in  with cl  and cl  and there exists a homeomorphism  
          from  onto  such that    (Loosely stated: a homeomorphism between subsets of
two complete metric spaces can always be “extended” to a homeomorphism between sets. )
Assuming Lavrentiev's Theorem, we now prove Theorem 7.5.

Proof  i) ii)  Suppose  is completely metrizable and let  be a complete metric on     
equivalent to . Then the identity map is a homeomorphism and            
is certainly a  set in    (     In other words, we can use  in Part 2 ).      

 ii) iii) Suppose we have a homeomorphism , where  is a           
set in a complete space   Let the completion  ,  be a                  
homeomorphism (into ).  We want to prove that  must be a  set in .     

We have that  is a homeomorphism. Using Lavrentiev's Theorem, we get an      
extension of  to a homeomorphism  where ,    are  sets with                   
and   (s ).     ee the figure

                               
Since  is a in there are open sets  in  such that                 

  
             

      . Therefore  is also a in   But  is a homeomorphism, so  is a  set in .  Therefore , where each            
  

            is open in  and, in turn,  where  is open in  .
Also,  is a in , so , where the 's are open in  .          
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Putting all this together,                 
     

            
   .   The last expression shows that  is a  set in  .  But then

                             
      is a  set in . 

 iii) iv)  iii) states that any “homeomorphic copy” of  in a metric space  must    
be a  in .  Letting , , it follows that must be a  set in the completion           

 
   , .
 iv) i)  This follows from Alexandroff's Theorem 7.3: a set in a complete space is  completely metrizable.   
Theorem 7.5 characterizes, for metric spaces, the “absolute  sets.  This suggests otherquestions: what spaces are “absolutely open”?  what spaces are “absolutely closed?”  Of
course in each case a satisfactory answer might involve some  kind of qualification.  For
example, “among Hausdorff spaces, a space  is absolutely closed iff ... ”

Example 7.7   Since  is not a  in  (an earlier consequence of the Baire Category Theorem), Theorem 7.5 gives us yet another reason why  is not completely metrizable.
Example 7.8  Since  is completely metrizable, it follows that  is a Baire space.  If  is the  
usual metric on , then  is an example of a Baire metric space that isn't complete.   

To finish this section on category we mention, just as a curiosity and without proof, a
generalization of an earlier result ( ).  I have never seen itBlumberg's Theorem: see Example II.5.8
used .anywhere
Theorem 7.9   Suppose  is a Baire metric space.  For every , there exists a      
dense subset  of  such that  is continuous,      
The original theorem of this type was proved for or    (Blumberg,     New properties of
all real-valued functions, Transactions of the American Mathematical Society, 24(1922) 113-
128).
The more general result stated in Theorem 7.9 is (essentially) due to Bradford and Goffman
( , Proceedings of the American MathematicalMetric spaces in which Blumberg's Theorem holds
Society 11(1960), 667-670)
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Exercises
E11.  In a pseudometric space , every closed set is a set and every open set is an      set ( ).see Exercise II.E.15
      a) Find a topological space  containing a closed set that is not a  set.    

      b) Recall that the “scattered line” is the space  where   
   is a usual open set in  and           
Prove that the scattered line is not metrizable.  ( )Hint:  or  sets are relevant.  

E12.  a) Prove that if  is open in , then Fr  is nowhere dense.O   
       b) Suppose that  is a discrete subspace of a Hausdorff space  and that  has noD   
isolated points.  Prove that  is nowhere dense in . 

E13.  Let  be the cofinite topology.  Prove that  is a Baire space if and only if  is either   
finite or uncountable.

E14.  Suppose  is any metric on  which is equivalent to the usual metric on .  Prove that the  
completion  is uncountable.~ ~  

E15. Suppose that  is a nonempty complete metric space and that  is a family of  
continuous functions from  to  with the following property: 
    a constant  such that  for all            
Prove that there exists a nonempty open set  and a constant  (independent of ) such that  
        for all  and all .
This result is called the Uniform Boundedness Principle.
Hint: Let  for all .  Use the Baire Category Theorem.            
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E16. Suppose , where  is a metric space where  is a metric. For each           
  , define
       “the oscillation of  at ” inf diam  is a neighborhood of           
  a)  Prove that  is continuous at  if and only if  .    

  b)  Prove that for ,  is open in .           
1

  c)  Prove that  is continuous at  is a -set in .       

Note: Since is not a -set in , a continuous function cannot have  as its set of       points of continuity.  On the other hand,   a -set in  and, from analysis, you should know is an example of a continuous function that is continuous at each  and      
discontinuous at each point .  
        d) Prove that there cannot exist a function  such that for all  and      
all ,               Hint for d): Suppose  exists.
  i) First prove that if ( ) is a sequence of rationals converging to an irrational,  then   and, likewise, if  is a sequence of irrationals converging        to a rational, then .   

  ii) Define a new function  by  and  for             
  irrational.  Examine the set of points where  is continuous.  )

E17.  There is no continuous function  for which the set of points of continuity is .    
The reason ( ) ultimately depends on the Baire Category Theorem.  see problem E16 Find the error
in the following “more elementary proof.”

Suppose  is continuous and that  is continuous at  iff          
Then , where                        

 


Each , and  can be written as a countable union of disjoint open intervals.  If   
         and  are consecutive intervals in , then or else there would be arational in .  Therefore  consists only of the endpoints of some disjoint open    intervals.  Therefore  is countable. 

It follows that  is  continuous at is            not   
  countable.  Therefore  is continuous on more than just the points in . 

E18.  For each  , construct an equilateral triangle  (including its interior) in  withirrational   
one vertex at  and its opposite side above and parallel to the -axis.  Prove that                 must contain an “open box” of the form  for some  and1
some .  In the hypothesis, we could weaken “equilateral” to read  “ ... ” ?  
( )Hint: Consider  has height .         
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E19. Suppose .  Prove that if  is discontinuous at every irrational , then there       
must exist an interval  such that  is discontinuous at every point in       

E20.  is “absolutely open” if whenever  is a homeomorphism            
(into), then  must be open in .  Find all absolutely open spaces.  
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8.  Compactness
Compactness is one of the most powerful topological properties. Formally, it is a stronger
version of the Lindelöf property (although it preceded the Lindelöf property historically).
Compact spaces are relatively simple to work with because of the “rule of thumb” that “compact
spaces often act like finite spaces.”
Definition 8.1  A topological space  is called  if every open cover of  has a   compact
finite subcover.
Example 8.2
 1) A finite space is compact.
 2) Any set  with the cofinite topology is compact because any one nonempty open 
set covers  except for perhaps finitely many points.
 3) An infinite discrete space is not compact because the cover consisting of all
singleton sets has no finite subcover.  In particular,  is not compact.    

 
 4) The space  is compact:  if  is any open cover, and        

  
      , then the set covers  except for perhaps finitely many points.
 5)   is not compact since  has no finite subcover.          

Definition 8.3  A family  of sets has the  ( ) if every finite     finite intersection property FIP
subfamily of  has nonempty intersection.
It is sometimes useful to have a characterization of compact spaces stated in terms of closed sets,
and we can get one using FIP.  As you read the proof of Theorem 8.4, you should see that the
characterization is nothing more a restatement of the definition of compactness that uses
complements to “convert” to closed sets.
Theorem 8.4     The following are equivalent for any topological space  
  1)   is compact
  2)  every family  of closed sets in  with the finite intersection property 
  also has  .  
Proof 1) 2) Suppose  is compact and that  is a family of closed sets with FIP. Let  
                     . For any , the FIP tells us that   


               In other words, no finite subcollection of  covers .  Since 

is compact, cannot be a cover of cover , that is,               
   .

         2) 1) The proof of the converse is similar and left as an exercise.    
Theorem 8.5  For any space , 
  a)  If  is compact and  is closed in , then  is compact.   
    b)  If  is a  space and  is a compact subset, then  is closed in .   Hausdorff
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Proof  a) The proof is like the proof that a closed subspace of a Lindelof space is Lindelof.¨ ¨
(Theorem III.3.10)  Suppose  is a closed set in a compact space , and let        be a cover of  by sets open .  For each , pick an open set  in  such that        in     Since  is closed, the collection  is an open cover of .           Therefore we can find  so that  covers .  Then                           covers , so  is compact. 
Note: the definition of compactness requires that we look at a cover of  using sets open
in in  , but it should be clear that it is equivalent to look at a cover of  by sets open  
 b) Suppose  is a compact set in a Hausdorff space .  Let  For each     
           , we can choose disjoint open sets  and   in  where  and .  Then                   covers so there are finitely many points  such that
                          covers .  Then , so  is open and  is
closed.   
Notes 1) Reread the proof of part b) assuming  is a finite set.  This highlights how
“compactness” has been used in place of “finiteness” and illustrates the rule of thumb that
compact spaces often behave like finite spaces.
 2) The “Hausdorff” hypothesis cannot be omitted in part b).  For example, suppose
      and that  is the trivial pseudometric on . Then every singleton set  is compact but
not closed.
 3) Compactness is a clearly a topological property, so part b) implies that if a compact
space  is homeomorphic to a subspace  of a Hausdorff space , then  is closed in . So we    
can say that a compact space is “absolutely closed” among Hausdorff spaces, “it's closed
wherever you put it.”  In fact, the converse is also true among Hausdorff spaces a space which
is absolutely closed is compact but we do not have the machinery to prove that now.
Corollary  8.6        A compact metric space  is complete. 
Proof           is a dense subspace of its completion , . But  is compact, so  must
be closed in .  Therefore , , so  is complete.             
(Note: this doesn't work for pseudometric spaces (why?).  But is Corollary 8.6 still trueproof 
for pseudometric spaces?  Would a proof using the Cantor Intersection Theorem work?)
You may have seen some different definition of compactness, perhaps in an analysis course. In
fact there are several different “kinds of compactness” and, in general they are .not equivalent
But we will see that they are all equivalent in certain spaces for example, in  

Definition 8.7   A topological space  is called 
sequentially compact  if every sequence in has a convergent subsequence in  
countably compact  if every countable open cover of  has a finite subcover

        ( )therefore  “ Lindelof + countably compact compact ”¨ 
pseudocompact   if every continuous  is bounded (     Check that this is

    equivalent to saying that every continuous real-valued function
    on  assumes both a maximum and a minimum value ).
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We want to look at the relations between these different varieties of compactness.
Lemma 8.8  If every sequence in  has a cluster point, then every infinite set in  has a  
limit point.  The converse is true if  is a -space that is, if all singleton sets are     closed in .
Proof Suppose  is an infinite set in .  Choose a sequence  of distinct terms in  and let    
       be a cluster point of   Then every neighborhood of  contains infinitely many 's so 
          Therefore  is a limit point of .
 Suppose  is a -space in which every infinite set has a limit point. Let  be a    sequence in .  We want to show that  has a cluster point.  Without loss of generality, we  may assume that the terms of the sequence are distinct (why?), so that  is       
infinite   Let  be a limit point of the set . We claim  is a cluster point for       Suppose  is an open set containing  and .  Let                 Since  is closed,  is open and   Then , so                   
            Therefore  contains a term  for some  so  is a cluster pointof       

Example 8.9  The “ ” hypothesis in the second part of Lemma 8.8 cannot be dropped.  Let
                    

      where the 's are distinct points and  for all 
The idea is to make for each  so that is a sort of “double” for .  So we define          



     if 
 if 




     
              
         

 
   
     
   

  

It is easy to check that  is a pseudometric on .  In , every nonempty set  (finite or    
infinite) has a limit point because if , then its “double” is a limit point of .  But the    
sequence  has no cluster point in    



Theorem 8.10   is countably compact iff every sequence in  has a cluster point  
(So, by Lemma 8.8, a -space  is countably compact iff every infinite set in  has a    
limit point).
Proof   Suppose  is countably compact and consider any sequence .  Let  the       “  tail” of    We claim that cl                 


  Assume not. Then every  is in cl  for some , so cl              
  is a countable open cover of .  Since  is countably compact, there exists an 
   such that cl cl .  Taking complements gives              
  cl cl , which is impossible.    

  

Let cl  and let  be a neighborhood of .  Then  for every , so            
  contains an  for arbitrarily large values of .  Therefore  is a cluster point of      
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 Conversely, suppose  is  countably compact.  Then  has a countable open cover not
              

 with no finite subcover.  For each , pick a point .  Then the
sequence  has no cluster point.  To see this, pick any ;  we know  is in some .       This  is a neighborhood of  and  for .            

The next theorem tells us some connections between the different types of compactness.
Theorem 8.11  In any space , the following implications are true: 

  is countably compact  is pseudocompact
 is compact

         or
 is sequentially compact







   

Proof    It is clear from the definitions that a compact space is countably compact.
 Suppose  is sequentially compact. Then each sequence  in  has a subsequence   that converges to some point .  Then  is a cluster point of .  From Lemma 8.8 we     conclude that  is countably compact.
 Suppose  is countably compact and that  is continuous.  The sets     
                     form a countable open cover of , so for
some ,  the sets cover .  Since ,  this implies that .                     So   for all in other words,  is bounded, so  is pseudocompact.              
In general no other implications hold,  among these four types of compactness, but we do not
have the machinery to provide counterexamples now. ( See Corollary 8.5 in Chapter VIII  and
Example 6.5 in Chapter X ).  We will prove, however, that they are all equivalent in any
pseudometric space   Much of the proof is developed in the following sequence of 
lemmas some of which have intrinsic interest of their own. 

Lemma 8.12  If  is first countable, then  is sequentially compact iff  is countably compact  
(so, in particular, sequential and countable compactness are equivalent in pseudometric spaces.)
Proof We know from Theorem 8.11 that if  is sequentially compact, then  is countably 
compact.  Conversely, assume is countably compact and that  is a sequence in .  By    Theorem 8.10, we know  has a cluster point, .  Since  is first countable, there is a   subsequence   ( ).  Therefore  is sequentially compact.         see Theorem III.10.6

Definition 8.13  A pseudometric space  is called  if  for each  can     totally bounded 
be covered by a finite number of -balls. If , this is the same as saying that for ,     
there exist  such that .                       

More informally: a totally bounded pseudometric space is one that can be kept under full
surveillance using a finite number of policemen with an arbitrary degree of nearsightedness.
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Example 8.14
 1) Neither  nor  (with the usual metric) is totally bounded since neither can be 
covered by a finite number of -balls.
 2) A compact pseudometric space  is totally bounded:  for any , we can   
pick a finite subcover from the open cover        

Lemma 8.15  If  is countably compact, then  is totally bounded.   
Proof   If , then  is totally bounded, so assume   If  is not totally bounded,        
then for some , no finite collection of -balls can cover .  Choose any point .      Then we can choose a point  so that    (or else  would cover ).                    We continue inductively. Suppose we have chosen points  in  such that        
                   for each .  Then we can choose a point  at distance 
from each of because otherwise the -balls centered at  would cover .            
         The sequence  chosen in this way cannot have a cluster point because, for any ,  
      contains at most one .  Therefore is not countably compact.   

Lemma 8.16  A totally bounded pseudometric space  is separable. 
Proof  For each , choose a finite number of -balls that cover  and let  be the (finite) set  

 
that contains the centers of these balls. For any   for some   This          

 
means that  is dense.  Since  is countable,  is separable.        

 

Theorem 8.17 In a pseudometric space , the properties of compactness, countable 
compactness, sequential compactness and pseudocompactness are equivalent.
Proof We already have the implications from Theorem 8.11.
 If  is countably compact, then  is totally bounded ( ) and    see Lemma 8.15
therefore separable ( ).  But a separable pseudometric space is Lindelöf see Lemma 8.16 (see
Theorem III.6.5) and a countably compact Lindelöf space is compact.  Therefore compactness
and countable compactness are equivalent in  
     We observed in Lemma 8.12 that countable compactness and sequential compactness are
equivalent in . 
 Since a countably compact space is pseudocompact, we complete the proof by showing
that if  is not countably compact, then  is not pseudocompact.  This is the only part   
of the proof that takes some work. (A bit of the maneuvering in the proof  is necessary because
  is a pseudometric.  If  is actually a metric, some minor simplifications are possible. )
If  is not countably compact, we can choose a sequence  with no cluster point (    see
Theorem 8.10).  In fact, we can choose  so that all the 's are distinct  and            if .  Then we can find open sets  such that  i) , ii) for             why?     
        ,   and so that iii) diam  as 
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Here is a sketch for finding the 's; the details are left to check as an exercise.First check that for any  and positive reals if  then                
       and  are disjoint in fact, they have disjoint closures.
Since  has no cluster point we can find, for each , a ball  that contains      no other that is, for all .  Let .  Then for                  

            we have  and  Of course, two of these balls     
might overlap.  To get the 's we want, we shrink these balls (choose smaller radii     to replace the ) to eliminate any overlap.  We define the 's inductively:

Let           
Pick      so that  
  and         
    
Since
   and         
 we can          
pick  so that  
   and         
   and         
     
Continue in this way.  At the  step, we get a new ball  for which   th  

 if ,   (because  and              
  for all  (because                         
Finally, when we choose  at each step, we can also add the condition that
 

     , so that diam .

Then we can let      

For each , define  by .  Since  and  is closed,                    
   


 the denominator of  is not . Therefore  is continuous, and   Define           

   



 .   (For any , this series converges because  is in at most one  and    

therefore at most one term     .)   Then  is unbounded on  because          
   .  So we are done if we can show that  is continuous at each in 

Let .  We claim that there is an open set  containing  such that  for at most           finitely many 's.
 If for some , we can simply let .           
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 Suppose  for all .  Since  is not a cluster point of , we can choose          so that  contains none of the 's.  For this , choose  so that if            then diam .  Then  for (           
  if  and  ,         

 then                
  ).  Then let     

Then  is identically  for all but finitely many .  Therefore  is really only a finite sum       of continuous functions, so  is continuous.  Suppose  is any  neighborhood of       
         . Then there is an open set  containing  for which .  But  is openin   in so is also open in , and .  So  is continuous at .                 

We now explore some properties of compact metric spaces.
 
Theorem 8.18  Suppose  is a compact subset of a metric space  Then  is closed and   
bounded (that is,  has finite diameter).
Proof   A compact subset of the Hausdorff space must be closed ( ).see Theorem 8.5b
            If , then  is certainly bounded.  If , choose a point  and let                      by .  Then  is continuous and  is bounded (since  ispseudocompact): say  for all .  But that means that , so  is a             bounded set .   
Caution: the converse of Theorem 8.18 is false.  For example, suppose  is the discrete unit
metric on an infinite set .  Every subset of  is both closed and bounded, but an infinite  
subspace of  is not compact.  However, the converse to Theorem 8.18  is true in  with the
usual metric, as you may remember from analysis.

Theorem 8.19 Suppose .  The  is compact iff  is closed and bounded.   

Proof   Because of Theorem 8.18, we only need to prove that if  is closed and bounded, then  
is compact.  First consider the case .  Then  is a closed subspace of some interval   
       and it is sufficient to show that  is compact.  To do this, consider any sequence in  and choose a monotone subsequence  using Lemma 2.10.   Since  is bounded, we      know that some point  ( ). Since  has a convergent subsequence,         see Lemma 2.9
  is sequentially compact and therefore compact.
          When , the proof is similar.  We illustrate for 2.  If  is a closed bounded set in     
, then  is a closed subspace of some closed box of the form .  Therefore it       
is sufficient to prove that  is compact.  To do this, consider any sequence in .  Since      
      is compact, the sequence  has a subsequence that converges to some point            .  Now consider the subsequence  in .  Since  is compact, the sequence           

  has a subsequence that converges to some point .  But in ,
                             iff  and  in .  So   This shows   that  is sequentially compact and therefore compact.
 For , a similar argument clearly works the argument just involves “taking   
subsequences”  times.   
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9.  Compactness and Completeness
We already know that a compact metric space  is complete. Therefore all the “big” 
theorems that we proved for complete spaces are true, in particular, for compact metric
spaces for example Cantor's Intersection Theorem, the Contraction Mapping Theorem and the
Baire Category Theorem (which implies that a nonempty compact metric space is second
category in itself).
Of course, a complete space  need not be compact: for example, . We want to see the  
exact relationship between compactness and completeness.
We begin with a couple of preliminary results.
Theorem 9.1   If  is totally bounded, then  is bounded.   
Proof   Let .  Pick points  so that  and let                      
                     max .  For any pair of points ,  we have    and  for some  , so that       

 .                          

Therefore has finite diameter that is   is bounded.         

Notice that the converse to the theorem is false: “total boundedness” is a stronger condition than
“boundedness.”  For example, let min  on .  Then diam  so               
(  is bounded.  Because  when we have that               
         

 .  Since  cannot be covered by a finite number of these -balls,
(  is not totally bounded.  

Theorem 9.2  If  is totally bounded and then  totally bounded:  that is, a      
subspace of a totally bounded space is totally bounded.
Proof    Let  and choose  so that .  Of course these                     

 balls also cover .  But to show that  is totally bounded, the definition requires us to show  
that we can cover  with a finite number of -balls   centered at points in 
              Let  and, for each , pick                         
We claim that the balls cover .  In fact, if , then  for some ;              and of course  is also in   Then , so                          

  
       .   

The next theorem gives the exact connection between compactness and completeness. It is
curious because it states that “compactness” (a topological property) is the “sum” of two
nontopological properties.
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Theorem 9.3   is compact iff is complete  totally bounded.    and

Proof    ( )  We have already seen that the compact space  is totally bounded and  
complete.  (For completeness, here is a fresh argument:  let be a Cauchy sequence in 
      .  Since  is countably compact, has a cluster point  in .  But a Cauchy sequencemust converge to a cluster point.  So  is complete.  )
 
 Let  be a sequence in .  We will show that  has a Cauchy         subsequence which (by completeness) must converge.  That means  is sequentially 
compact and therefore compact.
Since is totally bounded, we can cover  with a finite number of 1-balls, and one of them  
       call it must contain  for infinitely many .  Since  is totally bounded (   see
Theorem 9.2) we can cover  with a finite number of -balls and one of them call it  

       must contain  for infinitely many .
Continue inductively in this way.  At the induction step, suppose we have already defined -balls

                where each ball contains  for infinitely many . Since  is totally
bounded, we can cover it with a finite number of -balls, one of which call it

   
       must contain  for indefinitely many . This inductively defines an infinite
descending sequence of balls  where each  contains  for infinitely              many values of .
Then we can choose       , with                    
   , with                        
The subsequence  is Cauchy since  for  and diam                  

Example 9.4   With the usual metric :
  i)    is complete and not compact (and therefore not totally bounded).
    ii)   is totally bounded, because it is a subspace of the totally    

 
  bounded space .  But it is not compact (and therefore not complete). 
     iii)  and  are homeomorphic because both are countable discrete     

  spaces.  Total boundedness is not a topological property.  We remark here,
  without proof, that for every  metric space , there is anseparable  
   metric  such that  is totally bounded.equivalent     

  iv)  is compact and is therefore both complete and totally      
 

             bounded.  
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During the earlier discussion of the Contraction Mapping Theorem, we defined uniform
continuity.  For convenience, the definition is repeated here.
Definition 9.5   A function  is uniformly continuous if        

    (                 

Clearly, if  is finite, then every continuous function  is               uniformly continuous.  (For  and each , we pick the the that works at  in the         definition of continuity.  Then min  works “uniformly” across the space .         )  
The next theorem generalizes this observation to compact metric spaces and illustrates  
once more “rule of thumb” that “compact spaces act like finite spaces.”
Theorem 9.6  If is compact and  is continuous, then  is uniformly           
continuous.
Proof If  is not uniformly continuous, then for some , “no  works.” In particular, for   
that ,   “doesn't work” so we can find, for each , a pair of points  and  with      

  
               

  but   By compactness, there is a subsequence
                . The corresponding subsequence  also because  
                  

      Therefore, by continuity, we should have
         and also But this is impossible since
             for all .   
Uniform continuity is a strong and useful condition. For example, Theorem 9.6 implies that a
continuous function  must be uniformly continuous.  This is one of the reasons     
why “continuous functions on closed intervals” are so nice to work with in calculus the
following example is a simple illustration:
Example 9.7  Suppose  be bounded.  Choose any partition of       
   
                       

and let  and denote the inf and sup of the set .  Let                    

The sums    
 

 
        

are called the lower and upper sums for  associated with this partition.
 t is easy to see that the sup of the lower sums (over all possible partitions) is finite:  it is
called the     and denoted .  Similarly, the inf of all the upperlower integral of on     sums is finite: it is called the     and denoted   It is easy toupper integral of on     
verify that If the two are actually , we say  is (Riemann)  

      equal
integrable on  and we write               
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Uniform continuity is just what we need to prove that a continuous  on  is integrable. If    
is continuous on , then  is uniformly continuous.  Therefore, for , we can choose    
              such that  whenever    Pick a partition of for which

 each   Then for each ,  Therefore          
 

      
 

  

 
              

              
 

 
      

 
Since  was arbitrary, we conclude that .         

 

10.  The Cantor Set
The Cantor set is an example of a compact subspace of  with a surprising combination of
properties.  Informally, we can construct the Cantor set  as follows.  Begin with the closed
interval  and delete the open “middle third.” The remainder is the union of 2 disjoint closed 
intervals: .  At the second stage of the construction, we then delete the open middle      

 thirds of each interval leaving a remainder which is the union of 2  disjoint closed intervals: 
                  

      .  We repeat this process of deleting the middle thirds “forever.”
The Cantor set  is the set of survivors the points that are never discarded. 
Clearly there  some survivors: for example, the endpoint of a deleted middle third forare 
example, clearly survives forever and ends up in .

  
To make this whole process precise, we name the closed subintervals that remain after each
stage.  Each interval contains the new remaining intervals below it:
               

                 

                      
                                

                                                   
                    ( ) ( ) ( )                              

   etc.                                                            etc.
At the  stage the set remaining is the union  closed subintervals each with length . We    

label them   where                 
  

Notice that, for example, .  As we go down the chain              “toward” the Cantor set, each new  or  in the subscript indicates whether the next set down is 
“the remaining left interval” or “the remaining right subinterval.”   So for every sequence
               , we have
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Since  is complete, the Cantor Intersection Theorem gives that a one-point   
     set   The Cantor set is then defined as  

   .            

Comments:
1) If , we can look at the   for which  .  Then                          first
                  and .  Since these closed intervals are disjoint, we conclude
         .  Therefore each sequence corresponds to a different point in , so
                 .   Since , we conclude .
2) An observation we don't really need:  each  can be written using a “ternary decimal”   
expansion , where each   Just as with base 10           




   

 three
decimals, the expansion for a particular  is not always unique: for example,   

 three
    three    It's easy to check  has two different ternary expansions iff is the endpoint

of one of the deleted “open middle thirds” in the construction.  It is also easy to see that a point is
in  iff it  a ternary expansion involving  0's and 2's.  For example,  and     has only  

 

What are some of the properties of ?
 i)   is the union of the deleted open “middle third” intervals, so  is       
open in .  Therefore  is closed in , so  is a compact (therefore also complete) metric     
space.
 ii) Every point in  is a limit point of that is  has no isolated points.  (     Note: such
a space is sometimes called .  This is an awkward but well-established term; it isdense-in-itself
awkward because it means something different from the obvious fact that every space  is a
dense subset of itself.)   To see this, suppose , where ,                
             

 .  Given , pick  so .  Define ( or )  so that 
      and let
  .                     2 

Then  and  are distinct points in , but both are in and diam .            
      

Therefore , so  is not isolated in .         
 iii) With the usual metric ,  is a nonempty complete metric space with no isolated 
points.  It follows from Theorem 3.6 that  and, since , then   However,         
we can also see this from the discussion in ii):  there are  different ways we could  

redefine the infinite “tail” ) of and each version produces a different point in       
     at distance  from   From Example 6.13(2), every point in  is a condensation point. 

 iv) In some ways,  is “big.”  For example, the Cantor set has as many points as .  
Also, since  is complete, it is second category in itself.  But  is “small” in other ways. For one 
thing,  is nowhere dense in  (and therefore in .  Since  is closed, this simply means    
that  contains no nonempty open interval.
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              To see this, suppose .  At the  stage of the construction, we must have      th
  exactly one of the .  (This follows immediately from the definition of an interval.)  Therefore for every , so  and           



 v)  is also “small” in another sense.  In the construction of , the open intervals that 
are deleted have total length .  In some sense, the “length” of  

               what remains is 0 !  This is made precise in measure theory, where we say that  has   
measure 1 measure 0 and that  has .  Measure is yet another way, differing from both cardinality
and category, to measure the “size” of a set.

The following theorem states that the topological properties of  which we have discussed
actually  the Cantor set.  The theorem can be used to prove that a “Cantor set”characterize
obtained by some other construction is actually the same topologically as .
Theorem 10.1  Suppose  is a nonempty compact subset of  which is dense-in-itself and 
contains no nonempty open interval.  Then  is homeomorphic to the Cantor set . 
Proof  The proof is omitted.   (See Willard, .)General Topology
It is possible to modify the construction of  by changing “middle thirds” to, say, “middle
fifths ” or even by deleting “middle thirds” at stage one, “middle fifths” at stage two, etc.
Theorem 10.1 can be used to show that the resulting “generalized Cantor set” is homeomorphic
to , but the total lengths of the deleted open intervals may be different:  that is, the result is can
be a topological Cantor set but with positive measure.  “Measure” is not a topological property.

Here's one additional observation that we don't need, but which you might see in an analysis
course.   As we noted earlier,  consists of the points  for which we can write    

  , with each           


 
     three

We can obviously rewrite this as , where each  and therefore we can define     


 
 2 

a function as follows:     

  for  .        
 

  
 
2   

More informally,:
                 three two

This mapping  is  one-to-one .  For example, not
  )     and       

 three two
   )            

 three two
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In fact, for , we have iff the interval is one of the “deleted middle        
thirds.”  It should be clear that  is continuous and that if  in , then that is,        
 is weakly increasing.  ( )Is  onto?
The function  is not defined on .  But  is, by construction, a union of          disjoint
open intervals.  We can therefore  the definition of  to a mapping  inextend        
the following simple-minded way:

   if 
if ,  where  is a “deleted middle third”     

      
Since we know , this amounts to extending the graph of  horizontally over each   
“deleted middle third”  from to   The result is the graph of the     
continuous function .
 is sometimes called the Cantor-Lebesgue function.  It satisfies:
  i)       
  ii)  is continuous
  iii) is (weakly) increasing
  iv) at any point  in a “deleted middle third” ,  is differentiable   
  and    

Recall that  has “measure .”  Therefore we could say “ almost everywhere” even      
though  rises monotonically from  to 1! 
Note:  The technique that we used to extend  works in a similar way for any closed set    
and any continuous function . Since  is open in , we know that we can write       
     as the union of a countable collection of disjoint open intervals which have form ,
        or   We can extend  to a continuous function  simply by extending 
the graph of  over linearly over each    

 if ,   then let the graph  over  be the straight line segment joining               
 if ,  then let  have the constant value  I          if , then let  have the constant value  on        

There is a much more general theorem that implies that whenever  is a closed subset of ,  
then each and be extended to a function .  In the particular case ,        
proving this was easy because  is ordered and we completely understand the structure of the
open sets in ..

Another curious property of , mentioned without proof, is that its “difference set”
              .  Although  has measure , the difference set in this case has
measure !
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Exercises
E21.   Suppose that  is continuous and onto, where  and  are any topological      
spaces.  Prove If  is compact, then  is compact.  (“  A continuous image of a compact space is
compact.”)

E22.  a) Suppose that  is compact and  is Hausdorff.  Let  be a continuous      
bijection.  Prove that  is a homeomorphism.
     b) Let  be the usual topology on  and suppose  and  are two other topologies     on  such that    Prove that ,  is not Hausdorff and that ,  is                 
not compact.   ( )Hint: Consider the identity map        
       c) Is part b) true if  is replaced by an arbitrary compact Hausdorff space ?   

E23.  Prove that a nonempty topological space  is pseudocompact iff every continuous
     achieves both a maximum and a minimum value.

E24.   Suppose   Prove that  is continuous iff  is continuous for           
every compact set .  

E25.  Suppose that  and  are nonempty disjoint closed sets in  and that  is compact.    
Prove that    Is this necessarily true if both  and  are not compact?    

E26.   Let  and  be topological spaces. 
     a)  Prove that  is compact iff every open cover by  open sets has a finite subcover. basic
     b)  Suppose  is compact.  Prove that if , then  and  are compact.  (         By
induction, a similar statement applies to any finite product.)
     c)  Prove that if  and  are compact, then is compact. (     By induction, a similar
statement applies to any finite product.)
                (  )Hint: for any is homeomorphic to .  Part a) is relevant.     
 d) Point out explicitly why the proof in c) cannot be altered to prove that a product of
two countably compact spaces is countably compact.  (An example of a countably compact space
   for which  is not even pseudocompact is given in Chapter X, Example 6.8.)
Note:  In fact, an arbitrary product of compact spaces is compact. This is the “Tychonoff
Product Theorem” which we will prove later.
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           It  true that the product of a countably compact space and a compact space is countablyis
compact.  You might trying proving this fact.  A very similar proof shows that a product of a
compact space and a Lindelof space is Lindelof.  That proof does  generalize, however, to¨ ¨ not
show that a product of two Lindelof spaces is Lindelof.  Can you see why?¨ ¨

E27.  Prove that if  is a compact metric space and , then  has infinitely      many isolated points.
E28.   Suppose  is any topological space and that  is compact. Prove that the projection map 
       is closed  ( ).that is: a projection “parallel to a compact factor” is closed
E29.  Let  be an uncountable set with the discrete topology .  Prove that there does not 
exist a totally bounded metric  on  such that .d   

E30.  a) Give an example of a metric space  which is totally bounded and an isometry 
from  into which is not onto.    Hint: on the circle , start with a point  and 
repeatedly rotate it by some fixed angle on a 

 b) Prove that if  is totally bounded and  is an isometry from  into ,      
then  must be dense in .       Hint: Given cover with finitely many -balls;    

one of these balls must contain  for infinitely many values of .  

     c) Show that a compact metric space cannot be isometric to a proper subspace of itself.
Hint: you might use part b).
      d) Prove that if each of two compact metric spaces is isometric to a subspace of the
other, then the two spaces are isometric to each other.  Note: Part d) is an analogue of the
Cantor-Schroeder-Bernstein Theorem for compact metric spaces.
E31.   Suppose  is a metric space and that  is totally bounded for every metric    
     .  Must  be compact?
E32.   Let  be an open cover of the compact metric space .  Prove that there exists a  
constant  such that for all :   for some . (          The number  is called a
Lebesgue number for . )
E33.  Suppose  is a metric space with no isolated points.  Prove that  is compact iff  
     for every pair of disjoint closed sets 
E34.     Suppose (with the usual metric).  Prove that  is totally bounded if and only if    
is bounded.
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Chapter IV Review
Explain why each statement is true, or provide a counterexample.

1.  Let  be the set of fixed points of a continuous function  where  is a      
Hausdorff space.   is closed in . 
2.  Let  denote the set of all Cauchy sequences in  that converge to a point in .  Then  
     .
3.  For a metric space :  if every continuous function  assumes a minimum      
value, then every infinite set in  has a limit point.
4.  There exists a continuous function  for which the Cantor set is the set of fixed   
points.
5.  If  has the cofinite topology, then every subspace of  is pseudocompact. 
6.  Let  have the subspace topology from the Sorgenfrey line.  Then  is countably   
compact.
7.  Let  is first category in , and let be the topology on  for which  is a          
subbase. Then  is a Baire space.   
8.  Every sequence in has a Cauchy subsequence. 

9.  If  is a dense subspace of  and every Cauchy sequence in  converges to some point   
in , then  is complete.  
10.  If  is the cofinite topology on , then ( ) has the fixed point property.   
11.  Every sequence in   has a Cauchy subsequence. 
12.  Let , where  is the Cantor set.  Then  is completely metrizable.       13

13.  The Sorgenfrey plane is countably compact.
14.  If every sequence in the metric space  has a convergent subsequence, then every 
continuous real valued function on  must have a minimum value.
15.  Suppose is complete and .  The set  is continuous at  is             
second category in itself.
16.  In the space , with the metric  of uniform convergence, the subset of all  
polynomials is first category.
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17.  If  is nonempty and open in , then  is  nowhere dense.    not
18.  A nonempty nowhere dense subset of  must contain an isolated point.
19.  There are exactly  nowhere dense subsets of . 
20.  Suppose  is nonempty subset of  with no isolated points.   cannot be completely 
metrizable.
21.  Suppose  is a countable complete metric space.  If , then  may not be      
complete, but  is completely metrizable.
22.  If  is first category in  and , then  is first category in .     
23.  There are  different metrics  on , each equivalent to the usual metric, for which  is     
complete.
24.  If  has the cofinite topology, then every infinite subset is sequentially compact.
25.  Suppose  and ( ) :   and  both exist at }.  Then , with its               

 
usual metric, is totally bounded.
26.  A space  is a Baire space iff  is second category in itself.  
27.   Suppose  is continuous. Let  be the subset of the Cantor set  that consists of      
the endpoints of the open intervals deleted from  in the construction of .  
        If .  Then  .         
28.  Let  be a metric on the irrationals  which is equivalent to the usual metric and such that 
       is complete. Then  must be totally bounded.
29.  Suppose  is a nonempty complete metric space and  is a closed subspace such that  
   is totally bounded.   Then every sequence in  has a cluster point.
30.  There is a metric  on , equivalent to the usual metric, such that  is notd     
complete.
31.  Let  have the usual topology.  Every nonempty closed subset of  is second    
category in itself.
32.  Suppose  and is continuous at .  There is a metric                 
equivalent to the usual metric on  for which  is complete.  
33.  If the continuum hypothesis (CH) is true, then  cannot be written as the union of fewer than
c nowhere dense sets.
34.  Suppose  is a complete subspace of   Then  is a set in       
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35.  There are 2  different subsets of  none of which contains an interval of positive length. 
36.  Suppose  is a nonempty complete metric space and  is a closed subspace such that  
   is totally bounded.   Then every sequence in  has a cluster point.
37.  Let  be a metric on the irrationals  which is equivalent to the usual metric and for which  
          is totally bounded.  Then  cannot be complete.
38.  The closure of a discrete subspace of  may be uncountable.
39.  Suppose  and is continuous at . Then there is a               
metric  on , equivalent to the usual metric, such that  is totally bounded.d   
40.  Suppose  is compact, that  is a continuous function, and that  for         
all  Then there is an  such that  for all           
41.  If every point of  is isolated, then  is complete.   
42.  If  has no isolated points, then its completion also has no isolated points. 
43.  Suppose that for each point , there is an open set  such that  is        complete ( ).  Then there is a metric  on  such thatthat is,  is “locally complete” d d   
    is complete.
44.  For a metric space  with completion ( , it can happen that .             



45.  Let  be the usual metric on .  There is a completion  ( of  for which         
        

46.  A subspace of   is bounded iff it is totally bounded.
47.  A countable metric space must have at least one isolated point.
48.  The intersection of a sequence of dense open subsets in   must be dense in . 
49.  If   is the Cantor set, then  is an  set in .    

50.  A subspace  of a metric space is compact iff  is closed and bounded.   
51.  Let   be the base for a topology  on .                   
The space  is compact.  
52.  Let  be the usual metric on .  Then  is sequentially compact.     

53.  Let  be the usual metric on .  Then  is countably compact.     

54.  A subspace of a pseudocompact space is pseudocompact.



212

55.  An uncountable closed set in  must contain an interval of positive length.
56.  Suppose  is the Cantor set and  is continuous. Then the graph of  (a subspace      
of , with its usual metric) is totally bounded.  

57.  Let  denote the Cantor set , with the metric  .  Then  is          
   totally bounded.

58.  A discrete subspace of  must be closed in  
59.  A subspace of  which is discrete in its relative topology must be countable.
60.  If and are subspaces of  and each is discrete in its subspace topology, then       
is discrete in the subspace topology.
61.  Let cos  denote the composition of cos with itself  times.  Then for each , there       
exists an  (perhaps depending on ) such that cos    

62.  Suppose  is any metric on  equivalent to the usual metric. Then  is totally       
bounded.
63.  Let  denote the unit circle in .   is homeomorphic to a subspace of the Cantor set .     
64.  There is a metric space  satisfying the following condition: for every metric   d d, 
    is totally bounded.

65.  , with the subspace topology from the Sorgenfrey plane, is compact. 
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Chapter VConnected Spaces
1. Introduction
In this chapter we introduce the idea of connectedness.  Connectedness is a topological property
quite different from any property we considered in Chapters 1-4.  A connected space  need not
have any of the other topological properties we have discussed earlier.  Conversely, the only
topological properties that imply “  is connected” are very extreme such as “ 1” or “    
has the trivial topology.”
2.  Connectedness
Intuitively, a space is connected if it is all in one piece; equivalently a space is disconnected if it
can be written as the union of two nonempty “separated” pieces.  To make this precise, we need
to decide what “separated” should mean. For example, we think of  as connected even though
  can be written as the union of two disjoint pieces: for example,  where  
        and .  Evidently, “separated” should mean something more than
“disjoint.”
On the other hand, if we remove the point  to “cut” , then we probably think of the remaining 
space  as “disconnected.”  We can write , where (  and           
    .  Here,  and  are disjoint, nonempty sets and (unlike  and  in the preceding 
paragraph) they satisfy the following (equivalent) conditions:
  i)  and  are open in  
  ii)  and  are closed in  
  iii) cl cl that is, each of  and  is disjoint from              the closure of the other. This is true even if we use cl  instead of cl .) 

Condition iii) is important enough to deserve a name.
Definition 2.1  Suppose  and  are subspaces of .   and  are called  if each      separated
is disjoint from the closure of the other that is, if cl cl .          

It follows immediately from the definition that
  i)  separated sets are disjoint, and
  ii)  if  and  are separated, and , , then and  are also         
  separated: that is, subsets of separated sets are separated.
Example 2.2
 
 1) In , the sets   and  are .  Likewise         disjoint but not separated
in , the sets and 2  are disjoint but                         
not separated
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 2) The intervals  and are separated in  but        
cl cl  The same is true for the open balls and                
           2  in .  
 So, the condition that two sets are separated is  than saying they are disjoint,stronger
but  than saying that the sets have disjoint closures.weaker

Theorem 2.3   In any topological space , the following are equivalent: 
   1)  and  are the only clopen sets in   
   2) if  and Fr , then  or            
   3)  is not the union of two disjoint nonempty open sets
   4) is not the union of two disjoint nonempty closed sets
   5) is not the union of two nonempty separated sets.
Note: Condition 2) is not frequently used.  However it is fairly expressive: to say that
Fr says that no point  in  can be “approximated arbitrarily closely” from both inside    
and outside so, in that sense, and  are pieces of  that are “separated” from      
each other.
Proof 1) 2)   This follows because  is clopen iff Fr  ( ).     see Theorems III.2.8, II.4.5.3
 1) 3)  Suppose 3) is false and that  where ,  are disjoint, nonempty and      
open.  Then  is a nonempty proper clopen subset of , which shows that 1) is false.    
 3) 4)    This is clear.
 4) 5)    If 5) is false, then , where  are nonempty and separated.     
Since cl we conclude that cl , so  is closed.  Similarly,  must be closed.         
Therefore 4) is false.
 5) 1)    Suppose 1) is false and that  is a nonempty proper clopen subset of .  Then  
          is nonempty and clopen, so  and  are separated.  Since ,   5) is
false.   

Definition 2.4 A topological space is  if any (and therefore all)  of the  connected
conditions in Theorem 2.3 are true.  If , we say that  is connected if  is connected in    
the subspace topology.
According to the definition, a subspace  is  if we can write ,       disconnected
where the following (equivalent) statements are true:
  1) and  are disjoint, nonempty and open in   
  2) and  are disjoint, nonempty and closed in   
  3)  and  are nonempty and separated in .  
If  is disconnected, such a pair of sets  will be called a  or of .  disconnection separation 

The following technical theorem and its corollary are very useful in working with connectedness
in subspaces.
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Theorem 2.5   Suppose Then  and  are separated   iff  and  are        in 
separated  .in 
Proof   cl cl   ( ), so cl  iff cl                    see Theorem III.7.6
iff cl  iff cl   Similarly, cl  iff cl                             

Caution: According to Theorem 2.5,   is disconnected iff   where  and  are      
nonempty separated sets  iff   where  and  are nonempty separated sets .in in       
Theorem 2.5 is very useful because it means that we don't have to distinguish here between
“separated in ” and “separated in ” because these are equivalent.  In contrast, if we say  
that  is disconnected when is the union of two disjoint, nonempty open ( ) sets  or closed
in cannot , then phrase “in ”  be omitted:  the sets , might not be open ( ) in .   or closed
   For example, suppose  and .  The sets  and                 

        
  are open, closed and separated in .  By Theorem 2.5,  they are also separated in ,

but they are neither open nor closed in .

Example 2.6
 1) Clearly, connectedness is a topological property. More generally, suppose     
is continuous and onto. If  is proper nonempty clopen set in , then  is a proper   
nonempty clopen set in .  Therefore a continuous image of a connected space is connected.
 2) A discrete space  is connected iff . For example,  and  are not connected.     
 3)  is not connected since we can write  as the union of two nonempty separated sets: 
                  .  Similarly, we can show  is not connected.
      More generally, a connected subset  of  must be an interval: otherwise, there would 
be points  where  but Then                           
would be a nonempty proper clopen set in .
     In fact, a subset  of  is connected    is an interval.  It is not very hard, using the  iff
least upper bound property of , to prove that each interval in  is connected. (  Try it as an
exercise! )  However, we will give a short proof soon using a different argument (Corollary 2.12).
 4)    If  is connected and  is continuous,The Intermediate Value Theorem      
then ran  is connected ( ) so ran  is an interval ( ).  Therefore if      by part 1 by part 3
and , there must be a point  for which           
 5) The Cantor set  is not connected (since it is not an interval).  But much more is true.
Suppose  and that Since  is nowhere dense ( ), the interval          see IV.10
                  ,  so we can choose  with .  Then 
           is clopen in , and  contains  but not . So  is not connected.  It follows

that every connected subset of  contains at most one point.
   A space  is called  if its only nonempty connected subspaces  totally disconnected
are the one-point sets.
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 6)  is connected iff every continuous  is constant:  certainly, if  is       
continuous and not constant, then  is a proper nonempty clopen set in  so  is not   
connected.  Conversely, if is not connected and  is a proper nonempty clopen set, then the 
characteristic function  is continuous but not constant.     

Theorem 2.7   Suppose .  Let “the graph of ”                 
If  is continuous, then graph of  is homeomorphic to the domain of ;  in particular, the graph  
of a continuous function is connected iff its domain is connected.
Proof We want to show that  is homeomorphic to .  Let  be defined by     
       Clearly  is a one-to-one map from onto .
 Let  and suppose  is a basic open set containing            
Since  is continuous and there exists an open set  in  containing  and such that       
                     Then , and , so  is continuous at .
        If  is open in , then  is open in , so  is open.  Therefore  is            
a homeomorphism.  
Note:  It is  true that a function  with a connected graph must be continuous.  See Examplenot 
2.22.

The following lemma makes a simple but very useful observation.
Lemma 2.8  Suppose  are separated subsets of .  If and  is connected,      
then  or .     
Proof   . The sets  and  are separated (because          
                 and ). Since  is connected, either  (so  or
        (so ).   

The next theorem and its corollaries are simple but powerful tools for proving that certain sets
are connected.  Roughly, the theorem states that if we have one “central ” connected set  and
other connected sets none of which is separated from , then the union of all the sets is
connected.  It is as if  “  links all the connected pieces together.”

Theorem 2.9   Suppose  and  ( ) are connected subsets of  and that for each ,        
and  are not separated. Then  is connected.      

Proof  Suppose that  where  and  are separated.  By Lemma 2.8, either         
or .  Suppose .   By the same reasoning we conclude that for each , either      
              or   But if some , then  and  would be separated.  Hence every
         .  Therefore  and the pair  is not a disconnection of .  



217

Corollary 2.10   Suppose that for each ,  is a connected subset of  and that   CC             for all .  Then C  is connected.  
Proof   If then C  is connected.  If , pick an  and let  be                  the “central set”  in Theorem 2.9. For all ,  , so  and  are not              separated.  By Theorem 2.9,  C  is connected.       

Corollary 2.11  For each , suppose  is a connected subset of  and that .           nThen  is connected.
 

Proof   Let .  Corollary 2.10 (and simple induction) shows that the 's are     


connected.  Then Another application of Corollary 2.10 gives            that   is connected.     
     

Corollary 2.12  Let  Then  is connected iff  is an interval.  In particular,  is     
connected (so  and  are the only clopen sets in ). 
Proof  We have already shown that if  is not an interval, then  is not connected (  Example
2.6.3), so we need to show each interval  is connected.  This is obvious if  or .      
If  and  are nonempty disjoint closed sets in , then there are points  and        
                  for which 
 
 To see this, define  by     is a closed                
 bounded set in  so  is compact.  Therefore   a  value, occurring at   has minimum
 some point  )          see Exercise IV.E23.
Let           

                             .  Since  , we
conclude .  Similarly, .  Therefore , so ] is connected.             
Suppose Since is homeomorphic to , each interval  is connected.        
Since , Corollary 2.10 implies that  is connected. We          

  
 can use Corollary 2.10 in a similar way to show that all other possible intervals are

connected:
 [  

 
1       

 [  
 

1       
 [  

      
  

      
 [  

 1        
 [  

 1        
 [     

 1     
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Corollary 2.13  For every ,  is connected   

Proof   By Corollary 2.12,   is connected.   can be written as a union of straight lines (each  
homeomorphic to ) through the origin and Corollary 2.10 implies that is connected.    

Corollary 2.14  Suppose that for all  there exists a connected set  with     C
     .  Then  is connected.
Proof   Certainly  is connected.  
 If , pick a point  For each  in  there is, by hypothesis, a connected set       
            that contains both  and .  By Corollary 2.10,   is connected.     

Example 2.15  Suppose  is a countable subset of , where Then  is       
connected.  In particular,  is connected.   To see this, suppose  are any two points in    
  .
Choose a straight line  which is perpendicular to the line segment  joining and .  For each   
       let  be the union of the two line segments    .    is the union of two intervals with a point in common, so  is connected.

   
If , then , so each  is in at most one   Since is countable,                 
there must be a point  for which .  Then  so   is                      
connected by Corollary 2.14 (with ).   

