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To induce a non-negligible spin-orbit coupling in monolayer graphene, for the purposes of

realizing the Kane-Mele Hamiltonian, transition metal adatoms have been deposited in di-

lute amounts by thermal evaporation in situ while holding the device temperature near 4K.

Electronic transport studies including measurements such as gate voltage dependent con-

ductivity and mobility, weak localization, high field magnetoresistance (Shubnikov de Haas

oscillations), quantum Hall, and nonlocal voltage were performed at low temperature before

and after sequential evaporations. Studies of tungsten adatoms are consistent with literature

regarding other metal adatoms on graphene but were unsuccessful in producing a spin-orbit

signature, at least partially due to lithography residue inhibiting the adatoms’ ability to

dope the graphene. Osmium adatoms on graphene behave differently from other adatoms in

several ways. While all other measured adatoms donate electrons to graphene, osmium is ob-

served to donate holes to graphene. In addition, tungsten and other adatoms directly affect

the scattering potentials by causing a dominant Coulomb-like potential from isolated point

charges. Osmium, on the other hand, does not obey this simple model. Separately, a claim

was made in a recent study of Bi2Te3 nanoparticles on graphene showing tantalizing evidence

of quantization in resistance coinciding with predictions for edge channel conduction. Our

attempts to reproduce these observations have not been successful so far.
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Chapter 1

Introduction

1.1 Brief overview of graphene

Much discussion in the mid 1900s [1] about monolayer graphene, a single-atomic layer of

hexagonally arranged carbon atoms, predicated its experimental realization in 2004 [2]. This

realization was largely thought to be impossible due to predictions that 2D materials would

be thermodynamically unstable as a consequence of the Mermin-Wagner theorem [3, 4].

However, because graphene is unique electronically, thermodynamically, and mechanically,

it has become of interest to a wide variety of fields: physics, chemistry, engineering to

name a few, for an equivalently wide variety of applications: probing topological materials,

nanosensors, energy storage etc. Indeed, since 2004, the yearly number of publications

involving graphene have increased with striking rapidity; there were around 150 graphene

publications for 2004 versus over 15,500 graphene articles published in 2014. By 2014, the

total accumulation of research articles about graphene had reached nearly 50,000 articles [5].

A large subset of these publications are concerned with the highly unique electronic

properties, in particular the band structure, of graphene. In contrast to modern semicon-

ductors, the low energy dispersion relation of graphene is linear in momentum rather than
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parabolic. This linearity is analogous to a system of relativistic, massless Dirac fermions. In

addition, unlike other semiconductors, the band structure of graphene features a meeting of

the valence and conduction bands at the degenerate Dirac point, which defines graphene as

a semi-metal rather than a semiconductor. Other exciting electronic properties of graphene

include: the observation is that of a photoconductivity transition between the Dirac point

and high carrier density [6], the high carrier mobility, and the presence of finite minimum

conductivity despite the absence of carriers at the Dirac point [7]. This non-zero conduc-

tivity is likely due to the random distribution of charged impurities in graphene [8] which

results in electron-hole puddles [9, 10]. Even as the average concentration of charge carriers

tends toward zero, networks of these puddles may result in some remnant conduction [11,

12].

1.2 Potential to control graphene electronic structure

The electronic behavior of graphene can be altered in a variety of ways dependent on

the desired property. This has the effect of making graphene a promising base material

for many applications. For example, ultraviolet radiation has been used to tune the work

function at graphene/semiconductor interfaces [13]. Other examples of tuning the electronic

behavior of graphene include tuning the plasmonic phase velocity to investigate the graphene

electron Fermi liquid for nonlocal responses [14] and tuning the band structure of graphene

moiré superlattices by controlling the interlayer separation of graphene heterostructures with

hydrostatic pressure [15].

In this work, we search for routes to tune the electronic structure and behavior of graphene

by decorating the graphene surface with adatoms and nanoparticles. By adding these mate-

rials to the surface of graphene, we seek to induce a larger spin-orbit coupling to graphene

and open a significant band gap.
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1.3 Similar Experimental Works

1.3.1 Other adatoms on graphene

Similar motivations have led a variety of experimental studies of graphene with metallic

adatoms. For small coverage percentages of indium, the adatoms are found to electron dope

the graphene and rapidly decrease the mobility. The indium adatoms act as long-range

Coulomb scattering centers and increase the charge density inhomogeneity. Neither weak

localization measurements nor nonlocal voltage measurements show evidence for inherited

spin-orbit coupling [16, 17]. Similar results in magnesium, an atom like carbon with negligi-

ble spin-orbit coupling further demonstrates the lack of spin-orbit inheritance from indium

adatoms [16]. Calcium also electron dopes graphene but does not match theoretical predic-

tions for the minimum conductivity under such conditions [18]. In addition, lithium and

potassium adatoms have been shown to electron dope and decrease the mobility of graphene

while forming clusters even at cryogenic temperatures. However, these clusters still behave

as charged impurity scattering centers [7, 19, 20].

Comparable measurements were also made with titanium, iron, and platinum adatoms

on monolayer graphene. These materials also electron dope the graphene and decrease the

mobility. These adatoms are shown to form clusters on the graphene surface at room temper-

ature. However, for these materials the adatoms cause scattering inconsistent with standard

1/r Coulomb scattering [21]. Interestingly, iridium forms clusters at low temperature, of

about 100 adatoms, and is shown to electron dope with an efficiency of about 1e per clus-

ter. For large coverage, charged impurity scattering is also inadequate for describing iridium

adatom behavior [22, 23].

Of particular interest is the behaviour of gold adatoms on graphene because in addition to

having a large spin-orbit coupling, gold is also used to fabricate contacts onto the graphene

surface. Gold adatom behavior is similar to indium adatoms. Gold atoms electron dope
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the graphene and decrease the mobility, scattering like isolated charged impurities. If the

device is warmed to room temperature, then the gold diffuses across the surface and forms

clusters. These cluster are less efficient dopants than isolated gold adatoms. In addition,

gold adatoms are shown to be useful for the tuning of neutral valley currents [24, 25].

Interestingly, graphene grown by copper based CVD has been shown to inherit a spin-

orbit coupling 3 times stronger than that of exfoliated graphene devices which is measured

by an enhancement to the nonlocal voltage signal measured in Hall bar devices. This increase

seems to be due to the presence of copper nanoparticles left behind after the copper etch-

ing process. However, similar results were acquired for devices with gold nanoparticles on

epitaxial graphene as well [26]. Average particle sizes for both gold and copper were around

30-40 nm, in contrast to isolated adatoms which are much smaller. This indicates that each

nanoparticle is comprised of several gold or copper atoms, giving them a larger number of

protons. As discussed in Chapter 2, materials with a larger number of protons will have a

larger spin-orbit coupling. This is likely why copper and gold nanoparticles induce spin-orbit

coupling to graphene while single-particle adatoms of gold have been unsuccessful in similar

endeavors.

1.3.2 Graphene heterostructures

Other techniques presented to induce a spin-orbit coupling to graphene are: creating

heterostructures involving spin-orbit materials or placing graphene onto substrates with large

spin-orbit coupling terms.

For example, experimental evidence has been shown that in heterostructures of graphene

and few-layer WS2, the graphene inherits spin-orbit coupling, dominantly of the Rashba type,

from the WS2 which leads to quantum spin Hall behavior even up to room temperature [27].

This Rashba type spin-orbit coupling is easily seen in the weak antilocalization corrections

to the conductivity [28–30]. In addition, heterostructures of graphene with MoS2 or WSe2
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causes acquisition of Rashba type spin-orbit coupling with strong electron-hole symmetry

in the graphene [31] and anisotropic spin relaxation times evolving from a strong valley-

Zeeman spin-orbit coupling, where the spins are coupled to the valley degree of freedom

[32]. Furthermore, evidence of a spin-orbit coupling being induced to bilayer graphene by

proximity to WSe2 has also been shown [33].

In addition, graphene on substrates with large spin-orbit coupling, such as WS2, have

been shown to induce a large spin-orbit coupling to the graphene. This is shown in robust

weak antilocalization in the device and spin relaxation times smaller than those in pristine

graphene [28]. In fact, graphene on transition metal dichalcogenides as substrates, including

WS2, MoS2, and WSe2 are incredibly versatile with spin-orbit splittings induced that are

about 100 times larger than inherent to pristine graphene. Furthermore, this inducement

holds up for a variety of mobilities, graphene thicknesses, and for both electrons and holes.

In addition to Rashba type spin-orbit signatures shown via weak antilocalization, spin-valley

signatures are also shown in a beating resonance in the Shubnikov de Haas oscillations [34,

35].

1.4 Outline

In this work, we experimentally probe the effect of two types of adatoms, tungsten and

osmium, in addition to one type of nanoparticle, Bi2Te3, on the electronic properties of

graphene. Overall, the effect of tungsten adatoms on graphene are strikingly consistent

with other metallic adatoms, despite the devices having not been cleaned of fabrication

residues. On the other hand, osmium adatoms on graphene behave differently from other

metallic adatoms in such a way as to challenge the simple models employed for describing

the scattering mechanisms. Overall, neither adatom was conclusively proven to induce a

large spin-orbit coupling to graphene but osmium-decorated graphene displayed anomalous
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behavior in comparison to other adatoms and deviations from usual magnetoresistance in

graphene calls for further exploration. In addition, preliminary observations reported here

for Bi2Te3 nanoparticles do not reproduce intriguing results seen in another study.

We organize this discussion as follows: we begin with the general electronic structure

of graphene, followed by the electronic structure when decorated with metallic adatoms in

Chapter 2. The behavior of electrons in graphene within a magnetic field are discussed in a

description of the quantum Hall effect, Shubnikov de Haas oscillations at large field, and weak

localization corrections to the resistance at low field. In Chapter 3, we discuss the effects

of tungsten adatoms in dilute quantity on graphene. In Chapter 4, the effects of osmium

adatoms on graphene are examined in three different types of devices. In Chapter 5, we report

preliminary measurements on Bi2Te3 nanoparticles on a monolayer graphene device. Finally

we conclude with a brief discussion toward the applicability of this work beyond tungsten and

osmium. Appendices are included to more thoroughly examine the: fabrication procedures

used to create graphene devices (A), a comparative analysis of graphene cleaning procedures

using AFM surface roughness measurements (B), and preliminary observations of lithium

adatoms (C).
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Chapter 2

Graphene and Decorated-Graphene

Theory

2.1 Introduction

Graphene is an allotrope of carbon arranged in a honeycomb lattice of only carbon atoms

in a single plane. This makes it different from the other forms of carbon because it is two-

dimensional (2D). In addition, due to its unique electrical and mechanical properties, it

has become largely studied both theoretically and experimentally. In this chapter, we will

discuss the unique electronic properties that graphene lends to the field of materials science

and their application to the following chapters.

2.2 Graphene electronic properties

2.2.1 Lattice structure

A single layer of monolayer graphene is the building block for other 2D and quasi-2D

materials such a bilayer graphene and bulk graphite. Each monolayer is a honeycomb lattice
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of carbon atoms in a single plane. Because the honeycomb lattice is not a Bravais lattice, it

is equivalently taken to be two triangular sublattices, often referred to as sublattices A and

B. This lattice is shown in Figure 2.1 with blue and red representing carbon atoms on the

two sublattices.

Figure 2.1: A top-down view of the honeycomb lattice of graphene with the A and B sub-
lattices shown in blue and red.

The electronic structure of a base carbon atom is: (1s)2(2s)2(2p)4. In solids, the 1s

electrons are inert while the 2s and 2p electrons of each atom may hybridize. In the case of

carbon, there are multiple hybridization options. However, in order to form a honeycomb

lattice, the hybridization occurring is the combination of an s-orbital with the px and py

orbitals to form three sp2 orbitals arranged at 120◦ which forms three covalent σ bonds [36].

The remaining pz orbital is in the plane perpendicular to the plane of the sp2 hybrid orbitals

and forms a delocalized π bond [37].

We define the lattice as follows: an infinite, free-standing, and flat sheet of graphene

with periodic boundary conditions such that the Bravais lattice is chosen where the lattice
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vectors are a1 and a2 and the nearest neighbor vectors of a chosen carbon atom are d1, d2,

and d3. Here we take lattice vectors:

a⃗1 =
3a

2
x⃗+

√
3a

2
y⃗, a⃗2 =

3a

2
x⃗−

√
3a

2
y⃗. (2.1)

And the nearest neighbor vectors are:

d⃗1 =
a

2
x⃗+

√
3a

2
y⃗, d⃗2 =

a

2
x⃗−

√
3a

2
y⃗, d⃗3 = −ax⃗, (2.2)

where a is the length of the carbon-carbon bond [38]. These vectors are included as labeled

light-blue arrows in the lattice diagram of Figure 2.2.

Figure 2.2: The honeycomb lattice with Bravais lattice vectors and nearest neighbor vectors.

The first Brillouin zone of a honeycomb lattice, found by intersecting the middle of the

reciprocal lattice vectors [39], turns out to be another honeycomb lattice, but rotated by

90◦. A diagram is shown in Figure 2.3 with the black honeycomb shape representing the
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bonds between six carbon atoms in blue and orange (for the A and B sublattices). The first

Brillouin zone is outlined in green and labeled FBZ. It is found by drawing connecting lines

between the three carbon atoms of each sublattice, as shown in light orange. It is easy to see

that for a honeycomb lattice, the lattice is only uniquely described by two points. All other

points on the lattice can be found by translations of those two points. For this reason, we

can see that only two points of the FBZ will be unique as well. These are typically called K

and K’, as shown in Figure 2.3.

Figure 2.3: The first Brillouin zone (FBZ) of the graphene honeycomb lattice extracted by
drawing connecting lines to each pair of atoms in the two sublattices. These lines are shown
in orange. The FBZ is identified by a dark green outline and dark green label. The two
symmetry points are shown in black dots labeled K and K’.

The reciprocal space symmetry points K and K’, hereafter called the Dirac points, are

defined by the vectors:

K⃗ =
2π

3a
x⃗+

2π

3
√
3a
y⃗, K⃗ ′ =

2π

3a
x⃗− 2π

3
√
3a
y⃗. (2.3)

where a is again the carbon-to-carbon bond length of about 1.42 Å [38].

10



2.2.2 Graphene band structure: the tight-binding model

Hamiltonian of pristine graphene

Before graphene was experimentally realized, Wallace theoretically derived the band

structure of graphite and its monolayer building blocks [1]. A brief subset of other resources

for this derivation can be found in References [40–43]. We rather closely follow the derivation

of Sir Anthony Leggett at University of Waterloo in his 2010 lecture series on quantum

information processing [38].

In the tight binding model for the electronic band structure, we choose to limit hopping

to only nearest neighbors (rather than next nearest and so on) for simplicity. The extension

to next-nearest neighbors will be shown later in this section. The only orbitals relevant to

this derivation are the π orbitals because they are left empty by the bonding processes of

the other electrons. Then, the nearest-neighbor tight binding Hamiltonian equation is:

Ĥg = −t
∑
ij=nn

∑
σ

a†iσbjσ + b†jσaiσ (2.4)

where t is the matrix element corresponding to the nearest neighbor hopping. This typically

scales the derived energy band and is believed to be around 2.8 eV [40]. In addition, a†iσ is

the creation operator for creating an electron with spin σ on site i of sublattice A and aiσ is

the complementary annihilation operator. Similarly, b†jσ (bjσ) is the creation (annihilation)

operator for site j on sublattice B. We will choose a specific point in the lattice, any point

on either sublattice will do, to label R⃗0
i . For convenience, we choose the blue (sublattice

A) point from which all three nearest neighbor vectors are labeled as R⃗0
i . Then each of the

nearest neighbor vectors d⃗1, d⃗2, d⃗3 points to a carbon atom on the opposite sublattice nearest

the chosen atom.

If we ignore the spin index, then the eigenfunctions of Eq. 2.4 are of the Bloch form such

that:

11



αk⃗ =
∑
j

ei⃗k·R⃗0
ja†je

−i⃗k· d⃗1
2 (2.5)

βk⃗ =
∑
j

ei⃗k·R⃗0
j b†je

i⃗k· d⃗1
2 . (2.6)

Then, each a†j or b†j creates an electron on unit cell j on the corresponding A or B sublattice.

The momentum-space representation for the Hamiltonian can be written in matrix form,

with only off-diagonal elements:

Ĥk⃗ = −t
3∑

l=1

 0 eik⃗·d⃗l

e−ik⃗·d⃗l 0

 (2.7)

where each matrix element can be named and defined:

∆k⃗ ≡ −t
3∑

l=1

eik⃗·d⃗l (2.8)

so that:

Ĥk⃗ =

 0 ∆k⃗

∆∗
k⃗

0

 . (2.9)

Substituting in the nearest neighbor vectors shown in Eq. 2.2, this simplifies to the same

off-diagonal matrix with elements:

∆k⃗ = −te−ikxa[1 + 2ei(3kxa/2) cos (

√
3kya

2
)], (2.10)

which gives the energy eigenvalues:

Ek⃗ = ±t

√
1 + 4 cos (

3kxa

2
) cos (

√
3kya

2
) + 4 cos2 (

√
3kya

2
). (2.11)
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In this equation, the positive and negative energies are symmetric about Ek⃗ = 0, as seen

in Figure 2.4. The positive energy equation corresponds to the π band while the negative

energy equation corresponds to the π∗ band [40], which we now call the conduction and

valence bands.

kx

ky

(a)

kx

ky

Ez

(b)

kx

ky

Ez

(c)

Figure 2.4: Three views of the energy of graphene versus momentum in a nearest-neighbor
formalism.

The next step is to determine if there are any solutions for which the energy eigenvalues

equal zero within the first Brillouin zone. The conditions that must be met for Ek⃗ = 0 are

either:

3kxa

2
= 2nπ, cos

√
3kya

2
= −1

2
(2.12)

or:

3kxa

2
= (2n+ 1)π, cos

√
3kya

2
=

1

2
. (2.13)
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However, when n = 0, only Eq. 2.13 remains within the first Brillouin zone. In fact, when

n = 0, Eq. 2.13 is exactly satisfied at the Dirac points K and K’. These linear bands form

conical surfaces in the conduction band and inverted conical surfaces in the valence band

that touch at each Dirac point. The nearly hour-glass shape that results from these surfaces

at low energy are called valleys. In the low energy limit, we define the momentum near a

Dirac point by:

q⃗ ≡ k⃗ − K⃗, |q⃗|≪ |K⃗|. (2.14)

Then, the Hamiltonian matrix elements, ∆k⃗, are:

∆(q⃗) = −3ta

2
e−iKxa(iqx − qy), (2.15)

∆∗(q⃗) = −3ta

2
e−iKxa(−iqx − qy) (2.16)

Because it does not affect the physical results, we may then factor out and remove the

imaginary component −ie−iKxa, such that:

∆(q⃗) =
3ta

2
(qx + iqy)[1 +O(q/K)2], (2.17)

∆∗(q⃗) =
3ta

2
(qx − iqy)[1 +O(q/K)2]. (2.18)

Then we define:

vF ≡ 3ta

2h̄
≈ 106m/s, (2.19)
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which we call the Fermi velocity and nicely simplifies ∆(q⃗) and ∆∗(q⃗) to:

∆(q⃗) = h̄vF (qx + iqy)[1 +O(q/K)2], (2.20)

∆∗(q⃗) = h̄vF (qx − iqy)[1 +O(q/K)2]. (2.21)

Ignoring higher order corrections, we can rewrite the Hamiltonian:

Ĥk⃗ = h̄vF

 0 qx + iqy

qx − iqy 0

 , (2.22)

and we can see that the graphene Hamiltonian is also a function of the Pauli matrices:

Ĥg = h̄vF (σ̂ · q⃗), (2.23)

with energy eigenvalues given by:

E(q) = ±h̄vF |q|. (2.24)

This means that the energies are only dependent on the magnitude of the momentum q⃗ and

not on the direction. Another interesting note, is that this low-energy dispersion is linear

in momentum - which is more obvious in Figure 2.5 - rather than parabolic as it would be

for the vast majority of semiconducting materials. In addition, with graphene, the Fermi

velocity is dependent only on the hopping parameter and lattice constant, and not on the

energy.

Because the energy is symmetric around Ek⃗ = 0 and Ek⃗ = 0 is applicable at exactly the

two Dirac points only, to half-fill the energy bands, the density of states at the Fermi energy

must be 0. Pristine graphene, then, should have an electron of each spin on each atom such
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Figure 2.5: The low-energy dispersion relation for graphene is linear and the two bands meet
at each Dirac point. The DOS is shown on the right; with the Fermi level meeting at E = 0,
the valence band is full and the conduction band is empty.

that the total band is half-filled (or the valence band is perfectly filled while the conduction

band is empty) and the Fermi energy lies at exactly the contact point Ek⃗ = 0. This means

that pristine graphene is a perfect semi-metal, rather than a metal or semiconductor. This

distinction is shown in Figure 2.6 with the conduction band of a material shown in red and

the valence band shown in blue. A metal typically has a reasonably large overlap between

these bands, a semi-metal has either a small overlap or a single point (possibly degenerate)

where the bands meet. A semiconductor, on the other hand, has an energy gap that separates

the bands. This gap is typically small enough that it is possible to tune the Fermi level to be

in either band which is when conduction occurs. Insulators have large energy gaps between

the bands and as such are either difficult or impossible to tune the Fermi level such that

conduction could occur.

The dispersion relationship shown in Eq. 2.24 is of the same form as for ultra-relativistic

carriers quantum mechanically described by the 2D Dirac equation:

−ivF σ⃗ · ∇Ψ(r⃗) = EΨ(r⃗) (2.25)

This indicates that carriers in graphene may be described as so-called massless Dirac fermions

[40].
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Figure 2.6: Typical low-energy band structure of various material types. The conduction
band is shown in red and the valence band is shown in blue.

Finally, in order to properly discuss the final energy band solution for graphene, we must

also extend our derivation beyond nearest neighbors. Indeed, if we include next-nearest

neighbors as well, we acquire a Hamiltonian:

Ĥg = −t
∑

ij=nn,σ

(a†iσbjσ + b†jσaiσ)− t′
∑

ij=nnn,σ

(a†iσajσ + b†iσbjσ + a†jσaiσ + b†jσbiσ) (2.26)

where t′ is the next-nearest neighbor hopping parameter [40]. Because of the shape of the

honeycomb lattice, we know that next-nearest neighbor hopping occurs between atoms on

the same sublattice rather than on different sublattices, as for nearest neighbor hopping.

The value for t′ is approximated based on ab initio calculations to be 0.02t ≤ t′ ≤ 0.2t [44],

and experimentally shown to be t′ ≈ 0.036t ≈ 0.1eV [45]. If we now solve for the energy

eigenvalues of this systems, we obtain:
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E(k⃗) = ±t
√

3 + f(k⃗)− t′f(k⃗) (2.27)

f(k⃗) = 2 cos (
√
3kya) + 4 cos (

√
3kya

2
) cos (

3kxa

2
) (2.28)

which still simplifies to Eq. 2.24 in the low-energy limit [1, 40]. In Figure 2.7, we show the

dispersion relationship for three values of t′: 0.02t, 0.1 eV , and −0.2t, where t = 2.8 eV and

the values for t′ are from (a) the smallest, (b) the experimental, and (c) the largest estimates

given in [40].

kx

ky
Ez

(a) t′ = 0.02t

kx

ky
Ez

(b) t′ = 0.1eV

kx

ky

Ez

(c) t′ = −0.2t

Figure 2.7: The dispersion relation of energy versus momentum for (a) the range minimum
for t′ (b) the experimental estimation of t′, and (c) the range maximum of graphene. We
assumed t = 2.8 eV .

Spin-orbit coupling

Because graphene has a negligible spin-orbit coupling intrinsically, we would like to induce

a more substantial spin-orbit coupling by depositing adatoms onto the graphene surface in

pursuit of realization of the Kane-Mele Hamiltonian. As such, the adatoms we will focus on

are those with a large inherent spin-orbit coupling. Spin-orbit coupling is the physical effect

of an interaction between the orbital angular momentum and the spin angular momentum.

It is a relativistic effect and occurs for electromagnetic bound states. In such states, the
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motion of an electron within its orbital causes a magnetic component to the orbital Coulomb

potential and the spin is acted upon by the force resulting from that magnetic field.

The energy of a spin-orbit interaction (∆SO) is known to be related to the number of

protons (Z) in the atom’s nucleus, the orbital radii (r which may be approximated by the

nth Bohr radius rB), and the spin and orbital angular momenta (Ŝ and L̂) [46] via:

∆SO ∝ Z

r3
L̂ · Ŝ, (2.29)

then after replacing r with the Bohr radius rB:

∆SO ∝ Z4

n6
L̂ · Ŝ. (2.30)

For spin-half charge carriers such as electrons, this becomes:

∆SO ∝ (
Z2

n3
)(
j(j + 1)− l(l + 1)− 3/4

l(l + 1)(2l + 1)
). (2.31)

This equations indicates that the spin-orbit coupling of individual atoms is highly dependent

on their number of protons in the nucleus. In this way, we naively assign the following rule-

of-thumb: the larger the atom, the more spin-orbit coupling it may induce upon a graphene

sheet. For this reason, we focus on larger Z adatoms such as tungsten and osmium.

