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ABSTRACT OF THE DISSERTATION 
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In plant systems, genetic and biochemical pathways impact uptake of elements from the 

soil. These environment-sensitive pathways often act in the root tissue to impact element 

concentrations throughout the plant. In order to characterize element regulation as well as apply 

ionomics to understand plant adaptation, perspectives are needed from multiple tissues and 

environments and from approaches that take interactions between elements into account. The 

work described in this thesis includes multi-environment and multi-tissue experiments that 

connect variation in genetic sequence, and in gene expression, with variation in element 

accumulation. The associations found here include those that are sensitive to environment, 

reflecting the complex environmental influence on the ionome, as well as those that exhibit 

consistent effects across different environments. A variety of statistical tools were employed to 

model genetic by environment interactions and test methodologies that can be applied to future 

studies of the ionome with more in-depth environmental data. Genetic loci with strong effects on 



 xii 

elements across environments were further explored using root-based gene expression data, 

which identified candidate genes and gene networks underlying element accumulation. 

Additional research on these candidate genes has the potential to improve our understanding of 

the genetic basis of homeostatic processes that involve the ionome, as well as isolate targets for 

genetic modification or selective breeding that can enhance nutritional content and adaptive 

capacity of crops. 
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CHAPTER 1: 

INTRODUCTION 

 

OVERVIEW OF IONOMICS 

Mineral nutrients play key roles in cellular processes as cofactors in biochemical 

reactions, structural components, and electrochemical regulators. Plants maintain ion 

homeostasis via complex regulatory systems sensitive to both environmental and physiological 

changes. The term ionomics was coined by Lahner et al. in 2003, in the first high-throughput 

elemental profiling study, performed in the model plant species Arabidopsis [1]. Elemental 

profiles, typically measured in seeds or leaves using high-throughput inductively-coupled plasma 

mass spectrometry (ICP-MS), reflect the genetic by environment interactions that influence 

nutrient content throughout the plant. Element content is a complex genetic trait; it does not 

follow standard Mendelian patterns of inheritance, but instead is quantitative in nature, 

determined by multiple genes and gene interactions. Elemental profiling of genetically distinct 

plants can be used in quantitative analyses to isolate regions of the genome controlling element 

accumulation. Because seeds and leaves represent a lifetime of nutrient accumulation, genetic 

variation that impacts processes throughout the plant, such as those occurring in the root, will be 

reflected in seed or leaf profiles.  

Elemental signatures provide a means to characterize difficult-to-measure phenotypes 

and diagnose stress responses. The sensitivity of the ionome to environmental and physiological 

states encoded by the genome renders ionomics a useful tool for understanding not only element 
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regulation but also related traits involved in plant adaptation to the environment, a major focus of 

basic plant science research and current global agriculture improvement efforts. For instance, an 

early study of ionome mutants revealed a mutant with both an altered shoot elemental profile and 

root-dependent increased water stress tolerance [2]. By using the relationship between shoot 

element concentrations and root solute transport, this elemental profiling screen identified a 

genetic variant with increased vigor in drought conditions. The advantages of using ionomics as 

a proxy for plant adaptation include the relatively high heritability of seed and leaf mineral 

nutrient content, particularly for certain elements, and the ability to discern element 

concentrations with comparatively low cost in a high-throughput pipeline.  

Since the introduction of ionomics, researchers have used high-throughput elemental 

profiling and quantitative genetics to uncover loci and genes underlying element homeostasis. 

However, the majority of loci have not been resolved to genes and the functions of genes that 

have been discovered and their roles within genetic networks remain largely unknown. Sources 

beyond traditional genetics are required to understand elemental profiles, which, like most 

complex traits, exhibit high genetic by environment interaction. Furthermore, elements do not 

behave independently, but are interrelated, with factors affecting multiple elements. Genetic 

regulation of the ionome can be best characterized by going beyond single-element and single-

tissue approaches, employing multivariate analysis and relating root gene expression to the 

whole plant ionome. This combination of techniques will improve resolution of quantitative trait 

loci (QTL) to genes and identify gene networks influencing the ionome. Such information can be 

applied in breeding programs focused on improving crop nutrition or eliminating accumulation 

of toxic micronutrients, such as cadmium, from food sources. By identifying genes and 

contextualizing them in networks, we can link genes that regulate the ionome to adaptive 
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processes, such as drought tolerance, and thereby provide a means to profile for genotypes that 

thrive in extreme environments.  

HISTORY OF IONOMICS 

The first ionomics study was conducted by Lahner et al. in Arabidopsis [1]. The group 

isolated mutants with altered leaf element profiles by using ICP-MS for elemental profiling of 18 

elements and a forward genetics approach. A key result of this study was that the majority of 

ionome mutants exhibited altered profiles of multiple elements; only 11% of ionome mutants had 

significant changes in a single element. The high incidence of multi-element changes provided 

initial evidence that the ionome functions as a network. Furthermore, multi-element profiles were 

capable of distinguishing groups of mutants through linear discriminant analysis. Several 

subsequent experiments furthered the ionome as a network hypothesis; predictive multi-element 

signatures for iron (Fe) and phosphorous (P) statuses were identified in Arabidopsis [3], multi-

element variation was described using principal components analysis (PCA) in the model legume 

Lotus japonicus [4], and correlations between calcium (Ca) and magnesium (Mg) were observed 

in Brassica oleracea [5]. These findings suggest that genes regulating multiple elements 

comprise a large fraction of element homeostasis networks, highlighting the need to develop 

methods capable of detecting such components [6]. 

Forward genetics allowed for characterization of informative mutants in Arabidopsis and 

other organisms, such as Lotus japonicus [7] and soybean [8]. The first ionomic mutant cloned in 

Arabidopsis was the enhanced suberin1-1 (esb1-1) mutant [2], a mutant with a multi-element 

leaf ionome signature. The elemental changes observed in the esb1-1 mutant were attributed to 

aberrant lignin and suberin deposition in the Casparian strip, a structure that acts in roots as a 
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selective filter for water and nutrient transport [9]. Additional Casparian strip-related mutants 

have been identified in Arabidopsis, all showing a multi-element phenotype [9, 10]. 

Natural variation has also been a robust resource of genetic variants involved in element 

homeostasis. In Arabidopsis, natural accessions were used to identify a novel allele in the Na 

transporter AtHKT1 that reduces AtHKT1 expression in the roots and subsequently increases Na 

in shoots [11]. This study was one of the first to show that root gene expression can be a strong 

determinant of element content throughout the whole plant. Baxter et al. also used natural 

variation in Arabidopsis to identify the molybdenum transporter gene MOT1 and the causal 

deletion in the gene. Similar to the mechanism of the AtHKT1 Na transporter variant, the deletion 

in MOT1 was shown to cause depletion of whole-plant Mo through reduction of gene expression 

in the root [12]. An additional MOT1 variant was found to be correlated with Mo content of soils 

and allelic variation in MOT1 was associated with adaptation to native soil type [13]. Similar 

studies in Arabidopsis identified ferroportin mutants with aberrant Fe and cobalt (Co) 

localization [14] and characterized of leaf sulfate QTL at the genes APR2 and ATPS1, which 

encode enzymes belonging to the same sulfate accumulation pathway [15, 16]. 

QTL mapping and genome wide association studies (GWAS) are powerful statistical 

methods that can connect natural variation with specific phenotypes of interest. These methods 

have been used to find and describe loci impacting kernel and leaf ionome traits. For example, in 

Arabidopsis, GWAS on leaf ionome variation combined with transgenic complementation 

allowed Chen et al. to describe a polymorphism in the heavy metal ATPase gene HMA3 that 

decreases leaf Cd [17] and identify a new arsenate reductase enzyme, HAC1, with a key role in 

As reduction [18]. These methods have been applied in a variety of species, including maize [19, 

20], rice [21], sorghum [22], and soybean [23]. QTL mapping is typically carried out in a bi-
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parental population whereas GWAS can include multiple parents. While QTL studies often 

exhibit increased power and can identify loci of interest, bi-parental populations offer a limited 

amount of genetic variation to study and genetic resolution can be relatively low. GWA studies 

benefit from expanded genetic variation and increased genetic resolution which allows for easier 

association of loci with specific genes [24]. 

Many experiments using genetic analyses have also implemented techniques like 

expression quantification and imaging to further describe mutant phenotypes and genes known to 

be involved in element homeostasis. Expression of potassium channel genes in Arabidopsis was 

tracked using real-time PCR [25]. Fluorescence imaging was used to localize the MOT1 

molybdenum transporter to the mitochondria [12] and the NaKR1 metal-binding protein to the 

companion cells of the phloem [26]. Grafting has been used repeatedly to determine root-based 

sources of variation in shoot and leaf ionome mutants [12, 25, 26]. DNA sequencing of pooled 

mutants followed by microarray analysis isolated the causal gene in myb36-1, a mutant 

exhibiting a multi-element phenotype similar to that of other Casparian strip mutants [9]. 

Expression analysis and visualization techniques were then applied to determine the impact of 

mutant MYB36 on target gene expression and characterize cell type localization of the mutant 

protein and its associated targets. 

The ionome is highly responsive to the environment and the genetic mechanisms 

influencing the ionome can vary depending on environment. Previous investigations have looked 

at the relationship between the environment and the ionome. These include surveys of the 

Arabidopsis leaf ionome under varying soil salinity [27] and the tomato leaf ionome during water 

stress conditions [28]. While work has been done to characterize QTL by environment 

interactions underlying ionomic variation [20, 29–32], orthogonal datasets and G x E models that 
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include specific environmental variables are needed to obtain a gene-level understanding of these 

interactions. 

IMPORTANCE AND APPLICATONS OF IONOMICS 

The study of plant adaptation using ionomics can be applied to address numerous 

pertinent issues relating to abiotic environmental factors, crop yield, and sustainable agriculture. 

Most essential elements in plants, excluding carbon and oxygen, are derived from the soil. 

Because plants need to adapt their mechanisms for acquisition, transport, and storage of mineral 

nutrients to specific soil conditions and environmental changes, the underlying systems are 

flexible, with substantial variation among genotypes [33]. Regulation often involves multiple 

elements at once via processes such as co-transportation, as seen with Fe and Zn [34, 35], Ca and 

Mg [5], and Na and K [26]. Chemical analogs, such as Ca and Sr or K and rubidium (Rb), 

frequently display similar ionomic profiles [6]. 

Abiotic factors, such as non-ideal soil nutrient levels and harsh environmental conditions, 

pose a threat to crops unable to adapt to such stressors. High levels of certain elements in soil can 

be toxic to the plant and/or consumers. Soil element concentration, drought, salinity, and 

invasive species all effect plant growth dramatically and vary across environments. In order to 

develop crops able to flourish in particular conditions or maintain crop improvements across 

diverse environments, we must understand the genetic by environment interactions that underlie 

specific adaptive mechanisms. The growing human population demands yield and nutrition 

improvement in crops, with nutrient deficiencies being a widespread current issue, especially in 

areas of poverty. Yield needs to grow at an exponential rate parallel to that of population growth 

in order to provide required food and biofuels. Due to global climate change, this yield 
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acceleration must occur in growth environments that are predicted to become increasingly hostile 

or unfit for current agricultural practices [36]. Nutrient deficiencies pose serious health risks 

worldwide, particularly in developing nations [37, 38], making it necessary to increase not only 

the quantity of crops produced but also their nutrient value. Sustainable methods are needed to 

minimize waste and pollution, maximize water-use efficiency and soil nutrients, and prevent 

destruction or contamination of local ecosystems. These goals can be promoted by breeding or 

engineering crops that achieve optimal mineral nutrient homeostasis in extreme conditions 

without requiring environmentally damaging interventions, such as extensive fertilizer 

application or irrigation. 

Several previous ionomics studies have informed on ion homeostasis and plant adaptation 

with results applicable to addressing abiotic stressors, improving yield, and/or increasing 

sustainability. For example, analyses have mapped QTL associated with low-phosphate 

tolerance, many of which are also involved in root traits such as root length and root hair density 

[39]. The use of ionomics and other –omics approaches identified transporters and other factors 

involved in P homeostasis that were used for transgenic manipulation. Overexpression of Pi-

regulating factors that respond to Pi deficiency altered traits desirable for uptake, including root 

morphology, increased expression of Pi transporters, and conferred low Pi tolerance without 

inducing Pi toxicity [40–42]. Network construction that accounts for expression variation across 

different tissues will aid in choosing genes that can be modified to improve abiotic conditions 

such as low Pi availability without fitness-decreasing consequences. Important micronutrients for 

human nutrition have been studied with ionomics. The IRT1 iron transporter was found to play a 

role in the iron deficiency response through gene expression changes and concurrent increases in 

other metals. by transporting additional metals [43]. Other studies in have identified loci and 
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QTL by environment interactions underlying leaf and grain concentration of toxic elements, such 

as Cd [17, 20]. QTL regulating the ionome under drought stress have been mapped in 

Arabidopsis [44] and rice [45]. Pathogen response has also been explored in Arabidopsis, with a 

gene related to pathogen response linked to leaf potassium homeostasis [25]. The potential for 

temperature changes to alter the ionome was evaluated in Lotus japonicus, with significant 

alterations in the shoot ionome observed in reaction to sub-optimal root zone temperatures [46]. 

Analysis of micro- and macro- mineral nutrients in the seeds or leaves of a plant along 

with genotypes, environmental variables, and other phenotypes such as height, biomass, gene 

expression profiles, or metabolite panels, has the potential to relate genes and gene networks that 

control the ionome to developmental state and environment. By identifying favorable allele-

environment pairs we can tailor agricultural practices to our specific needs. Unlike the practice 

of random breeding for beneficial alleles over several generations, the application of information 

gained from high-throughput genetic and phenotypic studies can produce efficient, targeted 

changes in plant adaptive capacity. 

THE FUTURE OF IONOMICS 

Past studies in the area of ionomics provide ample evidence that ionomics is a valuable 

tool for understanding the genetic basis of ion homeostasis and plant environmental adaptation. 

While some genetic variants have been characterized in-depth, with insight into the causal gene 

mutation and functional basis of the mutant phenotype, the specific functions of the majority of 

mapped loci remain unclear. Genes that have been identified have often not yet been placed in 

the context of genetic networks. The application of ionomics to agriculture while avoiding 

unforeseen side-effects of genetic modifications or unfavorable allele-environment combinations 
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demands an extensive understanding of gene-gene interactions and the interaction of 

environment with genes and genetic networks.  

Studies on genetic by environment interactions controlling the ionome will be improved 

by data collection across more environments with more extensive metadata. Comparative 

analyses are often complicated by studies often having limited data on field growth environment 

and varying growing practices. Uniform practices for cultivation and acquisition of soil and 

weather data will facilitate comparisons and allow for inclusion of specific environmental 

variables in quantitative models. Such an effort has recently begun with the Genomes to Fields 

(G2F) Initiative, which aims to characterize genotype by environment effects by growing inbred 

and hybrid lines of maize in 22 environments, with standardized weather and soil data collection 

in each environment [47]. Ecophysiological models and evolutionary ecology are becoming 

useful components of quantitative genetic analyses seeking to describe G x E. QTL-based 

ecophysiological models can specifically model components of the environment and predict the 

outcome of a given genotype-environment pair [48].  

Quantitative studies of the ionome can more completely characterize the genes 

controlling the ionome, contextualize genes within networks, and link genetic networks to 

adaptive response if experiments are conducted in a broader range of species, environments, and 

tissues and merged with other –omics data. To fully capture genetic regulation of the ionome, it 

will be necessary to view the ionome as a network and advance the use of multivariate analysis 

in quantitative studies. PCA and LDA have been shown to separate out groups of mutants and 

distinguish plants grown in different environments based on the ionome as a whole. Nutrient 

balances, isometric log ratios of elements and groups of elements, have also been proposed as a 

method of multivariate ionomic analysis [49]. Integration of techniques such as transcriptomics 
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or metabolomics with ionomics will further gene and gene network-level understanding of the 

ionome [50, 51]. Progress in next-generation phenotyping will aid in linking the ionome to 

adaptive traits [52]. Visualization techniques involving X-ray fluorescence, X-ray absorption 

spectrometry, and mass spectrometry are being developed to image the cellular and subcellular 

localization of elements and trace the movement of elements [53, 54]. A comprehensive view of 

ionomic regulation will improve as studies in the field include more data types and various 

environmental conditions. 

OUTLINE OF THE DISSERTATION 

This work advances the understanding of mineral nutrient regulation in the crop species 

maize (Zea mays L.) through a series of experiments utilizing quantitative genetics, multivariate 

approaches, and gene expression analysis. Maize is both a model plant species, with extensive 

genetic resources [55], and a global staple crop, with several practical applications for human 

nutrition and energy production [56]. Maize genetic diversity exceeds that of any other model 

organism [57]. This diversity has been cultivated over thousands of years and variable 

environments, making it ideal for the study of the genetic by environment interactions that 

determine the ionome. Although variation in element homeostasis is expected across different 

organisms, comparative genomics has been successfully used in previous metabolomics and 

ionomics studies [58, 59], suggesting that findings in maize can be extended to other plant 

species.  

The first chapter of this thesis describes a QTL by environment analysis of kernel 

element content in the maize intermated B73 x Mo17 recombinant inbred (IBM) population [20], 

a population particularly suited for quantitative genetic analyses as its high level of intermating 



 11 

and genetic recombination allows for improved mapping resolution [60]. This analysis was 

carried out on element profiles from seeds of the IBM population grown in 10 different field 

environments to map loci contributing to element accumulation in the seed. Varying field 

environments also allowed for detection of loci exhibiting interactions with environment. 

The second chapter details QTL analysis using a multivariate technique. This extension 

beyond single-element QTL mapping was motivated by previous descriptions of the ionome as 

an extensively correlated network [6]. This approach isolated locations of the genome 

contributing to variation in multiple elements through QTL mapping on multi-element traits 

derived from PCA. Multi-element traits served as a means to approach the ionome as an 

integrated web of elements and find genetic regulators shared between different elements. These 

results suggest that single-element and multi-element techniques should be used as 

complimentary methods to maximize detection of genetic loci contributing to seed element 

accumulation. 

The third and final chapter describes a gene expression study using RNA collected from 

roots of the IBM population grown in greenhouse conditions. Gene expression in the root has 

been repeatedly shown to impact the ionome of seeds and leaves [2, 30, 61]. This work identified 

gene expression networks in the maize root using co-expression and expression QTL (eQTL) 

analyses. Genetic networks that act in the root and potentially impact the leaf and/or seed ionome 

were characterized by relating the root-based results with previously mapped loci for leaf and 

seed elemental profiles. Candidate genes were identified for known ionome QTL and QTL were 

contextualized within broader genetic networks. 

By employing an integrative, multi-staged analysis with sets of ionomic and gene 

expression data across various environments, these experiments have identified genetic loci and 
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regulatory networks in maize underlying element accumulation. Further exploration of these 

candidate genes and regulatory mechanisms can inform on genetic control of adaptive traits and 

provide foundational knowledge for selective breeding of crops that efficiently produce fuel and 

nutrients in increasingly variable environments. 
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ABSTRACT 

 Plants obtain soil-resident elements that support growth and metabolism from the water- 

flow facilitated by transpiration and active transport processes. The availability of elements in 

the environment interacts with the genetic capacity of organisms to modulate element uptake 

through plastic adaptive responses, such as homeostasis. These interactions should cause the 

elemental contents of plants to vary such that the effects of genetic polymorphisms will be 

dramatically dependent on the environment in which the plant is grown. To investigate genotype 

by environment interactions underlying elemental accumulation, we analyzed levels of elements 

in maize kernels of the Intermated B73 x Mo17 (IBM) recombinant inbred population grown in 

10 different environments spanning a total of six locations and five different years. In analyses 

conducted separately for each environment, we identified a total of 79 quantitative trait loci 

controlling seed elemental accumulation. While a set of these QTL were found in multiple 

environments, the majority were specific to a single environment, suggesting the presence of 

genetic by environment interactions. To specifically identify and quantify QTL by environment 

interactions (QEIs), we implemented two methods: linear modeling with environmental 

covariates and QTL analysis on trait differences between growouts. With these approaches, we 

found several instances of QEI, indicating that elemental profiles are highly heritable, 

interrelated, and responsive to the environment. 
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INTRODUCTION 

The intake, transport, and storage of elements are key processes underlying plant growth 

and survival. A plant must balance mineral levels to prevent accumulation of toxic 

concentrations of elements while taking up essential elements for growth. Food crops must strike 

similar balances to provide healthy nutrient contents of edible tissues. Adaptation to variation in 

soil, water, and temperature requires that plant genomes encode flexible regulation of mineral 

physiology to achieve homeostasis [1]. This regulation must be responsive to both the 

availability of each regulated element in the environment and the levels of these elements at the 

sites of use within the plant. Understanding how the genome encodes responses to element 

limitation or toxic excess in nutrient-poor or contaminated soils will help to achieve targeted 

crop improvements and sustain our rapidly growing human population [2]. 

The concentrations of elements in a plant sample provide a useful read-out for the 

environmental, genetic and physiological processes important for plant adaptation. We and 

others developed high-throughput and inexpensive pipelines to detect and quantitate 20 different 

elemental concentrations by inductively coupled plasma mass spectrometry (ICP-MS). This 

process, termed ionomics, is the quantitative study of the complete set of mineral nutrients and 

trace elements in an organism (its ionome) [3]. In crop plants such as maize and soybean, seed 

element profiles make an ideal study tissue as seeds provide a read-out of physiological status of 

the plant and are the food source.  

 Quantitative genetics using structured recombinant inbred populations is a powerful tool 

for dissecting the factors underlying elemental accumulation and relationships. By breaking up 

linkage blocks through recombination and then fixing these new haplotypes of diverse loci into 

mosaic sets of lines, these populations allow similar sets of alleles to be repeatedly tested in 
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diverse environments [4]. A variety of quantitative statistical approaches can then be used to 

identify QTL by environment interactions (QEI).  

Here, we used elemental profiling of a maize recombinant inbred population grown in 

multiple environments to identify QTL and QEI underlying elemental accumulation. We sought 

both environmental and genetic determinants by implementing single-environment QTL 

mapping and analyses of combined data from multiple environments. Overall, we detected 79 

loci controlling elemental accumulation, many of which were environment-specific, and 

identified loci exhibiting significant QEI. 

 

MATERIALS & METHODS 

Field Growth and Data Collection 

Population and field growth. Subsets of the Intermated B73 x Mo17 (IBM) 

recombinant inbred population were grown in 10 different environments:  Homestead, Florida in 

2005 (220 lines) and 2006 (118 lines), West Lafayette, Indiana in 2009 (193 lines) and 2010 (168 

lines), Clayton, North Carolina in 2006 (197 lines), Poplar Ridge, New York in 2005 (256 lines), 

2006 (82 lines), and 2012 (168 lines), Columbia, Missouri in 2006 (97 lines), and Limpopo, 

South Africa in 2010 (87 lines). In all but three environments, NY05, NC06, and MO06, one 

replicate was sampled per line. In NY05, 3 replicates of 199 lines, 2 replicates of 50 lines, and 1 

replicate of 7 lines were sampled. A replicate is considered pooled ears from a row. Several ears 

were harvested and kernels were subsampled from pooled ears from the row. After harvesting, 

seeds were stored in local temperature and humidity controlled seed storage rooms. Subsequently 

they were shipped to the ionomics lab where they were stored in temperature-controlled 

conditions. Because each batch of seed was treated identically, any losses in weight or increases 
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in weight due to differing hydration should not affect the relative, weight-adjusted concentrations 

used for analysis. We do not expect any changes in ion composition due to storage. Table S1 

includes planting dates and line numbers after outlier removal and genotype matching. After 

outlier removal, 199 of the 233 unique lines in the experiment were present in 3 or more of the 

10 environments. 106 lines were present in 7 or more of the environments.  

Elemental Profile Analysis 

Elemental profile analysis is conducted as a standardized pipeline in the Baxter Lab. The 

methods used for elemental profile analysis are as described in Ziegler et al. [5]. Descriptions 

taken directly are denoted by quotation marks. 

Sample preparation and digestion. Lines from the IBM population from each 

environment were analyzed for the concentrations of 20 elements. “Seeds were sorted into 48-

well tissue culture plates, one seed per well. A weight for each individual seed was determined 

using a custom built weighing robot. The weighing robot holds six 48-well plates and maneuvers 

each well of the plates over a hole which opens onto a 3-place balance. After recording the 

weight, each seed was deposited using pressurized air into a 16×110 mm borosilicate glass test 

tube for digestion. The weighing robot can automatically weigh 288 seeds in approximately 1.5 

hours with little user intervention.” 

 “Seeds were digested in 2.5 mL concentrated nitric acid (AR Select Grade, VWR) with 

internal standard added (20 ppb In, BDH Aristar Plus). Seeds were soaked at room temperature 

overnight, then heated to 105°C for two hours. After cooling, the samples were diluted to 10 mL 

using ultrapure 18.2 MΩ water (UPW) from a Milli-Q system (Millipore). Samples were stirred 

with a custom-built stirring rod assembly, which uses plastic stirring rods to stir 60 test tubes at a 

time. Between uses, the stirring rod assembly was soaked in a 10% HNO3 solution. A second 
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dilution of 0.9 mL of the 1st dilution and 4.1 mL UPW was prepared in a second set of test tubes. 

After stirring, 1.2 mL of the second dilution was loaded into 96 well autosampler trays.” 

Ion Coupled plasma mass spectrometry analysis. Elemental concentrations of B, Na, 

Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, and Cd “were measured using 

an Elan 6000 DRC-e mass spectrometer (Perkin-Elmer SCIEX) connected to a PFA microflow 

nebulizer (Elemental Scientific) and Apex HF desolvator (Elemental Scientific). Samples were 

introduced using a SC-FAST sample introduction system and SC4-DX autosampler (Elemental 

Scientific) that holds six 96-well trays (576 samples).” Measurements were taken with dynamic 

reaction cell (DRC) collision mode off. “Before each run, the lens voltage and nebulizer gas flow 

rate of the ICP-MS were optimized for maximum Indium signal intensity (>25,000 counts per 

second) while also maintaining low CeO+/Ce+ (<0.008) and Ba++/Ba+ (<0.1) ratios. This 

ensures a strong signal while also reducing the interferences caused by polyatomic and double-

charged species. Before each run a calibration curve was obtained by analyzing six dilutions of a 

multi-element stock solution made from a mixture of single-element stock standards (Ultra 

Scientific). In addition, to correct for machine drift both during a single run and between runs, a 

control solution was run every tenth sample. The control solution is a bulk mixture of the 

remaining sample from the second dilution. Using bulked samples ensured that our controls were 

perfectly matrix matched and contained the same elemental concentrations as our samples, so 

that any drift due to the sample matrix would be reflected in drift in our controls. The same 

control mixture was used for every ICP-MS run in the project so that run-to-run variation could 

be corrected. A run of 576 samples took approximately 33 hours with no user intervention. The 

time required for cleaning of the instrument and sample tubes as well as the digestions and 

transfers necessary to set up the run limit the throughput to three 576 sample runs per week.”  
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Computational Analysis 

Drift correction and analytical outlier removal. Analytical outliers were removed from 

single-seed measurements using a method described by Davies and Gather [6]. Briefly, values 

were considered an outlier and removed from further analysis if the median absolute deviation 

(MAD), calculated based on the line and location where the seed was grown, was greater than 

6.2.  

Normalization for seed weight by simply dividing each seed’s solution concentration by 

sample weight resulted in a bias where smaller seeds often exhibited a higher apparent elemental 

concentration, especially for elements whose concentration is at or near the method detection 

limit. This bias is likely either a result of contamination during sample processing, a systematic 

over or under reporting of elemental concentrations by the ICP-MS, or a violation of the 

underlying assumption that elemental concentration in seeds scales linearly with seed weight. 