The definition of connectedness agrees with our intuition in the sense that every set that you
think (intuitively) should be connected  actually connected according to Definition 2.4.   Butis
according to Definition 2.4, certain strange sets also turn out “unexpectedly” to be connected.
    might fall into that category. So the official definition forces us to try to expand our
intuition about what “connected” means.   For example, is  connected?  
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This situation is analogous to what happens with the “ -  definition” of continuity.  It turns out, 
using that definition, that every function that you expect (intuitively)  be continuous should is
actually continuous. If there is problem with the official definition of continuity, it would be that
it seems too generous it allows some “unexpected” functions also to be continuous. An
example is the well-known function from elementary analysis:   , where   

  if  in lowest terms
if  is irrational   

  
 



   is continuous at  iff  is irrational ( ).check!

Definition 2.16   If  is connected and  is not connected, then  is called a          
cut point in 
Suppose  is a homeomorphism  It is easy to check that  is a cut point in  iff  is        
a cut point in  Therefore .  homeomorphic spaces have the same number of cut points
Example 2.17          is not homeomorphic to  if 2    
Proof   Every point in  is a cut point, but  clearly has no cut points when 2  (or look at   
Example 2.15).
It is true but much harder to prove that and  are not homeomorphic whenever    
  .  One way to prove this is to develop theorems about a topological property called
dimension.  Then it turns out (thankfully) that dim dim so these spaces are      
not homeomorphic. But usually, the proof is done as a part of algebraic topology.
Example 2.18   How is  topologically different from ?  They are both compact connected  
metric spaces with cardinality , and there is no topological property from Chapters 1-4 that can
distinguish between them. The difference has to do with connectivity. Each point in , except 
the endpoints, is a cut point; but  has  cut points since  is homeomorphic to       no
for every    

Corollary 2.19   Suppose  and  are nonempty topological spaces.  Then is         
connected iff  and  are connected.  (  It follows by induction that the same result holds for
any finite product of spaces. When infinite products are defined in Chapter 6, it will turn out
that the product of any collection of connected spaces is connected.)
Proof               Suppose  is connected.  Since , we have .Therefore  is the continuous image of a connected space, so is connected.  Similarly,  is  
connected.
 Let  and  be nonempty connected spaces, and consider any two points  and    
              in   Then  and  are homeomorphic to  and , so these “slices”
of the product are connected and both contain the point . By Corollary 2.10, the “cross” 
              is a connected set that contains both  and . By Corollary
2.14, we conclude that  is connected.      
      (This corollary gives an another reason why is connected for .    
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Corollary 2.20  Suppose  is a connected subset of .  If cl , then  is connected.       
In particular, the closure of a connected set is connected.
Proof   For each  and  are not separated.  By Theorem 2.9,    
           is connected.  

Example 2.21  By Corollary 2.20, the completion of a connected pseudometric space  
must be connected.

Example 2.22   Let .   Then  for every  and thesin           
    

 
 

graph oscillates more and more rapidly between as  Part of the graph is pictured     
below. Of course,  is not continuous at  Let be the graph of the  function     restricted
      Since  is continuous, Theorem 2.7 shows that  is homeomorphic to  so  is 
connected.

                          
 is sometimes called the “topologist's sine curve.”
Because cl , Corollary 2.20 gives that  is connected for any set           
                 In particular,  the graph of  is connected. 

Therefore, .  However, it  true thata function  with a connected graph need not be continuous is
if the graph of a function  is a  connected subset of , then  is continuous.     closed 
(The proof is easy enough to read:  see C.E. Burgess, Continuous Functions and Connected
Graphs, The American Mathematical Monthly, April 1990, 337-339.)
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3.  Path Connectedness and Local Path Connectedness

In some spaces , every pair of points can be joined by a path in .  This seems like a very 
intuitive way to describe “connectedness”.  However, this condition is actually  than ourstronger
definition for a connected space. .

Definition 3.1    A  is a continuous map  The path starts at its     path in initial      
point terminal point from  and ends at its    We say  is a  to   We can    path
picture this in :

             
Sometimes it helps to visualize a path by thinking of a point moving in  from  to  with  
     representing its position at “time” . Remember, however, that the path, by
definition, is the  ,  ran .  To illustrate the distinction:  suppose  is afunction not the set    
path from  to .  Then the function  defined by  is a  path             different
(in the “opposite direction,” from to ), even though ran ran    

Definition 3.2   A topological space  is called  if, for every pair of points     path connected
     , there is a path from  to  in .
Note:  is called  if, for every pair of points , there exists a    arcwise connected
homeomorphism arc  with  and .  Such a path  is called an             
from  to .  If a   in a Hausdorff space  is not an arc, the reason must be that the path   path
intersects itself, that is, that  is not one-to-one (why?).  It can be proved that a Hausdorff space
is path connected iff it is arcwise connected.  Therefore some books use “arcwise connected” to
mean the same thing as “path connected.”
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Theorem 3.3   A path connected space  is connected.
Proof             is connected, so assume  and choose a point .  For each , there is a
path  from  to .  Let ran .  Each  is connected and contains .  By Corollary           2.10,  is connected.           

Sometimes path connectedness and connectedness are equivalent.  For example, a subset   
is connected iff   is an interval iff  is path connected.  But in general, the converse to Theorem 
3.3 is false, as the next example shows.

Example 3.4 Consider  .   In Example 2.22, we showed that thesin      
    



graph   is connected.   However, we claim that there is no path in  from to  and      
therefore  is not path connected.

Suppose, on the contrary, that  is a path from to For , write            
             .    The coordinate functions  and  are continuous ). Since(why?
     is compact,  is uniformly continuous ( ) so we can choose  for whichTheorem IV.9.6 
                  

We have .  Let sup  Then .  Since  is a closed                     
set,  so  (            We can think of t  as the last “time” that the path  goes 
through the origin).
Choose a positive  so that .  Since  and , we                           
can choose a positive integer  for which
                  

    
By the Intermediate Value Theorem, there exist points  where              

  
and .  Then sin  and sin , so .  But this                    

  
   

is impossible since  and therefore                   

Note: Let  be the graph of the restriction . For any nonempty set    
         , a similar argument shows that  is not path connected.  In particular,
cl  is not path connected. But  is homeomorphic to , so is path            
connected.   So .the closure of a path connected space need not be path connected
 
Definition 3.5   A space  is called      
 
 a)  if for each point and for each neighborhood  of ,locally connected     
 there is a connected open set  such that .     
 b)  if for each point and for each neighborhood locally path connected    
 of , there is a path connected open set  such that .      
Note: to say  is path connected means that any two points in U can be joined by a path . in U
Roughly, “locally path connected” means that “nearby points can be joined by short paths.”
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Example 3.6 
  1)  is connected, locally connected, path connected and locally path connected.

 2) A locally path connected space is locally connected.
 
 3) Connectedness and path connected are “global” properties of a space : they are
 statements about  “as a whole.”  Local connectedness and local path connectedness are
 statement about what happens “locally” (in arbitrarily small neighborhoods of points) in
 .  In general, global properties do not imply local properties, nor vice-versa.
  a) Let .   is not connected (and therefore not path       
  connected) but  is locally path connected (and therefore locally connected).
  The same is true if  is a discrete space with more than one point.
  b) Let  be the subset of  pictured below.  Note that  contains the 
  “topologist's sine curve” as a subspace you need to imagine it continuing to
  oscillate faster and faster as it approaches the vertical line segment in the picture:

                       
   is path connected (therefore connected), but  is not locally connected: 
  if there is no open connected set containing  inside the      
  neighborhood .  Therefore  is also not locally path connected.       
  Notice that Examples a) and b) also show that neither “(path) connected” nor
  “locally (path) connected” implies the other.

Lemma 3.7   Suppose that  is a path in from  to  and  is a path from  to .  Then there      
exists a path  in  from  to .   
Proof     ends where  begins, so we feel intuitively that we can “join” the two paths “end-to-
end” to get a path  from  to .  The only technical detail we need to provide to provide is that,  
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by definition, a path  must be a function with domain .  To get  we simply “join and   
reparametrize:”

                                
Define by   .  (            

       



You can imagine a point moving

twice as fast as before: first along the path  and then continuing along the path .  )
The function  is continuous by the Pasting Lemma ( ).     see Exercise III.E22

Theorem 3.8    If  is connected and locally path connected, then  is path connected.    
Proof   If , then  is path connected.  So assume .  For any , let         
              there exists a path in  from  to .  Then  since  ( ).  Wewhy?
want to show that   
Suppose . Let  be a path in  from  to . Choose a path connected open set        
containing .  For any point , there is a path  in  from  to .  By Lemma 3.7, there is a       
path  in  from  to , so Therefore  so  is open.            
Suppose  and choose a path connected open set  containing .  If , there is a path         
in  from  to .  Therefore there cannot exist a path in  from to or else, by Lemma 3.7,      
there would be a path  from  to  and  would be in .  Therefore , so ,             
so  is closed and therefore clopen. 
       is connected and  is a nonempty clopen set, so .  Therefore  is path connected.  
Here is another situation (particularly useful in complex analysis) where connectedness and path
connected coincide:
Corollary 3.9  An  connected set is path connected.open in  
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Proof   Suppose .  If  is any neighborhood of  , then int .  Since            in  is open in , and  is open in ,  is also open in   Therefore there is an  such that        
              Since  is an ordinary ball in is path connected ( Of course,
that might not be true for a ball in an arbitrary metric space.)  We conclude that  is locally
path connected so, by Theorem 3.8,   is path connected.   

4.  Components
The components of a space  are its largest connected subspaces. A connected space  has 
exactly one component  itself.  In a totally disconnected space, for example , the 
components are the singletons In very simple examples, the components “look like” just
what you imagine.  In more complicated situations, some mild surprises can occur.
Definition 4.1   A   of a space is a maximal connected subspace.  (Here, “maximal      component  
connected” means:  is connected and if  where  is connected, then )         
For any , let  and  is connected Then  and  is                   
connected since  is a union of connected sets each containing  ( ).  If      Corollary 2.10
and  is connected, then  was one of the sets  in the collection whose union defines  so    
            and therefore   Therefore  is a component of  that contains , and  can be
written as the union of components: .   

Of course it can happen that  when for example, in a connected space ,        
                              for every  But if , then : for if  , then 
would be a connected set strictly larger than .

The preceding paragraphs show that the components form a partition of a pairwisedistinct  
disjoint collection whose union is .  If we define  to mean that  and  are in the same     
component of , then it is easy to see that  is an equivalence relation on  and that  is the   equivalence class of .
Theorem 4.2     is the union of its components, and any two components of  are disjoint.    
Each component is a closed connected set.
Proof  In light of the preceding comments, it only remains to show that each component  isclosed.  But this is clear: cl  and cl  is connected ( ).  By maximality,      Corollary 2.20
we conclude that cl        

It should be clear that a homeomorphism maps components to components.  Therefore
homeomorphic spaces have the same number of components.
Example 4.3
 1) Let has three components: and                     , , .
For each we have If a space has only a finite number of components, ,         then each component is also open, because its complement is closed it is the union of the other
finitely many, closed components.
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   However, a space can have infinitely many components and in general they need not be
open.  For example, if , then the components are the singleton sets         

  
    ( ) The component  is not open in .why? .  
 2) In , B  is not homeomorphic to B  because  

          
  has two components but  has three.
 3) Suppose  is a nonempty, connected, clopen subset of .  If , then  is clopen     
in , so  is not connected unless  Therefore  is a component of .      
 4) The sets  and in  pictured below are not homeomorphic since  contains a cut  
point  for which  has three components.   contains no such cut point.    

                   
Example 4.4     The following examples are meant to help “fine-tune” your intuition about
components by pointing out some false impressions that you need to avoid.  (Take a look back at
Definition 2.4 to be sure you understand what is meant by a “disconnection.”)
 1) Let  One of the components of  is }, but           

 
is  clopen in .  Therefore the sets  and do  form anot not          

   
disconnection of .    A component and its complement might not form a disconnection of 

 2) .If  is the union of disjoint closed connected sets, these sets need not be components
For example, .   
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 3) If  and  are in different components of , then there might not exist a disconnection  
        ,  of  for which and  For example, consider ,         

  
where:
  and  are the straight lines with equations  and          

 For each  is the rectangle  and The top and                
 bottom edges of the 's approach the lines  and   The first four 's are pictured:       

  
Each  is connected and clopen in . Therefore each is a component of . (     See Example
4.3.3.)
    and  are the other components of .  For example:
  is connected.  Let  be the component that contains .   must be disjoint from     each component , so if , then the additional points in  are from that is,          where  But in that case,  would be a nontrivial clopen set in             and  would not be connected.  Therefore    

Suppose  is a disconnection of that is,  and  are disjoint clopen sets in  for which     
        and  are separated so, by Lemma 2.8,  is either a subset of  or a subset of
         : without loss of generality, assume that  and let  Since is open,  has a neighborhood   But  intersects infinitely many connected 's, each of which,    therefore, must also be a subset of .  Since the top edges of those 's approach , there are   points on  in cl   Therefore intersects , so   So                  

In particular:   and  are in different components of , but both are in          the same piece  of a disconnection.
Conversely, however:  suppose  is a disconnection of some space , with  and     
     .  Then  and  must be in different components of . ( )Why?
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 4) Suppose  is a connected space with a cut point , and let  be a component of  
  .   ( )Illustrate with a few simple pictures before reading on.
It  happen that cl .  ( )can    Did your pictures suggest otherwise?
For example, consider the following subspace  of  where     

   is the interval  on the -axis and    


  is a “broom” made up of  disjoint “straws”       
    (each a copy of ) extending out from the origin and arranged so that 

  slope   

                                  
The broom  is connected ( ),  so cl  is connected.   because it's path connected 

Let .  Each straw  is connected and clopen in .  Therefore each  is a         component of and the remaining connected subset,  is the remaining component of   
  
So  is a cut point of  and cl .    

Note is: for this example, cl , but   in the closure of the each of the other   components of    

In a much more complicated example, due to Knaster and Kuratowski (Fundamenta
Mathematicae, v. 2, 1921)  is a connected set in with a cut point  such that 
    is . Intuitively, all the singleton sets  are “tied together”totally disconnected
at the point  to create the connected space ; removing  causes  to “explode” into   
“one-element fragments.”   In contrast to the “broom space,” all  components in   
are singletons, so  is not in the closure (in ) of  of them.  any
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Here is a description of the Knaster-Kuratowski space  (sometimes called “Cantor's
teepee”).  The proof that is has the properties mentioned is omitted.  (You can find it on
p. 145 of the Steen & Seebach's book  Counterexamples in Topology Let
 the Cantor set ( on the -axis in , and let .            



 {  is the endpoint of one of the “deleted middle thirds” in the      
                         construction of 
 , where the 's are eventually equal                base three              to  or eventually equal to } Of course,  is countable.   
   ( “the points in  that are not isolated on either side in ”)      
 Then  and both  and  are dense in .          
For each ,  let the line segment from to  and define a subset of  by       

 
 is rational if 
 is irrational if 

 
         
         





Cantor's teepee is the space .   is connected and  is totally       
disconnected.

5.  Sierpinski's Theorem
Let  be the cofinite topology on .  Clearly,  is connected.   But is it path connected?     
( This innocent-sounding question turns out to be harder than youTry to prove or disprove!)  
might expect.
Suppose  is a path from (say)  to  in .  Then ran  is a connected set                
containing at least two points.  But every  subspace of  is discrete, so ran must befinite     
infinite.  Therefore , where  of the sets  are      

  infinitely many
nonempty.  Is this possible?  The question is not particularly easy.  In fact, the question of
whether  is path connected is equivalent to the question of whether  can be written as     
a countable union of pairwise disjoint nonempty closed sets.
The answer lies in a famous old theorem of Sierpinski which states that a compact connected
Hausdorff space  cannot be written as a countable union of two or more nonempty pairwise
disjoint closed sets. (The“finite union” case is  trivial:   cannot be the union of   nonempty
disjoint closed sets since each set  would be clopen an impossibility since  is    
connected. The “infinite union” case is the interesting part of the theorem.)
We will prove Sierpinski's result after a series of several lemmas.  The line of argument used is
due to R. Engelking.  (It is possible to prove Sierpinski's theorem just for the special case
   .  That proof  is a little easier but still nontrivial.)
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Lemma 5.1  If  and  are disjoint closed sets in a compact Hausdorff space ,  then there exist  
disjoint open sets  and  with  and         
Proof   Consider first the case where , a singleton set.  For each , choose disjoint     
open sets and  with  and .  The open sets  cover the compact set  so a             finite number of them cover , say .  Let .  Then                               and ,  are disjoint open sets.
            Suppose now that  and  are any pair of disjoint closed sets in .  For each      
pick disjoint open sets  and  such that  and .  The open 's cover the            compact set , so a finite number of them cover , say   Let                               .  Then  and  are disjoint open sets.  
Note: If  and  were both finite, an argument analogous to the proof given above would work 
in  The proof of Lemma 5.1 illustrates the rule of thumb that “compactany Hausdorff space . 
sets act like finite sets.”

Lemma 5.2  Suppose  is an open set in the compact space .  If   is a         family of closed sets in  for which  , then there exist  such that                     

Proof   For each , there is an  such that .  Therefore  is an              open cover of the compact set .  There exist  such that                            2 .  Taking complements gives that
             

Definition 5.3   Suppose .  The set                 and  is clopen in  is
called the  of  containing .quasicomponent  
  is always a closed set in .  The next two lemmas give some relationships between the
component  that contains  and the quasicomponent     

Lemma 5.4  If , then        

Proof   If  is any clopen set containing , then for otherwise  and         
         disconnect .  Therefore          and  is clopen .  
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Example 5.5   An example where In , let  be the horizontal line segment      
             

 
  and define .

 
The components of  are the sets  and the two singleton sets  and      

If  is any clopen set in  that contains , then  infinitely many 's so (since     intersects the 's are connected)   those 's.  Hence the closed set  contains points arbitrarily    contains
close to so  is also in .   Therefore  and are both in , so          
   .  (In fact, it is easy to check that       )

Lemma 5.6  If  is a compact Hausdorff space and ,  then .       

Proof              is a  connected set and , so we can show that by showingmaximal
that  is connected. Suppose , where  are disjoint closed sets in .  We can        assume that .  We will show that in other words, that there is no disconnection of      
.
  is closed in , so  and  are also closed in .  By Lemma 5.1, we can choose    disjoint open sets  and  in  with  and .  Then                   Since  is compact and  is an intersection of clopen sets in , Lemma 5.2 lets us pick  finitely many clopen sets  such that .   Let                  
                 .   is clopen in  and .
             is open in  and, in fact, is also closed in : since cl we             
have that cl cl cl cl   Therefore  is one of the clopen                 
sets containing  whose intersection defines , so .  Therefore               so    

Definition 5.7  A  is a compact connected Hausdorff space.continuum



232

Lemma 5.8   Suppose  is a closed subspace of a continuum  and that .  If  is a       
component of , then Fr .     
Proof   Let  be a component of  and let   Since cl , we have that         
                Fr cl cl cl , so we need to show that
             cl   We do this by contraposition:  assuming cl , we will
prove .  
               is compact so Lemma 5.6 gives   and  is clopen in     
        By assumption, cl , so by Lemma 5.2 there exist indices , ,...,  for    which  cl .  Since cl , we                              have Fr .    

              is clopen in  and Fr int   Since  is open in int  which is open in ,
           is open in .  But  is also closed in the closed set , so  is closed in .  Since  is
connected, we conclude that .      

Lemma 5.9   Suppose  is a continuum and that  where the 's are          
pairwise disjoint closed sets and  for  two values of .  Then for   there     at least each
exists a continuum  such that  and  for                      at least two 

Before proving Lemma 5.9, consider the formal statement of Sierpinski's Theorem..

Theorem 5.10 (Sierpinski)   Let  be a continuum.  If  where the 's are          
pairwise disjoint closed sets, then   is nonempty.at most one 

( )Of course, the statement of the theorem includes the easy “finite union” case.   In proving
Sierpinski's theorem we will assume that  where the 's are pairwise         
disjoint closed sets and  for  two values of .  Then we will apply Lemma 5.9 to    at least
arrive at a contradiction.  When all the smoke clears we see that, in fact, there are no continua
which satisfy the hypotheses of Lemma 5.9.  Lemma 5.9 is really the first part of the proof (by
contradiction) of Sierpinski's theorem set off as a preliminary lemma to break the argument
into more manageable pieces.

Proof of Lemma 5.9  
If , let       

Assume .  Choose  with  and pick a point   By Lemma 5.1, we can              choose disjoint open sets  in  with  and .  Let  be the component              of  in cl    Certainly is a continuum, and we prove that this choice of  works. We     have that   (since cl ) and that   (since                    



233

         ).  Therefore, to complete proof, we need only show that for some 
     

 Since cl , we have that cl ; and cl  because            
                 .  Therefore, by Lemma 5.8, there is a point Fr cl .  Since Fr cl
and int cl we have .  And since Fr cl cl , we have                     that .  But  is covered by the 's, so  for some    Therefore             
        
 
Proof of Theorem 5.10  We want to show that if  where the 's are disjoint   

  closed sets, then  .  Looking for a contradiction, we suppose at least two 'sat most one     are nonempty
By Lemma 5.9, there is a continuum  in  with  and such that  has nonempty          intersection with a least two 's. We can write             


              

      , where at least two of the sets  are nonempty.
Applying Lemma 5.9 again (to the continuum ) we find a continuum such that          
                     and  intersects at least two of the sets 
Then , where at                                

    
least two of the sets  are nonempty.   

We continue this process inductively, repeatedly applying Lemma 5.9, to and generate a
decreasing sequence of nonempty continua such that for each            
                       

   .  This gives   But this is   
impossible: the 's have the finite intersection property and  is compact, so .        



Example 5.11  By Theorem 5.10, we know that  cannot be written as the union of   
pairwise disjoint nonempty closed sets if .  And, of course,  can easily be      written as the union of  such sets:  for example, .  What if      
     ?
There are other related questions you could ask yourself.  For example, can  be written as 
the union of  disjoint closed sets each of which is uncountable?  The answer is “yes.”  For
example, take a continuous onto function   (       a space-filling curve, whose
existence you should have seen in an advanced calculus course ).  For each , let   
              “the vertical line segment at  in .  Then the sets  do the job.
We could also ask:  is it possible to write  as the union of uncountably many pairwise 
disjoint closed sets each of which is countably infinite?   (See Exercise VIII.E27).
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Exercises
E1. Suppose  where  and  are separated.      
     a)  Prove that if ,  then cl cl cl .                  b)  Conclude that  is closed if  is closed in  and  is closed in .      
     c)  Conclude that  is open if  is open in  and  is open in .      
    d)  Suppose  where  and  are separated. Prove that if  and           
both  and  are continuous,  then  is continuous.    

E2. Prove that  is connected directly from the definition of connected. 
(Use the least upper bound property of  . 

E3. Suppose both  are closed subsets of .  Prove that  is separated from     
    .  Do the same assuming instead that  and  are both open.

E4.  Suppose  is a connected subset of   Prove that if  and ,              
then Fr .    

E5. Let  and  be two connected metric spaces.  Suppose  and that        
                       .  Let  and .

      a) Give an example to show that  the complement of  in  might not be connected.   
    b) Prove that the complement of  in  is connected if  and  are         

unbounded.

E6. Prove that there does not exist a continuous function  such that  and        
    .
Hint:  One method: What do you know about ran ?  What else do you know?  )
          Another method: if such an  exists, let  and let .  What do you      

 know about ?

E7.  a) Find the cardinality of the collection of all compact connected subsets of .
       b) Find the cardinality of the collection of all connected subsets of .

E8.  Suppose  is a connected metric space with .  Prove that .       
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E9. Suppose each point in a metric space  has a neighborhood base consisting of clopen 
sets (such a metric space is called ).  Prove that  is totally disconnected.zero-dimensional  

E10. A metric space  satisfies the  if for all  and all , , there       -chain condition 
exists a finite set of points , , ... , ,  where , and  for                      
all 1, ..., .    
     a) Give an example of a metric space which satisfies the -chain condition but which is not
connected.
       b)  Prove that if  is connected, then  satisfies the -chain condition.    
       c) Prove that if  is compact and satisfies the -chain condition, then  is connected.  
       d) Prove that sin is connected.               

 
          ( )Use c) to give a different proof than the one given in Example 3.4.
     e) In any space , a  is a finite collection of sets        simple chain from  to    such that:
    and  if              and  if             for all                 if          

Prove  is connected iff for every open cover  and every pair of points  there is a    
simple chain from  to  consisting of sets taken from .  

E11. a) Prove that  is locally connected iff the components of every open set  are also open 
in .
     b) The path components of a space are the maximal path connected subsets.  Show that  is
locally path connected iff the path components of every open set  are also open in . 

E12.  Let  be the cofinite topology on .  We know that  is not path connected (because     
of Sierpinski's Theorem applied to the closed interval ).  Prove that the statement  “  is     
not path connected” is  to “Sierpinski's Theorem for the case ”equivalent    

E13. Let  and suppose  is a homeomorphism (into); then ran  is called an        
arc in   Use a connectedness argument to prove that an arc is nowhere dense in .   Is the  
same true if  is replaced by the circle ?  
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E14. a) Prove that for any space  and    
 if  has  components, then there are nonempty pairwise separated sets         for which    (**)       

Hints.  For a given , do not start with the components and try to group them to form the 's. Start with the fact that  is not connected.  Use induction.  When  has infinitely many 
components, then  has n components for every .  
        b) Recall that a  of  means a pair of nonempty separated sets  for whichdisconnection  
        Remember also that if  is a component of ,  is not necessarily “one piece in a
disconnection of ”  ). (see Example 4.4

     Prove that  has only finitely many components iff  has only finitely many     
disconnections.

E15. A metric space is called locally separable if, for each ,  there is an open set      
containing  such that  is separable. Prove that a connected, locally separable metric space   
is separable.

E16.  In , define  if there does  exist a disconnection  with  and            not
      i.e., if “  can't be split between  and .”  Prove that  is an equivalence relation and
that the equivalence class of a point  is the quasicomponent  (   It follows that  is the
disjoint union of its quasicomponents. )

E17.  For the following alphabet (capital Arial font), decide which pairs of letters are
homeomorphic:
         A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X Y  Z

E18.  Suppose or  is continuous and onto.  Prove               
that  contains at least 3 points.  

E19.  Show how to write  where  and  are nonempty, disjoint, connected, dense     
and congruent by translation (i.e.,   such that .                 

E20.  Suppose  is connected and Show that  can be written as  where  and       
  are connected proper subsets of .

E21.  Prove or disprove: a nonempty product  is totally disconnected iff both  and  are    
totally disconnected.
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Chapter V Review
Explain why each statement is true, or provide a counterexample.

1.  There exists a continuous function  which is onto and for which          
2.  Let  be the right ray topology on .  Then ( is path connected.    
3.  There exists a countably infinite compact connected metric space.
4.  The letter is homeomorphic to the letter T  F.
5.  If  and  are connected and not separated, then  is connected.   
6.  If  and  are nonempty and  is connected, then cl cl       
7.  If the graph of a function  is connected, then  is continuous.    
8.  , with the cofinite topology, is connected.
9.  In a space ), the component containing the point  is a subset of the intersection of all 
clopen sets containing a point .
10.  In a topological space: if  and  is clopen in , then  is not connected.       
11.  If  is continuous and onto and  is path connected, then                 
is path connected.
12.  Suppose  and that .   If  is nowhere dense, then  is not connected.        
13.  Let  be the Cantor set.  There exists a nonempty space  for which  is connected.   
14.  Let  be the Cantor set.  Then   is connected.   

15.  A component in a complete metric space is complete.
16.  Let  be the unit circle in .   is homeomorphic to a subspace of the Cantor set.S S  
17. If  is the union of an uncountable collection of pairwise disjoint nonempty, connected
closed sets , then the 's are components of .   

18. If  is the union of a finite collection of disjoint nonempty connected closed sets , then the 's are components of . 

19.  If  is the union of a countable collection of disjoint connected closed sets , then the   's are components of .
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20.  If  is connected, then its completion is also connected. 
21.  Suppose  is connected and is clopen.  If , then         
22.  Suppose  is continuous, that and             
           .  Let  denote the set of all fixed points of .  It is possible that 
is open in  (  Note:  we are not assuming f is a contraction, so f may have more than one fixed
point.)
23.  Suppose  is a connected separable metric space with .  Then  = .          
24.  If a subset  of  contains an open interval around each of its points, then  must be 
connected.
25.  There exists a connected metric space  with .    

26.  If ... ... is a nested sequence of connected sets in the plane,        A A
then  is connected.

 A
27.   is a connected set in .          

28. Let sin and suppose cl  is continuous.  Then               
 

must be constant.
29. Suppose  is connected if and only if there are exactly two functions       
such that .  

30.  If  is nonempty, countable and connected, then every  is constant.   
31. Every path connected set in  is locally path connected.

32 If  is a dense connected set in , then      
33. In a metric space  the sets  and  are separated iff       
34. A nonempty clopen subset of a space  must be a component of . 
35. Suppose  and  are topologies on  and that   If is connected, then         
    is connected.

36. The letter is homeomorphic to the letter X  Y.
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Chapter VIProducts and Quotients 
1. Introduction
In Chapter III we defined the product of two topological spaces and considered some of the  
simple properties of products. ( )  The properties weSee Examples III.5.10-5.12 and Exercise IIIE20.
explored hold equally well for products of any  number of spaces   For example,finite       the product of two compact spaces is compact, so a simple induction argument shows that the product
of any finite number of compact spaces is compact.  Now we turn our attention to productsinfinite 
which will lead us to some very nice theorems.  For example, infinite products will eventually help us
decide which topological spaces are metrizable.

2. Infinite Products and the Product Topology
The set  was defined as .  How can we define an “infinite product” set             
        ?   Informally, we want to say something like
                   
so that a point  in the product consists of “coordinates”  chosen from the 's.  But what exactly   does a symbol like  mean if there are  “uncountably many coordinates?”   
We can get an idea by first thinking about a countable product.  For sets ,...  we can     informally define the product set as a certain set of sequences:  .          

    But if we want to be careful about set theory, then a legal definition of  should have the form
               . From what “pre-existing set”  will the sequences in  be chosen?  The
answer is easy: given the sets , the ZF axioms guarantee that the set  exists.  Then    

 

                   
    

Thus the elements of  are certain  (sequences) defined on the index set .  This idea
  functions 

generalizes naturally to any product

Definition 2.1   Let  be a collection of sets.  We define the      product set 
                        .  The 's are called the  of . For each factors
   , the function  defined by  is called the - .              th projection map
For , we write more informally  -  of  and write ).             the coordinateth

Caution: the index set  might not be ordered.  So even though we use the informal notation      ,
such phrases as “the first coordinate of ,” “the next coordinate in  after ,” and “the coordinate  in  preceding ” may not make sense.  The notation is handy but can lead you into errors if    you're not careful.
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By definition, a point  in  is a function that “chooses” a coordinate  from each set       
in the collection .  To say that such a “choice function”  must exist if all the 's are      
nonempty is precisely the Axiom of Choice.  ( .)See the discussion following Theorem I.6.8
Theorem 2.2   The Axiom of Choice (AC) is equivalent to the statement that every product of
nonempty sets is nonempty.
Note: In ZF set theory, certain special products can be shown to be nonempty without using AC.
For example, if then .  Without using AC, we can            

     
precisely describe a point ( function) in the product for example, the identity function 
  so .  Can you give other similar examples?                 

 

We will often write  as .  If the indexing set  is clearly understood,  we may        simply write .

Example 2.3
 1) If , then                        

 2) Suppose  for some . Then                          
But  is impossible so .         
 3) Strictly speaking, we now have two different definitions for a finite product :  

  i)        (a set of ordered pairs)                      

  ii)   (a set of functions)                

But there is an obvious way to regard these two sets as “the same”: the ordered pair     corresponds to the function                 

 4) If , then                            
  

                            the set of all sequences where 

 5) Suppose the 's are identical, say  for all .  Then             
                                .  If , we will sometimes

write this product simply as “the product of  copies of ” because the  of factors  is     number
often more important than the specific index set .
 6) Discuss:  is the equation  always true? sometimes              
true? never true?
Now that we have a definition of the  , we can think about a product .  Weset topology    
begin by recalling the definition and a few basic facts about the “weak topology.” (See Example
III.8.6.)
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Definition 2.4  Let  be a set.  For each , suppose  is a topological space and that       
           .  The    is the smallestweak topology on generated by the collection  
topology on  that makes all the 's continuous. 
Certainly, there is at least one topology on  that makes all the 's continuous: the discrete topology. Since the intersection of a collection of topologies on  is a topology ( ), the weak topology why?
exists we can describe it “from the top down” as { :  is a topology on  that makes all the 's     continuous
However, this efficient description of the weak topology doesn't give us a useful idea about what sets
are open.  Usually it is more useful to describe the weak topology on  “from the bottom up.”  To
make all the 's  continuous it is necessary and sufficient that
 for each  and for each open set , the set  must be open.          

Therefore the weak topology is the  topology that contains all such sets , and that is smallest    
the topology for which open in  is a . ( )              subbase See Example III.8.6.
Therefore a  for the weak topology consists of all finite intersections of sets from .  A typicalbase 
basic open set has form ] ...  where each  and each is                       

     
open in .  To cut down on symbols, we will use a  for these subbasic and basic open special notation
sets:  we will write
  a typical subbasic open set, and then        
  for a typical basic open set.                   We then abbreviate further as .             So  iff  for each                           

This notation is not standard—but it should be because it's very handy. You should verify that to
get a base for the weak topology  on , it is sufficient to use only the sets             where each is a  (or even ) open set in .   basic subbasic
Example 2.5  Suppose  and let  be the inclusion map  Then the           
subspace topology on  is the same as the weak topology generated by To see this, just  
notice that a base for the weak topology is  open in , and the sets  are             
exactly the open sets in the subspace topology.
The following theorem tells us that a map   a space  with the weak topology is continuous iff into
each composition is continuous.  

Theorem 2.6  Suppose , where  is a topological space and  has the weak topology      
generated by maps  ( ).  Then  is continuous if and only if                      
is continuous for every .
Proof   If  is continuous, then each composition is continuous.  Conversely, suppose each            is continuous. To show that  is continuous, it is sufficient to show that is open in 
whenever  is a  open set in  ( ).  So let with  open in . Then        subbasic why?                           , which is open because  is continuous.  



242

Definition 2.7  For each let  be a topological space.  The   on the        product topology
set  is the weak topology generated by the collection of projection maps         
The product topology is sometimes called the “Tychonoff topology.” We always assume that a product of topological spaces has the product topology unless some other topology is
explicitly stated.
Because the product topology is a weak topology, a  consists of all sets of formsubbase
            , where  is open in  A , then, consists of all possible finitebase

intersections of these sets 
 ] ...                                

  for each                 

    for   (*)              where    
      It is sufficient to use only ' s which are basic (or even subbasic) open sets in Why?   
A basic open set in  “depends on only finitely many coordinates” in the following sense:

             iff  satisfies the  restrictions . The (basic)        finitely many
open sets containing  are what we use to describe “closeness” to , so we can say informally 
that in the product topology  “closeness depends on only finitely many coordinates.”

If the index set  is , then the condition in (*) is satisfied automatically, and a base for the finite
product topology is the set of  “open boxes” :all  
        

                        

Thus, when  is finite, Definition 2.7 agrees with the earlier definition for product topologies in
Chapter III (Example 5.11).
You might not have expected Definition 2.7. A “first guess” to define a topology on products might
have been to use  boxes  (  open in  rather than the more restricted collection in (*).all       
As just noted, that would be equivalent to Definition 2.7 for  products, but not for infinitefinite
products.  One can define a topology on the set  using  boxes of the form as a     all
base an alternate topology called the  that contains, in general,  many more open sets box topology
than the product topology because of the omission of the restriction on the 's in (*).   We will try toindicate, below, why our definition of the product topology is the “right” one to use.
Theorem 2.8   Each projection  is continuous and open, and  is onto if .            
A function  is continuous if and only if   is continuous for every .              
Proof  Each  is onto if the product is nonempty ( ).  By definition, the product topology makes why?
all the 's continuous. To show that  is open, it is sufficient to show that the image of a  open   basic
set  is open.            
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 This is clear if , and  
 for , we get ..if

if                  
      

       
  
 

 Finally,  is continuous iff each composition  is continuous because the product has the weak  topology generated by the projections (Theorem 2.6).  
Generally, projection maps are   closed.  For example,  is closednot             

in , but its projection is not closed in       
Example 2.9
 1) A subbasic open set in  has form  or , where                   
and  are open in   ( )  Then basic  We still get a subbase if we only use open   in .intervals    
open sets have form . Therefore the product topology on  is the               
usual topology on .
  The function  given by sin  is continuous because the             
compositions  and sin are both continuous functions from  to .              

 2) Let “the product of countably many copies of .”  The singleton sets  are a    

basis for .  A base for the product topology consists of all sets  where finitely many 's      are singletons and all the others are equal to   Each basic open set  is infinite (  in fact
       why? In fact, ), so  has no isolated points and therefore  is not discrete. ( By  
similar reasoning, an infinite product of discrete spaces, each with more than  point, is . not discrete
    For each , ... ,  the set  is open                  

 in the box topology
so, in contrast, the box topology on   the discrete topology.  ( is For a finite product, the box and
product topologies care the same: a  product of discrete spaces  discrete.finite is )
 3) Consider where each  By definition of product, each point in            
          is a function .  In other words,  and for each   As basic open    sets in , we can use sets where the 's are open intervals in .  Then                  
                if and only if  for each   If  is  in , then  and  are “close” at the  also
finitely many points in the sense that  and  are both in the interval  If, for example,          the 's each have diameter less than , then  for each                  Of course, this
is much weaker than saying  and  are “uniformly” close. 
 

Why is the product topology the “correct” topology for set ?  Of course there is no “right”answer, but a few observations should make it seem a good choice.
Example 2.10
  1) For finite products, the box and product topologies are exactly the same When it comes to
  products, there's no obvious reason to favor the box topology or the product topology.infinite
 Moreover, if one of them seems more natural, then at least we should be cautious: our
 intuition, after all, is only comfortable with finite sets, and we always run risks when we apply  
 naive intuition to infinite collections.
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2) Consider : for two points and  it will be true that                 “  is close to ” when  and  agree in the first  decimal places (for a sufficiently large ).     
Roughly speaking, “closeness” depends on only finitely many decimal places (“coordinates”).
    Now consider the  ,Hilbert cube                   

   
   

where   has its usual metric,  ( ). Suppose       see Example II.2.6.6 and Exercise II.E10
and let .  What condition on  will guarantee that  ?      
   Pick  so that    If  for each , then we have            



 
    

    

                     


 
      

     Here, in the natural   
metric topology on the product , we see that we can achieve “  close to ” by requiring  
“closeness” in just finitely many coordinates This is just what the product topology  
does.  In fact, the product topology on  turns out to be the topology     A handy “rule of thumb” that has proved true every time I've used it is that if a topology on a
product set is such that “closeness depends on only finitely many coordinates,” then that
topology  the product topology.is
3) From a very pragmatic point of view, the product topology appears much more manageable.
To “get your mind around” a basic open set in the product            topology, you only need to think about finitely many sets ;  but in the box        topology, thinking about  requires taking into account all the 's in and       there may be uncountably many  's.different 

4) The bottom line, however, is this: a mathematical definition justifies itself by the fruit it
bears. The definition of the product topology will lead to some beautiful theorems.  Using the
product topology, for example, we will see that compact Hausdorff spaces are topologically
nothing other than the closed subspaces of cubes  (where  might be infinite).  For the  
time being, you will need to accept that things work out nicely down the road, and that by
contrast, the box topology turns out to be rather ill-behaved. ( .)See Exercise E11

As a simple example of such nice behavior, the following theorem is exactly what one would hope
for and the proof depends on having the “correct” topology on the product.  The theorem says that
convergence of sequences in a product is “coordinatewise convergence” :  that is, in a product,
          iff for all  , the  coordinate of converges (in  to the  coordinate of .  For that  reason, the product topology is sometimes called the “topology of coordinatewise convergence.”
Theorem 2.11  Suppose  is a sequence in . Then  iff                
( )  in   for all .          

Proof   If , then ( )  because each  is continuous.                   Conversely, suppose  ( )  in for each  and consider any basic open set        
                            that contains .  For each , we have .  Since( ) , we have  for some .  Let max . Then for                                             we have  for every .  This means that for , so   
     .  
In the proof,  is the max of a  set.  If  has the box topology, the basic open set     finite  might involve infinitely many open sets . For each such , we could pick an , just as       
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in the proof.  But the set of all 's might not have a max  and the proof would collapse.  Can you  create a specific example with the box topology where this happens?
Example 2.12  Consider , where . Each point  in the product is a             function    Suppose that  is a sequence of points in .  By Theorem 2.11,              
iff  for each . With the product topology, convergence of a sequence of functions      
in  is called (in analysis) .   pointwise convergence Question: if is given the box topology, is
convergence of a sequence  simply uniform convergence (as defined in analysis)? 

The following “theorem” is stated loosely.  You can easily create variations.  Any reasonable version
of the statement is probably true.
Theorem 2.13  Topological products are associative in any “reasonable” sense:  for example, if the
index set  is written as  where  and  are disjoint, then       
                           
          
      
Proof   A point  is a function .  Define                         by . Clearly  is one-to-one and onto.

          is a mapping of  into a product , so  is continuous iff  and  are both  continuous.  But is also a map into a product:    So  is                   continuous if and only if   is continuous for all   This is                 
true because .  The proof that  is continuous is                    
completely similar.
 
                          is given by  ( the union of two
functions), and is continuous iff  is continuous for each                  To check this, first suppose : then , where   Since                     
                   so , which is continuous.  The case where  is completely

similar.
Therefore  is a homeomorphism.    

The question of topological  for products only makes sense when the index set  iscommutativity 
ordered in some way.  But even then:  if we view a product as a collection of functions, the question of
commutativity is trivial the question reduces to the fact that set theoretic unions are commutative.
For example,   for                    
   for                      
So viewed as sets of functions,   and  are exactly the same set!  The same observation      applies to any product viewed as a collection of functions.
But we might look at an ordered product in another way: for example, thinking of  and              as sets of ordered pairs.  Then generally .  From that point of view, the
topological spaces  and  are not literally identical, but there is a homeomorphism   1 2 2 1
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between them:   So the products are topologically identical.  We can make a           similar argument whenever the order of factors is “commuted” by permuting the index set.
The general rule of thumb is that “whenever it makes sense, topological products are commutative.”
Exercise 2.14          denotes the product of  copies of the space .  Prove that  is
homeomorphic to . ( ) Hint: The bijection  in the proof of Theorem I.14.7 is a homeomorphism.
Notice that “cancellation properties” may not be true.  For example,  and are     
homeomorphic (both are countable discrete spaces) but topologically you can't “cancel the ”  is  
not homeomorphic to 0,1  ! 

Here are a few results which are quite simple but very handy to remember The first states that.  
singleton factors are topologically irrelevant in a product.
Lemma 2.15                 
Proof     is itself a one-point space }, so we only need to prove that              .  The map  is clearly a homeomorphism    

Lemma 2.16   Suppose .  For any ,   is homeomorphic to a subspace            
of that is, can be embedded in   In fact, if all the 's are -spaces,                
then  is homeomorphic to a  subspace  of .      closed
Proof   Pick a point .  Then by Lemma 2.15,       

                       
Now suppose all the 's are .  If , then for some  Since                  
                is a  space, there is an open set  in  that contains  but not .  Then  and

  .               

Therefore  is closed in .      

Note: 1) Assume each . Go through the preceding proof step-by-step when        
and when  and  
 2) In the case , Lemma 2.16 says that each factor  is homeomorphic to subspace     of  (a closed subspace if all the 's are ).      
 3) Caution:  Lemma 2.16 does  say that if all the 's are , then  copy of not every    embedded in  is closed: only that there  a closed homeomorphic copy.  It is very easy to  exists (
show a copy of  embedded in  that is not closed in , for example ... ?)   
   
Lemma 2.17   Suppose .  Then   is a Hausdorff space (or, -space) if            and only if every factor  is a Hausdorff space  (or, -space).  
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Proof, for   Suppose all the 's are Hausdorff   If  , then   for some . Pick             disjoint open sets  and  in  containing  and .  Then and are disjoint                      (basic) open sets in  that contain  and , so  is Hausdorff.   

Conversely, suppose .  By Lemma 2.16, each factor  is homeomorphic to a subspace of .    Since a subspace of a Hausdorff space is Hausdorff  ( , each  is a Hausdorff space.   why?   

Exercise 2.18  Prove Lemma 2.17  if “Hausdorff” is replaced  by “ .”  ( The proof is similar but
easier.)

Theorem 2.19   The product of countably many two-point discrete spaces is homeomorphic to the
Cantor set 
Proof   We will show that , where each .

        
 To construct  we defined, for each sequence , a descending                
sequence of closed sets  in  whose intersection gave a unique                    point   (s ).   For each , we can write  as a union of        

      ee Section IV.10
             disjoint clopen sets:  .

       Define   by   Clearly  is one-to-one and                 
    onto. To show that  is continuous at , it is sufficient to show that for each , the function    

              is continuous at   Pick any  For this , there is a clopen set
                     that contains , and .  Thus,  is  on a neighborhood  constant
of  in , so  is continuous at .      By Lemma 2.17,  is Hausdorff.  Since  is a continuous bijection of a compact space

  
onto a Hausdorff space,  is a homeomorphism ( ).    why?
Corollary 2.20    is compact.
This corollary is a very special case of the Tychonoff Product Theorem which states that any product
of compact spaces is compact.  The Tychonoff Product Theorem is much harder and will be proved in
Chapter IX.
Corollary 2.21   The Cantor set is homeomorphic to a product of countably many copies of itself.
Proof   By Exercise 2.14 above,  The case of                      

       for  is similar. 

Example 2.22   Convince yourself that each assertion is true:
  1) If  is the Sorgenfrey line, then  is the Sorgenfrey plane (   see Examples
  III.5.3 and III.5.4).
 
  2) Let  be the unit circle in .  Then  is homeomorphic to the      
  cylinder                

  3)  is homeomorphic to a torus ( “the surface of a doughnut”).    
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Exercises
E1. Does it ever happen that  open in ?  If so, what is a necessary and sufficient     
condition on  for this to happen?

E2.  a) Suppose  and  are topological spaces and that Prove that        
int ( int int :  that is, “the interior of the product is the product of the interiors.”     
( .)   Give an example to show that theBy induction, the same result holds for any  productfinite
statement may be false for  products.infinite
 b) Suppose  for all .  Prove that in the product ,          
      cl ( cl .     

Note:  When the 's are closed, this shows that is closed: so “any product of closed sets is   
closed.”  Can you see any plausible reason why products of closures are better behaved than products
of interiors?
       c) Suppose  and that .  Prove that  is dense in  iff  is dense in               
 for each .     Note: Part c) implies that a finite product of separable spaces is separable but it
doesn't tell us whether or not an infinite product of separable spaces is separable: why not?
      d) For each , let .  Prove that  for all but at most finitely many                
  is dense in .    Note:  Suppose  where each  Suppose each  is            chosen to be a rational say .   Then what does d) imply about ?    
 
 e)  Let .  Prove that   for all  is homeomorphic                   
to . Note: So any factor of a product has a “copy” of itself inside the product in a “natural” way.
For example, in , the set of points where all coordinates except the first are  is homeomorphic to 
the first factor, . 
 f) Give an example of infinite spaces  such that  is homeomorphic to  but           
is not homeomorphic to .

E3. Let  be a topological space and consider the “diagonal” of    
             
 a)  Prove that  is closed in  if and only if  is Hausdorff.  
 b)  Prove that  is open in  if and only if  is discrete.  

E4.  Suppose  is a Hausdorff space and that  for each . Show that      
            is homeomorphic to a closed subspace of the product  .
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E5.  For each , suppose  is a countable dense set in         

 a) Prove that  is dense in .     

 b)  Prove that  is separable.     Hint: Note that  might  be countable ! But closeness in not  
a product depends on only finitely many coordinates.

E6.   a) Suppose  for all .  Prove that there exists a sequence  in  such that,a         
for each ,   lim  exists.       a Hint: “picture” the  in an infinite matrix.  For each fixed , the “j- ,   
th column" of the matrix is a point in the Cantor set     

 b) In ,  is called a  of  if for every    or    

 
   


     

  subseries




Prove that if   is absolutely convergent, then  is the sum of a subseries of   
 

 
         

is closed in .       Hint: “Absolute convergence” guarantees that every subseries converges.  Each
subseries can be associated in a natural way with a point   Consider the mapping  




     

         given by Must  be a homeomorphism?    



  

 c) Suppose  is an open dense subset of the Cantor set .  Must Fr  be countable?        Hint:
Consider          

E7.  Let  have the cofinite topology.
 a)  Does the product have the cofinite topology?    Does the answer depend on ? 
 b)  Prove  is separable      Hint:  When  is infinite, consider the simplest possible points in
the product.  Note:  part b) implies that an arbitrarily large product of  spaces with more than onepoint can be separable.  However, that is false for Hausdorff spaces see Theorem 3.8 later in this
chapter.
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E8.  We can define a topology on any set  by choosing a nonempty family of subsets  and defining 
closed sets to be all sets which can be written as an intersection of finite unions of sets from .   is 
called a  of .  (subbase for the closed sets  This construction is “complementary” to generating a
topology on  by using a collection of sets as a subbase for the open sets. )
 a) Verify that this procedure does define a topology on .
 b) Suppose  is a topological space.  Give  the topology for which collection of  “closed  
boxes” closed in  is a subbase for the closed sets.  Is this topology the product          topology?

E9. Prove or disprove:
 There exists a bijection such that for all  and for all ,              
 the first  coordinates of  are determined by the first  coordinates of .      
Here,  depends on  and .  More formally, we are asking whether there exists a bijection  
 such  that:
       such that changing  for any  does not change                 for   
Hint: Think about continuity and the definition of the product topology.
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3. Productive Properties
We want to consider how some familiar topological properties behave with respect to products.
Definition 3.1  Suppose that, for each , the space has a certain property .  We say that    

the property  is  
if  must have property 
if  must have property  when is countable 

 
  




productive
countably productive
fi


nitely productive if  must have property  when is finite  

   
For example,  Lemma 2.17 shows that the  and  properties are productive.  

Some topological properties behave very badly with respect to products. For example, the Lindelöf
property is a “countability property” of spaces, and we might expect the Lindelöf property to be
countably productive.  Unfortunately, this is not the case.
Example 3.2  The Lindelöf property is not finitely productive; in fact if  is a Lindelöf space, then
  may not be Lindelöf. Let  be the set of real numbers with the topology for which a
neighborhood base at  is  , .  (            Recall that  is called the Sorgenfrey
Line: see Example III.5.3.)  We begin by showing that  is Lindelöf.
 