Adatom-decorated graphene

In order to account for the spin-orbit coupling interactions present on graphene with

adatoms that have large spin-orbit coupling, we need to include more than the standard

nearest-neighbor or next-nearest-neighbor terms in the Hamiltonian. Instead, we will follow

Kane & Mele [47, 48] which shows that the spin-orbit interaction can be included as both

a mirror-symmetric and a non-mirror-symmetric interaction in addition to the standard
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nearest-neighbor Hamiltonian. In this discussion, the notation for the graphene Hamiltonian

is as follows:

Ĥg = −ih̄vFψ†(σxτz∂x + σy∂y)ψ, (2.32)

with vF as the Fermi velocity, σz representing states on the A or B sublattices, τz representing

states at the Dirac points, and ψ solutions to the low-energy electronic wavefunctions. This

is the effective mass Hamiltonian for graphene assuming only nearest-neighbor interactions

with the same energy eigenvalues, Eq. 2.24. In this formulation, when ignoring spin, then

the degeneracy at q⃗ = 0 is protected by symmetry. Then, terms that are proportional to a

staggered sublattice potential (σz or σzτz) could be used to open a band gap. By including a

term σzτzsz, where sz accounts for the electron spin, a band gap should open while respecting

all graphene symmetries including mirror symmetry about the plane. This type of spin-orbit

coupling, often called intrinsic spin-orbit coupling, (as opposed to an asymmetric, or Rashba,

coupling that does not respect mirror symmetry about the plane) can be represented by the

Hamiltonian:

ĤSO,I = λSOψ
†(σzτzsz)ψ, (2.33)

with eigen-energies:

E(q⃗) = ±
√

(h̄vF q)2 + λSO
2, (2.34)

which leads to an energy gap of 2λSO [48].

On the other hand, if mirror symmetry is not preserved, such as by the introduction of

a perpendicular electric field or by the presence of a substrate beneath the graphene, then

another spin term must be included as well. This is the Rashba spin-orbit interaction and

can be represented by the Hamiltonian:

ĤSO,R = λRψ
†(σxτzsy − σysx)ψ (2.35)
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Furthermore, if the Rashba spin-orbit term is larger than the intrinsic spin-orbit term, i.e.

λR > λSO, then the gap would close, leaving the electronic band structure of a zero-gap

semiconductor with quadratic bands [48].

However, if both intrinsic and Rashba spin-orbit interactions are included such that the

Rashba term obeys 0 < λR < λSO, then a finite gap of 2(λSO − λR) occurs with only two

edge states travelling through that gap. This is shown in Figure 2.8 with the quadratic

conduction and valence bands shown in red and blue respectively and the edge states shown

in black.

Figure 2.8: Graphene’s dispersion relation includes quadratic conduction and valence bands
in red and blue and two spin-polarized edge states shown in black.

This indicates that while Rashba spin-orbit interaction violates sz conservation, the bulk

band gap remains intact while gapless edge states cross at the Brillouin zone boundary.

Time reversal symmetry prevents backscattering processes resulting in these spin-filtered

edge states being stable against weak interactions and disorder. In a low temperature system,

the ballistic transport can be described by a Landauer-Büttiker [49] formalism such that in
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a two-terminal measurement, there would be quantized charge conductance:

G =
2e2

h
, (2.36)

accompanied by spin accumulation at the edges. Similarly, in a four-terminal geometry, a

quantized spin current:

Ispin =
eV

4π
, (2.37)

could be measured [48].

Because graphene intrinsically has a very small spin-orbit coupling, how can one add spin-

orbit coupling to graphene such that the extraordinary mobility is not negatively affected

and the band structure obeys the Kane-Mele model of conducting edge states with the bulk

acting as an insulator? As described in the previous subsection, atoms with few protons

have small spin-orbit coupling. Indeed, the Z2 relationship indicates that small atoms, such

as the carbon atoms in graphene, will have a much smaller spin-orbit coupling than atoms

with significantly larger Z. Thus, References [50–52] propose a method to induce a large

spin-orbit coupling to graphene via proximity to large Z adatoms.

For this method, the original graphene Hamiltonian would need a term that accounts

for the presence of the adatom on the graphene and a term that accounts for hybridization

between the adatom and the graphene. This assumes that the adatom preferentially sits in

the central area of a graphene hexagon (hollow site) [53] after deposition. Other possible

bonding sites for the adatom are the bridge (centered above and between two carbon atoms)

or top (above a carbon atom) sites. The hollow and bridge sites tend to be energetically

preferable to a position above a carbon atom (top site) and we choose adatoms with a pref-

erence for the hollow site because they should be the most effective adatoms for mediating

spin-dependent next-nearest neighbor hopping without breaking the local sublattice symme-
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try [50, 54, 55]. In addition, it is obvious that because we are discussing adatoms on one side

of the graphene, and likely graphene supported by a substrate rather than suspended, there

will likely be both an intrinsic spin-orbit coupling and a Rashba spin-orbit coupling present.

However, if the outer shell electrons of each adatom come from p-orbitals, then the intrinsic

spin-orbit coupling is predicted to dominate the Rashba coupling [50].

In this case the graphene Hamiltonian is replaced by the total system Hamiltonian:

Ĥsys = Ĥg + Ĥad + Ĥhy, (2.38)

where Ĥg is the graphene nearest neighbor Hamiltonian (Eq. 2.4) Ĥad is the adatom Hamilto-

nian, and Ĥhy is the Hamiltonian for the hybridization between the adatom and the graphene.

First, we rewrite the graphene Hamiltonian in simpler form:

Ĥg = −t
∑
ij=nn

∑
σ

a†iσbjσ + b†jσaiσ = −t
∑
ij=nn

∑
σ

(a†iσbjσ +HC1), (2.39)

where HC1 is the second term in Eq. 2.4, which is the Hermitian conjugate of the first term

in Eq. 2.4. Then, we also need to include a term involving the chemical potential of each

adatom affecting the 6 sites surrounding it. Ĥg becomes:

Ĥg = −t
∑
ij=nn

∑
σ

(a†iσbjσ +HC1) + δµ
∑
R⃗i

6∑
j=1

c†r⃗jcr⃗j , (2.40)

where δµ is the adatom chemical potential and c†r⃗j is the creation operator for the vector r⃗j

between the adatom located at R⃗i and its nearby carbons.

Next, we write the adatom Hamiltonian:

Ĥad =
∑
R⃗

[∑
α,m

ϵf †
mR⃗α

fmR⃗α +
∑

α,β=↑,↓

λSO(f
†
1R⃗α

szαβf1R⃗β − f †
−1R⃗α

szαβf−1R⃗β)

]
, (2.41)
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where f †
mR⃗α

is the creation operator that fills the adatom d-orbital located at position vector

R⃗ with magnetic quantum number m = ±1 and spin α =↑, ↓. As usual, sz is a Pauli matrix

and λSO is the spin-orbit coupling. Finally, ϵ is a scaling factor for setting the orbital energies

in relation to the Dirac points of graphene.

Finally, to write the Hamiltonian representing the hybridization (or electron tunneling)

between graphene and the adatoms, we need vectors that point from the adatom to the

surrounding carbons. We will call these vectors r⃗j. In addition, we ignore weak spin-orbit

terms self-coupling the graphene electrons and Coulomb interactions. Then the hybridization

Hamiltonian is described by:

Ĥhy = −thy
∑
R⃗,α,m

(iC†
mR⃗α

fmR⃗α +HC2), (2.42)

where thy is the hybridization hopping energy, R⃗ is the adatom location vector, α =↑, ↓ is the

spin, m = ±1 is the angular momentum, HC2 is the Hermitian conjugate of the first term

in Eq. 2.42, and CmR⃗ is the linear combination of the 6 vectors pointing from the adatom

to the surrounding carbons, rj, given by:

CmR⃗ =
1√
6

6∑
j=1

e−iπ
3
m(j−1)cR⃗+r⃗j

. (2.43)

2.2.3 Electronic Transport

Drude model

In a 2D electron gas, where electrons in a material move around in a background of

stationary ions, the conductivity can be expressed in the Drude model for conductivity of

a metal [56]. In this model, the resistivity of a material is defined as the proportionality
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constant between the charge current and the electric field causing it:

E⃗ = ρ⃗j, (2.44)

where E⃗ is the electric field, ρ is the resistivity, and j⃗ is the current density. The charge

current density may be defined by the number of charges present, the velocity with which

they are moving, and the signed charge of the carriers via:

j⃗ = −nev⃗, (2.45)

where n is the number of carriers (electrons), e is the elementary electron charge, and v⃗

is their velocity. However, we also know that within this material, there will be collisions

of the electrons with boundaries, defects, other electrons, and the immobile lattice of ions.

This scattering has an average relaxation time τ , or scattering rate of 1/τ . Thus the average

velocity becomes:

v⃗avg =
−eτ
m

E⃗, (2.46)

with m representing mass. Then this equation can be inserted into Eq. 2.45:

j⃗ = −ne× −eE⃗τ
m

=
ne2τ

m
E⃗. (2.47)

By this, we define the conductivity (or the inverse of the resistivity) to be the proportionality

factor between the current density and the electric field, i.e.:

σ0 =
j⃗

E⃗
=
ne2τ

m
. (2.48)

In a steady-state system, the rate for which electrons are gaining momentum from the

electric or magnetic field balances the rate at which electrons are losing momentum due to
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scattering [57]. This is expressed by:

mv⃗

τ
= e[E⃗ + v⃗ × B⃗], (2.49)

which can be written in terms of the x and y components of the electric field and velocity:

Ex

Ey

 =

m
eτ

−B

B m
eτ


Jx

en

Jy
en

 , (2.50)

Ex

Ey

 =
1

en

m

eτ

 1 −B eτ
m

B eτ
m

1


Jx
Jy

 . (2.51)

Since

σ0 =
ne2τ

m
= n|e|µ, (2.52)

where, µ is the mobility defined by

µ ≡ |e|τ
m

. (2.53)

We see that:
µ

σ0
=

1

en
, (2.54)

and finally, we have: Ex

Ey

 = σ−1
0

 1 −µB

µB 1


Jx
Jy

 . (2.55)

Then from Eq. 2.44, we see the resistivity and compare Eq. 2.44 with Eq. 2.55:

Ex

Ey

 =

ρxx ρxy

ρyx ρyy


Jx
Jy

 =

 σ−1
0 −µBσ−1

0

µBσ−1
0 σ−1

0


Jx
Jy

 . (2.56)

From 2.56, we know that ρxx = σ−1
0 and ρxy = −µBσ−1

0 = B/en. Now, we can see that
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the longitudinal resistance does not depend on magnetic field and the transverse resistance

will vary linearly with magnetic field.

Conductivity in a magnetic field: classical Hall effect

The classical Hall effect was studied in the late 1800s by E.H. Hall, in pursuit of de-

termining whether the force exerted on a wire carrying current in a magnetic field was due

to the wire or due to the electrons within the wire. He discovered that a rectangular sheet

carrying current Ix along the x-direction, within a magnetic field, Bz, in the z-direction, feels

a Lorentz force that causes charge accumulation on the sides of the conductor. Eventually,

this accumulation is balanced by the electric field, Ey, in the y-direction, resulting from that

accumulation. In an equilibrium state, the new field due to accumulation, which is in the

transverse direction to the wire, will balance the Lorentz force and current will only travel

in the original direction [56]. This can be seen in Figure 2.9.

Figure 2.9: Carriers in a rectangular current-carrying conductor in a perpendicular magnetic
field feel a Lorentz force that causes charge accumulation at the sides.

In a classical Hall effect system, there are characteristic resistances (or resistivities that

we must understand. When a voltage is measured along the direction of the current, the lon-

gitudinal resistance (or resistivity) may be measured. This is characterized by the following

equations:

27



Rxx =
Vxx
Ix
, (2.57)

ρxx =
Ex

jx
= σ−1

0 . (2.58)

As discussed in the previous section, the value of the longitudinal resistivity is not dependent

on the magnetic field and thus should be constant in a classical conductor. On the other

hand, because of the charge accumulation on the sides of the conductor and resulting electric

field, a voltage should be measurable in the y-direction as well. This results in a measurable

transverse voltage, Vxy, which by simple calculation results in the transverse resistance, Rxy,

by:

Rxy =
Vxy
Ix

=
B

ne
. (2.59)

where Ix is the current in the x-direction as shown in Figure 2.9. The Hall coefficient is

defined by:

RH ≡ dRxy

dB
=

1

nHe
. (2.60)

High-field MR: Shubnikov de Haas oscillations

Experimentally, both the longitudinal and transverse resistance closely follow the Drude

model trends when the magnetic field is small. However, at larger magnetic fields, the longi-

tudinal resistance oscillates with amplitude increasing with magnetic field and the transverse

resistance exhibits plateaus at cryogenic temperatures. An example of the oscillations in the

longitudinal resistance at high magnetic field are shown in Figure 2.10.

These oscillations are a result of the step-like density of states for a 2D electron gas in
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Figure 2.10: Oscillations in the longitudinal resistance of graphene

a quantizing magnetic field. If we ignore Zeeman splitting, then in a magnetic field, the

density of states becomes a sequence of peaks separated by h̄ωc where ωc is the cyclotron

frequency of charge carriers in a magnetic field given by ωc =
eB
m

. This density of states is

shown in Figure 2.11.

As the magnetic field increases, the energies of the Landau levels (the discrete energy

levels of charge carriers in cyclotron orbits in a magnetic field) change. Because the resistivity

is dependent on the Fermi energy, as the energy of the Landau levels change, the resistivity

will go through oscillations because the Fermi energy moves from the center of one Landau

level to the center of the next Landau level [57]. In a perfect system with no scattering,

these peaks would instead be delta functions. However, in a real 2D electron gas, there will

be scattering processes that cause the delta functions to smear out in energy.

Quantum Hall effect in graphene

Extending the classical Hall effect into quantum mechanics, we will now discuss the

quantum Hall effect (QHE). This description is generic to 2D systems and has been measured

in other systems such as GaAs heterostructures and silicon MOSFETS [58], as well as black
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Figure 2.11: The density of states of a 2D electron gas in a quantizing magnetic field.

phosphorus [59]. In addition, measurements of the QHE in graphene are of particular interest

and importance [60].

In high mobility devices, with large magnetic field perpendicular to the plane of the

graphene, the Landau levels obey the following energy relationship:

En = sgn(n)
√
2eh̄v2F |n|B, (2.61)

where sgn(n) is the sign of n, h̄ is the Planck reduced constant, e is the elementary electron

charge, vF is the Fermi velocity in graphene, n is the Landau level number, and B is the

magnetic field amplitude. As discussed previously in this Chapter, the allowed Landau

energy levels En for n = ±1, 2, 3, ... are a discrete spectrum of values with negative n for

holes and positive n for electrons. In addition, when n = 0, there is a Landau level at the

Dirac point En = 0. This Landau level is due to the unique structure of the band relationship

for graphene and is electron-hole degenerate [61].
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In this Landau level energy description of the 2D electron gas, such as is found in graphene

sheets, the electron orbitals corresponding to different n values are localized such that there

is one state per magnetic flux quantum in each Landau level. Then, we can define the filling

factor, ν, as the fractional occupation of occupied Landau levels for a given applied magnetic

field,

ν =
neϕ0

B
, (2.62)

where ne is the electron density, ϕ0 = h
e

is the flux quantum, and B is the magnetic field

amplitude. By this relationship, we see that as the magnetic field increases, the filling

fraction of Landau levels that are filled will decrease.

In the previous section, we mentioned that the transverse or Hall resistance should vary

linearly with magnetic field as predicted by the classical Hall effect for large magnetic fields.

However, in graphene, the Hall resistance increases with magnetic field but also exhibits

several plateaus, which indicate quantization at certain magnetic fields. If we rewrite Eq.

2.62 for the electron density:

ne =
νB

ϕ0

, (2.63)

then:

RH =
B

neec
=

Bϕ0

νBec
=

h

νe2
. (2.64)

Thus, we find that the Hall resistance is quantized with inverse relation to filling factor ν

and units of h/e2 = 25812.8 Ω [62]. In high mobility graphene, plateaus that correspond to

integer filling factors and fractional filling factors are found. The integer plateaus correspond

to states where the Landau level is completely filled and a finite energy gap must be crossed

to reach the next Landau level. In a real graphene system, impurities create local potentials

that may trap the electrons such that as the filling factor changes by small amounts, the
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extra electrons fill the localized states and do not contribute to the current. This causes a

plateau in the resistance.

In high mobility 2D systems, it is also possible to observe states corresponding to frac-

tional filling factors which also create plateaus in the Hall resistance [63]. The observation of

these fractional quantum Hall states are due to the condensation of the 2D electron gas into

a collective ground state [64]. Small changes in the fractional filling factor causes the excita-

tion of quasi-particles that carry fractional charge and are similarly localized by impurities

such that they do not contribute to the current [62].

Quantum spin and anomalous Hall effects in graphene

The quantum spin Hall effect is similar to the integer and fractional quantum Hall effect

in that edge channel conduction occurs due to cyclotron orbitals of charge carriers bouncing

along the device edges. However, unlike the usual quantum Hall effect, the quantum spin

Hall effect occurs without an applied magnetic field. One possible way for this to occur is for

a quantum Hall material such as graphene to have a large spin-orbit coupling. The Hamilto-

nian and resulting bulk insulation (band gap) with counter-propagating spin polarized edge

channels was discussed in Section 2 of this chapter. The prediction for graphene becoming a

2D topological insulator from inherited spin-orbit coupling [48] and the inheritance of spin-

orbit coupling to graphene via metallic adatoms [50, 51] is the underlying motivation for the

entirety of this work.

In addition, the quantum anomalous Hall effect takes this process a step farther. If a

quantum Hall material has a large spin-orbit coupling and a magnetic moment, then the

magnetic moment will suppress one of the edge channels. This leaves a single edge channel,

for a single type of spin, with quantized conductance through it. The three quantum Hall

effects are shown in Figure 2.12 with the spin up channel shown in orange and the spin down

channel in green. Theoretically this could also be realized by adatoms on graphene as long
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as the adatoms contained both a large spin-orbit coupling and a magnetic moment.

Figure 2.12: The QHE, QSHE, and QAHE explained diagrammatically. In the quantum Hall
effect, an external applied magnetic field causes charge carriers to move in orbitals. This
causes the bulk of a 2D sheet to be insulating, while carriers bounce along edge states in one
direction or another based on their spin. The QSHE is similar but occurs without an applied
magnetic field due to interactions between the motion of the charge carriers and the spin on
those carriers. Finally the QAHE is analogous to the QSHE but one of the spin-polarized
channels is suppressed due to a magnetic moment on the material.

Low-field MR: Weak localization in graphene

In systems that are not ballistic, electrons diffuse through the material undergoing many

collisions that may be modeled as a random walk. A given electron starts at a location at

a specified time and travels through the material with some probability of returning to its

original location within a particular time period. This return probability is affected by the

electron path intersecting either the paths of other electrons or other ions, as well as by the

probability that the electron path coincides with impurities, material boundaries, or defects.

We consider an individual closed path than an electron could travel, such as is shown

in Figure 2.13. Then, due to its wave nature, the electron has a well-defined phase [65, 66]

and can travel the forward (clockwise in Figure 2.13) and the reverse (counterclockwise in

Figure 2.13) path simultaneously; the wave travelling the forward path is correlated to the

wave traveling the reverse path. Both the forward and reverse waves have an amplitude,

PA. At the starting point, the correlated forward and reverse waves interfere constructively
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such that the probability of an electron returning to the initial location is (2PA)
2 = 4P 2

A. If

the electron travelling the forward path and the electron travelling the reverse path are not

correlated, then that probability after constructive interference is instead 2P 2
A. Because of

this difference between the correlated and uncorrelated electron probability amplitudes, we

can identify which interferences occur due to an electron self-interfering and due to separate

electrons interfering with each other [67].

Figure 2.13: A possible closed path of an electron within a rectangular 2D material begin-
ning at location labeled 1. The electron can travel either clockwise (1, 2, 3, ..., 11, 1) or
counterclockwise (1, 11, 10, ..., 2, 1) to complete the same path.

Of course, a given electron has many possible paths it can take and so the probability

that the electron returns to a location is given by:

(2.65)
Preturn =

∫ ∞

0

1

4πDt
(1− e−t/τel)e−t/τϕdt

=
1

4πD
ln [

τϕ
τel

+ 1],

where P0(t) = 1/4πDt is the return probability for a diffusivity D, (1 − e−t/τel) represents

the elastic scattering time τel contribution, and e−t/τϕ represents the phase-coherence con-

tribution.

At low temperature, the phase-coherence time (the average time before an electron loses

track of its phase) is much longer than the elastic scattering time (the average time for an

elastic scattering event to occur) and this interference effect produces a correction to the
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conductivity. However, the return probability will also be dependent on magnetic field. This

adjustment can be accomplished by solving the field-dependent diffusion equation to get:

P (B, t) =
eB

h sinh (t/2τB)
, (2.66)

τB =
h̄

4eBD
. (2.67)

At zero-field, the time-reversed path has the same phase as the original path, so the waves

constructively interfere. In finite magnetic field, the magnetic flux enclosed by the traveled

path rotates the phase but by the same amount on either the original or time-reversed path,

thus the waves begin to destructively interfere until the accumulated phase reaches 2π, where

complete destructive interference occurs. This interference leads to a correction to the return

probability and, by extension, a correction to the conductivity [68].

There are two types of elastic scattering in graphene: intervalley scattering which occurs

when scattering happens from one valley to the other and intravalley which is scattering

within a valley. This distinction is shown in Figure 2.14. The intravalley scattering time in

graphene is typically much shorter than the intervalley scattering time because it requires

much smaller momentum exchanges. Large momentum scattering events that contribute to

the intervalley scattering time are usually due to short-range impurities, grain boundaries,

or lattice defects.

Extending this to graphene, McCann et al. [69, 70] derived the conductivity correction

for graphene due to weak localization. They obtained:

∆ρ

ρ20
= − e2

πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Bi

)
− 2F

(
B

Bϕ +B∗

)]
, (2.68)

where F (z) = ln (z) + Ψ(1
2
+ 1

z
) with Ψ being the digamma function, and Bϕ, Bi, B∗ are

the magnetic fields corresponding to the dephasing time (τϕ), the intervalley scattering time
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Figure 2.14: Inter- (intra-) valley scattering occurs between the two valleys (within one
valley) as shown by an electron in blue scattering by the arrows.

(τi), and the intravalley relaxation time including trigonal warping and chirality-breaking

elastic scattering such as occurs at surface ripples, atomically sharp defects, and dislocations

(τ∗). Further, ∆ρ = ρ(B)− ρ0 where ρ0 is the zero-field resistivity ρ(B = 0). Finally, these

scattering rates are related by:

Bϕ,i,∗ =
h̄c

4De
τ−1
ϕ,i,∗. (2.69)

Typically, graphene is closely coupled to the substrate material which may create sharp

point-like scattering centers. This causes the intervalley scattering time to be shorter than

the dephasing time. In addition, because intravalley scattering occurs with much smaller

necessary momentum than intervalley events, the intravalley and trigonal warping time τ∗ is

much smaller than τi [71].
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In addition, there is also a formalism for weak localization which includes spin-orbit

coupling [72], shown in Eq. 2.70.

∆ρ

ρ20
=

e2

2πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Basy

)
− 2F

(
B

Bϕ +Basy +Bsym

)]
, (2.70)

where Basy is the magnetic field corresponding to the asymmetric (Rashba) spin-orbit time

and Bsym is the magnetic field corresponding to the symmetric (intrinsic) spin-orbit time.

In this formalism, we find that the effect of spin-orbit coupling on the weak localization of

graphene has two forms. A mirror symmetric spin-orbit coupling leads to a saturation in

the size of the weak localization correction at low temperature [72]. On the other hand, a

spin-orbit interaction that breaks mirror symmetry would lead to a correction of the weak

antilocalization form. These descriptions of the weak localization in graphene will be used

to examine reported weak localization measurements for information about the scattering in

the device and evidence for the presence of spin-orbit coupling induced to the graphene.
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Chapter 3

Electronic transport and scattering in

graphene with tungsten adatoms

3.1 Abstract

The electronic transport properties of monolayer graphene have been studied before and after

the deposition of a dilute coating of tungsten adatoms on the surface. For coverages up to

2.5% of a monolayer, we find tungsten adatoms simultaneously donate electrons to graphene

and reduce the carrier mobility, impacting the zero- and finite-field transport properties.

Two measurements indicate that the tungsten adatoms have settled to an effective height of

1 nm above the graphene surface. A proposed hypothesis for this effective height is given to

be polymer residue covering much of the graphene surface after fabrication. This could also

explain why the graphene does not seem to inherit spin-orbit coupling from the distributed

tungsten adatoms.
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3.2 Introduction

3.2.1 Motivation

The two-dimensional electronic system in single layer graphene is inherently unprotected

from external influences and thus can be readily altered by proximity to supporting substrates

and incidental adsorbates [7, 73]. A common and predictable outcome of such interactions

is a more disordered electronic system. However, there is much interest in the potential to

use surface adsorbates to advantageously alter the electronic properties of graphene. For

example, one application is gas sensors that can accurately report the presence of single

atoms or molecules [74–76]. Other groups are working toward the use of graphene for energy

storage [77–81].

Another example is the recent focus on boosting the weak native spin-orbit interaction in

graphene in an attempt to engineer topological band structure effects [50, 51] motivated by

the desire to realize the Kane-Mele Hamiltonian [47, 48]. This Hamiltonian consists of the

relativistic Dirac-like dispersion of graphene plus an intrinsic spin-orbit coupling term that

together give rise to a quantum spin Hall insulator. To date, numerous theoretical works

address the potential of several different atoms to play the role of spin-orbit donors leading

to graphene-based topologically insulating systems [50–52, 82–91]. Furthermore, there is

a wide range of proposals and evidence for altering the electronic properties of graphene

with adatoms or nanoparticles beyond spin-orbit physics, including but not limited to: the

possibility of novel magnetic systems [92, 93], interesting plasmonic systems [94, 95], and

even superconductivity [96–98].

