Washington University in St. Louis

Washington University Open Scholarship

Arts & Sciences Electronic Theses and Dissertations

Arts & Sciences

Summer 8-15-2019

Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior Using Mouse Models and Human Genetics

Nathan David Kopp Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Genetics Commons, and the Neuroscience and Neurobiology Commons

Recommended Citation

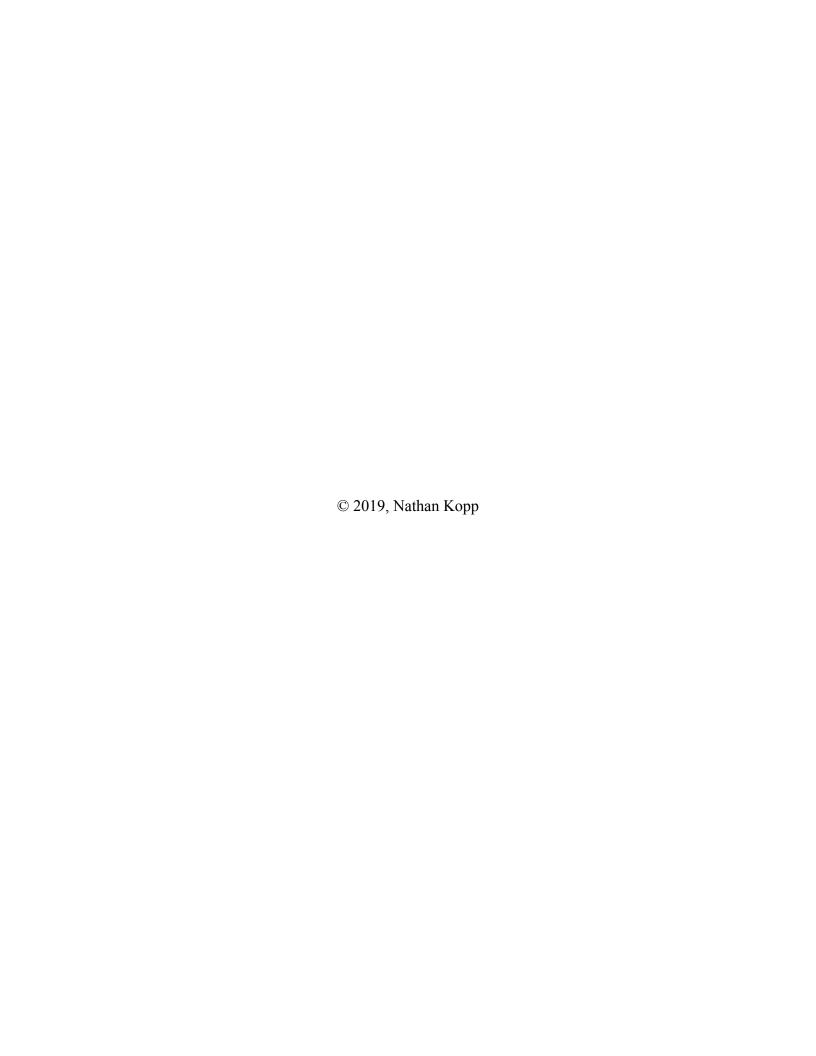
Kopp, Nathan David, "Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior Using Mouse Models and Human Genetics" (2019). Arts & Sciences Electronic Theses and Dissertations. 1779.

https://openscholarship.wustl.edu/art_sci_etds/1779

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

WASHINGTON UNIVERSITY IN ST. LOUIS

Division of Biology and Biomedical Sciences Human and Statistical Genetics


Dissertation Examination Committee:
Joseph Dougherty, Chair
Yehuda Ben-Shahar
Don Conrad
Harrison Gabel
Christina Gurnett
Beth Kozel

Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior
Using Mouse Models and Human Genetics

by Nathan Kopp

A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

> August 2019 St. Louis, Missouri

Table of Contents

List of Figures	V
List of Tables	vii
Acknowledgments	ix
Abstract of the Dissertation	xii
Chapter 1: Introduction	1
1.1 History and description of Williams syndrome	3
1.2 Genotype-phenotype correlations using human genetics	6
1.2.1 Atypical deletions	7
1.2.2 Human induced pluripotent stem cell (iPSCs) studies	10
1.2.3 Human general population association studies	14
1.3 Introduction to the general transcription factor 2I family	16
1.3.1 General background on the GTF2I family	17
1.3.2 Mouse models of Gtf2i and Gtf2ird1	23
1.4 Conclusions	29
Chapter 2: Exome sequencing of 85 Williams Beuren syndrome cases rules out coding vari	
as a major contributor to remaining variance in social behavior	31
2.1 Abstract	32
2.2 Introduction	33
2.3 Results	36
2.3.1 SRS variability in Williams syndrome.	36
2.3.2 Identification of variants in the Williams syndrome critical region	38
2.3.3 Association analyses	39
2.4 Discussion	43
2.5 Materials and Methods	49
2.6 Acknowledgments	55
2.7 Figures	56
Chapter 3: The effects of <i>Gtf2ird1</i> and <i>Gtf2i</i> DNA binding on transcription and behavior supports the important function of the N-terminal end of <i>Gtf2ird1</i>	85
3.1 Abstract	86
2.2 Introduction	96

3.3 Results	88
3.3.1 Gtf2i and Gtf2ird1 bind at active promoters and conserved sites	88
3.3.2 Gtf2i and Gtf2ird1 binding sites have distinct features yet overlap at a subset of promote	ers 91
3.3.3 Frameshift mutation in <i>Gtf2ird1</i> results in truncated protein and affects DNA binding at <i>Gtf2ird1</i> promoter	
3.3.4 Truncated Gtf2ird1 does not affect binding genome wide	
3.3.5 Gtf2ird1 frameshift mutation shows mild transcriptional differences	
3.3.6 Frameshift mutation in <i>Gtf2ird1</i> is sufficient to affect behavior	
3.3.7 Generation of <i>Gtf2i</i> and <i>Gtf2ird1</i> double mutant	
3.3.8 Knocking down both <i>Gtf2i</i> and <i>Gtf2ird1</i> produces mild transcriptome changes	
3.3.9 Double mutants show similar behavioral consequences similar to single <i>Gtf2ird1</i> mutan	
3.4 Discussion	101
3.5 Materials and Methods	
3.6 Acknowledgements	
3.7 Figures	
Chapter 4: <i>Gtf2i</i> and <i>Gtf2ird1</i> mutation are not sufficient to reproduce mouse phenotypes by the Williams syndrome critical region	caused
4.1 Abstract	
4.2 Introduction	
4.3 Results	
4.3.1 Generation and validation of <i>Gtf2i</i> and <i>Gtf2ird1</i> loss of function mutation on the same chromosome.	
4.3.2 Gtf2i* mutation is not sufficient to reproduce WSCR-mediated alterations of vocal communication	143
4.3.3 Gtf2i* mutation is not sufficient to reproduce WSCR-mediated alterations of social behavior	
4.3.4 <i>Gtf2i*</i> mutation is not sufficient to reproduce WSCR mediated alterations of motor behavior	
4.3.5 WSCR mutation does not produce robust anxiety-like behaviors	151
4.3.6 Gtf2i* mutation is not sufficient to reproduce WSCR mediated alterations of fear condit	_
4.3.7 <i>Gtf2i*</i> mutation is not sufficient to reproduce WSCR mediated alterations of hippocamp expression.	
4.4 Discussion	157

4.5 Materials and Methods	167
4.6 Acknowledgments	188
4.7 Figures	189
Chapter 5: Conclusions and Future Directions	207
5.1 Significance	208
5.2 Future directions	210
5.2.1 Human studies	210
5.2.2 Gtf2i and Gtf2ird1 mouse studies	211
5.3 Summary	213
References	214

List of Figures

Chapter 2

Figure 1: Distribution of Social Responsiveness in 85 individuals with typical WS deletion	56
Figure 2: Power analysis	57
Figure 3: Variants in the WSCR, ASD genes, or whole exome do not contribute to SRS variability in a sample of WS with typical deletions	58
Supplemental Figures	
Supplemental Figure 1: Polygenic Risk Score correlation with SRS and SRS subscores	60
Supplemental Figure 2: SRS and sub scales are correlated	61
Chapter 3	
Figure 1: Gtf2ird1 binds preferentially to promoters in conserved, active sites in the genome1	17
Figure 2: Gtf2i binds at promoters in conserved, active sites in the genome	18
Figure 3: Comparison of Gtf2ird1 and Gtf2i binding sites	19
Figure 4: Frameshift mutation in Gtf2ird1 exon three results in a decreased amount of an N-truncated protein with diminished binding at Gtf2ird1 promoter and has little effect on transcription in the brain.	20
Figure 5: Homozygous Frameshift mutation in <i>Gtf2ird1</i> is sufficient to cause behavioral phenotypes	22
Figure 6: Mutating both <i>Gtf2i</i> and <i>Gtf2ird1</i> does not result in larger differences in brain transcriptomes	23
Figure 7: Gtf2i does not modify the phenotype of Gtf2ird1 mutation	24
Supplemental Figures	

Supplemental Figure 1: Differential peak binding comparing the WT and homozygous Gtf2i IP	125
Supplemental Figure 2: RNA-seq analysis of E13.5 brain comparing the WT and <i>Gtf2ird1</i> ^{+/-} mutants	125
Supplemental Figure 3: The effects of frameshift mutation in <i>Gtf2ird1</i>	26
Supplemental Figure 4: RNA-seq analysis of homozygous double mutant	26
Supplemental Figure 5: Biochemical and behavioral characterization of the $Gtf2ird1^{+/-}$ x $Gtf2ird1^{+/-}$	
Chapter 4	
Figure 1: Generation of double mutant <i>Gtf2i*</i> model	189
Figure 2: CD mice have deficits in ultrasonic vocalizations and decreased social investigation.	190
Figure 3: CD mice have motor deficits.	191
Figure 4: CD mice have more severe contextual fear phenotypes than double mutants1	192
Figure 5: CD mice have altered mRNA for synaptic genes in a hippocampus transcriptome1	93
Figure 6: Human atypical deletions support oligogenic contribution of genes in the WSCR to phenotypes	94
Supplemental Figures	
Supplemental Figure 1: Generation of loss of function mutations in Gtf2i and Gtf2ird11	195
Supplemental Figure 2: Social behaviors in CD and <i>Gtf2i*</i> mutants	196
Supplemental Figure 3: Motor and anxiety phenotypes in double mutants and CD animals1	197
Supplemental Figure 4: Contextual fear and shock sensitivity in WS mutant models	198
Supplemental Figure 5: Small changes in hippocampal transcriptomes of WS models	198

List of Tables

Chapter 2

Table 1: Annotation of 55 exonic variants discovered in the WSCR
Table 2: Top five SNPs from quantitative trait locus associations
Supplemental Tables
Supplemental Table S1: Annotation of 120 variants discovered in the Williams syndrome critical region
Supplemental Table S2: Genetic variants in 71 genes associated with autism spectrum disorder
Supplemental Table S3: Top 5 SNPs for each SRS subscore for variants in the Williams syndrome Critical Region
Supplemental Table S4: Top 5 SNPs for each SRS subscore for variants in 71 genes associated with Autism spectrum disorder
Supplemental Table S5: Top 5 SNPs for each SRS subscore for variants discovered across the whole exome
Chapter 3
Table 1: Behavior and animal cohort for <i>Gtf2ird1</i> ^{+/-} x <i>Gtf2ird1</i> ^{+/-}
Table 2: Behavior and animal cohorts for the Gtf2ird1 ^{+/-} x Gtf2i ^{+/-} /Gtf2ird1 ^{+/-}
Supplemental Tables
Supplemental Table S1: Table of summary statistics and statistical tests
Chapter 4
Table 1: Behavior and animal cohorts for the <i>Gtf2i</i> * x CD cross
Supplemental Tables

Supplemental Table S1: Supplemental figures statistic table	200
Supplemental Table S2: Random GO enrichments for CD-WT comparison	202
Supplemental Table S3: Random GO enrichments for <i>Gtf2i*</i> -WT comparison	.203
Supplemental Table S4: Primers for CRISPR sgRNA, validation, and IVT	203
Supplemental Table S5: Genotyping and RT-qPCR primers	204
Supplemental Table S6: Main figures statistic table	205

Acknowledgments

Many people have helped me achieve the work that is included in this thesis and I could not have done it without them. First, Dr. Joe Dougherty provided amazing support and mentorship. He helped guide me and taught me how to be a better scientist. Joe fostered an amazing lab culture where we worked hard but also had a good time. There are many people in the Dougherty Lab that also contributed to my scientific growth and my well-being while in the lab. I would especially like to thank Michael Rieger, Kristina Sakers, and Susan Maloney. They each taught me valuable lessons and always made sure I was producing good science while having a good time.

I have made many friends throughout graduate school that have encouraged me and pushed me. My Human and Statistical Genetics Cohort included Matt Bailey, Beth Ostrander, and Renee Sear. We all helped each other and our relationships made working hard in graduate school more fun. I was also fortunate enough to find people that enjoyed eating lunch with every day so we could talk about our work, but also utilize that time to take our minds off of what we were struggling with. I also want to thank the Open Reading Frames book club. It was great to share my thoughts on a wide variety books with such a great like-minded yet diverse group of people.

I would like to thank my family for all the support and love they have giving me. My Dad has been an unwavering example of how patience and hard work can pay off. My mother has taught me to be fearless and confident. My three older siblings have helped me mature and also

made sure I was having a good time. My family's successes have always motivated me to be the best I can.

Finally, I need to thank Gregory Scheetz Jr. He has kept me smiling and as calm and optimistic as possible throughout graduate school. Throughout the late nights, weekend experiments, and the waiting in the car while I run into the mouse house, Greg has been there and encouraged me. He is a great caregiver not only to me, but our two kitties Atticus and Ophelia, who I also must thank for their cuddles and keeping me happy. Greg has helped me reach my greatest potential and for that I am very grateful

Nathan Kopp

Washington University in St. Louis

August 2019

Dedicated to my family and Gregory Scheetz Jr.

ABSTRACT OF THE DISSERTATION

Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior

Using Mouse Models and Human Genetics

by

Nathan Kopp

Doctor of Philosophy in Biology and Biomedical Sciences
Human and Statistical Genetics

Washington University in St. Louis, 2019

Professor Joseph D. Dougherty, Ph.D. Chair

Williams syndrome is a neurodevelopmental model caused by the deletion of 26-28 genes on chr7q11.23. The loss of these genes affects multiple organ systems resulting in severe cardiovascular disease, craniofacial dysmorphology, intellectual impairment, a specific Williams syndrome cognitive profile made up of deficits in visual-spatial processing with preserved language skills, and a characteristic hypersocial personality. The reciprocal duplication occurs at a lower frequency and manifests with diametric phenotypes to the deletion. This suggests that this locus harbors dosage sensitive genes that play a role in neurodevelopment. Large efforts have been taken to identify which genes are responsible for causing the different aspects of the disorder. Only the cardiovascular phenotype has been linked to the hemizgosity of the *ELN* gene. In order to incorporate the complexity of genetic contributions to complex traits, we synthesize genetic and behavioral analyses in both humans and mouse models. We performed whole exome sequencing on 85 individuals with Williams syndrome to test the hypothesis that genetic variation on the remaining chr7q11.23 allele contributes to variation in the social phenotype. We

show that the social phenotype consists of deficits in several aspects of social behavior, but social motivation is preserved in Williams syndrome. Whole exome sequencing revealed that there is little common variation contribution to the variability of the social phenotype but did suggest involvement of SNPs in the *BAZ1B* and *GTF2IRD1* genes. Using mouse models, we generated three new mouse lines to test the hypothesis that two genes in the syntenic region, *Gtf2i* and *Gtf2ird1*, share overlapping DNA targets and both contribute to overlapping behavioral phenotypes suggesting an oligogenic contribution of these genes to phenotypes relevant to WS. Finally, we show that loss of function mutations in both *Gtf2i* and *Gtf2ird1* are not sufficient to reproduce the full phenotype that is produced by deleting the entire syntenic Williams syndrome critical region in mice. Taken together these data suggest an oligogenic pattern of contribution to the phenotypes seen in WS.

Chapter 1: Introduction

The aim of human genetics is to identify the genes that contribute to human biology. This approach will allow us to study the underlying mechanisms that manifest as interesting human phenotypes, such as our complex central nervous system, which gives rise to many diverse behaviors. Geneticists have developed and employed many approaches to elucidate genes that are important for specific human traits. These include linkage analysis, genome-wide association, whole-exome sequencing studies, and whole-genome sequencing studies. These tools have driven the progress of genotype-phenotype correlations and resulted in many important discoveries.

Along with sophisticated approaches, human genetics has been informed by identifying genes that cause human diseases. The underlying genetic causes of the disorder highlights the functional pathways in which the causal gene plays an important role. From these natural experiments the genetic search space is narrowed from the 3 billion base pairs that make up the human genome to a specific gene that can then be studied at different levels of genomic and biological organization. Some disorders are not caused by the disruption of one gene, but by a change in the dosage of many contiguous genes. These copy number variation disorders point to a region in the genome that affect multiple aspects of human development, such as neurodevelopment, cardiovascular development, and craniofacial development. However, copy number disorders offer a unique challenge, because while they emphasize the importance of a specific genomic region, there are still many genes and many phenotypes to disentangle. The

question then becomes, which genes in the region are responsible for causing the specific phenotypes seen in the disorder.

Williams-Beuren syndrome (WS) is one such copy number variation disorder. It is caused by the deletion of chromosome 7q11.23, referred to as the Williams syndrome critical region (WSCR), and results in a constellation of phenotypes that include cardiovascular disease, craniofacial dysmorphology, a specific cognitive profile, and a characteristic hypersocial personality (1, 2). There are 26-28 genes that are commonly deleted in WS. Large efforts have been put forth to connect specific genes in the region to specific phenotypes in the syndrome. The only substantiated monogenic contribution of a causal gene in the WSCR is to the cardiovascular phenotype driven by the elastin gene (*ELN*) (3), leaving much more work to be done to understand how the genes in this region affect complex phenotypes such as cognition and social behavior.

The research presented in this thesis uses both human genetic techniques as well as mouse models to dissect the effect of genes in the WSCR on different aspects of behavior. I analyzed the whole-exome sequences of 85 individuals with WS to test if variation on the remaining chr7q11.23 allele, as well as exome-wide variation, contributes to the social phenotype, providing the largest genetic analysis of individuals with WS. I have also leveraged the experimental advantages of the mouse model organism to ask how two genes in the WSCR, *Gtf2i* and *Gtf2ird1*, interact in the developing mouse brain. I go on to show that in the mouse, these genes are not sufficient to produce the behavioral and transcriptional phenotypes of the full deletion. I have tested several longstanding hypotheses in the field of Williams syndrome genetics through my experiments and provide evidence that the genetic risk for the phenotypes observed in WS are not solely driven by these two transcription factors.

1.1 History and description of Williams syndrome

Williams-Beuren syndrome (OMIM #194050) was first recognized as a syndrome by two physicians in the early 1960's. First, in 1961 Williams *et al.* described four cases of children that were being treated for supravalvular aortic stenosis (SVAS). Williams observed that the children were "mentally deficient" and had similar facial features. He thought the similarities could be a part of a previously unrecognized syndrome (4). In 1962 Bueren *et al.* described three more patients that had SVAS, intellectual disability, and craniofacial features that were remarkably similar to the patients described by Williams *et al.* Beuren mentioned that all the children had a friendly nature and "loved everyone" (5). This observation is the first description of the gregarious personality that is now recognized as a hallmark of WS.

Since the association between the cardiovascular disease, intellectual disability, and craniofacial features made by Williams and Beuren, the genetic etiology of WS has been well-defined. The *ELN* gene on chromosome seven was discovered to be the cause of familial SVAS, in a linkage analysis of one kindred (6). Subsequently, it was shown that individuals with WS were hemizygous for the *ELN* gene and that the hemizygosity extended beyond the *ELN* locus, suggesting that WS is caused by a contiguous deletion on chromosome seven (3). These findings lead to the use of *ELN* FISH probes as the first clinical genetic test for WS (7). Using artificial chromosomes the 1.5Mbp region on chromosome seven that is deleted in WS has been delineated (8–10). The region contains 26 genes that are commonly deleted and two more genes that are deleted in the longer 1.8Mbp version of the deletion. The WSCR was found to be demarcated by three regions of low copy repeats: the centromeric, medial, and distal regions (9, 11). Within each region there are three blocks that consist of repeated genes. Block A contains the three pseudogenes of the *STAG3* gene, *PMS2L*, and *GATS*. The medial block B contains the

functional genes *GTF2I*, *NCF1*, and *GTF2IRD2*, where the centromeric and telomeric block B contains the corresponding pseudogenes. Block C contains *POM121*, *NSUN5*, and *TRIM50* (11). The low copy repeat blocks themselves are demarcated by Alu repeats. These low copy repeats facilitate non homologous allelic recombination (NHAR), which leads to the recurrent deletion and duplication of the region (12). The most common 1.5Mbp deletion, which occurs in about 95% of cases, is caused by misalignement of the B centromeric and B medial blocks, which have 99.6% sequence identity. The less common larger 1.8Mbp deletion, with a prevalence of 3-5% of cases, occurs by the misalignment of the A centeromeric and A medial blocks, which have 98.2% sequence identity (13). This well-defined and common genetic cause of most cases of WS makes studying this disorder an excellent opportunity to make genotype-phenotype correlations.

Along with the well-characterized genetic cause of WS, the phenotypic spectrum of the constellation of symptoms in WS has been thoroughly described and reviewed by many researchers (1, 2, 13–16). The cardiovascular disease in WS manifests as SVAS as well as other focal artery stenoses and affects all elastic vessels. Other issues also relate to connective tissues such as lax skin and join hypermobility have been attributed to *ELN* haploinsufficiency. The facial dysmorphology consists of periorbital fullness, long philtrum, full lips, stellate irises, low nasal bridge, micrognathia, microcephaly, and dental problems. The deletion also affects the endocrine system and results in precocious puberty, subclinical hypothyroidism, and an increased prevalence of diabetes milletus. Neurological symptoms include poor balance and coordination, hypotonia, and hyperacusis.

Of particular interest to this thesis are the cognitive and behavioral phenotypes of WS.

The deletion of the WSCR has a specific effect on cognition and this gestalt is termed the Williams syndrome cognitive profile (WSCP). Individuals with WS have a wide range of

intellectual ability as measured by different tests for intelligence quotient (IQ). IQ scores span from severe intellectual disability (ID) to average scores of IQ. Despite overall lower levels of IQ the WSCP consists of relative strengths in auditory rote memory and verbal skills coupled with impairment in visual spatial construction. The definition of the WSCP was standardized by Mervis et al. (17). Along with a specific cognitive profile, WS is associated with a characteristic hypersocial personality (14). The social aspect of WS consists of increased attention to faces. Eye tracking studies have shown that individuals with WS fixate on eyes for longer periods of time compared to typically developing children (18). In observational studies, children with WS tend to focus on the experimenter rather than toys (14). Individuals with WS are more likely to approach strangers and have overall increased global sociability as measured by the Salk Institute Sociability Questionnaire (19). While there are prosocial aspects to the hypersocial phenotype of WS, it also consists of a maladaptive component. Individuals with WS have difficulties in social cognition and responding appropriately in social situations (20). Beyond differences in sociality, individuals with WS have other psychiatric comorbidities, that include anxiety, specifically non social anxiety, phobias, and attention deficit/hyperactivity disorder (ADHD) (21, 22). Thus, the constellation of symptoms that make up WS gives geneticists a unique window into the genetic underpinnings of many different aspects of human cognition and behavior.

The presence of the low copy repeats that are responsible for the recurrent deletion of the WSCR should also predispose the region to duplications. The first case of an individual with the duplication was described in 2005 (23). The duplication of the region results in dup7q11.23 syndrome (OMIM #609757). The symptoms of 7q11.23 have been described by Mervis and Morris (24, 25). The phenotypes are generally more mild than in the deletion of the region. Mild

craniofacial dysmorphology has been reported but it is not as consistent as in WS. There are some cases that have cardiovascular anomalies that present as dilated blood vessels. However, the most consistent phenotype of the duplication is language delay. The duplication has been associated with autism spectrum disorders (ASD) (26), but in a rigorous study of ASD symptomology in 7q11.23 dup syndrome and WS, it was found there is a similar prevalence of ASD diagnosis in both disorders (27, 28). However, in contrast to the social fearlessness in WS, it was reported that there is a higher proportion of children with the duplication that have separation anxiety (29). The observation of some diametric phenotypes in 7q11.23dup syndrome compared to WS corroborates the idea that genes in this region are dosage sensitive and affect aspects of human behavior. One goal of the work I have done was to use human genetics to provide evidence for the role of specific genes in the WSCR to the behavioral phenotypes.

1.2 Genotype-phenotype correlations using human genetics

The knowledge that the WSCR causes WS and dup7q11.23 has launched many efforts to try and dissect the region to identify which genes are responsible for specific symptoms in each disorder. One avenue of research has been to make these genotype-phenotype correlations directly in humans. Human research in WS has employed three strategies: 1) compare individuals with atypically small deletions of the WSCR to individuals with the typical deletion to ask what the differences are when some genes are spared, 2) use iPSC lines derived from patients with WS, dup7q11.23, and atypical deletions to test molecular and cellular effects of the region, and 3) using classical human genetic strategies to identify variation in the general population in this region that is associated with phenotypes of interest. While each strategy has unique benefits and limitations, each has provided insight into the genetic contributions of the WSCR to different phenotypes seen in WS.

1.2.1 Atypical deletions

WS is caused by the deletion of 1.5Mbp, which covers 26 genes, in 95% of cases. In 3-5% of cases of WS, a 1.8Mbp deletion removes one copy of two more genes, *NCF1* and *GTF2IRD2*. In addition, there are a very small percentage of cases that are caused by atypically small deletions that maintain the normal copy number of a subset of genes. Researchers have explicated the different phenotypes of individuals with atypical deletions to understand the contribution of the spared genes to the phenotypes observed in typical cases of WS.

While most cases of WS are caused by *de novo* deletions, there are instances of smaller inherited deletions that allow the study of atypical deletions across several family members. Two families were ascertained based on the presence of SVAS and only a few clinical features of WS. These families were tested to show that they had smaller deletions that encompassed the ELN gene and the LIMK1 gene. The phenotypes of the family members that had the deletion included cardiovascular disease, usually SVAS, a few of the craniofacial features of WS but not all of them, and deficits in their visual spatial cognition with auditory rote memory similar to the unaffected family members, consistent with the WSCP (30). This, along with expression data showing that LIMK1 is present in the brain, led the authors to conclude that the LIMK1 gene is important for the manifestation of the visual spatial impairment (30). Another study analyzed the two aforementioned families and three more kindred with inherited small deletions. The three new deletions all included ELN and LIMK1, and either extended centromerically or telomerically. All of the family members had two copies of the GTF2I gene. The affected members in each kindred had some craniofacial features, and fit the WSCP with poor visual spatial cognition. All affected family members had similar overall IQ that was in the normal range. These data gave further support that the LIMK1 gene is sufficient to cause the visual

spatial deficit, and since none of the deletions included the *GTF2I* gene, this gene was considered important for contributing to intellectual disability (31). In contrast to the above families that support the hypothesis that *LIMK1* is sufficient to cause the visual spatial phenotype, another study that described four new patients (including two brothers with the same inherited deletion) with small deletions that cover *LIMK1* showed that they had no visual spatial deficits (32). None of the individuals described in the study had the characteristic facial features or intellectual disability. These conflicting results highlight the complexity of using humans with atypical deletions to make conclusive genotype-phenotype correlations. The conflicting results could be due to confounds from incomplete penetrance of these genes, environmental factors, and contributions from other genetic loci in the genome.

Other atypical deletions in patients have led to the hypothesis that most of the genetic risk of the region is harbored in the telomeric end of the deletion. This is supported by the lack of any phenotypes besides SVAS in on of the patients described above that had the typical centromeric breakpoint that extended to *LIMK1* (32, 33), and three patients described by Botta *et al.* (34) and Heller *et al.* (35) that had the typical telomeric break point that extended through *ELN* but spared *STX1A*, who presented with the full phenotypic spectrum of WS. This pattern is also mentioned by Hirota *et al.* (36), who detailed the lack of the WSCP and most craniofacial features in three cases with typical centromeric breakpoints but telomeric breakpoints that extend through *ELN* but spare *GTF21* in all cases. These findings, as well as others that are reported (2, 37–40) have lead the field to focus on two paralogous transcription factors in the telomeric end of the deletion, *GTF21RD1* and *GTF21* as major contributors to the WS profile.

Two case studies provide specific support for the role of *GTF2IRD1* in craniofacial development and *GTF2I* in the intellectual disability and social phenotypes. Tassabehji *et al.*

(39) analyzed the facial features of a patient with a typical centromeric breakpoint and telomeric breakpoint that falls within *GTF2IRD1* deleting its transcription start site, leaving *GTF2I* intact. The patient did not have the hypersocial phenotype, yet her language development was delayed, and she had visual spatial deficits, however, not to the same extent that is normally seen in typical WS. Her facial features were intermediate of what is typically seen in WS. Dai et al. (38) described another patient with the typical centromeric break point that extended through *GTF2IRD1* and spared only *GTF2I*. This patient had all the typical craniofacial features of WS and performed higher on verbal tasks but still had difficulty with some spatial tasks, but not as large of a deficit as seen in typical WS. Finally, the patient did not show the hypersocial phenotype, which led the authors to conclude that *GTF2I* plays an important role in this domain.

Larger deletions that delete the *NCF1* and *GTF2IRD2* as well as the typical genes in the WSCR, can provide insight into the contribution of these two genes. In general individuals with larger deletions tend to have more cognitive difficulties (37, 41). Comparing the larger deletion groups with a typical deletion group showed similar overall cognitive functioning, but specific areas of further deficit in the larger deletion group. These areas pertained to cognitive flexibility and spatial perception (41). Individuals with larger deletions also had more social cognition problems and obsessive behaviors than the typical deletion (42). The *GTF2IRD2* gene has been suggested to cause the slightly more severe phenotype because of its similarity to the other member of the GTF2I family and the evidence that it is expressed in the brain. The *NCF1* gene has been shown to modify the cardiovascular phenotype, and deletion of this gene is protective against hypertension in WS (43). These studies show that the larger deletion further exacerbates the cognitive phenotypes of the typical deletion and modifies the cardiovascular phenotype, suggesting that multiple genes contribute to multiple phenotypic domains in WS.

Studying atypical deletions in patients with WS has provided insight into the contribution of loci within the region to phenotypes in specific cases. This study design has several inherent limitations that should caution the field from making too strong of conclusions. First, the atypical deletions are rare events and each patient represents a unique deletion, except in the case of inherited deletions. This makes it impossible to generalize the conclusions from one case to the others and limits the potential to perform and make statistical inferences. Second, there is an ascertainment bias towards individuals with ELN deletions, which means the atypical deletions rarely affect just one of the genes in the region, making it difficult to test if one gene is sufficient to cause a specific phenotype. Third, these studies ignore the consequences of environmental and background genetic variation. It would be beneficial to be able to compare typical and atypical deletions to their parent's data to get an idea of the effect size of the deletion in the context of other inherited genetic variation. Finally, each of the cases is described by different clinicians with different and biased expertise for specific phenotypes. This makes it difficult to directly compare phenotypes across studies especially when some of the phenotypes weren't investigated. Overall, the study of atypical human deletions consistently shows that several genes can contribute in some degree to many phenotypes, such as craniofacial features, the WSCP, and overall cognitive ability. The telomeric end of the deletion seems to harbor the largest risk for most of the phenotypes observed in WS (2, 34, 36, 38).

1.2.2 Human induced pluripotent stem cell (iPSCs) studies

Patients with atypical deletions of WS allows for the study of the effects of specific genes or sets of genes on observable clinical phenotypes, but does not permit the study of underlying cellular or molecular changes. The advent of human derived induced pluripotent stem cells (iPSCs) as a model for human disease circumvents the need to obtain specific tissues from a

human patient – particularly a challenge for the brain – and let's researchers query cellular morphology and function, and look at the disruption of different molecular pathways. The Williams syndrome field has adopted these approaches to study the effects of the deletion and duplication of the region at a cellular level in different affected tissues (44–49). This strategy has highlighted the roles of *GTF2I* (44) as well as other genes, such as *BAZ1B* (49) and *FZD9* (46).

Two early iPSC studies looked at the effect of the typical deletion on cardiovascular (47) and neuronal phenotypes, establishing this technique as a model for the study of WS (48). Kinnear et al. used iPSC to test the cardiovascular phenotype of cells with the WSCR. They showed that when the cells were differentiated into vascular smooth muscle cells, the WS cell lines were more immature based on lower expression of markers in mature smooth muscle cells. They went on to show that rapamycin can rescue this immaturity phenotype (47). Khattak et al. used the same patient's cells to investigate the functioning of iPSC derived neurons with the WS deletion. The main electrophysiological deficit was in the repolarization of the cells due to lower expression of potassium channels. This study also profiled the transcriptomes of the WS derived neurons and wild type (WT) derived neurons and found that synaptic genes were among the most differentially expressed (48). Since these studies used stem cells from the same patient that was selected for severe cardiovascular disease, they don't represent independent biological experiments. Further, the patient was also diagnosed with clinical autism, which has a higher prevalence in WS, but this could affect the interpretation of the neural phenotypes that are not generalizable to typical cases of WS. These studies show the potential for identifying physiological differences at the cellular level in cases of typical deletions, however they did not attempt to make specific genotype-phenotype correlations.

iPSCs can be used to make assertions about the contribution of specific genes to specific cellular phenotypes, which helps understand the functional roles of genes in the WSCR. Adamo et al. performed RNA-seq experiments in iPSCs from four separate patients with WS, two patients with 7q11.23dup syndrome, and three related normal controls and three external control cell lines, and showed that there were symmetrical changes in expression of genes in disease related pathways. They performed a similar experiment after differentiating the iPSCs into neurons, and observed enrichment of genes involved in axon guidance, cell polarity, and transmission of nerve impulses. To test the specific contributions of GTF2I, they performed RNAi knockdown of GTF2I in the 7q11.23dup and WT cell lines, and showed that about 10-20% of the transcriptional changes observed in the full WS deletion can be attributed to GTF21. They went on to show that GTF2I interacts with the chromatin modifiers LSD1, a histone demethylase, and HDAC2, a histone deacetylase (44). They argue that most the transcriptional changes caused by decreased dosage of GTF2I are indirect, and propose that the dysregulation of the GTF2I target, BEND4, is a likely candidate that contributes to the downstream transcriptional changes. They remark that there is considerable variation between patient cell lines and the expression of BEND4, which highlights the importance of considering the genetic background. Overall, this study does suggest that GTF2I plays a role in the transcriptional phenotype, but does not account for all of it.

Additional iPSC studies provided evidence for functional roles of genes on the centromeric end of the deletion in neuronal phenotypes (46, 49), which the atypical deletion human studies have suggested do not contribute to the phenotypic spectrum of WS. Neural progenitor cells derived from typical deletion WS cases showed increased apoptosis that was not seen in cell lines derived from WT or an atypical case, whose deletion spanned from *CLDN3* to

RFC2. Reasoning that FZD9, which is not deleted in the atypical case, and regulates programmed cell death, the authors showed that knocking down FZD9 in the WT cell lines could recapitulate the apoptosis phenotype and overexpressing FZD9 in the WS cell lines could ameliorate the apoptosis phenotype (46). Transcriptional profiling of WS and WT derived neuronal cell lines along with BAZ1B knockdown showed as much as 42% of the transcriptional difference between WS and WT neurons were caused by decreased expression of BAZ1B. The transcriptional changes along with genes bound by BAZ1B, suggested a role for this gene in the regulation of Wnt signaling as well as synaptic development. Decreased expression of BAZ1B resulted in neural progenitor cells maintaining a proliferative state, which prevented proper differentiation into neurons. This phenotype could be rescued by antagonizing Wnt/Beta-catenin signaling (49). Together, these two iPSC studies strengthen the evidence for genes in the centromeric end of the deletion to play an important role in neural development, which could lead to the striking cognitive and behavioral phenotypes of WS. They also further implicate specific pathways such as Wnt signaling and synaptic functioning in the pathogenesis of WS.

It has been shown for WS that iPSCs are a valuable model to understand cellular and molecular phenotypes caused by the typical deletion as well as by specific genes in the region. While this model has its advantages it also has several limitations. iPSCs study designs allow for the testing of disease relevant tissues using human cells, however, the cells are artificially differentiated outside the context of the organ-specific microenvironment. This can lead to unforeseen changes in the biological functioning of the cells. Further, the study of cells *in vitro* precludes making associations with the cellular changes directly to behavior at the organismal level. For example, iPSC differentiated neurons do not form the complex anatomical circuits equivalent to what is seen in the brain *in vivo*. In spite of these limitations, in the case of WS

these studies have provided further insight into genes such as *FZD9*, *BAZ1B*, and *GTF2I*, and suggest that they all contribute to neuronal phenotypes.

1.2.3 Human general population association studies

Another strategy that employs human genetics to identify genotype-phenotype correlations of genes in the WSCR, is to test variation in these genes for association with traits in the general population, both in samples of individuals with WS and in case-control designs. The duplication of the WSCR was found to be significantly associated with autism spectrum disorder (ASD) diagnosis in a case-control study design (26). Association analyses have further implicated the general transcription factor 2i family of genes in social and cognitive phenotypes (50–53). The advent of next generation sequencing technology offers new potential to implicate not only common variants, but also rare variants in the pathogenesis of WS (54).

Candidate gene associations have implicated two single nucleotide polymorphisms (SNPs) in the *GTF21* in ASD as well as in neural phenotypes related to social cognition (50, 51). While these studies were not unbiased screens of the whole genome, the authors reasoned that the WSCR contains loci that affect social behavior. When variants in *STX1A*, *CLIP2*, and *GTF21* were tested for association with ASD diagnosis in families with at least one affected child, only two SNPs in *GTF21*, rs4717907 and rs13227433, were found to be over transmitted in the probands (50). Using this previous finding, these two SNPs were further associated with a metric that captures the low social anxiety and reduced social communicative skills of individuals with WS in a sample of 488 individuals attending university (53). The imputed rs13227433 genotype was also found to be associated with reduced amygdala reactivity to threatening stimuli, a neural phenotype that has been documented in WS (51) in a sample of 808 university students. Finally the SNP, rs2267824, located within the *GTF21RD1* gene, was associated with a metric that

captures the neuroanatomical gestalt of the WS brain in a sample of 1,863 people from the general population, suggesting that it contributes to brain anatomy that is specifically observed in individuals with WS (52). These candidate gene focused studies corroborate the role of both *GTF2I* and *GTF2IRD1* in behavior and brain development related to WS.

Association studies are valid study designs to identify genomic loci that correlate with a trait of interest, but they have several limitations. The detection of a significantly associated variant does not mean the causal variant has been detected. Rather, in most cases an association elucidates a region in the genome that contains the causal variant. In addition, association studies based on genotyping with SNP-chips are only able to test common SNPs, which are expected to have small effect sizes, so in order to detect these effects large sample sizes are required. To overcome this, next generation sequencing technologies can be used to query the role of rare variants in modifying the phenotypes of WS. Since WS is caused by the contiguous deletion of 1.5-1.8Mbp on chromosome seven, individuals with WS only have one remaining copy of the region, which could unmask the effects of recessive alleles (55). This hypothesis was tested for the cardiovascular phenotype, looking specifically at variants in the ELN. With a sample size of 55 individuals, no one specific variant associated with severity of the cardiovascular disease (56). This approach could be applied to other genes in the WSCR as well as other phenotypes in the region to understand how the genetic variation associates with different aspect of the disorder.

The human approaches taken to study the genotype-phenotype correlations within WS has, so-far, have highlighted the variability of the phenotypes and a complex relationship with the genes in the region. My work has focused on describing how genetic variation within the WSCR and in the whole exome can modify the social phenotype of WS. I analyzed the whole

exome sequencing data of 85 individuals with WS to associate genetic variants with the social phenotype. I can use the variation across individuals with WS that have received the same standardized social questionnaire to ask how much does genetic variation contribute to the social phenotype. This allowed me, in an unbiased, way to test for genes in the WSCR and the whole exome that are important for modifying social behavior in WS, which could inform clinicians taking care of individuals with WS as well as inform genes involved social behavior in the general population.

1.3 Introduction to the general transcription factor 2I family

Performing gene associations in humans, while informative on what locations of the genome are important for different traits, are not conductive to conducting controlled experiments that could lead to a mechanistic understanding of how genes exert their effects on behavior. Along with the human studies I did, I leveraged the experimental advantages of the mouse model to focus on the interactions of two genes in the WSCR, *Gtf2i* and *Gtf2ird1*. I chose to investigate these genes to test the hypothesis that they contribute to the cognitive and behavior phenotypes as the human literature has suggested and to extend the current research by testing how they interact. This family is made up of three paralogous transcription factors that are located in the WSCR. *GTF2I* and *GTF2IRD1* are deleted in the 1.5Mbp deletion, and *GTF2IRD2* is deleted in the larger 1.8Mbp deletion. These transcription factors have been extensively studied in different model systems, including cell lines and mouse models, usually focusing either on *GTF2I* or *GTF2IRD1*. Since both seem to contribute to overlapping phenotypes and they share overlapping DNA binding targets, these transcription factors merit further investigation.

1.3.1 General background on the GTF2I family

Different groups discovered the GTF2I family of genes independently. *GTF2I* was discovered in several contexts, including a target of Bruton's tyrosine kinase in B-cells (BAP-135) (57), a protein that stabilizes the serum response factor complex (SPIN) (58), and as a transcription factor in the WSCR that can bind to the E-box and *Inr* element (59), which were all shown to be the same GTF2I protein. *GTF2IRD1* has a similar history in which it was discovered many independent times as a gene expressed in the muscle (MusTRD1) (60) as well as a transcription factor in the WSCR (WBSCR11) (61, 62).

All three are multiexonic genes that are subject to extensive alternative splicing. *GTF21* is made up 35 exons, *GTF21RD1* contains 27 (63), and *GTF21RD2* has only 16 exons due to the replacement of the 3'prime end of the gene with a CHARLIE8 transposon (64). The sequence features that distinguish these genes as a family are the I repeats, of which *GTF21* contains 6, *GTF21RD1* contains 5, and *GTF21RD2* has 2. These are helix-loop-helix domains that are thought to be important for protein-protein interactions and DNA binding (65). They also have a conserved N-terminal leucine zipper (66, 67), that is involved in homo and heterodimeriziation that can affect DNA binding function. The evolutionary history of these genes points to *GTF21RD1* as the ancestral gene that was duplicated to produce *GTF21*. These two genes are present in all land mammals with the duplication and inversion of *GTF21* giving rise to *GTF21RD2*, which is present in all placental mammals (68). This conserved evolutionary history in mammals makes studying these genes tractable in mouse models. The mouse Gtf2ird1 and human GTF2IRD1 share 87.9% amino acid identity and the mouse Gtf2i and human GTF2I share 97.3% amino acid identity (69). Given the similar evolutionary history of these genes, it is

important to understand to what extent these genes share overlapping function, as well as how they differ.

GTF21 was the first gene discovered and has been the best studied, probably due to its higher abundance in many different tissues and due to the availability of effective antibodies. The expression of GTF21 is described as ubiquitous, with higher expression early in development. In the mouse, Gtf2i mRNA is maternally deposited by the mother in the fertilized egg and is highly expressed in the inner cell mass, and continues to be highly expressed throughout development (70, 71). In situ hybridization experiments in the mouse brain showed uniform expression of Gtf2i from embryonic day 18.5 to postnatal day seven, with enhanced expression of the mRNA in Purkinje cells, the hippocampus, and cerebral cortex in the adult brain, all of which was described as neuronal. The protein showed a similar expression pattern, with protein detected in both the nucleus and the cytoplasm, with enrichment in the hippocampus and cerebellum (72). The presence of GTF2I in both the nucleus and the cytoplasm suggests that this transcription factor has functions beyond regulating nuclear transcription.

Along with its roles as a basal transcription factor, GTF2I plays a role in the cytoplasm that allows it to convey cellular information to the nucleus. GTF2I was first discovered due to its ability to bind the *Inr* element at transcription start sites but also at upstream enhancers (73). It was shown that some of its transcriptional activity was due to tyrosine phosphorylation by *SRC* that allowed cytoplasmic GTF2I to translocate to the nucleus, suggesting that GTF2I can induce transcriptional changes based on signal transduction pathways (74). Interestingly *Src* knockout mouse models show phenotypes such as hyperactivity and hypersociability, suggesting that disruption of this gene and its downstream pathways can recapitulate some features of *Gtf2i* knockout models (75). Another effect that phosphorylation of GTF2I by SRC has is to inhibit

agonist induced calcium entry (76). The cytoplasmic phosphorylated GTF2I competes with TRPC3 protein, a calcium channel, to bind PLC-γ, which prevents the localization of TRPC3 to the membrane and inhibits calcium entry into the cell. This was shown to affect neuron morphology and calcium electrophysiology in neurons that are missing one copy of *Gtf2i*. The neurons with less *Gtf2i* had more complex axons and increased calcium entry (77). These studies have elaborated the complex cellular role that GTF2I plays in both transcription and signal transduction and how it can affect neural phenotypes, which may contribute to phenotypes in WS. No studies have been done that show what happens to transcription genome-wide in the brain when *Gtf2i* is increased or decreased, which the work I present in chapter three describes. Also, given the dual role of this transcription factor the paucity of data concerning its effect on transcription makes it difficult to disentangle which functionality of *Gtf2i* is contributing to affect behavior.

In contrast to the extensive transcriptional roles and signal transduction function of *GTF21*, *GTF2IRD1* has mostly been characterized as having a role in transcriptional regulation. The expression of this gene was described using a lacZ reporter in the mouse. Ubiquitous expression was seen at embryonic day 7.5 with more localized expression occurring after organogenesis. In the developing brain it is expressed most highly in the pituitary, developing hypothalamus and thalamus, and hindbrain with little expression in the telencephalon. The gene is expressed less in adulthood across all tissues, and within the brain it is the most highly expressed in the olfactory bulbs, Purkinje neurons, and neurons of the piriform cortex. It is highly expressed in adult brown adipose tissue (78). The low expression of this gene *in vivo* along with poor antibodies has made this protein difficult to study *in vivo*. However, work in cells that highly express this gene show that is mostly localized to the nucleus in a punctate

pattern and in close proximity to other chromatin regulators such as SP1 and H3K27Me2/3 and H3K4Me3 marks. A yeast 2 hybrid screen further suggested that GTF2IRD1 interacts with chromatin modifiers such as ZMYM2 and ZMYM3 along with proteins involved in ubiquitin pathways such as USP20 and USP33 (79). These data suggest that it plays a role in transcriptional regulation.

Other studies have shown that GTF2IRD1 binds to specific genomic regions to affect transcription and the *Gtf2ird1* genes is under tight transcriptional and posttranslational regulation. In the mouse retina Gtf2ird1 binds to the LCR enhancer and promoter regions of opsin genes to promote transcription (80). Hasegawa *et al.* showed that Gtf2ird1 expression is induced in mouse brown adipose tissue in cold conditions and associates with the PRDM16 complex to repress fibrotic gene transcription (81). In addition, GTF2IRD1 has been shown to negatively autoregulate its own transcription. The N-terminal leucine zipper was proposed to increase binding to its own upstream regulatory element and mutating the leucine zipper resulted in a difference in bind affinity to the sequence (66). Finally, GTF2IRD1 is post translationaly modified by the addition of a SUMO group that alters its protein-protein interactions and targets the protein for degradation (82). The extensive roles of Gtf2ird1 in transcriptional regulation and its tightly regulated mRNA and protein expression suggest that this gene plays an important biological role that could contribute to the phenotypes of WS.

The DNA binding of these two transcription factors has been studied genome-wide in different model systems. The core binding motifs for the fourth I repeat of GTF2I and GTF2IRD1 was identified as RGATTR using the SELEX method (83). In a similar experiment the binding site of the full length GTF2IRD1 was determined to be

GGGRSCWGCGAYAGCCSSH (65). Chip-Chip experiments in mouse embryonic stem cells

revealed 5,744 binding peaks for Gtf2i and 625 binding peaks for Gtf2ird1, most of which were located in promoters of genes. When binding was investigated in embryonic craniofacial tissue they identified 1,181 Gtf2i binding peaks and 1,520 Gtf2ird1 binding peaks, again most were located in promoter regions. They showed examples of sites where both proteins were located at the same promoter regions suggesting they can overlap in the genes they regulate. Most of the binding sites were located in areas of bivalent chromatin marks (84). GTF2I binding has been assessed in human iPSC cells using ChIP-seq and was found to bind 1,554 genes at their promoters. About half of these binding sites were also targets of the LSD1 histone demethylase (44). Gtf2i has also been shown to help target CTCF to promoter regions. Genome-wide binding analysis of Gtf2i and Gtf2ird1 show that they have overlapping targets and cooperate with other chromatin regulators. Further study of the binding patterns of these proteins *in vivo* in other relevant tissues will continue to elucidate the role these genes play in transcription regulation and downstream affected pathways.

Given that both *GTF2I* and *GTF2IRD1* are transcription factors and they bind many genes in the genome, their affects on transcription genome wide have been minimally described and with contrasting results. Gtf2ird1 overexpression in mouse embryonic fibroblasts led to around 1,000 upregulated genes and 1,000 downregulated genes covering pathways such as ubiquitin cycle, RNA binding, and cell cycle (85). In contrast, Gtf2i overexpression in mouse embryonic fibrobalsts led to fewer changes with only 90 genes upregulated and 68 genes downregulated. These genes made up categories such as transcription regulation, immune response, and apoptosis (86). The effects of knocking out each transcription factor was assessed in embryonic day 9.5 mouse models. In the *Gtf2i* null embryos there were 217 upregulated and 2,356 downregulated genes spanning categories such as cytoskeleton remodeling, cell cycle,

transcription, and the ubiquitin cycle. However, *Gtf2ird1* null embyros showed only 38 upregulated genes and 498 downregulated genes that did not show any enrichment for specific GO categories (87). These findings somewhat mirror the overexpression data.

Another *Gtf2ird1* mouse model profiled the transcriptomes of the developing brain at embryonic day 15.5 and postnatal day 0 and showed no significantly differentially expressed genes (88). Yet another *Gtf2ird1* model that showed overgrown lip epidermal tissue revealed 1,165 upregulated genes and 1,073 down regulated genes. Gene set enrichment analysis on the upregulated genes highlighted pathways such as cell cycle, the ribosome, proteasome, and ubiquitin mediated proteolysis. Down regulated genes showed enrichment in calcium signaling, oxidative phosphorylation, and cardiac muscle contraction (89). Finally, transcriptome profiling of the hippocampus in a mouse model that has the entire syntenic WSCR deleted showed down regulation of genes in the Pik3 kinase pathway as well as *Bdnf* (90, 91).

Overall, transcriptional studies of *Gtf2i* and *Gtf2ird1* seem to be dependent on many factors that include tissue type, stage in development, how the genes are mutated, and mouse strain. The transcriptome data generated in the E9.5 embryos should be cautiously interpreted since both the *Gtf2i* and *Gt2ird1* null mutants described were embryonic lethal and showed neural tube closure defects as well as vascular defects. Comparing these very severe embryos to the WT embryos show that many of the transcriptional changes detected are probably consequences of the disrupted development of the embryo, which make teasing out the direct and indirect effects of reducing the expression of *Gtf2i* and *Gtf2ird1* difficult. The discrepancy between the transcriptome findings of the brain and the lip tissue could arise for several reasons. Different mutants were used and *in vivo* analysis of the Gt2ird1 protein was lacking in both studies. It would be beneficial to know how the mutations are affecting the protein levels as well

as the normal WT levels of protein expression between these two tissue types. The lip tissue also showed a clear morphological phenotype that specifically affected the epidermal tissue and not the dermal tissue, cartilage, or underlying muscle. The striking difference between genotypes in the lip tissue could be driven by a clear disruption of a specific cell type (92), while in the brain there could be more subtle effects in different cell types diluting the signal. Incorporating multiple levels of information such as ChIP-seq, RNA-seq, and tissue specific expression of these genes will aid in constructing a more complete understanding the role of these transcription factors.

1.3.2 Mouse models of Gtf2i and Gtf2ird1

Along with understanding what the molecular functions of these two transcription factors are, in order to provide useful insight into the etiology of WS, the affect these two transcription factors have on behavior should also be studied. Previously, I have described the evidence that supports the functioning of these genes in behavior, cognition, and physical attributes that we have gleaned from human studies. As mentioned, human studies come with their own limitations: in rare partial deletions one is making inferences based on single individuals. Likewise, one is unable to model behavioral consequences in iPSCs. Model organisms, specifically the mouse, have been instrumental in understanding both the functional roles of genes as described in the previous section and the consequences of dosage changes of genes on behavior. The mouse is an attractive model in which to model WS for several reasons: 1) a region of chromosome five in the mouse is syntenic to the WSCR in humans, 2) geneticists have a large tool kit in which to accurately modify the mouse genome to test specific mutations or sets of mutations, 3) mice are able to be bred so that the same mutation can be studied in a large, controlled sample allowing for statistical inferences, and 4) mice are social animals that display

behaviors in domains that are disrupted in WS. Many different mouse models have been used to try and understand the behavioral consequences of genes in the WSCR, with varying degrees of face validity to WS. The strain of mouse and how the mutations were generated play a large role in the manifestation of phenotypes in mouse models. This makes synthesizing the data from different labs and experiments difficult, but consistent phenotypes across many different models can provide strong corroborative evidence for genotype-phenotype correlations.

Large deletion mouse models

The mouse model with the highest construct validity is a hemizygous deletion of the syntenic WSCR on the mouse chromosome five and is termed the complete deletion (CD) mouse (93). The mouse was generated using the cre-lox system with a loxP site situated in exon two of Gtf2i and the other loxP site in intron five of Fkbp6 on the C57BL/6J background. This mouse model showed phenotypes that are consistent with most of the phenotypes of WS that can be tested in the mouse. The physical features include mild cardiovascular phenotypes, smaller skulls, reduced brain size, decreased volume of hippocampus, and more immature neurons in the dentate gyrus as determined by doublecortin immunostaining. A battery of behavior tests in the CD mice showed deficits in motor coordination, decreased motor tonicity strength, increased startle response to stimulus noise, and a decreased habituation to a social stimulus (93). Another study of the CD mice showed deficits in working memory as tested by the spontaneous alternating T-maze and novel object recognition, which was reported as normal in a previous study. The social phenotype was replicated as well as a decrease in the number of marbles buried in the marble burying task (91). Finally, the role of *Gtf2i* in the manifestation of the behavioral phenotypes in the CD animal was tested by delivering adeno-associated virus 9 (AAV9) that carried the mouse Gtf2i cDNA into the cisterna magna of CD mice. The addition of Gtf2i cDNA

rescued the increased social phenotype, partially rescued the motor coordination, but did not affect the marble burying deficits (90). This mouse model showed deficits in motor coordination and increased startle to a stimulus noise. Humans with WS are known to have poor balance as well as hyperacusis. The mice also recapitulated the hypersocial phenotype of WS as tested in these behavioral tasks using only male mice. The CD model is a great tool to understand how the entire WSCR affects mouse behavior and the underlying mechanisms. However, the work done in the CD mouse should be expanded to include female mice to understand any sex or sex by genotype interactions. This would also inform how robust the phenotypes are. For instance the social phenotypes have only been tested in males using an unconventional method. Including social tasks that probe different aspects of sociality would help pinpoint the specific pathways involved in manifesting the disorder.

There are two other large deletion models that attempt to localize which genes are involved in specific mouse behaviors by splitting the WSCR into two halves and deleting each half (94). These mice were generated using the cre-lox system on the C57BL/6J background. The proximal deletion mice (PD) are hemizygous for *Gtf2i* through *Limk1*. The distal deletion mice (DD) are hemizygous for *Trim50* through *Limk1*. Breeding the PD and DD mice together results in four littermate genotypes, which include a mouse that is hemizygous for the whole region on two different chromosome and is homozygous null for *Limk1*, this is called the P/D mouse. The DD and P/D mice showed similar shortened skulls with more severe differences in the P/D mice. This indicates that genes on the distal half of the deletion contributing to the craniofacial phenotypes, but perhaps genes in the proximal half can exacerbate the phenotype. There were mixed results on a series of behavior tasks that probe social behavior. The partition task showed all three genotypes spent more time at a partition that held a social stimulus than WT littermates.

A direct social task showed only the PD mice spent more time investigating a conspecific compared to WT littermates. The three chamber social approach task showed a significant preference for the social stimulus in the PD and P/D mice but no such preference in the WT or DD animals. Finally in a test of social dominance the PD and P/D mice had a decrease win ratio suggesting reduced dominance behavior. The P/D mice showed decreased locomotor activity and poor balance, and the partial deletions had intermediate values. Altered response to sensory stimuli was tested using the acoustic startle response and pre-pulse inhibition. This was only altered in the PD mice with no phenotype in the P/D or DD genotypes. In a learning and memory task, the DD mice showed decreased freezing in contextual and cued fear memory. Studying the two half deletions can help further localize the genes involved in specific phenotypes. These studies suggest that the DD genes are involved in the craniofacial phenotypes and fear memory recall. The PD genes affect, in some tasks, social behavior and the response to sensory stimuli (94). Genes in both halves of the deletions may contribute to balance deficits, which is more affected when both halves are deleted. Overall, it seems like some phenotypes such as the balance and craniofacial differences are being influenced by multiple genes.

Gtf2i and Gtf2ird1 mouse models

The larger mouse models of WS test the affects of knocking out the entire region on mouse behavior. One of the advantages of mouse models is the wide range of tools geneticists have at their disposable to manipulate the genome, permitting the study of very specific mutations of single genes. Single gene knockout mice exist for several different genes in the WSCR, with many genes having multiple different mouse models (95). For *Gtf2i* there are two mouse models that decrease the expression of Gtf2i to varying degrees. One model has a gene trap cassette in intron 3 of *Gtf2i* (Gtf2i^{Gt(YTA365)Byg/β}) that has been characterized in (29, 87, 96,

97) and results in a null allele. The second Gtf2i model has a targeted deletion of exon 2 (Gtf2i $^{\Delta ex2}$), which contains the canonical translation start codon, and produces an N-terminally truncated protein that begins at a methionine in exon five and is described in (67, 90). The former model is embryonic lethal in the homozygous state (29, 87, 96) and the latter model produces viable homozygous animals at a lower than expected Mendelian ratio (67). There are four different mouse models of Gtf2ird1 that have been described in the literature: 1) the Gtf2ird1^{XE465} model has a gene trap lacZ cassette located in intron 22 (87), which makes a fusion protein, 2) the Gtf2ird1 Tg(Alb1-Myc)166.8 model has a myc transgene that randomly integrated into the locus replacing the transcription start site and the first exon of Gtf2ird1(39, 98–100), which has no detectable expression, 3) the Gtf2ird1^{tm1Hrd} model was made by homologous recombination removing exon 2, which contains the canonical translation start codon, and has increased expression of Gtf2ird1 transcript but produces an N-terminally truncated protein at 3% of WT levels (66, 78, 92), and 4) the Gtf2ird1^{tm1LR} model was made by homologous recombination removing exons 2,3,4 and part of 5, which still makes an aberrant Gtf2ird1 transcript but protein analysis was not done (101). All of the Gtf2ird1 models can produce viable homozygous animals except for Gtf2ird1^{XE465}, which expire embryonically. This more severe phenotype has been attributed to the production of a fusion protein whose function is unknown (88). While there are many mouse models of both of these genes that have been tested on different mouse backgrounds and on different behavioral tasks, synthesizing the data across all the experiments can provide strong evidence of the roles of these genes on behaviors.

The two mouse models of *Gtf2i* have shown hypersocial phenotypes (90, 96, 97). The specific social phenotypes queried by the specific tasks differ. In two experiments the *Gtf2i* heterozygous mutants display a lack of habituation to a social stimulus that is normally observed

in WT littermates (96). Another experiment using the N-terminally truncated protein, and showed that heterozygous and homozygous mutants investigate a social stimulus for more time compared to WT littermates (90). The most convincing experiment employed a social operant learning paradigm, in which the heterozygous mutants will work harder for more social rewards (97). Besides the social phenotypes other behaviors have been documented such as impaired novel object recognition, increased anxiety, motor coordination marble burying in homozygous animals, and smaller craniums (67, 90, 96). The work done in single *Gtf2i* mutants supports its role in the social aspect of WS, and potentially in anxiety, motor ability, and the craniofacial features.

The several *Gtf2ird1* mutant mouse models show many behavioral and physical deficits, but in some models exhibited findings that contrast other models. Furthermore, some of the phenotypes are only seen in the homozygous knockouts, which don't reflect the gene dosage effects that are expected to be seen in humans with WS. One consistent phenotype seen in two models of *Gtf2ird1* is a motor coordination deficit, which was also seen in the larger deletions of the WSCR and in one *Gtf2i* model (92, 100). Other phenotypes such as activity levels and anxiety-like behaviors are discrepant across models. Some models report increased activity and decreased anxiety, while another reports the opposite (92, 100, 101). Social behavior has only been tested in one *Gtf2ird1* mouse model, using the resident intruder paradigm, which showed decreased aggression, but an increase is social investigation by the *Gtf2ird1* heterozygous and homozygous mutants (101). Two models have reported facial dysmorphisms in the mice, one which affects the cranium and the other affects the soft tissue of the face (39, 92). The contrasting evidence in these mouse models could be due to the mouse background on which each model was made or how the gene itself is disrupted. The evidence shows that this gene may

also contribute to motor deficits, the social phenotype, and the craniofacial phenotype that is observed in WS.

Overall, single gene knock out models of both *Gtf2i* and *Gtf2ird1* show overlapping behavior phenotypes, specifically in social and motor deficits. However, these genes have not been studied in combination, which is what is expected in the deletion of WS. This leaves open the question if this two paralogous transcription factors can interact with each other to synergistically affect behavior? Understanding how these genes function together will give a more complete understanding of how genes in the WSCR interact to produce the full phenotypic spectrum of WS. These hypotheses are addressed in chapters three and four of this thesis.

1.4 Conclusions

Both human and mouse genetic experiments have demonstrated that the WSCR is an important genomic region for a variety of traits, such as craniofacial development, cardiovascular health, cognition, anxiety, and social behaviors. The field has employed many different strategies to further understand the genes responsible for causing the phenotypes of WS and thus providing insight on the biological mechanisms of different human characteristics. Still the only strong monogenetic contribution of a gene in the WSCR to a specific phenotype of WS is the role *ELN* plays in the cardiovascular disease. Even this monogenic contribution can be modified by another gene in the region *NCF1*. There is evidence for the role of several genes contributing to several different phenotypes. This oligogenic hypothesis may help the field further understand how the genes in the WSCR work together to produce the WS phenotypes, as has been shown for other copy number variation disorders (102, 103). The work I describe in this thesis uses both human genetics and mouse models to expand the knowledge of how genes in the WSCR affect behavior. I use whole-exome sequencing to analyze the largest genetic dataset of individuals

with WS, to test the hypothesis that variation in the remaining WSCR allele and exome-wide can modify the social phenotype. I then use newly generated mouse models to understand where *Gtf2i* and *Gtf2ird1* bind genome-wide in the developing brain and what are the transcriptional and behavioral consequences on mutating these genes. I am able to test the hypothesis that these genes both affect the same phenotypes, testing the oligogenic contribution of these genes on behavior. Finally, I use mouse models to directly compare the affects of both *Gtf2i* and *Gtf2ird1* to the affects of the entire WSCR to test if these two genes, which have been highly speculated in the literature as driving the phenotypes of WS, are sufficient to replicate the phenotypes produced by all the genes in the WSCR. My data suggest that these genes do contribute to behavior, but other genes in the region or the effect of deleting the entire WSCR has more striking behavioral consequences. This leads me to conclude that the complex phenotypes that are disrupted in WS are caused by complex genetic interactions of genes in the region and require more than loss of just these two genes. Further testing of the oligogenic relationship of genes will highlight the complex biology of human traits and the pathobiology of WS.

Chapter 2: Exome sequencing of 85 Williams Beuren syndrome cases rules out coding variation as a major contributor to remaining variance in social behavior

Nathan D. Kopp, Phoebe C. R. Parrish, Michael Lugo, Joseph Dougherty, and Beth A. Kozel From:

Exome sequencing of 85 Williams Beuren syndrome cases rules out coding variation as a major contributor to remaining variance in social behavior.

Kopp, Nathan D., Phoebe CR. Parrish, Michael Lugo, Joseph D. Dougherty, and Beth A. Kozel. "Exome sequencing of 85 Williams-Beuren syndrome cases rules out coding variation as a major contributor to remaining variance in social behavior". *Molecular Genetics and Genomic Medicine* (2018):1-17

2.1 Abstract

Large, multigenic deletions at chromosome 7q11.23 result in a highly penetrant constellation of physical and behavioral symptoms known as Williams Beuren syndrome (WS). Of particular interest is the unusual social-cognitive profile evidenced by deficits in social cognition and communication reminiscent of autism spectrum disorders (ASD) that are juxtaposed with normal or even relatively enhanced social motivation. Interestingly, duplications in the same region also result in ASD-like phenotypes as well as social phobias. Thus, the region clearly regulates human social motivation and behavior, yet the relevant gene(s) have not been definitively identified. Here, we deeply phenotyped 85 individuals with WS and used exome sequencing to analyze common and rare variation for association with the remaining variance in social behavior as assessed by the Social Responsiveness Scale. We replicated the previously reported unusual juxtaposition of behavioral symptoms in this new patient collection, but we did not find any new alleles of large effect in the targeted analysis of the remaining copy of genes in the Williams syndrome critical region. However, we report on two nominally significant SNPs in two genes that have been implicated in the cognitive and social phenotypes of Williams syndrome, BAZ1B and GTF2IRD1. Secondary discovery driven explorations focusing on known ASD genes and an exome wide scan do not highlight any variants of a large effect. Whole exome sequencing of 85 individuals with WS did not support the hypothesis that there are variants of large effect within the remaining Williams syndrome critical region that contribute to the social phenotype. This deeply phenotyped and genotyped patient cohort with a defined mutation provides the opportunity for similar analyses focusing on noncoding variation and/or other phenotypic domains.

2.2 Introduction

Williams Beuren syndrome (WS) (OMIM #194050) is a neurodevelopmental disorder caused by a 1.5 to 1.8 Mbp deletion on chromosome 7q11.23. The deletion causes a constellation of symptoms that include cardiovascular pathology, craniofacial dysmorphology, and a unique cognitive and personality profile(4, 14, 17). The well-defined genetic lesion that causes WS is an opportunity to assess genotype-phenotype correlations. To date, only the cardiovascular phenotype has been convincingly linked to the haploinsufficiency of a single gene - the *ELN* gene(6, 104). Studying rare events that result in atypical deletions sparing different genes in the Williams syndrome critical region (WSCR), as well as single gene knock out studies in mouse models, have suggested that *GTF2IRD1* and *BAZ1B* play a role in the craniofacial abnormalities(39, 105). Likewise, the genes *STX1A*, *LIMK1*, *CYLN2*, *BAZ1B*, *GTF2IRD1*, and *GTF2I* (31, 38, 49, 96, 99, 106–109) have been implicated in the cognitive and behavioral phenotypes.

Understanding contributions to social phenotypes in particular for WS may define genes that regulate human social behavior, providing insight not only into WS, but also in other disorders as well as possible modifiers of social behavior in the general population. Deleting one copy of the genes in the WSCR produces the personality profile observed in WS, which consists of prosocial behaviors such as gregariousness, empathy, retained expressive language skills, and low levels of social anxiety, in spite of high anxiety in other domains(14, 19, 110–112). Despite the high social motivation of individuals with WS, they exhibit deficits in social cognition and communication(20, 113, 114). The Williams syndrome critical region duplication, 7q11.23 duplication syndrome (Dup7) (OMIM#609757), conversely, is characterized by diametric social behaviors to those seen in WS, including separation anxiety, poor eye contact, and language

impairment, as well as overlapping phenotypes such as restricted and repetitive behavior and poor social communication (27). It has also been shown that the prevalence of ASD in WS and Dup7 is higher than in the general population and the male sex bias for ASD diagnosis is present among individuals with Dup7(27, 115). The similarities and differences in the social communication domains of WS and ASD have been described, and suggest that while both disorders show deficits in social communication, the WS group was not as impaired as the ASD group (113, 114). Unlike ASD, there is no sex bias in the frequency of WS and severity of social and cognitive phenotypes are similar across both sexes (21, 116).

As in many diseases of haploinsufficiency, within WS there remains considerable variability in expressivity of the phenotypes, despite the very homogeneous genetic cause. It is thought that both genetic background and the environment introduce variation in the expression of a phenotype. The fact that individuals with WS are hemizygous for 26-28 genes has led to the assertion that variation in the remaining allele could contribute to the severity of symptoms in WS(13, 56). The presence of only one copy of genes in the WSCR could unmask the effects of recessive alleles in the region that are more difficult to detect in a diploid setting. Indeed, this logic has been applied to investigate the variability in the cardiovascular phenotype. Delio et al. 2013 sequenced the exons that make up the ELN gene in a sample of 55 individuals with WS, but found no clear link between severity of phenotype and remaining genetic variation. However, no similar studies have investigated the social profile of WS, in spite of the fact that there is some evidence that common variation in the region can influence social behavior in the general population. For example, variation in the GTF2I gene has been associated with the WS cognitive profile, autism, oxytocin reactivity, amygdala activity, and social anxiety(53, 117, 117, 118). Furthermore, genes outside of the WSCR are also likely to affect aspects of social

behavior. In particular genes that are associated with ASD have a profound effect on social interaction and could harbor variants that modify the phenotype of individuals with WS.

Here, we employ whole exome sequencing to understand how genetic variation within the WSCR, and other protein coding genes, impacts the severity of the WS social phenotype. We generate a rich catalogue of genetic variants identified from 85 individuals with the typical WS deletions; each individual has also been assessed with the Social Responsiveness Scale-2 (SRS) questionnaire, a quantitative measure of reciprocal social behavior. The SRS was first developed to quantify autistic traits in both the general and clinical populations (119, 120). SRS scores have also been used to describe different aspects of the social phenotype in WS (20). We then employ a three-tiered approach to screen for the existence of alleles that contribute to SRS scores in the context of a potentially sensitizing WSCR deletion, ordering the analyses to conserve statistical power. First, we describe the genetic variants observed in the remaining WSCR and test if they can explain the variance in the SRS scores. We find little evidence that these common or rare variants in the region are associated with SRS scores. Next, we go beyond the WSCR and test variants in 71 genes known to be associated with ASD (121), reasoning variation that contributes to autistic features in non-WS children may modify autistic features in the WS cohort as well. Finally, we test variants throughout the whole exome. We find no genetic variants of sufficient effect size to support the hypothesis that they contribute to the social phenotype in this sample of individuals with WS. However, we have more thoroughly described the variation in the WSCR region as it relates to social behavior and provide the largest genetic dataset to date of individuals with typical WS deletions for future analyses of other phenotypic domains.

2.3 Results

2.3.1 SRS variability in Williams syndrome

The unique social profile of Williams syndrome includes increased social motivation (e.g. indiscriminate approach to strangers), strong eye contact, use of affective language, emotional sensitivity as well as poor social judgment and restricted interests(19, 110–113, 122). Many comorbidities, such as specific phobias, ADHD, and anxiety, have been commonly reported in WS as well(21, 22, 123–125). To quantify social features in our WS cohort, we used a standard instrument for assessing social reciprocity, parent-reported SRS scores from 85 individuals with WS.

We examined the SRS and its subscores in depth. In our sample, the SRS T-scores are continuously distributed in the WS population with a male mean T-score±SD of 64.58 ± 12.28 (mean male raw score±SD 74.53 ± 32.03) and female mean T-score±SD of 62.94 ± 11.04 (mean female raw score±SD 67.08 ± 26.04) (**Figure 1**). There is no significant difference in SRS T-scores ($t_{70.76}$ =0.6365, p=0.52) or raw scores ($t_{65.907}$ =1.1445, p=0.257) between sexes. To benchmark the WS values, Constantino and Todd, 2003 measured raw SRS scores in 788 twin pairs from the general population ranging in ages between 7 and 15 and estimated the mean male raw score±SD as 35.3 ± 22.0 and the female mean raw score±SD as 27.5 ± 18.4 ; males and females were significantly different. In our analysis, we show that individuals with WS have SRS scores that are shifted towards the more impaired end of the spectrum, and we do not detect any significant sex differences in WS, which has been observed in the general population.

Our results largely replicate the results seen in Klein-Tasman et al. 2010. The overall T-score distribution reveals that 40% of our samples fall into the no clinically significant impairment range, followed by 41.1% with mild to moderate deficits, and 18.9% with severe deficits. The number of individuals showing no clinical signs in our sample is higher than the 13.4% observed when the parents completed the SRS in Klein-Tasman et al. 2010, but more similar to the teacher reported results of 38.8%. The sub scores also follow a similar pattern to what has been reported previously (20). There is a significant effect of sub scale on the T-scores ($F_{4,420} = 24.759$, p < 0.001)(**Figure 1B**). Post hoc Tukey all-pairwise comparisons show that social motivation has significantly better T-scores than all other sub scales, consistent with Klein-Tasman et al. 2010. The social awareness and communication scales are not different from each other, but both show less impairment than social cognition and restricted and repetitive behaviors. Social cognition and restricted and repetitive behaviors were significantly more impaired than all other sub scales, but not each other.

The distribution of SRS scores in WS point to the possibility of additional genetic variants that modify the social phenotype. First, we see a larger standard deviation in the SRS data in our sample compared to that of the norming population from Constantino and Todd 2003. The extra variance suggests individuals with WS are more sensitive to genetic or environmental factors that modify social behavior. Second, in our sample there are only two individuals that show severe social motivation deficits, and these individuals also show severe deficits in the total SRS T-score as well as all other sub scales. These outliers also suggest some individuals may harbor additional rare variants of large effect size resulting

in a phenotype that is more frankly autistic. To test these two hypotheses, we generated and analyzed exome sequence from this cohort of WS patients.

2.3.2 Identification of variants in the Williams syndrome critical region

Williams syndrome individuals are hemizygous for 1.5-1.8Mbp on chromosome 7q11.23. Since they only have one remaining allele, our primary hypothesis was that second hits in genes believed to impact social phenotypes within the WSCR would produce more extreme social phenotypes. We performed whole exome sequencing on 85 individuals, all of whom have an SRS score. We called 120 variants in the remaining WSCR and annotated them with the allele frequency in our sample, ExAC allele frequency, mutation consequence, clinical significance as assessed by ClinVar, and scores that assess deleteriousness of missense variants catalogued in dbNSFP. (Supplemental Table S1). Table I shows the 55 exonic variants discovered in the region. For display purposes we have only included the CADD PHRED score and the MetaLR score, which is a composite score that incorporates information from nine other measures of deleteriousness and has been shown to have more predictive power than the individual component scores(126).

We first examined this set of variants to determine if any loss-of-function variants might be present in individuals with particularly severe SRS scores in our sample. Upon inspection of the exonic variants, we notice no severe likely protein truncating variants. As homozygous nulls for at least two genes in this region(*ELN* and *GTF2I*) are expected to be lethal(96, 127), we also assessed missense mutations in these genes that might alter function. Based upon the predictions of MetaLR all the missense mutations called are expected to be tolerated. None of the variants were reported as pathogenic in ClinVar. The highest CADD scores observed are a novel variant and SNP rs35607697, both located in the *TBL2* gene. Another novel variant was identified as a

synonymous change in the *BAZ1B* gene. Similar results are found for non-exonic variants in the region (**Supplemental Table S1**). This suggests that beyond the reduced copy number of the entire WSCR, neither a second rare deleterious coding variant nor any common missense mutations in the WSCR explain individuals with outlier SRS scores. It should be noted that we did not identify any variants in *GTF2I*, one of the primary candidates for mediating the social cognitive profile.

2.3.3 Association analyses

To test the hypothesis that individual variants in the WSCR can explain the variance in the SRS scores in our sample, we perform classic quantitative trait loci associations. Rare disease populations by definition will have small sample sizes such as in this study. We calculated the power of our current study to be able to detect variants with different effect sizes and also calculated the number of samples that would be needed to reach a certain power given an effect size (**Figure 2**). We calculated the power for analyzing variants in the WSCR, variants in 71 ASD genes, and the remaining variants identified throughout the exome. Since we are conducting fewer tests in the WSCR, we have the most power in this analysis, however we are still only powered to detect very large effect sizes that might be unmasked by the hemizygosity of the region, such variants would need to explain more than 10% of the heritability of the trait to achieve 80% power. Most effect sizes for common variants in diploid regions of the genome typically assessed by GWAS for complex traits explain around 1% of the heritability of the trait(128). In order to be able to detect variants that explain 5% of the variance of the trait with 80% power using only variants in the WSCR would require 312 individuals (**Figure 2B**).

We then performed a quantitative trait association analysis of common variants in the WSCR on the SRS T-scores from the whole cohort. We used PLINK to test for an association on each of the 34 common variants in the WSCR, defined as MAF > 0.05, which corresponds to an allele count of at least four in the WSCR due to the hemizygosity of the region. We adjusted for age, sex, and ancestry. We found no association between any SNP and SRS that survived multiple comparison corrections (**Figure 3A**). The top five SNPs are displayed in Table II. Interestingly, the most significant SNP, rs2074754, is located in the *BAZ1B* gene, which has been previously implicated in contributing to the cognitive phenotypes in WS (49). Furthermore, the next most nominally significant SNP is rs61438591, an intronic variant in the *GTIF2RD1* gene, another gene highly implicated in the cognitive and social phenotypes seen in WS(92, 99–101).

Since the common variants in WSCR showed no association, we wanted to test for the possibility that rare variants could contribute to the variability in SRS T-scores. To test this, we used SKAT-O, which tests all variants in the region at once and weights each variant by its minor allele frequency. Similarly, we included age, sex, and ancestry as covariates. We tested each gene in the WSCR independently, because we hypothesized only certain genes in the region, such as *STX1A*, *LIMK1*, *CYLN2*, *BAZ1B*, *GTF2IRD1* (31, 38, 49, 96, 99, 106–109) that have been implicated in the cognitive phenotypes would contribute to the social phenotype rather than the entire region. While no gene p-value survives multiple testing corrections, the *ELN* gene has the most nominally significant p-value of 0.013

The results of our analysis of variation in the WSCR suggest that common and rare variants in the remaining allele do not strongly influence social behavior in WS. This does not exclude the possibility that a second deleterious hit or common variation in other genes outside the region contributes to the variation in the SRS T-scores. To test this, we next examined

variation in 71 genes known to be associated with autism spectrum disorders(121). These genes should be enriched for loci that affect social behavior and genetic variation in these genes could contribute to variability seen in WS. We called 1,367 variants in the 71 genes (**Supplemental Table S2**). We annotated the variants as above, with clinical significance and measures of deleteriousness compiled in dbNSFP. There are 313 (22.9%) variants that had at least one submission to ClinVar. None of these variants had previous evidence to support pathogenicity. There are 33 missense variants predicted to be deleterious by MetaLR that are seen in 36 individuals in our sample. Despite having a putatively deleterious variant the distribution of SRS T-scores is similar between individuals either carrying or lacking deleterious variants in these genes (t_{82,999}=0.6878, p-value=0.4935). There are seven variants that should result in a truncated protein, one stop gain in the USP45 gene and six frameshift mutations. Only one sample harboring one of these mutations has a severe SRS T-score of 77. All of these protein-truncating mutations are also observed in the ExAC cohort.

We next tested for associations of each of the 381 common variants (MAF> 0.05) in these genes. No SNP was significant after multiple testing corrections (**Figure 3B**). The top five SNPs are located in Table II. Since each of these genes has been associated with ASD, we hypothesized that rare and common variants in each of the genes could contribute to SRS. We performed SKAT-O on the variants located in the autosomal ASD genes altogether, which also showed that there is little evidence to support variants in these 68 ASD genes have a strong effect on SRS T-scores, p=0.431

While it would be underpowered for any but the largest effect sizes (Figure 2A), for thoroughness we did an unbiased scan of the whole exome. We also examined the polygenic contribution of common variants to the SRS. The common variant analysis was performed on

66,620 variants (Figure 3C). The most nominally significant single SNP is rs527221 located in the DMPK gene, which is responsible for causing type 1 myotonic dystrophy (129) (Table II). While there is suggestive evidence for single variants such as rs527221, we calculated the polygenic risk scores (PRS) for each of the individuals in our sample to test if exome wide there are many SNPs of small effect that contribute to the social phenotype in WS. We used the summary statistics from the most recent PGC GWAS on autism spectrum disorders to calculate the PRS for our sample(130). We reasoned the polygenic risk of autism would be correlated with the SRS because this is a questionnaire used to assess behaviors that are affected by autism. Variants from the PGC GWAS were included if the p-value for the variant was under the threshold determined by the high resolution screen in the PRSice software(131). Interestingly, only the PRS for the motivation sub score was nominally significant (p=0.033), but after permutation to determine an empirical p-value it was not significant (p=0.308). The correlations of the PRS for each of the samples and the sub score as well as total SRS are shown in supplemental figure 1. Counterintuitively, there is a negative correlation between the PRS and motivation sub score. While this is the largest correlation between the PGS and sub scores it implies that more genetic risk for autism leads to a lower and less impaired social motivation Tscore. However, given the small sample size and small number of SNPs available from whole exome sequencing compared to whole genome genotyping we are wary of making strong conclusions from this analysis.

We and others (20) have shown that individual sub scores of the SRS are affected differently by the deletion of the WSCR. Therefore, we wanted to rule out the possibility that variants are indeed affecting specific sub scales of social behavior, but that testing the total SRS score is masking those effects. Thus, in an exploratory manner, we repeated the quantitative trait

loci associations for each of the sub scores of the SRS using the variants in the WSCR, 71 ASD genes, and the remaining whole exome variants. Since the sample size is small we conducted these associations for exploratory and hypothesis generating purposes. The top five SNPs from each association are reported in supplemental tables 3-5. For each of the analyses we see similar variants showing the highest association as were associated with the total SRS, likely due to the high correlation between the SRS and the sub scores (**Supplemental Figure 2**). Thus, an analysis of the total SRS was not masking independent genetic effects on each sub scale.

2.4 Discussion

Phenotypic variability has been appreciated in many of the symptom domains of WS including the cardiovascular phenotypes, the unique cognitive profile, and in social behavior(132–134). Here, we have described the variability of reciprocal social behavior in a sample of 85 individuals with the typical WS deletion using the SRS-2. Our results replicate the findings of Klein-Tasman et al. 2010, revealing that overall individuals with WS have SRS scores that are shifted to the more socially impaired end of the distribution, with most problems relating to the social cognition and restricted and repetitive behavior sub scales of the SRS while social motivation is spared.

We also note that sex differences in the general population have been reported previously in the literature for SRS. These sex differences were not consistent with different genetic factors contributing to the SRS in boy and girls, but due to discrepant effects of common genetic and environmental factors on SRS, such as differences in sensitivity to environmental factors or the X-inactivation phenomenon (119). However, we do not see evidence of sex effects in our sample of individuals with WS. The magnitude of the difference between males and females in our sample is similar to what was reported in the general population, so our lack of a

significant finding could be due to our small sample size. The standard deviation of the SRS is large in both the general population and still larger in the WS population, so it may also be that larger sample sizes are needed to overcome the considerable variance in the data. The fact that the WS population has a larger standard deviation could also suggest that individuals with the deletion are sensitized to other factors that contribute to variation in the SRS such as background genetic variation or environmental factors.

We performed whole exome sequencing on our sample of 85 individuals to test for additional genetic contributions to the variability seen in social behavior in individuals with WS. We used the identified variants to test the hypothesis that genetic variation in the remaining WSCR allele can explain some of the variability in SRS T-scores. Genes in this region have a dosage sensitive effect on social behavior evidenced from the contrasting social phenotypes of the WS deletion and the reciprocal duplication, suggesting that variants in the remaining WSCR allele that affect expression or function of the genes could further contribute to the social phenotype(13). We called 120 variants in the WSCR with 55 variants being exonic. We used evidence such as the amino acid change, clinical significance suggested by the ClinVar database, and multiple algorithms to predict the consequences of the variants. Within the WSCR we do not find any variants that cause protein truncation. None of the missense variants are predicted to be deleterious based on the MetaLR composite score. Of the nine variants that have been submitted to ClinVar, all were described as benign or likely benign. A quantitative trait association analysis using the common variants in the region resulted in no SNP that survived multiple testing corrections. The most significant SNP, rs2074754, is a synonymous SNP in the BAZ1B gene. This gene encodes for a protein product in the bromodomain protein family that modifies chromatin to affect transcription and has been implicated in the cognitive phenotypes in WS.

Knocking down this gene in human derived induced pluripotent stem cells upregulates genes involved in mitosis as well as downregulating genes that are involved in the development of the nervous system(49) The second most nominally significant SNP, rs61438591, is an intronic variant in *GTF2IRD1*, which encodes for a transcription factor that has been suggested to contribute to the cognitive and social behavior deficits (38, 39, 49, 92, 100, 101). If future studies with increased power replicate this association, it would suggest that noncoding variation, perhaps controlling the expression of this gene, might contribute to variation is social behavior. We also tested the association of all variants in the WSCR using SKAT-O. This test indicated no variants with sufficient effect size were detected in the WSCR.

While we have not shown evidence that variants in the remaining WSCR contribute to the social phenotype in WS, we cannot conclusively discard this hypothesis. However, our study does clearly indicate that the alleles genotyped here are either not causative or exert too small an effect size on SRS for our current power (**Figure 2**), but it does not rule out variants of small effect on social behavior in the region. Research on other copy number variants associated with ASDs showed that larger CNVs tended to have genes of smaller individual effect size and suggests the phenotype of the overall CNV is due to the cumulative effect of each of those genes(121). Further we did not detect any variants in the gene *GTF2I*, which has been highly suspected of contributing to the social behaviors in WS(31, 38, 53, 90, 96). The lack of variant calls in our sample could be due to the fact that *GTF2I* is under stringent purifying selection. Indeed, looking at the ExAC data covering this gene, they show that there are fewer missense variants than expected by chance. ExAC discovered 62 synonymous and 56 missense mutations in 60,706 people(135). In our sample of 85 individuals we would expect to see variants in ExAC that have an allele frequency of greater than 0.0059, which is an allele count of one in our

sample. There are ten variants with an allele frequency greater than 0.0059 detected in ExAC, only three of which are exonic. Thus, we would need a much larger sample size to investigate coding variants in *GTF2I*. The two linked variants in *GTF2I* that have previously been associated with oxytocin responsiveness and amygdala reactivity, rs1322743 and rs4717907, are intronic and were not covered in our sequencing(51, 118).

We further used the genetic data to investigate the role of variation in 71 genes that have been associated with ASD. WS and ASD do show phenotypic overlap(114, 136), and we reasoned that these genes should be enriched for functional roles in social behaviors. Likewise, the presence of outlier scores on the SRS that indicated severe impairment, suggested there could be possible second deleterious hits on top of the WS deletion in our dataset. Second hits are expected to be rare but have been observed in WS to explain a case of a child with comorbid seizures(54). Inspecting the 1,367 variants discovered in the ASD genes, 313 variants have been previously submitted to ClinVar, none of which show evidence for any pathogenicity. We observed seven protein-truncating mutations that do not associate with severe SRS T-scores. Several missense mutations were predicted to be deleterious, but there was no association between individuals that had a putative deleterious variant and a more impaired SRS score. Testing the common and rare variants in these genes showed no associations with the social phenotype. Similar results were found when we performed the association analyses on all of the variants discovered in the cohort. The most significant SNP was rs527221, a nonsynonymous variant in the *DMPK* gene, which is responsible for causing type 1 myotonic dystrophy, severe childhood forms of which have been associated with ASD(137). We also tested if polygenic risk for increased ASD liability is associated with the SRS T-score and sub scores. This boosts our ability to detect the impact of many loci with small effects. The largest correlation was between the PRS and the social motivation sub score, although this was not significant.

WS seems to affect specific domains of social behavior as evidenced by significant differences between the sub scores of the SRS. This observation led us to an exploratory examination of associations with the sub scores of the SRS and test if different genetic variants contribute to each sub score. Overall using variants from the WSCR, ASD genes, or the whole exome identified the same variants as nominally significant. The SRS and the sub scores are very correlated, but the social motivation in the WS sample is the least correlated to all other scores. This reflects that fact that social motivation tends to be rated within the normal range in WS, while the other scores are often higher. Interestingly, the whole exome association on the motivation T score leads to the lowest FDR values compared to the other scores, suggesting that there may be more genetic signal when using this sub scale. Indeed, this decoupling of the social motivation subscale from other SRS items highlights the possibility that the social motivation subscale might provide useful clinical information going forward; individuals carrying the WSCR deletion yet not showing a spared social motivation might warrant a deeper examination for additional factors impacting their presentation.

There are several limitations to our current study that should be addressed in future research. First the current study genotyped and assessed only the probands and not their parents. Having genetic information from trios would allow us to distinguish between variants that are inherited or *de novo*, which would aid in interpretation and prioritization of variants. Further, being able to compare the SRS score of the individual with WS to biparental SRS mean would let us control for effects of background genetic variation(120). Second, we are limited to investigating exonic variation. While interpretation of exonic variants is more straightforward

because they potentially disrupt coding sequences, and can aid in the detection of deleterious rare variants, we could be missing important regulatory information that is located in promoters or introns of genes. Third, we were not able to control for intellectual functioning of the individuals with WS. The SRS has been reported to not correlate with intellectual functioning(138), but Klein-Tasman et al. 2010 found significant negative correlations between intellectual functioning and the total SRS T-score when parents completed the report, but not when teachers completed the report. SRS values have been shown to be dependent on levels of expressive language, nonverbal IQ, and behavioral problems. A subset of SRS questions was selected to ameliorate these dependences(139). The short form of the SRS as well as other questionnaires that assess adaptive skills and social behaviors could be used in the future to provide supporting information about the social phenotype and underlying genetics in WS. Finally, while our study represents the largest single collection of WS samples reported to date, it is only powered to detect strong effects of common variants due to our small sample size. This is challenging to overcome due to the low prevalence of WS.

In conclusion, we have tested the hypothesis that variation in the remaining WSCR allele affects the social phenotype of individuals with WS, by applying whole exome sequencing to a sample of 85 individuals with typical WS deletions. We show that common and rare variants in the region do not associate with SRS T-scores in our sample. Further, we show that variation outside of the region does not account for the social variability. This is not to say that genetic variation does not play a significant role in phenotypic variability in WS, but that it will require larger sample size to detect. In the future, applying whole genome sequencing to a sample of individuals with WS might elucidate the roles of genetic variation in the regulatory elements. Whole genome data could also allow for more accurate breakpoint determination. Redundant

sequences in the low copy number repeat areas at either end of the WS deletion prevent accurate end point detection by CMA. This will be an interesting avenue to pursue in order to investigate how deletion size variation among individuals with typical 1.5 to 1.8 MB deletions contributes to social behavior. For example, Porter *et al.* showed that those with larger (1.8Mb deletions) had decreased executive functions(41). It is also worth noting that the current genetic data set has additional clinical data available, which can be queried in the future for the presence of more substantial associations with other WS related phenotypes.

2.5 Materials and Methods

Ethical Compliance and samples

This study was conducted with approval of the IRBs at Washington University School of Medicine and the National Institutes of Health. Consent was obtained prior to inclusion in the study. Once enrolled, participants provided a DNA sample by blood or saliva and their caregivers filled out health related questionnaires. The 85 individuals that make up our sample have ages that range from 2.5 to 65.5 years with a mean of 16.1 years. Caregivers provided a self-reported ethnicity. The majority of the sample was reported as white (77 individuals). There are two individuals that are African American, three Chinese, and three others.

Confirmation of diagnosis

WS diagnosis and typical deletion size was confirmed using either chromosomal microarray or quantitative PCR. In some cases, clinical microarray results were derived from the medical record. Array type varied by individual. For the remaining individuals, some received a research array (Cytoscan HD, Applied Biosystems) with analysis using the accompanying ChAS software. Others underwent deletion size assessment using quantitative PCR for genes within

and outside of the Williams region using Taqman copy number probes (Thermo-Fisher, AUTS2: Hs04984177_cn, CALN1: Hs04946916_cn, FZD9: Hs03649975_cn, CLIP2: Hs00899301_cn, HIP1: Hs00052426_cn, POM121C: Hs07529820_cn). Copy number analysis was done according to the manufacturer's instructions and output data analyzed using their Copy Caller software. All individuals were confirmed to have deletions that included the WSCR genes ELN, FZD9 and CLIP2, but did not include genes external to the typical deletion such as CALN, AUTS2, POM121C or HIP1 (data not shown).

Social Responsiveness Scale

The social responsiveness scale-2 (SRS) is a 65-item questionnaire that measures aspects of social interaction that make up the core symptoms of autism spectrum disorders. The output is a total raw score as well as a T-score that is adjusted for sex, age, and the relationship of the reporter to the proband. The total score is made up of the scores of five subcategories that are impaired in ASDs: social awareness (AWR), social cognition (COG), social motivation (MOT), social communication (COM), and behaviors typical of autism such as restricted interests and repetitive behaviors (RRB). The response to each question ranges from 1 (not true) to 4 (almost always true). The T-scores are binned into four groups: normal < 59, mild between 60 and 65, moderate between 66 and 75, and severe > 76. For this study, the age-specific (pre-school, school age, or adult) SRS-2 was completed by the participant's caregiver and analyzed as a T-score that is adjusted for sex, age, and the relationship of the reporter. We provide values from the general population that have been previously reported for comparison (119, 138).