It is sufficient to show that a collection  of  open sets covering  has a countable basic 
subcover.  Given such a cover , Let and define .  For a             
moment, think of  as a subspace of  with its  topology.  Then  is Lindelöf ( ),  usual why?
and  is a covering of  by usual open sets, so there is a countable subfamily  with     
 .

Now replace the left endpoints of the intervals in  to get  .  If             
    covers  we are done, so suppose .  For each , pick a set            
in  that contains . In fact,   be the left endpoint of because if           must
and ,  then   So, for each  we can pick a set [                   ,
) . 
If  and  are distinct points not in  then ) and ) must be disjoint ( ) and      , , , why? 
there can be at most countably many disjoint intervals  So ) } is          ,  
a countable subcollection of  that covers . 

However the Sorgenfrey plane is  Lindelöf.  If it were, then its closed subspace   not
           would also be Lindelöf (Theorem III.7.10). But that is impossible since  is
uncountable and discrete in the subspace topology.  ( )See the figure on the following page.
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Fortunately, many other topological properties do play more nicely with products. Here are several
topological properties  to which the “same” theorem applies. We combine these into one large
theorem for efficiency.
Theorem 3.3 Suppose .  Let  be one of the properties “first countable,”          
“second countable,” “metrizable,” or “completely metrizable.”  Then  has property  iff 
 1) all the 's have property ,  and   2)  at most countably many 's are trivial  (i.e., do not have the trivial topology) non
For all practical purposes, this theorem is a statement about countable products because:

1) The nontrivial 's are the “interesting” factors, and 2) says there are only countably manyof them.  In practice, one hardly ever works with trivial spaces, and if we totally
exclude trivial spaces from the discussion, then the theorem just states that  has property  
iff  is a countable product of spaces with property . 
2) A nonempty -space has the trivial topology iff    So, if we are concerned       only with -spaces (as is most often the case) the theorem says that  has property  iff all  the 's have property  and all but countably many of the 's are “topologically   irrelevant” singletons. Of course, in the cases that involve metrizability, the  condition isautomatically satisfied.

Proof   Throughout the proof, let the set of “interesting indices”  is a nontrivial        space .  We begin with the case “first countable.”  
Suppose 1) and 2) hold and We need to produce a countable neighborhood base at .  For each  .  
           , let  be a countable open neighborhood base at   Let  

  is a finite intersection of sets of the form                

Since  is countable,  is a countable collection of open sets containing  and we claim that  is a   neighborhood base at To see this, suppose  is a basic open set         .    containing . ( )  For each  pick so that      We may assume that all 's are in why?   


                          
  

 
      Then  and  k 
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Conversely, suppose  is first countable .  We need to prove that 1) and 2) hold.
     , so by Lemma 2.16 each  is homeomorphic to a subspace of .  Therefore each  is first countable,  so 1) holds.
For 2) we prove the contrapositive: assuming  is uncountable, we find a point  at which there   
cannot be a countable neighborhood base.  Pick any point      

For each pick an open set  for which .  Choose  and                  
           Define  using the coordinates

            if 
if      

     
   


    

Suppose  is a  collection of neighborhoods of  and for each   a basic open set  countable pick  
             with .  There are only finitely many 's involved in the expression   for each chosen , and there are only countably many 's in .  So, since  is uncountable, we can  pick a  that is  one of the 's involved in the expression for any of the sets  that were   not picked. Then

i)   is an open set that contains  because         

ii) for all  , so  cannot be a neighborhood base at .  To see            this, define a point  by   

   if 
if    

  
  

 
Thus,  and  have the same coordinates  the  coordinate.  For each , we    except  picked .  Since and  has the same ,...,  coordinates as                  
              , we also have . But because  Therefore   
           ,  so 

It's now easy to see that if the product  has any of the other properties , then conditions 1)    and 2) must hold.
If  is second countable, metrizable or completely metrizable, then  is first countable so, by 
the first part of the proof, condition 2) must hold.
If  is second countable or metrizable then every subspace has these same properties so 
each  is second countable or metrizable respectively.  If  is completely metrizable, then   and all the subspaces  are . By Lemma 2 16, is homeomorphic to a therefore      closed
complete subspace of  .  Therefore  is completely metrizable.  

It remains to show that if “second countable,” “metrizable,” or “completely metrizable” and 
conditions 1) and 2) hold, then  also has property .    
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Suppose “ .”  second countable
For each  in the countable set , let } be a countable base for                
and let
        is a finite intersection of sets of form , where  and }            

  is countable and we claim  is a base for the product topology on .
Suppose , a basic open set in .  For each                                  

 so we can choose a basic open set in  such that .  Then
                   

      and .  Therefore  can be written as a union of
sets from , so  is a base for .  

Suppose “ ”  metrizable
Since all the 's are , condition 2) implies that all but countably many 's are singletons    which we can omit without changing topologically.  Therefore it is sufficient to prove that if
each space  is metrizable, then is metrizable.           


Let  be a metric for where without loss of generality, we can assume each        ( ).  For points ,  , definewhy?           

      


    


  


Then  is a metric on  ( !) and  that  is the product topology .  Because   check we claim  is a countable product of first countable spaces,  is first countable, so can be described 
using sequences:  that in  iff  in  Butit is sufficient to show               
        in  iff the  converges “coordinatewise.”  Therefore  it is sufficient to show
that:
 ( in    iff    in  or equivalently,                  
              

       i) Suppose .  Let and consider any particular .  We can        
choose  so that  implies .  Then        




    


 

 

for ,   , so .               


    


      
Therefore .          

     ii) On the other hand, suppose  for every and let  .          
Choose  so that  and then choose  so that if      



 
 



          


          


    
    .       
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Then for  we have       


    


 


        


 

 
       

  
   

 
  

Therefore .    

Suppose “ ”  completely metrizable
Just as for “metrizable,” we can assume  and that  is a complete metric     

  on  with .  Using these 's, we define  in the same way.  Then  is the  product        topology on .  We only need to show that  is complete.  
Suppose  is a Cauchy sequence in .  From the definition of  it is easy to see that    
                   is Cauchy in for each , so that some point 
Let .  Since  for each , we have  in the product topology                 
   .  Therefore  is complete.   

What is the correct formulation and proof of the theorem for “pseudometrizable” ? 

We might wonder why “separable” is not included in Theorem 3.3. Since “separable” is a 
“countability property,” we might hope that separability is preserved in countable products although
our experience Lindelöf spaces could make us hesitate. The explanation for the omission is that
separability is actually  behaved for products than the other properties. Surprisingly, the productbetter
of as many as  separable spaces is separable, and the product of more than  nontrivial separable 
spaces  sometimes be separable.  (can You should try to prove directly that a countable product of
separable spaces is separable remembering that in the product topology, “closeness depends on
finitely many coordinates.”  If necessary, first look at finite products.)
We begin the treatment of separability and products with a simple lemma which is merely set theory.
Lemma 3.4  Suppose There exists a  collection  of subsets of  with the   countable 
following property:  given distinct , , ... , , there are  sets  such               disjoint
that  for each .   
Proof   (Think about how you would prove the theorem if   If you do that, then you'll see that  
the general case is just a “carry over” of that proof.)
Since , there is a one-to-one map .  Let For distinct                    
             , ,..., , we know that , , ...,  are distinct real numbers. Then we can       
choose ,  so that  and so that the intervals  are pairwise disjoint.  Then                     
the sets  are the ones we need.            
Theorem 3.5
 1) Suppose .  If  is separable, then each is separable.          

 2) If each  is separable and , then  is separable.        
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Part 2) of Theorem 3.5 is attributed (independently) to several people.  In a slightly more general
version, it is sometimes called the “Hewitt-Marczewski-Pondiczery Theorem.”  Here is an amusing
sidelight, written by topologist Melvin Henriksen online in the . A few words have beenTopology Atlas
modified to conform with our notation:

Most topologists are familiar with the Hewitt-Marczewski-Pondiczery theorem. It states that if
  is an infinite cardinal, then a product of  topological spaces, each of which has a dense
set of cardinality  also has a dense set with  points.  In particular, the product of      
separable spaces is separable (where  is the cardinal number of the continuum). Hewitt's
proof appeared in [Bull. Amer. Math. Soc. 52 (1946), 641-643], Marczewski's proof in [Fund.
Math. 34 (1947), 127-143], and Pondiczery's in [Duke Math. 11 (1944), 835-837]. A proof and
a few historical remarks appear in Chapter 2 of Engelking's . The spread inGeneral Topology
the publication dates is due to dislocations caused by the Second World War; there is no doubt
that these discoveries were made independently.
Hewitt and Marczewski are well-known as contributors to general topology, but who was (or
is) Pondiczery? The answer may be found in Lion Hunting & Other Mathematical Pursuits
edited by G. Alexanderson and D. Mugler, Mathematical Association of America, 1995. It is a
collection of memorabilia about Ralph P. Boas Jr. (1912-1992), whose accomplishments
included writing many papers in mathematical analysis as well as several books, making a lot
of expository contributions to the American Mathematical Monthly, being an accomplished
administrator (e.g., he was the first editor of Mathematical Reviews (MR) who set the tone for
this vitally important publication, and was the chairman for the Mathematics Department at
Northwestern University for many years and helped to improve its already high quality), and
helping us all to see that there is a lot of humor in what we do. He wrote many humorous
articles under pseudonyms, sometimes jointly with others. The most famous is “A Contribution
to the Mathematical Theory of Big Game Hunting” by H. Petard that appeared in the Monthly
in 1938. This book is a delight to read.
In this book, Ralph Boas confesses that he concocted the name from Pondicheree (a place in
India fought over by the Dutch, English and French), changed the spelling to make it sound
Slavic, and added the initials E.S. because he contemplated writing spoofs on extra-sensory
perception under the name E.S. Pondiczery. Instead, Pondiczery wrote notes in the Monthly,
reviews for MR, and the paper that is the subject of this article. It is the only one reviewed in
MR credited to this pseudonymous author.
One mystery remains. Did Ralph Boas have a collaborator in writing this paper? He certainly
had the talent to write it himself, but facts cannot be established by deduction alone. His son
Harold (also a mathematician) does not know the answer to this question ...

Proof 1) Let  be a countable dense set in .  For each  is countable and dense in       (because cl cl  ).  Therefore each  is separable.              
 2) Choose a family  as in Lemma 3.4 and for each , let , be a              1 2 
countable dense set in .  Define a countable set  by 
 
  ,  with the 's pairwise disjoint                             
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For each  pick a point , and for each -tuple , define a point                      
    with coordinates

  if 
if       

  
 


 

 



Let .   is countable and we claim that  is dense in .  To see this, consider any          
nonempty basic open set  we will show that               

For ,           

 i) Choose disjoint sets  in  so that .                

ii) For each   is dense in  and we can pick a point in                 


                 
  ,

Then, let  Because , we have                                         
 . Therefore .       

Example 3.6  The rather abstract construction of a dense set in the proof of Theorem 3.5 can be
nicely illustrated with a concrete example.  Consider , where each Choose         
 to be the collection of all open intervals  with rational endpoints, and make a list these intervals 
as . In each choose   (                        Since all the 's are identical,we can omit the subscript “ ” on the points; but just to stay consistent with the notation i  the proof, 
we still use superscripts to index the 's. )   For each , (arbitrarily) pick        

One example of a 6-tuple in the collection  is , where are disjoint                  open intervals with rational endpoints.  The corresponding point is the function       
with
    

 
for 
for 
for 

   for 
  

   
   
   
      



 
 
 

  




The dense set  consists of all step functions (such as ) that are   a finite union   outside
          of disjoint open intervals with rational endpoints and which have a constant
rational value on each .

Caution: In Example 2.12 we saw that the product topology on  is the topology of pointwise
convergence that is, in  iff  for each .  But  is not first              
countable ( ) so we cannot say that sequences are sufficient to describe the topology.  In particular,why?
if  then cl but we  say that there must be sequence of step functions from  that       cannot
converges pointwise to  
Since  is not first countable,  is an example of a separable space that is neither second countable  
nor metrizable.
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In contrast to the properties discussed in Theorem 3.3, an arbitrarily large product of nontrivial
separable spaces  sometimes turn out to be separable, as the next example shows.  However,can
Theorem 3.8 shows that for Hausdorff spaces, a nonempty product with more than  factors cannot be
separable.
Example 3.7 For each , let  be a set with   Choose  and let             
                        The singleton set  is dense in , so  is separable.
If , then singleton set  is dense  (           why? look at a nonempty basic
open set . )   So  is separable, and this does not depend on . 
   In this example, the 's are not .  But Exercise E7 shows that an arbitrarily large  product of separable -spaces can turn out to be separable.

Theorem 3.8   Suppose  where each  is a -space with more than one point.         If  is separable, then    
Proof   For each , we can pick a pair of disjoint, nonempty open sets and  in Let  be a       countable dense set in  and let  for each .  If there is a point             
                        because  is dense.  Then  but  since
                    therefore .  Therefore the map  given by  is one-to-   
one, so          

We saw in Corollary V.2.19 that a  product of connected spaces is connected.  The followingfinite
theorem shows that connectedness actually behaves very nicely with respect to all products.  The proof
of the theorem is interesting because, unlike previous proofs about products,  this proof  theuses
theorem about finite products to prove the general case.
Theorem 3.9   Suppose .   is connected if and only if each is connected.        

Proof Suppose  is connected.  Since we have for each .  A continuous image        of a connected space is connected (Example V.2.6), so each  is connected. Conversely, suppose each  is connected   For each , pick a point .  For each        finite
set , let .   is homeomorphic to the finite product ,                   so each  is connected.  Let  is a finite subset of .  Each  contains the point         
        , so Corollary V.2.10 tells us that  is connected.  Unfortunately,  (except in trivial
cases; why?).
But we claim that  is dense in .  We need to show that  for every nonempty basic open     
set in .   If , choose a point  for each , and define a  point                         with coordinates
   if

if , ,...,    
   

    


 
  

Let . Then , so                       
Therefore cl  is connected (Corollary V.2.20).     
Question:  is the analogue of Theorem 3.9 true for path connected spaces?
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Just for reference, we state one more theorem here.  We will not prove the theorem until Chapter IX,
but we may use it in examples. (Of course, the proof in Chapter IX will not depend on any of these
examples! )
Theorem 3.10 (Tychonoff Product Theorem)  Suppose .  Then  is compact if      and only if each  is compact.

One half ( ) of the proof of Tychonoff's Theorem is very easy ( , and the easy proof that a why?)
finite product of compact spaces is compact was in Exercise IV.E.26.
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Exercises
E10.  Let  have the product topology.   

 a) Prove that the set of all functions in  with finite range is dense in . (  Here, we will call
such functions .  In other settings, the definition of “step function” is more restrictive. step functions )
 b) By Theorem 3.5,  is separable.  Describe a countable set of step functions which is dense
in .
 c) Let  is the characteristic function of a singleton set   Prove that ,        
with the subspace topology, is discrete and not separable.  Is  closed?
 d) Prove that  has exactly one limit point, , in  and that if  is a neighborhood of ,    
then  is finite.

E11.  “Boxes” of the form , where  is open in , are a base for the box topology       
on    Throughout this problem, we assume that products have the box topology rather than the
usual product topology.
  a) Show that the “diagonal map”  given by  is not continuous,         

but that its composition with each projection map is continuous.
  b) Show that  is not compact.        Hint: let  and .  Consider the         collection  of all sets of the form ...  ,  where                             .
By contrast, the Tychonoff Product Theorem (3.10)  implies that with the t topology)   (  produc is
compact for any cardinal .
 
 c) Show that  is not connected by showing that the set  is an unbounded        
sequence in  is clopen.
 d) Suppose  and    are metric spaces.  Prove that a function          
            (with the  topology) is continuous iff each coordinate function  isbox 
continuous  each  has a neighborhood on which all but a finite number of the 's areand    constant.

E12.  State and prove a theorem that gives a necessary and sufficient condition for a product of spaces
to be path connected.

E13.  Prove the following more general version of Theorem 3.8:
 Suppose , and that, for each , there exist disjoint nonempty open sets        
  and  in .  If  is separable, then         
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4. Embedding Spaces in Products  
If there is a homeomorphism    , then   We say then that is  ininto            embedded
and call  an .  Phrased differently,  shows that  is homeomorphic to a subspace of    embedding
and, speaking topologically, we might say  “is” a subspace of .   It is often possible to embed a 
space  in a product Such embeddings will give us some nice theorems for example, we      will see that there is a separable metric space that contains (topologically) all other separable metric
spaces  is a “universal” separable metric space. 
To illustrate the embedding technique that we use, consider two functions  and     
                      given by  and  Using and  we can define
                     by using  and  as “coordinate functions”: 
            This map  is called  , .  In thisthe evaluation map defined by the set of functions

example,   is an embedding that is,  is a homeomorphism of  into , so that     
    ran   ( ). see the figure

                          
An evaluation map does not always give an embedding:  for example, the evaluation map
              defined by the family cos sin is  a homeomorphism between  andnot
ran   ( )   why? what is ran ?
We want to generalize the idea of an evaluation map  into a product and to find conditions under
which  will be an embedding.
Definition 4.1  Suppose  and (  are topological spaces and that  for each              
The  defined by the family is the function  given byevaluation map            

          

Thus,  is the point in the product whose  coordinate is :. In more informal     th
coordinate notation,    
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Exercise 4.2   Suppose For each , there is a projection map .  What is            
the evaluation map defined by the family  ?    

Definition 4.3  Suppose  and (  are topological spaces and that We say that           
the family separates points   if, for each pair of points , there exists an             
for which .     

Clearly, the evaluation map  is one-to-one  for all                                 for all   there is an  for which    
    the family  separates points. 

Theorem 4.4  Suppose  has the weak topology generated by the maps  and that         the family  separates points.  Then  is an that is,  is         embedding a homeomorphism
between  and     .
Proof   Since separates points,   is one-to-one and  is continuous because each composition   
     is continuous.
  preserves unions and also (since  is one-to-one) intersections.  Therefore. to check that  is  
an open map from  to , it is sufficient to show that  maps  open sets in  to open sets   subbasic
in .  Because  has the weak topology, a subbasic open set has the form , where  is       
open in .  But then  is an open set                      in 
 Note: might not be open in , but that is irrelevant. See the earlier example where  
     )
The converse of Theorem 4.4 is also true: if e is an embedding, then the 's separate points and  has the weak topology generated by the 's.  However, we do not need this fact and will omit the proof(which is not very hard).
Example 4.5
Let be a separable metric space.  We can assume, without loss of generality, that     is     
second countable so there is a countable base   for the open sets. For each , let         
                    Then  is continuous and, since  is closed, we have
                        iff   If , there is an  such that and Then
         , so 's separate points.
We claim that the topology  on  is the same as the weak topology generated by the 's.    
Because the functions  continuous if  has the topology , we know that  To show      are   
                       , suppose   For some , we have  and therefore   But
               

  is a (subbasic) open set in the weak topology and Therefore
  .
By Theorem 4.4,   is an embedding, so   We sometimes write this               

as .  From Theorems 3.3 and 3.5,  we know that  is itself a separable metrizable     top   

space and therefore  its subspaces are separable and metrizable. Putting all this together, we get all
that topologically, separable metrizable spaces are nothing more and nothing less than the subspaces of
    (“the Hilbert cube”).
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We can view this fact with a “half-full” or “half-empty” attitude:
 i)  separable metric spaces must not be very complicated since topologically they are nothing
 more than the subspaces of a single very nice space: the “cube”  

 ii) separable metric spaces can get quite complicated, so the subspaces of a cube  

 are more complicated than we imagined.
Since  (the “Hilbert cube”)  we can also say that topologically         

 
    ,

the separable metrizable spaces are  the subspaces of  . precisely  This is particularly amusing
because of the metric  on  is very much like the usual metric on    
            




   

In some sense, this elegant “Euclidean-like” metric is adequate to describe the topology of any
separable metric space.  (Note:   is topologically a subspace of  with the product topology.  If we 
identify  with a subspace of , as above, how to we know that the metric topology induced on   from is the same as the product topology on ?  )
We can summarize by saying that each of  and  is a “universal separable metric space ”  Notice,  though, that these two “universal” spaces are not homeomorphic: one is compact and the other is not. )
 
Example 4.6
Suppose is a metric space (not necessarily separable) and that  is a base for the      
topology , where Then an argument exactly like the one in Example 4.5 (just replace “ ”    
everywhere with “ ”) shows that .  Therefore     top  every metric space, topologically,  is a
subspace of some sufficiently large “cube.”  Of course when , the cube  is  itself      not
metrizable ( ); in general this cube will have many subspaces that are nonmetrizable. So the resultwhy?
is not quite as dramatic as in the separable case.
The   of a topological space  is defined as min  is a base for weight              

We are assuming here that the “min” in the definition exists: see Example 5.22 in Chapter
VIII.  or some very simple spaces, the “min” could be finite in which case the “ ”   guarantees that   convenient for purely technical reasons that don't matter in these   notes).

The   is defined as min  is dense in For a  space, it is notdensity metrizable         hard to prove that .  The proof is just like our earlier proof (in Theorem III.6.5) that  
separability and second countability are equivalent in  metrizable spaces Therefore we have that for.
any metric space  
           top        (*)
Notice that, for a given space , the exponents in this statement are not necessarily the smallest 
possible.  For example, (*) says that , but in fact we can do much better than      top    

the exponent   !           
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We add one additional comment, without proof:  For a given infinite cardinal , it is possible to define
a   space  with weight  such that  metric space  with weight  can be embeddedmetrizable every   in   In other words,  is a  space which is “universal for all metric spaces of weight      metrizable
   .”  The price of metrizability, here, is that we need to replace  by a more complicated space .

Without going into all the details, you can think of  as a “star” with  different copies of      (“rays”) all placed with  at the center of the star. For two points  on the same
“ray” of the star,  ; if  are on different rays, the distance between them       
is measured “via the origin”       

The condition in Theorem 4.4 that “  has the weak topology generated by a collection of maps
     ” is not always easy to check.  The following definition and theorem can sometimes help.
Definition 4.7  Suppose  and (  are topological spaces and that We say that           
the collection  if whenever  is a closed set in         separates points from closed sets
and , there is an  such that cl          

Example 4.8   Let  and .  Suppose  is a closed set in  and  .  There is an           
open interval  for which .   Define  with a graph like the one shown             
in the figure:

                            
Then cl   Therefore separates points and closed sets.        
The same notation continues in the following lemma.
Lemma 4.9  The family open in  is a  for the topology in  iff             base

     i) the 's are continuous, and
ii)  separates points and closed sets. 

   


 
In particular,  i) ii) imply that  is a base for the topology on so that  has the weak    sub
topology generated by the 's.
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Note:  the more open (closed) sets there are in , the harder it is for a given family to       
succeed in separating points and closed sets.  In fact  the lemma shows that a family of continuous
functions succeeds in  separating points and closed sets  if   is the       only smallest
topology that makes the 's continuous.
Proof   Suppose  is a base. Then the sets  in  are open, so the 's are continuous and     
i) holds.
            To prove ii), suppose  is closed in and .  For some  and some  open in , we       have   Then  and   since .                              
Therefore cl  so ii) also holds.      

 Conversely, suppose i) and ii) hold.  If  and  is open in , we need to find a set    
                    such that   Since , condition ii) gives us an  for which
                               cl .  Then  cl , so  and we claim : 

  If , then , so cl                   Then , so           
  
Theorem 4.10  Suppose  is continuous for each .  If the collection              

   i) separates points and closed sets, and
ii) separates points

then the evaluation map  is an embedding.     

Proof   Since the 's are continuous, Lemma 4.9 gives us that  has the weak topology.  Then Theorem 4.4 implies that  is an embedding.    

If the space  (that we are trying to embed in a product) is a -space ( ), then  as is most often the case
 i) ii) in Theorem 4.10 , so we have the simpler statement given in the following corollary.
Corollary 4.11  Suppose  is continuous for each . If  is a -space and                      separates points and closed sets, then evaluation map  is an embedding.
Proof    By Theorem 4.10, it is sufficient to show that the 's separate points, so suppose .     Since  is  in the closed set , there is an  for which cl .  Therefore      not   
            so  separates points.  
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Exercises
E14.  A space  is called a  space if whenever , then   (equivalently,             either there is an open set  containing  but not , or vice-versa).  Notice that the  condition is   weaker than  ( Clearly, a subspace of a -space is .    see example III.2.6.4).
 a) Prove that a nonempty product  is  iff each  is .            

 b) Let  be “Sierpinski space” that is,  with the topology 1 .  Use           
the embedding theorems to prove that a space  is  iff  is homeomorphic to a subspace of  for    
some cardinal .   Hint : for each open set  in , let  be the characteristic function of   Use   an embedding theorem.  Nearly all interesting spaces are , and those spaces, topologically, are alljust subspaces  of  for some . 

E15.  a)   et  be a metric space.  Prove that  is continuous separates pointsa) L         
and closed sets  ( ). Since  is ,  therefore also separates points  

 b) Suppose  is any topological space for which  separates points and closed sets.  Prove that  can be embedded in a product of copies of . 

E16. A space  satisfies the  (CCC) if every collection of nonempty countable chain condition
pairwise disjoint open sets must be countable.  ( )For example, every separable space satisfies CCC.
        Suppose that  is separable for each .  Prove that :  satisfies  CCC.        
( | | )There isn't much to prove when A c; why?
Hint: Let U  be any such collection.  We can assume all the U 's are basic open sets (why?).     Prove that if T and c, then and hence  must be countable.)  | | | |      

E17. There are several ways to define  for topological spaces.  One classical method is thedimension
following inductive definition.

 Define dim .   
 For , we say that  has dimension 0  if there is a neighborhood base at      at 
consisting of sets with 1 dimensional (that is, empty) frontiers.  Since a set has empty frontier iff
it is clopen,  has dimension 0 at  iff  has a neighborhood base consisting of clopen sets.   
    We say  has dimension  at  if there exists a neighborhood base at  in which the frontier    
of every basic neighborhood has dimension   
   We say has dimension , and write dim , if  has dimension  at p for each         
         X and that  if dim( )  but dim .  We say  ifdim dim     
dim  is false for every       
 While this definition of dim  makes sense for any topological space , it turns out that 
“dim” produces a nicely behaved dimension theory only for separable metric spaces.  The
dimension function “dim” is sometimes called  to distinguish it fromsmall inductive dimension
other more general definitions of dimension.  The classic discussion of small inductive dimension
is in Hurewicz and Wallman).Dimension Theory (
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  It is clear that “dim ” is a topological property There is a theorem stating that dim (   
    ) , from which it follows that  is not homeomorphic to  if .  In proving the    
theorem, showing dim  is easy; the hard part is showing that   
dim   1.    

 
  a) Prove that dim ( ) .  
  b)  Let be the Cantor set.  Prove that dim( )  
  c) Suppose  is a -dimensional separable metric space. Prove that  is homeomorphic to   
a subspace of .  (C Hint: Show that  has a countable base of clopen sets. View  as  and   

apply the embedding theorems.)

E18. Suppose  and  are -spaces.  Part a) outlines a sufficient condition that Y can be embedded in  
a product of 's, i.e., that  for some cardinal Parts b) and c) look at some corollaries.top     .    

a) Let  and  be  spaces.  Then  can be topologically embedded in  for Theorem       
some cardinal  if for every closed set  and every point , there exists a  and        
a continuous function such that cl .          

Proof  Let  ,  is closed in  and . For each such pair            
       , let  be the function given in the hypothesis.  Let  (the space  
containing the range of ).  Then clearly is homeomorphic to  for some        
      , so it suffices to show  can be embedded in .  Let 
                be defined as follows: for ,  has for its -th coordinate
       i.e.,  

  i) Show  is continuous.
  ii) Show  is one-to-one.
  iii) Show that  is a closed mapping onto its range  to complete the proof that  is    

         homeomorphism between  and . (  Note: the converse of the
theorem is also true. Both the theorem and converse are due to S. Mrowka.)

 b) Let  denote Sierpinski space {0,1}, , 0 , 0,1 .  Use the theorem to show that everyF      
T Y F m space  can be embedded in  for some .

c) Let  denote the discrete space 0,1 .  Use the theorem to show that every -space D    satisfying dim   (see Exercise E14) can be embedded in  for some .    D m
Parts b) and c) are due to Alexandroff.
Mrowka also proved that there is no T -space   such that every T -space  can be  
embedded in X  for some m.
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E19  Let  with the discrete topology, and let  be an infinite cardinal.     
         a) Show that  contains a discrete subspace of cardinality . 
  b)  Show that ).     see Example 4.6

E20.   is called  if every connected subset  satisfies   Prove that a    totally disconnected
totally disconnected compact Hausdorff space is homeomorphic to a closed subspace of  for 
some .  ( ). Hint: see Lemma V.5.6

E21.  Suppose  is a countable space that does not have a countable neighborhood base at the point
    ( )For instance, let in the space , Example III.9.8.    
        Let  for  and .  Prove that  point in the                   

  no
(countable) space  has a countable neighborhood base.  ( Note:  it is not necessary that  be
countable.  That condition simply forces  to be countable and makes the example more dramatic. )
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5. The Quotient Topology

Suppose that for each  we have a map , where  is a topological space and  is a           set.  Certainly there is a topology for  that will make all the 's continuous:  for example, the trivial topology on .  But what is the largest topology on  that will do this?  Let 
  for all ,  is open in             

It is easy to check that  is a topology on .  For each , by definition, each set  is open in ,     
so  makes all the 's continuous.  Moreover, if  and , then for at least one ,   is          
not open in so adding  to  would “destroy” the continuity of at least one   Therefore  is      
the  possible topology on  making all the 's continuous.largest  

Definition 5.1  Suppose  for each . The   generated by the         strong topology on 
maps is the largest topology on  making all the maps  continuous  and iff  is open          
in for every . 

The strong topology generated by a collection of maps is “dual” to the weak topology in    
the sense that it involves essentially the same notation but with “all the arrows pointing in the opposite
direction.”  For example, the following theorem states that a map   a space with the  out of strong
topology is continuous iff each map is continuous; but a map  a space with the weak    into 
topology generated by mappings is continuous iff all the compositions are continuous (     see
Theorem 2.6)

Theorem 5.2  Suppose  has the strong topology generated by a collection of maps  If     
              is a topological space and  , then  is continuous if and only if  is continuous for each .  

Proof   For each , we have , and the 's are continuous since  has the strong          
 


topology.
 If  is continuous, so is each composition     

Conversely, suppose each  is continuous and that  is open in .  We want to show that              is open in . But has the strong topology, so  is open in  iff each
                           is open in  But  which is open because  is
continuous.   

We introduced the idea of the strong topology as a parallel to the definition of weak topology.
However, we are going to use the strong topology only in a : when there is just one mapspecial case
     and  is onto.
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Definition 5.3  Suppose   is a topological space and is .  The strong topology on       onto
     generated by  is also called the  on .  If has the quotient topology from , wequotient topology
say that  is a  and we say   .  We also say the  is a       quotient mapping is a quotient of
quotient space of  and sometimes as .   
From the discussion of strong topologies, we know that if  is a topological space and ,     
then the quotient topology on  is  is open in .   Thus               if and only if
     is open in :  notice in this description that
  “only if”  guarantees that  is continuous and
  “if”   guarantees that  is the  topology on  making  continuous. largest  
Quotients of  are used to create new spaces  by “pasting together” (“identifying”) several points of 
 to become a single new point.  Here are two intuitive examples:
 i) Begin with  and identify  with  (that is, “paste”  and  together to become a       
single point).  The result is a circle,   This identification is exactly what the map        
given by cos sin  accomplishes.   ( ) that the usual topology on        It turns out see below
    the same as quotient topology generated by the map .  Therefore we can say that  is a quotientis
map and that  is a quotient of   

 ii) If we take the space and use a mapping  to “identify” the north and south poles   
together, the result is a “figure-eight” space .  The usual topology on  (from ) turns out to be the  
same as quotient topology generated by  ( ).  Therefore we can say that  is a quotient see below
mapping and the “figure-eight” is a quotient of .

Suppose we are given an onto map .  How can we tell whether  is a quotient          
map that is, how can we tell whether is the quotient topology?  By definition, we must check that  
         iff   Sometimes it is fairly straightforward to do this.  But the following theorem
will sometimes make things much easier.
Theorem 5.4  Suppose  is continuous and onto.  If  is open (or closed), then          
  is the quotient topology, so  is a quotient map.  , if  is compact and  is Hausdorff,    In particular
is a quotient mapping.
Note:  Whether is continuous depends, of course, on the topology , but if  makes        
continuous, then so would any smaller topology on .  The theorem tells us that if  is both continuous 
and largest open (or closed), then  is completely determined by :  it is the  topology that makes    
continuous.
Proof  Suppose  W  must show  iff  If ,  then                        
because  is continuous.  On the other hand, suppose . Since  is onto and open,      
       
 For It follows easily that  is closed in the quotient               
space    is closed in   With that observation, the proof that a continuous, closed,if and only if    
onto map  is a quotient map is exactly parallel to the case when  is open. 
 If  is compact and  is , then  must be closed, so  is a quotient mapping.         
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Note:  Theorem 5.4 implies that the map cos sin  from  to  is a quotient           
map, but  is not open. The same formula  defines a quotient map  which is not closed        
(why?).  Exercise E25 gives examples of  quotient maps  that are  open  closed. neither nor

Suppose  is an equivalence relation on a set .  For each , the  of  is     equivalence class
         . The equivalence classes partition  into a collection of nonempty pairwise
disjoint sets.  Conversely, it is easy to see that any partition of  is the collection of equivalence
classes for some equivalence relation namely,  iff and  are in the same set of the partition.     
The set of equivalence classes, , is sometimes written as There is a natural         
onto map  given by .  We can think of the elements of  as “new           
points” which are created by “identifying together as one” all the members of each equivalence class in
      . Conversely, whenever  is  onto mapping, we can think of as the set of equivalenceany
classes for some equivalence relation on namely     . If  is              
a topological space, we can give the set of equivalence classes  the quotient topology.
Example 5.5  For , , define  iff  is even.  There are two equivalence classes        
                          and  so  
             Define by  and give  the quotient topology.  A set   is            
open in  iff  is open in But that is true for   because  is discrete.             every
Therefore the quotient  is a two point discrete space. 
Example 5.6   Let  be a pseudometric space.  Define an equivalence relation  in  by       
iff .  Let  and define  by . Give  the quotient topology                 
Then points at distance  in  have been “identified with each other”  to become one point (an 
equivalence class) in  
  For , define .  In order to see that  is well-defined,           
we need to check that the definition is independent of the representatives chosen from the equivalence
classes:
  If  and , then  and   Therefore                    
  , and similarly                        
  .  Thus   so                              

It is easy to check that  is a pseudometric on .  In fact,  is a :  if , then         metric
         , which means that and 
We now have two definitions for topologies on : the quotient topology  and the metric topology 
    .  We claim that   To see this, first notice that 
   iff  iff  iff                 

  
Therefore  and .   But then we have                

   

   iff  is a union of -balls    
    iff  is a union of -balls   
    iff  is open in    
    iff   
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The metric space  is called the  of the pseudometric space .  In effect,      metric identification
we turn the pseudometric space into a metric space by agreeing that points in  at distance  are 
“lumped together” into a single point.
Note:  In this particular example, it is easy to verify that the quotient mapping  is open,    
so  would be a homeomorphism if only  were one-to-one.  If the original pseudometric  is actually a  
metric, then  one-to-one and a homeomorphism:  the metric identification of a  space   is metric
is itself.
Example 5.7  W  hat does it mean if we say “identify together the endpoints of  and get a circle”? 
Of course, one could simply take this to be the  of a (topological) “circle.”  Or, it could meandefinition
that we already know what a circle is and are claiming that a certain quotient space is homeomorphic to
a circle.  We take the latter point of view.
 Define  by cos sin ) This map is onto would be one-to-one               
except that , so  corresponds to the equivalence relation on  for which  (and there       
are no other equivalences except that  for every   We can think of the equivalence classes   
   as corresponding in a natural way to the points of .

   
Here  has its usual topology and  is continuous.  Since  is compact and  is Hausdorff, Theorem    
5.4 gives that the usual topology on   the quotient topology and  is a quotient map.  is
When it “seems apparent” that the result of making certain identifications produces some familiar
space , we need to check that the familiar topology on  is actually the quotient topology.  Example 
5.7 is reassuring: if we believed, intuitively, that the result of identifying the endpoints of  should 
be  but then found that the quotient topology on the set  differed from the usual topology, we  
would be inclined to think that we had made the “wrong” definition for a quotient.
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Example 5.8  Suppose we take a square  and identify points on the top and bottom edges using 
the equivalence relation    We can schematically picture this identification as    

                                
The arrows indicate that the edges are to be identified as we move along the top and bottom edges in
the same direction. We have an obvious map  from  to a cylinder in  which identifies points in   
just this way, and we can think of the equivalence classes as corresponding in a natural way to the
points of the cylinder.

                                                 

The cylinder has its usual topology from  and the map  is (clearly) continuous and onto.  Again, 
Theorem 5.4 gives that the usual topology on the cylinder is, in fact, the quotient topology.
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Example 5.9  Similarly, we can show that a torus (the “surface of a doughnut”) is the result of the
following identifications in :   and            
  

                                 
Thinking in two steps, we see that the identification of the two vertical edges produces a cylinder; the
circular ends of the cylinder are then identified (in the same direction) to produce the torus.

   
The two circles darkly shaded on the surface represent the identified edges.
We can identify the equivalence classes naturally with the points of this torus in  and just as before
we see that the usual topology on the torus is in fact the quotient topology.
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Example 5.10  Define an equivalence relation  in  by setting  Intuitively,         
the idea is to identify the points on the top and bottom edges with each other as we move along  the
edges in opposite directions.  We can picture this schematically as

     
Physically, we can think of a strip of paper and glue the top and bottom edges together after making a
“half-twist.”  The quotient space  is called a Möbius strip. 

            
We can take the quotient  as the definition of a Möbius strip, or we can consider a “real” Möbius 
strip in  and define a map  that accomplishes the identification we have in mind.       
In that case there is a natural way to associate the equivalence classes to the points of the torus in 
and again Theorem 5.4 guarantees that the usual topology on the Möbius strip is the quotient topology.
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Example 5.11  If we identify the vertical edges of  (to get a cylinder) and then identify its 
circular ends with a half-twist (reversing orientation):   and .  We get           
a quotient space which is called a Klein bottle.

              
It turns out that a Klein bottle cannot be embedded in the physical construction would require a 
“self-intersection” (that is, additional points identified) which is not allowed.  A pseudo-picture looks
like    

 

In these pictures, the thin “neck” of the bottle actually intersects the main body in order to re-emerge
“from the inside”  in a “real” Klein bottle (in , say), the self-intersection would not happen. 

In fact, you can imagine the Klein bottle as a subset of  using color as a 4  dimension. To each point th
      on the “bottle” pictured above, add a 4th coordinate to get  Now color the points
on the bottle in varying shades of red and let  be a number measuring the “intensity of red coloration
at a point.”  Do the coloring in such a way that the surface “blushes” as it intersects itself  so that the
points of “intersection” seen above in  will be different (in their 4 coordinates). th

Alternately, you can think of the Klein bottle as a parametrized surface traced out by a moving point
           where depend on time  and  is recorded as a 4 -coordinate.  A point on theth
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surface then has coordinates of form .  At “a point” where we see a self-intersection in     
there are really two different points (with different time coordinates ).
Example 5.12
 1) In , identify antipodal points that is, in vector notation,  for each .         
  Convince yourself that the quotient  is .    

 2) Let  be the unit disk .  Identify antipodal points on the boundary of        
              : that is,  if   The quotient  is called the , a spaceprojective plane
which, like the Klein bottle, cannot be embedded in .

 3) For any space , we can form the product  and let  for all         
        .  The quotient  is called the . ( )cone over  Why?
 4) For any space , we can form the product  and define  and           
                  for all .  The quotient  is called the .suspension of 
( )Why?

There is one other very simple construction for combining topological spaces. It is often used in
conjunction with quotients.
Definition 5.13  For each , let  be a topological space, and assume that the sets  are        pairwise disjoint. The  (or “free sum”) of the 's is the space  wheretopological sum        
               is open in  for every }.  We denote the topological sum by





       .   In the case , we use the simpler notation 

In , each  is a clopen subspace.  Any set open (or closed) in is open (or closed) in the sum.


  


    

The topological sum  can be pictured as a union of the disjoint pieces , all “far apart” from


 


 
each other so that there is no topological “interaction” between the pieces.
Example 5.14  In , let and be open disks with radius  and centers at   and          Then topological sum  is the same as  with subspace topology.   By contrast, let be         an  disk with radius  centered at  and let  be a  disk with radius  centered atopen closed    
        . Then  is  the same as  with the subspace topology (   Are the   not why?
topologies on and  the same if  and  are separated subsets of ?             

Exercise 5.15  Usually it is very easy to see whether properties of the 's do or do not carry over to 





 .  For example, you should convince yourself that:

    1) If the 's are nonempty and separable, then  is separable iff .     






    2) If the 's are nonempty and second countable, then  is second countable iff .     
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    3) A function  is continuous iff each  is continuous.      


 


    4) If 1 is a metric for , then the topology on  is the same as  where     






   if 
otherwise         

  

so   is metrizable if all the 's are metrizable.  You should be able to find similar statements for


 


 
other topological properties such as first countable, second countable, Lindelöf, compact, connected,
path connected, completely metrizable, ... .
Definition 5.16  Suppose  and  are disjoint topological spaces and , where .  In         
the sum , define  iff   If we form , we say that we have               attached
   to  with  and write this space as .  

For each its equivalence class under  is   You may think of the function        
“attaching” the two spaces by repeatedly selecting a group of points in , identifying them together,
and “sewing” them all onto a single point in just as you might run a needle and thread through 
several points in the fabric  and then through a point in  and pull everything tight. 
Example 5.17
 1) Consider disjoint cylinders  and .  Let  be the circle forming one end of  and  the    
circle forming one end of .  Let  be a homeomorphism.  Then  “sews          
together”  and  by identifying these two circles. The result is a new cylinder. 
  2) Consider a sphere .  Excise from the surface  two disjoint open disks  and         
and let  be union of the two circles that bounded those disks.  Let  be a cylinder whose   ends are bounded by the union of two circles, .  Let  be a homeomorphism carrying the points    of  and  clockwise onto the points of  and  respectively..          Then  is a “sphere with a .”    handle
 3) Consider a sphere .  Excise from the surface  an open disk and let  be the     
circular boundary of the hole in the surface .   Let  be a Möbius strip and let  be the curve that  
bounds it.  Of course, .  Let  be a homeomorphism.  The we can use  to join the        
spaces by “sewing” the edge of the Möbius strip to the edge of the hole in .  The result is a “ sphere
with a crosscap.”
There is a very nice theorem, which we will not prove here, which uses all these ideas.  It is a
“classification” theorem for certain surfaces.
Definition 5.18  A Hausdorff space  is a 2-  if each  has an open neighborhood  that    manifold
is homeomorphic to .   Thus, a 2-manifold looks “locally” just like the Euclidean plane.  A  is surface
a Hausdorff 2-manifold.
Theorem 5.19   Let  be a compact, connected surface.  The  is homeomorphic to a sphere  or to  
 with a finite number of handles and crosscaps attached.
You can read more about this theorem and its proof in  (WilliamAlgebraic Topology: An Introduction
Massey).
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Exercises
E22. a) Let be the equivalence relation on  given by  iff .  Prove that                  
    is homeomorphic to .
 b)  Find a counterexample to the following assertion:  if  is an equivalence relation on a
space  and each equivalence class is homeomorphic to the same space , then  is      
homeomorphic to .
Why might someone conjecture that this assertion might be true? In part a),  we have ,   
each equivalence class is homeomorphic to  and In this example, you ( .           
“divide out” equivalence classes that all look like , then “multiply” by ,  and you're back where 
you started.
 c)  Let  be given by .  Then the quotient space  is              
homeomorphic to what familiar space?
 d)   On , define an equivalence relation (  iff  .  Prove                       
that /  is homeomorphic to some familiar space. 
 e)  Define an equivalence relation on  by  if an only if  What is the quotient        
space ?   Explain. 

E23. For , define  iff  is rational.  Prove that the corresponding quotient          
space  is trivial.  

E24.   Prove that a 1-1 quotient map is a homeomorphism.

E25.  a) Let  with its usual topology and  with the  topology.  Define         discrete
             

        


 by letting   Prove that  is a quotient map that is if 
if  neither

open  closed.nor
         b) Let  have the topology  for which a  consists of all the usual open sets together  subbase
with the singleton set .  Let  have the usual topology and let  be the projection      
    .   Prove that  is a quotient map which is neither open nor closed.

E26.   State and prove a theorem of the form:
 
  “for two disjoint subsets  and of ,   is homeomorphic to  iff ... ”     
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E27.  Let   have the topology  for which a subbasis consists of all the usual open sets together with 
the singleton set .   Let  have the usual topology and define  by .          
Prove that  is a quotient map which is neither open nor closed.

E28.   Let  and let  .   Prove  is not homeomorphic to  but                   
that each is a continuous one-to-one image of the other

E29.  Show that no continuous image of  can be represented as a topological sum , where   
   .  How can this be result be strengthened?

E30.  Suppose  (s ) and  ( ) are pairwise disjoint spaces.  Prove that    is   
 

         
homeomorphic to     


    

E31. This problem outlines a proof (due to Ira Rosenholtz) that every nonempty compact metric space
   is a continuous image of the Cantor set .  From Example 4.5, we know that  is homeomorphic to
a subspace of   

 a) Prove that the Cantor set consists of all reals of the form  where   


 




each  or 2.  

 b) Prove that  is a continuous image of .         Hint: Define  
 

  
 
 
 

 c) Prove that the cube  is a continuous image of .   Hint: By Corollary 2.21,
              .  Use  from part b) to define by 

               

 d) Prove that a closed set  is a continuous image of .        Hint:   is homeomorphic to
the “middle two-thirds" set  consisting of all reals of the form .   has the property that if  



 
 


                 
, then If   is closed in , we can map  by sending each point  to

the point in  nearest to .  )
 e) Prove that every nonempty compact metric space  is a continuous image of . 
 

.
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Chapter VI Review
Explain why each statement is true, or provide a counterexample.

1. is open in        

2. Suppose  is a closed set in .  Then  is a closed set in         

3.  is discrete.

4. If  is the Cantor set, then there is a complete metric on  which produces the product topology. 

5. Let  have the box topology.  A sequence   iff  uniformly.           

6. Let  be given by .  The sequence  has a limit in  .                 

7. Let  be defined by  for all .  Give an example of a sequence  of distinct           functions in  that converges to . 
8. Let  be the Cantor set.  Then  is homeomorphic to the topological sum .    
9. The projection maps  and  from  separate points from closed sets.      
10. The letter     is a quotient of the letter  N M  .
11. Suppose  is an equivalence relation on  and that for  represents its equivalence       
class.  If  is a cut point of , then  is a cut point of the quotient space .      
12. If  is a quotient map and  is compact T , then  is compact T .     

13. Suppose  is infinite and that in each space  ( ) there is a nonempty proper open subset    
        .  Then  is not a  open set in the product topology on . Moreover,  cannot  basic
even be open in the product.
14. If , where the 's are disjoint clopen sets in , then   ( the          

   topological sum of the 's).

15.  Let  and  with their usual topologies.  Then  is homeomorphic to            
 

   
16.   Let  and  with their usual topologies.  Then  is homeomorphic to        

 
  

17. Let  sin , and let  be given by                         
        .   Then  is open but not closed in .
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18. Suppose  is a connected subset of  and that  is dense in Then each           
  

 is connected.
19. In , every neighborhood of the function sin contains a step function (that is, a function with
finite range).
20. Let  be an uncountable set with the cocountable topology. Then { is a closedX      
subset of the product . 
21. Let , and let  be any cardinal number.   is a closed set in           

    
22. If  is the Cantor set, then  is homeomorphic to .          
33.  is homeomorphic to the “infinity symbol”:       

34. 31. Let  be the set of all real polynomials in one variable, with domain restricted to ,  for  
which ran Then  is dense in         

35.  Every metric space is a quotient of a pseudometric space.
37. A separable metric space with a basis of clopen sets is homeomorphic to a subspace of the Cantor
set.
38. Let be a nonempty product space.  Then each factor  is a quotient of .       
39.  Suppose  does not have the trivial topology.  Then  cannot be separable. 

40. Every countable space  is a quotient of . 
41.   is homeomorphic to the sum of  disjoint copies of .   

42.  Suppose int , where .  Then for every ,  int .                
43. The unit circle, , is homeomorphic to a product , where each          (i.e.,  can be “factored” into a product of subspaces of  ).  

44.  is homeomorphic to .   
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Chapter VII
Separation Properties

1. Introduction
“Separation” refers here to whether objects such as points or disjoint closed sets can be enclosed in
disjoint open sets. In spite of the similarity of terminology, “separation properties” have no direct
connection to the idea of “separated sets” that appeared in Chapter 5 in the context of connected
spaces.
We have already met some simple separation properties of spaces: the and  (Hausdorff)     properties.  In this chapter, we look at these and others in more depth.  As hypotheses for “more
separation” are added, spaces generally become nicer and nicer especially when “separation” is
combined with other properties.  For example, we will see that “enough separation” and “a nice base”
guarantees that a space is metrizable.
“Separation axioms” translates the German term  used in the original literature.Trennungsaxiome
Therefore the standard separation axioms were historically named , , , , and , each one        stronger than its predecessor in the list. Once these had become common terminology, another
separation axiom was discovered to be useful and “interpolated” into the list:   It turns out that the     spaces (also called Tychonoff spaces) are an extremely well-behaved class of spaces with some
very nice properties.

2. The Basic Ideas
Definition 2.1  A topological space  is called a
 1)   -space if, whenever , there  exists an open set  with ,              either
   there exists an open set with , or       

 2)   -space if, whenever , there exists an open set with                 there exists an open set with and       

 3)   -space (or,  space) if, whenever , there exist  open sets        Hausdorff disjoint
  and  in  such that  and .       
It is immediately clear from the definitions that        

Example 2.2
 
 1)  is a -space if and only if:  whenever , then  that is, different points in         
 have different neighborhood systems.
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 2) If  has the trivial topology and , then  is not a -space.     

 3) A pseudometric space  is a  space in and only if  is a -space.    metric 

Clearly, a metric space is .  On the other hand, suppose  is  and that        Then for some     .  Either way, , so  is              either or a metric.
 