Instead, we developed a method taking residuals from the following linear model:  

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝑒 

where Y is the non-weight normalized measure of elemental concentration for each seed after 

digestion, β0 is the population mean, X1 is the seed weight, X2 is the analytical experiment the 

seed was run in (to further correct for run-to-run variation between analytical experiments), and e 

is the residual (error) term. The residuals in this linear model represent how far each data point 

departs from our assumption that analyte concentration will scale linearly with sample weight. If 

all samples have the same analyte concentration then the linear model will be able to perfectly 

predict analyte concentration from weight and the residuals will all equal zero. However, if a 

sample has a higher or lower concentration of an analyte then the general population being 

measured, then it will have a residual whose value represents the estimated concentration 
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difference from the population mean. For this reason, we have termed this value the estimated 

concentration difference from the mean (ECDM). 

Heritability calculation. Broad-sense heritability was calculated for seed weight and 20 

elements across environments and within three environments for which we had substantial 

replicate data. To estimate the broad-sense heritability across 10 environments, the total 

phenotypic variance was partitioned into genetic and environmental variance, with the broad-

sense heritability being the fraction of phenotypic variance that is genetic. This was done using 

an unbalanced, type II analysis of variance (ANOVA) in order to account for the unbalanced 

common line combinations across environments. Two models were fit using the lmfit function in 

R. The first model included genetic variance as the first term and environmental variance as the 

second. The second model had the opposite form. The variances for genetic or environmental 

components were obtained using the anova function on the model in which that component was 

the second term. Broad-sense heritability was calculated by dividing the genetic variance by the 

total (genetic plus environmental plus residuals) variance. Heritability was calculated within 

environments for NY05, NC06, and MO06. Data with outliers designated as NA was used for 

each environment. For each element within an environment, lines with NA were removed and 

lines with only 1 replicate were removed, leaving only lines with 2 or more replicates. The 

heritability was then calculated for seed weight and each element using the lmfit and anova 

functions to obtain the variances for the genetic component and the residuals. Broad-sense 

heritability was calculated as the proportion of total variance (genetic plus residuals) explained 

by the genetic component. 

QTL mapping: elemental traits. The R package R/qtl was used for QTL mapping. For 

each of the 10 environments, elemental trait line averages and genotypes for all lines, 4,217 
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biallelic single nucleotide polymorphisms (SNPs) distributed across all 10 maize chromosomes, 

were formatted into an R/qtl cross object. The stepwiseqtl function was used to implement the 

stepwise method of QTL model selection for 21 phenotypes (seed weight, 20 elements). The max 

number of QTL allowed for each trait was set at 10 and the penalty for addition of QTL was set 

as the 95th percentile LOD score from 1000 scanone permutations, with imputation as the 

selected model for scanone. A solely additive model was used; epistatic and interaction effects 

were not considered and thus heavy and light interaction penalties were set at 0. QTL positions 

were optimized using refineqtl, which considers each QTL one at a time, in random order, 

iteratively scanning in order to move the QTL to the highest likelihood position. QTL models for 

each trait in each environment were obtained using this procedure. QTL within 5 cM of each 

other were designated as the same QTL. 

QTL by environment analysis: linear model comparison. Linear modeling was used to 

determine instances and strength of QEI using all data from two years within three locations (FL, 

IN, NY). The specific growouts analyzed together were FL05, FL06, IN09, IN10, NY05, and 

NY12. FL, IN, and NY were then used as covariates in QTL analysis. Two QTL models, one 

with location as an additive and interactive covariate and one with location as only an additive 

covariate, were fit for each phenotype (sample weight, 20 elements) using the scanone function 

in R/qtl,  

𝑦𝑖 =  𝜇 + 𝛽𝑔𝑔𝑖 + 𝛽𝑥𝑥𝑖 +  𝛾𝑔𝑖𝑥𝑖 + 𝜀𝑖  (1) 

𝑦𝑖 =  𝜇 + 𝛽𝑔𝑔𝑖 + 𝛽𝑥𝑥𝑖 + 𝜀𝑖   (2) 

where yi is the phenotype of individual i, gi is the genotype of individual i, and xi is the location 

of individual i. Bg and Bx are additive effects of genotype and environment, respectively, and γ is 

the effect of genotype by environmental interaction. LOD scores for each marker using model 
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(2) were subtracted from LOD scores for each marker using model (1) to the isolate genetic by 

location effect. QTL by location interaction was determined as QTL with a significant LOD 

score after subtraction. The significance threshold was calculated from 1000 permutations of the 

three step procedure (fitting the two models and then subtracting LOD scores) and taking the 95th 

percentile of the highest LOD score.  

QTL by environment analysis: mapping on within-location differences. QTL were 

mapped on phenotypic differences between common lines grown over two years at a single 

location. This procedure was used to compare FL05 and FL06, IN09 and IN10, and NY05 and 

NY12 by calculating the differences for each trait value between common lines in location pairs 

(FL05-FL06, IN09-IN10, NY05-NY12) and using these differences for analysis using the 

previously described stepwiseqtl mapping and permutation procedure.  

Data Availability 

All data and scripts are available on Ionomics Hub (iHUB) in the Maize Database at 

www.ionomicshub.org. 

 

RESULTS 

Genetic Regulation of Elemental Traits 

The data used for this study is comprised of 20 elements measured in the seeds from the 

Zea mays L. Intermated B73 x Mo17 recombinant inbred line (IBM) population grown in 10 

different location/year settings. The IBM population is a widely studied maize population of 302 

intermated recombinant inbred lines, each of which have been genotyped with a set of 4,217 bi-

allelic single nucleotide polymorphism (SNP) genetic markers [7]. The four rounds of 



 26 

intermating and subsequent inbreeding generated increased recombination and a longer genetic 

map for the IBM than for typical biparental recombinant inbred line populations. The number of 

individuals, marker density, and greater recombination facilitates more precise QTL localization 

than a standard RIL population [8–13]. This greater resolution reduces the number of genes 

within a QTL support interval, increasing the utility of QTL mapping as a hypothesis test for 

shared genetic regulation of multiple traits and promoting discovery of the molecular identity of 

genes affecting QTL. For this study, subsets of the IBM population were grown at Homestead, 

Florida in 2005 (FL05) and 2006 (FL06), West Lafayette, Indiana in 2009 (IN09) and 2010 

(IN10), Clayton, North Carolina in 2006 (NC06), Poplar Ridge, New York in 2005 (NY05), 

2006 (NY06), and 2012 (NY12), Columbia, Missouri in 2006 (MO06), and Limpopo, South 

Africa in 2010 (SA10) (Table S1). While very few of the 233 unique IBM lines in the 

experiment were grown in all environments, 106 of the 233 lines were grown in 7 or more 

environments and 199 were grown in 3 or more environments. Within each growout, all samples 

were treated identically: seeds from all environments were stored in temperature and humidity 

controlled storage rooms after harvest and then shipped to the ionomics lab. We do not expect 

any change in ion composition from storage within a growout, however we cannot rule out that 

some of the differences between growouts might be due to slightly different moisture content. 

These differences are not likely to account for the genetic by environment interactions we 

observe as they should have similar effects on all lines. Single seeds were profiled for the 

quantities of 20 elements using ICP-MS. These measurements were normalized to seed weight 

and technical sources of variation using a linear model, with the resulting values used as the 

elemental traits for all analyses [14]. After outlier removal, seed element phenotypes were 
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derived by averaging line replicates (kernels subsampled out of pooled ears from a row) within 

an environment. 

Variation in the elemental traits was affected by both environment and genotype. 

Elemental traits generally exhibited lower heritability among genotypes grown across multiple 

environments than among genotype replicates within a single environment (Table 1). The broad-

sense heritability (H2) of seed weight, 15 of 21 elements in NY05, 13 of 21 elements in NC06, 

and 13 of 21 elements in MO06 exceeded 0.60. Elements exhibiting low heritability within 

environments corresponded to the elements that are prone to analytical artifacts or present near 

the limits of detection by our methods, such as B, Al, and As. Seven elements had a broad sense 

heritability of at least 0.45 in a single environment (NY05, NC06, and NY06) but less than 0.1 

across all environments. This decrease in heritability across the experiment, which was 

particularly striking for Mg, P, S, and Ni, is consistent with strong genotype by environment 

interactions governing the accumulation of these elements.  

Table 1. Broad-sense Heritability (H2) of Element Concentrations. 

Trait 
All 

env 
NY05 NC06 MO06 

Seed 

Weight 
0.30 0.59 0.69 0.89 

B 0.02 0.35 0.51 0.06 

Na 0.07 0.34 0.23 0.19 

Mg 0.04 0.77 0.69 0.75 

Al 0.07 0.39 0.50 0.08 

P 0.03 0.62 0.69 0.33 

S 0.05 0.73 0.77 0.51 

K 0.06 0.69 0.72 0.36 

Ca 0.12 0.65 0.63 0.77 

Mn 0.14 0.80 0.80 0.75 

Fe 0.07 0.76 0.73 0.63 

Co 0.06 0.65 0.54 0.42 

Ni 0.05 0.84 0.54 0.82 
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Cu 0.17 0.80 0.75 0.92 

Zn 0.07 0.68 0.73 0.86 

As 0.02 0.37 0.45 0.01 

Se 0.03 0.32 0.35 0.68 

Rb 0.03 0.49 0.45 0.69 

Sr 0.06 0.61 0.48 0.53 

Mo 0.23 0.85 0.73 0.96 

Cd 0.36 0.71 0.69 0.24 

All env: Line replicate averages from each location 

NY05: 50 lines with 2 reps, 199 lines with 3 reps 

NC06: 121 lines with 2 reps, 53 lines with 3 reps, 4 lines with 4 reps 

MO06: 50 lines with 2 reps, 18 lines with 3 reps 

*outliers for each element calculated with outlier removal function, designated as NA 

*for each single environment, for each trait, only lines w/o missing data and with reps >1 used to 

calculate heritability 

 

A stepwise algorithm, implemented via stepwiseqtl in the R package R/qtl [15], was used 

to map QTL for seed weight and 20 seed elemental phenotypes. The stepwise algorithm iterates 

through the genome and tests for significant allelic effects of each marker on a phenotype. 

Forward and backward regression generates the final genome-wide QTL models for each trait. 

This QTL mapping procedure on 21 traits was completed as a separate analysis for each subset 

of lines from the IBM populations grown in each of the 10 environments. For the sake of 

completeness and to comprehensively investigate all of the traits we had access to, all elemental 

traits in each environment were tested, even in cases where heritability for a given element was 

low in an environment. QTL significance were determined using the 95th percentile threshold 

from 1000 scanone permutations as a penalty score for adding QTL to the stepwise model [16]. 

We examined the relationship between the heritability of an element in a given environment and 

number of QTL identified in that environment (Fig S1). As expected, elements with very low 

heritability had few to no QTLs while larger numbers of QTLs were identified for higher 

heritability elements.  
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The environmental dependence on QTL detection was first estimated by identifying QTL 

common to multiple environments. If QTL detected in two or more growouts affected the same 

element and localized within 5 cM of each other, they were considered to be the same locus. 

Across the 10 environments, a total of 79 QTL were identified for seed weight and 18 of the 20 

elemental traits tested (none for Al or Co) (Fig 1B &C). Of these QTL, 63 were detected in a 

single environment and 16 were detected in multiple environments. The 16 QTL found in 

multiple environments included QTL detected in nearly all of the environments and QTL 

detected in only two. One QTL for Mo accumulation, on chromosome 1 in the genetic region 

containing the maize ortholog of the Arabidopsis molybdenum transporter MOT1 [17], was 

found in nine environments (Fig 1A). Another QTL affecting Cd accumulation, on chromosome 

2 and without a clear candidate gene, was found in eight environments. Other QTL were only 

present in a smaller set of environments, such as the QTL for Ni accumulation on chromosome 9, 

which was found in five environments (Fig 1D). The strength of association and percent variance 

explained showed strong differences between environments even for these QTL that were 

detected in multiple environments (Table S2).   
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Fig 1. Ionome QTL from 10 Environments. QTL identified for seed weight and 20 element 

accumulation traits using the IBM RIL population grown in 10 environments. (A) QTL on 

chromosome 1 affecting variation in molybdenum accumulation. An interval of Chr1 is shown 

on the x-axis in centi-Morgans (cM). The LOD score for the trait-genotype association is shown 

on the y-axis. The horizontal line is a significance threshold from 1000 random permutations (= 

0.05). The LOD profiles are plotted for all environments in which the highlighted QTL was 

detected. (B) Total number of QTL detected for each trait, colored by environment. (C) 

Significant QTL (= 0.05) for each trait. QTL location is shown across the 10 maize 

chromosomes (in cM) on the x-axis. Dashes indicate QTL, with environment in which QTL was 

found designated by color. All dashes are the same length for visibility. The two black boxes 

around dashes correspond to LOD profiles traces in (A) and (D). (D) Stepwise QTL mapping 

output for nickel on chromosome 9. LOD profiles are plotted for all environments in which the 

QTL is significant. 
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As seen in the full-genome view of all QTL colored by environment (Fig 1C), there is a 

high incidence of QTL found in single locations. There are three hypotheses that could explain 

the large proportion of QTL found only in a single location: 1) strong QTL by environment 

interaction effects, 2) false positive detection of a QTL in an individual location and 3) false 

negative assessment of QTL absence due to genetic action but statistical assessment below the 

permutation threshold in other environments. To reduce the risk of false positives in a single 

environment’s QTL set, the significance threshold was raised to the 99th percentile, where 31 of 

the 63 environment-specific QTL remained significant. Despite the large number of 

trait/environment combinations tested (20 traits in 10 environments), the number of QTLs 

detected is much larger than the null expectation derived from a Bonferroni correction: 10 QTL 

(95th percentile threshold) and two QTL (99th percentile threshold). To account for false 

negatives, we scanned for QTL using a more permissive 75th percentile cutoff. Of the 63 single-

environment QTL, only nine had QTL in other environments by this more permissive threshold. 

Thus, the majority of the 63 single-environment QTL most likely result from environmentally 

contingent genetic effects on the ionome. 

QTL by Environment Interactions 

That QTL detection was so strongly affected by environment suggested the effects of 

allelic variation on element concentration were heavily dependent on environmental variables. 

These results, however, did not specifically test for QTL by environment interactions (QEI). 

Comparison between environments with our data is additionally complicated because different 

subsamples of the IBM population were grown at these multiple locations and years. While there 

are many different approaches to identifying QEI described in the literature (summarized in El-

Soda et al. [18]) we focused on two previously implemented methods. The first considered 
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location (but not year) by comparing the goodness of fit for linear models with and without an 

interactive covariate [19–21]. The second method takes advantage of the ability to grow the same 

RILs in multiple years. Trait values measured in the same IBM line for the same element at the 

same site but in different years were subtracted from each other and the difference between years 

was assigned as the trait value for that RIL genotype for QTL detection [22, 23].  

Linear model estimation of QTL by location effects. The most common approach to 

analyze QEI is to fit a linear model with environment as both a cofactor and an interactive 

covariate and compare results to a model with environment as an additive covariate [24]. This 

method is most amenable when data are available for the same lines grown in every 

environment, which was not the case across all of our dataset. Data from the three locations with 

two replicate years each (FL, IN, NY) were analyzed to reduce the number of covariates and 

increase the power to detect variation from the environment. The data for both years in each 

location were combined (FL05 & FL06, IN09 & IN10, NY05, NY06 & NY12), designating 

covariates based on location. 

Two linear QTL models were fit to the combined data using the FL, IN, and NY locations 

as covariates. These models reflect the dependence of phenotype on genotype, environment, and 

genotype-by-environment interactions. 

𝑦𝑖 =  𝜇 + 𝛽𝑔𝑔𝑖 + 𝛽𝑥𝑥𝑖 +  𝛾𝑔𝑖𝑥𝑖 + 𝜀𝑖  (1) 

𝑦𝑖 =  𝜇 + 𝛽𝑔𝑔𝑖 + 𝛽𝑥𝑥𝑖 + 𝜀𝑖   (2) 

The first equation fit (1) is the full model considering the phenotype of individual i (yi) as 

controlled by genotype (gi), location (xi), and genotype by location interaction (gixi), while the 

reduced model (2) estimates phenotype without considering genotype by location interaction, 

using genotype and location as purely additive factors. Bg and Bx represent the additive effects of 
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genotype and environment, respectively, while γ represents the effect of the genotype by 

environment interaction. By using likelihood ratio tests on full and reduced models, we can test 

the hypothesis that genotype by environment interactions significantly improve the fit of the 

model to the data and estimate the effects of genetic by environment interactions. 

The program R/qtl was used to fit QTL using both the full and reduced models for sample 

weight and 20 elements, with three locations encoded as covariates in the environment term. For 

each marker, LOD scores resulting from the reduced QTL model were subtracted from LOD 

scores determined by the full model, leaving a LOD score for each marker representing solely 

the significance of the genetic by location component. The significance threshold for the 

subtracted LOD scores was calculated by using 1000 permutations of the three step procedure 

(fitting the two models with randomized data and then subtracting LOD scores). Even with this 

underpowered dataset, 10 QTL by location interactions exceeded the threshold (= 0.05, Table 

2). Interactions between QTL and location are likely to be due to a combination of soil and 

weather differences across different locations. In the case of Ni, our initial single-element QTL 

mapping conducted separately on data from each environment identified differences in QTL 

presence or strength between FL, IN, and NY locations for a QTL located at the beginning of 

chromosome 9 (Fig 2). This QTL corresponds to a locus found to have a significant QTL by 

location effect (Table 2). Remarkably, all elemental QTL by location interactions detected by 

this approach affected trace element accumulation. These elements are both low in concentration 

in the grain, and often variable among soils [25]. Cd, an element for which we found significant 

QEI, has detrimental effects on both human and plant health [26] and is toxic in food at levels as 

low as .05 ppm. [27]. The locus with the strongest QEI for Cd does not follow location averages 

of Cd content in the grain (Table S3) and therefore is unlikely to be affected by crossing a 
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detection threshold driven by higher Cd in the soils at those locations. The lack of direct 

correlation between QTL significance and grain content also occurs for the loci with strong by-

location effects for Mo and Ni. This demonstrates that reduced cadmium or enhanced 

micronutrient contents in grain require plant breeding selections that consider complex genetic 

by environment interactions rather than genotypes assessed in a single soil environment.  

Table 2. QTL with Significant by-Location interactions. 

Trait Chr Pos (cM) LOD Significance 

Threshold† 

Mn 1 232.4 7.03 4.59 

Mn 5 195.8 4.61 4.59 

Fe 5 204.6 4.50 3.94 

Ni 1 410.3 6.15 4.69 

Ni 9 7.7 28.50 4.69 

Cu 7 165.9 5.31 4.72 

Zn 4 157.4 4.44 4.13 

Rb 2 185.3 3.38 2.80 

Mo 1 378.0 48.49 4.20 

Cd 2 214.6 20.26 3.87 
†= 0.05 
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Fig 2. Significant QTL-by-Location Interactions Reflect Variation in Single Environment 

Mapping. (A) Nickel QTL on chromosome 9 exhibits variation between FL, IN, and NY 

growouts in single environment QTL mapping. Scanone QTL mapping output for Ni on a 

segment of Chr9 is plotted for FL05, FL06, IN09, IN10, NY05, and NY12. LOD score is plotted 

on the y-axis and cM position on the x-axis. Horizontal line corresponds to significance 

threshold (= 0.05). (B) Scanone QTL mapping for combined Ni data from Florida (FL05 and 

FL06), Indiana (IN09 and IN10), and New York (NY05 and NY12) growouts. All lines within 

each location were included, with covariates designated based on location. QTL mapping output 

using model with location as an additive covariate is shown as dotted line. QTL mapping output 

from model with location as both an additive and interactive covariate is shown as dashed line. 

Subtracted LOD score profile from the two models (QTL by location interactive effect only) is 

shown as solid line. Horizontal line corresponds to significance threshold for QTL by location 

interaction effect, derived from 1000 iterations of the three step procedure using randomized 

data: scanone QTL mapping with the additive model, scanone QTL mapping with the additive 

and interactive model, and subtraction of the two models. 
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QTL for trait differences within location. The previous method identified genotypes 

with interactions with location but not with year. Year to year variation will also have effects due 

to differences in rainfall, temperature and management practices. To examine variation that 

occurs within a location over different years, we examined intra-location QEI in the three 

previously used locations with two year samples (FL05 & FL06, IN09 & IN10, NY05 & NY12). 

QTL were mapped using the stepwise algorithm on trait differences for sample weight and 20 

elements between common lines among the two different years from a location. This approach 

identified loci affecting phenotypic differences between the same lines grown on the same farm 

but in different years. Six QTL were found for FL05-FL06 differences, one QTL for IN09-IN10 

differences, and two QTL for NY05-NY12 differences (Table 3). These trait-difference QTL 

included loci identified in our single element/environment QTL experiment where a locus was 

present for one year but not the other or the QTL was found in both years with differing strength 

(Fig 3A, B, C). Six of the difference QTL were detected at loci where no QTL were detected 

when the years were mapped separately, revealing novel gene by environment interactions not 

obvious from the single year data. These significant effects of year-to-year environmental 

variation within the same location indicated that factors beyond location are both influencing the 

ionome and determining the consequences of genetic variation. 

Table 3. Significant QTL for Trait Differences. 

Location Years 

Compared 

Trait Chr Pos (cM) LOD Significance 

Threshold† 
FL FL05_FL06 Mg 8 294.4 5.23 3.74 

FL FL05_FL06 P 4 130.2 3.89 3.60 

FL FL05_FL06 P 4 297.8 6.03 3.60 

FL FL05_FL06 P 8 294.6 8.43 3.60 

FL FL05_FL06 Co 1 296.3 4.36 3.69 

FL FL05_FL06 Mo 1 378.6 6.10 3.70 

IN IN09_IN10 Fe 8 140.9 4.52 3.62 
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NY NY05_NY12 K 5 154.2 4.25 3.61 

NY NY05_NY12 Sr 7 193.2 4.45 3.66 
†= 0.05 

 

Fig 3. Comparison of QTL Mapped on Traits in Single Environments and Trait 

Differences Between Environments. Examples from stepwise QTL mapping on trait 

differences between two years at one location, calculated between IBM lines common to both 

years. Scanone QTL mapping output is also plotted for the same trait from each year separately. 

LOD score is shown on the y-axis and cM position on the x-axis. Horizontal lines correspond to 
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significance threshold (= 0.05). (A) Molybdenum QTL on chromosome 1 mapped for Mo in 

FL05, Mo in FL06, and difference in Mo content between FL05 and FL06. (B) Iron QTL on 

chromosome 8 mapped for Fe in IN09, Fe in IN10, and difference in Fe content between IN09 

and IN10. (C) Potassium QTL on chromosome 5 mapped for K in NY05, K in NY12, and 

difference in K content between NY05 and NY12. 

 

DISCUSSION 

The results described here demonstrate that the concentrations of elements in the kernels 

of maize are strongly affected by the interaction of genetics with growth environment. The 

majority of elements exhibited higher heritability within each environment and a dramatic drop 

in heritability across multiple environments. Combined with the presence of a large number of 

single-environment QTL, these data support the hypothesis that environment has a significant 

impact on genetic factors influencing the ionome. By changing the stringency of the statistical 

tests, we are able to discount the likelihood that that these single environment QTL are the result 

of a large number of false positives or false negatives. The structure of our data, with few lines 

measured across all locations and years, limited our ability to test for direct QTL by environment 

interactions. As a result, we have likely underestimated the extent of QEI. Future studies with 

uniform lines across environments will allow for inclusion of data from all environments and 

lines and increase power to detect additional genetic by environment interactions. 

 Nevertheless, we were able identify QEI over different locations and QEI at a single 

location over different years. We identified a strong nickel QTL on chromosome 9 that was 

found in Indiana and New York with single-environment QTL mapping, but not in Florida. This 

same locus also was found to be a significant location-interacting QTL when using a model that 

included Indiana, New York, and Florida as covariates. One possible cause for this, and other 

location specific QTL, might be differences in element availability between local soil 
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environments. Interestingly, the presence/absence of the QTL does not seem to correlate with the 

mean levels of the elements in the grains sampled from that location, suggesting that QEI are not 

being driven solely by altered availability of the elements in the soil. Local soil differences are 

less likely to be driving the QTL found for pairwise differences between two years at one 

location. Soil content should remain relatively similar from year to year at the same farm, 

suggesting that the loci identified by comparison between years and within location will encode 

components of elemental regulatory processes responsive to precipitation, temperature, or other 

weather changes. Experiments with more extensive weather and soil data, or carefully 

manipulated environmental contrasts, are needed to create models with additional covariates and 

precisely model environmental impacts.  

 Although the mapping intervals do not provide gene-level resolution, several QTL 

overlap with known elemental regulation genes, such as the QTL on chromosome 1 at 378 cM 

which coincides with ZEAMMB73_045160, an ortholog of the Arabidopsis molybdenum 

transporter, MOT1. We observe strong effects and replication of this QTL across nearly all 

environments, suggesting that this MOT1 ortholog plays a role in a variety of environments. 

Other large effect QTL found in several environments merit further investigation, as they may 

recapitulate important element-associated genes that have yet to be identified.  Identification of 

the genes underlying these QTL and the gene/environmental variable pairs underlying the QEIs 

will improve our understanding of the factors controlling plant elemental uptake and 

productivity.  Given the high levels of variability that the interaction between genotype and 

environmental factors can induce in these traits, conventional breeding approaches that look for 

common responses across many different environments for a single trait may fail to improve the 
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overall elemental content, necessitating rational approaches that include both genetic and 

environmental factors.   
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SUPPORTING INFORMATION 

 

Fig S1. Heritability vs. Number of QTL. (A) Comparison between broad-sense heritability 

(H2) of seed weight and elemental traits. In environments with >1 replicate (NY05, NC06, 

MO06), H2 was calculated for each trait. Table indicates H2 and number of QTL detected for 



 43 

each trait in the designated environment. (B) Plot of trait heritability vs. the number of QTL 

identified in the respective environment. Environments are indicated by color. 

 

Table S1. Growout Information. 

 

Table S2. Percent Variance (R2) of Mo, Cd, and Ni QTL.

 

Table S3. Location LOD Scores Compared to Seed Element Content. 

 

Table S1. Growout Information 

For PCA: post-OR is OR after removing poorly measured elements 

Location Year 
Planting 

Date 

No. 

Lines 
No. Line Reps.

*
 

Genotyped 

Lines
†
 

No. 

Lines 

Post-

OR 

Genotyped 

Lines Post-

OR 

Florida 2005 9/14/2005 220 1(118), 2(2) 176 180 147 

Florida 2006 8/25/2006 118 1(71), 2(47) 95 114 94 

Indiana 2009 5/9/2009 193 1 156 169 134 

Indiana 2010 5/10/2010 168 1 139 155 129 

North 

Carolina 

2006 5/6/2006 197 1(19), 2(121), 3(53), 4(4)  160 187 151 

New York 2005 5/9/2006 256 1(7), 2(50), 3(199) 209 249 204 

New York 2006 5/9/2006 82 1(60), 2(22) 67 56 46 

New York 2012 5/24/2012 168 1 137 128 104 

Missouri 2006 5/17/2006 97 1(29), 2(50), 3(18) 81 58 50 

South Africa 2010 11/2009 88 1 72 82 68 
*
No. lines with rep. in parentheses  
†
239 total genotyped lines 

Lines with any elemental outliers were removed prior to PCA. 

Table S2. Percent Variance (R
2
) of Mo, Cd, and Ni QTL 

 
Mo 

1@378 

Cd 

2@215  

Ni 

9@7  

FL05 33.99 43.36 NA 

FL06 27.13 27.08 NA 

IN09 26.85 38.65 21.85 

IN10 33.35 44.77 19.67 

NC06 31.95 48.88 32.01 

NY05 69.85 52.17 47.61 

NY06 45.17 21.61 NA 

NY12 57.19 60.44 35.10 

MO06 58.21 NA NA 

SA10 NA NA NA 

Percent variance for 3 QTL in locations where QTL is significant. QTL chromosome and 

position is indicated under element name.  