3.3 Experiment

Toward inducing a spin-orbit coupling to pristine graphene, we deposit tungsten adatoms
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via in situ thermal evaporation of tungsten source wires. In this work we explore the effect

of tungsten adatoms on the electronic transport of monolayer graphene at cryogenic tem-

peratures with and without magentic field. Scattering times are found via measurements

of the zero-field conductivity, Shubnikov de Haas oscillations of the magnetoresistance are

measured, and weak localization in magnetoresistance is observed.

3.3.1 Dilution fridge methods

Electronic transport measurements were performed in a BlueFors LD-400 dilution fridge

equipped with an American Magnetics Inc. 13.5 T superconducting solenoid, using a custom-

built sample dipper, Figure 3.1(a)-(b), in which graphene samples are mounted on a ceramic

stage with wire bonds connecting the sample bond pads to much larger gold stage pads.

The back-gate is connected via a small custom metallic clamp holding the wafer at positions

where the thermal oxide has been removed. This entire stage faces down and each stage

pad is electrically connected via a fuzz button to the stage with phosphorus/bronze wiring

thermally bound to the 4 K platform before exiting at the 50 K platform. The wiring is split

to a breakout box outside the fridge where all measurements are conducted.

The ceramic stage faces downward, Figure 3.1(c), toward a small thermal evaporator,

as shown in Figure 3.1(d), built from electrically isolated posts connected to a second cop-

per/superconducting wire set and breakout box. This wiring channel also includes access to

a heater, RTD thermometer, and RuOx thermometer located in the gold plated copper in

surface contact with the back of the ceramic stage. Earlier versions of this dipper included

only gold coated copper posts, visible in the bottom of Figure 3.1(d). However, because the

vapor pressure of gold is so much lower than that of our source adatoms [99, 100], it became

necessary to update the design to include tantalum extensions to the posts. Tungsten wires,

20 µm diameter, 99.95% purity, and annealed until smooth are suspended from these posts

4-8 cm below the sample for use as evaporation sources. The extension of the tantalum posts
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reduced the distance between the evaporation source and the graphene device, which had

the desirable effect of increasing the amount of adatoms deposited from equivalent source

wires by a factor of 4. The evaporation rate is controlled by pushing a current through the

wire while simultaneously monitoring changes occurring in the electronic transport.

During evaporation, the sample temperature rises to approximately 40 K while the rest

of the cryostat remains close to 4 K. The density of deposited atoms is estimated from

changes to the graphene transport caused by charge doping and independently by measuring

the change in diameter of the wire sources. Graphene samples are produced starting with

mechanical exfoliation of Kish graphite onto Si wafers having a 300 nm thermal oxide,

followed by fabrication of electrical contacts by three methods: electron beam lithography

and thin film Cr/Au deposition, shadow-masking of Cr or Cr/Au contacts, and standard

electron beam lithography and thermal evaporation followed by AFM brooming to clean

the surface of residual polymer resist (PMMA). These processes are examined in detail in

Appendix A.

Transport data is acquired before and after evaporation using standard low-frequency

AC lock-in techniques. Applying a gate voltage, Vg, to the degenerately-doped Si substrate

allows control of the free carrier density in graphene. Here we present results from two single

layer graphene devices, before and after tungsten depositions. All measurements were taken

at 4 K unless otherwise noted.
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(a) dipper (b) labeled dipper

(c) ceramic stage (d) miniature thermal evaporator

Figure 3.1: (a)-(b) The photographed adatom dipper with (c) a ceramic stage and (d) local

thermal evaporator.
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3.3.2 Thermal evaporation of tungsten adatoms

We employ tungsten wires purchased from California Fine Wire Company as evaporation

sources; these are shown in Figure 3.2(a) as delivered and are about 20 µm in diameter.

However, due to the pulling process for making such tiny wires, the surface shows striations.

In order to adequately estimate the amount of tungsten deposited, we must be able to

measure the diameter of the wires. For this reason, the tungsten wires are annealed at 200

mA for 3 minutes while under vacuum, approximately 2 µTorr. This significantly smooths

the surface of the wire, Figure 3.2(b). Short sections of this wire are mounted between two

posts of a miniature thermal evaporator which is located in the cryostat, 8 cm directly below

the sample stage. Up to three wires can be mounted for a single experimental run.

A DC voltage applied to the wire drives a current that resistively heats it to achieve

evaporation. Typical currents are ≈ 150 mA. In this work two wires were employed, one for

the first two evaporations, and a second for the third evaporation. Due to the approximate

T 4 dependence of the power radiated by the extremely hot wire during evaporation [99, 101],

the wire temperature rapidly equilibrates along its length so we assume uniform evaporation

from a 1-cm-long suspended portion. The adatom density on the graphene can be estimated

by geometry. We measure the tungsten wire radius by inspection in a scanning electron

microscope before and after each experiment.

We estimate the adatom density by measuring the diameter of the tungsten wire source

in a scanning electron microscope both before and after the experiment. Geometry then

enables an estimate of the adatom density:

ndep = π
(
r2i − r2f

)
× L× ρW

mW

×NA × 1

4πd2
, (3.1)

where ri is the initial radius of the tungsten wire, rf is the final wire radius, L is the length

of the source wire, ρW is the density of tungsten, mW is the atomic weight of tungsten,
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NA is Avogadro’s number, and d is the vertical distance between the source wires and the

sample stage. This method gives the final total density deposited by all three evaporations

performed.

(a) tungsten wire (b) annealed tungsten wire
//

Figure 3.2: Scanning electron microscopy of tungsten wires (a) as purchased and (b) after a
smoothing anneal

For the experiment discussed here, the first wire we measure ri = 10.2 µm and rf =

9.7 µm from the SEM images like those shown in Figure 3.2, and double this result to

find the total density in the whole experiment, since the two wires used produced a nearly

identical shift in charge doping and the second wire was lost during demounting. Thus the

expected tungsten density after all three evaporations is found to be ndep = 5 ± 1 × 1013

cm−2. The error bars are dominated by uncertainty in the measurement of the active length

of the wire, particularly in how the wire radius changes near the evaporator posts which are

thermally coupled to the cryostat.

3.3.3 Graphene device fabrication

Graphene samples are produced starting with mechanical exfoliation of Kish graphite

onto Si wafers with 300 nm thermal oxide, followed by fabrication of electrical contacts by
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electron beam lithography and thermally evaporated Cr/Au deposition. These processes are

examined in detail in Appendix A. Transport data is acquired before and after evaporation

using the application of a gate voltage, Vg, to control the free carrier density in graphene

via:

n = α(Vg − Vg0), (3.2)

where the coefficient α = 7.0× 1010 cm−2V−1 is calibrated by oscillations in the magnetore-

sistance at high fields. Here we present results from a single layer graphene sample etched by

an O2 plasma into a 2-micron-wide Hall bar as shown in the inset to Figure 3.3(a); similar be-

havior has been observed in a second sample. In addition, other devices were measured with

both osmium adatoms and tungsten adatoms evaporated in different steps. This allowed for

identifying the behavior of osmium independently from tungsten.

The deposition of tungsten atoms on to the surface of graphene impacts the electronic

transport in several ways as will be presented. An independent measurement of the deposited

adatom density is desirable, however, unattained at this time. The final density of evaporated

tungsten that impacted the electronic behavior of graphene is found to be 5 × 1013 cm−2,

covering 2.5% of the unit cells in graphene (or just over 1 tungsten atom per 100 C atoms).

We estimate the uncertainty in this value to be ±20%.

3.4 Results

3.4.1 Transport at zero magnetic field

Figure 3.3(a) shows the measured conductivity as a function of gate voltage for one

device used in this study, starting with data obtained from the as-made device (red trace)

and continuing with traces recorded after three successive depositions of tungsten atoms,
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shown as the orange, green, and blue curves. Each trace exhibits a linear dependence on

carrier density away from the conductivity minimum. This implies a constant carrier mobility

µ =
1

e

dσ

dn
, (3.3)

which is observed to decrease after each evaporation. Moreover the charge neutrality point at

the conductivity minimum of each curve is seen to shift to the left indicating electron doping

of the graphene. Additionally, the slope of the conductivity versus density, dσ
dn

, decreases

suggesting a decrease to the mobility and an increase in carrier density inhomogeneity [17].

Broadly, these observations are consistent with prior works such as: the impact of potassium

adatoms on graphene [7, 23], results from Ti, Fe, and Pt adatoms on graphene [21], Au

adatoms [24], indium adatoms [16, 17], and iridium as well [22]. These altogether strongly

suggest that tungsten adatoms donate electrons to graphene, becoming ionized impurities

that enhance the scattering and reduce the mobility.

Away from the charge neutrality minimum in conductivity, the conductivity of graphene

can be written as [8, 102, 103]

σ−1(n) = σ−1
ci (n) + σ−1

sr , (3.4)

reflecting two sources of scattering: screened charged impurities and short-ranged scattering

such as might result from edges or vacancies.
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Figure 3.3: (a) The conductivity, σ, versus gate voltage, Vg, for the monolayer graphene Hall

bar sample shown inset. The as-made device has a σ minimum at Vg = 10 V, which shifts

left indicating electron doping after subsequent tungsten evaporations. Dashed lines show

linear fits used to extract carrier mobility. (b) The gate voltage shift, ∆Vg = Vg,min − Vg,0,

of the minimum conductivity in part (a) for each evaporation, plotted against the change in

the inverse mobility, where µ0 is the mobility of the as-made trace. The shift has a power law

dependence on the inverse mobility with slope of 1.4, consistent with point-like scattering

[7, 24, 103].

In the case of screened charged impurities, the conductivity is linear in the carrier density:

σci(n) = C|n|/nimp, (3.5)

where nimp is the impurity density and C has been theoretically calculated [103] to be

C ≈ 20 e2/h in the limit that the charged impurities lie in the graphene plane. Short-ranged

impurities, on the other hand, lead to a conductivity that is independent of density. In

many graphene-on-SiO2 devices including those used in this work, σsr >> σci, and thus the
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conductivity is simply observed to be linear in density.

The conductivity data allow us to extract the added charge density,

∆n = α∆Vg, (3.6)

donated by the adatoms, by measuring the shift of the conductivity minimum along the gate

voltage axis. The conductivity also allows us to extract the change in the impurity density:

∆nimp = (C/e)(1/µ− 1/µ0), (3.7)

where we subtract off the contribution of the initial impurity distribution in the as-made

sample. Naively, one might expect each adatom to donate one electron such that ∆n =

∆nimp. However, we instead find the induced charge density to be 2 − 3 times larger than

the nimp values extracted from the conductivity data of Figure 3.3(a). We note that to

determine nimp we use the aforementioned value C = 20 e2/h which is strictly true only for

z = 0, where z is the effective height of the impurities above the graphene plane. In fact

the self-consistent theory of Adam et al. predicts [103] that C has a super-linear density

dependence for z > 0, growing increasingly with z. Without a priori knowing the height

of the adatoms above the graphene, we can make an estimate by first assuming that the

increase in nimp is in fact equal to ∆n, and then applying this theory to calculate the value

of z. The fact that C increases with z explains why nimp is initially underestimated. The

results of our analysis are given in Table I where we list the observed change in density,

∆n, the nimp values calculated from the slope dσ/dn using C = 20 e2/h, and the calculated

heights, z. With increasing W coverage, z approaches 1 nm. Although this is greater than the

z = 0.16− 0.17 nm separation predicted for tungsten atoms above the center of a graphene

honeycomb by density functional theory (DFT) calculations [52, 104], it is not altogether

unreasonable. We further note that predictions for the charge transfer from tungsten to
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graphene range between 0.56 and 0.93 electrons/atom [105, 106]. Assuming the average of

these would increase the calculated height by roughly 30%.

State of sample ∆n (cm−2) nimp (cm−2) z (nm)
as made 0 2.9× 1011 0.08
1st evap 6.1× 1011 5.5× 1011 0.6
2nd evap 1.7× 1012 8.5× 1011 0.92
3rd evap 3.6× 1012 1.2× 1012 1.1

Table 3.1: Adatom-induced electron density ∆n determined from shift in minimum conduc-
tivity; the impurity density nimp = (C/e)(1/µ − 1/µ0); and the height of impurities above
the plane, z, calculated using the theory of Adam et al. as discussed in the text [103].

In Figure 3.3(b) we plot the shift in gate voltage, −∆Vg, versus the change in the inverse

mobility, 1/µ − 1/µ0. This quantity is both predicted and experimentally found to obey a

power law,

∆Vg ∝ (1/µ− 1/µ0)
b, (3.8)

where b is typically 1.2 − 1.3 for point-like charged impurities [103]. In contrast, b < 1 for

adatom clusters [7, 24]. For tungsten adatoms on graphene, we find b = 1.4. Thus altogether

the zero-field conductivity implies that tungsten adatoms are isolated, charged impurities

lying approximately 1 nm above the surface.

3.4.2 Comparison of transport and quantum scattering times

We now investigate the behavior of the transport and quantum scattering times, τµ and

τq, as tungsten atoms are deposited on graphene. Both parameters are a measure of electron

scattering, but where the single particle relaxation (or “quantum”) time τq is sensitive to all

scattering events, the transport time τµ only measures those that contribute to the resistance

of the material. In the transport time, forward scattering processes are ignored. In standard
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2D systems, backscattering, where

|kfinal − kinitial|= 2kF , (3.9)

is the most efficient at limiting τµ. But these events are suppressed in single layer graphene

[107] leaving right-angle scattering to have the strongest impact on the transport time. The

scattering rates are found by integrating over the total angular scattering potential Q(θ) as

1

τq
=

∫ π

0

Q(θ) (1 + cos θ) dθ, (3.10)

1

τµ
=

∫ π

0

Q(θ) (1− cos2 θ) dθ, (3.11)

where factors of 1+ cos θ in each formula account for the suppression of 2kF scattering, and

the additional factor of 1− cos θ in the transport scattering rate limits the effect of forward

scattering.

The ratio τµ/τq can be used to discriminate between the type and location of scattering

potentials. For instance, short-range (i.e. δ-function) impurities scatter equally into all

angles and thus τµ = 2τq where the factor of 2 is linked to the absence of backscattering. On

the other hand, Coulomb scattering leads to an increase in forward scattering events due to

its long-ranged nature [108, 109], such that τµ/τq > 2. Indeed, in high mobility GaAs 2D

systems, τµ/τq can exceed 100 due to the exceptional purity of the host crystal and the fact

that ionized impurities are removed many 10s of nm from the 2D layer.

In graphene on SiO2, this ratio is expected to be small due to strong scattering caused by

close coupling of the graphene sheet to the substrate, as was observed by Hong et al. [110]. In

particular, theoretical work predicts that τµ/τq < 2 for short-ranged scattering, τµ/τq > 2 for

(screened) Coulomb scattering when the impurities lie in the plane, and becomes increasingly

larger for charged impurities that are set back a distance z above the plane [109]. The reason
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is that the more distant a Coulomb scatterer is, the smaller the scattering angle will be which

preferentially limits the quantum scattering time. Moreover, the ratio depends on whether

impurities are either isolated or clumped together in clusters, in which case the charge doping

efficiency and hence the number of ionized scatterers is reduced [24]. Indeed, for clusters the

ratio τµ/τq is predicted to increase by roughly the number of impurities per cluster as the

total scattering cross-section outstrips the rate of backscattering [111].

To learn more about the impact of tungsten adatoms, we have studied the τµ/τq ratio

as it is impacted by tungsten evaporations. We extract the transport scattering time from

the conductivity data of Figure 3.3 and the τq values from an analysis of Shubnikov-de Haas

oscillations of the magnetoresistance at high magnetic fields. Both are performed over a

range of carrier densities for electron-doped graphene. This was done in both the as-made

device and after all following evaporations. The amplitude of Shubnikov-de Haas oscillations

is generally well-described by the first term of the Lifshitz-Kosevich equation [112],

δρxx
ρ0

= 4 Xth e
−π/ωcτq , (3.12)

with the thermal factor

Xth =
2π2kBT/h̄ωc

sinh(2π2kBT/h̄ωc)
(3.13)

and where ρ0 = ρ(B = 0), and the cyclotron frequency

ωc = eB/m∗ (3.14)

with the effective mass

m∗ = h̄
√
πn/vF . (3.15)

Figure 3.4(a) shows a representative SdH trace at a density n = 4.3× 1012 cm−2 after a
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second tungsten evaporation. The logarithm of the amplitude of the oscillations, divided by

ρ0 and the thermal damping factor Xth, yields a straight line when plotted versus 1/B as

shown in Figure 3.4(b), with a slope that is inversely proportional to the quantum scattering

time [110, 113]. For this analysis, the linear fit is constrained to a y-intercept of 4, and

the slope is proportional to the quantum scattering rate τ−1
q . The transport and quantum

scattering times we find are plotted in Figure 3.4(c) and (d), respectively. Both follow a

roughly
√
n dependence, shown by the dashed red curves.

In Figure 3.4(e) we plot the ratio of these scattering times as a function of carrier density,

for the as-made sample and following each evaporation. A clear downward trend is visible

with the ratio dropping from 6−7 down to 3−4 over the course of the depositions, and while

the ratio is more or less constant in the as-made sample, with each evaporation a slight but

clear increase in the slope emerges. The density range explored is limited by a combination

of the shift in the minimum conductivity due to electron doping, and the associated decrease

in mobility which smears out Shubnikov de Haas oscillations at lower densities. We compare

these data to predictions from the theory of Hwang & das Sarma [109] for the variation

of τµ/τq with the effective height z of charged impurities above the graphene sheet, for

z = 1 nm and z = 3 nm. Assuming that charged impurity scattering in the as-made sample

arises from oxide charges and dangling bonds in the underlying SiO2 surface, 3 nm is a

reasonable value given the few-nm RMS surface roughness of SiO2, and is close to the 2 nm

found previously for graphene-on-SiO2 devices [110, 114]. The decrease to a 1 nm separation

after the evaporations implies that ionized W adatoms lie closer to the surface and agrees

with the value found above from consideration of the zero-field conductivity. As previously

noted, however, the separation distance for tungsten adatoms predicted by DFT calculations

is rather smaller, z = 0.16−0.17 nm [52, 104]. A similar discrepancy in separation distances

was found for indium adatoms [17].

Finally we note that although the final impurity-graphene separation of 1 nm found from
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Figure 3.4: (a) Representative Shubnikov-de Haas trace after the second tungsten evapora-
tion at constant density. (b) Temperature-corrected oscillation amplitudes versus B−1 with
best fit line. (c),(d) Transport and quantum scattering times. (e) Ratio of transport to
quantum scattering time, τµ/τq, versus carrier density, n. Uncertainty in the data is given
by the symbol size. The dashed black lines are calculated using the theory of Hwang & das
Sarma [109].

the scattering time ratio agrees with the value found from the zero-field conductivity analysis

above, the initial separations prior to any tungsten deposition are in sharp disagreement.

This may speak to our ignorance of the impurity distribution in the as-made sample, in

which scattering sources other than charged impurities will play a larger role. For instance,

we have not isolated the contribution of long- and short-ranged scattering in our analysis

of the zero-field conductivity, as in all cases the charged impurity linear-in-n scattering

dominates.
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3.4.3 Results from a second sample

We have performed experiments similar to those in the main text on a second monolayer

graphene sample. Although here the W wires were initially coated with a thin (∼ 0.2 µm)

layer of osmium, aggressive evaporation resulted in immediate deposition of the underlying

W wire. We estimate the W density is 9 ± 2 × 1013 cm−2, approximately 4 − 6 times the

osmium coverage. Despite the presumed mix of adatoms, the results are qualitatively similar

to those in the main text: the conductivity curves are seen to shift leftward due to electron

doping, with a concomitant decrease in mobility (or slope dσ/dVg) (see Figure 3.5). The

change in charge doping shows a steeper dependence on the inverse mobility. Additionally,

the scattering time ratio τµ/τq is initially lower due to the different (and uncontrolled) initial

impurity distribution (see Figure 3.6). The ratio rises slightly at higher densities with the

first two evaporations, and finally falls again to a lower value in the range 2.5 − 3. The

rise in the ratio highlights how the two scattering times respond differently to the same

impurity potential. Scattering time calculations produce the best agreement to this final

curve assuming an adatom-graphene separation of 0.5 nm; smaller than the previous sample.

It is possible that the quantitative differences in the transport shown here are due to the

presence of osmium adatoms. Nonetheless, the behavior qualitatively mimics that occurring

for a dilute coating of W adatoms alone. Weak localization data are not available for this

sample.

3.4.4 Weak localization

Dephasing and intervalley scattering analysis

At magnetic fields below 50 mT, the first sample shows clear signs of weak localization

in the magnetoresistance. Figure 3.7 shows four traces, plotted as δρ/ρ20 where δρ = ρ(B)−

ρ(B = 0), for the as-made sample and following each evaporation at a carrier density of
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Figure 3.5: Left: conductivity, σ, vs gate voltage for sample 2, for the as-made sample and
after each of three evaporations. Right: shift in gate voltage as a function of the change in
inverse mobility.

n = 1.4× 1012 cm−2. All four traces show a narrow peak that is roughly e2/h in magnitude,

along with universal conductance fluctuations that are symmetric in the field. With each

evaporation both the localization peak and the conductance fluctuation features are seen to

broaden and become reduced in amplitude.

Analysis of the localization correction to the conductivity can yield useful information

on characteristic scattering times including the phase coherence time τϕ and various other

scattering mechanisms [67]. In graphene these may include intervalley scattering rates,

intravalley scattering processes including sublattice symmetry effects and trigonal warping

of the Dirac cones, and spin-orbit effects [69, 72]. We perform fits to our data using a

simplified version of the theory developed by McCann & Fal’ko et al. which ignores small

corrections to the weak localization due to intravalley scattering processes [70]:

∆ρ

ρ20
= − e2

πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Bi

)]
, (3.16)
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rises as the two scattering times vary with the addition of adatoms, and finally falls to a
value lower than the sample in the main text.

F (z) = ln(z) + ψ

(
1

2
+

1

z

)
(3.17)

Bϕ,i =
h̄

4De
τ−1
ϕ,i . (3.18)

Here D = v2F τµ/2 is the diffusivity and ψ is the digamma function. Use of this simplified

theory is justified by the fact that graphene on SiO2 devices have a high intravalley scattering

rate that results in a negligible contribution to localization effects [70, 71, 115]. Indeed in

comparing fits to our data made using either the simplified WL equation, Eq. 3.16, or

the full WL equation, Eq. 3.23, from [69]. We find virtually no difference in the fitting

curves. However, the inclusion of an additional fitting parameter for intravalley scattering

in the full theory leads to χ2 values that are poorly constrained and large uncertainties in

the scattering times. Thus we obtain our numerical estimates of τϕ and τi from fits using

Eq. 3.16, applied over a magnetic field range such that the elastic mean free path is much
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Figure 3.7: Low-field magnetoresistance for a carrier density n = 1.4 × 1012 cm−2, showing
characteristic weak localization peaks about B = 0. Traces are vertically offset for clarity.
The dashed black lines are fits using Eq. 3.16, with the field range restricted to the diffusive
regime (lµ/lB)

2 << 1; the fitting parameters are plotted in Figure 3.8.

less than the magnetic length [116]

l2el << l2B, (3.19)

where

lB =
√
h̄/eB. (3.20)

If we define the critical magnetic field as the field for which the elastic mean free path is less

than the magnetic length, then we fit the data only within that field range [116]. This field

is

Bc =
4π|n|h̄
eσ2

× 104. (3.21)

Figure 3.8 shows the results of our fitting procedure for values of the dephasing time τϕ

and the inter-valley scattering time τi. The differing density ranges used for the as-made
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Figure 3.8: Phase-breaking time, τϕ, and intervalley scattering time, τi, extracted from
curve fits to the low-field magnetoresistance using Eq. 3.16, as illustrated in Figure 3.7.
The theoretical phase breaking times calculated with Eq. 3.22 are shown as dashed lines
in the upper portion of the figure, using data from the as-made sample (dashed red) and
after the 3rd evaporation (dotted blue). Trends in the data reflect the increase (decrease) in
conductivity with carrier density (successive evaporations).

sample and each separate evaporation are a consequence of the electron doping which, for the

fixed gate voltage range employed, accesses an enlarged span of electron densities with each

successive deposition. Not shown in Figure 3.8 is the distribution of transport scattering

times, but even the largest τµ measured, occurring in the as-made sample at the highest

explored carrier density, is only 0.3 ps so that in all cases τi exceeds τµ by at least one or

two orders of magnitude. Roughly speaking, we find the dephasing times τϕ show a modest

increase with carrier density and a decrease with each tungsten deposition. Such behavior

is in accordance with the predictions of Altshuler, Aronov and Khmel’nitski [117]

τ−1
ϕ =

kBT

2h̄

ln(πh̄νD)

πh̄νD
=
kBT

2h̄

ln(kF l)

kF l
, (3.22)
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with D again the diffusivity and ν the density of states at the Fermi level. The expression

on the right accounts for the single layer graphene density of states ν = 2EF/(πh̄
2v2F ). This

formula is plotted in Figure 3.8 using the transport parameters for the as-made sample (red

dashed line) and after the final tungsten evaporation (blue dotted line). The data clearly

follow the general trend illustrated by these curves.