 4) In any topological space we can define an equivalence relation iff .  Let      
             by Give  the quotient topology.  Then  is continuous, onto, open
(not automatic for a quotient map!) and the quotient is a  space:

If  is open in , we want to show that  is open in , and because  has the    
quotient topology this is true iff  is open in .  But      
                  for some , 
          is equivalent to some point  in .

If , then  is not equivalent to , so there is an open set  with         
(say)  and .  Since  is open,  is open in  and .  Moreover,           
         or else  would be  to some point of implying equivalent

  is called the - . This identification turns any space into a -space by identifying  identification of
points that have identical neighborhoods.  If  is a -space to begin with, then  is one-to-one and  is   a homeomorphism.  Applied to a  space, the -identification accomplishes nothing.  If is a    pseudometric space, the -identification is the same as the metric identification discussed in ExampleVI.5.6 because, in that case,  if and only if       
 5) For if  is a  space and  is a new topology on , then                  
is also a  space.

Example 2.3
 1) (Exercise) It is easy to check that a space is a  space 

  iff for each , is closed   
  iff for each , is open and           
 2) A finite  space is discrete.

 3) Sierpinski space  with topology  is  but not :   is             an open set that contains  and not ; but there is no open set containing  and not 1.  
 4) , with the right-ray topology, is  but not :  if , then is an open          set that contains  and not ; but there is no open set that contains  and not .   
 5) With the cofinite topology,  is  but not  because, in an infinite cofinite space, any two   nonempty open sets have nonempty intersection.
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These separation properties are very well-behaved with respect to subspaces and products.
Theorem 2.4  For :    
    a)  A subspace of a -space is a -space      b)  If , then  is a  -space iff each  is a -space.            

Proof   All of the proofs are easy. We consider here only the case , leaving the other cases as an  
exercise.
a) Suppose , where  is a space.  If  is an open set  containing  but not ,             in 
then  is an open set  containing  but not .  Similarly we can find an open set  in          in 
containing  but not   Therefore is a -space.   

b) Suppose  is a nonempty -space.  Each  is homeomorphic to a subspace of ,        so, by part a), each  is  Conversely, suppose each  is  and that .  Then                  for some .  Pick an open set  in  containing  but not .  Then  is an open set             in containing  but not .  Similarly, we find an open set in  containing  but not .  Therefore      
   is a -space.   

Exercise 2.5  Is a continuous image of a -space necessarily a -space?   How about a quotient?  A continuous open image?

We now consider a slightly different kind of separation axiom for a space  formally, the definition 
is “just like” the definition of , but with a closed set replacing one of the points.

Definition 2.6  A topological space  is called  if whenever  is a closed set and     regular
there exist disjoint open sets  and  such that  and .       
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There are some easy equivalents of the definition of “regular” that are useful to recognize.
Theorem 2.7  The following are  for any space :equivalent 
     i)  is regular
     ii) if  is an open set containing , then there exists an open set  such that    
     cl      
     iii) at each point  there exists a neighborhood base consisting of closed  
     neighborhoods.
Proof   i) ii) Suppose  is regular and  is an open set with Letting , we use         
regularity to get disjoint open sets  with  and  as illustrated below:        

    
Then cl (since cl ).           
 ii) iii)  If , then int .  By ii), we can find an open set  so that                   cl   Since cl  is a neighborhood of , the closed neighborhoods of  form a
neighborhood base at .
 iii) i)  Suppose  is closed and .  By ii), there is a  neighborhood  of  such      closed
that .  We can choose int  and  to complete the proof that  is              
regular.   

Example 2.8  Every pseudometric space  is regular.  Suppose and  is closed.  We have     
a continuous function  for which  and This gives us disjoint            
open sets with and .  Therefore  is regular.                 

 

At first glance, one might think that regularity is a stronger condition than .  But this is false:  if    is a pseudometric space but not a metric space, then  is regular but .not even 
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To bring things into line, we make the following definition.
Definition   A topological space  is called a -space if  is regular  .    and
It is easy to show that  ( ): suppose  is  and .  Then  is                    closed so, by regularity, there are disjoint open sets ,  with  and .         
Caution  Terminology varies from book to book.  For some authors, the definition of “regular”
includes   for them, “regular” means what we have called “ .”  Check the definitions when   reading other books.
Exercise 2.10   Show that a regular  space must be   (   so it would have been equivalent to use “ ”instead of “ ” in the definition of “ ”   ).
Example 2.11   .   We will put a new topology on the set . At each point , let a         
neighborhood base  consist of all sets  of the form 
 a finite number of straight lines through   for some            
( ) With the resultingCheck that the conditions in the Neighborhood Base Theorem III.5.2 are satisfied.
topology,  is called the .  Note that  ( ), so   slotted plane   because “ ” is a finite number
each  is among the basic neighborhoods in so the slotted plane topology on  contains the     
usual Euclidean topology.  It follows that  is . 

The set “the -axis with the origin deleted” is a closed set in  ( ).           why?
If  is any open set containing the origin , then there is a basic neighborhood  with   
            Using the in the definition of ,  we can choose a point with
       Every basic neighborhood set of  must intersect   (why?) and therefore must intersect
 .  It follows that and  cannot be separated by disjoint open sets, so the slotted plane is not  
regular (and therefore not ).
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Note:  The usual topology in  his example shows that an “enlargement” of a regular is regular.  T
(or ) topology may not be regular (or ).   Although the enlarged topology has more open sets to  work with, there are also more “point/closed set pairs ” that need to be separated.  By contrast, it 
is easy to see that an “enlargement” of a  topology  is still         

Example 2.12  The Moore plane  (Example III.5.6) is clearly   In fact, at each point, there is a  neighborhood base of closed neighborhoods. The figure illustrates this for a point on the -axis and a 
point above the -axis.  Therefore  is .   

Theorem 2.13   a) A subspace of a regular ( space is regular ( ).        b) Suppose .   is regular ( ) iff each is regular  ( ).            

Proof   a) Let  where  is regular.  Suppose  and that  is a closed set  that does not        in 
contain .  There exists a closed set   such that Choose disjoint open sets       in 
                           and  in  with  and Then and are open in ,
disjoint, , and .  Therefore  is regular.      
  b) If  is regular, then part a) implies that each  is regular because each            is homeomorphic to a subspace of .   Conversely, suppose each is regular and that
             is a basic open set containing .  For each , we can pick an open set in
                                such that cl  Then cl
          cl cl   ( )  Therefore  is regular.   Why is the last inclusion true?

Since the  property is hereditary and productive, a) and b) also hold for -spaces      

The obvious “next step up” in separation is the following:
Definition 2.14  A topological space  is called  if, whenever  are disjoint closed sets in normal
             , there exist disjoint open sets ,  in  with  and   is called a -space if  isnormal and  1
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Example 2.15  a)  Every pseudometric space is normal (so every metric space is .   
In fact, if  and  are disjoint closed sets, we can define .  Since the    

denominator cannot be ,  is continuous and ,   The open sets                and  are disjoint that contain  and  respectively.  Therefore  is normal.         
Note: the argument given is slick and clean.  Can you show  is normal by directly constructing  a 

pair of disjoint open sets that contain  and  ? 
      b)  Let  have the right ray topology .  is               
normal because the only possible pair of disjoint closed sets is  and  and we can separate these using 
the disjoint open sets  and   Also,  is : for example  is not in the           not regular
closed set ,  but every open set that contains  also contains .  So  .       normal regular
But  is not  and therefore          not
   
When we combine “normal ” into , we have a property that fits perfectly into the  separation   hierarchy.
Theorem 2.16                 

Proof   Suppose  is .  If  is a closed set not containing , then  and  are disjoint closed     sets.  By normality, we can find disjoint open sets separating  and .  It follows that  is regular  
and therefore .    
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Exercises
E1.  is called a  if every subset is either open or closed.  Prove that if a -space   door space contains two points that are not isolated, then  is not a door space, and that otherwise  is a door 
space.

E2.  A base for the closed sets closed  in a space  is a collection of  of  subsets such that every 
closed set  is an intersection of sets from .  Clearly,  is a base for the closed sets in  iff  
             is a base for the open sets in .
       For a polynomial  in  real variables, define the  of  as  zero set
                             
 a) Prove that  a polynomial in  real variables  is the base for the closed sets of a    
topology (called the  topology) on Zariski 
 b) Prove that the Zariski topology on is  but not .   
 c) Prove that the Zariski topology on  is the cofinite topology, but that if , the Zariski   
topology on is  the cofinite topology not 
Note: The Zariski topology arises in studying algebraic geometry.  After all, the sets are   rather
special geometric objects—those “surfaces” in  which can be described by polynomial equations
            .

E3.  A space  is a  space if, whenever , there exist open sets  and such that             ,
     and cl cl   ( )      . Clearly, T T  

 a)  Prove that a subspace of a  space is a space.  

 b)  Suppose .  Prove that  is  iff each  is  .           

 c) Let and Define a topology on  with                   
the following neighborhood bases:
   if                      if :                    

You may assume that these 's satisfy the axioms for a neighborhood base.

Prove that  is  but not .S T T 
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E4.  Suppose .  Define a topology on  by   
            
Decide whether or not  is normal. 

E5. A function  is called  if  is continuous, closed, onto, and, for each         perfect 
        is compact.  Prove that if  is regular and  is perfect, then is regular and that if  is , 
the  is also   

E6. a)  Suppose  is .  Prove that  is regular iff there is a  of  that is a base for   finite partition 
the topology.

b)  Give an example to show that a compact subset  of a regular space  need not be closed. 
However, show that if  is regular then cl  is compact. 
       c)  Suppose  is closed in a -space Prove that  

   i) Prove that  is open and        
   ii) Define  iff  or Prove that the quotient space  is Hausdorff.           
      d) Suppose  is an infinite subset of a -space .  Prove that there exists a sequence of open sets                   such that each  and that cl cl  whenever .
      e) Suppose each point  in a space  has a neighborhood  such that cl  is regular.  Prove   
that  is regular.
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3. Completely Regular Spaces and Tychonoff Spaces

The property is well-behaved.  For example, we saw in Theorem 2.13 that the  property is  hereditary and productive.  However, the  property is not sufficiently strong to give us really nicetheorems.
For example, it's very useful if a space has many (nonconstant) continuous real-valued functions
available to use.  Remember how many times we have used the fact that continuous real-valued
functions  can be defined on a  space using formulas like  or      metric
        ; when , we get many nonconstant real functions defined on But a
 -space can sometimes be very deficient in continuous real-valued functions in 1946, Hewett gave
an example of a infinite -space  on which the  continuous real-valued functions are the  only
constant functions.
In contrast, we will see that the  property is strong enough to guarantee the existence of lots ofcontinuous real-valued functions and, therefore, to prove some really nice theorems (for example, see
Theorems 5.2 and 5.6 later in this chapter).  The downside is that -spaces turn out also to exhibitsome very bad behavior:  the  property is not hereditary ( explain why a proof analogous to the one
given for Theorem 2.13b) doesn't work) and it is not even finitely productive.  Examples of such bad
behavior are a little hard to find right now, but later they will appear rather naturally.
These observations lead us to look first at a class of spaces with separation somewhere “between and .”  We want a group of spaces that is well-behaved, but also with enough separation to give ussome very nice theorems.  We begin with some notation and a lemma.
Recall that    is continuous   the collection of  real-valued        continuous
        functions on 
   is bounded the collection of           continuous bounded
           real-valued functions on 

Lemma 3.1  Suppose .  Define real-valued functions  and  by          
   
   ( max     
   min     
Then  and  are in       
Proof  We want to prove that the max or min of two continuous real-valued functions is continuous.
But this follows immediately from the formulas
   (     
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Definition 3.2   A space  is called  if whenever is a closed set and there    completely regular
exists a function  such that  and          
Informally, “completely regular” means that “  and  can be separated by a continuous real-valued 
function.”
Note i) The definition requires that , in other words, that  However, these       
two sets  be equal.might not
 ii) If there is such a function , there is also a continuous such that          
and .  For example, we could use  which, by Lemma 3.1, is continuous.         
 iii) Suppose  is continuous and , The particular values  in             
the definition are not important.: they could be any real numbers      If we choose a
homeomorphism , then it must be true that either ,  or ,                 
                   why?.  Then  and depending on how you chose  and
   or vice-versa. )
Putting these observations together, we see Definition 3.2 is equivalent to:
Definition 3.2     A space  is called  if whenever is a closed set,  and    completely regular
           are real numbers with then there exists a continuous function  for which
       and
In one way, the definition of “completely regular space” is very different the definitions for the other
separation properties: the definition isn't “internal”because an “external” space,  is an integral part of
the definition.  While it  possible to contrive a purely internal definition for “completely regular,”  theis
definition is complicated and seems completely unnatural:  it simply imposes some very unintuitive
conditions to force the existence of enough functions in .
Example 3.3  Suppose  is a pseudometric space with a closed subset  and Then      
           

 is continuous, and .  So  is completely regular, but if  is not a
metric, then this space is not even .

Definition 3.4  A completely regular -space  is called a   (or -space).   Tychonoff space 

Theorem 3.5                   
Proof     Suppose is a closed set in  not containing .  If  is , we can choose with                         and Then  and  are disjoint open sets with  

                 Therefore  is regular.  Since  is ,  is  

Hewitt's example of a  space on which every continuous real-valued function is constant is more thanenough to show that a  space may not be  (the example, in 9, is    Ann. Math., 47(1946) 503-50
rather complicated ).  For that purpose, it is a little easier but still nontrivial to find a  space .    containing two points  such that for all   Then  and  cannot be         
separated by a function from  so  is not T   (See D.J. Thomas,     A regular space, not
completely regular, American Mathematical Monthly, 76(1969), 181-182).  The space  can then be
used to construct an infinite  space  (simpler than Hewitt's example) on which every continuous 
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real-valued function is constant (see Gantner, A regular space on which every continuous real-valued
function is constant, American Mathematical Monthly, 78(1971), 52.)  Although we will not present
these constructions here, we will occasionally refer to  in comments later in this section.
Note: We have  yet shown that   this is true (as the notation suggests), but it is not at allnot      :
easy to prove: try it!   This result is in Corollary 5.3.

Tychonoff spaces continue the pattern of  good behavior that we saw in preceding separation axioms,
and they will also turn out to be a rich class of spaces to study.
Theorem 3.7   a) A subspace of a completely regular ( space is completely regular ( .              b) Suppose .   is completely regular ( iff each is            completely regular ( .  

Proof  Suppose , where is completely regular and  is a closed set . Pick a         in 
closed set   such that  and an  such that and .  Then              in 
            and   Therefore  is completely regular.
 If  is completely regular, then each  is homeomorphic to a subspace of          so each  is completely regular.  Conversely, suppose each  is completely regular and that  is a closed set in  not containing .  There is a basic open set  such that  
                

For each  we can pick a continuous function  with  and                                     | Define  by
  max max                          
Then  is continuous and max   If , then for some                                          and , so .  Therefore  and is completely regular.
 .
 Since the  property is both hereditary and productive, the statements in a) and b) also holdfor       

Corollary 3.8  For any cardinal , the “cube”  and all its subspaces are .     

Since a Tychonoff space  is defined using functions in , we expect that these functions will 
have a close relationship to the topology on .  We want to explore that connection.
Definition 3.9  Suppose . Then  is called the              
zero set of .  If  for some , we call  a zero set in .  The complement of a zero        
set in  is called a  set:  coz             cozero
A zero set in  is closed because  is continuous.  In addition, , where     

 
           

 .  Each  is open.  Therefore a zero set is always a closed -set.
Taking complements shows that coz  is always an open -set in .  
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For , let  Then .  Therefore and                      
produce the same zero sets in  (and therefore also the same cozero sets).
 
Example 3.10
    1) A closed set  in a pseudometric space  is a zero set: , where          
   2) In general, a closed set in  might not be a zero set in fact, a closed set in  might not even be  
a  set.

Suppose  is uncountable and .  Define a topology on  by letting  be a      neighborhood at each point  and letting  and  is countable  be           the neighborhood base at .  ( Check that the conditions of the Neighborhood Base Theorem
III.5.2 are satisfied )
All points in are isolated and is clearly   In fact,  is .        

If  and  are disjoint closed sets in , then one of them (say satisfies   
              , so is clopen.  We then have open sets  and ,
so  is normal.

We do not know yet that in general, but it's easy to see that this space  is also         .

If  is a closed set not containing , then either or .           
So one of the sets  or  is clopen and he characteristic function of that clopen set is 
continuous and works to show that  is completely regular.

The set  is closed but  is not a set in , so  in .      is not a zero set
 Suppose  where  is open. For each , there is a basic neighborhood      

    of  such that so is countable.  Therefore                
  is countable.  Since  is uncountable, we conclude         

   that    
 

Even when  is both closed  a  set,   might not be a zero set.  We will see examples  and later.

For purely technical purposes, it is convenient to notice that zero sets and cozero sets can be described
in a many different forms.  For example, if , then we can see that    each set in the left column
is a zero set by choosing a suitable    
       where               
  0 ,  where                 
  0 ,  where                 
     ,  where                  r
     ,  where                         r
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On the other hand, if , we can write  in any of the forms listed above by choosing an   
appropriate function    
      where             
  0   where           
  0  where             
    where           r
    where           r

Taking complements, we get the corresponding results for cozero sets: if   
 i)  the sets , , , { }                        
     are cozero sets, and
 ii) any given cozero set can be written in any one of these forms.
Using the terminology of cozero sets, we can see a nice comparison/contrast between regularity and
complete regularity.  Suppose , where  is closed in If  is regular, we can find disjoint     
open sets  and with  and   But if  is completely regular, we can separate  and            
with “special” open sets  and cozero sets!  Just choose  with  and ,            
then
   and                    

 

In fact this observation  completely regular spaces that is, if a regular space fails to becharacterizes 
completely regular, it is because there is a “shortage” of cozero sets because there is a “shortage” of
functions in  ( .  For the extreme case of a  space  on which the only  see Theorem 3.12, below) continuous real valued functions are constant, the  cozero sets are  and !only  

The next theorem reveals the connections between cozero sets,  and the weak topology on  
Theorem 3.11  For  space ,  and  induce the same weak topology on , andany        a base for is the collection of all cozero sets in . 
Proof  A subbase for consists of all sets of the form , where  is open in  and         
Without loss of generality, we can assume the sets are subbasic open sets of the form  and 
                   , so that the sets  have form or .  But these
are every subbase cozero sets of , and  cozero set in  has this form.  So the cozero sets are a  for  In fact, the cozero sets are actually a  because coz coz coz : the intersection ofbase     
two cozero sets is a cozero set.
The same argument, with  replacing  shows that the cozero sets of  are a base for     
the weak topology on generated by  But  and  produce the  cozero sets in       same
  , and therefore generate the same weak topology on .    

Now we can now see the close connection between  and  in completely regular spaces.  For   any
space  the functions in  certainly are continuous with respect to (by  of      definition
). But is  the  topology making this collection of functions continuous?  In other words, is  smallest
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the weak topology on  generated by ?   The next theorem says that is true precisely when  is  
completely regular.

Theorem 3.12  For any space , the following are equivalent: 
 a)   is completely regular
 b)  The cozero sets of  are a base for the topology on   (equivalently, the zero sets of   
 are a base for the closed sets—meaning that every closed set is an intersection of zero sets)
 c)   has the weak topology from    (equivalently, from  )   
 d)   (equivalently,  ) separates points from closed sets.  

Proof The preceding theorem shows that b) and c) are equivalent.
 a) b)  Suppose  where  is open   Let   Then we can choose             
with  and .  Then  is a cozero set for which                   

Therefore the cozero sets are a base for .
 b) d)  Suppose  is a closed set not containing .  By b), we can choose  so that     
                   coz   Then , so cl   Therefore  separates
points and closed sets.
 d) a)  Suppose  is a closed set not containing .  There is some for which     
          cl   Without loss of generality ( ),  we can assume   Then, for some ,why? 
                           , so that for ,    Define  by min
Then  and , so is completely regular.     
 At each step of the proof,  can be replaced by  ( )      check!

The following corollary is curious and the proof is a good test of whether one understands the idea of
“weak topology.”

Corollary 3.13  Suppose is a set and let  be the weak topology on  generated by  family of  any
functions .  Then  is completely regular ) is Tychonoff is separates points.          

Proof Give  the topology the weak topology  generated by .  Now  has a topology, so the  collection  makes sense.  Let  be the weak topology on generated by       The topology   make all the functions in  continuous, so    does    On the other hand: by definition of , and the larger collection of functions    generates a (potentially) larger weak topology. Therefore     Therefore  .  By Theorem 3.12,   is completely regular.         
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Example 3.14
 1) If  is nowhere differentiable ,  then the weak topology  on  generated         by  is completely regular.
 2) If  is an infinite  space on which every continuous real-valued function is constant (  see
the comments at the beginning of this Section 3), then the weak topology generated by  has for a
base the collection of cozero sets { .  So the weak topology generated by  is the trivial 
topology, not the original topology on . 

Theorem 3.12 leads to a lovely characterization of Tychonoff spaces.
Corollary 3.15  Suppose  is a Tychonoff space.  For each , we have    
ran ]  for some  The evaluation map   is                            
an embedding.
Proof    is , the 's are continuous and the collection of 's  separates points and         
closed sets.  By Corollary VI.4.11,   is an embedding.    

Since each  is homeomorphic to ,   is homeomorphic to where              
    .  Therefore any Tychonoff space can be embedded in a “cube.”  On the other hand
(Corollary 3.8)   and all its subspaces are Tychonoff.  So we have: 

Corollary 3.16  A space  is Tychonoff iff  is homeomorphic to a subspace of a “cube”  for   
some cardinal number .

The exponent  in the corollary may not be the smallest exponent possible. As an    * extreme
case, for example, we have , even though we can embed  in The            
following theorem improves the value for in certain cases ( and we proved a similar result for metric
spaces : see Example VI.4.5.  )
Theorem 3.17  Suppose  is Tychonoff with a base  of cardinality .  Then  can be embedded in  
     .  In particular,  can be embedded in  .
Proof   Suppose  is finite.  Since  is ,  is a basic open set containing   Only         
finitely many such intersections are possible, so  is finite and therefore discrete.  Hence
       top top 
 Suppose  is a base of cardinal  where  is infinite.  Call a pair          
distinguished if there exists a continuous  with  for all  and             

                  for all   Clearly,  for a distinguished pair   For each
distinguished pair,  pick such a function  and let is distinguished .              
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We note that if , then there must exist  such that  and  is distinguished              
To see this, pick an  so that and   Then choose  so that                 
          



We claim that  separates points and closed sets:
Suppose  is a closed set not containing . Choose a basic set with           
There is a distinguished pair  with   Then  and                  

             , so cl
By Corollary VI.4.11,  is an embedding.  Since  is infinite,       
              .   

A theorem that states that certain  properties of a space  imply that  is metrizable istopological  
called a “metrization theorem.” Typically the hypotheses of a metrization theorem involve that
1)  has “enough separation” and 2)  has a “sufficiently nice base.” The following theorem is a 
simple example.
Corollary 3.18 (“Baby Metrization Theorem”)  A second countable Tychonoff space  is
metrizable.
Proof   By Theorem 3.17,  .  Since  is metrizable, so is .          top   

In Corollary 3.18,  turns out to be metrizable and separable (since  is second countable). On the 
other hand  and all its subspaces are separable metrizable spaces.  Thus, the corollary tells us 

that the separable metrizable spaces (topologically) are precisely the second countable Tychonoff
spaces.
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     Exercises
E7.  Prove that if  is a countable Tychonoff space, then there is a neighborhood base of clopen sets at
each point.  (Such a space  is sometimes called zero-dimensional.)

E8. Prove that in any space , a countable union of cozero sets is a cozero set or, equivalently, that a 
countable intersection of zero sets is a zero set.

E9. Prove that the following are equivalent in any Tychonoff space :
   a) every zero set is open
   b) every  set is open   c) for each if  then there is a neighborhood  of         
  such that     

E10.  Let  be the identity map and let   
  
   for some }.              
    is called the  in  generated by the element ideal  .
For those who know a bit of algebra: if we definite addition and multiplication of functions pointwise,
then  or, more generally,   is a commutative ring The constant function  is the zero      
element in the ring; there is also a unit element, namely the constant function “ .”
 a) Prove that and the derivative exists .             

 b) Exhibit two functions  in  for which  yet  and .              
 c) Let  be a Tychonoff space with more than one point. Prove that there are two functions
    such that  on  yet neither  nor  is identically 0 on .     
           Thus, there are functions  for which although  and   In an              
algebra course, such elements  and  in the ring  are called “zero divisors.”  
 d) Prove that there are exactly two functions  for which .  ( the         
notation )        means ,  not .
 e) Prove that there are exactly  functions in ( ) for which .c      

An element in that equals its own square is called an .   Part d) shows that  and  idempotent 
     are not isomorphic rings since they have different numbers of idempotents.  Is either  or
     isomorphic to ?
One classic part of general topology is to explore the relationship between the space  and the rings
        and .  For example, if  is homeomorphic to , then   is isomorphic to .  This
necessarily implies (why?) that  is isomorphic to . The question “when does isomorphism     
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imply homeomorphism?” is more difficult.  Another important area of study is how the maximal ideals
of the ring  are related to the topology of .  The best introduction to this material is the classic 
book  (Gillman-Jerison).Rings of Continuous Functions
 f) Let  be the set of differentiable functions .  Are the rings  and             
isomorphic?  Hint: An isomorphism between  and  preserves cube roots.    

E11.  Suppose  is a connected Tychonoff space with more than one point.  Prove .   

E12. Let  be a topological space.  Suppose  and that  is a neighborhood of       
(that is, int  )  
    a) Prove that  is a multiple of  in that is, prove there is a function  such     
that  for all .     
 b) Give an example where  but  is not a multiple of  in .     

E13. Let  be a Tychonoff space with subspaces  and where  is closed and  is countable.    
Prove that if , then  is disjoint from some zero set that contains .      

E14. A space  is called pseudocompact if every continuous is bounded, that is, if     
       (s ).   Consider the following condition (*) on a space :ee Definition IV.8.7
     (*)  Whenever ...  is a decreasing sequence of nonempty open sets,         

  then cl .
   

    a) Prove that if  satisfies (*), then  is pseudocompact. 
    b) Prove that if  is Tychonoff and pseudocompact, then  satisfies (*). 
Note: For Tychonoff spaces, part b) gives an “internal" characterization of pseudocompactness that
is, a characterization that makes no explicit reference to .

.
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4. Normal and -Spaces
We now return to a topic in progress: normal spaces and -spaces .   Even though normal spaces are  badly behaved in some ways, there are still some very important (and nontrivial) theorems that we can
prove.  One of these will give “ ” as an immediate corollary.    

To begin, the following technical variation on the definition of normality is very useful.
Lemma 4.1  A space  is normal  iff  whenever  is closed  is open and ,     
      there exists an open set U
      with cl       
Proof  Suppose  is normal and that is an open set containing the closed set . Then  and   
        are disjoint closed sets.  By normality, there are disjoint open sets  and  with 
and    Then cl              

   
   
Conversely, suppose  satisfies the stated condition and that  are disjoint closed sets. 

   
Then  so there is an open set  with cl   Let cl .                    
      and  are disjoint closed sets containing  and  respectively, so  is normal.   
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Theorem 4.2   a) A  subspace of a normal ( ) space is normal ( ).closed     b) A continuous closed image of a normal ( ) space normal ( ).  

Proof    a) Suppose  is a closed subspace of a normal space  and let  and  be disjoint closed sets   
in . Then  are also closed in  so we can find disjoint open sets  and  in  containing        
and  respectively.  Then and  are disjoint open sets in  that contain              
and , so  is normal. 
 b) Suppose  is normal and that is continuous, closed and onto.  If  and are       
disjoint closed sets in , then and  are disjoint closed sets in .  Pick  and           
disjoint open sets in  with   and    Then  and                     
         are open sets in .
If , then .  Since  is onto, for some   Therefore                      
                so .  Hence 
If , then , so .  Therefore  so                             
                 .  Therefore and, similarly, so  is normal.
Since the  property is hereditary and is preserved by closed onto maps, the statements in a) and b)hold for  as well as normality.    

The next theorem gives us more examples of normal (and ) spaces.

Theorem 4.3  Every regular Lindelöf space  is normal (and therefore every Lindelöf -space is ).

Proof   Suppose  and are disjoint closed sets in .  For each , use regularity to pick an open     
set  such that cl   Since the Lindelöf property is hereditary on            closed
subsets, a countable number of the 's cover : relabel these as  .  For each , we            have cl   Similarly, choose a sequence of open sets  covering  such that                cl for each .     

We have that  and , but these unions may not be disjoint.  So we define  
       

 cl     cl               cl cl    cl cl                                 
 cl cl cl   cl cl cl                                                
Let and .       

 
  

If , then cl  for all .  But  for some , so   Therefore and,                     similarly,     
To complete the proof, we show that . Suppose .       
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Then  for some   so  cl cl cl                    so                so                 so   for any       

Since , then So, if , then cl cl cl                               

So for all , so  and therefore                

Example 4.4  The Sorgenfrey line  is regular because the sets  form a base of closed  
neighborhoods at each point .  We proved in Example VI.3.2 that  is Lindelöf, so  is normal.  Since  
    is , we have that  is .   

5. Urysohn's Lemma and Tietze's Extension Theorem
We now turn our attention to the issue of “ ”.  This is hard to prove because to show that a    space is , we need to prove that certain continuous functions exist; but the hypothesis “ ” gives   us  continuous functions to work with. As far as we know at this point, there could even be no spaces on which every continuous real-valued function is constant!  If -spaces are going to have arich supply of continuous real-valued functions, we will have to show that these functions can be “built
from scratch” in a -space.  This will lead us to two of the most well-known classical theorems ofgeneral topology.
We begin with the following technical lemma.  It gives a way to use a certain collection of open sets
        to construct a function .  The idea in the proof is quite straightforward, but I
attribute its elegant presentation (and that of Urysohn's Lemma which follows) primarily to Leonard
Gillman and Meyer Jerison.
Lemma 5.1  Suppose  is any topological space and let  be any dense subset of   Suppose open  
sets  have been defined, one for each ,  in such a way that:     

   i)   and          
   ii) if and , then cl .          

For , define inf .  Then is continuous.                 
We will use this Lemma only once, with  So if you like, there is no harm in assuming that  
   in the proof.
Proof  Suppose By i) we know that  for some , so .  And by ii),                 we know that  for some .  if , then (by ii) , so  is a lower bound for            For that 
                 .  Therefore  has a greatest lower bound, so the definition of 
makes sense:  inf .           
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From the definition of , we get that for     
 a) if cl , then  for all  so              b) if , then .     

We want to prove  is continuous at each point .  Since  is dense in ,     
  and            
is a neighborhood base at  in .  Therefore it is sufficient to show that whenever ,     
then there is a neighborhood  of  such that       
Since , we have , and gives us that cl .  Therefore cl  is                   an open neighborhood of .   If , then cl  so ;  and  cl , so                      and Therefore          
 
Our first major theorem about normal spaces is still traditionally referred to as a “lemma” because it
was a lemma in the paper where it originally appeared.  Its author, Paul Urysohn, died at age 26, on the
morning of 17 August 1924, while swimming off the coast of Brittany.

Theorem 5.2 Urysohn's Lemma     A space  is normal iff whenever  are disjoint closed sets in 
          , there exists a function  with  and   (When such an  exists, we say that
  and  are .completely separated )
Note: Notice that if  and  happen to be disjoint , say   zero sets       and , then the
 conclusion of the theorem is true : just letin any space, without assuming normality
 Then  is continuous,  and .          

  


  .  
 The conclusion of Urysohn's Lemma only says that  and : equality        
 might not be true.  In fact,  if  and ,  then  and  were zero sets in          
 the beginning, and the hypothesis of normality would have been unnecessary.
 

This shows again that zero sets are very special closed sets: in  space, disjoint zero sets areany
completely separated.  Put another way: given Urysohn's Lemma, we can conclude that every
nonnormal space must contain a closed set that is not a zero set.

Proof  The proof of Urysohn's Lemma in one direction is almost trivial.  If such a function  exists,
then  and  are disjoint open sets (in fact, cozero sets)              

 containing  and  respectively.  It is the other half of Urysohn's Lemma for which Urysohn deserves 
credit.
Let  and  be disjoint closed sets in a normal space .  We will define sets open sets  ( in       
             in such a way that Lemma 5.1 applies.  To start, let for  and  for . 
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Enumerate the remaining rationals in  as ,  beginning the list with and                 
                      We begin by defining  Then use normality to define since         , we can pick so that
  cl                

Then , and we use normality to pick an open set  so that            

  cl cl                     

We continue by induction.  Suppose  and that we have already defined open sets            in such a way that whenever then           

  cl cl             

We need to define  so that    holds for         

Since  and , and it makes sense to define           

  the largest among that is smaller than and               the smallest among  that is larger than              

By the induction hypothesis, we already have cl    Then use normality to pick an open set       so that
   cl cl .            

The 's defined in this way satisfy the conditions of Lemma 5.1, so the function  defined     
by inf is continuous.  If , then  and  if , so                                                 If  then , but  for , so     

Once we have the function  we can replace it, if we like, by   so that  and  are         
completely separated by a function   It is also clear that we can modify  further to get an    
             for which  and  where  and  are any two real numbers.

With Urysohn's Lemma, the proof of the following corollary is obvious.
Corollary 5.3       .
There is another famous characterization of normal spaces in terms of .  It is a result about
“extending” continuous real-valued functions defined on closed subspaces.
We begin with the following two lemmas.  Lemma 5.4, called the “Weierstrass -Test” is a slight
generalization of a theorem with the same name in advanced calculus.  It can be useful in “piecing
together” infinitely many real-valued continuous functions to get a new one.  Lemma 5.5 will be used
in the proof of Tietze's Extension Theorem (Theorem 5.6).
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Lemma 5.4 (Weierstrass -Test)   Let be a topological space.   Suppose is     
continuous for each  and that  for all .  If , then              




        




  converges (absolutely) for all  and is continuous.

Proof   For each ,  , so  converges (absolutely) by the Comparison          
  

  
  

Test.
 Suppose  and .  Choose  so that  Each  is continuous, so for         




 

 .   
                 we can pick a neighborhood  of  such that for   Then    

 .
         

  is a neighborhood of , and for  we get 
                           

 

   
       

 
                      



  
    

 
  

   
Therefore  is continuous at .      

Lemma 5.5   Let  be a closed set in a normal space  and let  be a positive real number.  Suppose  
              is continuous.  Then there exists a continuous [  such that  

        
  for each .

Proof  Let  and .   is closed, and  and                          
 are disjoint closed sets in , so and  are closed in .  By Urysohn's Lemma, there exists a    continuous function  such that  and .                

    
           If , then  and , so                          

   
                     

    and similarly if If , then  and  are 
both in  so .             

  

Theorem 5.6  (Tietze's Extension Theorem)   A space   is normal iff whenever  is a closed set in 
          and , then there exists a function such that 

Note:  if  is a closed subset of , then it is quite easy to prove the theorem. In that case,   
  is open and can be written as a countable union of disjoint open intervals  where each
         or  or  ( ).  For each of these intervals , thesee Theorem II.3.4
endpoints are in , where  is already defined.  If  then extend the definition of       
over by using a straight line segment to join and  on the graph of .  If      
      then extend the graph of  over using a horizontal right ray at height  if
       then extend the graph of  over using a horizontal left ray at height 

As with Urysohn's Lemma, half of the proof is easy.  The significant part of theorem is proving the
existence of the extension  when  is normal. 
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Proof ( )  Suppose  and  are disjoint closed sets in .   and  are clopen       in the subspace
                  so the function defined by  and  is continuous.  Since
           is closed in , there is a function such that   Then
              

 and  are disjoint open sets (cozero sets, in fact) that contain
   and  respectively.  Therefore  is normal.
 ( )  The idea is to find a sequence of  functions such that   
             

 

 
 as ). The sums are definedfor each where  is defined    

on   and as  we can think of them as giving better and better  to theall of approximations   
extension  that we want.  Then we can let   The details follow.  We       lim  

 
  

proceed in three steps, but the heart of the argument is in Case I.
Case I  Suppose  is continuous and that .  We claim there is a continuous        
function  with           
Using Lemma 5.5 (with  we get a function  such that                

 
for , .  Therefore                     

  

Using Lemma 5.5 again (with , we get a function  such                   
  that for .  So                                 

   

Using Lemma 5.5 again (with , we get a function                       
  such that for .                    

  
So                   

 

We continue, using induction, to find for each  a continuous function
                   

  

  
   such that  for .

Since  the series  converges (absolutely) for every  
  

  
 

        


         ,  and  is continuous by the Weierstrass -Test.  Since 





              
 

 
 



 we have 

Finally, for , so and                  lim lim 


 

 
the proof for Step I is complete.
Case II  Suppose  is continuous.  We claim there is a continuous function       
           with  

Since , we can apply Case I to find a continuous function            
            with   To get , we merely make a slight modification to
        to get a  that still extends  but where  has all its values in 
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Let .   and  are disjoint closed sets in , so by            
Urysohn's Lemma there is a continuous  such that  and          
                  If we let , then  and ,
completing the proof of Case II.

Case III  (the full theorem)  Suppose  is continuous.  We claim there is a continuous    
function  with       

Let  be a homeomorphism.  Then  and, by Step                
II, there is a continuous with               

              

Let .  Then for we have                
          

It is easy to see that  can replace  in the statement of Tietze's Extension Theorem.  

Example 5.7  We now know enough about normality to see some of its bad behavior.  The Sorgenfrey
line  is normal ( ) but the Sorgenfrey plane  is not normal.   Example 4.4
To see this, let  a countable dense set in .  Every continuous real-valued function on       
    is completely  by its values on .  (determined See Theorem II.5.12.  The theorem is stated for
the case of functions defined on a pseudometric space, but the proof is written in a way that applies
just as well to functions with any space  as domain. )  Therefore the mapping     
given by  is one-to-one, so                

              is closed and discrete in the subspace topology, so every function
defined on  is continuous, that is,  and so   ,              If were normal
then each  could be extended (by Tietze's Theorem) to a continuous function in .     
This would mean that . which is false.  Therefore               normality is not
even finitely productive.
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The comments following the statement of Urysohn's Lemma imply that  must contain closed sets  
that are not zero sets.

A completely similar argument “counting continuous real-valued functions” shows that the
Moore plane  (Example III.5.6) is not normal:  use that  is separable and the -axis in  is  
an uncountable closed discrete subspace.

Questions about the normality of products are difficult.  For example, it was an open question for a
long time whether the product of a normal space with such a nice, well-behaved space as must  
be normal.  In the 1950's, Dowker proved that is normal iff  is normal and “countably    
paracompact.”
However, this result was unsatisfying because no one knew whether a normal space was
automatically “countably paracompact.”  In the 1960's, Mary Ellen Rudin constructed a normal space
 which was not countably paracompact.  But this example was still unsatisfying because the
construction assumed the existence of a space called a “Souslin line” and whether a Souslin line
exists cannot be decided in the ZFC set theory!  In other words, the space she constructed required
adding a new axiom to ZFC.
Things were finally settled in 1971 when Mary Ellen Rudin constructed a “real” example of a normal
space  whose product with is not normal.  By “real,” we mean that  was constructed in ZFC,   
with no additional set theoretic assumptions. Among other things, this complicated example made use
of the box topology on a product.

Example 5.8   The Sorgenfrey line  is , so  is  and therefore the Sorgenfrey plane  is        also .  So   is an example showing that    .          does not imply
 
Extension theorems such as Tietze's are an important topic in mathematics.  In general, an “extension
theorem” has the following form:

                and , then there is a function  such that .
For example, in algebra one might ask: if  is a subgroup of  and  is an      
isomorphism, can  be extended to a homomorphism  ?     

   
If we let  be the injection , then the condition “ ” can be rewritten          
as .  In the language of algebra, we are asking whether there is a suitable function      
which “makes the diagram commute.”
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Specific extension theorems impose conditions on  and , and usually we want  to share some  
property of  such as continuity.  Here are some illustrations, without further details.

1)   by putting stronger hypothesesExtension theorems that generalize of Tietze's Theorem:
on , we can relax the hypotheses on . 

Suppose  is closed in  and  is continuous.      

If      
is normal and    (Tietze's Theorem)
 is normal and 
 is collectionwise normal** and is a separable Banach s




  
  
 




pace*
 is paracompact** and is a Banach space* 

then   has a continuous extension      
The statement that  can replace  in Tietze's Theorem is easy to prove: 

If  is normal and  is continuous, write                 where each .  By Tietze's Theorem, there exists for each  a continuous     
extension  with .  If we let , then                  
       and .  In other words, we separately extend the coordinate
functions in order to extend . And in this example,  could even be an infinite 
cardinal.

* A normed linear space is a vector space with a norm  ( “absolute value”) that defines  
the “length” of each vector.  Of course, a norm must satisfy certain axioms for example,
             .  These properties guarantee that a norm can be used to define a
metric:   A  is a normed linear space which is complete in            Banach space
this metric .

For example,  the usual norm  produces                      
the usual metric, which is complete. So is a separable Banach space.

** Roughly, a “collectionwise normal” space is one in which certain  collections ofinfinite
disjoint closed sets can be enclosed in disjoint open sets.  We will not give definitions for
“collectionwise normal” (or the stronger condition,  “paracompactness”) here, but is true that

  paracompact collectionwise normal normal
metric
   or
compact 


 


 



Therefore, in the theorems cited above, a continuous map  defined on a closed subset of a
metric space (or, compact space) and valued in a Banach space  can be continuously extended a function .    
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2)  The  is another example, taken from functional analysis, of anHahn-Banach Theorem
extension theorem.  A special case states:
 Suppose  is a linear subspace of a real normed linear space  and that       
 is linear and satisfies for all  There is a linear           
 such that  and for all         

3)  is usually not discussed in terms of extension theorems, but extensions are reallyHomotopy
at the heart of the idea.

Let ,  be continuous and suppose that  and           
                Then  and  are paths in  that start at  and end at   Let 
be the  of the square and define byboundary         

           
            

Thus agrees with  on the bottom edge of  and with  on the top edge.   is constant    
            on the left edge of and constant on the right edge of .  We ask whether 
can be extended to a continuous map defined on the whole square,       

If such an extension  does exist, then we have

  
For each  restrict  to the line segment at height  to define .  Then          for each ,   is also a path in  from to .  As  varies from  to , we can think            of the 's as a family of paths in  that continuously deform  into          

The continuous extension (if it exists) is called a         homotopy between and with fixed
endpoints homotopic with fixed endpoints, and we say that the paths  and  are . 
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In the space  on the left, below, it seems intuitively clear that  can be continuously 
deformed (with endpoints held fixed)  into in other words, that  exists.  

However in the space  pictured on the right,  and  together form a loop that surrounds a  
“hole” in , and it seems intuitively clear that the path  cannot be continuously deformed into 
the path  inside the space that is, the extension  does not exist.   
In some sense, homotopy can be used to detect the presence of certain  “holes” in a space, and
is one important part of algebraic topology.

The next theorem shows us where compact Hausdorff spaces stand in the discussion of separation
properties.
Theorem 5.9  A compact  space is .   

Proof   is Lindelöf, and a regular Lindelöf space is normal (Theorem 4.3).  Therefore it is sufficient
to show that  is regular. Suppose    is a closed set in  and  For each  we can pick      
disjoint open sets  and  with  and            .    is compact so a finite number of the 's cover say                             Then ,  , and  are disjoint  

   open sets.  
Therefore, our results line up as:

 (*) compact metric
compact 
   ____
  metric

            





     


In particular, Urysohn's Lemma and Tietze's Extension Theorem hold in metric spaces and in compact
 .spaces
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Notice that
 i)    the space  is  but not compact      

 ii)   the Sorgenfrey line is  (see example 5.4) but not metrizable.     If  were metrizable,
 then be metrizable and therefore which is false  see Example 5.7       ).
 iii)  is compact  ( ) but    assuming, for now, the Tychonoff Product Theorem VI.3.10
 not metrizable ( )why?
 iv)  is metrizable but not compact. 
Combining these observations with earlier examples, we see that none of the implications in
(*) is reversible.  

Example 5.10   ( )  The Sorgenfrey plane   is , so can be embeddedSee Example 5.7        in a cube  and  is compact  ( ).  Since is          assuming the Tychonoff Product Theorem
not normal, we see now that a normal space can have nonnormal subspaces.  This example, admittedly,
is not terribly satisfying since we can't visualize how “sits” inside .  In Chapter VIII    
(Example 8.10), we will look at an example of a  space in which it's easy to “see” why a certainsubspace isn't normal.

6. Some Metrization Results

Now we have enough information to completely characterize separable metric spaces topologically.
Theorem 6.1 (Urysohn's Metrization Theorem)   A second countable -space is metrizable.Note: We proved a similar metrization theorem in Corollary 3.18, but there the separation hypothesis
was  rather than .  

Proof    is second countable so  is Lindelöf, and Theorem 4.3 tells us that a Lindelöf 
        -space is   Therefore  is .  So by Corollary 3.18,  is metrizable.   

Because a separable metrizable space  second countable and , we have a complete characterization:is  is a separable metrizable space iff  is a second countable space - . So, with hindsight, we now seethat the hypothesis “ ” in Corollary 3.18 was unnecessarily strong.  In fact, we see that  and      are equivalent in a space that is second countable.
Further developments in metrization theory hinged on work of Arthur H. Stone in the late 1940's in
particular, his result that metric spaces have a property called “paracompactness.” This led quickly to a
complete characterization of metrizable spaces that came roughly a quarter century after Urysohn's
work.   We state this characterization here without a proof.
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A family of sets  in is called   if each point  has a neighborhood  that has       locally finite
nonempty intersection with only finitely many sets in .  The family  is called -  if we   locally finite
can write where each subfamily  is locally finite.     

Theorem 6.2 (The Bing-Smirnov-Nagata Metrization Theorem)       is metrizable iff  is and has a -locally finite base . 
Note: If  is second countable, a countable base   -locally             is
finite because we can write where Therefore this Metrization Theorem          includes Urysohn's Metrization Theorem as a special case.
The Bing-Smirnov-Nagata Theorem has the typical form of most metrization theorems:  is metrizable
iff  “ has enough separation” and “  has a nice enough base.” 
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Exercises

E15.  Let  be a metric space and .  Prove that if each continuous  extends to a        
continuous , then  is closed.  (   The converse, of course, follows from Tietze's Extension
Theorem.)

E16.  Urysohn's Lemma says that in a -space disjoint closed sets are completely separated.  Part a)shows that this is also true in a Tychonoff space if one of the closed sets is compact.
  a) Suppose  is Tychonoff and  where  is closed,  is compact.  and      
                .  Prove that there is an  such that  and .  (This is another
example of the rule of thumb that “compact spaces act like finite spaces.”  If necessary, try proving the
result first for a finite set   )
           b) Suppose  is Tychonoff and that , where  is open in Prove  is a  set in         iff there exists a continuous function  such that and .               

E17.  Suppose  is a Hausdorff space.  Define  in  iff there does not exist a continuous    
function  such that ) .  Prove or disprove:   is a Tychonoff space.           

E18. Prove that a Hausdorff space  is normal iff for each finite open cover , ... ,  of ,       there exist continuous functions   ,  such that = 1 for each                


and such that, for each , .   (         Such a set of functions is called a partition of unity
subordinate to the finite cover  .)
         Hint First build a new open cover V ,...,V  that “shrinks”  in the sense that,        cl  for each .  To begin the construction, let  Pick an open               
  so that cl Then  still covers   Continue by                        looking at  and defining  so that  is still a                        
 cover and cl   Continue in this way to replace the U 's one by one.  Then use         Urysohn's lemma to get functions which can then be used to define the 's. .  

E19.  Suppose  is a compact, countable Hausdorff space.   Prove that  is completely metrizable. 
Hint:  1)  For each pair of points  in  pick disjoint open sets  and         containing these points.  Consider the collection of all finite intersections of such sets.
 2)  Or:  Since  is, countable, every singleton  is a  set.  Use regularity to find  a descending sequence of open sets containing  such that cl   Prove that     


the 's are a neighborhood base at . 
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E20. A space  is called  if every subspace of  is normal.  ( completely normal For example, every
metric space is completely normal).
 a) Prove that  is completely normal if and only if the following condition holds:
  
  whenever  and (cl cl  (that is, each of  is           
  disjoint from the closure of the other), then there exist disjoint open set  and    
  with  and       
 b) Recall that the “scattered line” ( ) consist of the set  with theExercise IIIE.10   
 topology   is open in the usual topology on  and .   Prove that the          
 scattered line is completely normal and therefore  

E21. A -space  is called   perfectly normal if whenever  and  are disjoint nonempty closed sets 
in , there is an  with  and .            

 a) Prove that every metric space is perfectly normal. 
 b) Prove that  is perfectly normal iff  is  and every closed set in  is a -set.      Note: Example 3.10 shows a . space  that is not perfectly normal. 

 c) Show that the scattered line (see )  is not perfectly normal, even though everyExercise E20
 singleton set  is a -set.   
 d) Show that the scattered line is   Hint: Use the fact that , with the usual topology, is normal.  Nothing deeper than Urysohn's
 Lemma is required but the problem is a bit tricky.

E22.  Prove that a  space  has a locally finite base iff  is the discrete topology.     
( )Compare to Theorem 6.2.
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Chapter VII Review
Explain why each statement is true, or provide a counterexample.
1. Suppose  is a topological space and let  be the weak topology on  generated by     Then   

2.  If  is regular and cl , then cl .      
3.  Every separable Tychonoff space can be embedded in . 

4.  If  we say  is a square root of  if and .  If a function  in has                 f
more than one square root, then it has  square roots.
5.  In a Tychonoff space,  every closed set is an intersection of zero sets.
6. A subspace of a separable space need not be separable, but every subspace of the Sorgenfrey line is
separable.
7.  Suppose  has the cofinite topology.  If  is closed in , then every  can be extended to a    
function    
8. For , let  be given by  and let  be the weak topology on                  
generated by the 's.  Then the evaluation map  given by  is an          

embedding.
9. Let be the  of points in the Cantor set with the subspace topology from the Sorgenfrey line . set
Every continuous function  can be extended to a continuous function          
10. If  is a metric space, then  is homeomorphic to a dense subspace of some compact  
Hausdorff space.
11.  Suppose  is closed iff  is a zero set.    

12.  Suppose  is a compact subset of the Hausdorff space .  Let .  Then  is           

13. Let  is not continuous .  The weak topology on  generated by  is the        
discrete topology.
14. A compact  space is metrizable if and only if it is second countable.