 

Table S3. Location LOD Scores Compared to Seed Element Content 

 FL IN NY 

Cd_2@214_LOD 16.96 23.81 37.13 

Cd_2@214_normalizedLOD 0.08 0.15 0.17 

Avg_Cd 0.42 0.44 0.21 

Mo_1@378_LOD 11.31 17.64 51.72 

Mo_1@378_normalizedLOD 0.06 0.11 0.24 

Avg_Mo 3.22 4.85 1.99 

Ni_9@7.7_LOD 0.47 8.12 23.25 

Ni_9@7.7_normalizedLOD 0.00 0.05 0.11 

Avg_Ni 1.01 2.31 0.95 

Comparison for top three significant QTL-by-location interaction loci (Cd, Mo, Ni) 
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ABSTRACT 

The integrated responses of biological systems to genetic and environmental variation 

results in substantial covariance in multiple phenotypes. The resultant pleiotropy, environmental 

effects, and genotype-by-environment interactions (GxE) are foundational to our understanding 

of biology and genetics. Yet, the treatment of correlated characters, and the identification of the 

genes encoding functions that generate this covariance, has lagged. As a test case for analyzing 

the genetic basis underlying multiple correlated traits, we analyzed maize kernel ionomes from 

Intermated B73 x Mo17 (IBM) recombinant inbred populations grown in 10 environments. 

Plants obtain elements from the soil through genetic and biochemical pathways responsive to 

physiological state and environment. Most perturbations affect multiple elements which leads the 

ionome, the full complement of mineral nutrients in an organism, to vary as an integrated 

network rather than a set of distinct single elements. We compared quantitative trait loci (QTL) 

determining single-element variation to QTL that predict variation in principal components 

(PCs) of multiple-element covariance. Single-element and multivariate approaches detected 

partially overlapping sets of loci. QTL influencing trait covariation were detected at loci that 

were not found by mapping single-element traits. Moreover, this approach permitted testing 

environmental components of trait covariance, and identified multi-element traits that were 

determined by both genetic and environmental factors as well as genotype-by-environment 

interactions. Growth environment had a profound effect on the elemental profiles and multi-

element phenotypes were significantly correlated with specific environmental variables. 
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INTRODUCTION 

Elements are distinct chemical species, and studies of element accumulation frequently 

investigate each element separately. There is overwhelming evidence, however, that element 

accumulations covary due to physical, physiological, genetic, and environmental factors. In a 

dramatic example in Arabidopsis thaliana, a suite of elements responds to Fe deficiency in such 

a concerted manner that they can be used to predict the deficiency or sufficiency of Fe for the 

plant more accurately than the measured level of Fe in plant tissues [1]. The basis of this 

covariation can be as simple as co-transport of multiple elements. IRT1 is a metal transporter 

capable of transporting Fe, Zn, and Mn. IRT1 is upregulated in low Fe conditions resulting in an 

environmentally-dependent link between Fe and other ions [2]. Other pairs of co-regulated 

elements, such as Ca and Mg which share homeostatic pathways in Brassica oleracea [3], should 

be affected predictably by genetic variation. When A. thaliana recombinant inbred line 

populations were grown in multiple environments, genetic correlations among Li-Na, Mg-Ca, 

and Cu-Zn were observed across all environments while Ca-Fe and Mg-Fe were only correlated 

in a subset of environments [4]. Shared genetic regulation of ion transport without substantial 

environmental responsiveness should result in the former pattern, along with significantly less 

capacity for homeostasis across environmental concentrations and availabilities of elements. 

Environmentally-responsive molecular mechanisms, reminiscent of IRT1 upregulation, could 

result in environmentally-variable patterns of correlations. Baxter et al. previously tested element 

seed concentrations for correlations in the maize Intermated B73 x Mo17 (IBM) recombinant 

inbred population, finding several correlated element pairs, the strongest of which was between 

Fe and Zn [5]. Yet, few QTL impacting more than one element were found, possibly due to QTL 

with small effects on multiple elements failing to exceed the threshold of observation when 
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mapping on single element traits with limited numbers of lines. Thus, while understanding the 

factors driving individual element accumulation is important, we must consider the ionome as a 

network of co-regulated and interacting traits [6]. We propose that formally considering this 

coordination between elements can provide deeper insight than focusing on each element in 

isolation and that this will be a general feature of massively parallel phenotyping data and 

homeostatic systems. 

 Multivariate analysis techniques, such as principal components analysis (PCA), can 

reduce data dimension and summarize covariance of multiple traits as vectors of values by 

minimizing the variances of input factors to new components. When multiple phenotypes covary, 

as occurs for the elements in the ionome, this approach may complement single element 

approaches by describing trait relationships. In studies on crops such as maize, PCA has been 

used as a strategy to consolidate variables that may be redundant or reflective of a common state 

[7–11]. PCA has proved useful in previous QTL mapping efforts, facilitating detection of new 

PC QTL not found using univariate traits in analyses of root system architecture in rice [12] and 

kernel attributes, leaf development, ear architecture, and enzyme activities in maize [13–15]. In 

the current study, we expect that elemental variables are functionally related and therefore need 

new traits to describe elemental covariation. Since we do not know the exact nature of these 

relationships, and the ionome varies depending on environment, PCA is useful in that it does not 

require a priori definition of relationships between variables. If the PCA approach leads to novel 

loci and insights into how the ionome is functioning, it will be a valuable addition to the study of 

mineral nutrient regulation. 

Here we show that developing multivariate traits reveals environmental and genetic 

effects that are not detected using single elements as traits. We performed PCA on element 
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profiles from the maize IBM population [16] grown in 10 different environments. Different 

relationships between elements were identified that depended on environment. QTL mapping 

using multi-element PCs as traits was carried out within each environment separately. 

Comparing these multivariate QTL mapping results to previous single-element QTL analyses of 

the same data [17] demonstrates that a multivariate approach uncovers unique loci affecting 

multi-element covariance. Additionally, experiment-wide PCA performed on combined data 

from all environments produced components capable of separating lines by environment based 

on their whole-ionome profile. These experiment-wide factors, while representative of 

environmental variation, also exhibited a genetic component, as loci affecting these traits were 

detected through QTL mapping. This shared involvement in element covariation is the 

expectation of genetic and environmental variation resulting in adjustments to the physiological 

mechanisms underlying adaptation. 

 

MATERIALS & METHODS 

Field Growth and Data Collection 

Field growth and elemental profile analysis. Lines belonging to the Intermated B73 x 

Mo17 recombinant inbred (IBM) population [16] were grown in 10 different environments: 

Homestead, Florida in 2005 (220 lines) and 2006 (118 lines), West Lafayette, Indiana in 2009 

(193 lines) and 2010 (168 lines), Clayton, North Carolina in 2006 (197 lines), Poplar Ridge, New 

York in 2005 (256 lines), 2006 (82 lines), and 2012 (168 lines), Columbia, Missouri in 2006 (97 

lines), and Ukilima, South Africa in 2010 (87 lines). Elemental analysis was carried out in a 

standardized inductively coupled plasma mass spectrometry (ICP-MS) pipeline previously 
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described in detail [17]. Analytical outlier removal and weight normalization was performed 

following data collection as described in our previous analysis of these data. 

Computational Analysis 

Element correlation analysis. Within environments, 190 Pearson correlation 

coefficients were calculated, one for each pair of the 20 measured elements. To control for 

multiple tests, we applied a Bonferroni correction at an alpha level of 0.05. Given 190 possible 

combinations, correlations with a p-value below 0.05/190 = 0.00026 were regarded as 

significant.  

Principal components analysis of ionome variation within environments. Elements 

prone to analytical error (B, Na, Al, As) were removed before to PC analysis, leaving 16 

elements: Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Mo, and Cd. B, Na, Al, and As 

have a fairly low signal to noise ratio; because all elements are scaled together in a PCA, 

including these elements would increase the amount of noise variation going into the PCA. In an 

attempt to summarize the effects of genotype on covariance of ionomic components, a PCA was 

done using elemental data for each of the 10 environments separately. The prcomp function in R 

with scale = TRUE was used for PCA on elemental data to perform PCA on the line average 

element values in an environment. This function performs singular value decomposition on a 

scaled and centered version of the input data matrix, computing variances with the divisor N-1. 

16 PCs were returned from each environment. The IBM population is a large and diverse 

population and we observe extensive variation across the elements, so even a small proportion of 

variation could explain a substantial amount of actual variation. We used a PCA screeplot to 

guide our choice of a 2% cutoff (Fig S1). After removal of PCs accounting for less than 2% of 
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the variance, the 10 sets of PCs were used as traits in QTL analysis. Variance proportions and 

trait loadings for all PCs calculated across 10 environments are provided in Table S3. 

QTL Mapping: principal components. QTL mapping was done using stepwise 

forward-backward regression in R/qtl [34] as described previously for element phenotypes [17]. 

The mapping procedure was done for each environment separately, with PC line means for RILs 

in the given environment as phenotypes and RIL genotypes as input. The stepwiseqtl function 

was used to produce an additive QTL model for each PC, with the max number of QTL allowed 

for each trait set at 10. The 95th percentile LOD score from 1000 scanone permutations was used 

as the penalty for addition of QTL. 1000 permutations were done for every trait-environment 

combination. The QTL model was optimized using refineqtl for maximum likelihood estimation 

of QTL positions. The locations of the PC QTL detected in this study were compared to the 

single element QTL from our previous study. Loci were considered distinct if they were at least 

25 cM away from any single element QTL detected in the environment in which the PC QTL 

was detected. This serves as a conservative control in order to minimize the mistaken assessment 

of novelty for QTL with small changes in peak position. 

QTL by environment analysis: PCA across environments. The 16 most precisely 

measured elements were used for an additional principal components analysis. Again, the 

prcomp function in R with scale = TRUE was used for PCA on elemental data, however, all 16 

element measurement values in all lines in all of the 10 environments were combined into one 

PCA. These PCs are referred to as across-environment PCs (aPCs). Element loadings were 

recorded and plotted along with lines colored by environment for aPCs 1 and 2 (Fig S4). The 

first 7 aPCs explained 93% of the total covariation of these traits. A linear model was used to test 

the relationship of environmental parameters on these aPCs. All seven aPCs were also used for 
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stepwise QTL mapping by the same method described above, with 1000 permutations for every 

trait-environment combination used to set 95th percentile significance thresholds. 

QTL by environment analysis: Projection-PCA across environments. The sets of 

lines grown in each our ten environments were drawn from the same population [16] but 

different subsets were grown and harvested in different environments. To achieve common 

multivariate summaries for all lines and growouts, we performed an alternative PCA using a 

smaller set of common lines. We then projected the loadings from this PCA onto the full dataset, 

as follows. First, a PCA was conducted on 16 lines common to six of the 10 environments 

(FL05, FL06, IN09, IN10, NY05, NY12). The loadings for each PC from this PCA were then 

used to calculate values from full set of lines across 10 environments to generate PCA 

projections (PJs). These derived values based on a common-line PCA were compared to 

previously described aPC values from the PCA done on all lines at once. Correlations between 

PJs and aPCs were computed to compare the outcomes of the two methods. 

Weather and soil data collection and analysis. Weather data for FL05, FL06, IN09, 

IN10, NC06, NY05, NY06, and NY12 was downloaded from Climate Data Online (CDO), an 

archive provided by the National Climatic Data Center (NCDC) through the National Oceanic 

and Atmospheric Administration (http://www.ncdc.noaa.gov/cdo-web/). Data were not available 

for the South Africa growout. Daily summary data for each day of the growing season were 

tabulated from the weather station nearest to the field location. Weather stations used to obtain 

data for each location are indicated in Table S4. Minimum temperature (in degrees Celsius) and 

maximum temperature (in degrees Celsius) were available in each location. With these variables, 

average minimum temperature, and maximum temperature were calculated across the 120-day 

growing season as well as for 30 day quarters. Growing degree days (GDD) were calculated for 
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the entire season and quarterly using the formula GDD = ((Tmax + Tmin)/2) – 10. No max or 

min thresholds were used in the GDD calculation. 

Data describing soils from each location were obtained from the Web Soil Survey 

provided by the USDA Natural Resources Conservation Service 

(http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). A representative area of interest 

was selected at the site of plant growth using longitude and latitude coordinates. When an area 

contained more than one soil type, a weighted average of measurements from all soil types was 

used. The data we downloaded from the Web Soil Survey were: pH, electrical conductivity (EC) 

(decisiemens per meter at 25 degrees C), available water capacity (AWC) (centimeters of water 

per centimeter of soil), available water supply (AWS) (centimeters), and calcium carbonate 

(CaCO3) content (percent of carbonates, by weight). Layer options were set to compute a 

weighted average of all soil layers.  

The relationships between the seven experiment wide aPCs and the weather and soil 

variables were estimated by calculating Pearson correlation coefficients for the pairwise 

relationships. Correlations were also calculated between average element values and soil and 

weather variables in each environment. 

 

RESULTS 

Summary of Data Collection and Previous Analysis of Single Element Traits 

We previously acquired data on 20 elements measured in the seeds from Zea mays L. 

Intermated B73 x Mo17 recombinant inbred line (IBM) populations [16] grown in 10 different 

location/year settings [17]. This work is briefly summarized here as it serves as the basis of our 

comparison. The kernels came from RILs of the IBM population cultivated across six locations 
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and five years. Quantification of the accumulation of 20 elements in kernels was done using 

inductively coupled plasma mass spectrometry (ICP-MS). Weight-adjusted element 

measurements were used for a QTL analysis to detect loci contributing to variation in seed 

element contents [17]. The current study is motivated by previous demonstrations of elemental 

correlations and mutant phenotype analyses which indicate extensive relationships between 

elements [1, 4]. To explore this formally, we further analyzed these data from a multiple-element 

perspective. 

Element to Element Correlations 

Several elements were highly correlated across the dataset, exhibiting pairwise 

relationships among lines in a given environment that passed a conservative Bonferroni 

correction for multiple tests. Many of these correlations reflected results previously obtained by 

Baxter et al., such as the strong correlation between Fe and Zn [5]. We detected 209 pairs of 

elements that were genetically correlated out of 1,900 possible correlations across environments 

(190 pairs per environment). We expect robust genetic influence to produce repeated observation 

of trait correlations in multiple environments. Of the six locations included in this experiment, 

we obtained data from three locations (FL, IN, and NY) from plant material grown in two 

different years. Seven element-pairs were correlated in five or more of these six environments: 

Mn and Mg, Mg and S, Mg and P, S and P, P and K, Ca and Sr, and Fe and Zn (Fig 1). Other 

element-pair correlations were driven by the genetic variation between IBM RIL in fewer 

environments. For example, Mn and P were correlated in FL05, NY05, and NY12 (rp = 0.50, 

0.48, 0.51) but were not significantly correlated in FL06, IN09, or IN10 (rp = 0.31, 0.20, 0.18). 

Thus, while some correlations exist in multiple years and multiple locations, element correlations 

were affected by both location and year. 
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Fig 1. Element Correlations Diagrams for Locations with Repeated Measurements. 

Pairwise correlations of 20 kernel elements in varying environments, shown for the experiments 

within locations having data from multiple years (FL, IN, and NY). Correlations were calculated 

as the Pearson correlation coefficient (rp) between concentration values for each element pair. 

Significance was evaluated using a Bonferroni correction for multiple tests within each 

environment and set at a corrected p value of 0.05. Lines between elements represent significant 

pairwise correlations, weighted by strength of correlation. Positive and negative correlations are 

represented as solid and dashed lines, respectively. Red lines indicate correlations present in at 

least 5 of the 6 environments shown. 
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In our previous single-element QTL analysis of these data, loci comprising QTL for two 

or more different elements were detected (Table 1). This mutual genetic regulation of multiple 

elements was readily apparent in the trait correlations calculated within environments, as five of 

the nine shared-element QTL exhibited corresponding element pair correlations within the given 

environment. For example, phosphorous, which was in three of the seven most reproducible 

element-pair correlations, exhibited the highest incidence of shared QTL with other elements. 

These included common QTL between P accumulation and all three of the reproducibly P-

correlated elements: S and the cations K and Mg. In addition, P was affected by the only QTL 

shared between more than two elements, which affected P, S, Fe, Mn, and Zn accumulation in 

NY05 (Fig 2). Consistent with the possibility of variation in transport processes affecting 

element accumulation correlations, overlapping QTL were frequently found between elements 

with similar structure, charge, and/or type, such as Ca and Sr or Fe and Zn. These element 

correlations and post-hoc comparisons of shared QTL localizations suggest a genetic basis for 

covariance of the ionome in the RIL population.  

Table 1. Loci Affecting Variation for Multiple Elements in the Same Environment. 

 

†Average position 

Environment Chr Pos (cM) 

† 

El 1 El 2 El 3 El 4 El 5 

NY05 1 400 Mn Ni --- --- --- 

NY05 3 323 Sr Ca --- --- --- 

NY05 5 201 Mn Zn P S Fe 

NY06 1 532 Mn Mg --- --- --- 

IN09 4 306 Fe K --- --- --- 

IN10 2 213 Mo Cd --- --- --- 

NY12 5 203 Zn Fe --- --- --- 

FL05 1 230 B Mn --- --- --- 

FL05 4 159 Fe Zn --- --- --- 
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Fig 2. Multiple Element QTL. Stepwise QTL mapping output from the NY05 population for P, 

S, Fe, Mn, Zn, and PC1. Position in cM on chromosome 5 is plotted on the x-axis and LOD score 

is shown on the y-axis. 95th percentile of highest LOD score from 1000 random permutations is 

indicated as horizontal line.  

 

Principle Components Analysis of Covariance for Elements in the Ionome  

To better describe multi-element correlations and thereby detect loci controlling 

accumulation of two or more elements, we derived summary values representing the covariation 

of several elements. We implemented an undirected multivariate technique, principal 

components analysis, for this purpose. PCA reduced co-varying elements into principal 

components (PCs), orthogonal variables that account for variation in the original dataset, each 

having an associated set of rotations (also known as loadings) from the input variables. After 

removing elements prone to analytical artifacts, PCA was conducted using the remaining 16 

elements from each of the 10 environments separately. This produced 16 principal components 

in each environment (Fig S1) of which we retained for further analysis only PCs representing 
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more than 2% of the total variation. This resulted in as few as 11 and as many as 15 PCs 

depending on environment.  

Remarkably, there is substantial overlap in the loadings of many elements in the first and 

second PCs across some environments, suggesting a reproducible effect of genetic variation on 

the covariance of elemental accumulation in these environments (Fig 3). Additionally, the 

loadings of elements are consistent with the pair-wise relationships observed in the element-by-

element correlations. For example, the chemical analogs Ca and Sr frequently load PCs in a 

similar direction. The PC loadings derive from inputs of several elements to a single PC variable. 

All retained PCs in all 10 environments have a loading contribution of at least 0.25 in magnitude 

from two or more elements. While some patterns existed across environments, many PC loadings 

differed in both magnitude and direction according to environment. This suggests instability of 

element-pair correlations across the environments. We used correlation tests of element loadings 

to detect PCs stemming from shared biological processes in each environment. This identified 

PCs from each environment that were constructed from similar relationships. Because loading 

direction is arbitrary, both strong positive and strong negative correlations were examined. 52 

pairs of PCs exhibited loadings correlations with a Pearson correlation coefficient greater than 

0.75 or less than -0.75 (Fig S2). Thus, the PC analyses of data across from different locations 

described similar patterns of elemental covariation, while not necessarily recovered in the same 

rank order.  
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Fig 3. PCA Plots in Multiple Environments. PCA plots showing PC1 and PC2 loadings in 

different years in three locations (FL, IN, and NY). PC1 and PC2 values for each line are plotted 

as points and PC1 and PC2 loadings of each element are indicated by blue arrows. The data for 

different years for each of three locations, FL, IN, and NY are plotted. The percent of total 

variation explained by each PC is labeled on the axes. PC negative and positive values are 

arbitrary, so the Indiana x-axes are switched in direction to aid visual comparisons. 
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QTL Mapping of Ionomic Covariance Components  

The PCs from each environment were used as traits for QTL detection. Stepwise QTL 

mapping using these derived traits yielded 93 QTL that exceeded an statistical threshold of 

=0.05 estimated by 1000 permutations performed for each trait-environment combination (Fig 

4C). QTL were found for PC traits explaining both large and smaller proportions of variation 

(Table S1). 56 of these QTL affecting multiple-element covariance components overlapped with 

previously detected single-element QTL in the same environment [17] (Fig 4A). In some cases, 

two or more PC traits within an environment resolved to one single-element QTL. This was 

observed particularly for elements with strong effect QTL, such as Mo, Cd, and Ni. For example, 

in IN10, PC2 and PC10 both have QTL that co-localize with the Cd QTL on chromosome 2. 

Likewise, in NY05, PC3, PC5, PC6, and PC9 all detect QTL coinciding with the large-effect Ni 

QTL on chromosome 9. Each of these PCs are comprised of varying loadings of Ni, along with 

other elements. This demonstrates that, although the relationship among elements described by 

each PC is distinct, a locus affecting a single-element can be detected due to loading of that 

element into more than one PC. This repeated detection of the same locations contributes to the 

higher number and proportion of detected PC QTL that were shared with element QTL (56/93) 

than element QTL that were shared with PC QTL (18/79), although the same genomic locations 

underlie this overlap.  
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Fig 4. Principal Component QTL from 10 Environments. PCs were derived from elemental 

data separately in each of 10 environments and used as traits for QTL mapping. (A) 172 total 

element and PC QTL were mapped. The two boxes represent the 79 and 93 elemental and PC 

QTL, respectively. 18 element QTL overlap with PC QTL from the same environment. 56 PC 

QTL overlap with element QTL from the same environment. Sets of non-unique QTL are shown 

in the center box. QTL unique to elements, 61, and to PCs, 37, are shown outside of the shared 

box. (B) QTL mapping output for PC5 from the NY06 population. Position on chromosome 1 is 

shown on the x-axis, LOD score is on the y-axis. All significant NY06 element QTL on 

chromosome 1 are shown in grey ( = 0.05). Two PC5 QTL, at 169.7 and 271.2 cM, are unique 

to PC5 and do not overlap with any elemental QTL. A PC5 QTL at 379.7 cM is shared with a 

molybdenum QTL. (C) Significant PC QTL ( = 0.05) for PCs in 10 environments. QTL 

location is shown across the 10 chromosomes on the x-axis. Environment in which QTL was 

found is designated by color. QTL are represented as dashes of uniform size for visibility. Four 

regions highlighted in grey represent the four loci found for multiple PC traits in multiple 

environments (> 2). 
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QTL mapping on single elements may not have the power to detect loci with small 

coordinate effects on several elements. PC traits can reveal new QTL and enhance detection of 

common genetic factors modulating elements. 37 PC QTL were detected at loci not seen using 

single element traits. For instance, two PC5 QTL from the NY06 growout were located on 

chromosome 1 at positions distinct from any single-element QTL (Fig 4B). So as to not inflate 

PC-specific QTL, they are defined here as QTL greater than 25 cM away from any elemental 

QTL in the same environment. Top elemental loadings of PCs and overlap with elemental QTL 

is summarized in Table S2. 

PC QTL analysis captured previously observed single-element QTL shared between 

elements within a particular environment. Of the nine loci affecting variation for multiple 

elements in the same environment (Table 1), four loci were detected for a PC trait in that 

environment (Table 2). For example, in NY05, a QTL was identified for PC1 that overlaps QTL 

that were detected in the single element analyses of P, S, Fe, Mn, and Zn on chromosome 5 (Fig 

2). The log of odds score for this NY05 PC1 QTL was as strong as the association between the 

locus and Fe accumulation and more significant than the P, S, Mn, and Zn elemental QTL. Thus, 

the QTL for a multi-element PC was as strong as the best single-element approach for this 

previously detected multi-element locus. This is the prediction for traits that will affect variation 

in multiple elements, such as root structure or homeostatic processes. For these traits, the PC 

approach may be preferable to single elements, particularly in cases where single element 

changes are of small effect or below detection limits while concerted changes to multiple 

elements display a larger effect. 
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Table 2. Loci Associated with Multiple Elements and PC(s) in the Same Environment. 

 

†Average position of all element QTL, PC QTL are within 5 cM 

 

Comparing PCs from different environments identified 52 PC pairs with similar loadings. 

Of these, 37 had no QTL for one or both of the PCs, consistent with a common environmental 

factor variable in those fields as the basis of that variation. Of the remaining 15 pairs, for which 

at least one QTL was detected for each member of the pair, five pairs had QTL that co-localized. 

In all five cases, the QTL overlapping between these pairs of PCs correspond to a large-effect 

single-element QTL. Six PC traits belonging to three correlated pairs, PC4 in NY05 and PC6 in 

IN09 (rp = 0.81), PC4 in FL05 and PC3 in NY05 (rp = –0.84), and PC3 in IN10 and PC2 in NC06 

(rp = 0.89), detected a QTL coinciding with a Mo QTL, a locus on chromosome 1 encoding the 

ortholog of the A. thaliana MOT1 molybdenum transporter. The same scenario exists for PC2 in 

IN09 and PC2 in NY05 (rp = –0.78), both affected by the QTL on chromosome 2 that had a 

strong effect on Cd in our single-element QTL mapping experiments. Finally, PC8 in NC06 and 

PC5 in NY05 (rp = 0.76) both map to a large-effect Ni QTL. Despite the resolution to QTL 

detected in a single-element analysis, in all of these cases correlations between loadings were not 

driven by a single element, but rather by similar loadings for most elements (Fig S2). In addition 

to overlaps at these strong-effect single-element QTL, 6 other pairs of correlated PCs have QTL 

Environment Chr Pos (cM) 

† 

Elements PC(s) 

NY05 1 400 Mn, Ni PC11 

NY05 3 323 Sr, Ca -- 

NY05 5 201 Mn, Zn, P, S, Fe PC1 

NY06 1 532 Mn, Mg -- 

IN09 4 306 Fe, K -- 

IN10 2 213 Mo, Cd PC2, PC4 

NY12 5 203 Zn, Fe PC7 

FL05 1 230 B, Mn -- 

FL05 4 159 Fe, Zn -- 
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that do not overlap. Correlated PCs with QTL at different chromosomal positions in different 

environments could be due to states, such as iron deficiency, that may arise from distinct 

processes in each environment (e.g. soil pH or low Fe content) yet will generate a consistent 

physiological response. In these cases, the ionome displays similar trait covariance but different 

genetic architecture consistent with genotype by environment interactions. 

The PC approach also detected a QTL that was found for different single elements 

depending on environment. The same region on chromosome 7 was identified as a QTL for three 

different elements in varying environments: Cu in NY05, NY12, IN10, and IN09, K in IN09, and 

Rb in NC06. In the mapping of QTL affecting the PC traits, we detected QTL at this position in 

some of the same environments as the single element QTL, NC06 and NY05, as well as in new 

environments, NY06 and SA10. In SA10, no QTL were mapped for Cu, Rb, or K alone. Yet, this 

locus was detected as significantly affecting variation in PC9 calculated from SA10, the loadings 

of which show a strong contribution from Cu and Rb. Likewise, in NY06, no QTL were mapped 

for Cu, Rb, or K, however, this locus was detected using PC6 in NY06 which has a strong 

loading contribution from K. No PC QTL were detected at the locus in NY12, IN09, or IN10. 

Thus, using PC traits in addition to single element traits can provide an improved estimate across 

different environments for the genetic effect on phenotypic variance for multi-element loci.  

The identification of both unique and previously observed QTL through this multivariate 

approach demonstrates the complementary nature of working with trait covariance as well as the 

component traits and supports previous work showing that elemental traits are mechanistically 

interrelated. The repeated finding of results consistent with GxE led us to investigate this 

formally. 
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QTL by Environment Interactions 

Our prior analyses found QTL by environment interactions contributing to accumulation 

of single elements [17]. Given element correlations and partially overlapping sets of element and 

PC QTL, we expect to detect QTL by environment interactions that impact multi-element traits. 