Meanwhile the inter-valley scattering times, although suffering from a fair degree of

scatter, do tend to show a decrease with each evaporation. This is surprising: if tungsten

adatoms act as charged impurities only intravalley scattering should increase, and an increase

in τi would be expected due to the accompanying reduction in diffusivity. Moreover the

intervalley times τi ≈ 1−5 ps correspond to a scattering lengths li =
√
Dτi = 200−300 nm,

which is rather smaller than the 2 µm width of the device, although device edges are where

the strongest intervalley scattering is expected. This may indicate that other sources for

large-angle scattering are present in the device.

Search for spin-orbit coupling in weak localization magnetoresistance

Tungsten atoms have a strong inherent spin-orbit coupling which is predicted [52] to be

inherited by graphene. Thus, we should study the low-field magnetoresistance with curve fits

to the theory that incorporates the physics of spin-orbit scattering [72]. We have attempted

this and find the fits from Eq. 3.23 to be generally inferior to those found using Eq. 3.16,

as described below. Additionally, it is clear that no obvious signatures of Rashba spin-orbit

coupling, i.e. weak anti-localization [72, 118], are observed. Altogether these findings suggest

that any scattering due to an inherited spin-orbit interaction, if present at all, is weaker than

intervalley scattering.

The data in Figure 3.9 show signatures of weak localization in the low-field magnetore-

sistance; Figure 3.9(a) and (b) reproduce the middle two traces of Figure 3.7, while Figure

3.9(c) and (d) show two additional traces at the highest adatom density. In all cases the
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black dashed lines show fits performed using the simplified weak localization equation which

yields characteristic times, τϕ and τ i, accounting for electron dephasing due to inelastic and

intervalley scattering, respectively. Allowing for uncertainty due to the presence of universal

conductance fluctuations, these fits closely match both the central peak, which is dominated

by the phase breaking time, and the magnetoresistance at higher fields. For comparison,

here we consider fits using an extension of the graphene WL theory that accounts for spin-

orbit coupling effects [72], shown as solid lines in Figure 3.9, since tungsten adatoms may be

expected to induce a spin-orbit coupling [52], and also both historically [118] and recently

[35] the low-field magnetoresistance has been used to identify spin-orbit contributions to

transport. This theory contains three fitting parameters that control electron dephasing,

the phase-breaking time and two contributions from spin-orbit coupling τsym for mirror-

symmetric couplings relative to the graphene plane (intrinsic) and τasy which breaks this

symmetry (Rashba):

∆ρ

ρ20
=

e2

2πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Basy

)
− 2F

(
B

Bϕ +Basy +Bsym

)]
, (3.23)

where as before,

F (z) = ln(z) + ψ

(
1

2
+

1

z

)
, (3.24)

and

Bj =
h̄

4De
τ−1
j , (3.25)

where the j index represents either ϕ, asy, or sym.

The asymmetric Rashba coupling can give rise to a weak anti-localization that has re-

cently been seen in graphene on transition metal dichalcogenide substrates [35]. In the

absence of spin-orbit couplings, Eq. 3.16 yields a weak localization magnetoresistance due to
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Figure 3.9: Comparison of fits to low-field magnetoresistance using either the standard weak
localization theory [69] (dashed lines) or the theory including spin-orbit coupling [72] (solid
lines). Top plots reproduce data and fits from Figure 3.7; bottom plots are additional traces
at different densities after the last evaporation. The green and yellow traces, which are
described earlier, are vertically offset as they otherwise perfectly obscure the black dashed
line.

an assumption in its derivation that the intervalley scattering rate, τ−1
i , exceeds the inelastic

scattering rate, τ−1
ϕ . A symmetric intrinsic SOC acts as an additional source of dephasing,

resulting in a broader weak localization peak, while an asymmetric SOC will yield a weak

anti-localization – a phenomenon not present in our data.

Despite this lack, we have attempted fits to our data using Eq. 3.23 and show typical

results as the solid lines in Figure 3.9. Indeed we find these fits to be generally inferior

to those that take account of variation in intervalley scattering. In particular, the SOC
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fits can closely describe the central WL peak since the low-field region is dominated by τϕ-

dependence. However, they fail to match the magnetoresistance at higher fields that are still

within the field range of validity for WL physics, a condition given by Eq. 3.21. Moreover,

the extracted scattering times from the SOC fit do not satisfy τϕ > τasy,sym that sets the

applicable range of Eq. 3.16, nor can the effect of τasy be distinguished from τsym; for instance

in Figure 3.9(c), the solid line results from τϕ = 9 ps and either τasy = 100 ps with τsym = 0,

or τasy = 0 with τsym = 30 ps. However the dashed line uniquely results from a fit performed

with Eq. 3.16, yielding τϕ = 5.4 ps and τi = 2.2 ps. In Figure 3.9(d), the SOC WL fit (made

using non-zero values of either τsym or τasy) almost perfectly overlies the fit accounting only

for intervalley scattering.

In sum, we find that our weak localization data are not well accounted for by a WL

theory that includes spin-orbit coupling effects.

3.5 Surface measurements

Measurements of the surface have been done in attempts to independently identify the

concentration of adatoms on the graphene surface. In addition, surface measurements may

clarify the distribution of adatoms and the presence of contaminants. Common methods used

for such studies are: Auger, EDX, WDX, and XPS. These all are variant in both applicability

and sensitivity.

3.5.1 Scanning Auger Electron Spectroscopy (SES)

One measurement we employed was Auger electron spectroscopy. Auger spectroscopy is

a method in which the composition of the surface of a material is characterized by focusing a

high energy monochromatic electron beam onto the surface and measuring the kinetic energy

of low-energy Auger electrons that are emitted. Depending on the sample and equipment
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used, this can result in sensitivities as high as 0.1 monolayers [119].

Results of our Auger measurements are shown in Figure 3.10. In part (a) of the figure,

a comparative analysis of exfoliated graphene (unprocessed) and graphene that has been

fabricated into a device (processed) is shown. Results indicate that the amounts of carbon,

oxygen, and silicon may be highly variable. However, the general trend observed is correct:

on the graphene location (all colored traces), the amount of carbon is higher than on a

SiO2 location (black trace) while the oxygen and silicon amounts are higher on the SiO2

than on the graphene. In addition, a multiplex scan has been completed to confirm the

presence of tungsten with the signal near gold energies used as a noise floor. This is shown

in Figure 3.10(b). It is obvious that for both measurements, a tungsten peak is prevalent.

While this peak is much smaller than the measured peaks for carbon, oxygen, and silicon,

it is nonetheless not noise as can be seen by the lack of legible peak at the energy for gold.

Indeed, this confirms that we do have tungsten, in extremely small amounts.
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(a) Peak intensity

(b) High resolution W and Au scans

Figure 3.10: (a) Comparative results of Auger spectroscopy of processed and unproccessed

graphene devices with (b) multiplex (high resolution) scanning for tungsten and gold sig-

natures. Large variations in the amount of carbon, oxygen, and silicon are shown in both

processed and unprocessed graphene.
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3.5.2 Wavelength Dispersive X-ray Spectroscopy (WDX)

Another measurement we used to investigate the surface of the graphene after the ex-

periment is Wavelength Dispersive X-ray Spectroscopy. In this method, an electron beam

is focused on the desired sample and the detector counts the number of x-rays at specified

wavelengths that are diffracted from the sample [120].

Our results for this analysis, shown in Figure 3.11, were only able to confirm the presence

of tungsten on the surface of the graphene. In the top graph, the number of counts are shown

for the wavelength corresponding to silicon, which are on the order of 250,000 counts. On the

bottom, however, for the wavelength of tungsten, there are only around 145 counts. Indeed,

the peak for tungsten is not much larger than the noise floor. This is not unexpected

considering the usual resolution of WDX measurements.

Figure 3.11: Number of counts made for silicon (top) and tungsten (bottom) showing a small
noisy tungsten peak is present.
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3.6 Discussion

In this work we present the results of electronic transport measurements on a sample

of monolayer graphene with an increasing, but always small, density of tungsten adatoms.

Measurements of the zero-field conductivity, the ratio of transport and quantum scattering

times, and weak localization in the magnetoresistance point toward a now-familiar picture [7,

16, 17, 21–24] for metal adatoms wherein isolated impurities donate charge to the graphene

substrate and become ionized impurities with a correlated increase in scattering and reduc-

tion of the mobility. However there is one standout feature in our experiment, namely as

mentioned above we estimate that over 10 times as many tungsten atoms were deposited as

can be accounted for by the magnitude of electron doping as measured by the shift in the

minimum conductivity versus Vg, under the assumption that each atom donates one electron.

Relaxing this assumption to within the range of theoretically-predicted values of 0.56− 0.93

electrons/atom [105, 106] does little to improve the match.

Regarding this discrepancy, two scenarios immediately suggest themselves: first, the

adatoms may form clusters, or second, fabrication residues may prevent many atoms from

reaching the surface. In the former case, we note the migration energy for W adatoms (the

difference between binding energies at three high-symmetric sites: atop a C atom, astride a

C-C bond, or in the middle of a hexagon) is calculated [105] by DFT to be Em = 1.2 eV.

The hopping rate for migrating adatoms is given by: [121]

ν =
kBT

h
e−eEm/kBT , (3.26)

where ν is the hopping rate, kB is the Boltzmann constant, T is temperature, h is Planck’s

constant, and e is the electron charge. For all practical purposes, this vanishes below 150 K

for tungsten atoms. For completeness, we note this strongly disagrees with a second DFT

study [106] that finds the diffusion energy to be a mere 20 meV with the stable site to be
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the C-C bond; clearly this would change our expectations.

In any event these considerations apply to atoms already on the surface, however adatoms

with a high kinetic energy freshly evaporated from the ≈ 2800 K hot wire may diffuse on the

graphene surface before losing their energy via thermal radiation or phonon emission, and

thus have the opportunity to form clusters. Clusters of metal atoms on graphene are known

to be far less efficient at charge doping [22, 24] and consequently have a limited impact

on the mobility. However, the total charge-scattering cross-section in transport remains

large for clusters and indeed a key prediction [111] of cluster-dominated transport is a ratio

τµ/τq >> 1, precisely the opposite of what we observe. Thus, we rule out clustering of

tungsten adatoms on graphene.

So, we consider a second possibility: that fabrication residues prevent most of the evap-

orated atoms from reaching the surface. The surface of graphene after standard fabrication

procedures employing PMMA as a resist for electron-beam lithography has been directly im-

aged by transmission electron microscopy [122, 123], and a thin (∼ nm) coating of PMMA

molecules is found to remain even after aggressive thermal annealing procedures, which were

in any case not performed on our tungsten adatom devices. That work, [122, 123], reveals

that a significant portion of the surface may be covered by this remnant PMMA, enough to

perhaps account for the discrepancy between the expected density of tungsten atoms based

on the change in the source wire diameter, and the maximum possible density assuming

each atom donates one electron. This PMMA layer also provides a natural means to prevent

clustering: if any hot tungsten atom does migrate upon landing, it will shortly encounter

this impurity layer and come to a halt.

Finally, we note an induced spin-orbit coupling in graphene has been found by measuring

so-called “non-local” voltages, by driving a current through one region of a graphene sample

and finding a voltage drop far away where no appreciable current flow is expected in an

ohmic material [26]. We have checked for such non-local voltages and find results consistent
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with zero nonlocal voltage present.

3.7 Conclusions

In conclusion, we have performed a transport study of graphene with a dilute coating of

tungsten adatoms. The adatoms induce an electron doping of the graphene and a reduction

of the mobility, enforcing a linear dependence of the conductivity on density consistent with

charged impurity scattering. Analysis of the changes in the conductivity suggest the tungsten

atoms reside approximately 1 nm above the surface. Similar to the case of indium adatoms

[17], this distance is unexpectedly large given that the atoms clearly are close enough to

donate charge, and it also disagrees with the results of DFT calculations. One possibility is

the height discussed in the self-consistent theory should be considered an “effective” distance

that is correlated with, if not identical to, the actual physical separation that DFT attempts

to calculate. We hypothesize that this may be in relation to the polymer residue likely

coating much of the graphene device. This clearly requires further experimental investigation,

preferably by a scanned probe method that is sensitive to the adatom height.

We have also performed a study of the ratio of the transport to quantum scattering time,

τµ/τq, finding the ratio to decrease from 6 − 7 down to 3 − 4 as the density of tungsten

adatoms increases. The adatom height inferred by comparison to theoretical calculations is

approximately 1 nm, in agreement with the estimate found from the zero-field conductivity.

Clear signatures of weak localization are seen at low magnetic fields. The dephasing

times extracted from fits are in agreement with values expected from theory. The intervalley

scattering times are shorter than expected, but the precise scattering potential of the as-made

device is not known and there may be defects or surface impurities that cause scattering with

large momentum transfers. All transport data point to a picture wherein tungsten deposition

at low coverages leads to isolated charged impurities. No evidence of spin-orbit coupling
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transferred from the tungsten adatoms to the graphene is found. Overall, because of the

residual polymer layer and discrepancies with DFT, it may be illuminating to repeat this

process with devices that have been cleaned. However, based on the strikingly similar results

from annealed devices with indium adatoms [17], the inheritance of a spin-orbit coupling may

be more successful with AFM brooming rather than annealing.
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Chapter 4

Effect of osmium adatoms on

electronic transport of monolayer

graphene devices

4.1 Abstract

Similar to the previous chapter, electronic transport of graphene is studied before and after

osmium adatoms are evaporated in situ. A multitude of devices were studied, including those

that were cleaned by basic solvent soak, shadow masked devices which require no cleaning

due to their inherent polymer-free fabrication, and AFM broomed devices. The coatings of

adatoms are randomly distributed and dilute. Interestingly, unlike all other metallic adatoms

studied here and by other groups, osmium adatoms shift the charge neutrality point to the

right in gate-voltage space. This indicates that osmium adatoms accept electrons from the

graphene, thus hole doping the graphene. Similarly to tungsten, the addition of osmium

to the surface of graphene causes a decrease in the mobility of the graphene, though to a

lower extent; an estimated density of 4.5×1012 cm−2 osmium coverage causes a 34% decrease
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in mobility versus an 85% decrease in the mobility for a 3.6×1012 cm−2 tungsten coverage.

Measurements such as weak localization, Shubnikov de Haas, and nonlocal voltage mea-

surements are examined for evidence of an inherited spin-orbit coupling or a transformation

toward the quantum spin Hall insulator state. The current methods in use for analyzing weak

localization with the intent to extract information about spin-orbit coupling, in particular

the intrinsic-type coupling motivating this experiment, are not adequate for measurements

where the inherent scattering potential also changes.

4.2 Introduction

4.2.1 Motivation

As in the previous chapter, we desire to boost the weak, native spin-orbit coupling of

the electronic system of single layer graphene in order to realize the Kane-Mele Hamiltonian

[48]. This extra term in the graphene Hamiltonian has been predicted to be useful for the

engineering of topological materials such as the quantum spin Hall insulator [50, 51].

4.2.2 Device overview

As perhaps the most promising adatom for the creation of a graphene-based topological

insulator [50, 51], many variations of this experiment have been performed. The first several

devices were preliminary in nature, fabricated by standard lithographic methods and cleaned

only by soaking in acetone. These are devices hereafter called “Preliminary”: bz042215a,

081015b1, 061416a1, and 062415c3. Other measurements were made on devices fabricated by

the shadow mask method; these are to be called “Shadow masks”: 022017b3, 020817a2, and

011717d2. And finally, we studied two AFM broomed devices, hereby listed as “Broomed”:

080317b2 and 092018a3. While the data presented below includes data and analyses of all
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listed devices, we will summarize the data in three sections: preliminary devices, shadow

masks, and broomed devices as suggested by the aforementioned naming scheme. More

detailed discussion of the AFM cleaning procedure is discussed in Appendix B.

4.3 Experimental details

4.3.1 Dilution fridge methods

Electronic transport measurements were performed in a dilution fridge equipped with

a superconducting 13.5 T magnet, using the same custom-built sample dipper shown in

Chapter 3 with a ceramic stage shown in Figure 4.1(a) and a local thermal evaporator,

Figure 4.1(b). Tungsten wires, 20 µm diameter, 99.95% purity, and annealed until smooth

are suspended from these posts 4-8 cm below the sample for use as evaporation sources.

Each tungsten wire is coated with a 1-3 µm layer of osmium and the evaporation rate is

controlled by pushing a current through the wire while simultaneously monitoring changes

occurring in the electronic transport.

During evaporation, the high wire temperature affects the surroundings such that the

sample stage temperature approaches 40 K. The density of deposited atoms is estimated

from changes to the graphene transport caused by charge doping and by measuring the

change in diameter of the wire sources as was discussed in Chapter 3. Graphene devices are

fabricated via mechanical exfoliation onto Si wafers with 300 nm thermal oxide, followed by

fabrication of electrical contacts by three methods: electron beam lithography and thin film

Cr/Au deposition, shadow-masking of Cr or Cr/Au contacts, and electron beam lithography

and thermal evaporation followed by AFM brooming to clean the surface of residual PMMA.

These processes are examined in detail in Appendix A and B.
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(a) stage (b) evaporator

Figure 4.1: (a) The ceramic adatom stage mounted in a custom grounding chamber and (b)

the thermal evaporator loaded with osmium coated tungsten wires.

Transport data is acquired before and after evaporation using low-frequency AC lock-in

techniques. Applying a gate voltage to the substrate allows control of the carrier density in

graphene, n = α(Vg − Vg0), where the coefficient α = 7.0× 1010 cm−2V−1. Here we present

results from several single layer graphene devices, some of which are etched by an O2 plasma

into Hall bars of various sizes.

4.3.2 Thermal evaporation of osmium adatoms

To evaporate osmium adatoms from the in situ thermal evaporator, we must obtain

osmium coatings. The tungsten wires as provided by California Fine Wire Company, Figure

4.2(a), are about 20 µm in diameter and show striations in the surface. In order to adequately

estimate the amount of osmium on a wire, we must, with reasonable accuracy, be able to

measure the diameter of the wires. For this reason, the tungsten wires are annealed at 200

mA for 3 minutes while under vacuum, approximately 2 µTorr. This significantly smooths

the surface of the wire, Figure 4.2(b). The wires are then mounted to a square Teflon ring
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and plasma coated with a layer of osmium, courtesy of Jeff Hall at Structure Probe, Inc. We

use scanning electron microscopy to measure the diameter of the wires before and after the

osmium plasma deposition. An example wire after the Os coating has been applied is shown

in Figure 4.2(c). During such measurements it became obvious, as seen in Figure 4.2(d),

that the osmium coating is not well adhered to the tungsten surface and may be flaking off

the wire in areas. If these wires are dropped or otherwise mishandled when loading them

into the evaporator, then it is possible that they will have lost some of their osmium coating.

This increases the potential error on our geometric calculation of the coverage percentage.

In addition, it is possible that during loading, the tweezers used to load the osmium wires

could also cause disrepair in the wires such as is shown in Figure 4.2(d) or worse.

(a) tungsten wire (b) annealed wire (c) osmium coated wire (d) flaking osmium

Figure 4.2: Scanning electron microscopy of tungsten wires (a) as purchased, (b) after a

smoothing anneal, and (c)-(d) with osmium coating

4.3.3 Devices measured

Preliminary devices

Preliminary graphene devices studied include graphene with Cr/Au contacts made via

electron beam lithography and thermal evaporation. Polymer is removed from the devices

by an acetone soak. According to [123] and our previous experience with tungsten adatoms,

we know that some PMMA has been left on the graphene surface. This residue likely limits
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the ability of the graphene to inherit spin-orbit coupling from the adatoms. In addition, it

is likely to decrease the initial mobility, increase the amount of scattering due to impurities

on the surface, and decrease the ability of the adatoms to diffuse or cluster on the graphene

surface. The devices measured are shown in Figure 4.3; a graphene on hexagonal boron

nitride (hBN) device, which was fabricated by Boyi Zhou, and three graphene on SiO2 which

were fabricated by the author. In the case of the graphene on boron nitride device, the

three contacts nearest the top-left of the photo are disconnected from the rest of the device

by a crack in the graphene. Another crack became apparent during measurement that also

separated the five contacts nearest the bottom-right from the other two in the larger graphene

piece. This became obvious by the inability of the left contacts (of the seven contact set on

the larger graphene piece) to carry a current to the contacts to their right. Post-experiment

SEM images confirm both splits in the graphene and are shown in Figure 4.4.

(a) bz042215a (b) 081015b1

(c) 061416a1 (d) 062415c3

Figure 4.3: Optical microscope images of preliminary graphene devices, magnification x100
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(a) contact configuration and graphene cracks (b) surface morphology

Figure 4.4: Scanning electron microscope images of bz042215a after osmium deposition and

post evaporation measurements

An important quality to note of this preliminary batch is that the devices are varied in

size, shape, and substrate. One of the devices was etched to a Hall bar shape, others were

not. The first has a hBN substrate, while the others were fabricated on SiO2. The results

obtained for such devices are different than for similar devices with tungsten adatoms but

generally consistent with all other osmium-decorated graphene devices. In addition, some of

these devices were used for tuning of the evaporation current and include both osmium and

tungsten adatoms. All reported data with both adatoms will be labeled as such to avoid

confusion.

Shadow-masked devices

After our preliminary work with osmium and tungsten adatoms, it became clear that we

were not inducing any significant spin-orbit coupling to the graphene. In addition, tungsten

adatoms were not settling as close to the surface as predicted by density functional theory

[104]. Indeed, it has been discovered that simple solvent soaks like acetone used for metal
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contact liftoff procedures leaves significant (a nm) PMMA residue behind on the graphene.

This polymer layer may be removed by annealing procedures but the level of aggression

required also damages the graphene [123]. Instead, we chose to fabricate graphene devices

without PMMA or other polymers coming into contact. This required quite a few engineering

adaptations to our device fabrication process; these are also described in Appendix A.

The shadow masks discussed in this chapter are shown in Figure 4.5; due to the level

of difficulty in the fabrication of these devices, we only have data from 2-contact shadow

masks. For two of these devices, a thicker chromium layer was used for the shadow-masked

contacts. It is obvious in the optical images that there is some tension in the thin metallic film

evaporated as contacts to the graphene. While the metal seems to be peeling wherever it is in

contact with the graphene, the contact resistances were low enough to make measurements.

(a) 022017b3 (b) 020817a2 (c) 011717d2

Figure 4.5: Shadow masked devices measured with osmium adatoms

AFM nano-broomed devices

Finally, we report the results of graphene fabricated by standard lithographic methods

and cleaned via AFM brooming. For detailed discussions of this method and it’s efficiency

in cleaning graphene surfaces, please see Appendices A and B, respectively.
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Two independent graphene on SiO2 devices were measured for this section: a 5µm x

15µm un-etched flake with a small graphite piece far from the measurement region, Figure

4.6(a), and two devices fabricated side-by-side out of the same graphene flake, one being a

large-scale hall bar for good weak localization averaging, Figure 4.6(b), and the other being

a small hall bar, Figure 4.6(c), designed with a narrow, about 250 nm, central region and

small distance between the contacts, 500 nm - 1 µm. The latter two devices are labeled SHB

(small hall bar) and LHB (large hall bar) respectively. Unfortunately, the LHB only had

three good contacts available after brooming so the measurements taken for that device are

limited.
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(a) 080317b2 (b) 092018a3 LHB

(c) 092018a3 SHB

Figure 4.6: AFM phase images of devices 080317b2, 092018a3 LHB, and 092018a3 SHB after

brooming.

4.4 Results

4.4.1 Zero-field electronic transport

Preliminary devices

The basic electronic transport of graphene with osmium adatoms is entirely different

from graphene with tungsten. This shown by the change in the direction of the Dirac peak
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movement. For the as-made (pre-evaporation) devices, the Dirac peak is around gate voltage

0 V. As osmium is added, the Dirac peak shifts to the right (rather than left for tungsten

and other metals). This first result is remarkable; all other metallic adatoms that have been

measured on graphene electron dope the graphene [7, 16–25]! This includes: Au, Ca, Fe, In,

Ir, K, Li, Mg, Pt, and Ti. This result is consistent across all preliminary devices as well as

across shadow-masked and AFM broomed devices.

(a) Resistivity (b) Conductivity

Figure 4.7: (a) The resistivity versus gate voltage of graphene without adatoms in red, after

each of two sequential osmium adatoms in orange and yellow, after a tungsten evaporation

in teal, and after an osmium evaporation in blue. (b) The conductivity versus gate voltage

of the same device and experimental steps.

In Figure 4.7, the resistivity and conductivity of device bz042215a is reported. The first

two evaporations were of osmium. During the third osmium evaporation, the osmium source

wire broke, depositing tungsten and rapidly dropping the current through the wire to 0 mA

which allowed the graphene to cool to 4 K. We measured the “post-evap 3” (teal) data after

this and saw a large shift of the Dirac peak to the left and a very obvious decrease in the

mobility shown by the change in the width of the Dirac peak. There are several possible

80



reasons that could explain the source wire breaking during evaporation. Perhaps there was a

point along the wire that had been pinched or bent during loading of the wires to the thermal

evaporator. A constriction such as this may cause a hot spot (place where the temperature

is significantly hotter than elsewhere) on the wire. Furthermore, some impurity or defect in

the purchased and coated wire could also cause a hot spot. This hot spot would evaporate

material faster and decrease the diameter of the wire nearby more quickly than elsewhere

along the wire, which could result in a mechanically weaker location on the wire that is likely

to break. After evaporation 3, a new source wire was chosen for evaporation 4. This wire

did not break and only osmium was evaporated.