15.  Suppose  and  are disjoint subsets of a Tychonoff space , where is closed and  is    
compact.  There are disjoint  sets  and  with  and cozero         
16. Every  space is homeomorphic to a subspace of some cube     

17. Suppose  is a -space with nonempty pairwise disjoint closed subspaces .  There is an       
            such that  for all 
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Chapter VIII
 Ordered Sets, Ordinals and Transfinite Methods

1. Introduction
In this chapter, we will look at certain kinds of ordered sets.  If  is an ordered set with a few
reasonable properties, then there is a natural way to define an “order topology” on .  For our
purposes, we will be primarily interested in ordered sets that satisfy some very strong ordering
conditions, including a requirement that every nonempty subset contains a smallest element.  These
very special ordered sets are called well-ordered.  The most familiar example of a well-ordered set is 
and it is the well-ordering property in  that lets us do mathematical induction.  In this chapter we will
see “longer” well-ordered sets, and these will give us a new method of proof called “transfinite
induction.”    But we begin with ordered sets that are much simpler.

2. Partially Ordered Sets
Recall that a relation  on a set  is a subset of  ( ).  If , we write       see Definition I.5.2
         Order relations are usually denoted by symbols such as , , or .  There are
different kinds of order relations on , and they usually satisfy some of the following conditions:
Definition 2.1  A relation  on  is called: 
  

transitive if     and            
reflexive if             
antisymmetric if     and               
symmetric if      (that is, the set  is symmetric         

      with respect to the diagonal
       ).          
Example 2.2 
 1) The relation “ ” on a set is transitive, reflexive, symmetric, and antisymmetric. 
 Viewed as a subset of , the relation “ ”  is the diagonal set          
 2) In , the usual order relation  is transitive and antisymmetric, but not 
 reflexive or symmetric.
 3) In , the usual order  is transitive, reflexive and antisymmetric.  It is not 
 symmetric.
   
 4)  In Chapter I, we defined an order relation  that applies to cardinal numbers.  On any set
  of cardinal numbers, the order  is transitive, reflexive and antisymmetric  (  by the
 Cantor-Schroeder-Bernstein Theorem I.10.2). It is not symmetric unless     
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Definition 2.3 A relation  on a set  is called a  if  is transitive, reflexive and  partial order
antisymmetric.  The pair  is called a   (or, for short, ).   partially ordered set poset
A relation  on a set  is called a   if  is a partial order and, further, every two  linear order
elements in  are comparable:  that is,  either  or .  In this case, the pair )            
is called a  .  For short, a linearly ordered set is also called a .linearly ordered set chain
In any ordered set, we write  to mean that  and ; and we can always “invert” the order        
notation and write  to mean the same thing as            
 In some books, a partial order is defined as a “strict” relation which is transitive and
  irreflexive , a   In that case, we can define  to mean “  or ” to             
 get a partial order in the sense defined above.  This variation in terminology creates no real
 mathematical problems: it is completely analogous to worrying about whether “ ”  or
 “ ” should be called the “usual order” on . 
  
Example 2.4
 1) Suppose For any kind of order on  we can get an order on  by        restricting the order  to   More formally, ( ).  We always assume that a subset      of an ordered set has this natural “inherited” ordering unless something else is explicitly stated.  With
that understanding, we usually omit the subscript and also write  for the order  on .  

If  is a poset (or chain), and , then  is also a poset (or chain).   For example,        
every subset of  is a chain.   

 2) For the set of complex numbers , define  iff    where  is            
the usual order in .     is not a poset.  ( )     Why?
 
 3) Let  be a topological space.  For , define      
   iff   ,  .        
As a set,
     .              
Notice that here we are allowing an ambiguity in notation.  We are using the symbol “ ” with two
different meanings:  we are defining an order “ ” in , but the comparison  “ ” refers    
to the usual order in different set, .  Of course, we could be more careful (as in 2) ) and write    
for the new order on , but usually we won't be that fussy when the context makes clear which
meaning of  “ ” we have in mind.
          is a poset but usually not a chain: for example, if  and  are given by 
and , then  and .  When   a chain?               is The answer is  “ iffnot
   ”
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 4) The following two diagrams represent posets, each with 5 elements.  Line segments upward
from  to  indicate that .  In Figure (i), for example, and (so );  in Figure (i),             
  and  are not comparable.
      Figure (ii) shows a chain:           

  
 5)  Suppose  is a collection of sets. We can define  on  by  iff .  Then       
     is a poset.  In this case, we say that  has been .   In particular, for any setordered by inclusion
     , we can order by inclusion. What conditions on  will guarantee ) is a chain ? 
 6)  Suppose  is a collection of sets.  We can define  on  by  iff .  Then       
     is a poset.  In this case, we say that  has been .   In particular, forordered by reverse inclusion
any set , we can order by reverse inclusion. What conditions on  will guarantee that  
   ) is a chain ?
For a given collection , Examples 5) and 6) are quite similar: one is a “mirror image” of the other.
The identity map  is an “order-reversing isomorphism” between the posets.   
For our purposes, the “reverse inclusion” ordering on a collection of sets will turn out to be more
useful.  For a point  in a topological space , we can order the neighborhood system  by    reverse
inclusion .  The simplicity or complexity of the poset  reflects some topological properties    of  and is a measure of how complicated the neighborhood system is.  For example, 

 i)  If  is isolated, then  and  for every .  So the poset            has a largest element.      Is the converse true?
 ii) Suppose  is first countable and that  is a countable            neighborhood base at .  Then for every  there is a  such that , and        we say that  is  in More informally, the poset  has a countable    cofinal     
 subset  that contains “arbitrarily large” members of           
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  iii) The poset  is usually not a chain.  But it does have another interesting     order property:  if then  has an upper bound in .  To see            
  this notice that if then  .              and
This poset  will turn out (in Chapter 9) to be the inspiration for the definition of “convergent   net,” a kind of convergence that is more powerful than “convergent sequence.” Nets resemble
sequences in some ways but are more powerful unlike sequences, nets can be used to determine
closures (and therefore the topology) in  topological space.any

Definition 2.5  Suppose  is a poset and let   An element  is called        
 i)   the  (or ) element in  if  for all largest last       
 ii)   the  (or ) element in  if  for all smallest first       
 iii)  a  element in   if  for all maximal           
 iv)  a  element in   if  for all .minimal           
Clearly, a largest (or smallest) element in , if it exists, is unique.  For example: if  and  were     both
largest in , then  and  so .              

In Figure (i): both  are maximal elements and  are minimal elements. This poset has no largest   
or smallest element. Suppose a poset   has a  maximal element .  Must  also be the    unique
largest element in  ?  
In Figure (ii):  is the smallest (and also a minimal element);  is the largest (and also a maximal) 
element.
 
 v) Suppose  and We say that  is an  for  if  for all            upper bound
  is called a  (sup) for  if  is the smallest upper bound for  A      least upper bound
 set might have many upper bounds, one upper bound, or no upper bounds in .  If  has  
 more than one upper bound,  might or might not have a least upper bound in . But    if has
 a least upper bound , then the least upper bound is unique ( ). why?
 vi) An element  is called a lower  for  if  for all  is called a          bound

greatest lower bound (inf) for  if  is the largest lower bound for  A set  might have   
 many lower bounds, one lower bound, or no lower bounds in .  If  has more than one 
 lower bound,  might or might not have a greatest lower bound in . But    a greatest  if has
 lower bound , then the greatest lower bound is unique ( ). why?
 vii) If  and if   with , then  is called an                immediate predecessor
 of  and  is called an  of .  In a poset, an immediate predecessor or  immediate successor
 successor might not be unique;  but if  is a chain, then an immediate predecessor or
 successor, if it exists, must be unique. ( )Why?
       In Figure (i), the upper bounds on are , and sup ;  the set  has          
 no lower bounds.  Both ,  are immediate successors of .  The elements  have no    
 immediate predecessor (in fact, no predecessors at all).  In Figure (ii), the immediate
 predecessor of  is  and  is the immediate successor of    
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Example 2.6  If  is an order on , then   So if  and are orders on ,  it           makes sense to ask whether , or vice-versa.  If we look at the set  is a partial         
order on , then is partially ordered by inclusion.  A linear order is a  element in  maximal
      ( )Why?  Is the converse true?

3. Chains
Definition 3.1  Let  be a chain.  The  on  is the topology for which all sets of   order topology
the form  or   ( ) are a .  (                  subbase As usual, we write  as  
shorthand for “  and ”      )
It's handy to use standard “interval notation” when working with chains: for example, if :   
            
            
           
But we need to be careful not to read too much into the notation. For example, the chain in Figure (ii),
shows how interval notation can be misleading if not used thoughtfully:        
             , , and 
Example 3.2
 1) The order topology on the chain in Figure (ii) is the discrete topology.
 2) The order topology on  is the usual (discrete) topology:        
 ; and for ,               
Example 3.3      and  each have an order inherited from , and their order topologies are the same as
the usual subspace topologies.  But, in general, we have to be careful about the topology on   
when is a chain with the order topology.  There are two possible topologies on : 
 a)  The order  gives an order topology  on  and we can give the subspace   topology     
 b) has an ordering (inherited from the order on  and we can use it to give an     order topology.  More formally, we could write this topology as .

Unfortunately, these two topologies .  Let .  The ordermight not be the same        
topology  on  is the usual topology on , and this topology produces a subspace topology for  which  is isolated in  
But in the order topology on , each basic open set containing 2 must have the form
                  where .  So  is not isolated in .   In fact, the space  is   homeomorphic to  ( ).  why?
Is there any necessary inclusion  or  between  and ?   Can you state any      hypotheses on  or  that will guarantee that  ( ?      
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Example 3.4  We defined the order topology only for chains, but the same definition could be used in
any ordered set .  We usually restrict our attention to chains because otherwise the order  
topology may not be very nice.  For example, let  with the partial order represented by the    
following diagram:

 
     is the only open set containing  ( ), so the order topology is not    why? Can you find a poset forwhich the order topology is not even ?      By contrast, the order topology for any   haschain
good separation properties.  For example, it is easy to show that the order topology on a chain must
be  

 Suppose  where, say,   If  is the immediate predecessor of , we can let         
  and .  But if there exists a point  satisfying                  
 , then we can define  and   Either way,                      
 we have a pair of disjoint open sets  and with  and         
In fact, the order topology on a chain is always , but the proof is much messier so we will not includeit here.  Most of our interest in this Chapter will be with ordered sets that are much more special than
chains the well-ordered sets). For these sets we will prove that the order topology
is  
From now on, when the context is clear, we will simply write , rather than , for an ordered   
set.  We will denote the orders in many different sets all with the same symbol “ ”, letting the
context determine which order is being referred to.  If it becomes necessary to distinguish carefully
between different orders, then we will occasionally add subscripts such as , , ... .  

Definition 3.5  A function  between ordered sets is called an  if  is     order isomorphism
bijection and both  and  are g ,   .            order preservin that is if and only if Since 
is one-to-one, it follows that  if and only if       If such an  exists, we say that  and 
           are  and write .  If  is not onto, then  and we say that  isorder isomorphic
an order isomorphism of    . Between ordered sets,  “ ” will always refer to order  into
isomorphism.
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Theorem 3.6  Let  and  be chains ).    Parts i-iv), however, are also true for posets
 i)     
 ii)   iff      
 iii)  if  and , then         
 iv)  implies       
 v)  if  and  are  chains, then  iff          finite
Proof   The proof is very easy and is left as an exercise.  

Even though the proof is easy, there are some interesting observations to make.
 1) To show that , the identity map  might not be the only possible order isomorphism.   
For example, when the functions  and  are both order isomorphisms         
between  and .     Check: how many order isomorphisms exist between  and ? 
 2) A chain can be order isomorphic to a proper subset of itself.  For example,   is an  
order isomorphism between  and  (the set of even natural numbers).  Both  and  are order   
isomorphic to the set of all prime numbers.  Check: must every two countable infinite chains be order
isomorphic?
 3) An order isomorphism between and  preserves largest, smallest, maximal and minimal 
elements (if they exist).  Therefore  and  are not order isomorphic: for example,  has a     
smallest element and  doesn't.  Similarly,   is not order isomorphic to the set of integers .   
    An order isomorphism preserves “betweenness,” so  is not order isomorphic to :  in ,  
there is a third element between any two elements, but this is false in .
 4)  Let  be the set of complex numbers.  If  is any bijection, then we can use  to     
create a chain : simply define iff .  Then                               Of course, this chain  is not very interesting from the point of view of algebra or   
analysis: we imposed an arbitrary ordering on  that has nothing to do with the algebraic structure of
. For example, there is no reason to think that  and , then                         Similarly, a bijection  can be used to give  a new order  so that the two     
chains are order isomorphic.  In this case,  is just a sequence that enumerates :   and           a new order on  could simply defined as   .               In general, if  is a bijection and  of  or  is ordered, we can use  to       one
“transfer” the order to the other set in such a way that        
 5) Clearly, order isomorphic chains are homeomorphic in their order topologies.  But the
converse is false. Suppose  and  The order                   

  
topologies on  and  are the usual topologies, and the reflection  is a homeomorphism     
(in fact, an isometry) between them
   The largest element in  is and it has an immediate predecessor,  But , the largest   

element in , has no immediate predecessor in Since an order isomorphism preserves largest 
elements and immediate predecessors, there is no order isomorphism between  and . 
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The next theorem tells when an ordered set is order isomorphic to the set of rational numbers.
Theorem 3.7 (Cantor)  Suppose that  ( , ) is a nonempty countable chain such that 
  a) ,  with    (  has “no last element”)         
  b)  with    ( has no first element”)         
  c) , if  then  such that .              
Then  is order isomorphic to .   

When a chain that satisfies the third condition that between any two elements there must
exist a third element we say that  is .  Then Theorem 3.7 can be restated as:    order-dense a
nonempty countable order-dense chain with no first or last element is order isomorphic to .

We might try the following: enumerate and  and let                       
                          Then inductively define some  chosen so that 
and so that  has the same order relations (in ) to  as   has to  (in ).                  
For example, if  and have been defined, then define  so                         
that .  This argument shows that for any countable chain , there is a              one-to-one order preserving map , so      any countable chain is order isomorphic to a subset of
.  However, the function  constructed in this way might not be . The “back-and-forth” onto
construction used in the following proof is designed to be sure we end up with an  order preservingonto
map    has properties a)-c).     if
First we prove a lemma:  it states that an order isomorphism between  subsets of  and  canfinite  
always be extended to include one more point in its domain (or, one more point in its range).

Lemma:  Suppose  where  are finite. Let  be an order isomorphism from        
  onto .
 a) If , there exists an order isomorphism  that   and for      extends
 which dom and ran         
 b) If  , there exists an order isomorphism  that   and for      extends
 which dom  and ran      
Proof of a)  Suppose and that . Pick an  that has the same                  order relations to  as  does to   (             For example:  if  is greater that all of
               pick  greater than all of  ;  if   and  are the largest and smallest subscripts
for which , then choose   between  and             )  This choice is always possible since
           satisfies a), b), and c).   Define  by  and  for .
Proof for b) The proof is almost identical.  

Proof of Theorem 3.7        is a countable chain.  Since  and  has no last element,  must be
infinite.  Without loss of generality, we may assume that    
We define an order isomorphism  between  and  in stages. At each stage, we enlarge the function 
we have by adding a new point to its domain or range.
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Let   Each element of  and  appears exactly once in this list.             Define , and continue by induction.  Suppose  and that an order isomorphism     
              has been defined, where  and 
 If  and , use the Lemma to get an order isomorphism  that extends        
  and for which dom  Let ran .                        
 If  and  use the Lemma to get an order isomorphism  that extends           and for which ran  Let dom .                      
 
 If dom ran , let  and                          

By induction,  is defined for all , and since  extends  and we can define an order     isomorphism   The construction guarantees that dom and ran            
  

“Being order isomorphic” is an equivalence relation among ordered sets so any two chains having the
properties in Cantor's theorem are order isomorphic to each other.  Since order isomorphic chains have
homeomorphic order topologies, we have a topological characterization of  in terms of order.
Corollary 3.8  A nonempty countable order-dense chain with no largest or smallest element is
homeomorphic to .

The following corollary gives a characterization of  order-dense countable chains.all
Corollary 3.9  If  is a countable order-dense and  then  is order isomorphic to exactly one    
of the following chains 
 a)       
 b)     
 c)    
 d)    
Proof By looking at largest and smallest elements, we see that no two of these chains are order
isomorphic.  Therefore no chain is order isomorphic to more than one of them.
 If  has no largest or smallest element then, Cantor's theorem gives  and a second   
application of Cantor's Theorem gives that .    
 If  has a smallest element, , but no largest element, then  is nonempty and has no    
smallest element ( ?).   clearly satisfies the other hypotheses of the Cantor's theorem sowhy   
there is an order isomorphism . Then define an order isomorphism        
                 by setting  and   for .
     The proofs of the other cases are similar.  

No two of the chains a)-d) mentioned in Corollary 3.9 are order isomorphic, but they are, in fact, all
homeomorphic topological spaces.  We can see that b) and c) are homeomorphic by using the map



328

     , but the other homeomorphisms are not so obvious. Here is a sketch of a proof,
contributed by Edward N. Wilson, that  is homeomorphic to .      

For short, write 0  and ] .              

In , choose a strictly increasing sequence of irrationals  .  Let .          
For  let ,  ,                        1 12 2and .    Each of and  is clopen in 0  and                      1 12 2  in ] .  

We have   and                  
  

  
  12

Define a map    by           
 

 
 12

  = an increasing linear map from  onto       
  = a decreasing linear map from  onto        

    12

Then  is a homeomorphism.  Since the sets  are clopen, it is clear that  is        continuous at all points except perhaps 1 and that  is continuous at all points except
perhaps .  These special cases are easy to check separately.12 

There is, in fact, a more general theorem that states that every infinite countable metric space with no
isolated points is homeomorphic to .  This theorem is due to Sierpinski (1920).

We can also characterize the real numbers as an ordered set.
Theorem 3.10  Suppose  is a nonempty chain which
 i)   has no largest or smallest element
 ii)  is order-dense
 iii) is separable in the order topology
 iv) is Dedekind complete (that is, every nonempty subset of  which has an upper
 bound in  has a least upper bound in ). 
Then  is order isomorphic to  (and therefore , with its order topology, is homeomorphic to ).  
Proof   We will not give all the details of a proof,  However, the ideas are completely straightforward
and the details are easy to fill in.
 Let  be a countable dense set in the order topology on .  Then  satisfies the hypotheses of  
Cantor's Theorem  so there exists an (onto) order isomorphism .  For each irrational     why? 
                , let  and extend  to an order isomorphism  by defining
    sup .  
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Remark  In a separable space, any family of disjoint open sets must be countable ( ).  Thereforewhy?
we could ask whether condition iii) in Theorem 3.10 can be replaced by
 iii)      every collection of disjoint open intervals in  is countable. 
In other words,  thatcan we say
 (**)    a nonempty chain satisfying i), ii),  ) , and iv), must  be order isomorphic to ?iii   
The (SH) states that the answer to (**) is “yes.” The status of SH was famouslySouslin Hypothesis
unknown for many years.   Work of Jech, Tennenbaum and Solovay in the 1970's showed that SH is
consistent with and independent of the axioms ZFC for set theory that is, SH is  in ZFC. undecidable
We could add either SH or its negation as an additional axiom in ZFC without introducing an
inconsistency.  If one assumes that SH is false, then there is a nonempty chain satisfying i), ii), iii) , and
iv) but not order isomorphic to :  such a chain is called a . Souslin line
SH was of special interest for a while in connection with the question “if  is a T -space, is     necessarily ? ”  In the 1960's, Mary Ellen Rudin showed that if she had a Souslin line to workwith that is, if SH is false then the answer to the question was “no.”    See the remarks following
Example III.5.7
There are lots of equivalent ways of formulating SH—for example, in terms of graph theory.  There is
a very nice expository article by Mary Ellen Rudin on the Souslin problem in the American
Mathematical Monthly, 76(1969), 1113-1119.  The article was written before the consistency and
independence results of the 1970's and deals with aspects of SH in a “naive” way.
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Exercises

E1. Prove or disprove:  if  is a relation on  which is both symmetric and antisymmetric, then   
must be the equality relation “ ”.

E2.  State and prove a theorem of the form:
 A power set , ordered by inclusion, is a chain iff  . . .

E3. Suppose  is a poset in which every nonempty subset contains a largest and smallest  
element.  Prove that  is a finite chain.  

E4.  Prove that any countable chain  is order isomorphic to a subset of        
( )Hint:  See the “Caution” in the proof of Cantor's Theorem 3.7.

E5. Let  be an infinite poset.  A subset  of  is called  if no two distinct     totally unordered
elements of  are comparable, that is:
                
Prove that   has a subset which is an infinite chain   has a totally unordered infiniteeither or  
subset .

E6. Let  be a poset in which the  chain has length  ( ).  Prove that  can be      longest 
written as the union of  totally unordered subsets ( ) and the  is the smallest natural number see E5
for which this is true.

.
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4. Order Types

In Chapter I, we assumed that we can somehow assign a cardinal number  to each set in such a 
way that iff there exists a bijection   Similarly, we now assume that we can         
assign to each  an “object” called its  and that this is done in such a way that two chainschain order type
have the same order type iff the chains are order isomorphic.  Just as with cardinal numbers, an exact
description of how this can be done is not important here.  In axiomatic set theory, all the details  can
be made precise.  Of course, then, the order type of a chain turns out itself to be a certain set (since
“everything is a set” in ZFC).  For our purposes, it is enough just to take the naive view that “order-
isomorphic” is an equivalence relation among chains, and that each equivalence class is an order type.
We will usually denote order types by lower case Greek letters such as with a few      
traditional exceptions mentioned in the next example.  If  is the order type of a chain , we say that 
 represents .

Example 4.1
 1) Two chains with the same order type are order isomorphic.  Since the order isomorphism is
a bijection, chains with the same order type also have the same cardinal number. But the converse is
false:   and  have the same cardinal number but they have different order types because the sets are 
not order isomorphic.
     However, two  chains have the same cardinality iff they are order isomorphic.finite
Therefore, for finite chains, we will use the same symbol for both the cardinal number and the order 
type.  In the precise definitions of axiomatic set theory, the cardinal number and the order type of
a finite chain  turn out to be the same set!do 

 2)   is the order type of  
    is the order type of  
    is the order type of   
    .
    .
    .
    is the order type of 0   .        
    .
    .
     .
    is the order type of  is also the order type of .          The subscript “ ”
                          hints at bigger things to come.
   is also the order type of  since this chain is order isomorphic to .       
 Notice that each order type in this example is represented by “the set
 .”of all preceding order types
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Definition 4.2   Let  and  be order types represented by chains  and .  We say that if     
there exists an order isomorphism  of   .  We write  if  but  that is,      into      
   (Check that the definition is independent of the chains  and  chosen to represent   
and . )
Example 4.3   Let  be the order type of a chain . Since  is order isomorphic to a subset of    
we have .  More generally,  .          

Suppose  has order type .  With a little reflection, we can create a new chain ) by     
defining  iff .  We write  for the order type of ).   For example,  is the order           
type of the chain ... , 2, 1  of negative integers.  Since  and    ( ), we see            why?
that .two order types may not be comparable
The relation  between order types is reflexive and transitive but it is for not antisymmetric
example, let and  be order types of the intervals  and : then  and  but               
Therefore is  among order types. not even a partial ordering

Definition 4.4  For , let  be pairwise disjoint chains and suppose that the index set         
is also a chain.  We define the  as the chain , , where we defineordered sum         
     if  and ,    or

  and           
          

  
We can “picture” the ordered sum as laying the chains  “end-to-end” with larger 's further to the 
right.  In particular, for  disjoint chains  and , the ordered sum two           is formed by putting  to the right of  “larger than”   and using the old orders inside each of     
and .

Definition 4.5  Suppose is a chain and that for each , we have an order type .  Let the   
    's be represented by pairwise disjoint chains . Then  as order type of the chain  
       , .  In particular, if  and  are order types represented by disjoint chains  and , then 
      is the order type of the ordered sum .  (Check that sum of order types is
independent of the disjoint chains used to represent the order types. )
Example 4.6  Addition of order types is clearly associative:  .  It is               not
commutative.  For example , since a chain representing the left side has a largest      
element but a chain representing the right side does not.  In general, for ,  while, if                  , .  Of course, chains representing these different order types all  have cardinality .

The order type   is represented by the ordered set  , , ,  where “ ; ”               
indicates that each  is larger than every .  Less abstracting,   could also be represented by     
the chain 1 : 2 : .           1 1

   
                is the order type of the set of integers .   Is  ?  (Why or why not?  Give an
example of a subset of  that represents     
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Example 4.7  It is easy to prove that every countable chain  is order isomorphic to a subset of : 
just list the elements of  and inductively define a one-to-one mapping into  that preserves order at 
each step ( )see the “attempted” argument that precedes that actual proof of Cantor's Theorem 3.7
Theorem 3.7).  But if  , then thereevery countable order type can be represented by some subset of 
can be   different countable order types.at most 

As a matter of fact, we can prove that there are   different countable order types.  Aexactly 
sketch of the argument follows: the details are easy to fill in  (or see W. Sierpinski, Cardinal
and Ordinal Numbers  an old “Bible” on the subject with much more information than
anybody would want to know.)
   has order type .  For each sequence ,  we can define                 
an order type

  1 . . .                   
It is not hard to show that the map  is one-to-one.  Here is a sketch of the argument:  

We say that two elements of a chain to be in the same  if there are onlycomponent
finitely many elements between them.  (This use of the word “component” has nothing
to do with connectedness.)  It is clear all elements in the same component are smaller
(or larger) than all elements in a different component; this observation lets us order the
components of the chain.
Suppose  is a chain representing  and let the  components of  (listed in order  finite
of increasing size)  be  where  has order type .               

Let  and suppose  is a chain that represents .  Call the          finite
components of  (listed in order of increasing size)   where  has                 order type .  
An order isomorphism between  and  would necessarily carry  to  for every             .  But this is impossible since, for some ,   of  and  is  and theone  other is .

Thus, there are at least as many different countable order types as there are sequences
    , namely .

  
Definition 4.8  Let ) and  be chains representing the order types  and .  We       
define the product   to be the order type of ), where , ) , ) iff                  or (  and ).                    This ordering  on  is called the  (or )  since the   lexicographic dictionary order
pairs are ordered “alphabetically.”
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Example 4.9
 a) .  To see this, we can represent  by  and 2 by .  Then the chain         representing 2 , listed in increasing (lexicographic) order, is            
           ... , , , , and this chain is order isomorphic to .  More generally,
         for each 
                However, 2 .  The product 2  is represented by  ordered as:          
    ;                
This chain is not order isomorphic to    has only one element with no “immediate predecessor,” 
while this set has two such elements.  In fact, 2 = .  Thus, multiplication of order types is     
not commutative.
 b) 2 1 1 .  Thus the “right distributive” law                        
fails.
 c)  can be represented by the lexicographically ordered chain  . In order of increasing   
size, this chain is:
                               

The chain looks like countably many copies of  placed end-to-end, so we can also write:
                          where each .  A subset of  that represents 
is .          



   
Exercise  Prove that
   1) multiplication of order types is associative
   2) the left distributive law holds for order types: .       
Note:  Other books may define “in reverse” as the order type of the lexicographically ordered set
  .  Under that definition, Also, under the “reversed” 2 and .                 
definition, the right distributive law holds but the left distributive law fails.
         Which way the definition is made is not important mathematically.  The arithmetic of order types
under one definition is just a “mirror image” of the arithmetic under the other definition.  You just
need to be aware of which convention a writer is using.
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Exercises

E7. Give  the lexicographic order , and let  represent an open interval in         
Describe what a “small” open interval around each of the following  looks like:  points    

    
 .

E8.  For each , we can write  uniquely in the form 2 (2  for integers 0.          a 
Suppose 2 (2 ) .  Define  if , or ,  or  and .  What                             
is the order type of ( , )?  Does a nonempty subset of ( , ) necessarily contain a smallest  
element?

E9.  Show that it is impossible to define an order on the set  of complex numbers in such a way 
that all three of the following are true:
 i)  for  all , exactly one of , or  holds           
 ii) for all if , then              
 iii) if , then        
(Hint: Begin by showing that if such an order exists, then .  But notice that this, in itself, is not   
a contradiction.)

E10.  Give explicit examples of subsets of  which represent the order types:
        a)       
       b)    
      c)        
   d) 2     
 e)     

    f)    
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E11.  Let  be the order type of . 
 a) Give an example of a set  such that neither  nor  has order type .      
 b) Prove that if  is a set of type  and ,  then either  or  contains a subset      

of type .
 c) Prove or disprove:    .     
Hint:  Cantor's characterization of  as an ordered set may be helpful.

E12.  A chain  is called an -set if the following condition holds in     
  (*)   Whenever  and  are countable subsets of  such that  for every choice of     
  and , then  such that  for all  and all                    
More informally, we could paraphrase condition (*) as:   for countable subsets ,  of   
“ ”   such that “ ”           
 a) Show that  is not an -set. 
 b) Prove that every -set is uncountable.        Hint: there is a one line argument; note that  is countable.
 

 c) By b), an -set  satisfies , and so              if we assume the continuum
         .  Prove that   assuming CH.hypothesis,  CH without  
       Hint: show how to define a one-to-one function ;  begin by defining  on .     

More generally, a chain  is called an -set if, whenever  and  are subsets of , both of     cardinality  , then there is a  such that “ ”.  So, for example, an -set is          simply an order dense chain.
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5. Well-Ordered Sets and Ordinal Numbers

We now look at a much stronger kind of order on a set.
Definition 5.1  A poset (  is called  if every nonempty subset of  contains a   well-ordered
smallest element.
The definition implies that a well-ordered set  is automatically a chain:  if , then set        
has a smallest element, so either  or  .     
   and all its subsets are well-ordered. The set of integers, , is not well-ordered since, for example, 
itself contains no smallest element.   is not well-ordered since, for example, the nonempty interval
  0  contains no smallest element.
Since a well-ordered set  is a chain, it has an order type.  These special order types are very nicely
behaved and have a special name.
Definition 5.2  An  (or simply ) is the order type of a well-ordered set.ordinal number ordinal

Since we know how to add and multiply order types, we already know how to add and multiply
ordinals and get new ordinals.  We also have a Definition 4.2 for and  that applies to ordinals. 

Theorem 5.3  If  and  are ordinals, so are  and .      
 
Proof Let  and  be represented by disjoint well-ordered sets  and .  Then  is represented     
by the ordered sum .  We must show this set is well-ordered.  Since  is a chain, we only  
need to check that a nonempty subset  of  must contain a smallest element.  
          is well-ordered so, if , then has a smallest element.  Otherwise  and, since  is
well-ordered, there is a smallest element .  In that case  is the smallest element of .      
Similarly, we need to show that the lexicographically ordered product  is well-ordered.  If  is a   
nonempty subset of , let  be the smallest first coordinate of a point in more precisely, let                   be the smallest element in for some   Then let  be the smallest
element in .  Then  is the smallest element in .  (                Intuitively,  is    the point at the “lower left corner” of  The fact that  and  are well-ordered guarantees that  
such a point exists.)    

Some examples of ordinals (increasing in size) are
 0, 1, 2, ... ,  , , , ... , , ... , , , ... ,  , ... ,                           
 3, ... , , ..., , , ... ,  , , ...,  ,                                   
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All these ordinals can be represented by countable well-ordered sets (in fact, by subsets of ) so we
refer to them as “countable ordinals.”  We will see later (assuming AC), there are well-ordered sets of
arbitrarily large cardinality so that this list of ordinals barely scratches the surface.
Exercise 5.4  Find a subset of  that represents the ordinal .       

Here are a few very simple properties of well-ordered sets.  Missing details should be checked as
exercises.
 1) In a well-ordered set , each element  except the largest (if there is one) has an 
“immediate successor”— namely, the smallest element of the nonempty set .      
However, an element in a well-ordered set might not have an immediate predecessor:  for example in
                 

   neither  nor  has an immediate predecessor.  This set
represents the ordinal     
 2)  A subset of a well-ordered set, with the inherited order, is well-ordered.
 3) Order isomorphisms preserve well-ordering: if a poset is well-ordered, so is any order
isomorphic poset.  An order isomorphism preserves the smallest element in any nonempty subset.

The following theorems indicate how order isomorphisms between well-ordered sets are much less
“flexible” than isomorphisms between chains in general. .
Theorem 5.5  Suppose  is well-ordered.  If  is a one-to-one order-preserving map of        
into , then  for all .      
The theorem says that  cannot move an element “to the left.”  Notice that Theorem 5.5 is false for
chains in general: for example, consider  and .  On the other hand, if you try to     12construct a counterexample using , you will probably see how the proof of the theorem should  
go.
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Proof Suppose not. Then .  Let  be the smallest element in .            We get a contradiction by asking  “what is ” ?   

Since , .   Since  preserves order and is one-to-one,   which                means that .   But that is impossible because  is the  element of           smallest

Corollary 5.6  If  is well-ordered, then the  order isomorphism  from  onto  is the identity   only
map .  
(  Note that the theorem is false for chains in general: if , then is an onto order     
isomorphism. orollaries 5.6 and 5.7 indicate that well-ordered sets have a very “rigid” structure. C )

Proof Let   be an order isomorphism.  By Theorem 5.5,  for all .   If  is         
not the identity, then .  Let  be the least element of .          
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Then  cannot be in ran   ( ).     why?

Corollary 5.7  Suppose  and  are well-ordered.  If  and  are order           
isomorphisms from onto , then .  (     So M and N can be order isomorphic “in only one way.”
Proof  If , then  and  are two different order isomorphisms from  onto , and that         
is impossible by the preceding corollary.  

Exercise 5.8   Find two different order isomorphisms between  and the set of positive reals . 

We have already seen that order types, in general, are not very nicely behaved.  Therefore, during this
the following discussion about well-ordered sets and ordinal numbers, there is a certain amount of
fussiness in the notation to make sure we do not jump to any false conclusions.  Much of this
fussiness will drop by the wayside as things become clearer.
In a nonempty well-ordered set , we will often refer to the smallest element as .  (  In fact, without
loss of generality, we can literally assume   the smallest element  is .)  If we need to carefully
distinguish between the first elements in two well-ordered sets  we may write them as  and 
 .  ( )This might be necessary if, say,  and the smallest elements of  and  are different.    
But usually this degree of care is not necessary.
Definition 5.9  Suppose , where  is well-ordered.      The initial segment of determined
by           .  We can write this set using the “interval notation” . If a discussion involves only a single well-ordered set , we may simply write or even just 
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Notice that:
 i) For every , , so   an initial segment of itself, and we will see in       is not
Theorem 5.10 that much more is true:    an initial segment of cannot even be order isomorphic to
itself.
 ii) Order isomorphisms preserve initial segments: if  is an order isomorphism of    
      onto , then 
 iii) Given any two initial segments in a well-ordered set , one of them is an initial segment of
the other. More precisely, if ,  then  “the initial segment in  determined by     
                     ” “the initial segment in  determined by .”

Theorem 5.10  Suppose  is well-ordered and .   is not order isomorphic to an initial    
segment of . In particular ( ,   is not order isomorphic to an initial segment of itself.  when   
Proof Suppose .  If  is one-to-one and order preserving, then Theorem           
5.5 gives us that for each   Therefore for each  ran               

Corollary 5.11  No two initial segments of  are order isomorphic (so each initial segment of , as 
well as  itself, represents a  ordinal). different
Proof  One of the two segments is an initial segment of the other, so by Theorem 5.10 the segments
cannot be order isomorphic. 

Definition 5.12  Suppose  and  are ordinals represented by the well-ordered sets  and .  We say   
that  if  is order isomorphic to an initial segment of that is  for some .           
If  is order isomorphic to  we write .  We write  if  or .   (             Check that the
definition is independent of the choice of  well-ordered sets  and  representing     .)

Note:  We already have a different definition (4.2) for when we think of   and  as   
arbitrary order types. It will turn out for ordinals that the two definitions are equivalent, 
that is:
 for  sets  and : well-ordered  
   is order isomorphic to a proper subset of  but not to  itself  
      
               is order isomorphic to an initial segment of . 
The equivalence *  is  true for chains in general: for example, each of  and  is     not
order isomorphic to a  of the other, but neither is order isomorphic to an subset initial segment
of the other (why?)
Until Corollary 5.19, where we prove the equivalence we will be using the new definition * ,  
5.12 of for ordinals  . 
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The relation among ordinals is clearly reflexive and transitive.  The next theorem implies that  is 
antisymmetric and therefore  . any set of ordinals is partially ordered by

Theorem 5.13  If   and  are ordinals, then  of the relations  , and  can       at most one    
be true.
Proof   Let  and  represent  and .  If , then .  In this case,  and  are              
impossible since a well-ordered set cannot be order isomorphic to an initial segment of itself  (Theorem
5.10).
If , then  is isomorphic to an initial segment of .  If  were also true, then  would, in       
turn, be isomorphic to an initial segment of .  By composing these isomorphisms, we would have  
order isomorphic to an initial segment of itself which is impossible.   

Notation  For an ordinal , let ord  is an ordinal and .  If , then ord                   
and if , then ord  so ord( ) .  Like any set of ordinals, we know that ord  is            
partially ordered by .
It turns out that much more is true: every set of ordinals is actually  by , but to see thatwell-ordered 
takes a few more theorems. However, ord( ) is a very  set of ordinals and, for starters, Theorem special
5.14 tells us that ord  is well-ordered by .  Theorem 5.14 also gives us a very nice “standard” way  
to pick a well-order that represents an ordinal .

Theorem 5.14  If  is an ordinal represented by the well-ordered set , then ord .  Therefore     
ord  is a  set of ordinals and ord   .     well-ordered represents
Proof  For each ordinal ord , we have , so  can be represented by some initial segment       
               of Define ord by .  This function  is one-to-one since different 
ordinals cannot be represented by the same initial segment of , and  clearly preserves order. 
If , then the initial segment  in  represents some ordinal .  But  is represented       
by .  Since different initial segments of  are not isomorphic, we get  so  is           
onto.   Therefore ord .      

We will often write ord  in “interval” notation:  
  For an ordinal ,   is an ordinal and ord               
By 5.14,   is well-ordered and represents the ordinal ; therefore    any ordinal  can be represented
by the set of preceding ordinals.

For example,
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0 is represented by the set of preceding ordinals, namely ord(     
1 is represented by ord     
2 is represented by ord(      
   
  
     is represented by  ord           
                  is represented by  
    ( )here, “ ” indicates that  comes “after” all the natural numbers  

     
 is represented by the set of previously defined ordinals

     etc.
              

 Some comments about axiomatics
The informal definition of ordinals is good enough for our purposes,  However,  the preceding list
roughly illustrates how one can  ordinals in axiomatic set theory ZFC.  For example, in ZFC thedefine
ordinal   by   (rather than saying that the set  the ordinal ).      is defined represents 
Definition
 0      
 1    
 2      
  
         
            
  
            etc.
and in general, an ordinal the set of previously defined ordinals.  Of course, this 
presentation is still a little vague:  in particular, some sort of “induction” in ZFC is needed
to justify the “etc.” where an ordinal is defined in terms of ordinals already defined.  
Once we have defined ordinals (as sets) in ZFC, we need to say how they are compared,  that is, how to
define .  We do this for ordinals  and  by writing   iff .  This seems to       
accomplish what we want.  For example:
  because      
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  because                                  

 because            
  etc.
If  is  set well-ordered by , we can then define its ordinal number  “the ordinal number   any
associated with ”  as follows:  from the axioms ZFC one can prove the  of a function (set)  existence
with domain  that is defined “recursively” by :
     ran (            
Then  “the ordinal number of ” is defined to be the set ran . 
 For example, for the well-ordered set , what is the function  and what is the     
      ordinal number of ?
  ran ran                
 
  ran ran               
  ran ran                 
       The ordinal number of  is ran            
In axiomatic set theory, cardinals are viewed as certain special ordinals:  an ordinal  is called a
cardinal if for all ordinals  there is no bijection between  and that is a cardinal is an “initial    
ordinal” meaning that it's “the first ordinal with a given size.”   From that point of view  is a cardinal because there is a bijection between  and  for any   Earlier, we gave this     
cardinal the name .  But  is not a cardinal because there is a bijection between  and          

In Theorem I.13.2, we proved that  one of the relations (as defined for cardinalat most     
numbers) can hold between two cardinals. Context will make clear whether “ ” refers to the
ordering of cardinals or ordinals.  We also  in Chapter I that (assuming AC)   one of thestated at least
relations must hold between any two cardinals that is, for any two sets one must be     
equivalent to a subset of the other. We are almost ready to prove that statement in fact, this statement
about cardinal numbers follows easily (assuming AC) from the corresponding result about ordinal
numbers which we now prove.
Theorem 5.15 (Ordinal Trichotomy Theorem)  If  and  are ordinals, then  of the  at least one
relations , ,  must hold (and so, by Theorem 5.13,  of these relations        exactly one
holds).
Proof We already know that    of ordinals are well-ordered: for examplecertain special sets
           is an ordinal and   (Theorem 5.14).
The theorem is certainly true if  or ,  so we assume both  and .          
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Let  is an ordinal for which   }.  Because we do not yet                  and
know that  and  are comparable, the situation might look something like the following: 

             
             is well-ordered because , and  since ).  Therefore  represents some
ordinal .  We claim that  and .       

1) To show that , we assume  and prove .       
                 represents . Since  and  represents , we conclude ,
so .   Let  be the smallest element in .   is an initial              
segment of . 
We claim .  ,  then  represents ; but  represents and       If that is true
therefore     
 If ,  then  and  element in                   smallest
          , so .      
 If , then  and  are comparable since both are in the         
          well-ordered set . 

        We examine the possibilities:
  i) :  impossible, since  and        
  ii) impossible, since that would mean  
   and , forcing                  
  which is false. 
        Therefore ,  so       
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2) A similar argument (interchanging “ ” and “ ” throughout) shows that if ,   
then .   

Since and ,  there are only four possibilities:    
 a)  and , in which case which is impossible.                    
Therefore one of the remaining three cases must be true:
 b)  and , in which case        
 c)   and , in which case        
 d)   and , in which case               

Corollary 5.16  Any set of ordinals is linearly ordered with respect to the ordinal ordering .
(W )e shall see in Theorem 5.20 that even more is true: every set of ordinals is well-ordered.

We simply state the following theorem. A proof of the equivalences can be found, for example, in Set
Theory and Metric Spaces Topology (Kaplansky) or (Dugundji).
Theorem 5.17  The following statements are equivalent.  (Moreover, each is consistent with and
independent of the axioms ZF for set theory:)
 1) ( )  If   is a family of pairwise disjoint nonempty sets, there isAxiom of Choice     
a set  such that, for all ,  | .          
(This is clearly equivalent to the statement that  .  If  is in the product, let ran( ); on      the other hand, if such a set  exists, define  by the unique element of . An element        
        is a function that “chooses” one element  from each  )
 2) ( ) Every set can be well-ordered, i.e., for every set  there is a subsetZermelo's Theorem 
      of  such that  is well-ordered.

 3) ( )  Suppose  is a nonempty poset.  If every chain in  has an upperZorn's Lemma    
bound in , then  contains a maximal element. 
We will look at some powerful uses of Zorn's Lemma later.  For now, we are mainly interested in
Zermelo's Theorem.
It is tradition to call 2) Zermelo's  and 3) Zorn's .  They appear as “proven” results inTheorem Lemma
the early literature, but the “proofs” used some form of the Axiom of Choice (AC).  Generally, we have
been casual about mentioning when AC is being used.  However in the following theorems, for
emphasis,  indicates that the Axiom of Choice is used in one of these equivalent forms.

Corollary 5.18 [AC, Cardinal Trichotomy]   If  and  are cardinal numbers,  (and thus,  at least one
by Theorem I.13.2 , exactly one) of the relations  holds.  (         Therefore any set of
cardinals is a chain.)
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Proof   According to Zermelo's Theorem, we may assume that  and  are  sets  well-ordered
representing the cardinals and , so that  and  also represent ordinals  and .     
By Theorem 5.15,  either ,   or ;  therefore either  and  are order isomorphic (in         
which case ) or one is order isomorphic to an initial segment of the other (so  or ).        

In fact, the Cardinal Trichotomy Corollary, is  to the Axiom of Choice.  (See Gillman, equivalent Two
Classical Surprises Concerning the Axiom of Choice and the Continuum Hypothesis, Am. Math.
Monthly 109(6), 2002, pp. 544-553 for this and other interesting results that do not depend on
techniques of axiomatic set theory.)  Over 200 equivalents to the Axiom of Choice are given in
Equivalents of the Axioms of Choice Rubin & Rubin, North-Holland Publishing, 1963).

The following corollary tells us that, , the two definitions of “ ” (Definition 4.2 andamong ordinals 
Definition 5.12) are equivalent.

Corollary 5.19  Suppose  and  are well-ordered sets representing  and .  If  is order   
isomorphic to a subset of  ( ),  then  is order isomorphic to so  in the sense of Definition 4.2 
  or to an initial segment of  ( ).so in the sense of Definition 5.12 
Proof  Without loss of generality, we may assume If  is not order isomorphic to , then    
       .  If  is also not isomorphic to an initial segment of , then  is also false Therefore the
Trichotomy Theorem 5.15 gives . Then  is order isomorphic to an initial segment of a subset  
  of itself which violates Theorem 5.10.   

Theorem 5.20  Every set  of ordinals is well-ordered.  In particular, every nonempty set of ordinals
contains a smallest element.
Proof  Theorem 5.15 implies that  is linearly ordered by .  We need to show that if  is a  
nonempty subset of , then  contains a smallest element.  Pick .  If  is itself the smallest in    
       , we are done.  If not, then  is nonempty and well-ordered because it is a subset of  
      so it contains a smallest element , and  is the smallest element in .    

Corollary 5.21 AC]   Every set  of cardinal numbers is well-ordered.  In particular, every nonempty
set of cardinal numbers contains a smallest element.
Proof   We know that the order (among cardinals) is a linear order.  Let  be a nonempty subset of 
       and, for each cardinal , let  represent .  By Zermelo's Theorem, each set  can be well-
ordered, after which it represents some ordinal .  By Theorem 5.20, the set of all such 's contains a 
smallest element  represented by Then  is clearly the smallest cardinal in .             

Example 5.22
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 1) The set  is a cardinal and  has a smallest element.  It is called the         immediate successor of  and is denoted by or .  The statement  is the Continuum       Hypothesis which, we recall, is independent of the axioms ZFC.  If CH is assumed as an additional
axiom in set theory, then .     

 2) More generally, for any cardinal  we can consider the smallest element  in the set 
           is a cardinal and .  We call the  of .  In particular, we  immediate successor
write  ,  , and so on.        

The Generalized Continuum Hypothesis is the statement
  GCH   “for every infinite cardinal ,  .”     

GCH and GCH are equally consistent with the axioms ZFC.  ( . Curiously, ZF GCH  implies AC
This is discussed in the Gillman article cited after Corollary 5.18.)

 3) In Example VI.4.6, we (provisionally) defined the  of a topological space  byweight  
   
  min  is a base for .          
We now see that the definition makes sense because there must exist a base of smallest cardinality.

Theorem 5.23   If  is a set of ordinals, then there exists an ordinal greater than any ordinal in . 
( )Therefore there is no “set of all ordinals.”
Proof  Let , and represent each ordinal  in  by a well-ordered set             
   1.  We may assume the 's are pairwise disjoint.  (If not, replace each  with
      , ordered in the obvious way.)  Form the ordered sum: that is, let     
    , and order  by

    if  , and  in 
 and           

         
 

 
   

  
Clearly,  well-orders , so  represents an ordinal .  Since each , we have        
               by Theorem 5.19.  Since  for each ,   is larger than any ordinal in
 .   

Corollary 5.24  Every set  of ordinals has a least upper bound, denoted sup that is, there is a  
smallest ordinal every ordinal in . 
Proof   Without loss of generality we may assume that if , then (       why? and where is
this assumption used in what follows?).  If contains a largest element, then it is the least upper
bound. Otherwise, pick an ordinal  larger than every ordinal in .  Then  (it       
contains ) and the smallest element in  is sup .        
Example 5.25
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 1) sup ,  and  sup{ ,                

 2) We say that an ordinal “has cardinal ” if it is represented by a well-ordered set with
cardinality .  In particular, countable ordinals are those represented by countable well-ordered sets.
  3) sup  is a countable ordinal  is called . Since there is no largest countable ordinal    ( ), we see that  is the  uncountable ordinal.  A set representing  must have cardinal why?    smallest 
( ).  Since  represents , so there are exactly  ordinals  , that is, exactly why?           countable ordinals. Each countable ordinal can be represented by a subset of   , so  see Example 4.7
there are exactly  nonisomorphic well-ordered subsets of . 
Since  is the smallest uncountable ordinal, each  is a countable ordinal that is represented by   
   .  Therefore  has only countably many predecessors and is the first ordinal with uncountablymany ( ) predecessors.

The spaces  and , with the order topology, have some interesting properties           that we will look at later.  These properties hinge on the fact that  is the  uncountable smallest
ordinal.

The ordinals  , ... , , ... , , ... , , ... , , ... are all mere countable ordinals.  For ordinals           
  ,  it is possible to define “ordinal exponentiation” .  ( The definition is sketched in the appendix at
the end of this chapter.) Then it turns out that , , ... , , ... , are still countable ordinals.    

       

If you accept that, then you should also believe that sup , , , , ...  (  “  to the                  

   power  times” ) is still countable.  Roughly, each element in the set has only countably many
predecessors and the set has only countable many elements, so the least upper bound of the set still has
only countably many predecessors—namely, all the predecessors of its predecessors.
But once you get up to , you can then form , , ..., take the least upper bound again, and still    

   


have only a countable ordinal .  And so on.  So , the first ordinal with uncountably many  predecessors is way beyond all these:  “the longer you look at , the farther away it gets” ( Robert
McDowell). 

We now look at some similar results for cardinals.
Lemma 5.26   If } and  are sets of cardinals and  for each ,                 
then . (     An infinite sum of cardinals is defined in the obvious way:  if the ' s arepairwise disjoint sets with cardinality , then          
Proof   Exercise

Theorem 5.27  If a set of cardinals  contains no largest element, then             for each .  
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Proof For any particular , let  for    
    

     

 

Then the lemma gives  .       

If  for some ,  would be the largest element in  which, by hypothesis, does not       exist.  Therefore  for every .         

The conclusion  be true even if  has a largest element: for example, suppose .may     
Can you give an example involving an infinite set  of cardinals?