To look at the effects of environment on genetic regulation of multi-element phenotypes, we 

conducted another PCA, this time on element concentrations of lines from all environments 

combined. If the genetic and environmental variances do not interact, we expect some PCs will 

reflect environmental variance and others will reflect genetic variance. However, if the ionome is 

reporting on a summation of physiological status that results from genetic and environmental 

influences, some PCs calculated from ionomic traits should be both correlated with 

environmental factors and result in detectable QTL.  

PCA across environments. The covariance between element accumulation data across 

all environments was summarized using principal components analysis.  Elements prone to 

analytical artifacts (B, Na, Al, As) were removed prior to analysis. 16 across-environment PCs 

(aPCs) describing the covariation of the ionome were calculated for every RIL in every 

environment.  

Out of a concern that the different lines present in each growout unduly influenced the 

construction of PCs specific to each environment, we performed the following tests. First, we 

looked at only those locations where two or more growouts were performed, so that location 

replication might be considered. Second, to identify a balanced sample set present in all 

environments, we identified the lines that were grown in all of these six growouts. PCA of the 16 

element measurements was conducted across environments (Fig S3) and the loadings of each 

element into each PC were recorded. Thus, the loadings of the 16 elements in the PCA were 
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calculated from a set of common genotypic checks distributed within each environment. We used 

these loadings to calculate PCA projections (PJs) from all lines in all environments. In this way 

we made comparisons of the same calculated values in each environment. We found that the PJs 

and aPCs were strongly correlated; PJ1 and aPC1 were nearly identical (rp = .998) and PJs 2–5 

correlated with at least one of aPCs 2–5 at rp > .66. The correlations between the loadings from 

PJs and aPCs reflected these same patterns. To reduce the incidence of artifacts or overfitting, 

aPCs accounting for less than 2% of the total variation were eliminated for further analyses, 

leaving seven aPCs.  

Growth environment had a significant effect on all aPCs (p < 0.001). The first two aPCs 

were highly responsive to the environment (Fig 5). The lines from each environment cluster 

together when plotting aPC1 vs aPC2 values, with distinct separation between environments and 

years. In order to identify environmental factors responsible for ionome covariance, weather 

station and soil data from all environments except SA06 were recovered from databases (see 

methods). Correlations were calculated between season-long or quarter-length summaries of 

temperature and the aPC values for the nine environments. The weather variables, all 

temperature-based, were not correlated with aPCs in many cases, although correlations 

exceeding rp = 0.50 were observed for aPCs 2,4, and 5 (Fig 6A). The strongest correlation 

observed for aPC1 was with average maximum temperature in the fourth quarter of the growing 

season (rp = 0.35) (Fig 6B) while the highest observed for aPC2 was for average maximum 

temperature during the third quarter (rp = 0.58) (Fig 6C). The relatively small number of 

environments, substantial non-independence of the weather variables, and likely contribution of 

factors other than temperature limit the descriptive power of these correlations.  
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Fig 5. PCA Separates Lines by Environment. PC1 and PC2 separate lines by environment. 

Points correspond to lines, colored by their environment. (A) Across-environment PC1 vs PC2 

values for each line, colored by environment. Percentage of total variance accounted for by each 

PC indicated on the axes. (B) Average across-environment PC1 vs PC2 values for all lines in 

each environment. 
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Fig 6. aPC and Weather Variable Correlations. (A) Heatmap showing Pearson correlation 

coefficients (rp) between averaged aPC 1–7 values across environments and averages for 

maximum temperature, minimum temperature, and GDD across the growth season and for each 

quarter of the season. Red and blue intensities indicate strength of positive and negative 

correlations, respectively. (B) Average aPC1 values for 9 environments vs. average maximum 

temperature for each environment over the fourth quarter of the growing season. Points colored 

by environment. Pearson correlation coefficient is shown within the graph. (C) Average aPC2 

values for nine environments vs. average maximum temperature for each environment over the 

3rd quarter of the growing season. (D) Heatmap showing correlations between aPCs 1–7 and soil 

attributes: pH, electrical conductivity (EC), available water capacity (AWC), available water 

storage (AWS), and calcium carbonate (CaCO3). (E) Average aPC2 values vs. pH.  
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The lack of particularly strong correlations between the first two aPCs and temperature 

variables suggests that other variables, possibly field to field variation in soil composition, 

fertilizer application, humidity, or abiotic factors, are likely to have an influence. Correlations 

were also calculated between environment averages of the PCs and soil variables (Fig 6D). 

While the majority of these features were not found to be highly correlated with aPCs, we did 

observe a strong negative correlation between aPC2 and soil pH (rp = –.78) (Fig 6E).  

In order to determine genetic effects on these components, the calculated values for aPC1 

through aPC7 were used as traits for QTL analysis in each of the 10 environments. Unlike the 

earlier described PCAs done in environments separately, these aPCs are calculated across all 

environments and are therefore comparable between environments. QTL mapping detected at 

least four loci controlling each aPC and a total of 38 QTL. Nine of these QTL were found in 

common across multiple environments and 29 were only detected in a single environment (Fig 

7). Of the aPC QTL, the highest LOD score QTL were present in multiple environments and 

corresponded to the locations of the two strongest single element QTL previously detected from 

the same data (Mo on chromosome 1 and Cd on chromosome 2). The detection of QTL, together 

with the strong environmental determination of aPCs 1–7, demonstrates that ionomic covariation 

results from coordinate environmental and genetic variation.  
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Fig 7. Across-Environment PCA QTL in 10 Environments. QTL identified for across 

environment PCA traits (aPCs 1–7).  (A) Total number of QTL detected for each aPC, colored 

by environment. (B) Significant QTL ( = 0.05) for aPCs 1–7. QTL location is shown across 10 

chromosomes (in cM) on the x-axis. Dashes indicate QTL, with environment in which QTL was 

found designated by color. All dashes are the same length for visibility. 

 

Based on the stochastic detection of QTL in only a subset of growth environments, 

substantial interaction between the environment aPC QTL is expected. A QTL of particular 

interest is the aPC2 QTL detected for Mo at the ortholog of the MOT1 locus. Previous studies 

have demonstrated a connection between pH and molybdenum, with Mo availability in soil being 

increased by high pH. It was found that the MOT1 locus in A. thaliana determines response to 

pH changes and resultant changes in Mo availability in an allele-specific manner, suggesting an 

adaptive role for variation in MOT1 with respect to soil pH [18]. The correlation between aPC2 

and pH was significant and aPC2 identified a QTL coinciding with a Mo QTL suggesting genetic 
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variation in pH-dependent changes to Mo availability across environments. The loading 

magnitude for Mo into aPC2 is 0.21 but Co, Ni, Rb, and Cd contribute even more, with loading 

magnitudes of 0.24, 0.46, 0.55, and 0.41, respectively. QTL for aPC2 also overlap with QTL for 

Cd and Ni. With aPC2 representing several elements, the correlation with soil pH and overlap 

with single element QTL may reflect a multi-element phenotype responding to changes in pH. 

Further investigation is needed to molecularly identify the genes underlying aPC QTL, their 

biological roles, and their interaction with specific environmental variables.  

 

DISCUSSION 

In this study, we demonstrate that multi-trait analysis is a valuable approach for 

understanding the ionome. The ionome is a homeostatic system, and effects on one element can 

affect other elements [1]. Many biological processes in maize have the potential to impact 

several elements. Indirect effects on a suite of elements have been demonstrated for numerous 

physiological states. Radial transport of nutrients is influenced in part by endodermal suberin, the 

structure and deposition of which can adapt in a highly plastic manner in response to deficiencies 

in K, S, Na, Fe, Zn, and Mn, potentially modifying transport of additional elements [19]. Other 

examples of indirect effects can be found in Arabidopsis TSC10A mutants with reduced 3-

ketodihydrosphinganine (3-KDS) reductase activity. Because 3-KDS reductase is needed for 

synthesis of the sphingolipids that regulate ion transport through root membranes, these mutants 

exhibit a completely root-dependent leaf ionome phenotype of increased Na, K, and Rb, and 

decreased Mg, Ca, Fe, and Mo [20].  

In line with the abundance of concerted element changes seen in ionome mutants, we 

detected elemental correlations and QTL that were present for more than one element. 
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Covariance observed in elements with similar orbital configurations, such as Ca and Sr or K and 

Rb, is expected due to related bonding properties and functions in redox reactions. The alkali 

metals K and Rb have been shown to display nearly identical absorption and distribution patterns 

[21]. Other elements are linked through co-regulation or common biological pathways. 

Phosphorous is a central nutrient in plant development and regulates other elements, complexing 

with cations in the form of phytic acid in maize seeds [22]. Phosphorous exhibited the greatest 

number of QTL overlap with other elements, including the cations K and Mg. Additional co-

localized QTL included those between Zn and Fe, Mo and Mn, and the chemical analogs Ca and 

Sr. Zn and Fe can bind to the same metal transporters and metal-binding proteins and are thus 

reciprocally influenced in states of excess or deficiency [6, 23]. Three out of three of the Zn QTL 

that overlap with other elements involved overlap with Fe, demonstrating the genetic covariance 

of these elements. Mo and Mn have common roles in protein assimilation and nitrogen fixation 

[24, 25] and exhibit a regulatory relationship [26] which may explain their overlapping genetic 

features. The shared QTL detected in this study likely reflect genetic polymorphisms affecting 

the activity of multi-element regulatory genes or genetic changes targeted to a single element 

with pleiotropic effects on other elements due to homeostatic mechanisms or through concurrent 

multi-element behavior. 

The 37 PC-specific loci identify loci in maize with the potential to expand our 

understanding of the genetic basis of ionome variation. The small population sizes used here 

limit our ability to interpret QTL-effect sizes, as overestimation of QTL effect, i.e. Beavis effect, 

is expected. Still, the large-effect QTL detected in our previous analysis [17] reappear as PC 

QTL. There is no reason to think that effect-size estimation will be any more accurate for PC 

than for single elements but careful simulations of correlated traits would be needed to 
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demonstrate this. Regardless, it seems likely that the loading of elements into PC will make these 

traits just as subject to effect size overestimation and may not provide additional support for the 

large size.  

However, in the previous single element QTL analysis with this same dataset, we tested 

for overestimation using a more stringent permutation threshold and retained 31 of 63 location-

specific QTL using a 99th percentile threshold. Biological mechanisms involving multi-element 

processes or synchronized element adjustments may drive the detection of unique PC QTL. For 

example, the ionome has been shown to exhibit tissue-dependent, multi-element changes in 

response to nitrogen availability [27]. A unique PC QTL could be detected at a nitrogen 

metabolism gene if variation at that gene confers additive effects on multiple elements. Variation 

in genes involved in adaptive responses to drought stress, soil nutrient deficiencies, or toxic 

micronutrient levels, can result in covariation among several elements without particularly strong 

effects on a single element [1, 6, 28], making such genes only identifiable as QTL when working 

with multivariate traits. 

The majority of molecularly identified ionomic mutants have multi-element effects. In 

particular, mutants in genes involved in Casparian strip function and associated root-based 

element flow, including MYB36 [29], ESB1 [30], and LOTR1 [31], all display pleiotropic effects 

on multiple element accumulation in the leaves. In some cases, QTL affecting these traits might 

be detected using both single and multi-element approaches, as was the case with the 

chromosome 5 QTL we mapped for P, S, Fe, Mn, and Zn, as well as for PC1. However, if the 

changes to a suite of elements are small for individual elements or uncontrolled environmental 

conditions inflate the magnitude of error in measuring the genetic effects, a multi-ionomic trait 

may be a better fit for QTL detection. The fact that we detect both overlapping and unique sets of 
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element and PC QTL suggests that single and multivariate approaches should be used in concert 

to avoid gaps in our understanding of element regulatory networks. The evidence suggests that 

some of the most interesting ionome homeostasis genes, including genes that are involved in 

environmental adaptation extending beyond the ionome, will be those best detected through 

multivariate methods.  

In addition to being a tool for understanding the genetics of multi-element regulation, 

principal components also reflected environmental variation. An across-environment PCA of all 

lines was used to find variables that describe variation between lines among all 10 environments. 

The first two across-environment PCs capture most of the variation in the ionome across 10 

different growouts, much of which is environmental. This can be seen in the ability of aPC1 and 

aPC2 to separate growouts by location and, in some cases, different years within a location. 

Thus, components from a PCA done across environments can capture the impact of environment 

on the ionome as a whole.  

In our across-environment analysis, to account for different sets of IBM lines within 

environments, we tested an approach of projecting loadings from a PCA on a smaller set of lines 

onto the full data set. The similarity of the PJs and aPCs led us to conclude that the sampling 

effects of having different subsets of lines in each environment had little effect on the trait 

covariance estimation. This approach to validate aPCs may be useful in other studies that seek to 

connect data from disparate experiments and federate data collected by multiple laboratories. 

The method of deriving traits across environments using a small set of genotypic checks opens 

up the possibility of using multi-trait correlations across environments to permit very large scale 

GxE mapping experiments on data sets not initially intended for this purpose. Retrospective 

analysis of data, or further data generation from preexisting biological material present in both 
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public and private spheres, is enabled by this approach. For example, multiple association panels 

have been constructed for trait mapping in maize. Typically, comparison of multi-trait 

correlations across different populations is inhibited by our inability to ensure the 1:1 

correspondence of traits. By using the subset of lines common to all mapping populations to 

create a projection, comparable traits could be reflected onto to full datasets for comprehensive 

genetic evaluation and the loci detected in each panel could then be compared, as we have done 

here. 

PCA on all environments is a way to find variation resulting from environmental factors 

that impact multiple elements, for example weather or soil variables. The weather data available 

to us for this study was limited to maximum and minimum temperature. Temperature can alter 

element accumulation by influencing transpiration rate which in turn modulates elemental 

movement [30, 32, 33]. We observed the strongest correlations for aPC1 and aPC2 during the 

third and fourth quarters of the growing season. Because seed filling occurs in the latter part of 

the season, temperature during this time could have a pronounced effect on seed elemental 

composition. However, the lack of striking correlations between environmental components and 

the projections and aPCs suggests environmental factors other than temperature must be the 

strongest factors. Information on soil properties provided insight into a potential driver of the 

environmental variability captured by aPC2, with a strong negative correlation between aPC2 

and soil pH. Soil pH alters element availability in soil, and pH differences between locations 

should result in different kernel ionomes. Although soil element content measurements were not 

available for this dataset, differences in soil element concentration could also impact element 

covariation. 



 75 

QTL were mapped to the aPCs that describe whole ionome variation across 

environments. These loci may encompass genes that pleiotropically affect the ionome in an 

environmentally-responsive manner. The correlation between aPC2 with pH as well as the 

finding of an aPC2 QTL for Mo exemplifies the possibility of using across-environment PCA to 

detect element homeostasis loci that respond to a particular environmental or soil variable and 

produce a multi-element phenotype. To the extent that these differences are adaptive, these 

alleles can contribute to local adaptation to soil environment and nutrient availability. The 

identification of aPC QTL indicates that the variation captured by aPCs has both environmental 

and genetic components. Our previous study using single element traits found extensive GxE in 

this dataset through formal tests, so it is not surprising that we see a large environmental 

component as well as genetic factors contributing to variation in the across-environment PCs. 

Experiments with more extensive weather and soil data, or carefully manipulated environmental 

contrasts, are needed to create models with additional covariates and precisely represent 

environmental impacts. Considering location and geographical information, such as proximity to 

industrial sites or distance from the ocean, might add to the predictive ability of such models. 

This multivariate approach could be especially powerful in studies with extensive and consistent 

environmental variable recording, such as the “Genomes to Fields” Initiative, where specific 

environmental variables could be included in QTL models of multi-element GxE. 
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SUPPORTING INFORMATION 

 
 

Fig S1. Variances of Principal Components from PCA within 10 Environments. Eigenvalues 

(amount of variation explained) for each PC are shown on the y-axis. Lines are colored by 

environment. 
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Fig S2. Loadings of Principal Components from Different Environments. Loadings for each 

element are plotted for PCs from different environments. Loadings of PCs plotted on the same 

graph are correlated as indicated. PCs shown in (A), (B), and (C) all have a QTL coinciding with 

Mo QTL on chromosome 1. PCs shown in (D) have a QTL coinciding with Cd QTL on 

chromosome 2. PCs shown in (E) have a QTL coinciding with Ni QTL on chromosome 9. 
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Fig S3. Variances of Principal Components from PCA on Lines from all Environments. 

Eigenvalues (amount of variation explained) for each aPC are shown on the y-axis.  

 

 
 

Fig S4. aPC1 and aPC2 Loadings Biplot. PCA plots showing aPC1 and aPC2 loadings. 

Variance explained for each PC is indicated along axes. 
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Table S1. Within Environment PCs QTL Counts. 

 

 Overall 

Total 
FL05 FL06 IN09 IN10 

MO0

6 
NC06 NY05 NY06 NY12 SA10 

PC1 5 2 0 0 0 1 1 1 0 0 0 

PC2 6 0 0 1 0 0 1 4 0 0 0 

PC3 10 1 0 0 1 0 0 5 1 2 0 

PC4 10 2 0 1 0 0 1 5 0 1 0 

PC5 22 1 1 0 1 0 1 6 9 1 2 

PC6 9 0 0 1 1 0 2 3 1 1 0 

PC7 7 0 0 2 1 0 1 0 0 3 0 

PC8 3 0 0 1 1 0 1 0 0 0 0 

PC9 6 0 0 1 0 0 1 1 0 1 2 

PC10 4 0 0 1 0 0 1 2 0 0 0 

PC11 2 0 0 0 0 0 0 2 0 0 0 

PC12 6 0 0 2 1 0 3 0 0 0 0 

PC13 2 0 0 1 0 0 0 1 0 0 0 

PC14 2 0 0 0 1 0 0 0 0 0 1 

PC15 4 0 0 0 0 0 1 2 0 0 1 

PC16 2 1 0 0 0 0 0 1 0 0 0 
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Table S2. PC Loadings and Element QTL Overlap. 

 

 

Table S2. PC Loadings and Element QTL Overlap

Each PC QTL is shown with the QTL location, environment, and LOD score information. Elements with the

top 5 loadings into the PC trait are listed. Unique PC QTL are highlighted (QTL with no overlap within 25 cM).

For PC QTL that have element QTL within 10 cM, the element traits for these QTL are listed.

Trait Chr Pos Envirs MaxLOD MaxPerm

Elements with top 5 

PC loadings 

(increasing order)

Elemental 

QTL within 

25 cM?

Elements 

with QTL 

within 10 cM

PC1 4 173.9 FL05 5.11 3.69 Mn, Fe, S, Mg, P YES Mn, K

PC1 4 287.6 FL05 5.09 3.69 Mn, Fe, S, Mg, P NO

PC3 1 404.0 FL05 3.93 3.71 Mg, Fe, Mn, K, Rb YES Mn 

PC4 1 252.4 FL05 4.33 3.73 Mg, Zn, Mo, Cu, Cd YES

PC4 1 380.6 FL05 11.70 3.73 Mg, Zn, Mo, Cu, Cd YES

PC5 2 215.0 FL05 6.35 3.68 Sr, Cu, S, Cd, Co YES Cd

PC5 1 378.0 FL06 4.24 3.68 Fe, P, Mn, Cd, Mo YES Mo 

PC2 2 216.9 IN09 5.92 3.61 Ni, Se, Mo, Sr, Ca YES Cd

PC4 2 203.2 IN09 5.08 3.63 Mg, Cd, Mo, Se, Co YES

PC6 1 378.0 IN09 7.14 3.56 K, Cu, Mo, P, Mn YES Mo

PC7 3 358.5 IN09 3.91 3.63 Cd, S, K, Mn, Mg NO

PC7 4 300.0 IN09 3.72 3.63 Cd, S, K, Mn, Mg YES Fe, K

PC8 9 7.7 IN09 8.87 3.62 P, K, Cd, Se, Ni YES Ni

PC9 9 302.2 IN09 3.78 3.74 Co, Mo, Rb, Fe, S NO

PC10 2 236.7 IN09 3.78 3.56 Co, Cu, Cd, Mo, S YES Ni

PC12 1 136.5 IN09 4.08 3.62 Co, Cu, Zn, Fe, P NO

PC12 3 267.9 IN09 4.06 3.62 Co, Cu, Zn, Fe, P NO

PC13 5 33.0 IN09 4.75 3.77 K, Rb, Zn, Se, Cu NO

PC3 1 378.0 IN10 3.60 3.57 K, Co, Zn, Sr, Ca YES Mo 

PC5 2 211.7 IN10 5.36 3.65 Ni, Fe, Mn, Sr, Mo YES Mo, Cd

PC6 2 209.5 IN10 4.48 3.68 S, Ni, Mn, Cd, Rb YES Mo, Cd

PC7 4 315.8 IN10 4.45 3.75 Zn, Rb, K, Mg, Cd YES

PC8 1 377.3 IN10 7.62 3.71 Sr, Co, S, Ni, Mo YES Mo 

PC12 2 102.2 IN10 4.32 3.65 Zn, Mn, Cu, Co, Se NO

PC1 10 95.5 MO06 3.79 3.70 S, Rb, Fe, K, P YES Rb

PC1 7 167.0 NC06 4.62 3.65 Rb, Mg, Zn, P, K YES Rb

PC2 1 378.0 NC06 4.47 3.70 Ni, Cd, Mo, Ca, Sr YES Mo 

PC4 9 16.8 NC06 4.36 3.58 Mn, P, Ca, Co, Se YES Ni

PC5 3 358.7 NC06 4.48 3.50 K, Mn, Cu, Rb, Mg NO

PC6 1 244.9 NC06 4.92 3.62 S, Ni, Mn, Fe, Mo NO

PC6 2 217.9 NC06 4.11 3.62 S, Ni, Mn, Fe, Mo YES Cd

PC7 2 215.0 NC06 12.03 3.75 Fe, S, Ni, Cu, Cd YES Cd

PC8 9 8.9 NC06 6.85 3.71 Ca, Co, Cd, Se, Ni YES Ni

PC9 3 148.6 NC06 4.39 3.59 Se, Ni, Cu, Zn, Fe NO

PC10 3 156.8 NC06 3.91 3.62 Sr, S, Cu, Rb, Mn NO

PC12 1 113.8 NC06 8.30 3.75 Mn, Rb, Fe, Cd, S NO

PC12 1 515.3 NC06 4.74 3.75 Mn, Rb, Fe, Cd, S NO

PC12 9 146.3 NC06 4.32 3.75 Mn, Rb, Fe, Cd, S NO

PC1 5 203.8 NY05 6.92 3.73 Mn, Zn, Fe, Mg, P YES

Mn, Fe, Zn, 

P, S

PC2 2 216.9 NY05 5.57 3.61 Cd, Ni, Co, Ca, Sr YES Cd

PC2 3 331.0 NY05 5.48 3.61 Cd, Ni, Co, Ca, Sr YES Sr, Ca

PC2 7 193.8 NY05 4.63 3.61 Cd, Ni, Co, Ca, Sr YES Sr
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PC2 9 0.9 NY05 6.34 3.61 Cd, Ni, Co, Ca, Sr YES Ni 

PC3 1 377.3 NY05 14.78 3.78 Mg, Mo, Cu, Ni, Cd YES Mo

PC3 2 211.0 NY05 12.89 3.78 Mg, Mo, Cu, Ni, Cd YES Cd

PC3 9 5.4 NY05 5.66 3.78 Mg, Mo, Cu, Ni, Cd YES Ni

PC3 10 87.8 NY05 4.63 3.78 Mg, Mo, Cu, Ni, Cd NO

PC3 10 121.6 NY05 7.30 3.78 Mg, Mo, Cu, Ni, Cd NO

PC4 1 378.0 NY05 8.49 3.55 Cd, Mn, Mo, Cu, K YES Mo

PC4 2 218.3 NY05 3.98 3.55 Cd, Mn, Mo, Cu, K YES Cd

PC4 3 325.8 NY05 4.18 3.55 Cd, Mn, Mo, Cu, K YES Sr, Ca

PC4 4 178.9 NY05 4.08 3.55 Cd, Mn, Mo, Cu, K YES K

PC4 7 165.9 NY05 7.54 3.55 Cd, Mn, Mo, Cu, K YES Cu

PC5 1 171.4 NY05 5.20 3.68 Rb, Se, Ni, K, Cd YES K

PC5 2 208.9 NY05 7.62 3.68 Rb, Se, Ni, K, Cd YES Cd

PC5 4 374.9 NY05 6.67 3.68 Rb, Se, Ni, K, Cd YES

PC5 7 150.7 NY05 3.96 3.68 Rb, Se, Ni, K, Cd YES K

PC5 9 7.7 NY05 8.48 3.68 Rb, Se, Ni, K, Cd YES Ni

PC5 9 136.6 NY05 4.83 3.68 Rb, Se, Ni, K, Cd YES Ni

PC6 1 378.0 NY05 14.86 3.58 K, Cd, Rb, Ni, Mo YES Mo

PC6 2 214.6 NY05 5.77 3.58 K, Cd, Rb, Ni, Mo YES Cd

PC6 9 8.3 NY05 5.00 3.58 K, Cd, Rb, Ni, Mo YES Ni

PC9 9 5.4 NY05 4.09 3.72 Cd, Zn, Ni, Co, Se YES Ni

PC10 1 385.7 NY05 4.33 3.60 Mn, Zn, Mo, Cd, Fe YES Mo

PC10 10 147.6 NY05 4.12 3.60 Mn, Zn, Mo, Cd, Fe NO

PC11 6 128.6 NY05 4.69 3.72 Mg, Mn, K, Cu, S NO

PC11 6 256.4 NY05 4.73 3.72 Mg, Mn, K, Cu, S YES

PC13 1 232.0 NY05 4.07 3.63 K, Mo, P, Mg, Mn YES Mn

PC3 6 42.5 NY06 3.64 3.60 Cd, Cu, Rb, Ni, Co NO

PC5 1 167.0 NY06 3.71 3.03 Mn, Mg, Co, Se, Mo NO

PC5 1 169.7 NY06 14.43 3.03 Mn, Mg, Co, Se, Mo NO

PC5 1 271.2 NY06 21.58 3.03 Mn, Mg, Co, Se, Mo NO

PC5 1 379.7 NY06 19.95 3.03 Mn, Mg, Co, Se, Mo YES Mo

PC5 2 98.3 NY06 14.33 3.03 Mn, Mg, Co, Se, Mo YES Mo

PC5 2 257.5 NY06 10.76 3.03 Mn, Mg, Co, Se, Mo NO

PC5 4 75.9 NY06 4.43 3.03 Mn, Mg, Co, Se, Mo NO

PC5 6 109.3 NY06 8.99 3.03 Mn, Mg, Co, Se, Mo NO

PC5 6 158.0 NY06 16.68 3.03 Mn, Mg, Co, Se, Mo NO

PC5 8 355.7 NY06 6.57 3.03 Mn, Mg, Co, Se, Mo NO

PC6 7 162.3 NY06 4.33 3.66 Mo, Sr, Mn, K, Cd NO

PC3 2 214.1 NY12 5.48 3.65 S, Rb, Ni, K, Cd YES Cd

PC3 9 0.0 NY12 3.68 3.65 S, Rb, Ni, K, Cd YES Ni

PC4 3 221.5 NY12 3.72 3.70 Mn, Se, Co, K, Cu NO

PC5 5 150.9 NY12 3.59 3.56 Fe, Se, Mo, K, Ni NO

PC6 2 210.8 NY12 3.72 3.59 Mg, Zn, Cd, Mo, Se YES Cd

PC7 2 242.5 NY12 4.62 3.58 Rb, Cd, S, Mg, Co YES Ni

PC7 5 107.0 NY12 4.72 3.58 Rb, Cd, S, Mg, Co NO

PC7 6 255.4 NY12 4.07 3.58 Rb, Cd, S, Mg, Co NO

PC9 1 342.2 NY12 5.12 3.69 Zn, Mo, Se, Rb, Ni NO

PC5 1 83.5 SA10 4.65 3.68 Co, Cd, Mg, K, Rb NO

PC5 4 382.9 SA10 3.83 3.68 Co, Cd, Mg, K, Rb NO

PC9 1 418.2 SA10 4.77 3.28 Fe, Ni, Co, Rb, Cu NO

PC9 7 169.8 SA10 4.25 3.28 Fe, Ni, Co, Rb, Cu NO
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Table S3. PC Variance Proportions and Loadings Across 10 Environments. 