In addition to the remarkable hole doping, the presence of osmium adatoms decreases

the mobility of the graphene. However, the effect is less severe than for tungsten adatoms.

This can be seen by the width of the Dirac peak on the resistivity versus gate voltage plot in

Figure 4.7(a). After the first and second evaporations, which we know are osmium adatoms

because of the hole doping, the width of the Dirac peak changes negligibly. When the wire

breaks and tungsten adatoms are deposited, however, the width of the Dirac peak is increased

by a factor of 3 or 4. This corresponds to a percent decrease in the mobility of about 59%

(from about 15000 cm2/Vs to about 6200 cm2/Vs). While this difference may be partially

due to the amount of adatoms deposited from the broken tungsten in comparison to the

thin osmium layer, it seems unlikely that this is the only reason why tungsten decreased the

mobility so drastically in comparison to osmium on this device.

Shadow masks

Shadow mask devices are inherently different from the standard graphene devices fabri-

cated by electron beam lithography. Indeed, our transport for these devices, shown in Figure

4.8, displays a surprisingly low mobility and a Dirac peak farther to the right of gate voltage

0 V. Of course, because these are all 2-wire measurements, there is some contact resistance

81



that is included in these measurements.

Nonetheless, in the transport of these devices we continue to observe that the osmium hole

dopes the graphene, as evidenced by both the resistivity peak and the conductivity minima

shifting to the right, as in Figure 4.8(a) and (b). In addition, the osmium affects the mobility

of the device. In the transport of device 022017b3, shown in Figure 4.8, the resistivity is

found by approximating the contact resistance to be 1700 Ω and using the geometry of the

device to approximate the number of squares between measurement contacts (1.58 squares).

The pre-evaporation mobility is found to be 1900 cm2/Vs for device 022017b3. This initial

value is surprisingly low considering the polymer-free fabrication process used! After a single

osmium evaporation, the mobility decreases to about 400 cm2/Vs. Surprisingly, the mobility

actually increases to about 1000 cm2/Vs after the second osmium evaporation. Similar

behavior was seen in the other two devices, except that the second evaporation seemingly

did not affect transport at all in the other devices, perhaps due to the osmium source layer

having been fully evaporated previously.

(a) resistivity (b) conductivity

Figure 4.8: Transport of shadow masked device 022017b3 before approximating contact

resistance.
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AFM nano-broomed devices

For broomed devices, the transport behavior is similar to preliminary and shadow-masked

devices. As seen in Figure 4.9, osmium is shown to hole dope the graphene, moving the Dirac

peak to the right in gate voltage, Figure 4.9(a), and shifting the conductivity minimum to

the right, Figure 4.9(b). Furthermore, the mobility initially decreases when osmium is added

but remains nearly constant with sequential evaporations. In addition to evaporations, for

these devices, the sample stage was heated in situ to room temperature. It is expected that

when heating the stage, the ability of the osmium adatoms to diffuse around the surface is

increased. This could mean either they are removed from the surface or that they collide

and form clusters on the surface or that they fall into local energy minima that were not

accessible during the initial deposition because the low temperature of the graphene inhibited

adatom diffusion across the surface.

(a) resistivity (b) conductivity

Figure 4.9: Transport of broomed device 092018a3 for the as-made device, after each of three

evaporations, and after a final anneal

Similar to Chapter 3, we also studied the relationship between the change in the mobility

and the change in the gate voltage location of the Dirac peak. For the broomed devices, this
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data is so far inconclusive. For example, in Figure 4.10(a), we plot the evaporation steps

in red and the anneal steps in blue. The purple lines connect steps in chronological order.

For this graph, all mobilities were calculated using: µ = 1
neρ

at constant carrier density

n = −5.45x1012 cm−2. The slope of the fitted line is equivalent to the exponent b in the

equation ∆Vg = c1(
1
µ
− 1

µ0
)b. Thus, for device 092018a3, this exponent is highly dependent

on the method used to obtain the mobility. In addition, device 080317b2 had fewer data

points and a significantly smaller exponent.

These calculated exponents are listed in Table 1 for the corresponding device and method

used for calculating the mobility. From this, and then Figure 4.11, it is obvious that the

only conclusion we can make is that maybe the value for this exponent could be near 1 for

osmium-decorated, broomed graphene. Overall, it is difficult to draw strong conclusions

from this data.

(a) 080317b2 (b) 092018a3 SHB

Figure 4.10: The power law for mobility and gate voltage changes of graphene decorated by

osmium adatoms is not sufficient to describe osmium interactions with graphene.
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Device Method for Calculating µ b

092018a3 SHB slope of σ 0.308 ± 0.344

080317b2 average µ 1.16 ± 0.29

080317b2 µ at lowest n 0.80 ± 0.32

080317b2 µ at n = −5.45x1012cm−2 2.40 ± 1.3

080317b2 average µ consistent n range 1.81 ± 0.66

Table 4.1: Exponent b given by various methods and in multiple devices are not consistent.

Figure 4.11: Range of exponents, b, for broomed graphene with osmium

For the first broomed device, the osmium adatom density calculated by assuming one

hole donated by each adatom is 1 × 1013 cm−2. For the second device set, the adatom

density calculated in this way is 4.5× 1012 cm−2. This is quite surprising since the osmium

coated wires for the second broomed data set began with approximately a coating thrice

as thick as previous source wires. However, when analyzing the osmium wire surfaces after

evaporation, it become clear that the new, thicker layer of osmium evaporated much less

uniformly than in previous source batches. Indeed, in most images, the wires appeared as

if the osmium layer was loosely attached to and flaking off the tungsten wire. These wire

images are shown in Figure 4.2(c)-(d) and Figure 4.12. For this reason, adatom densities

calculated by a geometric estimation of the change in the osmium source wire radius are not
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adequate for the second broomed device set.

(a) (b)

Figure 4.12: Osmium wires used for the second set of broomed devices showed extensive

flaking. It seems the osmium was grown onto the tungsten surface in layers and during the

evaporation, these layers were not uniformly hot due to bad thermal contact.

4.4.2 High-field quantum Hall effect

Preliminary devices

We have also measured the quantum Hall effect in preliminary graphene devices before

and after evaporations of osmium adatoms. This is accomplished by ranging the magnetic

field slowly while the gate voltage is more quickly ranged. While the magnetic field and gate

voltage are changing, the longitudinal and transverse voltages of the graphene are measured.

Typical graphene behavior shows the Dirac peak at zero-field and oscillations in the resistance

as the field increases at constant gate voltage. This behavior results in a fan-like diagram,

often called Landau fan diagrams. For preliminary devices, the as-made graphene quantum

Hall diagram, shown in Figure 4.13(a), is broadened after osmium is added and shifts to the

right, reflecting the hole-doping, shown in Figure 4.13(b)-(c).
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If we take constant gate voltage line cuts of this data, we can extract Shubnikov de

Haas oscillations as well. The amplitude of Shubnikov-de Haas oscillations is generally well-

described by the first term of the Lifshitz-Kosevich equation [112],

δρxx
ρ0

= 4 Xth e
−π/ωcτq , (4.1)

with the thermal factor

Xth =
2π2kBT/h̄ωc

sinh(2π2kBT/h̄ωc)
(4.2)

and where ρ0 = ρ(B = 0), and the cyclotron frequency, ωc = eB/m∗, with the effective mass,

m∗ = h̄
√
πn/vF .
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(a) as made

(b) post evap 4 (c) post evap 5

Figure 4.13: Quantum Hall effect measurement of device 061416a1: (a) as-made, (b) post

evaporation 4, (c) post evaporation 5

We use the Shubnikov de Haas oscillations to calculate the quantum scattering time, τq.

Because τq is sensitive to all scattering events and τµ is only sensitive to scattering events

that increase the resistance, the ratio τµ/τq can be used to discriminate between the types

and locations of dominant scattering potentials. In particular, the ratio is expected to be
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less than 2 for short-range scattering, greater than 2 for Coulomb scattering in the graphene

plane, and greater still when Coulomb scatterers are above the plane. Furthermore, a very

large ratio might indicate clustering of the adatoms.

In our Shubnikov de Haas oscillations, the best available data was acquired after the first

and third evaporations, for two carrier densities of device 062415c3. At other densities and

evaporation steps, the quantization and oscillations are washed out. The scattering time

ratios τµ/τq are shown in Figure 4.14.

(a) τ ratio

Figure 4.14: The ratio τµ/τq versus carrier density for the first and third evaporations of

preliminary device 062415c3

Albeit from a small data set, the ratio increases as osmium is added. In comparison

to tungsten adatoms on graphene devices, we saw the opposite trend. It is possible that

because very few data points were taken, that this trend will not be reproducible in more

thorough investigations.

Furthermore, if osmium adatoms were inducing spin-orbit coupling to graphene of the

asymmetric (Rashba) type, then we may expect a beating pattern in the Shubnikov de Haas

oscillations [34, 35]. For this device, no resonance beating pattern was seen in the Shubnikov
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de Haas oscillations. This provides initial evidence that we do not see any Rashba spin-orbit

coupling present in the measured preliminary devices.

Shadow-masked devices

For one shadow-masked device, 020817a2, we obtained a quantum Hall color map. From

this image, shown in Figure 4.15, it is obvious that the low mobility and high disorder in

the device causes a smearing out of the typical high mobility Landau fan of graphene.

(a) as made (b) post evap 1

Figure 4.15: Quantum Hall color maps of an as-made and post-evaporation shadow mask.

The mobility is low enough to destroy the high field quantization of graphene.

High field Shubnikov de Haas measurements for these devices were neither clear nor useful

and thus are not reported.

AFM nano-broomed devices

Broomed devices were also measured under high magnetic field. Example quantum Hall

color maps are shown in Figure 4.16 for before and after osmium evaporations of device

080317b2. While the Landau fan does move to the right due to the hole doping and become
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washed out towards larger gate voltages, the fan is still visible for all steps. The other

broomed devices behaved similarly. This suggests that as osmium is added, the scattering

in the device is increased and fewer electrons are capable of completing cyclotron orbitals

before scattering, inhibiting quantization.

Figure 4.16: Quantum Hall effect of broomed devices

Only broomed device 080317b2 was of high enough mobility and low enough noise to

reasonably measure Shubnikov de Haas oscillations. The amplitude of the oscillations was

studied in relation to the magnetic field and carrier density at which the oscillations occurred.

This allows us to extract the quantum scattering time. The quantum scattering time and

the ratio of the quantum scattering time to the mobility scattering time are shown in Figure

4.17. These tell us something of the scattering potential present in the graphene at the given

steps [109]. Unfortunately, the data shown in Figure 4.17 suggests that this simple model of
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either Coulomb impurity scattering or short-range scattering is not adequate for graphene

with osmium adatoms. Our broomed device in the as-made state was of the correct order

and approximate shape for Coulomb impurity scattering with an effective height 1 nm above

the graphene plane, the yellow dotted line in Figure 4.17(b), while the particular details

were incorrect. However, after adding osmium to the graphene, the general trend nor the

particular values adhere to this model. Indeed variations with larger effective distances are

similar in shape with a more dramatic increase with carrier density.

(a) τq (b) τµ/τq

Figure 4.17: Quantum scattering time and the ratio of the mobility scattering times to the

quantum scattering time

4.4.3 Low-field weak localization

Preliminary devices

As discussed in Chapter 2, weak localization, the quantum correction to the resistance due

to interference of self-intersecting electron paths, is another measurement that could indicate

whether or not graphene has inherited some spin-orbit coupling by proximity to a spin-orbit
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material. If the weak localization shows a transition toward weak antilocalization, then a

Rashba-type (asymmetric) spin-orbit coupling has been induced by the adatoms. Otherwise,

an intrinsic (symmetric) spin-orbit coupling results in a weak localization with saturation in

the size of the conductivity correction as the temperature approaches zero [72]. We measure

the low field magnetoresistance and look for changes in the peak amplitude and breadth

at constant carrier density, that is, constant gate voltage. These gate voltages are chosen

such that dV = Vg−Vg,0 is consistent between as-made and post-evaporation measurements,

where Vg,0 is the gate voltage of the Dirac peak. Many of these measurements exhibit large

universal conductance fluctuations (UCFs) which are the fluctuations in resistance occurring

over longer ranges of magnetic field.

Universal conductance fluctuations to the conductivity are specific to a given device.

They occur as a function of magnetic field and chemical potential [124] as well as impurity

configuration. Rather than arising from interference of pairs of time-reversed electron paths,

UCFs arise from interference between all possible electron paths in the device. Further, UCFs

are characterized by two length scales. The first is the dephasing length, Lϕ =
√
Dτϕ, where

D is the diffusion constant and τϕ is the electron dephasing time. In 2D metallic samples,

however, the thermal length, LT =
√
h̄D/kBT , the distance in which electrons differing in

energy kBT become out of phase with each other, is the dominant UCF mechanism [125].

In Figure 4.18, a few example traces of weak localization in preliminary device 062415c3

are shown. In Figure 4.18(a), the peak near B = 0 T is small and noisy, with universal

conductance fluctuations large enough that it is difficult to draw any coherent conclusions

about the peak width or amplitude. Other examples of UCFs that do not dominate the weak

localization are shown in Figure 4.18(b)-(c). In Figure 4.18(b), there is a sizeable fluctuation

exhibited as a broad dip between 0.05 T and 0.1 T and in Figure 4.18(c), there is a similar

dip around 0.025 T.

For this device, the pre-evaporation weak localization was largely dominated by noise
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and UCFs, likely due to the initial impurity configuration and potential. This has been seen

in several other devices. However, in Figure 4.18(b)-(c), it seems that the weak localization

peak shown in red, which corresponds to the device after a single osmium deposition, has

a larger amplitude but smaller width than the post-third evaporation peak shown in blue.

This behavior is consistent across all measured carrier densities in this device, with exception

to those where universal conductance fluctuations dominate. This indicates that after some

osmium has been added to the graphene, the scattering potential is affected enough such that

the signal-to-noise ratio improves and the universal conductance fluctuations are no longer

dominant over the weak localization. As more osmium is added, the electron dephasing time

decreases. This is altogether similar to results shown for tungsten adatoms on graphene in

Chapter 3 and is in accordance with predictions of Altshuler et. al. [117] where a decrease

in the diffusivity affects the electron dephasing time by:

τ−1
ϕ =

kBT

2h̄

ln(πh̄νD)

πh̄νD
=
kBT

2h̄

ln(kF l)

kF l
, (4.3)

with D again the diffusivity and ν the density of states at the Fermi level. The expression

on the right accounts for the single layer graphene density of states ν = 2EF/(πh̄
2v2F ).
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(a) dV = -40 V (b) dV = -5 V

(c) dV = +10 V

Figure 4.18: Weak localization of preliminary device with osmium adatoms

We also measured weak localization in preliminary device 061416a1, however, both tung-

sten and osmium were deposited on this device. For this device, evaporations 1, 4, and 5

correspond to osmium adatom evaporations. For all carrier densities measured where the

universal conductance fluctuations and noise are small in comparison to the weak localiza-

tion, the post-evaporation state has a larger amplitude and a larger width. This is somewhat

intriguing since tungsten adatoms (which were similarly fabricated preliminary devices) de-

creased the amplitude and increased the width. Thus, one would naively expect that if

tungsten adatoms decrease the amplitude and osmium adatoms independently decrease the
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amplitude, then it is likely that mixed evaporations of osmium and tungsten ought also to

decrease the amplitude. However, these weak localization measurements were made with-

out any averaging on small devices so it is possible that we are seeing effects of the device

size and inherent scattering potential. In addition, the residual polymer layer left on the

graphene is unlikely to be uniform or consistent between devices meaning the adatoms may

settle neither a consistent height above the graphene plane nor randomly distributed on the

surface.

For device 061416a1, we apply the McCann fittings [72] after each osmium evaporation

step. We obtained the scattering times shown in Figure 4.19 with (a) being the dephasing

time τϕ and (b) the intervalley scattering time τi. Due to the mixed evaporations, we may

not be able to draw clear conclusions about what these fits imply for osmium adatoms alone.

However, we do notice a slight increase in the dephasing time with carrier density, consistent

with tungsten adatom results shown in Chapter 3. In addition, the dephasing time decreases

between the first and fourth evaporations. Whether this is a result of tungsten adatoms

from evaporations two and three or a result of osmium adatoms, we cannot say. However,

it is interesting to note that there is only negligible change in scattering times between the

fourth evaporation and fifth evaporation. This saturation to the weak localization correction

likely implies a saturation in changes to the scattering potential.
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(a) τϕ (b) τi

Figure 4.19: Dephasing and intervalley scattering times of osmium evaporations only

Shadow-masked devices

Weak localization was measured for all three shadow-masked devices. However, only

device 022017b3 displayed a weak localization peak that was significantly larger than the

noise in the clean and decorated devices. Because this is a 2-wire device, we keep in mind

that the calculated resistance includes a contact resistance of unknown value. In Figure 4.20,

we show the weak localization at three carrier densities before and after the evaporations.

(a) dV = -15 V (b) dV = -45 V (c) dV = -60 V

Figure 4.20: Weak localization before (e0) and after evaporations (e1 and e2) for three carrier

densities: (a) dV = -15 V, (b) dV = -45 V, and (c) dV = -60 V.

Unfortunately, the weak localization for shadow-masked devices is not well fit with the
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McCann equation [70] given in Eq. 3.16. This may be due to the 2-contact configuration

used, which results in the measured resistance including the contact resistance between the

metal film contacts and the graphene. This causes a scaling adjustment which is not ac-

counted for in ∆ρ/ρ20. This scaling results in fitting parameters that are not well constrained

to physically reasonable results.

However, we qualitatively find: close to the Dirac peak, there is little if any change in the

width of the weak localization peak. This is shown in Figure 4.20(a) where the width of the

as-made, here labeled e0, and the post evaporation, e1 and e2, states are nearly identical.

In addition, the amplitude of the peak is similar for the as-made and first evaporation and

decreased after the second osmium evaporation. It is possible, however, that this amplitude

of any or all of these peaks is affected by the universal conductance fluctuations. For the

carrier densities far from the Dirac peak, dV = -45 V and dV = -60 V, shown in Figure

4.20(b)-(c), the width of the peak increases slightly after the first evaporation and remains

nearly the same after the second evaporation. The amplitude of the peak seems to follow

a similar trend where the amplitude decreases after the first evaporation and reverts to it’s

initial height after the second evaporation.

Overall, the width of the weak localization peak is also tied to the amplitude of the peak,

and that amplitude is affected by the false scaling given by 2-contact measurements. This

suggests it is possible that these small changes in the amplitude and width, which correspond

to changes in the intervalley scattering time and the phase decoherence time, are entirely

due to slight changes in the contact resistance, which lead to large changes in the scale of

∆ρ/ρ20.

AFM nano-broomed devices

We also measured weak localization in broomed devices at several carrier densities. In

device 080317b2, the behavior of the weak localization is difficult to assign trends to. At five
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of seven carrier densities measured, the weak localization peak gets broader after the first

evaporation. For the remaining two carrier densities, the width is approximately the same

before and after the first evaporation. After each evaporation, the device was annealed in situ

to allow the osmium the opportunity to diffuse into its equilibrium position. After the first

anneal, the peak width seems to remain the same or decrease, depending on carrier density.

For all steps after the first anneal, the weak localization peak width remains constant. This

indicates that the dephasing field increases with the first evaporation, usually decreases with

the first anneal, and remains constant after all other evaporations and anneals. This implies

the dephasing field is unaffected by the amount of osmium added to the surface after the

initial evaporation and anneal. This behavior is shown in an example weak localization

plot at a single carrier density in Figure 4.21(a). Altogether, this suggests that the first

evaporation increases the scattering in the device, which decreases the average time between

electron dephasing events. Then, during the first anneal, the adatoms move into equilibrium

positions on the graphene surface. These positions reduce some of the added scattering and

increase the average dephasing time. All other adatoms deposited after these steps have

minimal effect on the scattering potential, as seen by the much smaller changes in mobility,

and thus have minimal effects on the dephasing time.
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(a) 080317b2 (b) 092018a3 LHB

Figure 4.21: Example weak localization data from the broomed devices, both at dV =-60 V

Fits to the weak localization have been carried out for device 080317b2; the results are

shown in 4.22. The dephasing times extracted from the simplified McCann equation [72]

do not directly follow the theoretical phase breaking times calculated with Eq. 3.22 and are

shown as dotted lines, using data from the as-made sample (dashed red) and after the 3rd

evaporation and anneal (dashed purple). However, the data from the first anneal through

the third anneal do follow the general trend, i.e. increasing τϕ with increasing carrier density,

and the values fall mostly between the theoretical values for the device in the as-made state

and the device in the post third anneal (final) state.
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Figure 4.22: Dephasing times extracted from the weak localization

In the second set of devices (092018a3) both the large Hall bar and the small Hall bar

were measured. However, the signal-to-noise ratio in the small Hall bar weak localization

measurements was abysmal, even after a 17-point voltage averaging procedure. For this

reason, we neglect to discuss weak localization in the small device. Furthermore, the large

Hall bar had only three contacts available. As such, the weak localization measurements

performed on 092018a3 LHB were 2-contact measurements.

Much like the shadow-masked devices, the attempted fits to weak localization data from

092018a3 LHB are affected by the unknown scaling caused by the contact resistance. How-

ever, qualitatively, the width of the weak localization peak after the first evaporation either

remains the same or decreases slightly at the two carrier densities far from the Dirac peak.
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At the carrier density closer to the Dirac peak, the width of the peak decreases more dramat-

ically. After the second and third evaporations, the width of the peak varies with seemingly

no pattern for the two measurements far from the Dirac peak, and reverts to the as-made

width for the measurement closer to the Dirac peak. With the exception of one carrier den-

sity far from zero, the width after the final anneal remains the same as the width from after

the third evaporation.

4.4.4 Temperature dependence

Preliminary devices

Should a band gap open due to spin-orbit coupling, it may be possible to see an effect

on the temperature dependence of graphene. Preliminary device bz042215a was measured

during the final dilution fridge warm-up. The results are shown in Figure 4.23. As the device

warmed beyond around 40 K, the Dirac peak started shifting to the right. This is likely due

to thermal activation; once the system temperature has increased enough, the adatoms will

be able to diffuse. This rightward shift could indicate that osmium adatoms are diffusing

along the surface of the graphene until they fall into a local energy minimum. Around 175

K, the original gate voltage range of -40 V to 40 V was not enough to keep the Dirac peak

in sight which is why the range is extended to 60 V around 225 K. Shortly thereafter, the

peak begins to travel leftward again to settle near 10 V at room temperature. At these high

temperatures, it is likely that some of the adatoms were removed from the graphene surface.

The gap in the data around 30-40 K represents the switch from measuring the stage

temperature via a thermocouple beneath the stage, which is adequate below 100 K and

the Lakeshore 4K-plate thermometer, which represents the temperature of the 4 K plate

of the fridge. The stage follows the 4K-plate temperature with a finite time gap. For

the temperatures shown here, the thermocouple was used below 25 K and the 4K-plate
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thermometer was used above 35 K.

Figure 4.23: The resistance in color of device bz042215a versus both the gate voltage on the

x-axis and the stage temperature on the y-axis.

Shadow-masked devices

We also report the temperature dependence of shadow masks. In Figure 4.24, we see that

as the temperature increases, the Dirac peak shifts farther to the right until just after 150

K, where the Dirac peak begins to return toward lower gate voltages. Surprisingly, even up

to 250 K, the graphene does not return to the initial state. This indicates that the osmium

may be bonding in such a way that while it diffuses on the surface at finite temperatures,

not all of the adatoms are removed from the graphene. The overall shape of this behavior is

consistent with the measured preliminary devices.
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Figure 4.24: Temperature dependence of shadow-masked graphene transport with osmium

adatoms decorating the surface

4.5 Surface measurements

For osmium decorated graphene devices, an effort was made into using various available

surface measurements to determine coverage percentages and degree to which the osmium

is randomly distributed, clustered, or settled into a pattern.

4.5.1 Energy Dispersive X-ray Spectroscopy (EDX)

In order to prove that our osmium wires contain a layer of osmium in addition to the

tungsten base, we have performed EDX measurements on the osmium coated source wires.

For a small region on a thinly coated tungsten wire, the EDX measurements resulted in

72.5% tungsten and 27.5% osmium. These values are not consistent with values reported
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from Structure Probe, Inc. which deposited a 1 µm coating on our ≈19 µm wires. In

addition, our SEM images confirmed the thickness of the osmium coating to be 0.4-1.0 µm.

This would represent 2-6% osmium and 94-98% tungsten. Presumably, this discrepancy is

due to the resolution of the spectroscopic measurement made. In addition, the chosen scan

locations for spectroscopy may not have been properly chosen on the wire to represent the

average wire morphology or could have been affected by tweezers loading the wires into the

microscope. However, this measurement did confirm the presence of osmium on the tungsten

wire.

Furthermore, we have attempted to measure the adatom density on the graphene surface

using EDX after the 4 K measurements have been completed. Unfortunately, while the

measurement does confirm the presence of osmium, the amount of osmium on the surface is

too small to be observed using EDX. The EDX scan is shown in Figure 4.25.

Figure 4.25: EDX spectra of graphene device 080317b2 after osmium adatom experiment.