Corollary 5.28  If  is a set of cardinals, then there is a cardinal  larger than every member of   
(and therefore there is no “set of all cardinals”).
Proof  If  has a largest element , then let .  Otherwise, use the preceding theorem and let    
           

Corollary 5.29  Every set  of cardinal numbers has a least upper bound, that is, there is a smallest
cardinal every cardinal in . 
Proof  Without loss of generality, we may assume that if , then all cardinals smaller than  are   
also in  ( ).  If  has a largest element , then  is the   why? and where is this used in what follows?
least upper bound.  Otherwise, pick a cardinal  greater than all the cardinals in  and let 
              is a cardinal and .  Then  (it contains ) and the smallest cardinal in this
set is the least upper bound for .   

6. Indexing the Infinite Cardinals
By Corollary 5.21, the set of  cardinals less than a given cardinal  is well-ordered, so this set isinfinite 
order isomorphic to an initial segment of ordinals.  Therefore this set of cardinals can be “faithfully
indexed” by that segment of ordinals that is, indexed in such a way that  iff .  When       
the infinite cardinals are listed in order of increasing size and indexed by ordinals, they are denoted by
's with ordinal subscripts.  In this notation, the first few infinite cardinals are
 ,  ( ), , ... , , ... , , , ... , , ... , , ... ,                                 ...  , ... .    

Thus, sup  and = sup .   is the first cardinal with uncountably                     
many ( ) cardinal predecessors.

In this notation, GCH states that for every ordinal , .     

By definition, | |.  So where is  is this list of cardinals?  The continuum hypothesis states  
“ ”  However, it is a fact that for each ordinal , there exists an ordinal  such that the       
assumption “ ” is consistent with ZFC.       Perhaps  is more mysterious than you thought.
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These results imply that not even the simplest exponentiation involving an infinite cardinal can be

“calculated” in ZFC:  is ?  ?  ?          

On the other hand, one  consistently assume  “ ” for an arbitrary choice of : even incannot    
ZFC, certain 's are provably excluded.  In fact,  if  is the least upper bound of a strictly increasing  sequence of smaller cardinals, we will   (and therefore ).  prove         It is also true, but we
will not prove it, that these are the  excluded 's it is consistent to assume 2 only     for any cardinal  for which (Solovay, 1965)     

At the heart of what we need is a classical theorem about cardinal arithmetic.
Theorem 6.1 (Konig¨   Suppose that for each ,  and  are cardinals with .  Then                .
Proof Proving “ ” is straightforward; proving “ ” takes a little more work. 
Let sets  and  represent  and .  We may assume the 's are pairwise disjoint and, since                      , that each  is a  subset of .  For each , pick and fix an element proper 
and define  by:      

 for ,  , where if 
if             

       
 




The 's are disjoint so  is well defined, and clearly  is one-to-one, so we conclude that        .
We now show that  is impossible.  We do this by showing that if  is             one-to-one, then  cannot be onto.

Let ran .  Let .   Since  is one-to-one,                  
          so, for each , there are at most  different coordinates of points in that th
is,   | .  Then we can pick a point  with  for every                      
      , i.e.,  is not the -th coordinate of any point in .
Define  by .  Then  for all , so ran .                      

Example 6.2  Suppose we have a strictly increasing  of cardinalssequence
      .            

For each , let , so  .  By König's Theorem,                     
    

 
  .

In particular:  if , then .  Since  ( ), we have              
     why?

      .      
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Since , we conclude that  .      

Note: A similar argument shows that if a cardinal k is the least upper bound of a sequence of strictly
increasing cardinals, then , so .     

Exercise 6.3  For a cardinal , there are how many ordinals with cardinality  ?  

7. Spaces of Ordinals
Let  be a set of ordinals with the order topology.  Since  is well-ordered,  is order isomorphic to  
some initial segment of ordinals   Therefore  and  are homeomorphic in their order     
topologies.  Therefore to think about “spaces of ordinals” we only need look at initial segments of
ordinals .  We will look briefly at some general facts about these spaces.  In Section 8, we will 
consider the spaces  and  in more detail.  These particular spaces have some           interesting properties that arise from the fact that  is the first uncountable ordinal.

According to Definition 3.1, a subbase for the order topology on consists of all sets   
 ,                   
and
 ,   0                
The set of finite intersections of such sets is a base, so ( ) a basic open set has one of thecheck this!
following forms:
   where                 corresponds to the empty intersection         
  ,  where  and          
If then ; so suppose What does an efficient neighborhood base at a point           
    look like?  .

If  is open in .  Therefore  is an isolated point in and             
  is an open neighborhood base at .
If , then any  open set containing must contain a set of the form :         basic
 if ,  then             
 if ,  then                   
Each set is open; and each set  is also closed because its complement               
                    is open.   Therefore   is a neighborhood base of clopen
sets at .

 Putting together these open neighborhood bases, we get that
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 is a clopen base for the topology.
We noted in Example 3.4 that any chain with the order topology is Hausdorff   Therefore every ordinal
space  is Hausdorff   Since there is a neighborhood base of closed (in fact, clopen)  
neighborhoods at each point [ ,  we know even more: Theorem VII.2.7 tells us that  is a      
-space.  But still more is true.
Theorem 7.1   For any ordinal ,   is .   As remarked earlier, every  with the order topology is but the proof is much simpler forchain  well-ordered sets.
Proof We know that  is , so need to prove that  is normal.  Suppose  and  are disjoint       closed sets in  
 If let a basic open set of form  disjoint from   (or,  if )                 If , let a basic open set of form  disjoint from  (or,  if )                

We claim that if and , then :            

 The statement is clearly true if  or  so suppose both are .  Then                 and    We can assume without loss of generality that .             If , then we have  which would mean that                              

If  and , then  and  are disjoint open sets with  and                  

( )Why doesn't the same proof work for chains with the order topology?

Definition 7.2  An ordinal  is called a  ordinal if  and  has no immediate predecessor;     limit  
is called a  ordinal if  or  has an immediate predecessor (that is,  for somenonlimit        
ordinal ).

Example 7.3
 
 1)  If  is a limit ordinal in  then for all , .  Therefore  is not               
isolated in the order topology.  If  is a nonlimit ordinal, then  or, for some ,  .              
Either way,  is open so  is isolated.  Therefore the isolated points in  are the exactly the     
points that are not limit ordinals.
 2)   is discrete:  it is homeomorphic to .  

 3)  is homeomorphic to             


 4)  For what 's is connected?  
Theorem 7.4   Suppose .  The ordinal space  is compact iff  for some             
ordinal that is, iff  contains a largest element .  
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Proof   Suppose  has no largest element. Then   is an open cover of .              
The sets in  are nested so, if there were a finite subcover, there would be a single set  covering  
          .  That is impossible since 
Conversely, suppose   If , then  is compact, so we  assume .                
Let  be an open cover of .  We can assume  consists of  open sets, that is, sets of the form    basic
       or .   Necessarily, then,   
Let .  For some we have a set   If then  is a                               
finite subcover.
If  , then for some ( , so If , then                            
              is a finite subcover.
We proceed inductively. Having chosen  so that  if  we can choose                   (  so that               
We continue until  occurs and this  happen in a finite number of steps because otherwise,    must
we would have defined an infinite descending sequence of ordinals ...  .           
This is impossible because a well-ordered set , , ..., , ...  must have  a smallest element.     

When we reach , we have a finite subcover from  ( .                       

Example 7.5                 is not compact, but  is compact.  In fact,  is
homeomorphic to         

 

8. The Spaces  and      

Theorem 8.1   For each suppose .  Then sup that is, the                      sup of a countable set of countable ordinals is countable.
Proof         is countable so  is countable.  Since  has uncountably many predecessors,  there is an ordinal .  Then  for each , so                           sup   

Corollary 8.2        and  are not separable.
Proof  If  is a countable subset of , then sup   Then              cl            

A dense set in  is also dense in , so  is not separable.               
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Corollary 8.3   In no sequence from  can converge to .       

Proof Suppose  is a sequence in . Let sup   The 's are all in                     the closed set , so .            

Example 8.4   In Example III.9.8, we saw a rather complicated space  in which sequences are not
sufficient to describe the topology. Corollary 8.3 gives an example that may be easier to “see” 
              cl , but no sequence  in , ) can converge to 
This implies that  is not first countable. Of course,  is a countable neighborhood           base at each point so the “problem” point is . Here, the neighborhood poset  (ordered      by reverse inclusion) is very nicely ordered (well-ordered, in fact!) but the chain of all neighborhoods
is simply “too long” and we cannot “thin it out” to get a countable neighborhood base at .

In contrast, the basic neighborhoods of  in the space  were very badly “entangled”  The   
neighborhood system  had a very complicated order structure too complicated for us to find a 
countable subset of  that “goes arbitrarily far out” in the poset.  ( See discussion in Example
2.4.6).

In Theorem IV.8.11 we proved that certain implications hold between various “compactness-like”
properties in a topological space .

 (*)  is countably compact  is pseudocompact.
 is compact

         or
 is sequentially compact







   

We asserted that, in general, no other implications are valid. The following corollary shows that
“sequentially compact” “compact”   (and therefore “countably compact” “compact” and  
“pseudocompact” “compact” ).
Corollary 8.5    is sequentially compact.
Proof  Suppose  is a sequence in .  We need to show that has a convergent         subsequence in   Without loss of generality, we may assume that all the 's are distinct ( )    why?
The sequence  has either an increasing subsequence   or a               decreasing subsequence            

The argument is completely parallel to the one in Lemma IV.2.10 showing that a sequence in 
has a monotone subsequence.  Call  a peak point of the sequence if  for all        
If the sequence has only finitely many peak points, then after some  there are no peak pointsand we can choose an increasing subsequence            
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If  has infinitely many peak points, then we can choose a subsequence of peak points 
                         and for these,     Since the 's are distinct,  we
have  .           

However, a strictly decreasing sequence of ordinals  is impossible.           
Therefore  has a subsequence of the form  . Setting                                   sup , we see that then    

An example of a pseudocompact space that is not countably compact is given in Exercise E31..
In Chapter X, we will discuss a space  that is compact (therefore countably compact and
pseudocompact ) but not sequentially compact (see Example X.6.5).  That will complete the set
of examples showing that “no other implications exist” other than those stated in (*).

Corollary 8.6  In , the intersection of a countable collection of neighborhoods of  is again a   neighborhood of that is, the intersection must contain a “tail” .  Therefore  is not a          
  -set (and therefore not a zero set)  in 

Proof    Let  be a collection of neighborhoods of . For each , there is a  for          
which int  Let sup  Then              

                 
                   

     int where    In particular,         

Since  is compact, we know that each  is bounded.  In fact, something more is       true.  ( )Why does the corollary state something “more” ?

Corollary 8.7  If , then  is constant on a “tail”  for some .              

Proof Suppose . By Corollary 8.6,  contains a tail               
  

 
               Therefore    

Proving Corollary 8.7 was relatively easy because we can see immediately what the constant value
must be to make the theorem true:    A more remarkable thing is that the same result holds   for   But to prove that fact, we have no “initial guess” about what constant value  might have  on a tail, so we have to work harder.
Theorem 8.8  If , then  is constant on the “tail”  for some .              

Proof Let “the  tail”  By Corollary 8.5,   is countably compact so the             th
closed set  is also countably compact.  It is easy to see that a continuous image of a countablycompact space is countably compact, so is a countably compact subset of .  Since countable   
compactness and compactness are equivalent for subsets of  (Theorem IV.8.17), each  is a   nonempty compact set:           
The 's are nested  if Therefore 's have the finite intersection                      
property, and by compactness   ( ). In fact, we claim the intersection        see Theorem IV.8.4
contains a single number          
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If , then  assumes each of the values  for arbitrarily large values of .            
Therefore we can pick an increasing sequence  such                  
that  and  Let sup    Then  and                                
                   .  By continuity  and . and we conclude
    

We claim that  on some tail of First notice that if , then  for which             
           

 

If not, then   would be a                               
 family of closed subsets of  with the finite intersection property, so this family would  have a nonempty intersection.  That is impossible since and         

           
   

  .
Pick so that   Pick  so that  and continue      

                       inductively to pick so that     
          

Let sup  Then                                  
  

      so       

( )Since  is bounded on the compact set , we see in a different way that  is pseudocompact.     

Corollary 8.9  Every continuous function  can be extended in a unique way to a     continuous function        .
Proof  For some  on a tail  Let  and define                        Any continuous extension  of  must agree with  since and  agree on the dense set       

Note is a compact  space which contains  as a dense subspace.  We call  :           a  of The property stated in Corollary 8.9 is a  special property  for acompactification   .  
compactification to have in fact, it characterizes  as the so-called -   Stone Cech compactification
of We will discuss compactifications in Chapter 10. 

          , notice that  is compactification of  which, just as above, isBy way of contrast        
obtained by adding a single point to the original space.  However, the continuous function
            defined by sin   be continuously extended to the point .

 cannot

We saw in Example VII.5.10 that a subspace of a normal space need not be normal:  the Sorgenfrey
plane  is not normal however it can be embedded in the -space  for some .  Any space       
that is  but not  works just as well.  However, these examples are not very explicit it is hard to   “picture why” the normality of  isn't inherited by the subspace .  The “picturing” may be easier  
in the following example.
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Example 8.10   Let ] ],  sometimes called the “Tychonoff plank.”  is compact           
and therefore .  Discarding the “upper right corner point,” we are left with the (open) subspace           )    We claim that  is not normal. Let  

  “the right edge of ” and                “the top edge of ”               

   and  are disjoint sets and closed in  (although not, of course, in ).

Suppose  is an open set in  containing the “right edge” .  For each point , we can         choose a basic open set .  Let sup   Then                       
                      for all that is,  is contained in a “vertical strip”  inside .
 
Suppose is an open set in  containing the “top edge” .  Since , there is a basic         open set .   But then , so .                        

Exercise 8.11  Show that every continuous function  can be continuously extended to a    
function       
Hint:   has constant value  on some tail, and for each                       has a constant value  on a tail.  Define   Prove that  and then show             
that the extension  is continuous at      

As in the remark following Corollary 8.9,   is a compactification of and the functional extension 
property in the exercise characterizes  as the so-called Stone-Cech compactification of  .  Since    
is compact,  must be bounded so, in retrospect,  must have been bounded in the first place.  
Therefore  is pseudocompact.  But  is not countably compact because the “right edge”  is an   
infinite set that has no limit point in .   is an example of   a pseudocompact space that is not
countably compact
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Exercises
E13.  Suppose   and that  is well-ordered (in the usual order on ).  Prove that  is countable.    

E14.  Let  denote the order type of the set of  integers, with its usual ordering. nonpositive
 a) Prove that a chain  is well-ordered iff  contains no subset of order type .     b) Prove that if  is a chain in which every countable subset is well-ordered, then  is   
well-ordered.
 c) Prove that every infinite chain either has a subset of order type  or one of order type .   
E15.  Prove the following facts about ordinal numbers     
 a) if , then        
 b) if , then there exists a unique  such that          
 We might try using b) to define subtraction of ordinals:    if         .
 However this is perhaps not such a good idea.  Consider , .  Problems arise( )     
 because ordinal addition is not commutative.
 c)  iff          .

E16.  Let , where  be  a chain.   is called  if       inductive
 
  for all , .               
Prove that if  is the only inductive subset of , then  is well-ordered.  

E17.  Let  be a first countable space. Suppose that for each , is a closed subset of  and     that  whenever .  Prove that  is closed in                    

E18. Let  be well-ordered.  Order lexicographically and give the set the order     
topology.
     a) What does a “nice” neighborhood base look like at each point in ? Discuss some other
properties of this space.
       b) If ,  then (  is called is the “long line.”  Show that  is path connected and         locally homeomorphic to  but it cannot be embedded in .    (See , J. Munkres, 2  edition,  Topology nd
p. 159 for an outline of a proof.)
        c)  Each point in  homeomorphic to   is normal but not metrizable.  

E19.  a) Let  and  be disjoint closed sets in .  Prove that at least one of  and  is compact     and bounded away from .  ( A set  is    if   for some .     bounded away from        b) Characterize the closed sets in  ) that are zero sets.   c) Prove that   and  are not metrizable.     
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E20.  a) Suppose  and  are sequences in ) such that, for all , .                 
Show that both sequences converge and have the same limit.
  b) Show that if  is such that  for every , then there is an  such that            
is a limit point of the graph of  in .   
 c) Prove that ] is not normal.  (Hint: Let  be the diagonal of  and B = X .  Show that if U and V are open with         and , then .  To do this: if any point  is in U, we're done.  So suppose this is         false and define  to be the least ordinal  such that .  Use part b).        )

E21.  A space  is called -compact if  can be written as a countable union of compact sets. 
    a) Prove  is not -compact.      b) Using part a) (or otherwise), prove   is not Lindelöf.      c) State and prove a theorem of the form:  an ordinal space [  is -compact iff ...  
( )You might begin by thinking about the spaces , , and .         

E22.  A space  is called  if every continuous  has a countable range.  functionally countable 
 
    a) Show that  is functionally countable.      b) Let  where  is uncountable and .  Give  the topology for which all the         
points of  are isolated and for which the basic neighborhoods of  are those cocountable sets 
containing .   Show  is functionally countable. 
    c) Prove that  is not functionally countable.  
( )Hint: Let  be one-to-one. Consider the set  is isolated in                 

E23.  A space  is called -  if  is homeomorphic to a closed subspace of the product    compact 
for some cardinal .  For example,  is -compact iff  compact and .  An -compact space is      
called .realcompact
 a) Prove that if  is both realcompact and pseudocompact, then  is compact. 
( )Note: the converse is clear
 b) Suppose that  is Tychonoff and that however  is embedded in , its projection in   
every direction is compact.  (More precisely, suppose that for  possible embeddings ,all h     
we have that  is compact for all projections .  This statement is certainly true, for example,  
if  is compact.)   Prove or disprove that  must be compact. 

E24. An infinite cardinal  is called  if  for some sequence of cardinals .      sequential 
  

    a) Prove that if  is sequential, then .   

    b) Assume GCH.  Prove that if  is infinite and , then .         

    c) Assume GCH.  Prove that an infinite cardinal  is sequential iff .   
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9.  Transfinite Induction and Transfinite Recursion
    “...to understand recursion, you have to understand recursion...”
Suppose we have a sequence of propositions  that depend on   We would like to show      that all the 's are true. ( The initial value  is not important. We might want to prove the  
propositions  for, say, .      )  For example, we might have in mind the propositions
                



As you should already know, the proof can be done by induction.  Induction in elementary courses
takes one of two forms (stated here using  as the initial proposition):

 1) ( )   If  is true and if (  is true  is true , then  is true forPrinciple of Induction          all   

 2) ( )   If  is true and  if  is true for all  isPrinciple of Complete Induction          true , then  is true for all      
Formally, 2) looks weaker than 1), because it has a stronger hypothesis.  But in fact the versions 1) and
2) are  statements about   ( )  Sometimes form 2) is more convenient to use. Forequivalent   Why?
example, try using both versions of induction to prove that every natural number greater than  has a
factorization into primes.
The Principle of Induction works because  is well-ordered: 

 If  is , then it would contain a  element .  This is             false smallest
 impossible:  since  is true,  must be true.  

You might expect a principle analogous to 1) could be used in every well-ordered sets , not just in 
     But an ordinal  might not have an immediate predecessor, so version 1) might not make
sense.  So we work instead with 2): we can generalize “ordinary induction” if we state it in the form of
complete induction.
Theorem 9.1  (Principle of Transfinite Induction)  Let  be an ordinal and  If    
 1)   and  T
 2)   [   ] ,           T T
then . T   
Proof  If , then there is a smallest  By definition of , .  But then                 
2) implies , contrary to the choice of  .  
Using Theorem 9.1 is completely analogous to using complete induction in For each ,    we have a proposition  and we want to show that all the 's are all true.  (   For example, we might
have a set somehow defined for each  , and  might be the proposition “  is        
compact.”)   Let  is true   If we show that  is true, and if assuming that              assume  is true for all , we can then prove that  must be true, then Theorem 9.1 implies that    
 . is true for all .  We will look at several examples in Section 10. 
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Note: In the statement of Theorem 9.1, part 1) is included only for emphasis.  In fact, 1) is
automatically true if  we know 2) is true: for if we let  in 2)  then  is true, so         
    that is,  is true.  But in actually  Theorem 9.1 (as described in the preceding using
paragraph) and trying to prove that 2)  true, the first value  requires us to show  is true withis    “no induction assumptions” since there are  's with  .  Doing that is justno      
verifying that 1) is true.

We can also  objects in a similar way by transfinite .  Elementary definitions bydefine recursion
recursion should be familiar for example, we might say 
  let 13 and, 
  for each , let    (**)       
We than say that “  is defined for all .”   We draw that conclusion by arguing in the      
following informal way:  if not, then there is a smallest  for which  is not defined: this isk    impossible because then   defined, and therefore (by ) so is .   is ** 
This argument depends only on the fact that  is well-ordered, so it generalizes to the following principle.
Informal Principle 9.2 (Transfinite Recursion)   For each , suppose a rule is given that defines 
an object  in terms of objects  already defined (that is, in terms of 's with ).  Then  is        
defined for all .    The principle implies that P  is defined “absolutely”  that is, without any 
previous 's to work with since there are no 's with .    
This “informal” statement is a reasonably accurate paraphrase of a precise theorem in axiomatic set
theory, and the informal proof is virtually identical to the one given above for simple recursion on
   As stated in 9.2, this principle is strong and clear enough for everyday use, and we will
consider it “proven” and useable.
Principle 9.2 is “informal” because it does seem a little vague in spots “some object”, “a rule is
given”, “if  is defined ... , then  is defined ...”  Without spending a lot of time on the set theoretic  issues, we digress to show how the statement can be made a little more precise.

In axiomatic set theory, the “objects”  will, of course, be sets (since everything is a set).  Wecan think of “  ” to mean from some specified set .  In the context ofdefining choosing   
some problem,  is the “universal set” in which the objects will all live.  For example, we might have  and want to define continuous functions for each         

The sets  already chosen (“defined”) in  for  can be described efficiently by a    
function  for ,                  

To define the set  in terms of the preceding 's means that we need to define  using .     
We need a function (“rule”)  so that  gives the new set .  In other words, we         
want      
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The conclusion that we have “completed” the process and that  is defined for all    
means that there is a function where, for each  the  selected at the            earlier stage by that is,  .          
This leads us to the following formulation.  The “full” formulation of the standard theorem
about transfinite recursion in axiomatic set theory needs to be a little stronger still, so we call
this version which we state without proof the “weak” version.  It is more than adequate for 
our purposes here.

 
Theorem 9.3 (Transfinite Recursion, Weak Form)  Suppose  is an ordinal. Let  be a set and 
suppose that, for each , we have a function .  Then there exists a unique function       
                such that, for each , .
Proof   See, for example, Topology (J. Dugundji)

The following example illustrates what the Recursion Theorem 9.3 in a concrete example.  When all is
said and done, it looks just the way an informal, simple definition by recursion (Principle 9.2) should
look.
Example 9.4  We want to define numbers  for every .  Informally we might say:     

  Let 1 and for , let .E             
The informal Principle 9.2 lets us conclude that  is defined for all .   
In terms of the more formal Theorem 9.3, we can describe what is “really” happening as follows:
 Let  and .   For each , define  as follows:                   

  For  and  define                 For if ,  define                      

  ( ).Note that the R 's are defined explicitly for each n,  recursively. not
 The theorem states that there is a unique function  such that   

  ( 1            ( 1  1           
  ( 2            F
    etc. ...
         
 which is just what we wanted:  dom , so  is defined for all          
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10.  Using Transfinite Induction and Recursion
This section presents a number of examples using recursion and induction in an essential way.  Taken
together, they are a miscellaneous collection, but each example has some interest in itself.

Borel Sets in Metric Spaces
The classical theory of Borel sets is developed in metric spaces (  The collection of Borel sets in 
a metric space is important in analysis and also in set theory.  Roughly, Borel sets are the sets that can
be generated from open sets by the operations of countable union and countable intersection “applied
countably many times.”  Therefore a Borel set is only a “small” number of operations “beyond” the
open sets, and Borel sets are fairly well behaved.  We will use transfinite recursion (the informal
version) to define the Borel sets and prove a few simple theorems.  When objects are defined by
recursion, proofs about them often involve induction.
We begin with a simple lemma about ordinals.
Lemma 10.1   Every ordinal  can be written uniquely in the form  where  is either 0 or a     
limit ordinal, and .  

Proof    If  is finite, then  where .        

 Suppose  is infinite.  If  is a limit ordinal, we can write    If  is not a limit      
ordinal, then  has an immediate predecessor which, for short,  we denote here as “ .”  If  is     
not a limit ordinal, then it has an immediate predecessor .  Continuing in this way, we get to a  
limit ordinal after a finite number of steps, for otherwise                
would be an infinite decreasing sequence of ordinals.  If  is a limit ordinal, then         
 To prove uniqueness, suppose  where each of  is  or a limit ordinal             
and  are finite.  If  or  say . Then  is finite, so  and .  So                    
suppose  and are both limit ordinals.  We have an order isomorphism  from  onto      
             .  Since  contains  ordinals after its largest limit ordinal , the same must be
true in the range , and therefore . Let Then  is an                       
order isomorphism, so    

Definition 10.2  Suppose , where  is a limit ordinal or  and  is finite.  We say that  is       
even odd if  is even, and that is  if  is odd. 
For example, every limit ordinal  is even.   
Definition 10.3  Suppose  is a metric space.  Let   the collection of open sets.  For each     
        , and suppose that  has been defined for all   Then let

  is a countable intersection of sets from  if is odd)
 is a countable union of sets from     (     

   
 
 
        
        if  is even)

             is the family of  in Borel sets
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The sets in  are the  sets; the sets in  are countable unions of  sets and are traditionally called       sets; the sets in  are called -sets, etc.

   
Theorem 10.4   Suppose  is a metric space. 
 1) If , then ,  so        

                          

 2)   is closed under countable unions if  is even,  and  is closed under countable    intersections if  is odd.
 3)  is closed under countable unions, intersections and complements. Also, if and  are    in , so is     

Proof   1) Suppose .   is defined as the collection of all countable unions (if  is even)       or intersections (if is odd) of sets in the preceding families .  In particular, any one set      
from  is in .  

 2) Suppose  is even and  . Each is a countable union of sets             from .  Therefore is also a countable union of sets from , so                
 

        The proof is similar if  is odd.
 3)  Suppose , ,..., .   For each ,  for some .                 If sup , then  for every .  By part 2), one of the                     collections  or  is closed under countable intersections and the other under countable unions.  Therefore   and   are both in   

       

 To show that  is closed under complements, we first prove, using transfinite induction, that
if then         

        If , then  is open so  is closed.  But a closed set in a metric space is a  set, so       

Suppose the conclusion holds for all .  We must show it holds also for .       
 Let   If  is odd, then  where                   

    By the induction hypothesis,  for all .  Since is            even, we have that   (  
                The

 case when  is even is similar ).
If , then  for some , so So if , then                       
              
Part 3) of the preceding theorem shows why the definition of the Borel sets only uses ordinals .  Once we get to , the process “closes off” that is, continuing with additional          countable unions and intersections produces no new sets.
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Definition 10.3 presents the construction of the Borel sets “from the bottom up.”  It has the advantage
of exhibiting how the sets in  are constructed step by step.  However, it is also possible to define  
“from the top down.” This approach is neater, but it gives less insight into which sets are Borel.
Definition 10.5  A family  of subsets of  is called a  if  and  is closed under    -algebra
complements,  countable intersections, and countable unions.
Suppose  is a collection of subsets of .  Then  is (the largest) -algebra containing .  It is    
also clear that the intersection of a collection of -algebras is a -algebra.  Therefore the smallest 
   -algebra containing  exists:  it is the intersection of all -algebras containing .

The following theorem could be taken as the definition of the family of Borel sets
Theorem 10.6  The family  of Borel sets in  is the smallest -algebra containing all the open  
sets of .
Proof  The rough idea is that our previous construction puts into  all the sets that need to be there to
form a -algebra, but no others.
We have already proven that   a -algebra containing the open sets.  We must show  is the  is
smallest that is, if  is a -algebra containing the open sets, then .  We show this by     
transfinite induction.
 We are given that    
 Suppose that  for all   We must show              

Assume  is odd.  If  then where  for some              
   By hypothesis each  and is closed under countable intersections so     

      .  Therefore   ( .) The case when  is even is entirely similar
 Since for all , we get that                



The next theorem gives us an upper bound for the number of Borel sets in a separable metric space.
Theorem 10.7   If  is separable metric space, then .     
Proof   We prove first that for each         

     A separable metric space has a countable base  for the open sets  Since every open set is the
union of a subfamily of ,  we have                   

Assume that   for all .  Since  has only countably many predecessors,          
        Since each set in is a countable intersection or union of a  of sets fromsequence           , we have         
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Therefore |              

( )Can you see a generalization to arbitrary metric spaces?

Corollary 10.8  There are non-Borel sets in .
For those who know a bit of measure theory:  every Borel set in  is Lebesgue measurable.  Since  a
subset of a set of measure  is measurable, all  subsets of the Cantor set  are measurable.  
Therefore there are Lebesgue measurable subsets of  that are not Borel sets.

Example 10.9
 
 1)  If is discrete, then every subset is open, so every subset is Borel:       

 2)  If , then every subset is a , but is not discrete.  Therefore          
  

                 
 3)  The following facts are true but harder to prove:
        a) For each , there exists a metric space for which   

                        

 In other words, the Borel construction continually adds fresh sets until the  stage but notth
 thereafter.
      b) In , for all that is, new Borel sets appear at every stage           in the construction.

A New Characterization of Normality

Definition 10.10  A family  of subsets of a space  is called  if ,  is in only     point-finite
finitely many sets from .
Definition 10.11 An open cover  of   is called  if there exists an open       shrinkable
cover  of  such that, for each , cl .    is called a  of .               shrinkage
Theorem 10.12    is normal iff every point-finite open cover of  is shrinkable.  (In particular, every
finite open cover of a normal space is shrinkable: see Exercise VII.E18.)
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Proof  Suppose every point-finite open cover of  is shrinkable and let  and  be disjoint closed sets  
in .  The open cover  has a shrinkage  and the sets cl                 
          and cl  are disjoint open sets containing and .  Therefore  is normal.
Conversely, suppose  is normal and let  be a point-finite open cover of .       Without loss of generality, we may assume that the index set  is a segment of ordinals   ( )   why?
so that       

Let   Since , we can use normality to choose an open set  such that             
                  cl  and  covers . 
Suppose  and that for all  we have defined an open sets  such that cl  and             such that  covers .  Letting ,                                  
we can use normality to choose an open set  with cl           
Clearly,  covers .               
By transfinite recursion, the 's are defined for all , and we claim that is a           
cover of .

Notice that there  something here that needs to be checked: we know that we have a coveris
              at each step in the process, but do we still have a cover when
we're finished?   To see explicitly that there  an issue, consider the following example.is
Let  be the set of reals with the “left-ray” topology (a normal space) and consider the open
cover .  If we go through the procedure described above, we get        
             so we might have chosen : that would give
                   cl  and  would still be a cover.  Continuing, we can
see that at every stage we could choose  and that  is still                  a cover.  But when we're done, the collection  is not a cover!  Of course, the       cover  is . not point-finite

Suppose Then  is in only finitely many sets of say .  Let be the  of            largest
these indices so that .  If is in one of the 's with , we're done.  Otherwise          
                        .   Either way  is in a set in , so  is a cover     
Question: what happens if “point-finite” is changed to “point-countable” in the hypothesis?  Could
the “max” in the argument be replaced by a “sup” ?
Definition 10.13  A cover of  is called   if every point  has a neighborhood that   locally finite
intersects at most finitely many of the sets in the cover.
Corollary 10.14  Suppose  is a locally finite open cover of a normal space .  Then      there exist continuous functions  such that    

 i)  for every           
 ii)  for every .          
The collection of functions  is called a .  partition of unity subordinate to 
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Proof  It is easy to see that a locally finite open cover of  is point-finite. By Theorem 10.12,   has a 
shrinkage .  For each , we can use Urysohn's Lemma (VII.5.2) to pick a continuous      function  such that cl  and                     

Each point  is in only finitely many 's,  so  for all but finitely many 's and therefore       
        .   Each point  has a neighborhood  which intersects only finitely many 's


 




so  is essentially a finite sum of continuous functions and  is continuous (see Exercise III.E21). 

Since each  is in some set cl , so .  Therefore is never  so each              
 

  is

continuous.   The 's clearly satisfy both i) and ii).     

A Characterization of Countable Compact Metric Spaces
In 1920, the journal was founded by Zygmund Janiszewski, StefanFundamenta Mathematicae 
Mazurkiewicz and Waclaw Sierpinski.  It was a conscious attempt to raise the profile of Polish
mathematics thorough a journal devoted primarily to the exciting new field of topology.  To reach the
international community, it was agreed that published articles would be in one of the most popular
scientific languages of the day: French, German or English.  continuesFundamenta Mathematicae
today as a leading mathematical journal with a scope broadened somewhat to cover set theory,
mathematical logic and foundations of mathematics, topology and its interactions with algebra, and
dynamical systems.
An article by Sierpinski and Mazurkiewicz appeared in the very first volume of this journal
characterizing compact, countable metric spaces in a rather vivid way.  We will prove only part of this
result: our primary purpose here is just to illustrate the use of transfinite recursion and induction and
the omitted details are messy.
Suppose  is a nonempty compact, countable metric space. 
Definition 10.15  For , define  is a limit point of .   is called the              derived
set of . If  is closed, it is easy to see that  and that  is also closed.      

We will use the derived set operation  repeatedly in a definition by transfinite recursion. 

 Let  and, for each , define     

  if 
if  is a limit ordinal      

     
 
 

  
  

           is closed for all  and   .  This sequence is called     the derived
sequence of .
For some , we have because otherwise, for each ,  we could choose a point                         and  would be a subset of  with cardinal .  Let  be the  
smallest  for which .  It follows that  for all .              
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Since  is compact metric, the closed set  is complete, and because , every point in        
      is a limit point.  Therefore , since a nonempty complete metric space with no isolated
points contains at least  points (Theorem IV.3.6).
We know  is impossible (because that would mean .  If  were a limit           ordinal, then  (because  is a family of nonempty compact                   sets with the finite intersection property).  Therefore  must have an immediate predecessor .  

The definition of  implies that .  In fact,  must be finite (if it were an infinite set in the      compact space , would have a limit point and then )    Let                  
 

In this way, we arrive at a pair , where  

  is the last nonempty derived set of  ,  and        contains  points       

Since homeomorphisms preserve limit points and intersections, it is clear that the construction in any
space homeomorphic to  will produce the same pair .   

Theorem 10.16 (Sierpinski-Mazurkiewicz)  Let  and .  Two nonempty compact,        
countable metric spaces  and  are homeomorphic iff they are associated with the same pair .    (Therefore  is a “topological invariant” that characterizes nonempty compact countable  metric spaces.)  For any such pair , there exists a nonempty compact countable metric space  associated with this pair.

Corollary 10.17  There are exactly  nonhomeomorphic compact countable metric spaces.

Proof  The number of different compact countable metric spaces is the same as the number of pairs
            , namely      
Example 10.18  In the following figure, each column contains a compact countable subspace of 
with the  invariant pair listed.  Each figure is built up using sets order-isomorphic to
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Alexandroff's Problem

A compact metric space  is second countable and therefore satisfies   (Theorem II.5.21).    
In 1923,  Alexandroff and Urysohn conjectured that a stronger result is true:
 A first countable compact Hausdorff space  satisfies    
This conjecture was not settled until 1969,  in a rather famously complicated proof by Arhangel'skii.
Here is a proof of an even stronger result “compact” is replaced by “  that comes from a Lindelöf” 
few years after Arhangel'skii's work.

Theorem 10.16 Pol, Šapirovski       If  is first countable, Hausdorff and Lindelöf, then    
Proof   For each , choose a countable open neighborhood base  at  and, for each , let      
          the collection of all the basic neighborhoods of all the points in .
For each countable family of sets  for which , pick a point  Define              
      cl ( all such 's chosen for 

Notice that if , then .      
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Since , we have There are at most  countable families , so         .     
       all such 's chosen for .  Since  is first countable, sequences suffice todescribe the topology, and since  is Hausdorff, sequential limits are unique.  Therefore
      is no larger than the number of sequences in all such 's chosen for
    namely 

Now , once and for all, a set  with   ( )   Byfix       If no such  exists, we are done!
recursion, we now “build up” some new sets from .  The idea is that the new 's always have   cardinality  and that the new sets eventually include all the points of .  
 Let .   For each ordinal , define    
    .if 

{ : } if  is a limit ordinal      
  
  
  

For each ,        

     Suppose  for all        
If , then , so |  .            If is a limit ordinal, then {                   

Let   Then                            

We claim that  and, if so, we are done.  
        is closed in :  if cl , then (using first countability) there is a sequence  in  with
                   If  and we let sup , then every  is in . Therefore    
      cl  

Since  is a closed subspace of the Lindelöf space ,  is Lindelöf.  
If then we can pick a point .  For each , choose an open         
neighborhood  such that .  The 's form an open cover of , so a countable         
collection of these sets, say  , for some countable  covers .  Thus          
      and .  :But this is impossible

Since  is countable, we have that for some  and  is a countable       subfamily of for which   By definition of  , a point             
         was put into the set .  This contradicts the fact that  covers
 .   
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The Mazurkiewicz 2-set
The circle  is a subset of the plane which intersects every straight line in  two points.  We use at most
recursion to construct something more bizarre.
Theorem 10.17  (Mazurkiewicz)  There exists a set  such that  for every straight      
line .
Proof  Let  be the first ordinal of cardinal .  Since the well-ordered segment  represents ,    
there are  ordinals    
In fact, there are   limit ordinals   There are certainly infinitely many (say ) limit ordinals    
( and, by Lemma 10.1,  ordinal  can be written uniquely in the formwhy?) every  
           , where  is a limit ordinal (or ) and  is finite. Therefore there are  ordinals
     .  But  has  predecessors.  Therefore 

Since  has exactly  points and exactly  straight lines, we can index both  and the set of straight   
lines using the ordinals less than :    and                

We will define points  for each , and the set  will be the set we want.          
Let be the first point of  (as indexed above) not on .  
Suppose that we have defined points for all  .  We need to define   Let       
               Note      is a straight line containing 2 points of }        Note     least ordinal so that       (that is,  is the first line listed that is not in      is a point of intersection of with a line in            Note    

Since               ,  there are points on not in :  let  be the  first
       listed that is on but not in . 
By recursion, we have now defined  for all .  Let           

We claim that for each straight line , .     
If , then we could pick 3 points , where, say    Then                      
                   , so that .  Since (by definition) and , we have               .  Therefore which contradicts the definition of 

To complete the proof, we will show that for each straight line  , .     
We begin with a series of observations:
 a)  If then .   Clearly .  But is the  line not                      first
 in and is the first line not in , so            2   
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 b) If then    Otherwise, by a),  .  Then                 3         3 are on .  Then contains 3 points of                            which is
 impossible.    In particular, if ,  are distinct limit ordinals, there is a third ordinal       between them so    and  must be distinct.
 
 c) For any , there is  such that Since there are  limit ordinals ,             there are  distinct values for .  They cannot all be , since  has fewer than      predecessors.
Finally, if some , pick an  so that .  Since is the  line we              first
get that Therefore  contains 2 points of                        
More generally, it can be shown more that if for each line  we are given a cardinal number with               , then there exists a set  such that for each , 

11.  Zorn's Lemma
Zorn's Lemma (ZL) states that if every chain in a nonempty poset  has an upper bound in ,   
then  contains a maximal element. We remarked in Theorem 5.17 that the Axiom of Choice (AC) and
Zermelo's Theorem are equivalent to Zorn's Lemma.
As a first example using Zorn's Lemma, we prove part of Theorem 5.17, in two different ways.
Theorem 11.1   ZL AC
Proof 1    Let  be a collection of pairwise disjoint nonempty sets.   Consider the poset set    
            for all ,   , ordered by inclusion.  is a  poset becausenonempty
  .
Suppose  is a chain in  and let .  We claim that                 

Suppose for some   Consider two points   Then and                    
               for some , .  Since the 's are a chain, either  or .       2Therefore one of these sets, say  contains both   Therefore A .  But this is            impossible since .   Therefore  contains at most one point from each so          

Since  is an upper bound for the chain in ,   Zorn's Lemma says that there is a maximal element 
  
Since  for every .  If  for some ,  then we could choose an               
                form the set Then would still be true for every , so we 
would have , which is impossible because  is maximal. Therefore  for every         
.   
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Notice that the function  given by                       
is in the product  , so we see that  .            
Proof 2  Let  be a collection of nonempty sets.  Let    
 and  for each                    

If , then the function  are sets of ordered pairs.  So we can order  by inclusion:          
          iff (This relation is just “functional extension”:  iff  dom dom          and dom               )     is a nonempty poset because . 
Suppose  is a chain in .  Define .  Since the 's form a chain, their               
union is a function  where dom   Moreover, if , then dom                   
for some , so .  Therefore , and  is an upper bound on the chain.  By Zorn's              Lemma,  has a maximal element, . 
By maximality, the domain of  is  if not, we could extend the definition of  by adding to its   
domain a point  from dom and defining  to be a point in the nonempty set   Therefore      
               so .

In principle, it should be possible to rework any proof using transfinite induction into a proof that uses
Zorn's Lemma and vice-versa.  However, sometimes one is much more natural to use than the other.
We now present several miscellaneous examples that further illustrate how Zorn's Lemma is used.

The Countable Chain Condition and -discrete sets in  
Definition 11.2  Suppose  is a metric space and .  A set  is called -discrete if       
        for every pair 
Theorem 11.3  For every ,  has a maximal -discrete set.    
 For example, is a maximal -discrete set in . 
Proof   Let .  The theorem is clearly true if , so we assume         
Let is -discrete  and partially order  by inclusion .         
If , then  so .        
Suppose  is a chain in .  We claim  is -discrete.            

If , then  and  for some , Since the 's form a chain, so                  
                          or  Without loss of generality, .  Then , and this set
is -discrete.  Therefore     

Therefore .  Clearly,   is an upper bound for the chain . By Zorn's            
Lemma  has a maximal element.       
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Notice that when we use Zorn's Lemma,  , foran upper bound that we produce for a chain in    
example,  in the preceding paragraph  in .  For   might not itself be a maximal element 
example, suppose  is a poset that contains exactly four sets  ordered by inclusion.  A 
particular  is indicated in the following diagram:

 
One chain in  is . Then  is an upper bound for the chain in .  However,    
    so  is  a maximal element in .not 

It  always true that an upper bound for a  in  (such as , above)  ais maximal chain is 
maximal element in  (why?). The statement that “in any poset, every chain is contained in a
maximal chain” is called the Hausdorff Maximal Principle and it is yet another equivalent
to the Axiom of Choice.

Definition 11.4  A space  satisfies the  (CCC) if every family of disjoint countable chain condition
open sets in  is countable.
We already know that every separable space satisfies CCC.  The following theorem shows that CCC is
equivalent to separability among metric spaces.
Theorem 11.5  Suppose  is a metric space satisfying CCC.  Then  is separable.   
Proof  For each , we can use Theorem 11.3 to get a maximal -discrete subset .  For   

 
                        , so, by CCC, the family  must be countable.
Therefore  is countable, and we claim that the countable set  is dense.    


Suppose  and, for , choose  so that   Since  is a           

  maximal
 
  -discrete set,  is not -discrete, so there is a point        
with         
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Sets of cardinals are well-ordered
We proved this result earlier (Corollary 5.21) using ordinals. The following proof, due to Metelli and
Salce, avoids any mention of ordinals but it makes heavy use of Zorn's Lemma and the Axiom of
Choice.  The statement that any set of cardinals is well-ordered is clearly equivalent to the following
theorem.
Theorem 11.6  If is a nonempty collection of sets, then   such that _               _
for every  in other words, for each  there exists a one-to-one map              _ _

Proof   Assume all the 's are nonempty (otherwise the theorem is obviously true).

Let for all ,  is one-to-one , ordered by inclusion.   is a                 nonempty poset since .  
If  is any chain in ,  we claim that .  Otherwise there would be points          
         and an  for which .  Since the 's form a chain, we would have both           for some , and this would imply that  is not one-to-one.
      is an upper bound for the chain  in , so by Zorn's Lemma  contains a maximal  
element, 
We claim that for some ,   is ._         _ _  onto

If not, then, since each  is nonempty,  for   .  By [AC], we can        every
choose a point    Since ,                          
would be one-to-one for all  so that   Since ,  is strictly larger           
than  and that is impossible because  is maximal. 

 
Therefore  is a bijection and the map  is one-to-     _ _ _ _ _                  
one for every .       

Maximal ideals in a commutative ring with unit 1   Suppose  is a commutative ring with a unit
element.  (If “commutative ring with unit” is unfamiliar, then just let  throughout the whole  
discussion. In that case, the “unit” is the constant function . ).

Definition 11.7  Suppose , where  is a commutative ring with unit.   A subset  of  is called     
an  in  ifideal 
 1)   
 2)          
 3)  and          
In other words, an ideal in  is a proper subset of  which is closed under addition and “superclosed” 
under multiplication.
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An ideal  in is called a  if: whenever  is an ideal and then           maximal ideal
A maximal ideal is a maximal element in the poset of all ideals of , ordered by inclusion.
For example, two ideals in ( ) are:   
                 where ) and  is the identity function   
 For example,   (using          

 M      
          In fact,  is a maximal ideal in   (T   his take a small amount of work to verify; see
          Exercise E33.)
Maximal ideals, , are important in ring theory for example, if  is a maximal ideal in , then  the   
quotient ring  is actually a field.
Using Zorn's Lemma, we can prove
Theorem 11.8   Let  be a commutative ring with unit.  Every ideal  in  is contained in a maximal  
ideal    (   might not be unique.)
Proof  Let  is an ideal and   is a nonempty poset since .   We want             . I
to show that  contains a maximal element.
Suppose  is a chain in .  Let .  Since  we only need to check         J J J      that  is an ideal to show that    

If , then and  for some   Since the 's form a chain, either      J J   J J     
J  J J  . J.          or : say Then  are both in the ideal ,  so           Moreover, if , . Therefore  is closed under addition and superclosed underk J J J     
multiplication.
Finally, :  If , then 1  so 1  for some .  Then, for all , J J k k           
k J K J   1 .  So  , which is impossible since  is an ideal.  

By Zorn's Lemma, we conclude that  contains a maximal element  

Basis for a Vector Space   It is assumed here that you know the definition of a vector space  over a
field .  (  is the set of “scalars” which can multiply the vectors in .  If “field” is unfamiliar, then
you may just assume , , or  in the result.     ) Beginning linear algebra courses usually only
deal with finite-dimensional vector spaces: the number of elements in a basis for  is called the
dimension of .   But some vector spaces are infinite dimensional.  Even then, a basis exists, as we
now show.
Definition 11.9  Suppose  is a vector space over a field   A collection of vectors  is called    
a  for  if each nonzero  can be written in a  way as a  linearvector space basis unique finite   
combination of elements of  using nonzero coefficients from .  More formally,  is a basis if for  
each , there exist unique nonzero , ...,  and unique , ...,  such that                b b

   b .  is called  if a finite basis  exists. finite dimensional
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Definition 11.10  A set of vectors  is called  if, whenever , ...,    linearly independent   and  and , then  0  (in other words, the only linear c , ..., c c         
      

combination of elements of   adding to  is the trivial combination). 
Theorem  11.11  Every vector space } over a field  has a basis.  (    The trivial vector space 
cannot have a basis under our definition:  the only nonempty subset  is not linearly independent .)
Proof  We will use Zorn's Lemma to show that there is a linearly independent subset of  andmaximal 
that it must be a basis.
 
Let  is linearly independent , ordered by .   For any , we have             
       so  is a nonempty poset.
Let  be a chain in .  We claim  is linearly independent, so that .           
 If , ...,  and  and  ,  then each  is in some .      

          ,...,   The 's form a chain with respect to , so one of the 's call it contains        
 all the others.  Then  is a linear combination of elements from , and      

        is linearly independent.  So all the 's must be . 
 
Therefore,  and  is an upper bound for the chain .  By Zorn's Lemma,  has         a maximal element 
We claim that  is a basis for . 
 First we show that if , then   be written as a finite linear combination of    can
 elements of .

 If ,  then 1 .  If , then  so, by              
 maximality,   is not linearly independent.  That means there is a  
 nontrivial linear combination of elements of      necessarily involving
    with sum 
    and   , ..., ,  with and + .           , ...,          


 Since , we can solve the equation and write   .     

  
 

 We complete the proof by showing that such a representation for  is . unique
Suppose that we have  with ,  and .  

                     , 
By allowing additional 's with  coefficients as necessary, we may assume that the 
same elements of  are used on both sides of the equation, so that    

                     Then  ( )  and  is linearly
  

independent, so for , .       
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Example 11.12   In Example II.5.14 we showed that the   functions only continuous    
satisfying the functional equation
     for all                       
are the linear functions  for some .    Now we can see that there are other functions,     
necessarily discontinuous, that satisfy (*).
Consider  as a vector space over the field , and let  be a basis.  Choose any .  Then for      
each ,  there is a unique expression  for some  and                    




              .  (We can insist that  be part of this sum by allowing  when necessary.).
Define  by .   Clearly                 

Although the definition of  looks complicated, perhaps it could happen, for a cleverly chosen
           that for all ?   No: we show that  is not possible (and therefore  is not
continuous).
 1) If  for some constant , we would have:   
  ,  and         
  .   But , or else  for every , whereas              
     So we can divide by  getting       
  , which is false.       
 2) Here is a different argument to the same conclusion:  For every  where , we      have so .  Therefore the equation  has infinitely many                solutions so  is not linear.
As we remarked earlier in Example II.5.14, it can be shown that discontinuous solutions  for (*) must
be “not Lebesgue measurable” (a nasty condition that implies that  must be “extremely
discontinuous.”)

A “silly” example from measure theory (optional)  It is certainly possible for an  unionuncountable
of sets of measure 0 to have measure 0.  For example, let  for each           
irrational   There are uncountably many 's and each one has measure .  In this case,          , so  also has measure .
Might it be true that  union of sets of measure 0 (say, in ) must have measure 0?  (It is easy toevery  
answer this question: how?)  What follows is an “unnecessarily complicated” answer using Zorn's
Lemma.