 

S1 Table. PC Variance Proportions and Loadings Across 10 Environments.

Loadings of elements into each PC within environments.

FL05 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 2.09 1.37 1.23 1.12 1.09 0.98 0.93 0.91 0.82 0.78 0.75 0.64 0.59 0.53 0.44 0.29

Proportion 

of Variance 0.27 0.12 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.02 0.02 0.01 0.01

Cumulative 

Proportion 0.27 0.39 0.48 0.56 0.64 0.70 0.75 0.80 0.85 0.88 0.92 0.94 0.96 0.98 0.99 1.00

Mg 0.33 -0.03 0.20 -0.30 0.09 -0.24 0.07 0.13 -0.42 0.11 0.08 0.41 -0.15 -0.18 0.50 -0.11

P 0.38 -0.13 -0.04 -0.20 0.11 0.00 0.12 0.26 -0.27 0.20 -0.02 0.13 0.18 0.21 -0.69 0.14

S 0.33 0.01 0.12 0.02 0.36 -0.15 0.05 -0.10 0.15 0.24 0.40 -0.57 -0.37 0.04 0.02 0.08

K 0.24 0.01 -0.56 -0.04 -0.05 -0.20 0.32 -0.13 -0.01 -0.05 -0.14 -0.17 0.28 0.47 0.34 -0.03

Ca 0.26 0.53 0.12 -0.03 -0.20 -0.04 -0.07 -0.11 0.10 -0.11 0.09 0.05 -0.03 0.13 -0.21 -0.69

Mn 0.28 -0.05 0.33 -0.12 -0.07 0.22 0.26 -0.11 -0.19 -0.50 -0.38 -0.41 0.07 -0.23 0.00 0.06

Fe 0.32 -0.18 0.29 0.17 0.02 0.08 -0.01 0.00 0.43 0.20 0.13 0.09 0.66 -0.16 0.16 -0.03

Co -0.05 -0.33 0.00 0.03 -0.63 0.01 0.17 -0.33 -0.28 0.07 0.50 -0.08 0.02 -0.07 -0.09 -0.03

Ni 0.17 -0.17 -0.09 0.28 -0.17 -0.54 -0.44 0.39 -0.05 -0.39 0.07 -0.15 0.05 -0.08 -0.04 0.02

Cu 0.23 0.10 -0.15 0.43 -0.30 0.21 -0.07 0.19 -0.18 0.52 -0.37 -0.17 -0.17 -0.20 0.09 -0.06

Zn 0.26 -0.31 0.05 0.31 -0.11 0.13 0.30 0.09 0.37 -0.24 -0.03 0.38 -0.47 0.22 -0.01 0.02

Se 0.16 -0.32 0.08 -0.25 -0.09 -0.16 -0.49 -0.53 0.13 0.16 -0.39 0.05 -0.13 0.15 -0.05 0.00

Rb 0.23 -0.01 -0.59 -0.12 0.14 0.05 0.02 -0.20 0.17 -0.13 0.07 0.14 -0.06 -0.65 -0.15 -0.05

Sr 0.23 0.56 0.06 0.00 -0.28 -0.07 -0.07 -0.16 0.08 -0.05 0.08 0.17 -0.01 0.02 0.02 0.69

Mo 0.16 -0.07 -0.17 -0.40 -0.16 0.59 -0.39 0.32 0.08 -0.10 0.23 -0.12 -0.04 0.18 0.21 0.02

Cd 0.15 0.00 -0.05 0.48 0.38 0.31 -0.28 -0.34 -0.43 -0.19 0.16 0.15 0.09 0.17 0.04 0.00

FL06 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 1.80 1.47 1.34 1.20 1.14 1.02 0.95 0.91 0.77 0.77 0.72 0.69 0.63 0.57 0.52 0.40

Proportion 

of Variance 0.20 0.13 0.11 0.09 0.08 0.06 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.01

Cumulative 

Proportion 0.20 0.34 0.45 0.54 0.62 0.68 0.74 0.79 0.83 0.87 0.90 0.93 0.95 0.97 0.99 1.00

Mg 0.36 -0.23 0.23 -0.05 0.04 -0.34 0.05 -0.03 -0.12 0.41 0.14 -0.15 -0.02 0.25 -0.55 -0.23

P 0.42 -0.04 0.10 -0.18 0.23 -0.10 -0.21 -0.22 -0.06 0.20 -0.08 -0.38 0.23 0.04 0.58 0.21

S 0.42 -0.11 0.09 -0.10 0.11 0.04 0.16 0.22 0.30 0.22 0.00 0.38 -0.40 -0.50 0.11 0.08

K 0.32 0.24 0.08 -0.18 0.02 0.47 -0.07 0.01 0.23 -0.25 0.53 -0.09 -0.01 0.20 0.02 -0.35

Ca 0.22 0.03 -0.52 0.19 -0.21 -0.15 -0.04 0.33 0.15 0.15 -0.25 0.07 0.18 0.16 0.23 -0.50

Mn 0.35 0.06 0.12 0.09 -0.27 -0.16 0.40 -0.11 -0.41 -0.42 0.01 0.03 0.29 -0.37 0.02 -0.13

Fe 0.21 0.03 0.24 0.43 0.22 0.03 -0.19 -0.44 0.31 -0.24 -0.38 0.28 0.04 0.14 -0.12 -0.09

Co -0.11 0.24 0.18 0.54 -0.03 0.23 -0.21 -0.01 -0.23 0.50 0.26 0.05 0.17 -0.29 0.07 -0.11

Ni 0.03 0.50 -0.05 0.09 0.02 -0.46 0.01 -0.17 -0.20 -0.04 0.19 0.13 -0.55 0.22 0.23 -0.02

Cu 0.19 0.15 -0.40 -0.02 0.11 0.48 0.16 -0.26 -0.33 0.14 -0.35 -0.22 -0.31 -0.05 -0.22 -0.01
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Zn 0.28 -0.11 -0.13 0.52 -0.03 0.00 -0.13 0.39 0.02 -0.27 0.14 -0.34 -0.16 0.07 -0.12 0.44

Se 0.04 -0.53 0.06 0.07 0.05 0.24 -0.06 0.07 -0.49 -0.07 0.08 0.41 -0.14 0.34 0.27 -0.05

Rb 0.19 0.46 0.19 -0.16 -0.12 0.14 0.08 0.32 -0.11 0.14 -0.22 0.33 0.27 0.35 -0.11 0.39

Sr 0.17 -0.08 -0.51 -0.09 -0.21 -0.07 -0.25 -0.39 0.04 0.07 0.34 0.34 0.21 -0.06 -0.18 0.32

Mo 0.02 0.15 -0.15 -0.15 0.64 -0.15 -0.38 0.28 -0.27 -0.21 0.00 0.13 0.15 -0.23 -0.20 -0.13

Cd -0.07 -0.01 -0.21 0.22 0.53 -0.02 0.65 -0.05 0.14 0.10 0.24 0.07 0.24 0.17 0.08 0.10

IN09 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 1.83 1.35 1.35 1.22 1.08 1.02 0.93 0.89 0.83 0.77 0.73 0.68 0.65 0.62 0.57 0.49

Proportion 

of Variance 0.21 0.11 0.11 0.09 0.07 0.07 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.01

Cumulative 

Proportion 0.21 0.32 0.44 0.53 0.60 0.67 0.72 0.77 0.82 0.85 0.89 0.91 0.94 0.96 0.99 1.00

Mg -0.27 0.27 -0.21 0.25 -0.04 0.02 -0.49 0.00 -0.16 0.10 0.50 0.17 0.29 0.10 0.31 0.07

P -0.28 0.09 -0.34 0.19 -0.09 0.37 -0.07 0.18 -0.01 0.20 -0.32 -0.57 -0.12 -0.30 0.09 -0.05

S -0.34 0.04 -0.08 0.19 0.17 -0.08 0.32 -0.08 -0.48 -0.57 0.04 -0.03 0.13 -0.22 -0.20 0.16

K -0.34 0.05 0.11 0.02 0.36 0.30 0.35 0.19 -0.13 0.20 0.16 0.13 -0.32 0.44 0.07 -0.29

Ca -0.02 0.49 0.44 -0.03 -0.13 -0.05 0.07 0.07 -0.13 0.19 -0.05 -0.17 -0.15 0.11 -0.03 0.64

Mn -0.31 0.11 -0.08 0.08 0.07 -0.52 -0.39 -0.07 -0.09 0.05 -0.46 0.09 -0.24 0.25 -0.25 -0.16

Fe -0.36 -0.01 -0.08 -0.16 -0.24 -0.20 0.22 -0.10 0.46 -0.11 0.24 -0.42 0.26 0.36 -0.15 -0.03

Co -0.06 -0.06 -0.02 -0.62 0.24 -0.30 -0.09 0.08 -0.31 0.24 0.32 -0.28 -0.08 -0.30 -0.02 -0.10

Ni -0.16 -0.34 0.20 0.05 -0.13 -0.06 -0.18 0.83 0.08 -0.15 0.06 0.08 0.03 -0.04 -0.14 0.11

Cu -0.36 -0.02 0.19 -0.22 -0.14 0.32 -0.02 -0.16 -0.03 0.33 -0.16 0.34 0.41 -0.20 -0.42 -0.05

Zn -0.40 0.01 -0.08 -0.16 -0.23 -0.18 0.21 -0.07 0.29 -0.04 -0.03 0.38 -0.35 -0.36 0.44 0.12

Se 0.13 0.37 -0.29 -0.35 -0.04 -0.08 0.22 0.36 -0.13 -0.07 -0.36 0.14 0.41 0.18 0.27 -0.09

Rb -0.13 -0.01 0.31 0.10 0.68 -0.10 -0.06 -0.02 0.35 0.01 -0.20 -0.10 0.34 -0.15 0.28 0.08

Sr 0.03 0.43 0.48 0.12 -0.23 -0.06 -0.03 0.05 0.03 -0.20 0.08 -0.10 -0.01 -0.25 0.03 -0.62

Mo 0.02 0.37 -0.18 -0.34 0.26 0.35 -0.30 0.04 0.33 -0.41 0.08 0.09 -0.24 -0.03 -0.28 0.09

Cd -0.16 -0.28 0.30 -0.33 -0.16 0.28 -0.30 -0.20 -0.24 -0.35 -0.21 -0.15 -0.01 0.26 0.38 0.01

IN10 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 1.81 1.46 1.38 1.22 1.15 1.00 0.92 0.84 0.82 0.80 0.70 0.64 0.58 0.55 0.49 0.45

Proportion 

of Variance 0.20 0.13 0.12 0.09 0.08 0.06 0.05 0.04 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.01

Cumulative 

Proportion 0.20 0.34 0.46 0.55 0.63 0.70 0.75 0.79 0.84 0.88 0.91 0.93 0.95 0.97 0.99 1.00

Mg -0.29 -0.04 0.15 -0.40 0.09 -0.23 0.50 -0.07 0.20 -0.20 0.23 -0.06 -0.13 0.49 -0.02 0.15

P -0.35 0.30 0.15 -0.18 0.03 0.01 0.09 -0.15 -0.10 -0.44 -0.22 -0.19 0.50 -0.35 0.11 -0.20

S -0.36 0.07 0.17 -0.15 0.22 0.28 -0.06 0.38 0.33 0.25 0.10 -0.30 -0.33 -0.33 -0.17 -0.14

K -0.27 0.18 0.31 0.22 0.23 0.22 -0.43 -0.07 -0.09 0.19 0.13 -0.13 0.29 0.48 0.13 0.22

Ca -0.10 -0.40 0.42 0.18 -0.25 -0.03 0.07 0.02 -0.02 -0.08 -0.29 -0.12 0.04 -0.17 -0.36 0.53

Mn -0.27 -0.32 0.04 -0.06 0.31 -0.37 0.01 -0.18 -0.06 0.39 0.27 0.37 0.24 -0.35 0.07 0.04

Fe -0.37 -0.01 -0.24 -0.17 -0.30 -0.24 -0.21 0.11 -0.11 0.12 -0.29 -0.13 -0.27 -0.02 0.56 0.26
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Co -0.22 -0.07 -0.31 0.38 -0.23 -0.27 -0.15 -0.27 0.15 -0.16 0.45 -0.43 -0.03 -0.06 -0.20 -0.09

Ni -0.10 -0.29 -0.29 0.18 0.28 0.31 0.13 -0.39 0.50 0.01 -0.40 -0.01 0.04 0.06 0.16 0.01

Cu -0.37 -0.06 0.02 0.26 0.13 0.25 -0.04 -0.08 -0.34 -0.43 0.08 0.43 -0.46 -0.04 -0.01 -0.05

Zn -0.33 -0.06 -0.36 -0.22 -0.18 0.00 -0.26 0.22 0.06 0.02 -0.22 0.30 0.25 0.25 -0.52 -0.15

Se -0.05 0.46 0.07 0.28 -0.22 -0.10 0.05 0.16 0.55 -0.08 0.10 0.45 0.07 -0.12 0.11 0.26

Rb -0.14 0.31 0.08 0.41 0.16 -0.41 0.28 -0.01 -0.15 0.29 -0.42 -0.06 -0.16 0.14 -0.18 -0.25

Sr -0.07 -0.42 0.37 0.19 -0.31 -0.04 0.00 0.24 0.17 -0.04 0.01 0.06 0.11 0.17 0.32 -0.56

Mo -0.08 0.18 0.23 -0.21 -0.49 0.24 0.02 -0.60 0.00 0.35 0.02 0.12 -0.17 -0.02 -0.10 -0.16

Cd -0.19 -0.01 -0.28 0.21 -0.22 0.40 0.56 0.23 -0.27 0.26 0.19 -0.05 0.26 0.00 0.09 0.10

NC06 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 1.94 1.32 1.18 1.11 1.03 1.02 0.98 0.94 0.89 0.83 0.77 0.74 0.66 0.57 0.54 0.47

Proportion 

of Variance 0.24 0.11 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01

Cumulative 

Proportion 0.24 0.35 0.43 0.51 0.58 0.64 0.70 0.76 0.81 0.85 0.89 0.92 0.95 0.97 0.99 1.00

Mg -0.34 0.19 -0.06 0.12 -0.51 0.14 -0.04 0.08 -0.11 0.05 -0.06 0.19 0.06 -0.23 -0.60 -0.26

P -0.37 0.15 -0.09 0.30 -0.22 -0.03 0.12 0.09 -0.29 0.25 0.00 0.17 -0.15 -0.12 0.45 0.51

S -0.32 -0.04 -0.22 -0.12 0.14 -0.27 -0.22 -0.19 -0.13 0.31 0.11 -0.65 -0.22 -0.03 -0.23 0.06

K -0.38 0.15 -0.22 -0.10 0.28 -0.15 0.03 0.17 -0.17 0.10 -0.02 0.19 0.10 0.22 0.32 -0.63

Ca -0.06 0.46 0.40 -0.30 -0.05 0.01 -0.07 -0.21 0.07 -0.13 0.40 0.11 -0.50 -0.10 0.11 -0.11

Mn -0.25 0.01 0.19 0.24 -0.32 -0.41 -0.12 -0.18 0.04 -0.59 -0.06 -0.23 0.22 0.21 0.16 -0.04

Fe -0.31 -0.19 0.07 0.09 -0.03 0.41 0.21 -0.15 0.43 0.06 0.10 -0.29 0.17 -0.41 0.29 -0.20

Co -0.17 -0.25 0.10 -0.55 -0.23 -0.12 -0.03 0.29 0.18 -0.03 -0.56 0.01 -0.28 -0.10 0.12 0.05

Ni -0.12 -0.27 0.37 -0.09 -0.02 0.29 -0.24 0.55 -0.34 -0.08 0.36 -0.20 0.12 0.12 0.01 0.03

Cu -0.23 -0.02 0.24 0.13 0.43 0.26 0.36 -0.16 -0.36 -0.31 -0.38 -0.07 -0.24 -0.01 -0.20 0.03

Zn -0.34 -0.20 0.25 0.05 0.04 -0.03 0.21 -0.06 0.41 0.27 0.13 0.21 -0.05 0.59 -0.23 0.16

Se -0.10 -0.19 -0.23 -0.55 -0.19 0.19 0.16 -0.47 -0.32 -0.11 0.17 0.13 0.28 0.13 0.04 0.15

Rb -0.32 0.08 -0.15 -0.15 0.43 -0.17 -0.15 0.18 0.23 -0.32 0.17 0.26 0.24 -0.34 -0.19 0.34

Sr -0.03 0.50 0.37 -0.17 0.09 0.11 -0.20 -0.10 0.00 0.31 -0.35 -0.14 0.50 0.07 0.03 0.15

Mo -0.06 0.36 -0.46 -0.01 -0.06 0.48 -0.10 0.17 0.23 -0.28 -0.07 -0.22 -0.16 0.39 0.03 0.13

Cd -0.11 -0.28 0.00 0.18 0.10 0.25 -0.74 -0.34 0.00 0.03 -0.17 0.30 -0.15 0.02 0.09 -0.05

NY05 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 1.99 1.44 1.23 1.16 1.04 1.00 0.92 0.88 0.83 0.81 0.75 0.67 0.63 0.56 0.49 0.32

Proportion 

of Variance 0.25 0.13 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.02 0.02 0.02 0.01

Cumulative 

Proportion 0.25 0.38 0.47 0.56 0.62 0.69 0.74 0.79 0.83 0.87 0.91 0.93 0.96 0.98 0.99 1.00

Mg 0.36 -0.05 0.29 -0.15 0.14 0.14 -0.21 0.18 -0.02 0.07 0.27 -0.26 -0.41 -0.09 -0.56 0.10

P 0.39 0.05 0.29 0.12 0.11 -0.05 -0.22 0.09 0.00 0.18 0.05 -0.03 -0.28 0.24 0.71 0.01

S 0.34 0.10 0.10 -0.08 -0.24 0.03 0.08 -0.33 -0.18 0.25 -0.55 0.46 -0.21 0.00 -0.20 -0.03

K 0.19 -0.02 -0.01 0.51 0.42 -0.31 -0.10 -0.21 0.06 0.15 -0.34 -0.37 0.25 -0.05 -0.18 -0.02
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Ca 0.12 -0.59 -0.27 -0.14 0.03 0.04 -0.05 -0.04 -0.05 0.00 -0.14 -0.03 0.01 -0.13 0.14 0.69

Mn 0.35 -0.10 0.08 -0.32 0.09 -0.06 -0.11 0.03 -0.17 0.26 0.28 0.21 0.70 0.09 -0.05 -0.11

Fe 0.36 0.10 -0.10 -0.11 -0.23 0.04 0.17 -0.18 -0.01 -0.51 -0.07 -0.34 0.11 0.57 -0.06 0.06

Co 0.17 0.31 -0.27 -0.09 0.21 -0.06 0.15 0.55 -0.53 -0.17 -0.24 -0.06 -0.01 -0.21 0.07 0.00

Ni 0.05 0.21 -0.40 -0.14 0.39 0.46 -0.24 0.12 0.47 0.07 -0.20 0.17 0.01 0.22 -0.05 -0.01

Cu 0.21 -0.05 -0.38 0.47 0.06 -0.22 -0.07 -0.02 -0.09 -0.21 0.41 0.50 -0.18 0.13 -0.15 0.03

Zn 0.36 0.17 -0.15 -0.18 -0.02 -0.05 -0.05 -0.34 0.27 -0.30 0.13 -0.05 0.00 -0.65 0.20 -0.15

Se 0.25 -0.02 -0.03 0.10 -0.37 -0.28 0.31 0.51 0.55 0.18 -0.07 0.02 0.08 -0.05 -0.06 0.07

Rb 0.15 -0.12 0.10 0.19 0.29 0.46 0.75 -0.10 -0.01 0.09 0.17 0.02 0.00 -0.07 0.07 -0.04

Sr 0.08 -0.62 -0.24 -0.09 -0.03 0.01 -0.04 0.10 -0.05 -0.01 -0.14 -0.11 -0.17 0.04 0.02 -0.68

Mo 0.09 -0.14 0.31 0.42 -0.24 0.48 -0.30 0.23 -0.03 -0.35 -0.17 0.13 0.28 -0.18 -0.01 -0.03

Cd 0.07 0.18 -0.43 0.23 -0.44 0.31 -0.11 -0.09 -0.20 0.47 0.19 -0.34 0.02 -0.06 0.03 0.00

NY06 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 2.05 1.57 1.22 1.15 1.14 0.96 0.94 0.83 0.78 0.68 0.68 0.62 0.56 0.50 0.44 0.27

Proportion 

of Variance 0.26 0.15 0.09 0.08 0.08 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.00

Cumulative 

Proportion 0.26 0.42 0.51 0.59 0.67 0.73 0.79 0.83 0.87 0.90 0.92 0.95 0.97 0.98 1.00 1.00

Mg -0.37 0.16 -0.08 0.06 -0.33 0.11 -0.24 0.08 -0.03 0.12 0.11 -0.37 0.00 0.51 0.25 -0.39

P -0.40 0.05 -0.03 0.24 -0.17 -0.14 0.28 -0.14 -0.12 0.03 -0.08 -0.16 -0.34 -0.14 0.38 0.55

S -0.42 0.13 -0.17 -0.02 0.05 -0.04 0.00 -0.18 -0.05 -0.05 -0.07 -0.16 -0.37 -0.34 -0.60 -0.31

K -0.30 -0.13 0.13 0.23 0.01 -0.45 0.19 0.29 0.31 -0.07 -0.51 0.16 0.24 0.07 0.00 -0.22

Ca -0.11 -0.16 -0.27 -0.64 0.09 0.17 -0.07 -0.15 0.23 0.01 -0.47 -0.24 0.11 0.10 0.05 0.23

Mn -0.29 0.06 -0.11 -0.24 -0.26 0.27 0.42 0.28 0.08 -0.39 0.35 0.08 0.34 -0.21 0.00 0.00

Fe -0.34 -0.08 0.15 0.06 0.23 0.13 -0.41 -0.38 0.24 -0.09 0.13 0.24 0.15 -0.36 0.40 -0.17

Co 0.03 -0.05 0.58 -0.29 -0.35 -0.17 -0.13 -0.17 0.10 -0.48 0.01 0.05 -0.28 0.18 -0.10 0.05

Ni -0.18 0.27 0.36 -0.36 -0.09 0.04 -0.14 0.43 -0.04 0.55 -0.04 0.23 -0.12 -0.22 0.01 0.07

Cu -0.20 -0.28 0.30 -0.10 0.06 0.16 0.46 -0.42 -0.35 0.31 -0.02 0.16 0.16 0.23 -0.07 -0.17

Zn -0.31 -0.32 0.07 0.21 0.15 0.14 -0.21 0.13 0.27 0.11 0.30 0.02 0.06 0.30 -0.42 0.44

Se -0.04 -0.33 -0.14 0.11 -0.51 0.03 -0.39 0.03 -0.48 -0.04 -0.23 0.15 0.26 -0.21 -0.13 0.10

Rb -0.15 0.44 -0.34 -0.06 0.05 -0.07 -0.07 -0.15 -0.12 -0.13 -0.06 0.65 -0.04 0.38 -0.04 0.13

Sr 0.01 -0.52 -0.20 -0.04 0.04 0.24 0.06 0.30 0.01 -0.07 -0.03 0.30 -0.59 0.06 0.20 -0.22

Mo 0.21 0.05 -0.11 0.17 -0.54 0.22 0.14 -0.30 0.56 0.31 -0.07 0.18 -0.05 -0.06 -0.10 -0.03

Cd -0.01 -0.27 -0.28 -0.31 -0.13 -0.68 -0.01 -0.11 0.06 0.23 0.44 0.05 0.02 -0.03 0.05 -0.05

NY12 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 1.89 1.42 1.28 1.18 1.05 0.98 0.96 0.94 0.87 0.81 0.78 0.67 0.61 0.53 0.53 0.31

Proportion 

of Variance 0.22 0.13 0.10 0.09 0.07 0.06 0.06 0.06 0.05 0.04 0.04 0.03 0.02 0.02 0.02 0.01

Cumulative 

Proportion 0.22 0.35 0.45 0.54 0.61 0.67 0.73 0.78 0.83 0.87 0.91 0.94 0.96 0.98 0.99 1.00

Mg 0.34 -0.16 0.03 -0.21 0.17 -0.29 0.42 -0.16 0.12 0.16 -0.19 0.30 -0.02 -0.47 0.34 0.01
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P 0.39 0.02 0.19 0.15 0.06 0.05 0.17 -0.33 0.21 -0.08 -0.16 0.37 0.03 0.53 -0.38 0.03

S 0.31 -0.09 -0.25 -0.20 0.01 0.22 -0.34 0.07 -0.10 -0.44 -0.41 0.03 -0.50 -0.08 0.02 0.02

K 0.14 0.05 0.44 0.35 0.39 0.16 -0.20 0.07 -0.19 -0.37 -0.02 0.05 0.36 -0.10 0.36 0.00

Ca 0.16 0.60 0.05 -0.24 0.07 -0.05 -0.08 0.05 -0.11 0.16 0.03 -0.02 -0.03 0.05 0.05 0.70

Mn 0.37 -0.07 0.10 -0.26 0.10 -0.05 0.24 -0.11 0.04 -0.13 0.04 -0.80 0.10 0.16 0.01 -0.09

Fe 0.37 -0.16 -0.17 -0.04 -0.31 0.02 -0.06 0.24 -0.18 0.15 0.31 0.18 0.04 0.44 0.51 -0.08

Co -0.01 0.23 -0.16 0.32 -0.07 0.18 0.60 0.56 0.00 -0.08 -0.32 -0.06 -0.02 0.05 0.01 0.00

Ni -0.02 0.07 -0.41 0.03 0.59 0.08 0.01 0.08 0.49 -0.12 0.41 0.05 -0.12 0.08 0.09 0.00

Cu 0.24 0.02 0.15 0.54 0.15 -0.26 -0.11 0.02 -0.14 0.35 0.11 -0.18 -0.56 -0.06 -0.06 -0.08

Zn 0.36 -0.19 -0.16 -0.05 0.12 0.30 0.06 0.18 -0.36 0.12 0.32 0.10 0.22 -0.32 -0.51 0.06

Se 0.19 0.14 -0.08 0.28 -0.37 0.54 -0.08 -0.32 0.39 0.17 0.02 -0.15 0.07 -0.29 0.16 0.05

Rb 0.04 -0.23 0.37 -0.23 0.15 0.20 -0.25 0.47 0.39 0.44 -0.25 -0.02 0.02 0.07 -0.05 -0.02

Sr 0.11 0.63 0.02 -0.24 0.07 0.05 -0.09 0.00 -0.09 0.13 -0.02 0.11 0.03 -0.05 -0.03 -0.69

Mo 0.25 0.11 0.14 0.05 -0.38 -0.43 -0.16 0.33 0.39 -0.37 0.22 0.05 0.08 -0.23 -0.19 -0.01

Cd 0.14 -0.01 -0.51 0.23 0.11 -0.34 -0.31 -0.01 0.02 0.19 -0.41 -0.12 0.47 0.04 -0.04 0.01

MO06 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 2.01 1.48 1.30 1.20 1.11 1.04 0.89 0.78 0.77 0.74 0.70 0.67 0.58 0.49 0.37 0.33

Proportion 

of Variance 0.25 0.14 0.10 0.09 0.08 0.07 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.01 0.01

Cumulative 

Proportion 0.25 0.39 0.50 0.59 0.66 0.73 0.78 0.82 0.86 0.89 0.92 0.95 0.97 0.98 0.99 1.00

Mg -0.26 0.12 -0.02 0.05 -0.25 0.54 -0.28 0.08 -0.16 0.09 -0.60 0.12 -0.24 -0.01 0.00 -0.08