Small peaks are visible around where osmium signatures should be found.
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4.5.2 X-ray Photoelectron Spectroscopy

Similarly, XPS was used to measure the amount of osmium present after an osmium

adatom experiment on a broomed device. Both Table 4.2 and Figure 4.26 indicate that

osmium adatoms are present and in extremely small amounts. Based on the 0.01% concen-

tration of osmium in the measurement of exfoliated graphene, which should not have any

osmium or tungsten present, it is believed that 0.01% may represent the measurement error

or resolution of the instrument used.

In addition, one must note that in the device with osmium adatoms, a small but sig-

nificant amount of tungsten was also found. This amount is about 20% of the measured

osmium adatom concentration. This is likely due to error in the osmium evaporation pro-

cess. In fact, because the vapor pressure of osmium and tungsten differ by a factor of 50, the

current required to evaporate a tungsten source is only on the order of a couple 10s of mA

larger than those necessary to evaporate osmium. In order to increase the temperature such

that all of the osmium was removed from the source wire, we often increased the current

through the wire by a small amount. While it was still 10s of mA from certain evaporation

of the tungsten wire, it is possible that a hot spot on the wire, as described in Section 4.4.1,

evaporated tungsten after all osmium was removed from on and nearby the hot spot.

In addition, evaporation occurs over a range of currents with only an approximated

minimum current extracted by evaporation tests of the source wires. During such tests, we

observed the Dirac peak of graphene while the current through the wire was increased. Thus,

the minimum current used to evaporate tungsten is merely the average current such that a

change in the transport of graphene was obvious. At lower currents, when the evaporation

rate was slower, it is possible that the effect on graphene was less obvious. In this case,

we may have unknowingly crossed the minimum current for tungsten evaporation while

increasing the current to ensure full usage of the osmium source.
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Device measured Carbon Oxygen Silicon Tungsten Osmium

exfoliated graphene 15.15 56.26 28.59 0.00 0.01

fabricated, no adatoms 19.71 53.45 26.84 0.00 0.00

fabricated, osmium adatoms 25.45 50.25 23.65 0.11 0.54

Table 4.2: Concentrations of materials present in broomed osmium adatom device.

Figure 4.26: Measured XPS spectra of broomed graphene with osmium adatoms.

4.6 Discussion

Tying together the three types of devices on which osmium adatoms have been studied,

we see several obvious connections. It seems that regardless of the mobility, substrate,

or device size, osmium adatoms hole dope the graphene. This is interesting individually
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because all other measured metallic adatoms - Au, Ca, Fe, In, Ir, K, Li, Mg, Pt, and Ti -

electron dope [7, 16–25]. This may be due to the inherent electron configuration of osmium,

though one would expect other transition metals such as tungsten to have similar electronic

configurations and bonding schemes.

In addition, there is some evidence from these devices that the simple Coulomb scattering

or short-range scattering models of electron transport is not adequate for osmium adatoms

on graphene as it was for tungsten adatoms. Indeed, we could not extract a well-behaved or

consistent exponent for the relationship between the change in Dirac peak location and the

change in mobility.

Furthermore, our in-field measurements of weak localization, quantum Hall effect, and

Shubnikov de Haas oscillations were insufficient to conclusively prove the presence of a spin-

orbit coupling due to the adatoms. While the weak localization did change as adatoms were

deposited, the changes were mostly indistinguishable from those that would occur due to

differences in the scattering potential. From the conductivity and mobility data, we know

that the scattering potential is changing as osmium is added and further, we know that it

is changing in a more complicated way than the simplistic models we usually employ. For

that reason, our conclusions about the weak localization data are insufficient except that

we see no evidence of Rashba spin-orbit coupling, which would induce an antilocalization

behavior. However, in device 080317b2, we did see that the amplitude and width of the

weak localization peak saturated after the first evaporation and anneal. This resembles the

behavior we would expect for a saturating phase-breaking time, which could indicate the

presence of a symmetric spin-orbit coupling [72]. However, when the dephasing times are

extracted (Figure 4.22), they vary significantly. Thus, the saturation in the conductivity

correction must be due to a saturation in the changes to the scattering potential. Without

temperature dependent weak localization data or the presence of an in-plane magnetic field,

conclusive evidence for the presence of intrinsic spin-orbit coupling cannot be drawn.
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In fact, without an in-plane magnetic field, the present models used for analyzing weak

localization data are not adequate for distinguishing the effects of a changing scattering

potential from the effects of an intrinsic spin-orbit coupling. Since an increase in scattering

decreases the mobility, increased scattering decreases the phase-breaking time. This decrease

in phase-breaking times, is altogether similar to the effect of a symmetric term present in

Eq. 2.70.

Further evidence that we do not see Rashba spin-orbit coupling is shown in the lack of a

beating resonance in the Shubnikov de Haas oscillations. Such resonances are of band origin

and can be used to extract the spin-orbit interaction strength [35]. None of the osmium

adatom data from any of the device types showed this behavior.

4.7 Conclusions

In conclusion, the inheritance of spin-orbit coupling from osmium adatoms on graphene

has not been observed but there is much room for further work. For example, much effort was

spent in increasing the size of measurable Hall bars for averaging of the universal conductance

fluctuations in weak localization measurements. The ability to measure large devices for weak

localization would be significantly improved with the presence of an in-plane magnetic field.

This could be accomplished by either a rotating sample stage or by a small Helmholtz coil

installed in the adatom dipper. Further, it has recently become obvious that to measure

quantization due to edge channel conduction, which is a possible and desirable side effect of

achieving the quantum spin Hall effect, we would like measurement contacts with separation

distances several times smaller than those used. Instead of single devices with several microns

between measurement contacts, it would be prudent to instead measure both a large device

for weak localization as well as a small device having contacts with a separation distance on

the order of hundreds of nanometers. One measured device was a so-named small Hall bar
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but that particular device had strangely noisy transport and inconclusive nonlocal voltages

in the pre-evaporation state. A more thorough analysis of smaller Hall bars is necessary to

illuminate nonlocal voltage behaviors of graphene with osmium adatoms.

In addition, the amounts of osmium decorating the graphene surface are small while the

theoretical predictions for the opening of a band gap due to inherited spin-orbit coupling are

best above about 1% coverage. While thicker osmium layers on tungsten wires were thought

to bring the coverage percent closer to this value, the likely poor evaporation from these wires

caused the source wires to be less productive than previous batches, even considering that the

source wires were 2 times closer to the graphene surface. This leads to the conclusion that in

situ thermal evaporation of osmium is perhaps not the most efficient method for deposition.

Indeed, other groups [126] have had success in using in situ electron beam evaporations for

contacting and measuring 2D materials with custom-built systems under vacuum such that

the samples need never be brought into atmosphere. A similarly designed electron beam

evaporation of osmium adatoms could allow for depositions spanning much larger coverages.

It is possible that graphene on hexagonal boron nitride, which has an inherently higher

achievable mobility than graphene on SiO2, could improve weak localization results by de-

creasing the amount of universal conductance fluctuations present due to scattering. Since

the initial scattering potential of graphene on boron nitride should be simpler than graphene

on oxide, this may help with the current inability to use simplistic models in distinguishing

changes due to an intrinsic spin-orbit coupling from those due to a changing scattering poten-

tial. In addition, a higher mobility graphene device may improve the resolution of Shubnikov

de Haas oscillations measured at lower magnetic fields, which transitively increases the prob-

ability of seeing a beating resonance pattern in the oscillations if such is present. Of course,

this beating pattern should also be observable as a transition from weak localization toward

weak antilocalization.

Finally, another possibility for inducement of spin-orbit coupling (and the quantum spin
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Hall effect) by osmium is to increase the size of the adatoms. Rather than depositing adatoms

of osmium, instead osmium nanoparticles could be used. This would have the effect of both

increasing the coverage percent drastically and increasing the amount of spin-orbit coupling

present per particle. In this vein, copper nanoparticles have been shown to induce a giant

spin Hall effect in graphene [26]. The difficulty of such a process reverts, however, to the

deposition sourcing for in situ work.
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Chapter 5

Investigation of Bi2Te3 nanoparticles

on graphene

5.1 Introduction

During the pursuit of the induction of spin-orbit coupling to graphene for creating a

2D topological insulator (a 2D QSH system), preliminary measurements were made with

Bi2Te3 nanoparticles. While another group has seen intriguing evidence that such particles

may cause the presence of quantized edge channels [127], the data presented here shows no

evidence of such quantization.

5.2 Methods

5.2.1 Graphene device fabrication

Graphene devices for Bi2Te3 nanoparticle decoration were fabricated from graphene flakes

exfoliated using Scotch tape exfoliation. Chromium/gold contacts were made by standard

electron beam lithography and thermal evaporation. The device used for this series of mea-
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surements was etched into a Hall bar and nano-broomed to remove fabrication residues.

5.2.2 Deposition of nanoparticles

For Bi2Te3 nanoparticles on graphene, the deposition process is much different. Instead

of evaporating the materials in situ, we deposit the nanoparticles in a cleanroom fabrication

facility, then measure the device. For all measurements reported here, the device was coated

in Bi2Te3 nanoparticles by spinning the wafer at 5000 rpm and using a syringe to apply

a drop of Bi2Te3 nanoparticles suspended in toluene onto the spinning wafer. For each

step, the device was measured in a liquid cryogenic Quantum Design Physical Properties

Measurement System (PPMS).

For the nanoparticle covered device, three measurement steps were used. First, the

nanoparticles were deposited on the graphene and their density measured to be 1 nanoparticle

per (100 nm)2. The particles are approximately 15 nm in diameter with a 1 nm coating of

Polyvinylidene fluoride (PVDF) and exhibit a large concentration of stacking faults in the

nanoparticles. The usual transport measurements were then performed at 2 K in the PPMS.

Second, the device was removed from the PPMS and the PVDF coating on the nanopar-

ticles was removed by a tube furnace anneal at 200° C with 0.5 scfh of Ar. For this anneal,

the ramp up to 200° C was set for 1 hour and we dwelt at that maximum temperature

for 3 hours. After an overnight Ar purge of the tube furnace, the device was removed and

reloaded into the PPMS. Due to the low temperature of indium solder, the back gate required

re-soldering before we could reload the device into the PPMS.

Finally, the third step was to remove the device from the PPMS, apply another 3 drops

of suspended particles while spinning, and perform another tube furnace anneal with 2 hour

dwell time. The device was reloaded into the PMMS and measured again. During this

anneal, the back-gate solder connection did not become disconnected.

AFM images of the device after brooming, with the first nanoparticles, and after the
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second deposition and anneal are shown in Figure 5.1. As shown in Figure 5.1(c), the final

density of nanoparticles is a bit ambiguous. In the shown AFM image, it appears as if

nearly 50% or more of the graphene is covered by nanoparticles. However, because the

anneal temperature was only a little larger than the melting temperature of the PVDF, it

is possible that while the PVDF was removed from the nanoparticles, it was not removed

from the graphene surface. A similar wafer without a graphene device was measured in an

SEM after 4 drops of nanoparticle suspension were dropped on the wafer with the same spin

speed. This wafer is shown in Figure 5.2. Indeed, the simplistic assumption that 4 drops

would account for a density 4× that of 1 drop is inadequate due to clumping and clustering

of the nanoparticles.

(a) broomed device (b) 1 drop suspension (c) 4 drops and annealed

Figure 5.1: The AFM broomed device (a) immediately after brooming, (b) before measure-

ments but after depositing 1 drop of suspended nanoparticles, and (c) after all measurements

have been completed i.e. after 4 drops total of suspended nanoparticles are deposited and

the PVDF coating has been annealed.
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Figure 5.2: A wafer with 4 sequential drops of nanoparticle suspension applied while spinning

at 5000 rpm. The density is much higher than 4× that of 1 drop of nanoparticle suspension

spun at the same speed. This is likely due to clustering of the nanoparticles causing later

drops to not spread the particles as thoroughly as the first drop was spread.

5.3 Results

Interestingly, Bi2Te3 nanoparticles before annealing to remove the PVDF have little-to-no

effect on the graphene transport. Even with the PVDF coated nanoparticles, the broomed

graphene Dirac peak is near zero and narrow. This means the mobility is high, starting

around 29,000 cm2/Vs on the hole side and 36,000 cm2/Vs on the electron side. After the

first anneal, this mobility dropped to around 12,000 cm2/Vs. Then, after many more particles

are added and annealed again, the mobility drops to around 6,000 cm2/Vs. This is shown in

Figure 5.3.
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(a) Hall bar configuration

(b) Dirac peak evolution (c) Mobility evolution

Figure 5.3: (a) Bi2Te3 nanoparticles electron dope, moving the Dirac peak to the left and

(b) do not affect the mobility much until the PVDF has been melted.

For the Hall bar with contacts shown in Figure 5.3(a), sweeps of the Dirac peak were

measured for a large variety of 4-contact and 2-contact configurations. A few example

sweeps are shown in Figures 5.4 and 5.5 with the expected quantization resistance marked

by a horizontal line with color correspondence to the colored traces on the graph. These

expected values were calculated via the Landauer-Büttiker formalism [49].

In addition to the contact configurations shown, many more configurations were tested

including a large sampling of 2-contact measurements. While a couple of these traces ap-

proached the expectation value, such as configuration 3714 of Figure 5.5, we rule out quantum

116



spin Hall quantization and determine that these resistances are merely coincidental. For ex-

ample, in Figure 5.5, configuration 3748 and configuration 3847 should be nearly identical

for standard transport in a Hall bar device but take on distinctly different quantized resis-

tance in a QSH system. In the pre-anneal device, nanoparticles are present but no spin-orbit

coupling should be inherited yet due to the PVDF coating limiting charge carrier hopping

between the nanoparticles and the graphene. Thus, transport in the pre-annealed device

should follow standard patterns of transport in a graphene Hall bar. And indeed, one can

hardly tell that the dark green trace is underneath the dark purple trace. However, even in

the post-anneal picture, the data is similarly identical. This indicated that we have not yet

induced a spin-orbit coupling such that the graphene becomes a quantum spin Hall system.

Furthermore, after the addition of more nanoparticles and annealing of the PVDF, the

many contact configurations were remeasured and checked for evidence of quantum spin

Hall quantization. Unfortunately, no evidence that the graphene has become anything more

than a standard disordered system was found. For example, in Figure 5.6, a few contact

configurations are shown with their expected quantized resistance values. Coincidentally,

one of the values approaches a resistance near the quantization expectation, however, we

know that it is not truly quantized due to similar reasoning from the previous figure.
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Figure 5.4: A comparison of the pre- and post-anneal gate sweeps for a variety of 4-point

contact configurations where the current is run from contact 2 to ground at contact 8. The

expected resistances for an induced quantum spin Hall effect are labeled horizontal lines with

colors corresponding to the color for each contact configuration. For example, the red dotted

line is the expected quantization for the red solid line.
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Figure 5.6: After 2 depositions and anneals to remove the PVDF, the graphene transport

is still not representative of that expected for a quantum spin Hall system. While the R1738

configuration approaches the expectation value, this is likely coincidental considering that

R1738 is nearly identical to R1728 which would not occur for a quantum spin Hall system.

Finally, the quantum Hall effect was measured in the graphene device with pre-annealed

Bi2Te3 nanoparticles, after the nanoparticle anneal, and after the second deposition and

anneal. Nothing surprising came from these measurements. After the first nanoparticles

were annealed and after more nanoparticles are added and annealed, the Landau fan shifts

leftward and begins to smear out. This is shown in Figure 5.7 and is altogether similar to

the results found with tungsten adatoms.
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(a) pre-anneal (b) post-anneal (c) post-anneal 2

Figure 5.7: The standard quantum Hall effect Landau fan for graphene with nanoparticles

(a) before annealing, (b) after annealing, and (c) after a second deposition and anneal

5.4 Conclusions

In conclusion, Bi2Te3 nanoparticles were found to electron dope the graphene, which is

unsurprising considering that most adatoms also electron dope graphene with the exception

of osmium. In addition, Bi2Te3 nanoparticles decreased the mobility of graphene significantly

after the PVDF coating was melted. Based on the AFM images of the device, we believe

that while the PVDF was melted off the nanoparticles, it seems to have adhered to the

graphene surface. Presumably, this is responsible for the negatively affected mobility of the

graphene. In order to improve results, a series of tests should be performed to find a more

aggressive anneal process that will completely remove the PVDF without damaging either

the nanoparticles or the graphene. If this is not chemically viable, then it should also be

possible to use a different plastic coating on the particles rather than PVDF.

Unfortunately while these nanoparticles have significant potential for inducing the quan-

tum spin Hall system to graphene, we were unable to reproduce the quantization seen by

Hatsuda et al.. Obviously, a more thorough investigation would need to be done with de-

vices designed with smaller contact separation distances to further elucidate the nature of

the effect of these nanoparticles on monolayer AFM broomed graphene devices.
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Chapter 6

Conclusions

6.1 Overview

In summary, we have examined the effects of two transition metal adatoms on monolayer

graphene devices. Tungsten adatoms were found to electron dope the graphene, each adatom

donating an electron to the graphene and leaving behind a charged ion. These ions act as

isolated charged scattering centers and the mobility is decreased. Unfortunately, no evidence

of inherited spin-orbit coupling has been found. We hypothesize that this ineffectual result is

likely due to a polymer impurity layer covering much of the graphene surface due to standard

fabrication procedures.

Unlike tungsten adatoms, osmium adatoms hole dope the graphene and decreased the

mobility much less than tungsten adatoms even considering that the tungsten effect on

graphene was inhibited by a polymer impurity layer. Furthermore, osmium-decorated de-

vices were studied with a variety of fabrication procedures including those that require no

polymer resist (shadow-masking) and those where the polymer layer has been thoroughly

removed (AFM brooming). Results for all device types decorated with osmium are consis-

tently different than for tungsten decoration. Indeed, all measurements done with tungsten-
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decorated devices indicate that tungsten donates an electron and becomes an isolated charge

impurity laying about 1 nm above the graphene plane. Not only do osmium adatoms hole

dope instead of electron dope, but the simple picture of an isolated charged impurity lying

just above the graphene plane also does not suffice. However, osmium adatoms are not

behaving as clusters either.

While osmium adatoms behave differently than tungsten adatoms, the inheritance of a

spin-orbit coupling from the adatoms has not been clearly proven. These adatoms certainly

change the dominant scattering potential of graphene, however, any evidence for the inher-

itance of a spin-orbit coupling in the measured systems is considered circumstantial at best

and more realistically only serves as a lack of evidence for the presence of Rashba spin-orbit

coupling.

6.2 Future extensions of Work

As mentioned in previous chapters, there are always improvements that could be made

to experimental works. While achieved to some degree by AFM brooming, further improve-

ments to the graphene initial mobility and transport behavior could be achieved by using

a cleaner substrate than SiO2. Already, much progress has been made to produce higher

quality devices by stacking graphene on hexagonal boron nitride.

Further, in order to conclusively report that tungsten adatoms are unlikely to produce

quantized edge channels such as would be found for the quantum spin Hall effect, the mea-

surements made with tungsten adatoms should be repeated with AFM broomed devices. It

is possible that the disappointing results from tungsten adatoms are due to the adatoms’

inability to closely interact with the surface due to the polymer residue left behind from

fabrication. However, this seems unlikely due to the similarity between tungsten adatoms

on graphene and indium adatoms on graphene [16, 17].
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On the other hand, there are a variety of other promising systems predicted for adatoms

on graphene. Indeed, not all the options for obtaining a quantum spin Hall system have been

exhausted. Other adatoms such as lanthanum or hafnium could also induce a spin-orbit cou-

pling to graphene. Others such as lithium have been predicted to cause graphene to become

superconducting at low temperatures [96, 98]. See Appendix C for preliminary information

on lithium adatoms. In addition, magnetic adatoms may be another interesting route of

study. Rather than directly probing the quantum spin Hall system with two quantized edge

channels, instead the quantum anomalous Hall effect or other magnetic properties may be

induced by adatoms with magnetic moments [128].

Furthermore, it may become easier to distinguish spin-orbit coupling behaviors in mag-

netoresistance if an in-plane magnetic field was present. In order to accomplish this in situ

two possibilities are presented. First, a small Helmholtz coil could be designed and posi-

tioned internal to the adatom dipper and superconducting solenoid such that when turned

on, the coil applies an in-plane magnetic field to the graphene. Alternatively, a mecha-

nized stage that rotates within the adatom dipper could be used to translate between an

applied field orthogonal to the device wafer and an applied field in the plane of the device

wafer. Unfortunately, this would require extensive reworking of the adatom dipper design

and wiring.

Another useful adaptation to this work would be to design an independent measurement

of the adatom evaporation rate and density. In fact, much work has been done in pursuit of

this measurement.

Finally, perhaps the most likely of improvements to the graphene with adatoms system

presented here would be an improvement of the deposition system itself. This system is

perfectly adequate for the evaporation of tungsten and lithium. In addition, the clever

designs have allowed for evaporations of osmium while the graphene device remains below

liquid nitrogen temperature. However, because of the method used to produce osmium
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coated source wires, larger coverage percentages are more difficult to achieve. Indeed, in

an experiment where the deposition density should have tripled due to the thickness of the

source material, we have shown that the deposition density is actually less than previous

experiments. In addition, it is easy to bring the wire temperatures too high and either break

the wires or simultaneously evaporate tungsten. For these reasons, it may be prudent to

look toward electron beam evaporation.
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Appendix A

Fabrication techniques

A.1 Introduction

Devices used in the adatom and nanoparticle experiments are almost exclusively mono-

layer graphene on degenerately doped Si/SiO2 wafers with resistivity around 0.005 Ω/cm.

Some devices referenced in this study, however, are monolayer graphene on hBN on Si/SiO2

wafers; these devices are identified by naming schema with a gbn- prefix or a -flip postfix.

We use the scotch-tape exfoliation method via Novoselov et al. [2, 129] for early devices

and the enhanced productivity of Huang et al. with oxygen plasma etching and hot plate

warming [130]. Two common techniques for contacting graphene monolayers were employed

including electron beam lithography and shadow masking. Various cleaning methods were

studied including: acetone soaking, glacial acetic acid soaking, vacuum annealing, gaseous

annealing, and AFM brooming. For a comprehensive analysis of these techniques in relation

to the adatom project, please see Appendix B.
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A.2 Large area exfoliation methods

Weak localization signatures are highly affected by the measurement area of the device.

Due to the nature of scattering in graphene, weak localization peaks in devices are balanced

with significant noise due to universal conductance fluctuations (UCFs), as discussed in

Chapter 2. In order to minimize these UCFs, we increase the width of the hall bar to

effectively average out the UCFs. This requires large exfoliated flakes. With standard 3M

Scotch tape and Kish graphite flakes, we follow the method of Novoselov et al. and Huang

et al. to produce large area monolayer graphene.

First, the degenerately doped Si/SiO2 wafers are cut into approximately 1 cm × 1 cm

squares with a diamond-tipped scribe. The wafers are then blown free of dust with dry N2

gas. No appreciable difference was found in devices production or cleanliness when dipping

or soaking the wafers in solvents such as acetone and isopropanol before the N2 dry step.

Next, the graphite tapes must be prepared. Figure A.1 includes step-by-step photographs

of this process. A length of tape about 6 in long was cut and held to a lab bench upside-

down with other pieces of tape. The tape being held will become one of many source tapes.

Several large flat pieces of graphite from the supply vial are chosen and arranged carefully

on the tape in a line approximately 1 cm in length. The flakes are placed in such a way as to

minimize the space between graphite pieces. A second length of tape is cut and used to copy

the line of graphite. To copy, the tape is lined up in such a way that the new line will be

wherever desired on the copy tape, brought into contact, and very gently and slowly peeled

to separate the tapes. In several steps, the first line of graphite is copied into 2 lines, then

the 2 lines are copied into 4 lines, etc, until an about 1 cm × 1 cm square of graphite pieces

is ready on both tapes. This square of graphite is then copied so that there are 2-4 squares

on one tape. And finally, that tape is copied to make a handful of copy tapes. Tapes are

typically stored in air in slotted containers for further copying or exfoliation later. After a

128



tape has been unsuccessful in producing usable graphene monolayers more than once, it is

disposed of in the standard trash.

(a) graphite tape (b) copying the tape

(c) second tape (d) hot plate method

Figure A.1: Step-by-step photo log of the scotch-tape exfoliation process. (a) tape secured

to the lab bench with graphite flakes arranged on it,(b)-(c) copying the graphite tape to

other tapes, (d) warming on the hotplate for better production rates

Without any further processing, each of these tapes may be applied to the Si/SiO2 wafers,

pressed or scratched with tweezers, markers, or fingers to put the tape into full contact with

the wafer, and finally peeled from it to produce a wafer that has tape glue residue, graphite

pieces, and thin graphene layers (1-10 layers). Different tape brands and types have been

used but the most successful has been 3M Scotch Magic tape. Both 3M Scotch Transparent

and Removable will produce graphene flakes but the amount of tape glue residue on the wafer

is detrimental to the fabrication processes. With experience, it has been determined that
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peeling the tape quickly, indeed aggressively ripping it off the wafer, at nearly 90◦ produces

more viable results than gently and slowly peeling the tape from the wafer. In addition, while

others have found that never pressing the tape onto the wafer or pressing lightly with a pair

of tweezers has been more successful for their yield, the best yield found in this document

occurred when the tape was pushed onto the wafer with incredible force by the pad of a

gloved finger.