If every such union had measure zero, we could apply Zorn's Lemma to the poset consisting of
all measure-  subsets of  and get a maximal subset  with measure  in . Since         
does not have measure ,  there is a point .  Then  also has measure ,          
contradicting the maximality of .
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Exercises

E24.  Let  be a metric space.  In Definition 10.3, we defined collections  ( ) and the     collection of Borel sets = { : }.      

     a)  Let  be the family of closed sets in .  For , define families    

  :  , if is even
 , if is odd    

    


    
       

   

   

  


  is the collection of countable unions of closed sets (called -sets) and  is the family of countableintersections of sets (called -sets).  

          Prove that  and  for all  .             

It follows that : .  We can build the Borel sets “from the bottom up” beginning    { } with either the open sets or the closed sets.  Would this be true if we defined Borel sets the same way in
an arbitrary topological space?)
    b) Suppose  and  are separable metric spaces.  A function  is called      Borel-
measurable B-measurable  (or , for short) if  is a Borel set in  whenever  is a Borel set in .    
Prove that  is B-measurable iff  is Borel in  whenever  is open in .     

     c) Prove that there are  B-measurable maps  from  to .    

E25.   a) Is a locally finite cover of a space  necessarily point finite?  Is a point finite cover
necessarily locally finite ( )?  Give an example of a space  and an opensee Definitions 10.10, 10.13 
cover  that satisfies one of these properties but not the other.
           b) Suppose   (  are closed sets in the normal space  with .  Prove          


that there exist open sets  such that  and = ._             

 
Hint: Use the characterization of normality in Theorem 10.12.

E26.  Prove that the continuum hypothesis ( ) is true iff  can be written as  where  has      
countable intersection with every horizontal line and  has countable intersection with every vertical
line.
Hints: :   See Exercise I.E44.  If CH is true,  can be indexed by the ordinals   .   <     :   If CH is false, then .  Suppose  meets every horizontal line only countably often    and that .  Show that  meets some vertical line uncountably often by letting  be the    
union of any  horizontal lines and examining .      )
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E27.  A cover of the space  is called  if it has no proper subcover.  irreducible
 a) Give an example of an open cover of a noncompact space which has no irreducible
subcover.
 
 b)  Prove that  is compact iff every open cover has an irreducible subcover.
Hint: Let  be any open cover and let  be a subcover with the smallest possible cardinality .  Let   
be the least ordinal with cardinality .  Index  using the ordinals less than , so that  
                       . Then consider , where 
 
E28.  Two set theory students, Ray and Deborah, are arguing.

Ray:   “There must be a maximal countable set of real numbers.  Look: partially
order the countable infinite subsets of  by inclusion.  Now every chain of such sets
has an upper bound (remember, a countable union of countable sets is countable), so
Zorn's Lemma gives us a maximal element.”
Deborah: “I don't know anything about Zorn's Lemma but it seems to me that you can
always add another real to any countable set of real numbers and still have a countable
set.  So how can there be a largest one?”
Ray:   “I didn't say largest!  I said maximal!”

Resolve their dispute.

E29. Suppose  is a poset.  Prove that  can be “enlarged” to a relation  such that      
     is a chain.    ( “ enlarges means that “           ” ”
Hint: Suppose  is a linear ordering on .  Can  be enlarged?  

E30.   Let  be a cardinal.  A space  has  if, whenever  is a family of open sets with  caliber  
                   ,  there is a family  such that  and .

 a) Prove that every separable space has caliber  .

 b) Prove that any product of separable spaces has caliber  .Hint: Recall that a product of  separable spaces is separable (Theorem VI.3.5).
 c) Prove that if  has caliber , then  satisfies the countable chain condition (   see Definition
11.4).
 d) Let  be a set of cardinal  with the cocountable topology.  Is  separable?  Does    satisfy the countable chain condition?  Does  have caliber ?  (  For notational convenience, you can
assume, without loss of generality, that     . )
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E31.  a) Prove that there exists an infinite maximal family  of infinite subsets of  with the property 
that the intersection of any two sets from  is finite.
         b)  Let  be a set of distinct points such that .  Let ,                with the following topology:
   i) points of  are isolated
   ii) a basic neighborhood of  is any set containing  and all but at most finitely      many points of .
Prove  is Tychonoff.
  c) Prove that  is not countably compact. Hint: Consider the set 
  d) Prove that  is pseudocompact. Hint: This proof uses the maximality of 

E32. According to Theorem V.5.10, the closed interval  cannot be written nontrivially as a 
countable union of pairwise disjoint nonempty closed sets.  Of course,   can certainly be written as
the union of  such sets:  for example, .           Prove that  can be written as the union of uncountably many pairwise disjoint closed sets 
each of which is countably infinite.
Hint:  Use Zorn's Lemma to choose a maximal family  of subsets of  each homeomorphic to   
            
  .  .   is relatively discrete and therefore countable.  For each

        , choose a different and replace  by    )

E33.  Suppose  is Tychonoff.  For ,  let .  Clearly,  is an ideal             in .
 a) Prove that  is a maximal ideal in . 

 b) Prove that is  is compact iff every maximal ideal in  is of the form  for  some .  

E34.  Prove that there exists a subset  of that has only countably many distinct “translates” 
                     that is only countably many of the sets ,  are
distinct).
Hint:  Consider  as a vector space over the field , and pick a basis .  Pick a point  and     
consider all reals whose expression as a finite linear combination of elements of  does not
involve 
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Appendix
Exponentiation of Ordinals: A Sketch

The appendix gives a brief sketch about exponentiation of ordinals.  Some of the details are omitted.
The main point is to explain why ordinals like  are still e ordinals.  (

 countabl See Example 5.25, part
3)
If  and  are ordinals, let 
  0 for all but finitely many }.                

We can think of a point  in  as a “transfinite sequence” in , where  has well-ordered domain    
   rather than .   Using “sequence-like” notation, we can write:
   0 ,  and  for all but finitely many                     a a
We put an ordering on  by:

   Given b  in ,  let  be the  index for which   We write      a a b     largest
   if .        a b
Example For 2,  consists of 4 pairs ordered as follows:  0,0 1,0 0,1 1,1              
  
We also use  to denote the order type associated with , . It turns out that ,  is           well-
ordered, so this order type is actually an ordinal number.

Example   is represented by the set of all sequences in 0, 1, 2, ...  which are eventually 0   (
    The

sequences in the set turn out to be those which are “eventually ” because each element of has
   has only finitely many predecessors.  In general, the condition that members of  be  for all but 

finitely many  is much stronger than merely saying “eventually .”   )
The order relation on  between two sequences is determined by comparing the  term at which

 largest
the sequences differ.  For example,
  5,0,0,1,2,0,0,0,0,... 107,12,1,3,5,0,0,0,0,... 103,7,0,0,6,0,0,0,0...,       
The initial segment of  representing  consists of:  

  ... ...                        
           is clearly a countable ordinal.  A little thought shows that        

Once  is defined, it is easy to see that the ordinals  , , , ...    are all countable ordinals.      
        

 Here,  is understood, as usual, to mean    ( )
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We can then define   sup {  , , , ... }.   Roughly,  is “  raised to the  power                        

times”.  As noted earlier, the sup of a countable set of countable ordinals is still countable:   is acountable ordinal, that is,   !  

Exercise Prove that .  Prove that for ordinals  and ,   is also an ordinal, i.e., ,  is a          
well-ordered set (not trivial!).  For ordinals , ,   and  .            

For further information, see Sierpinski, Cardinal and Ordinal Numbers, pp. 309 ff.
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Chapter VIII Review
Explain why each statement is true, or provide a counterexample.

1. Let .  For each , let .  In the quotient space , exactly one point is             isolated.
2.  can be written as a sum of countably many smaller cardinals.



3. Let A continuous function  is constant on a tail of .             

4. Every order-dense chain with more than 1 point contains a subset order isomorphic to .
5. If , where  is an open set in , then there must be a                     continuous function  such that coz .       
6. Let  be a non-Borel subset of the unit circle and let  be the characteristic function of       
   Then  is not Borel measurable but  is Borel measurable in each variable separately (that is, for
each , the functions  and  defined by  and  are Borel                 
measurable.
7. Let  be a dense subset of  .  Then  is not well-ordered (in the usual order on ).  
8. Let  for all but finitely many }, with the lexicographic (“dictionary")        
ordering .  Then  is order isomorphic to .    
9.  Suppose  and  are linear orders on a set .  If  ,  then  .             

10. Consider the ordinals 1,  and .  Considering all possible sums of these ordinals (in the six    different possible orders) produces exactly 3 distinct values.
11. If  and  are nonzero ordinals and , then .         

12. The order topology on  is the same as the subspace topology from .     
13. If  is a finite topological space, then there exists a partial ordering  on  for which  is    
the order topology.
14. If  is open and  is closed in  and , then there must exist                     an open set  such that cl .       
15. There are exactly  limit ordinals  .  
16. If  denotes the order type of the irrationals, then .   
17. If , then the ordinal space  is not metrizable because  is not normal.       
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18. Suppose  is a nonempty collection containing all subsets of  with a certain property (*). 
Suppose  is a chain of subsets of  and that .  By Zorn's Lemma,  is a          
maximal subset of  (with respect to ) having property (*). 
19. For any infinite cardinal , there are exactly ordinals with cardinality .  

20. Suppose  is an infinite order type.  If ,  then there is an order type  (possibly )        
such that  .      

21. If a linear order on , then the “reversed relation” defined by  iff is also a         
linear order on .
22. For any infinite cardinal ,   (without GCH).    

23. If  is a linear ordering on a finite set  and , then | |  =  .    S  
2

24. If  and  are disjoint closed sets in , then at least one of them is countable.   

25. A locally finite open cover (by nonempty sets) of a compact space must be finite.
26.  is homeomorphic to a subspace of the Cantor set. 

27. Let  have the lexicographic order .   ( , ) is not well-ordered, because the set    
               2  contains no smallest element.
28.  Every subset of  is a Borel set in . 
29. With the order topology, the set 0  is homeomorphic to .         
30. If  is a point-finite open cover of the Sorgenfrey plane , then there must        Ube an open cover  of  such that, for each ,  cl .             V V U  
31. There is a countably infinite compact connected metric space.
32.  If is a linear ordering on , then there can be linear ordering for which   

     
 .
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Chapter IX
Theory of Convergence 

1.  Introduction
In Chapters II and III, we discussed convergence of sequences. One result was, true in any space ,
was:  if is a sequence in  and , then cl            

Sequential convergence is especially useful for work in first countable spaces in particular, in metric
spaces. In a first countable space, cl  there is a sequence  in  with , and         iff  therefore convergent sequences determine the set cl . It follows we can check whether or not a set  
is closed (whether cl ) by using sequences.  So in a first countable space “sequences determine  
the topology.” ( )See Theorem III.9.6.
However,  to describe closures.  For example in  we knowin general sequences are not sufficient  that cl  but no sequence  in converges to .  The basic neighborhoods                      
of  are very nicely ordered, but there are just “too many” of them: no mere sequence  in        
is “long enough” to be eventually inside every neighborhood of .

A second example is the space  ( ) in which we have cl but       see Example III.9.8
no sequence in  converges to .  Here the problem is different.  is a “small” space      
( ) but the neighborhood system ordered by reverse inclusion  is a very complicated     
poset so complicated that a mere sequence  in  cannot eventually be in every      neighborhood of  
In this chapter we develop a theory of convergence that is sufficient to describe the topology in any
space .  We define a kind of “generalized sequence” called a    A sequence is a function ,    net 
and we write   A net is a function ,  where is a more general kind of            
ordered set. Informally, we write a sequence  as ; similarly, when  is a net, then we informally   write the net as  

Thinking of , we might hope that it would be a sufficient generalization to replace  with    an initial segment of ordinals : in other words, to replace sequences with “transfinite   
sequences” with domain some well-ordered set “longer” than   In  fact, this  a sufficient. is
generalization to deal with a case like  if  is the “transfinite sequence” in given by        
                   , then  in the sense that is eventually in every neighborhood of .  But as we will see below, such a generalization does not go far enough (s ). We need aee Example 2.9
generalization that uses some kind of ordered set  more complicated than just initial segments   
of ordinals.
The theory of  turns out to have a “dual” formulation in the theory of .  In  this chapter wenets filters
will discuss both formulations. It turns out that nets and filters are fully equivalent formulations of
convergence, but sometimes one is more natural to use than the other.
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2.  Nets

Definition 2.1  A nonempty ordered set  is called a  if    directed set
  1)  is transitive and reflexive
  2) for all , , there exists  such that and .                
Example 2.2
 1) Any chain (for example, ) is a directed set.
 2) In , define    if   Then ,  is a directed set and  means that “               
is at least as far from the origin as .”   Notice that  and , so that  is             not
antisymmetric.  A directed set might not be a poset.
 3) Let  be the neighborhood system at  in  ordered by “reverse inclusion” that is,   
             iff    and condition 1) in the definition clearly holds.  Condition 2) is
satisfied because for we have and  and .                           2Therefore  is a directed set.        This example hints at why replacing  (in the definition of a sequence) with a directed set  
(in the definition of net) will give a tool strong enough to describe the topology in any space  the 
directed set  can chosen to be as complicated as the most complicated system of neighborhoods at a
point .
 4) Let  and  is finite   In analysis,  is called a  of                partition
the interval .  Order  by inclusion:  a “larger” partition is a “finer” one one with more  
subdivision points.  Then  is a directed set.
 
Definition 2.3     i)  A  in a set  is a function , where  is directed.  Wenet              
   write  and, informally, denote the net by .       

    ii)  A net  in a space   to  if  is eventually in every        converges
    neighborhood of that is,    such that                 wherever .   
         iii) A point  in a space is a  of a net  if the net is frequently in   cluster point   every neighborhood of , that is:  for all  and all  there is a               for which .    
Clearly, every sequence is a net, and when , the definitions  ii), and iii) are the same as the old 
definitions for convergence and cluster point of a sequence.
Example 2.4                          and define an order in which  and but  and  are
not comparable.   is a directed set   We can define a net   by and              assigning any real values to  and .  Since  for all , we have                       ( )Notice that a net can have a finite domain and can have a “last term.”



390

Example 2.5  The following examples indicate how several different kinds of limit that come up in
analysis can all be reformulated in terms of net convergence.  In other words, many different “limit”
definitions in analysis are “unified” by the concept of net convergence.
      1) Let  and define   (in ) iff  (in ).  Suppose                  
       is a net.  Then the net          

    iff for all  there exists such that  if                       iff for all  there exists such that  if                               iff for all  there exists such that  if                     
    iff   (in the usual sense of analysis).lim   

 2) Let  with the usual order . If , we can think of as a net, and write        
    Then the net           
    iff for all  there exists such that  if                         iff for all  there exists such that |  if                  iff  (in the usual sense of analysis).lim  

Parts 1) and 2) show how two different limits in analysis can each be expressed as convergence of a
net.  In fact each of the limits , , ,  lim lim lim lim              

and     can be expressed as the convergence of some net.  In each case, the trick is tolim  
choose the proper directed set.

 3)  Integrals can also be defined in terms of the convergence of nets.
Let  be a bounded real valued function defined on  and let  is finite and         
              .  Order  by inclusion:   iff  iff  is a “finer” partition than       

For , enumerate  as   Let and                           
 inf .         

   





 
  

         is a net in  and we can write Then

   iff  for all  there is a partition  such that       
   for all partitions  finer than         
One can show that such an  always exists:  is called the   denoted    lower integral of over
   

 .
If we replace “inf” by “sup” in defining , then the limit of the net is called the    upper integral of
over           , denoted .   If , we say that  is (Riemann) integrable on  and write 
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A sequence can have more than one limit: for example, if  and  has the trivial topology,     every
sequence  in  converges to  point in .  Since a sequence  a net (with ), a net can     every is  
have more than one limit.  We also proved that a sequence in a Hausdorff space can have at most one
limit (Theorem III.9.3).  This theorem still holds for nets, but then even more is true: uniqueness of net
limits actually  Hausdorff spaces.characterizes
Theorem 2.6   A space is Hausdorff   every net in  has at most one limit. iff
Proof  Let  with  and .  Suppose  and  are open sets with and                  
                 Then  for all some  and  for all some   If and         
              3, then so .  Therefore  is not Hausdorff.

Conversely, suppose  is not Hausdorff.  Then there are points  such that           
whenever  and    Let  and order  by defining                          
iff  and   (reverse inclusion in both coordinates).  For each , let            
                   any point   We claim that  and .        

If , let .  Then if , we have                   
                       .  Therefore .
The proof that is similar.       

Example 2.7  The implication  in Theorem 2.6 is  for sequences.  Let          false   where   Let points in  have their usual neighborhoods and let a basic neighborhood        
of  be a set of the form , where   (                     In effect, the basic neighborhoods
of  and are identical except for replacing  by   or vice versa; it is as if  is a         
“shadow” of  which can't be separated from ).  

This space is  Hausdorff, but we claim that a sequence in  has at most one limit.not   

If  contains infinitely many terms , then let sup , so                     that the subsequence  is in .  If and , then and                                      .  Therefore ,  are both in the closed set .  But  is  so a limit for
       must be unique: 
If only finitely many 's are less than , we can assume without loss of generality that for all           ,  It is easy to see that if  for only finitely many , then             
only.  Similarly,  if  for only finitely many , then only  If  and               
       each for infinitely many , then has no limit.

The next theorem tells us that nets are sufficient to describe the topology in any space 
Theorem 2.8  Suppose . Then cl  iff there is a net  in  for which                

Proof   Suppose , where  is a net in .  For each ,  is eventually in  so             
        Therefore cl



392

 We can prove the converse because we can choose a directed set “as complicated as” the
neighborhood system of :  Suppose cl  and let , ordered by  inclusion.  For      reverse
                      let a point chosen in   If  and    then .  Therefore                      

Example 2.9  In general, “sequences aren't sufficient” to describe the topology of a space . However
we might ask whether something simpler than nets will do.  For example, suppose we consider
“transfinite sequences” that is, very  , where  is some ordinal.  It turns      special nets  
out that these are not sufficient
Suppose Let the “upper right corner point”                      
             Then cl  but we claim that no transfinite sequence in  can converge to .
Let  and write .  We claim that                             no matter how large
an we use!   So suppose        

   ran  must be uncountable.
If ran  were countable,  then the set  would be countable and       
                      sup   Then ran  and so could not   converge to .

   For every  set , sup :countable       
Since  well-ordered,  represents an ordinal , so there is an order isomorphism   
         for some .
 Certainly sup  
 If sup ,  then  would be a transfinite sequence with          
countable range converging to  (since  does).  But we have shown that a net converging to   
must have uncountable range.  Therefore sup   

   For each let  and sup  “ ” is the most we can                         say since  might be uncountable).  For each  is in some so, for that ,              
   Therefore sup   By the preceding paragraph, we conclude  for                some  
   Since                         , we conclude that  But ( ), so this     
   is impossible. 
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The definition of a subnet is analogous to the definition of a subsequence ( ).see Definition III.10.1
Definition 2.10  Let  and  be directed sets  Suppose ,  .  Suppose that for         
each ,  there exists a  such that  whenever ,                

  
then  is called a  of .  We write  and   Informally, the subnet                subnet  is .  The definition of subnet guarantees that  whenever                

Note: an alternate definition for subnet is used in some books. It requires that
 1)  is :  if    then   and      increasing          
 2) is  in :  for each , there is a  for which        cofinal          
A subnet in the sense of this definition  also a subnet in the sense of Definition 2.10, but theis
definitions are .  Definition 2.10 is “more generous” it allows  subnetsnot equivalent more
because Definition 2.10 does not require  to be increasing.  For most purposes, the slight
disagreement in the definitions doesn't matter.  However, the full generality of Definition 2.10
is required to develop the full duality between nets and filters that we discuss later.

We will state the following theorem, for now, without proof. The proof will be easier after we talk
about filter convergence.  For now, we simply want to use the theorem to highlight an observation in
Example 2.12.
Theorem 2.11  In if  is a cluster point of the net , then there is a subnet           

Proof  See Corollary 4.8 later in this chapter.
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Example 2.12 ( ) In are nonnegative integers , all points exceptSee Example III.9.8         
      are isolated.  Basic neighborhoods of  are sets containing  and “most of the points
from most of the columns”  (where “most” means “all but finitely many”).
Let  be an enumeration of .  Although is a cluster point of , we proved in          Example III.9.8 that  in  can converge to .  In particular,  no subno sequence sequence     
of  can converge to .  However, Theorem 2.11 implies that there is a  of  that      subnet
converges to  
This might seem surprising, but it simply highlights something is actually clear from the definition of
subnet:  even if a net is a sequence ( ), the directed set  in the definition of subnet  be   need not
.  Therefore a subnet of a sequence might not be a sequence.

3.  Filters
   is the set of all sequences in , but the “set of all nets in ” makes no sense in ZFC.  We can put
an order  on  set  to create a directed set for example (using Zermelo's Theorem)  we     any  
could let  be a well-ordering of .  Therefore there at least as many directed sets  as there     
are sets .  The “  in “  is a directed set ” is “too big” to be a set” of all nets           
set in ZFC. This is not only an aesthetic annoyance; it is also a serious set-theoretic disadvantage for
certain purposes.
Therefore we look at an equivalent way to describe convergence, one which is strong enough to
describe the topology of any space  but which doesn't have this set-theoretic drawback.  The theory
of filters does this, and it turns out to be a theory “dual” to the theory of nets that is, there is a natural
“back-and-forth” between nets and filters that converts each theorem about nets to a theorem about
filters and vice-versa.

Definition 3.1  A   in a set  is a nonempty collection of subsets of  such thatfilter   
   i)        
   ii)    is closed under finite intersections
   iii)  If  and ,  then .       
A nonempty family  is called a  for  if  for some }.              filter base
Assuming, as we have stated, that filters will provide an equivalent theory of convergence in a space
 , we see that there is no longer a set-theoretic issue.  The  in  makes perfectly goodset of all filters
sense: each filter , so the set of all filters in  is just a subset of .         
In a topological space , there is a completely familiar example of a filter  the neighborhood  system at .  A base for this filter is what we have been calling a neighborhood base, .  In fact,     and  are what  inspired the general definitions of filter and filter base in the first place.
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If we start with a filter , then a base  for a filter  must have certain properties:   is nonempty (or   
else ), and each is nonempty (or else ).  Moreover, if , , then                               so  (by definition of a base)  for some 
If, on the other hand, we start with any nonempty collection of nonempty sets in  such that 
  whenever , , there is a  such that   (*)              
and define  for some , then  is a filter and  is a base for   ( ).   is              check!
called is called the ;  it is the smallest filter containing .filter generated by  
If we begin with a   of  in  nonempty collection nonempty sets with the finite intersection property, 
then
   is a finite intersection of sets from  has property  (*)     
so  is a base for a filter  called the ; it is smallest filter containing .  filter generated by 
There can be many neighborhood bases  for a neighborhood system in a space .  Similarly, a   
filter  can have many different filter bases .  In particular, notice that  itself is a filter base but   
usually we want to choose the simplest base possible.

Definition 3.2  A filter base   to  if for every , there is a  such that  converges            In this case we write     (Since a filter   also a filter base, we have also just defined  is
the meaning of  .)  
If is the filter generated by ,  then clearly  iff  .    (**)       

The following theorem is very simple.  It is stated explicitly just to make sure that there are no
confusions.
Theorem 3.3  Let  be a filter in the space .   For any , the following are equivalent:    
 i)     
 ii)     iii)  has a base  where .     
 iv) Every base  for  satisfies      
Proof   From Definition 3.2 and the observation (**) shows that i) ii) iii). 
 iii) iv)   Suppose  is a base for  and that .  Then for each there is a                   for which .  If is another base for  then, since ,  contains some set 
                 Therefore so     
 iv) i)  because  is a base for .     



396

Example 3.4
 1)  Let .  If is a neighborhood base at , then In particular,              

 2) Suppose  is a filter in .  If  and  for all , then the collection           
      is a nonempty collection with the finite intersection property.  Therefore  generates a
filter .   So: if  and  for all , we can enlarge  to a filter  that also               
contains the set .
 3) If , then  is a filter.  Since , we have .                   The simplest base for  is  and .       

     Suppose .  Then  so  cannot be enlarged to a filter  that also contains the       
set such an  would contain both  and , and therefore also contain , which             is impossible.   ( )This also follows from Theorem 3.5, below.
    Therefore, is a  filter in .  A maximal filter is called an . maximal ultrafilter
   For each  is called a . In general, it takes            trivial ultrafilter
some more work (and AC) to decide whether a set also contains “nontrivial” ultrafilters that is, 
ultrafilters not of this form. ( ).See Theorem 5.4 and the examples that follow

The next theorem gives us a simple characterization of ultrafilters. It is completely set-theoretic, not
topological.
Theorem 3.5   A filter  in  is an ultrafilter iff for every either  or            
Proof                    If  and , then  is false for every , so   for 
all . Therefore the collection  has the finite intersection property, so         
generates a filter .   So if  is an ultrafilter, we must have  and therefore             
 Suppose that for every  either or  is in .  If  is a filter and           
                , then  for if , then which would mean
             
Note: The proof shows that if a filter contains    , then  can be enlarged      neither nor
to a new filter containing either   whichever of the two you wish.     or

Definition 3.6  A point  is a  for a filter base  if  for every  and        cluster point  every .  (Since a filter   also a filter base, we have also just defined a cluster point for a filter    is
 .)
It is immediate from the definition that  is a cluster point of a filter base  iff  is in the closure of 
each set in , that is, if and only if cl .        
Clearly, if , then  is a cluster point of  ( ).    explain!
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Theorem 3.7  Suppose  is a filter in a space .  For , the following are equivalent:    
 i)   is a cluster point of  
 ii)  cl        
 iii)  there is a filter base  for  such that  is a cluster point of   
 iv) for every filter base  for ,  is a cluster point of .  
Proof   It is clear from the definition and the following remarks that i) ii) iii). 
 iii) iv ) Suppose  is a cluster point of  and  is another base for .  If           
then  for some set because  is a base for .  But every neighborhood of  intersects         
   , so every neighborhood of  also intersects .  Therefore  is a cluster point of . 
 iv) i)  This follows since  is a base for .      

Example 3.8
 1) Let .  Each real number  has a neighborhood  for which          
          and therefore So  so         If , then cl  for each so  is a cluster point of .             
     If , then  is a neighborhood of  disjoint from Therefore              
   is not a cluster point of .   So the set of cluster points of  is precisely the interval  

 2) Let  have the usual topology.  is finite  is a filter ( ).   For          check!
each , we have  and cl   Therefore  is not a cluster                  
point of .  And since  has no cluster points, certainly does not converge.  

 3)  Let  be a filter in a space .  If  and then and   Since              
      every neighborhood of  must intersect every neighborhood of .  Therefore, if  is
Hausdorff, we must have , that is, .   (   a filter in a Hausdorff space can have at most one limit In
fact,  is Hausdorff  every filter in  in  has at most one limit.  We could prove this directly,here iff 
and now (try it!).  But this fact follows later “for free” from Theorem 2.6 via the duality between nets
and filters: see Corollary 4.5 below.)

4.  The Relationship Between Nets and Filters
Nets and filters are dual to each other in a natural way it is possible to move back-and-forth between
them.  Although this back-and-forth process is not perfectly symmetric, it is still very useful because
the process preserves limits and cluster points.
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Definition 4.1  Let  be a directed set.  For a net  in , we define its          associated filter
   or,   :the filter generated by 

Let the  tail of the net, and let .   is                       th
nonempty since and each since   Moreover, if  and ,                    then .  Therefore the collection of tails  is a filter base and                 
the filter it generates is the associated filter of  

Definition 4.2  For a filter  in , we define its  or,        associated net the net generated by
Let  and define  if .  Then  is                          
directed.  ( )   The net defined by  is the associated net of .Why?)         

  Notice that  is not a poset: for example if , then          
   and  but .                   

If we begin with a filter , form its associated net, and then form its associated filter , we are back  
to where we started:
 
  associated net associated filter       

 To see this: a base for is the collection of tails But        
                                
  and , where   So the                              
 collection of tails is itself !
On the other hand, if we begin with a net , form its associated filter , and then form the      
net associated with , we do  return to the original net  not   

  associated filter net associated to         
 First of all, the net associated with  has for its directed set
   But the problem runs even deeper than that:             

Consider the net in  with directed set , where  for all . The collection of tails is       
          , which generates the associated  (a trivial ultrafilter).  In
turn,  generates a net whose directed set  and in ,   is a            
maximal element.  The directed set for the new net is not even order isomorphic to !

Nevertheless, the following theorem shows that this back-and-forth process between associated nets
and associated filters is good enough to be very useful for topological purposes.
Theorem 4.3  In any space ,
 1)  is a cluster point of a net      is a cluster point of the associated filter .    iff 
 2)   is a cluster point of a filter        is a cluster point of the associated net     iff 
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Proof   1)  is a cluster point of  iff  is frequently in every neighborhood of                    iff   for every tail  and every                      iff   is a cluster point of the filter base                   iff   is a cluster point of . 
 2) We use 1).  Given a filter , consider its associated net   By 1),  is a cluster point of   
       iff is a cluster point of its associated filter .  But    

 : if we had somehow proved part 2) first, and then tried to use 2) to prove part 1), weNotice
  would run into trouble we would end up looking at a net different from the one we started
 with.  The “asymmetry” in the back-and-forth process between nets and filters shows up here. .
Theorem 4.4  In any space ,
 1) a net   iff its associated filter .      
 2) a filter     iff its associated net       

Proof   The proof is left as an exercise.  As in Theorem 4.3, part 2) follows “for free” from 1) using the
duality between nets and filters. 

Corollary 4.5  A space  is Hausdorff iff every filter  has at most one limit in . 
Proof    The result follows immediately by duality:  use Theorem 4.4 and Theorem 2.6.     

The following theorem shows how subnets and larger filters are related:  subnets generate larger filters
and vice-versa.
Theorem 4.6  Suppose  is a filter in  generated by some net .  (      This is not a restriction
on  because every filter is generated by a net: for example, by its associated net. )
 1) Each subnet of  generates a filter   
 2)  Each filter  is generated by a subnet of .  
Proof    1) A base for  is , where  is the tail of  Suppose  and that               th
                 is a subnet of . The filter base , where  is the  tail of ,  th
generates a filter .
Let .  Then  for some . Pick so that   Then the                     0 0   subnet tail , so  is in the filter  generated by .                      Therefore . 
 
 2) Conversely, let  be a filter containing .  We claim  is generated by a subnet of .  Let   
B G B G  denote the  tail of .  We claim that  : ,  is a base for             

    is clearly base for some filter  and  (since ).  On the other  G G B  hand, each , so each  so B G B         
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Let ,  and ) .  (For each  there                        G B G G B    is at least one such  because ). Order  by defining , ,  if  G B G B G B             
    and .  It is easy to check that is transitive and reflexive.  In fact,G B G B       is a directed set:

If , , we have . Since , we have           B B B               B B  , so there exists a   such that ( . Thus      
( , )  and  we have ( , ) ( , ) and            B B B   ( , ) ( , ).      B B  

Define  by , .  Then  is a subnet of :             G B 

Suppose .  Pick any  and any  such that ( ) .               G G B   Let , )   If ,  in , then                    G B G B       .
The filter generated by the subnet  has the set of tails a base. If , , we       C G B     
claim that the tail = .  , since the sets of this form, as notedC     If this is true, we are done
above, are a base for the filter .

                                   If  and , G B then , so .G G G                      
Therefore     G

Conversely, if , then  for some .                  Then , )  and  so ( ) .                       B    Therefore       G  
The remark following Definition 2.10 is relevant here.  To prove part 2) of Theorem 4.6: we need the
more generous definition of subnets to be sure that we have “enough” subnets to generate all possible
filters containing .  In particular, the subnet defined in proving part 2) is  a “subnet” using the not
more restrictive definition for subnet.

Theorem 4.7  A point  is a cluster point of the filter  iff there exists a filter  such     
that .  
Proof       If such a filter  exists, then Therefore each neighborhood of  intersects each  set in , and therefore, in particular, intersects each set in .  Therefore  is a cluster point of .  
   If  is a cluster point of , then the set  and  is a filter                base that generates a filter .  For  we have so ;  and for each              
                 we have so  and therefore     

Corollary 4.8          is a cluster point of the net  in  iff  there exists a subnet  ( )This result was stated earlier, without proof, as Theorem 2.11.
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Proof       is a cluster point of  iff  is a cluster point of the associated filter  
       iff there exists a filter  with     
       iff  has a subnet converging to .      

Example 4.9  Think about each of the following parallel statements about nets and filters.  Which ones
follow “by duality” from the others?
 1) If  for all then     1 )  If  consists of all sets containing ,         
      then       
 2)  iff every subnet      2 )  If iff for every filter              
 converges to    
 3) If a subnet of has cluster point     3 ) If  is a cluster point of  and          
 then  is a cluster point of  then  is a cluster point of     

5.  Ultrafilters and Universal Nets
Nets and filters are objects that can be defined in any  .  The same is true for ultrafilters andset 
universal nets.  No topology is needed  we want to talk about convergence, cluster points andunless
other ideas that involve “nearness.”  So many results in this section are purely set-theoretic.
 
Definition 5.1  An ultrafilter  in  is called  (or  if .   is called   (or    fixed freetrivial) 
nontrivial) if .  
For example )  the ultrafilter  is fixed (trivial).         see Example 3.4 
Theorem 5.2   For an ultrafilter  in , then the following are equivalent. 
 i)   for some ,            
 ii)   for some      
 iii)   is fixed that is, .   
  
Proof   It is clear that i) ii) iii) 
 iii) i)  Suppose i) is false. Then  for every  ( ) so by Theorem 3.5,      why?
                 for every .  Therefore .     
 

Example 5.3  If  is a filter and ,  might not be an ultrafilter.    



402

Let  be the filter in  generated by where   Then                                
   Since neither  nor  contains one of the sets ,

neither  nor  is in .  Therefore  is not an ultrafilter.    
             is a filter base that generates a filter  strictly larger than .  Similarly, 
generates a filter  strictly larger than .  Then  (because  and  cannot be in the         
same filter).  So  can be “enlarged” in at least two different ways.

Theorem 5.4   If  is a filter in , then  for some ultrafilter .    
Proof  Let is a filter and , ordered by inclusion.   is a nonempty poset since         
           .  Let  be a chain in . We claim that  . 
 Clearly, and  is a filter:     
   since each , and each set in  is nonempty.        
  If , then both  are in a single filter .  Therefore      , so .   In addition, if , then , so                        
     
Therefore the chain   has an upper bound  in .  By Zorn's Lemma,  contains a        
maximal element .    

Example 5.5   For each , there is a fixed (trivial) ultrafilter  It is the          ultrafilter for which  By Theorem 5.2, the 's are  fixed ultrafilters in .  There     the only
are also nontrivial (free) ultrafilters in  
 Let   The collection { is a filter base and                
  generates a filter .  By Theorem 5.4 there is an ultrafilter , and   
      

 

  is  ultrafilter containing .  If   and  are the sets of even and odd natural   not the only
 numbers, then  and  are filter bases that generate filters and .  Then            
 there are ultrafilters and    Since ,  and , we                     
 have   Since  and , we know that  and , so                    
 and  are free ultrafilters.  

It is a nice exercise to prove that  , then that is, ifif there is only one ultrafilter  containing    
  is  an ultrafilter, then  can always be enlarged to an ultrafilter in more than one way.not
If  is a filter in , then , so there are  filters in .                    at most  

Comment without proof exactly: There are   different filters in .  In fact, there are 2  different 
ultrafilters in , and since  contains only countably many fixed ultrafilters , there are in fact  free   
ultrafilters !



403

Theorem 5.6  An ultrafilter  in a space  converges to each of its cluster points. 
Proof   If  is a cluster point of , then there is a filter  such that .  But  since  is          
an ultrafilter.   
Corollary 5.7  An ultrafilter  in a  space  has at most one cluster point.  

We now define the analogue of ultrafilters for nets.
Definition 5.8  A net  in  is called  (or ) if for every ,   is either        universal ultranetnet
eventually in  or eventually in .  
For example, a net  which is eventually constant, say  for all is a universal net.  It         is referred to as a trivial universal net because its associated filter is the trivial ultrafilter
      .

Theorem 5.9  In any  ,set 
 1) a net  is universal iff its associated filter is an ultrafilter, and   2) a filter  is an ultrafilter iff  its associated net is universal.
Proof   1)   is universal iff for every ,  is eventually in  or                iff for every ,   or  contains a tail of                  iff for every , or  is in the associated filter     
         iff the associated filter is an ultrafilter.
 2) We use duality.  For a given a filter , consider its associated net .  By a),  is universal iff its associated filter  is an ultrafilter.  But .          

Corollary 5.10   In any space ,
 1)  a subnet of a universal net is universal
  2) a universal net converges to each of its cluster points
  3) every net has a universal subnet
Proof 1) If  is universal, then  generates an ultrafilter .  By Theorem 4.6, each subnet         generates a filter .  So .   Because the filter associated to  is an ultrafilter,   is          universal.
 2) If  is a cluster point of the universal net ,  then  is a cluster point of the associated   ultrafilter .   By Theorem 5.6   and therefore .       

 3) Let  be the associated filter for the net  and let  be an ultrafilter containing .  By   Theorem 4.6(2),   is generated by a subnet  of .  Since the filter associated with is an         ultrafilter,  is a universal net.     
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Corollary 5.11  A universal net in a  space has at most one cluster point.

Both nets and filters are sufficient to describe the topology in any space, so we should be able to use
them to describe continuous functions.
Theorem 5.12  Suppose  and  are topological spaces,  and .  The following are         
equivalent:
 1)  is continuous at  
 2) whenever a net  in , then  in            3) whenever a universal net  in , then  in            4) whenever  is a cluster point of a net  in , then  is a cluster point of            in 
 5) whenever a filter base in ,  then the filter base                
         in 
 6) whenever an ultrafilter in ,  then the filter base in          
 7) whenever  is a cluster point of a filter base  in ,  then  is a cluster point of  
   the filter base  in     
Proof 1) 2) Suppose  is a neighborhood of .  Since  is continuous at , there is a    
neighborhood of  such that   If , then  is eventually in  so  is                 eventually in   Therefore      

 2) 3)  This is immediate.
 3) 4) If  is a cluster point of , then there is a subnet Let  be a            universal subnet of . Then  and by iii),   Then has a subnet                 converging to so  is a cluster point of     

 4) 1) Suppose  is not continuous at .  Then there is a neighborhood of such that    
            for every  Let , ordered by reverse inclusion, and define a net     by a point in  for which    Since ,   has a cluster point                  at .  But the net  does not have a cluster point at  because  is  in .        never
Therefore 4) fails.
Knowing that 1)-4) are equivalent, we could show that each of 2)-4) is equivalent to its filter
counterpart e.g., that 2) 5), etc.  This involves a little more than simply saying “by duality” 
because, in each case, the function  also comes into the argument.   Instead, for practice, we will
show directly that 1) 5) 6) 7) 1).   
It is easy to check that if  is a filter base in , then  is a filter base in .            
 1) 5) Suppose  in  and let If is any neighborhood of in ,            
then by continuity  is a neighborhood of  in .  Therefore  for some , so           
              Therefore 
 5) 6) This is immediate.



405

 6) 7) Suppose  is a cluster point of the filter base .  We can choose an ultrafilter     
with .  By 6) , .  Therefore the filter  generated by converges to , so             
               .  Since , each set in  intersects every set in .  Therefore  is a
cluster point of .  
 7) 1) Suppose  is not continuous at .  Then there is a neighborhood  of such that    
                for all , that is,  for all   The collection  
                 is a filter base ( ) that has a cluster point at .  However  doeswhy?
not cluster at  since no set in  intersects .        

Corollary 5.13  Let  be a net in the product .  Then  in  iff               
(  in  for each .           
Proof   If , then by continuity  for every .                    
Conversely, suppose  for every  and let be a basic                      open set containing  in .  For each  we have .  Therefore we                   can choose a so that  when .  Pick , ... , .  If , we have                                                 for each .  Therefore for  so 

6.  Compactness Revisited and the Tychonoff Product Theorem
With nets and filters available, we can give a nice characterization of compact spaces in terms of
convergence.
Theorem 6.1  For any space , the following are equivalent:
 1)  is compact
 2)  if  is a family of closed sets with the finite intersection property, then    
 3) every filter  has a cluster point
 4) every filter can be enlarged to a filter that converges
 5) every net has a cluster point
 6) every net has a convergent subnet
 7) every universal net converges
 8) every ultrafilter converges.

Proof  We proved earlier that 1) and 2) are equivalent ( ).see Theorem IV.8.4
2) 3) If  is a filter in , then  has the finite intersection property, so cl  is a         
family of  sets also with the finite intersection property. By ii),  cl  so  is aclosed          
cluster point of .
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3) 4)   If  is a filter, then  has a cluster point  so, by Theorem 4.7, there is a filter  such     
that .  
4) 5)  If  is a net, consider the associated filter .  By 4) there is a filter  where      
          .   is generated by a subnet  and by duality, .   
5) 6)    If  has a cluster point , then by Corollary 4.8,  there is a subnet         

6) 7)   If  is a universal net, then 6) gives that  has a subnet that converges to a point .      Then  is a cluster point of   Since is universal,   by Corollary 5.10.          

7) 8)    This is immediate from the duality between universal nets and ultrafilters (Theorems 5.9
and 4.4)
8) 1)  Suppose  is not compact and let   be an open cover with no finite       subcover.  Then for any , ,..., , ; so, by complements,                                          .  Therefore  is a collection of closed sets 
with the finite intersection property.  The set of all finite intersections of sets from  is a filter base
which generates a filter , and we can find an ultrafilter .  
     Every point  is in  for some  so cl Therefore  is not a               
cluster point of .  In particular, this implies .  Since  was arbitrary, this means  does not    
converge.    

Theorem 6.1 gives us a fresh look at the relationship between some of the “compactness-like”
properties that we defined in Chapter IV:

      is compact  iff           is sequentially compact   iff 
   every  has a convergent       every  has a convergent net subnet sequence subsequence

          (Theorem 6.1)                                     (Definition IV.8.7)
    
        
     is countably compact   iff
      every sequence has a cluster point (Theorem IV.8.10)   iff
       every  has a convergent (Corollary 4.8)sequence subnet 

It is now easy to prove that every product of compact spaces is compact.
Theorem 6.2 (Tychonoff Product Theorem)   Suppose     is compact iff          
each   is compact.

Proof   For each ,  so if  is compact, then each  is compact.       
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Conversely, suppose each  is compact and let  be a universal net in .           
For each ,  is a universal net in  (         Check: if , then  is eventually in  or       
        , so eventually in  or         ) But is compact, so by Theorem 6.1
                      some point   Let .  By Corollary 5.13, .  Since every
universal net in  converges,  is compact by Theorem 6.1.      
Remark:  A quite different approach to the Tychonoff Product Theorem is to show first that a space 
is compact iff every open cover by basic open sets has a finite subcover. This is called thesub
Alexander Subbase Theorem and the proof is nontrivial: it involves an argument using Zorn's Lemma
or one of its equivalents.

After that, it is fairly straightforward to show that any cover of   by sets of       
the form  has a finite subcover See Exercise E10.   .   

At this point we restate a result which we stated earlier but without a complete proof  (Corollary
VII.3.16).
Corollary 6.3  A space  is Tychonoff iff it is homeomorphic to a subspace of a compact Hausdorff
space.  ( )In other words, the Tychonoff spaces are exactly the subspaces of compact Hausdorff spaces.
Proof  A compact Hausdorff space is , and therefore Tychonoff.  Since the Tychonoff property ishereditary,  every subspace of a compact  space is Tychonoff.

Conversely, every Tychonoff space  is homeomorphic to a subspace of some cube .  This cube  
is Hausdorff and it is compact by the Tychonoff Product Theorem.   

Remark  Suppose  is embedded in some cube   To simplify notation, assume .        
Then cl is a compact  space containing  as a dense subspace and  is             called a  of .  Since every Tychonoff space can be embedded in a cube, we havecompactification 
therefore shown that every Tychonoff space   a compactification. has
Conversely, if   a compactification of , then  is Tychonoff and its subspace  is also   is
Tychonoff.  Therefore .  has a compactification iff  is Tychonoff

Our proof of the Tychonoff Product Theorem used the Axiom of Choice (AC) in the form of Zorn's
Lemma (to get the necessary universal nets or ultrafilters).  The following theorem shows that, in fact,
the Tychonoff Product Theorem and AC are equivalent.  This is perhaps somewhat surprising since AC
is a purely set theoretical statement while Tychonoff's Theorem is topological.  On the other hand, if
“all mathematics can be embedded in set theory” then every mathematical statement is purely set
theoretical.
Theorem 6.5  (Kelley, 1950)  The Tychonoff Product Theorem implies the Axiom of Choice  (so the
two are equivalent).
Proof   Suppose is a collection of nonempty sets.  The Axiom of Choice is equivalent to    
the statement that   ( ).    see Theorem 6.2.2
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Let  where  and give  the very simple topology                     
Then is compact, so  is compact by the Tychonoff Product Theorem.     

           is open in , so  is closed in .  Therefore  is a family of  sets      closed
in .  We claim that  has the finite intersection property. 

Suppose .  Since the 's are nonempty, there exist points                       .
 Define  by:     
  for , if 

if , ,...,   
         

   
  

      weTo be more formal since this is the crucial set-theoretic issue in the argument 
       :can formally and precisely define  in ZF by
                                                               

 Then              
 

Since  has the finite intersection property and is compact, .  If ,  then       
           and therefore .  

If  and any 's are noncompact, then  is noncompact.  And we note that if         infinitely
many 's are noncompact, then  is “dramatically” noncompact as the following theorem  
indicates.
Theorem 6.6  Let .  If infinitely many of the 's are not compact, then          
every compact closed subset of  is nowhere dense.  ( Thus, all closed compact subsets of  are “very
skinny” and “far from” being all of . )
Proof   Suppose  is a compact closed set in  and that  is  nowhere dense. Then there is a point   not
                    and indices , such that int cl int   Then                              for , , so  is compact if , .        



409

7.  Applications of the Tychonoff Product Theorem
We have already used the Tychonoff Theorem in several ways (see, for example, Corollary 6.3 and the
remarks following.)  It's a result that is useful in nearly all parts of analysis and topology, although its
full generality is not always necessary.  In this section we sketch how it can be used in more
“unexpected” settings.  The following examples also provide additional insight into the significance of
compactness.

The Compactness Theorem for Propositional Calculus
Propositional calculus is a part of mathematical logic that deals with expressions such as , ,     
             , , , etc.  Letters such as   are used to represent  “propositions” that can
have “truth values” T (true) or F (false). These letters are the “alphabet” for propositional calculus.
For example, we could think of  as representing the (false) proposition “ ” or the (true)     
proposition “ ”.  However,  could not represent an expression like             
“ ”, because this expression has no truth value: it contains a “free variable” .   
In propositional calculus, propositions  are thought of as “atoms” that is, the internal structure   
of the propositions  (such as variables and quantifiers) is ignored.  Propositional calculus deals  
with “basic” or “atomic” propositions such as , with compounds built up from them such as  
         and , and with the relations between their truth values.  We want to allow the
possibility of infinitely many propositions, so we will use , ... , , ...  as our alphabet instead of the  letters  that one usually sees in beginning treatments of propositional calculus.  
Here is a slightly more formal description of propositional calculus.
Propositional calculus has an  .  We will assume  is countable,alphabet           although that restriction is not really necessary for anything we do.  Propositional calculus also has
connective symbols:   ( ,  ) , , and  
Inductively we define a collection  of  (called , for short) that are the well-formed formulas wffs
“legal expressions” in propositional calculus:
   1) for each ,  is a wff    2) if  and  are wffs, so are  and .       
For example, ( )  and  are wffs but the string of symbols ( A )                    is not a wff.  If we like, we can add additional connectives  and  to our propositional calculus  
defining them as follows:
 Given wffs  and , 
      and          
   .      
Since and can be defined in terms of  and , it is simpler and involves no loss to develop the   
theory using just the smaller set of connectives.
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A  is a function  that assigns a truth value to each  More formally,truth assignment   
              , so   We give the product topology.  By the Tychonoff Theorem,

  is compact (in fact, more directly, by Theorem VI.2.19 which shows that  is homeomorphic to the
Cantor set).
A truth assignment  can be used to assign a unique truth value to  wff in , that is, we can every 
extend  to a function  as follows:       
 For any wff  we define:
  
   if , then             
   if , then ( if  (  or  

otherwise                    


   if , then if  (
if  (   

          
    

  
We say that a truth assignment    if  .  A set of wffs  is called  if     satisfies a wff satisfiable  
there exists a truth assignment  such that  satisfies  for  .         every
For example,
   is satisfiable   (           We can use any  for which
                 

   ( )  is not satisfiable (             If , then            ( ( ) )          

Theorem 7.1 (Compactness Theorem for Propositional Calculus)  Let  be a set of wffs.  If every
finite subfamily of  is satisfiable, then  is satisfiable. 
Proof Let  and suppose that every finite subset of  is satisfiable.  Then for each     
              ,   satisfies . We claim that  is  in :  closed
 Suppose .  We need to produce an open set  containing  for which            
 For a sufficiently large , the list  will contain all the letters that occur in .      
 Let  , .  In other words,  is                             

 the set of truth assignments that  with  for all the letters that may occuragree       in .  Since  fails to satisfy , each  also fails to satisfy , so .           

The 's have the finite intersection property in fact, this is precisely equivalent to saying that every finite subset of  is satisfiable.  Since  is compact,  , i.e.,  is satisfiable.              
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If we assume the Alexander Subbase Theorem (see the remarks following Theorem 6.2, as well as
Exercise E10 ), then we can also prove that the Compactness Theorem 7.1 is  to theequivalent
statement that is compact.    

Suppose the Compactness Theorem 7.1 is true.  To show that  is compact it is sufficient, by
the Alexander Subbase Theorem, to show that every cover of  by basic open sets has a sub
finite subcover.  Each subbasic set has the form  or .    
Taking complements, we see that it is sufficient to show that:
 if  is any family of closed sets with the finite intersection property and each set in  
 has form [{ [  or [ [ , then .                      
Let  be any such family.  For each , define a wff        

 if  [
if  [ 

 


    
      

 

Clearly,  is satisfied precisely by the truth assignments in . 
Let .  Since the 's have the finite intersection property, any finite subset        
of  is satisfiable.  By the Compactness Theorem,  is satisfiable,  so .         

Note: If the propositional calculus is allowed to have an uncountable alphabet of cardinality , then
the compactness theorem is equivalent to the statement that  is compact; the proof requires  
only minor notational changes.