Sequencing and Variant calling

Whole exome sequencing and alignment was performed at Washington University in St. Louis by the McDonnell Genome Institute on 85 DNA samples from individuals with WS. Exomes were captured using Nimblegen SeqCap EZ Choice HGSC Library version 2.1, which targets 45.1 Mbp covering 23,585 genes and 189,028 non-overlapping exons. Exomes were aligned to the GRCh37-lite genome using bwa —mem v0.7.10(140) default settings, samtools v0.1.19(141) was used to assign mate pairings, sort, and index the bam files. Duplicates were marked using Picard MarkDuplicates v1.113.

Variant calling was done following GATK best practices on the aligned exomes (142). Briefly, using GATK v3.6.0 indels were realigned and the base quality scores recalibrated. Variants were initially called per sample using the haplotype caller tool, followed by jointly calling variants. To improve variant calls, we recalibrated variants and used a truth sensitivity tranche of 97 for SNPs, and a truth sensitivity tranche of 94 for indels. These thresholds were chosen to maximize the number of known and novel variants while still being stringent enough to limit the number of false positive variant calls. To further filter the variants we used the VariantFiltration tool to filter variant sites that had lower than a 10x average coverage or an inbreeding coefficient less than -0.20 to remove sites with excess heterozygosity. Genotype calls were filtered and considered to be missing if they had a genotype quality score of less than 20, which refers to a 99% probability that the call is correct. Finally, using vcftools v0.1.14(143), we removed sites that had a genotype missing rate of greater than 10%, as well as sites that no longer showed any variation. This produced a call set of 202,820 variant sites. The final call set has a Ti/Tv ratio of 2.76 and a dbSNP rate of 88.5%. These metrics are consistent with quality variant calls and a low false positive rate.

Variant annotation

The variant call set was split into three groups using veftools: 1) variants in the Williams syndrome critical region (WSCR) defined by hg19 coordinates chr7:72,395,660-74,267,841 2) variants located in 71 genes associated with ASD(121), and 3) the remaining non-overlapping variants. All sets include exonic variants as well as variants located in introns that are pulled down by the capture reagents. Beftools v1.2(141) was used to split multiallelic sites into separate lines for each allele and left normalized so positions would be compatible with ANNOVAR annotation files version 2016-02-01(144). The ANNOVAR table annovar.pl function was used to annotate all three variant call sets with the RefSeq gene annotation, variant consequence, ExAC allele frequency(135), sample specific allele frequency, dbsnp147 name, clinical significance assessed by ClinVar(145). Missense variants were also annotated with measures of deleteriousness compiled in dbNSFPv3.3a(146). We highlight the CADD PHRED score and MetaLR as two measures of variant deleteriousness. CADD scores are defined at each base in the genome and for every possible single nucleotide change (147). CADD scores compare 65 annotations, including functional data as well as conservation scores, between fixed human derived alleles and simulated variants. Deleterious variants should be depleted in the observed fixed alleles and not in the simulated variants. CADD PHRED scores represent the relative rank of a CADD score compared to all other possible allele CADD scores; a CADD score of 10 means this allele is ranked as the top 10% of all possible CADD scores. Larger CADD PHRED score indicates an increased predication of deleteriousness. MetaLR uses logistic regression to incorporate information from 9 other variant annotations that consider function as well as conservation (126). The model was trained on true deleterious variants and true neutral variants described in the Uniprot database. The composite MetaLR score was found to have greater predictive ability than any of the single scores that make up MetaLR.

Power Analysis

We performed a power analysis to provide the limits of genetic effects that we would be able to detect given our cohort size. For future studies we also calculate the sample sizes that would be needed to detect different magnitudes of genetic effects. We used the Genetic Power Calculator (148). We calculated the predicted power of the current sample size n=85 using a p-value threshold corresponding to the Bonferroni corrected alpha for each set of analyses (WSCR 34 variants, alpha=0.00147, ASD 381 variants, alpha=0.000131, WEX 66620 variants, alpha=7.5x10⁻⁷. Our main hypothesis is variants on the remaining WSCR allele affect the social phenotype; we wanted to calculate the sample sizes that would be required to detect different size genetic effects in the WSCR at different levels of power. We again used the alpha threshold based on the 34 common variants we identified in the exons of the WSCR and report the sample size required to achieve a specific power.

Association analyses

Common variant analysis

The variant call files were converted to plink binary bed format using the GATK tool VariantToBinaryPed. We used PLINK v1.9(149) --linear option to conduct a quantitative trait association using the SRS T-score as the quantitative trait. Ancestry was controlled for by including the first four principle components, determined by the --pca function in PLINK, as covariates along with sex and age. We used alleles that had a minor allele frequency (MAF) of 0.05 or greater. We performed the association analyses on the three separate groups of variants described in the previous section. It should be noted that allele frequency in the Williams syndrome critical region is inflated because of the hemizygous state of the region in individuals

with WS. A MAF of 0.05 in this region corresponds to an allele count of four. In all cases we report the effect size of a variant under an additive model. Though the small sample size of this study limits power, in an exploratory fashion we also performed the same quantitative trait analysis on each of the sub scores of the SRS using variants in the WSCR, ASD genes, and the whole exome.

SKAT-O

SKAT-O (150)was implemented in the R v3.1.3 environment. SKAT-O fits a multiple linear regression of all SNPs located in a user provided region. The framework in SKAT-O allows for correlation between SNPs in a region, where if all SNPs are perfectly correlated this would become a burden test, but also allows SNPs in the same region to have effects in opposite directions. Significance is assessed by region rather than by SNP. We considered each gene that harbors a variant in the WSCR as a separate region for a total of 26 regions. To test for an overall effect of variants in the ASD genes we collapsed the 61 autosomal genes into one region. We used the beta function shape parameters (1,50) to put more weight on SNPs that have lower minor allele frequency, reasoning that rare causal alleles potentially have a greater effect size. We again controlled for age, sex, and the first four principal components.

Polygenic Risk Score

Polygenic Risk Scores (PRS) can be used to test if there is a contribution of many loci of small effect on the phenotype of interest by summing the effects of variants that may have not reached genome-wide significance. For a discovery set, we used the publically available summary statistics from the most recent Psychiatric Genome Consortium genome wide association study (GWAS) of autism spectrum disorder (130), reasoning that genetic risk for autism would

contribute to SRS scores. The best-fit PRS was determined using the high-resolution functionality in the PRSice software(131). All of the variants identified throughout the exome with a MAF >0.05 and that are also present the in the discovery set were used to calculate the PRS. Sex, age, and the first four PCs were included as covariates. After clumping there were a total of 23,191 variants used to calculate the PRS. PRSice was used to calculate the significance of the PRS at the best-fit p-value threshold using 10000 permutation to determine an empirical p-value. PRS for each of the samples was calculated for the total SRS T-score as well as the sub scores.

Other statistical analyses

All remaining statistical tests were done in the R v3.1.3 environment. Two sample t-tests were used to compare the means of two groups. ANOVA was used to test differences in mean of sub scales of SRS. TukeyHSD post hoc comparison was performed using the multcomp package. The qqman(151) package was used to generate manhattan and qq plots.

2.6 Acknowledgments

None of the authors have any conflicts of interest to report. We would like to thank Drs. Natasha Marrus and John Constantino for helpful discussions of the SRS, and Dr. Don Conrad for discussion of association analyses. We acknowledge the McDonnell Genome Institute at Washington University who performed the exome sequencing performed in this study. NDK was supported by the Autism Science Foundation and the NSF (DGE-1143954), This work was supported by the Children's Discovery Institute(MD-II-2013-269 to JDD and BAK and CH-FR-2011-169 to BAK) and the NIH (1R01MH107515-01A1, 5R01HG008687-02, 9R01MH100027-06 for JDD and HL006212-01 for BAK). JDD is an investigator of the Brain and Behavior

Research Foundation. BAK received funding for this project from the Heartland Genetic Services Collaborative. We also thank the Williams syndrome association and the families who participated in this study.

2.7 Figures

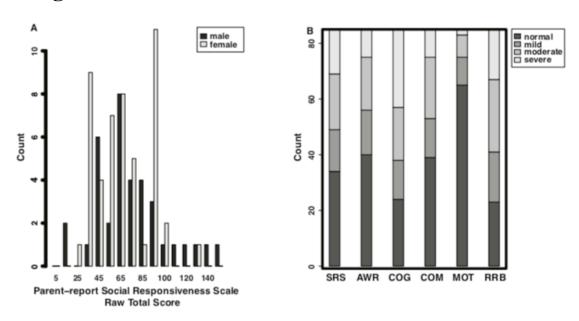
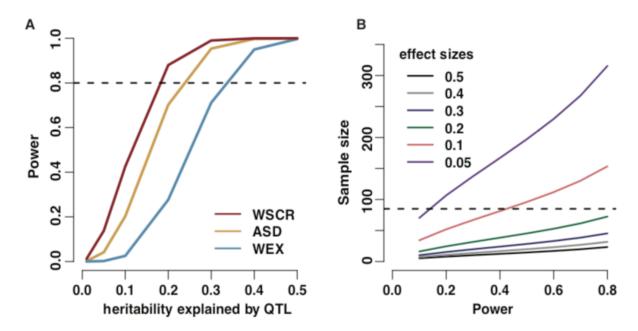



Figure 1: Distribution of Social Responsiveness in 85 individuals with typical WS deletion. A Distribution of the raw SRS scores B Severity bins of SRS and subcategory scores.

Figure 2: Power analysis. AThe power to detect variants of different effect sizes for the current study. The alpha for the three different sets of analyses was determined by using the Bonferroni correction based on the number of SNPs tested in each analysis. (WSCR: variants in the WSCR, ASD: variants in the 71 ASD genes, WEX: all remaining variants exome wide). **B** The predicted sample sizes that would be required to achieve different levels of power for detecting variants of different effect sizes. The sample size predictions were only done using the alpha for the number of SNPs tested in the WSCR. The horizontal dashed line indicates the sample size of the current study.

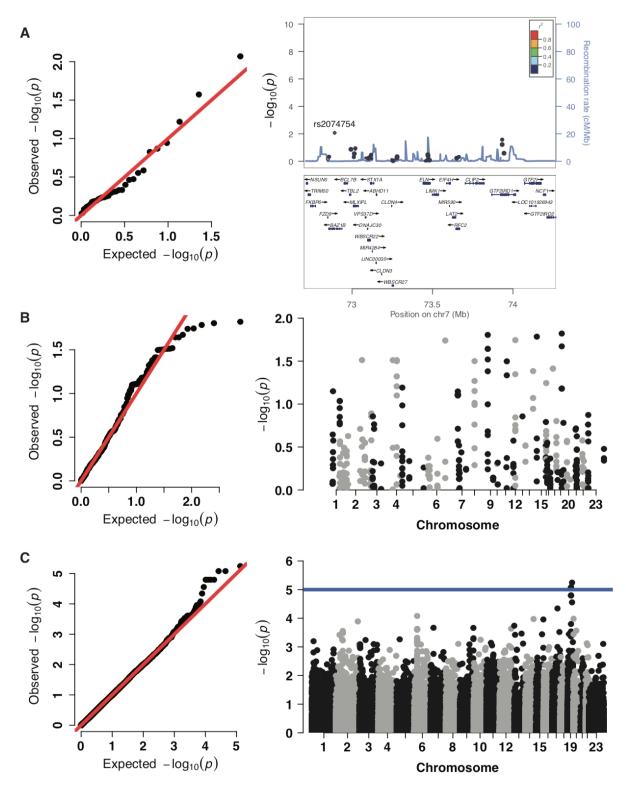
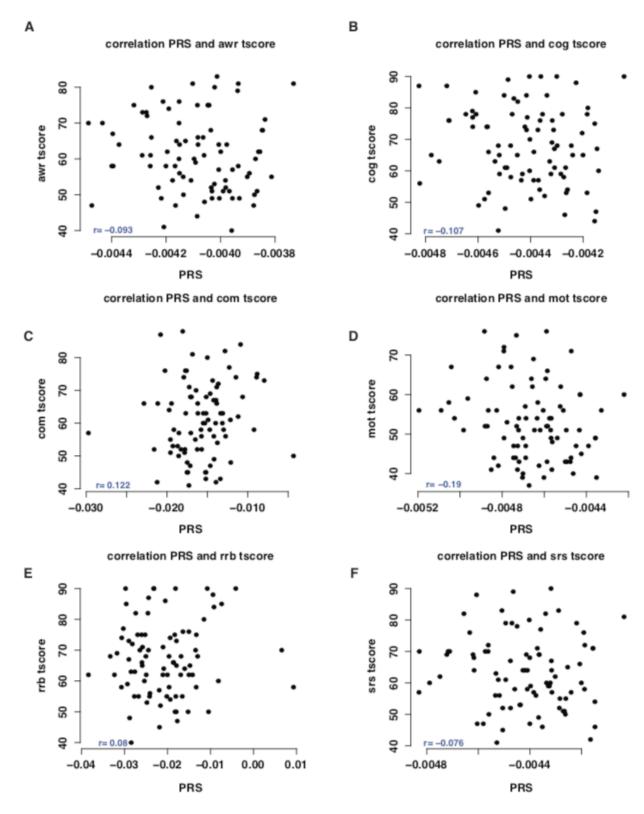



Figure 3: Variants in the WSCR, ASD genes, or whole exome do not contribute to SRS variability in a sample of WS with typical deletions. A qq plot showing distribution of p-values for common variants in the WSCR. Locus zoom plot showing the SNPs tested in the WSCR, highlighting the most nominally significant SNP in BAZIB. B qq

and manhattan plot for variants called in 71 genes associate with ASD from Sanders *et al.* 2015. \mathbb{C} qq and manhattan plot for variants exome wide. Blue line demarcates a suggestive p value threshold of $1x10^{-5}$.

Supplemental Figure 1: Polygenic Risk Score correlation with SRS and SRS subscores. A-F Panels show the correlation between the polygenic risk score (PRS) for the sub scores of the SRS calculated using variants from the PGC ASD GWAS that fall below the p-value threshold calculated from the best-fit PRS. Pearson correlation values

between the samples PRS and the SRS subscore shown as the inset.

Supplemental Figure 2: SRS and sub scales are correlated. Heatmap display of the Pearson correlation values of the SRS and sub scale T-scores in 85 individuals with WS. Values of the correlation are labeled in the plot.

Table 1: Annotation of 55 exonic variants discovered in the WSCR

Chr	Start	avsnp147*	Alt	MAF	Transcript	Gene	Consequence	MetaLR score	MetaLR Prediction ^b	CADD PHRED
7	72413057	rs782618986	Α	0.005882	NM_172020	POM121	p.S577N	0.011	T	0.006
7	72717686	rs145622470	T	0.01176	M_00116834	NSUN5	p.P399P			8.726
7	72719048	rs34913552	A	0.01176	M_00116834	NSUN5	p.P183S	0	T	0.002
7	72738534	rs371073794	T	0.01176	M_00128145	TRIM50	p.P84P			15.11
7	72738561	rs61741334	T	0.04706	M_00128145	TRIM50	p.1751	,		11.01
7	72738762	rs6980258	T	0.9882	M 00128145	TRIM50	p.L8L			0.46
7	72738763	rs6980124	G	0.9882	M 00128145	TRIM50	p.L8P	,		0.001
7	72744246	rs200493820	T	0.01176	M 00128130	FKBP6	p.T90M	0.492	T	13.74
7	72754645	rs 56301507	A	0.01176	M 00128130	FKBP6	p.L168L	,		3.802
7	72856676	rs1178978	T	0.01176	NM_032408	BAZ1B	p.Q1434Q			11.69
7	72857130	rs150115317	T	0.01176	NM_032408	BAZ1B	p.R1340K	0.025	T	23.6
7	72891754	rs2074754	T	0.4	NM 032408	BAZ1B	p.S679S			10.13
7	72936183		A	0.01176	NM_032408	BAZ1B	p.H27H	,	,	2.032
7	72951640	rs142166738	G	0.01176	M 00119724	BCL7B	p.A142A			7.437
7	72985148	rs35607697	T	0.03529	NM 012453	TBL2	p.V345I	0.014	T	26.3
7	72987758		С	0.01176	NM 012453	TBL2	p.F164V	0.154	T	27.3
7	72992858	rs76029572	G	0.07059	NM 012453	TBL2	p.E8Q	0.054	T	9.196
7	73010754	rs61738649	T	0.05882	NM 032951	MLXIPL	p.L626L			2.706
7	73013901	rs13235543	T	0.1294	NM 032951	MLXIPL	p.P342P	,		6.53
7	73020301	rs799157	С	0.9647	NM 032951	MLXIPL	p.S253S			2.151
7	73020337	rs3812316	G	0.1059	NM 032951	MLXIPL	p.Q241H	0.001	T	19.07
7	73020439	rs 12539160	T	0.01176	NM 032951	MLXIPL	p.A207A			12.68
7	73083889	rs61743139	T	0.02353	M 00107762		p.A93A			18.4
7	73097082	rs 79849491	G	0.02353	NM 032317	DNAJC30				0.66
7	73097238	rs1569062	A	0.3294	NM 032317	DNAJC30				11.69
7	73122977	rs2229854	A	0.05882	M 00116590	STX1A	p.N50N			11.25
7	73150934	rs138932141	A	0.01176	M 00114536		p.D244D			1.115
7	73245591	rs142910620	T	0.01176	NM 001305	CLDN4	p.A20A	,	,	17.87
7	73254812	rs13241921	C	0.7882	NM 152559		_	0	T	0.001
7	73275565	rs11770052	A	0.7647	NM 182504			0	T	15.45
7	73279361	rs61742124	T	0.1294	NM 182504					14.82
7	73279301	rs118088869	T	0.03529	NM 182504			0.01	Ť	15.49
7	73279413	rs1136647	T	0.7176	NM 182504				1	12.3
7			G		M 00127891			,		
7	73466285	rs6979788	A	0.01176		ELN	p.A271A	0	T	1.511
7	73470714	rs2071307	T	0.4706	M_00127891		p.G412S			6.674
7	73474268	rs200512332		0.01176	M_00127891	ELN	p.V408V			9.149
	73474367	rs61734584	A	0.01176	M_00127891	ELN	p.G441G		,	1.008
7	73474825	rs 17855988	C	0.07059	M 00127891	ELN	p.G500R	0.007	T	23.2
7	73477524		A	0.01176	M 00127891	ELN	p.G529S	0.131	T	23.7
7	73631177	rs144269935	G	0.02353	NM_014146	LAT2	p.139M	0.013	T	25.9
7	73651743	rs3135688	С	0.01176	M 00127875	RFC2	p.V160V	,		8.01
7	73663362	rs1805395	C	0.05882	M 00127875	RFC2	p.E3E			7.454
7	73731906	rs148561130	T	0.02353	NM_003388	CLIP2	p.P10P	,		18.78
7	73811479	rs76865959	С	0.01176	NM_003388	CLIP2	p.R897R			4.969
7	73814702	rs 17 14 5468	A	0.03529	NM_003388	CLIP2	p.D926E	0.006	T	17.3
7	73814749	rs2522943	С	0.9647	NM_003388	CLIP2	p.R942P	0	T	18.33
7		rs111256098	T	0.01176	M_00119920			,		12.93
7	73932488		G	0.01176	M_00119920					9.272
7		rs145535993	T	0.02353	M 00119920			,		10.27
7	73932560	rs 1785 1629	G	0.2118	M_00119920					9.058
7	73933793	rs148463467	T	0.01176	M 00119920	GTF2IRD1	p.V252V			14.93
7	73944095	rs61744518	T	0.02353	M_00119920	GTF2IRD1	p.P406P			16.53
7	73944185	rs2240357	C	0.2353	M 00119920	GTF2IRD1	p.Y436Y	,		0.434
7	73953017	rs55634982	T	0.01176	M_00119920	GTF2IRD1				14.02
7	74211576	rs587728502	C	0.01176	NM 173537	GTF2IRD2	p.M759V	0.021	T	0.893

^{* &}quot;." Refers to information that is not applicable

b "T" the missense mutation is predicted to be Tolerated

Table 2: Top five SNPs from quantitative trait locus associations

SNP	Alt allele	MAF	Transcript*	Gene	Consequence	Beta	95% Confidence interval	Raw p-value	FDR	Analysis group ^b
rs2074754	T	0.4	NM_032408	BAZ IB	p.S679S	3.429	0.9415 - 5.917	0.0085	0.2899	WSCR
rs61438591	C	0.2		GTF2IRD1	intronic	3.506	0.4648-6.547	0.0267	0.4542	WSCR
rs17851629	G	0.22	NM_016328	GTF2IRD1	p.E171E	2.932	-0.0839 - 5.948	0.0605	0.6851	WSCR
rs3812316	G	0.11	NM 032951	MLXIPL	p.Q241H	3.402	-0.7692 - 7.572	0.1141	0.8466	WSCR
rs76029572	G	0.07	NM 012453	TBL2	p.E8Q	-3.735	-8.587 - 1.117	0.1367	0.8466	WSCR
rs12983010	G	0.07	NM 14469	CAPN12	p.C287R	9.286	1.96 - 16.58	0.0151	0.6587	ASD
rs12553775	A	0.11		PHF2	intronic	7.573	1.567 - 13.58	0.0157	0.6587	ASD
rs140682	C	0.48	NM 000810	GABRA5	p.V202V	-4.377	-7.874 - 0.8801	0.0164	0.6587	ASD
rs1805482	A	0.35	NM_000834	GRIN2B	p.S555S	4.918	0.9301 - 8.906	0.018	0.6587	ASD
rs112318565	G	0.06	-	ARID1B	intronic	10.22	1.918 - 18.51	0.0182	0.6587	ASD
rs527221	C	0.11	NM_001288765	DMPK	p.L.334V	13.78	8.246 - 19.31	5.70x10 ⁻⁶	0.1522	WEX
rs2546028	C	0.54		ZNF792	UTR5	-6.95	-9.8014.099	8.32x10 ⁻⁶	0.1522	WEX
rs2546029	G	0.54		ZNF792	UTR5	-6.95	-9.8014.099	8 32×10 ⁻⁶	0.1522	WEX
rs1811	G	0.46	NM_001099437	ZNF30	p.Q124R.	7.166	4.116 - 10.22	1.60x10 ⁻⁶	0.1522	WEX
rs2651109	C	0.46	NM 001099437	ZNF30	p.S215S	7.166	4.116 - 10.22	1.60x10 ⁻⁶	0.1522	WEX

[&]quot;." Refers to information that is not amplicable

b WSCR (Williams syndrome critical Region), ASD (71 genes associated with ASD), WEX (variants across Whole Exome)

Supplemental Table S1: Annotation of 120 variants discovered in the Williams syndrome critical region

Chr	Start	Alt	avsnp147	Genic	Gene	Consequence ^a	AA change	Sample	ExAC	MetaLR ^b	CADD
				location				freq	freq	prediction	PHRED
7	72409868	G	rs189678402	intronic	POM121			0.01176	0.0034		
7	72413057	A	rs782618986	exonic	POM121	nonsynonymous SNV	p.S577N	0.005882	0.0625	T	0.006
7	72717686	T	rs145622470	exonic	NSUN5	synony mous SNV	p.P399P	0.01176	0.0021		
7	72718187	A	rs147531105	intronic	NSUN5			0.02353	0.0025		
7	72719048	A	rs34913552	exonic	NSUN5	nonsynonymous SNV	p.P183S	0.01176	0.0105	T	0.002
7	72722565	G	rs199740800	intronic	NSUN5			0.01176	0.0006		
7	72722836	С	rs142091726	UTR5	NSUN5			0.01176	0.0053		
7	72732712	С	rs192182316	intronic	TRIM50			0.01176	0.0022		
7	72732754	C	rs532548355	intronic	TRIM50			0.01176	0.0004		
7	72732785	T	rs183981056	intronic	TRIM50			0.02353	0.0175		
7	72738534	T	rs371073794	exonic	TRIM50	synony mous SNV	p.P84P	0.01176	4.96E-05		
7	72738561	T	rs61741334	exonic	TRIM50	synony mous SNV	p.1751	0.04706	0.0204		
7	72738762	T	rs6980258	exonic	TRIM50	synony mous SNV	p.L8L	0.9882	0.9993		
7	72738763	G	rs6980124	exonic	TRIM50	nonsynonymous SNV	p.L8P	0.9882	0.9993		
7	72743316	A	rs73131580	intronic	FKBP6			0.03529	0.0244		
7	72744143	G	rs3950375	intronic	FKBP6			0.01176	0.0108		
7	72744246	T	rs200493820	exonic	FKBP6	nonsynonymous SNV	p.T90M	0.01176	0.0001	T	13.74
7	72754645	A	rs56301507	exonic	FKBP6	synony mous SNV	p.L168L	0.01176	0.0622		
7	72756785	A	rs55704260	intronic	FKBP6			0.01176	0.0171		
7	72850178	C	rs1178947	UTR3	FZD9			0.2			
7	72850295	T	rs1178946	UTR3	FZD9			0.01176			
7	72850305	A	rs113683726	UTR3	FZD9			0.01176			
7	72856676	T	rs1178978	exonic	BAZ1B	synonymous SNV	p.Q1434Q	0.01176	0.0038		
7	72857049	G	rs1178977	intronic	BAZ1B		, , , , ,	0.1882	0.1678		
7	72857130	T	rs150115317	exonic	BAZ1B	nonsynonymous SNV	p.R1340K	0.01176	0.0027	Т	23.6
7	72874088	A	rs799215	intronic	BAZ1B	·	pilitoroic	0.01176	0.0027		20.0
7	72891754	T	rs2074754	exonic	BAZ1B	synonymous SNV	p.S679S	0.4	0.4452		
7	72925046	A	rs377098092	intronic	BAZ1B	oyneny mous orer	p.0.770	0.01176	8.24E-06		
7	72936183	A	18377098092		BAZ1B	amonumous CNN/	р.Н27Н	0.01176	8.24E-00		
7	72951640	G	rs142166738	exonic	BCL7B	synonymous SNV		0.01176	0.0029		
	72985148	T		exonic		synony mous SNV	p.A142A		0.0029	TE.	262
7	72985148		rs3 5607697	exonic	TBL2	nonsynonymous SNV	p.V345I	0.03529	0.04	T	26.3
7		С		exonic	TBL2	nonsynonymous SNV	p.F164V	0.01176		T	27.3
7	72992858	G	rs76029572	exonic	TBL2	nonsynonymous SNV	p.E8Q	0.07059	0.0552	T	9.196
7	73008330	A	rs72649011	intronic	MLXIPL			0.01176	0.003		
7	73010754	T	rs61738649	exonic	MLXIPL	synonymous SNV	p.L626L	0.05882	0.0453		
7	73011163	G	rs782188633	intronic	MLXIPL			0.01176	1.14E-05		
7	73013901	T	rs13235543	exonic	MLXIPL	synony mous SNV	p.P342P	0.1294	0.1089		
7	73019975	G	rs61010704	intronic	MLXIPL			0.2353	0.2325		
7	73020301	С	rs799157	exonic	MLXIPL	synony mous SNV	p.S253S	0.9647	0.9643		
7	73020337	G	rs3812316	exonic	MLXIPL	nonsynonymous SNV	p.Q241H	0.1059	0.1352	Т	19.07
7	73020439	T	rs12539160	exonic	MLXIPL	synonymous SNV	p.A207A	0.01176	0.0404		
7	73021654	T	rs200438567	intronic	MLXIPL			0.01176	0.0036	T	11.28
7	73030530	A	rs187002831	intronic	MLXIPL			0.02353	0.0027		
7	73083889	T	rs61743139	exonic	VPS37D	synony mous SNV	p.A93A	0.02353	0.0144		
7	73084309	C	rs7795181	intronic	VPS37D			0.2235	0.2649		
7	73084316	A	rs185557423	intronic	VPS37D			0.01176	0.004		
7	73097082	G	rs79849491	exonic	DNAJC30	synony mous SNV	p.F224F	0.02353	0.0326		
7	73097238	A	rs1569062	exonic	DNAJC30	synony mous SNV	p.Y172Y	0.3294	0.3043		
7	73101137	G	rs11769825	intronic	WBSCR22			0.3765	0.3342		
7	73107003	A	rs2293490	intronic	WBSCR22			0.3412	0.3022		
7	73108310	С	rs2293487	intronic	WBSCR22			0.3353	0.3024		
7	73114829	A	rs45549734	intronic	STX1A			0.02353	0.0147		
7	73118033	A	rs35459363	intronic	STX1A			0.4706			
7	73122977	A	rs2229854	exonic	STX1A	synonymous SNV	p.N50N	0.05882	0.0762		
7	73150934	A	rs138932141	exonic	ABHD11	synonymous SNV	p.D244D	0.01176	0.0017		
7	73245591	T	rs142910620	exonic	CLDN4	synony mous SNV	p.A20A	0.01176	0.0007		
7	73246461	G	rs1127155	UTR3	CLDN4	-,,	,,,,,,,,	0.7765			
7	73246496	T	rs1127156	UTR3	CLDN4			0.7647			
7	73246555	G	rs11316	UTR3	CLDN4			0.7647			
7	73246727		10.1010	UTR3	CLDN4			0.005882			
7	73254812	С	rs13241921	exonic	WBSCR27	nonsynonymous SNV	p.Q107R	0.7882	0.6764	T	0.001
7	73275501	C	rs11770024	UTR5	WBSCR28	nonsynonymous six v	p.Q.07K	0.7862	0.6655	•	0.001
7	73275509	С	rs111714725	UTR5	WBSCR28			0.01176	0.0048		
7	73275565	A	rs11770052	exonic	WBSCR28	nonsynonymous SNV	p.I14N	0.7647	0.6563	T T	15.45
7	73279361	T	rs61742124		WBSCR28			0.7647	0.6563		13,43
				exonic		synonymous SNV	p.L37L				10.00
7	73279413	T	rs118088869	exonic	WBSCR28	nonsynonymous SNV	p.R55W	0.03529	0.0257	Т	15.49
7	73280020	T	rs1136647	exonic	WBSCR28	synony mous SNV	p.T205T	0.7176	0.5139		
7	73449750	A		intronic	ELN			0.01176			
7	73450948	С	rs186990808	intronic	ELN			0.02353	0.0021		
7	73452140	A	rs2301995	intronic	ELN			0.02353			
7	73457255	A	rs28763981	intronic	ELN			0.05882			
7	73457506	T	rs55868272	intronic	ELN			0.02353	0.016		
7	73466285	G	rs6979788	exonic	ELN	synonymous SNV	p.A271A	0.01176	0.001		
7	73470714	A	rs2071307	exonic	ELN	nonsynonymous SNV	p.G412S	0.4706	0.3262	T	6.674
7	73470782	T	rs2856728	intronic	ELN			0.8353	0.7895		
7	73472050	T	rs28763986	intronic	ELN			0.6	0.5933		

7	73474268	T	rs200512332	exonic	ELN	synonymous SNV	p.V408V	0.01176	0.0002		
7	73474367	A	rs61734584	exonic	ELN	synonymous SNV	p.G441G	0.01176	0.003		
7	73474825	С	rs17855988	exonic	ELN	nonsynonymous SNV	p.G500R	0.07059	0.0712	T	23.2
7	73477524	A	rs140425210	exonic	ELN	nonsynonymous SNV	p.G529S	0.01176	0.0011	T	23.7
7	73477922	T	rs142870606	intronic	ELN			0.01176	0.0015		
7	73480258	G	rs45618836	intronic	ELN			0.01176	0.0279		
7	73480332	C	rs111866046	intronic	ELN			0.01176	0.0065		
7	73481028	T	rs3757587	intronic	ELN			0.1059	0.1084		
7	73530295	A	rs222996	intronic	LIMK1			0.02353	0.0108		
7	73588650	A	rs531201818	upstream	EIF4H			0.01176			
7	73588782	A	rs113057898	intronic	EIF4H			0.01176	0.0075		
7	73605599	T	rs6971711	ncRNA_exonic	MIR590			0.01176	0.0067		
7	73631177	G	rs144269935	exonic	LAT2	nonsynonymous SNV	p.I39M	0.02353	0.0113	T	25.9
7	73636045	C	rs201410958	intronic	LAT2			0.01176	0.0167		
7	73636048	G	rs200399943	intronic	LAT2			0.01176	0.0167		
7	73638035	G	rs112055519	intronic	LAT2			0.04706	0.0433		
7	73649825	C	rs3135698	intronic	RFC2			0.05882	0.1042		
7	73651743	C	rs3135688	exonic	RFC2	synonymous SNV	p.V160V	0.01176	0.0372		
7	73653244	T	rs41552517	intronic	RFC2			0.01176	0.0258		
7	73654225	T	rs73129384	intronic	RFC2			0.04706	0.0385		
7	73657626	С	rs146804166	intronic	RFC2			0.02353	0.005		
7	73663362	С	rs1805395	exonic	RFC2	synonymous SNV	p.E3E	0.05882	0.0306		
7	73663451	A	rs41548312	UTR5	RFC2			0.01765	0.012		
7	73664115	A	rs1805391	intronic	RFC2			0.01176	0.0237		
7	73666835	G	rs1805393	intronic	RFC2			0.01176	0.0234		
7	73666853	T	rs77326053	intronic	RFC2			0.01176	0.0234		
7	73731906	T	rs148561130	exonic	CLIP2	synonymous SNV	p.P10P	0.02353	0.0402		
7	73811479	С	rs76865959	exonic	CLIP2	synonymous SNV	p.R897R	0.01176	0.0057		
7	73814702	A	rs17145468	exonic	CLIP2	nonsynonymous SNV	p.D926E	0.03529	0.03	T	17.3
7	73814749	C	rs2522943	exonic	CLIP2	nonsynonymous SNV	p.R942P	0.9647	0.9822	T	18.33
7	73929826	T	rs111256098	exonic	GTF2IRD1	synonymous SNV	p.G139G	0.01176	0.0193		
7	73932488	G	rs112098981	exonic	GTF2IRD1	synonymous SNV	p.A179A	0.01176	0.0017		
7	73932494	T	rs145535993	exonic	GTF2IRD1	synonymous SNV	p.V181V	0.02353	0.0103		
7	73932560	G	rs17851629	exonic	GTF2IRD1	synonymous SNV	p.E203E	0.2118	0.2026		
7	73932683	C	rs61438591	intronic	GTF2IRD1	.,,	p03E	0.2	0.1998		
7	73933793	T	rs148463467	exonic	GTF2IRD1	synonymous SNV	p.V252V	0.01176	0.0001		
7	73944095	T	rs61744518	exonic	GTF2IRD1	synonymous SNV	p.P406P	0.02353	0.0304		
7	73944185	C	rs2240357	exonic	GTF2IRD1	synonymous SNV	p.Y436Y	0.2353	0.2462		
7	73949411	С	rs59656369	intronic	GTF2IRD1	-,100,1000 01.1	p	0.02353	0.0745		
7	73953017	T	rs55634982	exonic	GTF2IRD1	synonymous SNV	p.S517S	0.01176	0.0064		
7	73954167	C	rs782323873	intronic	GTF2IRD1	-,11011,1110110 01.11	p.00170	0.01176	0.0004		
7	73971959	T	rs76184137	intronic	GTF2IRD1			0.04706	0.0321		
7	73973183	A	rs73702616	intronic	GTF2IRD1			0.02353	0.0321		
7	74211576	C	rs587728502	exonic	GTF2IRD1	nonsynonymous SNV	p.M759V	0.02333	0.0122	T	0.893
			18507720502	CAUIIC	3112102	acasynonymous sivv	p.1417.55 v	0.01170	0.001		0.075
	lable or not applicable										
1 Missense variar	nts is predicted to be to	orerated									

Supplemental Table S2: Genetic variants in 71 genes associated with autism spectrum disorder

Chr	Start	Alt	avsnp147	genic location	gene	consequence	AA change	Sample_freq	ExAC	MetaLRpred	CADD PHRED
1	150239478	G	rs2275778	exonic	APHIA	synonymous SNV	p.G145G	0.01176	freq 0.0223		
1	150239722	A	rs140561586	intronic	APHIA	,	,	0.01176	0.0012		
1	150240104	A	rs202225606	intronic	APH1A			0.005882	2.17E-05		
1	150241230	Т	rs2275780	UTR5	APH1A			0.09412	0.1662		
1	151377407	C	rs1571294	exonic	POGZ	synonymous SNV	p.T1273T	0.05882	0.1051		
1	151378214	T	rs116755407	exonic	POGZ	synonymous SNV	p.E1004E	0.005882	0.0014		
1	151378274	A	rs149003420	exonic	POGZ	synonymous SNV	p.H984H	0.005882	0.0055		
1	151379137	G	rs754254486	intronic	POGZ			0.005882	4.14E-05		
1	151379337	A	rs559037025	intronic	POGZ			0.005882	8.46E-06		
1	151379699	T	rs112834709	intronic	POGZ			0.005882	0.003		
1	151379818	С	rs150592542	intronic	POGZ			0.01176	0.0074		
1	151380736	G	rs762774439	intronic	POGZ			0.005882	3.32E-05		
1	151381321		rs3831142	intronic	POGZ			0.7235	0.6753		
1	151384258 151384733	AGG A	rs201882243 rs3748550	intronic	POGZ POGZ			0.005882 0.7824	0.0029		
1	151384733		rs184678605	intronic	POGZ			0.7824	0.0062		
1	151395829	A T									
1	151395829	C	rs368660854 rs2274534	intronic	POGZ POGZ			0.005882	0.0001		
1	151396583	T	1822/4334	intronic	POGZ	synonymous SNV	p.E360E	0.005882	0.0740		
1	151400771	A	rs749391687	exonic	POGZ	synonymous SNV	p.T134T	0.005882	0.0002		
1	151402045	G	rs6587577	intronic	POGZ	synonymous SNV	p.11341	0.7824	0.7931		
1	151413367	C	rs201418770	intronic	POGZ			0.005882	9.98E-05		
1	151413613	G	rs115951766	intronic	POGZ			0.003882	0.0457		
1	153636466		18113931700	intronic	ILF2			0.02941	0.0431		
1	153636465	0		intronic	ILF2			0.005882			
1	153636469		rs768585289	intronic	ILF2			0.05294	0.0278		
1	153636469		rs369602600	intronic	ILF2			0.2941	0.2104		
1	153636468	0		intronic	ILF2			0.005882			
1	153636472	С	rs4515830	intronic	ILF2			0.05294	0.1647		
1	153636472	ACC	rs527872479	intronic	ILF2			0.005882	0.0142		
1	153636472	0		intronic	ILF2			0.3294			
1	153636860	G	rs4351684	intronic	ILF2			0.5059	0.5939		
1	153636865	A	rs138777641	intronic	ILF2			0.01176	0.0045		
1	153638078	С	rs116679182	intronic	ILF2			0.005882	0.0001		
1	153641045	A	rs11265624	UTR5	ILF2			0.005882	0.0034		
1	153641058	С	rs114292408	intronic	ILF2			0.01176	0.0096		
1	153642372	T	rs79913857	intronic	ILF2			0.1706	0.129		
1	155313481	T	rs748779793	exonic	ASH1L	synonymous SNV	p.P2678P	0.005882	2.47E-05		
1	155316129	A	rs60981924	intronic	ASHIL			0.005882	0.015		
1	155319323	Т	rs185392232	intronic	ASH1L			0.005882	0.0042		
1	155327091	A	rs41264233	intronic	ASHIL			0.01765	0.0117		
1	155327559	G	rs60211142	intronic	ASH1L			0.005882	0.0036		
1	155340435	T	rs41264237	exonic	ASHIL	synonymous SNV	p.R2182R	0.005882	0.0048		
1	155348199	G	rs139363488	intronic	ASH1L			0.01765	0.008		
1	155365388	C	rs149644746	intronic	ASHIL			0.01176	0.0055		
1	155408636	T	rs61732805	exonic	ASH1L	synonymous SNV	p.V1770V	0.02353	0.0096		
1	155429548	T	rs113404715	intronic	ASHIL			0.005882	0.0036		
1	155429725	С	rsl 0908466	intronic	ASH1L			0.3	0.3301		
1	155448461	A	rs112530764	exonic	ASH1L	synonymous SNV	p.Y1400Y	0.005882	0.0034		
1	155451719	T	rs115209829	exonic	ASH1L	synonymous SNV	p.A314A	0.005882	0.0021		
1	155452285	T	rs72993486	intronic	ASHIL			0.01176	0.019		
1	202700209		rs745309787	intronic	KDM5B			0.005882	8.81E-06		
1	202701097	С	rs111793412	intronic	KDM5B			0.005882	0.0071		
1	202703053	A	rs4310498	intronic	KDM5B			0.8118	0.8126		
1	202705401	G	rs150737727	exonic	KDM5B	synonymous SNV	p.A1068A	0.005882	0.0023		
1	202705455	C	rs1141109	exonic	KDM5B	synonymous SNV	p.P1050P	0.7529	0.7394		
1	202705562	G	rs55802892	intronic	KDM5B			0.005882	0.0038		
1	202710776	T	rs111464225	exonic	KDM5B	synonymous SNV	p.A888A	0.005882	0.0023		
1	202711743	A	rs55798081	intronic	KDM5B			0.02941	0.0259		
1	202711778	A	rs56042155	intronic	KDM5B			0.02353	0.0235		
1	202715244	A	rs3216061	intronic	KDM5B			0.7529	0.7388		
1	202718028	G	rs1892163	intronic	KDM5B			0.7	0.67		
1	202718034	G	rs368775532	intronic	KDM5B			0.005882	6.94E-05		
1	202718069	C	rs61751237	intronic	KDM5B		- 1100011	0.01176	0.0058		
1	202718202	A	rs1892164	exonic	KDM5B	synonymous SNV	p.H629H	0.7059	0.6691		
1	202718310	C	rsl 0920472	intronic	KDM5B			0.04706	0.0779		
1	202727475	G	rs115162047	intronic	KDM5B			0.005882	0.0015		
1	202729496	С	rs369961856	intronic	KDM5B			0.005882	9.39E-05		
1	202729636	G	rs61750265	exonic	KDM5B	synonymous SNV	p.D328D	0.005882	0.0023		
1	202729678	CTCAA	rs149504096	exonic	KDM5B	synonymous SNV	p.L.314L	0.005882	0.0007		
1	202731986	CTCAA	rs140328663	intronic	KDM5B		- 3/2/03/	0.7529	0.7432		
1	202733178	G	rs61749325	exonic	KDM5B	synonymous SNV	p.N269N	0.03529	0.0253		
1	202733238	T	rs3196669	exonic	KDM5B	synonymous SNV	p.T249T	0.7529	0.7371		
1	202743892	C	rsl 7497253	intronic	KDM5B KDM5B			0.2588	0.2471		
1	202743898	G	-1200000	intronic	KDM5B			0.005882	0.0004		
1	202777215	A	rsl 2028388	intronic	KDM5B			0.05294	0.0805		

2	162274680	С	rs 56888 9589	intronic	TBRI			0.005882	0.0026		
2	162274847	c	rs 11 6175 783	intronic	TBRI			0.07059	0.038		
2	162276712	G	n 79294 493	exonic	TBRI	synonymous SNV	p.T378T	0.005 882	0.0066		
2	1622 8002 8	CGGGCG	rs 78072 0807	exonic	TBRI		p.P447delinsPGA	0.005 882	0.0002		
2	162280028	A	ns890076	UTR3	TBRI	nonframeshift insertion	p.rss/ocntart/A	0.8176	0.8231		
2	166152297	c	13890076	UTR5	SCN2A			0.005882	0.8231		
2			rs111535588					0.005 882	0.0253		
	1661 5265 1	A		intronic	SCN2A						
2	166153499	G	n 7593 568	intronic	SCN2A			0.7882	0.825		
2	166164348	Α	n 2304015	intronic	SCN2A			0.005 882	0.0073		
2	166166789	A	rs 11 2877 649	intronic	SCN2A			0.005 882	0.0025		
2	166168503	G	n 2304016	intronic	SCN2A			0.01176	0.0127		
2	166170127	С	rs 2121371	intronic	SCN2A			0.7882	0.8016		
2	166172313	T	rs 18973 5691	intronic	SCN2A			0.005882	0.0026		
2	166172317	G	ns 1838 846	intronic	SCN2A			0.7882	0.8014		
2	166179650	T	ns 1867 864	intronic	SCN2A			0.6059	0.5205		
2	166179779	С	rs 14181 5642	exonic	SCN2A	synonymous SNV	p.D595D	0.005882	0.0092		
2	166180061	G		intronic	SCN2A			0.005882			
2	166183379	G	rs 14789 1446	exonic	SCN2A	synonymous SNV	p.T 678T	0.005 882	0.0069		
2	166223900	G	rs 14243 9830	intronic	SCN2A			0.01765	0.0034		
2	166229695	С	rs 15056 8699	intronic	SCN2A			0.005882	0.001		
2	166234076	G	n 1864-885	intronic	SCN2A			0.1588	0.2493		
2	166243206	Т	rs 15045 3735	intronic	SCN2A			0.005 882	0.0079		
2	183791498	T	rs 113570654	intronic	NCKAP1			0.01176	0.0046		
2	183793653	G	ns74942.055	intronic	NCKAPI			0.05882	0.0606		
2	183795520	Т	rs 54448 0697	intronic	NCKAP1			0.005 882	0.0003		
2	183793520	c				an morning over \$10.07.	p.V927V	0.7588	0.7903		
			n 9288 088	exonic	NCKAPI NCKAPI	synonymous SNV	p.v927V				
2	183799570	G	rs 139260477	intronic	NCKAP1		- 16121	0.01176	0.0122		
2	1838 0006 0	G	rs 144374101	exonic	NCKAP1	synonymous SNV	p.1913I	0.01176	0.0039		
2	183806894		rs 14082 0523	intronic	NCKAP1			0.1059	0.1039		
2	1838 0692 2	T	rs 14529 4024	intronic	NCKAP1			0.005 882	8.36E-05		
2	183817473	G	rs 18825 1808	intronic	NCKAP1			0.005 882	0.0037		
2	1838 1795 7	Α	as 66829 551	exonic	NCKAP1	synonymous SNV	p.S752S	0.08 824	0.0734		
2	1838 1807 4	С	rs 74840 499	intronic	NCKAP1			0.005882	0.0066		
2	1838 1809 1	T	ns 72886 576	intronic	NCKAP1			0.005 882	0.0097		
2	183822374	C	ns 17265 866	intronic	NCKAP1			0.05294	0.0589		
2	1838 2701 8	Α	ns 2271 671	intronic	NCKAP1			0.6353	0.7185		
2	183829568	A	rs 554193334	intronic	NCKAP1			0.005882	0.0002		
2	183848053	G	ns35142583	exonic	NCKAP1	synonymous SNV	p.A354A	0.04706	0.0292		
2	183848114	С	ns 1400 130	intronic	NCKAP1			0.2412	0.2276		
2	1838 5087 7	T	rs41270217	intronic	NCKAP1			0.05882	0.0613		
2	1838 6700 4	A	rs 141187393	intronic	NCKAP1			0.1118	0.0996		
2	1838 8979 1		rs 20166 1388	intronic	NCKAP1			0.005882			
2	225339134	С		intronic	CUL3			0.005882			
2	2253 4664 6	С	ns 2070 127	exonic	CUL3	synonymous SNV	p.Q598Q	0.1471	0.1845		
2	225346804	G	rs 11 2387 056	intronic	CUL3			0.005882	0.0003		
2	225365056	G	n 3768 889	intronic	CUL3			0.1471	0.1841		
2	225365109	A	ns41373148	exonic	CUL3	synonymous SNV	p.A461A	0.01765	0.0143		
2	2253.67669	T	в 3754 629	intronic	CUL3	ay assignment are e	parent	0.1471	0.1857		
2	2253 6832 1	G	n3738951	intronic	CUL3			0.4471	0.518		
2	225376032	e	ns6743.816		CUL3			0.2412	0.2188		
				intronic							
2	2253 7603 4	A	rs11686067	intronic	CUL3			0.1471	0.1855		
2	225378199	T	rs111771397	intronic	CUL3			0.005 882	0.002		
2	225378383		n 3830376	intronic	CUL3			0.2471	0.2363		
2	2253 7932 5	С	rs200164153	intronic	CUL3			0.005 882	0.0002		
2	225400395	G		intronic	CUL3			0.005882			
2	225431630			intronic	CUL3			0.005 882			
2	225431679	Т	rs 142512545	intronic	CUL3			0.01176			
2	225431758	A	rs 14641 0838	intronic	CUL3			0.005882		-	
2	230632268	A	rs6687	UTR3	TRIP12			0.1118	0.1409		
2	230634093	A	rs 77298 4820	intronic	TRIP12			0.005 882	0.0002		
2	230643350	AAAACAAA	rs 77701 0656	intronic	TRIP12			0.005882	2.50E-05		
2	230653540	С	rs 149642198	exonic	TRIP12	synonymous SNV	p.T 1259T	0.005882	0.0023		
2	230656014	A	rs 14713 5813	intronic	TRIP12			0.005882	0.0068		
2	230656550	A		intronic	TRIP12			0.005882			
2	230663576	Т	ns 6720 868	intronic	TRIP12			0.3471	0.3183		
2	230663950	С	rs 190642694	intronic	TRIP12			0.005882	0.0017		
2	230668858	С	n 13018 957	exonic	TRIP12	synonymous SNV	p.T 567T	0.4765	0.4262		
2	230668961	Т	rs 199509519	intronic	TRIP12			0.005 882	0.0023		
2	230668968	A	n 4972 915	intronic	TRIP12			0.8118	0.7918		
2	230668982	G	n4973229	intronic	TRIP12			0.4706	0.4249		
2	230670409		rs 557309405	intronic	TRIP12			0.005 882	0.0022		
2	230670510	G	rs 14827 1689	exonic	TRIP12	an morning over Child.	p.N517N	0.01176	0.0022		
2	230670510	T	rs 37386 4596	intronic	TRIP12	synonymous SNV	pastin	0.001176	4.12E-05		
2	230695855	С	ns 7595 730	intronic	TRIP12			0.005 882	0.0037		
2	230695872	С	rs 150511774	intronic	TRIP12			0.005 882	0.0007		
2	230723777	С	rs544480	exonic	TRIP12	synonymous SNV	p.S204S	0.1882	0.2003		
2	2307 2430 1	G	rs 37052 7992	intronic	TRIP12			0.005 882	0.0004		
3	9470602	G	rs 18995 7277	UTR5	SETD5			0.005882	0.0003		
1	947.8642	T	n 17050 336	int nomic	SETDS			0.02353			

2	1805430	A	rs2288178	intronic	MYTIL			0.06471	0.0597	
2	1805489	G	rs2288179	exonic	MYTIL	synonymous SNV	p.D1085D	0.06471	0.0601	
2	1842879	A	rs117052831	intronic	MYTIL			0.005882	0.0064	
2	1842892	A	rs111984953	intronic	MYT1L			0.03.529	0.0295	
2	1842968	С	rs6728368	exonic	MYTIL	synonymous SNV	p.G1011G	0.3412	0.367	
2	1842968	A	rs6728368	exonic	MYTIL	synonymous SNV	p.G1011G	0.02941	0.0553	
2	1893-049	A	rs71442304	exonic	MYTIL	synonymous SNV	p.P828P	0.02941	0.0344	
2	1893133	т	rs75247762	exonic	MYT1L	synonymous SNV	p. Q800Q	0.06471	0.0562	
2	1906828	С	rs192624064	intronic	MYTIL			0.005882	0.0018	
2	1913997	C	rs180992065	intronic	MYTIL			0.005882	0.0068	
2	1915749	G	rs12988500	intronic	MYTIL			0.02941	0.0626	
2	1921017	A	rs375847105	exonic	MYTIL	synonymous SNV	p.S526S	0.005882		
2	1921083	A	rs148988262	exonic	MYTIL	synonymous SNV	p.S504S	0.005882	0.0012	
2	1926437	Т	rs1529667	exonic	MYTIL	synonymous SNV	p.P368P	0.9706	0.9802	
2	1926488	T	rs13399855	exonic	MYTIL	synonymous SNV	p.P351P	0.04118	0.0445	
2	1926617	A	rs2241686	exonic	MYTIL	synonymous SNV	p. N30 8N	0.03.529	0.0258	
2	1946830	A	rs372013056	exonic	MYTIL	synonymous SNV	p.D143D	0.005882	0.02.55	
2	1946857		rs781642397	exonic	MYTIL	nonframeshift deletion	p.134_134del	0.005882	0.0008	
2	1946914	G T	rs3748988	exonic	MYTIL	synonymous SNV	p.D115D	0.3176	0.4054	
	1946968		rs3.748.989	exonic	MYTIL	synonymous SNV	p.E97E	0.08235	0.1165	
2	1982877	G	rs2304007	intronic	MYTIL			0.1412		
2	1982916		rs3214602	intronic	MYTIL			0.1412	0.1868	
2	1983241	A	rs17338581	intronic	MYTIL			0.005882		
2	1983374	С	rs2304008	intronic	MYTIL			0.2824	0.3254	
2	1983395	T	n2304009	intronic	MYTIL			0.1235		
2	1983606	A		intronic	MYTIL			0.005882		
2	25458546	T	rs2304429	intronic	DNMT3A			0.5706	0.5098	
2	25462327	G	rs72810046	intronic	DNMT3A			0.09412	0.0916	
2	25463483	A	rs2289195	intronic	DNMT3A			0.3647	0.4061	
2	25466888	т	rs2289093	intronic	DNMT3A			0.7235	0.7275	
2	25469502	T	rs2276598	exonic	DNMT3A	synonymous SNV	p.L233L	0.1471	0.1913	
2	25469628	т	rs77345627	exonic	DNMT3A	synonymous SNV	p.A191A	0.005882	0.0052	
2	25469886	A		intronic	DNMT3A			0.005882		
2	25469913	Т	rs2276599	intronic	DNMT3A			0.7294	0.7167	
2	25471002	A	rs77558739	exonic	DNMT3A	synonymous SNV	p.P64P	0.005882	0.0022	
2	25474992	C	n556043659	intronic	DNMT3A	ayamyallas aree	p. 041	0.005882		
2	25536772	T	ns370534287		DNMT3A			0.005882	0.0015	
				intronic			a Bob			
2	25536827	A	rs41284843	exonic	DNMT3A	synonymous SNV	p.P9P	0.1059	0.155	
2	32312700	С	rs7561519	intronic	SPAST			0.4294		
2	32340724	A	rs76399353	intronic	SPAST			0.05294	0.0195	
2	32340779	A	rs145264166	exonic	SPAST	synonymous SNV	p.P261P	0.01176	0.0089	
2	32341334		rs758517424	intronic	SPAST			0.005882	0.0001	
2	32351982	G	ns755277514	intronic	SPAST			0.005882	3.62E-05	
2	32361710	G		intronic	SPAST			0.005882		
2	32362079	TATA	rs10627985	intronic	SPAST			0.3529	0.394	
2	32368361	G	rs760953889	intronic	SPAST			0.005882	6.10E-05	
2	32370105	С	rs112410719	intronic	SPAST			0.005882	0.0025	
2	50149352	C	rs55923848	exonic	NRXN1	synonymous SNV	p.P353P	0.005882	0.001	
2	50201110	G	n9636391	intronic	NRXNI			0.8647	0.8501	17.5
2	50201255	A	rs138066456	intronic	NRXN1			0.01765	0.0016	
2	50201382	T	rs200527832	intronic	NRXNI			0.005882	0.0005	
2	50318648	C	rs756210249	intronic	NRXNI			0.005882	8.26E-06	
2	50318661	С	rs/30210249 rs/74387895		NRXNI			0.005882	8.25E-06 0.0142	
				intronic					0.0142	
2	50 43 474 1	T	rs17040210	intronic	NRXN1			0.2765		
2	50434759	G	rs1715984	intronic	NRXNI			0.8471	4 44 77	
2	50464065	T	ns80094872	exonic	NRXN1	synonymous SNV	p.T 101 T	0.005882	0.0025	
2	50692560	G	rs3213756	intronic	NRXNI			0.3176	0.3834	
2	50699479	A	rs75275592	exonic	NRXN1	synonymous SNV	p.S1067S	0.005882	0.0006	
2	50699638	G	rs116737278	intronic	NRXNI			0.005882	0.0072	
2	50758356	C		intronic	NRXN1			0.005882		
2	50758612	T	rs201210484	intronic	NRXNI			0.005882	2.13E-05	
2	50780119	G	rs201727684	exonic	NRXN1	synonymous SNV	p. L455L	0.005882	0.0005	
2	50847139	A	rs199753235	intronic	NRXNI			0.005882	0.0001	18.
2	51149072	С	rs7423296	intronic	NRXNI			0.09412		-
2	51149089	G	rs370178631	intronic	NRXNI			0.005882		
2	51149102	C	rs4327263	intronic	NRXN1			0.09412		
2	51253477	С	rs139064548	intronic	NRXN1			0.01176	0.0058	
2	51254901	A	rs1045874	exonic	NRXN1	synonymous SNV	p.L171L	0.09412	0.1306	
		^	rs555661121			ay manyulotas SAV	p. L.(71L)			
2	60679832			intronic	BCL11A		- 8000	0.005882	0.0099	
2	60687959	G	rs7569946	exonic	BCL11A	synonymous SNV	p.S696S	0.6059	0.6977	
	60688331	A	rs114252508	exonic	BCL11A	synonymous SNV	p.R572R	0.005882	0.001	
2		C	rs61749494	exonic	BCL11A	synonymous SNV	p. E202E	0.01765	0.0217	
2	60689441				DCT 11A	TEAS	p.C175C	0.02353	0.018	
2	60689441 60689522	A	rs61748090	exonic	BCL11A	synonymous SNV	perise			
2 2 2	60689441 60689522 60768978	A A	rs2665668	intronic	BCL11A	synonymous save		0.5882	0.6417	
2	60689441 60689522 60768978 149225888	A	rs2665668 rs192677180			synonymous save		0.5882 0.005882		
2 2 2	60689441 60689522 60768978	A A	rs2665668	intronic	BCL11A	symmymum savv		0.5882	0.6417	
2 2 2 2	60689441 60689522 60768978 149225888	A A A	rs2665668 rs192677180	intronic intronic	BCL11A MBD5	systatymous sev		0.5882 0.005882	0.6417 0.0014	
2 2 2 2 2	60689441 60689522 60768978 149225888 149241448	A A A	rs2665668 rs192677180 rs568615665	intronic intronic intronic	BCL11A MBD5 MBD5			0.5882 0.005882 0.005882	0.6417 0.0014 0.0004	
2 2 2 2 2 2	60 68 944 1 60 68 952 2 60 76 897 8 14 922 58 88 14 924 14 48 14 924 32 60	A A A	rs2665668 rs192677180 rs568615665 rs2121344	intronic intronic intronic intronic	BCL11A MBD5 MBD5 MBD5			0.5882 0.005882 0.005882 0.6647	0.6417 0.0014 0.0004 0.6501	

3 9478653 A introsic SETD5	
3	
3 948/8715 A rp3478/911 intronic SkTD5	
3 948/9344 TTTC rs 20153/9707 intronic SETDS . . . 0.65244 0.0678 3 948/940 A rs 20041/8736 intronic SETDS .	-
3 948/9340 A rs 20041 8836 intronic SETD5 . 0.05294 0.0681 3 949/032 T rs 1807/3500 intronic SETD5 . 0.06882 0.0023 3 995/348 G n2648/500 intronic SETD5 syncopmoss SNV p.T1197 0.02941 0.0233 3 951/337 A rs 1999/8917 exenic SETD5 syncopmoss SNV p.T1197 0.005/882 0.0006 3 951/737 T m1747/799 exenic SETD5 syncopmoss SNV p.N13778 0.065/882 0.0006 3 1105/905 A rs 1806/9356 exenic SLC6A1 syncopmoss SNV p.746T 0.005/882 0.0064 3 1106/940 C n347/285 ncRNA, intensic SLC6A1 syncopmoss SNV p.746F 0.005/882 0.0062 3 1106/907 T rs 116620331 exenic SLC6A1 syncopmoss SNV p.746F 0.005/882 0	-
3 948/9340 A rs 200418836 intronic SETD5 . 0.05/294 0.0681 3 949/032 T rs 18/07/350 intronic SETD5 . 0.06882 0.0023 3 949/3385 G m2648/500 intronic SETD5 . 0.7244 0.7044 0.7048 3 951/937 C m78/25975 exenic SETD5 syncopmons SNV p.T11907 0.00582 0.0006 3 951/7377 T m1747779 exenic SETD5 syncopmon SNV p.N13778 0.06471 0.085 3 105/905 A rs 1806/9356 exenic SLCMA syncopmon SNV p.7467 0.0582 0.0064 3 1106/940 C m347/285 m28/34, invasic SLCMA in yncopmon SNV p.7467 0.0582 0.0062 3 1106/997 T rs 116620331 exenic SLCMA in yncopmon SNV p.7469 0.00582 0.0002	
3 9495385 G n 2648580 intronic SETD5 syncopmoss SNV p.T1110T 0.02941 0.7048 . 3 9515054 C n 79025975 exensic SETD5 syncopmoss SNV p.T1110T 0.02941 0.0233 3 9517377 A r 199989217 exensic SETD5 syncopmoss SNV p.N1377N 0.06471 0.0385 . 3 11059035 A r 18069936 exensic SLCMA 1-SS syncopmoss SNV p.T46T 0.05582 0.0064 3 11061007 C m 3017585 ncRNA_intronic SLCMA I-ASI syncopmoss SNV p.P160P 0.005882 0.0002 3 11061907 T r s116620331 exensic SLCMA I-ASI syncopmoss SNV p.P160P 0.005882 0.0002	
3 9495385 G n 2648580 intronic SETD5 syncopmoss SNV p.T1110T 0.02941 0.7048 . 3 9515054 C n 79026975 exensic SETD5 syncopmoss SNV p.T1110T 0.02941 0.0233 3 9517377 A rs 199689217 exensic SETD5 syncopmoss SNV p.N1377N 0.06471 0.0385 3 11059035 A rs 185669336 exensic SLC6A1 syncopmoss SNV p.T46T 0.065832 0.064 3 1106 907 T rs 116620331 exRNA_intronic SLC6A1 syncopmoss SNV p.P160P 0.005832 0.0062	
3 951 5054 C n73026975 exonic SETDS synconymous SNV p.T1110T 0.02941 0.0233 3 951 7337 A rs 19908 9217 cxonic SETDS synconymous SNV p.T1297T 0.06842 0.008 3 951 7537 T m1747739 exonic SETDS synconymous SNV p.N1377N 0.06471 0.0385 3 11059035 A rs 18069336 exonic SL C6A1 synconymous SNV p.T46T 0.005 882 0.0065 3 1106 1907 T rs 11166203311 exonic SL C6A1 synconymous SNV p.P160P 0.005 882 0.0002	
3 9517337 A rs 19998 9217 cussic SETD5 synconymous SNV p.T 1297T 0.005 882 0.0008 . 3 9517577 T m 1747739 cussic SETD5 synconymous SNV p.N 13778 0.06471 0.085 . 3 1105 9075 A rs 185069336 cussic SL C6A L631 synconymous SNV p.T 46T 0.005 882 0.0064 . 3 1106 1907 T rs 116 620331 cussic SL C6A L631 synconymous SNV p.P 160P 0.005 882 0.0002 .	
3 9517577 T m17747739 cumic SETDS synonymous SNV p.N1377N 0.06471 0.0385 . 3 11059015 A r185069316 cumic SLC6A1 synonymous SNV p.7467 0.00582 0.064 . 3 1106400 C sh8137585 scRNA, intronic SLC6A1-AS1 synonymous SNV p.9160P 0.00582 0.0002 . 3 1106497 T rs116420331 cumic SLC6A1 synonymous SNV p.9160P 0.005882 0.0002 .	
3 1105905 A rs183069336 exonic SLC6A1 syncopmous SNV p.T46T 0.00582 0.0064 . 3 11060430 C rs.Ns17585 rc.RNA_intronic SLC6A1 syncopmous SNV p.T46T 0.00582 0.0065 . 3 11061907 T rs.116620331 exonic SLC6A1 syncopmous SNV p.P160P 0.00582 0.0002 .	
3 11060430 C n.3817585 ncRNA_intronic SLC6A1-ASI . 0.1471 0.0905 . 3 11061907 T rs.116620331 cusnic SLC6A1 synonymous SNV p.P160P 0.005882 0.0002 .	
3 11061907 T rs.116620331 exonic SLC6A1 synonymous SNV p.P160P 0.005882 0.0002 .	
3 11061919 T rs151263329 exonic SLC6A1 synonymous SNV p.C164C 0.005882 0.0001 .	
3 11064091 T rs6344 exonic SLC6A1 synonymous SNV p.T217T 0.03529 0.0594 .	
3 11067583 T m35736058 intronic SLC6A1	
3 11058038 A rs1139553 exonic SLC6A1 synonymous SNV p.A357A 0.005882 4.17E-05 .	
3 11070864 T n-6770472 intronic SLC6A1	
3 11070870 A m36034085 intronic SLC6A1 0.01176 0.0124 .	
3 1107/0883 T rs15/0889270 introsic SLC6A1	
3 11076171 C rs150938735 intronic SLC6A1 0.01176 0.0037 .	
3 11076336 T n:2272401 exonic SLC6A1 synonymous SNV p.P549P 0.005882 0.0033 .	
3 11076400 G n.35957531 intronic SLC6A1 0.1588 0.1098 .	
3 20113779 T ns41285055 intronic KAT2B	
3 20113830 A m3021408 exonic KAT2B synonymous SNV p.E103E 0.4529 0.4074 -	
3 20115989 A m.5749180 intronic KAT2B	
3 20141301 G rs1112999 intronic KAT2B . 0.4353 .	
3 20141308 G ns62243131 intronic KAT2B 0.1706 0.1869 .	
3 20141366 T m35424474 exonic KAT2B synonymous SNV p.L193L 0.1588 0.1271 .	
3 20142983 G rs199900176 intronic KAT2B	
3 20161043 T n17006623 intronic KAT2B 0.1706 0.1655 .	
3 20168875 G n41285061 intronic KAT2B 0.1647 0.1258 .	
3 20181676 C m3762633 intronic KAT2B 0.1824 0.2404 .	
3 20181904 T rs115014362 intronic KAT2B	
3 20189565 T rs.116785376 intronic KAT2B	
3 2019948 T rs150884015 exonic KAT2B synonymous SNV p.V810V 0.005882 0.0002 . 3 71008557 A n.7639736 intronic FOXPI 0.01176 0.0284 .	
3 71015021 T n.7638391 intronic FOXP1 0.9 0.9452 .	
3 71026047 C n7296080 intronic FOXPI 0.005882 0.009 .	
3 71026809 C rs144080925 exonic FOXP1 synonymous SNV p.A371A 0.01176 0.0023 .	
3 71027199 T n/75214049 intronic FOXPI . 0.005882 0.0105 .	
3 71161838 A n:17008224 intronic FOXP1 0.01765 0.0298 .	
3 71161808 A m17008224 intronic FOXPI	
3 71247257 G ns/979845 intronic FOXPI	
3 71247257 G x6939845 intronic POXPI	
3 71247257 G x9599845 intronic FOXPI . 0.03529 0.0891 . 3 71247304 G n.2037474 intronic FOXPI . 0.1294 0.2009 . 4 85612377 G n.3747680 intronic WDFY3 . 0.2941 0.315 . 4 85618002 - rs14504772 intronic WDFY3 . 0.04706 0.054 .	
3 71247257 G rs/09485 introde POXPI	
3 71247257 G rsf09445 intronic FOXFI	-
3 71247257 G rs/979455 intronic FOXFI	-
3 71247257 G ref/9/845 introde POXFI . 0.01529 0.0891 3 7124704 G n2073474 introde POXFI . 0.1284 0.2009 . 4 85612737 G n3747660 introde WDFY3 . 0.2941 0.315 4 85618002 - rs145664772 introde WDFY3 . 0.04706 0.0164 . 4 85653548 T rs199518075 cxode WDFY3 syncogmous SNV p.D.7951 0.005.832 0.0006 4 85634264 A n61624886 introde WDFY3 . 0.005882 0.0191 4 8563427 - rs740347772 introde WDFY3 . 0.005882 0.0095 . 4 85634024 T n17566157 introde WDFY3 . 0.005882 0.0095 .	
3 71247257 G ref/9.845 intronic FOXFI . 0.01529 0.0891 3 7124704 G n2007474 intronic FOXFI . 0.1284 0.2009 4 85612277 G n3747680 intronic WDFY3 . 0.2941 0.315 4 8561802 - re144504772 intronic WDFY3 . 0.04706 0.0564 4 8561808 T re199518075 exonic WDFY3 synonymous.SNV p.12793 0.005882 0.0006 4 85634264 A m65624886 intronic WDFY3 . 0.005882 0.0091 4 8563404 T n17584157 intronic WDFY3 . 0.005882 0.0095 4 8563804 T n17584157 intronic WDFY3 . 0.005882 0.0095 4 8563808 T n17584157 intronic WDFY3 . 0.005882 0.0095	
3 71247257 G ref09445 intronic FOXFI	
3 71247257 G ref/9 845 izronic FOXFI	
3 71247257 G rs/09445 intronic FOXFI	
3 71247257 G ref/9/845 izronic FOXFI	
3 71247257 G ref/9/845 izronic FOXFI . 0.01529 0.0891 3 71247084 G sc207474 intronic FOXFI . 0.1284 0.2009 4 85612237 G sc3747680 izronic WDFY3 . 0.2941 0.315 4 85618002 - rs145664772 intronic WDFY3 . 0.04706 0.0164 . 4 85618002 - rs145664772 intronic WDFY3 syncoymous SNV p.L7951 0.005 832 0.0006 4 85634254 A sc662886 intronic WDFY3 syncoymous SNV p.L7951 0.005 832 0.0006 4 85634264 A sc662886 intronic WDFY3 . 0.005882 0.0191 . 4 85634264 T sc76434772 intronic WDFY3 . 0.005 832 0.008 . 4 85634264 T sc764357 intronic WDFY3 . 0.005 832 0.008 . 4 85634258 G rs187897046 intronic WDFY3 . 0.005 832 0.002 . 4 85645557 T rs200971702 intronic WDFY3 . 0.005 832 0.002 . 4 85645558 G rs187897046 intronic WDFY3 . 0.005 832 0.002 . 4 85645550 T rs200971702 intronic WDFY3 . 0.005 832 0.003 . 4 85655250 T sc75454186 intronic WDFY3 . 0.005 832 0.0003 .	
3 71247257 G ref/9/845 intronic POXFI	
3 71247257 G ref/9 845 introde POXFI	
3 71247257 G ref/9/845 izronic POXFI . 0.01529 0.0891 3 71247304 G m2071474 izronic POXFI . 0.1284 0.2009 4 85612777 G m3747600 izronic WDFY3 . 0.2941 0.315 4 85612002 - rs.145064772 izronic WDFY3 . 0.04706 0.0564 4 8561202 T rs.199518075 c.vonic WDFY3 yvxxyyyyxxyyyxxyy 0.00582 0.006 4 85634264 A m61624886 izronic WDFY3 yvxxyyyxxyy 0.00582 0.006 4 85634264 A m61624886 izronic WDFY3 . 0.00582 0.005 4 8563404 T m17564157 izronic WDFY3 . 0.00582 0.005 4 8563405 T m17564157 izronic WDFY3 . 0.00582 0.005 4 8564558 G rs.187897046 izronic WDFY3 . 0.00582 0.000 4 8564557 T rs.200971792 izronic WDFY3 . 0.00582 0.0003 4 8564557 T rs.200971792 izronic WDFY3 . 0.00582 0.0003 4 856525 - rs.15642176 izronic WDFY3 . 0.00582 0.0003 4 856525 - rs.15642176 izronic WDFY3 . 0.00582 0.0003 4 856525 - rs.15642176 izronic WDFY3 . 0.00582 0.0003 4 856525 - rs.15642176 izronic WDFY3 . 0.00582 0.0005 4 8565101 G rs.114507812 izronic WDFY3 . 0.00582 0.0005 4 8565254 T rs.7564048 izronic WDFY3 . 0.00582 0.0005 4 8565254 T rs.7564048 izronic WDFY3 . 0.00582 0.0005 4 8565254 T rs.7564048 izronic WDFY3 . 0.00582 0.0005 4 8565254 T rs.7564048 izronic WDFY3 . 0.005832 0.0014 4 8565284 T rs.75682176 izronic WDFY3 . 0.005832 0.0014 4 8565284 T rs.75682176 izronic WDFY3 . 0.005832 0.0015	
3 71247257 G ref/9 845 intronic FOXFI	
3 71247257 G ref/9 845 izronic FOXFI	
3 71247257 G ref/9 845 introde FOXFI . 0.01529 0.0891	
3 71247257 G ref/9 845 izronic FOXFI . 0.00529 0.0891 3 7124704 G ref/9 845 izronic FOXFI . 0.1294 0.2009 4 85612277 G ra734760 izronic WDFY3 . 0.2941 0.315 4 85618002 - ra145064772 izronic WDFY3 . 0.00706 0.0564 4 8561802 - ra145064772 izronic WDFY3 synoxymous SNV p. 12769 0.005 82 0.0006 4 85634254 A ra652386 izronic WDFY3 synoxymous SNV p. 12769 0.00582 0.0006 4 8563404 T raf75414772 izronic WDFY3 . 0.00582 0.0005 4 8563403 T raf754168 izronic WDFY3 . 0.00582 0.0005 4 8564558 G ra187897046 izronic WDFY3 . 0.005882 0.0006 4 8564559 T raf00971792 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0005 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879714 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879824 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879824 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879824 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879712 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879712 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879712 izronic WDFY3 . 0.005882 0.0005 4 8565704 T raf75642194 izronic WDFY3 . 0.005882 0.0006 4 8567906 - raf8421914 izronic WDFY3 . 0.005882 0.0006 4 8567906 - raf8421914 izronic WDFY3 . 0.005882 0.0006 4 8567906 - raf8421914 izronic WDFY3 . 0.005882 0.0006 4 8506906 - raf8421915 izronic WDFY3 . 0.005882 0.0006 4 8506906 - raf8421915 izronic WDFY3 . 0.005882 0.0006 4 8506906 - raf8421915 izronic WDFY3 . 0.005882 0.0006	
3 71247257 G ref/9 845 izronic FOXFI	
3 71247257 G ref/9 845 izronic FOXFI . 0.00529 0.0891 3 7124704 G ref/9 845 izronic FOXFI . 0.1294 0.2009 4 85612277 G ra734760 izronic WDFY3 . 0.2941 0.315 4 85618002 - ra145064772 izronic WDFY3 . 0.00706 0.0564 4 8561802 - ra145064772 izronic WDFY3 synoxymous SNV p. 12769 0.005 82 0.0006 4 85634254 A ra652386 izronic WDFY3 synoxymous SNV p. 12769 0.00582 0.0006 4 8563404 T raf75414772 izronic WDFY3 . 0.00582 0.0005 4 8563403 T raf754168 izronic WDFY3 . 0.00582 0.0005 4 8564558 G ra187897046 izronic WDFY3 . 0.005882 0.0006 4 8564559 T raf00971792 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0003 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0005 4 8565425 - raf5642176 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879714 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879824 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879824 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879824 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879712 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879712 izronic WDFY3 . 0.005882 0.0005 4 8565405 G raf1879712 izronic WDFY3 . 0.005882 0.0005 4 8565704 T raf75642194 izronic WDFY3 . 0.005882 0.0006 4 8567906 - raf8421914 izronic WDFY3 . 0.005882 0.0006 4 8567906 - raf8421914 izronic WDFY3 . 0.005882 0.0006 4 8567906 - raf8421914 izronic WDFY3 . 0.005882 0.0006 4 8506906 - raf8421915 izronic WDFY3 . 0.005882 0.0006 4 8506906 - raf8421915 izronic WDFY3 . 0.005882 0.0006 4 8506906 - raf8421915 izronic WDFY3 . 0.005882 0.0006	
3 71247257 G ref/9 845 izronic FOXFI	
3 71247257 G re679485 izronic FOXFI	
3	
3	
3	
3	
3	
3 7124727 G ev99985 introsic FOXF	
3	
3 71247257 G 19/09485 intronic POXPI	
3 712 47277 G	
3 71247257 G e9799455 introsic FOXF	

5	65346599	A	ns56216143	intronic	ERBB2IP			0.02941	0.0199	
5	653.50002	T	в 34528338	exonic	ERBB2IP	synonymous SNV	p.P952P	0.005882	0.002	
5	653 50044	G	m35278406	exonic	ERBB2IP	synonymous SNV	p.Q966Q	0.02941	0.028	
5	653 50173	T	n 77719384	exonic	ERBB2IP	synonymous SNV	p.L 1009L	0.005882	0.002	
5	653 50374	G	ns36303	exonic	ERBB2IP	synonymous SNV	p.R1076R	0.1882	0.1915	
5	653.67974	G	m76755657	intronic	ERBB2IP			0.005882	0.0052	
5		T			ERBB2IP					
	65372805		n 73763088	intronic				0.01176	0.0167	
5	1703-0513-9	G	rs747930513	exonic	RANBP17	frames hift insertion	p.Y19fs	0.005882	8.36E-06	
5	1703 1957 5	T	ns 79372 097	intronic	RANBP17			0.005882	0.0085	
5	170338163	A	ns 62621882	intronic	RANBP17			0.02941	0.0381	
5	1703-4570-8	G	rs 11 22 13 5 19	intronic	RANBP17			0.005882	0.0086	
5	170597190	A	n36104512	exonic	RANBP17	synonymous SNV	p.E589E	0.04118	0.066	
5		A	rs546355758		RANBP17		paosa	0.005882		
	170610111			intronic						
5	170610273	A	as6555936	intronic	RANBP17			0.7412	0.7345	
5	170610349	T	rs774753172	exonic	RANBP17	synonymous SNV	p.G651G	0.005882	8.24E-06	
5	170610452	C	rs 15007 5974	intronic	RANBP17			0.005882	8000.0	
5	170626735	G	m35724654	exonic	RANBP17	synonymous SNV	p.V700V	0.1176	0.1173	
5	170720853	A	rs 18992 9475	intronic	RANBP17			0.005882	0.0018	
6	333.91270	С				5017	- 0.500	0.005882	0.0061	
			rs 14235 9891	exonic	SYNGAPI	synonymous SNV	p.S28S			
6	33400061	A	rs 11 4505 996	intronic	SYNG API			0.01176	0.0112	
6	33403422	T	rs453.590	intronic	SYNGAPI			0.4471	0.3955	
6	33406300	C	n 72887 798	exonic	SYNG API	synonymous SNV	p.Y497Y	0.01765	0.0048	
6	33406556	G	m7759963	exonic	SYNGAPI	synonymous SNV	p.E512E	0.02353	0.0379	
6	33408542	A	rs411136	exonic	SYNG API	synonymous SNV	p.S571S	0.4353	0.4861	
6	33408612	T	rs761973471		SYNGAPI	synonymous SNV	p.1.595L	0.005882	8.27E-06	
				exonic		systematical area	p.a./736			
6	33408764		rs 57257 8854	intronic	SYNGAPI			0.1529	0.0969	
6	33409329	С	rs778673739	intronic	SYNGAPI			0.005882	0.0008	
6	33411299	T	ns61421477	exonic	SYNG API	synonymous SNV	p.S990S	0.01176	0.0268	
6	33411602	G	rs 14570 7539	exonic	SYNG API	synonymous SNV	p.L 1091L	0.005882	0.0005	
6	33411653	т	rs 13984 1529	exonic	SYNGAPI	synonymous SNV	p.S1108S	0.005882	0.0016	
6	33412197	T	n/9969005	intronic	SYNGAPI	-yy-man m. 1	,	0.01176	0.0091	
		C								
6	43097443		n 45624340	intronic	PTK7			0.05294	0.0463	
6	43098182	A	m77231564	intronic	PTK7			0.03 529	0.0482	
6	43100156	T	rs 14130 7288	intronic	PTK.7			0.01176	0.0046	
6	43106824	A	±45484692	intronic	PTK7			0.05294	0.032	
6	43109564	A	rs 19981 6335	intronic	PTK7			0.005882	0.0006	
6	43109751	A	ns6905948		PTK7	synonymous SNV	p.G487G	0.3706	0.3606	
				exonic						
6	43 11 0003	T	n:45453.593	exonic	PTK7	synonymous SNV	p.N541N	0.005882	0.0079	
6	43 11 0055	G	ns 6933 124	intronic	PTK7			0.1	0.1835	
6	43 11 3 190	G	rs200495132	intronic	PTK.7			0.005882	4.69E-05	
6	43127577	G	m55921533	exonic	PTK7	synonymous SNV	p.P845P	0.005882	0.0053	
6	43128434	G	ns61021888	intronic	PTK7			0.1294	0.187	
6	998.83694	С	n:9402791	exonic	USP45	synonymous SNV	p.A781A	0.2059	0.252	
										-
6	99885246	T	rs II 8066385	exonic	USP45	stop gain	p.Y730X	0.005882	0.0016	36
6	99891391	C	n34401990	intronic	USP45			0.1824	0.1331	
6	99891396		rs 14010 8249	intronic	USP45			0.1824	0.1343	
6	998 93830	A	rs111592029	exonic	USP45	synonymous SNV	p.T 606T	0.005882	0.0058	
6	99893878	С	n 12203426	exonic	USP45	synonymous SNV	p.1.590L	0.1941	0.1516	
6	99912454	T	rs748532477		USP45		p.a.o., can	0.005882	2.51E-05	
				intronic						
6	999 12558	G	rs 14391 3725	exonic	USP45	synonymous SNV	p.D410D	0.005882	0.0009	
6	99930593	T	rs 11 7666 915	intronic	USP45			0.02353	0.0164	
6	99951750	A	ns6934692	intronic	USP45			0.7941	0.8489	
6	99951768	С	rs11751123	intronic	USP45			0.005882	0.0023	
6	157099872		rs766956053	exonic	ARIDIB	nonframeshi ft deletion	p.270_271del	0.01176	0.0017	
6	157405761	A	m3734440		ARIDIB			0.5118	0.5227	
				intronic						
6	157405930	A	ns3734441	exonic	ARIDIB	synonymous SNV	p.A711A	0.5118	0.519	
6	157431564	G	m75599866	intronic	ARIDIB			0.005882	0.0074	
6	157470134	T	rs 76678 7725	intronic	ARIDIB			0.005882	0.0003	
6	157496163	T	rs 56203 7567	intronic	ARIDIB			0.005882	0.0015	
6	157502279	T	ns61736269	exonic	ARIDIB	synonymous SNV	p.Y1091Y	0.005882	0.0006	
6	15750541.9	T	rs 14220 1202	exerie	APIDID	purposer SVV	nTII WT	0.005992	0.0020	
	157500418		18142391292	Exited	Addis	sy assystions and v	p.1 11201	0.005302	0.0029	
6	157507598	A	rs566480933	intronic	ARIDIB			0.005882	0.0007	
6	157507670	A	rs 14872 0121	intronic	ARIDIB			0.005882	0.0027	
6	1575 1993 8	G	rs 11 23 18 565	intronic	ARIDIB			0.06471	0.0859	
6	157520060	A	rs 14259 4004	intronic	ARIDIB			0.005882	0.0066	
6	157522252	C	в61747988	exonic	ARIDIB	synonymous SNV	p.H1495H	0.005882	0.0053	
6	157522360	A	m61738955	exonic	ARIDIB	synonymous SNV	p.P1531P	0.01765	0.0269	
6	157527495	T	rs759473238	exonic	ARIDIB	synonymous SNV	p.D1727D	0.005882	2.49E-05	
6	157527498	T	rs 77520 1232	exonic	ARIDIB	synonymous SNV	p.D1728D	0.005882	1.65E-05	
6	157528077	T	rs 14249 9766	exonic	ARIDIB	synonymous SNV	p.II 921I	0.005882	0.0036	
6	157528197	T	rs 11 2703 040	exonic	ARIDIB	synonymous SNV	p.II961I	0.01176	0.0101	
6	157528251	A	rs 15131 7970	exonic	ARIDIB	synonymous SNV	p.P1979P	0.005882	3.30E-05	
6	157528356	A	rs753595827	exonic	ARIDIB	synonymous SNV	p.T2014T	0.005882	4.12E-05	
7	91623897	A	rs 55841 5055	intronic	AKAP9			0.005882	0.0016	
7	91624931	G	m78515732	exonic	AKAP9	synonymous SNV	p.E249E	0.005882	0.0031	
7	91632306	т	ns 1989 779	exonic	AKAP9	synonymous SNV	p.T 1025T	0.8941	0.8924	
7	91641928	G	m 13245393	exonic	AKAP9	synonymous SNV	p.E1168E	0.3765	0.3838	
7	91645454	c	rs 14261 0139	exonic	AKAP9			0.005882	0.0004	
						synonymous SNV	p.S1208S			
7	91652178	AAC	rs10644111	exonic	AKAP9	nonframeshift insertion	p.K1335delinsKQ	0.3765	0.3989	