Two methods of aggressive ripping were found appropriate. In the first, the wafer and

tape are stood at a 90◦ angle on the table with a pair of carbon-fiber tipped tweezers holding

it vertically from under the tape. The tweezers are then used to wrench the wafer off the

tape. One problem with this method, is that the wafer occasionally snaps back into place

on the tape, leaving more tape-glue residue behind, and unfortunately often contaminating

the exfoliated pieces. The second, perhaps easier and more common way, is to lay the wafer

and tape flat on the table. A small corner of the tape is lifted enough to put the tweezers

into vertical contact with the corner of the wafer. A large force is applied to hold the wafer

flat while the tape is violently ripped off the table and wafer. Two common problems occur

with this method; first is that the tweezers will slip, leaving a scratch or tape-glue smear

across the wafer and/or second, the tape will shred from the fast peeling.

To increase the yield of large-area graphene flakes left on the wafers, we employ the

technique of Huang [130] et al. to clean the wafers and warm the tape. In this procedure,

we prepare both the wafers and the source tapes ahead of time. After cutting and dust

cleaning, the wafers are plasma cleaned. This can be done with a quick Reactive Ion Etch

(RIE) procedure but is equivalently, and perhaps more quickly, done with an oxygen asher.

In this document, the Plasma Etch 50 Asher is more often used with a power of 100 W and

flow rate of 30 sccm oxygen for 30 seconds. The wafers are removed and immediately put

into contact with the source tapes. The tapes may then be peeled for results with minimal

tape-glue residue. However, because graphene exfoliation is more often art and luck than
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pure scientific process, it occasionally becomes necessary to adopt yet another step in this

process. With the detriment of more tape-glue and large graphite flakes also deposited,

taking the newly ashed wafers with tape in contact and placing them on a hot-plate at

100◦ C for 1-2 minutes also usually increases the yield of monolayer graphene deposited.

To identify the now exfoliated large graphene pieces for use in device fabrication, we

scan the chips in an optical microscope. For most devices, a Zeiss Axiotron fitted with

×2.5, ×10, ×20, ×50, and ×100 objectives was used. Once the device is mounted onto the

microscope stage, a corner is chosen as the start point and the chip is scanned manually at

×10 magnification from the chosen corner to the opposite corner. At every place where a

usable flake is seen, photos at each magnification and notes as to the size, number of layers,

and location are taken.

After a bit of practice, viewing layers optically at multiple magnifications was sufficient

to determine the number of layers. While this could be confirmed via Raman Spectroscpy

and AFM step height measurements, this was found unnecessary for the extent of this work.

Instead, a database of color contrast at particular optical settings (light voltage 5 V, ZENlite

software) was both computerized and mentally diagrammed. See Figure A.2 for a sampling

of the optical color contrast database.

A.3 Shadow-mask contacts

Because contact fabrication has been proven to leave behind polymer residues even with

the most aggressive solvent soaking and various annealing techniques, we sought methods of

producing contacts to the graphene without applying any polymers to the surface. In effect,

we would then be able to measure graphene in its most inherent state and applying adatoms

or nanoparticles would then be the only variable added to the system.
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Figure A.2: (a) An isolated monolayer flake, (b)-(d) monolayer graphene pieces with varying

sizes of multilayer attached on at least one edge, (e) a bilayer graphene flake identifiable by

the nearby monolayer, (f) a monolayer speckled with approximately circular bilayer patches

132



First attempts at shadow-masking were made by producing a mask from suspended SiN

windows. These windows are 3 mm diameter cylinders of SiO2 with a 1 mm square etched in

the center and SiN suspended over the etched square. The SiN windows from Ted Pella, Inc.

can be purchased such the suspended nitride layer is between 15 nm and 200 nm. Focused

ion beam etching of these windows with a working distance of 10 mm and a beam current

of 500 pA into standard contact patterns was unsuccessful. While, at times, a shape or two

could be cut into the window without damage to the window or pattern, almost universally

the window would eventually rip the pattern causing contact shorts. See Figure A.3 for

example masks attempted by this method.

Figure A.3: (a) First attempts to pierce the mask resulted in broken SiN, (b) a triangular

contact shape rips SiN across the entire mask, and (c) a less dramatic (narrower) but equally

destructive rip from the contact

Second attempt shadow masks were made via polymer lithography and reactive ion etch-
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ing of the SiN windows. In this method, each window was spun with PMMA A4 at several-

thousand rpm for 45-60 seconds. Because of the extreme sensitivity of the SiN windows to

any force, vacuum chuck holding during spin coating was not possible. Arranging the win-

dow onto the center of the spin coater chuck without vacuum was arranged via double sided

Kapton or carbon tape. Tweezers were a common mode of destruction during this step. The

PMMA was then hardened by hot-plate baking for 180 seconds at 150◦ C. An electron beam

lithography pattern was created for 8 contacts in a standard hall-bar-like arrangement. The

contacts were rounded at the edges for reduction of strain and breaking force in the SiN

window upon etching. The pattern was drawn via standard electron beam lithography then

the exposed SiN was etched with a CF4 plasma for a series of times until the pattern was

etched through the window. In Figure A.4, (a) shows the lithographic pattern on the SiN

window, (b) is the window after 1 min and 45 sec of CF4 etching, and (c) is after 2 min and

15 sec of etching. We can tell by color contrast and the piece of dust sitting on the leftmost

contact of the shadow mask that in step (b), the SiN has not yet been etched fully through.

In (c), however, at 2 min 15 sec, the SiN has been etched through and two of the contacts

are shorted across what would be the graphene area. The unfortunate weakness of these

suspended windows means that even in mass production, it it unlikely that many successful

masks would be produced. However, if these masks were capable of making it through this

fabrication process, it is possible that several metal evaporations towards the contacting of

graphene or other 2D devices may strengthen the suspended material, making them more

robust for further device fabrication.

Third attempts for shadow masks of contact fabrication were much more successful. A

window with removed SiN was held by double side tape under a stereoscope while tiny

pieces of Kapton or carbon tape were affixed to the face of the SiO2. A length of 20 µm

pure tungsten wire was affixed across the window with the tape on the SiO2, as in Figure

A.5. This window was then ready to use on a large piece of monolayer graphene.
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Figure A.4: (a) A polymer coated SiN window with electron beam pattern for 8 contacts,

(b) the contacts are in a hall-bar-like shape, (c) after a 1:45 CF4 etch the uncovered SiN is

not completely etched away, and (d) after 2:15, the etch has broken through and shorted 2

contacts.

Figure A.5: A 2-contact shadow mask custom-made from a broken SiN window and a 20 µm

tungsten wire.
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A wafer with a usable graphene flake was affixed to a custom-built aluminum mounting

plate with mask-holding spring clamps, shown in Figure A.6. The proper alignment required

that the wafer with graphene was placed under the clamp such that the SiN window would

be held by the clamp over the graphene. Under the stereoscope, the mask was flipped so the

wire was facing the graphene wafer and roughly aligned to the position of the graphene and

placed under the clamp.

Figure A.6: (a) Custom-built aluminum mounting stage for shadow mask evaporation and

(b) a high contrast photo of a wafer aligned under clamped shadow mask, ready for metallic

evaporation
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Next, the entire mount was then transferred to the higher magnification probe station,

shown in Figure A.7. At this point, the process of aligning the shadow mask over the graphene

becomes iterative. While looking through the microscope at ×25 magnification, the tweezers

are brought into brief contact with the SiO2 body of the mask. Brief taps along appropriate

sides align the wire such that it will cover the center of the graphene and evaporated metal

will cover each end of the graphene. These taps and shifts with the tweezers also may need

to be balanced by lifting and replacing the clamp to also for equilibration of any tension in

the clamp cause by pushing, pulling, or rotating the mask. After many iterations, the mask

should be as best aligned as possible. One final step before loading into the evaporator is a

flip of the entire stage upside-down. This is to simulate the flipping that will occur to load

into the Edwards 306 thermal evaporator.

After flipping, it is appropriate and necessary to examine the alignment in the probe

station. With enough iterations of the clamp equilibration, the flipping usually does not

cause enough shift in the alignment to warrant further alignment. But in the case of a loose

clamp or a clamp not well equilibrated, several micron shifts may occur and need to be fixed.

Figure A.7: Probe station used for fine alignment of shadow masks over the graphene flake.
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Some other work at shadow masking involves improvements on the 2-contact method

discussed above. Instead of a single wire across the window, two wires are arranged at a

90◦ angle from each other to form 4 contacts, as shown in Figure A.8. Or, when graphite

pieces near the monolayer would short together two or more of the metal contacts, then the

angle between the 2 tungsten wires may not have been arranged at 90◦. Other angles are also

sufficient for masking four metallic contacts into an arrangement suitable for wire bonding.

In addition, we briefly tried replacing the 20 µm tungsten wires with variable thickness glass

threads. Because of the fragility of glass, this did not work. During the alignment steps,

the SiO2 body of the mask rests on the wire(s) and those wires may shift or roll during the

alignment. Because of the tape at the edges of the wires, the graphene is mostly safe from

being touched by the wires (we lost maybe one of twenty-five devices this way), but the

rolling and shifting easily shattered the glass threads.

Figure A.8: A 4-contact shadow mask made via two tungsten wires on a broken SiN window.

A final methodology of shadow masking adapted for metallic contacts on graphene is the
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TEM grid alignment process used by Tien et al. [131]. Similar to the 4-contact tungsten

wire mask created above, a 3 mm TEM grid is attached by microscopic pieces of carbon

tape to the surface of a broken SiN window. The piece is then mounted onto a piece

of polydimethylsiloxane (PDMS) onto the stage of the transfer station. A probe needle

typically used for contact checking is carefully inserted into one of the holes near the center

of the grid. Once the needle pushes into the PDMS, it is through the grid hole. The PDMS

keeps the tip of the needle from being scratched on the brass surface of the probe station

stage, also custom built and installed, pictured in Figure A.9. Once the needle is inside the

TEM grid hole, a micro-manipulator is used to pull the needle through several holes of the

grid, breaking the squares and merging them into a long rectangular contact. The needle is

raised and the grid is rotated 180◦. The process is repeated for the next TEM grid hole. If

this is to be done for a 4-contact mask, then another rotation of 90◦, then a rip step, followed

by a rotation of 180◦, and a final rip step completes the mask. See Figure A.10 for a final

mask photo.

Figure A.9: The custom designed probe station stage includes a plug heater controlled by an

Omega PID Controller, a water cooling system via copper tubing, vacuum holes for holding

of wafers on the central column, a thermocouple below the vacuum holes, and an adjustable

height base.
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Figure A.10: A final TEM grid shadow mask

After the TEM grid mask is complete, the process for aligning and evaporating onto a

graphene flake is the same as it would be for a 2-contact or 4-contact mask designed by

suspended tungsten wires. See Figure A.11 for a sampling of devices made by the shadow

mask methods described.

While shadow-masking is a useful tool for fabricating devices with minimal contamination

due to fabrication residues, it is limited by several factors. First, shadow mask devices are

limited by the size of the achievable mask. In the case of suspended tungsten wire mask, the

minimum usable graphene flake size is 10 µm × 30µm for a good 2-contact mask alignment

or 40 µm × 40 µm for a good 4-contact mask alignment. Indeed, commercial wire drawing

companies sell wires drawn down to 10 µm in diameter, but that only improves the usable

graphene flake size by a factor of two, which is easily achievable by switching to TEM grid

masks.

TEM grid shadow masks are less limited by size with the bar widths around 10 µm

requiring that graphene dimensions be only greater than 20 µm for a good alignment. How-

ever, many large area graphene flakes are approximately rectangular in nature, with 10-20

µm on one side and perhaps a much larger edge along the perpendicular side. As seen in

140



Figure A.11(d) or (e), this could cause lack of contact in the case of even a small shift in

the alignment, whether that shift occurs during transport, loading into the evaporator, or

during pump down of the evaporator. Smaller bar widths are available to around 5 µm, but

those size changes are balanced by a decrease in hole size as well. This hole size decrease

would further complicate the mask creation via probe needle ripping. In fact, at 8-10 µm bar

width, the creation of the mask is intricately sensitive, with a high probability of destroying

the mask occurring at the second, third, and fourth contact rip steps. Decreasing the bar

width could further decrease the structural integrity during these rip steps.

In addition, shadow mask devices created by the suspended wire or TEM grid method

are limited in the number of contacts available, which limits the ability to perform certain

measurements. For example, the device made for Figure A.11 (a) and (b) could not obtain

an Rxy measurement.

Finally, the bulk of the adatom and nanoparticle project depends upon observing the

Dirac peak behavior of graphene as adatoms or nanoparticles are added to the graphene.

These adatoms either electron dope or hole dope the graphene. Because shadow-masked

graphene tends to have a Dirac peak far to the hole side of charge neutrality, adatoms that

hole dope will more quickly remove the peak from the viewable gate range. For this reason,

shadow mask devices are not practical for Os adatoms.
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Figure A.11: Fabricated shadow-mask devices: (a)-(b) low and high magnifications of final

2-contact device via suspended tungsten wire and (c)-(d) low and high magnifications of

final device contacted via TEM grid shadow mask. (e) A 4-contact device fabricated by a

supervised undergraduate with the two-suspended-wire mask and (f) an attempt to evapo-

rate metal through a lithograpy/etched SiN window mask where 4 of the contacts shorted

together. The graphene flake is outlined in black in (d)-(e).
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A.4 Focused ion beam contacts

Another method of attaching contacts directly to graphene is by using a focused ion

beam (FIB) to directly place platinum leads onto the graphene. Unfortunately, this requires

a precursor gas that could also contaminate the graphene. Presumably, the amounts of the

precursor gas reaching the graphene flake exponentially drop off farther from the platinum

lead. So, if the leads are far enough apart, effects due to this cloud of contaminants should be

minimized. However, one important measurement for proving the presence of edge channels

in graphene with a Kane-Male Hamiltonian, is a non-local voltage. And due to scattering

effects, these edge channels tend to only be measurable on the order of 2 µm or less distance

between the contacts.

This method was briefly attempted in two devices. In the first, a cloud of contamination

was visible around each contact. Furthermore, the contact resistances were extremely large.

It is possible that contaminants from the precursor gas cause high resistance contacts in

FIB-made platinum leads [132]. While these resistances may improve by annealing after

platinum deposition, a second device attempt failed via a malfunction in the software which

caused the FIB to open the precursor gas valve unexpectedly and burn contaminants onto

the wafer. Both devices are shown in Figure A.12.

Figure A.12: (a) A device with FIB contacts and visible contamination cloud around the large

contact, (b) a graphene device before attempting FIB contacts, and (c) the same graphene

device after a software malfunction. All three photos are in false color for enhanced contrast.
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A.5 Lithographic contacts

Probably the most commonly used method of applying contacts to a graphene device

is some form of lithography. Lithography is significantly less limited by the size of the

device; an SEM with NPGS and DesignCAD may have a reasonable writing resolution on

the order of 10-50 nm, depending on the particular alignment and focusing achieved. In

most cases, lithography is more likely to be limited by the maximum size of the write. For

example, it might be more difficult to write large patterns of alignment marks or bond pads

around a graphene flake than it would be to write a contact pattern much smaller than

a standard shadow mask described previously. The steps to contact graphene by electron

beam lithography are as follows:

1. Spin electron beam resist onto flake

2. Measure location of flake

3. Use electron beam to draw alignment marks around the graphene flake

4. Develop the alignment mark pattern

5. Design the pattern of contacts to the flake

6. Use electron beam to write the designed pattern

7. Develop the pattern

8. Evaporate metal

9. Remove the polymer resist.

An optional step to ozone clean the contact areas may occur before the evaporation step and

has been shown not to harm the graphene and possibly to decrease contact resistances for

cleanings up to 9 minutes.
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A.5.1 Spin coating procedures

After an exfoliated flake has been found in an optical microscope and imaged at several

magnifications, polymer resist was spun on the device. The graphene wafer was pre-baked

at 150◦ C to 180◦ C for 3-5 minutes to remove water and adsorbed contaminants. The wafer

is aligned to the center of the spin coater and a few drops of Poly(methyl methacrylate)

495 A4, also called PMMA, commercially purchased in 500 mL quantities, are distributed

by sterile dropper onto the wafer. The wafer is spun at 4000 rpm with maximum ramp

rate which creates a layer of about 200 nm thickness. A postbake at the same temperature

and time as the pre-bake is done for hardening of the film. The process is repeated for

another layer of PMMA 495 and a final layer of PMMA 950 A4. This bilayer 495, monolayer

950 polymer should give a large undercut due to back-scattering and the lower chemical

density of the PMMA 495 than PMMA 950. This will improve metal liftoff after the contact

evaporation step. The final postbake also occurs at the same temperature and time as the

previous layers. The higher temperature and longer time ranges for this process are a result

of some experimentation to find what layers are least susceptible to cracking in the PMMA

during development procedures. The standard of 150◦ C for 3 min was not sufficient for some

devices. In addition, slower developments in milder solutions also reduced the likelihood of

cracking in the patterned PMMA. Furthermore, rounding the edges of metal contacts on the

graphene decreased the likelihood that cracks in the PMMA would short two or more of the

contacts together.

A.5.2 Location of flake procedures

After the wafer has been sufficiently coated in electron beam resist, it is necessary to

know the precise location of the graphene flake with respect to some known value on the

wafer. For devices fabricated for this manuscript, the known value was a corner of the wafer.
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The horizontal and vertical distances to this corner are measured on the optical microscope

at a magnification of ×2.5 which has the largest field of view.

A.5.3 Electron beam lithography

Lithography can be done with either a positive or negative polymer resist. Both use

a beam of electrons aimed at specific locations on the device wafer to break bonds of the

polymer resist. For PMMA lithography, the electron beam exposes the regions where the

bonds are broken and the PMMA in the exposed regions will be removed by a development

process. We used a JEOL scanning electron microscope (SEM) equipped with DesignCAD

and Nanometer Pattern Generation System (NPGS). Depending on the details of focusing

and alignment, the pattern writing may differ minutely but should occur approximately as

follows: first there is a rough alignment of the aperture and a rough focusing step. Then

the beam current is measured and adjusted using a Faraday cup. The wafer is viewed with

the electron beam far from the graphene flake and fine alignment is done. Fine focusing is

done on a piece of dust near but not directly on the graphene. After focusing, the SEM

should be moved to the origin of the designed pattern and NPGS allowed to take control

over the writing portion. Typical settings for an alignment mark pattern are: 2 mm × 2

mm pattern with rulers and 100 µm separation between marks, working distance 40 mm,

magnification ×50, beam current 1000 pA, and exposure 700 µC/cm2. It is preferable to

write alignment marks at lower working distance. Unfortunately, the SEM used for this work

was outfitted with a low vacuum aperture that deflected percentages of the beam current and

caused bending of patterns at low magnifications which is necessary for large patterns such

as these. This is shown in Figure A.13. A large alignment mark pattern must be written at

a long working distance in order to avoid the bending of the alignment marks, which later

caused shifting in the final location of the written contacts. With shifts up to 2-3 µm and

small graphene flakes, this caused misalignment on many devices.
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Figure A.13: (a) With a working distance of 25 mm, the alignment mark pattern is skewed

near the edges such that alignment will not be perfect even when the procedures are followed

carefully. This can be seen in the black line on the leftmost rulers. The line matches the

left side of the rulers on the top and the bottom but does not line up with the left side of

the rulers near the middle. In (b), written at WD 40 mm, every ruler in the left-hand set is

appropriately lined up to the black marking line.

A.5.4 Development

The process of writing an electron-beam pattern exposes known regions to an electron

beam and breaking the chemical bonds of the polymer resist at those locations. Developing

solution chemically removes only the PMMA with bonds broken by the lithography. To

develop the newly written pattern, several variations of the same process may be done. The

graphene wafer may be dipped in a room temperature beaker of Methyl isobutyl ketone

in isopropanol (MIBK in IPA) 1:3 solution for 30 seconds followed by a quick dip in IPA

and dry with N2 gas. This is an aggressive development process and is likely all that is
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necessary for most lithography processes. However, in the case of thicker material (such as

heterostructures of graphene and boron nitride), a slower process may become more useful.

For devices in this manuscript, a 90 second soak in refrigerated IPA:DI water 1:3 solution

was sufficient to fully develop patterns and restrict cracking of PMMA to the rarest of cases

[133].

A.5.5 Photo editing and pattern designing

Photos from an optical microscope of the graphene with alignment marks are not com-

pletely rectangular. While the photo output of the software is rectangular, there is some

stretching due to the round nature of the lenses. We use Serif photo editing software to

correct the rounded images. First, we load the images as taken by the optical microscope

software. Usually, the ×50 magnification image is the most important. This is the image

that shows the graphene in best detail while fully including the four alignment marks sur-

rounding the graphene. Next, we rotate the images so they are in the exact orientation

of the DesignCAD alignment mark file. Then, we crop the ×50 image so that only the

graphene and the 4 closest alignment marks are present. We load an image from Design-

CAD of the particular alignment marks around the graphene device. Details may be specific

to the version of DesignCAD being used but typically it involves locating the correct marks,

zooming in until they take up most of the screen, turning all other layers invisible, and

saving an image. Once open in Serif software, the standard alignment mark image must

have its background removed; in DesginCAD21 this background is black, as seen in Figure

A.14(b). Using Serif’s flood eraser tool and quickly clicking on any part of the image that

is not an alignment mark quickly deletes the background. Next, that image must be copied

as a second layer into the real ×50 image of the device. Selecting only that layer and the

resize tool, the standard marks may now be resized to the appropriate dimensions for that

photograph. Holding shift retains the aspect ratio. After the size is correct, the real photo
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needs to be warped to fit the standard marks. After selecting the layer with the real photo

of the device, choose the mesh warp tool, and delete the center point. Now, the 4 edges of

the photo maybe be dragged around until the alignment marks in the real photo match the

standard set, as in Figure A.14(a). Finally, all layers must be merged and the file saved as

an image file that can be read in DesignCAD (such as a .jpeg file).

Figure A.14: (a) A meshed image of a graphene flake with four surrounding alignment

marks written in PMMA and (b) the standard mark image. The monolayer graphene region

is outlined in black and the bilayer regions are crossed out with black X’s.

Typically, it is enough to do mesh warping on the ×50 photo. The lower magnification

photos ought to be rotated but it is unnecessary to mesh or warp them. In addition, it is

often helpful to use the photo editing software to draw an outline around the boundary of the

graphene flake. This is because the photos may lose quality when imported into DesignCAD

and the graphene is easier to locate when zoomed out if an outline is present.

The ×50 mesh-warped image is loaded using the DesignCAD image load function. It

should then be resized and relocated to the correct location of the graphene flake on the

alignment mark pattern. The patterns used correspond to a layer of small “inner wires” and

larger “outer wires” that connect the inner wires to bond pads. These bond pads are used for
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making electrical contact via wire bonding or indium soldering and are typically squares or

rectangles about 100-200 µm per side. Inner wires are the smallest width of wire applicable

to the device, usually 0.5-2.5 µm. Outer wires overlap the inner wires to correct for shifts

of the beam over time and are usually about the size of the inner wire at their connection

to the inner wire and widen to 10-30 µm at the bond pad connection. Extra layers of new

alignment marks or hall-bar etch patterns may be relevant for particular devices. Every

pattern will have alignment window layers which are used for manual alignment of the SEM

to the graphene pattern and location. Figure A.15 is a screenshot of an example pattern at

low magnification and high magnification.

Figure A.15: Screenshots of an example pattern with inner wires, outer wires, bond pads,

and an etch-mask at (a) low magnification and (b) high magnification.

A.5.6 Writing contact patterns

Contact patterns vary widely depending on the device but are usually written at working

distance 25 mm, with beam currents of 100-300 pA for small features (inner wires) and up

to 2800 pA for large features (bond pads). The same alignment and focusing steps as during

the alignment mark pattern are necessary. Instead of the graphene flake being the origin
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of the pattern, a nearby alignment mark will suffice. The wafer should be rotated so that

the alignment mark pattern is correctly oriented according to the design file. The origin

alignment mark is the starting point for the manual alignment method of the run file. Each

alignment window is aligned over the mark designated in the design file roughly and the

user moves a cursor to precisely update the alignment. Several iterations of this process are

normal. This process updates the write file in the computer with correct locations for each

point that the electron beam will expose or not expose.

A.5.7 Development of contact pattern

The contact pattern development process is identical to the alignment mark development

process. This step may be more critical in producing patterns without cracks in the PMMA.

A.5.8 Evaporation of contact metal

Standard metallic contacts on graphene consist of a 3-5 nm sticky layer, typically Ti

or Cr, and a thicker conductive layer, usually Al or Au. For the purposes of the adatom

project, Cr/Au contacts were almost exclusively used. These contacts can be evaporated in

a thermal evaporator with base pressure below 2×10−6 mbar.

For Cr/Au contacts made via thermal evaporation, we used the Edwards Auto 306 evap-

orator system, shown in Figure A.16. The system is kept under vacuum when not in use.

When a device or batch of devices is ready for evaporation, the chamber is vented. This

function isolates the pumps from the evaporation chamber and purges the chamber with

N2 gas until atmospheric pressure is reached. While the chamber is venting, the sample(s)

may be loaded onto the evaporation stage. There are many equivalent ways of doing this

including but not limited to: clamping to individual mounting systems or foil wrapping the

internal stage and using double-sided vacuum-friendly tape such as Kapton. Lithographic
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contacts fabricated for this document were almost exclusively evaporated by clamping the

sample wafers to the universal stage mount shown in Figure A.17.

Figure A.16: The Edwards Auto 306 evaporator (a) while under vacuum and (b) opened to

air after venting.
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Figure A.17: Universal sample mount with large clamps and small washers for holding device

wafers

Once the sample wafers are loaded to the mounting stage, the stage must be affixed to

the lid of the evaporator. Both the shadow-mask stage and the universal stage mount are

equipped with designated screw holes that match tapped holes in the lid of the evaporator.