A “map-coloring" theorem
Imagine that  is a (geographical) map containing infinitely many countries ,  .         A   (red, white, blue, and green, say) is a functionvalid coloring  of with 4 colors 
                 

such that no two adjacent countries are assigned the same color.
Intuitively, if  doesn't have a valid covering, it must be because some “finite piece” of the map  
has a configuration of countries for which a valid coloring can't be done.  That is the content of the
following theorem.
Theorem 7.2  Suppose  is a (geographical) map with infinitely countries .  If every       finite submap of  has a valid coloring,  then  has a valid coloring.  (  Any reasonable definition of
“adjacent” and “submap” will work in the proof.)
Proof Consider set of all colorings  with the product topology.  For each finite   

submap , let  is a valid coloring of   We claim that  is closed in              
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Suppose . We need to produce an open set  with   If  is large             enough, the list  will include all the countries in the submap .  Then the open set    

                

works any coloring in is invalid because it colors the countries in  the same way  does.   
If  and  are finite submaps of , then so is .  Since  has a valid coloring by             hypothesis,  Therefore a finite submap of  has the finite                   
intersection property.   Since is compact,  , and any  is a valid covering of the whole      
map .     
( It is clear that a nearly identical proof would work for any finite number of colors and for maps with
uncountably many countries.)
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Exercises
 
E1.  Let  be a topological space and For each pick a point   If we order             by reverse inclusion, then  is a net in .  Prove that        

E2. a) Let  be an uncountable  in which each element has only countably many   chain
predecessors.   Suppose  and that  for each .  Show that the net  does not            
converge to  in . 
       b) Give an example to show that part a)  be false if  is an uncountable  inmay directed set  
which each element has only countably many predecessors.
  b) Is it possible to have a net  and that  for each ?  Is it possible that             converges to  in ?   ( .)  Recall that  denotes the first ordinal with  predecessors 

E3.  Suppose  is a compact Hausdorff space and that ,  is a directed set.  For each , let      
       be a nonempty closed subset in  such that  iff .  Prove that            

E4. a) Let  be a net in a space and write  For each , let             
              } “the  tail of the net.”  Show that a point  is a cluster point of  iffth
       cl   
     b) Suppose  is a cluster point of the net  a product { .  Show that for each ,         
         is a cluster point of the net (
      c)  Give an example to show that the converse to part b) is false.
     d)  Let  be a metric space and  a function given by .  Show that             the net  converges iff  is eventually constant.    

E5.  a) Suppose  is infinite set with the cofinite topology.  Let  be the filter generated by the filter 
base consisting of all cofinite sets.  To what points does  converge?
        b) Translate the work in part a) into statements about nets.

E6.  Show that if a filter  is contained in a unique ultrafilter , then .   
( )Thus, if  is not an ultrafilter, it can enlarged to an ultrafilter in more than one way.  
E7.  a) State and prove a theorem of the form:    Suppose  is a point in a space .   Then  is an  ultrafilter  ....
       b) Prove or disprove: Suppose  and that  is a  family of subsets of  with    maximal

the finite intersection property.  Then  is an ultrafilter.
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E8.  a)  Let  be a filter in a set .  Prove that  is the intersection of all ultrafilters containing .  
( )Note that this implies the result in E6.
     b) Let  be an ultrafilter in  and suppose that .  Prove that at least one  must          be in .  ( This is the filter analogue for a fact in ring theory: in a commutative ring with a unit, every
maximal ideal is a prime ideal.)
      c)  Give an example to show that part b) is not true for infinite unions.
      d) “By duality,” there is a result similar to b) about universal nets.  State the result and
prove it directly.

E9.  Let   be a free ultrafilter in  and let , where .  Define a topology  on  by            
                  or   where 
 a) Prove that  is T  and that  is dense in .  

 b) Prove that a free ultrafilter  on  cannot have a countable base. 
Hint: Since  is free, each set in  must be infinite. Why? 
    c) Prove that no sequence in  can converge to  (and therefore there can be no countable 
neighborhood base at  in ) 
(Hint: Work you did in b) might help.)
Thus, is another example of a countable space where only one point is not isolated and which is not
first countable,  See the space  in Example III.9.8.
 d) How would the space  be different if  were a fixed ultrafilter? 
Note: if  is a free ultrafilter on  and , then the corresponding spaces  and  may not be       
homeomorphic: the neighborhood systems of  may look quite different.  In this sense, free ultrafilters
in  do  all “look alike.” not

E10.  Suppose  has a some property .  is called a -  topology (or -      maximal minimal
topology) if any larger (smaller) topology on  fails to have property .  Prove that if  is a   
compact Hausdorff space, then  is maximal-compact and minimal-Hausdorff.  ( Compare Exercise IV
E23.)
          In one sense, this “justifies” the choice of the product topology over the box topology: for a
product of compact Hausdorff spaces, a larger topology would not be compact and a smaller one
would not be Hausdorff.  The product topology is “just right” to ensure that the property “compact
Hausdorff” is productive.

E11. Show that the map coloring Theorem 7.2 is  to the statement that  isequivalent  

compact.



415

E12.  A family  of subsets of  is called  if it does not cover , and  is called   inadequate finitely
inadequate if no finite subfamily covers .
 a) Use Zorn's Lemma to prove that any finitely inadequate family  is contained in a  maximal
finitely inadequate family.
 b) Prove (by contradiction) that a  finitely inadequate family  has the followingmaximal 
property:  if  are subsets of  and then at least one set                    
 c) The following are equivalent (Alexander's Subbase Theorem)
  i) has a subbase  such that each cover of  by members of  has a finite subcover  
  ii) has a subbase such that each finitely inadequate collection from  is  
  inadequate
  iii) every finitely inadequate family of open sets in  is inadequate
  iv)  is compact
 d) Use c) to prove the Tychonoff Product Theorem.

E13. This exercise gives still another proof of the Tychonoff Product Theorem.  Suppose  iscompact for all .  We want to prove that  is compact.  We proceed assuming  is not     compact.
 a) Show that there is a maximal open cover  of  having no finite subcover. 
 b) Show that if  is open in  and , then there are sets such that          
        covers .
 c) Show that for each ,  is open and  cannot cover                 Conclude that for each  we can choose so that any open set  for which         
     

 d) Let  and suppose  Pick open sets  so that                                     Explain why each .
 e) Show that for each , there is a finite family such that              covers .
 f) Show that  covers , and then arrive at the contradiction that

            
     covers .
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Chapter IX Review

Explain why each statement is true, or provide a counterexample.

1. Order  by  iff  (in ) for every .  Then  is a directed set.            

2.  is a limit point of  in the space  iff there exists a filter  such that  and .         

3. A set  is open in  iff  belongs to every filter  which converges to a point of .   

4. In a space ,  let  is a filter converging to .  Then   .                 

5. Suppose  is a family of subsets of a space  such that if  then  for some        
      .  Suppose  is a net which is frequently in each set of .  Then  has a subnet which is eventually in each set in .

6. If a net  in  and ,  then  has a subsequence  (i.e., a subnet whose directed          set is ) which converges to . 

7. If  is a nonempty finite set and , then there are exactly 2 1 different filters and exactly    
  different ultrafilters on .

8. A universal  must be eventually constant.sequence

9. Suppose  is infinite.  The collection | |  is an ultrafilter.      A     

10. In ,  a filter   iff    such that  and diam .              F

11. If  is compact, then every net in  has a convergent subsequence.  (  Note: a “subsequence of a
net” is a subnet whose directed set is .)

12. If  in a space  and if  generates a filter, then  is not  .         

13. If  is a filter in , then there must be a filter  such that  has a cluster point.      
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14. Call a set in  an  if it has the form  or   for some .  To show  is           endset   
compact, it is sufficient to show that any cover by endsets has a finite subcover.

15.  Every separable metric space  has an equivalent totally bounded metric. 

16. Suppose  is the collection of finite subsets of , directed by , and  for all .        
The net  converges to  in .   
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Chapter X
Compactifications

1.  Basic Definitions and Examples

Definition 1.1   Suppose  is a homeomorphism of  into , where  is a compact       
       space.  If  is dense in , then the pair  is called a  of .compactification
By definition, only Hausdorff spaces  can (possibly) have a compactification.

If we are just working with a compactification  of , then we can usually just assumesingle  
that  and that  is the identity map so that the compactification is just a compact    
Hausdorff space that contains as a dense subspace.  In fact, if , we will always assume   
that  is the identity map unless something else is stated.    We made similar assumptions in
discussing of the completion of a metric space  in Chapter IV. 
However, we will sometimes want to  different  of  (in a sense to becompare compactifications 
discussed later) and then we may need to know how  is embedded in .  We will see that 
different dense embeddings  of  into the same space  can produce “nonequivalent”  
compactifications.  Therefore, strictly speaking, a “compactification of ” is the  .   pair
If, in Definition 1.1,  is already a compact Hausdorff space, then  is closed and dense in   
and therefore .  Therefore, topologically, the only possible compactification of  is     
itself.

The next theorem restates exactly which spaces have compactifications.
Theorem 1.2   A space  has a compactification iff it is a Tychonoff space.
Proof    See the remarks following Corollary IX.6.3.   

Example 1.3  The circle can be viewed as a compactification of the real line, .  Let be the  
“inverse projection” pictured below:  here North Pole .  We can think of  as a         
“bent” topological copy of , and the compactification is created by “tying together” the two
ends of  by adding one new “point at infinity” (the North Pole).
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Since ,   is called a  of .  (          one-point compactification We will see in
Example 4.2 that we can call   one-point compactification of   the  )
Example 1.4
 1)  is a compact Hausdorff space containing  are a dense subspace, so       
           is a “two-point” compactification of   (with embedding .
 2) If  is a homeomorphism,  then  gives a “two-                
point” compactification of .    It is true (but not so easy to prove) that there is no -point
compactification of   for      

Example 1.5   Suppose is a one-point compactification of .  If  is an open set      
containing  in , then  and  is compact.  Therefore the open sets containing         
  are the complements of compact subsets of .  (Look at open neighborhoods of  the North
Pole  in the one-point compactification of ;  a base for the open neighborhoods of    
consists of complements of the closed (compact!) arcs that do not contain the North Pole.)
  Suppose where  is open in .        Because  is Hausdorff, we can find
disjoint open sets  and  in with  and  Since , we have that           
             and  therefore  is also open in .  Since , we can use the
regularity of  to choose an open set  in  for which cl             But (a closed set so cl . Therefore            in  cl cl cl , so cl  is also closed in So cl  is a compact              
neighborhood of  inside .   This shows that e  ach point  has a neighborhood base in  
 consisting of  neighborhoods.compact
The property in the last sentence is important enough to deserve a name: such spaces are called
locally compact.
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2. Local Compactness

Definition 2.1 A Hausdorff space  is called  if each point  has a   locally compact
neighborhood base consisting of compact neighborhoods 
Example 2.2
 1) A discrete space is locally compact.
 2)  is locally compact: at each point , the collection of closed balls centered at  is a  
base of compact neighborhoods.  On the other hand, neither   nor   is locally compact. (  Why? 
 3) If is a compact Hausdorff space, then  is regular so there is a base of closed 
neighborhoods at each point and each of these neighborhoods is compact.  Therefore  is 
locally compact.
 4) Each ordinal space  is locally compact.  The space  is a (one-point)    
compactification of   iff  is a limit ordinal.  
 5 Example 1.5 shows that if a space   a one-point compactification, it must be  has
locally compact (and, of course, noncompact and Hausdorff).  Therefore neither  nor  has a 
one-point compactification. The following theorem characterizes the spaces with one-point
compactifications.

Theorem 2.3  A space  has a one-point compactification iff  is a noncompact, locally 
compact Hausdorff space.  (The one-point compactification of  for which the embedding  is 
the identity is denoted   )
Proof  Because of Example 1.5, we only need to show that a noncompact, locally compact
Hausdorff space   a one-point compactification.  Choose a point and let   has
           Put a topology on  by letting each point  have its original
neighborhood base of compact neighborhoods, and by defining basic neighborhoods of  be the
complements of compact subsets of  
 
   and  is compact .            
( )Verify that the conditions of the Neighborhood Base Theorem III.5.2 are satisfied.
If  is an open cover of  and , then there exists an with               Since  is compact, we can choose  covering .  Then            
           is a finite subcover of  from .  Therefore  is compact.
         is Hausdorff.  If , then and  can be separated by disjoint open sets in  and
these sets are still open in .  Furthermore, if  is a compact neighborhood of in , then     
and  are disjoint neighborhoods of and  in .      
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Finally, notice that  is not open in or else  and then  would be           compact.  Therefore every open set containing  intersects , so  is dense in .   

Therefore  is a one-point compactification of .     

What happens if the construction for  in the preceding proof is carried out starting with a
space  which is already compact?  What happens if  is not locally compact? What happens 
if  is not Hausdorff ?

Corollary 2.4  A locally compact Hausdorff space  is Tychonoff.
Proof   is either compact or  has a one-point compactification   Either way,  is a    
subspace of a compact  space which (by Theorem VII.5.9) is Tychonoff.  Therefore  is Tychonoff.   

The following theorem about locally compact spaces is often useful.
Theorem 2.5  Suppose , where is Hausdorff.   
 a) If  is locally compact and  where  is closed and is open in , then       
  is locally compact.  In particular, an open (or, a closed) subset of a locally compact space  is
locally compact.
 b)  If  is a locally compact and is Hausdorff, then is open in cl .   

 c) If  is a locally compact subspace of a Hausdorff space , then  where       
is closed and is open in . 
 
Proof   a) It is easy to check that if  is closed and  is open in a locally compact space , then  
   and  are locally compact.  It then follows easily that  is also locally compact.  ( Note:
Part a) does not require that  be Hausdorff. )
 b) Let  and let  be a compact neighborhood of  in .  Then int .          Since  is Hausdorff,  is closed and therefore cl , so cl  is compact.        

Because is open in there is an open set in  with  and we have:        
  cl ( cl cl                
so cl ( )  is compact and therefore closed in  (since  is Hausdorff).        

Since cl ( )  we have cl cl cl                          

Moreover, since  is open, then cl cl  ( ).         this is true in  space : why?any 
So cl cl cl cl                     
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Then  and  is open in cl  so int cl .  Therefore  is open in cl             

 c) Since  is locally compact, part b) gives that  is open in cl , so cl  for      some open set  in .  Let cl         

Corollary 2.6  A dense locally compact subspace of a Hausdorff space is open in  
Proof   This follows immediately from part b) of the theorem   

Corollary 2.7  If  is a locally compact, noncompact Hausdorff space, then is open in   any
compactification  that contains . 
Proof   This follows immediately from Corollary 2.6.     

Corollary 2.8  A locally compact metric space  is completely metrizable. 
Proof  Let  be the completion of    is locally compact and dense in so         
       is open in .  Therefore  is a -set in so it follows from Theorem IV.7.5 that  iscompletely metrizable.  

Theorem 2.9  Suppose  is Hausdorff.  Then  is locally compact iff      

 i)  each  is locally compact ii) is compact for all but at most finitely many    
Proof   Assume  is locally compact.  Suppose  is open in  and .  Pick a point                     with  Then  has a compact neighborhood  in  for which.
              .  Since  is an open continuous map,  is a compact neighborhood of 
with   Therefore  is locally compact, so i) is true.         
To prove ii), pick a point  and let  be a compact neighborhood of .  Then    
                  for some basic open set . If ,..., we have   
               .  Therefore  is compact if ,..., 

 Conversely, assume i) and ii) hold.  If , where  is open, then we can choose     
a basic open set so that .  Without loss of generality, we can              assume that  is compact for ,...,  ( ).   For each  we can choose a compact       why?
neighborhood  of  so that  Then                               
                     is a compact neighborhood of  and
                         .   So  is locally compact.   
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3. The Size of Compactifications
Suppose  is a Tychonoff space, that , and that  is a compactification of .  How large     
can  be?  In all the specific example so far, we have had  or             
Example 3.1  This example illustrates a compactification of a discrete space created by adding  
points.
Let  and , two disjoint “copies” of Let                    Define a topology on   by using the following neighborhood bases:     

 i)  points in  are isolated:  for a neighborhood base at  is          
 ii) if :  a basic neighborhood of  is any set of form       ,  where  is an open neighborhood             
 of  in     
  
 (Check that the conditions in the Neighborhood Base Theorem III.5.2 are
 satisfied.)
      is called the “double” of the space 

Clearly,  is Hausdorff, and we claim that  is compact.  Let  be a covering of  by basic  
open sets. It is sufficient to check that  has a finite subcover.
Let     covers  and each  has form               
                 , where  is open in .  The “ -parts” of the sets  
cover the compact space , so finitely many  cover .  These sets also cover ,          
except for possibly finitely many points .  For each such point  choose a set         
                 containing .  Then  is a finite subcover from ..
Every neighborhood of a point in  intersects , so cl .  Therefore  is a       compactification of the discrete space  and        

Since  is locally compact,  also has another quite different compactification  for which               In fact, it is true (depending on  that can be many different compactifications
   , each with a different size for .
But, for a given space  and a compactification , there  an upper bound for how large  is
   can be.  We can find it using the following two lemmas.
Recall that the weight of a space  is defined by min  is a base              for   ( )  Example VI.4.6

Lemma 3.2   If  is a  space, then         
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Proof   Let  be  base for , and for each point let   Since   any             is , we have   if . Therefore the map  is one-to-one, so             

           .   In particular, if we pick  to be a base with the least possible cardinality,
minimal cardinality, then 2         | |  

Lemma 3.3  Suppose  is an infinite  space and that  is a dense subspace of .   Then         

Proof   A  space with a finite base must be finite, so  base for  must be infinite.  Let  every
                 be a base for .  Each is open so we have i)  int cl cl ,  and
ii) because  is dense in , cl cl            see Lemma IV.6.4
For each , define int cl , so that int cl int cl                   

Then  is also a base for :  to see this, suppose  where  is open.             By regularity, there is a  such that  int cl cl .               

Since each , there are no more distinct 's than there are subsets of , that is      
                           .  Since  must be infinite,  we have 

Theorem 3.4  If   is a compactification of  and  is dense in , then         

Proof    is Tychonoff.  If  is finite, then  so .  Therefore we               

can assume  is infinite.  Since  is dense in ,   (by Lemma 3.3), and therefore      
so   (by Lemma 3.2)        

 
Example 3.5  An upper bound on the size of a compactification of  is  .  More    

generally, a compactification of any separable Tychonoff space such as ,  or can     
have no more than  points.

We will see in Section 6 that Theorem 3.4 is “best possible” upper bound.  For example, there
actually exists a compactification of , called , with cardinality (It is difficult to      

imagine how the “tiny” discrete set  can be dense in a such a large compactification . 
Assume such a compactification  exists.  Since  is dense, each point  in  is    
the limit of a net in , and this net has a universal subnet which converges to . 
Since  is Hausdorff, a universal net in  has at most one limit in , so there are   
at least as many universal nets in  as there are points in , namely .  None of   
these universal nets can be trivial (that is, eventually constant).  Therefore each of these
universal nets is associated with a free ( nontrivial) ultrafilter in .  So there must be 
 free ultrafilters in .
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4. Comparing Compactifications
We want to compare compactifications of a Tychonoff space .  We begin by defining an
equivalence relation  between compactifications of .  Then we define a relation .  It will  
turn out that  can also be used to compare equivalence classes of compactifications of  
When applied in a set equivalence classes of compactifications of ,  will turn out to be a 
partial ordering.
The definition of  requires that we use the formal definition of a compactification as a pair.
Definition 4.1  Two compactifications and  of  are called , written            equivalent
                        , if there is a homeomorphism  of onto  such that  

  
In the  where , , and the identity map on , then thespecial case              condition  simply states that for that is, points in  are               fixed under the homeomorphism .
It is obvious that  and that is a transitive relation among compactifications            of .  Also, if , then  is a homeomorphism and                   
                            so that .  Therefore  is a symmetric relation,
so  is an  on any set of compactifications of . equivalence relation
Example 4.2  Suppose  is a locally compact, noncompact Hausdorff space.  We claim that all
one-point compactifications of  are equivalent. Because  is transitive, it is sufficient to show 
that each one-point compactification  is equivalent to the one-point compactification    
   constructed in Theorem 2.3.
Let  and Define  by                    

   if 
if       
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        is clearly a bijection and   We claim  is continuous.

 If Let  be an open set in  with Then                     
 is also open in   Since is a homeomorphism,  is open               
 in  and is open in .   Then ,  is open in  and                      Therefore  is continuous at . 
 If  Let  be an open set in with Then  is a                    compact in , so  is a compact (therefore closed) set in   Then          
  is a neighborhood of  and Therefore  is continuous at .           

Since  is a continuous bijection from a compact space to a  space,  is closed and therefore    is a homeomorphism.
Therefore (up to equivalence) we can talk about  one-point compactification of a noncompact,the
locally compact Hausdorff space .   Topologically, it makes no difference whether we think of
the one-point compactification of  geometrically as , with the North Pole   as the “point at  
infinity,” or whether we think of it more abstractly as the result of the construction in Theorem
2.3.

Question: Are all two point compactifications of  equivalent to ?       

Example 4.3  Suppose   is a compactification of Then  is equivalent to a           compactification  where  and  is the identity map.  We simply define      
          , topologized in the obvious way in effect, we are simply giving each
point  in  a new “name” .  We can then define  by          

   if 
if         

            
   

Clearly, , so .              

Example 4.3 shows means that whenever we work with only one compactification of , or are
discussing properties that are shared by all equivalent compactifications of , we might as well
(for simplicity) replace  with an equivalent compactification  where contains  as a       dense subspace.
Example 4.4  Homeomorphic compactifications are not necessarily equivalent.  In this example
we see two dense embeddings of into the same compact Hausdorff space  that produce     
nonequivalent compactifications.
Let  and .                  

  

Let  by  .   is a 2-point compactification of  .            
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Let   by  if  is the element of 
if  is the  element of                     

            
 


 


 

th
th 

For example,  and  is also a two-point compactification                  
 of .

Topologically, each compactification is the same space , but  and  are           not
equivalent compactifications of :
 Suppose  is any (onto) homeomorphism.    
 , so , and                   either or
  .   why?
  But the sequence .                            

      does  converge to either  or .  Therefore , sonot                      

By adjusting the definitions of h and , we can create infinitely many nonequivalent 2-point compactifications of  all using different embeddings of  into the same space .  
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We now define a relation  between compactifications of a space . 
Definition 4.5   Suppose  and  are compactifications of .  We say that           
                          if there exists a continuous function  such that 2

 
Notice that:
 i)  Such a mapping   :  , so  is              is necessarily onto     dense in   But  is compact, so              

 ii) If  and the identity map , then the condition                      simply states that .   
 iii)  that is, the “points added” to create  are mapped               onto the “points added” to create .  To see this, let   We want to show        
                 So suppose that 
Since  is dense in , there is a net in   converging to         

               

             is continuous, so .   But  is a homeomorphism so      

                     and therefore                

A net in  has at most one limit, so  and  give that .  This is impossible since       
   

iv) From iii) we conclude that if , then                         
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Suppose .  The next theorem tells us that the relation “ ” is unaffected if we            replace these compactifications of  with equivalent compactifications so we can actually 
compare  of compactifications of  by comparing  of theequivalence classes representatives
equivalence classes.  The proof is very easy and is omitted.
Theorem 4.6  Suppose  and  are compactifications of  and that           
                                                        .  If   and  ,  then 
The ordering “ ” is well behaved on the equivalence classes of compactifications of  
Theorem 4.7   Let  be a set of equivalence classes of compactifications of .  Then  is     
a poset.
Proof   It is clear from the definition that is both reflexive and transitive.  We need to show
that  is also antisymmetric.  Suppose  and  are equivalence classes of       compactifications of   ( By Theorem 4.6, we are free to choose from each equivalence class
representative compactifications with  embeddings the identity map        ).
If both and  hold, then we have the following maps:                

with .  For , , so the maps                    
          and the identity  agree on the  subspace . Since  is Hausdorff,  it  dense
follows that  everywhere in  (       See Theorem 5.12 in Chapter II, and its generalization
in Exercise E9 of Chapter III.)  Similarly and  agree on the dense subspace          so  on       



430

Since  and and  are inverse functions and  is a homeomorphism.            
Therefore .   So we have shown that if  and                
                 , then  

An equivalence  of compactifications of a space  is “too big” to be a set in ZFC set theory.class 
 It is customary to refer informally to such collections “too big” to be sets in ZFC as “classes.”
However, suppose  represents one of these equivalence classes.  If  has weight , then      
contains a dense set  with .  It follows from Lemma 3.3 that  so, by       
Theorem VII.3.17,  can be embedded in the cube .   Therefore  compactification   every
of  can be  by a subspace of the  fixed cube .  represented one 

Therefore we can form a  consisting of one representative from each equivalence class ofset
compactifications of this set is just a certain set of subspaces of  .  This set is partially   
ordered by .
In fact, we can even given a bound on the number of different equivalence classes of
compactifications of :  since every compactification of  can be represented as a subspace of 
   ,  the number of equivalence classes of compactifications of  is no more than
| .  In other words, there are no more than different                

compactifications of .

Example 4.8  Let be a 1-point compactification of .  For every compactification     
            of ,  .  (  So, among equivalence classes of compactifications of , the
equivalence class  is      smallest.)
By Theorem 4.6, we may assume  and that , are the identity maps; in fact,         we may as well assume the one-point compactification constructed in Theorem 2.3 .     

Since  has a one-point compactification,  is locally compact   By   see Example 1.5
Corollary 2.7,  is open in both  and    

Let  and define   

    by if  
if           

      
To show that  ,  we only need to check that  is continuous each point .          

 If  and  is an open set containing in , then                
 which is open in  and therefore also open in .  Clearly,          
 If  and is an open neighborhood of  in then               
 is a compact subset of Therefore  is closed in  so  is an open set      
 in  containing  and        
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5. The Stone-Cech Compactification
Example 4.8 shows that the one-point compactification of a space , , is the when it exists
smallest compactification of . Perhaps it is surprising that  Tychonoff space  has a every
largest compactification and, by Theorem 4.7, this compactification is unique up to equivalence.
In other words, a poset which consists of one representative of each equivalence class of
compactifications of  has a largest (  merely maximal!) element.  This largest not
compactification of  is called the Stone-Cech  (pronounced “check”) compactification and is
denoted by .


Theorem 5.1 1) Every Tychonoff Space  has a largest compactification, and this
compactification is unique up to equivalence.  (We may represent the largest compactification by
        where  and  is the identity map. We do this in the remaining parts of theorem.)  
  2) Suppose  is Tychonoff and that  is a compact Hausdorff space.  Every 
continuous has a unique continuous extension .  (             The extension  is 
called the  of .  The property of  in 2) is called the Stone extension Stone Extension 
Property. )
  3) Up to equivalence,  is the only compactification of  with the Stone 
Extension Property.    (In other words, the Stone Extension Property characterizes  among all
compactifications of . )

Example 5.2 (assuming Theorem 5.1)      is a compactification of .  However the
continuous function  given by sin  cannot be continuously              extended to a map .  Therefore .   Is it possible that ?              

 
Proof of Theorem 5.1
1) Since  is Tychonoff,  has at least one compactification.  Let  be a set of          
compactifications of , where  is the identity, and one is chosen from             each equivalence class of compactifications of . ( As noted in the remarks following Theorem
4.7, this is a legitimate set since every compactification of  can be represented as subset of one
fixed cube .  )
Define  by .  This “diagonal” map  sends                   
each  to the point in the product all of whose coordinates are , and  is the evaluation map  
generated by the collection of maps    is a subspace of and the subspace          topology is precisely the weak topology induced on  by each   ( ). It  see Example VI.2.5
follows from Theorem VI.4.4 that  is an embedding of  into the compact space .  If we  
define cl , then is a compactification of .        
Every compactification of  is equivalent to one of the .  Therefore, to show  is the       
largest compactification we need only show that  for each .  This,           however,  is clear:  in the diagram below, simply let      
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Then  because                   
Therefore .       

Note: now that the construction is complete, we can replace  with an equivalent largest  
compactification actually containing     
Since  is antisymmetric among the compactifications , the largest compactification of     
  is unique (up to equivalence).

2) Suppose  where  is a compact Hausdorff space.  First, we need to produce a     
continuous extension       
Define  by   Clearly,  is  and continuous  and  has                
the weak topology generated by the maps and , so  is an embedding.          
Since  is compact, cl  is a compactification of .      

But cl , so we have a continuous map cl   for which                  
       that is for   ( )see the following diagram
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For ,  define  Then  is continuous and for  we have             
                        , so .
If  is continuous and , then  and  agree on the dense set , so                
Therefore the Stone extension  is unique.    See Theorem II.5.12, and its generalization in
exercise E9 of Chapter III..)

3) Suppose  is a compactification of  with the Stone Extension Property.  Then the   
identity map  has an extension  such that , so                
                  .  Since  is the largest compactification of ,  .   

The Tychonoff Product Theorem is equivalent to the Axiom of Choice AC ( ).see Theorem IX.6.5
Our construction of  used the Tychonoff Product Theorem but only applied to a collection 
of compact  spaces   In fact, as we show below, the existence of  a largestHausdorff 
compactification  is  to  “the Tychonoff Product Theorem for compact spaces.” equivalent 

The “Tychonoff Product Theorem for compact  spaces” also cannot be proven in ZF, but it isstrictly weaker than AC.  (In fact, the “Tychonoff Product Theorem for compact  spaces” isequivalent to a statement called the “Boolean Prime Ideal Theorem.”)
The main point is that the very existence of  involves set-theoretic issues and any method for
constructing  must, in some form, use something beyond ZF set theory something quite 
close to the Axiom of Choice.

Theorem 5.3  If every Tychonoff space has of a largest compactification , then any 
product of compact  spaces is compact.Hausdorff
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Proof   Suppose is a collection of compact spaces. Since  is         
Tychonoff, it has a compactification  and for each  the projection map can be      extended to            

  
For each , define a point with coordinates .                 
              

    is continuous because each coordinate function is continuous.  If                           , then  for each , so
        Therefore  is a continuous image of the compact space , so      is compact.     

We want to consider some other ways to recognize .  Since  can be characterized by the  
Stone Extension Property, the following technical theorem about extending continuous functions
will be useful.
Theorem 5.4 (Taimonov)  Suppose  is a dense subspace of a Tychonoff space  and let  beC  
a compact Hausdorff space. A continuous function  has a continuous extension    
     iff
 whenever  and  are disjoint closed sets in ,  cl cl           

Proof               : If exists and  and  are disjoint closed sets in , then . 

But these sets are closed in , so cl  and cl .  Therefore            
  

cl cl .        
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          :  We must define a function   such that |  and then show that  is           
continuous.  For , let  be its neighborhood filter in .  Define a collection of closed sets     in  by
   cl          U
Then cl cl  cl ]  (since is dense in ). Therefore                       
   is a family of closed sets in  with the finite intersection property so  (because  is   
compact) .
We claim that  contains only one point:   for some .        
 Suppose .  If , then (since  is ) we can pick open sets  so that          ,
  and and cl cl .  Then cl cl cl cl  so, of                       
 course, cl cl .  Taking complements, we get          
    cl cl              

 so  is in one of these open sets: say cl  Since ,             
 cl .  We claim cl , from which will follow the          contradiction that .   
  To check this inclusion, simply note that cl .  Therefore,        
  if , we have cl , so , so . Thus,                  
  C Y U C Y U           (a closed set) so cl
Define .  We claim that   works.     

 | : Suppose    is the neighborhood filter of                    in
  so in Since  is continuous,  the filter base                    .     in .   In particular,  is a cluster point of , so cl                
 = .  So        

 is continuous:  Let and let  be open in  with   Since            
  ,  there exist  such that       ,...,  

   cl  cl             

 ( If  is an open set in a compact space and  is a family of closed sets with 
 then some finite subfamily of  satisfies Why?            .  )
 Let  .  If , then         ... 

   cl cl ... cl                      

 so .  Therefore is continuous at .           
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Corollary 5.5   Suppose  and  are compactification of  where the embeddings are the   identity map.  Then  iff :  for every pair of disjoint closed sets in ,        

   cl cl  cl cl         (*)                
Proof   If , it is clear that (*) holds.  If (*) holds, then Taimonov's Theorem       guarantees that the identity maps  and  can be extended to maps                                       and .  It is clear that  and  are the identity maps on
the dense subspace .  Therefore  and are each the identity everywhere so ,              are homeomorphisms so .          

For convenience, we repeat here a definition included in the statement of Theorem VII.5.2
Definition 5.6  Suppose  and  are subspaces of .   and  are   if     completely separated
there exists  such that  and   (It is easy to see that  can be           
replaced in the definition by any two real numbers .) 
Urysohn's Lemma states that disjoint closed sets in a normal space are completely separated.

Using Taimonov's theorem, we can characterize  in several different ways.  In particular,
condition 4) in the following theorem states that  is actually characterized by the
“extendability” of continuous functions from  into a statement which looks weaker   
than the full Stone Extension Property.
Theorem 5.7  Suppose  is a compactification of , where  and  is the identity.       
The following are equivalent:
 1) is   (that is,  is the largest compactification of )   
 2) every continuous , where  is a compact Hausdorff space, can be     
 extended to a continuous map     
 3) every continuous  can be extended to a continuous             
  4) every continuous  can be extended to a continuous             
 5) completely separated sets in  have disjoint closures in  
 6) disjoint zero sets in  have disjoint closures in  
 7) if  and  are zero sets in , then cl cl cl                   

Proof   Theorem 5.1 gives that  1) and 2) are equivalent, and the implications 2) 3) 4) are 
trivial.
 4) 5)  If  and  are completely separated in , then there is a continuous   
               with  and .  By 4),  extends to a continuous map
                          , Then cl cl and cl cl so   

   

cl cl     
 5) 6)  Disjoint zero sets  and  in  are completely separated  (for example,   
by the function ) and therefore, by 5),  have disjoint closures in .  
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 6 7)  A zero set neighborhood of  is a zero set  with int   It is easy to show     
that in a Tychonoff space , the zero set neighborhoods of  form a neighborhood base at   
( ).check this!
Suppose  and  are zero sets in .  Certainly, cl cl cl , so suppose                  
             cl cl  If  is a zero set neighborhood of , then cl  and     
            cl ( ).  and  are zero sets in   and   why?
 cl cl  so, by 6). .                                  

Since every zero set neighborhood  of  intersects , and the zero set neighborhoods of            are a neighborhood base, we have cl  

 7) 2)  Suppose that is continuous.   is  so if  and are disjoint         closed sets in , there is a continuous such that  and               
        .
Then  and  and  and  are disjoint zero sets                         in .  By 7),  cl cl cl cl cl                              


    By Taimonov's Theorem 5.4,  has a continuous extension       
 

Example 5.8
 1) By Theorem VIII.8.8, every continuous function is “constant on a      
tail” so can be continuously extended to .   By Theorem 5.7,        
        .
In this case the largest compactification of is the same as the smallest compactification the one-point compactification.  Therefore, up to equivalence,  is the  only compactification of . 

A similar example of this phenomenon is , where            
            (see the “Tychonoff plank” in Example VIII.8.10 and Exercise VIII.8.11).

 2) The one-point compactification  of  is   because the function   not
        

  given by   cannot be continuously extended to if  is even
if  is odd

                
.  Why? It might help think of  (topologically) as (

Theorem 5.9   is metrizable iff  is a compact metrizable space (i.e., iff  is metrizable and  
  
Proof   :  Trivial
 :  is metrizable . is metrizable  is 

 is first countable      
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If  is not compact, there is a sequence  in  with   Without loss of            
generality, we may assume the 's are distinct ( ). why?
Let  and .  and  are disjoint closed sets in                          
               so Urysohn's Lemma gives us a continuous  for which  and .
Let  be the Stone Extension of .  Then                lim 
                  lim lim lim       which is impossible.   

6.  The space 

The Stone-Cech compactification of  is a strange and curious space.

Example 6.1     is a compact Hausdorff space in which  is a countable dense set.  Since  is
separable,  Theorem 3.4 gives us the upper bound         

On the other hand,  suppose  is a bijection and consider the Stone extension      
              Since  is compact, it is a closed set in  and it contains the dense
set .  Therefore   so we have                

A similar argument makes things even clearer. By Pondiczerny's Theorem VI.3.5, there is a
countable dense set .  Pick a bijection  and consider the extension        
                    .  Just as before,  must be onto.  Therefore .
Combining this with our earlier upper bound, we conclude that    is quite large but     
it contains the dense discrete set  that is merely countable.
Every set  is a zero set in  so we can write   
  cl cl cl ,          

and by Theorem 5.7(6) these sets are disjoint.  Therefore for each  cl  is a clopen set    in .  In particular, each singleton  is open in  (that is,  is isolated in ), so  is      
open in .  Therefore  is compact.  
At each , there is a neighborhood base consisting of clopen neighborhoods:   

 i)  if , we can use      ii) if , we can use cl  and cl                

  If  is an open set in containing , we can use regularity to choose an open 
  set  such that cl .  If ,   then            
  cl cl cl . ( )             Why?
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Definition 6.2   Suppose .   is said to be -embedded in  if every  has a          
continuous extension     

To illustrate the terminology:
 i) Tietze's Theorem states that every closed subspace of a normal space is -embedded.

 ii)  For a Tychonoff space ,   is  compactification (up to equivalence) in which  the
   is -embedded. 

The following theorem is very useful in working with 
Theorem 6.3  Suppose , and that  is -embedded in .  Then cl .            

Proof   If  is continuous, then  extends continuously to , and, in            
turn, extends continuously to .  Then  cl  is a continuous extension of              to cl .  Since cl  has the extension property in Theorem 5.7 (4), cl .           

Example 6.4  Since  is discrete, every  is -embedded in  and so, by Theorem 6.3,    
cl .  
Of course if  is finite, cl .  But if  is infinite, then  is homeomorphic to , so         
cl  is homeomorphic to .   
In particular, if  and  are the sets of even and odd natural numbers, we have so      
     cl cl so  is the union of two disjoint, clopen copies of itself.  It is easy to modify this argument to show that, for any natural number ,     can be written as the union of
 disjoint clopen copies of itself.
If we write , where each 's are pairwise disjoint infinite subsets of , then we   

  have cl cl , and these sets cl are pairwise disjoint copies of         
   

  . Moreover, cl  is dense in  since the union contains .  (
  If  we choose the 'sproperly chosen, can we have  ?   Why or why not?  

 cl  )

Example 6.5   No sequence in  can converge to a point of .  In particular, the     
sequence  has no convergent subsequence in  so   is not sequentially compact.  

Define  by  .    Consider the Stone extensionif  for some 
otherwise           

  

                          .  If , then ,  so  must be eventually constant which is false.  

Therefore  is an example showing that “compact sequentially compact.”  (  See the remarks
before and after corollary VIII.8.5.)
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Theorem 6.6  Every infinite closed set  in  contains a copy of  and therefore satisfies  
    

Proof  Pick an infinite discrete set .  ( ).  Using           See Exercise III E9
regularity, pick   open sets  in  with .pairwise disjoint      
Suppose  (  is continuous since  is discrete).  Define  by            

  for 
for        

      

 




Extend  to a continuous map       
The following diagram gives a very “distorted” image of how the sets in the argument are
related.

We have .  Since  is dense in  ( ), we have  so                     why?
   

Thus,  has an extension ,  so  is -embedded in .  By              
Theorem 6.3,  cl  and since  is a countably infinite discrete space,  is     
homeomorphic to .
Since is closed, cl , so                

Theorem 6.6 illustrates a curious property of there is a “gap” in the sizes of closed subsets  
That is, every closed set in  is either finite or has cardinality no sizes in-between!   This  
“gap in the possible sizes of closed subsets” can sometimes occur, however, even in spaces as
nice as metric spaces although not if the Generalized Continuum Hypothesis is assumed.  (See
A.H. Stone, , Mathematika 6 (1959),  pp. 99-107.) Cardinals of Closed Sets
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Example 6.7       is separable, but its subspace  is not;   does not even satisfy the 
weaker countable chain condition CCC (see Definition VIII.11.4).  Specifically, we will show
that  contains  pairwise disjoint clopen (in ) subsets, each of which is     
homeomorphic to . 
Let  be a collection of  infinite subsets of  with the property that any two have       
finite intersection.  ( )  Let cl cl   EachSee Exercise I.E41.                 
       ( ) and  is a clopen set in  homeomorphic to .why?    
Moreover, the 's are disjoint:

 Suppose .  If , then cl cl . In a  space, deleting                     finitely many points from an infinite set  does not change the set cl  ( ), so  why?
 cl  and cl .  But  and                               
  are disjoint zero sets in  and must have disjoint closures.        
An additional tangential observation:
If we choose points  and let , then  is not normal since a               
separable normal space cannot have a closed discrete subset  of cardinality .      (See the “counting continuous functions” argument in Example VII.5.6.)

The following example shows us that countable compactness and pseudocompactness are not
even finitely productive.
Example 6.8  There is a countably compact space  for which  is not pseudocompact (so  
  is also not countably compact).
Let  and  and write cl cl                     
     and  are disjoint clopen copies of .  Choose any homeomorphism   
(n : )  and define  by if 

if ecessarily,   why?            
     

 

The map  is a homeomorphism since  and are continuous on the two disjoint clopen sets   
      and  whose union is .  Clearly, ,   has no fixed points, and  is the      
identity map.
Let is countably infinite .  .  Let  be the first ordinal with                 

cardinality  and index  as   For each ,  cl  is an infinite closed set so, by             Theorem 6.6,  cl .  Therefore cl             

Pick  to be a limit point of  not in .  Proceeding inductively, assume that for all              we have chosen a limit point  of that is not in  and that, for the points     
      already defined :
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For the “next step”, we want to define . Since we have so far defined fewer than       
  points .  Therefore

  .                          

But cl , so we can chose a limit point of  with   so that the                 
conditions  continue to hold for       
Therefore, by transfinite recursion, we have defined distinct points  in such a way that     
for , and                 

Let    By construction,   is countably compact because every infinite         set in  (for that matter, even every infinite set in ) has a limit point in .  But we claim that 
  is not pseudocompact.

To see this, consider  We claim  is clopen in           
 
 Since  is isolated  in is a discrete open subset of       
 On the other hand, the graph of  is closed in           
 so that
 
   is closed in           
 and we claim that           

Indeed, it is clear that
           
 
and the complicated construction of the 's was done precisely to guarantee thereverse inclusion:
 If ,  then for otherwise we would       
 have  for some , and then  by construction.         

 Therefore  is closed in   
Therefore function  defined by     

  if 
if         

      
continuous.  But  is unbounded, so  is not pseudocompact.  
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7.  Alternate Constructions of 
We constructed  by defining an order between certain compactifications of  and  
showing that there must exist a largest compactification (unique up to equivalence) in this
ordering.  Theorem 5.7, however, shows that there are many different characterizations of 
and some of these characterizations suggest other ways to construct  . .
For example, Theorem 5.7 shows that the zero sets in a Tychonoff space  play a special role in
  .   Without going into the details, one can construct  as follows:
 Let  be the collection of zero sets in .  A filter   (also called a ) means a   in -filter
 nonempty collection of nonempty  such thatzero sets
  i)  if , then ,  and          
  ii) if  and  where  is a , then          zero set
 A -ultrafilter in  is a maximal -filter.  
 Define a   is a -ultrafilter in For each ,  the collectionset           
  is a zero set containing   a (trivial) -ultrafilter, so   The          is
 map  is a  map of  into the set .       

 It turns out that  compact iff every -ultrafilter is of the form  for some      Therefore the set  iff  is compact.  Each -ultrafilter   in  that is       
 not of the trivial form  is a point in .   
 The details of putting a topology on  to create the largest compactification
 of  are a bit tricky and we will not go into them here.

The situation is simpler in the case .  Since every subset of  is a zero set,   
a “ -ultrafilter” in  is just an ordinary ultrafilter in .  
Then, to be a bit more specific,

  
   let  is an ultrafilter in  and for , define         
   cl       
  Give the topology for which cl  is a base for the open sets.      
 

 This topology make   into a compact  and we can embed  into  using    the mapping  ( the trivial ultrafilter “fixed” at ).  This “copy” of      is dense in , so  is a compactification of .  It can be shown that “this  
 ” is the largest compactification of  (and therefore equivalent to the   
 constructed earlier).
 The free ultrafilters in  are the points in .  Since  and there       
 are only countably many trivial ultrafilters , we conclude that there are  free 
 ultrafilters in 
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It turns out that the -ultrafilters in a Tychonoff space  are associated in a natural 
    way with the maximal ideals of the ring , so it is also possible to construct
 by putting an appropriate topology on the set
   is a maximal ideal in      
It turns out that if then   is a (trivial) maximal           ideal and the mapping  gives a natural way to embed  in .   is not      
compact iff there are maximal ideals in  that are not of the form  (that is, nontrivial maximal ideals) and these are the points of . 

 More information about these constructions can be found in the beautifully written
 classic   (Gillman & Jerison).Rings of Continuous Functions

In this section, we give one alternate construction of in detail.  It is essentially the
construction used by Tychonoff, who was the first to construct  for arbitrary Tychonoff
spaces.  In his paper (Math. Annalen 102(1930), Uber die topologische Erweiterung von Raumen ¨ ¨
544-561) Tychonoff also established the notation “ .”  The construction involves a specially
chosen embedding of  into a cube.
Suppose  is a Tychonoff space.  For each , choose a closed interval  such        
that ran   If  is a family that  separates points from closed sets, then        
according to Theorem VI.4.10 the evaluation map  given by           
is an embedding.  In this way, every such family  generates a compactification   
      cl  of .  In fact, the following theorem states that  compactification of  can  every
be obtained by choosing the correct family .   

Theorem 7.1  Every compactification of  can be achieved using the construction in the
preceding paragraph.  More precisely,  if  is a compactification containing  (with embedding 
   ), then there exists a family  such that  separates points and closed sets and 
        cl . 

Proof   Let  can be continuously extended to .  (               Note that
 is unique if it exists since any two extensions would agree on the dense set .  )
The family  separates points from closed sets:

If  is a closed set in  and , then there is a closed set  with       
             By complete regularity there is a continuous function 
such that and   Since  is compact,  must be bounded and therefore       
         .  Moreover,  (because  is the required extension).  Clearly,
           cl cl 

Therefore cl  is a compactification of .      
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Define  by  Then  is continuous and, for               
                    Therefore  and   

Clearly,  and  is compact Hausdorff, so cl   On the              other hand, by continuity, cl cl cl .  Therefore cl               

Since cl  is continuous and onto, cl                

We claim  is also :   
If , then there is a continuous map  such that  and             
                Then  and    Therefore
     so

Since  is compact and cl  is Hausdorff,  is a homeomorphism and, as mentioned above,   
               .  Therefore cl
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Theorem 7.2  Suppose  and that both  and  separate points from closed        
sets.  Then cl cl .              

  
For cl , define cl  by                    Informally,  is just
the result of deleting from  all the coordinates corresponding to functions in .     Clearly
                       so cl cl .   

Corollary 7.3  A Tychonoff space  has a largest compactification.
Proof   Combining Theorems 7.1 and 7.2, we see that the largest compactification corresponds to
taking   in the preceding construction.       

Of course we can do the construction (from the paragraph preceding Theorem 7.1) simply using
     in the first place (that is what Tychonoff did) and define the resulting
compactification to be .  We would then need to prove that it has one of the features that
make it interesting for example, the Stone Extension Property.  Instead, using Theorems 7.1
and 7.2, what we did was first to argue that  produces the largest compactification   
of ; then Theorem 5.7 told us that the compactification we constructed is the same as our
earlier .
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Exercises
E1.  Show that the Sorgenfrey line (Example III.5.3) is not locally compact.

E2. Suppose  is a locally compact  space that is separable and not compact. Show that the one-point compactification is metrizable. 

E3. Suppose  and  are disjoint compact subsets in a locally compact Hausdorff space 
        .  Prove that there exist disjoint open sets  and  such that cl  and cl
are compact.

E4. a)  Let  be a compact subspace of a Tychonoff space .  Prove that for each     
there is an  that that is, every continuous real valued function on  can be       
extended to .  ( A subspace of  with this property is said to be -embedded in .  Compare  
Definition 6.2;  for a compact since  is compact, “ -embedded” and “ -embedded” mean  
the same thing.)
     b) Suppose  is a dense -embedded subspace of a Tychonoff space .  If  and     
            for some , prove that  for some Hint: if |  is never , then  

  

    c) Every bounded function  has a continuous extension   In         
particular, the function  can be extended.  If , what is ?  Why does      

   
this not contradict part b) ?

E5.  Prove that          

E6. Prove that a Tychonoff space  is connected iff  is connected.   Is it true that  is  
connected iff every compactification of  is connected?

E7.  a)  Show that  has two components  and .   
       b)   has a limit point in say in the set .   Is  ?          

E8. Let  be a free ultrafilter in . 
 a)  Choose a point  and let cl .  Show that  is a             free ultrafilter on .
 b) Using the ultrafilter  from a), construct the space  as in Exercise IX.E8.  Prove that 
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    is homeomorphic to  with the subspace topology from .  
 c) Define an equivalence relation on  by  if  is homeomorphic to       
        . For , let  be the equivalence class of .  Prove that each equivalence
class satisfies   (so there must be  different equivalence classes.)   

Note: Part c) says that, in some sense, there are 2  topologically different points .    
By part a),  each of these points  is associated with a free ultrafilter  in  that determines the  
topology on .  Therefore there are 2  “essentially different” free ultrafilters  in .      
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Chapter X Review

Explain why each statement is true, or provide a counterexample.

1. Every Tychonoff space has a one-point compactification.
2. If  is Tychonoff and  is first countable, then  .       
3.  has a compactification of cardinal . 

4.  has a compactification  where  is infinite and  is metrizable.      
5. Suppose that  is a compact Hausdorff space and that each  has a metrizable   
neighborhood (i.e.,  is ).  Then  is metrizable. locally metrizable
6. Let  be the 1-point compactification of .  Every subset of  is Borel.   

7.  is dense in .  
8. If 0 , then 0 .                  

9. Every point in  is the limit of a sequence from . 
10.  The one-point compactification of  is completely metrizable.
11. If  and  are locally compact Hausdorff spaces with homeomorphic one-point 
compactifications, then  must be homeomorphic to . 
12. Let .  All -point compactifications of the Tychonoff space  are equivalent.   
13. Every subset of  is -embedded in . 

14. If  is compact Hausdorff and , then .        
15. Every compact Hausdorff space is separable.
16. A metric space  has a metrizable compactification iff  is separable.  
17.   for some open  and closed  in .      
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