4 11413/801 T re20-64 exonic ANK2 synonymous SNV p.779V 0.04188 4 114213751 C rs 7602419614 intronic ANK2 .	0.0163 0.0164 8.47E-05 - 0.0062 0.0097 - 0.146 - 0.0162 - 0.0072 - 0.1377 - 0.0008 - 0.003 - 0.003 - 0.003 - 0.0092 - 0.003 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0092 - 0.0093 - 0.0092 - 0.0093 - 0.0092 - 0.0093 - 0.0093 - 0.0093 - 0.0099 - 0.0013 - 0.0079 - 0.0018 - 0.0079 - 0.0012 - 0.0079 - 0.0012 - 0.0079 - 0.0012 - 0.0072	
4 114213713 C rs 702049044 intronic ANK2	8. 47E-05 0.0062	
4 114214588 T rs 139993914 intronic ANK2 . . 0.0176 4 114244584 C intronic ANK2 .	0.0062	
4 114244834 C intronic ANK2 synonymous SNV p.V1170V G005882 4 114257122 G m.35336373 casoic ANK2 synonymous SNV p.V1170V G005882 4 11425706 T m.59906453 intronic ANK2 .	0.0097	
4	0.146 0.0162 0.0162 0.0072 0.1377 0.0008 0.02 0.0014 0.0403 0.0796 0.0492 0.0023 0.1902 0.0982 0.0992 5.77E-05 0.1974 0.0289 0.0013 0.2191 0.0018 0.0079 0.0012	
4 11425 7201 T π.3756 575 exonic ANK2 synonymous RNV p.R1197R 0.09412 4 11425 7965 T π.99906433 nitronic ANK2 . <th>0.146 0.0162 0.0162 0.0072 0.1377 0.0008 0.02 0.0014 0.0403 0.0796 0.0492 0.0023 0.1902 0.0982 0.0992 5.77E-05 0.1974 0.0289 0.0013 0.2191 0.0018 0.0079 0.0012</th> <th></th>	0.146 0.0162 0.0162 0.0072 0.1377 0.0008 0.02 0.0014 0.0403 0.0796 0.0492 0.0023 0.1902 0.0982 0.0992 5.77E-05 0.1974 0.0289 0.0013 0.2191 0.0018 0.0079 0.0012	
4 114257706 T n 59906453 infronic ANK2 . . 0.005 882 4 114257955 A n 66792339 infronic ANK2 . </th <th>0.0162 . 0.0072 . 0.1377 . 0.0008 . 0.02 . 0.0014 . 0.0403 . 0.0796 . 0.0023 . 0.0902 . 0.0902 . 0.0902 . 0.1902 . 0.1974 . 0.0280 . 0.1974 . 0.0280 . 0.0280 . 0.0013 . 0.2191 . 0.0018 .</th> <th></th>	0.0162 . 0.0072 . 0.1377 . 0.0008 . 0.02 . 0.0014 . 0.0403 . 0.0796 . 0.0023 . 0.0902 . 0.0902 . 0.0902 . 0.1902 . 0.1974 . 0.0280 . 0.1974 . 0.0280 . 0.0280 . 0.0013 . 0.2191 . 0.0018 .	
4 114257955 A m66792339 intronic ANK2 .	0.0072	
4 114266492 T m2272231 infronic ANK2 . . 0.08824 4 11426/2075 G rs507570285 exonic ANK2 ayronymous SNV p,E1309E 0.005882 4 11426/9050 C rs189881943 infronic ANK2 .	0.1377 . 0.0008 . 0.02 . 0.0014 . 0.0403 . 0.0796 . 0.0623 . 0.1902 . 0.0902 . 0.0902 . 0.0902 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 11426/2877 G rs 567570285 exonic ANK2 syrnonymous SNV p.E109E 0.005 882 4 11426/9051 C m 72556/368 intronic ANK2 . <th< th=""><th>0.0008 0.02 0.0014 0.0400 0.0796 0.0402 0.0023 0.1902 0.0902 5.77E-05 0.1974 0.0299 0.0013 0.2191 0.0018 0.0019 0.0012</th><th></th></th<>	0.0008 0.02 0.0014 0.0400 0.0796 0.0402 0.0023 0.1902 0.0902 5.77E-05 0.1974 0.0299 0.0013 0.2191 0.0018 0.0019 0.0012	
4 114267015 C n72556368 intronic ANK2 .	0.02	
4 114269501 C rs 18988 3943 intronic ANK2 . <	0.0014 0.0403 0.0796 0.0492 0.0023 0.1902 0.0902 0.0902 5.776-05 0.1974 0.0289 0.0013 0.2191 0.0018 0.0079 0.00012	
4 114269509 A m2272214 intronic ANK2 . . 0.01765 4 114275243 T rs33966911 exonic ANK2 synonymous SNV p.P1821P 0.1118 4 114275422 G m3796928 exonic ANK2 synonymous SNV p.D2564 0.02353 4 114276422 G m140726992 exonic ANK2 synonymous SNV p.D2216G 0.05582 4 114276422 G m140726992 exonic ANK2 synonymous SNV p.D2316G 0.05582 4 114276422 G m1001743 exonic ANK2 synonymous SNV p.B3216G 0.118 4 114276422 G m1001743 exonic ANK2 synonymous SNV p.B3216G 0.118 4 11428645 T m3572190 exonic ANK2 synonymous SNV p.B3166 0.0582 4 11429408 C m229134 exonic ANK2	0.0403 . 0.0796 . 0.0492 . 0.0023 . 0.1902 . 0.0992 . 0.0992 . 5.77E-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 114275243 T px33966911 exonic ANK2 syrnorymous SNV p.P1823P 0.1118 4 114275422 G n.3796928 exonic ANK2 syrnorymous SNV p.L20564 0.02153 4 114276824 G n.3733615 exonic ANK2 syrnorymous SNV p.02270Q 0.647 4 114278422 G m.1001743 exonic ANK2 syrnorymous SNV p.02270Q 0.1647 4 114278425 G m.1001743 exonic ANK2 syrnorymous SNV p.E216E 0.1176 4 114284645 T n.85728190 intronic ANK2 syrnorymous SNV p.B1576 0.0582 4 11428408 C n.2293324 exonic ANK2 syrnorymous SNV p.B15766 0.0582 4 11428408 C n.2293324 exonic ANK2 syrnorymous SNV p.H 19041 0.1766 4 11429408 C n.2294324 exonic <th>0.07% 0.0492 - 0.0023 - 0.1902 - 0.0992 - 0.0992 - 5.77E-05 - 0.1974 - 0.0289 - 0.0013 - 0.2191 - 0.0018 - 0.0079 - 0.0012 -</th> <th></th>	0.07% 0.0492 - 0.0023 - 0.1902 - 0.0992 - 0.0992 - 5.77E-05 - 0.1974 - 0.0289 - 0.0013 - 0.2191 - 0.0018 - 0.0079 - 0.0012 -	
4 114275243 T rs33960911 exonic ANK2 synonymous SNV p.P1823P 0.118 4 114275422 G rs3796228 exonic ANK2 synonymous SNV p.L20564 0.02353 4 114276422 G rs14026982 exonic ANK2 synonymous SNV p.02216G 0.00582 4 11427622 G m1001743 exonic ANK2 synonymous SNV p.02370Q 0.1647 4 114278425 G m1001743 exonic ANK2 synonymous SNV p.E31del 0.1176 4 114284645 T rs15728190 introsic ANK2 synonymous SNV p.B1566 0.00582 4 11428408 C rs220324 exonic ANK2 synonymous SNV p.B1566 0.00582 4 11430264 T rs2446871 UTR3 ANK2 synonymous SNV p.B1964 0.1766 4 140283103 - rs2446871 UTR3 <td< th=""><th>0.0492 . 0.0023 . 0.1902 . 0.0902 . 0.0902 . 5.776-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .</th><th></th></td<>	0.0492 . 0.0023 . 0.1902 . 0.0902 . 0.0902 . 5.776-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 114275942 G n3796928 exonic ANK2 synonymous SNV p.L2056L 0.02353 4 114276422 G rs.140926992 exonic ANK2 synonymous SNV p.G2216G 0.005882 4 114276422 G m 1001743 exonic ANK2 synonymous SNV p.B216G 0.1176 4 114279422 G m 1001743 exonic ANK2 synonymous SNV p.B316G 0.1176 4 114284645 T n35728190 intronic ANK2 synonymous SNV p.B3176G 0.00582 4 11428408 C rs.2419596 exonic ANK2 synonymous SNV p.H180d1 0.1766 4 11429408 C n254419596 exonic ANK2 synonymous SNV p.H180d1 0.1766 4 114294108 C n25440871 UTR ANK2 synonymous SNV p.H180d1 0.1766 4 140281609 A rs.1448484204 intronic <th>0.0492 . 0.0023 . 0.1902 . 0.0902 . 0.0902 . 5.776-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .</th> <th></th>	0.0492 . 0.0023 . 0.1902 . 0.0902 . 0.0902 . 5.776-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 114276122 G rs 14092 6982 exonic ANK2 syrnorymous SNV p.G2216G 0.005 882 4 114276824 G в 3733615 exonic ANK2 syrnorymous SNV p.G2370Q 0.1647 4 114279422 G n 10013743 exonic ANK2 yrrorymous SNV p.E3216E 0.1176 4 114284645 T m 35728190 intronic ANK2 yrrorymous SNV p.E13768 0.0582 4 11428408 C rs 54419596 exonic ANK2 syrnorymous SNV p.E15768 0.0582 4 11429408 C m 2291324 exonic ANK2 syrnorymous SNV p.E1768 0.0582 4 11429408 C m 2291324 exonic ANK2 syrnorymous SNV p.B1768 0.0582 4 140281609 A rs 148484204 intronic NAA15 <	0.0023 . 0.1902 . 0.0902 . 0.0902 . 5.77E-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 114276884 G n3733615 exonic ANK2 synonymous SNV p.Q2370Q 0.1647 4 114279422 G n1001743 exonic ANK2 synonymous SNV p.B.3168 0.1176 4 114284645 T n35728190 intronic ANK2 synonymous SNV p.B.15765 0.0188 4 114284088 C n.2201324 exonic ANK2 synonymous SNV p.B.15765 0.05582 4 114302614 T n.55446871 UTR3 ANK2 ynonymous SNV p.B.18061 0.1706 4 14028103 - n.3217605 intronic NAA15 - - 0.00582 4 140283103 - n.3217605 intronic NAA15 - - 0.00582 5 142099802 T n.70625996 intronic TRAD - - 0.00582 5 14290805 A r.3184686375 intronic TRD - <t< th=""><th>0.1902 . 0.0982 . 9.0992 . 5.77E-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .</th><th></th></t<>	0.1902 . 0.0982 . 9.0992 . 5.77E-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 114279222 G n 10013 743 exonic ANK2 syronymous SNV p.E3216E 0.1176 4 114284615 T m 35728190 intronic ANK2 . . 0.1118 4 1142840289 C rs.54405596 exonic ANK2 syronymous SNV p.S15765 0.005 882 4 114284308 C m 2293324 exonic ANK2 syronymous SNV p.JH 806H 0.1766 4 114302634 T m 35446871 UTR3 ANK2 .	0.0992 . 0.092 . 5.77E-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 114284645 T n35728190 intronic ANK2 . 0.1118 4 114286299 C rs.54419596 exonic ANK2 synonymous SNV p.515765 0.005 822 4 114294308 C n.2293324 exonic ANK2 synonymous SNV p.H1806H 0.1766 4 114294308 T n.35446871 UTR3 ANK2 . . 0.03529 4 140281609 A rs.148484204 intronic NAA15 . . 0.0582 4 14028103 - n.3217665 intronic NAA15 . . . 0.0582 5 14270947 T n.75664610 exonic TRD synonymous SNV p.N57N 0.01765 5 14280385 A rs.18468075 intronic TRD 	0.092 . 5.77E-05 . 0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 114286289 C rs544195596 exonic ANK2 synonymous SNV p.S15768 0.095882 4 114294308 C n.2295124 exonic ANK2 synonymous SNV p.3115064 0.07564 4 114024068 T n.34448871 UTRS ANK2 - 0.05582 4 140281609 A rs148484204 intronic NAA15 - 0.05582 4 14028103 - n.3217605 intronic NAA15 - 0.06582 4 14029802 T n.7625596 intronic NAA15 - 0.06582 5 14270947 T n.75564610 exonic TRD - 0.05882 5 1429035 A rs18468475 intronic TRD - 0.0786 5 1429050 A rs06c29 intronic TRD - 0.0786 5 1429050 A n61777132 exonic TRD	5.77E-05 0.1974 0.0289 0.0013 0.2191 0.0018 0.0079 0.0012	
4 114294308 C a2293324 exonic ANK2 synonymous SNV p.1110681 0.1706 4 11402544 T m.53446871 UTR3 ANK2	0.1974 . 0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 11430 2634 T m 35446 871 UTR3 ANK2 . </th <th>0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .</th> <th></th>	0.0289 . 0.0013 . 0.2191 . 0.0018 . 0.0079 .	
4 1402 81609 A rs.14618 4204 intronic NAA15 .	0.0013	
4 1402 83103 - m 3217 605 intronic NAA15 - 0.1647 4 1402 99862 T m 7625 596 intronic NAA15 - 0.005 882 5 142 70477 T m 55064610 exonic TRD y roopynous SNV p N57N 0.0176 5 142 80385 A r 184686375 intronic TRD - 0.04785 5 142 90805 A r 2005 29 intronic TRD - 0.04785 5 142 91259 A n61737312 exonic TRD - 0.05882 5 142 91254 T r 18731817005 intronic TRD - 0.05882 5 143 16642 A n55920001 exonic TRD - 0.05882 5 143 36690 G n16001402 intronic TRD - 0.05882 5 143 36690 G n16001402 intronic TRD -	0.2191 . 0.0018 . 0.0079 . 0.0012 .	
4 1402 99862 T m76255 996 intronic NAA15 . <th< th=""><th>0.0018 . 0.0079 . 0.0012 .</th><th></th></th<>	0.0018 . 0.0079 . 0.0012 .	
\$ 142 70947 T m 55664610 exonic TRD syronymous SNV p.N57N 0.01765 \$ 142 80385 A rs 184686375 intronic TRD . . 0.005 882 \$ 142 90295 A rs 0629 intronic TRD . . 0.4765 \$ 142 90259 A m 61737 132 exonic TRD synonymous SNV p.1.328. . 0.005 882 \$ 143 16642 A m 55920001 exonic TRD synonymous SNV p.S5078 0.06471 \$ 143 10649 G n 16004402 intronic TRD synonymous SNV p.G595G 0.06582 \$ 143 10640 C m 2277045 exonic TRD synonymous SNV p.G595G 0.06471 \$ 143 10640 C m 2277045 exonic TRD synonymous SNV p.G595G 0.06471 \$ 143 10640 C m 2277045 exonic TRD <th>0.0079 . 0.0012 .</th> <th></th>	0.0079 . 0.0012 .	
\$ 142 80385 A rs 18468 6375 intronic TRD . <th< th=""><th>0.0012 .</th><th></th></th<>	0.0012 .	
5 142 9805 A rx306 29 intronic TRIO . . 0.4765 5 142 91259 A n61737132 exonic TRIO synonymous SNV p.1.3251. 0.005 882 5 142 91254 T rx373817005 intronic TRIO .		
5 142 90805 A rs/106 29 intronic TRIO . . . 0.4765 5 142 91299 A m6/179/1112 exonic TRIO synonymous SNV p.1325L .	0.6023	
\$ 142 93254 T rs 37381 7005 introsic TRD synonymous SNV p.S507S 0.005 882 \$ 143 10642 A m 559200001 exonic TRD synonymous SNV p.S507S 0.06471 \$ 143 30690 G m 16903 402 introsic TRD synonymous SNV p.G595G 0.06471 \$ 143 30640 C m 2277045 exonic TRD synonymous SNV p.G595G 0.06471 \$ 143 50665 A rs 20043 8805 introsic TRD 0.01176	0.3072	
5 143 16642 A n55920001 exonic TRIO synonymous SNV p.S597S 0.06471 5 143 30869 G n 16903 402 intronic TRIO . . . 0.005 882 5 143 30940 C n2227045 exonic TRIO synonymous SNV p.G595G 0.06471 5 143 59665 A rs 20043 8805 intronic TRIO . . . 0.01176	0.0119	
5 143 16642 A n 55920001 exonic TRO synonymous SNV p.S597S 0.06471 5 143 30869 G n 16903 402 intronic TRO . . . 0.005 882 5 143 30940 C n 2227045 exonic TRO synonymous SNV p.G595G 0.06471 5 143 59665 A rs 20043 8805 intronic TRO . . . 0.01176	0.0001 .	
5 143 30869 G n 16903 402 intronic TRIO . . 0.005 882 5 143 30940 C n 2277045 exonic TRIO syronymous SNV p .G595G 0.06471 5 143 59665 A rs 20043 8805 intronic TRIO . . 0.01176	0.0418	
\$ 14330940 C n.2277045 exonic TRIO synonymous SNV p.G595G 0.06471 5 14359665 A ns.20043 8805 intronic TRIO . . 0.01176	0.0017	
5 14359665 A rs/200438805 intronic TRIO	0.0429	
	0.005	
5 14.5 27000 I 15 12700 2600 BRIGHT ILM	0.005	
5 141-63830 T ns55751460 intronic TRIO	0.0482	
5 14364726 T rs 114634082 intronic TRIO	0.0157	
5 14368975 T n:13189406 exonic TRD synonymous SNV p.N1011N 0.2647	0.2508	
5 14369548 A rs 764660542 exonic TRIO synonymous SNV p. A 1044 A 0.005 882	8.27E-06	
5 14374397 T rs 145133665 exonic TRIO synonymous SNV p.S 1092S 0.005882	0.0014 .	
5 14378088 T ss 10866507 intronic TRKD 0.08824	0.0921	
5 14378269 G rs147151301 intronic TRIO 0.02941	0.0164	
5 143.87543 A m16903.450 intronic TRIO 0.005.882	0.0053	
5 14387615 C rs140850570 exonic TRO synonymous SNV p.H1213H 0.01176	0.001	
5 143 87772 G rs 142970888 intronic TRIO	0.0058	
5 143.87813 C ns.2289.849 intronic TRIO 0.01176	0.0156	
5 143.88686 G rs11949756 intronic TRIO 0.08.824	0.0671	
5 143.89469 T 8:7715.916 exonic TRO synonymous SNV p.11.340I 0.08.824	0.0696 .	
5 14394283 A rs256412 intronic TRIO 0.2647	0.2805	
5 14405920 T rs141492551 intronic TRIO 0.005882	0.0008	
5 14420027 C rs30612 exonic TRO synonymous SNV p.T1700T 0.8353	0.8298 .	
5 14420150 A m.56207939 intronic TRO 0.1	0.1006	
	0.0451	
5 14461468 G m55812347 exonic TRO synonymous SNV p.A1748A 0.02941 5 14461454 A m62345056 intronic TRO 0.01176	0.0059	
1 111111 1 111111 11111	0.419 .	
5 14462890 T n 1750731 exonic TREO synonymous SNV p.S1841S 0.05284	0.0217	
5 14465628 T n/9312837 intronic TRIO . . 0.01765 5 14465787 A rs111451616 intronic TRIO . . 0.005882	0.0121 .	
5 14465787 A rs111451616 intronic TRIO 0.005882	0.0027	
5 14476968 T rs40490 intronic TRIO 0.1	0.1057	
\$ 14470968 T rs40490 intronic TRIO . 0.1 5 14470923 A m 62345860 intronic TRIO . 0.04118	0.0168 .	
\$ 14476968 T rs40490 intronic TRIO . 0.1 \$ 14479323 A n62345860 intronic TRIO . 0.04118 \$ 14479333 C n60286979 intronic TRIO . 0.005882	0.0168 . 0.0122 .	
\$ 14470908 T rs/0490 intronic TRIO . 0.1 \$ 14470323 A mc2345860 intronic TRIO . .004118 \$ 14470333 C m60286979 intronic TRIO . .005882 \$ 14470991 T rs/32527 intronic TRIO . .005882	0.0168 .	
\$ 14476968 T rs40490 intronic TRIO . 0.1 \$ 14479323 A n62345860 intronic TRIO . 0.04118 \$ 14479333 C n60286979 intronic TRIO . 0.005882	0.0168 . 0.0122 .	
\$ 14470908 T rs/0490 intronic TRIO . 0.1 \$ 14470323 A mc2345860 intronic TRIO . .004118 \$ 14470333 C m60286979 intronic TRIO . .005882 \$ 14470991 T rs/32527 intronic TRIO . .005882	0.0168 . 0.0122 .	
\$ 14470968 T rs40490 intronic TRD . 0.1 \$ 14470323 A mc5245860 intronic TRD 004118 \$ 14470333 C nc60286979 intronic TRD .	0.0168 . 0.0122 . 0.013 .	
\$ 14470968 T rs40490 intronic TRO . 0.1 \$ 14470323 A m 62345860 intronic TRO . . 0.04118 \$ 14470333 C m 602266979 intronic TRO . <th>0.0168</th> <th></th>	0.0168	
5 14479968 T rs40490 infronic TRIO . 0.1 5 14479323 A m 62345860 infronic TRIO . 0.04118 5 14479333 C m 60286979 infronic TRIO . 0.00582 5 1447991 T rs32527 infronic TRIO synonymous SNV p.R2141R 0.00582 5 14481865 A - exonic TRIO synonymous SNV p.R2141R 0.00582 5 14487306 C rs26098 infronic TRIO . . 0.1235 5 14487300 A rs116296447 infronic TRIO . . 0.00582	0.0168 . 0.0122 . 0.013 0.1391 . 0.014 .	
\$ 14479968 T rs40490 intronic TRIO . 0.1 \$ 14479023 A mc6245890 intronic TRIO . . .004118 \$ 14479033 C mc60286979 intronic TRIO . </th <th>0.0168 . 0.0122 . 0.013 0.1191 . 0.014 . 0.0002 .</th> <th></th>	0.0168 . 0.0122 . 0.013 0.1191 . 0.014 . 0.0002 .	
5 14479968 T rs40490 infronic TRIO . 0.1 5 1447923 A mc3245860 infronic TRIO . . 0.04118 5 14479933 C m60286979 infronic TRIO . <th>0.0168 . 0.0122 . 0.013 0.1391 . 0.014 . 0.0002 . 0.0025 .</th> <th></th>	0.0168 . 0.0122 . 0.013 0.1391 . 0.014 . 0.0002 . 0.0025 .	
\$ 14470908 T rs40490 intronic TRIO . 0.1 \$ 14470923 A mc2145860 intronic TRIO . . .004118 \$ 14470933 C m60286979 intronic TRID 005182 \$ 14479991 T rs32527 intronic TRID 005182 \$ 14481685 A .	0.0168 . 0.0122 . 0.013	
\$ 14470908 T rs40490 intronic TRIO . 0.1 \$ 14470323 A mc62345860 intronic TRIO . . .004118 \$ 144709333 C mc60266979 intronic TRIO . . .005582 \$ 14470991 T rs32527 intronic TRIO 005582 \$ 14481685 A . exonic TRIO .	0.0168	
\$ 14479968 T rs40490 intronic TRIO . 0.1 \$ 14479023 A m62345860 intronic TRIO . . .004118 \$ 14479033 C m60286979 intronic TRIO . . .005882 \$ 14479991 T rs25227 intronic TRIO 005882 \$ 14481685 A .	0.0168	
\$ 14470908 T rs40490 intronic TRIO . 0.1 \$ 14470323 A mc2145860 intronic TRIO . .004118 \$ 14470323 C mc60286979 intronic TRIO . .005582 \$ 14470991 T rs32527 intronic TRIO . .005582 \$ 14481685 A . cwnic TRIO . .02582 \$ 14485786 C rs26098 intronic TRIO . . .01235 \$ 14487580 A rs116296447 intronic TRIO . . .005882 \$ 14487568 A rs146096842 intronic TRIO 005882 \$ 14487568 A rs14000882 cwnic TRIO </th <th>0.0168</th> <th></th>	0.0168	
\$ 14470908 T rs40490 intronic TRIO . 0.1 \$ 14470923 A mc2145860 intronic TRIO . . .004118 \$ 14470933 C mc60266979 intronic TRIO . . .005582 \$ 14470991 T rs25227 intronic TRIO 005582 \$ 14481685 A . conic TRIO .	0.0168	
\$ 14470908 T rs40490 intronic TRIO . 0.1 \$ 14470323 A mc62345869 intronic TRIO . . .004118 \$ 14470323 C mc60286979 intronic TRIO . . .005582 \$ 14470991 T rs25227 intronic TRIO 005582 \$ 14481685 A . exonic TRIO . . .01215 \$ 14487366 C rs26098 intronic TRIO 01215 \$ 14487500 A rs116296447 intronic TRIO 005582 \$ 14487508 A rs75805482 intronic TRIO 	0.0168	
\$ 14470908 T rs/04/90 intronic TRIO . 0.1 \$ 14470233 A mc62345860 intronic TRIO . . .004118 \$ 14470233 C m60286979 intronic TRIO 005582 \$ 14470991 T rs/32527 intronic TRIO 005582 \$ 14481685 A . cooic TRIO ayrosymous SNV p.R2141R . .005882 \$ 14487530 A rs/16296447 intronic TRIO .	0.0168	
\$ 14470688 T rs40490 intronic TRIO . 0.1 \$ 14470323 A mc62345860 intronic TRIO . . .004118 \$ 14470323 C mc62268979 intronic TRIO . . .005582 \$ 14470991 T rs25227 intronic TRIO 005582 \$ 14481685 A . exonic TRIO 01215 \$ 14487366 C rs26998 intronic TRIO 01215 \$ 14487500 A rs11626447 intronic TRIO 005882 \$ 14487508 A rs758054482 intronic TRIO 005882 \$ 14487504 A rs14008882 exonic TRIO nonframeshif deletion p.2486_2490del	0.0168	

ERBB2IP

7	916-67692	G	n 2285 333	intronic	AKAP9			0.3706	0.3914	
7	91669949		n 34590 567	intronic	AKAP9			0.005 882	0.004	
7	91669978			intronic	AKAP9			0.005 882		
7	91674302	A	ns9785013	intronic	AKAP9			0.3706	0.3993	
7	91682296	C	rs 20184 3283	intronic	AKAP9			0.005882	0.0038	
7	91691601	T	as 10236397	exonic	AKAP9	synonymous SNV	p.G1926G	0.3706	0.3795	
7	91691759		rs757365188	exonic	AKAP9	frames hift deletion	p. Q1979 fs	0.005882	1.66E-05	
7	91699314	T	rs 14646 2493	intronic	AKAP9			0.005 882	0.0011	
7	91700339	С	rs748480385	intronic	AKAP9			0.005 882	1.66E-05	
7	91700353	A	rs 74941 3872	intronic	AKAP9			0.005 882	2.51E-05	
7	91707197	Т	rs733957	intronic	AKAP9			0.3706	0.4076	
7	91708722	A	m61757672		AKAP9	synonymous SNV	p.Q2425Q	0.01176	0.0028	
7	91711791	G		exonic	AKAP9	ayanayanna are e	highand	0.3706	0.3834	
	91711791		ns 2079 082 ns 10228 334	intronic						
7		T		exonic	AKAP9	synonymous SNV	p.L.2889L	0.3765	0.3832	
7	91715662	T	n 28927 678	exonic	AKAP9	synonymous SNV	p.L.3049L	0.3647	0.3589	
7	917 18874	G	n 56295910	intronic	AKAP9			0.02353	0.0239	7.624
7	917 19010	A	rs 14982 9152	intronic	AKAP9			0.01176	0.0013	
7	917 19035	T	rs 18120 9481	intronic	AKAP9			0.005 882	0.003	
7	91726927	C	rs 1063 243	exonic	AKAP9	synonymous SNV	p.R3476R	0.3765	0.3846	
7	91727385	A	n:6946356	intronic	AKAP9			0.3588	0.3947	
7	91735107	A	ns 74753 191	intronic	AKAP9			0.005882	0.0044	
7	100279437	T	as 76501659	intronic	GIGYF1			0.01176	0.0045	
7	100279633	A	rs 77915 7646	intronic	GIGYF1			0.005882	4.23E-05	
7	1002 7970 5	GCC	rs 76970 4427	exonic	GIGYF1	nonframeshift insertion	p. Q972del insRQ	0.005 882	8.54E-06	
7	100279928	A		intronic	GIGYF1	-		0.005882		
7	100279946	A	rs 11 7080 933	exonic	GIGYF1	synonymous SNV	p.D920D	0.02353	0.0284	
7	1002 8003 9	T	1011 / 000 933					0.005882	0.0204	
			-227 700	exonic	GIGYFI	synonymous SNV	p.L889L		0.0222	
7	1002 8089 6	С	rs221793	intronic	GIGYFI			0.9471	0.9311	
7	1002 81264	A	rs 19977 8365	intronic	GIGYF1			0.005882	0.0006	
7	1002 8253 8	A	rs11974395	intronic	GIGYF1			0.1941	0.2219	
7	1002 8270 7	A	rs 11 7339 142	exonic	GIGYF1	synonymous SNV	p.L419L	0.01765	0.0359	
7	1002 83914	С	rs 14372 5633	exonic	GIGYF1	synonymous SNV	p.R279R	0.01765	0.0101	
7	1002 8424 6	G	rs11975.502	intronic	GIGYF1			0.01765	0.013	
7	1002 8460 6	T	rs 18190 2629	intronic	GIGYF1			0.01765	0.0057	
7	1002 84913	G	rs221796	intronic	GIGYF1			0.9118	0.895	
7	1002 85369	A		intronic	GIGYF1			0.005 882		
7	100285757	С	n 75939 759	intronic	GIGYF1			0.05294	0.0465	
7	1002 8580 1	Т	rs371623925	intronic	GIGYF1			0.005 882	0.0003	
7	1002 8581 2	A	rs 11 6789 774	intronic	GIGYF1			0.005 882	0.0054	
7	1002 8588 8	T	IN 2272 572	UTR5	GIGYF1			0.1941	0.2158	
7	1002 8590 6	A	rs 19208 4647	UTR5	GIGYF1			0.005 882	0.02	
7	1002 8594 1	С	rs 11 7459930	UTR5	GIGYF1			0.05294		
7	100490077	A	ns763-6	exonic	ACHE	synonymous SNV	p.P477P	0.06471	0.0642	
7	100490765	T	is 17234 989	intronic	ACHE			0.005 882	0.002	
7	100491047	T	ns 17228 581	exonic	ACHE	synonymous SNV	p.T 269T	0.005882	0.0016	
7	104703947	G	rs769210509	exonic	KMT2E	synonymous SNV	p.G112G	0.005 882	8.25E-06	
7	104714062	A	rs 14514 7042	intronic	KMT2E			0.005882	0.0074	
7	1047 1659 1	A	rs371638874	intronic	KMT2E			0.005 882		
7	104717517	Т	ns 2240 455	exonic	KMT2E	synonymous SNV	p.Y292Y	0.1529	0.2282	
7	104722143	С	rs 15107 4690	exonic	KMT2E	synonymous SNV	p.H419H	0.005 882	0.0007	
7	104742054	т	rs11976329	intronic	KMT2E	.,,	, , , , , , , , , , , , , , , , , , , ,	0.1471	0.2332	
7	104742679	c	n 77383-660	intronic	KMT2E			0.01765	0.0173	
7	104742879	G	rs 13977 1344		KMT2E			0.005 882	0.0008	
	104745867	c c		intronic						
7			rs 15040 2862	intronic	KMT2E			0.03529	0.029	
7	104749687	С	n 57492 989	intronic	KMT2E			0.005882	0.0093	
7	104752838	CCTCCACCT	rs 74959 1342	exonic	KMT2E	nonframeshift insertion	p.P1545delinsPPPP	0.005 882	4.95E-05	
7	104753093	A		exonic	KMT2E	synonymous SNV	p.P1630P	0.005882	1.65E-05	
7	104753233	ACCCCC	rs751442182	exonic	KMT2E	nonframeshift insertion	p.L1677delinsLPP	0.005 882	7.61E-05	
7	11735 9713	A	rs 19953 9621	intronic	CTTNBP2			0.005882	0.0002	
7	117365146	С	rs 14380 0569	exonic	CTTNBP2	synonymous SNV	p.L.1407L	0.005 882	0.0002	
7	117365348	A	rs 14931 7537	intronic	CTTNBP2			0.01176	0.0012	
7	11739 5664	G	n:34491454	intronic	CTTNBP2			0.01765	0.0253	
7	11742 0450	С	n 77345073	intronic	CTTNBP2			0.005882	0.0015	
7	11742 2868	c	n 78183-633	intronic	CTTNBP2			0.01176	0.0278	
7	11742 4277	A	rs7811545	intronic	CTTNBP2			0.005 882	0.0036	
7	117424277	G	n 28609 642		CTTNBP2			0.005 882	0.0048	
				intronic						
7	117431142	Т	rs 14750 5672	intronic	CTTNBP2			0.005882	0.0066	
7	11743 2212	A		exonic	CTTNBP2	synonymous SNV	p.C346C	0.005 882		
7	11745 0792	С	rs21112.04	intronic	CTTNBP2			0.6529	0.6314	
7	11745 0802	G	ns 41281 090	intronic	CTTNBP2			0.005 882	0.0064	
7	1175 11581	G	rs 10277 241	intronic	CTTNBP2			0.03529		
7	151842397	T	ns 2240 819	intronic	K MT2C			0.02941	0.0713	
7	151847946	A	ns3757422	intronic	K MT2C			0.02353	0.0511	
7	151851392	T	n 56753 294	exonic	KMT2C	synonymous SNV	p.P4033P	0.005 882	0.014	
7	151851544	С	n 79605387	intronic	KMT2C			0.005 882	0.0023	
7	151853463	T	rs536483249	intronic	KMT2C			0.005 882	0.0006	
7	151855922	c	rs111293424	intronic	KMT2C			0.005 882	1.65E-05	
7	151859751	A	rs 13835 3962	exonic	KMT2C	synonymous SNV	p.B637I	0.01176	0.0044	
,	151859751	- 4	rs 113138353962	CAMBIC	KMT2C	ay analysidotta Sire V	p.154571 p.032720	0.005 882	57,000	

7	151873853	T	rs6464211	exonic	KMT2C	synonymous SNV	p.Q2895Q	0.1941	0.2494	
7	151874498	T	ns 10252 263	exonic	KMT2C	synonymous SNV	p.Q2680Q	0.02941	0.0705	
7	151877128	С	rs 13846 4665	exonic	KMT2C	synonymous SNV	p.S2411S	0.005882	0.0008	
7	151877889	С	n 17173370	exonic	KMT2C	synonymous SNV	p.V2352V	0.005882	0.0094	
7	151879593	TGCTGC	rs 74941 7254	exonic	KMT2C	nonframeshift insertion	p.Q1784delinsQQQ	0.005882	6.64E-05	
7	151884447	T	ns61730536 ns766239018	exonic	KMT2C	synonymous SNV	p.T 1636T	0.005882	0.0096 9.33E-06	
7	151884583 151884607	С	n3800834	intronic	KMT2C KMT2C			0.005882	8.37E-06 0.0698	
7	151891051	T	rs200920682	intronic	KMT2C			0.005882	0.0002	
7	151896350	c	n 10487890	intronic	KMT2C			0.005882	0.0137	
7	151896573	GTTA	rs 11 2572 300	intronic	KMT2C			0.02941	0.0704	
7	152055777	T	rs 18790 2675	intronic	KMT2C			0.01176	0.0061	
7	152132812	T	rs 19183-4730	exonic	KMT2C	synonymous SNV	p.F20E	0.005882	0.0223	
8	61655690	A	n/836586	intronic	CHD7			0.7294	0.8119	
8	61693942	AAAGCA	rs377139749	exonic	CHD7	nonframeshift insertion	p. K683delinsK KA	0.02353	0.0068	
8	61694001	A		intronic	CHD7			0.005882		
8	61707572	С	ns79302359	exonic	CHD7	synonymous SNV	p.S708S	0.01176	0.0135	
8	61707725	A	n:4540437	intronic	CHD7			0.7588	0.8316	
8	617 13126	TGGACT	rs397687085	intronic	CHD7			0.7412	0.7954	
8	61714190	T	ns41272438	intronic	CHD7			0.05294	0.0284	
8	61732518	G	ns79276-682	intronic	CHD7			0.005882	0.0036	
8	61732521	G	ns6471902	intronic	CHD7			0.7471	0.8259	
8	61741378	A	rs 19958 1494	intronic	CHD7			0.01176	0.0008	
8	61742846	G	n 41272 442	intronic	CHD7			0.01176	0.0228	
8	61748893	A	ns7005.873	intronic	CHD7			0.7353		
8	61750718	A	n41265246	exonic	CHD7	synonymous SNV	p.G1479G	0.005882	0.0009	
8	61750860	G	n:7844902	intronic	CHD7			0.7176	0.8137	
8	61757805	T	n:71640288	intronic	CHD7			0.02941	0.0056	
8	61758019	A	rs 143263433	intronic	CHD7			0.01176		
8	61761171	T	rs 15132 2460	intronic	CHD7			0.005882	0.0008	
8	61764838	G T	m41265252	intronic	CHD7			0.01176	0.0076	
8	61765273 61765395	T	в 3763 592 в 41312 170	intronic	CHD7	synonymous SNV	p.P2037P	0.04706	0.0068	
8	61765419	Α.	p6999971	exonic	CHD7	synonymous SNV	p.P2045P	0.04706	0.0085	
8	61765500	G	rs 19982 8744	exonic	CHD7	synonymous SNV	p.P2072P	0.005882	0.0003	
8	61765560	A	n2068096	exonic	CHD7	synonymous SNV	p.E2092E	0.04118	0.0657	
8	61768716	T	rs201046385	exonic	CHD7	synonymous SNV	p.S2373S	0.005882	5.76E-05	
8	61769195	G	m2272727	exonic	CHD7	synonymous SNV	p.T 2452T	0.06471	0.0472	
8	61774901	T	rs769103057	intronic	CHD7			0.005882	5.28E-05	
8	61774929	A	rs 77406 2065	intronic	CHD7			0.005 882	0.0001	
9	963 92371	A	n 10992 813	intronic	PHF2			0.3706	0.3011	
9	963 92389	A	ns 12553 775	intronic	PHF2			0.1059	0.086	
9	963 98655	T	rs 148494944	intronic	PHF2			0.01765	0.0296	
9	963 9883 1	G	n 10992 818	intronic	PHF2			0.1235	0.1621	
9	96407920	T	m7038310	exonic	PHF2	synonymous SNV	p.D103D	0.09412	0.0739	
9	96407953	A	m35505758	exonic	PHF2	synonymous SNV	p.T114T	0.01765	0.0186	
9	96407983	T	ns9695734	exonic	PHF2	synonymous SNV	p.T 124T	0.1294	0.1316	
9	96411414	A	ns 16912 641	exonic	PHF2	synonymous SNV	p.L174L	0.02353	0.026	
9	964 15482	T	n 56134753	exonic	PHF2	synonymous SNV	p.P208P	0.005882	0.0201	
9	96415653	T	n3750354	intronic	PHF2			0.3882	0.3529	
,	96416899	T	в3750355	intronic	PHF2			0.01765	0.0209	
9	96418315 96420390	T G	rs 11 3129 271 m3763 605	intronic intronic	PHF2 PHF2			0.005882	0.0062	
,	96420414	T	n 76256243	intronic	PHF2 PHF2			0.005882	0.0065	
9	96422788	T	m73523907	exonic	PHF2	synonymous SNV	p.1.5481.	0.01765	0.0221	
,	96425138	c	ns3750358	intronic	PHF2			0.6353	0.5677	
9	96425174	С	n/78407785	intronic	PHF2			0.005882	0.0041	
,	96425350	С	rs 11 7578 535	intronic	PHF2			0.005882	0.0094	
9	96425777	T	ns7036592	intronic	PHF2			0.3882	0.3272	
9	96425915	T	rs 13846 4551	exonic	PHF2	synonymous SNV	p.L645L	0.005882	0.0013	
9	96428243	T	ns41276198	intronic	PHF2			0.1353	0.1264	
9	96429439	A	ns41297181	exonic	PHF2	synonymous SNV	p.K755K	0.09412	0.0406	
9	96435876	A	rs 140677384	exonic	PHF2	synonymous SNV	p.P786P	0.01176	0.0076	
9	96437179	A	n 79020256	intronic	PHF2			0.005882	0.0042	
9	96438083	T	rs765541178	intronic	PHF2			0.005882	8.51E-06	
,	96439070	A	rs 143554999	exonic	PHF2	synonymous SNV	p.S1009S	0.005882	0.0007	
9	96439979	-	rs 139272538	UTR3	PHF2			0.005882	0.0033	
,	135772681	A	n 45468 995	exonic	TSCI	synonymous SNV	p.T904T	0.01176	0.0017	
9	135772717	A	n:4962081	exonic	TSCI	synonymous SNV	p.A892A	0.08824	0.0758	
,	135772977	A	rs 11 8203 720	exonic	TSCI	synonymous SNV	p.A831A	0.005882	0.0025	
,	135776925	С	m75802666	intronic	TSCI			0.02353	0.0711	
,	135777958 135781563	T A	rs 11 65 18 82 1 rs 1090 1 220	intronic	TSCI			0.005882	0.0043	
,	135781563	C	n 7862 221	intronic	TSCI	synonymous SNV	p.E394E	0.1647	0.1371	
,	135782221	c	n/862221 n/6597586	intronic	TSCI	synonymous SN V	p.e.994E	0.1647	0.1371	
,	135786112	G	rs 11 8203-414	exonic	TSCI	synonymous SNV	p.S154S	0.005882	0.0006	
,	135802555	T	rs 11 8203 350	intronic	TSCI	ey many mount are v	p. 1743	0.005882	0.0106	
,	135804266	A	n/62621221	UTR5	TSCI			0.005882	0.0013	
10	28822853	A	rs 18245 1824	intronic	WAC			0.01176		

10	288 22982	T	rs 14369 9084	intronic	WAC			0.005882	0.0043	
10	288 84612		rs 77373 9669	intronic	WAC			0.005882	8.85E-06	
10	289 00770	G	ns 2232 792	exonic	WAC	synonymous SNV	p.S349S	0.005882	0.0077	
10	28905079	G	rs332176	intronic	WAC			0.2235	0.2075	
10	28905330	G	rs747909234	intronic	WAC			0.005882	0.0001	
10	89623027		rs 58778 1340	UTR5	KLLN			0.005 882		
10	896 23056 11471 0953	T T	rs 58777 9981	UTR5	KLLN TCF7L2			0.005882	5.57E-05	
10			rs745800886	intronic				0.005 882		
10	114901092	A	rs 14837 7922	intronic	TCF7L2			0.005882	0.0011	
10	114917865	G	rs 19991 3706	intronic	TCF7L2			0.005882	0.0024	
10	11492 0321	T	rs 11 7423 278	intronic	TCF7L2			0.01176		
10	11492 5407	G	rs 14903 1135	exonic	TCF7L2	synonymous SNV	p.P472P	0.01176	0.0045	
10	11492 5758	С	ns 1056 877	UTR3	TCF7L2			0.01176	0.0511	
11	4566513	Α	rs11032738	exonic	OR52M1	synonymous SNV	p.1311	0.01765	0.0046	
- 11	45 66711	T	ns 2709 182	exonic	OR52M1	synonymous SNV	p.D97D	0.5294	0.4594	
11	4566870	С	ns61747520	exonic	OR52M1	synonymous SNV	p.S150S	0.02941	0.029	
- 11	4566939	G	ns61747538	exonic	OR52M1	synonymous SNV	p.K173K	0.005 882	0.0049	
11	4567140	Α	ns61734243	exonic	OR52M1	synonymous SNV	p.T 240T	0.005882	0.0086	
- 11	4567158	CA	rs 14506 4459	exonic	OR52M1	frameshift insertion	p.S246fs	0.005882	0.0025	
11	4567185	С	ns 12295 898	exonic	OR52M1	synonymous SNV	p.Y255Y	0.08824	0.0697	
11	679 26088		rs 37303 0307	exonic	KMT5B	nonframeshift deletion	p.335_335del	0.005882	0.0012	
11	67938474	С	rs368120903	intronic	K MT5B			0.005882	2.51E-05	
11	67938848	С	rs7949511	intronic	K MT5B			0.1		
11	67939134	С	rs 14013 5686	exonic	K MT5B	synonymous SNV	p.A209A	0.005882	0.0001	
11	67941365	T	rs 11 4727 354	exonic	KMT5B	synonymous SNV	p.R 164R	0.01176	0.005	
11	67947575	С	rs 18469 4662	intronic	KMT5B			0.005 882	8000.0	
11	703 3 193 7	Α	rs 14359 5073	exonic	SHANK2	synonymous SNV	p.A899A	0.01176	0.0223	
11	703 33047	С	rs 142550207	exonic	SHANK2	synonymous SNV	p.P529P	0.005882	0.0007	
11	703 33655	G	rs 782117 005	exonic	SHANK2	synonymous SNV	p.R327R	0.005882	6.09E-05	
11	703 48009	G	as 7928 538	intronic	SHANK2			0.02353	0.0527	
11	703 48104	С	rs 37099 8426	intronic	SHANK2			0.005882		
11	703 48261	T	rs 14677 8438	intronic	SHANK2			0.005882	0.0024	
- 11	705 05882	Α	rs 18880 3860	intronic	SHANK2			0.005882	0.001	
11	70544864	С	rs 11 2497 741	exonic	SHANK2	unknown		0.01176	0.0132	
- 11	705 44921	Α	rs11237214	intronic	SHANK2			0.06471	0.1214	
11	70666732	T	rs 78190 6747	exonic	SHANK2	unknown		0.005882	0.0012	
11	707 98896		n35132270	intronic	SHANK2			0.3	0.3301	
11	707 98902	T	n34650500	intronic	SHANK2			0.3	0.3155	
11	70798925		rs139112112	intronic	SHANK2			0.005882	0.0145	
11	70805534	T	rs 55685 1353	intronic	SHANK2			0.005 882	0.0006	
11	70824326	A	rs 11 7706 585	intronic	SHANK2			0.005882	0.0222	
11	708 29858	С	ns 3924 047	intronic	SHANK2			0.5	0.526	
11	708 29950	A	n 76014490	exonic	SHANK2	unknown		0.005882	0.0109	
11	708 58322	Α	rs376267466	exonic	SHANK2	unknown		0.005882	0.0014	
11	119212363	T	rs 138370910	exonic	MFRP	synonymous SNV	p.A545A	0.01176	0.0053	
11	119213303	T	rs11217241	intronic	C1QTNF5,MFRP	.,,	p. 10 - 11 - 1	0.1294	0.1683	
11	119213570	T	rs 776266547	intronic	C 1QTN F5, MFRP			0.005882	8.39E-06	
11	119215007	G	rs 18545 1482	intronic	C1QTNFS,MFRP			0.005 882	0.0066	
11	11921 5046	T	n35885438	exonic	MFRP	synonymous SNV	p.I.318L	0.05882	0.0551	
11	119215307	T	rs758656745	intronic	C1QTNF5,MFRP	ay analysis on a sec	patrical	0.005882	4.15E-05	
11	11921 6231	G	ns2510143	exonic	MFRP	runommous SVV	p.H180H	0.9471	0.9364	
11		A			MFRP	synonymous SNV			0.2136	
11	119216279 119216673		ns36015759 rs111578461	exonic	C 1QTN F5, MFRP	synonymous SNV	p.Y164Y	0.2176	0.0078	
	119216910	A C	13111378401		C1QTNF5,MFRP			0.005 882	0.0078	
11	119216910	T	rs883.247	intronic UTR5	C IQTN FS, MFRP			0.5647	0.5951	
		A					- El tore		0.0387	
12	137 15954 137 15975	G G	ns 1805 246 ns 1805 247	exonic	GRIN2B GRIN2B	synonymous SNV	p.F1406F	0.05294	0.0387	
12	137 15975	A	is 1806 191	exonic	GRIN2B	synonymous SNV	p.H1399H p.H1178H	0.1059	0.1376	
12	137 16674	A	ns 45600 931	exonic	GRIN2B GRIN2B	synonymous SNV synonymous SNV	p.H1178H p.S1166S	0.01765	0.0065	
12	137 17508	A	is 1806201		GRIN2B	synonymous SNV	p.T 888T	0.2824	0.3102	
				exonic		ayanayandas are v	p.1 8881			
12	137 17597	A	rs 20188 1500 2026 160	intronic	GRIN2B	automator Child	a Coton	0.005882	3.43E-05	
12	13720043	A	m3026160	exonic	GRIN2B	synonymous SNV	p.C838C	0.1471	0.0887	
12	137.22876 137.24942	T	rs 757990373	exonic	GRIN2B	synonymous SNV	p.V749V	0.005882	4.96E-05 0.0026	
12			rs370168771	intronic	GRIN2B		-1	0.01176		
12	13761741	A	ns 1805 522	exonic	GRIN2B	synonymous SNV	p.16021	0.04118	0.065	
12	13764774	A	ns 1805 482	exonic	GRIN2B	synonymous SNV	p.S555S	0.3529	0.2647	
12	13768586	A	n35025065	exonic	GRIN2B	synonymous SNV	p.D447D	0.02353	0.0067	
12	13769603	С	ns76777620	intronic	GRIN2B			0.01176	0.0143	
12	138 28659	C	rs11055581	intronic	GRIN2B		- B-22B	0.1882	0.1577	
12	140 18777	С	rs 7301 328	exonic	GRIN2B	synonymous SNV	p.P122P	0.4294	0.4172	
12	140 19128	T	в 34315 573	exonic	GRIN2B	synonymous SNV	p.A5A	0.02941	0.0508	
13	51929304	T	n 4942 995	intronic	SERPINE3			0.02941	0.0552	
13	51941943	C	n 61749 884	exonic	INTS6	synonymous SNV	p.S856S	0.01176	0.0213	
13	51943057	Α	n:45535533	intronic	INTS6			0.01765	0.0186	
13	51943462	T	n 73195996	intronic	INTS6			0.02941	0.0531	
13	51950136		rs 3831 047	intronic	INTS6			0.01176	0.0183	
13	51956122	С	ns9526753	intronic	INTS6			0.5882	0.697	
13 13		C G		intronic exomic	INTS6 INTS6	synonymous SNV	p.T 405T	0.5882 0.01176 0.01765	0.697 0.0215 0.0336	

13	51963594	AAG	rs 57699 3324	intronic	INTS6			0.005882	0.0034		
14	218 53853	G	m61748933	exonic	CHD8	synonymous SNV	p.D2555D	0.02941	0.014		
14	21859080		в 35057 134		CHD8		p	0.3294	0.3349		
				intronic							
14	21861631	С	rs779588873	intronic	CHD8			0.005882	0		
14	21862388	Α	rs 19991 2058	intronic	CHD8			0.005882	0.0001		
14	218 62666	G	rs77562111	intronic	CHD8			0.005882	0.0027		
14	21863396	A	rs 18493 0403	intronic	CHD8			0.005882			
14		С	m61752837				- 116601		0.0238		
	218 66026			exonic	CHD8	synonymous SNV	p.A1669A	0.005882			
14	21867754	С	rs375587003	intronic	CHD8			0.005882	0.0009		-
14	21868798	A	rs 17792 647	intronic	CHD8			0.01176	0.0145		
14	21869708	С	rs 199499304	intronic	CHD8			0.01176	0.0321		
14	21871172	С	rs 19125 8109	intronic	CHD8			0.005882	0.0002		
14		T			CHD8	SVV	-3/11/208/		0.9093		
	21871653		ns 8022 395	exonic		synonymous SNV	p.V1159V	0.9471			
14	21874068	С	в7155123	intronic	CHD8			0.9294	0.8616		
14	21876729	C	rs374458289	intronic	CHD8			0.005882	0.0011		
14	21876762	Α	rs 145389674	intronic	CHD8			0.01765	0.0267		
14	21876976	T	m61752838	exonic	CHD8	synonymous SNV	p.P791P	0.005882	0.0024		
14									0.0003		
	21877015	A	rs202188781	intronic	CHD8			0.005882			
14	21877019	A	rs200436134	intronic	CHD8			0.005882	0.0003		-
14	21883866	C		intronic	CHD8			0.005882			
14	21896192	Α	m61744173	exonic	CHD8	synonymous SNV	p.N479N	0.01765	0.0084		
14	21899909	т		intronic	CHD8			0.005882			
14	77491829	A	rs 14575.2129		IRF2BPL	SURGERITH OF SVV	n \$7606	0.005882	0.0022		
				exonic		synonymous SNV	p.S769S				
14	77492891	A	rs879027	exonic	IRF2BPL	synonymous SNV	p.Y415Y	0.5882	0.478		
14	77494484	С	ns 76980 172	UTR5	IRF2BPL			0.02941			-
14	77494557	T	ns3742745	UTRS	IRF2BPL			0.005882			
14	77494578	G		UTR5	IRF2BPL			0.005882			
			- 13902031								
14	77494682	A	ns 12897 921	UTRS	IRF2BPL			0.5588			-
14	77494722	T	ns 78010 105	UTRS	IRF2BPL			0.08235			-
15	268 06064	C	ns 3751 582	intronic	GABRB3			0.2647	0.3456		
15	268 12780	T	ns76812964	exonic	GABRB3	synonymous SNV	p.S176S	0.02941	0.0247		
15	27017536	A	ns8179186	intronic	GABRB3			0.1471	0.2221		
15	270 18797	A			GABRB3		- D3CD	0.1588	0.2983		
			rs20318	exonic		synonymous SNV	p.P25P				-
15	27128252	G	в 74006 529	intronic	GABRA5			0.005882	0.0018	-	
15	27128254	G	m73363996	intronic	GABRA5			0.01765	0.0206		-
15	27128461	T	rs140 680	intronic	GABRA5			0.08824	0.1191		
15	27128498	T	ns79274924	exonic	GABRA5	synonymous SNV	p.D97D	0.005882	0.0005		
15	27182357	С	rs140 682	exonic	GABRA5	synonymous SNV	p.V202V	0.4765	0.5927		
			13140-052			symonymous are v	p. 1 202 1		0.3927		
15	27182491	С		intronic	GABRA5			0.005882			-
15	93485032	T	rs 14127 1290	intronic	CHD2			0.005882	0.0133		
15	93485184	T	rs372257500	exonic	CHD2	synonymous SNV	p.G275G	0.005882			
15	93498721	С	rs 144093014	exonic	CHD2	synonymous SNV	p.Y596Y	0.005882	0.006		
15	935 10540	G	rs201137739	intronic	CHD2			0.005882	0.0006		
15		G				consumous SVV	p.E683E		0.8419		
	93510603		в-4777755	exonic	CHD2	synonymous SNV	p.E080E	0.8529			
15	935 14952	T	rs 18963 0679	intronic	CHD2			0.005882	0.0002		-
15	93521604	G	rs11074121	exonic	CHD2	synonymous SNV	p.Q906Q	0.8471	0.8353		
15	93521651	G	rs11074122	intronic	CHD2			0.8471	0.8353		
15	93523998	G	ns77401998	intronic	CHD2			0.005882	0.0105		
15	93524149	T		intronic	CHD2			0.005882			
			15000000	intronic			PLOUD				-
15	93527619	T	rs 15026 8140	exonic	CHD2	synonymous SNV	p.D1042D	0.01176	0.0044		
15	93528716	T		intronic	CHD2			0.005882			-
15	93536185	G	rs 144292068	exonic	CHD2	synonymous SNV	p.A1184A	0.005882	0.0006		
15	93536197	T	m2272457	exonic	CHD2	synonymous SNV	p.Y1188Y	0.2647	0.2266		
15	93543907	G	rs 14788 4853	intronic	CHD2			0.01176	0.006		-
15	935 52330	T	в 12915 582	intronic	CHD2			0.8529	0.8369		
15	93552349	Α	ns 72647 789	intronic	CHD2			0.02941	0.0259		
15	935 52488	T	m34315566	exonic	CHD2	synonymous SNV	p.II 509I	0.05294	0.046		-
15	93555541	G	rs 11 7430 127	intronic	CHD2			0.01176	0.0082		
15	935 55626	Α	rs 13883 6603	exonic	CHD2	synonymous SNV	p.L.1548L	0.005882	8.28E-06		
15	93555717	G	n2119010	intronic	CHD2		-	0.2235	0.1812		-
15	93563483	c	rs773497328	exonic	CHD2	synonymous SNV	p.Y1716Y	0.005882	8.25E-06		
15	935 67864	С	ns 12906 163	exonic	CHD2	synonymous SNV	p.R1806R	0.3588	0.2946		
16	2103417	A	m45517100	exonic	TSC2	synonymous SNV	p.A100A	0.005882	0.0003		-
16	2104475	T	rs 37633 2051	intronic	TSC2			0.005882	2.48E-05		
16	2105400	T	rs 1800 720	intronic	TSC2			0.09412	0.0871		
16	2110805	A	n 1800 742	exonic	TSC2	synonymous SNV	p.Q370Q	0.01176	0.011		
16	2112651		rs 13785-4304		TSC2	-yy	1-27779	0.005882	0.0013		
		-		intronic							
16	2112941	G	ns45517166	intronic	TSC2			0.01176	0.0026		-
16	2114407	T	ns34012042	exonic	TSC2	synonymous SNV	p.S526S	0.06471	0.0573		-
16	2115481	T	ns45477 195	intronic	TSC2			0.07059	0.0712		
16	2115506	T	m45517185	intronic	TSC2			0.06471	0.0566		
16	2121869	т	n:45517208	exonic	TSC2	synonymous SNV	p.P677P	0.005882	0.0033		-
16	212 1978	G	rs 18668 1035	intronic	TSC2			0.01176	0.0104		_
16	212 2822	G	n/7196184	intronic	TSC2			0.02941	0.0324		
16	2124416	A	m45517242	intronic	TSC2			0.01765	0.0028		-
16	2125769	A	rs 14573 8496	intronic	TSC2			0.01765	0.0114		
16	2125788	T	m 13331451	intronic	TSC2			0.08824	0.1049		-
16	2125834	С	ns 13337 626	exonic	TSC2	synonymous SNV	p.F860F	0.08235	0.0725		
16	2125935	T	rs201973730	intronic	TSC2		p	0.005882	0.0002		
	4143933							0.000382			

16	212 5937	G	ıs 1800 715	intronic	TSC2			0.1	0.1163	
16	212 6452	G	ns45517265	intronic	TSC2			0.01176	0.0072	
16	2129045	A	n45517277	exonic	TSC2	synonymous SNV	p.T949T	0.005 882	0.0009	
16	213 1729	T	ıs 45517307	exonic	TSC2	synonymous SNV	p. A1204 A	0.005 882	0.0003	
16	213 3727	Α	rs11551373	exonic	TSC2	synonymous SNV	p.P1238P	0.01176	0.0103	
16	213 4221	T	ns45517325	intronic	TSC2			0.005 882	0.0049	
16	213 4982		rs 137854239	exonic	TSC2	nonframeshift deletion	p.1441_1442de1	0.01176	0.0053	
16	213 4994	T	m35986575	exonic	TSC2	synonymous SNV	p.D1445D	0.01176	0.0028	
16	213 5073	T	n 45482 793	intronic	TSC2			0.01765	0.0103	
16	213 6842	T	ns45517384	exonic	TSC2	synonymous SNV	p.S1586S	0.005 882	0.0133	
16	213 7925		rs 13785 4209	exonic	TSC2	nonframeshift deletion	p.1617_1623del	0.005882	0.0023	
16	213 8218	С	as 1800 718	intronic	TSC2			0.2235	0.2067	
16	213 8219	T	ns 45515 893	intronic	TSC2			0.005882	0.0035	
16	213 8269	С	rs1748	exonic	TSC2	synonymous SNV	p.D1667D	0.1765	0.1883	
16	213 8398	T	ns 13332 221	intronic	TSC2			0.1176	0.1102	
16	213 8422	G	ns 13332 222	intronic	TSC2			0.1235	0.121	
16	213 8584	С	ıs 1051 771	exonic	TSC2	synonymous SNV	p.S1732S	0.07647	0.0767	
17	3577146	T	ıs 1063 497	ncRNA_intronic	P2RX5-TAX1BP3			0.1412	0.125	
17	3585135	G	rs 36845 4045	ncRNA_intronic	P2RX5-TAX1BP3			0.005882		
17	3585283	A	rs 11 7935 905	ncRNA_intronic	P2RX5-TAX1BP3			0.02353	0.0087	
17	3591453	C	rs784 11 513	ncRNA_intronic	P2RX5-TAX1BP3			0.01176		
17	3592740	С	rs220487	ncRNA_intronic	P2RX5-TAX1BP3			0.1588	0.1759	
17	3594277		ns3215407	exonic	P2RX5	frameshift deletion	p.P111fs	0.6235	0.6676	
17	3594965	T	rs 75497 7980	exonic	P2RX5	frameshift insertion	p.D87fs	0.005 882	7.43E-05	
17	3595137	Α	rs 761882993	ncRNA_intronic	P2RX5-TAX1BP3			0.005882	4.14E-05	
17	3599115	G	rs 55885 4970	ncRNA_intronic	P2RX5-TAX1BP3			0.01176	0.0038	
17	7749044	G	rs 140362144	intronic	KDM6B			0.005882	0.0005	
17	7749621	G	n 80152 199	intronic	KDM6B			0.06471	0.117	
17	775 0083	A	rs 11 7985 215	intronic	KDM6B			0.01176	0.0225	
17	7750262	G	rs 14663 7535	exonic	KDM6B	synonymous SNV	p.P279P	0.005882	0.0013	
17	7750357	C	ns 56880 362	intronic	KDM6B			0.02353	0.0482	
17	7750847	С	rs 2270 517	intronic	KDM6B			0.2294	0.3594	
17	775 1388	A	rs 3744 247	exonic	KDM6B	synonymous SNV	p.P594P	0.07647	0.0952	
17	775 1751	T	zs 3744 248	exonic	KDM6B	synonymous SNV	p.H715H	0.05882	0.0941	
17	775 2258	A	rs 77978 1827	exonic	KDM6B	synonymous SNV	p.A884A	0.005882	0.0005	
17	7752900	С	rs 74846 9270	exonic	KDM6B	synonymous SNV	p.G1098G	0.005882	2.62E-05	
17	775 4296		rs 146364592	intronic	KDM6B			0.07647	0.1134	
17	775 4460	Α	as 3736306	exonic	KDM6B	synonymous SNV	p.II 265I	0.01176	0.023	
17	775 5980	T	rs 14038 1590	intronic	KDM6B			0.01176	0.0273	
17	294 83 108	T	rs17881168	exonic	NF1	synonymous SNV	p.S56S	0.03 529	0.0119	
17	294 86152	A	rs 2952 976	intronic	NF1			0.6471	0.623	
17	29490200	G		intronic	NF1			0.005882		
17	29508699	C	rs 18232 5576	intronic	NF1			0.005882	0.0021	
17	29508775	Α	ıs 1801 052	exonic	NF1	synonymous SNV	p.L.234L	0.6471	0.6228	
17	29509641	A	rs 138840528	exonic	NF1	synonymous SNV	p.Q282Q	0.01765	0.0061	
17	29527406			intronic	NF1			0.005 882		
17	295 45987	T	rs 11 2806 382	intronic	NF1			0.6471	0.6585	
17	295 46175	С	as 2905 880	intronic	NF1			0.6471	0.634	
17	295 52064	C		intronic	NF1			0.005882		
17	295 53485	A	as 2285 892	exonic	NF1	synonymous SNV	p.P678P	0.3588	0.3827	
17	295 54205	T	rs 141082540	intronic	NF1			0.005882	0.0042	
17	295 56837	С	n 17880 825	intronic	NF1			0.02353	0.0176	
17	295 59871	T	rs 14795 5381	exonic	NF1	synonymous SNV	p.N1156N	0.005882	0.0007	
17	295 59932	A	ns 2066 736	intronic	NF1			0.3588	0.3676	
17	295 60159	A	rs 14512 6193	exonic	NF1	synonymous SNV	p.V1212V	0.005882	0.0001	
17	295 62893	С	rs370179525	intronic	NF1			0.01176	0.0004	
17	295 63079	G	rs 76013 7326	intronic	NF1			0.005882	0.0305	
17	295 87341	С	ns 17881 285	intronic	NF1			0.05294	0.053	
17	29632664	С	ns 16972 176	intronic	EVI2B,NF1			0.005882	0.0033	
17	29653237	A	n 17887 014	exonic	NF1	synonymous SNV	p.K1724K	0.01176	0.0034	
17	29654876	Α	n 2285 894	intronic	NF1			0.5706	0.5364	
17	29664354	A	rs 37022 0255	intronic	NF1			0.005882	0.0003	
17	29664645	Α	n 17883 614	intronic	NF1			0.02353	0.0534	
17	29670190	G	ıs 7405 740	intronic	NF1			0.9235	0.9069	
17	29677163	G	rs 76849 6641	intronic	NF1			0.005882	8.24E-06	
17	29677357	G	n 17881641	intronic	NF1			0.005882	0.003	
17	29679246	Α	rs964288	intronic	NF1			0.5824	0.5334	
17	296 83632	G		intronic	NF1			0.005882		
17	296 83646	Α	rs 19964 1099	intronic	NF1			0.005882	0.0071	
17	296 85660	A	n 55747 230	intronic	NF1			0.02941	0.0126	
17	296 85689	T	rs 114915525	intronic	NF1			0.005882	0.002	
17	296 86024	A	ns 2285 895	exonic	NF1	synonymous SNV	p.P2696P	0.005882	0.0017	
17	29709035	G		intergenic	NF1,RAB11FIP4			0.005882		
18	193.45704	С	rs 3017 047	intronic	MIB1			0.01176	0.0109	
18	193 45932	T	n:3017048	intronic	MIB I			0.01176	0.0109	
18	193 48555	С	n 72886 651	intronic	MIB1			0.005882	0.0036	
18	193.83993	G	n 12605 999	intronic	MIB1			0.01176	0.0194	
18	19408950	T	n 9989 532	ncRNA_exonic	MIR133A1HG			0.9647	0.9617	
10	19427096		rs11877131	lateral.	MIRT			0.09412	0.0857	

18	19444661	С	n:76056004	UTR3	MIB1			0.09412	0.075		
18	445 59578	A	rs 14971 7505	exonic	TCEB3B	synonymous SNV	p.S686S	0.005882	0.0007		
18	44561795	T	n:2571026	UTR5	TCEB3B			0.5353			
18	445 62030	A	ns2576049	intronic	KATNAL2			0.01765			
18	44580762	A	rs 14481 9676	intronic	KATNAL2			0.005882	0.0034		
18	445.84675	A	rs 144860304	exonic	KATNAL2	synonymous SNV	p.A62A	0.005882	0.0014		
						systemystosa ser v	ponion				
18	44584734	T	rs 11 2463 898	intronic	KATNAL2			0.005882	0.0082		
18	445 89342	A		splicing	KATNAL2			0.005882			23.6
18	445.89450	T	ns80196369	intronic	KATNAL2			0.005882	0.0142		
18	44589744	C		intronic	KATNAL2			0.005882			
18	445 95 647	T	n:56297904	exonic	KATNAL2	synonymous SNV	p.G222G	0.01176	0.0108		
18	445 95809	т	n:2289036	intronic	KATNAL2			0.5412	0.553		
18	44601611	G	в3816125	intronic	KATNAL2			0.3941	0.417		
18	44626630	G	ns 2289 130	exonic	KATNAL2	synonymous SNV	p.T388T	0.07059	0.0818		
18	44627200	T	rs 11 7014 566	intronic	KATNAL2			0.005882	0.0015		
19	9449149	G	rs8110197	intronic	ZNF559,ZNF559-ZNF177			0.5235	0.5874		
19	9449337	A	ns81105.84	intronic	ZNF559,ZNF559-ZNF177			0.5294			
19	9450029	С	в 16979 618	intronic	ZNF559,ZNF559-ZNF177			0.02353	0.0218		
19	945 1722	T	m78740264	intermin	ZNF559,ZNF559-ZNF177			0.005882			
				intronic			enue.				
19	9452868	A	n 16979 666	exonic	ZNF559	synonymous SNV	p.G311G	0.02353	0.021		
19	39221716		rs 14120 8726	intronic	CAPN12			0.1941	0.3155		
19	39224413	G	ns 4801 861	exonic	CAPN12	synonymous SNV	p.F629F	0.8059	0.7654		
19	392 24858	T	rs377079795	intronic	CAPN12			0.005882	0.0002		
19	392 24902	A	ns35807146	intronic	CAPN12			0.06471			
19	39224934	T	ns62120072	intronic	CAPN12			0.06471	0.0632		
19									0.0629		
	39225046	Α	n:45599933	intronic	CAPN12			0.05882			
19	39225079	T	rs 11 7513 237	intronic	CAPN12			0.02941	0.0138		
19	392 26223	A	rs 11 4233 772	intronic	CAPN12			0.005882	0.0074		
19	39226249	A	rs 11 7242 020	intronic	CAPN12			0.01176			
19	392 28868	CA	n:34488364	intronic	CAPN12			0.7824	0.7243		
19	39229316	G	в 12983 550	intronic	CAPN12			0.06471	0.064		
						0.00mm - 0.1V	-1224				
19	39230748	G	rs349 11 882	exonic	CAPN12	synonymous SNV	p.I.224L	0.06471	0.0659		
19	39233146	G	rs936.524	exonic	CAPN12	synonymous SNV	p.A110A	0.7882	0.7278		
19	39234538	CCCAGAG	rs 77221 0026	intronic	CAPN12			0.005882	0.0002		
19	51850304	A	rs 144640661	exonic	ETFB	synonymous SNV	p.F240F	0.005882	0.0076		
19	51857614	G	rs 141529162	exonic	ETFB	frames hift insertion	p.P93 fs	0.05294	0.0337		
19	51869456	A	rs370777932	intronic	ETFB			0.005882			
19	51869638	A	rs111454736	UTRS	ETFB			0.02353			
20	25434059	T	ns 16987 767	UTR3	NINL			0.04706	0.0504		
20	25436283	G	ns2235607	intronic	NNL			0.1647	0.1682		
20	25436301	С	m73333584	intronic	NINL			0.005882	0.0046		
20	25436466	т	ns 12481 409	intronic	NNL			0.1294	0.1736	-	
20	25442989	GGGAGCC	n3036810	intronic	NINL.			0.2471	0.3249		
			2.2.020			ornomer- OUV	a V/11261/				
20	25443076	G		exonic	NINL	synonymous SNV	p.V1175V	0.005882			
20	25448153	T	as 56795 563	intronic	NINL			0.005882			
20	25456888	G	rs437635	exonic	NNL	synonymous SNV	p.S1013S	0.4118	0.466		
20	25459660	С	rs 14873 4140	exonic	NNL	synonymous SNV	p.T700T	0.005882	0.0018		
20	254 59764	G	rs11905437	exonic	NNL	synonymous SNV	p.R666R	0.1118	0.0989		
20	25469844	G	m2072.977		NINL	.,,	,	0.1647	0.1684		
				intronic							
20	25469969	T	rs 18153 1254	intronic	NNL			0.005882	0.0051		
20	25472059	T	n:45529236	exonic	NINL	synonymous SNV	p.A471A	0.02353	0.0069		
20	25477427	T	rs 14365 2872	exonic	NINL	synonymous SNV	p.E394E	0.01176	0.0113		
20	25481693	T	rs200872736	intronic	NINL			0.005882	0.0006		
20	25484705	Α	rs544525213	exonic	NINL	synonymous SNV	p.D248D	0.005882	4.30E-05		
20	25493446	T	rs111851591	intronic	NINL.			0.005882	0.0069		
20	25507012		n 10536286	intronic	NNL			0.05294	0.0485		
20	25507019	A	rs11087523	intronic	NINL			0.05294	0.0466	-	
20	25507268	С	rs 14165 1341	intronic	NINL			0.01176	0.0051		
20	49507924	T	rs 14282 5371	UTR3	ADNP			0.005882	0.0131		
20	49507972	A	rs 14224 7083	exonic	ADNP	synonymous SNV	p.A1093A	0.005882	0.0009	-	
20	49508320	C	rs 14468 4998	gannin	ADNP	synonymous SNV	p.G977G	0.005882	0.0004		
				- Control			- VeteV				
20	495 08683	A	n 1062 651	exonic	ADNP	synonymous SNV	p.V856V	0.01176	0.0423		
20	49508776	A	rs 148502910	exonic	ADNP	synonymous SNV	p.G825G	0.005882	0.005		
20	495 09175	T	ns 6096 168	exonic	ADNP	synonymous SNV	p.K692K	0.01176	0.0226		
20	49509184	A	n 17790 938	exonic	ADNP	synonymous SNV	p.G689G	0.08235	0.0823		
20	495 18583	A	rs755893677	exonic	ADNP	synonymous SNV	p.L58L	0.005882	1.65E-05		
20	495 20385	G			ADNP	VV		0.005882			
			-14047	intronic					0.007.7		
21	388 50470	G	rs 14046-6090	intronic	DYRK IA			0.005882	0.0034		
21	388 50640	A	n928763	intronic	DYRK 1A			0.8412	0.8649		
21	388 58938	A	ns55650427	intronic	DYRK IA			0.2471	0.2337		
21	38862643	A	rs 13808 6853	exonic	DYRK IA	synonymous SNV	p.A277A	0.005882	0.0005		
21	388 62794	G		intronic	DYRK IA			0.005882			
21	38865507	G	m2835772	intronic	DYRK IA			0.2824	0.31		
21	38877544	G	rs 18822 4885	intronic	DYRK IA			0.005882	0.0024		
21	41414267	T	rs532903018	intronic	DSCAM			0.005882	2.69E-05		
21	41414279	C	rs 14899 9611	intronic	DSCAM			0.005882	0.0005		
21	41414590	С	rs200764944	exonic	DSCAM	synonymous SNV	p.R1798R	0.005882	0.0026		
								0.005882	8.35E-06		
21	41415963	A	rs776908213	and nomac	DSCAM						
21 21	41415963 41416066	A T	rs 77690 8213 m 16999 204	intronic exonic	DSCAM DSCAM	synonymous SNV	p.R1774R	0.04706	0.0477		

21	41416108	С	rs 20143 3234	exonic	DSCAM	synonymous SNV	p.S1760S	0.01176	0.0068	
21	41427615	G	ns 76885 144	intronic	DSCAM	synonymous are v	p.317003	0.005882	0.0068	
21	41434841	C	n 2837409	intronic	DSCAM			0.2412	0.2931	
21	41446936	A	n7275294		DSCAM			0.04706	0.04	
21	41447058	c		intronic		·	- T 1500T		0.0379	
			n 7275 460	exonic	DSCAM	synonymous SNV	p.T 1598T	0.04706		
21	41450573	T	ns 2297 259	intronic	DSCAM			0.08235	0.109	
21	41450636	A	rs 20137 6842	exonic	DSCAM	synonymous SNV	p.F1563F	0.005882	4.16E-05	
21	41452029	T	ıs 73221371	intronic	DSCAM			0.005 882	0.0027	
21	41452034	T	ns 2837 424	intronic	DSCAM			0.1824	0.179	
21	41455854	Α	n:2297.263	exonic	DSCAM	synonymous SNV	p.N1404N	0.05294	0.0471	
21	41457502	G	ns 41462 546	intronic	DSCAM			0.01176	0.0156	
21	41465664	Α	ns 62237 594	exonic	DSCAM	synonymous SNV	p. V1278 V	0.02353	0.0184	
21	414-65748	Α	rs41445251	exonic	DSCAM	synonymous SNV	p.N1250N	0.005882	0.0054	
21	41539259	Α	ns 74862 130	intronic	DSCAM			0.01176	0.0381	
21	41539263	G	ns 73362 176	intronic	DSCAM			0.005882	0.019	
21	415 59182	Α	ts 2297 267	exonic	DSCAM	synonymous SNV	p.P885P	0.03 529	0.0292	
21	41559210	T	rs368137392	intronic	DSCAM			0.005882	3.43E-05	
21	415 59804	С	rs 190516818	intronic	DSCAM			0.005882	0.0004	
21	41648220	С	n 74381926	intronic	DSCAM			0.01765	0.0057	
21	416.83969	G	ıs 16999 660	intronic	DSCAM			0.005 882	0.0063	_
21	416 84090	T	ns34336407	exonic	DSCAM	- CVV	p.S660S	0.05882	0.0759	
21	41710065	c				synonymous SNV			0.0019	_
			ns76195942	exonic	DSCAM	synonymous SNV	p.Q582Q	0.005 882		
21	41710083	A	rs 13986 3593	exonic	DSCAM	synonymous SNV	p.N576N	0.01176	0.0035	
21	41711016	T	ns3215894	intronic	DSCAM			0.01176	0.0409	
21	41725579	Α	ns41367350	exonic	DSCAM	synonymous SNV	p.L249L	0.02353	0.0163	
21	41741016	G	n; 2837 585	intronic	DSCAM			0.02353	0.0371	
21	42064785	T	as 79669 041	exonic	DSCAM	synonymous SNV	p.A153A	0.01176	0.0085	
21	420 64833	С	rs375720021	exonic	DSCAM	synonymous SNV	p.R 137R	0.005 882	0.0002	
21	422 18601	T	rs 74875 2340	UTR5	DSCAM			0.005882	5.31E-05	
21	479 04792		rs 53462 3367	intronic	DIP2 A			0.01176	0.0005	
21	479 10523	G	ns 7279 002	exonic	DIP2 A	sy nonymous SNV	p.P.58P	0.3118	0.3766	
21	479 10659	G	n 9976 530	intronic	DIP2 A			0.4412	0.3944	
21	479 10668	T	zs 80349 069	intronic	DIP2 A			0.005882	0.0006	
21	47917048		rs11315869	intronic	DIP2 A			0.8765	0.8051	
21	47918652	Α	rs763189134	exonic	DIP2 A	sy nonymous SNV	p.P187P	0.005882	4.98E-05	
21	479 18794	С	rs376953348	intronic	DIP2 A			0.005 882	0.0001	
21	47954545	Т	rs 37469 1753	exonic	DIP2 A	synonymous SNV	p.H486H	0.005882	4.20E-05	
21	47957332	A	n 2070 432		DIP2 A	ay acayatota are v	pareson	0.3647	0.2989	_
21	47961634	C	n 2070 434	intronic	DIP2 A			0.2882	0.2975	
						,	- 1 6501		0.29/5	
21	47961711	A	ns 2070 435	exonic	DIP2 A	synonymous SNV	p.L650L	0.3 882		
21	47965205	T	rs 15018 0949	intronic	DIP2 A			0.01176	0.0095	
21	47965766	G	rs 14413 5274	intronic	DIP2 A			0.005 882	0.001	
21	47965942	T	rs 19321 6059	UTR3	DIP2 A			0.005882	0.0015	
21	47966791	Α	ns73152864	intronic	DIP2 A			0.02353	0.0112	
21	47966810	С	n:2839318	intronic	DIP2 A			0.2059	0.189	
21	47966977	T	as 16979358	UTR3	DIP2 A			0.1059	0.1359	
21	47969653	T	ns57388012	intronic	DIP2 A			0.005882	0.0116	
21	47969793	T	ıs 17302 700	exonic	DIP2 A	synonymous SNV	p.L874L	0.06471	0.0629	
21	47970581	Α	n 2255 397	exonic	DIP2 A	synonymous SNV	p.T917T	0.2176	0.2238	
21	47970696	G	ns 2839 319	intronic	DIP2 A			0.01176	0.0594	
21	47971539	Α	ns 2255 526	intronic	DIP2 A			0.7353	0.7247	
21	47971839	Α	rs 20025 7829	intronic	DIP2 A			0.005882	0.0008	
21	47974055	G	ns 16979371	intronic	DIP2 A			0.005882	0.0167	
21	47974456	Α	rs 54089 4130	intronic	DIP2 A			0.005882	5.82E-05	
21	47974582	G	rs1107065	exonic	DIP2 A	sy nonymous SNV	p.T 1079T	0.3941	0.4442	
21	47974855	T	rs 78089 2394	intronic	DIP2 A	-yy/		0.005882	5.18E-05	
21	479 80570	G	ns 2070 429	intronic	DIP2 A			0.7059		
21	47980760	G	is 2070 429 is 2839 324	intronic	DIP2 A			0.7659		
21	479 83 806	G			DIP2 A	DIROTHIN CAIL	a T 1221T	0.05882	0.0105	
		T	rs 20179 0767	exonic		synonymous SNV	p.T 1371T			
21	479.85655		ns 2248 636	exonic	DIP2 A	synonymous SNV	p.T 1394T	0.07647	0.0931	
21	479.85694	T	ns 16979409	exonic	DIP2 A	synonymous SNV	p. A1407 A	0.005882	0.0126	
21	479 86633	Α	n:3819044	intronic	DIP2 A			0.9	0.9056	
21	479 87412	A	rs 14695 3731	exonic	DIP2 A	synonymous SNV	p.V1527V	0.02353	0.0097	
21	47987547	T	ns 8127 941	UTR3	DIP2 A			0.1529	0.156	
22	40574170	Α	ns 6001 827	intronic	TNRC6B			0.6	0.6363	
22	40641963	Α	rs 14519 1448	intronic	TNRC6B			0.01765		
	TOTAL		ns 3752 513	intronic	TNRC6B			0.4	0.3396	
22	40641980	Α	80702010					0.007.003	3.34E-05	
		A A	rs373711092	exonic	TNRC6B	synonymous SNV	p.S839S	0.005882	3.341.403	
22	40641980			exonic exonic	TNRC6B TNRC6B	synonymous SNV synonymous SNV	p.S839S p.G974G	0.005 882	0.0015	
22 22	40641980 40662751	Α	rs373711092							
22 22 22	40641980 40662751 40666241	A T	rs 373711 092 rs 20082 5621	exonic	TNRC6B			0.005882	0.0015	
22 22 22 22	40641980 40662751 40666241 40673999	A T T	rs373711092 rs200825621 rs2413621	exonic intronic	TNRC6B TNRC6B			0.005882 0.7118	0.0015 0.7184	
22 22 22 22 22 22	406 41980 406 62751 406 66241 406 73999 406 81788	A T T	rs373711092 rs200825621 rs2413621 rs6001862 rs111897485	exonic intronic intronic intronic	TNRC6B TNRC6B TNRC6B TNRC6B			0.005 882 0.7118 0.3176 0.005 882	0.0015 0.7184 0.3727 0.0089	
22 22 22 22 22 22 22 22	40641980 40662751 40666241 40673999 40681788 40696881 40696884	A T T T A	ns373711092 ns200825621 ns2413621 ns6001862 ns111897485 ns376354581	exonic intronic intronic intronic intronic	TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B			0.005 882 0.7118 0.3176 0.005 882 0.005 882	0.0015 0.7184 0.3727 0.0089 0.0011	
22 22 22 22 22 22 22 22 22	40641980 40662751 40666241 40673999 40681788 40696881 40697377	A T T T T A T	rs373711092 rs20082 5621 rs 2413621 rs 6001862 rs111897485 rs 37635 4581 rs 5995 843	exonic intronic intronic intronic intronic intronic	TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B			0.005 882 0.7118 0.3176 0.005 882 0.005 882 0.3176	0.0015 0.7184 0.3727 0.0089 0.0011 0.3916	
22 22 22 22 22 22 22 22 22 22	406.41980 406.62751 406.6241 406.73999 406.81788 406.96881 406.96884 406.97377 407.08679	A T T T A T G	rs 373711092 rs 20082 5621 m 2413621 m 6601 862 rs 111897485 rs 376154581 m 5995843 m 2072 858	exonic intronic intronic intronic intronic intronic intronic	TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B	яу полутновы SN V	p.G974G - - - -	0.005 882 0.7 118 0.3 176 0.005 882 0.005 882 0.3 176 0.3 215	0.0015 0.7184 0.3727 0.0089 0.0011 0.3916 0.3807	
22 22 22 22 22 22 22 22 22 22 22 22 22	406.41980 406.62751 406.6241 406.73999 406.81788 406.96881 406.97377 407.08679 51113.502	T T T A T G C	rs 373711092 rs 20082 5621 m 2413 621 m 6001 862 rs 111897 485 rs 37615 4581 m 5995 843 m 2072 858 rs 36865 8976	exonic intronic intronic intronic intronic intronic intronic intronic exonic	TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B SHANK3	synonymous SN V	p. G974G p. A30A	0.005 882 0.7118 0.3176 0.005 882 0.005 882 0.3176 0.3235 0.005 882	0.0015 0.7184 0.3727 0.0089 0.0011 0.3916 0.3807 0.0003	
22 22 22 22 22 22 22 22 22 22 22 22 22	406.41980 406.62751 406.62241 406.73999 406.81788 406.96881 406.97377 407.08679 51113.502 51113.661	A T T T A T G C A T	rs.373711692 rs.200825621 m.2413621 n.6601562 rs.111897485 rs.376154581 m.5905543 rs.2072858 rs.366558976 rs.510240325	exonic intronic intronic intronic intronic intronic intronic intronic exonic exonic	TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B SHANK3 SHANK3	яу полутновы SN V	p.G974G - - - -	0.005 882 0.7118 0.3176 0.005 882 0.005 882 0.3176 0.3235 0.005 882 0.01176	0.0015 0.7184 0.3727 0.0089 0.0011 0.3916 0.3807 0.0003 0.005	 - - - - - - -
22 22 22 22 22 22 22 22 22 22 22 22 22	406.41980 406.62751 406.6241 406.73999 406.81788 406.96881 406.97377 407.08679 51113.502	T T T A T G C	rs 373711092 rs 20082 5621 m 2413 621 m 6001 862 rs 111897 485 rs 37615 4581 m 5995 843 m 2072 858 rs 36865 8976	exonic intronic intronic intronic intronic intronic intronic intronic exonic	TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B TNRC6B SHANK3	synonymous SN V	p. G974G p. A30A	0.005 882 0.7118 0.3176 0.005 882 0.005 882 0.3176 0.3235 0.005 882	0.0015 0.7184 0.3727 0.0089 0.0011 0.3916 0.3807 0.0003	

22	51121760	T	n:9628236	intronic	SHANK3			0.005882	0.0032		-
22	51121773	T	rs201282170	exonic	SHANK3	synonymous SNV	p.S297S	0.01176	0.0034		
22	51122946	T	rs 11 6756427	intronic	SHANK3			0.005882			-
22	51123025	A	rs 37123 8756	exonic	SHANK3	nonsynonymous SNV	p.A326T	0.005882	3.36E-05		
22	51133518	A	ns 13055 562	intronic	SHANK3			0.6235	0.5885		-
22	51133524	T	ns76224556	intronic	SHANK3			0.005882	0.0205		
22	51137094	Α	n:9616942	intronic	SHANK3			0.08824	0.1397		-
22	51137249	C	ns 1557 620	intronic	SHANK3			0.8471	0.8039		
22	51137253	G	rs11704325	intronic	SHANK3			0.005882	0.0034		
22	51142381	A	rs 12483 981	intronic	SHANK3			0.2471	0.2503		
22	51142692	A	ns74975.830	intronic	SHANK3			0.005882	0.0108		
22	51143285	C		exonic	SHANK3	nonsynonymous SNV	p.1617L	0.005882			
22	51143309	С	m8141844	intronic	SHANK3			0.03.529	0.0514		
22	51143351	T	rs 147115189	intronic	SHANK3			0.005882	0.0032		
22	51144513	G	rs61731160	exonic	SHANK3	synonymous SNV	p.P667P	0.01765	0.0096		
22	51149992	T	rs 11 6503 692	intronic	SHANK3			0.005882			
22	51153371	A	n61729471	exonic	SHANK3	nons ynony mous SNV	p.A707T	0.03.529	0.0645		
22	51153509	A	rs 148315568	intronic	SHANK3			0.005882	0.0024		
22	5115-4049	С	rs763213714	intronic	SHANK3			0.005882	5.10E-05		
22	51154141	Α	rs 11 7066 889	exonic	SHANK3	synonymous SNV	p.P756P	0.005882	0.0062		
22	51159624	T	rs200077311	exonic	SHANK3	synonymous SNV	p.S1107S	0.01176	0.0046		
22	51159798	A	rs 14519 6448	exonic	SHANK3	synonymous SNV	p.K1165K	0.005882	0.0073		
22	51160140	T	rs 20179 3890	exonic	SHANK3	synonymous SNV	p.S1279S	0.005882	0.0026		
22	51169491	T	rs 55766 9600	exonic	SHANK3	synonymous SNV	p.P1635P	0.01176	0.0107		
X	31152354	T	rs 74547 3007	intronic	DMD			0.01176	1.81E-05		
x	31165350	С	n 72466 537	intronic	DMD			0.005882	0.0073		
X	31165400	A	ns 1800 281	exonic	DMD	synonymous SNV	p.L516L	0.01765	0.0047		
x	31191589	T	n:2404.496	intronic	DMD			0.8941			
X	31196942	A	ns41303187	intronic	DMD			0.005882	0.0021		
x	312 24684	G	n:2293.668	intronic	DMD			0.8765	0.8836		
X	31241107	С		intronic	DMD			0.01176			-
x	31497197	G	m72466570	exonic	DMD	synonymous SNV	p.T 128T	0.005882	0.0015		-
X	31676096	Λ	ns2270.672	intronic	DMD			0.3706	0.3398		-
x	31697636	G	rs1801188	exonic	DMD	synonymous SNV	p.N116N	0.1529	0.1713		-
X	31792260	С	rs780283825	exonic	DMD	synonymous SNV	p.E1112E	0.005882	3.44E-05		-
x	31792345	Α	ns72466586	intronic	DMD			0.01765	0.012		-
X	31986430	Λ	m3761604	intronic	DMD			0.2471	0.3293		
x	31986669	T	ns67729860	intronic	DMD			0.005882	0.0011		-
X	32305619	T	±3788.896	intronic	DMD			0.03529	0.1184		
x	323 64030	T	ns72468623	intronic	DMD			0.01176	0.0174		-
X	32366476	С	rs372608114	intronic	DMD			0.01176	6.93E-05		-
x	323 83095	Α	rs372345571	intronic	DMD			0.01176	0.0003		-
X	32383284	Λ	m61733574	exonic	DMD	synonymous SNV	p.V285V	0.005882	0.0076		-
x	32404616	T	ns72468639	intronic	DMD			0.005882	0.0227	-	-
X	32408149	T	m72468644	intronic	DMD			0.005882	0.002		-
x	32408311	С	rs41303181	intronic	DMD			0.1176	0.0623		-
X	32486756	T	n 1800 268	exonic	DMD	synonymous SNV	p.S999S	0.01765	0.0127		-
x	32503227	С	ns 1028 360	intronic	DMD			0.005882	0.0091		-
X	32563263	G	rs228373	intronic	DMD			0.2412	0.3203		-
x	325 63488	С	rs115571	intronic	DMD			0.6118	0.7207		
X	32583942	Α	n 1800 267	exonic	DMD	synonymous SNV	p.L615L	0.005882	0.0114		
x	32591811	G	ns 5927 082	intronic	DMD			0.1647	0.1004		
X	32591931	С	ns5927083	exonic	DMD	synonymous SNV	p.R537R	0.1647	0.1165		
x	32659676		rs 77263 7416	intronic	DMD			0.005882	3.11E-05		
x	32662223	С	ns41303189	intronic	DMD			0.005882	0.0086		
x	32715937	-	ns72470512	intronic	DMD			0.005882	0.0212		
x	32716110	T	ns 1800 265	exonic	DMD	synonymous SNV	p.T271T	0.01765	0.0866		
x	327 16132	T	ns72470514	intronic	DMD			0.04118	0.0214		
x	327 16133	С	ns72470515	intronic	DMD			0.04118	0.0212		
x	32841370	G	ns72470529	intronic	DMD			0.005882	0.003		
X	32867810	Α	ns72470531	intronic	DMD			0.01176	0.0069		
x	32867945	A	в3834997	intronic	DMD			0.1588	0.0963		
x	703 68097	T	rs368578220	intronic	NLGN3			0.01176	8000.0		
x	703 68772	A	rs 763607264	intronic	NLGN3			0.005882	0.0002		
X	703 75023	Α	rs 18540 2974	intronic	NLGN3			0.03529	0.011		
x	703 75080	С	rs 144247281	exonic	NLGN3	synonymous SNV	p.G158G	0.005882	0.0009		
x	703 86825	G	n:2233.442	intronic	NLGN3			0.005882	0.013		
x	703 89650	T	n:5981083	exonic	NLGN3	synonymous SNV	p.A710A	0.005882	0.0049		
x	147003404	G	ns80358323	intronic	FMRI			0.02353	0.0063		-
x	147003545	G	rs 14179 6490	intronic	FMR1			0.005882	0.0037		
X	1470 1032 0	Α	rs25707	exonic	FMRI	synonymous SNV	p.R 138R	0.1059	0.0868		
x	1470 1414 5	T	rs 15072 4379	intronic	FMR1			0.04706	0.0301		
X	1470 1814 6	T	rs25714	intronic	FMRI			0.1529	0.1639		-
x	153295874	T		exonic	ME CP2	nons ynony mous SNV	p.P481T	0.005882		D	22.8
14	21863188	T	rs 75597 5357	exonic	CHD8	nonsynonymous SNV	p.R1758H	0.005882		D	34
4	114279628	С	ns36210417	exonic	ANK2	nonsynony mous SNV	p.13285T	0.005882	0.0082	D	25
10	114925406	Α	n 77673441	exonic	TCF7L2	nonsynonymous SNV	p.P472H	0.005882	0.0025	D	33
3	9517375	T	rs201582360	exonic	SETD5	nons ynony mous SNV	p.S1310L	0.005882	0.0008	D	32
7	104753553	T	rs 145540034	exonic	KMT2E	nons ynony mous SNV	p.P1784S	0.005882	0.0019	D	24.8