P -0.41 0.06 -0.09 0.04 0.01 0.24 0.33 0.05 0.01 -0.15 0.03 0.05 0.37 0.35 -0.43 0.42

S -0.30 0.26 -0.05 0.16 0.25 -0.29 0.16 -0.13 -0.15 -0.48 -0.08 -0.01 -0.53 0.22 0.21 0.03

K -0.38 0.03 0.15 0.12 -0.05 0.11 0.52 -0.09 0.15 -0.04 -0.05 -0.03 0.25 -0.47 0.28 -0.37

Ca -0.16 -0.51 0.15 0.07 0.34 0.06 0.00 0.08 -0.20 0.01 0.12 0.21 -0.18 0.08 -0.42 -0.48

Mn -0.22 0.10 -0.24 0.45 0.04 0.29 -0.29 -0.01 -0.24 0.16 0.56 -0.20 0.06 0.04 0.25 -0.05

Fe -0.33 0.11 0.13 -0.22 -0.02 -0.35 0.04 -0.04 -0.18 0.61 -0.03 0.26 0.11 0.37 0.25 -0.07

Co -0.11 -0.27 -0.44 0.13 -0.12 -0.31 0.22 0.49 -0.20 0.23 -0.18 -0.29 -0.15 -0.22 -0.06 0.15

Ni -0.08 -0.29 -0.52 -0.25 0.17 -0.04 -0.23 -0.13 0.00 -0.29 -0.24 -0.06 0.42 0.18 0.26 -0.23

Cu -0.22 -0.07 -0.01 -0.52 -0.25 0.17 0.00 0.45 0.28 -0.18 0.38 0.02 -0.26 0.11 0.18 -0.08

Zn -0.24 0.28 -0.35 -0.32 0.14 -0.11 -0.20 -0.19 -0.04 0.05 0.16 0.32 -0.07 -0.54 -0.30 0.09

Se -0.21 0.17 0.18 0.35 -0.01 -0.36 -0.43 0.45 0.32 -0.18 -0.08 0.17 0.26 -0.04 -0.09 -0.10

Rb -0.30 -0.22 -0.06 0.10 -0.26 -0.15 -0.15 -0.47 0.52 0.17 -0.01 -0.33 -0.22 0.10 -0.21 -0.03

Sr -0.19 -0.52 0.24 0.06 0.17 0.05 -0.16 -0.07 0.04 -0.03 -0.02 0.24 -0.04 -0.22 0.35 0.58

Mo -0.22 0.02 0.43 -0.31 -0.06 -0.12 -0.23 -0.03 -0.44 -0.16 0.00 -0.56 0.15 -0.15 -0.13 0.04

Cd -0.04 0.19 0.04 -0.14 0.72 0.20 -0.02 0.19 0.33 0.29 -0.15 -0.35 -0.06 0.00 0.03 0.05

SA10 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard 

deviation 2.37 1.57 1.19 1.07 1.01 0.93 0.83 0.75 0.71 0.69 0.60 0.54 0.46 0.42 0.35 0.28
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Table S4. Weather Station Locations. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Proportion 

of Variance 0.35 0.15 0.09 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.00

Cumulative 

Proportion 0.35 0.51 0.59 0.67 0.73 0.78 0.83 0.86 0.89 0.92 0.95 0.96 0.98 0.99 1.00 1.00

Mg 0.31 -0.12 0.24 -0.17 0.39 -0.07 0.12 -0.32 0.20 -0.09 0.16 -0.16 0.14 -0.38 -0.34 -0.39

P 0.32 -0.21 0.31 0.12 0.07 0.11 -0.18 -0.27 0.08 0.11 0.03 0.05 0.17 0.00 0.75 0.10

S 0.29 -0.19 0.15 -0.12 0.09 -0.15 -0.27 0.58 0.09 -0.31 -0.22 0.43 0.01 -0.23 -0.06 0.11

K 0.24 -0.12 0.36 0.15 -0.49 0.09 0.11 -0.03 -0.05 -0.31 -0.32 -0.50 -0.04 0.02 -0.18 0.18

Ca 0.13 0.49 0.23 -0.06 0.12 -0.16 0.29 -0.04 -0.19 -0.11 -0.27 0.13 -0.54 -0.01 0.26 -0.26

Mn 0.36 0.15 0.07 -0.09 0.18 0.18 0.06 -0.23 0.13 0.29 -0.02 0.23 -0.20 0.20 -0.34 0.60

Fe 0.30 0.09 -0.08 -0.34 -0.01 -0.31 -0.01 0.25 -0.22 -0.07 0.58 -0.38 -0.10 0.07 0.15 0.21

Co 0.26 0.20 -0.37 -0.12 -0.20 -0.02 -0.22 0.10 0.27 0.47 -0.32 -0.27 -0.07 -0.38 0.09 -0.09

Ni 0.16 0.28 -0.23 0.36 0.17 0.06 -0.65 -0.25 -0.26 -0.34 0.03 -0.07 -0.07 -0.01 -0.12 -0.03

Cu 0.29 -0.13 -0.08 0.10 -0.13 0.33 0.20 0.09 -0.70 0.25 0.07 0.21 0.12 -0.26 -0.09 -0.14

Zn 0.36 -0.19 -0.12 -0.04 0.10 0.02 -0.06 0.15 0.03 0.12 -0.17 -0.07 0.03 0.73 -0.08 -0.45

Se -0.11 0.29 0.33 0.03 0.17 0.66 -0.10 0.43 0.16 0.05 0.21 -0.22 -0.04 0.00 0.01 -0.10

Rb 0.25 0.19 -0.04 0.21 -0.56 0.02 0.06 -0.06 0.37 -0.11 0.44 0.37 -0.05 0.02 -0.05 -0.23

Sr 0.08 0.56 0.07 -0.10 -0.01 -0.12 0.12 0.03 -0.06 -0.06 -0.16 0.05 0.76 0.11 0.00 0.06

Mo -0.17 0.05 0.55 0.00 -0.20 -0.35 -0.42 -0.01 -0.18 0.46 0.08 0.06 -0.02 0.06 -0.21 -0.13

Cd 0.10 0.01 0.00 0.76 0.27 -0.33 0.25 0.27 0.10 0.20 0.07 -0.14 0.03 -0.05 -0.03 0.10

Location Weather Station 

Florida Homestead General Aviation Airport 

Indiana West Lafayette 6 NW 

North Carolina Clayton Field 

New York Aurora Research Farm 

Missouri Columbia U of M  

 

S2 Table. Weather Station Locations. Location and name of weather station from which 

weather data was obtained. 
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ABSTRACT 

Roots of young plants undergo highly regulated gene expression changes that pattern root 

architecture and physiology, with lifelong effects on the structural integrity, water-use efficiency, 

and nutrient flow of the plant. Many phenotypes, such as seed and leaf element accumulation are 

often determined by gene expression in the root. To understand gene regulatory networks in 

maize roots, we measured transcript levels in two-week-old roots of 218 greenhouse-grown 

plants belonging to the maize Intermated B73 x Mo17 (IBM) recombinant inbred population. We 

also profiled the ionome of leaf samples from the same plants and carried out QTL mapping on 

20 element traits. After performing quality control on the root RNA-seq data, we retained an 

average of 19.6 million reads per sample. Following quantification with an alignment bias-

reducing pipeline, gene expression estimates were used for expression QTL (eQTL) mapping 

and co-expression analysis which identified 12,497 cis-eQTL, 6,128 trans-eQTL, and 250 co-

expressed gene clusters. We detected 8 trans-eQTL hotspots, and found significantly enriched 

co-expression and gene ontology among hotspot gene targets. Finally, we performed a 

correlation analysis between root gene expression and leaf element measurements. For 10 

elements, genes where root expression correlated with leaf element content co-located with leaf 

QTL mapped for the element. Additionally, for cadmium and zinc, correlated genes on different 

chromosomes had trans-eQTL mapping back to the element QTL. The chromosome 2 locus 

associated with both leaf and seed cadmium content co-localizes with the trans-eQTL hotspot on 

chromosome 2, which has among its gene targets the top 5 cadmium-correlated genes outside of 

the QTL interval. Dissecting these relationships can aid in understanding mechanisms and 

candidate genes underlying element accumulation QTL detected in the leaf and seed. 
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INTRODUCTION 

In this study, we used the maize Intermated B73 x Mo17 (IBM) recombinant inbred 

population to conduct an analysis of gene expression in maize roots and connect gene expression 

in the roots with leaf and seed ionome phenotypes. Gene regulation in the roots has a strong 

impact on element accumulation throughout the plant, making root gene expression an ideal 

resource for understanding biological changes that cause ionome variation in leaf and seed tissue 

[1–3]. We can connect variation in root gene expression with variation in the ionome using co-

expression and expression QTL (eQTL) analyses. Expression QTL mapping follows the same 

principles as standard QTL mapping, with the distinguishing characteristic being that the trait of 

interest is gene expression [4]. Expression QTL for a given transcript located within or near the 

gene encoding that transcript are referred to as cis-eQTL, while eQTL distantly located from the 

transcript they regulate are considered trans-eQTL [5]. Co-expression analysis tests whether 

genes contributing to a trait operate in a co-regulated network. If candidate genes for a trait are 

co-regulated, they should be more co-expressed than a random set of genes the same size and 

candidate genes most highly co-expressed are likely to be the causal genes [6]. Consistent with 

roots being a key regulatory source for the ionome, a recent co-expression study revealed that 

candidate genes for kernel element SNPs were more co-expressed in root expression networks 

than in networks derived from other tissues [7]. 

To achieve accurate estimates of gene expression in a population with genetic diversity, it 

is necessary to address the issue of alignment bias based on reference genome. RNA-seq reads 

must be aligned to a reference genome as a first step in gene quantification. The choice of 

reference genome can cause alignment bias and dramatically influence results of downstream 

analyses. For example, in eQTL analysis, the genome is surveyed for associations between 
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parental genotype and expression levels of different transcripts. This analysis may detect a false 

positive association between the reference allele and increase in expression of a gene, even if 

gene expression is the same across the population, if the lines with the reference allele just 

aligned better to the reference genome than those with the non-reference allele. Several previous 

studies in maize align reads using a single reference genome and do not address alignment bias 

[8, 9]. In older experiments, some noted a bias but did not have many resources to address the 

problem. Holloway et al. used microarrays to conduct an eQTL experiment in maize inbreds and 

observed a substantial bias toward the reference allele, with a larger proportion of cis-eQTL 

having higher reference allele expression than would be expected without bias. The false positive 

cis-eQTLs confirmed were often some of the strongest cis-eQTLs mapped [4]. To date, there has 

been no well-tested and standardized method for dealing with mapping bias in a bi-parental RIL 

population. 

Predicting and accounting for the variety of scenarios that can cause mapping bias in a 

species as diverse as maize and in a bi-parental population with extensive recombination has 

numerous complications. We tested several methods to account for mapping bias and, while each 

method to reduce mapping bias is imperfect, employing the reference of B73 along with 

consideration of Mo17 polymorphisms was determined to be the most functional and reasonably 

executable approach with the least drawbacks. 

Here, we have estimated expression of genes expressed in two-week-old maize roots, 

modeled relationships between genetic variation and gene expression, and determined co-

expressed gene modules. We related genotype to phenotype through several levels of analysis, 

connecting element accumulation with gene expression in the root. This integrative approach has 
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allowed us to identify candidate genes for previously mapped ionome QTL and genes that are 

functionally connected with these QTL.  

 

MATERIALS & METHODS 

Population and Data Collection 

Greenhouse growth and sampling. 227 Intermated B73 x Mo17 (IBM) recombinant 

inbred population lines as well as the B73 and Mo17 parent lines were grown in a greenhouse 

with the following growth conditions: Day temp: 26-28C, Night temp: 22-24C, 14-hour day, 

50% relative humidity. Leaf and root sampling was performed two weeks after planting. The 

youngest, fully expanded leaf was taken, dried down, then crumbled into a tube for ionomics. 

The roots were cut off at the stem, and then a 1-inch segment of the root was removed for RNA-

sequencing, 1 inch below the base of the stem. Samples were immediately placed in liquid 

nitrogen and then ground using mortars and pestles. 

Elemental profile analysis. Elemental profile analysis was conducted on leaf samples 

following a standardized pipeline in the Baxter Lab with the same methods as reported in Veley 

et al. [10]. Descriptions taken directly are marked in quotations. Samples were “weighed into 

borosilicate glass test tubes and digested in 2.5 ml nitric acid (AR select, Macron) containing 

20 ppb indium as a sample preparation internal standard. Digestion was carried out by soaking 

overnight at room temperature and then heating to 95°C for 4 hrs. After cooling, samples were 

diluted to 10 ml using ultra‐pure water (UPW, Millipore Milli‐Q). Samples were diluted an 

additional 5 × with UPW containing yttrium as an instrument internal standard using an ESI 

prepFAST autodilution system (Elemental Scientific). A PerkinElmer NexION 350D with 

helium mode enabled for improved removal of spectral interferences was used to measure 
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concentrations of,” B, Na, Mg, Al, P, S, K, Ca, Fe, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, and 

Cd. “Instrument reported concentrations are corrected for the yttrium and indium internal 

standards and a matrix‐matched control (pooled leaf digestate) as described [11]. The control 

was run every 10 samples to correct for element‐specific instrument drift. Concentrations were 

converted to parts per million (mg analyte/kg sample) by dividing instrument reported 

concentrations by the sample weight.” 

RNA extraction and sequencing. RNA was extracted from root samples using Trizol 

reagent. RNA from two plants per line was pooled to make a single sample. After removal of 

low quality preparations, 218 RIL samples (1 sample of each) and samples from the B73 and 

Mo17 parents (3 of each) were sent for library preparation. Libraries were prepared by Global 

Biologics using TruSeq RNA Directional (RNAseq) protocol, with a Tru-Seq adapter and a Tru-

Seq index ligated to each sample. After library preparation, 8 samples were pooled together (by 

concentration), to make 28 lanes. 28 pools containing single-end reads were sequenced on one 

Illumina HiSeq 2500 V4 lane for 100nt, producing an average of over 200 million single-reads 

per lane. The following procedures were used: Qubit, NO DNA chip (average size: 300bp), 

dilute to 5nM if above 10nM, qPCR, reads are not paired-end (1 read per sample). The total 

result of RNA-seq was 5.7 billion 100 base pair-long reads across 224 samples, an average of 

25.6 million reads per sample. 

Leaf QTL Mapping 

Initial element data was prepared for QTL mapping. This data included 421 samples, 

phenotyped for sample weight and 20 elements, from 227 IBM lines, with replicates ranging 

from 1-3 replicates (35 lines with 1 replicate, 190 lines with two replicates, 2 lines with 3 

replicates). Element phenotypes were weight normalized. 14 samples with a sample weight 
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below 20 mg were removed. Outliers were removed using the same technique as was used in 

Asaro et al. for seed element QTL mapping [12], with measurements excluded if the mean 

absolute deviation (MAD) exceeded 6.2 [13]. Heritability was calculated after outlier removal 

but before averaging for seed weight and each element using lines with 2 or more replicates. The 

lmfit and anova functions were implemented to obtain the variances for the genetic component 

and the residuals. Broad-sense heritability was calculated as the proportion of total variance 

(genetic plus residuals) explained by the genetic component. After outlier removal, replicates 

were averaged leaving 225 unique IBM lines. The same IBM genotypes as used in Asaro et al. 

were merged with phenotypes. Stepwise QTL mapping on 21 traits (20 elements and weight) 

was conducted in R/QTL [14] using the same method as used in Asaro et al. for seed element 

mapping. Significance was determined using 1000 random permutations and a 95th percentile 

LOD score significance threshold.  

RNA-Sequencing Data Quality Control, Alignment, and Gene Quantification. 

Initial data processing and quality control. RNA-sequencing reads from 224 samples 

(1 sample from 218 RILs and 3 samples from each parent) were initially processed for quality 

control using the programs FastQC [15] and Trimmomatic [16]. FastQC was first executed on 

untrimmed raw FASTQ files, after which quality control results were summarized and assessed. 

Trimmomatic was then used to trim adapter sequences, trim low quality sequence, and remove 

low quality reads. Trimmomatic parameters were set to use a 4-mer sliding window, threshold 

quality score of 15, removal of first 13 bases, removal of adapter sequences, and a minimum 

length of 36 base pairs (SLIDINGWINDOW:4:15, HEADCROP:13, ILLUMINACLIP:2:30:10, 

LEADING:3, TRAILING:3, MINLEN:36). Trimming and filtering resulted in an average of 

24.9 million reads per sample, with read length ranging 36 to 87 base pairs. FastQC was repeated 
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on trimmed reads. Ribosomal RNA sequences obtained from SILVA [17] were used to remove 

any rRNA contamination. Bowtie2 [18] was used to map reads to rRNA sequences and only 

unmapped reads were carried on for further analysis. Three samples were removed from further 

analysis because of low total read count, leaving a total of 221 samples. A total of 4.4 billion 

reads were retained after trimming, filtering, removing rRNA sequences, and removing the 

samples with low read count, with an average of 19.9 million reads per sample. 

Sample validation. Sample identity was tested by calling SNPs using full-genome 

alignments to the B73 reference genome version 3 [19], aligned with Tophat2 [20] (default 

parameters), and the program VarScan [21]. SNPs called on the RNA-seq data were compared 

with SNPs used in previous work with this population [12] to confirm sample identity. To 

convert previous SNPs from centi-Morgan positions to base pairs, records from Ganal et al. [22] 

were used to match SNPs to SS numbers, which were entered into dbSNP [23] to look up RS 

numbers. The batch query service on dbSNP was used with RS numbers to obtain base pair 

coordinates corresponding to the B73 version 3 reference for each SNP. VarScan was run on 

RNA-seq alignments with the parameters --min-coverage 20 --min-var-freq 0.08 --p-value 0.05 -

-output-vcf 1. VCF output files were filtered using VCFtools [24] with parameters --maf 0.1 --

max-missing 0.7 --recode --recode-INFO-all (except for chromosome 2 which required less 

stringent filtering with --maf 0.05 --max-missing 0.4 for adequate coverage). New SNP calls 

were compared to previous SNPs, with heterozygote calls masked as missing. SNP calls were 

imputed between the two closest VarScan calls if a VarScan call was not present at the reference 

SNP location. A distance matrix was built using new and old SNP calls to cluster samples and 

generate a visual representation. Samples were considered validated as the correct RIL or parent 

if new SNPs matched previous SNPs with an accuracy above 90% once low accuracy SNPs 
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(<85% accuracy) were removed. Samples that could not be validated or re-assigned with the 

correct name were renamed with arbitrary names different from the original IBM line names. 

Alignment. The programs Tophat2 and WASP [25] were used to align RNA-sequencing 

reads to the B73 version 4 reference transcriptome [26]. Parent samples were also aligned to a 

Mo17 reference transcriptome [27] in Tophat2, again using transcriptome only and two 

mismatches, to consider the extent of alignment bias. WASP was added to the B73 v4 mapping 

pipeline to reduce alignment bias. Reads were first mapped to the B73 v4 reference 

transcriptome with Tophat2. Parameters were set to specify transcriptome-only mapping and a 

default of two mismatches. Sorted BAM output files were used in the WASP script 

“find_intersecting_snps.py” along with a set of Mo17 polymorphisms, 8.04 million SNP and 

insertion/deletion (indel) variants with 164 thousand CDS variants, developed by Peng Zhou and 

available on the Data Repository for the University of Minnesota [28]. The 

“find_intersecting_snps.py” script detected reads that intersected with Mo17 SNPs and filtered 

out reads that overlapped indels, producing a “reads to remap” BAM file, a “reads to keep” BAM 

file, and a “reads to remap” FASTQ file with reads intersecting SNPs edited to contain the Mo17 

allele. The reads that intersected SNPs were then aligned again using Tophat2 with the same 

parameters as the first alignment pass. The WASP script “filter_remapped_reads.py” was used to 

remove reads that map to a different location in the genome when SNPs are switched to the 

Mo17 allele. Reads that mapped to the same location were merged with the “reads to keep” file 

to generate a sorted, indexed BAM file ready for quantification. This process was repeated for 

each RIL and parent sample. Parent sample alignment rates were compared with and without 

inclusion of WASP to assess the reduction in bias achieved by adding WASP to the pipeline. 
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Quantification. Output files from alignment with Tophat2 and WASP were used in 

Cufflinks2 to assemble and quantify transcripts. Cufflinks2 was used with the –G option for 

assembly based on the reference annotation and quantification only of known genes. Genes on 

chromosomes 1-10 were retained for analysis (genes annotated to contigs were removed). All 

other parameters were set as default.  

Gene Expression Analyses 

Leaf ionome and root gene expression correlation tests. Gene expression 

measurements from 146 RILs that were validated to have the correct IBM line name were used 

for correlation analysis with leaf ionome data. Genes expressed in less than 80% lines and genes 

with an expression mean of less than 0.5 RPKM were removed, resulting in 26386 genes for 

analysis. The Pearson correlation coefficient was calculated between all pairs of genes and leaf 

elements. 

Expression QTL mapping. Gene expression measurements from 215 RILs were used 

for eQTL mapping. Genes expressed in less than 80% lines and genes with an expression mean 

of less than 0.5 RPKM were removed, resulting in 26,440 genes for analysis. The SNP set used 

in Asaro et al. for seed element QTL mapping was converted to from B73 version 3 to version 4 

coordinates using the dbSNP archive. The SNP calls made using VarScan (also converted to v4 

coordinates) at the positions of previously used SNPs were used as genotypes, allowing for 

inclusion of lines not previously genotyped. SNPs were filtered to removed SNPs with over 20% 

missing data and SNPs with below 30% minor allele frequency or above 70% minor allele 

frequency, resulting in 3,013 SNPs for analysis. eQTL mapping was carried out in the R package 

Matrix eQTL [29] with parameters useModel = modelLINEAR, pvOutputThreshold_cis = 2e-10, 

pvOutputThreshold_tra = 1e-10, and cisDist = 1e6. Gene expression was normalized prior to 
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mapping using quantile normalization to normally distribute measurements while keeping 

relative rankings. To reduce redundancy from linked SNPs, eQTL were pruned into SNP 

windows using hierarchical clustering [30] described as follows. First cis and trans eQTL were 

merged into a single table. For each unique eGene, pairwise correlations were calculated 

between all eSNPs for that gene. Hierarchical clustering was performed with the R function 

hclust (method = “complete”) and the cutree function was used to define clusters with distance 

cutoff set at h= 0.4375 (1 – R^2 where R=0.75) to reflect a pairwise correlation cutoff of 0.75. 

Trans-eQTL hotspots were identified by using the pruned eQTL windows and iterating through 

every SNP to test for inclusion in an eQTL window. A SNP was given a trans-eQTL count for 

each instance in which it was present in an eQTL window on a different chromosome or in a 

window over 15 Mb away on the same chromosome. A SNP was considered a trans-eQTL 

hotspot if its eQTL count exceeded the 95th percentile of counts across all SNPs in the genome.  

Co-expression analysis. Co-expression analysis was carried out on the root gene 

expression dataset using the python library Camoco (Co-analysis of molecular components) [7]. 

Expression levels of 38,639 genes across 221 samples (RILs and parent samples) were used as 

input. Prior to analysis, the following filters were applied: minimum expression level below 0.01 

set to NaN, genes missing more than 20% of data removed, accessions missing more than 30% 

of data removed, and genes must have an expression of 5 RPKM in at least one accession. Gene 

clusters were calculated using the Markov Cluster (MCL) algorithm on the co-expression matrix. 

Network health was evaluated and confirmed by testing for normal distribution of raw 

correlation coefficients and transformed correlation coefficients, balanced clustered gene 

expression across the genome, and balanced genes removed during QC step across the genome. 

Enrichment for co-expression among GO term genes was tested including checking to confirm 
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that no bias occurred based on GO term size. The most recent gene ontology (GO) terms 

corresponding to the B73 version 4 reference annotation [31] were obtained through MaizeGDB. 

A 2D visual representation of clusters was generated using ForceAtlas2 [32]. 

Trans-eQTL hotspot gene ontology and MCL cluster enrichment tests. The target 

gene sets of trans-eQTL hotspots were tested for enrichment of GO terms and for enrichment of 

MCL clusters. A hypergeometric calculation followed by correction for multiple testing was 

used to assess if hotspot gene targets were present in gene lists belonging to MCL clusters or 

specific GO terms at a level higher than would be randomly expected. The hypergeometric 

calculation returns p-values for finding a given number of genes in a set of a particular size based 

on the total number of genes belonging to the type of interest and the total number of genes in 

the genome. 

RESULTS 

Population and Growth 

For this study, 227 RILs from the IBM population, a population generated through 

multiple rounds of intermating between the diverse parents Mo17 and B73 followed by several 

generations of single seed descent, were grown in a greenhouse along with Mo17 and B73. Two 

weeks after planting, leaves were sampled for ionomics and roots were sampled for root gene 

expression.  

Genetic Control of Leaf Element Concentration 

Sampling of 227 IBM lines for leaf ionomics produced 421 samples, each with 20 

element measurements. Replicates per line ranged from one to three replicates (35 lines with one 

replicate, 190 lines with two replicates, 2 lines with three replicates). The youngest, fully 
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expanded leaf was weighed and profiled for ionomics using inductively-coupled plasma mass 

spectrometry (ICP-MS). Element measurements were normalized by dividing by sample weight 

and outliers were removed before averaging line replicates. Heritability was generally high 

across elements, with broad-sense heritability (H2) ranging from 0.61 to 0.94 (Table S1). QTL 

mapping on sample weight and 20 elements was performed using forward/backward regression 

with the stepwiseqtl function in R/QTL [14] and the same genotypes [33] used for our previous 

seed element mapping study [12]. A significance threshold for QTL was established by setting 

the stepwise model penalty score as the 95th percentile LOD score achieved across 1000 random 

scanone permutations [34]. 13 total QTL were identified for 12 elements (one QTL for Na, Al, S, 

K, Ca, Co, Ni, Cu, Zn, As, and Mo and two QTL for Cd) (Table S2). Four loci detected as QTL 

in the leaf, for molybdenum, cadmium, nickel, and zinc, were collocated with QTL for the same 

element measured in the seed in field environments [12] (Fig 1). The loci were all loci detected 

in the seed in multiple environments (3 or more field environments). It is not surprising that 

these seed element QTL were the ones reproduced with leaf element concentrations from a 

greenhouse environment, as these loci detected in multiple varying field environments likely 

have stronger effects and/or lower levels of QTL by environment interactions compared to QTL 

detected in only one or two environments. 
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Fig 1. Leaf and Seed Ionome QTL Overlap. (A-D) LOD profile traces at loci with both leaf 

and seed QTL. Chromosome intervals are shown on the x-axis in centi-Morgans (cM). LOD 

score is shown on the y-axis and horizontal line is the significance threshold from 1000 random 

permutations (= 0.05). Black lines correspond to the QTL mapped in the leaf, grey lines 

correspond to the QTL mapped in the seed from field environments. (E) Significant previously 

detected seed element QTL (= 0.05) from Asaro et al. (2016) shown across the 10 maize 

chromosomes (in cM). Dashes indicate QTL, colored by environment. All dashes are the same 

length for visibility. The black boxes around dashes correspond to loci with QTL detected in the 

leaf as shown in the QTL plots in (A-D). 
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Root Transcriptome Profiling and Quality Control 

RNA was extracted from roots of the IBM RILs and IBM parents, with RNA from two 

plants per line pooled before RNA sequencing. After removing low quality RNA preparations, 

one preparation each for 218 RILs and three preparations each of the B73 and Mo17 parent lines 

were sequenced. Raw RNA-seq data consisted of 5.7 billion 100 base pair-long reads across the 

224 samples, with an average of 25.6 million reads per sample. Quality control was applied to 

ensure high quality reads, remove adapter sequences, and remove reads aligning to ribosomal 

RNA sequences. Trimming and filtering improved minimum average Phred quality scores from 

32 to 36, equivalent to a base call accuracy exceeding 99.9%. After quality control steps and 

removing three RILs with low read count, a total of 4.4 billion reads were retained across 221 

samples, with an average of 19.9 million reads per sample.  