After the devices are ready, the evaporation sources must also be loaded into the chamber.

Chromium coated rods are loaded to source location 1, or 1 and 2 if the 1st rod is nearly

empty, and tungsten boats filled with gold shot are loaded to source locations 3-4, or 2-4

if thick gold film is required. The 306 evaporator has the ability to store many material

property parameters for different metals. The settings used for Cr are: density of 7.20g/cm3

and z-factor 0.31. And the settings for Au are density 19.28 g/cm3 with a z-factor of 0.38.

To evaporate a metal, the correct source location is rotated into the power supply and the

program is chosen. This loads the material properties so the crystal oscillator can correctly

measure the thickness of film evaporated. Then a 3 hour pump down is initiated; this will

bring the chamber to around 2×10−6 mbar. At this point, it is prudent to retrieve a 4 L

dewar of liquid nitrogen.

Once the evaporator has reached base pressure, the attached dewar for liquid nitrogen
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is filled with liquid nitrogen from the 4 L dewar retrieved during pumpdown. This liquid

nitrogen enhances base pressure of the evaporator chamber by cooling and supporting the

pumping. Filling of the liquid nitrogen dewar should be done at least directly before the

evaporation is done but may also be done at the beginning of a pumpdown to increase

pumping efficiency.

When starting an evaporation, it is important to ensure that the shutter is closed, in

the position located directly above the source material. This prevents material from being

deposited on the sample until the user is ready. For example, new Cr rods are coated in a

layer of plastic; it is important to shutter a new Cr rod from the device until the plastic has

been evaporated off and the chamber pressure reduced to base again. In addition, Cr and

Ti will also decrease the chamber pressure by bonding with oxygen molecules left behind

in the chamber. These metals are so-called “getters.” The chamber pressure is improved by

a Cr or Ti pre-evaporation done with the shutter closed. The pre-evaporation is done by

first turning on the power supply and pushing a current from one side of the rod or boat to

ground on the other side. This rapidly heats the rod or boat and the evaporation source will

begin to melt and eventually evaporate. See Figure A.18.

Figure A.18: A glowing tungsten boat with gold source inside

The evaporation of metal becomes obvious not only by the glowing source but also by

the evaporation rate reading a non-zero value. During the pre-evaporation, after the base
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pressure has lowered to a reasonable value, the sticky-layer evaporation may be done by

only opening the shutter until 3-5 nm of Cr or Ti has been evaporated. The current is then

turned to 0 A and the source switched to the conductive layer (gold). The program must

also be switched in order for the crystal oscillator to correctly track the film thickness. The

evaporation process is repeated with no need for pre-evaporation. This time, the shutter

may be opened as soon as a rate greater than 0.5 Å/s is reached. Once, the desired thickness

has been reached, the current may be zeroed. The chamber is vented and the devices and

sources are removed.

A.5.9 Liftoff

To remove polymer resist and excess metal film, the wafer is loaded into a low profile

petri dish and covered in acetone. The dish is placed on a hot plate at 50◦ C for 1 hour with

a lid to prevent full evaporation of the acetone. After an hour, much of the metal film will

be floating in the acetone and can be carefully removed with tweezers or a toothpick. While

still inside the acetone and under a stereoscope or long working-distance microscope, the

device should be inspected for areas where the metal film has connected the device contacts

or contact pads. If the area that is connected is large and far away from the device, it may

be possible to remove the metal film with tweezers or a toothpick. For obvious reasons, this

is not ideal. In addition, it may be necessary to sonicate the wafer for 1-3 seconds in the

acetone, spray acetone at the wafer, or aggressively stir the acetone with a plastic dropper.

None of these methods is particularly good for the device and often leads to broken contacts

or graphene that has rolled up. Sonication has perhaps the lowest probability of destroying

the graphene and spraying acetone directly at the wafer seems to have the largest probability

of rolling the graphene. After all excess metal has been removed from the wafer surface, the

wafer is dipped in isopropanol and dried with N2 gas.
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A.5.10 Hall-bar etching

For devices in which an etch step is necessary, either to remove multilayer graphene

connected to the monolayer or to shape the device into a Hall bar, another lithography

process must be completed. After the contacts have been evaporated and a successful liftoff

has occurred, the device is again spun with polymer resist. In this case, a large undercut is

neither necessary nor wanted so a single layer of PMMA 950 A4 will suffice. The alignment

marks from the contact evaporation are now in metal on the surface and can be reused. An

etch pattern is designed in DesignCAD and lithography and development are completed.

The wafer may then be loaded into either a Reactive Ion Etch system (as done for devices

in this work) or into an oxygen plasma asher. For an RIE system, with both power 100 W,

and gas flow rates of 5 sccm oxygen and 50 sccm argon, several layers are removed within 3

seconds. If thicker material is attached to the graphene or connecting contacts, it may be

necessary to do a double layer PMMA resist and oxygen etch for longer. Etches up to 10

seconds have been successfully performed under these conditions.

A.5.11 Graphene Cleaning

It may be prudent to clean residual resist off the surface of the graphene device. Some

work has been done with both vacuum annealing and AFM brooming. The effectiveness of

these procedures are examined in detail in Appendix B.

Vacuum cleaning processes are typically performed as follows: the device wafer is loaded

into the vacuum anneal chamber. Clips are installed for better thermal contact but have not

been proven to provide any measurable benefit. The chamber is sealed and pumping begins.

Once base pressure is reached, a halogen bulb directly above the chamber stage is turned on

by a main power switch controlled by a PID controller. The PID holds the bulb on until the

stage temperature reaches 350◦ C. During this process, water cooling flows through channels

156



near the outside of the chamber and around the o-ring sealing the chamber door. On/off

power to the bulb is controlled via the PID controller set to 350◦ C which runs continually

until main power is disabled. After the device has been at 350◦ C for either a short (15-30

minute) or long (1-3 hour) anneal, the switch controlling main power is disabled and the

chamber begins to cool. Once the temperature has lowered by 10%, the cooling water is

switched to a channel under the sample stage. After the stage and chamber has fallen below

50◦ C, the vacuum is turned off and the chamber vented. The device can then be removed

from the chamber. A photograph of this custom-built instrument is shown in Figure A.19.

Figure A.19: Front view of the custom-built thermal annealer equipped with rough and

turbo pump technologies, PID heat controls, and water cooling.

Another cleaning method used in this work is atomic force microscopy (AFM) brooming.
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To properly broom a graphene or other 2D device, one needs an AFM equipped with both

tapping and contact mode. The device is first imaged under medium-high resolution (512-

1024 lines at 0.5 Hz) in tapping mode. Because of the remnant polymer resist on the surface,

the tip is likely to stick in the polymer layer and either cause bad imaging or contaminate

the tip. In order to avoid this problem, the tapping tips used need to be of relatively high

force constant. We used tips that have a force constant of 19 N/m.

After initial imaging is completed, contact mode AFM tips must be loaded and engaged.

Because the tip will now be in contact with the graphene, it is important to have the

engagement location as close to the center of the device as possible. The device is rotated

to the closest rectangular position and scanned at minimum engage force to identify the

brooming region. It has been determined that our devices have large numbers of high

resistance (dead) contacts when the tips of the contacts are included in the brooming area.

For this reason, we extend the overlap region of the graphene to metal contact and attempt

to not broom the contacts as much as possible. After the central location has been chosen

and the scan window defined, we increase the force, scan speed, and number of lines. In some

AFM software, when scanning a rectangular region, the number of lines may be limited by

the number of samples per line and the aspect ratio. In this case, it maybe be necessary to

set an excessive number of samples per line in order to achieve the number of lines necessary

to properly broom. The optimal parameters for removing PMMA resist from graphene on

SiO2 are 40 nN and 2 Hz with the number of lines being calculated via:

n >
w

d
, (A.1)

where n is the number of lines necessary to fully broom the device, w is the width in the

direction opposite the scan direction, and d is the minimum diameter of the AFM tip. For

example, a rectangular graphene device that is 20 µm in the x-direction and 10 µm in the y-
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direction, being scanned along the x-direction with a 2 nm tip would need to be scanned with

more than 5000 lines. In a troublesome software, this may require setting the samples per

line to be greater than 10,000 samples in order to set the number of lines greater than 5,000.

For all devices in this document, AFM brooming was completed with a Bruker Dimension

Icon with ScanAsyst, as shown in Figure A.20.

Figure A.20: The Bruker AFM used for the broomed devices in this document was used in

collaboration with the Washington University in St. Louis Institute for Materials Science

and Engineering.
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Appendix B

Graphene cleaning procedures and

efficiencies

B.1 Abstract

In this Appendix, we have investigated the effect of multiple cleaning techniques commonly

used in standard fabrication of graphene Hall bar devices. Surface roughness measurements

were made on graphene flakes before and after standard electron beam lithography for contact

deposition and etch masking. While the surface roughnesses measured after AFM brroming

are comparable to those measured after vacuum or gas-aided annealing, our results indicate

that AFM brooming is a more reliable process for fabricating devices on SiO2.

B.2 Introduction

There are many ways that have been used to improve graphene surface cleanliness. Clean-

ing procedures typically include: vacuum annealing [134–139], hydrogen-argon or hydrogen-

nitrogen annealing [137, 139, 140], other gas-aided annealing [141], and current-induced
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annealing [142, 143]. In addition to cleaning residues off the surface of graphene, annealing

has also been shown to decrease (improve) the graphene-metal contact resistance of thin-film

contacts [140, 144, 145].

Cleaning methods are necessary because standard fabrication procedures, such as elec-

tron beam lithography for contact deposition, leave polymer residues on the surface of the

graphene devices. These residues are persistent even through vigorous annealing procedures

[123] to the point where the graphene must be damaged in order to remove almost all of

the residues. Here, we analyze the efficacy of using contact mode atomic force microscopy

(AFM) to broom polymer residue off the surface of the device. This technique has been used

for high mobility bilayer graphene devices on hexagonal BN [146] as well as for graphene

on substrates with high spin-orbit coupling [35] and other 2D measurements where clean

surfaces are required [147, 148]. This method has been well-characterized [149, 150]. We

use high resolution AFM imaging to measure surface roughnesses after AFM brooming and

compare the values to surface roughnesses of exfoliated flakes, flakes where polymer resist

PMMA was removed only by acetone soaking, and flakes with PMMA removed by annealing.

B.3 Methods

A Bruker Dimension Icon atomic force microscope (AFM) outfitted with ScanAsyst capa-

bilities was used to measure surface roughnesses of graphene. Due to the inherent stickiness

of PMMA residues, it was necessary to use tapping mode with TESPA-V2 tips with force

constant 19 N/m to achieve high resolution imaging. The resolution of such tips is about

7 nm. For each AFM image acquired, we used high resolution, scanning graphene devices

up to 50×50µm in area at 0.5 Hz with 1024 lines. For each area measured, we tuned the

amplitude such that the highest quality image could be taken.

To analyze the surface roughness of the area scanned, we used Gwyddion to correct
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for planar backgrounds, removed anomalies, and zeroed the scale range. Gwyddion surface

roughness calculations were taken in a variety of locations but it seemed most reasonable

to take the regions that optically looked like a usual graphene flake with or without residue.

In other words, areas where large cracks, folds, or anomalous dust were seen were ignored

during roughness calculations. In addition, we attempted to use self-consistent locations on

each flake measured and averaged the results from a few locations per flake.

There are two surface roughness measurements reported in this document: the arithmeti-

cal surface roughness and the root mean square (rms) surface roughness. The arithmetical

mean height of a surface Sa is defined as the absolute difference between the amplitude of

the peaks and valleys compared to the average surface height. The rms height Sq is, on the

other hand, the standard deviation of the peak and valley amplitudes. These are shown in

the following equations:

Sa =
1

A

∫∫
A

|Z(x, y)| dx dy (B.1)

Sq =

√
1

A

∫∫
A

|Z2(x, y)| dx dy, (B.2)

where Z(x, y) is the surface height function.

B.4 Results

In Figure B.1, we present AFM images for as-exfoliated graphene flakes. Clean areas of

these flakes have arithmetical mean height roughnesses (Sa) between 135 pm and 170 pm.

Further the rms roughness averages (Sq) are between 165 pm and 220 pm. Comparable

values were found using Bruker’s Nanoscope Analysis software.
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(a) 052918a1 (b) 052918a2

(c) 052918a4 (d) 052918c1

(e) 052918a3

Figure B.1: Examples of processed AFM images of exfoliated graphene flakes named (a)

052918a1, (b) 052918a2, (c) 052918a4, (d) 052918c1, and (e) 052918a3.

Furthermore, one flake with obvious tape residue was recorded and measured. The

roughness Sa (Sq) for this flake was around a 114% (108%) increase from the roughness of

clean graphene flake 052918a4. This flake is shown in Figure B.2.
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Figure B.2: An exfoliated graphene flake with tape residue confirmed by optical microscopy

has higher surface roughness than clean exfoliated graphene.

The first step in cleaning any fabricated graphene device is a liftoff step to remove excess

metallic film from the contact evaporation. For PMMA, this process involves a 1 hour soak

in acetone. Others have found that chloroform soak instead of acetone improves mobility of

graphene devices [135]. We soaked our devices in a low-profile dish of acetone at 50◦ C for

1 hour or more. AFM images of devices after this processing are shown in Figure B.3. It

should be noted that some of these devices were not fully fabricated but instead were spun

for lithography and cleaned via acetone without the metal evaporation step.

For devices that had PMMA removed by acetone soaking, the surface roughnesses were

as follows: Sa ranged between 450 pm and 1325 pm while Sq ranged between 830 pm and

2200 pm. Obviously, this is a large range, but the images in Figure B.3 show that PMMA

forms clusters or islands of varying sizes across the surface of the graphene. In addition, a
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fabricated device is included in Figure B.3 for comparison. Clear PMMA islands are also

seen on the fabricated device.

(a) 052918a1 (b) 121517a1

(c) 072117d1 (d) 080417e1

(e) 112917e1

Figure B.3: AFM images of graphene flakes or devices where PMMA was removed via warm

acetone soak.
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After AFM brooming, the graphene flakes and devices typically look much cleaner in

AFM images. Furthermore, there is an obvious boundary where the PMMA piled up at the

edges of the broom region. This is shown in Figure B.4. The roughness of well-broomed

graphene drop to nearly the original roughness of an exfoliated graphene flake. The rough-

nesses measured range from 140 pm to 225 pm for arithmetical surface roughness and 185

pm to 300 pm for rms surface roughness. If the flake shows evidence of not being broomed

well, such as the flake shown in Figure B.5, the surface roughnesses are higher at around 295

pm for for arithmetical surface roughness and 375 pm for rms surface roughness.

(a) 052918a1 (b) 121517a1

(c) 052918a3

Figure B.4: AFM images of graphene flakes and a graphene device after brooming.
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Figure B.5: Occasionally brooming is unsuccessful and the device shows either PMMA islands

left behind on the surface, wrinkles or cracks that were previously hidden by the PMMA, or

odd smearing effects such as is shown here.

A graphical comparison of the arithmetical surface roughness values is shown in Figure

B.6. From this graph, it is obvious that AFM brooming significantly improves the graphene

surface. The various markers and names correspond to different samples used in this study.

To compare the efficiency of AFM brooming to other commonly used cleaning methods

in graphene, we also studied the surface roughness of graphene after short and long vacuum

anneals as well as after gas anneals. For short vacuum anneals, we used the method described

in Appendix A.4.11 where a 15 minute anneal was performed in vacuum at 350◦ C. The

surface was then studied via the same AFM tapping mode imaging as was done for other

flakes and devices. The surface roughness of devices that underwent short vacuum anneals

were low and of similar values to those that were cleaned by AFM brooming. For example,

the Sa values for short vacuum annealed devices was between 200 pm and 235 pm.

In order to test methods used by other groups, we also chose to measure the roughness

after a few long (>1 hour) vacuum anneals. The surface roughness values for this cleaning
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method was similarly low with Sa values from 220 pm to 300 pm. Similarly, other groups

have used hydrogen-argon anneal processes to clean graphene devices. We also tried this

and measured arithmetical surface roughness values ranging from 150 pm to 210 pm.

Figure B.6: The arithmetical surface roughness of graphene as-exfoliated, after an acetone

soak to remove PMMA, and after AFM brooming.

In similar fashion to Figure B.6, we then present Figure B.7 which chronologically shows

device improvement from the acetone step, through an AFM broom step, followed by a

4 hour vacuum anneal. Even the AFM broomed region is no longer obvious after a long

vacuum anneal because the thick PMMA boundary has been removed.

However, in all devices that were vacuum annealed, whether for 15 minutes or longer,

the graphene mobility has been incredibly low, especially in comparison to other devices

fabricated alongside them. For example, in Figure B.8, we see the graphene Dirac peak of a

vacuum annealed device. The full width half maximum (FWHM) of the Dirac peak is wide
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(more than 40 V as compared to 10 V for standard graphene on SiO2) and located far from

0 V in gate voltage. This indicates that while the vacuum anneal is removing the PMMA

residue from the surface something else is occurring. We propose that regular graphene flakes

exfoliated on SiO2 are loosely bound to the surface of the SiO2 such that the graphene only

partially conforms to the substrate. After high temperature vacuum anneals, it is possible

that the graphene more closely conforms to the SiO2 surface giving a low roughness because

of lack of contaminants on both the graphene and SiO2 but a low mobility because of its

close coupling to the low mobility oxide.

(a) acetone (b) AFM broom (c) vacuum

Figure B.7: AFM images of graphene flakes after an acetone soak, an AFM broom, and a

4-hour vacuum anneal. The broomed window shows obvious improvement comparable to

the improvement shown after a long vacuum anneal.

Furthermore, Figure B.9 provides the surface roughness values for devices cleaned by

vacuum and hydrogen anneals in comparison to acetone cleaning and AFM brooming. An

important note about Figure B.9 is the tagged data point indicating a very high surface

roughness (green circle) after a hydrogen anneal. After examining this device in AFM tapping

mode, it was obvious that there was some PMMA residue left behind on the graphene that

was not fully removed by hydrogen annealing. This device is shown in Figure B.10 before

and after annealing and we believe that the reason this PMMA could not be removed was
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a hardening process that occurred during RIE plasma etching for the Hall bar shape of the

device. Indeed, there is often an optically green residue left behind on much of the wafer

when an etching process has been completed. None of the anneal processes tried in this work

were capable of removing this layer. Perhaps a longer, more aggressive anneal could remove

this layer but subsequent vacuum anneals did not. On the other hand, AFM brooming seems

to have fully removed the hardened PMMA on both this device and other test devices.

Figure B.8: The graphene resistance versus applied gate voltage of a vacuum anneal graphene

device. Because of the broadness of the peak,we know that the mobility is low. In addition,

the peak is located far from 0V which made it less useful for the osmium adatom project, in

which hole doping moves the Dirac peak to the right.

In addition, hydrogen anneals also seems to cause degradation of the thin-film metal

contact layer as shown in Figure B.11.
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Figure B.9: The arithmetical surface roughness of graphene as-exfoliated, after an acetone

soak to remove PMMA, after AFM brooming, and after anneals.

(a) after acetone (b) after anneal (c) after broom

Figure B.10: Under an optical microscope, a green layer of hardened PMMA is visible and

this layer is not entirely removed by vacuum or hydrogen annealing. For this device, a

hydrogen anneal was used but vacuum annealing was tested on other devices with similar

results. AFM brooming easily removes this hardened PMMA layer.
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Figure B.11: The metal bond pads and wires attached to graphene are destroyed by

hydrogen-argon and oxygen-argon anneals. Longer times at these temperatures causes the

holes in the metal film to further degrade in a dendritic structure.

B.5 Conclusions

In conclusion, we have measured the surface roughness of graphene using AFM tapping

mode images of high resolution to prove the efficiency of AFM brooming (also called AFM

ironing) for cleaning the surface of graphene from polymer resist PMMA 495 and PMMA

950. In all devices measured, the surface roughness was significantly improved by AFM

brooming. Indeed, in an optically well-broomed region, the surface roughness reverts to

nearly the roughness of as-exfoliated graphene flakes.
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In addition, we have found that vacuum and gas-aided anneal processes also reduce the

surface roughness to nearly the roughness of as-exfoliated flakes and give optically clean sam-

ples. However, vacuum annealing negatively affects the mobility of graphene on SiO2. This

could be addressed by placing the graphene flakes on a substrate such as hexagonal boron

nitride. In addition, neither vacuum annealing nor hydrogen annealing proved capable of

easily removing hardened PMMA residue resultant of oxygen plasma etching. Furthermore,

because these devices are open-faced graphene, oxygen annealing is not an option, because

the oxygen quickly etches away the graphene. For these reasons, AFM brooming was the

most efficient surface cleaning technique found for graphene on SiO2.
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Appendix C

Lithium adatoms on graphene

C.1 Introduction

Lithium adatoms on graphene are predicted to transform graphene into a superconduct-

ing state [96]. In conjunction with a collaborative project on lithium intercalation into

zirconium telluride, lithium adatoms on graphene have been measured. Unfortunately, no

evidence of superconducting states in the graphene were found.

C.2 Methods

For lithium adatoms, the graphene devices were fabricated as discussed in previous chap-

ters and Appendix A. Graphene was exfoliated onto SiO2 wafers, contacts were made by

electron beam lithography and thermal evaporation, and etched into Hall bar shapes by

reactive ion etching. Polymer resist from lithography was removed via acetone soak during

liftoff and subsequent AFM brooming. Unfortunately, for the device measured, the AFM

brooming done was not sufficient to result in a high mobility graphene device. Indeed, the

initial mobility of the as-made graphene device was only about 5,000 cm2/Vs.
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For lithium, the methodology of adatom deposition is much like that of tungsten or

osmium. Lithium is highly reactive with air (particularly oxygen) and thus must be ap-

propriately handled. However, because lithium has a much lower melting temperature than

osmium or tungsten, the lithium source material can be added to the tungsten wire sources

without any plasma coating, growth, or evaporation procedures.

Instead, in a high purity argon glove box, a small piece of lithium source material is cut

and contained in a custom-built crucible. The crucible is machined such that it resembles

a flat-bottomed bowl with a slit extending the width of the bowl and placed on a hotplate

at 200◦ C. The bowl will hold the melted lithium source material and the slit is aligned

with the tungsten wire. The wire is then lowered into the lithium source repeatedly until a

visible piece of lithium has adhered to the tungsten wire. Lithium is a material that does

not lose its shape close to the melting point, so the cut source material may not appear to

have changed from its regular solid form. However, after the crucible has been on the hot

plate for several minutes, the lithium will be softened considerably and the wire will easily

travel through it. For an adequate though rough comparison of this process, imagine cutting

softened butter with an electrical wire held by tweezers while wearing oven mitts.

After the lithium source wires have been made, small pieces of colored tape are attached

to both ends of the tungsten and they are loaded into small vials. These vials are tightly

closed and enclosed in a secondary, also tightly closed, plastic container. This container is

removed from the glove box and stored in a continuous-flow nitrogen box. Loading them into

the adatom dipper thermal evaporator is the last step before closing and pumping out the

dilution fridge. This involves placing the entire dipper, while hanging from its appropriate

plate on the fridge, in a bath of argon. When closing the fridge, great care was taken to fill

the still shield and magnet core with argon then flow more argon into the still shield while

the remaining temperature shields were put in place. The argon flow was only removed near

the last step when the entire chamber would soon be pumped out.
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During the experiment, these wires were used in the same manner as the osmium-coated

tungsten wires with the exception that the current necessary to cause lithium evaporation

was much lower than the current used for osmium or tungsten adatoms.

C.3 Results

In Figure C.1, the measured transport after each lithium evaporation and stage warm-

up is shown. Because the Dirac peak shifts to the left, lithium adatoms electron dope the

graphene, donating an electron which leaves a charged lithium ion on the graphene surface.

Furthermore, each of the lithium evaporations also decrease the mobility of graphene. Most

stage warm-ups remove some of the lithium from the graphene, causing the Dirac peak to

shift rightward again but even after two room temperature (RT) warm-ups, the initial device

transport is not recovered. This indicates that not all of the lithium is removed from the

graphene during the room temperature warm-ups.

Figure C.1: Dirac peak evolution as lithium is added and the device is warmed.
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We also studied the power law relationship of the change in the Dirac peak location to the

change in the mobility. This is shown in Figure C.2 where the blue fit line (on a logarithmic

plot) includes all of the data points and the red fit line is an approximate fit excluding the

leftmost outlier. Based on the fit parameters given being less than 1, we do not believe

that the lithium adatoms are clustering on the graphene. Indeed, if we use the red fit line,

then the power law exponent b is consistent with point-like charged impurity scatterers. In

addition, during most stage warm-ups, the Dirac peak shifts to the right which indicates

either that the lithium is being removed from the surface or that it is falling into equilibrium

positions. Finally, based on this change in the Dirac point gate voltage, we also calculated

the deposition density of the lithium adatoms to be about 25×1012 cm−2.

Figure C.2: The change in the Dirac point gate voltage and the change in the inverse mobility

for two fitting equations.
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C.4 Conclusions

The discussion of graphene undergoing a superconducting transition when decorated with

lithium adatoms is an intriguing prediction. While we were unable to see such a transition in

the preliminary reported data, there is much room for improvement in further investigations.

In particular, this experiment should be extended below 4 K since the superconducting

transition for graphene with lithium adatoms as occurs around 1 K. In addition, graphene

with a higher initial mobility may be less affected by the initial scattering distribution and

thus more affected by proximity to adatoms such as lithium.
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