					cum o						
14	21897467 155307458	A T	rs 19298 9929 rs 76524 5236	exonic	CHD8 ASH1L	nons ynony mous SNV	p.I.291F	0.005 882	0.0009 1.65E-05	D D	26.3 35
7	100491451	c	ns 17885 778	exonic	ACHE	nons ynony mous SNV	p.R2963Q p.P135A	0.005 882	0.0011	D	24.1
3	9517561	T	ns62246321	exonic	SETD5	nons ynony mous SNV		0.005 882	0.0011	D	23.4
4	114284542		rs 37499 1526	exonic	ANK2	nons ynony mous SNV	p.T13721	0.005882	2.48E-05	D	34
		A		exonic		nons ynony mous SNV	p.R1517Q				
6	43 11 2281	T	rs 75442 1182	exonic	PTK7	nons ynony mous SNV	p.R652C	0.005 882	1.65E-05	D	34
X	32717364	С	rs 14566 8843	exonic	DMD	nons ynony mous SNV	p.12.24M	0.005882	0.0002	D	17.67
X	1532 9669 7	Α	rs61749711	exonic	MECP2	synonymous SNV	p.S206S	0.005 882	0.0022	D	4.854
2	25468174	С	rs 14973 8328	exonic	DNMT3A	nons ynony mous SNV	p.N3 12S	0.005882	0.0003	D	17.25
7	151868413	Α	rs 149118 569	exonic	KMT2C	nons ynony mous SNV	p.G3130V	0.005 882	0.0002	D	25.8
7	151902197	G	rs 138119 145	exonic	KMT2C	nons ynony mous SNV	p.D1319H	0.005 882	0.0085	D	29.7
4	114279674	Λ	is 34270 799	exonic	ANK2	nons ynony mous SNV	p.S3300R	0.01765	0.0188	D	18.63
7	104746115	G	rs 14594 4822	exonic	KMT2 E	nons ynony mous SNV	p.E809G	0.005882	2.50E-05	D	23.9
5	1703 3671 7	Α	rs 14419 5437	exonic	RANBP17	nons ynony mous SNV	p.R181H	0.005 882	0.0009	D	33
7	104747899	T	rs 11 7986 340	exonic	KMT2 E	nons ynony mous SNV	p.G999 C	0.08235	0.0377	D	27
17	359 1933	T	rs 151100 959	exonic	P2RX5	nons ynony mou s SNV	p.G268R	0.005 882	0.007	D	34
3	9512345	G	rs 13868 5269	exonic	SETD5	nons ynony mous SNV	p.A976G	0.005882	0.0008	D	23
16	2120559	Α	ıs45517203	exonic	TSC2	nons ynony mous SNV	p.A607T	0.005 882	0.0007	D	25.1
7	1002 8248 0	Α		exonic	GIGYF1	nons ynony mous SNV	p.S443F	0.005882		D	20.1
1	155408644	Λ	rs 13847 4502	exonic	ASH1L	nons ynony mous SNV	p.P1768S	0.005882	0.0007	D	18.14
4	85.594116	A	rs 14906 7356	exonic	WDFY3	nons ynony mous SNV	p.R3496C	0.005 882	0.0004	D	34
4	114277327	G		exonic	ANK2	nons ynony mous SNV	p.E2518G	0.005882		D	29.6
10	11492 5675	c	rs 14784 1431	exonic	TCF7L2	nons ynony mous SNV	p.S.562P	0.005882	0.0037	T	2.941
7	151860230	c	rs 14283 5638	exonic	KMT2C	nons ynony mous SNV	p.Q3478E	0.005 882	0.0045	D	22.4
16	212 9638	c	1011207200	exonic	TSC2	nons ynony mous SNV	p.R 1078P	0.005882	0.0013	D	24.8
11	70336479	T	rs 11 7843 717		SHANK2		p.R1078P	0.005 882	0.0048	Т	33
4	857 17696	G	rs 15108 8392	exonic	WDFY3	nons ynony mous SNV		0.005882	0.0048	T	28.7
				exonic		nons ynony mous SNV	p.D1049H				
4	855 98475	T	rs 36956 7418	exonic	WDFY3	nons ynony mous SNV	p.R3445H	0.005 882	1.66E-05	T	34
1	1553 13143	T		exonic	ASHIL	nons ynony mous SNV	p.G2752E	0.005882		T	29.5
6	43 111 342	С	rs 9472 017	exonic	PTK7	nons ynony mous SNV	p.E615D	0.01765	0.0126	T	26.5
7	11735 1826	A	rs 150547726	exonic	CTTNBP2	nons ynony mous SNV	p.P1586L	0.01176	0.0055	T	28.2
16	2103392	T	rs 13785 3994	exonic	TSC2	nons ynony mous SNV	p.E92V	0.005882	0.0019	T	25.9
16	2110795	A	n 1800 725	exonic	TSC2	nons ynony mous SNV	p.R367Q	0.01765	0.0136	T	23.8
16	2112 989	Λ	rs 13785 4154	exonic	TSC2	nons ynony mou s SNV	p.A460T	0.005 882	0.0024	D	18.97
19	392 26155	С		exonic	CAPN12	nons ynony mous SNV	p.L.538R	0.005882		D	25.7
15	935 67716	С	rs 20195 0393	exonic	CHD2	nons ynony mou s SNV	p.Q1756H	0.005 882	0.0002	D	22.8
7	1002 85473	T	rs 13999 6819	exonic	GIGYF1	nons ynony mous SNV	p.A67T	0.005882	0.0012	T	23.7
X	32613890	G		exonic	DMD	nons ynony mous SNV	p.L.521S	0.01176		T	28.1
4	85623617	Α	rs 74908 9254	exonic	WDFY3	nons ynony mous SNV	p.R2829C	0.005 882	8.38E-06	T	35
6	43109528	T		exonic	PTK.7	nons ynony mous SNV	p.R451C	0.005 882		T	34
4	85675001	Α	rs 20205 6534	exonic	WDFY3	nons ynony mous SNV	p.W1863L	0.005882	0.0001	T	28.1
16	2110710	Α	rs 55972 7962	exonic	TSC2	nons ynony mous SNV	p.V339I	0.005 882		T	25
16 11	2110710 119216294	A C	rs 55972 7962 rs 14062 9667	exonic exonic	TSC2 MFRP	nons ynony mous SNV nons ynony mous SNV	p.V339I p.N159K	0.005 882	0.0001	T T	25 27.6
						nons ynony mous SNV			0.0001 0.0001		
11	119216294	С	rs 14062 9667	exonic	MFRP		p.N159K	0.005882		T	27.6
11 22	119216294 40662481 47929238	C C T	rs 14062 9667 rs 20059 8254 rs 20087 7060	exonic exonic	MFRP TNRC6B DIP2A	nons ynony mous SNV nons ynony mous SNV nons ynony mous SNV	p.N159K p.W749C p.R242C	0.005882 0.005882 0.005882	0.0001 0.0004	T T	27.6 23.3
11 22 21 4	119216294 40662481 47929238 114262881	C C T	rs 14062 9667 rs 20059 8254 rs 20087 7060 rs 34065 266	exonic exonic exonic exonic	MFRP TNRC6B DIP2A ANK2	nons ynony mous SNV nons ynony mous SNV nons ynony mous SNV nons ynony mous SNV	p.N159K p.W749C p.R242C p.V1311I	0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05	T T T	27.6 23.3 34
11 22 21 4 4	119216294 40662481 47929238 114262881 114177036	C C T A	rs 14062 9667 rs 20059 8254 rs 20087 7060 rs 34065 266 rs 18626 4035	exonic exonic exonic exonic exonic	MFRP TNRC6B DIP2 A ANK2 ANK2	nons ynony mous SNV	p.N159K p.W749C p.R242C p.V131H p.R379L	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05	T T T T	27.6 23.3 34 26.4 35
11 22 21 4 4 2	119216294 40662481 47929238 114262881 114177036 32289189	C C T A T	rs 14062 9667 rs/20059 8254 rs/20087 7060 rs/34065 266 rs/18626 4005 rs/37200 5558	exonic exonic exonic exonic exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST	nons ynony mous SNV nons ynony mous SNV nons ynony mous SNV nons ynony mous SNV	p.N159K p.W749C p.R242C p.V1311I	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176	0.0001 0.0004 4.12E-05 8.24E-05 0.0006	T T T T T	27.6 23.3 34 26.4 35 10.16
11 22 21 4 4 2	119216294 40662481 47929238 114262881 114177036 32289189 149241329	C C T A T T	rs 14062 9667 rs 20059 8254 rs 20087 7060 m 34065 266 rs 18626 4035 rs 37200 5558 rs 18844 9443	exonic exonic exonic exonic exonic exonic exonic intronic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MBD5	none young mous SNV	p.N159K p.W749C p.R242C p.V1311I p.R379L p.P97T	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028	T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13
11 22 21 4 4 2 2	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 4132 9 456 6916	C C T A T T T	rs 14062 9667 rs 20059 8254 rs 20087 7060 rs 34065 266 rs 1862 64035 rs 37200 5558 rs 18844 9443 rs 20151 0674	exonic exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MBDS GR52MI	none yearny mous SNV	p.N159K p.W749C p.R242C p.V13111 p.R379L p.F97T p.R166C	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007	T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9
11 22 21 4 4 2 2 11	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 4841 5	C C T A T T C T G	rs 14062 9667 rs 20059 8254 rs 20087 7060 ms 34065 266 rs 18626 4035 rs 37200 5558 rs 18844 9443 rs 20151 0674 ms 13373 934	exonic exonic exonic exonic exonic exonic exonic intronic exonic exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MBD5 OR52MI ASH1L	norm ymony mous SNV	p.N159K p.W749C p.R242C p.V13111 p.R379L p.F97T p.R166C p.S1416P	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003	T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18
11 22 21 4 4 2 2 11 1	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 4841 5 1661 5238 9	C C T A T T G A	rs 14062 9667 rs 20059 9254 rs 20087 7060 ns 44065 266 rs 18626 4035 rs 37200 5558 rs 18844 9443 rs 20151 0674 ns 1373 934 ns 17183 814	exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MBD5 OR52MI ASH1L SCN2A	none yearny mous SNV	p.N159K p.W749C p.R242C p.V13111 p.R379L p.P97T p.R166C p.S1416P p.R19K	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003	T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18
11 22 21 4 4 2 2 2 11 1 2	11921 6294 40662481 479 29238 114262881 11417 7036 522 89189 1492 41329 4566916 1554 48415 1661 52389 507 65412	C C T A T A T T G A T	rs 14062-9667 rs 20059-9254 rs 20067-9259 rs 34065-266 rs 1862-64015 rs 37200-5558 rs 18844-9443 rs 2015-10674 rs 13373-934 rs 17383-814 rs 56086-732	exonic	MERP TNRC6B DIP2A ANK2 ANK2 SPAST MBD5 OR52MI ASH1L SCN2A NRXN1	none yearny mous SNV nones yearny mous SNV	p.N159K p.W749C p.R242C p.V131H p.R379L p.P97T - p.R166C p.S1416P p.R19K p.L708I	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.003	T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6
11 22 21 4 4 2 2 2 11 1 2 2	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 431329 456 6916 1554 48415 1661 5238 9 507 65412 1554 9966 4	C C T A T A T G G A T	rs 14062 9667 rs 20059 9254 rs 20087 7060 rs 18626 4035 rs 18626 4035 rs 18844 9443 rs 20151 6674 rs 1337 994 rs 1584 9666 772 rs 11666 666	exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MRD5 OR52MI ASHIL SCN2A NEXXI ASHIL	none yeary mous SNV	p.N159K p.W749C p.R242C p.V131H p.R759L p.F97T p.R166C p.S1416P p.R198 p.L708I p.L108I	0.005 882 0.005 882 0.005 882 0.005 882 0.001 76 0.011 76 0.005 882 0.005 882 0.007 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.003 0.002	T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6
11 22 21 4 4 2 2 2 11 1 2	11921 6294 406 62481 479 29238 11426 2881 11417 7006 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1558 99964 1518 7867 0	C C T A T A T G A T	n140c29667 n200593254 n200593256 n186264015 n372005558 n18844943 n200510674 n1373934 n17181814 n5006732 n11165066 n140719911	exonic	MERP TNRC6B DIP2A ANK2 ANK2 SPAST MEDS ORS2MI ASHIL SCN2A NRXNI ASHIL KMT2C	none yearny mous SNV nones yearny mous SNV	p.N159K p.W749C p.RV131H p.R379L p.F97T p.R166C p.S1416P p.R19K p.L708I p.L116T p.D2092V	0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.003 0.003 0.003 0.0034	T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9
11 22 21 4 4 2 2 2 11 1 2 2 2 17	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 90964 1518 78670 1518 66470	C C T A T T G A T T G A A T A A A A A	m140629667 m200598254 m200598256 m34065266 m186264035 m372005558 m188449443 m201510674 m13737994 m17183814 m50666732 m11605066 m140719911 m74604306	exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MBD5 GR52MI ASHIL SCN2A NRXNI ASHIL KMT2C KMT2C	none yearny mous SNV	p.N159K p.W749C p.R242C p.R243H p.R379L p.R379L p.F97T p.R166C p.S1416P p.R19K p.L70st p.H16T p.D2092V p.R3398W	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882 0.007 882 0.007 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.082 0.0009 0.0034 0.0007 2.47E-05	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34
11 22 21 4 4 2 2 11 1 2 2 2 1 1 7 7	11921 6294 406 62481 479 29238 11426 2881 11417 7006 322 89189 456 6916 1554 4841 5 1661 52289 507 6541 2 1558 99064 1518 78670 392 34589	C C T A T T G A T T G A A T T	rs 14002-9667 rs 20059-9254 rs 20087-7060 rs 1802-5605 rs 1802-5605 rs 1802-5605 rs 1802-5605 rs 1837-994 rs 1837-994 rs 1718-814 rs 2005-972 rs 111605-966 rs 14071-9911 rs 7400-1306 rs 14543-6226	exonic exonic exonic exonic exonic exonic exonic exonic introde exonic	MERP TNRC6B DIP2A ANK2 ANK2 SPAST MBD5 OR52MI ASHIL SCN2A NEXXI ASHIL KMT2C KMT2C CAPN12	nons young mous SNV	p.N159K p.W749C p.R343C p.V13111 p.R759L p.P57T . p.R166C p.S1416P p.R196C p.S1416P p.R196C p.L7081 p.L1081 p.L1081 p.L1081	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0039 0.0034 0.0007 2.47E-05 0.0001	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9
11 22 21 4 4 2 2 11 1 2 2 2 1 7 7	11921 6294 406 62481 479 29238 11446 2881 11447 7036 322 89189 1492 41329 456 6916 1554 48415 1661 5238 9 507 65412 1558 78670 1518 6470 392 24589 479 54567	C C T A T T G A T T T T T T T T T T T T T T	n140c29667 n200593254 n200877060 n34065266 r186264035 n372005558 r188449443 n201516074 n13373994 n1781814 n50666772 n311605066 r140719911 n740034306 r1454340226 n201190474	exonic	MERP TNRC6B DIP2A ANK2 ANK2 SPAST MBDS ORS2MI A SHILL SCN2A NEXNI A SHILL K MT2C C APM12 DIP2A	none yeary mous SNV	p.N159K p.W749C p.R242C p.R24311 p.R379L p.F57T p.R166C p.S1416P p.R19K p.L708I p.H16T p.D2092V p.R3393W p.V73M p.R494W	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0039 0.0034 0.0007 2.47E-05 0.0001	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7
11 22 21 4 4 2 2 11 1 2 2 2 1 1 7 7	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1518 7867 0 1518 7867 0 322 34589 479 54567 1470 30222	C C T T A T T G A A T T T T T T T T T T T T	rs 14002-9667 rs 20059-9254 rs 20087-7060 rs 1802-5605 rs 1802-5605 rs 1802-5605 rs 1802-5605 rs 1837-994 rs 1837-994 rs 1718-814 rs 2005-972 rs 111605-966 rs 14071-9911 rs 7400-1306 rs 14543-6226	exonic	MERP TNRC-6B DIP2A ANK2 ANK2 SPAST MEDS ORS-2MI ASULL SCN2A NRXNI ASULL KMT2C KMT2C CAPN12 DIP2A FMRI	notes yearly mode a SNV notes yearly note a SNV notes yearly notes a SNV notes yearly notes and notes notes and notes and notes notes and notes and notes notes and notes note	p.N159K p.W749C p.R242C p.Y131H p.R379L p.F97T p.R166C p.S1416P p.R19K p.L150SI p.L116T p.D2092 V p.R3398W p.Y73M p.R4844W p.T50SI	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0039 0.0034 0.0007 2.47E-05 0.0001	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16
11 22 21 4 4 2 2 2 11 1 2 2 1 7 7 7 19 21 X	11921 6294 406 62481 479 29238 11426 2881 11417 7036 522 89189 496 241329 456 6916 1554 4841 5 1661 52389 507 65412 1554 99964 1518 7867 0 392 34589 479 54567 1470 103 22 1518 6086 6	C C T T A T T G A A T T T T A A	rs 14062-9667 rs 20059-9254 rs 20067-9060 ms 14065-266 rs 1862-66015 rs 37200-5558 rs 18844-9443 rs 20151-0674 ms 13373-954 ms 17381814 ms 56086-732 rs 111605-966 rs 14071-9911 rs 74061-3406 rs 14541-6226 rs 2011-96474 ms 45540-244	exonic exonic exonic exonic exonic exonic exonic intronic exonic	MERP TNISC 6B DIP2A ANK2 ANK2 ANK2 SPAST MIDDS OR5 2MI ASHIL SCN2A NEXNI ASHIL KMT2C KMT2C CAPN12 DIP2A DIPHE KMT2C	none yearny mous SNV nones yearny mous SNV	P.N159K P.W749C P.R141C P.R131II P.R794L P.W715III P.R794L P.W715III P.R156C P.S.1416P P.R199K P.L708I P.H116T P.D2092V P.R3398W P.V73M P.B494W P.T508I P.R356W P.R356W	0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.003 0.003 0.0034 0.0007 2.47E-05 0.0001 0.0006	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.7 34 25.7 32 11.16 33
11 22 21 4 4 2 2 11 1 2 2 1 7 7 7 19 21 X	11921 6294 406 62481 479 29238 11426 2881 11417 7006 322 89189 456 6916 1554 4841 5 1661 52389 507 65412 1554 9064 1518 78670 1518 66470 392 24589 479 54567 1470 302 22 1518 66866 431 00425	C C T T A T T G A A T T T T T T T T T T T T	n 14002 9667 n 20059 9254 n 20059 9254 n 24065 266 n 18626 4035 n 37200 5558 n 18844 9433 n 20151 6674 n 1337 994 n 7168 814 n 5666 732 n 14071 9911 n 74601 4306 n 14543 0226 n 201190474 n 45540 224 n 34021 075	exonic	MERP TNRC-6B TNRC-6B TNRC-6B ANK2 ANK2 ANK2 SPAST MRD5 OR5 2MI A SHILL SCN2A NEXNI A SHILL KMT2C CAPNI2 DIP2A PMRI KMT2C PTK7	none yeary mous SNV	p.N159K p.W749C p.R143C p.R151II p.R179L p.P57T p.R166C p.S1416P p.R196C p.S1416P p.R196C p.L706I p.L706I p.L706I p.L706I p.L706I p.L7062V p.R398W p.Y75M p.R494W p.T506I p.R2566W p.T418S	0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0034 0.0007 2.47E-05 0.0001 0.0006 0.0009	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33
11 22 21 4 4 2 2 11 1 2 2 17 7 7 7 19 21 X 7 6 8	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 90964 1518 78670 1518 60470 392 312489 479 54567 1470 10322 1518 60666 431 100425 616 54727	C C T T A T T G A A T T T T A A T T C C	n 14062 9667 n 20059 9254 n 20087 7060 n 34065 266 n 18626 4035 n 37200 5558 r 18844 9443 n 202151 9674 n 13373 934 n 17181814 n 17181814 n 55606 732 n 314671 9911 n 74603 4306 r 1 45540 244 n 45540 244 n 34021 075 n 37532 5395	exonic exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MBD5 ORS-2MI A SHILL SCN2A NEXNI A SHILL K MT2C C APPH2 DIP2A FMRI K MT2C C APPH2 C C C C C C C C C C C C C C C C C C C	none yeary mous SNV	p.N159K p.W749C p.R242C p.R243C p.R243H p.R379L p.F97T p.R166C p.S1416P p.R19K p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.R19K p.T508I p.R2566W p.T508I p.R266W p.T418S p.R246P	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0034 0.0007 2.47E-05 0.0001 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 10.85 23
11 22 21 4 4 2 2 11 1 2 2 1 7 7 7 19 21 X	11921 6294 406 62481 479 29238 11442 62881 11447 7006 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1518 7867 0 1518 6847 0 392 3458 9 479 5456 7 1470 3022 1518 6886 6 431 00425 616 54727 1532 9668 9	C C T T A T T G A A T T T T A A T T T C C A	n140629667 n200598254 n200598254 n20067060 n34665266 n1166264015 n372005558 n1188449443 n2001516674 n13773934 n17185814 n50066732 n111605066 n140719911 n746034306 n14674 n45540244 n45540244 n45540244 n34021075 n375323395	exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MBDS ORS2MI ASHIL SCN2A NRXNI ASHIL KMT2C KMT2C CAPN12 DIP2A PMRI KMT2C PTK7 CHD7 M6:CP2	none yeary mous SNV	p.N159K p.W749C p.R141C p.R131II p.R.1791L p.P77T p.R166C p.S1416P p.R196K p.L708I p.H167T p.D2092V p.R3308W p.V73M p.R494W p.T508G p.R1266W p.T14 ISS p.A2446P p.T209M	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.082 0.0019 0.0034 0.0007 2.47E-05 0.0001 0.0000 0.0009 0.0009 0.0009 0.0009	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 19.85 23 10.51
11 22 21 4 4 2 2 11 1 2 2 17 7 7 7 19 21 X 7 6 8	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 90964 1518 78670 1518 60470 392 312489 479 54567 1470 10322 1518 60666 431 100425 616 54727	C C T T A T T G A A T T T T A A T T C C	n 14062 9667 n 20059 9254 n 20087 7060 n 34065 266 n 18626 4035 n 37200 5558 r 18844 9443 n 202151 9674 n 13373 934 n 17181814 n 17181814 n 55606 732 n 314671 9911 n 74603 4306 r 1 45540 244 n 45540 244 n 34021 075 n 37532 5395	exonic exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MBD5 ORS-2MI A SHILL SCN2A NEXNI A SHILL K MT2C C APPH2 DIP2A FMRI K MT2C C APPH2 C C C C C C C C C C C C C C C C C C C	none yeary mous SNV	p.N159K p.W749C p.R242C p.R243C p.R243H p.R379L p.F97T p.R166C p.S1416P p.R19K p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.L708I p.R19K p.T508I p.R2566W p.T508I p.R266W p.T418S p.R246P	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.011 76 0.011 76 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0034 0.0007 2.47E-05 0.0001 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 10.85 23
11 22 21 4 4 2 2 11 1 2 2 11 7 7 19 21 X 7 6 8	11921 6294 406 62481 479 29238 11442 62881 11447 7006 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1518 7867 0 1518 6847 0 392 3458 9 479 5456 7 1470 3022 1518 6886 6 431 00425 616 54727 1532 9668 9	C C T T A T T G A A T T T T A A T T T C C A	n140629667 n200598254 n200598254 n20067060 n34665266 n1166264015 n372005558 n1188449443 n2001516674 n13773934 n17185814 n50066732 n111605066 n140719911 n746034306 n14674 n45540244 n45540244 n45540244 n34021075 n375323395	exonic	MFRP TNRC6B DIP2A ANK2 ANK2 SPAST MBDS ORS2MI ASHIL SCN2A NRXNI ASHIL KMT2C KMT2C CAPN12 DIP2A PMRI KMT2C PTK7 CHD7 M6:CP2	none yeary mous SNV	p.N159K p.W749C p.R141C p.R131II p.R.1791L p.P77T p.R166C p.S1416P p.R196K p.L708I p.H167T p.D2092V p.R3308W p.V73M p.R494W p.T508G p.R1266W p.T14 ISS p.A2446P p.T209M	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.082 0.0019 0.0034 0.0007 2.47E-05 0.0001 0.0000 0.0009 0.0009 0.0009 0.0009	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 19.85 23 10.51
11 22 21 4 4 2 2 11 1 2 2 1 7 7 7 19 21 X 7 6 8	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 456 6916 1554 48415 1661 52389 507 65412 1554 99064 1518 78670 1518 7	C C C T A T A T T G A A T T T T T T C C A C C	n 14002 9667 n 20059 9254 n 20059 9254 n 20087 7060 n 34665 266 n 3 1862 64015 n 37200 5558 n 3 1884 9443 n 20151 0674 n 13373 934 n 17183 814 n 55666 732 n 31160 5066 n 140 71 9911 n 7460 1306 n 14543 6226 n 2011 90 474 n 45540 244 n 3402 1 075 n 3402 1 075 n 3732 2395 n 6174 9774 n 1449 20028	exonic	MERP TNIRC6B DIP2A ANK2 ANK2 ANK2 SPAST MIDD5 OR52MI ASHIL SCN2A NEXNI ASHIL KMT2C KMT2C CAPNI2 DIP2A PMRI KMT2C PTK7 CID7 MICCP2 CTTNBP2	none yearny mous SNV none yearsy mous SNV	P.N159K P.W49C P.R342C P.R343C P.V13111 P.R794L P.P97T P.R166C P.S.1416P P.R798 P.L7081 P.L1081 P.L1081 P.L1081 P.L7084 P.K1988 P.V73M P.R494W P.T5081 P.R3566W P.T418S P.A246P P.T.009M P.N1038S	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.0082 0.0039 0.0034 0.0007 2.47E-05 0.0001 0.0006 0.0006 0.0009 0.0014 8.29E-06 0.0005 0.0005	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.34 22.6 13.14 24.9 34 25.7 32 11.16 33 19.85 23 10.51 6.42
11 22 21 4 4 2 2 11 1 2 2 2 1 7 7 7 9 21 X 7 6 8 8 X	11921 6294 406 62481 479 29238 11447 7026 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 9096 4 1518 78670 1518 6607 1470 3022 458 696 431 00425 616 54727 1532 96889 1174 00588	C C C T T A T T T G A A T T T T T C C A C C C C C	n 14062 9667 n 20059 9254 r 20087 7060 n 34065 266 r 18626 4035 n 37200 5558 r 18626 4035 n 37200 5558 r 18844 9433 n 20151 0674 n 13377 994 n 7183 814 n 56566 732 n 311665 666 r 1 4671 9911 n 74601 4306 r 1 4543 0226 n 201190 474 n 45540 224 n 34021 075 n 37532 3955 n 61749 714 n 14492 0028 n 56227 200	exonic exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MRD5 OR52MI A SHIL SCN2A NEXNI A SHIL KMT2C CAPN12 DIP2A PMRH KMT2C CID7 MECP2 CTINRP2 CCID2	none yeary mous SNV	P.N159K P.W749C P.R242C P.R243C P.V15111 P.R379L P.F377 P.R166C P.S.1416P P.R790K P.L700d P.L700d P.L700d P.L700d P.L700d P.L700d P.R2002V P.R398W P.Y500d P.R506W P.T500d P.R506W P.T500M P.R506W P.T500M P.R506W P.T500M P.R506W P.T500M P.R506W P.T500M P.R506W P.T500M P.R505W P.T500M	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.005 882	0.0001 0.0004 4.1216-05 8.2416-05 0.0006 0.0028 0.0007 0.003 0.002 0.0034 0.0007 2.4716-05 0.0006 0.0009 0.0144 8.2916-06 0.0005 0.0005	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 19.85 22 10.51 0.42 6.335
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 7 19 21 X 7 6 8 X 7 15	11921 6294 406 62481 479 29238 11446 2881 11447 7036 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 90964 1518 78670 1518 60470 392 3125 94567 1470 10322 1518 6066 431 100425 616 54727 153 29 6889 11740 0548 935 57954 325 09543	C C C T T A T T G A A T T T T A A T T C C A C C C C C C	n140629667 n200593254 n200877060 n34065266 n186264035 n372005558 r188449443 n2005154074 n13373934 n17185814 n5086772 n311605066 r140719911 n746034306 r145540244 n45540244 n34621075 n37532395 n61749714 n144920028 n56227200 n799988372	exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MBD5 ORS-2MI A SHILL SCN2A NEXNI A SHILL K MT2C C APPE2 DIP2A PARE K MT2C C APPE2 C TPK7 C C C C C C C C C C C C C C C C C C C	norm yearny mous SNV norm yearsy mous SNV	P.N159K P.W749C P.R242C P.R243C P.V13111 P.R379L P.P57T P.R166C P.S1416P P.R19K P.L7081 P.L7081 P.L7081 P.L7082V P.L7308W P.T7584 P.T7584 P.T7584 P.T7594 P.T7	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0039 0.0007 2.47E-05 0.0001 0.00006 0.0009 0.00144 8.29E-06 0.0005 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 14 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 10.85 23 10.51 0.42 6.335 23.7
11 22 21 4 4 2 2 11 1 2 2 11 1 2 2 17 7 19 21 X 7 6 8 X 7 15 X 8	11921 6294 406 62481 479 29238 11426 2881 11417 7006 522 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 99964 1518 766 70 392 34589 479 5456 7 1470 302 22 1518 6086 6 431 00425 616 54727 1513 9668 9 11740 0548 935 57954 325 99551 617 78448	C C C T A T T G A A T T T T A T T C C C C T T	n 14002 9667 n 20059 9254 n 20059 9254 n 20067 7060 n 34665 266 n 3 18626 6015 n 37200 5558 n 3 18844 9443 n 20151 0674 n 13373 934 n 17381814 n 17381814 n 174071 9911 n 26603 732 n 311665 966 n 14071 9911 n 26603 1306 n 14543 6226 n 2011 90 474 n 45540 244 n 45540 244 n 45740 775 n 37532 3395 n 61749 774 n 14492 0028 n 50227 200 n 269998 8372 n 18481 4820	exonic exonic exonic exonic exonic exonic exonic exonic introde exonic	MERP TNIRC6B DIP2A ANK2 ANK2 ANK2 SPAST MIDD5 OR52MI ASHIL SCN2A NEXNI ASHIL KMT2C CAPNI2 DIP2A DIP2A FIKE CTID17 MICCP CCTTNIP2 CCID7 DMD CCID7	none yearny mous SNV nones yearny mous SNV	P.N159K P.W49C P.R34C P.R131II P.R79L P.P9T P.R156C P.S.1416P P.R19K P.L708I P.H116T P.D2092V P.K3398W P.V73M P.8494W P.T508I P.R1508 P.T418S P.R266W P.T418S P.R266W P.T418S P.R366W P.T418S	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0039 0.004 0.0007 2.47E-05 0.0001 0.0006 0.0009 0.00144 8.29E-06 0.0005 0.0005 0.0005 0.0005 0.0005	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.7 32 11.16 33 10.85 23 10.51 0.42 6.335 23.7 23.1
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 19 21 X 7 6 8 X 7 15 X 8	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 456 6916 1554 4841 5 1661 52389 507 65412 1554 9096 4 1518 78670 1518 66470 392 24589 479 54567 1470 3022 1518 60866 431 00425 616 54727 153 296889 1174 00588 935 57954 325 69543 616 774448 951 7369	C C C T T A T T T T T T C A C C C C T T T T	n 14002-9667 n 20059-9254 n 20059-9254 n 20087-9060 n 34065-266 n 1802-64015 n 37200-5558 n 18844-9443 n 20151-9674 n 1337-994 n 17183-814 n 55606-732 n 114071-9911 n 24603-306 n 14071-9914 n 345540-244 n 345540-244 n 346540-244 n 3462-2008 n 61749-714 n 14492-2008 n 50227-200 n 70998-8372 n 18481-8200 n 115420-99	exonic exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC-6II DIP2A ANK2 ANK2 SPAST MBD5 OR52MI ASHIL SCN2A NEXNI ASHIL KMT2C CAPNI2 DIP2A DMRI KMT2C CTNBP2 CID7 GECP2 CTTNBP2 CID2 DMD CID7 SETD5	none yeary mous SNV	P.N159K P.W749C P.R242C P.R243C P.R21311 P.R379L P.F377 P.R166C P.S1416P P.R196 P.R196 P.R196 P.R196 P.R196 P.R2062V P.R398W P.T5061 P.R2069W P.R2069	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.001176 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0004 0.0007 2.47E-05 0.0001 0.0006 0.0009 0.0004 8.29E-06 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 19.85 23 10.51 0.42 6.335 23.7 23.1 23.3
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 7 6 8 X 7 15 X 8 3 4	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 9096 4 1518 78670 1518 66470 392 324589 479 54567 1470 3022 2 1518 6666 431 00425 616 54727 1532 9668 9 1174 000588 935 7954 325 99543 617 78448 951 7369 856 78252	C C C T T A A T T T A A T T C C A C C C C	n140c29667 n200593254 r2200877060 n34065266 r186264035 n372005558 r188440443 n201516674 n13373934 n17183814 n56066732 r311665666 r3140719911 n740034306 r3145340226 n201190474 n45540246 n34021075 n375325395 n617497714 r314420028 n56027200 r3769988372 r314841482008 n56027200 r3769988372 r314841482009 r3150181993	exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MRD5 ORS-2MI A SHILL SCN2A NEXNI A SHILL KMT2C KMT2C CAPN12 DIP2A PMRI KMT2C CAPN12 CHD7 MECP2 CTTNRP2 CHD7 SETD5 WDFY3	none yearny mous SNV nones yearny mous SNV	P.N159K P.W749C P.R342C P.R343C P.V13111 P.R794L P.P97T P.R166C P.S.1416P P.R196C P.S.1416P P.R196C P.L7081 P.L1081 P.L7081 P.L7081 P.L7081 P.R398W P.V73M P.R839W P.V73M P.R839W P.V73M P.R839W P.V73M P.R8396W P.V73M P.R8366W P.V73M P.R8366W P.T3681 P.R366W P.T309M P.N1038S P.G1574A P.W817G P.L909 P.T3091	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.003 0.002 0.003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0025	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 11.16 33 19.85 22 10.51 0.42 6.335 23.7 23.1 23.3 22.5
11 22 21 4 4 2 2 2 11 1 2 2 11 7 7 19 21 X 7 6 8 X 7 15 8 X 7 15 8 4	11921 6294 406 62481 407 929218 11426 2881 11417 7036 522 89189 1492 41329 456 6916 1554 4841 5 1661 5258 9 507 65412 1554 99964 1518 78670 39234589 479 54567 1470 1032 2 1518 60866 431 00425 616 54727 1532 9668 9 11740 0548 933 57954 325 99543 617 78448 951 7369	C C C T A A T T T A A T T C C A A C C C C	n 14062-9667 n 20059-9254 n 20067-9256 n 34065-266 n 34071-9914 n 34061-366 n 34071-9914 n 34601-366 n 34671-9914 n 34601-366	exonic	MERP TNINC-6B DIPLA ANK2 ANK2 ANK2 SPAST MIDDS OR5-2MI ASHIL SCN2A NRXNI ASHIL KMT2C KMT2C CAPN12 DIPLA DIPLA MICCP CTTNIPP CIID2 DMD CIID7 SETD5 MMD CIID7 SETD5 MMD CIID7 SETD5 MMD CIID7 SETD5 MMD CNXNI NRXNI	none yearny mous SNV	P.N159K P.W49C P.R342C P.R343C P.V13111 P.R794L P.P97T P.R166C P.S 1416P P.R199K P.L7081 P.L116T P.D2092 V P.R3398W P.V73M P.R494W P.T5081 P.R356W P.T418S P.A246P P.T.097M P.N1038S P.G1574A P.W817G P.L9095 P.T.10811 P.L9095 P.T.1081	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.01176 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.0029 0.0039 0.0039 0.0039 0.0000	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.04 23.6 13.14 24.7 32 11.16 33 10.85 23.1 10.85 23.1 24.1 25.7 25.7 32 21.1 26.33 27.7 28.1 28.30 29.85
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 7 19 21 X 7 6 8 X 7 15 X 8 3 4 2 9 21	11921 6294 406 62481 479 29238 114262881 11417 7036 322 89189 1492 41329 456 6916 1554 4841 5 1661 52389 507 65412 1554 9096 4 1518 78670 1518 66070 392 24589 479 54567 1470 302 22 1518 60868 431 00425 616 54727 153 296689 1174 00588 935 77954 325 09543 617 78448 951 7369 856 782 52 507 65589 964 37286 479 52128	C C C T T A T T T T T T C C C C T T C C C A C C C	n 14002 9667 n 20059 9254 r 20087 7060 n 34065 266 r 3 18026 6015 n 3 7200 5558 r 3 18844 9443 n 20151 9674 n 1337 994 n 1718 3814 n 55606 732 n 311805 966 n 14071 9911 n 7400 3406 n 14543 9226 n 2011 90474 n 45540 244 n 5460 275 n 37532 5395 n 61749 774 n 1449 20028 n 5622 7200 n 79998 8372 n 3 18481 8420 n 3 15018 1993 n 2000 78974 n 15018 1993 n 2000 78974 n 11953 9562	exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MRD5 OR52MI A SHILL SCN2A NEXNI A SHILL KMT2C CAPNI2 DIP2A PMRI KMT2C CID7 MECP2 CITNP2 CID2 DMD CHD7 SETD5 WDFY3 NEXNI	none yeary mous SNV	P.N159K P.W749C P.R342C P.R342C P.V15111 P.R79L P.P97T P.R166C P.S1416P P.R196C P.R166C P.R166	0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0039 0.0034 0.0007 2.47E-05 0.0001 0.0006 0.0009 0.0144 8.29E-06 0.0005 0.0005 0.0005 0.0006 0.0225 2.34E-05 0.0006 0.0025 0.0006 0.0025 0.0006	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 10.51 32 11.16 33 10.85 23 10.51 0.42 6.335 23.7 23.1 23.3 22.5 15.60
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 19 21 X 7 6 8 X 7 15 X 8 3 4 2 9	11921 6294 406 62481 479 29238 11447 7036 322 89189 1492 431329 456 6916 1554 48415 1661 5238 9 507 65412 1554 9096 4 1518 78670 1518 66470 302 324589 479 54567 1470 3022 2 1518 6666 431 00425 616 54727 1532 9689 11740 0548 935 57954 325 99543 617 78448 951 7309 856 78252 507 65589 964 37286	C C C T T T C C C C A A	n140c29667 n200593254 n200877060 n34065266 n186264035 n372005558 r188449443 n2005154074 n13373934 n7181814 n55606772 n311605066 r1440719911 n746001306 r145430226 n201190474 n45540244 n34021075 n375325395 n61749774 n145540240 n34021075 n375325395 n61749774 n145540240 n34021075 n375325395 n61749774 n145540240 n34021075 n375325395 n61749774 n145540208 n56227200 n769988372 n31542009 n3150181993 n200074974 n139510562 n319523584	exonic exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MBD5 ORS-2MI A SHIL SCN2A NEXNI A SHIL KMT2C CAPNI2 DIP2A PMRI KMT2C CAPNI2 CHD7 MIC-P2 CTTNBP2 CHD2 DMD CHD7 SETD5 WDFY3 NEXNI PHI2 DIP2A CHD2 CHD2	none yeary mous SNV	P.N159K P.W749C P.R242C P.R243C P.R243C P.V13111 P.R379L P.P57T P.R166C P.S1416P P.R19K P.L708d P.H16T P.D2092V P.R339NW P.T5981 P.R259W P.T5984 P.R259W P.T5984 P.R259W P.T5984 P.R259W P.T5984 P.R259W P.T5984 P.R259W P.T5984 P.R259W P.T599M P.R169W P.T5984 P.R259W P.T5984 P.R359W P.R359C P.R359W P.R359C P.R359W P.R359C P.R359W P.R359C P.R35	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0039 0.0007 2.47E-05 0.0001 0.0006 0.0009	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 32 11.16 33 10.51 0.42 25.7 22 11.36 23.7 23.1 23.3 22.5 15.69 22.4 27.2 23.5
11 22 21 4 4 2 2 2 11 1 2 2 11 7 7 19 21 X 7 6 8 X 7 15 X 8 3 4 2 9 21 15 7	11921 6294 406 62481 407 29238 11426 2881 11417 7016 522 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 99964 1518 76670 392 34589 479 54567 1470 302 22 1518 60866 431 00425 616 54727 1512 96689 11740 0548 951 2396689 11740 0548 951 2366 951 7364 951 7366 961 37256 479 52128	C C C T T T C C C C A A C C A A	n 14002 9667 n 20059 9254 n 20059 9254 n 20059 9254 n 18026 6015 n 18026 6026 n 18021 90474 n 18026 6026 n 18021 90474 n 18540 6226 n 201 190474 n 18540 6226 n 201 190474 n 18026 702 n 18027 703 n 18027	exonic exonic exonic exonic exonic exonic exonic exonic intronic exonic	MERP TNRC-6B DIP2A ANK2 ANK2 ANK2 ANK2 SPAST MIDDS OR52MI ASHIL SCN2A NEXNI ASHIL KMT2C CAPNI2 DIP2A PIME KMT2C CAPNI2 CID7 MICCP2 CTTNBP2 CID7 SETDS WDFY3 NEXNI PIH2 DDMD CID7 SETDS WDFY3 NEXNI PIH2 DIP2A CID2 KMT2C	none yearny mous SNV none yearsy mous SNV none year	P.N159K P.W140C P.R141C P.R141C P.V13111 P.R791L P.P97T P.R166C P.S.1416P P.R199K P.L7081 P.H116T P.D2092V P.R3398W P.V73M P.R444W P.T5081 P.R3266W P.T418S P.R3266W P.R3266	0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.0082 0.0019 0.0034 0.0007 2.47E-05 0.0001 0.0006 0.0009 0.00144 8.29E-06 0.0005 0.0006	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 10.85 23 10.51 0.42 6.335 23.7 23.1 21.3 22.5 15.60 22.4 27.2 21.5 6.931
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 19 21 X 7 6 8 X 7 15 X 8 3 4 2 9 21 15 7 6	11921 6294 406 62481 479 29238 114262881 11417 7026 322 89189 1492 41329 456 6916 1554 4841 5 166 152389 507 65412 1554 90964 1518 78670 1518 66452389 479 54567 1470 302 24589 479 54567 1470 302 22 1518 60866 431 00425 616 54727 1519 6689 11740 0548 935 7954 325 69543 617 78448 951 7369 856 78252 507 65589 964 37286 479 52128 964 37286	C C C T T T C C C C C A A A A A	n 14002-9667 n 20059-9254 n 20059-9254 n 20087-9060 n 34065-266 n 1862-64015 n 37200-5558 n 18844-9443 n 20151-9674 n 1337-994 n 17183-814 n 55606-732 n 114071-9911 n 24606-3732 n 114071-9911 n 24606-3066 n 14071-9911 n 24606-3066 n 14543-6226 n 20119-9474 n 345540-244 n 346540-244 n 346540-244 n 1466-3066 n 14671-9714 n 14672-9028 n 540227-200 n 270998-8372 n 134841-8200 n 15018-1993 n 200007-974 n 13953-0562 n 19923-2584 n 2499-149 n 37357-9913	exonic	MFRP TNRC-6II DIP2A ANK2 ANK2 SPAST MBD5 OR52MI ASHIL SCN2A NEXNI ASHIL KMT2C CAPNI2 DIP2A DMRI KMT2C CTNBP2 CID2 DMD CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMD CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID2 DMPA CID2 DMPA CID2 DMD CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID3 DMPA CID4 DMPA CID5 DMPA CID5 DMPA CID6 DMPA CID7 DMPA	none yearny mous SNV	P.N159K P.W749C P.R342C P.R342C P.V13111 P.R794L P.P97T P.R166C P.S.1416P P.R196C P.S.1416P P.R196C P.	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.001176 0.005 882	0.0001 0.0004 4.1216-05 8.2416-05 0.0006 0.0028 0.0007 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.0007 0.003 0.0007 0.0014 0.0007 0.0006 0.0009 0.0144 8.296-06 0.0005	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 19.85 23 10.91 24.9 25.7 22.1 1.10 24.9 25.7 22.1 23.3 22.5 15.69 22.4 27.2 23.5
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 19 21 X 7 6 8 X 7 15 X 8 3 4 2 9 21 15 7 6 8	11921 6294 406 62481 479 29238 11426 2881 11417 7036 322 89189 1492 41329 456 6916 1554 48415 1661 52389 507 65412 1554 9096 4 1518 78670 1518 66070 392 34589 479 54567 1470 3032 2 1518 60866 431 00425 616 54727 153 29668 9 1174 00588 935 57054 325 99543 617 78448 951 7369 856 78252 507 65589 944 77256 479 52128 934 86081 1047 52798 431 109789 616 55556	C C C T T T G A A T T T T C C C C T T T C C C A A A A	n 14062 9667 n 20059 9254 r 20087 7060 n 34065 266 r 18626 4035 n 37200 5558 r 18844 9433 n 20151 0674 n 13377 994 n 17183 814 n 56566 732 n 111605 066 r 14071 9911 n 74601 4306 r 14543 0226 n 201190 474 n 45540 244 n 34021 075 n 37532 3955 n 61749 714 n 14492 0028 n 56227 200 n 79998 8372 r 18481 4820 n 1350 1674 n 130007 4974 r 13030 1562 r 19232 3584 n 74959 149 n 37375 79913 n 14296 2579	exonic exonic exonic exonic exonic exonic intronic exonic	MFRP TNRC-6B DIP2A ANK2 ANK2 SPAST MRD5 OR52MI A SHILL SCN2A NEXNI A SHILL KMT2C CAPNI2 DIP2A PMRI KMT2C CAPNI2 CHD7 MECP2 CTTNBP2 CTTNBP2 CTTNBP2 CTTD5 WDFY3 NEXNI NEXNI NEXNI A SHILL KMT2C CAPNI2 DIP2A PMRI CHD7 SETD5 WDFY3 NEXNI PHF2 DIP2A CHD2 CHD2 CHD2 CHD2 CHD2 CHD7 SETD5 WDFY3 NEXNI PHF2 CHD2 CHD2 CHD2 CHD2 CHD2 CHD2 CHD2 CHD	none yeary mous SNV	P.N159K P.W749C P.R242C P.R242C P.R243C P.R251II P.R379L P.F37T P.R166C P.S1416P P.R196C P.R166C P.S1416P P.R196C P.R196C P.R196C P.R196C P.R196C P.R196C P.R196C P.R196C P.R296C P.R398W P.R3	0.005 882 0.005 882	0.0001 0.0004 4.12E-05 8.24E-05 0.0006 0.0028 0.0007 0.003 0.002 0.0009 0.0004 0.0007 2.47E-05 0.0001 0.0006 0.0009 0.0014 8.29E-06 0.0005 0.0005 0.0005 0.0006 0.0023 0.0006 0.0012 0.0006 0.0012 0.0006 0.0012 0.0006 0.0023	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 11.16 33 19.85 22 11.16 33 22.5 15.60 22.7 23.1 23.3 22.5 16.69 22.4 27.2 23.5 6.931 26.1 23.3
11 22 21 4 4 2 2 11 1 2 2 11 7 7 7 19 21 X 7 6 8 X 7 15 X 8 3 4 2 9 21 15 7 6	11921 6294 406 62481 479 29238 114262881 11417 7026 322 89189 1492 41329 456 6916 1554 4841 5 166 152389 507 65412 1554 90964 1518 78670 1518 66452389 479 54567 1470 302 24589 479 54567 1470 302 22 1518 60866 431 00425 616 54727 1519 6689 11740 0548 935 7954 325 69543 617 78448 951 7369 856 78252 507 65589 964 37286 479 52128 964 37286	C C C T T T C C C C C A A A A A	n 14002-9667 n 20059-9254 n 20059-9254 n 20087-9060 n 34065-266 n 1862-64015 n 37200-5558 n 18844-9443 n 20151-9674 n 1337-994 n 17183-814 n 55606-732 n 114071-9911 n 24606-3732 n 114071-9911 n 24606-3066 n 14071-9911 n 24606-3066 n 14543-6226 n 20119-9474 n 345540-244 n 346540-244 n 346540-244 n 1466-3066 n 14671-9714 n 14672-9028 n 540227-200 n 270998-8372 n 134841-8200 n 15018-1993 n 200007-974 n 13953-0562 n 19923-2584 n 2499-149 n 37357-9913	exonic	MFRP TNRC-6II DIP2A ANK2 ANK2 SPAST MBD5 OR52MI ASHIL SCN2A NEXNI ASHIL KMT2C CAPNI2 DIP2A DMRI KMT2C CTNBP2 CID2 DMD CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMD CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID2 DMPA CID2 DMPA CID2 DMD CID7 SETD5 WDFY3 NEXNI PHF2 DIP2A CID2 DMPA CID3 DMPA CID4 DMPA CID5 DMPA CID5 DMPA CID6 DMPA CID7 DMPA	none yearny mous SNV	P.N159K P.W749C P.R342C P.R342C P.V13111 P.R794L P.P97T P.R166C P.S.1416P P.R196C P.S.1416P P.R196C P.	0.005 882 0.005 882 0.005 882 0.005 882 0.005 882 0.01176 0.001176 0.005 882	0.0001 0.0004 4.1216-05 8.2416-05 0.0006 0.0028 0.0007 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.0007 0.003 0.0007 0.0014 0.0007 0.0006 0.0009 0.0144 8.296-06 0.0005	T T T T T T T T T T T T T T T T T T T	27.6 23.3 34 26.4 35 10.16 12.13 24.9 15.18 10.94 23.6 13.14 24.9 34 25.7 32 11.16 33 19.85 23 10.91 24.9 25.7 22.1 1.10 24.9 25.7 22.1 23.3 22.5 15.69 22.4 27.2 23.5

6	999.56560	С	m7744845	exonic	USP45	nons ynony mous SNV	p.K67E	0.2647	0.3277	T	26.2
X	32472822	С	rs760481477	exonic	DMD	nonsynonymous SNV	p.Y1179C	0.005882	1.15E-05	T	26
,	135801087	T	rs 11 8203 357	exonic	TSCI	nonsynonymous SNV	p.A84T	0.005882	0.0007	T	14.12
5	1703 3670 4	A	ns80184931	exonic	RANBP17	nons ynony mous SNV	p.A177T	0.005882	0.0054	T	25.1
7	104749426	T		exonic	KMT2E	nonsynonymous SNV	p.A1169V	0.005882		T	26.9
5	170668092	A	-61266201	exonic	RANBP17	nons ynony mous SNV	p.N861K	0.005882	0.0152	T	16.04
6	93545488 43128519	A A	n:61756301 n:34865794	exonic	CHD2 PTK7	nons ynony mous SNV	p.S1407T p.R908Q	0.005882	0.0153	T	23.3
	149221327		B.34865 794 B.34995 577			nons ynony mous SNV					25.4
2		A		exonic	MBD5	nons ynony mous SNV	p.G79E	0.005882	8000.0	T	
1	2027 1073 3	G	rs 11 2284 833	exonic	KDM5B	nons ynony mous SNV	p.E903Q	0.02353	0.0235	T	25.3
20	495 10344	С		exonic	ADNP	nonsynonymous SNV	p.M303V	0.005882		T	0.454
5	14508347	T	n 55900 671	exonic	TRIO	nons ynony mous SNV	p.K3037M	0.005882	0.0041	T	21.8
4 X	114274556	G T	rs 77538 6505	exonic	ANK2	nonsynonymous SNV	p.11594M	0.005882	0.0002	T T	12.62
	32361370		rs 14244 1725	exonic	DMD	nons ynony mous SNV	p.E533K	0.005882	0.0003		
21	38865433	G	rs 14585 7775	exonic	DYRK IA	nons ynony mous SNV	p.T356A	0.005882	0.0015	T	24
11	703 38541	G	n:55968949	exonic	SHANK2	nons ynony mous SNV	p.K192Q	0.005882	0.001	T	16.7
19	518.57658	T	rs 14060 8276	exonic	ETFB	nons ynony mous SNV	p.V79I	0.005882	0.0051	T	17.65
1	202700068	T	ns34216958	exonic	KDM5B	nonsynony mous SNV	p.R1382Q	0.01176	0.0037	T	21
11	119213319	A	rs 14588 1139	exonic	MFRP	nonsynonymous SNV	p.L458F	0.01765	0.0085	T	23.5
17	7752884	A	rs202119281	exonic	KDM6B	nons ynony mous SNV	p.R1093H	0.005882	4.37E-05	T	24.5
11	703.33498	С	as 62622 853	exonic	SHANK2	nons ynony mous SNV	p.Y379C	0.01176	0.0178	T	22.2
21	47924334	A	rs201002582	exonic	DIP2 A	nons ynony mous SNV	p.R239H	0.005882	8.49E-05	T	25.7
19	51857774	G	rs 143144671	exonic	ETFB	nons ynony mous SNV	p.E40A	0.01765	0.0023	T	17.57
19	518 50290	A	rs1130426	exonic	ETFB	nons ynony mous SNV	p.T245M	0.5706	0.498	T	32
17	7749954	G	ns60738318	exonic	KDM6B	nons ynony mous SNV	p.P203A	0.02353	0.0476	T	22.1
17	775 1050	T	as62059713	exonic	KDM6B	nons ynony mous SNV	p.P482S	0.1353	0.1868	T	17.08
6	157099799	A	rs.375160616	exonic	ARIDIB	nons ynony mous SNV	p.G246S	0.005882	0.0042	T	23.4
7	91729127	G	в34327395	exonic	AKAP9	nons ynony mous SNV	p.M3614V	0.02353	0.0072	T	12.02
x	32380996	T	rs1801187	exonic	DMD	nons ynony mous SNV	p.R404H	0.5118	0.5142	T	32
9	135781205	С	rs 11 8203 576	exonic	TSCI	nons ynony mous SNV	p.K536R	0.01176	0.0188	T	14.22
6	157527482	С	rs 14951 8409	exonic	ARIDIB	nons ynony mous SNV	p.E1723A	0.005882	0.0022	T	6.985
5	14488142	A	rs750105964	exonic	TRIO	nons ynony mou s SNV	p.G2469S	0.005882	0.0005	T	19.92
17	7749972	T	rs 14864 1957	exonic	KDM6B	nons ynony mous SNV	p.V209L	0.005882	0.0041	T	11.91
18	445 60739	G		exonic	TCEB3B	nons ynony mous SNV	p.E299D	0.005882		T	0.01
6	99930639	A	rs769168377	exonic	USP45	nonsynonymous SNV	p.1.279F	0.005882	8.29E-06	T	31
7	91712698	G	n:6960867	exonic	AKAP9	nons ynony mous SNV	p.N2792S	0.3647	0.3593	T	1.912
11	70644619	T	rs 14658 0493	exonic	SHANK2	unknown		0.01765	0.0049	T	34
18	445.59933	A	rs 13947 7376	exonic	TCEB3B	nonsynony mous SNV	p.Y568F	0.005882	0.0006	T	21.7
6	157507504	T	rs 11 3430 057	intronic	ARIDIB			0.04118	0.039	T	6.201
6	33411673	C	rs 19154 9504	exonic	SYNG API	nons ynony mous SNV	p.11115T	0.01176	0.0101	T	5.59
4	114278128	T	rs 14589 5389	exonic	ANK2	nons ynony mous SNV	p.S2785L	0.005882	0.0019	T	3.781
7	91708898	G	n:35759833	exonic	AKAP9	nons ynony mous SNV	p.K2484R	0.1059	0.109	T	0.002
7	100285476	T	в:77794375	exonic	GIGYF1	nons ynony mous SNV	p.A66T	0.07647	0.1005	T	21.6
3	20161096	G	ns 17006 625	exonic	K AT2B	nons ynony mous SNV	p.N386S	0.02353	0.032	T	0.001
17	775 2244	G	rs373157695	exonic	KDM6B	nons ynony mous SNV	p.R880G	0.005882	0.0005	T	21.7
7	100488658	С	n 1799 806	exonic	ACHE	nonsynonymous SNV	p.P592R	0.4882	0.473	T	18.14
18	44560875	A	m2010834	exonic	TCEB3B	nons ynony mous SNV	p.C254F	0.5353	0.5058	T	0.003
x	32486806	G	ns72468667	exonic	DMD	nons ynony mous SNV	p.E983Q	0.005882	0.0015	T	22.3
20	254 56698	T	в 35666277	exonic	NINL	nons ynony mous SNV	p.D1077N	0.04118	0.0447	T	11.54
2	149241063	A	rs72861124	intronic	MBD5			0.01176	0.0042	T	15.05
22	40662984	С	rs 14370 8410	exonic	TNRC6B	nons ynony mous SNV	p.G917A	0.005882	0.0041	T	13.74
x	32509625	С	n:72468-681	exonic	DMD	nons ynony mous SNV	p.N789K	0.01765	0.0077	T	21.8
4	114278277	T	n3733617	exonic	ANK2	nons ynony mous SNV	p.P2835S	0.04706	0.09	T	6.374
17	775 0936	G	n 73233 606	exonic	KDM6B	nons ynony mous SNV	p.S444G	0.02353	0.0419	T	1.341
17	7750903	С	rs 13839 5797	exonic	KDM6B	nons ynony mous SNV	p.S433P	0.005882	0.0162	T	13.09
x	31496350	T	n 1800 280	exonic	DMD	nons ynony mous SNV	p.R208Q	0.9471	0.9045	T	17.1
6	157150496	G	m17318151	exonic	ARIDIB	nons ynony mous SNV	p.1560V	0.01765	0.0129	T	0.001
7	151877127	T	rs13231116	exonic	KMT2C	nons ynony mous SNV	p.P2412T	0.04118	0.0191	T	3.632
19	9452698	A	ns74575837	exonic	ZNF559	nons ynony mous SNV	p.E255K	0.01176	0.0188	T	18.6
11	70805674	С		exonic	SHANK2	unknown		0.005882		T	0.506
20	254 56793	T	rs202203038	exonic	NINL	nons ynony mous SNV	p.G1045E	0.005882	0.0002	T	0.001
7	91603056	T	rs 14240 1936	exonic	AKAP9	nons ynony mous SNV	p.S27L	0.005882	0.0017	T	17.66
18	44560429	A	rs892.586	exonic	TCEB3B	nonsynonymous SNV	p.A403S	0.5941	0.571	T	0.002
X	31986607	A	n 1800 273	exonic	DMD	nons ynony mous SNV	p.R814W	0.04118	0.026	T	25.3
17	3594291	T	rs372259448	exonic	P2RX5	nons ynony mous SNV	p.L.107M	0.005882	2.64E-05	T	22.7
19	39221780	A	rs563664489	exonic	CAPN12	nons ynony mous SNV	p.V681L	0.005882	9.14E-06	T	23.5
4	857 15702	С	rs 14840 7700	exonic	WDFY3	nons ynony mous SNV	p.S1153A	0.005882	0.0009	T	26.8
16	213 8508	C	n9209	exonic	TSC2	nons ynony mous SNV	p.S1707T	0.005882	0.003	T	0.307
6	157507698	С	rs 11 3232 635	intronic	ARIDIB			0.03 529	0.0266	T	1.267
7	91630620	T	ns6964587	exonic	AKAP9	nons ynony mous SNV	p.M4631	0.3765	0.3829	T	0.443
18	44561100	G	m2571028	exonic	TCEB3B	nonsynonymous SNV	p.R179P	0.5647	0.5614	T	0.249
x	32632470	A	rs375337020	exonic	DMD	nons ynony mous SNV	p.P470S	0.01176	1.16E-05	T	20.8
X	32509441	A	rs 18792 6894	exonic	DMD	nons ynony mous SNV	p.T851S	0.005882	0.0001	T	0.01
20	49509113	A	rs375998490	exonic	ADNP	nons ynony mous SNV	p.A713V	0.005882	1.65E-05	Т	12.75
17	29645473	T	rs 14093 3050	exonic	EVI2A	nons ynony mous SNV	p.G187S	0.005882	0.0032	T	24.9
18	445 60300	T	m3744863	exonic	TCEB3B	nons ynony mous SNV	p.A446T	0.5353	0.506	T	19.87
7	91732083	A	rs 14185 6443	exonic	AKAP9	nons ynony mous SNV	p.R3758H	0.005882	0.0016	T	21.6
x	32503194	С	rs228406	exonic	DMD	nons ynony mous SNV	p.D874G	0.6294	0.7211	T	8.366
5	143 58417	G	rs773220678	exonic	TRIO	nons ynony mous SNV	p.N726S	0.005 882	8.25E-06	T	16.28

7	151860113	Α		exonic	KMT2C	nons ynony mous SNV	p.P3517S	0.005882		т	11.92
11	119213626	c		exonic	MFRP	nons ynony mous SNV	p.S404R	0.005 882		т	16.61
9	96422544	A	rs376063250	exonic	PHF2	nons ynony mous SNV	p.R467Q	0.005882	2.19E-05	T	6.452
5	14507299	T	rs 20033 7620	exonic	TRIO	nons ynony mous SNV	p. A2894 V	0.005 882	2.49E-05	т	23
11	708 29901	T	rs73521173	exonic	SHANK2	unknown	p. ready	0.01176	0.0208	T	18.50
	157431662						- A262T		0.0007		26.9
6	270 18841	Λ.	rs 147784000	exonic	ARID1B GABRB3	nons ynony mous SNV	p.A767T	0.01765	0.0058	T	16.19
		A	rs25409	exonic		nons ynony mous SNV	p.P11S				
18	445 60038	A	n 72921303	exonic	TCEB3B	nons ynony mous SNV	p.C533F	0.01176	0.0119	T	23.8
20	254 84623	A	n 13044759	exonic	NINL	nons ynony mous SNV	p.R276W	0.04706	0.036	T	22.4
X	31496398	С	rs 1800 279	exonic	DMD	nons ynony mous SNV	p.H192 R	0.02353	0.0263	T	1.633
11	119216504	T	ns3814762	exonic	MFRP	nons ynony mous SNV	p.V136M	0.3059	0.2664	T	0.239
21	41450656	T	rs 20053 2632	exonic	DSCAM	nons ynony mous SNV	p.A1557T	0.005882	0.0002	T	15.92
7	151859683	A	n 74483 926	exonic	KMT2C	nons ynony mous SNV	p. S3 660L	0.005882	0.0477	T	8.146
5	653 07924	G	ns 61758 158	exonic	ERBB2IP	nons ynony mous SNV	p.1119V	0.01176	0.0098	T	5.207
20	25472105	A	rs 14137 6094	exonic	NINL	nons ynony mous SNV	p.A456V	0.005882	0.0007	T	1.037
7	151949068	G	ns3735156	exonic	KMT2C	nons ynony mous SNV	p.R526P	0.03529	0.0768	T	15.75
7	117358107	С	rs 14208 9340	exonic	CTTNBP2	nons ynony mous SNV	p.T1571A	0.005882	0.0014	т	9.618
X	32429940	С	ns 28715 870	exonic	DMD	nons ynony mous SNV	p.F47V	0.005882	0.0098	T	9.041
1	151377922	С	rs 19963 9268	exonic	POGZ	nons ynony mous SNV	p.S1102 G	0.005882	2.47E-05	т	6.906
18	445 60678	c	13177077200	exonic	TCEB3B		p.L320V	0.005 882	2.4711-00	T	9.5
3	11070958	Λ	rs 11 2095 333	exonic	SLC6A1	nons ynony mous SNV	p.L415I	0.005 882	0.0034	T	20.1
						nors ynony mous SNV				T	
17	29653037	G	rs 14732 7414	exonic	NF1	nons ynony mous SNV	p.11658V	0.005882	0.0037		7.41
20	25485659	C	n 34585 177	exonic	NINL	nons ynony mous SNV	p.S 19 1R	0.005882	0.0014	T	14.74
11	67926306	T	rs550206217	exonic	KMT5B	nons ynony mous SNV	p.A263 T	0.005 882	4.96E-05	T	1.894
7	91714951	T	rs 14934 1527	exonic	AKAP9	nons ynony mous SNV	p. S2 992L	0.005 882	0.0002	T	25.7
14	21861835	С	rs 148494847	exonic	CHD8	nons ynony mous SNV	p.D2040G	0.005882	0.0018	T	22.3
20	25442190	С	rs 13927 8158	exonic	NINL	nons ynony mous SNV	p.L1222V	0.005882	0.0032	T	15.3
21	479 75907	G	rs 57313 9009	exonic	DIP2 A	nons ynony mous SNV	p.K1130R	0.005 882	0.0011	T	23.1
19	392 29089	G	n 12983 010	exonic	CAPN12	nons ynony mous SNV	p.C287R	0.07059	0.081	T	13.8
19	9453511	С		exonic	ZNF559	nons ynony mous SNV	p.E526Q	0.005 882		T	7.53
X	31893307	G	rs 1800 275	splicing	DMD			0.2765	0.2781	T	15.6
7	151848538	С	rs139111507	exonic	KMT2C	nons ynony mous SNV	p.L42 19V	0.005882	0.0031	T	0.00
17	7752523	С	n 61764072	exonic	KDM6B	nons ynony mous SNV	p.K973Q	0.02353	0.0147	T	24.1
9	96436037	Λ	ns41276200	exonic	PHF2	nons ynony mous SNV	p.S840N	0.01176	0.011	T	8.69
2	1492 2802 6	c	841270200	exonic	MBD5	nons ynony mous SNV	p.E838D	0.005 882	0.011	T	10.8
17		т							0.0104	T	11.9
	3582954		ns 61748 727	exonic	P2RX5	nons ynony mous SNV	p.E373K	0.005882			
11	4567335	G	ts 2657 167	exonic	OR52M1	nons ynony mous SNV	p.S305R	0.4235	0.3922	T	0.00
5	65321311	T	ıs 3213 837	exonic	ERBB2IP	nons ynony mous SNV	p.S274L	0.1412	0.1546	T	16.7
17	7751140	T		exonic	KDM6B	nons ynony mous SNV	p.P512S	0.005882		T	0.94
11	70666499	Α	rs 11 5457 448	exonic	SHANK2	unknown		0.005882	0.0105	T	22.4
17	29645538	T	rs 14790 9684	exonic	EVI2A	nons ynony mous SNV	p.S 165Y	0.005882	0.0006	T	7.04
11	67925546	С	rs 14445 8991	exonic	KMT5B	nons ynony mous SNV	p.N516S	0.005882	0.0028	T	0.00
7	91603115	T	n:35669569	exonic	AKAP9	nons ynony mous SNV	p.H47Y	0.005882	0.0081	T	0.00
6	99894086	G	is 41288 947	exonic	USP45	nons ynony mous SNV	p.R.521T	0.3 824	0.276	T	8.62
7	91714911	T	ns 1063 242	exonic	AKAP9	nons ynony mous SNV	p.P2979S	0.9941	0.9962	Т	1.51
19	39221513	T		exonic	CAPN12	nons ynony mous SNV	p.M7131	0.005882		T	21.
4	114276906	Α	rs 141191319	exonic	ANK2	nons ynony mous SNV	p.E2378K	0.005882	0.0026	Т	7.9
14	21896112	T	rs 76869 0204	exonic	CHD8	nons ynony mous SNV	p.S506N	0.005882	8.28E-06	т	12.2
20	49508584	T			ADNP		-	0.005 882	9.89E-05	T	17.4
			rs 75056 8080	exonic		nons ynony mous SNV	p.S889R				
8	61654298	Λ	n;41272435	exonic	CHD7	nons ynony mous SNV	p.S103T	0.01176	0.0116	T	19.7
21	41725625	T	n41395652	exonic	DSCAM	nons ynony mous SNV	p.R234H	0.01765	0.0303	T	22.
18	445 59844	Α	m61743.415	exonic	TCEB3B	nons ynony mous SNV	p.P598S	0.01176	0.0119	T	23.
X	323 83146	T	n 16990 264	exonic	DMD	nons ynony mous SNV	p.N331K	0.005 882	0.0076	T	20.
2	192 6507	С		exonic	MYTIL	nons ynony mous SNV	p.N3 45S	0.005 882		T	0.0
18	445 59730	T	n 78014467	exonic	TCEB3B	nons ynony mous SNV	p.G6368	0.04706	0.0227	T	9.88
19	518 57738	A	n 79338 777	exonic	ETFB	nons ynony mous SNV	p.P52L	0.07647	0.0739	T	19.4
5	170725810	T	rs755426271	exonic	RANBP17	nons ynony mous SNV	p.A1072V	0.005882	8.25E-06	T	11.4
X	703 89349	T	rs370863612	exonic	NLGN3	nons ynony mous SNV	p.P610L	0.005 882	2.42E-05	T	17.2
7	91732041	С	rs 1483 18643	exonic	AKAP9	nons ynony mous SNV	p.G3744A	0.005 882	9.89E-05	T	24.
7	91712609	С	rs 14487 5383	exonic	AKAP9	nons ynony mous SNV	p.K2762N	0.005882	0.0013	T	0.21
11	705 07842	T	rs 14958 1714	exonic	SHANK2	nons ynony mous SNV	p.A11T	0.005 882	9.06E-05	T	17.0
20	25434139	T	is 17857 107	exonic	NINL	nons ynony mous SNV	p.R13-66H	0.1059	0.0912	T	15.4
	114276880	c	n 28377 576				p. V2369 A		0.0912	T	0.00
4				exonic	ANK2	nons ynony mous SNV		0.1176			
20	25472061	A	rs 56761 0080	exonic	NINL	nons ynony mous SNV	p.A471S	0.005882	8.30E-06	T	6.10
18	445 85955	A	ts 7233 515	exonic	KATNAL2	nons ynony mous SNV	p.S88N	0.4588	0.4236	T	0.01
22	40552119	Α	ns96112.80	exonic	TNRC6B	nons ynony mous SNV	p.V16M	0.1	0.111	T	23.
17	775 1531	T	rs201403136	exonic	KDM6B	nons ynony mous SNV	p.P642L	0.005882	0.004	T	23.
11	708 30059	Α	rs 19971 7803	exonic	SHANK2	unknown		0.005 882	9.38E-05	T	19.5
20	25439036	A	ns41310175	exonic	NINL	nons ynony mous SNV	p.R1276C	0.02353	0.0323	T	12.5
11	67925354	С	rs758639921	exonic	KMT5B	nons ynony mous SNV	p.Q580 R	0.005 882	1.65E-05	T	11.1
17	775 0010	С	n 79548 905	exonic	KDM6B	nons ynony mous SNV	p.E221D	0.01176	0.0191	T	13.2
X	32662355	Α	n:34155804	exonic	DMD	nons ynony mous SNV	p.T401S	0.005 882	0.0039	T	8.4
6	33399778	T	ns 9394 145	intronic	SYNG API			0.2588	0.3066	T	12.4
7	100490797	T	ıs 1799 805	exonic	ACHE	nons ynony mous SNV	p.H353N	0.05 882	0.0423	т	12.
11	119216555	c	n 4639950		MFRP		p.H353N p.H119V	0.005882	0.0423	T	0.00
				exonic		nons ynony mous SNV					
19	9452879	A	n 16979 670	exonic	ZNF559	nons ynony mous SNV	p.T3 15N	0.02353	0.0211	T	0.01
17	29623288	T	rs11080149	exonic	OMG	nons ynony mous SNV	p.G21D	0.1353	0.0927	T	19.6
2	183792911	G		exonic	NCKAP1	nons ynony mous SNV	p.Q1038H	0.005 882		T	22.4
9	135786904	G	is 1073 123	exonic	TSCI	nons ynony mous SNV	p.M271T	0.1647	0.129	T	6.707

21	479 18662	G	m7283507	exonic	DIP2A	nonsynonymous SNV	p.P191A	0.09412	0.0544	T	23.3
2	183848102	T	rs376081149	exonic	NCKAP1	nons ynony mous SNV	p.M338K	0.005882		T	22
6	157469914	С		exonic	ARIDIB	nonsynonymous SNV	p.G890A	0.005882		T	11.44
4	85612894	C	rs 17368 018	exonic	WDFY3	nons ynony mous SNV	p.1303.2V	0.005882	0.0072	T	3.614
19	39230834	A	rs750649524	exonic	CAPN12	nons ynony mous SNV	p.R196W	0.005882	1.18E-05	T	24.9
2	50574038	A	ns 13413 205	exonic	NRXN1	nonsynonymous SNV	p.G17V	0.05882	0.0999	T	0.914
21	41725630	С	ns 2297 270	exonic	DSCAM	nons ynony mous SNV	p.D232E	0.07647	0.1066	T	0.002
5	653 50279	T	rs 14249 6054	exonic	ERBB2IP	nonsynonymous SNV	p.H1045Y	0.01765	0.0071	T	7.784
4	856.57463	С	rs 76860 1762	exonic	WDFY3	nonsynonymous SNV	p.12259V	0.005882	0.0001	T	0.994
4	1403 0733 4	G	rs201001193	exonic	NAA 15	nonsynonymous SNV	p.1784V	0.005882	0.0001	T	10.9
10	28900828	A	rs 14390 9998	exonic	WAC	nons ynony mous SNV	p.P369T	0.005882	0.0002	T	22.4
11	706 66761	C		exonic	SHANK2	unknown		0.005882		T	7.874
11	119216142	A	rs 15090 2999	exonic	MFRP	nons ynony mous SNV	p.G210V	0.01176	0.0042	T	26
18	445 60123	T	ns 72921305	exonic	TCEB3B	nonsynonymous SNV	p.G505 R	0.01176	0.012	T	23.4
X	32503174	С		exonic	DMD	nonsynonymous SNV	p.R881G	0.005882		T	23.3
18	445 60 480	T	rs 13889 6768	exonic	TCEB3B	nonsynonymous SNV	p.Y386N	0.005882	0.0016	T	13.09
19	9449888	G	ns77267061	exonic	ZNF559	nonsynonymous SNV	p.D82G	0.04118	0.0624	T	23.1
17	3599205	T	rs 142863822	exonic	P2RX5	nonsynonymous SNV	p.L32Q	0.01176	0.0041	T	26.7
3	20164282	G	m41285059	exonic	K AT2B	nons ynony mous SNV	p.M467V	0.005882	0.0003	T	20.6
19	392 28244	C	n 73038948	exonic	CAPN12	nons ynony mous SNV	p.T334A	0.1941	0.1739	T	23.3
2	2253 6247 8	T	в:3738952	exonic	CUL3	nonsynonymous SNV	p.V501I	0.1	0.128	T	23
7	15194973.5	C	ns 77652 527	exonic	KMT2C	nonsynonymous SNV	p.1455M	0.05294	0.0234	T	10.78
4	114276781	T	ns61734477	exonic	ANK2	nonsynonymous SNV	p.A2336V	0.005882	0.0049	T	0.221
7	91641854	C	rs 14103 9834	exonic	AKAP9	nonsynonymous SNV	p.C1144R	0.005882	0.0004	T	20.5
18	194 18429	A	rs747233793	exonic	MIB1	nons ynony mous SNV	p.V645I	0.005882	1.65E-05	T	26.2
17	3592832	C	rs75082 0489	exonic	P2RX5	nons ynony mous SNV	p.S212C	0.005882	8.26E-06	T	22.9
4	114276408	A	m61734478	exonic	ANK2	nonsynonymous SNV	p.G22 12S	0.005882	0.0047	T	15.67
6	333.99775	A		intronic	SYNGAPI			0.005882		T	14.55
6	99930627	G	ns 17850 034	splicing	USP45			0.01176	0.0084	T	24.6
7	91726527	C	as 61757 663	exonic	AKAP9	nonsynonymous SNV	p.Q3418H	0.005882	0.0009	T	25.5
7	91667736	G	rs 150379637	exonic	AKAP9	nonsynonymous SNV	p.11448V	0.005882	0.0005	T	23.6
5	65349382	G	ns 16894812	exonic	ERBB2IP	nonsynonymous SNV	p.K746E	0.005882	0.0134	T	21.1
21	47949017	A	ns 16979 312	exonic	DIP2 A	nonsynonymous SNV	p.S329N	0.01176	0.0178	T	26.8
10	114925369	A	n 77961 654	exonic	TCF7L2	nons ynony mous SNV	p.H401Q	0.04118	0.0503	T	24.9
5	653 50481	T	m3805466	exonic	ERBB2IP	nonsynonymous SNV	p.S1112L	0.04118	0.0844	T	24.5

 $Supplemental\ Table\ S3\hbox{:}\ Top\ 5\ SNPs\ for\ each\ SRS\ subscore\ for\ variants\ in\ the\ Williams\ syndrome\ Critical\ Region$

SNP	Alt allele	MAF	Transcript ^a	Gene	Consequence	Beta	95% Confidence interval	Raw p-value	FDR	SRS sub category
rs3812316	G	0.1	NM_032951	MLXIPL	p.Q241H	4.817	1.146-8.487	0.01206	0.4101	AWR
rs13235543	T	0.12	NM_032954	MLXIPL	p.P342P	3.399	0.05103-6.746	0.05016	0.5083	AWR
rs2074754	T	0.4	NM 032408	BAZ1B	p.S679S	2.24	-0.5935 - 4.54	0.06004	0.5083	AWR
rs61438591	С	0.2		GTF2IRD1	intronic	2.426	-0.3677 - 5.22	0.09284	0.5083	AWR
rs2071307	A	0.47	NM_001081752	ELN	p.G412S	1.963	-0.2993 - 4.225	0.09305	0.5083	AWR
rs2074754	T	0.4	NM_032408	BAZ1B	p.S679S	4.145	1.496-6.794	0.003006	0.1022	COG
rs61438591	С	0.2		GTF2IRD1	intronic	3.578	0.2897-6.867	0.03618	0.6151	COG
rs17851629	G	0.21	NM_016328	GTF2IRD1	E171E	3.129	-0.1129 - 6.37	0.06229	0.706	COG
rs61010704	G	0.23		MLXIPL	intronic	2.377	-0.872 - 5.626	0.1559	0.8179	COG
rs7795181	C	0.22		VPS37D	intronic	-2.082	-5.346 - 1.183	0.2153	0.8179	COG
rs2074754	T	0.4	NM_032408	BAZ1B	p.S679S	3.172	0.7265 - 5.617	0.01307	0.2675	COM
rs61438591	C	0.2		GTF2IRD1	intronic	3.732	0.7711 - 6.692	0.01573	0.2675	COM
rs17851629	G	0.21	NM_016328	GTF2IRD1	E171E	3.241	0.2964 - 6.186	0.0341	0.3865	COM
rs3812316	G	0.1	NM_032951	MLXIPL	p.Q241H	3.122	-0.995 - 7.238	0.1414	0.7693	COM
rs3135698	С	0.06		RFC2	intronic	-4.712	-11.52 - 2.093	0.1787	0.7693	COM
rs2074754	T	0.4	NM_032408	BAZ1B	p.S679S	2.411	0.301 - 4.521	0.02808	0.8893	MOT
rs61438591	С	0.2		GTF2IRD1	intronic	2.441	1236 - 5.007	0.06597	0.8893	MOT
rs17851629	G	0.21	NM_016328	GTF2IRD1	E171E	1.862	-0.6716 - 4.396	0.1538	0.8893	MOT
rs76029572	G	0.07	NM_012453	TBL2	p.E8Q	-2.966	-7.008 - 1.075	0.1543	0.8893	MOT
rs2240357	С	0.23	NM_016328	GTF2IRD1	p.Y404Y	1.745	-0.7424 - 4.232	0.1731	0.8893	MOT
rs2074754	T	0.4	NM_032408	BAZ1B	p.S679S	2.436	-0.2729 - 5.146	0.08205	0.7104	RRB
rs61438591	С	0.2		GTF2IRD1	intronic	2.762	-0.4886 - 6.012	0.09996	0.7104	RRB
rs2071307	A	0.47	NM_001081752	ELN	p.G412S	2.222	-0.4162 - 4.86	0.1029	0.7104	RRB
rs61010704	G	0.25		MLXIPL	intronic	2.476	-0.6671 - 5.619	0.1269	0.7104	RRB
rs3812316	G	0.1	NM_032951	MLXIPL	p.Q241H	3.245	-1.159 - 7.649	0.1528	0.7104	RRB

Supplemental Table S4: Top 5 SNPs for each SRS subscore for variants in 71 genes associated with Autism spectrum disorder

SNP	Alt allele	MAF	Transcript ^a	Gene	Consequence	Beta	95% Confidence interval	Raw p-value	FDR	SRS sub category
rs45599933	A	0.06		CAPN12	intronic	11.72	4.596 – 18.85	0.001854	0.1735	AWR
rs12983010	G	0.07	NM_144691	CAPN12	p.C287R	10.47	4.028 - 16.91	0.002085	0.1735	AWR
rs3733615	G	0.16	NM_001148	ANK2	p.Q2370Q	6.806	2.486 - 11.13	0.0028	0.1735	AWR
rs33966911	T	0.11	NM_001148	ANK2	p.P1823P	7.609	2.764 - 12.45	0.002885	0.1735	AWR
rs28377576	C	0.11	NM_001148	ANK2	p.V2369A	7.578	2.734 - 12.45	0.002991	0.1735	AWR
rs3750354	T	0.39		PHF2	intronic	-6.727	-10.582.875	0.0009956	0.1897	COG
rs7036592	T	0.39		PHF2	intronic	-6.727	-10.582.875	0.0009956	0.1897	COG
rs10992813	A	0.37		PHF2	intronic	-6.476	-10.432.527	0.001922	0.2441	COG
rs3763605	G	0.63		PHF2	intronic	5.41	1.399 - 9.421	0.009964	0.5607	COG
rs3750358	C	0.63		PHF2	intronic	5.311	1.276 - 9.345	0.01178	0.5607	COG
rs112318565	G	0.06		ARID1B	intronic	11.63	3.582 - 19.67	0.005892	0.8653	COM
rs12553775	A	0.11		PHF2	intronic	7.386	1.482 - 13.29	0.01647	0.8653	COM
rs140682	C	0.48	NM_000810	GABRA5	p.V202V	-4.218	-7.6590.7778	0.01867	0.8653	COM
rs4351684	G	0.51		ILF2	intronic	-4.662	-8.5460.7782	0.02119	0.8653	COM
rs1805482	A	0.35	NM_000834	GRIN2B	p.S555S	4.615	0.6839 - 8.546	0.0241	0.8653	COM
rs30612	C	0.84	NM_007118	TRIO	p.T1700T	6.392	2.773 - 10.01	0.0008803	0.3354	MOT
rs12983010	G	0.07	NM_144691	CAPN12	p.C287R	8.842	2.839 - 14.84	0.005044	0.6218	MOT
rs45599933	A	0.06		CAPN12	intronic	9.766	3.115 - 16.42	0.005181	0.6218	MOT
rs7005873	A	0.74		CHD7	intronic	-4.68	-7.9721.388	0.006735	0.6218	MOT
rs27100	T	0.43		TRIO	intronic	-4.171	-7.1821.161	0.008161	0.6218	MOT
rs7005873	A	0.74		CHD7	intronic	-6.41	-10.542.279	0.00323	0.5602	RRB
rs1805482	A	0.35	NM_000834	GRIN2B	p.S555S	6.074	1.944 - 10.2	0.005112	0.5602	RRB
rs112318565	G	0.06		ARID1B	intronic	12.3	3.682 - 20.91	0.006502	0.5602	RRB
rs7844902	G	0.72		CHD7	intronic	-5.388	-9.4831.294	0.01186	0.5602	RRB
rs5891777	TGGACT	0.74		CHD7	intronic	-5.144	-9.2631.025	0.01665	0.5602	RRB

Supplemental Table S5: Top 5 SNPs for each SRS subscore for variants discovered across the whole exome

SNP	Alt allele	MAF	Transcript ^a	Gene	Consequence	Beta	95% Confidence interval	Raw p-value	FDR	SRS sub category
rs35430620	T	0.79		PCTP	intronic	9.39	5.767 - 13.01	2.57E-06	0.1711	AWR
rs3803300	С	0.84	NM 001137601	ZBTB42	UTR3	-11.08	-15.716.448	1.20E-05	0.3714	AWR
Var-6-31322340	A	0.07		HLA-B	intronic	-12.76	-18.217.318	1.67E-05	0.3714	AWR
rs1804020	A	0.27	NM_001014972	ZFN638	p.V1726M	-8.316	-12.034.604	3.55E-05	0.4874	AWR
rs2960061	C	0.85		PCTP	intronic	10.29	5.69 - 14.9	3.66E-05	0.4874	AWR
rs527221	С	0.11	NM_001288765	DMPK	p.L334V	16.4	10.69 - 22.12	2.94E-07	0.01959	COG
rs572634	С	0.11		DMPK	intronic	14.76	9.043 - 20.48	2.80E-06	0.09309	COG
rs2292288	G	0.43	unknown	SYNM	unknown	-8.746	-12.54.996	1.81E-05	0.4029	COG
rs2305914	T	0.08		WBP2	intronic	-15.78	-22.868.704	3.85E-05	0.6403	COG
rs1064512	С	0.08	NM_003038	SLC1A4	p.G37R	13.12	7.061 - 19.18	6.14E-05	0.8187	COG
rs2076404	A	0.69		TGM6	intronic	-8.695	-12.355.038	1.30E-05	0.4552	COM
rs2546028	С	0.55	NM_175872	ZNF792	UTR5	-6.561	-9.3943.728	2.05E-05	0.4552	COM
rs2546029	G	0.55	NM 175872	ZNF792	UTR5	-6.561	-9.3943.728	2.05E-05	0.4552	COM
rs491873	T	0.59		TUBA3C	intronic	-7.645	-11.034.258	3.16E-05	0.5256	COM
rs1811	G	0.46	NM_001099437	ZNF30	p.Q124R	6.464	3.404 - 9.524	8.81E-05	0.734	COM
rs2651080	С	0.31	NM_175872	ZNF792	p.T333T	8.116	5.113 - 11.12	1.09E-06	0.02169	MOT
rs1345658	A	0.46	NM_001099437	ZNF30	p.R380K	6.535	4.07 - 9.001	1.63E-06	0.02169	MOT
rs1811	G	0.46	NM_001099437	ZNF30	p.Q124R	6.535	4.07 - 9.001	1.63E-06	0.02169	MOT
rs2651079	T	0.46	NM_175872	ZNF792	p.R177Q	6.535	4.07 - 9.001	1.63E-06	0.02169	MOT
rs2651109	C	0.46	NM_001099437	ZNF30	p.S215S	6.535	4.07 - 9.001	1.63E-06	0.02169	MOT
rs2546028	С	0.55	NM_175872	ZNF792	UTR5	-6.773	-9.8313.715	4.26E-05	0.5321	RRB
rs2546029	G	0.55	NM_175872	ZNF792	UTR5	-6.773	-9.8313.715	4.26E-05	0.5321	RRB
rs2059404	A	0.58		ARID2	intronic	-8.358	-12.164.558	4.75E-05	0.5321	RRB
rs7315731	T	0.42	NM 004719	SCAF11	p.V627I	-8.358	-12.164.558	4.75E-05	0.5321	RRB
rs13044892	A	0.06		ATP9A	intronic	-16.79	-24.589.009	6.57E-05	0.5321	RRB

^a "." Refers to information that is not applicable

Chapter 3: The effects of *Gtf2ird1* and *Gtf2i*DNA binding on transcription and behavior supports the important function of the N-terminal end of *Gtf2ird1*.

Nathan Kopp, Katherine McCullough, Susan E. Maloney, Joseph Dougherty

3.1 Abstract

The two transcription factors Gtf2i and Gtf2ird1 have been thought to play a role in the craniofacial, cognitive, and behavioral phenotypic domains of WS. There exist many mouse models of each of these transcription factors that show behavioral phenotypes. Further, some phenotypes such as balance, anxiety, and social behavior, mouse models of both transcription factors show deficits in the same direction, however the affect of these genes on behavior have not been studied in combination. To examine how these genes could mediate behavioral consequences we described the genomic binding sites of these transcription factors in the developing brain. We then characterized two new mouse models generated using the CRISPR/Cas9 system to test how mutating both Gtf2i and Gtf2ird1 can modify the transcriptional and behavioral phenotype observed in a single Gtf2ird1 mutant. The Gtf2ird1 mutant was shown to make a N-truncated protein that has decreased capacity to bind the promoter of *Gtf2ird1* but still can bind genome-wide. Despite little differences in DNA-binding and transcriptome-wide expression, the mutation still caused balance, marble burying, and activity phenotypes, supporting a functional role for the N-terminus of Gtf2ird1. Mutating both Gtf2i and Gtf2ird1 did not modify the transcriptomic or behavioral phenotypes, suggesting that Gtf2ird1 mutation largely drives the behavioral phenotypes observed.

3.2 Introduction

The Williams syndrome critical region (WSCR) contains 26 genes that are typically deleted in Williams syndrome (WS) (OMIM#194050). The genes in this region are of interest for their potential to contribute to the unique physical, cognitive, and behavioral phenotypes of WS, which include craniofacial dysmorphology, mild to severe intellectual disability, poor visual spatial cognition, balance and coordination problems, and a characteristic hypersocial personality

(2, 13, 15). Single gene knock out mouse models exist for many of the genes in the region, with differing degrees of face validity to the phenotypes of WS (92–96, 101). Two genes have been highlighted in the human and mouse literature as playing a large role in the social and cognitive tasks, *Gtf2i* and *Gtf2ird1*. Mouse models of each gene have shown social phenotypes as well as balance and anxiety phenotypes (92, 96, 97, 101, 152, 153). Since there is evidence that each gene affects similar behaviors, we set out to test the hypothesis that that knocking down both genes simultaneously would lead to more severe phenotypes, suggesting that multiple genes in the WSCR locus affect similar behaviors. Investigating both genes together, rather than individually could provide a more complete understanding of how the genes in the WSCR contribute to the phenotypes of WS.

Gtf2i and Gtf2ird1 are part of the General transcription factor 2i family of genes. A third member Gtf2ird2 is located in the WSCR that is variably deleted in patients with WS that have larger deletions(41). This gene family has arisen from gene duplication events, which resulted in high sequence homology between the genes (68). The defining feature of this gene family is the presence of the helix-loop-helix I repeats, which are involved in DNA and protein binding (154). Gtf2i has roles that include regulating transcriptional activity in the nucleus, but this multifunctional transcription factor also resides in the cytoplasm where it conveys messages from extracellular stimuli and regulates calcium entry into the cell (74, 76). So far, Gtf2ird1 has only been described in the nucleus of cells and is thought to regulate transcription and associate with chromatin modifiers (79). The DNA binding of these two transcription factors has been studied in ES cells and embryonic craniofacial tissue. They recognize similar and disparate genomic loci, suggesting that both genes interact to regulate specific regions of the genome (84, 155). However, the DNA binding of these genes has not been studied in the developing brain,

which could provide insight on how the general transcription factor 2i family contributes to cognitive and behavioral phenotypes.

We performed ChIP-seq on Gtf2i and Gtf2ird1 in the developing mouse brain to define where these genes bind and also to test the downstream consequences of disrupting the binding. We used the CRISPR/Cas9 system to make a mouse model with a mutation in just *Gtf2ird1* and a mouse model with mutations in both *Gtf2i* and *Gtf2ird1* to test how adding a *Gtf2ird1* mutation modifies the affects of *Gtf2ird1* mutation. We showed that the mutation in *Gtf2ird1* resulted in the production of an N-truncated protein that disrupts the binding of Gtf2ird1 at the Gtf2ird1 promoter and deregulates the transcription of *Gtf2ird1*. While there are mild consequences of the mutation on transcription genome-wide the mutant mouse exhibited clear balance and marble burying deficits, as well as increased activity. Comparing the single gene mutant to the double mutant did not reveal more severe transcriptional changes or behavioral phenotypes. This suggests that Gtf2ird1 drives the majority of the phenotypes observed in the current studies, and the N-terminal end of this protein has functional consequences on DNA-binding and behavior.

3.3 Results

conserved sites

3.3.1 Gtf2i and Gtf2ird1 bind at active promoters and

The paralogous transcription factors, *Gtf2i* and *Gtf2ird1*, have been implicated in the craniofacial and behavioral phenotypes seen in humans with WS as well as mouse models (38, 96, 97, 100, 101, 153). However, the underlying mechanisms by which the general transcription factor 2i family acts are not well understood. One approach to begin to identify how these

transcription factors can regulate phenotypes is by identifying where they bind in the genome. This has been done in ES cells and embryonic facial tissue and revealed that both of these transcription factors bind to genes involved in craniofacial development (84). However, these are not relevant tissues that could explain their affects on brain development and subsequent behavior. To overcome this we performed ChIP-seq for Gtf2ird1 and Gtf2i in the developing embryonic day 13.5 (E13.5) brain, a time point when both of these proteins are highly expressed.

We identified 1,410 peaks that were enriched in the Gtf2ird1 IP samples compared to the input. The Gtf2ird1 bound regions were strikingly enriched in the promoter of genes and along the gene body, more so than would be expected by randomly sampling the genome (**Figure 1A**) $(\chi^2 = 1537.8, d.f. = 7, p < 2.2x10^{-16})$. The bound peaks were found mostly in H3K4me3 bound regions (Fisher's exact test, p<2.2x10⁻¹⁶), suggesting that they are in active sites in the genome. While the Gtf2ird1 bound regions were also enriched in repressed regions of the genome as defined by H3K27me3 marks (Fisher's exact test, p<2.2x10⁻¹⁶), 94% of the peaks were in H3K4me3 regions opposed to the 11% of Gtf2ird1 peaks found in H3K27me3 regions (**Figure 1B**), suggesting the Gtf2ird1 may have more of a role in activation than repression.

To understand the common function of the genes that have Gtf2ird1 bound at the promoter we performed GO analysis. The top ten results were consistent with the functions previously described for Gtf2ird1, specifically regulation of transcription and chromatin organization, and we highlighted new categories, such as protein ubiquination (**Figure 1C**). To further test if these regions have functional consequences we compared the conservation of the Gtf2ird1 peaks to a random sample of the genome and found that the Gtf2ird1 peaks are more conserved ($t=18.131, d.f.=2403, p < 2x10^{-16}$) (**Figure 1D**). We conducted motif enrichment analysis using HOMER to identify other factors that share binding sites with Gtf2ird1 (**Figure**

1E). The GSC motif, which is similar to the core RGATTR motif for Gtf2i and Gtf2ird1, was identified in 4.64% of the targets (65). Interestingly, the CTCF motif was found at 11% of the Gtf2ird1 targets, further supporting its role in chromatin organization.

Gtf2i Chip-seq showed similar results to that of Gtf2ird1. We identified 1,755 WT Gtf2i peaks that had significantly higher coverage in the WT IP compared to the KO IP (Supplemental Figure 1A). These peaks were significantly enriched for promoter regions as well as the gene body when compared to random genomic targets (**Figure 2A**)($\chi^2 = 911.63$, d.f.=7, $p < 2.2x10^{-16}$). Similar to Gtf2ird1, the majority of the Gtf2i peaks (78.7%) overlapped H3K4me3 peaks (Fisher's exact test, p $\leq 2.2 \times 10^{-16}$), with a smaller subset of peaks (20.7%) overlapping with the H3K27me3 mark (Fisher's exact test p<2.2x10⁻¹⁶). This suggests that these peaks are located mainly in active regions of the genome (Figure 2B). Summarizing the common functions of these target genes by GO analysis, showed enrichment for biological processes such as intracellular signal transduction and phosphorylation (Figure 2C). For example, Gtf2i binds within the gene body of the Src gene (Figure 2D), which has been shown to phosphorylate Gtf2i itself to activate its transcriptional activity as well as regulate calcium entry into the cell (74, 76). Along with binding to gene promoters, the Gtf2i binding sites are significantly more conserved than random sampling the genome, further suggesting important functional roles of these regions (Figure 2E). Motif enrichment of the Gtf2i peaks revealed GC rich binding motifs such as for the KLF/SP family of transcription factors. Interestingly, the Lhx family of transcription factors motif is enriched. Finally, we see an enrichment of the CTCF motif, which Gtf2i has been shown to help target CTCF to specific genomic regions (156) (Figure 2F).

3.3.2 *Gtf2i* and *Gtf2ird1* binding sites have distinct features yet overlap at a subset of promoters

One way in which Gtf2i and Gtf2ird1 can interact is by binding the same sites in the genome. We set out to determine how the binding regions of these two genes were similar or different, as well as directly scanning for shared targets. First, we compared the Gtf2i and Gtf2ird1 chip peaks and found that the proportion of annotations of the binding sites are significantly different ($\chi^2 = 282.84$, d.f.=7, p < 2.2×10^{-16}) (**Figure 3A**). While both transcription factors mainly bind in promoters and the gene body, Gtf2ird1 has a higher proportion of peaks at the promoter compared to Gtf2i, whereas Gtf2i has more peaks that fall in intergenic regions when compared to Gtf2ird1. Interestingly, when we compared them directly to each other the Gtf2ird1 bound peaks were significantly more conserved than the Gtf2i bound peaks $(t=7.81, d.f.=2736.5, p=8.2\times10^{-15})$ (Figure 3B). Next, to identify common targets, we looked at the overlap of the genes that had either of the transcription factors at their promoter, and we identified a significant overlap of 148 genes (Fisher's exact test $p < 1x10^{-38}$) (**Figure 3C**). The GO functions of the overlapped genes highlight specific roles in synaptic functioning and signal transduction (**Figure 3D**). The *Mapk14* gene is an example of a gene involved in signal transduction that has both Gtf2i and Gtf2ird1 bound at its promoter (Figure 3E). Interestingly, Mapk14 is known to phosphorylate Baz1b (157), another transcription factor in the WSCR. Shared targets such as this one suggest there are points of convergence where having both genes deleted, such as in WS, might result in synergistic downstream impacts, and further implicates another gene in the WSCR.

3.3.3 Frameshift mutation in *Gtf2ird1* results in truncated protein and affects DNA binding at the *Gtf2ird1* promoter

To investigate the functional role of Gtf2ird1 and Gtf2i at these bound sites and understand how these two genes interact, we set out to make loss of function models of Gtf2ird1 individually and a double mutant with mutations in both Gtf2i and Gtf2ird1. We designed two gRNAs, one for Gtf2ird1 and one for Gtf2i, and injected them simultaneously into FVB mouse embryos, to obtain single gene mutations, as well as double gene mutations. We first characterized the consequences of a one base pair adenine insertion in exon three of Gtf2ird1. This is an early constitutively expressed exon, and the frameshift mutation introduced a premature stop codon in exon three, which we expected to trigger nonsense-mediated decay (**Figure 4A**). We crossed heterozygous mutant animals to analyze *Gtf2i* and *Gtf2ird1* transcript and protein abundance in heterozygous and homozygous mutants compared to WT littermates (Figure 4B). The western blots and qPCR were performed using the whole brain at embryonic day 13.5 (E13.5). As expected, the Gtf2ird1 mutation did not affect the protein or transcript levels of Gtf2i (Figure 4C,D). Contrary to our prediction that the frameshift mutation would cause nonsense-mediated decay, we observed an ~0.8 CT increase in Gtf2ird1 transcript with each copy of the mutation and a 40% reduction of the protein in homozygous mutants compared to WT with no significant difference between the WT and heterozygous mutants (Figure 4E, F). This suggests that the mutation did have an effect on protein abundance and disrupted the normal transcriptional regulation of the gene.

Similar results were reported in a mouse model that deleted exon two of *Gtf2ird1*, which showed reduced levels of an N-terminally truncated protein caused by a translation re-initiation event at methionine-65 (66). We noticed a slight shift in the homozygous mutant band, which may correspond to the loss of the N-terminal end of the protein. The N-terminal end codes for a

conserved leucine zipper, which participates in dimerization as well as DNA-binding (66, 158). Mutating the leucine zipper was shown to affect binding of the protein to the Gtf2ird1 upstream regulatory (GUR) element that is located at the promoter of *Gtf2ird1* (**Figure 4G**). Given the previous findings that Gtf2ird1 negatively autoregulates its transcription and mutating the leucine zipper affects binding to the GUR, we hypothesized that the frameshift mutation diminished the ability of Gtf2ird1 to bind to its promoter resulting in increased transcript abundance. We tested this by performing ChIP-qPCR in the E13.5 brain in WT and *Gtf2ird1* mutants. In the WT brain, Gtf2ird1 IP enriched for the GUR 13-20 times over off-target sequences, which was significantly higher than the Gtf2ird1 IP in the Gtf2ird1 brain (**Figure 1H,I**). Taken together, nonsense transcripts of *Gtf2ird1* with a stop codon in exon three can reinitiate at a lower level to produce an N-truncated protein with diminished binding capacity at the GUR element.

3.3.4 Truncated Gtf2ird1 does not affect binding genome wide

Given that the one base pair insertion did not result in a full knock out of the protein, but did affect its DNA binding capacity at the GUR of *Gtf2ird1*, we tested whether the mutant was a loss of function for all DNA binding. We performed ChIP-seq in the E13.5 *Gtf2ird1*^{-/-} mutants and compared it to the WT Chip-seq data to test the consequences of the mutation on DNA binding genome-wide. The ChIP-seq data confirmed the decrease in binding at the TSS of *Gtf2ird*, however, a small peak is still present at the TSS in the mutant animal, suggesting that the mutation has greatly decreased the binding at this locus (**Figure 4J**). We compared the coverage of the genomic regions identified in the WT ChIP-seq data as bound by Gtf2ird1 in the mutant and WT samples. Surprisingly, the only peak that was identified at an FDR < 0.1 as having differential coverage between the two genotypes was the peak at the TSS of Gtf2ird1

(**Figure 4K**). This suggests that this frameshift mutation has a very specific consequence on how the protein binds to its own promoter that does not affect its binding elsewhere in the genome. The Gtf2ird1 promoter has two instances of the R4 core motif in the sense direction and one instance of the motif in the antisense orientation. We searched the sequences under the identified peaks for similar orientations of the binding motif and found only three other peaks, of which none showed any difference in coverage between genotypes. None of the three other peaks matched the exact spacing of the three motifs found in the Gtf2ird1 promoter. This suggests that the leucine zipper is important for a specific configuration of binding sites that is only present in this one instance in the mouse genome.

3.3.5 Gtf2ird1 frameshift mutation shows mild transcriptional differences

The N-truncated Gtf2ird1 clearly affected the expression levels of *Gtf2ird1* and affected its binding at the promoter of *Gtfi2rd1*. Although we didn't see binding genome-wide perturbed, , it is possible losing the N terminal altered the proteins ability to recruit other transcriptional coregulators, and thus impact expression. Therefore, we tested the effects of this mutation on transcription genome-wide in the E13.5 brain. We compared the whole brain transcriptome of WT littermates to either heterozygous or homozygous mutants.

Strikingly similarly to the ChIP-seq data, the only transcript with an FDR < 0.1 is Gtf2ird1, which was in the same direction as we saw in the qPCR (**Figure 4L** and **Supplemental Figure 2A**). We leveraged the WT ChIP-seq data to see if the presence of Gtf2ird1 at a promoter correlates with gene expression. Binning the genes according to expression level showed that the distribution of Gtf2ird1 targets was different than expected by chance ($\chi^2 = 48.83$, d.f.=3 p < 1.42×10^{-10}), suggesting that highly expressed genes are more likely to have Gtf2ird1 bound at their promoters (**Figure 4M**). To see if there was a more subtle general effect below our

sensitivity for a single gene, we tested if the bound Gtf2ird1 targets that are expressed in the brain at E13.5 as a population had their expression shifted. However, we saw only a small trend towards significance between the bound genes and unbound genes, with a mean increase in expression of 0.014 log2 CPM fold change in Gtf2ird1 targets (Kolgmogorov-Smirnov test D=0.038, p=0.079). While this is perhaps unsurprising, because the frameshift mutation did not disturb binding genome wide (**Figure 4N**), the homozygous mutant do have an overall decrease of ~ 50% protein levels which should mimic a WSCR deletion. Thus, transcriptional consequences of haploinsufficiency of this gene might be similarly small.