In order to verify sample identity, SNPs were called from the RNA-seq data and 

compared to a SNP set [33] used in prior QTL mapping [12]. SNPs were determined by first 

aligning reads to the B73 v3 reference genome using Tophat2 [20] and default parameters, and 

then calling SNPs using VarScan [21]. Filtered newly-called SNPs were compared with the 

previous SNP set to test for correct sample labeling. 

Through this comparison, 146 RILs were validated, 6 RILs were predicted to be switched 

during labeling, 34 RILs did not match with previous genotypes, and 32 RILs had no previous 

genotypes for comparison. All three B73 samples were confirmed as B73, however only two of 

the Mo17 samples were confirmed as Mo17, with the third Mo17 sample likely being a 

mislabeled RIL. Both validated IBM RILs and renamed RILs were retained for use in eQTL 

mapping and co-expression analysis. Only the validated RILs with original IBM names were 

used for leaf element correlation tests, which require sample identities to match across two 
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datasets. Only the two confirmed Mo17 samples were used in any analyses on the Mo17 parent 

genotype. 

Bi-Parental Alignment Bias, Read Mapping, and Gene Quantification 

Alignment bias is a complex problem for estimation of gene expression. The high 

level of genetic diversity in maize [35] is evident between the IBM population parents [27] and 

can introduce a bias in alignment depending on which parent’s genome is used as a reference. If 

reads that harbor the reference allele preferentially align to the reference gene models, 

downstream expression analyses that seek to connect genetic background and expression may 

falsely associate the reference allele with an increase in gene expression. The B73 reference 

genome was the first maize reference genome released, and to date is the most widely used and 

highest quality reference available [26]. However, in order to reduce potential false positive 

associations, our alignment strategy must go beyond a standard alignment to B73 and incorporate 

the genetic variation between the two parents. Although the B73 genome was the first reference 

genome sequenced in maize and has been used as the sole reference in many studies, reference 

genomes of other maize genotypes have recently become available, including a reference for 

Mo17 [27]. Alignments of parent samples to both B73 and Mo17 references show a bias in read 

alignment towards the congenic reference. When using B73 as a reference, B73 samples aligned 

at rates of 83.9%, 82.4%, and 83.5%, while Mo17 samples aligned at rates of 73.5% and 72.4%. 

When using Mo17 as a reference, B73 samples aligned at rates of 68.5%, 67%, and 68.2%, while 

Mo17 samples aligned at rates of 73.5% and 72.3%.  Alignment rates, as well as the bias, were 

greater using the B73 genome, likely due to differences in completeness of the two references.  

In an attempt to address the alignment bias issue, we first considered aligning all samples 

to both the B73 reference transcriptome and Mo17 reference transcriptome and, within each 
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sample, choosing either the Mo17 reference or B73 reference transcript expression value for each 

gene. We assumed that if the exact same sample is aligned to both references, reads generated 

from a B73 region should align at a higher rate to the B73 reference than the Mo17 reference, 

with this difference being propagated to expression levels and the expression of a transcript from 

a B73 region having a higher value when aligned to B73 than Mo17. The opposite situation 

would be expected for Mo17 regions. Upon implementing this strategy, we discovered some 

unexpected challenges and found that our assumptions did not necessarily hold true. First, in 

order to choose between a B73 or Mo17-based gene expression value for each gene in each 

sample, we need to know which genes in B73 correspond to genes in the Mo17 annotation. 

Because there is no direct conversion system between the different nomenclatures and the 

coordinates of each genome are not on congruent scales, this requires comparative genomics 

querying to find allelic pairs between the two references. If a gene is present in only one of the 

parental genomes, or if it is not possible to determine an allelic pair, the strategy of aligning to 

both genomes does not apply. This issue limits the approach to only the genes that can be 

matched between the two genomes, and considering the diversity of the two parent genomes, 

could omit a significant amount of information from subsequent analyses.  

Another issue with this approach also stems from the diversity of the two parent 

references. The assumption that reads from a B73 region of a RIL would align better to the B73 

gene model becomes complicated when considering the entirety of each genome. The two 

references have varying copy numbers of genes, transposable elements, and other significant 

structural variation. These variations could bias alignment toward the reference with less copies 

of a particular gene. For example, if multiple copies of a gene are present in the B73 reference 

but only one copy exists in the Mo17 reference, reads that are actually from a B73 region of a 



 108 

RIL may appear to align better to the Mo17 reference because that reference has less copies of 

the gene model as a search space. Similar, potentially even more complex, scenarios could arise 

from differences in transposable element insertion within genes. Discrepancies in quality and 

extent of gene annotation between the two references can also be problematic. If a gene pair has 

a more extensive annotation in one genome, for example more annotated transcripts in one 

genome or annotation of non-coding regions only in one genome, the differences make the B73 

and Mo17 gene models non-equivalent search spaces for read alignment.  

We also tested the idea of using SNPs to call breakpoints and generate custom references 

for each RIL through merging B73 and Mo17 sections. A major issue here is that the two 

genomes are not on equivalent scales, making it difficult to line up each genome at the same 

starting point, determine which specific blocks to pull out from each genome, and arrange the 

sections adjacently without including or excluding overlapping regions. The large gene order and 

chromosomal structural variation that occurs between B73 and Mo17 [27] only further confuses 

the matter. This strategy also still suffers from the issue of needing to find allelic pairs so a single 

gene can be quantified across all samples to be a trait for expression analysis. 

The use of both references would be ideal if we could account for all of these potential 

complications stemming from the diversity of the two parent references and the inherent 

differences in quality and completeness of one reference versus another. Identifying all potential 

issues and developing a streamlined approach to utilizing both genomes is a largely 

uninvestigated area, particularly for species as diverse as maize and in bi-parental populations. 

Developing such an approach would be a project in its own right and is beyond the scope and 

goals of this investigation.  
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Read mapping strategy to minimize bias. Despite the inability to completely correct for 

bias, we still want to minimize mapping bias as much as possible in order to reduce false positive 

results in later analyses, all while maintaining a streamlined and executable alignment pipeline. 

Studies of allele specific expression have had to account for a similar reference bias problem and 

thus have developed some polymorphism-sensitive strategies to approach mapping [36–38]. The 

alignment issues in allele-specific experiments are very similar in nature to those seen here with 

a bi-parental population. WASP, a program developed for unbiased allele-specific read mapping, 

works to reduce allele-specific bias, has been previously tested to reduce false-positive eQTL 

more effectively than N-masked or personalized genome approaches, and easily integrates into 

our existing mapping pipeline [25]. With WASP, rather than working with two reference 

genomes, we can utilize the high quality and well-tested B73 reference along with an also high 

quality, dense set of Mo17 polymorphisms [28]. WASP integrates the Mo17 polymorphisms, 

8.04 million SNP and insertion/deletion (indel) variants with 164 thousand coding sequence 

variants, by adding steps after the initial alignment to B73. WASP identifies reads that overlap 

SNPs and indels, discards reads that overlap indels and switches the allele(s) at reads 

overlapping SNPs to generate reads with all possible alternative allelic combinations, which are 

then remapped to the original reference. Reads overlapping SNPs that map to a different location 

of the genome when mapping any alternative allelic combinations are discarded.  

To implement WASP, reads from 221 samples, with an average read count of 19.9 

million reads per sample, were mapped to the B73 v4 transcriptome [26] with Tophat2, allowing 

for two mismatches, resulting in an average of 15.8 million mapped reads per sample. The 

average alignment rate among RILs for this first mapping was 78.5%. B73 parent samples 

mapped at rates of 83.9%, 82.4%, and 83.5%, while the Mo17 parent samples mapped at rates of 
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73.5% and 72.4%. Following the first mapping round, we input a set of mo17 polymorphisms to 

WASP and re-mapped SNP-overlapping reads using the same parameters. After remapping with 

WASP and discarding reads with mapping affected by allelic switches, an average of 14.6 

million mapped reads per sample were retained. The average alignment rate among RILs was 

72.5%. The B73 parent samples had mapping rates of 74.4%, 72.9%, and 74.0%, while the Mo17 

samples had rate of 71.6% and 70.6%. Including WASP in the mapping pipeline reduced the 

largest mapping discrepancy among parent samples from 11.5% to 3.8% (Figure 2). 

 

 
 

Fig 2. Parent Sample Alignment Before and After Bias Reduction. Percent reads aligned are 

shown for three B73 parent samples and two Mo17 parent samples with and without inclusion of 

SNP-based bias correction. The left panel shows alignment rates from alignment to the B73 v4 

reference. The right panel shows alignment rates from alignment to B73 v4 plus WASP. 

 

While addition of WASP is not a perfect solution as it does not consider large structural 

variation and it reduces overall alignment by discarding some reads that overlap polymorphisms, 

it does reduce bias as is shown in the reduction of bias in parent alignment rates. The alignment 

rate decrease of 6% among RILs with the application of WASP is a trade-off in order to avoid 
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including a large proportion of the reads that would map with allelic bias and could introduce 

false positives in expression analyses. 

Gene quantification. Gene expression was quantified in 215 RILs using Cufflinks2 [39] 

and the alignments from the Tophat2 plus WASP pipeline. The B73 v4 transcriptome was used 

to guide gene quantification and limit quantification only to annotated genes. Gene expression 

was estimated and scaled using RPKM (read counts per kilobase of exon per million mapped 

reads). 38,629 genes were quantified in at least one accession. Filtering out genes expressed in 

less than 80% lines and genes with an expression mean of less than 0.5 RPKM resulted in a set 

of 26,440 expressed genes. Of these filtered expressed genes, 93.6% had mean expression across 

all lines greater than 1 RPKM, 54.2% had mean expression over 10 RPKM, 15.9% had a mean 

over 50 RPKM, and 0.07% had mean over 100 RPKM. 17,303 genes were expressed across all 

samples. The number of genes expressed per sample using a cutoff of 1 RPKM ranged from 

20,355 to 24,375, with a mean of 23,488 genes expressed per sample, while the number of genes 

expressed per sample above 10 RPKM ranged from 11,347 to 14,535, with a mean of 13,778 

genes expressed per sample (Fig S1). 

 

Genetic Control of Gene Expression in the Maize Root 

Global eQTL mapping. Expression QTL mapping on 26,440 genes measured in 215 

RILs was performed using the program Matrix eQTL [29]. The linear model setting was used in 

matrix eQTL, with p-value thresholds set at 2e-10 and 1e-10 for cis and trans eQTL, 

respectively, and cis-eQTL set as associations across a distance of less than 1Mb, resulting in an 

initial result of 25,629 cis-eQTL and 114,116 trans-eQTL that passed p-value and FDR cutoffs. 

Because of the extent of linkage disequilibrium in this population, the 139,745 initially reported 

eQTL actually comprise far fewer eQTL because linked SNPs will each return an association 
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with a gene. To assess results, we only want to consider windows of linked SNPs that reflect the 

level of resolution achievable with this genetic map, which is not high enough to get to the level 

of individual SNPs.  

To collapse linked SNP windows, hierarchical clustering was performed on each gene 

with an eQTL (eGene). All significant SNPs (eSNPs) were considered for each eGene, with 

eSNPs that clustered together based on a correlation cutoff of 0.75 being merged into eSNP 

windows. With this removal of linked SNP redundancy, we retained a final set of 19,320 eQTL 

consisting of eSNP windows associated with eGenes (Figure 3A). This final set includes 7,160 

unique eGenes. 15,407 eQTL have eSNP and eGene on the same chromosome, while 3,913 have 

associations between different chromosomes. Of the eQTL with eSNP and eGene on the same 

chromosome, 6,049 eQTL had a distance of 1 Mb between eSNP and eGene, 10,922 had a 

distance of 5 Mb, and 12,497 had a distance of 10 Mb. 2,210 eQTL had eSNP and eGene on the 

same chromosome but separated by greater than 15 Mb. Using an arbitrary definition of cis-

eQTL being those where the eSNP and eGene are on the same chromosome and within 10 Mb of 

each other, 12,497 cis-eQTL were mapped, containing of 5,889 unique eGenes. Of these cis-

eQTL, 7,197 showed an increase in expression with the B73 allele, and 5,300 showed an effect 

in the Mo17 direction. Of the cis-eQTL that occurred across windows of 1Mb or smaller, 3,426 

had an effect in the B73 direction and 2,623 had an effect in the Mo17 direction. Using a 

definition of trans-eQTL as eQTL where eSNP and eGene are either on different chromosomes 

or over 15 Mb apart on the same chromosome, we detected 6,128 trans-eQTL, containing 2,416 

unique genes. 2,118 trans-eQTL showed increased expression with the B73 allele, while 4,005 

showed increased expression with the Mo17 allele.  
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Fig 3. Expression QTL and Trans-eQTL Hotspots. (A) Points represent most significant 

eSNP of eSNP window and target eGene. SNP position is represented on the x-axis in cM and 

gene positions are represented on the y-axis in base pairs. Points are colored by effect direction, 

with green representing increased expression with the Mo17 allele and blue showing increased 

expression with the B73 allele. (B) Barplot of number of eQTL per SNP. Horizontal line 

indicates 95th percentile of eQTL counts. (C) Graph is the same layout as (A) but shows only 

eSNPs and eGenes of trans-eQTL hotspots. (D) Circos plot showing eQTL of trans-eQTL 

hotspots. Links connect top representative SNP from each hotspot to the hotspot gene targets. 

Links are colored by hotspot. 

 

The greater occurrence of cis-eQTL where the B73 allele increases expression may 

reflect remaining alignment bias that was not removed with our approach. Trans-eQTL could 

also be impacted by alignment bias due to larger structural variations or paralogs (Fig 4), which 

would not have been accounted for in our SNP-sensitive pipeline. In a case where both parents 
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share a gene but only one parent has a distally located paralog of that gene, it could appear as 

though the expression of the gene is associated with the allele at the paralog location, even if the 

expression of the gene is consistent across RILs. A check for false positives could be conducted 

by looking at parent sample alignments to both B73 and Mo17 genomes for this specific set of 

genes, although the implementation, as discussed above, has its own challenges. At this time, a 

list of syntelogs or allelic pairs between the B73 v4 genome and the Mo17 genome is not 

available. However, we do have such a list linking the B73 v3 reference and an older version of 

the Mo17 reference. Of the 2,416 genes with trans-eQTL, only 998 genes have a paired Mo17 

gene and could be looked into further using parent sample alignments. When parent samples 

were aligned to both the B73 and Mo17 versions of these 998 genes, 822 genes have same effect 

direction regardless of which genome is used for alignment, while 176 have a different effect 

direction depending on reference. This provides a very limited glimpse into the potential level of 

false positives caused by mapping bias. The nature and magnitude of effect differences could 

possibly be further dissected, however, given the vast number of scenarios that can lead to 

alignment differences depending on reference and the ability to evaluate only a fraction of these 

genes, such an exercise is unlikely to produce definitive global estimates of alignment-induced 

false positives. Evaluating eQTL that are of interest for further investigation on a case-by-case 

basis may be the most effective approach at this juncture until a new comparison can be made 

between the B73 v4 and Mo17 references. 
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Fig 4. Differential Paralogs and False-Positive Trans-eQTL. Schematic of a scenario in which 

only one parent having an additional gene copy causes a false positive trans-eQTL. Gene P1 has 

a paralog, P2, located on a different chromosome, in Mo17. Gene P1 does not have a paralog in 

B73. All possible RIL combinations are shown, with P1 and P2 each producing four reads for 

this visual demonstration. When RILs are aligned to either reference genome, having the Mo17 

allele at the P2 location appears to increase expression of P1, although the expression of P1 is 

actually consistent across RILs. 

 

Trans-eQTL Hotspots. Trans-eQTL were evaluated to detect any trans-eSNPs with 

exceptionally high numbers of target genes that could be considered trans-eQTL hotspots. Trans-

eQTL hotspots were identified by counting the number of trans-eQTL (target gene on a different 

chromosome or over 15Mb away on the same chromosome) per SNP (Fig 3B). All SNPs were 

considered and given a trans-eQTL count when present in a trans-eQTL window. SNPs with 

counts exceeding the 95th percentile of all SNP counts were considered hotspots and SNPs 

correlated with a Pearson’s correlation coefficient above 0.9 were merged into a single hotspot. 
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Eight trans-eQTL hotspots were identified, with one on each chromosome other than 

chromosomes 1 and 8 (Fig 3D & E). The number of genes targeted by hotspots ranged from 78 

to 151. These gene targets include genes more local to the hotspot, near the 15 Mb cutoff, farther 

ranging genes on the same chromosome, and genes on different chromosomes (Table 1).  

 

Table 1. Trans-eQTL Hotspot SNP and Gene Counts. 

Hotspot 
Num 

SNPs 

Num 

Genes 

Genes on Same 

Chr (> 15 Mb) 

Genes on 

Diff Chr 

Hotspot Chr2 2 89 50 39 

Hotspot Chr3 7 151 99 52 

Hotspot Chr4 8 91 64 27 

Hotspot Chr5 5 80 46 34 

Hotspot Chr6 11 98 60 38 

Hotspot Chr7 10 78 48 30 

Hotspot Chr9 12 82 46 36 

Hotspot Chr10 8 95 67 28 

 

The genes associated with trans-eQTL hotspots were tested for GO term enrichment 

using a hypergeometric calculation and a multiple testing correction for multiple comparisons. 

Genes targeted by 7 of the 8 hotspots were enriched for one or more GO terms (Table S5). The 

most significant GO term enrichment for each cluster is listed in Table 2. The values shown in 

Table 2 reflect the hypergeometric calculation as follows: given the number of genes in a hotspot 

(“target term size”) out of all the genes in a genome, the p-value is the probability of finding 

“num com” number of those genes when you sample the number of genes with that GO term 

(“source term size”) out of out of all the genes in the genome (“num univ”).  Multiple correction 

is applied to account for “terms tested” which reflects the number of GO terms tested for a 

particular hotspot. These enrichments are by no means exhaustive owing to the limited functional 

annotation of the maize genome, but can offer a high-level view of coordinated functions of 

genes targeted by trans-eQTL hotspots. 
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Table 2. Trans-eQTL Hotspot Top GO Term Enrichments. 

Hotspot GO Term ID p-val terms 

tested 

num 

com 

num 

univ 

source 

term 

size 

target 

term 

size 

num 

terms 

Hotspot

Chr2 

cohesin 

complex 

GO:0008278 2.83E-06 367 4 39,324 43 89 11,909 

Hotspot

Chr3 

Lys63-specific 

deubiquitinase 

activity 

GO:0061578 1.04E-09 789 4 39,324 5 151 11,909 

Hotspot

Chr4 

phenylalanine 

ammonia-lyase 

activity 

GO:0045548 1.01E-07 581 4 39,324 19 91 11,909 

Hotspot

Chr5 

histone acetyl-

transferase 

binding 

GO:0035035 2.37E-10 406 4 39,324 6 80 11,909 

Hotspot

Chr6 

DNA 

packaging 

GO:0006323 3.55E-08 498 5 39,324 37 98 11,909 

Hotspot

Chr9 

acireductone 

dioxygenase 

[iron(II)-

requiring] 

activity 

GO:0010309 7.27E-07 555 3 39,324 9 82 11,909 

Hotspot

Chr10 

shikimate 3-

dehydrogenase 

(NADP+) 

activity 

GO:0004764 4.75E-07 571 3 39,324 7 95 11,909 

 

 

Co-Expression of Genes in the Maize Root  

Co-Expression Analysis. Co-expression analysis was performed using the Camoco 

framework [7], which computes Pearson correlation coefficients between expressed genes and 

implements a MCL (Markov Cluster) algorithm to find co-expressed gene clusters. A raw 

expression file of 38,639 genes that had any level of expression across any of 221 samples (RILs 

and parent samples) was filtered to remove genes missing more than 20% of data and require a 

minimum expression level above 0.01 RPKM before co-expression calculations. The co-

expression network derived with Camoco contained 24,354 genes (63% of total) and 250 MCL 
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clusters with a size greater than 10 (Fig 5). The level of gene ontology (GO) term co-expression 

was 15.5-fold higher than expected by chance (Fig S2). 

 
 

Fig 5. Co-Expression Network. Representation of clusters generated using a fast force directed 

layout algorithm. Sets of nodes with higher co-expression are closer in 2D space in the plot, but 

placement is not quantitative. Colors are used to differentiate between MCL clusters. Circles are 

shown around MCL clusters with greater than 100 genes. The circles are computed by 

calculating the first two principle components using the gene coordinates for each MCL cluster 

to produce ellipse parameters. 
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Trans-eQTL MCL Cluster Enrichments. Target gene lists of the 8 trans-eQTL 

hotspots were tested for over-representation within gene lists for co-expressed MCL clusters. 

The hypergeometric calculation with multiple testing correction used for GO term enrichment 

was also used for MCL enrichment tests. As expected for co-regulated sets of genes, all sets of 

trans-eQTL gene targets were significantly enriched for co-expression, with the number of MCL 

cluster enrichments per hotspot ranging from four to seven (Table S6). We further explored the 

four MCL cluster enrichments for genes associated with the trans-eQTL hotspot on chromosome 

2 (Table 3). 70 of the 89 chromosome 2 hotspot gene targets belong to one of four different 

clusters, with genes in the same cluster showing similar expression patterns and the same effect 

direction (Fig 6).  

 

Table 3. Chromosome 2 Trans-eQTL Hotspot MCL Enrichments. 

Hotspot MCL 

Cluster 

p-val terms 

tested 

num 

com 

num 

univ 

source 

term 

size 

target 

term 

size 

num 

terms 

HotspotChr2 MCL28 1.34E-78 9 36 24,430 53 89 4,042 

HotspotChr2 MCL70 4.59E-34 9 16 24,430 25 89 4,042 

HotspotChr2 MCL85 5.39E-22 9 11 24,430 22 89 4,042 

HotspotChr2 MCL76 2.20E-12 9 7 24,430 24 89 4,042 
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Fig 6. Chromosome 2 Hotspot MCL Enrichment. (A) Heatmap of expression of chr2 hotspot 

target genes within MCL clusters, shown across all RILs. Genes are grouped by their MCL 

cluster. (B) Circos plots of chr2 hotspot eQTL. Gene targets in different MCL clusters are shown 

in different plots, with links colored by effect direction. Blue indicates B73 direction and green 

indicates Mo17 direction. 

 

Linking Root Gene Expression and Leaf Ionome 

Correlations were tested for between gene expression in the roots and element profiles in 

the leaves of the IBM RILs. Testing for these correlations is a way to survey genes expressed in 

the root for a potential connection with leaf element accumulation. Only the 146 RILs that had 

validated IBM sample identity from SNP comparison were used for the correlation tests. The 

Pearson’s correlation coefficient was calculated between each of the 20 elements measured in the 

leaf and the root-based expression of 26,386 genes with expression in at least 20% of lines and 

with a mean expression value of at least 0.5 RPKM. The top ten correlated genes were recorded 

for each element (Table S7).  
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Genes that were within the top ten correlated for an element were evaluated with respect 

to QTL detected for that element in the leaf. 10 of the 13 leaf QTL have at least one top ten 

correlated gene within 10 Mb of the QTL location (Table 4). Many of these genes have cis-

eQTL, as might be expected to occur transitively given that loci in the gene region are associated 

with a particular element and the gene is also correlated with element concentration. In this 

sense, these cis-eQTL can be thought of as markers for the element traits. These correlated genes 

near leaf QTL provide potential candidate genes for element QTL, and some may be worthwhile 

of further investigation through the use of other data types or additional experiments. However, 

these lists should be considered in the context of the of genetic resolution in the IBM population 

and the increased likelihood of co-expression among neighboring genes. Genes that are not the 

causal genes for a QTL but are within a region exhibiting low recombination with the causal 

gene are likely to appear in such lists solely due to their genetic location rather than because of a 

functional connection. 

 

Table 4. Leaf Element QTL and Overlapping Element-Correlated Genes 

Leaf El 

QTL 
Gene 

El 

Cor 
Chr Pos (bp) Gene Function 

Cis 

eQTL? 

eQTL 

Effect 

Al 

5@150.9 

60,565,262 

Zm00001d014795 0.37 5 63,482,860 Unknown Yes B73 

Zm00001d014726 0.37 5 60,843,523 
Mitogen-activated protein 

kinase 17 
Yes B73 

As 

3@346.4 

215,434,459 

Zm00001d044146 -0.60 3 220,480,167 
cytochrome P450 family 72 

subfamily A polypeptide 8 
No NA 

Ca 

10@245.5 

148,723,309 

Zm00001d026628 -0.43 10 149,177,141 Unknown No NA 

Cd111 

2@214.6 

168,260,178 

Zm00001d005195 -0.65 2 163,095,556 
RING/U-box superfamily 

protein 
Yes B73 

Zm00001d005429 -0.62 2 173,709,958 
COP1-interacting protein-

related 
Yes B73 

Zm00001d005231 -0.59 2 164,761,161 ADP-ribosylation factor A1F Yes B73 

Zm00001d005489 0.56 2 175,795,127 

D-isomer specific 2-

hydroxyacid dehydrogenase 

family protein 

Yes Mo17 
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Zm00001d005295 -0.55 2 168,137,133 

DNA-directed RNA 

polymerases II IV and V 

subunit 3 

Yes B73 

K39 

3@352.6 

217,198,934 

Zm00001d044159 0.59 3 220,748,190 Unknown No NA 

Mo98 

1@378.0 

248,800,963 

Zm00001d033080 0.66 1 249,851,631 
QWRF motif-containing 

protein 3 
Yes Mo17 

Zm00001d033111 -0.62 1 250,442,305 
Putative lysine decarboxylase 

family protein 
Yes B73 

Zm00001d032968 -0.59 1 244,998,348 
Tetrapyrrole 

(Corrin/Porphyrin) Methylases 
Yes  B73 

Zm00001d033226 -0.55 1 255,204,711 Unknown Yes B73 

Na23 

4@196.9 

162,739,209 

Zm00001d051525 0.56 4 161,345,010 Oligopeptide transporter 4 No  NA  

Ni60 

9@7.7 

1,840,217 

Zm00001d044768 0.44 9  1,932,258  
Protein NRT1/ PTR FAMILY 

5.8  
Yes B73  

S34 

1@416.2 

274,044,141 

Zm00001d033818 0.35 1 274,726,910 
Transmembrane and coiled-coil 

domains protein 1 
Yes B73 

Zm00001d033575 -0.33 1 267,540,332 
DUF1336 domain containing 

protein expressed 
Yes Mo17 

Zm00001d033750 0.32 1 272,770,260 
Threonine dehydratase 

biosynthetic chloroplastic 
Yes B73 

Zn66 

1@401.0 

262,566,563 

  

  

  

Zm00001d033584 0.34 1 267,873,372 Unknown Yes B73 

Zm00001d033590 -0.32 1 267,998,422 
Ribosomal L18p/L5e family 

protein 
Yes Mo17 

Zm00001d033575 -0.31 1 267,540,332 
DUF1336 domain containing 

protein expressed 
Yes Mo17 

Zm00001d033446 0.30 1 262,975,467 Zinc transporter 7 Yes B73 

Zm00001d033307 0.29 1 258,331,851 
Outer arm dynein light chain 1 

protein 
Yes B73 

Zm00001d033469 0.29 1 263,524,861 
Ferredoxin%253B Putative 

ferredoxin   
Yes B73 

Zm00001d033189 0.29 1 253,284,685 Unknown No NA 

 

Genes correlated with leaf element concentration were also examined for trans-

associations with leaf element QTL. These associations were less common, only present for two 

of the 13 leaf QTL (Table 5), yet represent possibly more interesting functional connections than 

the cis-associations. Rather than connections between a locus already associated with element 

accumulation and genes near that locus, these trans-associations link the locus associated with 

element accumulation to genes not near the known locus, bringing a new genetic region into the 



 123 

picture.  