3.3.6 Frameshift mutation in *Gtf2ird1* is sufficient to affect behavior

Although we observed small differences in DNA binding and overall brain transcription, another Gtf2ird1 model also reported no little effects of Gtf2ird1 on expression transcriptome wide in the brain, yet the model still showed behavioral phenotypes (88, 101). Therefore we tested if our mutation had downstream consequences on adult mouse behavior. There are many single gene knock out models of *Gtf2ird1* and they each show distinct behavioral differences and in some instances the results are contradictory (39, 92, 100, 101). One consistent phenotype across models is motor coordination deficits, which is also an area of difficulty in individuals with WS. Similarly, we observed a significant effect of genotype (H₂=7.88, p =0.01945), on how long the animals could balance on a ledge. Homozygous animals fell off the ledge sooner than WT littermates (p=0.021) (**Figure 5A**). Marble burying has not been reported in other *Gtf2ird1* models, but in larger WS models that either delete the entire syntenic WSCR or delete the proximal half of the region that contains *Gtf2ird1* have shown decreased marble burying phenotypes (90, 93). We observed a similar significant effect of genotype on the number of marbles buried (F_{2.75}=7.92, p =0.00076), with the *Gtf2ird1*-in mutants burying fewer marbles than

WT (p=0.0176) and $Gtf2ird1^{+/-}$ littermates (p=0.00067) (**Figure 5B**). Reports of overall activity levels in Gtf2ird1 mouse models have been discrepant (92, 100). Here we showed that there was only a trend towards a significant main effect of genotype ($F_{2,71}$ =2.97, p=0.057) on total distance traveled in a one hour locomotor task, but there is a main effect of sex ($F_{1,71}$ =18.77, p=4.76x10⁻⁵) and a genotype by sex interaction ($F_{2,71}$ =4.98, p=0.0095) (**Figure 5C**). Activity levels were increased in the female $Gtf2ird1^{-/-}$ mutants at later time points compared to WT females, and to an intermediate extent in the $Gtf2ird1^{-/-}$ mutants (**Supplemental Figure 3A**). There were no differences in total distance traveled between the male genotypes (**Supplemental Figure 3B**). The time spent in the center of an open field is used as a measure of anxiety-like behavior in mice. Anxiety-like behaviors in Gtf2ird1 models have also been discrepant in the literature (101). Here we showed that there was only a trend for a main effect of genotype when we controlled for sex ($F_{2,71}$ =3.070, p=0.0526) (**Figure 5D** and **Supplemental Figure 3C, D**).

Finally, as individuals with WS also show high prevalence of phobias, as well as intellectual disability, we tested learning and memory using the conditioned fear task (2, 21). On day one the mice were trained to associated a tone with a footshock and we observed that the mice increased their freezing over time ($F_{2,122}=26.77$, $p=2.28\times10^{-10}$), as expected, and there was a time by genotype interaction ($F_{4,122}=3.99$, p=0.004) where the WT mice froze more during the last five minutes of the task compared to both the $Gtf2ird1^{+/-}$ (p=0.007) and the $Gtf2ird1^{-/-}$ mutants (p=0.002) (**Figure 5E**). On the second day, contextual fear memory was tested. We placed the mice in the same chamber in which they were delivered the footshock and measured their freezing behavior in the absence of the footshock and the tone. All genotypes exhibited a fear memory response as indicated by the significant effect of the context compared to baseline of day one ($F_{1,61}=31.83$, $p=4.63\times10^{-7}$) but no main effect of genotype ($F_{2,61}=1.24$, p=0.30). Each

genotype group froze more during the first two minutes of day two than on day one (WT: $p=4.7 \times 10^{-6}$, $Gtf2ird1^{+/-}$: p=0.034, $Gtf2ird1^{-/-}$: p=0.0061) (**Supplemental Figure 3E**). When we analyzed the entire time of the experiment of contextual fear we similarly saw no main effect of genotype ($F_{2.61}=2.36$, p=0.010), but a significant effect of time ($F_{7.427}=4.43$, $p=9.14 \times 10^{-5}$) and a time by genotype interaction ($F_{14.427}=2.19$, p=0.0077), suggesting that the freezing behavior of the genotypes differ at certain time points during the task. Post hoc analysis showed that during minute two the WT animals are freezing significantly more than the $Gtf2ird1^{+/-}$ mutants (p=0.0008) suggesting a reduced contextual fear memory response (**Figure 5F**). On day three of the experiment, we tested cued fear by placing the animals in a different context but played the tone that was paired with the shock on day one. All genotypes had a similar response to the tone ($F_{2.61}=1.12$, p=0.334) (**Figure 5G**). These differences could not be explained by differences in shock sensitivity (flinch: $H_2=3.34$, p=0.19, escape: $H_2=2.98$, p=0.23, vocalization: $F_{2.56}=4.24$, p=0.12) (**Supplemental Figure 3F**).

Overall, these behavior analyses show that the N-terminal truncation and/or the decreased total protein levels of the *Gtf2ird1* mutant can still result in adult behavioral phenotypes, specifically in the domains such as balance, activity, and marble burying. The most severe phenotypes were observed in the homozygous mutants.

3.3.7 Generation of Gtf2i and Gtf2ird1 double mutant

The evidence that this frameshift mutation in *Gtf2ird1* has functional consequences on some of its DNA binding capacity as well as leads to behavioral phentoypes led us to characterize a double mutant that was generated during the dual gRNA CRISPR/Cas9 injection. This mutant allowed us to test the effects of knocking out *Gtf2i* along with mutating *Gtf2ird1*, as well as test the consistency of the previous *Gtf2ird1* phenotypes across different mutations. The

double mutant described here has a two base pair deletion in exon five of *Gtf2i* and a 590 base pair deletion that encompasses most of exon three of *Gtf2ird1* (**Figure 6A**). We carried out a heterozygous cross of the double mutants to similarly test the protein and transcript abundance of each gene in the heterozygous and homozygous state. The homozygous double mutant is embryonic lethal due to the lack of *Gtf2i*, which has been described in other *Gtf2i* mutants (**Figure 6B**) (87, 96). We were able to detect homozygous embryos up to E15.5. Thus we focused molecular analyses on E13.5 mice for the reasons mentioned above. The two base pair deletion in exon five of *Gtf2i* leads to a premature stop codon and is a full knock out of the protein, and decreases the transcript abundance consistent with the degradation of the mRNA due to nonsense-mediated decay (**Figure 6C,D**). The 590 base pair deletion in *Gtf2ird1* removes all of exon three except the first 14 base pairs. This mutation has a larger effect on protein levels compared to the one base pair insertion, but a small amount of a truncated protein is still made at about 10% of the level of WT protein. We observed the same increase in transcript abundance that was detected in the one base pair insertion mutation (**Figure 6E,F**).

3.3.8 Knocking down both *Gtf2i* and *Gtf2ird1* produces mild transcriptome changes

To test if having both *Gtf2i* and *Gtf2ird1* mutated had a larger effect on the transcriptome we performed whole brain RNA-seq analysis on WT E13.5 brains and compared them to *Gtf2i*^{+/-} /*Gtf2ird1*^{+/-} littermates. There were only mild differences between the transcriptomes of the two genotypes similar to what was seen when we compared WT littermates to *Gtf2ird1*^{-/-} mutants (**Figure 6G**). We also compared WT transcriptomes to the homozygous double mutants, which showed a greater difference between genotypes. However, this is probably due to the fact that the homozygous double mutants have a very severe phenotype, which includes neural tube closure defects. The GO terms suggested that overall nervous system development and glial cell

data with the RNA-seq data. Unlike what we saw with Gtf2ird1 bound genes, there was association between the expression levels of genes and the presence of Gtf2i ($\chi^2 = 6.58$, d.f.=3 p=0.086) (**Figure 6H**). This is consistent with a previous report of *Gtf2i* ChIP-seq data. There is a slight but significant shift to higher expression of genes of about 0.02 log2 CPM fold change that are bound to Gtf2i compared to genes that are not bound (Kolgmogorov-Smirnov test D=0.075, p=9.50x10⁻⁵) (**Figure 6I**).

3.3.9 Double mutants show similar behavioral consequences similar to single *Gtf2ird1* mutants

To test the effects of mutating both Gtf2i and Gtf2ird1 we crossed the heterozygous double mutant to the single Gtf2ird1 heterozygous mouse (**Figure 7A**). This breeding strategy produced four littermate genotypes, WT, $Gtf2ird1^{+/-}$, $Gtf2i^{+/-}/Gtf2ird1^{+/-}$, and $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ for direct and well-controlled comparisons. To test the effects of adding a Gtf2i mutation along with a Gtf2ird1 mutation we compared the $Gtf2ird1^{+/-}$ to their $Gtf2i^{+/-}/Gtf2ird1^{+/-}$ littermates. The final genotype tested the effects of the heterozygous Gtf2i mutation in the presence of both the Gtf2ird1 mutations. To be thorough we tested the protein and transcript abundance of each gene in the four genotypes. As expected all genotypes with the Gtf2i mutation showed decreased protein and transcript levels. The Gtf2ird1 results reflected what was previously shown for each mutation, however, the $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ did not show any further detectable decrease in protein abundance compared to the $Gtf2i^{+/-}/Gtf2ird1^{+/-}$ genotype (**Supplemental Figure 5A-D**).

We repeated the same behaviors that were performed on the one base pair Gtf2ird1 mutants. We saw a similar significant effect of genotype on balance (H₃=10.68, p=0.014), with the $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ falling off sooner compared to WT littermates (p=0.025) (**Figure 7B**).

There was no significant difference between the $Gtf2ird1^{+/-}$ and $Gtf2i^{+/-}/Gtf2ird1^{+/-}$ genotypes, suggesting that in the heterozygous state decreasing the dosage of Gtf2i does not strongly modify the Gtf2ird1^{+/-} phenotype. These results were replicated in a subsequent cohort (Supplemental Figure 5E). There was a significant effect of genotype on the number of marbles buried (F_{3.76}=2.93, p=0.039). Post hoc analysis showed a significant difference between only the $Gtf2ird1^{+/-}$ and $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ littermates (p=0.050) (**Figure 7C**), with a trend in the same direction as was previously seen in the Gtf2ird1^{-/-} mutants. We saw a main effect of genotype on activity levels in the one hour locomotor task (F_{3.69}=3.22, p=0.028), but we did not see the same main effect of sex ($F_{1.69}$ =2.29, p=0.14), or a sex by genotype interaction ($F_{3.69}$ =1.82, p=0.15); however we did see a three way sex by time by genotype interaction ($F_{15.345}$ =1.95, p=0.018). The combined sex data showed that the Gtf2i^{+/-}/Gtf2ird1^{-/-} travel more distance in the later time points than the WT and $Gtf2ird1^{+/-}$ at time point 40 (**Figure 7D**). When we looked at the data by sex we saw a larger effect in the females with the $Gtf2ird1^{+/-}$ and $Gtf2i^{+/-}/Gtf2ird1^{+/-}$ intermediate to the Gtf2i^{+/-}/Gtf2ird1^{-/-} (Supplemental Figure 5F, G). There was also a main effect of genotype on the time spent in the center of the apparatus ($F_{3.69}=3.60$, p=0.018). The $Gtf2i^{+/-}$ /Gtf2ird1^{-/-} spent less time in the center during the first ten minutes of the task compared to WT (p=0.0019) littermates with the $Gtf2ird1^{+/-}$ and $Gtf2i^{+/-}/Gtf2ird1^{+/-}$ showing intermediate values (Figure 7E).

Finally, we repeated the conditioned fear memory task using this breeding strategy. All genotypes increased their freezing after each foot shock on day one as expected. The WT animals exhibited higher freezing during minute one of baseline, but this difference diminished during minute two (**Figure 7F**). All animals showed a contextual fear memory response when they were re-introduced to the chamber on day two ($F_{1.68}$ =81.21, p=3.21x10⁻¹³) (**Supplemental**

Figure 5H) but there was no main effect of genotype ($F_{3,68}=1.61$, p=0.19) (**Figure 7G**). On day three, when cued fear was tested, there was a significant effect of genotype on the freezing behavior ($F_{3,68}=3.17$, p=0.030) and a time by genotype interaction ($F_{21,476}=1.63$, p=0.040). During minute five of the task the $Gtf2i^{+/-}/Gtf2irdI^{-/-}$ mutants froze significantly more than the WT (p=0.030) as did the $Gtf2irdI^{+/-}$ (p=0.024) (**Figure 7H**). The cued fear phenotype could not be explained by differences in sensitivity to the foot shock (**Supplemental Figure 5I**).

By crossing these two mutant lines we tested the hypothesis that the double heterozygous mutant would be more severe than a mutation only affecting Gtf2ird1. Comparing the $Gtf2ird1^{+/-}$ and $Gtf2i^{+/-}/Gtf2ird1^{+/-}$, showed mild deficits compared to WT littermates that in some cases were intermediate to phenotypes of the $Gtf2i^{+/-}/Gtf2ird1^{-/-}$. There were no instances when either the $Gtf2ird1^{+/-}$ or $Gtf2i^{+/-}/Gtf2ird1^{+/-}$ genotype was significantly different than the other, suggesting that in the behaviors that we have tested, Gtf2i mutation does not modify the effects of a Gtf2ird1 mutation. This unique cross also allowed us to characterize a new mouse line $Gtf2i^{+/-}/Gtf2ird1^{-/-}$, which had the largest impact on behaviors. The phenotypes of $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ mouse model, but we also saw a significant cued fear deficit when the Gtf2i mutation was added. This further supports that the behaviors tested here, such as activity levels, balance, anxiety-like behaviors, marble burying, and learning and memory are largely affected by homozygous mutations in Gtf2ird1.

3.4 Discussion

We have described the *in vivo* DNA binding sites of Gtf2ird1 and Gtf2i in the developing mouse brain. This is the first description of these two transcription factors in a tissue that is relevant for the behavioral phenotypes that are seen in mouse models of WS. Gtf2ird1 showed a

preference for active sites and promoter regions. The conservation of the Gtf2ird1 targets was higher on average than would be expected by chance, which provides evidence that these are functionally important regions of the genome. The functions of genes that are bound by Gtf2ird1 include transcriptional regulation as well as post translational regulation. A role for Gtf2ird1 in regulating genes involved in protein ubiquiniation has not been described before. Genes involved in chromatin organization were also found to be bound by Gtf2ird1. This supports the role of Gtf2ird1 in regulating chromatin by transcriptionally controlling other chromatin modifiers.

Along with its localization pattern in the nucleus and its direct interaction with other chromatin modifiers such as ZMYM5 (79, 82), this data suggests that Gtf2ird1 can exert its regulation of chromatin at several different levels of biological organization. The motif enrichment of Gtf2ird1 peaks showed that CTCF may be present along with Gtf2ird1, further implicating the importance of Gtf2ird1 in chromatin biology. Interestingly, Gtf2i has been show to interact with and target CTCF to specific sites in the genome (156). It would be interesting to test if Gtf2ird1 has a similar relationship with CTCF and targets it to unique genomic loci.

Overall, Gtf2i showed a similar preference for promoters and active regions, although it had more intergenic targets than Gtf2ird1, and the conservation of Gtf2i peaks was significantly lower than the Gtf2ird1 peaks. The genes bound by Gtf2i were enriched for signal transduction and phosphorylation. Interestingly, Gtf2i was bound to the gene body of the *Src* gene. Src is known to phosphorylate Gtf2i to induce its transcriptional activity (74). Phosphorylation of Gtf2i by Src also antagonizes calcium entry into the cell (76). While, knocking out Gtf2i did not affect the expression of *Src*, it would be interesting to understand the functional consequence of Gtf2i bound to *Src*, especially since knockout mice of *Src* exhibit similar behaviors as *Gtf2i* knock out mice (75).

The overlap of targets of Gtf2i and Gtf2ird1 was significant, and the genes that did overlap were enriched for synaptic activity and signal transduction. This was evidence that these genes could interact via their binding targets to produce cognitive and behavioral phenotypes. To test how mutating both Gtf2i and Gtf2ird1 would modify the phenotypes of just Gtf2ird1 we characterized two new mouse models. We used the CRISPR/Cas9 system to generate multiple mutations in the two genes individually as well as together from one embryo injection. The ease and combinatorial possibilities of this technology will be amenable to testing many unique combinations of genes in copy number variant regions, which will be important to fully understand the complex relationships of genes in these disorders.

We saw that a frameshift mutation that we expected to trigger non-sense mediate decay in Gtf2ird1 did not and resulted in a mild reduction in protein levels in the homozygous mutant and an N-terminal truncation. Even making a larger 590bp deletion of exon three in Gtf2ird1 did not result in the degradation of the mRNA, but did have a larger effect on the protein, even though some protein product was still made. This phenomenon has been seen in at least two other mouse models of Gtf2ird1 (66, 101). These were made using classic homologous recombination removing either exon two or exon two through part of exon five. In both models Gtf2ird1 transcript was still made, but no *in vivo* protein analysis was done due to poor quality antibodies and the low expression of the protein. The presence of an aberrant protein that can still bind the genome, as the mutant described here can, could explain the lack of transcriptome differences in the brain shown here as well as in (88). It could also be that the mutant protein can still interact with other binding partners and be trafficked to the appropriate genomic loci. This mutation did disrupt the binding of Gtf2ird1 to its own promoter, which resulted in an increase in transcript

levels. The property that specifies the Gtf2ird1 binding to its own promoter must be very unique, as DNA binding genome-wide was not perturbed in the mutant.

Nonetheless, the mutated Gtf2ird1 protein was still sufficient to cause adult behavioral abnormalities. This supports the hypothesis that the N-terminal end of the protein has other important functions beyond DNA binding. Similarly, the N-truncation of Gtf2i did not affect DNA-binding, but still resulted in behavioral deficits (67). The single Gtf2ird1 homozygous mutant showed balance deficits, which is consistent across many mouse models of WS. We also observed decreased marble burying. This task is thought to be mediated by hippocampal function, suggesting a possible disruption of the hippocampus caused by this mutation (159). We saw an increase in overall activity levels in female Gtf2ird1 mutants. This could relate to the high prevalence of Attention Deficit/Hyperactivity Disorder seen in WS (22).

Given the prior evidence that these two transcription factors are both involved in the cognitive and behavioral phenotypes of WS (34, 95), and the evidence that their shared binding targets regulate synaptic genes, we tested if having both Gtf2i and Gtf2ird1 mutated could modify the phenotype seen when just Gtf2ird1 was mutated. Contrary to our prediction, we did not see a large effect of adding a Gtf2i mutation to differences in transcriptome wide expression or behavioral phenotypes. This was also surprising given that we successfully reduced *Gtf2i* protein and it has been described in the literature as regulating transcription (58). It could be that by using the whole E13.5 brain we are diminishing the effects of transcriptional differences seen in a specific rare cell types. This potential confound could be overcome using single cell sequencing technologies in the future.

When Gtf2i was knocked down it the presence of two Gtf2ird1 mutations, we saw phenotypes in the same direction as the homozygous one base pair insertion *Gtf2ird1* mutant as well as significant results in the cued fear memory task. Thus, the behaviors tested in this study seem to be mainly driven by Gtf2ird1 homozygosity, which is consistent across the two different mutations. This does not exclude the possibility that Gtf2i can modify the phenotype of Gtf2ird1 knockdown in other behavioral domains. For example, it would be interesting to see the effect of adding Gtf2i on top of a Gtf2ird1 mutation on social behaviors.

Our study has provided the first description of the DNA-binding of both Gtf2i and Gtf2ird1 in the developing mouse brain and showed that they have unique and overlapping targets. These data will be used to inform downstream studies to understand how these two transcription factors interact with the genome. We generated two new mouse models that tested the importance of the N-terminal end of Gtf2ird1 and the affect of mutating both *Gtf2i* and *Gtf2ird1*. We provided evidence that despite either gene having little effect on transcription the *Gtf2ird1* mutation affects balance, marble burying, activity levels, and cued fear memory.

3.5 Materials and Methods

Generating genome edited mice

To generate unique combinations of gene knockouts we designed gRNAs targeting early constitutive exons of the mouse *Gtf2i* and *Gtf2ird1* genes. The gRNAs were tested for cutting efficiency in cell culture by transfecting N2a cells with the pX330 Cas9 expression plasmids (Addgene) that had each gRNA cloned into it. The DNA was harvested from the cells and cutting was detected using the T7 endonuclease assay. The gRNAs were *in vitro* transcribed using the MEGAShortScript kit (Ambion) and the Cas9 mRNA was *in vitro* transcribed using the

mMessageMachine kit (Ambion). The two gRNAs and Cas9 mRNA were then injected into FVB mouse embryos and implanted into donor females. FVB mice were used for their large pronuclei and large litter sizes. The resulting offspring were genotyped for mutations by designing gene specific primers that had the illumina adapter sequences concatenated to their 3' prime end to allow for deep sequencing of the amplicons surrounding the expected cut sites. The large 590 bp deletion was detected by amplifying 3.5kb that included exon two, exon three and part of intron three then using a Nextera library prep (Illumina) to deep sequence the amplicon. We described two founder mice obtained from these injections. Each founder line was bred to FVB/ANTJ mice to ensure the mutations detected were in the germline and on the same chromosomes in the case of founders with mutations in both genes. The mice were also crossed until the mutations were on a complete FVB/ANTJ background, which differs from the FVB background at two loci; Tyr^{c-ch}, which gives the chinchilla coat color of FVB/ANTJ and 129P2/OlaHSd *Pde6b* allele, which the FVB/ANTJ are WT for and prevents them from becoming blind in adult hood. The coat color was genotyped by eye, and the *Pde6b* gene was genotyped using the primers provided by the Jackson Laboratory website.

Western blotting

Embryos were harvested on embryonic day 13.5 (E13.5) and the whole brain was dissected in cold PBS and flash frozen in liquid nitrogen. The frozen brains were stored at -80° C until they were to be lysed. The frozen brain was homogenized in 500ul of 1xRIPA buffer (10mM Tris HCl pH 7.5, 140mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% DOC, 0.1% SDS, 10mM Na₃V0₄, 10mM NaF, 1x protease inhibitor (Roche)) along with 1:1000 dilution of RNAase inhibitors (RNasin (Promega) and SUPERase In (Thermo Fisher Scientific). The homogenate incubated on ice for 20 minutes and was then spun at 10,000g for 10 minutes at 4° C

to clear the lysate. The lysate was stored as two aliquots of 100ul in the -80° C for protein analysis and 250ul of the lysate was added to 750ul of Trizol LS and stored at -80° C for later RNA extraction and qPCR. Total protein was quantified using the BCA assay and 25-50ug of protein in 1x Lamelli Buffer with B-mercaptoethanol was loaded onto 4-15% TGX protean gels from Bio-Rad. The protein was transferred to a .2um PVDF membrane by wet transfer. The membrane was blocked with 5% milk in TBST for one hour at room temperature. The membrane was cut at the 75KDa protein marker and the bottom was probed with a Gapdh antibody as an endogenous loading control, and the top was probed with an antibody for either Gtf2i or Gtf2ird1. The primary incubation was performed overnight at 4° C. The membrane was then washed three times in TBST for five minutes then incubated with a secondary antibody HRP conjugated antibody diluted in 5% milk in TBST for one hour at room temperature. The blot was washed three times with TBST for five minutes then incubated with Clarity Western ECL substrate (Bio-Rad) for five minutes. The blot was imaged in a MyECL Imager (Thermo Scientific). The relative protein abundance was quantified using Fiji (NIH) and normalized to Gapdh levels in a reference WT sample. The antibodies and dilutions used in this study were: Rabbit anti-GTF2IRD1 (1:500, Novus, NBP1-91973), Mouse anti-GTF2I (1:1000 BD Transduction Laboratories, BAP-135), and Mouse anti-Gapdh (1:10,000, Sigma Aldrich, G8795), HRP-conjugated Goat anti Rabbit IgG (1:2000, Sigma Aldrich, AP307P) and HRPconjugated Goat anti Mouse IgG (1:2000, Bio Rad, 1706516).

Transcript abundance using RT-qPCR

RNA was extracted from Trizol LS using the Zymo Clean and Concentrator-5 kit with on column DNAase-I digestion following the manufacturer's instructions. The RNA was eluted in 30ul of RNAse free water and quantified using a Nanodrop 2000 (Thermo Scientific). One ug of

RNA was transcribed into cDNA using the qScript cDNA synthesis kit (Quanta Biosciences). The cDNA was used in a 10ul PCR reaction with 500nM of target specific primer and the PowerUP Sybr green master mix (Applied Biosystems). The primers were designed to amplify exons that were constitutively expressed in both *Gtf2i* (exons 25 and 27) and *Gtf2ird1* (exons 8 and 9) and span an intron. The RT-qPCR was carried out in a QuantStudio6Flex machine (Applied Biosystems) using the following cycling conditions: 95° C 20 seconds, 95° C 1 second, 60° C 20 seconds, repeat steps 2 through 3 40 times. Each target and sample was run in triplicate technical replicates, with three biological replicates for each genotype. The relative transcript abundance was determined using the delta CT method normalizing to *Gapdh*.

ChIP

Chromatin was prepared as described in (160). Briefly, frozen brains were homogenized in 10mL of cross-linking buffer (10mM HEPES pH7.5, 100mM NaCl, 1mM EDTA, 1mM EGTA, 1% Formaldehyde (Sigma)). The homogenate was spun down and resuspended in 5mL of 1x L1 buffer (50mM HEPES pH 7.5, 140 mM NaCl, 1mM EDTA, 1mM EGTA, 0.25% Triton X-100, 0.5% NP40, 10.0% glycerol, 1mM BGP (Sigma), 1x Na Butyrate (Millipore), 20mM NaF, 1x protease inhibitor (Roche)) to release the nuclei. The nuclei were spun down and resuspended in 5mL of L2 buffer (10mM Tris-HCl pH 8.0, 200mM NaCl, 1mM BGP, 1x Na Butyrate, 20mM NaF, 1x protease inhibitor) and rocked at room temperature for five minutes. The nuclei were spun down and resuspended in 950ul of buffer L3 (10mM Tris-HCl pH 8.0, 1mM EDTA, 1mM EGTA, 0.3% SDS, 1mM BGP, 1x Na Butyrate, 20mM NaF, 1x protease inhibitor) and sonicated to a fragment size of 100-500bp in a Covaris E220 focused-ultrasonicator with 5% duty factor, 140 PIP, and 200cbp. The sonicated chromatin was diluted in with 950ul of L3 buffer and 950ul of 3x covaris buffer (20mM Tris-HCl pH 8.0, 3.0% Triton X-

100, 450mM NaCl, 3mM EDTA). The diluted chromatin was pre-cleared using 15ul of protein G coated streptavidin magnetic beads (ThermoFisher) for two hours at 4° C. For IP, 15ul of protein G coated streptavidin beads were conjugated to either 10ul of Gtf2ird1 antibody (Rb anti GTF2IRD1 NBP1-91973 LOT:R40410) or 10ul of Gtf2i antibody (Rb anti GTF2I Bethyl Laboratories) for one hour at room temperature. 80ul of the pre-cleared lysate was saved to be the input sample. 400ul of the pre-cleared lysate was added to the beads and incubated overnight at 4° C. The IP was then washed two times with low salt wash buffer (10mM Tris-HCl pH 8.0, 2mM EDTA, 150mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with a high salt buffer (10mM Trish-HCl pH 8.0, 2mM EDTA, 500mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with LiCl wash buffer (10mM Tris-HCl pH 8.0, 1mM EDTA, 250mM LiCl (Sigma), 0.5% NaDeoxycholate, 1.0% NP40), and one time with TE (10mM Tris-HCl pH 8.0, 1mM EDTA) buffer. The DNA was eluted off of the beads with 200ul of 1x TE and 1% SDS by incubating at 65° C in an Eppendorf R thermomixer shaking at 1400rpm. The DNA was de-crosslinked by incubating at 65° C for 15 hours in a thermocycler. RNA was removed by incubating with 10ug of RNAse A (Invitrogen) at 37° C for 30 minutes and then treated with 140ug of Proteinase K (NEB) incubating at 55° C in a thermomixer mixing at 900rpm for two hours. The DNA was extracted with 200ul of phenol/chloroform/isoamyl alcohol (Ambion) and cleaned up using the Qiagen PCR purification kit and eluted in 60ul of elution buffer. Concentration was assessed using the highsensitivity DNA kit for qubit (Thermo Fisher Scientific).

ChIP-qPCR

Primers were designed to amplify the upstream regulatory element of *Gtf2ird1*. Two off target primers were designed that are 10kb upstream of the transcription start site of *Bdnf* and 7kb upstream of the *Pcbp3* transcription start site. The input sample was diluted 1:3, 1:30, and

1:300 to create a standard curve for each primer set and sample. Each standard, input, and IP sample for each primer set was performed in triplicate in 10ul reactions using the PowerUP Sybr green master mix (Applied Biosystems) and 250nM of forward and reverse primers. The reactions were performed in a QuantStudio6Flex machine (Applied Biosystems) with the following cycling conditions: 50° C for 2 minutes, 95° C for 10 minutes, 95° C 15 seconds, 60° C for 1 minute, repeat steps 3 through 4 40 times. The relative concentration of the input and IP samples were determined from the standard curve for each primer set. Enrichment of the IP samples was determined by dividing the on target upstream regulatory element relative concentration by the off target relative concentration.

ChIP-seq

ChIP-seq libraries were prepared using the Swift Accel-NGS 2S plus DNA library prep kits with dual indexing (Swift Biosciences). The final libraries were enriched by thirteen cycles of PCR. The libraries were sequenced by the Genome Technology Access Center at Washington University School of Medicine on a HiSeq3000 producing 1x50 reads.

Raw reads were trimmed of adapter sequences and bases with a quality score less than 25 using the Trimmomatic Software (161). The trimmed reads were aligned to the mm10 genome using the default settings of bowtie2 (162). Reads that had a mapping quality of less than 10 were removed. Picard tools was used to remove duplicates from the filtered reads (http://broadinstitute.github.io/picard). Macs2 was used to call peaks on the WT IP, *Gtf2ird1*^{-/-} IP, and *Gtf2i*^{-/-}/*Gtf2ird1*^{-/-} IPs with the corresponding sample's input as the control sample for each biological replicate (163). Macs2 used an FDR of 0.01 as the threshold to call a significant peak. High confidence peaks were those peaks that had some overlap within each biological

replicate for each genotype using bedtools intersect (164). The read coverage for the high confidence peaks identified in the WT IPs was determined using bedtools coverage for all genotypes. To identify peaks with differential coverage, we used EdgeR to compare the WT peaks coverage files to the corresponding mutant peak coverage and differential peaks were defined as having an FDR < 0.1 (165). The peaks with FDR < 0.1 and log2FC > 0 fine the Gtf2i high confidence peaks calls, since this mutation represents a full knockout of the protein. Annotations of peaks and motif analysis was performed using the HOMER software on the high confidence peaks (166). Peaks were annotated at the transcription start (TSS) of genes if the peak overlapped the +2.5kbp or -1kbp of the TSS using a custom R script. GO analysis on the ChIP target genes was performed using the goseq R package. We used E13.5 H3K4me3 and E13.5 H3K27me3 forebrain narrow bed peak files from the mouse ENCODE project to overlap with our peak datasets (167). Deeptools was used to generate bigwig files normalized to the library size for each sample by splitting the genome into 50bp overlapping bins (168). Deeptools was used to visualize the ChIP-seq coverage within the H3K4me3 and H3K27me3 peak regions. PhyloP scores for the WT ChIP-seq peaks and random genomic regions of the same length were retrieved using the UCSC table browser 60 Vertebrate Conservation PhyloP table. The Epigenome browser was used to visualize the ChIP-seq data as tracks.

RNA-seq

lug of E13.5 whole brain total RNA extracted from Trizol LS was used as input for rRNA depletion using the NEBNExt rRNA Depletion Kit (Human/Mouse/Rat). The rRNA depleted RNA was used as input for library construction using the NEBNext Ultra II RNA library prep kit for Illumina. The final libraries were indexed and enriched by PCR using the following thermocycler conditions: 98° C for 30 seconds, 98° C 10 seconds, 65° C 1 minute and

15 seconds, 65° C 5 minutes, hold at 4° C, repeat steps 2 through 3 6 times. The libraries were sequenced by the Genome Technology Access Center at Washington University School of Medicine on a HiSeq3000 producing 1x50 reads.

RNA-seq analysis

The raw RNA-seq reads were trimmed of Illumina adapters and bases with quality scores less than 25 using Trimmomatic Software. The trimmed reads were aligned to the mm10 mouse genome using the default parameters of STARv2.6.1b (169). We used HTSeq-count to determine the read counts for features using the Ensembl GRCm38 version 93 gtf file (170). Differential gene expression analysis was done using EdgeR. We compared the expression of genes that are targets of either Gtf2ird1 or Gtf2i to non-bound genes by generating a cumulative distribution plot of the average log CPM of the genes between genotypes. GO analysis was performed using the goseq R package.

Behavioral tasks

Animal statement

All animal testing was done in accordance with the Washington University in St. Louis animal care committee regulations. Mice were group housed in same-sex, mixed-genotype cages with two to five mice in a cage in standard mouse cages with dimensions 28.5 x 17.5 x 12 cm with corn cob bedding. The mice had ad libitum access to food and water and followed a 12 hour light-dark cycle with the lights on from 6:00am-6:00pm. The rooms the animals were housed in were kept at 20-22° C and a relative humidity of 50%. All mice were maintained on the FVB/AntJ ((171)) background from Jackson Labs. All behaviors were done in adulthood

between ages P60-P130. A week prior to beginning behavior testing the mice were handled by the male experimenter. On days of testing the mice were moved to the testing room and allowed to habituate to the room and the male experimenter for 30 minutes before testing started. The number of mice and behaviors are listed in Table 1 and Table 2.

Ledge

To test balance, we timed how long a mouse could balance on a plexiglass ledge with a width of 0.5cm and a height of 38cm as described in (171). The mice were timed up to 60 seconds. If the mouse fell off within the first five seconds the time was restarted and the mouse was given another attempt. If after the third attempt the mouse fell off within the first five seconds that time was recorded. We tested all mice on the ledge and then allowed for a 20 minute rest time then repeated the testing on all the mice for a total of two trials for each mouse. The average of the two trials were used in the analysis.

One hour locomotor activity

We assessed activity levels in a one hour locomotor task, as previously described (171). Mice were placed in the center of a standard rat cage with dimensions 47.6 x 25.4 x 20.6cm. The rat cage was located inside of a sound-attenuating box with white light set to 24 lux. The mice could freely explore the cage for one hour. A plexiglass lid with air holes was placed on top of the rat cage to prevent the mice from jumping out of the cage. The position and horizontal movement of the mice was tracked using the ANY-maze software (Stoelting Co.: RRID: SCR_014289). The apparatus was divided into two zones, the edge zone was 5.5cm bordering the cage, and a 33 x 11cm center zone. The animal was considered in a particular zone if 80% of the mouse was detected in the zone. ANY-maze recorded the time, distance, and number of

entries into each zone. After the task, the mouse was returned to its home cage and the apparatus was thoroughly cleaned with 70% ethanol.

Marble burying

Marble burying is a species-specific task that measures the compulsive digging behavior of mice. Normal hippocampal is thought to be required for normal marble burying phenotypes. We tested marble burying as previously described (171). A rat cage was filled with aspen bedding to a depth of 3cm and placed in a sound-attenuating box with white light set at 24 lux. A 5 x 4 grid of evenly spaces marbles was laid out on top of the bedding. The experimental mouse was placed in the center of the chamber and allowed to freely explore and dig in the chamber for 30 minutes. A plexiglass lid with air holes was placed on top of the rat cage to prevent the mice from escaping. After 30 minutes the animal was returned to their home cage. Two scorers counted the number of marbles not buried. A marble was considered buried if two-thirds of the marble was covered with bedding. The number of marbles buried was then determined, and the average of the two scorers was used in the analysis. After the marbles were counted the bedding was disposed of and the rat cage and marbles were cleaned with 70% ethanol.

Contextual and Cued Fear Conditioning

Learning and memory were tested using the contextual and cued fear condition paradigm as previously described (172). Contextual fear memory is thought to be driven by hippocampal functioning whereas cued fear is thought to be driven by amygdala functioning. On day one of the experiment, animals were placed in a Plexiglas chamber (26cm x 18cm x 18cm; Med Associates Inc.) with a metal grid floor that had an unobtainable peppermint odor. A chamber light was on for the duration of the five-minute task. During the first two minutes, the animal

freely explored the apparatus, and this was considered the baseline. An 80dB white noise tone was played for 20 seconds at 100 seconds, 160 seconds, and 220 seconds during the five-minute task. During the last two seconds of the tone, the mice received a 1.0mA foot shock. The tone is the conditioned stimulus (CS) and the foot shock is the unconditioned stimulus (UCS). The animal's freezing behavior was monitored by the FreezeFrame (Actimetrics, Evanston, IL) software in 0.75s intervals. Freezing was defined as no movement besides respiration, and was used as a measure of the fear response of mice. After the five-minute task the mice were returned to their home cage. On day two, we tested contextual fear memory. The mice were placed in the same chamber as day with the unobtainable peppermint odor, and the freezing behavior was measured over the eight-minute task. The first two minutes of day two were compared to the first two minutes of day one to test for the acquisition of the fear memory. The mice were then returned to their home cage. On day three, to test cued fear, the mice were placed in a new black and white chamber that was partitioned into a triangle shape and had an unobtainable coconut scent. The mice were allowed to explore the chamber and the first two minutes were considered baseline. After minute two the 85 dB tone (CS) was played for the remaining eight minutes.

Statistical Analysis

All statistical analyses were performed in R v3.4.2. All statistical tests are reported in Supplemental Table 1. The ANOVA assumption of normality was assessed using the Shapiro-Wilkes test and manual inspection of qqPlots, and the assumption of equal variances was assessed with Levene's Test. When appropriate ANOVA was used to test for main effects and interaction terms. Post hoc analyses were done to compare between genotypes. If the data violated the assumptions of ANOVA non-parametric tests were performed. If the experiment was performed over time, linear mixed models were used to account for the repeated measures of

an animal using the lme4 R package. Post hoc analyses were then conducted to compare between genotypes within time bins. Post hoc analyses were done using the multcomp R package (173). Animals were removed from analysis if they had a value that was 3.29 standard deviations above the mean or had poor video tracking and could not be analyzed.

3.6 Acknowledgements

This work was supported by 1R01MH107515 JDD, and the Autism Science Foundation, and the National Science Foundation Graduate Research Fellowship DGE-1745038 to NDK. We would like to thank the Genome Technology Access Center for technical support, as well as Dr. Beth Kozel and Dr. Harrison Gabel for critical advice on this project. We would also like to thank Dr. David Wozniak and the Animal Behavior Core at the Washington University School of Medicine for their time and resources.

3.7 Figures

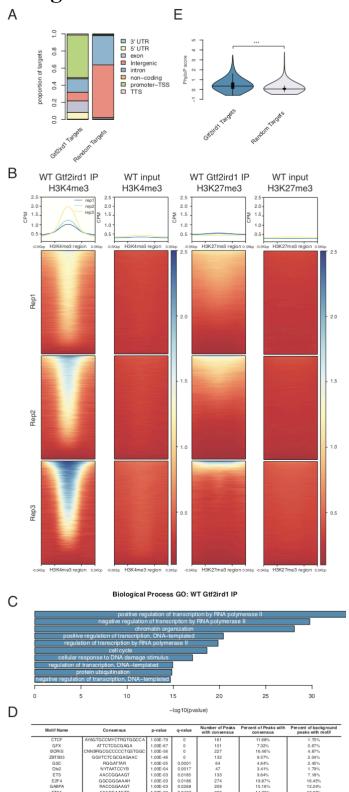
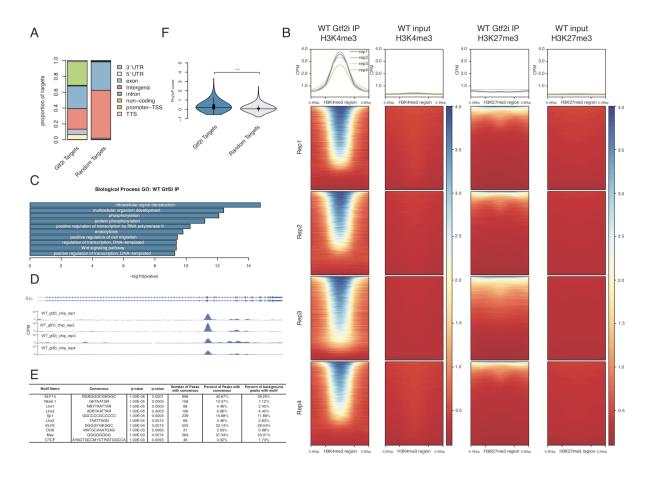
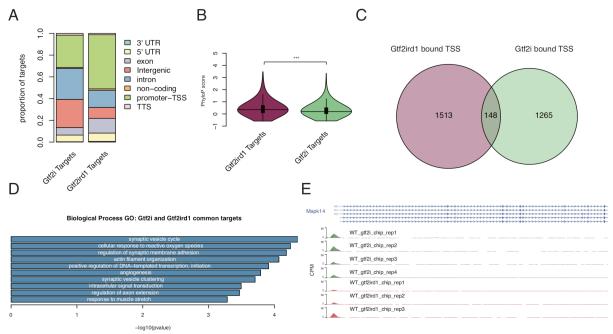




Figure 1: Gtf2ird1 binds preferentially to promoters in conserved, active sites in the genome. A Gtf2ird1 binding peaks are annotated primarily in promoters and gene bodies. The distribution of peak annotations is significantly different from random sampling the genome. B Gtf2ird1 peaks were enriched in H3K4me3 sites marking active regions of the genome and to a lesser extent in H3K27me3 marking repressed regions. C GO analysis of genes that have Gtf2ird1 bound to the promoter. D The conservation of sequence in Gtf2ird1 bound peaks is significantly higher than expected by chance. E Motifs of transcription factors enriched under Gtf2ird1 bound peaks.

Figure 2: Gtf2i binds at promoters in conserved, active sites in the genome. A Gtf2i binding sites are annotated mostly in gene promoters and the gene body. The distribution of peaks is significantly different than would be expected by chance. **B** 78.7% of Gtf2i peaks overlap with H3K4me3 peaks marking active regions. 20.7% of the Gtf2i peaks fall within H3K27me3 peaks marking inactive regions. **C** GO analysis of genes that have Gtf2i bound at the promoter. **D** Epigenome browser shot of Gtf2i peak bound within the Src gene. **E** Genomic sequence under Gtf2i peaks are more conserved than we would expect by chance. **F** Motifs of transcription factors that are enriched in Gtf2i bound sequences.

Figure 3: Comparison of Gtf2ird1 and Gtf2i binding sites. A Gtf2i and Gtf2ird1 have different distributions of annotated binding sites. B Gtf2ird1 bound sequences are more conserved than Gtf2i bound sequences. C The overlap of genes that have Gtf2i and Gtf2ird1 bound at their promoters. D GO analysis of genes that have both Gtf2i and Gtf2ird1 bound at their promoters. E Epigenome browser shot of Mapk14 showing peaks for both Gtf2i and Gtf2ird1.

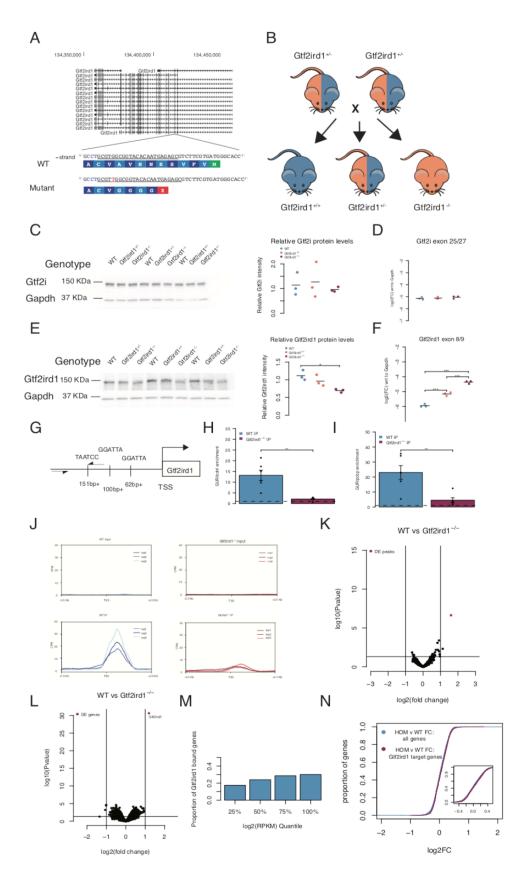


Figure 4: Frameshift mutation in Gtf2ird1 exon three results in a decreased amount of an N-truncated protein with diminished binding at Gtf2ird1 promoter and has little effect on transcription in the brain. A The sequence of exon three of Gtf2ird1 that was targeted by the gRNA underlined with the PAM sequence in blue. The mutant allele contains a one base pair insertion of an adenine nucleotide that results in a premature stop codon. **B** Breeding scheme of the intercross of $Gtf2ird1^{+/-}$ to produce genotypes used in the experiments. **C**, **D** Mutation in Gtf2ird1 does not affect the protein or transcript levels of Gtf2i. E Frameshift mutation decreases the amount of protein in Gtf2ird1- and causes a slight shift to lower molecular weight. F The abundance of Gtf2ird1 transcript increases with increasing dose of the mutation. G Schematic of Gtf2ird1 upstream regulatory element (GUR) that shows the three Gtf2ird1 binding motifs. The arrows indicate the location of the primers for amplifying the GUR in the ChIP-qPCR assay. H,I WT ChIP of Gtf2ird1 shows enrichment of the GUR over off target regions. There is more enrichment in the WT genotype compared to the Gtf2ird1 \(^{-\text{r}}\) genotype. J Profile plots of Gtf2ird1 ChIP-seq data confirms diminished binding at the Gtf2ird1 promoter. K Differential peak analysis comparing WT and Gtf2ird1" ChIP-seq data showed only the peak at Gtf2ird1 is changed between genotypes with an FDR <0.1. L Differential expression analysis in the E13.5 brain comparing WT and Gtf2ird1^{-/-} showed only Gtf2ird1 as changed with FDR < 0.1. M The presence of Gtf2ird1 at gene promoters is not evenly distributed across expression levels. N The expression of genes bound by Gtf2ird1 is not different compared to all other genes between WT and Gtf2ird1^{-/-} mutants.

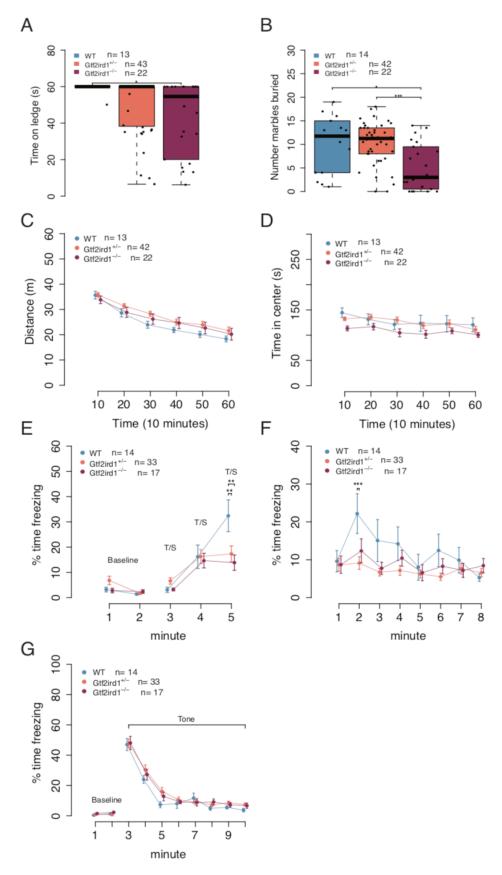
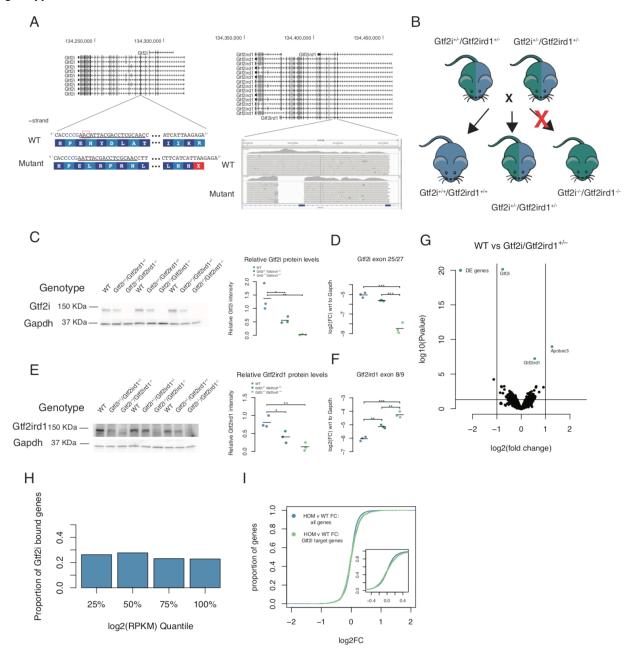
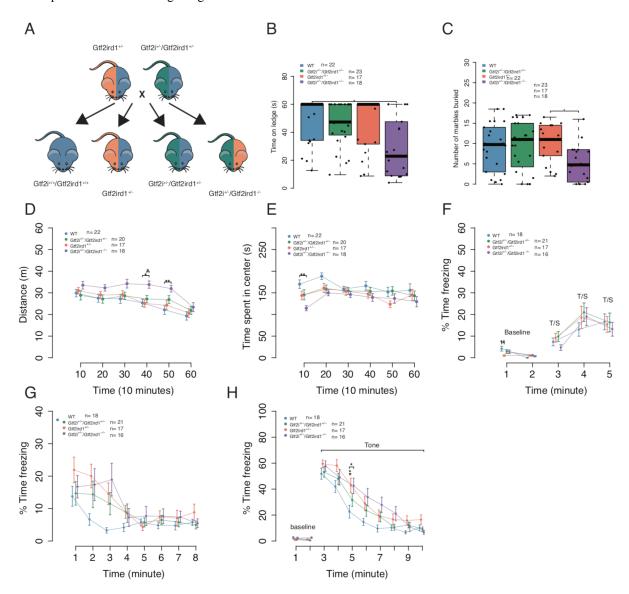
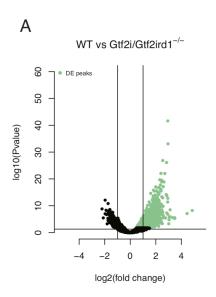




Figure 5: Homozygous Frameshift mutation in *Gtf2ird1* is sufficient to cause behavioral phenotypes. A Homozygous mutants have worse balance than WT littermates in ledge task. B Homozygous mutants bury fewer marbles than WT and heterozygous littermates. C Overall activity levels are not affected when both sexes are combined. D There is no difference in time spent in the center of the apparatus between genotypes. E Acquisition phase of fear condition paradigm. WT animals freeze more during the last five minutes of the task. F WT animals showed greater freezing in contextual fear memory task than *Gtf2ird1**/-. G There were no differences between genotypes in cued fear.


Figure 6: Mutating both *Gtf2i* and *Gtf2ird1* does not result in larger differences in brain transcriptomes. A Generation of double mutant. gRNA target is underlined in exon five of *Gtf2i* with the PAM sequence in blue. The two base pair deletion results in a premature stop codon within exon five. The *Gtf2ird1* mutation is a large 590 base pair deletion covering most of exon three as shown in the IGV browser shot. **B** Heterozygous intercross to generate

genotypes for ChIP and RNA-seq experiments. The homozygous double mutants are embryonic lethal but are present up to E15.5. $\bf C$ The two base pair deletion in Gtf2i decreases the protein by 50% in heterozygous mutant and no protein is detected in the homozygous E13.5 brain. $\bf D$ The mutation decreases the abundance of Gtf2i transcript consistent with nonsense-mediated decay. $\bf E$ The 590 base pair deletion in Gtf2ird1 leads to decrease protein levels in heterozygous and homozygous mutants. There is still a small amount of protein made in the homozygous mutant. $\bf F$ The 590 base pair deletion increases the amount of Gtf2ird1 transcript. $\bf G$ Volcano plot comparing the expression in the E13.5 brain of WT and heterozygous double mutants. The highlighted genes represent an FDR < 0.1. $\bf H$ The presence of Gtf2i at the promoters does not correlate with the expression of a gene. $\bf I$ The fold change of genes between WT and homozygous double mutants that have Gtf2i bound at their promoters were slightly upregulated when compared to the fold change of genes that did not have Gtf2i bound.

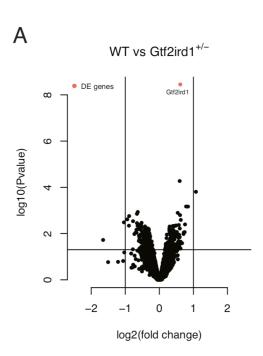
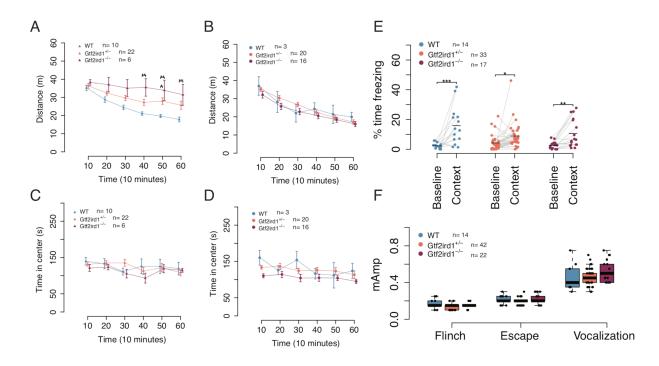
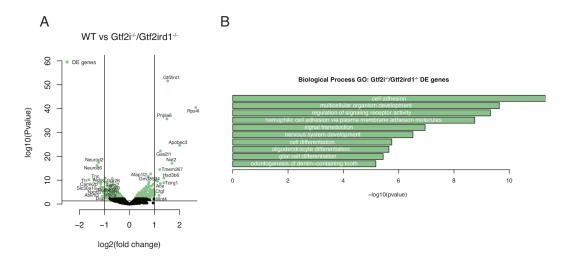
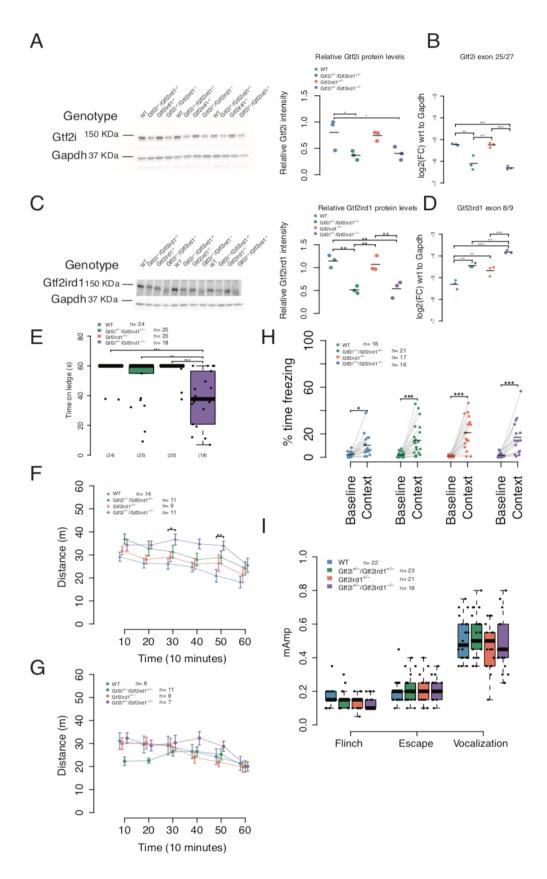


Figure 7: Gtf2i does not modify the phenotype of Gtf2ird1 mutation. A Breeding scheme for behavior experiments. **B** The $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ animals fell off ledge sooner than WT littermates. **C** There was main effect of genotype on marbles buried. Post hoc analysis showed that the $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ buried fewer marbles than the $Gtf2ird1^{-/-}$ genotype. **D** The $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ had increased overall activity levels in a one hour activity task. **E** The $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ showed decreased time in the center of the apparatus compared to WT, with the $Gtf2ird1^{-/-}$


and $Gtf2i^{+/-}/Gtf2ird1^{+/-}$ having intermediate values. **F** All genotypes showed increased freezing with increased number of footshocks. **G** All genotypes showed a similar contextual fear response. **H** There was a main effect of genotype on cued fear with the $Gtf2ird1^{+/-}$ and $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ showing an increased fear response compared to WT.


Supplemental Figure 1: Differential peak binding comparing the WT and homozygous Gtf2i IP. A The highlighted peaks have an FDR < 0.1 and a log2FC > 0. These were used as the high confidence Gtf2i peaks.


Supplemental Figure 2: RNA-seq analysis of E13.5 brain comparing the WT and $Gtf2ird1^{+/-}$ mutants. A Only Gtf2ird1 showed a difference with FDR < 0.1.

Supplemental Figure 3: The effects of frameshift mutation in *Gtf2ird1*. A Female heterozygous and homozygous mutants have increased activity levels. B There is no difference in activity levels in male mice. C There is no difference between genotypes in females with respect to the time spent in the center of the apparatus. D There is no difference between genotypes in males with respect to the time spent in the center of the apparatus. E All genotypes showed a contextual fear response. Baseline refers to the first two minutes of the task on day one and context refers to the first two minutes of the task on day two. F There was no difference in shock sensitivity between genotypes.

Supplemental Figure 4: RNA-seq analysis of homozygous double mutant. A The homozygous double mutant showed significant changes (FDR < 0.1, highlighted in green) across many genes. Genes are labeled that had an FDR < 0.1 and a log2FC > 1 or log2FC < -1. B GO analysis of all nominally significant genes.

Supplemental Figure 5: Biochemical and behavioral characterization of the *Gtf2ird1*^{+/-} x *Gtf2i*^{+/-}/*Gtf2ird1*^{+/-}. A, B Western blot and qPCR confirm decrease in Gtf2i protein and mRNA. C Western blot shows that the large Gtf2ird1 deletion decreases the protein, but adding the one base pair insertion mutation does not further decrease the protein made. D Gtf2ird1 mutation increases mRNA abundance. E Replication of ledge task in independent cohort. F Gtf2i+/-/Gtf2ird1-/- females have increased activity levels. G Gtf2i+/-/Gtf2ird1-/- males to a lesser extent have increased. H All genotypes showed a contextual fear memory response. I There is no difference between genotypes in shock sensitivity.

Table 1: Behavior and animal cohort for Gtf2ird1+/- x Gtf2ird1+/-

		Male		Female				
Behavior	WT	Gtf2ird1 ^{+/-}	Gtf2ird1 ^{-/-}	WT	Gtf2ird1 ^{+/-}	Gtf2ird1 ^{-/-}		
One hour activity	3	20	16	10	22	6		
Ledge	2	20	16	11	23	6		
Marble burying	3	20	16	11	22	6		
Condtioned Fear	3	16	12	11	17	5		
Shock Sensitivity	3	20	16	11	22	6		

Table 2: Behavior and animal cohorts for the Gtf2ird1+/- x Gtf2i+/-/Gtf2ird1+/-

Behavior			Male		Female			
Cohort1	WT	Gtf2ird1 ^{+/-}	Gtf2i ^{+/-} /Gtf2ird1 ^{+/-}	Gtf2i ^{+/-} /Gtf2ird1 ^{-/-}	WT	Gtf2ird1 ^{+/-}	Gtf2i ^{+/-} /Gtf2ird1 ^{+/-}	Gtf2i ^{+/-} /Gtf2ird1 ^{-/-}
One hour activity	8	8	11	7	14	9	9	11
Ledge	8	8	12	7	14	9	11	11
Marble burying	8	8	12	7	14	9	11	11
Cohort2								
Ledge	13	5	12	6	11	15	13	12
Condtioned Fear	11	4	9	5	7	13	12	11
Shock Sensitivity	12	6	10	6	10	15	13	12

Supplemental Table S1: Table of summary statistics and statistical tests

					Comparison		Descriptive Statistics			Statis tical Aradysis		
	Figure	Amay Performed	Porzeteiter (unit)	Independent Variable	u Sex	Age	n (pri mal q)	Average ± SBA WT:1.14± 0.268	Median (2Q3Q) W1: 1 (0.881, 1329)	Statistical Test		Significance
	с	Western blotting	GtDI protein level in hom and het double mutants compared to WT relative to Gapdh	GtG band density relative to Gooth		E13.5	Wt: 3 Q(3):d2**: 3	Gef2led111: 1.2.7 ± 0.422	Wt: 1(0.881, 1.129) Ge5 Ve51 ⁻⁽⁻⁾ : 1.045 (0.861, 1.565)	One-way ANDVA; Tukey's HSD multiple comparison test	genotype: FQ (i)=0.2915, p=0.7572	
					_		ØfSindS ² :3 Wt:3	Ge/2hd1 ⁻¹ : 0.957±0.057 WT:-5.140±0.0635	Gell treft ⁽⁻ : 0.920 (0.901, 0.994) WT: -5.151 (6.196, -5.089)			
	0	spot	del to CT	GISS transcript level relative to Gapd'h		E13.5	ay21x61 ⁻¹ ; 3	Gef2led1* ⁽¹ : -5.111 ± 0.0539	GH2 HH1 ⁻¹ : 5.161 (-5.165,-5.062)	One-way ANDVA; Tukey's HSD multiple companison test	genotype: 8(2,6)+0.6554, p=0.551	
							agales*:s Wt:s	G#2ind1 ⁻¹ : -5.043 ± 0.0670 WT:L-11 ± 0.082	Gell vels*: -5.077 (5.077, 4.970) Wt: 1.07(1.094, 1.17)			WT-Gebind1**:p=0.3616
		Western blotting	GtSIndI protein level in hom and het double mutants componed to WT relative to Gopdh	GHT2int11 band den sity relative to Gapd h	1	613.5	@(21+61 ⁻¹ : 3 @(21+61 ⁻¹ : 3	G#2Hd1 ⁻⁽⁻⁾ 0.9-61 x 0.0923 G#2Hd1 ⁻⁽⁻⁾ 0.694 x 0.0382	GeD ind5 ⁻¹ : 0.904 (0.875, 1.823.) GeD ind5 ⁻¹ : 0.750 (0.674, 0.725)	One-way ANOVA; Tukey's HSD roul tiple comparison test	genotype: F(2,6)=8.488,p=0.01761	WT-G6B1rd1 (*) p=0.0153* G6B1rd1 (*G6F2rd1 (*) p=0.0913
							WT: 3	WT:-5.939 ± 0.579	WT: -5.990 (6.997, -5.907)	One-way ANDVA: Tukey's HSD		WT-Gr65 rd11/:p+0.000132**
	,	op/CII	del ta CT	GP2indS transcript leve relative to Gap dh	1	E13.5	Q(3)+65 ⁻¹ : 3 Q(3)+65 ⁻¹ : 3	G#2ird1 ⁻¹ ; -5.156 ± 0.070 G#2ird1 ⁻¹ ; -4.360 ± 0.0570	GeStell 1: 4.305 (4.390, 4.303)	One-way ARDVA; Tukey's HSD multiple companison test	genetype: FQ,6]=163.25, p=5.87640-6	WT-G651rd1 ^(*) p < 0.0001*** G651rd1 ^(*) G672rd 1 ^(*) p < 0.0001***
				Qf2infLon target			WT: 6	WT:13.18± 241	WT: 12.90 (10.00, 16.75)	One-way ANDVA; Tukey's HSD	grodype F(1,1 0+20 650, p+0.001066	W1-G651rd1 (: p=0.0011**
		sPO1	relative enrichment	primer computed to lider off target primer init?		E13.5	Qf2inf1°:6 W1:6	G#2Hd1 ⁻¹ : 2.11 ± 0.327	GHS WELT*: 2.32 (1.95, 2.60)	One samplet-test un1	8(3)-5.04 S ₁₀ =0.0039	
				_			Qf2inf1 ² :6			One sample t-test u=1	1(3)-34058,p=0.039	
				Qt(2) rd1 on target primer computed to			Wt: 6 Qf2inf1 ⁻⁽ : 6	WT:23.01± 458 GR2Hd1 ⁻¹ : 4.54±1.615	WT: 22.95 (1858, 31.34) GeStels (*: 331(2.74, 3.91)	One-way ANDVA; Tukey's HSD multiple comparison test	geotype: (1,10):14.405, p=0.0034	WT-GRB1rd1 ^(*) : p=0.0034**
		spot	rel ati ve enrichment.	primer computed to Polipili of target prime in IP	-	E13.5	WT: 6	-		One sample t-test un1	t(5)~4.81, p=0.0048	
							Qf2ind1 ² : 6 WT: 13	WT:59.2415±0.7585	WT: 60 (60, 60)	One sample t-test ur1 Knuskal Wallis: Namanui	(S)-2.19Lp=0.08	WT-Gr65 rd1 ⁻¹ :p=0.2339
	EgureSA	Ledge	Time onledge(ii)			adult	@[21+61 ⁻¹ : 43 @[21+61 ⁻¹ :22	Ge/2ind1**: 50.7466a 2.3758	Geb Vels**: 60 (38.2725,60)	Kruskal Wallis; Namenyi tests for multiple comparisons of rank sums	Genotype: HQ1-7.88, p=0.01945	WT-GelDrd1 (*: p=0.0205* GelDrd1 (*-Ge/2nd 1 (*: p=0.2509
							WT: 14	Gt/2hd1**: 42.8745±4.2896 WT:9.8929±1.6766	GHD HIS **: SA6175 (EL 2136, 60) WT: 11.75 (A, 14625)	One-way ANDV A; Tukey's HSD		W7-GtB1rd1 ⁻¹ :p+0.9794
	Figure58	Marble burying	Number morbles@urled	Stamber marbles Barie	1	nduk	@[21+61 ⁻¹ : 42 @[21+61 ⁻¹ :22	G#2ivd1**: 10.1905±0.698 G#2ivd1**: 5.1136±1.066	Gell (vell **): 11.25 (8, 13.5) Gell (vell **): 3 (0.625, 9.25)	multiple comparison test	genotype: F(2,75)=7:5215, p=0.0007566	WT-G851rd1 (*); p=0.0176* G851rd1 (*)-G872rd 1 (*); p=0.000673***
					rrate		WT: 3	WT:36.9963±5.1275	WT: 35.84 (32.295, 41.1195)			M10 WT-Gr/2nd1**) p= 1
					Servale real e		WT: 10 Qr(2) rd(1**): 20	WT:35.23914 L 4953 G8/2hd1**: 35.15144 L 1106	WT: 33.469 (32.6525, 37.6922) Gelt Hell**: 34.836 (01.191, 39.4427)			MA10 WT-GH2Hd1 " ` p=0.9952 MA10 GH2Hd1 " `-GH5Hd1 " : p=0.9758
			minutes 1: 10		Serale	nd.R	Qf2Inf1"; 22	Gef2ind1**) 36.3735a 1.3089	OHEWELT 36.211 (02.3625, 41.467.8)			M20 WT-Gr/2H1**; p= 1
					rrail e Servale		@f21rd1**: 16 @f21rd1**: 6	Ge/2kel1**: 32.1322x 1.8021 Ge/2kel1**: 38.2575x 1.5134	Gel vet **: 30,9935 (R. 1092, 33,996) Gel vet **: 36,69 (S. 6805, 41,0355)			M30 WT-GH2HII "1: p= 1 M30 GH2HII "1-GH5HIII"; p= 0.61 3
				1	creal o		WT: 3	WT:28.1817±5.7764	WT: 33.823 (25.2285, 33.9555)			M30 WT-Gr/2rd1**; p=0.9958
					formula crail a		WT: 10 Qf2inf1**: 20	WT:28.7612±1.5092 Ge/2ed1**: 30.3495±1.4074	WT: 28 2205 (244215, 52.6562) Gel2 Hel3 **: 29505 (25.2797, 34.875.7)			M30 WT-GH2Hd1": p=1 M30 GH2Hd1":-GH5Hd1": p=0.02.08
			ninutes 1120		Bertale	nduk	Qf2led1**: 22 Qf2led1**: 16	Gef2led1***: 32.3687s L 1151 Gef2led1***: 25.7586s L 7696	GeSted1**: 32.4195 (29.5727, 35.19.13) GeSted1**: 24.484 (20.7895, 28.3688)			NA60 WT-GHZHd1""; pr 1 NA60 WT-GHZHd1""; pr 0, 9998
					tral e Borode		Qf2Inf1": 6	G#2Hd1**) 37.0192±4.0241	OHE HAST TO 25.7555 (02.9688), 45.048(5)			MAID CH2hd1*'-GH51hd1*'; p=0.99.99
					rral e Berrale		WT: 3 WT: 10	WT:22.0333±4.9042 WT:24.4906±1.231	WT: 17.692(171395, 24.7565) WT: 21.173(215697, 27.0595)			MS0 SVT-Get2ind1**; p= 1 MS0 SVT-Get2ind1**; p= 1
			ntinutes 21.90		rrui e	sake	Qf3inf1**: 20	Gr/2nd1**: 26.7614x 1.1929	GHS HdL**: 27.3475 (23.5265, 29.87)			M50 Gt/2rd1* '-Gt61rd1*': p=1
					formale crait e		@f2inf1**: 22 @f2inf1**: 16	Ge/2ivd1**: 29.695±1.4408 Ge/2ivd1**: 22.8329±1.6828	Gell (vell **: 30.602 (05.71.67, 32.532 3) Gell (vell **: 23.086 (38.9805, 25.485)	linearmised model; Animal id	genetype:FQ, 71)=2:9764, p=0.057270 tenef(5,355)=113.2687,p<2.2s10.16 sex:R(1,71)=18.7729, p=4.76040.5	MAGD SWT-GH72Hd1 **) pr 1 MAGD SWT-GH72Hd1 **) pr 0.9997
	Egure SC Supplemental			Total Distance traveled	d Newado		Qf2inf1": 6	G#2ird1**: 35.1078x 4.7178	Gr0 HrS **: 34,049 (98,3257, 45,1902)	random effect; Anova to test fixed effects; post hoc within	genotype*6:ne:F(00,355)=1.8867, p=0.045812	M60 Gt/2trd1*"-Gtf5trd1*": p=1
	Figure 3A-0			(m)	rrail e Servale		W1: 3 W1: 10	WT:24.3573t 3.3911 WT:21.1039t 0.9438	WT: 23.154(21,202, 27.011) WT: 20.1265(310063, 22.589)	time; within sex between genotypes	geno hgse*s ex FQ, 7()~4.9623, p=0.00945 time*sex: (5, 355)~6.4339, p=9.57840-6 gen ohgse*6 me*sex:FB, 0,355)~1,3532, p=0.2011	F 50 WT-Gritind1 ** ; p= 1 F 50 WT-Gritind1 ** ; p= 0.9999
			minutes31:40		rrail e	sekki	Qf2inf1": 20	G#72Hd1**) 22.4625±1.5158	GeB vel1*": 21.509 (88.8118, 26.051.2)		gen obgee*6 me*h ex FØ 0,355)=1.3522, p=0.2011 31	F10 Gt61rd1** Gtf2rd1**; p= 1
					Bornako rrad e		QF21nf5**) 22 QF21nf5**) 16	G#2Hd1**; 27.2662x 1.6497 G#2Hd1**; 20.548x 1.6414	Gell Vell **: 26,9645 (EL 1015, 33,90.22) Gell Vell **: 18,1675 (E7,0567, 24,568.2)			F 20 WT-Geb reft **: p= 0.9619 F 20: WT-Geb reft **: p= 0.3612
				1	Berrale		Qf2Ind1": 6	Gef2e-61**) 35. 4802x 4. 791 WT:21, 395x 5. 0464	CHD H-ES **: 39.44MS (25.7502, 44.7335) WT: 22.979 (17.47MS, 26.107)			F:30 G651rd1** G672rd1**; p= 0.9344 F:30 W7-G651rd1**; p= 0.6175
					rral e Borrale		WT: 3 WT: 10	WT:19.74264 0.8637	WT: 20.4355 (18.079, 21.0637)			F 30 WT-G65 rd1 ""; p=0.6175 F 30: WT-G65 rd1 ""; p=0.6739
			minutes 4150		rral e Servale	nduk	Qf21ed5*: 20 Qf21ed5*: 22	Gef2led1**: 19.5165a 1.3693 Gef2led1**: 27.9755a 1.7879	Gell (vell **): 18.139 (ts. 7982, 22.6705) Gell (vell **): 27.852 (04.047, 12.8625)			E30 Gebind1" Gef2nd1": pn 0.8165 E30 WT-Gebind1": pn 0.3453
					mie		Qf2led1*: 16	Gef2ed1**: 18.4108±1.4107	Gelt Hell **: 16-761 (33-8042, 21.5572)			F80:W1-Ge5ind1**: p=0.0018**
				-	formule real o		Q/SIMS**: 6 WT: 3	Ge/2hd1**: 33.8813±5.5862 WT:19.974±2.5137	Gell Vell **: 35.6375 (27.5742, 44.0045) WT: 21.946 (18.4645, 22.4695)			E:40 Gt51rd1** Gt72rd1**; p= 0.2066 E:50:WT-Gt51rd1**; p= 0.0177*
			ninules 53.60		terrale	1	WT: 10	WT:17.8306t 1.2904	WT: 18.253 (17.192, 19.9575)			F50 WT-CtD+d1**; p=0.0026**
					rral e Borrale	nduk	Qf2ind1**: 20 Qf2ind1**: 22	Ge/2hd1**: 15.8505 (12.692, 20.7727) Ge/2hd1**: 23.9065 (19.798, 28.6608)	GeS tels**: 15.8505 (32.602, 20.772 7) GeS tels**: 23.9005 (39.798, 28.660 8)			FSD GtSrd1" GtSrd1": p= 0.7097 FSD WT GtSrd1": p= 0.074
					rrail e		Qf3Inf1": 16	Ge/2nd1**: 15.0071x 1.400 Ge/2nd1**: 31.4315x 5.7476	GHB HHS **: 16.1285 (32.7855, 18.4785)			F 60 WT-Gr51nd1": p=0.0043**
		One hour Adtivity	minutes 1:10		Berrale real e		QF31nf1**: 6 WT: 3	Ge/2hr81 **: 31.4315a 5.7476 WT:160 Jt 20.3034	GH5 WES **: 30.3735 (NG 6225, 41.041.) WE: 155.7 (141.6, 176.55)	pour road made. Alond if facilitating and has within the contract of the contract arrange.		F 60 Gr51 nd1 *** Gr72nd1 ***; p= 0.7456 MA10 WT-Gr72nd1 ***; p= 0.9986
					Bernale		WT: 10	WT:139.No.10.5634	WT: 137.55 (1174, 160.45)			M10 WT-G872mf1 " \ p=0.6117
					rrait e Borode	and	@f21rd5**: 20 @f21rd5**: 22	G#73vd1***: 133.715a 5.0046 G#73vd1***: 131.1273a 4.9008	G451461** 1323 (223.55, 145.075) G451461** 131.35 (316.175, 140.075)			M.10 GY2MI " "-GIBINII ""; p= 0.8053 M.20 WI -GY2MI "") p= 1
					rrail e Servale		Qf2inf1**: 16 Qf2inf1**: 6	Ge/2led1**: 110.375a 5.6066 Ge/2led1**: 121.05a 9.2931	Gell (vell **) 112.35 (86.525, 124.175) Gell (vell **) 125.4 (120.925, 128.225)			M30 WT-Gr2nd1""; p=1 M30 Gr2nd1" '-Gr5nd1"; p=0.86.73
					creal or		WT; 3	WT:125.7667t 12.3776	WT: 114.3(1134, 132.4)			M.30 WT-Gr/2rd1**; p=0.9938
					Bornako rrad e		WT: 10 QF21rd1**: 20	WT: 132.95a 13.9714 Ge/2rd1**: 136.245a 8.6532	WT: 126.6 (98.575, 156.675) Gelt Hell **: 136.75 (88.425, 159.975.)		generate F32 O 1 800 ; #50005 see 17 ; 7 ; 9 ; 1000 ; #50005 see 17 ; 7 ; 9 ; 1000 ; #1 ; 100	M30 WT-GH2HI " '- p=0.6168 M30 GH2HI " '-GH3HI " '- p=0.9403
		mental .	renutes 1120		Servale		@f3!nf1**: 22	G8/2hd1**; 135.0545± 6.3195	OR WIT 1309 (17.425, 15035)			M40 WT-Gr/2nd1**; p=1
					rral e Servale		@f21rd1": 16 @f21rd1": 6	Gef2led1**: 114.1937±8.4673 Gef2led1**: 123.6667±7.625	0:5141 *: 111.E \$4.65, 129.02() 0:5141 *: 131.513.E, 117.67()			MAID SWT-GHZHSE**: p= 1 MAID SHZHSE**-GHSEHS**: p= 0.90.73
					rral e Bornale		WT: 3 WT: 10	WT:153.8667±23.9175 WT:111.33±9.4179	WT: 168.1 (137.65, 177.2) WT: 110.45 (92.075, 125.45)			MSO 9VT-GH2Hd1**; p=1 MSO 9VT-GH2Hd1**; p=1
				Time spent in the center (d)	mile		Qf2inf1*1:20	G#2Hd1**: 124,145± 6,9826	G45 V41**: 1294 (60.35, 142.95)			MS0 G672rd1**-G65rd1**; p=0.95-67
					Bertale real e		Qf2inf1**: 22 Qf2inf1**: 16	Gef2hd1**: 135, 2x 9, 3074 Gef2hd1**: 104, 1937x 10, 0628	Gell (vell **): 123.15 (011.55, 167.4) Gell (vell **): 162.45 (78.175, 132.775)			MAGD 9VT-GH/2Ind1***; pr 1 MAGD 9VT-GH/2Ind1***; pr 0.9966
	Figure SD Supplemental Figure 3C-0		minutesili.40		Berale		Qf3lnf5**: 6	Ge/2kd1**: 105.6333x11.8915	Ord Vol1*1: 985 (83.425, 122.576)			M60 Gt73rd1**-Gt61rd1**: p=0.9755
	Figure 3C-D				rrai e Servale		WT: 3 WT: 10	WT: 116.3333t 14.6772 WT: 125.7t 20.4655	WT: 107.9(102.05, 136.4) WT: 99(84.475, 156.50)			F 3D WT-GetSind1 ** : pr 1 F 3D WT-GetSind1 ** : pr 0.9999
					rrail e		Qf3lnf1**: 20	G(20d1**) 125.815t 7.85	Gelf Vell*": 1336 (507.8, 149.325)			F.SD GtB1rd1** Gtf2rd1**; pr 1
					Berraile real e		Qf(3)n(5**) 22 Qf(3)n(5**) 16	Ge/2kel1**: 112.0409x 9.7688 Ge/2kel1**: 104.7875x 9.5379	Gell Vell **: 10785 (83.625, 133.875) Gell Vell **: 105.9 (88.675, 128.6)			F30 WT-G65 rd1 *** ; p= 1 F30 WT-G65 rd1 *** ; p= 1
					Servale		Qf3Inf1": 6	G#Zird1**: 93.2333t 13.5546	GHD HHS **: 80.4 (70.35, 111.0)			F.20. Gt61 rd1** Gtf2rd1**) p= 1
					rval e Sovule		WT: 3 WT: 10	WT:111.8667r35.0484 WT:125.74x19.2406	WT: 116 (82 6, 143.2) WT: 108 9 (78.925, 178.85)			F:30 WT-Ge51 rd1 ** : p=0.9085 F:30 WT-Ge51 rd1 ** : p=1
			minutes 4150		rral e Servale	nd.it	Qf21ed5*1:20 Qf21ed5*1:22	Gef2led1**: 123.505a 9.3973 Gef2led1**: 122.0182a 11.5175	Gelt Hell*: 121.25 (601.725, 140.275) Gelt Hell*: 100.05 (94.325, 132.575)			F:00 Gebind1** Gef2nd1**; pn 0.0006 C:00 WT-Gebind1**; pn 1
			resources SE400		creal o	te	Qf2inf1": 16	G8f2led1**: 104.25±65.716	GH2 HH1": 106.75 (88.025, 119.05)			F:40:WT-G851rd1**: p=0.9052
					formule crail e		QF2Ind1": 6 WT: 3	G#2Hd1**: 119.1667±11.0843 WT:123.9±20.6463	G651461**: 11265 (67.45, 137975) WT: 121.5 (185.45, 141.15)			F:60: G:51 rd1 ** G:F2 rd 1 **; p= 0.9987 F:50: WT-G:51 rd1 **; p= 1
					female		WT: 10	WT:119.58 17.1313	WT: 107.25 (95.025, 136.1)			F50:WT-G651rd1**: p=1
					rral e Borrale	nduk	@f21x65**: 20 @f21x65**: 22	Gef2ed1***: 113.2754 10.7205 Gef2ed1***: 108.5364t 8.8438	Gelted**: \$1.65 \$2.05, 134.65) Gelted**: 100.45 \$1.35, 123.275)			ESD Gt5nd1** Gt72nd1**; p= 1 ESD WT-Gt5nd1**; p= 1
					male		@f3infs**: 16 @f3infs**: 6	Gr/2nd1***: 95.1x5.8068 Gr/2nd1***: 114.6667x5.1995	Gell (+61**) 97.15 (60.1, 111.975) Gell (+61**) 117.75 (607.3, 123.925)			FSD: WT-Get5 rd1": p= 1 FSD: Get5 rd1" Get2rd1": p= 1
					Bertale		WT: 14	WT:3.2007±0.9094	WT: 2.65 (1.33, 3.3375)			p an one (01 " 60 x 01 1 "; p* 1
MainTigore Vilegel mental Figure 3	Main/Igure SE		Acquistion bandine Persent in earing	bosilire minute 1		sdult	@f21+61 ⁻¹ : 33 @f21+61 ⁻¹ : 17	G#73HS111 6 8294s 1.6666 G#73HS111 2 82s 0.906 4	Gell (vell **) 3.56 (j. 77, 7.11) Gell (vell **) 3.77 (j. 4)	linearmised model; Animal id random-effect; Anava-to-test fixed-effects; Tuken's HSD multiple companion within	Genotype: F(2,61)=1,6302,p=0,206256 Time: F(1,61)=11,5002,p=0,001226 Interaction: Time*genotype:FQ,61)=0.2.5622,p=0.0054	
							WT: 14	WT:1.4007±0.3963	WT: 1.11 (0, 24775)			
						adult	@[51:46": 33 @[51:46": 37	Gr/2nd1**: 1.6848x 0.3866 Gr/2nd1**: 2.4065x 0.7255	G69H5": 131 (), 2.60) G69H5": 1.34 (), 2.60)	minute		
			Acquisition Canditioned distribusing amoret.	Conditioned Stimulus minute 3 Conditioned Stimulus minute 4 Conditioned Stimulus		-40	WT: 14	WT:3.1171a1.0229	WT: 2.44 (0, 5.02)			1WTG6/2rd1": pr 0.9712
						sduk	@{21+61": 33 @{21+61": 17	G#73rd1**\ 6.647x 1.2547 G#73rd1**\ 3.2276x 05.358	Griff (1, 11,16) Griff (1, 11,17), 78, 357)	linear mixed model, Asimal id random effect; Anovata test fleed effects; Tukey sHSD multiple companion within mixed	Genetype: F(2)EU-1.6316;p=0.20405 Time: F(2)L22)=26: 7794, p=0.2988:10-10 Internation: Time: Reportage: F(8), 122)=3.9944, p=0.0044.27	3WTG#72rd1"` pr-1 3G#72rd1"'-G#72rd1"` pr-0.9659
						ndak	WT: 14 GP2HcE ^{-C} : 33	WT:16.2057±4.6278 Gef2ed1**: 16.2909±2.764	WT: 8.48 (7.68, 18.1925) GHD:HIS**: 10.27 (5.57, 24.89)			#WTG#Z#d1": p= 1 #WTG#Z#d1": p= 0.9998
						aduk	Q(2):46°:17	G8f2ln81***: 14.6576a 2.8904	OHD HdS**: 9.73 (6.67, 19.2)			4:Gef2trd 1**-Gef2trd1**: p=0.9994
							WT: 14 Q(2):45° -: 33	WT:32.4293±6.2781 Ge/2led1**: 17.3433±3.14	WT: 30.36 (16.96, 38.1675) GeSted1**: 10.71 (8.91, 22.32)			59VTGE/2rd1": p= 0.0066"* 59VTGE/2rd1": p= 0.0022**
	Sapplemental Figure XI		Contractual Four memory	minuter 5 swrage 'S freeding basedine swrage 'S freeding awrage 'S freeding awrant first two relinates			Q(2):45°:17	G#73rd1**: 13.9441±3.0281	O(0) (c(1) 10.22 (5.36, 20)	Izeur mixed model, Akimi id zandam effect, Associa tiet fied effects; post has composition vielle grandpes between content		SGef2kd1""-Gef2kd1""; p=0.9619
						skks	WT: 14 against ²⁵ : 33	WT:2.3007±0.5356 Gt/2hd1**: 4.2571±0.887	WT: 2.1025 (0.665, 1.005) Gel? Holf.**: 3.105 (0.89, 5.105)		Combana (CASI) - Casa - Casa	WT: baseline-context; p=4.7x10-6*** GtSintl1": baseline-context; =0.03431*
							Q(2):45°:17	Gef2led1**: 2.6132±0.5748	O(0)(451"): 2.665 (0.665, 4)			GtDird1": baseline-context:p=0.00611**
	Supplemental Figure 30						WT: 14 GP21+61 ⁻¹ : 33	WT:15.8979±3.4308 Ge/2nd1**: 8.8945±1.4747	WT: 13.225 (6.7763, 21.6175) GHS VHS**: 6.875 (4.65, 10.205)			
	Spplemental Egure 30						@(2):d5":17	Gef2krd1**: 10.5376a 2.2959	CHE HIT ": 6-MS (I RISK)			
	Spplemental Figure X			_			WT: 14	WT:9.61641 2.8054 Gr(2h:d1**) 8.67461 1.6819	WT: 8 45 (1.33, 13.935) Grift Hrt.*: 6.19 (2.67, 8.41)			1WTGt/2nd1": p= 1 1WTGt/2nd1": p= 1
	Spplemental figure X			Contestual fear minut	-	sekit	Qf31n61": 33	G8728451111 B. 67488 L 6819				
	Sipplemental Figure X			_		nduk	@f2int21:17	G#72Hd1**; 8.7124x 2.286	Get Intl * 1 5.76 (L.77, 12.44)			LGt/2nd 1**-Gt/2nd1**; p= 1
	Septemental figure X			_		nduk nduk	@(21:461 ⁻¹ :17 WT: 14 @(21:461 ⁻¹ :13	SetZed1**; 8. 7124x 2.2 86 WT:22.1793x 5.2595 SetZed1**; 9.1142x 1.6703	Griff (**) 5.78 (3.77, 12.44) WT: 20 61 (5.5325, 30.89) Griff (**) 7.11 (3.56, 12)			LGr/2rd 1" - Gr/2rd 1") pr 1 2WTGr/2rd 1") pr 8e-04 == 1 2WTGr/2rd 1") pr 0.1046
	Sepplemental Rgure XI			Contestual fleor minut 1 Contestual fleor minut	-		@51\d2':17 W1:14 @51\d2':33 @51\d2':17	Sef2ed111, 8,7124x32,96 WY122,1793x5,2595 Sef2ed111, 9,1142x1,6703 Sef2ed1111,12,3629x3,1556	GAS VAS ** 5.79 (3.77, 13.44) WT 20.61 (5.5325, 30.88) GAS VAS ** 7.11 (0.56, 12) GAS VAS ** 7.11 (0.22, 16.89)			LG/2vd1"-G/2vd1" pr 1 2WTG/2vd1" pr 8x04"* 2WTG/2vd1" pr 0.1046 2G/2vd1"-G/2vd1" pr 0.0075
	Sepplemental Egyre XI			Contestual fleor minut 1 Contestual fleor minut	-		Q(2)+61 ⁻¹ ;17 W1:14 Q(2)+61 ⁻¹ ;13 Q(2)+61 ⁻¹ ;17 W1:14 Q(2)+61 ⁻¹ ;33	OrTOVES***) B. 71248 2.2 BIS WY 7.2 2.1 FP08 8.5 2995 OrTOVES****) B. 31429 1.6703 ORTOVES****) B. 30299 8.1056 WY 1.5. 07748 5.5388 OrTOVES***) G. 70038 G. 9013	Gell vell "1 5.79 (5.77, 12.44) NY 7.26 (1.55.55), 30 80 Gell vell "1 7.11 (0.56, 12) Gell vell "1 7.11 (0.56, 12) NY 7.75 (2.875), 20 40 Gell vell "1 5.79 (0.21, 8.33)			TOOTHO! 1"- GIZHO! 1"- pr. 1 2WT-GGZH-1"- pr. BEGS == 2 2WT-GGZH-1"- pr. BEGS 2GGZH-1"- GGZH-1"- pr. BEGS 2WT-GGZH-1"- pr. BEGS 2WT-GGZH-1"- pr. GEGS 2WT-GGZH-1"- pr. GEGS
	Sepplemental Egyre XI.			Contestual feor minute Contestual feor minute 2 Contestual feor minute 3	-	nduk	0g2ne12-17 97: 14 0g2ne11-33 0g2ne11-17 97: 14 0g2ne11-17 0g2ne11-17 0g2ne11-17	0472451** B. 71241.2.7 B6 9Y 7.22.17931.5.75905 5472461** G. 11427.1.6703 5472461** G. 11427.1.6703 5472461** G. 12021.6.703 5472461** G. 70231.0.0813 5472461** C. 70231.0.0813	COD HOST S. TO G. TZ, 12A6) WE 20 AL (S. SUS, 30 IIII) OCH HOST Z. TA (S. SUS, 30 IIII) OCH HOST Z. TA (S. SUS, 30 IIII) WE Z. TZ (S. SUS, 30 IIII) WE Z. TZ (S. SUS, 30 IIII) OCH HOST Z. TA (S. SUS, 30 IIII) OCH HOST Z. TA (S. Z. SUS, 30 IIII)			COCRON " GOSONI " p 1 DAY COCRO " p BOX = ** DAY COCRO " p BOX = **
	Sgylevertil figer X			Contestual fleor minut 1 Contestual fleor minut	2 2	nduk	Q(2)+61 ⁻¹ ;17 W1:14 Q(2)+61 ⁻¹ ;13 Q(2)+61 ⁻¹ ;17 W1:14 Q(2)+61 ⁻¹ ;33	OrTOVES***) B. 71248 2.2 BIS WY 7.2 2.1 FP08 8.5 2995 OrTOVES****) B. 31429 1.6703 ORTOVES****) B. 30299 8.1056 WY 1.5. 07748 5.5388 OrTOVES***) G. 70038 G. 9013	Gell vell "1 5.79 (5.77, 12.44) NY 7.26 (1.55.55), 30 80 Gell vell "1 7.11 (0.56, 12) Gell vell "1 7.11 (0.56, 12) NY 7.75 (2.875), 20 40 Gell vell "1 5.79 (0.21, 8.33)	Processiand model, Asimal Management Service Associate Institution (Asimal Management Service)	Geringe F(JAS)-23598, prd. MISSIN Tree F(JAS)-440 Tgpd. 1380-55	TOOTHO! "- GOTHO! "- pr. 1 2WT-GOTHO! "- pr. BE-GE "" 2WT-GOTHO! "- pr. 1,000 2GT-HO! "- GOTHO! "- pr. 1,000 2WT-GOTHO! "- pr. 1,000 2WT-GOTHO! "- pr. 0,000 2WT-GOTHO! "- pr. 0,000

	Marco (\$100.10)		WILLIAM STATE OF THE STATE OF T	Connectal Fee minute			#1 #	67 8 907 41 4 8 8	#T 422 (LIL, T.7%)	multiple comparison within time	Interaction groups Time ([M,437]-1, MN p-0.001666	satt dettestringe 1
				5		and	epartina epartina	Mar senten	Gr3sdr*:4.89(1.00,0.00) Gr3sdr*:1.86(1.00,7.00)	time		k which land the sign of the s
		Conditional few		Contractual Fear minute		and:	87 S	NT 0.4%+4.3%4	WT 533 D.775, W.22			ENT-GETAVOT*: p= EBST9
		Luciana		- 6			agavar is or	MAGES MENDER	Graver*: 8.56(1.80, 9.80) Graver*: 8.96(1.80, 9.80)			s entre martine municipalities s entre martine municipalities
				Cartestual Fear minute		and.	ert u	ET EMERALIES	84.878 (126 875)			EWT-GETAVET*: p= COME EWT-GETAVET*: p= COME
				_			epart s	0/34075 338743805 83 520840807	0/18/02*:3.56(1.00,1104) WY 513 (2.026,7.54)			t dedina miladina mpi s s which compass
				Correctual Four minute &		and	agara".co	STREET: SSENIORS	9/3-07*:4.81(3.36,6.80)			s wit defined this processor
		1					agavari sr wa sa	BTS-ET*: EERE-LENG	973-01*:635(6.66,135) w1 0(0.0			kūtia~ūtia~p-1
				Baseline minute L		and the	agarantini agarantini	673-67": 08-63-03945 673-67": 1481-03943	073/27*-0(0176 073/27*-0(0176	inscripted model, Asimalist	Gendago (Q.), Q.d. 786 (p.d.) 200 (k Transf (L.)), 2.5 (k.p.d.) 2010	
			Cost fear memory baseline Percent Freezing			ank	eT st	M.2.130810.0300	MT 0(0, 000%)	randomerfect Arosa to net faed effects	\$1800 Clar. genuty pr Time ((3,60)-1600 (p=0.866))	
				bodine minuted			agawina agawina	STREET: STREET, SEC	Graver*: 0 (0,138) Graver*: 1.88(0, 8.10)	-		
				Cuediformissed		and:	ert st egastriss	61 6166 150 61 61° 6816 1808	WY ALDERS, SEAS) SPENCET-144 (SEA, SEAS)	-		
							agavari or art sa	61341° 63064119	OFFERST AT WIDE ST, 6084) WY 20 MS DESCRIPTION			
				Cardiferminated		and:	egawii n	FORCE: B.Kide Did	9/342713X12 D646,40			
							agawii sr wii si	6/340°: 27.90% 5554 87.1.36541.895	973-01*-33.0*(18.9k,1689) WT 6335 (178, 90.995)			
				Cuedifiscroinstell		and	egalatifica egalatifica	173-67"; E-010-1556 173-67"; U-010-1556	0/3-27*:11 S (8.8) 20.9) 0/3-27*:7:1(5.8,168)			
	Main Figure 36			Curdifications			NT M	WT 1 982243.0774	WT 1555 (134, 12.46%)			
			Cuel few memory Percent Freeing	Carchernestre		and.	agaari o	STREET: EMERGINES	973427":531[1.W,1556] 973427":6531, U.66	Insurmed model, Arimalial random effect Arosa to test	Security of \$1,64-0.3354,p-0.636 New (1), 46.5-0.046,p-1,610-36	
				Cued Ferminate?		and.	ogowii in	NT 11.66+1330 NT 11.66+1330	WT 667 (F.MCN, 16 MCN) (MTM-MT*-5.75(1.77, 13 MS)	funiefists	interaction group pr *Sine R M,437)-07 WS y +0 Yell	
							agent's	E42943., 8833713963	973-01"-489(3.0,1116) 97.1110.77.74676			
				Cued Formisted		and:	egast*iss	673-67": 1186+1.064	973/07"-489(1%,1110			
							egavan sr en si	073427": 6004x1877 87 5-87kx122	9/340*:7.11(3.6*,1416 9/1 633 (2.66*,8.18)			
				Cuediforminately		atult	oglavarii sa oglavarii sa	6034071 868641818 6034071 328441866	\$156-02"-18-44[4.87, 13.16] \$156-02"-14.81(3.56, 8.80)			
							87.2	NT 1/10/21/10/1	WT 156 (Q 733)			
				Self-trainte 10		and	epartiss epartiss	STREET: SEE LESS	SetSect*: 5.78(3.31, 1305) SetSect*: 5.78(3.31, 6.30)			
				Red		108	ert st open*ins	#1 03640000 #54F*: 056740065	#1 015 p.5, 0.18% #73-07*-0.15(0.118, 0.16)	KoskaPitalis	H2-0.186 p 0.887	
							ing Seat for 10	SCHOOL SHOWING	9/3/02*:0.15(0.85,0.85)			
	Supriemental Figure IF	shad sendinky	nanpæwichbehariar occured	Scape		and:	6/3 M 6/36/4**143	612 616 6181 61 616 6181	WT 03 (03,03% 9/5w27*-03 (03,03)	Knakal Wallis	H2-28%4 p-0207	
					\vdash		eranti s	643-61*: 0264-0200 81.0-672-0287	6/13/02*10.3 (0.3, 0.3) %) WY 04 (0.60%, 0.96)			
				Workston		and	agaranta agaranta	MACT MEDIADRAS	Graver*:045(04,05)	English Wallis	Sessingle F(F,W)=4.3636, p=0.1399	
			Strik protein leerl in han anathet double	9731and Bridge			17.1	62 15111366 62 15111366	673-02"-0.5 (0.4 (0.5, 0.60%) 673-1177 (10665, 1.6606)	One was NASVII, Taley VHSD		stern Jabia - peake
	£	Winter-Editing	mulests compared to W Trelative to Gopth.	réalise to Gapith		618.6	9/3**/9/5+8**-1 9/3*/9/3+8**-1	eranjeraken esake era	073"/05145":0.8K (04K1,0.8K) 073"/07345":0.001 (04K1,0.8K)	multiple comparison test.	Emolibe sift if-12 mt b-000400	eticata" (araies - posse = estir (araies - estir (artika - posser
		UKR	delta CI	Sirfähransorjat level relative to Gapith		62.5	eran Arderanna	67 4291+033 678*/878+27*-5-69-40367	NT 4.84 (LLS III , 48 (PR)	One way 690001, "Kiley \ 1600 multiple comparison hed.	protept (0.6-46.0% p-1.80505)	61-642* Arthur * (p-6.18) 61-642* (Mr. 402*) pr. 6484***
		0		relative to dayath			era/seaser-s	DES NOWS - 4452-088	073"/073+07":-56201 565.07, 5.566 073"/073+07":-8.60 (4.708, -8.25.0)	nultiple companion test	p-15-7/41-17-11-11-1	epin/athesin-lepin/atheain-phoca ***
		Wester Marrie	Griff and potential and in formand for double material company to M Tradale to Gaph	GREAT banddenity milde to Grath		610.5	eranjadivania	013 - /01241 - 0402 - 0408 013 - /01241 - 0402 - 0408	91 0780 p.01003600 973"/9076"-0498 (01275,0460)	One say (NEXV), "Lies VHID multiple companion test	gmotype ((3,4)-15.014, p-100000	en erat Nesesti pesesti en erat Nesesti pesesti
				-			9/3/(9/3/0°) 1 9/3 1	era (perancia) cumores	973'/673421": 0.180@36%,0.186			Briton / National Transporter and American Ameri
	,	6PCR	delta CT	Gribinsk transcript level relative todapah		610.5	eran/adventis	663*/86960*:-636060001	9/3°/9/04/4°:-516/52/2, 62/69	One say (NOVI), "Like \1460 multiple comparison test."	$gen(0;pe,f 0,\hat{q},75.861,p-4.80360.5)$	eneral joraeth; jordine
	Supplemental Figure SA.						973*/973+22*:3 973	R.J. D.S. (NA. 1962) 47 (R** 0.1362)	973*(073+03*;-4.000 (4.006;-4.00) 97 095 (0.00)			arbin jaraeshiadiri jarbina ni yesisisi di artisiran jarbina ni yesisida
		Western Stating	SETS contain her in hon another double	9733wcares			arawan-a aranjadwan-a	6/3-67-07-03-65-03/6 6/3-7/0/3-67-03-65-03/6	Graver*: 0.79(0.705, 0.76) Gra** /Graver*: 0.87(0.836, 0.45)	One was ENDING Take VHD		et 613×31° p. 6037 et 613×31° p. 6037
			GETS protein level in han arathet disable made dis compared to Mil Trelative di Gapith	relative to Gapath		10.5	aranjadivan s	PL2+/812413-10102 PL2	(073°-700)+6°-04(036,046)	One-say 690001, "Likey", HSD multiple comparison test	groupe SUI) is 111, p ti 1884	arbus miaram/arbus myusiara arban/arbus marban/arbus pula wa
												irdinam irdim (irdinam prositi)
	Suprimersol Figure SK	4PCR	68x CI	Sitfätransolytievel relative to Gapith			eracersa	NT 632% DEST	#1 62# (63#, 62#) #75#7"-52# (63#, 6##)	One sally ENDING Tubey VHSI multiple companion ned	georgie FUR ONLE, p-CORILIS	et etaver - p comm
						595	973**/95+6**-1 973**/95+6**-1	613*/01342**-6.00446.107 613*/01342**-6.00446.107	973"/9516": 4191 4197, 4197) 973"/9516": 4121 4166, 4199)			et er z " /arbi a " - p < cca * " erbi a " er z " /arbi a " - p = c.ca % "
												951"/953651"-951"/953451": p-59377
							MTA.	NY LOGGERS	WT 11860 #60,130%			atian arm (atian peralam atian makan peralam
			SESTING panels level in hors and her double	SESTING banddensky			British I British I	EFECT DRIVERS	973-07*-0.980 0478,1.304 973*-748+4**-0.5 0.678,0.5904			et erannin prosiss et erannistes in presession
	Suprieners/Figure SC	Western Stating	nuteto companel told Yorlative tolia pili	relative to Gapith	1 1	610.5	aranjadusin s	643+/842441-102MH-0.ER	973"/95VS "-0496 (047),0449)	One-way MillOVA	grange F(LE): \$6.201, p-0.2004	abia-arr-jabia-g-cose-
												ebm/strasrnebm/strasn; p. 687 ebametram/stran; p. 668
							erta ertieren: a	OT SANDON	NT 4361(4310), 4100(NEWSET*-4360(4350, 4360)			et erzhjatan pesseur et erzhon pesseur
	Supplemental Figure 50	4PCR	rieta CT	Orbins sursorprised relative todapah		610.5	BEST / Sedinarinia BEST / Sedinarinia	BEST / SECRETTY - A RESIDENCE BEST / SECRETTY - A RESIDENCE	\$650°/\$65000°;-65(4.0000,-6.000) \$650°/\$65000°;-6556(4.0000,-6.000)	One say RNOVI, "Liky LHSD multiple comparison test."	group of β,β -direct policies.	et 6 d'a^ Nativa ^ y < com *** lativa ^ 6 d'a^ Nativa ^ y = 0.16 M
												adm/arxer-adm/arxer- pidater
							W-13-3	87 6782 L63	WT 8094 ET 26,600	Nuclei Willis Nemeni testi		etranerznyetran y-coas " eterznyetran y-coas
		Leige				and	9/340°:17 9/3°/9/9/8°:31	013-02": 40.000-47707 013*/013-02": 46.060-0.4016	0/3/27*:60:0158,60 0/3**/00:40**:6138(07825,60)	Sir matiple comparisons of ranksums	perage 1(0)-0048, p-0.0007	et etarri prose
	Main Figure St.	100	Time on Intige (c)				promjedyjan s	013*/01041*1348W451W	9/31"/9/01/45 ": 3388 (F-3), 46 KG			ledinamieriam/ledinamipiones ledim/ledinaminedim/ledinamipiones
					\vdash		W134	La mana a me				orbins ** orbi** Nobins **: p=0.1865
	Suplemental Figure 16.					and.	9/3/02*120	67 8.10% 1.398 673-67": 0.8966 1399	812-41-10-8010) 813-41-10-8010)	Musial Walls, Nemeral India Sir multiple comparisons of	geologie HEIGHEL, politika Dri	et eranyadaan peaka et eranan peaka
		Leige	Yourse ledge (s)				9/3**/46+6**-31 9/3**/46+6**-8	613*/9/2407*.51.0044.503	073"/00+0"-60(0.836,60 073"/00+0"-6172% p1380,6370%	ranksums		MT-6-672** /ARDV-MT-9-2-3-3-00-6*** MEDV-MT-9-673** /ARDV-MT-9-0-7-08-1
												ledin (Missesh Addin (Missesh) p. 0.000 ** Sedinam Arish (Mebrah) p. 0.000 ***
							6,03	WT 6 00 16 + 1,375 1	WT 875 D.S. 10.710			47-64311/Arthris11-p-63967
	Main Figure 16	igure K. Matiestunjing	Munder matter that at	Sunder medies by the		and.	973+63*1.17 973**/98+6**1.33	9731/97347119389 L368	9/3+07*11 (7, 9/5) 9/3**/9/0+0***11(4.85, 15)	One say 89000, "Liley", HSD multiple comparison test.	gmotyp: F(4, N)-1.00, p-0.0000	81663-07"; p. 0836 81663-7/80+8 ": p-0.13
	,				-	_	973**/40+6 *: B	043+/042441-1189 180	973"/WDHS": 4.5 (675, 6.0%)			advamaran (advam pieses admiliadvas nadmiliadvan pieses
							W711	87 20 800 ú 1 Will	WT 20.202 (0.44830, 1554002)			individiri dirikir (kirbi ndiri postalah) Bolah dirikir (kirbi ndiri) post
			neutri E				M(03)	643 457°: 816734 14778	9/36/27*12/6 400(27.77%, 85.00%)			manY debink**: p=1
							eranjedva n. s	6/3*/0/3/2**-38.66/43.167 6/3*/0/3/2**-38.66/43.763	927377/92044571.280925.0282303,858462 927377/92044571.82825.028267.084462			DWYGDMYGAST PORG
							W133 REMOTINE	STREET BEEF	WT 35 38 (F137%) 141(CE) GENERAL TO SEC(13.167, 12.46)			E-613**/40145**-013**/40145**-p-61463
							aranjadwania aranjadwania	6/3*/6/347*-31.984-1498 6/3*/6/347*-31.304-1468	GETS**/GED-HET**: 2555 D23665, D23665 GETS**/GED-HET*; BASHES D5411, D540)			Bout Grant p. 1 Bout Grant p. 1
							M 133	NT 2728-150	NT 3LPS (2LS), 5LSO)			EWYGSTATIOT: p SWE
			minutes 20.80				9/3/07*17 9/3**/9/04/0**30	073-67": 35-33-1-519 073": /073-67": 25-68-1-505	Graver-11 66(3638, 6086) Gra-/Graver-11666 piles, 1680)			20.6 F3+17*-GF3 * (NETS+GF*-)p=0.6866
						and	eranjudivan s eras	073*/073/27*:14.25#+18#4 871.26.89% 1.094	973",(90+6": 11381 91148, 8'475) 87335 90446, 11189			266 E3427 - GES * (GES427 - p. 1813) 2647 - GES * (GES427 - p. 1
			ninne 8.40				9/34/21137	FORCE SAME UNK	9/3/27":33.03(31.60,36.00)	1		E-W7-G51-G*1 p=0-899
							eranyadayan sa eranyadayan s	963*/96940*:31.68941486	9/3"/60+6"-18/9"(8/88)(15/89)			Berner-en-jarier-poss Berner-en-jarier-pos
	Main Figure 10		ninetes 6150	Significance transfer d			6/323 6/3437137	073-07": 3L776-1108	973-07-3196(3196,3595)	Insurmised model, Arimatid random effect Arima to helt	gmotpe F(1,70) + 1.11 K, p-0.00 M True FS, HS) = E-171, p-2.00 G	E-0.13+1013 - (41.3+11) - 0184 E-0.13- (40.4 - 013- (40.4 -) -0184
				(n)			eram/advisimise eram/advisimise	073*/07247*-35-0041266 073*/07247*-31-0041266	0/13**/0/04/0***:283.65 (2256)7, 848.76) 0/13**/0/04/0**:126.86 (36.76.7, 6.4.76)	Final effects	product (01, 80) -0.781, p-00431	EWTGS::Afficit: p.088 EWTGS:G::p:1
]			W103	NT 20100 LET	WT 17.20 (M.1264, M.022)			BWTGST/AGET: p. BGB*
			minutes \$5.60				969601137 9697/96969130	0/31/2013 00:075-2043 0/31/20/2017:21 869-1486	6/3~/2":17 #01/6 4W,34 WQ 6/3"/6/5+6":316/65 p4150,314/8Q			Bid Garth - GG1 - NaGarth - p - 60 MT Bid G2 - NaGarth - GG2 - NaGarth - p - 6.1 M
				1			9/31/(46)45 1 B	943+/842441-11 #3415#3	909"/W0145"-31475 (36-365),37 6Fg			Bid favor - Gran (Gravor - p. code) Cwr Gran Arakor - p. cod
												ENTGENE": p-ENM
					1		I	I				Betaler-era-juraler-j-tells

							1					eo far Nedvar Grar Nedvar postes
												60-WT-6007*/EX-607** pr-0-940
												60.WT-000 (40") p= 1 60.WT-000 (*),000 (400 (*) p= 0.00 (40
												BOG FROST - GER * YASTROST - p= 1 BOG FR * YASTROS - GER * YASTROS - p= 1
					cute		WT 8	WT 11.00% 1.07%	WT 30.667 (E5005), 17830 (6			en a favor hi afa " ya favor hi pi a 6662 Ki anwi a fa hiya disor hi pi a Sike
					Consider	1	WT M	WT 20-3 09 Gt 1 (F2)	WT 27-H6 (2446H, 162127)			EXMT GENET*: p-1
			minutes is 10		fonde fonde		Granish s Granish s	0424071 30303133408 0424071 313414 17105	6/3/07*123 966 D63036, 33 46 6 6/3/07*123 966(28 25), 35 306			6 20 AT G F 2" - Na C i viz " - p = 0.664 8 6 20 AT C i viz " - G F 2" - Na C i viz " - p = 0.666 3
					tralie Constle		9673**/9683+8***:11 9673**/9683+8***:0	0 f 3 * /0 f 3 c f * : 23 2 f 6 + 1 8 M 0 f 3 * /0 f 3 c f * : 16 M + 2 1 M	Setath/ARD (48.75; 23.966 (18.56; 26.7966) Setath/ARD (48.75; 25.677 (18.386; 38.306)			e andron-Nation-Gron-Nation-, p. 1 e andron-Gran-Nation-, p. 1
					nale fonale	-	eranyeranan s	6 FR*/RFR-61*: 13.306+3.3063 6 FR*/RFR-61*: 14.3131+3.5366	GeTR**/GetD (vis **: 8618 (XXXS), 8X 8186) GeTR**/GetD (vis **: 883 SE (XX 819, 40.156)			E 20MT G EXT*/NED HET*; p= 0.84TB E 20MT G EXHET*; p= 1
				1	note	1	NT 8	WT 20580 to 1 00 12	WT 30.665 (M, 1701%)			F. 20-MT-G EX**-/GED In C1**: p= 0.1963
					rate		WTI SE SETENSETT SE	WT 26.150 to 2.050 DESCENT 26.151 to 251 to	WT M.SI (20-MES, 10-205) SITSHIT*: 28 SIZ(25-62K, M.OTTS)			6.30-000 kg **- 400 kg ***; p= 0.600 6.30-000 r*- /400 kg **- 400 r*- /400 kg **; p= 1
			nintec 11.10		fenale colle		aravarnie araniyadinanisi	6 FX 407": 30.017+1.0163 6 FX */073407": 23.5151+1.0563	6/18/07*-38 66(31.167,11.696) 6/18*-/6/03/40**-3386(30.305,316.66)			6 20 GED VA*** - GETX** - NA DIVIS **** p = 0.8066 6 20 MT G FX** - NA DIVIS *** p = 0.8366
					fenale nate		eramyedikamie eramyedikamiy	6 F3 * /0F3×6F*: 33 7644 8.168 6 F3 * /0F3×6F*: 26 0E3142.345	GETS**/ARTHAN**: 81556 (37.606, 86.386) GETS**/ARTHAN**: 25766 (38.366, 86.486)			EXEMTERACET: p-1 EXEMTERATION OF PERSONS
				-	fenale nale	1	oranyonan n	NT 2008514 023	6/F**-\60 kd ** 343 0 (813) 7 27 10 9 WT 20 87 0 3813 16 70 9)			E BORDYS THOUSE THE STATE OF TH
					fenal e	1	WT H	WT 36.136.14.2.1609	WT 28-819 DG186, 825 G1)			A BOOKED HIS THE GET BY ARED HIS THE PARTY
			minutes 21.10		trate fenale		Grandrins Grandrins	D F S (CT*) 20-30406 13.186 D F S (CT*) 20-37144 3.1860	GETANOT**: 35 817(31.58), 31 3830) GETANOT**: 36 816(36.487, 30.884)			K 40MT G ESPT-NEED HETT : p=1 K 40MT G ESPECT : p=1
					enal e Censal e	1	973**/988+8**: 11 973**/988+8**: 9	6 F3 * /GF3+6F* : 26 4134 + 1.8601 6 F3 * /GF3+6F* : 81 344 2 3461	(873**/800+0*** 33354 (36.6055,30.6365) (873**/800+0*** 34854 (36.606,36.336)		gendapa (1), (4)-3, 2 kis, p-002804	F 40 MT G EX**/NED MET** (p+0.086 F 40 GED ME*** - (NED MET**) (p+1
					este fende	1	eramyeraken in a eramyeraken in a	0 ES+VSTR-01+- 10 11 W+1-2468 0 ES+VSTR-01+- 16-71 to 2 2668	GETS***-/GETS (14.51 05, 3 11.00 05, 3 11.	Intermised model, Arimstid randomethics, Arona to test	Time P(S) 65)=38.9 M3 pc 2.3c10 36 sear [1,46]=2.3c37, pc 0.185 M gencly pc Time P(35,3 65)=174 M, pc 0.04 GFS	A 40-GET (** ** ** ** ** ** ** ** ** ** ** ** **
				1	cule	1	WT 8	WT 26-4 88-70-1 CR 6	WT 28-TE (20-FET; ELRES)	Fixed effects; post hoc within time, within one between	genotype "time inj 30,145 jn 1,74 M, pn0.04 GFs genotype "or uP[3,643 jn 1,82 G, pn0.150 M Einse" sax P[3,843 jn 0.06 M, pn 04 21 M genotype "time "or uP[1,84 G]n 1, 16 EL pn0.0 M;	S SO WEG EX° - / (2011 × C T * : p + 0.456.1
					fenale nate	1	WT M WENGT'S	WT 34.7676 1.0667 6478-617-33.08943.0833	WT 23-625 (20-645, 26-624) GERNOTT- 22-24 ((20-7464, 24-628)	prespe	genotype *lime *se of (15,8 db)= 1.95 11,5=0.0381 2	ESOMT GEST / NED KEET - p+ D SEET *
			ninutes 81.40		fenale cui e	1	GETANGET*: 0 GETAN**/GETANGE**: 11	5 EX - /SEX-CE- 26 686-2 0666	GEN-14 RE[3136,1649] GEN-703145-1563 [314845,1048]			K SOGRED HAT AND HER HELD TO BE SEEN TO BE SEEN AND HELD THE SEEN AND AND AND AND AND AND AND AND AND AN
					fenale male	1	derannykerd svanns e derannykerd svanns ir	0 FS * /0 FS+07*- 23 G-16+2 7M6 0 FS * /0 FS+07*- 23 M6+2 FSG	(artar**/(arti iva *** 2.60 ar (30.66, 8.1.7) (artar**/(arti iva *** 8.10 ar (36.66.1, 86.048)			A SOURCE HIS **- GREET **- NATO HIS ***- p+ 0.6.764 K SOURCE GREET **- NATO HIS ***- p+ 0.6.763
				-	fenal e	1	err-yenvar: 11	5 FS *-/075e01*-14 %41+2.1116	972"/98148": 337T (B.W.S., B.435)			K KOWT G F2rdT** p= 1
					cul e focul e		WT E	W1 303054 1 WII	WT 25.805 (8.895, 25.69)			K GOORTONS *** GREEN NATURES**; p+1
	Luciana ar a	One Mary Service		Yotal Distance traveled	essi e Fersi e		GETAVOTTOR GETAVOTTOR	5 FR-67": 31.0084-32008 5 FR-67": 36.0033-35346	G(36)(1"-13.95)(35)(61,313)(6) G(36)(1"-13.31)(31,03,36)(6)			K GOGEDY NEDWOY - GEDY NEDWOY P. p. 1 K GOGEDVOY - GETY NEDWOY P. p. 0.996
	Supplemental Figure SF-G	One Hour Activity	ninutes 6150	Yota i Distrance traveled (m)	rode fonde	aluk	GFR**/GERVA***:11	\$168*\\\$15607*\3530343345 \$168*\\\$15607*\38603434667	(473°-7420 k/2°°-353 (8 (33.8075, 3 6.305) (473°-7420 k/2°°-363 (33.805, 16.53)			M 20WT G F3** /NED MS*** p= 0.481 0 M 20WT G F3M1*** p= 1
					cute	1	973**/40×4***** 973**/40×4**** 7	6478*/003607*1283606423261	GET#**/GETEXA**** 26787 (28.805), 33.762)			M. ID-MT G F3**/GID ind *** p=1
				1	forul e rul e		eranyedikan si wilis	M.2.31930; F.0.31 M.2.4.75129; C 17 8884 1939 1	SETS***/ARTIEVE**** 8 3200 (1999 SEE, 36, 969 SE WT 30, 393 (163 GE), 387 SEG			M 10:00 (va **-017**)/00 (va **-p=0.7 MS M 10:00 (**-)/017#01**-00 (**-p=0.7 MS
					fonale nale	1	WT M SERVETOR	WT MATERIA AND DESCRIPTION OF THE PERSON OF	WY 35.66 (141256, 201612) (672667**-13 808 (14.867, 25.5036)			M. 30/6/13 (viz **- 6/13*** /6/13 (viz **) p=1 M. 30/6/13 (viz **- /6/13 (viz **-) p=0.8 M.2
			nintes \$1.60		Consil e	1	GETANOT": 0	FERENCE 21-3023-1161	978/07":13 #1[16.56,21318]			M XXVI G CAVIT (p. 1 M XXVI G CAVIT (ACDIVA T) p. 1
					tiste fensie		GETST**/GETST-111 GETST**/GETST-111	0 FX * /0 FX 0 F * : 20 G X + 2.400 T 0 FX * /0 FX 0 F * : 24.1180 + 2.800 0	(#73**-/\000 \x\0.***: 18775 [14.3666, 36.5656] (#73**-/\000 \x\0.***: 23066 [18.51, 32.78.0]			M. ZOGERAT "GEST/GERAT"; p=0.7368
					tralie Consile		eranyediken na eranyediken na	\$178 * \02726 (27 *: 16 9829 + 3.0328 \$178 * \02726 (27 *: 28 5136 + 3.0328	(0730**-)(070)(00.5**) 18880 [35.8685, 34.869] (0730**-)(070)(05.5**) 25851 [32.6655, 34.869]			66.20:007*/NETHOT*-GEO?*/NETHOT*: p= 0.98.38 66.20:0001:02**-GETR**/NEDIVOS**; p=1
						1						M ROWT GER**/SERIOR***: p=1 M ROWT GEROEF**: p=1
												M XXMV G EX**/AED Indi *** p=1
												M. 30-SEC (1/21**- GET2**-)/GED (1/31**- p= 1 M. 30-SEC (1**-)/GET2 (611**- GEC (1**-)/GET2 (611**- p= 1
												M. 30:00 (va**-0:13**-)0:0 (va **; p=1 M. 40:W1 6:13**-)0:0 (va **; p=1
												M 40 MT G F2r(F*) p= 1 M 40 MT G F2**/(KG I/KE*); p=0.9407
												M. 40 GEO VA *** GEO*** /GEO VA *** ; p = 1 M. 40 GEO *** /GEO GEO*** /GEO GEO*** ; p = 0 SEN
												M 40-SET INSTITUTE (SET SET) SET SING TO p=0.7983
												M SOMT GEST/SESTINGT": p=1 M SOMT GESTIST": p=1
												M 50MT GET"/GEDVA"; p=0.896 M 50MD VA"-GET"/GEDVA"; p=1
												M SOURTE - NOT HELT - GET E - NOT WELL - 1 pc 1
												M SOSTE INSTITUTE TO SEE THE SEE SEE SEE SEE SEE SEE SEE SEE SEE S
												M SOWT GEST/NESS TO P 1
												M GOGDIVATHOLY GOT NATA 61*; p= 1
							W133	WT DOUBLESSO	WT 36475 [138.125, 204.4)			M GGB VATTGEST / GB VATTGEST (P = 1 DWTGB TT A EXIST) (P B VAT
			minutes 1.10				RESIGET*: 17	0.0240.02.311012640.0303	978(F*:184 (187,183)			DWT-GIDING**: p=0.3683
				1			613-/40kg-: 3 613-/40kg-: 3	0 FS *-/0FS+0T*-: 145.505+11.6005 0 FS *-/0FS+0T*-: 136.40564 5.6071	6678**-/6830 (458***: 146.56 (116.135, 16.14) 6678**-/6830 (458***: 136.8 (46.4, 137.635)			DATACT*-GENCT*- p- 0.0036** DG FACT*-GENCT*- p- 1
			ninutes 11.3.0				W133 GERMET*-17	WT BE DID-7.725 SER-CT - B-13588+10-811	WT 261 (26835,310036) GCS/GT*: 1495 (1867,1895)			20.6 F3** /AED v.d.** - GF3** /AED v.d.** : p= 0.48% 20.6 F3v67** - GF3 * /AET3v67** : p= 0.666
							973**/980vs**:30	0 F3 * //2F3+07* - 106.74+ 6:3136 0 F3 * //2F3+07* - 100.006+ 6:3008	(ef3**-/(ef0 i=0***- 148.6 (138.495, 175.46) (ef3**-/(ef0 i=0**- 151.8 (146.6, 363.315)			20W1GD71AF36F1; pc 0496 20W1GD14F1; pc 0363
Mainfigure Vispplemental Figure S				1			W133 W1347*-17	WI BERRIESEI	WT 15505 (1 181 8, 17 1 7 15) (ef 26 ef 2 1 1 1 1 1 2 1 8, 1 16 5)			SONT-GENET' P. CHG
rques			ninates 31.10				ers=/enva=-20	6 FS*-/SFSHET*: 154.536+8.0303	GFR**/GB (45***: 146.46 (1386, 130.636)			and Extrigations thereof National the part
				1		ald	eranyerawan si	W.J. SPECESSA 10/313 PAR - VILLENGS - 146/3 1179 P. (8) J.	6/7"-/6/20142": 141.7 [131.6] NO US WT 1550 [13645, NO.8]			ENTEROT GENERAL POLI
			nintes 8140				oraver*:17 ora**/ora**:20	5 FR4F*: 383336464666 5 FR*/0FR4F*: 158.18648.664	Serance*: 1464 (1807, 196) Serar*/Setting**: 14646 (188775, 176726)			ENTERNET PERSON
				1			eranyensen s	NT 151 0406-103607	977"-(40) (41" 138.6 (1151, 136.7%) WT 156(117775, 301.815)			to a favor - afa - /afavor - p- 1 to a fa - /adva afa - /adva p- 1
	Mán Figure XI		ninutes 61.50	Trespert in certar (c			MINUTEST TO	STREET: STREET, STREET	978-07": 131.8 [100, 145.3]	Intermined model, Arimatid random effect, Annua to text Final effects	gendspe F[3,73]= 3.3636, p=0.03664 Sine: F[5,363]= 4.4064, p=0.0006681 gendspe*Sine: F[15,865]=3.3283, p=0.83836	eneraler ora yeraler p. 1
				1			973"-/483×8": 30	1 FR * / (2 FR-07 * - 154.5 E-4.5 E-4.6 E-1	(ef3***/000 ivit***: 136.3 (136.86, 136.5) (ef3***/000 ivit***: 136.8 (106.86, 166.136)	Find of nas	generape* line: F [13,165]-1.1383, p=0.02836	ENWY GEDVS***: p-0.9996 ENWY GEDVS***: p-0.9831
			giorna di V				W133 MTM47*: 17	NT SECTIONS	WT HTS DE 2%, 286.0% SCROT*: 187 DE 9, 1869			ENTERT GENET' PETRI ENTERT GENET PET
			ninutes \$1 60				9673**-/660 (vill***: 30 9673**-/660 (vill**): 38	6 FX * /GFX+6F *: 148-13-30-9304	6673**/660 (48***; 139.66 (106376; 573.465) 6673**/660 (48**; 137.66 (104675; 106.336)			en rannar na "Arrana", p. 1
				1					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			BWTGGC'/BGKGC': pc1
												E-MT-G/D/2** p-0-689 E-MT-G/D/*-(6-E-8-61*) p-0-948
												10.6 F3F4T*- GF3 */GF3F4T*- p= 05 33 7 10.6 F3F*/ACD F4 **- GF3F*/ACD F4 **- p= 0.491 9
												BOSETANTE - GES * (VEETANTE *) po 0.6968 BOWY GEOT - DESKET *) po 0.9987
												ewF@@id**; p=1
												60.6 Getr"-(6 GB * /60 Getr); p= 0 31 39 60.6 Getr"- 6 GB * /60 Getr"; p= 1
												60.6 F3** /600 km *** 6F3** /600 km *** p= 0.4966 60.6 F3x(17** 6F3 * /6F3x(17*) p= 0.9864
							WTIR SETROLETS LT	WT 4.365641.096 DESIGT*: 0093240.3104	WT 388 (0, 7.31%) St(St(F*: 0 (0, 1.84)			s wr earse-factors == p=0.6363 s wr earse == p= 60063 **
				baseline minute 1		atik	ers=-/erbivs==-31	5 EX * /012/01*: 2.829+0.8354	GER**/GED (vill***: 1.88 [Q-4.43)	Inserminal model, Animal of random effect, Anona to test	Smotpe: F[1,66]=1.0560,p=0.37866 Time: F[1,66]=3.1.3106,p=1.786×30-5	LWT-GERT / NED visit 1 p = 0.6 MS
							GETATH / NEED IN CO. TO SEE	MT GO	WT 0(0 0	Exed offects; Tsk-ey's HSD multiple comparison within minute	Time (\$1,68)-01.5106.p=1.786.00-5 Interaction: Time*genetype#(0,68)-0.8606.p=0.03164	s Grant Nata Grant Grant Na Education politic
			Acquistion baseline flex entitle exing	baseline minute 3		atuk	oraniyadinanisi	0 FR-07": 10204+03830 0 FR+/072007": 1.064-03638	(ef3i-17-10 (q.1.78) (ef3i-1/kid3 init-1-10 (q.1.88)	11168		s ordina milator myadilas milyi pi dia sa s wmaram yadana milyi dia sa
							ietar-/settina in ai	DEST-AREBOTT DESIGN DEST	(ef30**,\left inds**: 0 (0, 3.88)			3 WT GETSHOT*: p= 0.696.9 3 WT GETS**-/KED inst **: p= 0.696.7
												3 GCD+01**-GCD**-N2CHO1** 1 pr 1 3 GCD**-NAS3 HIT**-GCD**-NAS3AHT** 1 pr 0 WHI
	Markipue 77						Louis					3 6/0 (v3 **- 6/0 /*- /4/0 (c) 1 **) p. 0.8/68
				Conditioned Stimulus minute 3		atik	WTIE SETROIT*: 17	WT THII+1.8201 DERET*: \$2251+22616	WT 4(1.76, 10555) SeTROIT*: 9-78(3.11, 1.2)			
							eramyedikem at eramyedikem a	G #3 * /GF3657 *: 0.79164 3.2662 G #3 * /GF3657 *: 4.69644 1.2981	66730**/660340*** 8 (0, 1863) 66730**/660340*** 8 86 (0, 3 4636)			
							W718	WT 1826134 10078	WT 11.555 [1.80, 16.80]	1	Section 10 68-6 W36 c-6 7613	

		Acquisition Conditioned Stimulus Record Freezing	Conditioned Stimulus minute 4		white	British (17 British (1864) (1874)	SERVED STATE	proventis segues acus	Insurmised model, Animalial random-effect	Your (D.C.B.) SECULO SERVICE T Vine (D.C.B.) SECULO SERVICE T Vine groupe (S.C.B.) ST NS. p. S. W.B.	
						Brish (Addres 11)	\$150° (\$15000° - 31.00 & 4.00)	9/3" (9/5) 6": 1867 (5.8, 14.9) 9/3" (9/5) 6": 1641 (5.8/5, 25.4/5)		Time*grouped \$100)-5785,p-51846	
						W 7118	NA MERMET TO	w'i sanipani, ai tenj	1		
			Conditioned Stimulus minute S		and	Betänderhalt Betärn (Arthinismhalt	\$4260° \$6.006 \$676 \$42° \$6760° \$6.00 \$6.00	9/3/07*18/9(4/9,2114) 9/3**/Nethios**19/4/(313,47/4)	-		
						arantadas na na	643+3658-01-11388-1336	9/3"/95HS ": 1165 (0,25.6)	1		
						W718	81188:01B	WT 144 (0, 140W)	-		With Lawrier current p-00/017
			average % freezing baseline		white	973427117 9737/989487131	643-47": 12661-0255 643"-/643-47": 1.666-0.60	9/347** 0.86 p. 1.50) 9/3**/0*646*** 1.3 (0.1.1)	Insurmed model demand	Sentrole RIAN-LAST automot	inthed "- backer const p-1 (610-9" " inth" (Miliato" : broker context p-1 (040-1
Supplemental Equivalent		constaling nemay				aran/adasan si	643*/Gravii*:13086-0407	913" (915) 45 " 0.85 (0486,1155)	Inser mised model, Animalist random effect, Anima to test facel effects; past has comparison within genotypes between cortest	Control F(166)-81-204, p-0.3 3610-33	arthr/Milatin havine context 6 (1494**
			away Nilway			W118 RESHET*: 17	97 E385 1 DB	WT 686 (4807, 3636) BrZed**-30 76(3678, 80)	comparison with in-genety pro- between control	Control ((166)-80-3094, p-0.3 36-00-30 Meantain-geodype funted ((166)-25561, p-0.08-355	
			serage % flexing some direction minutes		and	9/3"/9/5+6":31	601/808011109100	9/311/9/diventing (1/7, 21.16)			
	-					arranjadivan nai	5424-Vat2645-11 009 Y 600	9/3"/90v8":141% (4995, 9.7)			
			Contract of the minute		10.0	MTSE MEGAST*: 17	97 9.7866 1.668 643-61": 25.8636 1628	#1 11.06 (53.01), #190; #73-41": 16.06 (53, 10)	1		
			1		and.	969**/969×8**-31	6027/00/027114/03/1400	9678"/MSH-8":115 (166, 16.0)	1		
			_			errorpedies n. sc error	643+7643-41+16384-1448 83 648-41284	9/3**/MSHS *: 1645 (645,31.6%) WT 4(1.0,3046)	1		
			Content of Fee ninute		and	96968**: ST	STREET: MINISTER SEED	9/3/07*: 16.00(E.S., IL.III)			
			,			973**/95+6**:31 973**/95+6** %	\$42+7602-02+14-860-4205 \$42+7602-02+13-860-4802	9/3"/9/5545": 5.9 (131, 17.76) 9/3"/9/5545": 6.9(2595, 27.16)			
						M718	M.J. 1718-17529	WT 175 [044 6 HQ	1		
			Cornect of Feer minute		and	9673407"; 17 9673" /96946""; 21	\$43407": 36.56 \$14.36	9/3/07": 11.86(8, 11.36) 9/3"/(4/5/46": 6.67 (0,11.36)	-		
			'			ara /adea - si	\$42+\0x12+22+11.018+1.48 \$42+\0x12+22+11.018+1.48	972"/98945": 1116 (4225, 9346)	1		
						W718	NT 4.07M+13279	WT 118 (146,418)	1		
			Connected Feer minute &		white	BrOWN 17 BrOW (Addish 1121	\$12407°; \$120641,893 \$127(\$12407°; \$12041,868	Br(3+07*-7.54(3.30,1154) Br(3**/NeSt+05**-3.56(178,6.80)	traccine most success		
Main Figure 16		Setemality up literary for in-				arran /ardova ni asi	0/03*/0/06/02*:73 #64 1.WW	9/3"/9d9/8": 3.85 p,6 %)	reser mass model, Annual of random effect, Annual to test fixed effects, Takey's HSD multiple companion salt in time.	Sentings F(I, A) = 2, 2114, p = 0.000 M Year A(I, A, No. 21, 2011, p = 2, 2012 M No. 2(I, A, No. 21, 2012, p = 2, 2012,	
						MTSM MEDICATEST	87 5 7006 1 2006 542 627": 41006 1 2017	8/1 4886 (33.275, 9.20) 8/26/27*: 4 (333, 5.30)	multiple comparison within	prayerineff(I)(1.85)-0189	
			Contestual Feer minute S		white	9/31*/9/51×8**-31	6431 Nethold 15.351x1.400	969*/969+8**: 8.96(188, 3.95)	1		
						aranjadean s	643*/0/a/21*17216-1-87	973"/95×6":1.05 p,1%)	-		
			Corneculifier ninute			967318 S073407*: 17	NT 4 M20+1256 DE2-07": 14226+13675	MT 4326 (188, 1) MT 4326 (188, 1)	1		
			- 6		white	973**/98VS**:31	943*/073/07*649 L496	973"/95HS": 5.8 (178, 8.6)	1		
				-		SECUTIVE SHEET SE	613*/07242*:74635-33736 614/8843304	9/3"/0010":4.8E(111, 0.601)	-		
			Corceculif or ninute 7		***	9(2)(2":17	612-61": 1046-12-619	9/1 14/6 (111, 1 (9/9) 9/20/27*: 1.54(0, 5/8)	1		
						973°/98948°131	643*/0/3/2*157#5/1686	9/311/0/00 (431 (431 KW)			
	Conditioned Fear					BETST / ARTHUR TO SE WYLLE	648*/668602*17335643850 67.579240360	0078"/Nethiod *15.31 (26405, 8.318) 8/3 6036 (279, 8.369)	1		
			Connectal Fee ninute		and.	9/06/07:17	ROSET: MERCANIA	9/34/21": 4.81(3.00,13.00)	1		
			١.			eran jedakan 31 eran jedakan 16	\$42,4 \partental x = 1 1.500.00.00.00.00.00.00.00.00.00.00.00.00	9/3"/9/5+6":3 # (184,6 %) 9/3"/9/5+6":4 #(1.8,6 6%)	-		
	1					M718	MT 1 WM - 0.9% 6	WT 0(0 1108)			
			baseline minute 1		and	9/3/07":17 9/3"/9/04/6":31	\$42407"; \$450,000 \$42407"; \$450,000	9/3/07*:0(01.88) 9/3**(N:0+0**:0(0,1.8)	trear nixed model, Asimal si random effect, Asima totest fixed effects		
						aranjadaan s	642+/642451-13.1844.6810	973" (90945 " 1046 p, 1476)		Servinger (E), (M) 2, 30 (2 p. 40 (30 t) Nov. (E), (M) 1, 37 (2 p. 40 (2 t)), Nov. (E), (M) 2, (M) 2	
		LULE TO THE PARTY OF THE PARTY	baseline minute 3		and	W/118	NT1 WH-0184	WT 0666 (0, 132)			
						9/3427137 9/37/9/8487133	erach unaceda	9734271.0(01.00 97377/9594971.0(0,0)			
						aranjasivan si	043 - /042451 - 3 5 00 0 0 00 0	973°/95145°-3 (L14,1469)			
						87338 8678607*517	613-61": W-517-6-38182	842 874 874 838	1		s which (21" / Arthros " - p = 1 s which (21" - p = 1899 s
			Cued Reconstrol		atik	900m/sdovembs	\$450°/\$45642°-53.000-63.661	9/2"/MSHS-5179 (HSS, 66.8)			8 WT-0/12"/WSHIS": p=0.8989
					_	9737/65045 ** 36 9738	678*/07862*:516% 4.00 81 6.006 4.00	073*/000×6 *-4555 (4.75, 6.50%) 67 8.65 (1795, 541)			1 05 H5**-05**/N5H5** : p 0.89 1 05**/N5H6**-05**/N5H6** : p 1
			Cartifactions		and.	0/3/07*137	Mar: wasses	DCS-CT*-64.00(98.00,7289)	1		1 Gr51/6***Gr57*/Gr51/1** p 1
			Lacina racint		_	9/3"/9/5H5H5":31	\$450° (\$450) CP* - 43 MM 4 MM	973"/9/00+4": 4889 9004 4F.E.T.			e wt cetan /ordinam g-oses
						9731 (975) 4 1 1 16 9718	R.J. 37 801 47 201 1 R.J. 37 801 31 53 41 53 53 63 63 73 75 75 75 75 75 75 75 75 75 75 75 75 75	9/1311/0/03/4511-144(8.56/10.20) 9/1 (8.775 (6.86, 89 (8/6))			e wit der zerzing zich ein zerzing zich ein der zerzing zich ein zerzing zich ein zerzing zich ein zerzing zich ei
			Cued For misstell		and.	9/3/47°: 17	STREET: CHINGSSIN	prayrrist sips with	-		Cardina "- crandro / crandro a
						973"/95945":31 973"/95945":36	\$12*/\$1242*-\$1.0%+1.567 \$12*/\$1242*-41.664-1.529	9/3"/G0145":38(863, 6/31) 9/3"/G0145":3866 (8/8/15/6/17)	1		e don verser - don verser ; p. 1 e dos a don verser ; p. c. a.a.
						W/11E	N. A.16371 B.O.	WT 228 (6025, 21.60%)	free roted model delimited		s wt aran /advan-p-stes
			Cued Recreiostels		wisk	96734427"; 17 96737"/96946""; 31	6/35/07: 36/8/46/56 6/37/(6/36/07: 23/5/6/44/67	8/3427*-35.88 (0.5.86, 65.66) 8/37*-74/5145**-15533 (5.36, 66.96)			EWT-Graver*; p= 000EF* EWT-Grav*; Nethols *: p=0.00EF*
						eronjedivan a	E4317/0/26/21133 B3866.793	972"/95145": 2667 (F.W.S., 41 W.S.)	randomerfect Associated East-offects, Takey's HSD	reactions model, Americal description (Ling S. 1995 of 1995) description (Ling S. 1995	Karbivan-arbinjarbiran yesisa
		Coalitive correspiration for every	Cued Four minute?		ank	MTSE MGMCF*: 17	673-6271 (8-610-611)	WT 531 (0.76, 14 M/S) Sr(3r(2r*): 13.86 (9.44, 10.56)	maliple comparison within time		sasmyatsernasmysteeth pisto sastesmasmyatseth pis
						900m/9d948m33	\$400° (\$400×10° 10 600×10 601	9678**/S653+S***: 1244 (T.SL, 25.W)			E-WT-GET R** / NetStands*** - p=-0.846.3
Main Figure 31						eran Arbinan si	643+/0/2-01+31 E3145 8E3 WT 93E54 1 E49	9/311/0/00/05 11:3433 (F.46%, 44.32%) 9/3 (446/) (367/) (8/44%)	-		E WT GETEVET": p= EREPE E WT GETEV ARTHUS ": p= E.EG
			Cardifornisatel Cardifornisatel Gardifornisatel		and.	6/18 6/2/27:17	612/07: 2609 USS	973-646 (367, 364676) 973-67*: 7.11(6.01,3686)	1		Eagles - age / Argins - 12-0000 Eagles - age / Argins - 12-0000
						963°/96945°-31	643*/M/Ser*:104641361	973"(9846":1031 (LR),15.W)	-		east jaraeth astrjataeth y sist
				+		eranjedvan s	915-7072-01-31111-5484 915-92-1180	8/3 666 (18) 2010 8/3" (8/5 8/10)	-		kabus nabri Arbus np s sunara Arbus np sala
					white	BESIDEN: ST	STATE SHIP SEE	973/47":8.04(6-67,1378)			triet default : p= pe dil il
				1		eranjedikaniai eranjedikaniai	643*/04/2015*13.03.03.33.03 643*/04/2015*10.006615.00	9/3"/M5+6":1033 (LM, 16 W) 9/3"/M5+6":13 W (LMS, 16 W)	1		t wt drzin Arbins in process t drbins in drbin Arbins in pris
						M318	62.8718.97333	WY GOD PACES	1		rasmyaraem-asmyaraem-pasi
					100	BEDROTT ST	000001 SERIA SER	9/3/07*19/82(5.6, 30:00)	-		t debins midden (debins mig is awar
						9/3"/9/5+6":31 9/3"/9/5+6":36	\$43+\042451-138P188	9/3"/(MS+6"-EH (ED, SHE 9/3"/(MS+6"-EH (DE, EHS)	1		B WT-GrC3**/Arthrist**: g= 1 B WT-GrC3+GC**: g= 50 WG
											swingry-jadius p-sass
											e advamadin jadası"; p. c.e.e. e adın jazasın adın jazasını, p. c.e.
											e arbivs "-arbi" (arbivs ": p- s
											e which z = "/artises" - p= 0.5 ms e which z = z = z = z = z = z = z = z = z = z
											e wit-data**/Ardivis**-p=1
											e Grid His ""-Grid H" (" p. 1
											eadmyddiann-admyddiann y 1 eadwinnadmyddiann y 1
											ENTREPARTED
											DWYGGNE'' p-0.894 DWYGGN'' jirkin'' p-1
											E-G-FR-CT*-GFR* (GFR-CT*-p= DHR)
											Bid CO* Arthris ** GCO* Arthris ** g=1 Bid COCC** GCO* Arthris ** g= 188
						W133	M-1 0 M-M-02 034	WT 015 (0.56, 0.1876)			E-1841, -083, JRL241, 3-198
			840			9(3kg)*:21	66340T: 0046403H2	BLR41.:01(07 00£	Erophol Walley	grange H(I)-486, p-0.184	
			FR red?					973"/95945":0.5 (01,0.16)	Knahal Walls	grange (10)-666, p-0.184	
			nu.		_	eranjedikania eranjedikania	643+7843-51-016-00 643+7843-51-016-00	SECRET AND AND ADDRESS OF THE SECRET	1		
			Nub.			9737/98945 1: B 9733	8.1 0 B.E+00.01 8.2 - Vitaria - 10 1 Ref 0 03	M.J. CT (012' 02) M.J. CT (012' 02)			
Supplemental Egyptels	Shalk Senativity	ntop z wichtebaisr coured	Scape .		and.	eronyadakan si erokenisi	943-984-0361 943-984-0361 943-984-0361	8034003 812 818 82 81 (812 83 813/8484803[87 812)	Knahal Malin	george 1635-1707, pd.6387	
Supplemental Figure St	Shak Senathing	nAngut with Netwisrocoveri	Scape.		and	9737/98945 1: B 9733	8.1 0 B.E+00.01 8.2 - Vitaria - 10 1 Ref 0 03	M.J. CT (012' 02) M.J. CT (012' 02)	Krajkalikalis	procipe H(0):1107,p-64807	
Supplemental Figure St	Shalk Senativity	nting it all (librarie count)	Surge.		and	eronjadyan s erovenisi eronjadyanisi	672*/M7242*-0.1864.003 67.0.8640061 67247*-0.0744087	6/3"/M5v4"-03(01,011) 6/1 GJ (011, 0.8 6/3v67"-03 (011, 011) 6/3"/M5v4"-03(0.5,031)	Krali d'Atalis	protype N(E) LTD, prick MT	

Chapter 4: Gtf2i and Gtf2ird1 mutation are not sufficient to reproduce mouse phenotypes caused by the Williams syndrome critical region

Nathan Kopp, Katherine McCullough, Susan E. Maloney, and Joseph D. Dougherty

From a manuscript submitted and is in review at Human Molecular Genetics as:

Kopp N., McCullough, K., Maloney, S.E., and Dougherty, J.D. *Gtf2i* and *Gtf2ird1* mutation are not sufficient to reproduce mouse phenotypes caused by the Williams syndrome critical region (2019) *In review*.

4.1 Abstract

Williams syndrome is a neurodevelopmental disorder caused by a 1.5-1.8Mbp deletion on chromosome 7q11.23, affecting the copy number of 26-28 genes. Phenotypes of Williams syndrome include cardiovascular problems, craniofacial dysmorphology, deficits in visual-spatial cognition, and a characteristic hypersocial personality. There are still no genes in the region that have been consistently linked to the cognitive and behavioral phenotypes, although human studies and mouse models have led to the current hypothesis that the general transcription factor 2 I family of genes, GTF2I and GTF2IRD1, are responsible. Here we test the hypothesis that these two transcription factors are sufficient to reproduce the phenotypes that are caused by deletion of the Williams syndrome critical region (WSCR). We compare a new mouse model with loss of function mutations in both Gtf2i and Gtf2ird1 to an established mouse model lacking the complete WSCR. We show that the complete deletion model has deficits across several behavioral domains including social communication, motor functioning, and conditioned fear that are not explained by loss of function mutations in Gtf2i and Gtf2ird1. Furthermore, transcriptome profiling of the hippocampus shows changes in synaptic genes in the complete deletion model that are not seen in the double mutants. Thus, we have thoroughly defined a set of molecular and behavioral consequences of complete WSCR deletion, and shown that genes or combinations of genes beyond *Gtf2i* and *Gtf2ird1* are necessary to produce these phenotypic effects.

4.2 Introduction

Contiguous gene disorders provide a unique opportunity to understand genetic contributions to human biology, as their well-defined genetic etiology delimits specific genomic regions strongly affecting particular phenotypes. Williams syndrome (WS; OMIM #194050) is

caused by a 1.5-1.8Mbp deletion of 26-28 genes on chromosome 7q11.23 in the Williams syndrome critical region (WSCR). Williams syndrome is phenotypically characterized by supravalvular aortic stenosis, craniofacial dysmorphology, and a distinct cognitive profile consisting of intellectual disability, severe visual-spatial deficits, yet relatively strong language skills. Other common cognitive and behavioral difficulties include high levels of anxiety, specific phobias, and a characteristic hypersocial personality manifested as strong eye contact, indiscriminate social approach, and social disinhibition (see (2, 14, 15) for reviews). Despite increased social interest, individuals with Williams syndrome have difficulties with social awareness and social cognition (20, 174). In contrast, the reciprocal duplication results in dup7q11.23 syndrome (OMIM #609757), which presents with both similar and contrasting phenotypes to WS, such as high levels of anxiety yet less social interest (175). It is also associated with autism spectrum disorders (121). The recurrent deletion and duplications of chr7q11.23 indicate that one or more genes in this region are dose sensitive and have a large effect on human cognition as well as human social behavior.

Substantial efforts have been taken to understand which genes in the WSCR contribute to different aspects of the phenotype. Three approaches have driven advances in genotype-phenotype correlations in the WSCR: phenotyping individuals with atypical deletions in the region, human induced pluripotent stem cell models, and mouse models. Patients with atypical deletions have firmly connected haploinsufficiency of the elastin (*ELN*) gene with supravalvular aortic stenosis and other elastic tissue difficulties in WS (6, 104). However, human studies have not conclusively linked other genes to specific phenotypes. Three atypical deletions that span the *ELN* gene to the typical telomeric breakpoints showed the full spectrum of the WS phenotype, suggesting that most of the phenotypes are driven by the telomeric end of the deletion, which

contains genes for two paralogous transcription factors GTF2I and GTF2IRD1 (34, 35). Indeed, most of the atypical deletions that have been reported that delete the centromeric end of the region and don't affect the copy number of GTF2I and GTF2IRD1, show mild to none of the characteristic facial features or cognitive and behavioral phenotypes of WS (31–33, 36–40, 99). While there are contrasting examples of deletions that spare GTF2I and still have mild facial characteristics of WS, lower IQ, and the overfriendly social phenotype (40, 176), the preponderance of evidence from these rare partial deletions have led to the dominant hypothesis being that GTF2I and GTF2IRD1 mutation are necessary to cause the full extent of the social, craniofacial, visual-spatial and anxiety phenotypes. However, there are limitations to these human studies, primarily due to the rarity of partial deletions. First, because of the variable expressivity of the phenotypes even in typical WS, it can be difficult to confidently interpret any phenotypic deviation in the rare partial deletions (20, 56, 174). Second, given the rarity of WS and partial deletions, and lack of relevant primary tissue samples, it is challenging to link genetic alterations to the specific downstream molecular and cellular changes that could mediate the organismal phenotypes.

To overcome this second barrier, researchers have turned to using patient induced pluripotent stem cells to study the effects of the WSCR deletion and duplication on different disease relevant cell types (44, 45, 47–49). While linking molecular changes to organismal behavior is not possible with cell lines, this approach is amenable to studying cellular and molecular phenotypes, such as changes to the transcriptome and cellular physiology. By studying differentiated neural precursor cells from an individual with a typical WS deletion and an individual with an atypical deletion that spares the copy number of the *FZD9* gene, Chailangkarn et al. (45) showed that *FZD9* is responsible for some of the cellular phenotypes, such as

increased apoptosis and morphological changes. Lalli et al. (49) used a similar approach to show that knocking down the BAZIB gene in differentiated neurons was sufficient to reproduce the transcriptional differences and deficits in differentiation that were observed in WS differentiated neurons. Finally, Adamo et al. (44) studied the effects of GTF2I on iPSCs from typical WS deletions, dup7q11.23, and typical controls. By overexpressing and knocking down GTF2I in the three genotypes, they showed that GTF2I was responsible for 10-20% of the transcriptional changes. Overall, using iPSCs from patients with WS has highlighted a role for both the GTF21 family and other less appreciated genes in the molecular consequences of the WSCR mutation. This suggested the possibility that several genes may play a role in the cognitive phenotypes and GTF2I alone may not be sufficient for all neural molecular changes and hence cognitive phenotypes. However, iPSC studies face the limitation that they cannot be used to model whole organismal effects like anxiety or social behavior. Further, while some cellular and molecular phenotypes can be evaluated, both gene expression and cellular physiology using in vitro differentiation systems do not perfectly reflect the phenotype of mature neural cells, fully integrated into a functioning or dysfunctioning brain.

Mouse models have been used to link genes in WSCR to specific molecular and cellular phenotypes, as well as to the functioning of conserved organismal behavioral circuits that could be related to human cognitive phenotypes. Mouse models are particularly suitable because a region on mouse chromosome five is syntenic to the WSCR, enabling models of corresponding large deletions, including a mouse line with a complete deletion (CD) of the WSCR genes that shows both behavioral disruptions and altered neuronal morphology (93). In addition, a key advantage over human partial deletions is that researchers can easily manipulate the mouse genome to delete targeted subsets of genes in the locus, and generate large numbers of animals

with identical partial mutations, enabling statistical analyses to overcome variable expressivity. For example, there are mouse models of large deletions that show that genes in the distal and proximal half of the region may contribute to separate and overlapping phenotypes (94). Likewise, many single gene knockouts exist that show some phenotypic similarities to the human syndrome, though a limitation is that some of these studies model full homozygous loss of function, rather than a hemizygous decrease in gene dose. Nonetheless, specifically for *Gtf2ird1* (92, 100, 101) and *Gtf2i* (29, 67, 96), multiple mouse models of either gene have shown extensive behavioral deficits including social and anxiety-like behaviors, some of which present contrasting evidence. However, each of these studies has been conducted in isolation, by different labs, with fairly different phenotyping assays, making it difficult to directly compare findings to other mouse models of WS.

Mouse models uniquely enable a direct way to test the sufficiency of individual mutations to recreate the organismal phenotypes detected when the entirety of the WSCR is deleted. By crossing different mutant lines together, we can create genotypes unavailable in human studies and conduct a well-powered and controlled study to directly test if specific gene mutations are sufficient to reproduce particular phenotypes of the full deletion. Since both human and mouse literature suggest that *GTF2IRD1* and *GTF21* each contribute to the molecular, cognitive, and social phenotypes, we set out here to test if loss of function of both of these genes is sufficient to recapitulate the phenotypes of the entire WSCR deletion at both the molecular and behavioral circuit levels, or if instead, as hinted by the iPSC studies and other human mutations, other or more genes may be involved. Using CRISPR/Cas9 we generated a new mouse line that has loss of function mutations in both *Gtf2i* and *Gtf2ird1* on the same chromosome. We then crossed them to the CD full deletion model to directly compare behavior and transcriptomes of

the *Gtf2i/Gtf2ird1* mutants to both WT and CD littermates. Examining both previously defined and newly characterized behavioral and molecular disruptions, we demonstrate that mutation of these two genes is not sufficient to replicate *any* of the CD phenotypes. In contrast to a dominant hypothesis arising from human partial deletions, this study provides strong evidence that *Gtf2i/Gtf2ird1* mutation alone may not be responsible for key WS cognitive and behavioral phenotypes.

4.3 Results

4.3.1 Generation and validation of *Gtf2i* and *Gtf2ird1* loss of function mutation on the same chromosome.

Prior work from comparing phenotypes of humans with partial deletions of the WSCR highlighted *GTF2I* and *GTF2IRD1* as likely involved in cognitive phenotypes in WS (34, 38, 39). Likewise, single gene mutant mouse models of both genes showed that each may contribute to relevant phenotypes (92, 96, 97, 100, 101). We wanted to test if heterozygous loss of function mutants of both *Gtf2i* and *Gtf2ird1* are sufficient to replicate the phenotypes that are caused when animals are hemizygous for the entire WSCR (**Figure 1A**).

Therefore, to test the sufficiency of these genes, we generated a mutant of *Gtf2i* and *Gtf2ird1* genes on the same chromosome using CRIPSR/Cas9. Two gRNAs were designed to target constitutive exons of *Gtf2i* or *Gtf2ird1* (**Figure 1B**) and were co-injected with Cas9 mRNA into the eggs of the FVB strain. Of the 57 pups born we detected 21 editing events using the T7 endonuclease assay. From these animals PCR amplicons around each targeted site were deeply sequenced and mutations were characterized via manual inspection of the reads in IGV. Of the founders there were five that only had mutations in *Gtf2i*, five with mutations only in *Gtf2ird1*, and 15 that had mutations in both genes (**Supplemental Figure 1A**). Most founders

had more than one allele within a gene indicating high rates of mosaicism (60%, 15/25 mice). Breeding a selection of the mosaic founders to WT animals revealed that some of the founders were mosaic in the germline as well (40%, 4/10 mice), with one founder transmitting three different alleles.

To test if haploinsufficiency of both *Gtf2i* and *Gtf2ird1* is sufficient to replicate the phenotype of hemizygosity of the entire WSCR, we moved forward with characterizing a mouse line that has a G > C polymorphism followed by an eight base pair insertion in exon five of *Gtf2i* and a five base pair deletion in exon three of *Gtf2ird1*; these will be referred to as the *Gtf2i** mouse line (**Figure 1B**). These mutations are inherited together indicating that they are on the same chromosome. The mutations cause frameshifts and introduce premature stop codons in early constitutive exons (**Figure 1B**), and were thus expected to trigger nonsense mediated decay and lead to loss-of-function alleles, mimicking the effective gene dosage of WSCR region deletions for these two genes.

We first performed RT-qPCR and western blots to confirm the effects of the frameshift mutations at the transcript and protein levels in embryonic day 13.5 (E13.5) littermates that were WT, heterozygous, and homozygous mutant at the locus. We used E13.5 brains for two reasons 1) homozygosity of *Gtf2i* null mutants is embryonic lethal (87, 96) and 2) both Gtf2i and Gtf2ird1 proteins are more highly expressed during embryonic time points in the brain, with undetectable levels of Gtf2ird1 in the WT adult mouse brain (**Supplemental Figure 1B and C**).

The frameshift mutation in exon five of *Gtf2i* reduced the amount of transcript detected by qPCR, consistent with nonsense mediated decay. This mutation led to a 50% decrease of the protein in heterozygous animals and no protein in homozygous mutants (**Supplemental Figure**

1D). Indeed we were not able to recover pups that were homozygous for the *Gtf2i** mutations after birth, but we were able to harvest homozygous embryos up to E15.5. The embryos had exencephaly consistent with other *Gtf2i* mouse models (87, 96).

In contrast, the frameshift mutations in exon three of *Gtf2ird1* increased the amount of transcript, as expected. Increases in transcript of *Gtf2ird1* due to a loss of function mutation have been described in another *Gtf2ird1* mouse model, and both EMSA and luciferase reporter assays indicated that Gtf2ird1 protein represses the transcription of the *Gtf2ird1* gene (66). The increase in transcript was commensurate with the dosage of the mutation (**Supplemental Figure 1E**). However, we saw that the protein levels in our mutants did not change with dosage of the mutation and did not follow the trend of the transcript (**Supplemental Figure 1E**).

Production of detectable protein after the frameshift was surprising, especially since the increased *Gtf2ird1* mRNA levels were indeed consistent with prior studies of loss of functional Gtf2ird1 protein, so we investigated this phenomena further. We noticed that the homozygous Gtf2ird1 protein bands looked slightly shifted in the western blots. This lead us to hypothesize that there could be a translation reinitiation event at the methionine in exon three downstream of the frameshift mutation in a different open reading frame (**Supplemental Figure 1F**). In another targeted mutation of *Gtf2ird1*, where the entire exon two, which contains the conical start codon, was removed, the authors noted that there was still three percent of protein being made, and the product that was made was similarly shifted (66). From our mutation we would expect a 65aa N-terminal truncation, which corresponds to a 7KDa difference between WT. We ran a lower percentage PAGE gel to get better separation between WT and homozygous animals and we saw a slight shift, suggesting that there was reinitiation of translation at methionine-65 in a different open reading frame (**Supplemental Figure 1G**). This was indicative of the loss of the N-

terminal end of the protein, which contains a leucine zipper that is thought to be important in DNA binding (66). This is consistent with the mRNA evidence that the allele is loss of function.

We therefore tested the hypothesis that we had abolished the DNA binding capacity of the truncated protein, to confirm loss of function. We performed ChIP-qPCR and pulled down DNA bound to Gtf2ird1 protein and then amplified the promoter region of Gtf2ird1, which has previously been shown to be bound by the Gtf2ird1 protein. We compared this to two off-target regions in the genome near Bdnf and Pcbp3. We performed this experiment in E13.5 brains of WT and homozygous Gtf2i* embryos. There was a 15-20 fold enrichment of the on target Gtf2ird1 promoter region compared to the off target regions in the WT animals, while the truncated protein did not show any enrichment (Supplemental Figure 1H,I). This suggested that while a truncated protein was still being made it did not have the DNA binding functionality of the WT protein. This indicated that the frameshift mutation in exon three of Gtf2ird1 was a loss-of-function mutation and provided evidence that the N-terminal end of the protein, which contains a leucine zipper, is necessary for DNA binding. Thus, we confirmed we had generated a mouse line with loss of function alleles on the same chromosome for these Gtf2i* genes.

To test the sufficiency of mutation in these two transcription factors to replicate phenotypes observed by deleting the entire WSCR, we crossed the *Gtf2i** mutant to the CD mouse (**Figure 1C**), which is hemizygous from exon five of *Gtf2i* to *Fkbp6* (**Figure 1A**). The *Gtf2i** mutants were generated on the FVB/AntJ background, whereas the CD mice were generated on the C57BL/6J background. Therefore, we only used the first generation from this cross for all experiments to ensure all mice had the same genetic background. As above, we assessed the transcript and protein levels of genotypes from this cross to confirm loss of function. Again, the CD/*Gtf2i** genotype was embryonic lethal, but we did observe that genotype up to

E15.5. The levels of *Gtf2it* transcript and protein were similar between CD heterozygous and *Gtf2i** heterozygous animals (**Figure 1D**). The levels of *Gtf2ird1* transcript increased in *Gtf2i** animals similar to what was seen in *Gtf2i** heterozygous animals on the pure FVB/AntJ background. In contrast, the CD heterozygous animals had decreased levels of *Gtf2ird1* transcript. In the CD/*Gtf2i** animals the level of transcript returned to WT levels. Again, the levels of *Gtf2ird1* transcript were not reflected in the protein levels. We saw a trend to similar slight decreases in protein levels in the both heterozygous genotypes; however, they were not significantly different from WT levels. This was interesting because in the CD animals were missing one entire copy of this gene, opposed to a frameshift mutation. This also suggested that the frameshift mutation in exon three of *Gtf2ird1* did affect the amount of protein being made, but not drastically. We did see a significant decrease in protein levels (60% of WT) in the CD/*Gtf2i** genotype (**Figure 1E**). Again suggesting that the frameshift mutation was decreasing the levels of protein.

4.3.2 Gtf2i* mutation is not sufficient to reproduce WSCR-mediated alterations of vocal communication

We next tested if haploinsufficiency for both genes would recapitulate behavioral phenotypes seen in mice hemizygous for the entire WSCR (CD mice) (**Table 1**). Since single gene knockout studies of both *Gtf2i* and *Gtf2ird1*, and larger deletion models showed evidence for disrupted social behavior we wanted to directly compare the effects of *Gtf2i** haploinsufficiency to the effects of hemizygosity of the entire WSCR on social behavior.

We first measured maternal separation induced ultrasonic vocalizations (USVs) in postnatal day three and postnatal day five pups. This is a form of developmental communication and was shown to be increased in mice that had three or four copies of *Gtf2i* compared to mice

with normal copy number or only one functional copy (29). We saw a significant effect of day $(F_{1,116.00}=5.43, p=0.021)$ and genotype on the call rate $(F_{2,60.7}=6.09, p=0.004)$, as well as a genotype by day interaction $(F_{2,61.64}=6.80, p=0.002)$. Post hoc analysis within day showed that on day five CD mice made fewer calls than WT littermates (p<0.001) and $Gtf2i^*$ mutant littermates (p=0.045) (**Figure 2A**). We included the weight of the mouse as a covariate to make sure the decrease in call number was not due to differences in weight. We saw that weight has a trending effect $(F_{1,75.48}=3.95, p=0.05)$, but the day by genotype interaction term remained significant.

We also observed differences in the temporal and spectral features of the calls. There was a significant effect of genotype on pause length between bouts ($F_{2,60}$ =11.9069, p=4.31e-5), with CD mice exhibiting longer pauses on day five compared to WT mice (p=0.0004) and $Gtf2i^*$ mice (p=0.0014); this is correlated with fewer calls produced by CD animals (**Supplemental Figure 2A**). There was a also significant genotype by day interaction for the duration of a call bout ($F_{2,61}$ =7.26, p=0.001), with CD mice exhibiting a shorter duration on day five compared to WT (p=0.046) (**Supplemental Figure 2B**). Overall, our study of vocalization provides evidence that Gtf2i and Gtf2ird1 mutation alone are not sufficient to produce a CD-like deficit in this behavior.

Maternal-separation induced USVs are only produced during a transient period of development from postnatal day three to postnatal day 10, peaking at postnatal day seven and postnatal day nine in FVB/AntJ and C57BL/6J strains, respectively (177). Therefore the alteration in the CD animals could reflect an overall shift in developmental trajectory. To assess this, we checked weight gain and developmental milestones in our cohorts. No differences in developmental weights were observed between genotypes. The detachment of the pinnae at postnatal day five, a physical milestone, was similar across all genotypes (χ^2 =2.593, p=0.4628,

Supplemental Table 1). However, there were weight deficits in CD animals in adulthood (**Supplemental Figure 2C**). There was a significant effect of day on weight ($F_{4,240}$ =1610.9, p < 2.2e-16), a significant effect of genotype ($F_{2,60}$ =7.2059, p=0.001568), and a significant day by genotype interaction ($F_{8,240}$ =6.9258, p=3.332e-8). These data suggest that gross developmental delay in CD animals does not explain the observed communication deficit.

4.3.3 *Gtf2i** mutation is not sufficient to reproduce WSCR-mediated alterations of social behavior

We went on to test adult social behaviors. We first applied the standard three-chamber social approach, which has not been reported in CD mice. In this task the mice are allowed to freely explore an apparatus with three chambers: a center chamber, a social chamber that contains a cup with a sex and age-matched mouse, and an empty chamber that only contains an empty cup (**Figure 2B**). This test measures the voluntary social approach of mice. We saw the expected preference for the social stimulus across all mice ($F_{1,53}$ =83.2013, p=1.894x10⁻¹²), with no impact of genotype ($F_{2,53}$ =1.1516, p=0.3239) or genotype by stimulus interaction ($F_{2,53}$ =0.5845, p=0.5609). Post hoc comparisons within genotypes confirmed that all genotypes spent significantly more time investigating the social stimulus than the empty cup (WT p <0.001; $Gtf2i^*$ p < 0.001; CD p=0.00456; **Figure 2C**). Thus, sociability as measured in this task is not sensitive enough to discern a hypersocial phenotype in these animals.

In a test for social novelty, a novel stranger mouse was then placed in the empty cup. All genotypes showed the expected preference for the novel stimulus animal $(F_{1,53}=50.3816, p=3.137x10^{-9})$, again with no effect of genotype $(F_{2,53}=1.3948, p=0.2568)$ or genotype by stimulus interaction $(F_{2,53}=0.5642, p=0.5722)$. Post hoc comparisons showed that all the genotypes spent significantly more time investigating the novel stimulus (WT p < 0.001; *Gtf2i**

p =0.00321; CD p=0.0012; **Supplemental Figure 2D**). Additionally in this task, we did notice a significant effect of genotype on overall distance traveled ($F_{2,53}$ =3.98, p 0.024) with the *Gtf2i** mutants traveling further distance than the WT animals in the sociability trial (p=0.0305; Supplemental Figure 2E), and a corresponding trend during the social novelty trial ($F_{2,53}$ =2.87, p=0.115). This suggests that the double mutants have a slight hyperactive phenotype in this task that is not seen in the CD mutants.

Previous reports on social phenotypes in mouse models of WS have described a lack of habituation to a social stimulus. To test this we repeated the three-chamber social approach task in a new cohort of animals with an extended sociability trial to test if the Gtf2i* mutants or the CD animals showed the preference for the social stimulus after the prolonged amount of time. Similar to the classic three-chamber results we saw a significant effect of the social stimulus in the first five minutes ($F_{1.56}$ =19.3683, p=4.891e-5), there was a trend of a genotype effect $(F_{2,56}=3.098, p=0.053)$ and no interaction $(F_{2,56}=0.4650, p=0.6350)$. Interestingly, we observed a significant preference for the social chamber in the WT and Gtf2i* mutants, but the CD animals only trended in this direction (Supplemental Figure 2F). To determine if the CD mutants do indeed maintain a prolonged social interest compared to WT littermates, we examined the last five minutes of the 30 minute sociability trial. While there was a significant effect of stimulus $(F_{1,56}=4.82, p=0.03)$, there was still no effect of genotype $(F_{2,56}=0.0523, p=0.949)$ or an interaction (F_{2,56}=0.454, p=0.637). In fact, the significant effect of chamber was driven by the proportion of animals investigating the novel empty cup more than the social stimulus (Supplemental Figure 2G). These data lead us to conclude that the double mutants and CD animals show a WT-like habituation to social stimulus in this task.

We also tested social dominance in the tube test in these mice. Previous studies using partial deletions of the WSCR showed that the proximal deletion which contains Gtf2i and Gtf2ird1 as well as deletions of both the proximal and distal regions in mice resulted in different win/loss ratios than WT mice and mice lacking just the distal end of the WSCR (94). In contrast, here, the $Gtf2i^*$ and CD animals did not exhibit dominance behavior different than chance would predict (WT vs $Gtf2i^*$ p=0.8318, WT vs CD p=1). $Gtf2i^*$ and CD animals also had similar proportions of wins when paired together ($Gtf2i^*$ vs CD p=0.6291) (**Figure 2D**).

The contrasts in our findings with those reported in prior papers could be due to differences in background strain. Different inbred mouse strains show different dominance behavior (178), and other phenotypes, such as craniofacial morphology in WS models has been shown to be strain dependent (39, 95, 101). We tested the effects of the background strain of the $Gtf2i^*$ and CD models by performing the same task on the respective background of each line and comparing them to their WT littermates. Thi showed that the $Gtf2i^*$ mutants had a WT-like phenotype while the CD mice had a submissive phenotype with significantly more losses to WT littermates (**Supplemental Figure 2H**). Thus, the submissive phenotype of the CD allele is dependent on strain which is not observed in the $Gtf2i^*$ mutants.

Finally, we tested the male mice in a resident-intruder paradigm. In this task, male mice were singly housed for 10 days to establish their territory and, in a series of three test days, novel WT C57BL/6J animals were introduced into their territories as intruders. This task measures both social interactions and bouts of aggression between two freely moving animals (**Figure 2E**). In our study, only one mouse showed aggressive behavior towards the intruder mouse, so we did not further quantify this behavior. Assessment of the social interactions showed a significant main effect of genotype ($F_{2,31}$ =5.241, p=0.011) with no effect of day ($F_{2,62}$ =2.470, p=0.093) or

day by genotyping interaction (F_{4.62}=0.1095, p=0.978). Post hoc tests within each day showed that the CD animals spent less total time on day two (p=0.0248) and day three (p=0.0318) engaged in anogenital sniffing compared to the WT animals (Figure 2F). These differences could not be explained by differences in total activity levels between the genotypes ($F_{2,31}=1.399$, p=0.262; Supplemental Figure 2I). The decrease in total time spent in anogenital sniffing was driven by a shorter average bout time ($F_{2.31}$ =5.852, p=0.007, **Supplemental Figure 2J**) and not the number of times the animals initiated the sniffing behavior (F_{2,31}=2.7961, p=0.0765; Supplemental Figure 2K). The same differences also held for nose-to-nose sniffing (Figure **2G**). There was a significant effect of genotype ($F_{2,31}$ = 3.737, p=0.0352) and no effect of day $(F_{2,62}=3.01, p=0.056)$ or day by genotype interaction $(F_{4,62}=0.8156, p=0.520)$. Post hoc analysis showed that on day two the CD animals participated in nose-to-nose sniffing significantly less than the WT animals (p=0.0160), while the trend was present in the other days but was not significant. These results indicated that some aspect of social behavior was disrupted in these animals and Gtf2i* mutants could not recapitulate the full CD phenotype. While we predicted that the WS models would show increased social interest similar to the human condition, individuals with WS have difficulties with other aspects of social behavior, such as social cognition and social awareness (20, 174), which may be reflected in these data.

4.3.4 Gtf2i* mutation is not sufficient to reproduce WSCR mediated alterations of motor behavior

Along with a characteristic social behavior, WS also presents with other cognitive phenotypes including poor coordination, increased anxiety, specific phobias, repetitive behaviors, and mild intellectual impairment (21). Human studies and mouse models have suggested that *GTF2I* and *GTF2IRD1* contribute in aspects of the visual-spatial deficits and other cognitive phenotypes (36, 38). These genes are also highly expressed in the cerebellum, which

could contribute to the coordination problems (72, 78). Therefore, we next tested if CD mice had any motor phenotypes and if haploinsufficiency of these two transcription factors were sufficient to reproduce any deficits.

We performed a sensorimotor battery to assess balance, motor coordination and strength in mutants and WT littermates. All genotypes were similar in the time to initiate walking, and reach the top of a 60 degree inclined screen or a 90 degree inclined screen. All genotypes were able to hang onto an inverted screen for the same amount of time (**Supplemental Figure 3A-D**). CD animals were significantly quicker on turning around on a pole and quicker to get off of the pole than WT animals (**Supplemental Figure 3E-F**), which may be related to body size. There was a significant effect of genotype on time to fall in the ledge task (H₂=12.505,p=0.001925), in which CD animals fell off the ledge faster than either WT (p=0.0071) or *Gtf2i** (p=0.0069) littermates (**Figure 3A**). Similarly, there was a significant effect of genotype on the time spent balancing on a platform task (H₂= 7.1578, p=0.02791) (Supplemental Figure 3G). Despite their comparable performance in strength and coordination tasks, the CD animals tended to have poorer balance, while the double mutants performed similar to WT animals. These findings suggest that other genes in the WSCR contribute to this balance deficit.

To test motor coordination in a more sensitive manner, we evaluated the mice on an accelerating rotarod. This task was performed over three days and tests coordination by quantifying how long a mouse can stay on a rotating rod. There was a main effect of day $(F_{2,339} = 81.58, p < 2.2 \times 10^{-16})$ and a main effect of sex $(F_{1,63} = 10.0227, p = 0.002383)$, but no main effect of genotype $(F_{2,63} = 2.0394, p = 0.13861)$. We did not observe a sex by genotype interaction $(F_{2,63} = 0.8155, p = 0.447035)$ but did see a day by genotype interaction $(F_{4,333} = 3.6270, p = 0.006558)$. A post hoc comparison between genotypes within each day of testing showed that

Gtf2i* animals fell off more quickly compared to CD animals on day three (p=0.04) with no difference between WT and CD animals (**Supplemental figure 3H**). In contrast to the balance deficit seen on the ledge task but consistent with pole and screen performance, the rotarod results showed that all genotypes have similar motor coordination.

Marble burying is a species-specific behavior that assesses the natural tendency of mice to dig. This task also requires motor skills and has been used as a proxy for repetitive behaviors (179), which are seen in individuals with WS. It has been previously shown that CD animals bury fewer marbles than WT littermates (90, 91). Here we similarly show that there was significant effect of genotype in this task (F_{2.66}=15.243, p=3.61x10⁻⁶). CD animals buried fewer marbles than both WT (p<0.001), and $Gtf2i^*$ mutants (p=0.000265) (Figure 3B), indicating that Gtf2i* mutation is not sufficient to recapitulate CD phenotype. The differences in marble burying was not explained by any differences in activity levels between the genotypes during the task (F_{2.65}=0.8974, p=0.4126; **Supplemental Figure 3I**). However, we did see a significant effect of genotype on distance traveled in the center of the apparatus ($F_{2,66}=13$, p=0.0015), with CD mice traveling less distance in the center compared to WT (p=0.0301) and Gtf2i* (p=0.002) littermates (Figure 3C). There was also a corresponding significant effect of genotype on time spent in the center ($F_{2,66}=14.389$, p=0.00075) with CD mice spending less time in the center than WT (p=0.0079) and Gtf2i* (p=0.0017) littermates. Avoidance of the center is generally interpreted in rodents as an increase in anxiety-like behavior (Figure 3D). Thus, these results provided further support to the hypothesis that genes besides Gtf2i* contribute to an anxietyrelated phenotype. It also suggested that the decreased marbles buried may be secondary to the decreased time in center and could reflect a phenotype secondary to anxiety rather than a direct stereotypy phenotype.

Finally, to test if the mutants have normal sensorimotor gating we looked at PPI. Similar to other tasks, contrasting evidence has been observed in WS mouse models in this task. Mouse of models of just Gt/2i showed no phenotype (96), whereas the proximal deletion mice showed decreased PPI; however, when combined with the distal deletion the phenotype that was suppressed (94). Here we show that all genotypes exhibited the expected increased PPI with an increasing pre-pulse stimulus ($F_{2,112}$ =620.61, p < 2e-16), but with no effect of genotype ($F_{2,56}$ =0.7742,p=0.466) or a pre-pulse by genotype interaction ($F_{4,112}$ =1.926,p=0.111) (**Supplemental Figure 3J**). A decrease was observed for overall startle response to the 120dB stimulus by CD animals, but when we included weight in the statistical model this effect disappeared (genotype $F_{2,55}$ =1.48, p=0.2365; weight $F_{1,55}$ =26,001, p=4.34e-6). Thus, the only phenotypic difference seen simply reflected the smaller size of the CD mice and not a change in sensorimotor gating (**Supplemental Figure 3K**).

4.3.5 WSCR mutation does not produce robust anxiety-like behaviors

WS patients have heightened anxiety (21), and mouse models of Gtf2i (67, 96) and Gtf2ird1 (100, 101) mutations have produced mixed evidence to support the role of these genes in anxiety phenotypes. Larger deletion models that have either the proximal or distal regions deleted showed anxiety-like phenotypes in the open field, but not in light-dark boxes (94). Similarly the CD model has been shown to not have any differences in the open field task (93). We wanted to directly compare animals with Gtf2i and Gtf2ird1 mutations to CD animals in the same tasks to test exploratory and anxiety-like phenotypes. First, we looked at the behavior of the mice in an one hour locomotor activity task. We did not see any effect of genotype on the total distance traveled ($F_{2,66}$ =0.6324, p=0.53449), however there was a trend towards a time by genotype interaction ($F_{10,330}$ =1.7817, p=0.06283; **Figure 3E**) with the $Gtf2i^*$ mutants traveling

further distance. This was consistent with the behavior observed during the three-chamber social approach task. In contrast to the marble burying task, here we did not see a significant main effect of genotype on the time spent in the center of the chamber ($F_{2,66}$ =2.3104, p=0.10720) though we observed a trend in the first ten minutes for CD mice to spend less time in the center (**Figure 3F**). However, the $Gtf2i^*$ mice did not show a similar trend. To further test for anxiety-like phenotypes, we performed elevated plus maze testing. Across the three days of testing, all genotypes spent similar percent time in the open arms of the apparatus ($F_{2,63}$ =0.6351, p=0.5332; **Supplemental Figure 3L**). Overall, our experiments indicate there may be a subtle increase on some tasks in anxiety-like behavior in CD mice. However, if there is such a phenotype, we see no evidence that $Gtf2i^*$ mutations are sufficient to produce it.

4.3.6 *Gtf2i** mutation is not sufficient to reproduce WSCR mediated alterations of fear conditioning

Finally, as patients with WS have both intellectual disability and increased prevalence of phobias (21, 180), we tested associative learning and memory of the mice using a contextual and cued fear conditioning paradigm. These behaviors are also mediated by brain regions that have shown to be altered in mouse models of WS and human patients, namely the amygdala and hippocampus. Individuals with WS have altered structural and functional reactivity in the hippocampus and amygdala as reviewed in (15) compared to typically developing controls. Both of these regions play a role in both contextual and cued fear conditioning (181). Likewise, CD mice have been shown to have altered morphology and physiology in the hippocampus (93, 182), thought to be important in contextual fear conditioning.

We therefore tested associative learning and memory of the animals using a three day conditioned fear task (**Figure 4A**). During the conditioning trial on day one we saw a significant

difference in baseline freezing during the first two minutes, when the mice were initially exploring the apparatus. There was a main effect of genotype (F_{2,53}=5.31,p=0.00794) and a main effect of minute ($F_{1.53}=7.28$, p=0.009), with the CD animals freezing more than the WT animals (p=0.04) and the $Gtf2i^*$ mutants (p=0.05) during minute one prior to any shock. By minute two of baseline, all animals showed similar levels of freezing. During the pairing of the foot shock with the context and tone during minutes three through five, we saw a significant effect of time $(F_{2.106}=100.3071, p < 2.2x10^{-16})$ and genotype $(F_{2.53}=3.4304, p=0.039723)$ as well as a time by genotype interaction ($F_{4.106}$ =3.9736, p = 0.004812). Specifically, all mice increased the amount of freezing after each foot shock, but after the last foot shock the Gtf2i* mutants froze less than the CD animals (p=0.002; Figure 4B), but similarly to the WT littermates. On the subsequent day, to test contextual fear memory, mice were put back in the same apparatus and freezing behavior was measured. Comparing the average of the first two minutes of freezing during fear memory recall on day two to the baseline of the conditioning day, we saw that all genotypes exhibited contextual fear memory; indicated by the increased levels of freezing when put back in the same context they were conditioned in $(F_{1.53}=36.4882, p=1.56x10^{-7};$ Supplemental Figure 4A). Looking across time during the fear memory recall we saw a significant effect of time $(F_{7,371}=2.7166, p=0.009291)$ with no main effect of genotype $(F_{2,53}=1.2507, p=0.294625)$, but a time by genotype interaction ($F_{14,371}$ =2.499, p=0.002085). Post hoc analysis within time showed that CD mice froze more than WT and Gtf2i* littermates during minute three of the task (Figure 4C).

To test cued fear conditioning, on the subsequent day the mice were put in a different context and were played the tone that was paired with the foot shock during the conditioning day. All animals had similar freezing behavior during baseline ($F_{2,53}$ =1.061, p=0.353). For the

duration of the tone, there was a significant effect of time ($F_{7,371}$ =21.5824, p<2x10⁻¹⁶) but no effect of genotype ($F_{2,53}$ =0.3014, p=0.741) or genotype by time interaction ($F_{14,371}$ =0.2128, p=0.999) (**Figure 4D**). Finally, the differences in freezing behavior could not be explained by sensitivity to the foot shock as all mice showed similar behavioral responses to increasing shock doses ($F_{2,56}$ =1.4521, p=0.2427; **Supplemental Figure 4B**). Overall, CD mice showed an enhancement of fear response to a contextual fear memory, and mutations in *Gtf2i** were not sufficient to reproduce this phenotype.

4.3.7 Gtf2i* mutation is not sufficient to reproduce WSCR mediated alterations of hippocampal gene expression.

In addition to permitting behavioral phenotyping, mouse models also allow for well-powered and controlled examination of the molecular consequences of mutation in the environment of a fully developed and functioning central nervous system. Therefore, we turned from behavioral phenotyping of cognitive tasks to molecular phenotyping in the brains of these mice to 1) identify candidate molecular mediators of the behavioral phenotypes and 2) determine to what extent any transcriptional phenotype of WSCR mutation might be mediated by the haploinsufficiency of these two transcription factors. We specifically focused on the hippocampus, since we saw deficits in marble burying and differences in contextual fear memory, two behaviors thought to be mediated by hippocampal function (159, 181). Other studies in the CD animals have also shown there to be differences in LTP in the hippocampus as well as differences in Bdnf levels (91, 182). Yet the transcriptional consequences genome-wide of WSCR loss hav not been characterized in the hippocampus.

First, we conducted a targeted analysis of the genes in the WSCR locus. Of the 26 genes that make up the WSCR, only 15 were measurably expressed in the adult mouse hippocampus.

Consistent with expectation, all genes in the WSCR region showed a decrease in RNA abundance in the CD animals, and genes that lie immediately outside the region were not affected. *Gtf2i** mutants only showed disruption of *Gtf2i* and *Gtf2ird1* in directions consistent with what was previously seen in our RT-qPCR. This confirmed the genotype of the samples, and indicated that these transcription factors are not robust trans regulators of any other genes in the locus (**Figure 5A**).

Next, we conducted differential expression analysis comparing WT to CD littermates to identify the molecular consequences of WSCR loss. At an FDR < 0.1 we found 39 genes to be differentially expressed. Of the 39 genes, 15 were genes that are located in the WSCR. This small number of differentially expressed genes was surprising given that several of the WSCR genes are described as transcription factors. In addition to these differentially expressed genes, the magnitude of the changes were small (**Figure 5B** and **Supplemental Figure 5A**). Interestingly, *Slc23a1* showed to be slightly but consistently more lowly expressed in the CD animals compared to the WT animals. This is a GABA transporter, suggesting that inhibitory signaling could be altered in the hippocampus. This gene has also been shown to decreased in WS-derived cortical neurons (45). Also of note, the *Iqgap2* gene was shown to be elevated in the CD animals compared to WT animals. This gene was also upregulated in WS iPSCs (44). We also looked at genes that have been investigated previously in the CD mouse, such as *Bdnf* and *Pi3kr* (90, 91) and we show that there was little change in gene expression between genotypes (**Supplemental Figure 5B**).

To determine if $Gtf2i^*$ loss is sufficient to drive these transcriptional changes, we next examined differential expression comparing $Gtf2i^*$ mutants to WT littermates. In contrast to WSCR mutation, we found only Gtf2i and Gtf2ird1 to be differentially expressed at an FDR <

0.1 (**Figure 5C**). To get a broader idea of how similar the transcriptomes of the two genotypes are we compared the genes that are nominally up and downregulated between each mutant line and WT controls. We saw that there was about a 9% overlap between CD and *Gtf2i** up and down regulated genes (**Figure 5D**). This is slightly below the amount of genes shown to be changed by *GTF2I* in iPSCs (44). Again this suggests that other genes in the WSCR are driving 90% of the transcriptional changes in the CD hippocampus.

To understand what role the nominally changed genes have in common we conducted a GO analysis. The biological processes that the CD genes were found to be involved in included synaptic functioning as well as nervous system differentiation. Interestingly processes that control balance were enriched and we and others have reported on balance deficits in CD animals (Figure 5E). When comparing these to 1000 random differential gene lists these biological processes are very specific to the genotype comparisons. For instance, out 1000 random test, positive regulation of excitatory synapses only occurred in the top 10 enriched GO terms two times (Supplemental Table 2). The cellular components that the genes are enriched for are extracellular, which is a similar result to the iPSC studies (44), as well as synapses. The molecular function ontologies, which are enriched for the differentially expressed genes included calcium binding (Supplemental Figure 5). When comparing these to randomly determined gene expression changes, all but the extracelluar components seem to be specific to the CD versus WT comparison (Supplemental Table 2). In contrast, the Gtf2i* GO analysis showed that these genes are enriched for more general organ system development and are not very nervous system specific (Figure 5F and Supplemental Table 3).

Overall, we have shown that the hemizygous loss of the WSCR has a mild but significant effect on the hippocampal transcriptome. Yet, the changes that do occur point to aberrations in

synapses and nervous system development. Furthermore, loss of function mutations in *Gtf2i* and *Gtf2ird1* have an even smaller effect on the transcriptome and can only account for 9% of the changes incurred by loss of the WSCR.

4.4 Discussion

Contiguous gene disorders such as WS provide insight into regions of the genome that have large effects on specific aspects of human cognition and behavior. The specific cognitive profile of WS is characterized by deficits in visual-spatial processing with relative strengths in language, and the archetypal behavioral profile consists of increased social interest, strong eye contact, high levels of anxiety, and in some cases specific phobias and hyperactivity. Here we used a new mouse model to test if loss of the paralogous transcription factors *Gtf2i* and *Gtf2ird1* are sufficient to phenocopy the behaviors and transcriptomic changes of mice that lack the entire WSCR.

Overall, CD mice consistently have more severe phenotypes than the *Gtf2i** mutants. We saw that the CD animals have a deficit in social communication as measured by maternal separation induced pup ultrasonic vocalizations. The *Gtf2i** mutants on average make fewer calls than the WT littermates, however not significantly so, but this may suggest that these two transcription factors contribute slightly to this phenotype but other genes in the region are necessary to produce the full phenotype seen in the CD animals. Previously it was shown that animals that have increased copy number of *Gtf2i* increased the number of pup USVs emitted while animals with only one copy produced similar number of calls to WT animals (29). This was interpreted as increased separation anxiety. Here we see that lower copy number of the entire region produces the opposite effect of increased *Gtf2i* copy number. Decreased USVs could mean there is a lack of motivation to make the calls or an inability to make as many calls.

A model of *Gtf2ird1* mutant animals was shown to have different USV production due to a difference in the muscle composition of the larynx (92). This has not been shown in the CD animals but it could contribute to the phenotype as well as differences in the skull morphology (93). Another possible explanation is that since the production of USVs is a developmentally regulated trait, it could be that deleting 26 genes could disrupt typical developmental trajectories. While we do not see any gross developmental problems such as lower weight or delayed detachment of pinnae, the deletion could have a more severe effect on brain development, thus affecting developmentally regulated behavioral traits.