A large effect leaf Cd QTL (which was also previously detected in the seed) is on 

chromosome 2 around 214.6 cM (equivalent to 168 Mbp) and SNPs in that region are trans-

eQTL for all five genes in the top ten list of correlated expression with leaf Cd content that are 

not on chromosome 2 (Fig 7). These include genes on chromosomes 4, 5, 6, and 10. The SNP 

ranges on chromosome 2, as shown in Table 5, reflect the genetic resolution of the QTL/eQTL 

region, which is relatively broad. However, the eGene targets offer gene-level resolution of other 

regions in the genome that interact with the Cd QTL and provide interesting links for further 

investigation of Cd accumulation. The Cd QTL region on chromosome 2 collocates with the 

chromosome 2 trans-eQTL hotspot, with links to these top Cd correlated genes as well as to 

other regions of the genome. In addition to the Cd-correlated genes on chromosomes 4, 5 and 6, 

the hotspot targets four other genes on chromosome 4, two other genes on chromosome 5, and 

four other genes on chromosome 6. On chromosome 10, the hotspot targets three other genes 

aside from the two Cd-correlated genes. The five genes correlated with leaf Cd are mainly 

targeted by the chromosome 2 leaf Cd QTL/trans-eQTL hotspot region, with only one additional 

eQTL on chromosome 7 associated with one of the chromosome 10 genes. Of the five other 

genes correlated with leaf Cd that are in the chromosome 2 Cd QTL region, only one is 

associated with SNPs outside of the region through a trans-eQTL with the eSNP located closer to 

the beginning of chromosome 2, over 80 Mb away from the Cd QTL region (Fig 7).  

The leaf Zn QTL on chromosome 1 is also connected with a gene elsewhere in the 

genome through a trans-eQTL located within the Zn QTL region that targets a gene on 

chromosome 5. The chromosome 5 gene was found to have the highest root expression 

correlation with leaf Zn of all genes outside of the Zn QTL region. 
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Table 5. Leaf Element QTL and eQTL with Element-Correlated Gene Targets 

Leaf QTL 
eQTL 

Chr 

eQTL 

Pos 
eGene 

Gene 

Chr 

Gene 

Pos 

Gene 

- El 

Cor 

Function 

eQTL 

Effect 

Direction 

Cadmium 

2@214.6 

168,260,178 

2 
153,447,098 - 

172,156,107 
Zm00001d014345 5 42,127,512 0.68 

C2H2-like 

zinc finger 

protein 

Mo17 

2 
153,447,098 - 

191,280,878 
Zm00001d023657 10 13,783,362 0.6 Unknown Mo17 

2 
153,447,098 - 

172,156,107 
Zm00001d036628 6 95,592,329 0.58 

Single-

stranded 

nucleic acid 

binding R3H 

protein 

Mo17 

2 
153,447,098 - 

172,156,107 
Zm00001d052443 4 190,127,612 0.56 Unknown Mo17 

2 
153,447,098 - 

172,156,107 
Zm00001d024560 10 78,246,604 -0.55 

RING/U-box 

superfamily 

protein 

B73 

Zinc 

1@401.0 

262,566,563 

1 
264,213,949 - 

277,355,310 
Zm00001d017634 5 202,684,054 -0.32 

DUF936 

family protein 
Mo17 

 

 
 

Fig 7. Trans-eQTL and Cadmium-Correlated Genes. All significant eQTL across the genome 

for the top 10 genes correlated with Cd (represented with red diamonds) are shown, with red 

lines indicating eSNPs in the Chr2 hotspot region (represented with a star) and black lines 

indicating eSNPs elsewhere in the genome. 
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DISCUSSION 

In this study we associated genetic markers with leaf element phenotypes through QTL 

mapping, linked genetic markers to root gene expression through eQTL mapping, and related 

root gene expression with the leaf ionome through correlation analysis. By dissecting these 

relationships, we were able to develop candidate gene lists within leaf and seed ionome QTL 

regions. We also gained insight into genetic regulatory networks that involve previously mapped 

loci, identifying trans-eQTL that overlap with ionome QTL and connect to expression of genes 

elsewhere in the genome. 

We found several cases where the genes most correlated with element concentration 

collocate with element QTL. While these genes certainly require further testing to confirm and 

describe associations with element regulation, they provide starting candidate gene lists of a 

reasonable size compared to the number of genes typically in a QTL confidence interval. For 

example, a zinc QTL on chromosome 1 detected in both the seed and leaf overlaps the genes 

with the top expression correlations with zinc, one of which is annotated as Zinc transporter 7. In 

this case, we have a locus detected in multiple tissues, across multiple environments, with a 

promising gene candidate found by analyzing gene expression in an additional tissue. These lines 

of evidence warrant additional exploration of this gene, which has an Arabidopsis ortholog 

belonging to a list of known ionome genes, genes that have been associated with particular 

ionomic phenotypes. Zinc transporter 7 is a member of a larger family of zinc transporters, ZIP 

proteins. Studies in Arabidopsis, rice, and maize have linked ZIP proteins to not only Zn uptake 

but also Fe transport and storage, metal homeostasis, and salinity and drought tolerance [40–43]. 

Root gene expression data additionally provided insight into a cadmium QTL on 

chromosome 2, also detected in the leaf and seed in multiple environments. The Cd QTL region 
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coincides with a trans-eQTL hotspot regulating a large set of genes that can be broken down into 

co-expressed modules. Notably, the most cadmium-correlated genes of all genes expressed in the 

root either collocate with the Cd QTL or are trans-eQTL gene targets of eQTL in the Cd QTL 

region. These results not only provide information that may narrow down the Cd QTL interval, 

but also suggest other genes that could be involved in a gene regulatory network with some 

impact on Cd accumulation. This work is an additional step forward in finding genes that control 

the complex process of heavy metal uptake and storage. Further investigation of these regulatory 

networks in the root could advance the effort of developing crop variants that can be grown in 

areas with high heavy metal concentrations without storing toxic levels of heavy metals in food 

source tissues. 

The ionome shows a strong interaction with environment, and thus environmental effects 

may prevent us from characterizing previously mapped QTL from field environments with new 

data from a greenhouse environment. However, the consistent use of the IBM population across 

studies has allowed us to use greenhouse-generated data to further understand certain QTL with 

large effects across different environments. Genes at Zn and Cd QTL, as well as genes that have 

trans-eQTL associations overlapping the Cd locus, are promising candidates for future work on 

element regulation. While our previous QTL mapping studies on the ionome detected many loci, 

the number of genes within a QTL interval is generally exceedingly large and cannot provide 

evidence to justify further use of resources to study particular genes within the interval. Using 

root-based RNA-sequencing, we measured expression at the gene level in a tissue known to be 

highly determinant of the whole-plant ionome, adding a unique and pertinent layer of support for 

characterizing QTL. 
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SUPPORTING INFORMATION 

 

Fig S1. Genes Expressed per Sample. Distributions of number of genes quantified across 

samples are shown for 1 RPKM and 10 RPKM cutoffs. 
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Fig S2. GO Term Co-Expression. The enrichment of co-expression for GO terms shown as a 

volcano plot, with three views for both of density and locality. The top two plots show expected 

vs. actual GO term co-expression. The bottom two rows of plots are a check to confirm there is 

no bias due to GO term size. 
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Table S1. Broad-sense Heritability (H2) of Leaf Element Concentrations. 

 
 

 

 

 

 

 

 

 

Table S1: Broad-sense heritability (H
2
) of leaf element concentrations.  

After outlier removal, lines with two or more replicates were used to calculate heritability for 

each trait. 

 

Trait H
2
 

SampleWeight 0.67 

B11 0.61 

Na23 0.81 

Mg26 0.83 

Al27 0.67 

P31 0.85 

S34 0.63 

K39 0.83 

Ca44 0.74 

Fe54 0.74 

Mn55 0.86 

Co59 0.89 

Ni60 0.81 

Cu63 0.79 

Zn66 0.76 

As75 0.89 

Se78 0.93 

Rb85 0.82 

Sr88 0.86 

Mo98 0.91 

Cd111 0.94 
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Table S2. QTL for Leaf Element Concentrations. 

 

 

 

 

 

 

Table S2: QTL for Leaf Element Concentration.  

Significant QTL are listed with marker position, name, LOD score, permutation threshold from 

1000 random permutations (a= 0.05), and effect direction. Traits that had no QTL are shown 

with “NA”. 

 

Trait 

Name QTL.Name Chr Pos.cM 

LOD 

Score 

Marker 

Name 

Perm 

Thresh 

Effect 

Direction 

Sample 

Weight NA NA NA NA NA NA  

B11 NA NA NA NA NA NA  

Na23 4@196.9 4 196.90 4.12 SYN5595 3.64 B73 

Mg26 NA NA NA NA NA NA  

Al27 5@150.9 5 150.90 3.89 SYN24318 3.55 B73 

P31 NA NA NA NA NA NA  

S34 1@416.2 1 416.20 6.11 PZE-101218183 3.69 B73 

K39 3@352.6 3 352.60 5.40 PZE-103163035 3.66 B73 

Ca44 10@245.5 10 245.50 3.86 SYN19287 3.64 Mo17 

Fe54 NA NA NA NA NA NA  

Mn55 NA NA NA NA NA NA  

Co59 1@396.9 1 396.90 3.70 SYN34771 3.58 B73 

Ni60 9@7.7 9 7.70 6.08 PZE-109001536 3.69 B73 

Cu63 3@163.7 3 163.70 4.11 SYN22860 3.66 B73 

Zn66 1@401.0 1 401.00 5.26 SYN11 3.54 B73 

As75 3@346.4 3 346.40 4.03 SYN32046 3.62 Mo17 

Se78 NA NA NA NA NA NA  

Rb85 NA NA NA NA NA NA  

Sr88 NA NA NA NA NA NA  

Mo98 1@378.0 1 378.00 16.71 SYN11473 3.64 Mo17 

Cd111 1@406.0 1 406.00 5.07 SYN25458 3.59 B73 

Cd111 2@214.6 2 214.60 21.06 SYN6540 3.59 Mo17 
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Table S3. Trans-eQTL Hotspots GO Enrichments.

 

name id pval

terms	

tested

num	

common

num	

universe

source	

term	size

target	

term	size

num	

terms hotspot

mult	test	

pass genes namespace

cohesin	complex GO:0008278 2.83E-06 367 4 39324 43 89 11909 HotspotChr2 TRUE

ZM00001D010854,ZM00001D036220,

ZM00001D008541,ZM00001D050828 cellular_component

exodeoxyribonuclease	activity GO:0004529 6.37E-05 367 3 39324 34 89 11909 HotspotChr2 TRUE

ZM00001D036220,ZM00001D030663,

ZM00001D050828 molecular_function

exodeoxyribonuclease	activity,	producing	5'-phosphomonoestersGO:0016895 6.37E-05 367 3 39324 34 89 11909 HotspotChr2 TRUE

ZM00001D036220,ZM00001D030663,

ZM00001D050828 molecular_function

oxidoreductase	activity,	acting	on	the	aldehyde	or	oxo	group	of	donors,	disulfide	as	acceptorGO:0016624 7.58E-05 367 3 39324 36 89 11909 HotspotChr2 TRUE

ZM00001D045745,ZM00001D014356,

ZM00001D036104 molecular_function

Lys63-specific	deubiquitinase	activity GO:0061578 1.04E-09 789 4 39324 5 151 11909 HotspotChr3 TRUE

ZM00001D052648,ZM00001D013752,

ZM00001D040334,ZM00001D035432 molecular_function

proteasome	regulatory	particle,	lid	subcomplex GO:0008541 2.92E-06 789 4 39324 26 151 11909 HotspotChr3 TRUE

ZM00001D052648,ZM00001D041456,

ZM00001D040334,ZM00001D013752 cellular_component

phenylalanine	ammonia-lyase	activity GO:0045548 1.01E-07 581 4 39324 19 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 molecular_function

cinnamic	acid	biosynthetic	process GO:0009800 1.90E-07 581 4 39324 22 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 biological_process

cinnamic	acid	metabolic	process GO:0009803 2.30E-07 581 4 39324 23 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 biological_process

ammonia-lyase	activity GO:0016841 4.52E-07 581 4 39324 27 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 molecular_function

erythrose	4-phosphate/phosphoenolpyruvate	family	amino	acid	catabolic	processGO:1902222 4.52E-07 581 4 39324 27 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 biological_process

L-phenylalanine	catabolic	process GO:0006559 4.52E-07 581 4 39324 27 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 biological_process

L-phenylalanine	metabolic	process GO:0006558 2.54E-06 581 4 39324 41 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 biological_process

erythrose	4-phosphate/phosphoenolpyruvate	family	amino	acid	metabolic	processGO:1902221 2.54E-06 581 4 39324 41 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 biological_process

salicylic	acid	catabolic	process GO:0046244 2.60E-06 581 3 39324 12 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163 biological_process

phenol-containing	compound	catabolic	process GO:0019336 5.35E-06 581 3 39324 15 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163 biological_process

drought	recovery GO:0009819 1.79E-05 581 3 39324 22 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163 biological_process

carbon-nitrogen	lyase	activity GO:0016840 1.95E-05 581 4 39324 68 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051166,

ZM00001D051163,ZM00001D051164 molecular_function

coumarin	biosynthetic	process GO:0009805 5.89E-05 581 4 39324 90 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051227,

ZM00001D051166,ZM00001D051163 biological_process

coumarin	metabolic	process GO:0009804 5.89E-05 581 4 39324 90 91 11909 HotspotChr4 TRUE

ZM00001D051161,ZM00001D051227,

ZM00001D051166,ZM00001D051163 biological_process

histone	acetyltransferase	binding GO:0035035 2.37E-10 406 4 39324 6 80 11909 HotspotChr5 TRUE

ZM00001D012941,ZM00001D002110,

ZM00001D047596,ZM00001D034314 molecular_function

transcription	factor	TFIID	complex GO:0005669 1.52E-06 406 4 39324 41 80 11909 HotspotChr5 TRUE

ZM00001D047596,ZM00001D002110,

ZM00001D034314,ZM00001D012941 cellular_component

guanosine-3',5'-bis(diphosphate)	3'-diphosphatase	activity GO:0008893 2.90E-06 406 3 39324 14 80 11909 HotspotChr5 TRUE

ZM00001D052381,ZM00001D005104,

ZM00001D030043 molecular_function

diphosphoric	monoester	hydrolase	activity GO:0016794 2.90E-06 406 3 39324 14 80 11909 HotspotChr5 TRUE

ZM00001D052381,ZM00001D005104,

ZM00001D030043 molecular_function

guanosine	tetraphosphate	metabolic	process GO:0015969 5.40E-06 406 3 39324 17 80 11909 HotspotChr5 TRUE

ZM00001D052381,ZM00001D005104,

ZM00001D030043 biological_process

purine	ribonucleoside	bisphosphate	metabolic	process GO:0034035 5.40E-06 406 3 39324 17 80 11909 HotspotChr5 TRUE

ZM00001D052381,ZM00001D005104,

ZM00001D030043 biological_process

transcription	factor	binding GO:0008134 1.03E-05 406 5 39324 140 80 11909 HotspotChr5 TRUE

ZM00001D002110,ZM00001D016456,

ZM00001D012941,ZM00001D047596,

ZM00001D034314 molecular_function

cortical	cytoskeleton GO:0030863 1.81E-05 406 3 39324 25 80 11909 HotspotChr5 TRUE

ZM00001D008768,ZM00001D038078,

ZM00001D014053 cellular_component

protein	O-linked	fucosylation GO:0036066 2.45E-05 406 2 39324 4 80 11909 HotspotChr5 TRUE ZM00001D032064,ZM00001D015362 biological_process

transcription	coactivator	activity GO:0003713 2.46E-05 406 4 39324 82 80 11909 HotspotChr5 TRUE

ZM00001D047596,ZM00001D002110,

ZM00001D034314,ZM00001D012941 molecular_function

actin	filament GO:0005884 2.56E-05 406 3 39324 28 80 11909 HotspotChr5 TRUE

ZM00001D008768,ZM00001D038078,

ZM00001D014053 cellular_component

actin	filament	depolymerization GO:0030042 3.50E-05 406 3 39324 31 80 11909 HotspotChr5 TRUE

ZM00001D008768,ZM00001D038078,

ZM00001D014053 biological_process

protein	depolymerization GO:0051261 4.23E-05 406 3 39324 33 80 11909 HotspotChr5 TRUE

ZM00001D008768,ZM00001D038078,

ZM00001D014053 biological_process

actin	filament	binding GO:0051015 4.39E-05 406 4 39324 95 80 11909 HotspotChr5 TRUE

ZM00001D008768,ZM00001D038078,

ZM00001D014376,ZM00001D014053 molecular_function

RNA	polymerase	II	transcription	factor	complex GO:0090575 0.00011995 406 4 39324 123 80 11909 HotspotChr5 TRUE

ZM00001D047596,ZM00001D002110,

ZM00001D034314,ZM00001D012941 cellular_component

DNA	packaging GO:0006323 3.55E-08 498 5 39324 37 98 11909 HotspotChr6 TRUE

ZM00001D020387,ZM00001D010608,

ZM00001D050017,ZM00001D017576,

ZM00001D039978 biological_process

acireductone	dioxygenase	[iron(II)-requiring]	activity GO:0010309 7.27E-07 555 3 39324 9 82 11909 HotspotChr9 TRUE

ZM00001D019074,ZM00001D004756,

ZM00001D041103 molecular_function

heteropolysaccharide	binding GO:0010297 1.04E-06 555 3 39324 10 82 11909 HotspotChr9 TRUE

ZM00001D019074,ZM00001D004756,

ZM00001D041103 molecular_function

L-methionine	biosynthetic	process	from	methylthioadenosineGO:0019509 4.80E-06 555 3 39324 16 82 11909 HotspotChr9 TRUE

ZM00001D019074,ZM00001D004756,

ZM00001D041103 biological_process

amino	acid	salvage GO:0043102 5.82E-06 555 3 39324 17 82 11909 HotspotChr9 TRUE

ZM00001D019074,ZM00001D004756,

ZM00001D041103 biological_process

L-methionine	salvage GO:0071267 5.82E-06 555 3 39324 17 82 11909 HotspotChr9 TRUE

ZM00001D019074,ZM00001D004756,

ZM00001D041103 biological_process

oxidoreductase	activity,	acting	on	single	donors	with	incorporation	of	molecular	oxygen,	incorporation	of	two	atoms	of	oxygenGO:0016702 3.23E-05 555 5 39324 173 82 11909 HotspotChr9 TRUE

ZM00001D033377,ZM00001D041103,

ZM00001D004756,ZM00001D009286,

ZM00001D019074 molecular_function

L-methionine	biosynthetic	process GO:0071265 5.45E-05 555 3 39324 35 82 11909 HotspotChr9 TRUE

ZM00001D019074,ZM00001D004756,

ZM00001D041103 biological_process

oxidoreductase	activity,	acting	on	single	donors	with	incorporation	of	molecular	oxygenGO:0016701 7.91E-05 555 5 39324 209 82 11909 HotspotChr9 TRUE

ZM00001D033377,ZM00001D041103,

ZM00001D004756,ZM00001D009286,

ZM00001D019074 molecular_function

SCF	complex	assembly GO:0010265 8.96E-05 555 2 39324 7 82 11909 HotspotChr9 TRUE ZM00001D049167,ZM00001D027974 biological_process

shikimate	3-dehydrogenase	(NADP+)	activity GO:0004764 4.75E-07 571 3 39324 7 95 11909 HotspotChr10 TRUE

ZM00001D023895,ZM00001D023892,

ZM00001D023888 molecular_function

3-dehydroquinate	dehydratase	activity GO:0003855 4.75E-07 571 3 39324 7 95 11909 HotspotChr10 TRUE

ZM00001D023895,ZM00001D023892,

ZM00001D023888 molecular_function

riboflavin	synthase	activity GO:0004746 5.77E-06 571 2 39324 2 95 11909 HotspotChr10 TRUE ZM00001D023836,ZM00001D023863 molecular_function

cell	motility GO:0048870 2.90E-05 571 4 39324 72 95 11909 HotspotChr10 TRUE

ZM00001D023905,ZM00001D031846,

ZM00001D023906,ZM00001D023903 biological_process

Significantly	enriched	GO	terms	that	pass	multiple	testing	correction	names	and	ID	are	listed	in	the	first	two	

columns.	Enrichment	was	calculated	according	to	a	hypergeometric	calculation	to	measure	the	p-value	of	

finding	"num	common"	genes	when	you	sample	"source	term	size"	and	there	are	"target	term	size"	genes	of	

interest	with	"num	universe"	total	genes.	"Num	terms"	indicates	the	total	number	of	terms	in	the	gene	

ontology	reference
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Table S4. Trans-eQTL Hotspots MCL Cluster Enrichments. 

 

id pval

terms	

tested

num	

common

num	

universe

source	

term	size

target	

term	size

num	

terms hotspot

mult	test	

pass

MCL28 1.34E-78 9 36 24430 53 89 4042 HotspotChr2 TRUE

MCL70 4.59E-34 9 16 24430 25 89 4042 HotspotChr2 TRUE

MCL85 5.39E-22 9 11 24430 22 89 4042 HotspotChr2 TRUE

MCL76 2.20E-12 9 7 24430 24 89 4042 HotspotChr2 TRUE

MCL27 7.12E-90 22 44 24430 55 151 4042 HotspotChr3 TRUE

MCL40 3.33E-63 22 32 24430 43 151 4042 HotspotChr3 TRUE

MCL48 3.88E-42 22 23 24430 38 151 4042 HotspotChr3 TRUE

MCL155 8.92E-25 22 12 24430 15 151 4042 HotspotChr3 TRUE

MCL565 2.26E-04 22 2 24430 4 151 4042 HotspotChr3 TRUE

MCL344 7.81E-04 22 2 24430 7 151 4042 HotspotChr3 TRUE

MCL60 1.32E-51 10 23 24430 30 91 4042 HotspotChr4 TRUE

MCL49 1.95E-40 10 20 24430 36 91 4042 HotspotChr4 TRUE

MCL87 4.39E-17 10 9 24430 22 91 4042 HotspotChr4 TRUE

MCL79 2.58E-12 10 7 24430 24 91 4042 HotspotChr4 TRUE

MCL196 4.98E-10 10 5 24430 12 91 4042 HotspotChr4 TRUE

MCL467 8.98E-10 10 4 24430 5 91 4042 HotspotChr4 TRUE

MCL506 4.97E-07 10 3 24430 5 91 4042 HotspotChr4 TRUE

MCL43 1.82E-48 11 23 24430 40 80 4042 HotspotChr5 TRUE

MCL59 1.07E-35 11 17 24430 30 80 4042 HotspotChr5 TRUE

MCL86 4.04E-25 11 12 24430 22 80 4042 HotspotChr5 TRUE

MCL92 8.36E-09 11 5 24430 22 80 4042 HotspotChr5 TRUE

MCL423 6.71E-07 11 3 24430 6 80 4042 HotspotChr5 TRUE

MCL149 1.08E-03 11 2 24430 15 80 4042 HotspotChr5 TRUE

MCL30 2.68E-102 9 44 24430 52 98 4042 HotspotChr6 TRUE

MCL32 8.29E-46 9 24 24430 49 98 4042 HotspotChr6 TRUE

MCL83 8.79E-17 9 9 24430 22 98 4042 HotspotChr6 TRUE

MCL639 9.51E-05 9 2 24430 4 98 4042 HotspotChr6 TRUE

MCL379 3.30E-04 9 2 24430 7 98 4042 HotspotChr6 TRUE

MCL24 2.70E-56 15 28 24430 59 78 4042 HotspotChr7 TRUE

MCL176 1.51E-20 15 9 24430 13 78 4042 HotspotChr7 TRUE

MCL66 1.58E-14 15 8 24430 27 78 4042 HotspotChr7 TRUE

MCL431 1.74E-12 15 5 24430 6 78 4042 HotspotChr7 TRUE

MCL156 1.11E-05 15 3 24430 14 78 4042 HotspotChr7 TRUE

MCL38 7.21E-52 16 25 24430 45 82 4042 HotspotChr9 TRUE

MCL81 9.02E-45 16 19 24430 23 82 4042 HotspotChr9 TRUE

MCL283 4.69E-11 16 5 24430 9 82 4042 HotspotChr9 TRUE

MCL640 1.45E-07 16 3 24430 4 82 4042 HotspotChr9 TRUE

MCL129 1.46E-03 16 2 24430 17 82 4042 HotspotChr9 TRUE

MCL25 2.73E-70 7 34 24430 56 95 4042 HotspotChr10 TRUE

MCL34 1.31E-54 7 27 24430 47 95 4042 HotspotChr10 TRUE

MCL37 1.81E-21 7 13 24430 46 95 4042 HotspotChr10 TRUE

MCL205 8.04E-04 7 2 24430 11 95 4042 HotspotChr10 TRUE

MCL61 6.06E-03 7 2 24430 30 95 4042 HotspotChr10 TRUE

Significantly	enriched	MCL	clusters	that	pass	multiple	testing	correction	names	in	the	first	column.	Enrichment	was	

calculated	using	a	hypergeometric	calculation	to	measure	the	p-value	of	finding	"num	common"	genes	when	you	sample	

"source	term	size"	and	there	are	"target	term	size"	genes	of	interest	with	"num	universe"	total	genes.	"Num	terms"	

indicates	the	total	number	of	terms	in	all	MCL	clusters.
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CHAPTER 5: 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

In Chapter 2, I demonstrated that the maize kernel ionome is determined by genetic and 

environmental factors, with a large number of genetic by environment interactions. Elemental 

profiling of the IBM population across 10 environments allowed us to capture environmentally-

driven variation in the ionome. The QTL analysis on elements found mainly single-environment 

QTL, indicative of substantial genetic by environment interaction in establishment of the 

elemental composition of the maize grain. This approach, along with identification of QEI 

occurring both within a single location over different years and QEI between different locations, 

indicated that gene by environment interactions underlie elemental accumulation in maize 

kernels. 

In Chapter 3, I expanded the element QTL analysis to include variables representing the 

network properties of the ionome. Using this approach showed that treating the ionome as an 

interrelated set of traits through PCA within environments can identify novel loci. PCA across 

environments allowed us to derive traits that described both environmental and genetic variation 

in the ionome. While the multiple environment analyses here were limited by the lack of 

environmental data collected during the growing season, future experiments could apply the 

same multivariate technique to distinguish environments based on the whole ionome and test to 

see which environmental variables are driving contrasts. Studies across a larger set of 

environments, with soil and weather data measured consistently throughout the growing season, 

can use this multivariate approach as well as include specific environmental variables in QTL 

models to model QTL interactions with particular environmental components. 
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In Chapter 4, I incorporated gene expression data collected from roots of the IBM 

population. The roots are a key tissue, if not the primary tissue, in shaping the ionome of the 

whole plant. Specifically, gene expression changes in the root have been shown to alter the 

ionome. Using eQTL mapping, I found associations between gene expression variation in the 

root and variation at genetic loci, some of which were loci previously linked to the ionome. A 

locus of special interest is the cadmium QTL on chromosome 2, a region that is also a trans-

eQTL hotspot with genes correlated with Cd among its set of gene targets. The gene expression 

study supplied additional support for investigating the causal gene or genes under this QTL. Our 

group is currently working on fine-mapping this locus by developing near-isogenic lines (NILs) 

which break up recombination in the region of interest in a consistent genetic background. In 

these NILs, we can profile Cd accumulation and perform RNA-seq and eQTL mapping, 

essentially the same process as conducted before but with a more defined region and higher 

genetic resolution. Approaches such as this that refine genetic regions and test genes can be 

utilized for other QTL and candidate gene lists. 

This thesis has set forth an integrative approach to understanding element accumulation 

in maize. The genetic basis of complex traits is challenging to dissect and requires a combination 

of multiple -omics and phenotyping approaches. QTL mapping in the maize seed and leaf, 

followed by transcriptome-based analysis in the root, where gene expression changes often 

influence the seed and leaf ionomes, identified a set of candidate genes for regulation of elements 

that can be further explored to improve models of element homeostasis and develop agricultural 

applications. 
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