To our surprise, there was no detectable social phenotype in the Gtf2i* mutants or CD animals in the classical three-chamber social approach assay. Our results showed that all genotypes on average prefer to investigate the social stimulus for a similar amount of time. The preference for social novelty is also intact across all the groups. In an attempt to test if the WS models fail to habituate to a social stimulus we showed that after thirty minutes of having the opportunity to investigate an unfamiliar mouse or an empty cup, all genotypes habituate to the social stimulus and by the end of the thirty minutes seem to have a small preference for the empty cup. The three-chamber social approach task has been done in the larger partial deletion models where they have shown that the proximal deletion and the trans full deletion models have a significant preference for the social stimulus, and the WT and distal deletion mice do not show a preference, suggesting that the proximal deletion, which harbors genes such as Gtf2i and Gtf2ird1, are involved in this social task (94). Mouse models that are haploinsufficient for only Gtf2i have shown in the three-chamber approach task that after eight minutes WT animals investigate a novel object the same amount as a social stimulus, but the Gtf2i mutants still have a significant preference suggesting a lack of habituation (96). In another Gtf2i model, Martin et al.

compared animals with one, two, three, and four copies of *Gtf2i* in the three-chamber social approach task, and showed that only animals with one and three copies of *Gtf2i* displayed a significant preference for the social stimulus (97), but WT animals did not. These three-chamber social approach tests are interpreting a lack of significance as evidence for increased social behavior and not directly comparing the levels of investigation between genotypes (183). Furthermore, in some cases the WT controls are not showing the expected preference for the social stimulus, thus, possibly confounding interpretation of the mutant preference.

The three-chamber social approach assay has come under recent criticism due to how dependent it is on activity levels of mice and its lower heritability compared to tests of direct social interaction (184). The CD animals had not previously been tested in this procedure exactly, but have been tested in a modified social approach where the time spent investigating a mouse in a cup is measured but with no competing non-social stimulus (90, 91, 93). The data showed that the CD animals investigated the social stimulus for more time than the WT animals and delivery of Gtf2i cDNA by AAV9 via the magna cisterna can return the investigation time to normal levels (90). Here, we showed that all animals preferred the social stimulus. It is possible that the standard social approach suffers from several confounding factors, such as lower heritability, as well as activity and anxiety-like components that make this task less sensitive to detect a hypersocial phenotype in WS models. It could also be that the three-chamber social task does not test the specific aspects of social behavior that are disrupted in WS models. For example, newer tasks, such as social operant tasks that test motivation to receive a social stimulus may more directly test the aspects of social behavior that are affected in WS. This task has been performed on Gtf2i mutants and mice that have only one copy of Gtf2i will work harder to receive a social reward (97).

Direct social tasks have higher heritability than the three-chamber social approach and offer a more natural social experience (184), which may make them a more sensitive assay for testing social behaviors. Direct tasks have shown that Gtf2i models have increased nose-to-nose investigation time (97), mouse models lacking the proximal end of the region have increased investigation frequency (94), and Gtf2ird1 mutants make fewer aggressive actions but show increased following time (101). We employed the resident-intruder paradigm as a full contact social assay. While we did not see bouts of aggression from any of the genotypes, we could see differences in social investigation. To our surprise, the CD animals spent less time overall in anogenital sniffing and nose-to-nose sniffing of the intruder animals when compared to WT littermates. The double mutants were not significantly different from the WT animals but had intermediate values between the WT and CD animals. This phenotype was being driven by the decreased time per bout of investigation in the CD animals, as all genotypes had a similar frequency of the sniffing behavior. This result was contrary to what would be predicted from the human condition and previous mouse results. However, while individuals with WS are described as having prosocial behavior in terms of increased social approach and friendliness (19), they also have difficulties maintaining long term relationships because of deficits in other aspects of social behavior (20, 27, 28, 174), and on scales measuring social reciprocity often score in the autistic range (174). In addition, there is a high co-morbidity with ADHD which has features of impulsiveness (22). While the CD animals did not show the expected increase in social interest, this may be a manifestation of attention deficits that are present from deleting the 26 genes in the WSCR, but this needs to be examined. Loss-of-function mutations in Gtf2i and Gtf2ird1 were not sufficient to produce as strong an effect in these investigative behaviors. However, the somewhat intermediate effect suggests they could contribute to it.

One limitation of our study is that some aspects of the social phenotype in the models tested here could be masked by the mouse background strain. While we have controlled for mouse background strain in our experiments by only using the F1 generation of the FVB/AntJ and C57BL/6J cross, the hybrid background may prevent the manifestation of a social phenotype caused by the mutations tested. For example, it has been documented that craniofacial phenotypes in *Gtf2ird1* models are sensitive to background strain (39, 78, 95, 101). Here, the double mutants and CD animals on the hybrid background showed no dominance phenotype in the tube test. However, when we tested each mutation on the respective mouse background strain, we saw that the CD animals had a submissive phenotype, but the double mutants did not. Studies done in the larger partial deletions have shown altered win/loss ratios in the tube test in the proximal deletion and full trans deletion models (94), suggesting that the CD models on the C57BL/6J background can replicate this phenotype, but other genes in the proximal region besides *Gtf2i* and *Gtf2ird1* are also required.

In this study, we have replicated several of the phenotypes previously seen in the CD animals, such as marble burying and balance deficits (91, 93, 182). It was shown that CD animals bury fewer marbles than WT animals and rescuing the *Gtf2i* levels in the hippocampus did not rescue this phenotype. Both the results presented here and in Borralleras et al. suggest that other genes in the region beyond *Gtf2i* and *Gtf2ird1* are important in this behavior. Here we have extended the results to suggest that there could be an anxiety-like component to the marble burying deficit. By tracking the animals during the task we see that CD animals spend less time and travel less distance in the center of the apparatus. This could preclude them from burying as many marbles in the center. It could also be that the CD animals do not show the normal motivation to dig.

CD animals showed difficulty in balancing tasks, but normal motor coordination. Motor coordination of WS has been tested using the rotarod. The larger partial deletion models showed that the distal deletion and proximal deletion mice had intermediate phenotypes with the full trans deletion mice falling off the rotarod sooner (94). Similarly the CD mice have shown deficits in the rotarod and addition of *Gtf2i* coding sequence does not rescue this phenotype (182). The CD mice in this study did not show a deficit in the rotarod despite having poor balance on the ledge and platform tasks. CD animals were not able to balance on a ledge or platform as long as their WT and *Gtf2i** mutant littermates. This suggests that motor coordination, as tested by our rotarod paradigm, is intact in these WS models, but balance is specifically affected in the CD animals. The discrepancy could be due to body size. The adult CD animals are significantly smaller than the WT and *Gtf2i** mutants, which could make staying on the wider rotarod less challenging. This study also used a different accelerating paradigm where the rod itself is continuously accelerating until the mouse falls off while other paradigms test the mice at different continuous rotation speeds.

Along with balance and coordination problems, individuals with WS tend to have specific phobias and high levels of non-social anxiety (21). We showed that CD animals had an altered fear conditioning response. We saw that the CD animals have an increased fear response in contextual fear but not cued fear. It was previously reported that CD animals showed a slight decrease in freezing but was not significant (93). Two separate *Gtf2ird1* mutations have shown contrasting results, one showed an increased fear response (99) while another showed decreased fear response (101). It could be that this hybrid background used here is more sensitive to see increases in freezing because FVB/AntJ do not exhibit as much freezing in conditioned fear tasks as C57BL/6J animals (185). The observed increased contextual fear response could be due to

differences in the hippocampus and amygdala, both regions that have been shown to be disrupted in WS. We did not see a robust anxiety-like behavior phenotypes in one hour locomotor task or the elevated plus maze, which is consistent with previous findings in the CD model (93). However, we did see reduced time and distance traveled in the center during the marble burying task. Perhaps suggesting that the novel environment in combination with the novel marbles can induce slightly higher levels of anxiety in the CD model.

Given the behavioral differences in marble burying and contextual fear, two behaviors thought to be mediated by the hippocampus (159, 181), we examined the transcriptomes of the hippocampus of the *Gtf2i** mutants and CD animals and compared them to WT littermates. This provided the first transcriptional profile documenting the consequences of the 26 gene deletion in a mature brain, and allowed us to determine what portion of that was driven by Gtf2i* proteins. Surprisingly, we did not see any significantly differentially expressed genes between the *Gtf2i** mutants and WT littermates, besides the mutated genes themselves. Looking at the overlap of nominally differentially expressed genes between CD-WT and *Gtf2i**-WT comparisons, showed a small overlap of about 9%. This is slightly less than the estimate from Adamo *et al.*, of 15-20% of genes dysregulated in WS iPSCs being attributed to reduced levels of *GTF2I*. Perhaps these general findings suggest that *Gtf2i* and *Gtf2ird1* contribute to small transcriptional changes broadly across the genome, and in combination with other genes in the WSCR more profound neural specific gene disruptions become apparent.

Our transcriptional studies overall showed limited impact of *Gtf2i** mutation in the brain. The global brain transcriptome of *Gtf2i* mutants has not been investigated, but brain transcriptome studies of *Gtf2ird1* knockout mouse models have not found any evidence of differentially expressed genes (88). These data suggest that in the adult hippocampus these two

transcription factors do not greatly affect the transcriptome. There are some limitations to this negative result. It could be that we are diluting some of the signal because we are studying the effects on the transcriptome of the whole hippocampus, which has a diverse cellular composition. Larger effect sizes might be detected in more homogenous cellular populations. Likewise, if these genes regulate dynamics of gene expression rather than baseline values, greater differences might become apparent after experimental manipulations that activate transcription.

One additional limitation of our study is that the mutated Gtf2ird1 allele is still producing an N-terminally truncated protein. However, we show that N-truncated Gtf2ird1 does not bind to its known target, the promoter region of Gtf2ird1, and this absence leads to increased RNA from the locus, consistent with a loss of its transcriptional repressor function. Thus, we confirmed this truncated protein is a loss of function for the only known roles for Gtf2ird1. However, it is possible that the protein does have other unknown functions we could not assay here. It has also been proven to be a remarkably challenging gene to completely disrupt, across multiple studies (66, 101). The combination of the upregulation of its RNA upon deletion with the ability to reinitiate at a variety of downstream codons is intriguing. One possibility is that Gtf2ird1 has an unusual amount of homeostatic regulation at both transcriptional and translational levels that are attempting to normalize protein levels. Another possibility is that these kinds of events are actually quite common across genes, but that they are detected in Gtf2ird1 because the WT protein is at such low abundance it is on par with what is actually an infrequent translation reinitiation event. Our detection of Gtf2ird1 protein in the brain required substantial optimization and is still only apparent in younger brains. Indeed, in validations of mutations of more abundant proteins, the immunoblots may not be routinely developed long enough to see a trace reinitiation event that might occur. Regardless, future studies aimed at understanding the transcriptional and translational regulation of this unusual gene would be of interest.

Examining the profile of CD mutants compared to WT littermates, we do define a number of transcriptionally dysregulated genes. Of the genes in WSCR that are expressed in the hippocampus all had decreased expression in the CD animals. In addition, there were 24 genes outside the WSCR that had a FDR < 0.1 between CD and WT controls. Among these genes is Slc23a1, the GABA vesicle transporter, which is down regulated in CD animals. Interestingly this gene was also found to be down regulated in human iPSC derived neurons from individuals with WS (45). This points to aberrant inhibitory activity in the CD brain, which could lead to functional deficits. Also consistent with other human WS derived iPSC studies, the gene Iggap2 was shown to be upregulated in the CD hippocampus (44), and has the potential to interact with the cytoskeleton through actin binding (186). Broadening the analysis to include nominally differentially expressed genes and conducting systems-level analyses, the CD-WT comparison highlighted genes involved in the positive regulation of excitatory postsynaptic potential. Chailangkarn et al. showed that WS derived iPSC neurons had increased glutamatergic synapses. Our data also showed some signal in the GO term for postsynaptic density assembly. Taken together these data suggest abnormal synapse functioning in the CD animals and potentially altered inhibitory/excitatory balance. This also suggests pharmacological agents that increase GABA tone may be of use in reversing some WS phenotypes. The RNA-seq data also had signal in neuromuscular processes controlling balance. Altered gene expression in the CD animals could be contributing to the balance deficits. In contrast to the synapse and neural specific GO term enrichment seen in the CD-WT comparison, comparing the transcriptomes of the Gtf2i*

mutants and WT shows signal in more general organ development, such as ossification and eye development.

Taken together, our results support the hypothesis that other genes in the WSCR besides Gtf2i and Gtf2ird1 are necessary to produce some phenotypes that are seen when the entire WSCR is deleted. While these two transcription factors have been highlighted in the human literature as large contributors to the WS phenotype, the literature is also consistent with a model where most genes contribute to aspects of different phenotypes in WS, but the full phenotypic effects occur when all the genes are deleted (**Figure 6**). Studying patients with atypical deletions highlights the variability of the region. Even within families that have inherited small deletions some of the cardiovascular, cognitive, and craniofacial phenotypes have incomplete penetrance (31, 32, 40). Comparing the deletion sizes and corresponding phenotypes shows a large overlap of genes that are deleted, but no clear pattern of which specific phenotypes are affected. Many of atypical deletions described to date that do not have Gtf2i and Gtf2ird1 deleted show no overfriendly phenotype, but there are examples where this is not true. Recent work in zebrafish that was done to dissect which genes in the 16p11.2 region contribute to craniofacial dysmorphology led to a similar conclusion, that multiple genes in the region contribute to the phenotype but in combination some have synergistic effects and others have additive effects (102). Sanders et al. also suggested that copy number variations with higher gene content are more likely to have several genes of smaller effect sizes suggesting an oligogenic pattern of contribution (121). Our data suggests that looking beyond the general transcription factor 2I family at possible combinations of more genes in the region may more completely reproduce the WS phenotype. Given the ease of making new mouse models with current genome editing

technology, a combinatorial dissection of the region is feasible and could lead to interesting new insight into the underlying mechanisms that contribute to the phenotypic spectrum of WS.

4.5 Materials and Methods

Generating genome edited mice

sgRNAs were designed to target early constitutive exons of the mouse Gtf2i and Gtf2ird1 genes. The gRNAs were cloned into the pX330 Cas9 expression plasmid (Addgene) and transfected into N2a cells to validate the cutting ability of each gRNA using the T7 enzyme assay. Primers used to amplify target regions tested by the T7 enzyme assay are in Supplemental Table 4. One guide was selected for each gene based on cutting activity (Supplemental Table 4). The gRNAs were in vitro transcribed using MEGAShortScript (Ambion) and Cas9 mRNA was in vitro transcribed, G-capped, and poly-A tailed using the mMessageMachine kit (Ambion). The mouse genetics core at Washington University School of Medicine co-injected the Cas9 mRNA (25ng/ul) along with both gRNAs (13ng/ul of each gRNA) into FVB/NJ fertilized eggs and implanted the embryos into recipient mothers. This resulted in 57 founders. Founders were initially checked for any editing events using the T7 assay. There were 36 animals with no editing events. We deep sequenced the expected cut sites, as described below, in the remaining 21 founders to identify which alleles were present. Founders were crossed to wild type (WT) FVB/AntJ (https://www.jax.org/strain/004828) animals, which are different from FVB/NJs at two loci; Tyr^{c-ch} results in a chinchilla coat color and they are homozygous WT for the 129P2/OlaHSd *Pde6b* allele, which prevents them from developing blindness due to retinal degeneration. Coat color was visually genotyped and the functional FVB/AntJ Pde6b allele was genotyped using primers recommended by Jackson labs (Supplemental Table 5). The mice

were crossed to FVB/AntJ until the mutations were on a background homozygous for the FVB/AntJ coat color and *Pde6b* alleles.

Genotyping

Initial founder genotyping was performed by deep sequencing amplicons around the expected cuts sites of each gRNA. Primers were designed around the cut sites using the NCBI primer blast tool. To allow for Illumina sequencing we concatenated the Illumina adapter sequences to the designed primers (Supplemental Table 5). The regions surrounding the cut sites were amplified using the following thermocycler conditions: 95° C 4 minutes, 95° C 35 seconds, 58.9° C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° C for 7 minutes, hold at 4° C. A subsequent round of PCR was performed to add the requisite Illumina P5 and P7 sequences as well as sample specific indexes using the following thermocycler conditions: 98° C 3 minutes, 98° C 10 seconds, 64° C 30 seconds, 72° C 1 minute, repeat steps 2 through 4 20 times, 72° C 5 minutes, hold 4° C. The PCR amplicons were pooled and run on a 2% agarose gel and the expected band size was gel extracted using the NucleoSpin gel extraction kit (Macherye-Nagel). The samples were sequenced on a MiSeq. The raw fastq files were aligned to the mm10 genome using bwa v0.7.17 –mem with default settings (140), and the bam files were visualized using the integrated genome visualizer (IGV) v2.3.29 to determine the genotype.

Once the alleles of the founder lines were shown to be in the germline, we designed PCR genotyping assays that can distinguish mutant and WT alleles. Since the *Gtf2i* mutation and the *Gtf2ird1* mutation are in linkage and are always passed on together, primers were designed that would only amplify the five base pair deletion in exon three of *Gtf2ird1*. The primer was

designed so that the three prime end of the forward primer sits on the new junction formed by the mutation with an expected size of 500bp. Beta actin primers, with an expected size of 138bp, were also used to help ensure specificity of the mutation specific *Gtf2ird1* primers as well as act as a PCR control (**Supplemental Table 5**). The CD animals were genotyped using primer sequences provided by Dr. Victoria Campuzano and primers that amplify the WT *Gtf2ird1* allele as a PCR control (**Supplemental Table 5**).

PCR was performed on toe clippings that were incubated overnight at 55° C in tail lysis buffer (10mM Tris pH 8, 0.4M NaCl, 2mM EDTA, 0.1% SDS, 3.6U/mL Proteinase K (NEB)). The proteinase K was inactivated by incubation at 99° C for 10 minutes. 1ul of lysate was used in the PCR reactions. Two bands indicated a heterozygous mutation in *Gtf2i* and *Gtf2ird1*. The cycling conditions for the 5bp *Gtf2ird1* deletion were: 95° C 4 minutes, 95° C 35 seconds, 66.1° C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° C for 7 minutes, hold at 4° C. The cycling conditions for the CD genotyping were: 95° C 4 minutes, 95° C 35 seconds, 58° C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° C for 7 minutes, hold at 4° C.

Western blotting

E13.5 whole brains were dissected in cold PBS and immediately frozen in liquid nitrogen and stored at -80°C until genotyping was performed. Frozen brains were homogenized in 500ul of 1x RIPA buffer (10mM Tris HCl pH 7.5, 140mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% DOC, 0.1% SDS, 10mM Na₃VO₄, 10mM NaF, 1x protease inhibitor (Roche)) and RNAase inhibitors (RNasin (Promega) and SUPERase In (Thermo Fisher Scientific) and incubated on ice for 20 minutes. Lysates were cleared by centrifugation at 10,000g for 10 minutes at 4° C. The

lysate was split into two 100ul aliquots for protein analysis and 250ul of lysate was added to 750ul of Tizol LS (Thermo Fisher Scientific) for RNA analysis. Protein concentration was quantified using a BCA assay and loaded at 25-50ug in 1x Lamelli Buffer with Bmercaptoethanol onto a 4-15% TGX protean gel (Bio-Rad). In some experiments to achieve greater separation to detect the N-truncation, the protein lysates were instead run on a 7.5% TGX protean gel (Bio-Rad). The protein was transferred to PVDF 0.2um membrane by wet transfer. The membrane was blocked for one hour at RT with TBST 5% milk. The membranes were cut at 75KDa, and the top of the membrane was probed for either Gtf2i or Gtf2ird1, and the bottom of the membrane was probed for Gapdh, with the following primary antibodies: Rabbit anti-GTF2IRD1 (1:500, Novus, NBP1-91973), Mouse anti-GTF2I (1:1000 BD Transduction Laboratories, BAP-135), and Mouse anti-Gapdh (1:10,000, Sigma Aldrich, G8795). Primary antibodies were incubated overnight at 4° C in TBST 5% milk. We used the following secondary antibodies: HRP-conjugated Goat anti Rabbit IgG (1:2000, Sigma Aldrich, AP307P) and HRPconjugated Goat anti Mouse IgG (1:2000, Bio Rad, 1706516) and incubated for 1 hour at room temperature. Signal was detected using Clarity Western ECL substrate (Bio-Rad) in a MyECL Imager (Thermo Scientific). Quantification of bands was performed using Fiji (NIH) (187) normalizing to Gapdh levels and a WT reference sample.

Transcript measurement using RT-qPCR

Total RNA from E13.5 brains lysates was extracted from Trizol LS using the Zymo Clean and Concentrator-5 with on column DNAase I digestion and eluted in 30ul of water. RNA quantity and purity was determined using a Nanodrop 2000 (Thermo Scientific). cDNA was prepared using 1ug of total RNA and the qscript cDNA synthesis kit (Quanta Biosciences). 25ng of cDNA was used in a 10ul RT-qPCR reaction with 2x PowerUP SYBR Green Master Mix

(Applied Biosystems) and 500nM primers that would amplify constitutive exons of *Gtf2ird1* (exons 8/9), *Gtf2i* (exons 25/27) or *Gapdh* (**Supplemental Table 5**). The RT-qPCR was carried out in a QuantStudio6Flex machine (Applied Biosystems) with the following cycling conditions: 95° C 20 seconds, 95° C 1 second, 60° C 20 seconds, repeat steps 2 through 3 40 times. There were three biological replicates per genotype in all experiments and each cDNA was assessed in triplicate technical replicates. Relative transcript abundance of *Gtf2i* and *Gtf2ird1* was determined using the deltaCT method normalizing to *Gapdh*.

ChIP-qPCR

Chromatin preparation

Chromatin was prepared by homogenizing one frozen E13.5 brain in 10mL of 1x cross-linking buffer (10mM HEPES pH7.5, 100mM NaCl, 1mM EDTA, 1mM EGTA, 1% Formaldehyde (Sigma)) using the large clearance pestle in a Dounce homogenizer and allowed to crosslink for 10 minutes at room temperature with end-over-end rotation. The formaldehyde was quenched with 625ul of 2M glycine. The cells were spun down at 200g at 4° C and the pellet was washed with 10mL 1x PBS 0.2mM PMSF and spun again. The pellet was resuspended in 5mL L1 buffer (50mM HEPES pH 7.5, 140 mM NaCl, 1mM EDTA, 1mM EGTA, 0.25% Triton X-100, 0.5% NP40, 10.0% glycerol,1mM BGP (Sigma), 1x Na Butyrate (Millipore), 20mM NaF, 1x protease inhibitor (Roche)) and homogenized using the low clearance pestle in a Dounce homogenizer to lyse the cells and leave the nuclei intact. The homogenate was spun at 800g for 10 minutes at 4° C to pellet the nuclei. The pellet was washed in 5mL of L1 buffer and spun again and resuspended in 5mL of L2 buffer (10mM Tris-HCl pH 8.0, 200mM NaCl, 1mM BGP, 1x Na Butyrate, 20mM NaF, 1x protease inhibitor) and incubated at room temperature for 10

minutes while shaking. The nuclei were pelleted by spinning at 800g for 10 minutes and resuspended in 950ul of L3 buffer (10mM Tris-HCl pH 8.0, 1mM EDTA, 1mM EGTA, 0.3% SDS, 1mM BGP, 1x Na Butyrate, 20mM NaF, 1x protease inhibitor) and transferred to a milliTUBE 1mL AFA Fiber (100)(Covaris). The sample was then sonicated to a DNA size range of 100-500bp in a Covaris E220 focused-ultrasonicator with 5% duty factor, 140 PIP, and 200cbp. The sonicated samples were diluted to 0.1% SDS using 950ul of L3 buffer and 950ul of 3x Covaris buffer (20mM Tris-HCl pH 8.0, 3.0% Triton X-100, 450mM NaCl, 3mM EDTA). The samples were spun at max speed in a tabletop centrifuge for 10 minutes at 4° C to pellet any insoluble matter. The supernatant was pre-cleared by incubating with 15ul of protein G coated streptavidin beads (ThermoFisher) for two hours at 4° C.

Chromatin IP

GTF2IRD1 antibody (Rb anti GTF2IRD1 NBP1-91973 LOT:R40410) was conjugated to protein G coated streptavidin beads by incubating 6ug of antibody (10ul) with 15ul of beads in 500ul TBSTBp (1x TBS, 0.1% Tween 20, 1%BSA, .2mM PMSF) and end-over-end rotation for one hour at room temperature. The antibody-conjugated beads were washed three times with 500ul of TBSTBp. 400ul of the pre-cleared lysate was added to the antibody-conjugated beads and rotated end-over-end at 4° C overnight. 80ul of the pre-cleared lysate was added to 120ul of 1x TE buffer with 1% SDS and frozen overnight to be the input sample.

The IP was washed two times with a low salt buffer (10mM Tris-HCl pH 8.0, 2mM EDTA, 150mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with a high salt buffer (10mM Trish-HCl pH 8.0, 2mM EDTA, 500mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with LiCl wash buffer (10mM Tris-HCl pH 8.0, 1mM EDTA, 250mM LiCl (Sigma), 0.5%

NaDeoxycholate, 1.0% NP40), and one time with TE (10mM Tris-HCl pH 8.0, 1mM EDTA) buffer. The samples were eluted from the beads by incubating with 100ul of 1x TE and 1% SDS in an Eppendorf thermomixer R at 65° C for 30 minutes, mixing at 1400rpm. This was repeated for a total of 200ul of eluate. The samples and input were then de-crosslinked by incubating in a thermocycler (T1000 Bio-Rad) for 16 hours at 65° C. The samples were incubated with 10ug of RNAseA (Invitrogen) at 37° C for 30 minutes. The samples were then incubated with 140ug of Proteinase K (NEB) at 55° C in a thermomixer mixing at 900rpm for two hours. The DNA was extracted using phenol/chloroform/isoamyl alcohol (Ambion) and cleaned up using Qiagen PCR purification kit and eluted two times using 30ul of buffer EB for a total of 60ul. The concentration was assessed using the highsensitivity DNA kit for qubit (Thermo Fisher Scientific). A portion of the input DNA was run on a 2% agarose gel post stained with ethidium bromide to check the DNA fragmentation.

ChIP qPCR

Primers were designed to amplify the region around the *Gtf2ird1* transcription start site (TSS), which has been shown to be a target of Gtf2ird1 binding (66). Two primer sets were also designed to amplify off target regions, one 10kb upstream of the *Bdnf* TSS and one 7Kbp upstream of the *Pcbp3* TSS. These were far enough away from any TSS that it would be unlikely that there would be a promoter region. The primers can be found in Supplemental Table 5. A standard curve was made by diluting the input sample for each IP sample 1:3, 1:30, and 1:300. The input, the input dilutions, and the IP samples for each genotype condition were run in triplicate using the Sybr green Power UP mastermix (AppliedBiosystems) and primers at a final concentration of 250nM. The PCR was carried out in a QuantStudio6Flex machine (Applied Biosystems) with the following cycling conditions: 50° C for 2 minutes, 95° C for 10 minutes,

95° C 15 seconds, 60° C for 1 minute, repeat steps 3 through 4 40 times. Relative concentrations for the IP samples were determined from the standard curves for that sample and primer set. The on target relative concentration for each genotype was divided by either off target relative concentration to determine the enrichment of Gtf2ird1 binding.

Hippocampus RNA-sequencing

Library preparation

The hippocampus was dissected from adult animals of the second behavior cohort (**Table1**). We used six animals of each genotype, three males and females of the WT and CD animals and two males and four females of the *Gtf2i** genotype. The hippocampus was homogenized in 500ul of 1x RIPA supplemented with two RNAse inhibitors, RNAsin and SUPERase In, and 250ul of the homogenate was added to 750ul of Trizol LS and stored at -80° C until RNA extraction. RNA was extracted using the Zymo clean and concentrator-5 kit following the on column DNAse I digestion protocol and eluted in 30ul of water. The quality and concentration of the RNA was determined using a nanodrop 2000 and Agilent RNA Highsenstivity Tape screen ran on the TapeStation 2000 (Agilent). All RINe scores were above seven.

lug of RNA was used as input and rRNA was depleted using the NEBNext rRNA Depletion kit (Human/Mouse/Rat). RNA-seq libraries were prepared using the NEB Next Ultra II RNA library Prep Kit for Illumina. The final uniquely indexed libraries for each sample were amplified using the following thermocycler conditions: 98° C for 30 seconds, 98° C 10 seconds, 65° C 1 minute and 15 seconds, 65° C 5 minutes, hold at 4° C, repeat steps 2 through 3 6 times. Each sample had a unique index. Samples were pooled at equal molar amounts and 1x50 reads

were sequenced on one lane of a HiSeq3000 at the Genome Technology Access Center at Washington University School of Medicine. The RNA-seq data is available at GEO with accession number (submitted, waiting on accession number).

RNA-seq analysis

The raw reads were trimmed of Illumina adapters and bases with base quality less than 25 using the Trimmomatic Software (161). The trimmed reads were aligned to the mm10 mouse genome using the default parameters of STARv2.6.1b (169). Samtools v1.9 (141) was used to sort and index the aligned reads. Htseq-count v0.9.1 (170) was used to count the number of reads that aligned to features in the Ensembl GRCm38 version 93 gtf file.

The htseq output was analyzed for differential gene expression using EdgeR v3.24 (165). Lowly expressed genes were defined as genes that had a cpm less than two across all samples. Lowly expressed genes were then filtered out of the dataset. We used the exactTest function to make pairwise comparisons between the three groups: WT versus $Gtf2i^*$, WT versus CD, and CD versus $Gtf2i^*$. Genes were considered differentially expressed if they had an FDR< 0.1.

GO analysis was performed using the goseq R package (188). Nominally significant up and down regulated genes for each comparison were considered differentially expressed genes and the background gene set included all expressed genes after filtering out the lowly expressed genes. The top 10 most significant go terms for each ontology category were reported. To test how unlikely it is to see these go terms given the differentially expressed genes from the genotype comparisons, we shuffled the genotypes among the samples and repeated the differential expression analysis and go term analysis 1000 times and counted how many times the same go terms were identified in the top ten most significant go terms.

Behavioral tasks

Animal statement

All animal testing was done in accordance with the Washington University in St. Louis animal care committee regulations. Mice were same sex and group housed with mixed genotypes in standard mouse cages measuring 28.5 x 17.5 x 12cm with corn cob bedding and ad libitum access to food and water in a 12 hour light dark cycle, 6:00am-6:00pm light. The temperature of the colony rooms was maintained at 20-22° C and relative humidity at 50%. Two cohorts of mice were used in the behavior and RNA-seq experiments. The CD animals (Del (5Gtf2i-Fkbp6)1Vcam) were a gift from Dr. Victoria Campuzano and have been previously described (93) and were maintained on the C57BL/6J strain (https://www.jax.org/strain/000664). The first behavior cohort (Table 1) used Gtf2i* and CD females as breeders. The second behavior cohort (Table 1) used just CD female breeders as male CD animals were frequently not successful at breeding. Male and female mice were included in the behavior tasks. Experimenters were blind to genotype during all testing. Besides the maternal separation induced pup ultrasonic vocalization, all behaviors were done in adult animals older than 60 days and less than 150 days old. Mice were moved to the testing facility at least 30 minutes before the test to allow the mice to habituate to the room. The male experimenter was present during this habituation so the mice could also acclimate to the experimenter. Sex differences were assessed in all experiments, and are discussed when they were significant. Otherwise, the data is presented with the males and females pooled. Animals were removed from analysis if they were outliers, defined as having values greater than 3.5 standard deviations above or below the mean for their genotype group. Animals were also removed if the video and tracking quality were too poor to be analyzed. All filtering was conducted blind to genotype.

To assess early communicative behaviors we performed maternal separation induced pup ultrasonic vocalization (USVs). Animals were recorded on postnatal day three and postnatal day five, days when FVB/AntJ animals begin to make the most calls (177). The parents were placed in a new cage, and the home cage containing the pups was placed in a warming box (Harvard Apparatus) set at 33° C for at least 10 minutes prior to the start of recording. Pups were individually placed in an empty standard-mouse cage (28.5 x 17.5 x 12cm) located in a MDF sound-attenuating box (Med Associates) that measures 36 x 64 x 60cm. Prior to recording, the pup's skin temperature was recorded using a noncontact HDE Infrared Thermometer, as it has been shown that decreased body temperature elicits increased USVs (189). There was no difference in body temperature between genotypes (F_{2.61}= 2.521, p=0.089)(Supplemental Table 1). USVs were detected using an Avisoft UltraSoundGate CM16 microphone placed 5cm above the bottom of the cage, Avisoft UltraSoundGate 416H amplifier, and Avisoft Recorder software (gain=3dB, 16bits, sampling rate =250kHz). Animals were recorded for 3 minutes, weighed, checked for detachment of pinnae, and then placed back into the home cage in the warming chamber. After all animals had been recorded the parents were returned to the home cage. Sonograms of the recordings were prepared in MATLAB (frequency range =25-120kHz, FFT [Fast Fourier Transform] size=512, overlap=50%, time resolution =1.024ms, frequency resolution = 488.2Hz) along with number of syllables and spectral features using a previously published protocol (177, 190) based on validated methods (191).

Sensorimotor battery

We assessed motoric initiation, balance, coordination, and strength as described in (171, 192) over two days using the following tasks: day 1) walking initiation, ledge, platform, pole; day 2) 60 screen, 90 screen, and inverted screen. Each task was performed once then the animals were allowed a 20 minute break then the tests were repeated in reverse order to control for practice effects. The two trials for each task were then averaged to be used in analysis. Walking initiation was tested by recording the time it takes for the mouse to exit a demarcated 24 x 24cm square on top of a flat surface. To assess balance, the mice were placed on a plexiglass ledge with a width of 0.5cm and a height of 38cm. We recorded how long the mouse balanced on the ledge up to 60 seconds. Another test of balance required the mouse to balance on a wooden platform measuring 3.0cm in diameter, 3.5cm thick and was 25.5cm high. The amount of time the animal balanced on the platform was recorded up to 60 seconds. Motor coordination was tested by placing the mouse at the top of a vertical pole with the head facing upward. The time it took the mouse to turn so the head was facing down was recorded as well as the time it took the mouse to reach the bottom of the pole up to 120 seconds. On day two the mice performed screen tasks that assessed coordination and strength. Mice were placed head facing downward in the center of a mesh wire grid that had 16 squares per 10cm and was 47cm off the ground and inclined at 60 degrees. The time it took the mice to turn and reach the top of the screen was recorded up to 60 seconds. Similarly the mice were placed in the center facing downward of mesh wire screen with 16 squares per 10cm, elevated 47cm from the surface of a utility cart, and inclined at 90 degrees. The time it took the mice to turn around and reach the top was recorded up to 60 seconds. To test strength, the mice were placed in the center of a mesh wire grid used for the 90 screen task and then inverted so the mouse was hanging from the screen that was

elevated 47cm. The time the mouse was able to hang onto the screen up to 60 seconds was recorded.

One hour locomotor activity

We tested the animals' general exploratory activity and emotionality in an one hour locomtor activity task (171). Animals were placed in the center of a standard rat cage (47.6 x 25.4 x 20.6cm) and allowed to explore the cage for one hour in a sound-attenuating enclosure with the lightening set to 24 lux. The one hour sessions were video recorded and the animals position and horizontal movements were tracked using the ANY-maze software (Stoelting Co.: RRID: SCR_014289). The apparatus was split into two zones: a 33 x 11cm center zone, and a bordering 5.5cm edge zone. ANY-maze recorded total distance traveled in the apparatus, and total distance traveled, time spent, and entries into each zone. The mouse was considered to have entered a zone when 80% of the body was detected within the zone. The rat cages are thoroughly cleaned with 70% ethanol between mice.

Marble burying

Marble burying is a task that measures the natural digging behavior of mice and is correlated to compulsive behaviors and hippocampal function (179). Following our previously published methods (171), a standard rate cage (47.6 x 25.4 x 20.6cm) was filled with autoclaved aspen bedding to a depth of 3cm and placed in a sound-attenuating enclosure with lighting set to 24 lux. 20 glass marbles were arranged in 5 x 4 grid on the surface of the bedding. Mice were placed in the center of the rat cage and allowed 30 minutes to explore and bury the marbles. The session was recorded using a digital camera and the animals horizontal movements and position in the apparatus were tracked using ANY-maze with the same center and edge zones as

described in the one hour activity task. After 30 minutes mice were put back in their home cage and the number of marbles not buried was counted by two observers. A marble was considered buried if 2/3 of the marble was underneath the bedding. The average of the two scorers was used to calculate the average number of marbles buried. The marbles and rat cages were thoroughly cleaned with 70% ethanol between mice.

Three-chamber social approach

To assess voluntary sociability and preference for social novelty we used the threechamber social approach assay as previously described (171, 193, 194). The task took place in a plexiglass arena with two partitions with rectangular openings (5 x 8cm) dividing the arena into three chambers that each measure 19.5 x 39 x 22cm. The openings could be closed using plexiglass doors that slide into the openings. The task consisted of four consecutive 10 minute trials. During trial one the animals were habituated to the middle chamber with the openings to the side chambers closed. In trial two the animals were allowed to explore the entire apparatus. Trial three was the sociability trial. In one side chamber there was an empty steel pencil cup (Galaxy Pencil/Utility Cup, Spectrum Diversified Designs, Inc.) that was placed upside with an upside clear drinking cup secured to the top to prevent animals from climbing on top of the cup; this was the empty side. In the other side chamber there was an identical pencil cup that housed an age- and sex-matched, sexually naive, unfamiliar C57BL/6J stimulus animal; this was the social side. The pencil cups allowed sniffing behavior to occur and exchange of odor cues, but limited physical contact to prevent aggressive behaviors. The experimental animal was allowed to explore the whole apparatus. The side of the empty cup and social cup were counterbalanced across all the samples. In trial four we tested preference for social novelty. A new stranger stimulus animal was placed in the formerly empty cup. All stimulus animals were habituated to

the apparatus and the cups for 10 minutes one day prior to testing. Each stimulus animal was used only once per day. During all trials the task was video recorded and the animal's position, animal's head, and movement was tracked with ANY-maze software. We quantified how much time the animal spent in each chamber, as well as distance traveled and number of entries. A 2cm area around the cups was defined as the investigation zone, and the animal's head was used to determine when it was investigating the stimulus animals or the empty cup. The first five minutes of the social and novelty trials were analyzed because this is when the majority of the social investigation occurs (195). The entire apparatus was thoroughly cleaned after each animal using 2% chlorhexidine (Zoetis). The stimulus cups were cleaned using 70% ethanol.

Modified social approach

To test for habituation to social stimuli over extended amounts of time, we slightly modified the social approach task. We used the same apparatus as described above. We included an additional day of habituation to the apparatus for the experimental animals on the day prior to the actual test to ameliorate novelty induced exploration of the apparatus and to potentiate exploration of the investigation zones. During the habituation day the animals were placed in the center chamber for 10 minutes with the doors to the side chambers closed. Next, the animals were allowed to explore the whole apparatus for 20 minutes. The stimulus animals were habituated to the cups in the apparatus for 30 minutes prior to the test day. Trial one and trial two were the same as the social approach described above. For trial three, the sociability trial, the experimental animals were placed in a cylinder in the center chamber, while the empty cup and stimulus animal cup were being placed in the side chambers. This ensures a random starting direction for the experimental mouse so we could make an unbiased measure of which chamber the experimental mouse chose to enter first. The sociability trial lasted for 30 minutes, in which

the experimental animal was allowed to freely explore the apparatus and investigate the empty cup and social cup. The social novelty trial was not conducted.

Tube test of social dominance

The tube test of social dominance tests for social hierarchy behaviors in mice (171, 196). This task took place over five days. Days one and two were habituation trials. During day one, the animals were placed in the left entrance of a clear acrylic tube measuring 3.6cm in diameter and 30cm in length and allowed to walk through the entire tube and exit the tube on the right side. Day two was the same but the mice started on the opposite side of the tube. These two habituation days allow the mice to acclimate to the tube, and potentiates task performance. On each of three consecutive test days, two mice of different genotypes were placed in the entrances to the tube and allowed to meet in the middle, at a clear acrylic partition. When both mice were at the acrylic partition, it was removed and the trial began. The trial ended when one mouse was pushed out or backed out of the tube so that all four paws were out of the tube, or two minutes had passed. The mouse that remained in the tube was considered the dominant winner and the mouse that was no longer in the tube was considered the submissive loser. If both mice were still in the tube after two minutes it was considered a tie. Each mouse was tested only once each day, and the mice were tested against a novel mouse each day. After each test, the tube was cleaned with 2% chlorhexidine (Zoetis) solution. All of the test sessions were recorded using a USB camera connected to a PC laptop (Lenovo). The observer scored the test from the videos.

Rotarod

The accelerating rotarod (Rotamex-5; Columbus Instruments, Columbus, OH) tests motor coordination, motor learning, and balance. We used a previously published rotarod

paradigm (172, 197, 198) that tests animals on three conditions: 1) stationary rod 2) continuous rotation and 3) accelerating rotation during three different sessions that were separated by three days to minimize motor learning. During each day the animals had five trials; one stationary trial, two continuous trials, and two accelerating trials. During the stationary trial, the animals were placed on the stationary rod and the time that the animals stayed on the rod was recorded up to 60 seconds. During the continuous trials, the animals were placed on the rod rotating at three rotations per minute. The time the animals stayed on the rotating rod was recorded up to 60 seconds. In the accelerating trials, the animals were placed on the rod that was rotating at two rotations per minute. Once the animals were on the rotating rod, the rod began to accelerate at 0.1rpm and reached 17rpm at 180 seconds. The time the animals stayed on the rod up to 180 seconds was recorded. The two trials for the continuous rotation and accelerating rotation during each session were averaged for analysis. If an animal fell off the rod during any session within the first five seconds, the animal was placed back on the rod and the time was reset up to two times. If the mouse fell off within five seconds on the third try that time was recorded.

Elevated Plus Maze

The elevated plus maze was used to assess anxiety-like behaviors in mice using previously published protocols (152, 194, 199). The apparatus had two closed arms that measured 36 x 6.1 x 15cm, two open arms, and a central platform that measured 5.5 x 5.5cm. The time spent in the open arms was used as a measure of anxiety-like behavior in mice, since mice prefer to be in an enclosed area. Each mouse was tested once per day for three consecutive days. During the test the animals had five minutes to freely explore the apparatus. The animals position, movement, entries into each arm, and time spent in each arm were determined by beam breaks of pairs of photocells arranged in a 16 (x-axis) x 16 (y-axis) grid. Beam breaks were

monitored by the Motor Monitor software (Kinder scientific). The test was conducted in the dark with black lights, and was recorded by an overhead digital camera using the night vision setting.

Pre-pulse inhibition (PPI)

To test for normal sensorimotor gating and normal acoustic startle response we performed PPI on the animals. Mice were placed in a cage located on top of a force transducer inside of a sound-attenuating box with a house light on (Kinder Scientific). The force transducer measured the startle response of the animals in Newtons. We used a protocol adapted from (194, 200). The protocol was run using the Startle Monitor II software (Kinder scientific). The protocol started with five minutes of acclimation to the 65dB background white noise, which is played continuously throughout the procedure. After acclimation there were 65 trials that pseudorandomly alternated between different stimulus conditions, beginning with five consecutive trials of the startle stimulus, which was a 40msec 120dB pulse of white noise. The middle trials cycled through blocks of pre-pulse conditions, blocks of non-startle conditions, where only the background noise is played, and two blocks of startle conditions. Each block consisted of five trials. The testing ended with single trials of pulses played at 80dB, 90dB, 100dB, 110dB, followed by five more startle trials of 120dB. There were three different pre-pulse conditions, where a pulse of 4dB, 8dB, or 16dB white noise above the background sound was played 100msec preceding the 120dB startle stimulus. The average startle response during the middle two blocks of startle trials was considered to be the animal's acoustic startle response(ASR). Each trial measured the startle of the animal for 65msec after the stimulus, and the average force in Newtons across this time was used as the startle response. The pre-pulse inhibition was calculated as the difference of the average ASR and the startle response during the respective

pre-pulse trial (PP) divided by the ASR of the startle trials multiplied by 100: ((ASR – PP)/ASR)*100.

Contextual and Cued Fear Conditioning

Contextual and cued fear conditioning were used to assess associative learning and memory. We followed a previously published method (172, 201). The test occurred over three days. A camera placed above the apparatus recorded the session. Freezing behavior during each minute was detected in .75s intervals using the FreezeFrame (Actimetrics, Evanston, IL) software. Freezing behavior was defined as no movement except for normal respiration, and is presented as percent time freezing per minute. During day one, animals were allowed to explore the Plexiglas chamber (26cm x 18cm x 18cm; Med Associates Inc.) with a metal grid floor and a peppermint scent that was inaccessible to the animals. A trial light in the chamber turned on for the duration of the five minute trial. During the first two minutes animals were habituated to the apparatus, and freezing during this time was considered the baseline. An 80db white noise tone was played for 20 seconds at 100 seconds, 160 seconds, and 220 seconds during the test. During the last two seconds of the tone (conditioned stimulus CS) a 1.0mA foot shock (unconditioned stimulus UCS) was delivered. The mice were returned to their home cage at the end of the five minute trial. On day two contextual fear memory was tested. The animals were placed into the same chamber with peppermint scent and the illuminated light and no tone or shock was delivered. Freezing behavior was measured over the eight minute task. The amount of time freezing in the first two minutes on day two was compared to the baseline freezing on day one to test the effects of the contextual cues associated with the UCS from day one. On day threed the animals were placed in a new context, a chamber with black walls, and a partition that creates a triangle shaped area and an inaccessible coconut odor. During this 10 minute task, the trial light was on for the entire duration. The animals explored the apparatus for the first two minutes to determine baseline freezing and then the same 80dB (CS) tone from day one was played for eight minutes. The freezing behavior during this time tested the effects of the CS associated with the UCS shock from day one. Shock sensitivity was tested for each mouse three days after the cued fear test following the procedure previously described in (172). Mice were placed in the chamber with the wire grid floor and delivered a two second shock of 0.05mA. The mA of the shock was increased by 0.05mA up to 1.0mA. At each shock level the animal's behavior was observed and the current level at which the animal flinched, exhibited escape behavior, and vocalized was recorded. Once the animal had exhibited each of the behaviors the test ended. Shock sensitivity assessment served to confirm differences in conditioned fear freezing were not confounded by differences in reactivity to the shock current.

Resident intruder

The resident-intruder paradigm, as described previously (202), was used as a direct social interaction test. Only males were used in this experiment. Male mice were individually housed in standard mouse cages for 10 days. Cages were not changed so the mice could establish a territory. The testing took place over three days in which the home cage of the experimental animal was placed in a sound-attenuating box in the dark with two infrared illuminators placed in the box. A clear Plexiglas covering with holes was placed over the cage to prevent animals from jumping out of the cage. A digital camera using the night vision setting recorded the task. On each day a WT C57BL/6J stimulus animal (intruder), age and sex matched was introduced into the experimental animal's (resident) home cage. The animals were allowed to interact for 10 minutes after which the stimulus animal was removed from the cage. A stimulus animal was only

used once per day. The testing was repeated for two more days, during which the experimental animals were paired with novel intruders.

The videos were tracked using Ethovision XT 13 software (Noldus Information Technology) using the social interaction module. This module allows for simultaneous tracking of two unmarked animals. The initial tracking was further corrected manually using the track editing tools, to ensure the head and the tail points were oriented correctly. All of the video tracks were smoothed first with the loess method and then with the minimal distance moved method. The variables of interest were the mean bout of time, frequency, and the cumulative duration of time that the experimental animal's nose was less than 0.6cm from the stimulus animal's nose, interpreted as nose-to-nose sniffing, or when the experimental animal's nose was less than 0.45cm from the tail base of the stimulus animal, interpreted as anogenital sniffing. These distance thresholds were determined by an experimenter blind to genotype, examining the videos using the plot integrated view functionality to ensure that the events called by the software accurately defined the social behavior.

Statistical Analysis

All statistical tests were performed in R v3.4.2. Western blots and qPCR were analyzed using a one factor ANOVA and the post hoc Tukey all pairwise comparison test was used determine differences between groups using the multcomp package (173).

For all behavior tests the data was assessed for univariate testing assumptions of normality and equal variances. Normality was assessed using the Shapiro-Wilkes test as well as manual inspection of qq plots. Equality of variances was tested using the Levene's test. Behaviors that violated these assumptions were analyzed using non parametric tests. Repeated

measures were analyzed using linear mixed models with the animal as the random effect. Significance of fixed effects were tested using the Anova function from the Car (203) package in R. Post hoc testing was done using the Tukey HSD test from the multcomp package. Tukey HSD test 'within time point' was used for post hoc repeated measures comparisons, as appropriate. See Supplemental Tables 1 and 6 for descriptions of all statistical tests.

4.6 Acknowledgments

This work was supported by 1R01MH107515 (JDD), and the Autism Science Foundation, and the National Science Foundation Graduate Research Fellowship DGE-1745038 to NDK. We would also like to thank Dr. Victoria Campuzano for sharing the CD mouse line, and the Genome Technology Access Center for technical support, as well as Dr. Beth Kozel for critical advice on this project. We would also like to thank Dr. David Wozniak and the Animal Behavior Core at the Washington University School of Medicine for their time and resources. We would like to thank Rena Silverman for her contribution to the resident-intruder analysis.

4.7 Figures

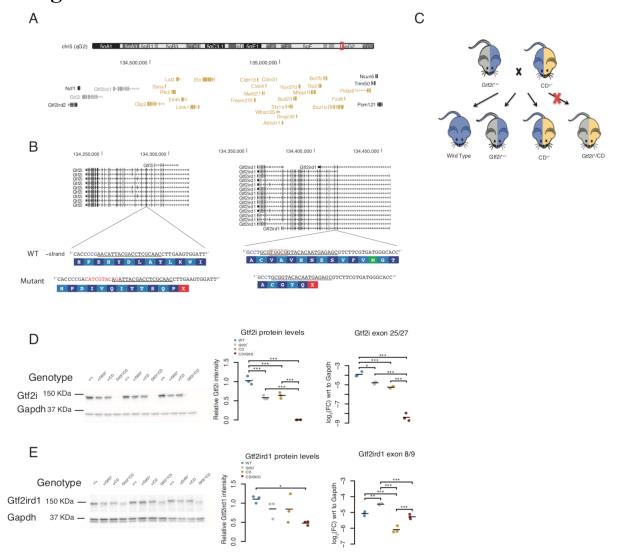


Figure 1. Generation of double mutant $Gtf2i^*$ model. A Schematic of the syntenic WSCR in mouse on chromosome 5. The two transcription factors being tested here are highlighted in grey and the genes that are deleted in the CD animals are highlighted in yellow. **B** Gene models of Gtf2i and Gtf2ird1 showing the multiple isoforms of each gene. The WT sequences with the gRNA target underlined and the PAM highlighted in blue with the mutant sequences below along with the corresponding amino acid sequence. **C** Breeding scheme for the behavior tasks **D**. E13.5 whole brain Gtf2i western and qPCR of $Gtf2i^* \times CD$. Gtf2i protein and transcript are similarly reduced in the $Gtf2i^*$ and CD animals. **E** E13.5 whole brain Gtf2ird1 western and qPCR of $Gtf2i^* \times CD$. Gtf2ird1 protein is slightly reduced in the $Gtf2i^*/CD$ brain compared to WT. Gtf2ird1 transcript is increased in the $Gtf2i^*$ genotype, decreased in the CD genotype, and returns to WT levels in $Gtf2i^*/CD$ genotype. * p < 0.05, ** p < 0.01, *** p < 0.001

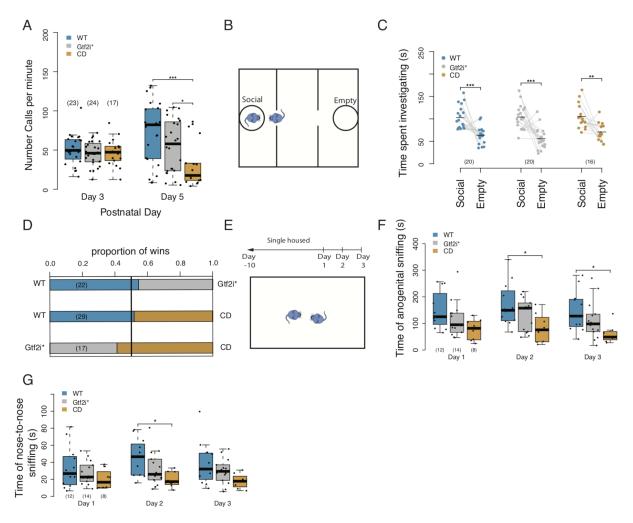
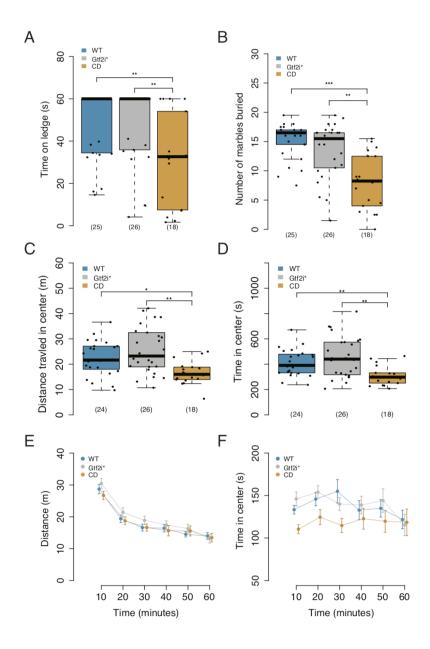



Figure 2. CD mice have deficits in ultrasonic vocalizations and decreased social investigation. A Callrate across two days shows that on postnatal day 5 CD animals produce fewer ultrasonic vocalizations than either WT or $Gtf2i^*$ littermates. B Schematic of the three-chamber social approach task. C All genotypes show preference for social stimulus in three-chamber social approach assay. D $Gtf2i^*$ and CD animals show similar dominance behavior to WT animals in the tube test for social dominance. E Schematic of the resident intruder paradigm. F CD animals show decreased time engaged in anogential sniffing in resident intruder task. G CD animals show decreased time engaged in nose-to-nose sniffing in resident intruder task. * p < 0.05, *** p < 0.01, **** p < 0.001 Sample sizes are shown as numbers in parentheses

Figure 3. CD mice have motor deficits. A CD mice fall off a ledge sooner than WT or $Gtf2i^*$ mutants. **B** CD mice bury fewer marbles than either the WT or $Gtf2i^*$ mutants. **C** CD mice travel less distance in the center during marble burying task **D** CD animals spend less time in the center during marble burying task. **E** All genotypes travel similar distance in open field. **F** All genotypes spend similar time in the center during open field. * p < 0.05, *** p < 0.01, **** p < 0.001 Sample sizes are shown as numbers in parentheses

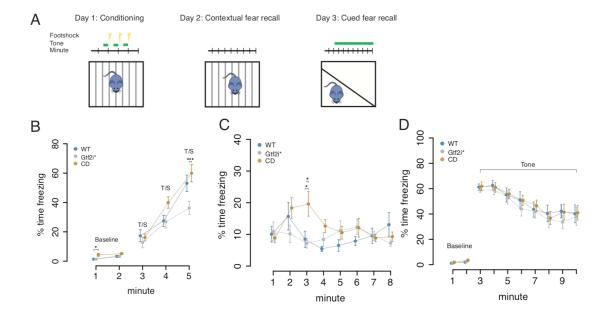


Figure 4. CD mice have more severe contextual fear phenotypes than double mutants. A The conditioned fear task design. Day one animals are delivered a tone and then a footshock throughout the five minute task. Day twp the animals are put in the same context without a footshock to measure contextual fear memory. Day three animals are put in a new chamber and delivered the tone to measure cued fear memory **B** Percent time freezing during conditioned fear acquisition. CD mice have increased baseline freezing during minute one and $Gt/2i^*$ mutants show decreased freezing during minute five **C** Percent time freezing during contextual fear memory recall. CD mice show elevated freezing during fear memory recall. **D** Percent time freezing during cued fear memory recall. All animals show increased freezing when the tone is played. * p < 0.05, ** p < 0.01, *** p < 0.001 Sample sizes are shown as numbers in parentheses

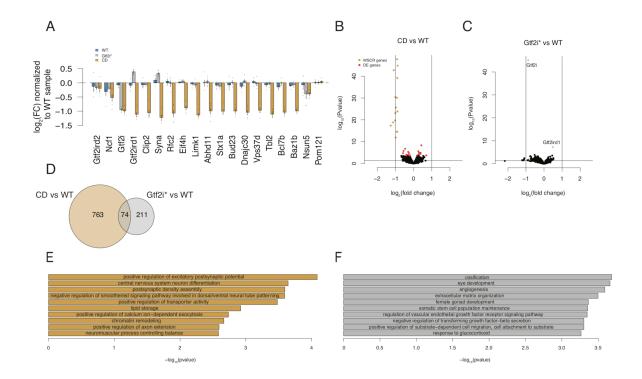
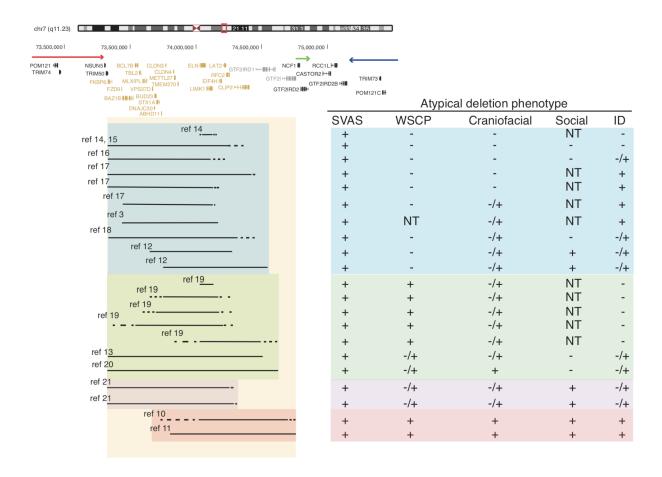
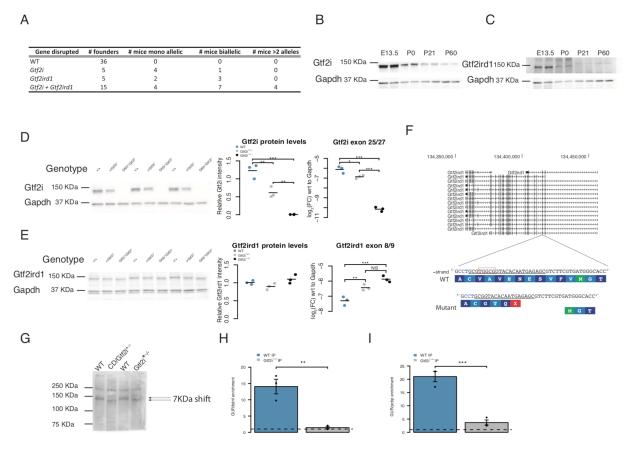
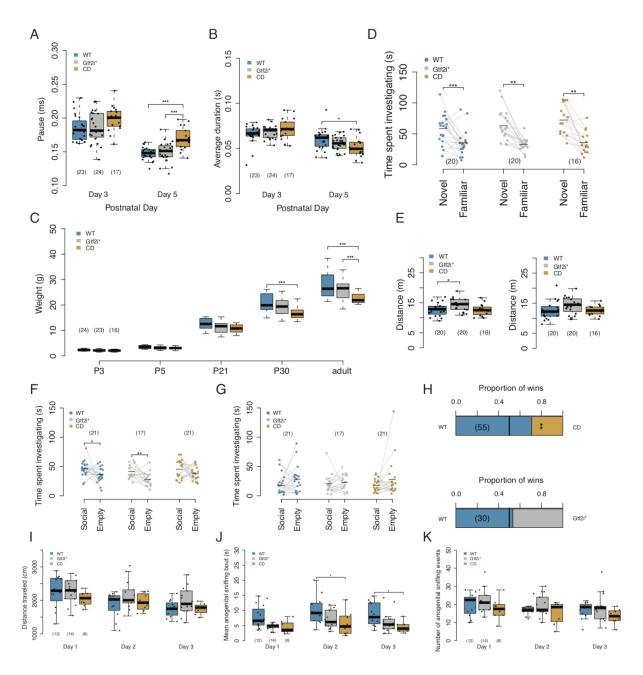
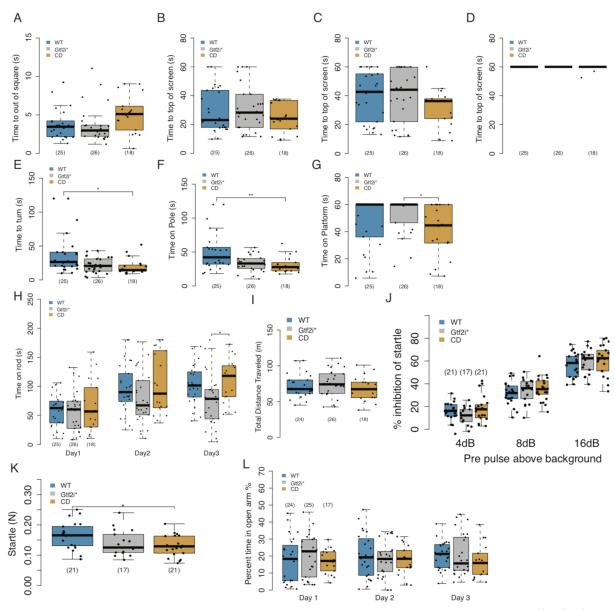
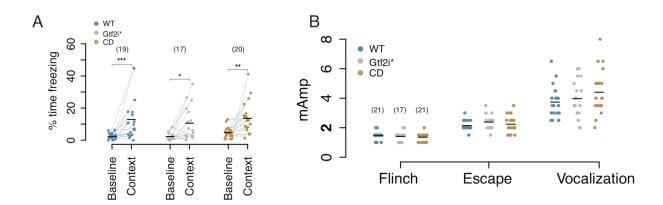
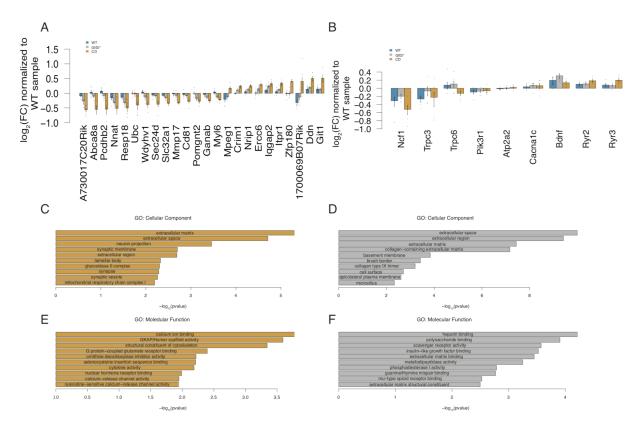


Figure 5. CD mice have altered mRNA for synaptic genes in a hippocampus transcriptome. A CD animals show decreased expression of the WSCR that are expressed in the hippocampus. B volcano plot comparing CD and WT differentially expressed genes. WSCR genes are highlighted in yellow and genes with FDR < 0.1 are highlighted in red. C Besides Gtf2i and Gtf2ird1 there are no significantly differentially expressed genes D There is a 9% overlap between nominally significantly up and down regulated genes between CD and Gtf2i* comparisons to WT controls. E CD differentially expressed genes are enriched for GO biological processes involved in synapses and nervous system development. F Gtf2i* differentially expressed genes are enriched for GO biological processed involved in more general organ development.


Figure 6. Human atypical deletions support oligogenic contribution of genes in the WSCR to phenotypes. Schematic of the WSCR on chr7q11.23. The arrows indicate the regions of low copy repeats. The typical deletion is demarcated using the yellow box. Atypical deletions demarcated in blue show no contribution to the WSCP. Atypical deletions demarcated in purple provide evidence of deletions that spare *GTF2I* and *GTF2IRD1* that show contributions to across phenotypic domains including social behavior. Atypical deletions demarcated in red provide evidence that the telomeric region is sufficient to produce the full spectrum of phenotypes. The large amount of overlap of all deleted regions and the mild phenotypes present across the atypical deletions suggests an oligogenic pattern. SVAS (supravalvular aortic stenosis), WSCP (Williams syndrome cognitive pfofile) ID (intellectual disability) NT (Not tested), - absent, + present, -/+ milder than typical WS.


Supplemental Figure 1. Generation of loss of function mutations in Gtf2i and Gtf2ird1. A The number of founders from gRNA injection shows that two gRNAs are efficient at mutating both targets and have high rates of mosaicism. B Gtf2i protein is more highly expressed in the embryonic brain and is detectable in the adult brain, each time point includes two biological replicates. C Gtf2ird1 protein is more highly expessed in the embryonic brain and not detectable in the adult brain, each time point includes two biological replicates. D Gtf2i protein and transcript levels are decreased in the heterozyous Gtf2i* mice and not detectable in the homozygous Gtf2i* E13.5 brain. E Gtf2ird1 protein is not decreased in heterozygous or homozygous Gtf2i* E13.5 brain, but the transcript is increased in heterozygous and homozygous animals. F Schematic of the consequences of the 5 bp deletion in Gtf2ird1 showing the potential translation re-initation methionine in a new open reading frame. G A slight shift of Gtf2ird1 protein in animals homozygous and hemizgyous for the 5 bp deletion in exon 3 of Gtf2ird1, suggesting an N-terminal truncation of Gtf2ird1. H ChIP qPCR of the enrichment of the Gtf2ird1 upstream regulatory sequence (GUR) over an off target sequence 7kbp upstream of Bdnf transcription start site in WT versus Gtf2i* homozygous E13.5 brain. I ChIP qPCR of the enrichment of the Gtf2ird1 upstream regulatory sequence (GUR) over an off target sequence 10kbp upstream of Pcbp3 transcription start site in WT versus Gtf2i* homozygous E13.5 brain. * p < 0.05, ** p < 0.01, *** p < 0.01, *** p < 0.001


Supplemental Figure 2. Social behaviors in CD and Gtf2i* mutants. A CD animals have increased pauses between bouts of USVs. B CD animals have decreased duration of USVs. C CD animals have decreased weight in adulthood, developmental weight does not explain differences in USV. D All genotypes show preference for social novelty. E Double mutants show increased activity in the social approach and social novelty trials of three chambered social approach. F WT and double mutants show social preference in the first 5 minutes of the extended social approach, but the CD mice are trending. G None of the genotypes show preference for social stimulus during the last 5 minutes of the extended social approach. H CD mice on C57BL6/J background show a submissive phenotype in tube test of social dominance while the double mutants show no phenotype on FVB/ANTJ background. I All genotypes travel similar distance in the resident intruder task. J CD animals have decreased mean bout time of anogenital sniffing in the resident intruder task. K However all genotypes have similar frequencies of anogential sniffing. * p< 0.05, ** p < 0.01, *** p < 0.0001. Sample sizes are shown as numbers in parentheses

Supplemental Figure 3. Motor and anxiety phenotypes in double mutants and CD animals. A All animals show similar time to initiate walking. B All animals reach the top of a 60 degree inverted screen in similar amounts of time. C All animals reach the top of a 90 degree inverted screen in similar amounts of time. D All animals can hang onto an inverted screen for similar amounts of time. E CD animals are able to turn their bodies 180 degrees on a pole quicker than WT animals. F CD animals are able to reach the bottom of a pole quicker than WT littermates. G CD animals tend to fall off a platform more than double mutants. H On day 3 of the rotorod task double mutants fall off sooner than the CD animals. I All genotypes travel similar total distances in the marble burying assay. J All genotypes show normal PPI. K CD animals have decreased startle to 120dB stimulus overall but this is due to decreased weight. L All genotypes spend similar amounts of time in the open arm during elevated plus maze. * p< 0.05, ** p < 0.01, *** p < 0.0001. Sample sizes are shown as numbers in parentheses

Supplemental Figure 4. Contextual fear and shock sensitivity in WS mutant models. A All genotypes show a contextual fear response. B The response to foot shock is similar across all genotypes. * p < 0.05, ** p < 0.01, *** p < 0.001 Sample sizes are shown as numbers in parentheses

Supplemental Figure 5. Small changes in hippocampal transcriptomes of WS models. A Fold change of differentially expressed genes between WT and CD animals at an FDR < 0.1 normalized to WT levels. **B** Fold change of genes previously tested in CD hippocampus RNAseq

from Ortiz-Romero et al. 2018. C The top ten enriched Cellular Component gene ontologies for genes that are nominally up or down regulated between CD and WT animals. **D** The top ten enriched Cellular Component gene ontologies for genes that are nominally up or down regulated between Gtf2i* and WT animals. **E** The top ten enriched Molecular Function gene ontologies for genes that are nominally up or down regulated between CD and WT animals. **F** The top ten enriched Molecular Function gene ontologies for genes that are nominally up or down regulated between Gtf2i* and WT animals

Table 1: Behavior and animal cohorts for the Gtf2i* x CD

Behavior		Male		Female			
Cohort 1	WT	Gtf2i*	CD	WT	Gtf2i*	CD	
Pup USV P3 and P5	11	12	8	12	12	9	
Sensorimotor battery	12	15	7	13	11	11	
Elevated plus maze	12	13	7	12	12	10	
1 hour locomotor activity	12	14	8	13	12	10	
Marble burying	12	14	8	13	12	10	
Rotarod	12	14	8	13	12	10	
Three-chamber social approach	10	12	6	10	8	10	
Resident intruder	12	14	8	NA	NA	NA	
Cohort 2							
Modified three-chamber social approach	10	3	9	11	14	12	
Tube test of social dominance	11	3	9	11	14	12	
Pre-pulse inhibition	10	3	9	11	14	12	
Conditioned fear	9	3	8	10	14	12	
Shock sensitivity	10	3	9	11	14	12	

Supplemental Table 1: Supplemental figures statistic table

Figure	Assa y Per formed	Parameter (unit)	Comparison		-to-		Descriptive Statistics	Describe.	Substical Analysis	
		GE/2 protein level inhorn	Independent Variables	Age	n(animals) WT: 3	Average ±52M W7:123±0.12	Median (20,30) W7:1.16 (0.839,1.14)	Statistical Test	Sgrificance	WT-HET: p=0.00491**
	Westernblotting	and het double mutants compared to WT relative	Grf2 band density relative to Gapdh	E135	HET:3	HET:0.61±0.089	HET:054(0.53,0.67)	One-way AND VA; Tukey's HSD multiple comparison test	ge natype: F(2,6)+52,940, p=0.0002	WT-HOM: p < 0.001***
d		to Gupdh		-	HOM:3 WT:3	HORA:0.007± 0.003 WT:-6.12± 0.204	HONA 0.006 (0.004, 0.009) WT: 5.99 (-6.26, 5.9.2)			HET-HORK: p 0.00479** WT-HET: p=0.0284**
	ap cit	deltaCT	GHS transcript level relative to Gap dh	E135	HET:3	HET:-6.87±0.099	HET-6.83(-6.94,-6.78)	One-way ANOVA; Tukey's HSD multiple comparison	genotype: F(2,6)=20473, p=3.012x10-6	WT-HOM: p < 0.001***
					HOM:3	HOM: 4.0.16±0.128	HOM:-10.12 (-10.26,-10.04)	See.		HET-HORA: p < 0.001***
	Westernblotting	Gtf2ird1protein level in hom and het double	Gt@ind1band density relative to Gapdh	E135	WT:3 HET:3	WT:1.00±0.032 HET:0.897±0.052	WT:1.00 (0.977,1.033) HET:0.900 (0.853)0.943)	One-way #401A; Tukey's HSD multiple comparison	genotype: F(2,6)-3,6179, p=0.09315	
	and the same	mut ants compared to WT relative to Gapdh	COLUMN STREET OF THE STREET OF	1133	HOM:3	HOM: 1.1 ± 0.070	PET:03/00 (0.85:3(0.9-43) PHONE 1.08 (1.0-46, 1.156)	bed.	Beautibers (Vin)-rare of beautiful	
					WT:3	WT:-730±0.17	Wt:-7.25 (-743,-7.15)	One-way ANOVA; Tukey's HSD multiple comparison		WT-HET: p=0.009.2**
	op cit	deltaCT	G8f2ird1 transcript level relative to Gapdh	E135	HET:3	HET:-6.43 ±0.11	HET: 6.49 (-6.54, -6.25)	test	ge natype: F(2,6)-28,764, p=0.000 B	WT-HOM: p < 0.001***
		<u> </u>			HOM:3 WT:3	HOM: 6.87± 0.12 WT:14.05±2.24	HONA-5.91 (-5.98,-5.78) WT:15.08 (12-42, 1-6.20)			HET-HOM: p = 0.057.
			Gif2rdL on target primer computed to Bidef off					One-way ANOVA; Tukey's HSD multiple comparison test	genetype: F(2,6) = 22.953, p=0.00155	WT-G#2*:p=0.00168*
h	eprox.	relative ereichment	targetprimerinIP	E135	9(27:3 WT:3	G(27: 1.43 ± 0.34	G(2*: 1.26(1.1018,170)	One sample t-testu=1	t(2)=5824, p=0.028	
					0(2753			One sample t-testu =1	t(Z)=1.262, p=0.3341	
					WT:3	WT:21:01 ± 1.94	WT-22.9 (20.03, 22.95)	One-way ANOVA; Tukey's H5D multiple comparison	geratiys: F(2,6) = 69.347, p=7.13e-5	WT-G#21*: p < 0.001**
	ep ca	relative enrichment	Ctf2rd1 on target primer compared to Pdsp3 off target primer in IP	E135	0(27:3	0627:168±097	Or(21*: 2.96 (2.72,4.28)	test.	6(2)=10.33, p=0.0092	
			agespain in		WT:3 Gg2/1:3			One sample t-testu=1 One sample t-testu=1	6(2)=276, p=0.0092 6(2)=276, p=0.1094	+
					WT: 23	WT: 34.26 ± 0.304	WT: 34.40(33.10, 35.60)	Cit angle (date)		
				P3	0(2/52M	0(27:34.25±0.2M	Gg(2)*: 34. 45 (33.58, 35.20)		Day 8(1,61)=1.37, p = 0.247	
not show	Pup Ultrasonic Vocalization	surface body temperature	surface body temperature (C)	\vdash	CD17 WT: 23	CD: 33.64 ±0.325 WT: 34.33 ± 0.302	OD: 33.25 (32.60, 34.45) WT: 34.50(33.20, 35.40)	In our mixed model; Animal id random effect; Anava tot est fixed effects	Genot you F(2,61)=2.521, p=0.089 Interaction Day*Genotype: F(2,61)=0.261,p=0.771	
				15	0(27.24	0(27:34.71±0.264	O(27: 34.3/3.174, 35.78)		Interaction Day*Geno type: F(2,61)=0.261,p=0.771	
					CD17	CD: 33.92 ±0.34	CD: 33.80 (33.2, 34.50)			
				P3	WT: 23	WT: 0.1855± 0.0041	WT: 0.1 82 (0.16 83, 0.195 8)			DeyS: WT-Gt-f2ff: p=1
				1 23	0(27:24 CD17	G(27*:0.1872±0.0063 CD:0.1990±0.0046	G(2)*: 0.1814(0.1732, 0.2068) CD: 0.2005 (0.1878, 0.2102)	In our mixed model; Animal id random effect;	Day: F(1,61)=131.94, p < 2.2e-16	Diry\$ 9817-00: p=0.079 Diry\$: Gir[2 *-00: p=0.09
	Pup Ultranonic Vocalization	pasebetween oils (ms)	pause between calls (ms)		WT: 23	WT: 0.1496± 0.002	WT: 0.1-881(0.1425, 0.1534)	Ans ve to test fixed effects; Tukey's HSD multiple comparison within day	Genetype: F(2,61)=11.907, p=3.31e-5 Interaction: Day*Genotype: F(2,61)=0.679, p=0.511	Dept: WT-Oxf2*: p=1
				15	G(27:24	0654-01496±0.0030	Oq(2)*: 0.1512 (0.1428, 0.1582)			DaryS: WiT CD: p < 0.00004***
	+	+			CD17 WT: 23	CD: 0.1699 ± 0.0040 WT: 0.0054± 0.0022	CD: 0.1672 (0.1576, 0.1816) WT: 0.066 (0.0636, 0.0717)			Days: Gaf2 *-CD: p=0.0034** Days: WT Gaf2*: p=0.846
				P3	0(27:24	G#27-0.0682±0.0024	Geja*: 0.070 (0.062, 0.071 N)	1		Dey8 WT-CD: p=0.222
ь	Pup Ultrasonic Vocalization	Avergeducation of call	duration of call bout		CD17	CD: 0.0716 ± 0.0028	CD: 0.0714(0.0642, 0.0793)	In ear mixed model; Animal id random effect; Anovato testifixe deffects; Tukey's HSD multiple	Day: F(1,61)=65.8621, p =2.784e-11 Gen dtype: F(2,61)=0.1046, p =0.901	Dryl: Gr/2*-CD:p=0.741
-		bout (s)		PS	WT: 23	WT: 0.0598± 0.0024	WT: 0.0619(0.0523, 0.0651)	comparison within day	Internation Day*Genatype: F(2,61)=7.26,p=0.001	Dry5: WT Gt/21": p=0.473
				l "	0627-24 CD17	0627:0.0554±0.0016 CD:00515±0.0027	Ge/3x*: 0.055/0.050 I, 0.0617) CD: 0.0495 (0.0445, 0.0589)	1		Deg5 : WT CD; p = 0.046* Deg5 : Ge53 *-CD; p= 0.659
					WT:24	WT: 2.29 ±0.0781	WT: 2315(1.9, 2.58)			Dry8: WT Gr(2*: p=1
				P3	G(27°:23	G(27: 2.06 ± 0.080	0(3*:2.13(2.78, 2.1)	Insur mixed model, Arimal id random effect; Arravota institue de filest; Tuley's 100 multiple companies with red of the companies with red of the co	$D_{H^{1}}(4,340)\text{-}161668, p+2.2e-16$ $Graw gas (2,000)^{-2}, 21, p=0.016$ Interaction Development (3,004,000) and (3,004,0	Dey8:WT-CD: p=1
					CD16 WT:24	CD: 287± 8.077 WT: 3.485 ± 0.124	CD: 2.05 (1.95, 2.20) WT: 357(2.82, 4.08)			Degi: Griz "-CD:p-1 Degi: WT-Ccriz": p-1
			we left t		WT:24 Gg2/f:23	Q#27:108:023	WT: 357(2.82, 4.08) Ge/3*: 114(2.61, 1.63)			Dey5: WT-CD: p = 1
					CD16	CD: 306± 0.13	CD: 1055 (2.79, 1.12)			Dept. Get 2*-CD: p=1
e	developmental weight	weight(g)			WT:24 Gg/2/1:23	WT: 12.5 ±0.41 Og/27: 31.08± 0.457	WT: 12.54(10.84, 1.4.71) Gg/3*: 21.66(9.255, 22.63)			Deg 1: WT-G/2*: p=0.505 Deg 1: WT-CD: p=0.285
		ght weight(g)			CD16	CD: 10.64 ±0.437	CD: 10.77(9.42, 11.96)			Degl 1: Gr/21*-CD:p=1
					WT:24	WT: 20.70 ± 0.71	WT: 19.895(18 A, 24.41)]		Dry50: WT-Orf2I*: p=0.405
				P30	0(2/12)	G(27: 29.27± 0.69 CD: 17.06±0.788	Ge(34°: 29.41(16.61, 21.76) GD: 16.35 (15.01. 17.72)	4 1		De y8 0: WT-CD: p < 0.0 01 * **
				\vdash	CD16 WT:24	WT: 27.88±1.04	WT: 26.395(23.90, 31.58)	1 1		Day 0: Gri2 *-CD: p=0.159 Day, adult: WT-Gri2*: p=0.225
				adult	0(27:23	062C-26311±0.84	Ge(3*: 23.58(22.83, 28.31)	1		Dry_adult: WT-CD: p < 0.001***
				-	CD16	CD: 22:05 ± 1:01	CD: 21.855 (21.11, 23.5)			Day, adult: GH21*-CD: p < 0.001*
			рге мена от міслеске абрічме	173	WT	number present:1	-		g*+0.7000,p+1	
	shown pinneade velapment	counts of animals				number absent22 number present1	-	Oi squaretest of independence, with p-pvalue		
					0621	number absent23	1	simulation for low expected cell number		
					CD	number present 0	1			
not shown						number absent17				
					WT	number present 23 number absent 0	1			
				15	cultur.	number present-22		On square test of independence, with p-p-value	χ ² =2.59, p=0.4378	
					- in	number absent2	-	simulation for low expected cell number	X -2-34, p-4-34	
					CD	number present:15 number absent:2	+			
					WT: 20	WT: 57.05 ± 5.36	WT: 61.75 (40.650, 69.350)			WT:social empty: p < 0.001***
	d Three Chamber Assay	InvestigationTime (s)	Familiar Social Chamber	adult	Gr/2/*:20	G(27:62.05±6.49	Ge(31*: 57.10 (46.12, 77.275)	In ear mixed model; Animal id random effect;	Chamber: F(1,53)+50,3616, p=3.137e-9	Gif2*: social-empty: p = 0.003.23
d					CD:16 WT: 20	CD: 70.65 ±6.05 WT: 34.01 ± 4.78	CD: 66 80 (50.37, 90.775) WT: 32.15 (241.3, 37.60)	Anovato testfixed effects; Tukey's HSD multiple comparison within genetype	Genet ype: F(2,53)=1.39 , p=0.2563) Interaction On amber *Geno type: F(2,53)=0.5642, p=0.5722	CD: social empty: p = 0.00121 **
					G(27:20	0627:34.381.2.53	0(2*: 34.20(28.65, 38.88)	ways was brought		
				-	CD16	CD: 37.22 ±4.57	CD: 31.65 (23.18, 49.45)			
	Three Chamber Assay, and al			adult	WT: 20	WT: 12:59 ± 0:50	WT: 12-49 (10.62, 13.85)	One-way ANDVA; Tukey's HSD multiple comparison	Genotype: F(2,53) = 3.98, p=0.024	WT-GH2/*: p =0.0305*
	approacht rial	Total distance traveled (m	distance traveled in apparatus	induit.	G(27:20	0627:14.43±0.52	Gef24": 24.67 (24.67, 26.26)	test	Genotype: F(2,53) = 3.98, p=0.024	WT-CD: p=0.95
					CD:16 WT: 20	CD: 12.82 ±0.53 WT: 12.55 ± 0.67	CD: 12.79 (11.23, 14.10) WT: 12.12 (10.72, 13.74)			Off2* -CD: 0.0872 WT-Off2/*: p =0.111
	Three Chamber Assay, and all movelty trial	Total distance traveled (m	distance traveled in apparatus	adult	WT: 20 Gg/2/*:20	WT: 12.55 ± 0.67 Og/27: 24.29± 0.62	W1: 12.12(10.72, 13.74) Gg2*: 24.55 (12.56, 26.35)	One-way ANOVA; Tukey's HSD multiple comparison test	Ge restyp e: $F(2,53) = 2.287$, $p=0.111.5$	WT-CR27: p =0.111 WT-CD: p=0.906
		1		_		CD: 12.93 ±0.52	CD: 12 62 (11.41, 13.87)			GH2* - CD: 0.295
		eChamber Assay Investigation Time(s) First 5 minutes	Social Chamber	'	WT:21 G627:27	WT:46.14 ± 285 Q(27:41.62± 2.87	WT: 45.80 (39.60, 53.40) Ge/3*: 36.00 (33.60, 52.50)	Inser mixed model; Arimal id random effect; Anous to test fixed effects; Tulay's 150 multiple comparison within gen dispe		With oxial empty: p = 0.0 33* Gel2*: social-empty: p = 0.00726
,	Long Three Chamber Assay		Time(s)First	mbult	CD21	CD: 45.48±3.36	CD: 50 S (33.50, 57.90)		Chamber: F(1, 53)=83.2 (t, p=1.89 xt 0-12 Genotype: F(2, 53)=1.35 , p=0.323 t)	CD: social empty: p = 0.134
,	Ling HALFCHIRTH KILIY			MAJE.	WT: 21	WT: 35.95 ± 2.78	WT: 36.20 (2850, 45.30)		Genotype: F(2, 53)=1.15 , p=0.32319) Interaction: Osember*Genotype: F(2, 53)=0.5845, p=0.561	
			Empty Chamber		0(27:27 CD21	G(27:27.98 ± 2.86 CD: 37.53 ± 2.47	G(2*: 25, 70 (15, 90, 35, 70) CD: 37, 80 (25, 90, 44, 20)	- I		
					CD21 WT: 21	WT: 17.83 ± 3.70	WT: 910(5.8, 23.0)			WT:social empty: p = 0.248
		Investigation Time (s) Lest 5 minutes	Social Chamber tion Time(s) Let		0(27:17	G#27: 20 A 2 t 1.99	Gef 24": 17.60 (11.70, 25.00)		Chamber: F(1,56)=4.8227, p=0.03225 Genotype: F(2,56)=0.0523, p=0.949	Grf2*: social-empty: p = 0.975
	Long Three Chamber Assay			adult	CD21	CD: 17.88e 2.31	CD: 14.60 (9.50, 24.700) WT: 28.60 (8.60, 35.50)	In ear mixed model; Animal id random effect; Anovato test fixed effects; Tukey's HSD multiple		CD: social e-mphy: p = 0.279
			Empty Chamber		WT: 21 0(/27:17	WT: 28.35 ± 4.87 Gg2 (1.23.00 ± 3.36	(W1: 28.60 (8.60, 35.50) (0§2*: 21.00 (21.40,34.40)	companison within genetype	Interaction: Chamber*Genotype: F(2,56)=0.454, p=0.637	
					CD21	CD: 28.00 ±6.86	CD: 18.80 (11.6, 24.30)			
		Proportion of wins	Proportion of wire	mbult	WTvs CD55	WT wins 39		two tailed bin amial ose at test, null hypothesis	p=0.0027	
	Total Control	Proportion of wins	Propertion of wire	adult.	WTW CDSS	W - 4/21 22		probability of success =0.5	p=0.0027	
h	Tube Test of Social Derrinance	T						two tailed binomial each test, rull hypothesis		
h			Propertion of wire	adult	WT vs GH2/*:30	WTwinx16		probability of success =0.5	p=0.856	
	Tube Test of Social Dominance Tube Test of Social Dominance	Proportion of wins		_	WT: 12	WT: 12266 11 ±140 41	WT: 2286 14 (208 3.6 6, 2652 3.0)			
h		Proportion of wins				O(07/1:2258.54 ± 201.55	G(2*: 2296.34 (2046.78, 256.2.9.8)	line or mixed model, Asimulid randomelfed; Two-		
h		Proportion of wins	Dayl	adult	O(27:34		CD: 2045 12 (1912 83, 2 200 41)			
h		Proportion of wins	Day1	adult	cos	CD: 2049.54 ± 77.08	and the second second second second		Genotype: F(2,31) =1.399, p=0.26202	
h		Total distance traveled			CDS WT: 12	WT: 1876.62± 107.27	WT: 2026 08 (1758.73, 2129.49)	way Amoyato test flood effect v. Tukenh 2000	Day: F(2.6.2)=28.954.3, p+1.31.8e-9	1
h	Tube Test of Social Dominance		Day2	mdult mdult	cos		WT: 2026 08 (1758.7.3, 2129.49) Gr(2*: 2004.34 (2938.57, 2298.7.1) CO: 1930.40 (1761.16, 2171.50)	way Anovato test fixed effects; Tukey's HSD multiple comparison within day	Generatyse: F(Z, 31) = 1.399, p=0.26332 Day: F(Z,6 Z)=28.9541, p=1.31 ib=9 Inter action: geon type*d ay: F(4,6 Z)=2.2204, p=0.07699	
h	Tube Test of Social Dominance	Total distance traveled	Day2	mdult	CDS WT: 12 Gg/2/F:24 CDS	WT: 1876.62± 10727 Og/27: 2154.05±112.32	Ge(24": 2004.34 (2838.57, 2298.71) CD: 1930.40 (1761.16, 2171.50) Wf: 1749.20(1580.85, 1900.60)	way Amova to test fixed effects; Tukey's HSD	Day: F(2.6.2)=28.954.3, p+1.31.8e-9	
h	Tube Test of Social Dominance	Total distance traveled			CDB WT: 12 Gg/2/F-S4 CDB WT: 12 Gg/2/F-S4	WT: 18 76 62 ± 10 7.2 7 Gr[2 7* 21 54.05 ± 11 2.32 CD: 1950.31 ± 90.35 WT: 17 52.85 ± 71.10 Gr[2 7* 29 74.90 ± 10 7.39	O(2": 2004.34 (2938.57, 2298.72) CD: 1938.40 (1761.16, 2171.50) WT: 1749.29(1580.85, 1900.60) O(2": 2893.28 (70.53, 233.52)	way Amova to test fixed effects; Tukey's HSD	Day: F(2.6.2)=28.954.3, p+1.31.8e-9	
h	Tube Test of Social Dominance	Total distance traveled	Day2	mdult	COS WT: 12 Sq27/34 COS WT: 12 Sq27/34 COS	WT: 1876 62± 20727 Ge[7*: 2154 65± 212.32 CD: 1950 31± 90.35 WT: 1752.85± 71.10 Ge[2*: 2974 90± 207.39 CD: 1751.59± 56.56	Ge(2* - 3004.34 (2018.57, 2018.71) CD 1930.40 (1 761.16, 2171.56) WY. 1740.20 (1560.85, 1900.69) Ge(2* - 2883.18 (20.53, 138.51) CD 1748.10 (1666.36, 1886.26)	way Amova to test fixed effects; Tukey's HSD	Day: F(2.6.2)=28.954.3, p+1.31.8e-9	Ded 107 (003)
h	Tube Test of Social Dominance	Total distance traveled	Day2	mdult	CDB WT: 12 Gg/2/F-S4 CDB WT: 12 Gg/2/F-S4	WT: 18 76 62 ± 10 7.2 7 Gr[2 7* 21 54.05 ± 11 2.32 CD: 1950.31 ± 90.35 WT: 17 52.85 ± 71.10 Gr[2 7* 29 74.90 ± 10 7.39	O(2": 2004.34 (2938.57, 2298.72) CD: 1938.40 (1761.16, 2171.50) WT: 1749.29(1580.85, 1900.60) O(2": 2893.28 (70.53, 233.52)	way Amova to test fixed effects; Tukey's HSD	Day: F(2.6.2)=28.954.3, p+1.31.8e-9	Deyl WT-Gd2+; p=0.300 Deyl: WT-CDp=0.176
h	Tube Test of Social Dominance	Total distance traveled (cm)	Day2	mb/b mb/b	CDB WT: 12 Gg/2/F:sid CDB WT: 12 Gg/2/F:sid CDB WT: 12	WT. 1876 62± 10727 O(207.2154.05 ± 117.23 CO. 1890.31± 90.35 O(207.1254.05 ± 171.30 O(207.1254.05	O(22**, 2004.34 (2004.05; 2204.71) O 1910.40(1741.16; 277.50) WH 1740.20(1501.6); 1910.40) O(2**, 2003.26; 1/6.35; 121.51) O 1740.10(1606.36; 1806.20) WH 555(2.7; 246) O(2**, 437.47; 1,10) O 135 (14.5; 1,50)	way Amova to test fixed effects; Tukey's HSD	Day: F(2.6.2)=28.954.3, p+1.31.8e-9	
in the second se	Tube Test of Solid Development Red dest Introder	Total distance traveled (con)	Day2 Day3 Day1	adult adult adult	CDS WT.12 Og/2/138 CDS	WT 1876.621 10727 0007-7.2554.05 #122.32 CO 1950.31 #30.35 WT 1752.05 #7.10 0007-7.27 #37.00 CO 1751.50 #36.56 WT 7.20 #36.56 WT 7.20 #36.50 WT 7.20 #37.10 CO 475.57 #37.20 CO	0(20*, 2004.34 (2008.51, 2208.71) On 1999.40(1.76.11, 2.717.50) White 1, 1999.20(1.96.11, 2.917.50) O(20*, 2008.24 (2.91.50) O(1708.10(1.00), 10, 100.50, 103.51) O(1708.10(1.00), 10, 100.50, 103.51) O(20*, 2008.24 (2.91.50) O(20*, 2008.24 (2.91.50) O(20*, 2008.24 (2.91.50) O(20*, 2008.24 (2.91.50) O(20*, 2008.25 (2.91.50) O(20*, 2008.25 (2.91.50) O(20*, 2008.25 (2.91.50)	way Answare tract flowed effects; Tulwy's PSD multiple companion within day	Day 17(23)7-38.5943, pr-1.318-9 Inter-action: geom/gen*day; E(46.2)-2.2294, pr-0.07639	Deyl : WT CDp=0.176 Deyl : Gr52 *-CD:p=0.993 Deyl : WT-Gr52 *: p=0.170
h	Tube Test of Social Dominance	Total distance traveled (cm)	Day2	mb/b mb/b	CDS WT.12 Og/2/138	WT 1876.021.007.27 00277.7254.03 ± 172.22 00277.7254.03 ± 172.22 WT 1752.06.17 11.00 00277.23 × 10.72 CO 1756.35 ± 10.73 00277.52 × 10.74 00277.52 ± 10.72 CO 456.16.20 WT 1397.11.00 00277.5.22 ± 0.72 CO 456.16.20 WT 1397.11.07 00277.5.22 ± 0.72 00277.6.30 ± 0.60	O(26**, 2882.34 (2882.85.2282.27) O 1 998.40 (1) 100.10, 1171.300 WE 1149.29(1981.81, 1983.80) O(26**, 2882.34 (10.33, 128.14) O(26**, 2882.34 (10.33, 128.14) O(26**, 2882.34 (10.33, 128.14) O(26**, 2882.34, 188.30) WE 1.55(2.77, 9.40) O(26**, 4.81)(1.87, 1.81) O(3.35)(1.87, 1.80) WE 1.55(2.77, 2.84) O(26**, 4.81)(1.87, 1.81)	way Amova to test fixed effects; Tukey's HSD	Day: F(2.6.2)=28.954.3, p+1.31.8e-9	Deyl : W7 CDp=0.176 Deyl : G62 *-CD:p=0.993 Deyl : W7-C62 *: p=0.170 Deyl : W7-C62 *: p=0.170
h h	Tube Test of Solid Development Red dest Introder	Total distance traveled (con)	Day2 Day3 Day1	adult adult adult	CDB WT 12 GG27/108 CDB WT 12 GG27/108 CDB WT 12 GG27/108 CDB WT 12 GG27/108 CDB CDB CDB CDB CDB CDB CDB CDB	WT 1876.621 10727 0007-7.2554.05 #122.32 CO 1950.31 #30.35 WT 1752.05 #7.10 0007-7.27 #37.00 CO 1751.50 #36.56 WT 7.20 #36.56 WT 7.20 #36.50 WT 7.20 #37.10 CO 475.57 #37.20 CO	0(29" 2005 M (1008 ST, 2008 T) 01 1918 M (1018 ST, 2118 T) 01 1918 M (1018 ST, 2118 T) 010" 2018 M (1018 ST, 2118 ST) 010" 2018 M (1018 ST, 2118 ST) 010" 2018 M (1018 ST, 2118 ST) 010" 2018 M (2018 ST, 2118 ST) 011 101 101 ST, 500 011 101 101 ST, 510 014 101 015 ST, 511 ST)	way Average to set food effects. Takey's ISD making a compartees within day the set of	Day FDE 27-03 TRAL pt - 1.31 to 49 Inter-sell or: great hype**Pery FREEZY-2.23M, pt - 275.99 Greatly or: FDEEZY-2.23M, pt - 275.99 Greatly or: FDE	Dayl: WT CDp=0.176 Dayl: Grf2 *-CD:p=0.993 Dayl: WT Crf2 *-p=0.170 Dayl: WT CDp=0.0404 * Dayl: Grf2 *-CD:p=0.946
h	Tube Test of Solid Development Red dest Introder	Total distance traveled (con)	Day2 Day3 Day1	adult adult adult	CDS 1871-12 G(277-26)	NT 18 NG 10 10 12 7 OGDY 7 25 AG 5 12 12 33 OGDY 7 25 AG 5 12 12 33 WIT 17 25 AG 5 12 13 35 WIT 17 25 AG 7 13 15 CO 1751 30 1 30 5 WIT 17 25 AG 7 10 7 10 WIT 18 10 AG 10 7 10 CO 1751 30 1 30 5 CO 4361 6.70 WIT 18 10 AG 6 CO 5701 1.41 WIT 18 11 11	ORP* 2004 A (1984 E 2004 E) OTHER 60(1) N. II. E (1974 S) ST 1906 EVEN IN E (1974 S) ST 1906 EVEN IN E (1984 S) ORP* 2005 EVEN IV (1985 S) ORP* 400 EVEN IV (1985 S) ORP* 500 EVEN IV (1985 S) ORP* 500 EVEN IV (1985 S) ORP* 500 EVEN IV (1985 S)	way Average to set food effects. Takey's ISD making a compartees within day the set of	Day FDE 27-03 TRAL pt - 1.31 to 49 Inter-sell or: great hype**Pery FREEZY-2.23M, pt - 275.99 Greatly or: FDEEZY-2.23M, pt - 275.99 Greatly or: FDE	Degl: WT CDp=0.1% Degl: Cdf3 * CDp=0.993 Degl: ST Cdf3 * p=0.170 Degl: WT CDp=0.0864* Degl: Cdf3 * CDp=0.0864 Degl: WT CDp=0.0864* Degl: WT CDp=0.0811*
h	Tube Test of Solid Development Red dest Introder	Total distance traveled (con)	Days Days Days Days	adult adult adult	CDS 1971-12 56(27/128) CDS 1971-12	NT 1876 627 10727 10777 1274 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1772 74 637 1774 637	O(\$7" - 2004 A (128.8.5.2.28.2.7) O(\$7" - 2004 A (128.8.5.2.2.2.5) O(\$7" - 2004 B (10.8.5.2.2.5) O(\$7" - 2004 B (10.8.5.2.2.5) O(\$7" - 2004 B (10.8.5.2.5) O(\$7" - 2004 B (10.8.5.2.5) O(\$7" - 2004 B (10.8.5.5) O(\$7" - 2004 B (10.8.5) O(\$7" - 2	way Average to set food effects. Takey's ISD making a compartees within day the set of	Day FDE 27-03 TRAL pt - 1.31 to 49 Inter-sell or: great hype**Pery FREEZY-2.23M, pt - 275.99 Greatly or: FDEEZY-2.23M, pt - 275.99 Greatly or: FDE	Degt: WT CDp=0.176 Degt: GH2 * CDp=0.993 Degt: WT Cdp2 *: p=0.170 Degt: WT CDp=0.0464 * Degt: GH2 *: CDp=0.948 Degt: WT Cdp2 *: p=0.106

		1			1	CD:8	CD: 17.38 ± 2.09	CD: 17.5 (14.0, 19.50)		Genotype: F(2.31) = 2.7961, n=0.07648	
						WT: 12	WT: 17.25 ± 1.00	WT: 17.0 (16.0, 18.25)	linear mixed model: Animal id random effect: Two		
	k	Resident Intruder	Number of anogenital	Day2	adult	Gtf2)*:24	Gt(2)*: 19.21 ± 1.58	Gr(2)*: 17.0 (16.00. 23.25)	way Anova to test fixed effects; Tukey's HSD	Day: F(2,62)=4.0732, p=0.02178	
			sniffing event			CDS	CD: 15.5 ± 2.13	CD: 18.5 (11.25, 20.00)	multiple comparison within day	Interaction: geontype*day: F(4,62)=0.0819, p=0.98766	
						WT: 12	WT: 16.92 ± 1.32	WT: 18.5 (14.75, 19.50)	1		
				Day3	adult	Gtf2/*:14	Gtf2i*: 18.50 ± 2.09	Gt[2)*: 18.0 (13.00, 19.00)	1		
						CD:8	CD: 13.38 ± 1.48	CD: 13.5 (11.0, 16.25)	1		
						WT: 25	WT: 3.93± 0.445	WT: 3.46 (2.17, 4.225)			
ш		Sensorimotor battery	Time to leave the area (s)	Walking intitiation	adult	Gtf2/*26	Gtf2i*: 3.73 ± 0.46	Gt/2/*: 2.98 (2.25, 3.65)	One-way ANOVA; Tukey's HSD multiple comparison	Genotype: F(2,66) = 2.13, p=0.1271	
ш	- 1					CD:18	CD: 5.13± 0.576	CD: 5.11 (3.34, 6.04)	test		
11						WT: 25	WT: 29.60 ± 3.04	WT: 23.08 (18.02. 43.71)	One-way ANOVA; Tukey's HSD multiple comparisor test		<u> </u>
ш	b	Sensorimotor battery	Time to reach top of	60 degree screen	adult	6t/25*-26	Gtf2i*: 31.24 ± 3.07	G(2)*: 28.29 (18.84, 39.36)		Genotype: F(2,66) = 1.19, p=0.312	
ш	0	Sersormotor battery	screen (s)	60 degree screen	aout					Genotype: H(Z,66) = 1.19, p=0.512	
11		_				CD:18	CD: 24.62 ± 2.43	CD: 24.08 (17.39, 36.27)			
ш		Sensorimotor hattery	Time to reach top of	90 degree screen	fuhe	WT: 25	WT: 40.05 ± 3.45	WT: 42.67 (21.86, 55.16)	One-way ANOVA; Tukey's HSD multiple comparison	Genotyne: F(2.66) = 1.59, n=0.2116	
	c	Sersorimotor battery	screen (s)	90 degree screen	adut	Gtf2i*:26	Gtf2i*: 39.85 ± 3.50	Gtf2/*: 44.12(24.24, 58.02)	test	Genotype: F(2,66) = 1.59, p=0.2116	
Н						10:10	CD: 31.88 ± 3.08	CD: 36.23 (24.33, 37.62)			
ш						WT: 25	WT: 60.00 ± 0.00	WT: 60.00 (60, 60)	One-way ANOVA; Tukey's HSD multiple comparison		
Ш	d	Sensorimotor battery	Time on screen (s)	inverted screen	adult	Gtf2/*26	Gtf2i*: 60.00 ± 0.00	Grf2)*: 60.00(60, 60)	test	Genotype: F(2,66) = 2.52, p=0.088	
ш						CD:18	CD: 59.414 ± 0.44	CD: 56.75 (31.25, 92.38)			
Ш			Time to reach bottom of			WT: 25	WT: 51.73 ± 5.81	WT: 42.205 (32.14, 56.94)	Kruskal Wallis; Nemenyi tests for multiple		WT-Gtf2i*; p=0.0724
Ш		Sensorimotor battery	pole (s)	Pole	adult	Gtf2)*:26	Gtf2i*: 33.41 ± 2.30	Gtf2/*: 33.08 (26.40, 40.07)	comparisons of rank sums	Genotype: H(2)=10.335, p=0.0057	WT-CD: p=0.0093*
П						CD:18	CD: 31.06 ± 2.83	CD: 27.76 (22.32, 34.03)			Gtf2/*-CD:p=0.6126
П						WT: 25	WT: 37.86 ± 6.11	WT: 26.5 (20, 41)			WT-Gtf2i*: p=0.1268
Ш	f	Sensorimotor battery	Time to turn around on pole (s)	Pole	adult	Gtf2/*-26	Gtf2i*: 22 ± 2.15	Grf21*: 20.75 (13.63, 30.88)	Kruskal Wallis; Nemenyi tests for multiple comparisons of rank sums	Genotype: H(2)=8.68, p=0.013	WT-CD: p=0.018*
Ш			how (s)			CD:18	CD: 19.81 ± 2.77	CD: 14.5 (13, 21.63)	_omparaona or rain, suris		Gtf2i*-CD:p=0.6087
П						WT: 25	WT: 46.35 ± 3.75	WT: 60.00 (36.11, 60)			WT-Gtf2i*: p=0.4879
Ш		Sensorimotor battery	Time to fall (s)	Platform	adult	Gtf2i*:26	Gtf2i*: 52.90 ± 3.78	Gtf2/*: 60 (49.70, 60)	Kruskal Wallis; Nemenyi tests for multiple	Genotype: H(2)=7.158, p=0.02791	WT-CD: p=0.2924
Ш						CD:18	CD: 40.07 ± 4.43	CD: 44.64 (31.80, 58.91)	comparisons of rank sums	Ormotype: right-rand p-oversa	Gtf2i*-CD:p=0.0279*
						WT: 25	WT: 57.96 ± 5.50	WT: 62.50 (37.00, 74.50)			Trial1:WT-Gtf2i*: p=1
			Time on rotorod (s)	Accelerating Rotorod Trial 1	adult	Gtf26*-26	Gt(2)*: 55.48 ± 6.97	Gr(2)*: 60.25(28.00.74.13)		Genotype: F(2,63) = 2.0394, p=0.138 Day: F(2,333)=82.09, p < 2.2e-16	Trial1: WT-CD:p=0.98
ш						CD:18	CD: 64.64 ± 10.31	CD: 60.00 (58.50.60)			Trial1: Gtf2/*-CD:p+0.93
Ш		Accelerating Ratorod				WT: 25	WT: 96.72 ± 8.44	WT: 90.00 (74.00.122.00)			Trial2:WT-Gtf2i*: p=0.40
Ш				Accelerating Rotorod Trial 2	adult	G#2/*:26	Gtf2i*: 78.54 ± 8.69	Qt(2)*: 67.25 (51.88, 107.13)	linear mixed model; Animal id random effect; Three-way Anova to test fixed effects; Tukey's HSD	Sex: F(1,63) = 10.023, p=0.0023 Interaction: genotype*sex: F(2,63)=0.8155, p=0.447	Trial2:WT-CD:p=0.96
Ш	n			Accessing solution Time 2	aout				multiple comparison within day	Interaction: genotype*sex: F(2,63)=0.8155, p=0.447 Interaction: geontype*day: F(4,333)=3.627, p=0.0066	
3				Accelerating Returned Trial 3 Total Distance traveled (m) Total Distance traveled (m) ppi 448	adult adult adult	CD:18	CD: 104.28 ± 12.59	CD: 87.50 (63.63, 160.00)		Interaction: sex*day: F(2,333)=3.174, p=0.0431	Trial2: Gtf2/*-CD:p=0.17
ш						WT: 25	WT: 102.52 ± 6.83	WT: 101.50 (81.50, 125.00)		Interaction: genotype*sex*day:F(4,333)=0.4374, p=0.782	Trial3:WT-Gtf2i*: p=0.09
\mathbf{I}						Gtf2/*:26	Gtf2i*: 75.54 ± 8.68	Grf2/*: 78.50 (44.13, 94.38)	-	Genotype: F12,65§ = 0.8974, p= 0.4126	Trial3: WT-CD:p=0.98
ш						CD:18	CD: 109.00 ± 8.87	CD: 118.00 (82.125, 134.75)			Trial3: Gtf2/*-CD:p=0.04*
ш						WT: 24	WT: 71.60 ± 3.32	WT: 67.55 (61.58, 80.21)	One-way ANOVA; Tukey's HSD multiple comparison		
П	1	Marble burying	Total distance traveled (m)			Gt/27*-26	Gtf2i*: 75.34 ± 8.68	Gtf21*: 74.19 (62.42, 88.23)	test		
ш						CD:18	CD: 68.29 ± 4.01	CD: 67.38 (55.64, 77.15)			
Ш						WT: 21	WT: 15.63 ± 1.79	WT: 16.16 (11.57, 21.79)			
Ш						Gtf2/*:27	Gtf2i*: 21.04 ± 2.37	Gtf2/*: 12.22 (6.61, 17.46)			
Ш							CD:21	CD: 16.96 ± 2.90	CD: 18.37 (10.05, 21.57)		l
Ш					adult adult adult	WT: 21	WT: 31.39 ± 2.24	WT: 31.84 (26.87, 38.08)	linear mixed model; Animal id random effect; Anova to test fixed effects Two-way ANDVA	Genetype 17,549-07-740, pp.04.659 Free Novine 17,1223-p6-03.05 + 2-2-2-5 Interestion: Genetype *Per-Pulse: F6,112]+1.29%, pp.0.111 Genetype: R3,553 + 1.48, pp.0.2165 Weight (1),559-2500, pp.4.38+6	
Ш	j	Pre pulse inhibition	percent startle inhibition	ppi 8dB		G#25*:17	Gtf2i*: 34.01 ± 2.60	0xf2/*: 36.09 (26.81, 42.09)			
Ш						CD:21	CD: 35.50 ± 2.34	CD: 25.21 (30.72, 42.52)			
Ш				ppi 16dB Startle at 120dB		WT: 21	WT: 56.38 ± 2.30	WT: 58.26 (46.08, 64.27)			
Ш						Gt/28*:17	Gtf2i*: 59.67 ± 2.59	Gt/21*: 62.39 (52.25, 65.92)			
Ш						CD:21	CD: 61.05 ± 2.84	CD: 62.40 (51.25, 69.43)			
Ш						WT: 21	WT: 0.1651 ± 0.0097	WT: 0.1656 (0.1313, 0.1948)			
Ш	k	Startle	Startle (N)			Gtf28*:17	Gtf2i*: 0.1403 ± 0.0102	Gt(2)*: 0.1253(0.109, 0.1686)			
Ш		1				CD:21	CD: 0.1296 ± 0.0343	CD: 0.1292 (0.1066, 0.1631)	1		
				Elevate pluse maze	adult	WT: 24	WT: 18.05 ± 2.67	WT: 18.34 (5.56, 25.23)	linear mixed model; Animal id random effect; Anova to test fixed effects	Genotype: F(2,61)=0.6151, p=0.5332 Trui: F(2,12)=0.3651, p=0.708 Interaction Georgrap*Trui: F(12)=0.0425, p=0.707	
						Gt/2/*:25	Gtf2i*: 20.08 ± 2.49	Gt(2)*: 22.79 (7.66, 29.78)			
						CD:17	CD: 16.97 ± 1.73	CD: 17.14 (11.26, 22.49)			
						WT: 24	WT: 20.16 ± 2.65	WT: 19.23 (8.88, 29.63)			
		Elevated Plus Maze	Percent time in open arm	Elevate pluse maze Trial 2 Elevate pluse maze Trial 3	adult	WT: 24 GH2(*-25	WT: 20.16 ± 2.65 Gtf2i*: 18.11 ± 2.02	WT: 19.23 (8.88, 29.63) Gr(2)*: 18.30 (10.86, 22.76)			
	'	Constitution of the control of the c	tome in speci arm		8001	Gtf23*:25 CD:17	Gtf2i*: 18.11 ± 2.02 CD: 17.44 ± 2.05	Gt/27*: 18.30 (10.86, 22.76) CD: 18.40 (13.14. 23.34)			
Ш									1		
Ш						WT: 24	WT: 20.68 ± 1.65	WT: 21.27 (13.29, 26.67)	4		-
					adult	Gtf26*:25	Gtf2i*: 20.81 ± 2.43	Grf2i*: 15.68 (11.55, 31.08)	4		
					-	CD:17	CD: 16.82 ± 2.40	CD: 15.91 (9.22, 21.66)			-
			Contextual Fear memory	average % freezing baseline	adult	WT:19	WT: 2.31± 0.44	WT: 2.01 (0.67, 3.44)	linear mixed model; Animal id random effect; Anova to test fixed effects; post hoc comparison of genetypes between context	Genotype F(J.SN+1.0132, p=0.3602 Context F(1.SN)+56-85, p=1.56e-7 Intearction growtype*context:F(J,SN)-0.2032, p=0.8168	WT: baseline-context:p=0.00035***
Ш						Gtf26*:17	Gtf2i*: 2.32 ± 0.54	0t/21*: 1.34 (0.67, 3.56)			Gtf2i*: baseline-context:p=0.0117*
		Conditioned Fear				CD:20	CD: 4.71 ± 0.77	CD: 4.10 (2.55, 6.43)			CD: baseline-context:p=0.0024**
						WT:19	WT: 12.88 ± 3.00	WT: 9.75 (4.22, 16.63)			
Ш					adult	G#2/*:27	Gtf2i*: 10.55 ± 2.56	0tf2i*: 6.21 (2.67, 17.56)			
				average % freezing context first two minutes	adult						
				average % freezing context first two minutes	adult	CD:20	CD: 13.60 ± 2.2	CD: 12.33(7.43, 15.64)			
					adut	WT:21	WT: 1.45±0.06	WT: 1.5 (1.5, 1.5)			
4	-			average % freezing context first two minutes Flinch	adult				Kruskal Wallis	H(2)=1.191, p=0.5513	
4	-					WT:21	WT: 1.45±0.06	WT: 1.5 (1.5, 1.5)	Kruskal Wallis	H(2)=1.191, p=0.5513	
4	-					WT 21 Gt/20*:17	WT: 1.45±0.06 Gtf27*: 1.41±0.08	WT: 1.5 (1.5, 1.5) Gr(2)*: 1.5 (1, 1.5)	Kruskal Wallis	H(2)=1.191, p=0.5513	
4	b	shock sensitivity	mAmp at which behavior			WT:21 Gt/2*:27 CD:21	WT: 1.45±0.06 Gt/2*: 1.41±0.08 CD: 1.36±0.06	WT: 1.5 (1.5, 1.5) G(2)*: 1.5 (1, 1.5) CD: 1.5 (1, 1.5)	Kruskal Wallis Kruskal Wallis	H(2)=1.191, p=0.5513 H(2)=2.615, p=0.2706	
4	b		mAmp at which behavior occurred	Firch	adult	WT21 Gt/2*17 CD21 WT21	WT: 1.45 ± 0.06 Gtf2*: 1.41 ± 0.08 CD: 1.36 ± 0.06 WT: 2.14 ± 0.07 Gtf2*: 2.38 ± 0.12	WT: 1.5 (1.5, 1.5) G(2)*-1.5 (1, 1.5) CD: 1.5 (1, 1.5) WT: 2 (2, 2.5) G(2)*-2.5 (2, 2.5)		.,,,	
4	b			Firch	adult	WT:21 Grf:2*:17 CD:21 WT:21 Grf:2*:17 CD:21	WT: 1.45 ± 0.06 Gt/2°: 1.41 ± 0.08 CD: 1.36 ± 0.06 WT: 2.14 ± 0.07 Gt/2°: 2.38 ± 0.12 CD: 2.24 ± 0.12	W: 1.5 (1.5, 1.5) Ø(2)*: 1.5 (1, 1.5) Ø: 1.5 (1, 1.5) Ø: 1.5 (1, 1.5) Ø: 1.5 (1, 1.5) Ø(2)*: 2.5 (2, 2.5) Ø(2)*: 2.5 (2, 2.5) Ø(2)*: 2.5 (2, 2.5)		.,,,	
4	b			Firch	adult	WT21 Gt/2*17 CD21 WT21 Gt/2*17	WT: 1.45 ± 0.06 Gtf2*: 1.41 ± 0.08 CD: 1.36 ± 0.06 WT: 2.14 ± 0.07 Gtf2*: 2.38 ± 0.12	WT: 1.5 (1.5, 1.5) G(2)*-1.5 (1, 1.5) CD: 1.5 (1, 1.5) WT: 2 (2, 2.5) G(2)*-2.5 (2, 2.5)		.,,,	
4	b			Firch	adult adult	WT:21 Gt/2*:27 CD:21 WT:21 Gt/2*:27 CD:21 WT:21	W1: 1.45 ± 0.06 Gt/2*: 1.41 ± 0.08 CD: 1.36 ± 0.06 W1: 2.14 ± 0.07 Gt/2*: 2.38 ± 0.12 CD: 2.24 ± 0.12 W1: 3.74 ± 0.23	W: 1.5 (1.5, 1.5) Ø(20*: 1.5 (1.15) W: 2 (2.25) W: 2 (2.25) W: 3.5 (3.4)	Kruskal Walfis	H(2)=2.615, p=0.2705	

Supplemental Table 2: Random GO enrichments for CD-WT comparison

	<u> </u>		number of times seen in
ontology	CD_go_terms	CD_log_p	1000 random DE lists
CC	extracellular matrix	5.299763321	184
CC	extracellular space	4.709714152	343
CC	neuron projection	3.459856842	28
CC	synaptic membrane	2.699392237	6
CC	extracellular region	2.688790717	337
CC	lamellar body	2.324190197	9
CC	glucosidase II complex	2.304084642	2
CC	synapse	2.286313736	22
CC	synaptic vesicle	2.258909614	4
CC	mitochondrial respiratory chain complex I	2.193353178	28
MF	calcium ion binding	3.774528557	70
MF	GKAP/Homer scaffold activity	3.593061599	59
MF	structural constituent of cytoskeleton	3.342895657	55
MF	G protein-coupled glutamate receptor binding	2.394858721	4
MF	ornithine decarboxylase inhibitor activity	2.217525626	3
MF	selenocysteine insertion sequence binding	2.21096167	1
MF	cytokine activity	2.186438203	20
MF	nuclear hormone receptor binding	1.98850255	4
MF	calcium-release channel activity	1.947608066	8
MF	ryanodine-sensitive calcium-release channel activity	1.939022155	3
BP	positive regulation of excitatory postsynaptic potential	4.084162987	2
BP	central nervous system neuron differentiation	3.642462175	4
BP	postsynaptic density assembly	3.593042668	1
BP	negative regulation of smoothened signaling pathway involved in dorsal/ventral neural tube patterning	3.590087957	3
BP	positive regulation of transporter activity	3.479515877	1
BP	lipid storage	2.921534374	2
BP	positive regulation of calcium ion-dependent exocytosis	2.735510193	6
BP	chromatin remodeling	2.665586516	9
BP	positive regulation of axon extension	2.592558674	1
BP	neuromuscular process controlling balance	2.585323612	4

Supplemental Table 3: Random GO enrichments for Gtf2i*-WT comparison

			number of times seen in
ontology	Gtf2i*_go_terms	Gtf2i*_log_p	1000 random DE lists
CC	extracellular space	9.998750285	343
CC	extracellular region	9.414445338	337
CC	extracellular matrix	7.439719124	184
CC	collagen-containing extracellular matrix	7.170561483	248
CC	basement membrane	3.833411616	163
CC	brush border	3.42003544	18
CC	collagen type IX trimer	3.200408002	16
CC	cell surface	2.708057445	110
CC	apicolateral plasma membrane	2.609972709	11
CC	microvillus	2.328482848	16
MF	heparin binding	4.212498792	69
MF	polysaccharide binding	3.905475505	19
MF	scavenger receptor activity	3.572999245	20
MF	insulin-like growth factor binding	3.524711392	47
MF	extracellular matrix binding	3.450116983	53
MF	metallodipeptidase activity	3.249120219	16
MF	phosphodiesterase I activity	2.785797036	5
MF	guanine/thymine mispair binding	2.769210919	0
MF	mu-type opioid receptor binding	2.526203229	10
MF	extracellular matrix structural constituent	2.49719731	151
BP	ossification	3.685648093	23
BP	eye development	3.661194591	2
BP	angiogenesis	3.590308052	14
BP	extracellular matrix organization	3.496345482	14
BP	female gonad development	3.363933991	7
BP	somatic stem cell population maintenance	3.355276999	8
BP	regulation of vascular endothelial growth factor receptor signaling pathway	3.347530325	4
BP	positive regulation of substrate-dependent cell migration; cell attachment to substrate	3.302955283	25
BP	negative regulation of transforming growth factor-beta secretion	3.302955283	23
BP	response to glucocorticoid	3.263966662	0

Supplemental Table 4: Primers for CRISPR sgRNA, validation, and IVT

target	cloning oligos	PAM
Gtf2i_exon5_up_b	CACCGGTTGCGAGGTCGTAATGTTC	CGG
Gtf2i_exon5_lw_b	AAACGAACATTACGACCTCGCAACC	
Gtf2ird1_exon3_up	CACCGCTCATTGTGTACCGCCACGC	AGG
Gtf2ird1_exon3_lw	AAACGCGTGGCGGTACACAATGAGC	

target	T7 endonuclease assay primers
Gtf2i_exon5_b_F	AGCATAACAGCGTCTGCATT
Gtf2i_exon5_b_R	CACGCGTGGGTCATGCTAAT
Gtf2ird1_exon3_F	TATTGGGCCTCAGTGTTCCC
Gtf2ird1_exon3_R	GTTCCAGGCTGGTCTTGACT

target	IVT primer
T7-gRNA-gtf2iex5b-For	TTAATACGACTCACTATAGGGGGTTGCGAGGTCGTAATGTTC
T7-gRNA-IRD1ex3-For	TTAATACGACTCACTATAGGGGCTCATTGTGTACCGCCACGC
Zhang-IVT-gRNA-Rev	AAAAGCACCGACTCGGTGCC
T7-Zhang-C9WT-For	TAATACGACTCACTATAGGGAGAATGGACTATAAGGACCACGAC
T7-Zhang-C9WT-Rev	GCGAGCTCTAGGAATTCTTAC

Supplemental Table 5: Genotyping and RT-qPCR primers

Target	Pde6b genotyping primers
oIMR2093	AAGCTAGCTGCAGTAACGCCATTT
oIMR2094	ACCTGCATGTGAACCCAGTATTCTATC
oIMR2095	CTACAGCCCCTCTCCAAGGTTTATAG
Target	Gtf2ird1 exon 3 5bp deletion

Target	Gtf2ird1 exon 3 5bp deletion
Gtf2ird1_5bp_del_F	GCTCTCATTGTGTACCGCAGGC
Gtf2ird1_wt_R	ACGCTTTGCTGCAAATGCTTG
Bactin_F	AGAGGGAAATCGTGCGTGAC
Bactin_R	CAATAGTGATGACCTGGCCGT

Target	CD genotyping primer
hprtVcam_F	CTCTGAGGCTTCAAAGGTTC
hprtVcam_R	AATCCAGCTTGTTTGGGCTA

Target	qPCR primers
gapdh_F	AGGTCGGTGTGAACGGATTTG
gapdh_R	GGGGTCGTTGATGGCAACA
Gtf2ird1_ex8/9_F	TTTAACAGCAGATACGCGGAAG
Gtf2ird1_ex8/9_R	CGTAAGTACAGGGTCGCTTGAA
Gtf2i_ex25/27_R	GCACCTCTTCCAAAAGCCCTCCA
Gtf2i_ex25/27_R	GGTCGTTGACCTGCTCCCGC

Target	ChIP enrichment qPCR primers	condition
Gtf2ird1_GUR_F	GGTTCTAATCCGTGGCTGGGG	on target
Gtf2ird1_GUR_R	TTGGCTGTCATTTACATACGGGA	on target
bdnf_us_F	GGCCAAGGTGAATTGGGTAT	off target
bdnf_us_R	TGATGGCAGCAATGTTTCTC	off target
pcbp3_us_F	CCCAAAGGATGATGTGGTTT	off target
pcbp3_us_R	AGGGCACTACACATGCACAC	off target

target	amplicon-sequencing primer
Gtf2i_exon5_seq_F	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcacatgaacaatctgtgacggg
Gtf2i_exon5_seq_R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTcctgtgccatatgagaagatgc
Gtf2ird1_exon3_seq_F	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcatagggtactcacggcagaa
Gtfi2rd1_exon3_seq_R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTtccaggctggtcttgacttag

Supplemental Table 6: Main figures statistic table

Figure	Assay Performed	Parameter (unit)	Corte		_	_	Descripti ve Statisti cs		Statistical Analysis	
	Assay Performed	P drameter (unit)	Independent Variables	Ago	n (animals) wr:a	Average ± 50M WT: 1.02 ± 0.062	Medan (20,30) WT: 1.00 (0.97,1.07)	Statistical Test		Significance WT-GdS*; p< 0.001***
					ogt/til	GgS1*:0.58 x 0.032	GgD/*: 0.55 I (0.58 9, 0.59A)			WT-CD: p < 0.001***
	Western blotting	Gtf2i protein level in mutants compared to WT relative to Gapth	GHZI band density relative to Gap dh	II 35	00:3 6(6:1*/00:3	CD:064 ± 0.044	CD: 0.641 (0.601, 0.670) Gr8s */CD: 0.001 (0.001,0.003)	One-way ANOV A; Tukey's HSD multiple comparison test	genotys e: f(3,6)=10465, p=9.293x10-7	WT-Gr65*/CD: p < 0.001*** Gr53*-CD: p = 0.758
										Qrf2 *-Qrf2 * jCD: p < 0.001***
d										CD - GH/2*/CD: p< 0.001***
					WES GRASS	WT:-3.91±0.15	WT: -4.04(-4.06,-3.03) G(\$)*: -4.73 (-4.84, -4.71)	-		WT-GMS1*; p=0.0119* WT-CD: p <0.001***
	gPCR	delta CT	Gtf2l transcript level relative to Gapath	II 35	00:3 GHB/F/00:3	CD: 5.25±0.056	CD: 5.21 (5.28, -5.19)	One-way ANOVA; Tukey's HSD multiple comparison test	genotype: R(3,0)=18053, p=1.098x10-7	WT-Gtds */CD: p < 0.001***
					MEP/CD:3	G#2P/CD-840±0.23	G651*/CD: -8.49(-8.62,-8.23)	1		αra *-αr ₀ =-0.1992 αra *-αra */αρ: ρ < 0.001***
				-		WT: 1.11± 0.053	L			CD - GH23*/CD: p < 0.001* **
					WT:3 Ggb/h:3	G(21*:0.803 ± 0.13	WT: 1.15 (1.07)1.16) GGD *: 0.978 (0.781).0.980)			WT-GLG *: p=0.5373 WT-GC; p=0.5232
	Western blotting	Gtf2ind1. protein level in mutants compared to WT relative to Gap.dh	Gtf2ind1 band density relative to Gap dh	II 35	00:3 0(8)*/00:3		CD: 0.788 (0.644, 1.02) G461*/CD: 0.565 (0.462,0.510)	One-way ANOV A; Tukey's HSD multiple comparis on test	genotype: F(3,8)=3.9081, p=0.05467	WT-Gr81*/CD: p=0.0378* Gr83*-CD: p=1.00
								1		Qf21*-Qf21*)(CD: p=0.2616
					WT:3	WT: -5.07± 0.080	WT: -5.05(-5.13,-5.00)			CD - GH21*/CD p=0.2708 WT-GH21*; p=0.00516**
					GP 7:3	GIST-AM LOUI	G(p) *: -4.47 (-4.50, -4.45)			WT-CD: ρ < 0.000***
	sPOI	delta CT	Gtf2ir d1 transcript level relative to Gap dh	II 35	00:3 0:6:1/(00:3	GH2I*/CD-527±0.003	CD: 6.19 (6.21, -6.02) GKB */CD: -5.30(-5.35, -5.21)	One-way ANOV A; Tukey's HSD multiple comparison test.	genotype: F(3,8)=60.833, p=7.524x10-6	WT-GHS */CD: p=0.38529 GHS *-CD: p< 0.001***
										Qf21*-Qf21*)(CD: p < 0.001***
					WT: 23	WT: 50.841 411	WT: 49.58 (38.39, 63.36)			CD-GH21*/CD: p< 0.001*** DHy3: WT-GH21*: p=0.952
				P3	G(\$1*:2M		G(\$) 1: 46.02 (25.09, 57.56)	linear mixed model; Animal id random effect; Anova	Day: R[1,116.00]+543, p=0.021	Day 2: WT-CD: p=0.988
a	Pup Ultrasonic Vocalization	USV calls/minute		\vdash	CD:17 WT: 23	CD: 46 83 t 4 21 WT: 72 17 t 821	CD: 4727 (3655, 54.85) WT: 82.24 (38.05, 102.69)	to test fixed effects; Tukey's HSD multiple comparison within day	Genotype: F(2,60.7)=6.09, p=0.004 Interaction: Doy*Gen objec: F(2,61.64)+6.00, p=0.002 Weight: F(1,75.40)=3.95, p=0.05	Day's Gri2*-CDp+1.00 Day's WT-Gri2*: p=0.154
				PS	GIPT-24	G(51°: 54.96± 6.89	GrfN *: 57.8.7 (23.6.1,85.12)		Weight 10,75 elphasts, process	DayS: WT-CD: p < 0.001***
					00:17 WT: 20	CD: 31.94±7.06 WT: 100.31±6.07	CD: 1760 (1128, 33.24) WT: 91.30 (79.98, 115.73)			DayS: GH23*-CD: p=0.045* WTx ocial-empty: p< 0.001***
			Sod al Chamber		G(\$17:20	G(2)*: 104.27± 5.82	GgN *: 102.70 (84.125, 120.23)	linear mixed model: Animal id random effect: Anova	Oumber: F(1,53)=83.20, p=1.89x10-12	Grf2i *: social-empty: p < 0.001***
	Three Chamber Assay	Investigation Time (s)		ndult	CD:56 WT: 20	CD: 106 RB t 6 R6	CD: 101.05 (89.03, 126.45) WT: 62.20(46.68, 73.10)	linear mixed model; Animal id random effect; Anave to testifised effects; Tukes/sHSD multiple samparison within genotype	Chamber: F(1,53)=63.20, pr.1.89b1.012 Genotype: F(2,53)=1.15, pr.0.323.9) Internation:Chamber*Genotype: F(2,53)=0.5845, pr.0.561	CD:s ocial-empty: p = 0.00456**
			Empty Chamber		G(\$7.20 C0:16		Gept *: 51.90 (42.20, 67.83)	-	prel 561	
					WT vs Gtf2i*:22	WT win x 12	(0: 6525 (5523, III. III)		p=0.8318	
d	Tube Test of Social Dominance	Proportion of wire		ndult	WT vs CD:29 CD vs Qf/2i*17	WT wins: 15 Gef2t ^a wins: 7	+	two tailed binomial exact test, rull hypothesis probability of success +0.5	p=1 p=0.6291	+
					WT: 12	WT: 148.20±20.03	WT: 125.07(103.71, 194.42)		,	Day1:WT-Gri51*: p=0.709
		Doyl	Time of ano-genital sniffing(s)	adult	CDS	GgSP: 115.13±17.76 CD: 76.28±13.89	Grgs 4: 94.9 4 (70.5 3, 1 38.40) CO: 81.60 (39.24, 106.32)	-		Day1: WT-CD: p=0.105 Day1: G#21*-CD:p=0.671
					WT: 12	WT: 169.06 ± 23.1.2	WT: 149.35 (111.50, 213.62)	Ensur mixed model; Animal idrandom effect; Two-	Genotype: F(2, 31) = 5, 241, p=0.01095	Day 2: WT-GHS1 *: p=0.627
t	Resident Intruder	Day2	Time of ano-genital sniffing(i)	adult	opińsk cos	G(52*: 132.96 ± 16.40 CD: 81.40 ± 19.34	G(\$)*: 157.42(71.16, 174.12) CD: 75.84 (11.57, 114.98)	way Anavato testfixed effects; Tukey sHSD multiple comparison within day	Day: R(2,62)=2.470, p=0.093 Interaction: geom/ype*day: F(6,62)=0.1095, p=0.978	Day2: WT-CD: p=0.02 48* Day2: Gd21*-CD:p=0.374
		_			WT: 12	WT: 164.78 ± 21.51	WT: 127.52 (92.20, 189.46)	1		Day 3: WT-GHS1 *: p=0.707
		Days	Time of ano-genital sniffing (s)	adult	opnu cos	GI(50*: 111.65 ± 19.15 CD: 59.55 ± 12.26	G(f)(*; 98.26 (70.5.1, 133.51) CD: 48.75 (41.22, 66.70)			Day3: WT-C0: p=0.003 18*
			Paradaman and an area		WT: 12	WT: 33.54± 7.05	WT: 26.79 (14.49, 45.73)	-		Dsy1:WT-Gr51*: p=0.930
		Dayl	Time of no se-to-nose sniffing (s)	adult	CDS CDS	GgO+: 27.58± 3.57 CD: 19.86±4.10	Grg(+: 22.6.9/28.5.8, 3.6.04) CD: 16.58 (10.30, 25.93)	-		Day1: WT-C0: p=0.435 Day1: Gr/21*-C0:p=0.878
					WT: 12	WT: 45.64± 6.11	WT: 46.53 (24.97, 5957) G60*: 2591 (2982.4267)	Invariated model; Animal drandom effect; Two-	Genotype: F(2,31) = 3.737, p=0.03516	Day 2: WT-GHS1*; p=0.300 Day 2: WT-GD: p=0.01.60*
	Resident Intruder	Day2	Time of no se-to-nose sniffing (s)	adult	optina os	G(52*: 32.21 ± 5.34 CD: 20.16 ± 3.26	G(01*: 25.9.1 (19.812, 42.67) CD: 17.80 (14.62, 28.98)	way Anova to test fixed effects; Tukey's HSD multiple comparison within day	Day: FQ ,62)=3.01, p=0.056.43 Interaction: georetype*day: R(4,62)=0.01.56, p=0.520	Day2: W1-00:p=0.01 60* Day2: Gr/2*-00:p=0.537
			Time of no se-to-nose an Ming (s)	adult	WT: 12	WT: 37.97 t 7.22	WT: 32.10 (21.91, 50.25)			Day 3: WT-Grids *: p=0.750 Day 3: WT-G2: p=0.0950
		DayS	line or no se to note in irreg (s.)	naut	CDS CDS	G(5)*: 29.51± 393 CD: 17.83±2.96	G(f)(*: 23.40 (20.44, 36.13) CD: 17.78 (12.17, 21.87)			Day 2: GH21*-CD:p=0.509
		Time to fall(s)		adult	WT: 25	WT: 48.83± 325	WT: 60.00 (34.43, 60)	Kruskal Wallis; Namenyi tests for multiple	Genotype: H(2)=12.51, p=0.001925	WT-Gt.51*: p=0.9998
*	Ledge	Time tohango		aa.r	0(P.f.26 00:18	GgS/*: 48.37±3.57 CD: 30.98±5.04	Grgs *: 60 (36. 44, 60) CD: 32.64 (8.94, 49.33)	comparisons of rank sums	senotype: H ₂ (=12.51, p=0.001925	WT-CD: p=0.0071** GH21*-CD:p=0.0069**
					WT: 25	WT: 15.14± 0.62	WT: 16.50 (14.50, 17.00)	One-way ANOVA; Tukey's HSD multiple comparison		WT-GMS *: p=0.381
b		Number marbles Buried		adult	G(27:26 CD:18	G(S2*: 13.56± 0.92 GD: 811±1.15	G(\$)*: 15.50(10.625, 16.50) CD: 825 (4125, 12.50)	test	genotype: R(2,66)=15.243,p=3.61x10-6	WT-CD: p < 0.0002*** GH21*-CD:p=0.000265***
	-			_	WT: 24			Kandad Wide Diseased between the contribute common con		
		#10.000 to 10.000 to 10.00				WT: 22.38 t 1.41	WT: 21.64(18.33, 27.12)	Cruskal Wall is, Nemeryl tests for multiple comparisons		WT-GKS1*: p=0.6617
e	Marble Burying	Distance traveled in the center (m)	Distance traveled in the center (m)	adult	G(\$7:26 C0:18	G(52°: 25.45± 1.80 CD: 16.51±1.00	Geft *: 23.2.3 (18.9.7, 3.2.17) CD: 16.00 (14.01, 18.73)	Knuskal Wall iç Nemenşi tests for mul tipl e companis ons of rank suma	Genotype: H(2)=13, p=0.0015	WT-CD: p=0.03.00.* QF2 * - CD: p=0.002*
e d	Marble Burying				G(\$7.26 CD:18 WT:24	G(23*: 25.45± 1.80 CD: 16.51±1.08 WT: 411.78± 21.26	GgN *: 23.2.3 (18.9.7, 3.2.17) CD: 16.00 (14.01, 18.73) WT: 390.75 (312.28, 476.50)	of ranksums Knakal Walk; Nemenyi testa for multiple companis ons		WT-CD: p=0.032* G/S*-CD: p=0.002* WT-G/S*: p=0.9058
c d	Morble Burying	Distance traveled in the center (m) Time spent incenter (b)	Distance traveled in the center (m) Time specific center (b)	ndult ndult	6(\$77.26 07.18 WT: 24 6(\$77.26 00.18	G(2*: 25.45±1.00 CD: 16.51±1.00 WT: 411.70±21.26 G(2*: 455.24±31.56 CD: 309.14±18.00	GSP *- 23.2 3 (28.9 7, 3.2.17) CD: LGGD (14.02, 18.73) WT: 300, 75 (33.2.28, 476.5.0) GSP *- 440, 25.5 (33.9.0, 574.18) CD: 297.75 (25.3.03, 33.0.00)	of rank sums	Genotype: H(2)=13, p=0.0015 Genotype: H(2)=14.380, p=0.00075	WT-CD: p=0.03 01* Qr(21* - CD: p=0.002*
d	Morbile Bary (ng				G(\$7.26 CD:18 WT: 24 G(\$7.26 CD:18 WT: 25	G(27: 25: 45 ± 1:80 C0: 16: 51 ± 1:00 WT: 411: 70 ± 21:26 G(27: 455: 24 ± 31:56 C0: 300: 14 ± 1:800 WT: 28: 71 ± 1:46	Ggft *: 23.3 (188.7, 32.17) O: 16.00 (14.01, 18.73) W1: 200. 75 (282.28, 470.51) O: 297.75 (282.28, 470.51) O: 297.75 (252.88, 33.0.80) W1: 26.52 (24.88, 33.43)	of ranksums Knakal Walk; Nemenyi testa for multiple companis ons		WT-CD; p=0.0301* GES *- CD; p=0.032* WT-CES *: p=0.00208 WT-CD; p=0.00.70*
d	Mortile Barying	Time spent incenter (s)		ndult	の作化器 の18 WT: 28 の作化器 の18 WT: 25 の27代28 の218	CO(27: 25: 45: 1.80 CD: 16: 51: 1.00 WT: 411.70: 21.26 CO(27: 455: 24: 31.56 CD: 300.14: 1.800 WT: 28.71: 1.46 CO(27: 30.46: 2.58 CD: 26: 71: 1.29	G(R)*-2.32.2 (288.7,3.2.17) CD: 16.00 (14.00, 18.70) CD: 16.00 (14.00, 18.70) G(R)*-484.7 (27.23.2 (8.476.5 (5) G(R)*-484.7 (27.23.2 (8.576.14)) CD: 297.75 (27.818.3 (8.30.6)) WT: 26.2 (27.818.3 (8.30.6)) G(R)*-28.2 (27.818.3 (8.30.6)) G(R)*-28.2 (27.28.8 (2.30.7) CD: 26.86 (2.40.7, 28.16)	of ranksums Knakal Walk; Nemenyi testa for multiple companis ons		WT-CD; p=0.0301* GES *- CD; p=0.032* WT-CES *: p=0.00208 WT-CD; p=0.00.70*
d	Montale Bary (reg	Time spent incenter (s)		ndult	の作作28 CD:18 WT: 24 の作作26 CD:18 WT: 25 の作726	CO(24", 25, 45 ± 1,80 CD: 16 51 ± 1,00 WT: 411,70 ± 21,26 CO(24", 455, 24 ± 31,56 CD: 300, 14 ± 1,000 WT: 28,71 ± 1,46 CO(24", 20,46 ± 1,58	Ggh*-3323(887,3217) CD 1600 (1400, 1817) CD 1600 (1400, 1817) CD 1600 (1400, 1817) Ggh*-480 25(21816) CD 29775 (2580), 381800 CD 29775 (2580), 381800 CGh*-380 2(2481, 3840) Ggh*-380 2(2481, 3840)	of ranksums Knakal Walk; Nemenyi testa for multiple companis ons		WT-CD; p=0.0301* GES *- CD; p=0.032* WT-CES *: p=0.00208 WT-CD; p=0.00.70*
d	Muster Buying	Tries speriin center (b) releates 1-10		askát askát	697.26 0018 WT-28 697.26 0018 WT-25 697.26 0018 WT-25 697.26 0018	Gright', 25.45 x 120 CD: 16.51 x 1.00 APT: 41.176 x 1216 Gright', 455.24 x 31.56 CD: 300, 14.8 x 11.56 CD: 300, 14.8 x 11.56 CD: 20.71 x 1.46 CD: 20.71 x 1.20 CD: 20.71 x 1.20	000**-3.22(1000.7.2317) WH 700 T-5012(2.28) 005.01 WH 700 T-5012(2.28) 005.01 WH 700 T-5012(2.28) 005.01 UP 7-440 7/200 0.5540 UP 740 7/200 0.5540	of ranksums Knakal Walk; Nemenyi testa for multiple companis ons		WT-CD; p=0.0301* GES *- CD; p=0.032* WT-CES *: p=0.00208 WT-CD; p=0.00.70*
d	Mortel Bary (rig	Tries speriin center (b) releates 1-10		askát askát	の例で28 CD-18 WE-28 のかで28 CD-18 WE-25 CD-18 WE-25 CD-18 WE-25 CD-18	GG2*, 25.45 x 1.80 CD: 16.51 x 1.00 FX: 411.78 x 12.26 GG2*, 455.24 x 12.56 CD: 309.14 x 1.800 WY: 28.71 x 1.46 GG2*, 43.6 x 1.58 CD: 26.71 x 1.29 WY: 10.97 x 1.20 GG2*, 21.40 x 1.20	60(**-2.32/1882.7.3.217) ***CO 1.680 (14.61, 18.75) ***WT 260, 75(12.2, 4.655.10) ***Op*** ***A.27/12.01, 0.354.10) ***CO 27/75, (22.01, 3.00.00) ***YT 5, (27.01, 3.00.00) ***YT 14, (27.01, 3.00.00)	of ranksums Knakal Walk; Nemenyi testa for multiple companis ons	Generyor IC(7-14.388, pris. 00075	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Cr2s*: p=0.0329* WT-CD; p=0.00279*
d e	Medic Baving	Title specific center (b) minutes 1-10 minutes 1-100		askát askát askát	Sept.*-28 CD:18 ST: 24 SD:18 ST: 25 SEPT.*-26 CD:18 WT: 25 SEPT.*-26 CD:18 WT: 25 SEPT.*-26 CD:18 WT: 25 SEPT.*-26 CD:18 SEPT.*-26 CD:18 SEPT.*-26 CD:18	00(24*, 25.65) L80 CD 16.11.108 TH 141.78 212.6 00(24*, 65.24*) 21.08 OD 200.14.11.00 DD 201.41.100 DD 201.41.400 DD 201.41.4000 DD 201.41.400 DD 201.41.4000 DD 201.41.4000 DD 201.41.4000 DD 201.41.400	509**-123-123192.2.12319 509**-123-123-123-123-123-123-123-123-123-123	of ranksums Knakal Walk; Nemenyi testa for multiple companis ons	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Cr2s*: p=0.0329* WT-CD; p=0.0379*
d d	Medir Bayling	Title specific center (b) minutes 1-10 minutes 1-100	Tenespertincerter (s)	askát askát askát	Sept.*28 CD18 SMT. 28 SSP.*28 CD18 WT. 25 SSP.*28 SSP.*28 SSP.*28	00(2)**, 25.45 F.100 CO 16.51 F.100 TO 16.51 F.100 TO 141 F.101 F.102 DO 20.14 F.100 TO 2	509 ** 1.93 1/188 2.1317 ***CHART 1546; IA 1876 ***DE TA	Could Wildy femment has for multiple companions of an its barries of a state of the	Genutype 1(2)-(4.388, pr.0.0007) Genutype 1(2)-(4.388, pr.0.0007) Genutype 1(2)-(4.384, pr.0.3344)	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Cr2s*: p=0.0329* WT-CD; p=0.0379*
d e	Model: Bayling	Transpartimenter (s) PRIMER 2.10 PRIMER 2.10 PRIMER 2.100 PRIMER 2.100	Tenespertincerter (s)	adult adult adult adult	68P*-28 CO18 MT-28 68P*-26 CO18 MT-25 66P*-26 CO18 CO18 MT-25 CO18	EQN-26.45 LBS DOT-16.51 LOS DOT-16.51 LOS DOT-16.51 LOS DOT-16.52 MI SUSS DOS-16.53	500 Y 263 JURE 2 1870 501 Y 263 Y 263 JURE 2 1870 502 Y 263 JURE 2 1870 503 Y 263 JURE 2 1870 504 Y 263 JURE 2 1870 504 Y 263 JURE 2 1870 504 Y 263 JURE 2 1870 505 Y 263 JURE 2 1870	Could Wildy femment has for multiple companions of an its barries of a state of the	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
d d	Model' Buyling	Transpartimenter (s) PRIMER 2.10 PRIMER 2.10 PRIMER 2.100 PRIMER 2.100	Tenespertincerter (s)	adult adult adult adult	 (中 / 2 N 回) (中 / 3 N 回) (中	EQUIP. 24.49 1.10 DE SESTI DE	500 Y 26 JULY 25 JULY	Could Wildy femment has for multiple companions of an its barries of a state of the	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Cr2s*: p=0.0329* WT-CD; p=0.0379*
d d	Medite Buyung	Time (performed b) CRAME 133 CRAME 1330 CRAME 1330 CRAME 1330 CRAME 1340	Tenespertincerter (s)	adult adult adult adult adult	OpP * NO COSB WIT 26 OPP * NO OP	EQUIP. 24.49 LIB DOT 16.51 1.00 MY 61.79 1.725 SUPPLY 65.5 M 9.126 SUPPLY 65.5 M 9.126 S	909 * 26/3/2014/1970 107 208 * 7021/2014/1970 107 208 * 7021/2014/1970 107 208 * 7021/2014/1970 107 208 * 7021/2014/1970 107 208 * 7021/2014/1970 107 208 * 7021/2014/1970 207 208 * 7021/2014/1970 207 208 * 7021/2014/2014/1970 207 208 * 7021/2014/2014/2014/2014/2014/2014/2014/2	Could Wildy femment has for multiple companions of an its barries of a state of the	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Cr2s*: p=0.0329* WT-CD; p=0.0379*
d e	Medite Buyang	Time (performed b) CRAME 133 CRAME 1330 CRAME 1330 CRAME 1330 CRAME 1340	Tenespertincerter (s)	adult adult adult adult adult	OpP ** AN COSE 401 24 COSE 401 25 COPP ** AN COSE 4	SQC*, 24.91.100 OF 5611100 O	909 * 26/3/2014/3/19 407 208 * 7000 208 * 7	Could Wildy femment has for multiple companions of an its barries of a state of the	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Cr2s*: p=0.0329* WT-CD; p=0.0379*
d e	Medile Buyung	Three participants (s) relation 1.50	Tenespertincerter (s)	addt addt addt addt addt addt	OSP**AN OD 18 OD 18 OSP**AN OSP**AN OSP**AN OSP**AN OSB OSB OSB OSB OSB OSB OSB OS	\$200.00 A \$1.00 A \$1.0	500 * 26/3/2014/1970 ***********************************	Could Wilds, frameway has for multiple companions of an ill has no services and a service of a s	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Cr2s*: p=0.0329* WT-CD; p=0.0379*
d e		Three participants (s) relation 1.50	Tenespertincerter (s)	addt addt addt addt addt addt	OSPT-AS OSPT-A	\$200.00 A \$1.00 A \$1.0	900 * 26/3/2007.1207.1007.1007.1007.1007.1007.1007.	Could Wilds, frameway has for multiple companions of an ill has no services and a service of a s	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
d ·		Transportioned (s) Others 130 oriendes 130 oriendes 130 oriendes 130 oriendes 130 oriendes 130 oriendes 130	Tenespertincerter (s)	adult adult adult adult adult adult adult adult	OSP * AN OSP	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	909 * 26/3/2014/2019 107 208 70200 2000 2000 2000 107 208 70200 2000 2000 107 208 70200 2000 2000 107 208 70200 2000 107 208 70200 2000 107 208 70200 2000 107 207 70200 2000 107 207 70200 2000 107 207 70200 2000 107 207 70200 2000 107 207 70200 2000 107 207 70200 2000 107 207 207 207 2000 107 207 207 207 207 2000 107 207 207 207 207 207 207 207 207 207 2	Could Wilds, frameway has for multiple companions of an ill has no services and a service of a s	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
d .		Three positioned or §) ORANIO E 10 ORANIO E 10 ORANIO E 10 ORANIO E 100	Tenespertincerter (s)	adult adult adult adult adult adult adult adult	0007-78 0007-78 0018 0018 0018 0018 0019 0019 0019 001	1007-25 28 180 1015-1110-1110-1110-1110-1110-1110-111	500 Y 26/20/20/20/20/20 500 Y 280 / 20/20/20/20/20/20/20/20/20/20/20/20/20/2	Could Wilds, frameway has for multiple companions of an ill has no services and a service of a s	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
d ·		The speciment (s) risk (s) 113 risk (s) 1130	Tenespertincerter (s)	addt addt addt addt addt addt addt addt	OSP (1/8) OSP (1/8) MT 18 OSP (1/8) OSP (1/8) MT 25 OSP (1/8)	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 * 26.00 (10.	Could Wilds, frameway has for multiple companions of an ill has no services and a service of a s	Genotype (1/2)-14-388, pril 20075 Genotype (1/2)-6-0022 q-0153448 Genotype (1/2)-6-0022 q-0153448 Then (1/2)-20-18-1782, p-20-16	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
·		Transportioned (s) Others 130 oriendes 130 oriendes 130 oriendes 130 oriendes 130 oriendes 130 oriendes 130	Trins upon linearine (b)	adult adult adult adult adult adult adult adult	097-78 097-78 1019 1019 1019 1019 1019 1019 1019 101	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	900 Y 26 JUNE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rain batts. Could Walle, framework task for martiple a companion on the first for the first of the first form of the	Gendigies 157-54 884 p. 6.10075 Gendigies 17(20) - 5022 A - 633460 Gendigies 17(20) - 5022 A - 633460 Interesting prolying-free (EA. 250-276), p. 60003 3 Gendigies 17(20) - 2324 p. 632146 Gendigies 17(20) - 2324 p. 632176	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
		The performer (s) Final (s) 130	Tenespertincerter (s)	PARSON PA	SIGN-78 SIG	5007-5611-561 1001-1001-100 1001-1001-100 1001-1001-100 1001-1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001 1001-1001	500 Y 26/3/2005 1200 1200 1200 1200 1200 1200 1200	Could Wilds, frameway has for multiple companions of an ill has no services and a service of a s	Geringin (IC)-14 SER pd. (IO)75 Geringin (IC)-16 SER pd. (IO)75 Geringin (IC)-16 SER pd. (IO)8 Tom	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
e		The speciment (s) risk (s) 113 risk (s) 1130	Trins upon linearine (b)	addt addt addt addt addt addt addt addt	Sign_AB	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 * AND	of rain butts. Model Valle, formering last for multiple companions with the last to make the multiple companions with the last to the last to the last to the last to the last of different last to the field different last to the field different last to the last did did did did did did did did did di	Georgias (ES-44 SER) pd. 10075 Georgias (T236 - 1022 4 pd. 10075 Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1224 4 pd. 1022) Georgias (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022)	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
		Transporticedar (s) ORAND 120	Trins upon linearine (b)	PARSON PA	Sign_AB	5007-5641-569 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100 10	900 Y 26/1/20/20/20/20/20/20/20/20/20/20/20/20/20/	of rain butts. Model Valle, formering last for multiple companions with the last to make the multiple companions with the last to the last to the last to the last to the last of different last to the field different last to the field different last to the last did did did did did did did did did di	Georgias (ES-44 SER) pd. 10075 Georgias (T236 - 1022 4 pd. 10075 Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1224 4 pd. 1022) Georgias (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022)	WT-CD; p=0.0301* Gr2s*-CD; p=0.002* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
e d		The performer (s) Final (s) 130	Trins upon linearine (b)	PARSON PA	Sign_AB	5007-5641-569 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100-1100 1001-1100 10	500 Y 26/3/2007 1200 1200 1200 1200 1200 1200 1200	of rain butts. Model Valle, formering last for multiple companions with the last to make the multiple companions with the last to the last to the last to the last to the last of different last to the field different last to the field different last to the last did did did did did did did did did di	Georgias (ES-44 SER) pd. 10075 Georgias (T236 - 1022 4 pd. 10075 Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1224 4 pd. 1022) Georgias (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022)	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
d d		Three (perforcement ls) #PAMIO 1.13 #PAMIO	Three uperforcement (s)	PARO PARO PARO PARO PARO PARO PARO PARO	ESSET-AS 10124 AT 124 A	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 ** AND ADDRESS	of rain butts. Model Valle, formering last for multiple companions with the last to make the multiple companions with the last to the last to the last to the last to the last of different last to the field different last to the field different last to the last did did did did did did did did did di	Georgias (ES-44 SER) pd. 10075 Georgias (T236 - 1022 4 pd. 10075 Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1224 4 pd. 1022) Georgias (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022)	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
e d		Transporticedar (s) ORAND 120	Three uperforcement (s)	PARSON PA	6987-78 5014 507-78 5019 5	\$200, 262, 150 \$1, 150, 150 \$1,	500 Y 26/20/20/20/20/20 500 Y 280 / 20/20/20/20/20/20/20/20/20/20/20/20/20/2	of rain butts. Model Valle, formering last for multiple companions with the last to make the multiple companions with the last to the last to the last to the last to the last of different last to the field different last to the field different last to the last did did did did did did did did did di	Georgias (ES-44 SER) pd. 10075 Georgias (T236 - 1022 4 pd. 10075 Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1224 4 pd. 1022) Georgias (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022)	WT-CD; p=0.0301* Gr2s*-CD; p=0.032* WT-Gr2s*: p=0.0028 WT-CD; p=0.00279*
e d		Three (perforcement ls) #PAMIO 1.13 #PAMIO	Three question service (i) Total Continue traveled (in)	PARE PARE PARE PARE PARE PARE PARE PARE	907.09 101.00 10	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 Y 26/3/2007 200 TO	of rain butts. Model Valle, formering last for multiple companions with the last to make the multiple companions with the last to the last to the last to the last to the last of different last to the field different last to the field different last to the last did did did did did did did did did di	Georgias (ES-44 SER) pd. 10075 Georgias (T236 - 1022 4 pd. 10075 Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1022 4 pd. 1024) Georgias (T236 - 1224 4 pd. 1022) Georgias (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022) Ven (T236 - 1224 4 pd. 1022)	NY CO (PRESSE)* OF 1 ** CO (PRESSE)* OF 1
c d		Transportinente (s) Others 120	Three uperforcement (s)	PARO PARO PARO PARO PARO PARO PARO PARO	ESTANDA (1997-18) 101-14 101-14 101-15 101	5007-5641-560 100-11-00-11-00 100-11-0	500 * AND ADMINISTRATION OF THE STATE OF THE	of rain butter. Model fooding formers for the first principle comportions with the first principle comportions with the first principle comportions and the first principle comportions for the first principle c	Gendges 152/44 MRIL pd 15055 Geneger 15267 - 15251 a p 453456 See 65, 1850 - 15251 a p 453556 Se	MI OD (#1888)* OF GOT 1 (#1888)
e d		Three (perforcement ls) #PAMIO 1.13 #PAMIO	Tree upon in center (s) TaleO down trooked (n) The upon in center (s)	PARE PARE PARE PARE PARE PARE PARE PARE	907-8 100-100	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 Y 26 JUNE 1500 JUNE 15	Could find by the rest for maligin a composition of an interest for the composition of th	Gendger 172/4-1884, pd.10075 Gendger 172/6-1822.4-133406 Gendger 172/6-1822.4-133406 Interesting protypy-free (EA.250-1821, pd.2622) The (EA.250-1822, pd.2622) The (EA.250-1822, p. 2012) Electropy 172/6-1822, p. 2012 The (EA.250-1822, p. 2012 Electropy 172/6-1824, p. 201	## 00 per 88** ## 000
e d		Transportinente (s) Others 120	Three question service (i) Total Continue traveled (in)	PARE PARE PARE PARE PARE PARE PARE PARE	907-8 100-100	5007-5641-160 100-11-100 100	500 ** AND ADDRESS	Couled York, frameway has he marigate comportions of each harts. To see that the composition of the harts of the composition of the harts of the composition of the harts of the composition of the compos	German (ICS-14 SER pd. 1007) German (ICS-16 SER pd. 1007) German (ICS-16 SER pd. 1008) The ICS-17 Pd. ICS ICS pd. 1008 The ICS-17 Pd. ICS ICS pd. 1008 The ICS-17 Pd. ICS	MI OD (MESSE) WE OD (MESSE)
e e		Transportinente (s) Others 120	Tree upon in center (s) Tabel Subsect traveled (e) Tree upon is center (s) Tree upon is center (s) baseline create 1	Alan Alan Alan Alan Alan Alan Alan Alan	997-9 100-100	5007-564-140 100-110-110 100-110-110 100-110-110	500 Y AND JUSTICA STATES 500 Y 200	Couled York, frameway has he marigate comportions of each harts. To see that the composition of the harts of the composition of the harts of the composition of the harts of the composition of the compos	German (ICS-14 SER pd. 1007) German (ICS-16 SER pd. 1007) German (ICS-16 SER pd. 1008) The ICS-17 Pd. ICS ICS pd. 1008 The ICS-17 Pd. ICS ICS pd. 1008 The ICS-17 Pd. ICS	NY CO _ priss NY
e		Transportinente (s) Others 120	Tree upon in center (s) TaleO down trooked (n) The upon in center (s)	PARE PARE PARE PARE PARE PARE PARE PARE	907.8 10.00	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 Y 26 JULY 200 Y 200	Couled York, frameway has he marigate comportions of each harts. To see that the composition of the harts of the composition of the harts of the composition of the harts of the composition of the compos	German (ICS-14 SER pd. 1007) German (ICS-16 SER pd. 1007) German (ICS-16 SER pd. 1008) The ICS-17 Pd. ICS ICS pd. 1008 The ICS-17 Pd. ICS ICS pd. 1008 The ICS-17 Pd. ICS	## 00 person ## 00
		The operation of \$\frac{1}{2}\$ Introduct 130 Introduct 130 Introduct 1300 Introduct 1300	Tree question entere (s) Total Continue traveled (e) Tree quest in serter (s) boundary returns 1 boundary returns 2 Conditioned Normals and a return 2	23.00 23.00	907-8 100-100	5007-5641-560 5007-5641-560 5007-5642-67-560	500 Y 26 JULY 2015 JULY 20	Coulant Youling, framework teach for multiple compositions with each for multiple compositions with each form the latest section of	Gendages 1(2):44 MBQ yrd 10015 Gendages 1(2):67 - 1201 4, y-4, 10101 Sense (5):100 - 1201 4, y-4, 10101 Sense (5):100 - 1201 4, y-4, 10101 Sense (5):100 - 1201 4, y-4, 10101 Sense (6):100 - 1201 4, y-4, 10101 Sense (6):100 - 1201 4, y-4, 10101 Sense (7):100 - 1201 4, y-4, 10	## GD _ PER SET ## GB# _ PER
*		Transportinente (s) Others 120	Tree upon in center (s) Tabel Subsect traveled (e) Tree upon is center (s) Tree upon is center (s) baseline create 1	Alan Alan Alan Alan Alan Alan Alan Alan	907.8 10.00	5007-5641-560 5007-5641-560 5007-5642-67-560	500 Y 26 JULY 200 Y 200	Could find by homeomy basis or maligate companion on the first hards. If the homeomy basis or maligate companion on the first hards. If the homeomy basis of the homeomy basis	Gendigies 162-94 MRQ pd 10005 Gendigies 162-94 MRQ pd 10005 Gendigies 1620-95 MRQ pd 10005 Interaction promptime 262 MRQ pd 10005 The GA VARIO - 2021 A pr 401005 The GA VARIO - 2021 A pr 401005	## 00 pressor ## 00
		The operation of \$\frac{1}{2}\$ Introduct 130 Introduct 130 Introduct 1300 Introduct 1300	Term specific center (s) Total Continues traveled (s) Total Continues traveled (s) These specific center (s) baseline center (s) Conditioned Stemaka retracte 4 Conditioned Stemaka retracte 4	23400 23400	907.00 301.00 30	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 Y 26 JULY 2015 JULY 20	Coulant Youling from early law in maring in company com- portion in the company company company com- portion in the company co	Generalize (1204 - 1002 p. 410075 Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1204 p. 41070 The (1	WY GE 19 10 10 10 10 10 10 10 10 10 10 10 10 10
e		The operation of \$\frac{1}{2}\$ Introduct 130 Introduct 130 Introduct 1300 Introduct 1300	Tree question entere (s) Total Continue traveled (e) Tree quest in serter (s) boundary returns 1 boundary returns 2 Conditioned Normals and a return 2	23.00 23.00	907-8 100-100	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 Y 26/10/10/10/10/10/10/10/10/10/10/10/10/10/	Coulant Youling from early law in maring in company com- portion in the company company company com- portion in the company co	Generalize (1204 - 1002 p. 410075 Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1204 p. 41070 The (1	\$10 Op 198803* \$17 Op 198803* \$17 Op 198803* \$18 Op 198803*
		The operation of \$\frac{1}{2}\$ Introduct 130 Introduct 130 Introduct 1300 Introduct 1300	Tree uper in center (s) Total Coderns trovoked (m) Tree uper in center (ii) Tree uper in center (ii) Insultree center (ii) Conditioned Normala metanics Conditioned Normala metanics Conditioned Normala metanics	23.60 23.60	997-98 - 100	5007-5641-160 1001-1001-100 1001-1001-100 1001-1001-100 1001-1001-1001 1001-1001 1	500 Y 26 JULY 2015 JULY 20	Coulant Youling from early law in maring in company com- portion in the company company company com- portion in the company co	Generalize (1204 - 1002 p. 410075 Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1204 p. 41070 The (1	NO OP 100 TO 100
e d		The operation of \$\frac{1}{2}\$ Introduct 130 Introduct 130 Introduct 1300 Introduct 1300	Term specific center (s) Total Continues traveled (s) Total Continues traveled (s) These specific center (s) baseline center (s) Conditioned Stemaka retracte 4 Conditioned Stemaka retracte 4	23400 23400	907-8 100-100	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 Y 26 JULY 2015 JULY 20	Coulant Youling from early law in maring in company com- portion in the company company company com- portion in the company co	Generalize (1204 - 1002 p. 410075 Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1204 p. 41070 The (1	\$10 Op 100 Op 10
		The operation of \$\frac{1}{2}\$ Introduct 130 Introduct 130 Introduct 1300 Introduct 1300	Tree uper in center (s) Total Coderns trovoked (m) Tree uper in center (ii) Tree uper in center (ii) Insultree center (ii) Conditioned Normala metanics Conditioned Normala metanics Conditioned Normala metanics	23.60 23.60	907-9 100-100	\$200.00.00.00.00.00.00.00.00.00.00.00.00.	500 Y 26 JULY 2015 JULY 20	Coulant Youling from early law in maring in company com- portion in the company company company com- portion in the company co	Generalize (1204 - 1002 p. 410075 Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1002 p. 410408) Generalize (1206 - 1204 p. 41070 The (1	\$10 Op 1988 \$1

- 11		Conditioned four	Controlled Fear result Present Freezing	Contextual Fear minute 3	adult	WT: 19	WT: 8.47 ± 2.56	WT: 3.56 (1.33, 11.53)	1		min3:WT-Gtf2P:p=1
- 1 1						Gt/21*:17	Gt/21*: 7.21 ± 1.51	G(Q)*: 7.11 (1.34, 8.89)			min3:WT-CD:p=0.03*
- 1 1						CD:20	CD: 19.62 ± 3.86	CD: 14.23 (6.8, 29.57)	to test fixed effects; Tukey's HSD multiple comparison Time: Fi	Genetarie: FL2 531a1 251 mil 295	min3:Gtf2i*- CD: p=0.01*
				Contextual Fear minute 4	adult	WT: 19	WT: 5.47 ± 0.76	WT: 5.78 (2.89, 7.34)			min4:WT-Gtf2/*:p+1
- 1 1						0tf25*:27	0(f2)*: 8.42 ± 2.15	G(Q)*: 6.22 (4, 8)			min4:WT-CD:p=0.55
Ш						CD:20	CD: 12.64 ± 2.00	CD: 10.45 (7.01, 19.00)			min4:6tf2i*- CD: p=1
	- 1					WT: 19	WT: 6.48 ± 1.87	WT: 4.42 (1.33, 6)		Interaction: genotype*time: F(14,371)+2.499,p+0.0021	min5:WT-Gtf2/*:p=0.97
- 1 1				Contextual Fear minute 5	adult	Gtf2F17	Gg2/*: 11.21 ± 3.03	Gt(2)*: 5.75 (3.56, 15.56)			min5:WT-CD:p=1
						CD:20	CD: 10.56 ± 2.91	CD: 7.09 (4, 14.89)			min5:Gtf2i*- CD: pr1
				Contextual Fear minute 6	adult	WT: 19	WT: 7.90 ± 1.38	WT: 5.78 (4.44, 9.31)			min6:WT-Gtf2/*:p=0.98
						G(f21*:17	G(f2)*: 12.39 ± 2.30	G(2)*: 10.22 (6.67, 17.33)			min6:WT-CD:p=1
						CD:20	CD: 12.09 ± 2.93	CD: 7.34 (4.45, 16.61)			min6:Gtf2i*- CD: p=1
ш				Contextual Fear minute 7	adult	WT: 19	WT: 9.56 ± 2.40	WT: 6.22 (3.775, 9.78)			min7:WT-Gtf2/*:p+1
4						Gtf25*:27	6(f2)*: 9.55 ± 1.46	GtQ1*: 9.78 (4.87, 13.78)			min7:WT-CD:p=1
ш						CD:20	CD: 8.84 ± 1.11	CD: 7.34(6.21, 11.54)			min7:Gtf2i*- CD: p=1
ш				Contextual Fear minute 8		WT: 19	WT: 13.08 ± 3.81	WT: 5.36 (2.24, 15.18)			min8.WT-Gtf2/*:g=0.88
ш					adult	Gf2F:17	Gg/2/*: 7.22 ± 1.01	Gt(2)*: 6.7 (4.02, 8.93)			min8.WT-CD:p=1
- 1						CD:20	CD: 9.26 ± 1.48	CD: 9.60 (4.12, 13.06)			min8:Gtf2i*- CD: p=1
- 1 [Cued fear memory baseline Percent Freezing	baseline minute 1		WT:19	WT: 1.12± 0.47	WT: 0 (0, 1.77)	linear mixed mode; Animal id random effect; Anova Time: F(1,5		
					adult	Gt/2/*:17	Gtf2/*: 1.12 ± 0.34	Gt(2)*: 0 (0, 1.78)			
						CD:20	CD: 1.91 ± 0.84	CD: 0 (0, 1.77)		Genotype:F(2,53)=1.061,p=0.353 Time: F(1,53)=9.037,p=0.004	
				baseline minute 2		WT:19	WT: 1.99 ± 0.59	WT: 1.33 (0, 3.55)		Interaction: genotype*time:F(2,53)=0.2658,p=0.768	
						Gt/21*:17	G(f2)*: 2.59 ± 0.77	G(Q)*: 2.22 (0, 2.67)			
						CD:20	CD: 3.49 ± 0.91	CD: 2.44 (0, 5.55)			
			Good fear namura Proceed Freezing	Cued Fear minute 3		WT:19	WT: 61.87 ± 2.54	WT: 62.22 (54.22, 69.84)	Shear exceed model. Accord of sendons effect, Accord to text found effects to text found effects to text found effects.		
ш						Gtf28*:17	6¶2/*: 59.01 ± 1.97	6(0)*:59.11(51.77,64.44)			
ш						CD:20	CD: 61.89 ± 3.50	CD: 64.89 (50.95, 70.89)			
ш				Cued Fear minute 4		WT:19	WT: 62.59 ± 3.80	WT: 63.27 (52, 72.89)			
ш					adult	Gt/2/*:17	G#2/*: 59.04 ± 3.71	GtQ1*: 60.89 (45.78, 68.89)			
ш						CD:20	CD: 61.01 ± 3.78	CD: 64.00 (51.11, 69.33)			
ш				Cued Fear minute 5	adult	WT:19	WT: 55.04 ± 5.58	WT: 53.78 (36.89, 74.67)			
ш						Gtf2F*:27	0 (√2)*: 53.23 ± 5.56	G(Q)*:59.11 (26.22, 70.67)			
ш	d					CD:20	CD: 55.76 ± 3.81	CD: 54.46 (48.56, 68.93)			
				Cued Fear minute 6	adult	WT:19	WT: 51.04 ± 6.51	WT: 48 (27.49, 80)			
							G¶2/*: 43.97 ± 5.58	Gt(2)*: 38.67 (24, 65.93)			
							CD: 50.74 ± 4.16	CD: 54.45 (40.33, 59.37)			
				Cued Fear minute 7	adult	WT:19	WT: 43.52 ± 5.96	WT: 41.41 (22.89, 59.89)			
						Gt/21*:17	G(f2)*: 42.16 ± 5.35	G(Q)*: 38.22 (23.11, 58.85)			
						CD:20	CD: 46.47 ± 4.53	CD: 44.44 (37.68, 58.89)			
				Cued Fear minute 8	adult	WT:19	WT: 40.48 ± 6.50	WT: 32.89 (14.63, 61.56)			
							0(f2)*: 35.37 ± 6.23	Gt(2)*: 32.44 (16.89, 57.33)			
							CD: 36.79 ± 5.26	CD: 26.66 (21.25, 55.56)			
ш				Cued Fear minute 9			WT: 42.20 ± 5.12	WT: 38.22 (28.61, 54.89)			
					adult		Gt/21*: 33.62 ± 5.20	Gt(2)*: 40.44 (13.33, 47.11)			
						CD:20	CD: 41.42 ± 6.11	CD: 41.56 (22.53, 62.71)			
				Cued Fear minute 10			WT: 40.11 ± 7.02	WT: 29.46 (16.30, 67.25)			
							G(f2)*: 38.18 ± 7.26	Gt(2)*: 26.67 (12.95, 61.61)			
						CD:20	CD: 40.95 ± 5.68	CD: 44.67 (17.74, 54.24)			

Chapter 5: Conclusions and Future Directions

Nathan Kopp

5.1 Significance

In this thesis I have tested three extant hypotheses in the field of Williams syndrome biology, using both human and mouse genetics. First, I showed that variation on the remaining WSCR allele does not largely modify the social phenotype of individuals with WS as measured by the SRS. The study highlighted two SNPs in *BAZ1B* and *GTF2IRD1*, both of which have been implicated in the cognitive phenotypes of WS, providing further support for their importance in the pathogenesis of WS. I used the data to further describe the genetic variation within the exonic compartment of the WSCR, which can be queried to test for associations with other clinical phenotypes of WS. While 85 individuals is a small sample size to detect variants that have low effect sizes, this was the largest genetic dataset of WS analyzed, and will exist as a foundation to which other larger studies can build.

The second hypothesis I tested was how do the transcription factors Gtf2i and Gtf2ird1 interact to affect behavior. These genes have been thought to contribute to the behavioral, cognitive, and craniofacial aspects of WS, but their affects on behavior have not been studied together. I leveraged the advantages of the mouse model system to study these genes. First, I generated a dataset that describes where these transcription factors bind in the developing brain and then tested the consequences of mutating just Gtf2ird1 or both transcription factors together to examine how they interact to potentially affect transcription and behavior. Surprisingly, I showed that both transcription factors have little consequence on whole brain transcription, but mutating them still results in behavioral deficits mainly driven by homozygosity of Gtf2ird1 mutations. The work I have done is some of the first $in\ vivo$ biochemical analysis of Gtf2ird1, and I showed that Gtf2ird1 is a difficult gene to knockout. These results help interpret the findings of other Gtf2ird1 mouse models that still show some Gtf2ird1 transcription and protein

product (66, 101). The *Gtf2ird1* mouse model I characterized provided data that supports the functional role of the N-terminal end of the protein in behavior, although it did not result in decreased DNA binding genome wide. My data and methods will be useful to consider when designing future experiments around this gene. I also showed that knocking out *Gtf2i* along with *Gtf2ird1* did not result in more severe phenotypes in the heterozygous state. This suggests that *Gtf2ird1* is the main driver of the phenotypes tested in this study. Overall, I have created two new mouse lines to further model and study Williams syndrome and provided genomic datasets that can be used to generate future hypotheses concerning these two transcription factors.

Finally, I used another *Gtf2i/Gtf2ird1* double mutant mouse model and a mouse model that has the entire WSCR deleted (CD mouse) to test the current leading hypothesis that these two transcription factors are sufficient to replicate the phenotypes that are caused by deleting the whole region. My data suggests that these genes are not sufficient, which implicates the role of other genes in the region or an oligogenic contribution of several genes in the region. I also analyzed the adult hippocampal transcriptome of both mouse models and showed differences in synaptic genes in the CD compared to the double mutant, suggesting that synaptic functioning might be impaired in the CD animals that is not caused by *Gtf2i* or *Gtf2ird1*. These data should encourage studying the effects of other genes in the WSCR. Using the CRISPR/Cas9 technology will allow for the quick generation of mouse models with unique combinations of genes mutated so we can begin to dissect the interactions of the genes in the region, similarly to what has been done for other copy number disorders (102, 103, 204).

Overall, this thesis has generated human and mouse genomic datasets that can be used to design future studies to elucidate genetic influences on WS phenotypes. It also describes three new mouse models that can be used in to further understand how the general transcription factor

2i family contributes to WS phenotypes. Finally, it supports a role for genes outside of the general transcription factor 2i family, encouraging further characterization of single gene knock out mouse models as well as models with combinations of genes knocked out.

5.2 Future directions

5.2.1 Human studies

I described the analysis of the whole exome of 85 individuals with WS and tested for genetics associations with the social phenotype. The exome enriches for variants in the coding regions of genes, which aids in the interpretation of their effects. However, the exome covers only 1% of the genome and with the growing number of whole genome studies, the human genetics field is learning more about the consequences of non coding variation. Thus, it would be beneficial to use whole genome sequencing to analyze how the full spectrum of genetic variation could modify the phenotypes in WS. First, it would be interesting to catalogue the non-coding variation of the WSCR and couple that with the exonic data to look for modifiers within the locus.

Next, we could use the dense genotype data genome wide to calculate polygenic risk scores for different phenotypes of interest within the WS sample. I did this using the Psychiatric Genomics Consortium GWAS on ASD using the whole exome data, but this misses a lot of the common, noncoding variation that was genotyped. Using the whole genome data we could get a better understanding contribution of genomic variants to social behavior. Recently, it has been shown that high polygenic risk scores can convey similar risk to disease as monogenic causes (205). This information could be used to help explain the large variability of the social phenotype and other phenotypes of WS.

Finally, the genome data could be used to identify the breakpoints of the deletion in patients. This is important, because the current diagnostic method, clinical microarray, has difficulty accurately identifying the size of the deleted region due to the low copy repeats. I attempted to use the whole exome data to determine copy number of the NCF1 alleles by using the ratio of the two base pair deletion that distinguishes the pseudogenes from the functional copy. This gave promising results, but this strategy cannot distinguish the exact break point of the deletion. Since whole genome sequencing provides even coverage it could be used to detect the size of the deletion, which has been shown to affect cognitive and behavioral phenotypes (41). I have preliminarily tried to call the deletion size using the coverage from the whole genome sequencing data. I was able to identify atypical deletions, but the typical deletions all had similar profiles with drops in coverage in the area in the low copy repeats. We could potentially use the polymorphisms that distinguish between the functional and pseudogenes of the regions, but short read whole genome sequencing data may not be able to overcome the challenges of the repetitive regions. Long read technology could be used to try and surmount the difficulty of mapping to the region to better detect the breakpoints.

5.2.2 Gtf2i and Gtf2ird1 mouse studies

I have generated several new mouse models that can be used as tools to understand *Gtf2i* and *Gtf2ird1* biology. One of the more interesting findings from the mutations in *Gtf2ird1* was not expected, and that is that this is a difficult protein to knock out. Two separate frameshift mutations that create premature stop codons with exon three, and a large deletion removing all but 14 base pairs of exon three of *Gtf2ird1* resulted in more *Gtf2ird1* transcript and slightly lower levels of a N-truncated protein. The tight regulation of the transcript and protein levels of *Gtf2ird1* hints at a conserved important function. It would be interesting to further understand

how this transcript and protein are regulated. We have data to suggest that *Gtf2ird1* transcripts that contain the mutant alleles are more stable than the WT transcript. Studying the mRNA dynamics and stability of *Gtf2ird1* could provide insight on how it is regulated and lead to further investigation about why it is regulated so tightly. We have looked into using click-it technology to determine the half-life of the WT and mutant mRNA and have the potential to clone the mutated alleles into a plasmid vector, which could then be manipulated. This would also allow us to directly test if the N-truncated mutation is caused by the hypothesized translation re-initiation event at a downstream methionine using pharmaceutical manipulations in cell culture.

I was initially interested in phenotyping these mouse models for social behaviors, as other models knocking out *Gtf2ird1* and *Gtf2i* have shown social phenotypes. In the social tasks we have done which include the three chamber social approach, tube test, and resident intruder, we have seen either no difference between genotypes, strain dependent effects, social effects in the opposite direction, or non replicable phenotypes. The CD model on the C57Bl/6J background should have the largest social phenotype as described in the mouse literature. The Dougherty lab has a new social operant paradigm that would allow us to test the social motivation of the CD animals, which we would predict to have increased motivation. We could then run our other WS models through this paradigm as well to test specifically for social motivation deficits.

We also see a conditioned fear response in the CD animals and the $Gtf2i^{+/-}/Gtf2ird1^{-/-}$ genotype. The oxytocin system has been largely speculated to contribute to the phenotypes in WS (118, 206) and it has been shown to affect conditioned fear in mice (207). I have generated preliminary data that suggests oxytocin is slightly upregulated in the hypothalamus of CD animals, however, I have not noticed an increased in oxytocin positive neurons in the

hypothalamus. We can manipulate the oxytocin system, genetically or pharmaceutically, in CD animals to test if this rescues or exacerbates the behavioral phenotypes. I have also generated RNA-seq data from the adult hypothalamus of the CD and the *Gtf2i** animals. This can further inform the involvement of oxytocin and vasopressin in behavioral phenotypes and be used to design downstream experiments regarding these neuropeptides.

I am also interested in understanding how other genes in the WSCR could possibly modify the effects of the general transcription factor 2i family. I have generated a new mouse model that has a frameshift mutation in just *Gtf2i*. Characterizing this model will let us understand the effects of *Gtf2i* on behavior without a *Gtf2ird1* mutation. In collaboration with Dr. Kozel, we could cross our single mutants, double mutants, and the CD animals to a *Baz1b* knock out line to test how this chromatin modifier affects behavior.

5.3 Summary

This thesis used both human and mouse genetics to further understand genetic contributions of the WSCR to behavior. I have analyzed the largest genetic dataset of humans with WS and showed that variants on the remaining WSCR allele do not largely affect the social phenotype, but there is suggesting evidence for the role of variants in the *BAZ1B* and *GTF2IRD1* genes. This dataset can be used to query other clinically relevant phenotypes of WS. Further, I have generated and characterized new mouse models of *Gtf2i* and *Gtf2ird1* and showed that other genes in the WSCR are critical for causing the phenotypes seen when the whole region is deleted. The data produced here can be used to appreciate the genetic complexity of the WSCR and encourage research that looks at the interaction of the genes in the region.

References

- 1. Colleen A. Morris, M.D. and Carolyn B. Mervis, Ph.D. (2000) Williams Syndrome and Related Disorders. *Annual Review of Genomics and Human Genetics*, **1**, 461–484.
- 2. Korenberg, J.R., Chen, X.-N., Hirota, H., Lai, Z., Bellugi, U., Burian, D., Roe, B. and Matsuoka, R. (2000) VI. Genome Structure and Cognitive Map of Williams Syndrome. *Journal of Cognitive Neuroscience*, **12**, 89–107.
- 3. Ewart, A.K., Morris, C.A., Atkinson, D., Jin, W., Sternes, K., Spallone, P., Stock, A.D., Leppert, M. and Keating, M.T. (1993) Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. *Nature Genetics*, 5, 11.
- 4. Williams, J.C.P., Barratt-Boyes, B.G. and Lowe, J.B. (1961) Supravalvular Aortic Stenosis. *Circulation*, **24**, 1311–1318.
- 5. Supravalvular Aortic Stenosis in Association with Mental Retardation and a Certain Facial Appearance.
- 6. Ewart, A.K., Morris, C.A., Ensing, G.J., Loker, J., Moore, C., Leppert, M. and Keating, M. (1993) A human vascular disorder, supravalvular aortic stenosis, maps to chromosome 7. *PNAS*, **90**, 3226–3230.
- 7. Lowery, M.C., Morris, C.A., Ewart, A., Brothman, L.J., Zhu, X.L., Leonard, C.O., Carey, J.C., Keating, M. and Brothman, A.R. (1995) Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: evaluation of 235 patients. *Am J Hum Genet*, **57**, 49–53.
- 8. Meng, X., Lu, X., Li, Z., Green, E.D., Massa, H., Trask, B.J., Morris, C.A. and Keating, M.T. (1998) Complete physical map of the common deletion region in Williams syndrome and identification and characterization of three novel genes. *Hum Genet*, **103**, 590–599.
- 9. Peoples, R., Franke, Y., Wang, Y.-K., Pérez-Jurado, L., Paperna, T., Cisco, M. and Francke, U. (2000) A Physical Map, Including a BAC/PAC Clone Contig, of the Williams-Beuren Syndrome–Deletion Region at 7q11.23. *The American Journal of Human Genetics*, **66**, 47–68.
- 10. Scherer, S.W., Cheung, J., MacDonald, J.R., Osborne, L.R., Nakabayashi, K., Herbrick, J.-A., Carson, A.R., Parker-Katiraee, L., Skaug, J., Khaja, R., *et al.* (2003) Human Chromosome 7: DNA Sequence and Biology. *Science*, **300**, 767–772.
- 11. Antonell, A., Luis, O. de, Domingo-Roura, X. and Pérez-Jurado, L.A. (2005) Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. *Genome Res.*, **15**, 1179–1188.
- 12. Urbán, Z., Helms, C., Fekete, G., Csiszár, K., Bonnet, D., Munnich, A., Donis-Keller, H. and Boyd, C.D. (1996) 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover. *Am J Hum Genet*, **59**, 958–962.

- 13. Merla, G., Brunetti-Pierri, N., Micale, L. and Fusco, C. (2010) Copy number variants at Williams—Beuren syndrome 7q11.23 region. *Hum Genet*, **128**, 3–26.
- 14. Järvinen, A., Korenberg, J.R. and Bellugi, U. (2013) The social phenotype of Williams syndrome. *Current Opinion in Neurobiology*, **23**, 414–422.
- 15. Meyer-Lindenberg, A., Mervis, C.B. and Faith Berman, K. (2006) Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. *Nat Rev Neurosci*, **7**, 380–393.
- 16. Schubert, C. (2009) The genomic basis of the Williams Beuren syndrome. *Cell. Mol. Life Sci.*, **66**, 1178–1197.
- 17. Mervis, C.B., Robinson, B.F., Bertrand, J., Morris, C.A., Klein-Tasman, B.P. and Armstrong, S.C. (2000) The Williams Syndrome Cognitive Profile. *Brain and Cognition*, **44**, 604–628.
- 18. Riby,D. and Hancock,P.J.B. (2009) Looking at movies and cartoons: eye-tracking evidence from Williams syndrome and autism. *Journal of Intellectual Disability Research*, **53**, 169–181.
- 19. Doyle, T.F., Bellugi, U., Korenberg, J.R. and Graham, J. (2004) "Everybody in the world is my friend" hypersociability in young children with Williams syndrome. *Am. J. Med. Genet.*, **124A**, 263–273.
- 20. Klein-Tasman,B.P., Li-Barber,K.T. and Magargee,E.T. (2010) Honing in on the Social Phenotype in Williams Syndrome Using Multiple Measures and Multiple Raters. *J Autism Dev Disord*, **41**, 341–351.
- 21. Dykens, E.M. (2003) Anxiety, Fears, and Phobias in Persons With Williams Syndrome. *Developmental Neuropsychology*, **23**, 291–316.
- 22. Leyfer, O.T., Woodruff-Borden, J., Klein-Tasman, B.P., Fricke, J.S. and Mervis, C.B. (2006) Prevalence of Psychiatric Disorders in 4 16-Year-Olds with Williams Syndrome. *Am J Med Genet B Neuropsychiatr Genet*, **141B**, 615–622.
- 23. Somerville, M.J., Mervis, C.B., Young, E.J., Seo, E.-J., del Campo, M., Bamforth, S., Peregrine, E., Loo, W., Lilley, M., Pérez-Jurado, L.A., *et al.* (2005) Severe Expressive-Language Delay Related to Duplication of the Williams–Beuren Locus. *New England Journal of Medicine*, **353**, 1694–1701.
- 24. Morris, C.A., Mervis, C.B., Paciorkowski, A.P., Abdul-Rahman, O., Dugan, S.L., Rope, A.F., Bader, P., Hendon, L.G., Velleman, S.L., Klein-Tasman, B.P., *et al.* (2015) 7q11.23 Duplication syndrome: Physical characteristics and natural history. *American Journal of Medical Genetics Part A*, **167**, 2916–2935.

- 25. Mervis, C.B., Klein-Tasman, B.P., Huffman, M.J., Velleman, S.L., Pitts, C.H., Henderson, D.R., Woodruff-Borden, J., Morris, C.A. and Osborne, L.R. (2015) Children with 7q11.23 duplication syndrome: Psychological characteristics. *American Journal of Medical Genetics Part A*, **167**, 1436–1450.
- 26. Sanders, S.J., Ercan-Sencicek, A.G., Hus, V., Luo, R., Murtha, M.T., Moreno-De-Luca, D., Chu, S.H., Moreau, M.P., Gupta, A.R., Thomson, S.A., *et al.* (2011) Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. *Neuron*, **70**, 863–885.
- 27. Klein-Tasman,B.P. and Mervis,C.B. (2018) Autism Spectrum Symptomatology Among Children with Duplication 7q11.23 Syndrome. *J Autism Dev Disord*, 10.1007/s10803-017-3439-z.
- 28. Klein-Tasman,B.P., Fluit,F. van der and Mervis,C.B. (2018) Autism Spectrum Symptomatology in Children with Williams Syndrome Who Have Phrase Speech or Fluent Language. *J Autism Dev Disord*, 10.1007/s10803-018-3555-4.
- 29. Mervis, C.B., Dida, J., Lam, E., Crawford-Zelli, N.A., Young, E.J., Henderson, D.R., Onay, T., Morris, C.A., Woodruff-Borden, J., Yeomans, J., *et al.* (2012) Duplication of GTF2I Results in Separation Anxiety in Mice and Humans. *The American Journal of Human Genetics*, **90**, 1064–1070.
- 30. Frangiskakis, J.M., Ewart, A.K., Morris, C.A., Mervis, C.B., Bertrand, J., Robinson, B.F., Klein, B.P., Ensing, G.J., Everett, L.A., Green, E.D., *et al.* (1996) LIM-kinase 1 Hemizygosity Implicated in Impaired Visuospatial Constructive Cognition. *Cell*, **86**, 59–69.
- 31. Morris, C.A., Mervis, C.B., Hobart, H.H., Gregg, R.G., Bertrand, J., Ensing, G.J., Sommer, A., Moore, C.A., Hopkin, R.J., Spallone, P.A., *et al.* (2003) GTF2I hemizygosity implicated in mental retardation in Williams syndrome: Genotype–phenotype analysis of five families with deletions in the Williams syndrome region. *Am. J. Med. Genet.*, **123A**, 45–59.
- 32. Tassabehji,M., Metcalfe,K., Karmiloff-Smith,A., Carette,M.J., Grant,J., Dennis,N., Reardon,W., Splitt,M., Read,A.P. and Donnai,D. (1999) Williams Syndrome: Use of Chromosomal Microdeletions as a Tool to Dissect Cognitive and Physical Phenotypes. *The American Journal of Human Genetics*, **64**, 118–125.
- 33. Karmiloff-Smith,A., Grant,J., Ewing,S., Carette,M.J., Metcalfe,K., Donnai,D., Read,A.P. and Tassabehji,M. (2003) Using case study comparisons to explore genotype-phenotype correlations in Williams-Beuren syndrome. *Journal of Medical Genetics*, **40**, 136–140.
- 34. Botta, A., Novelli, G., Mari, A., Novelli, A., Sabani, M., Korenberg, J., Osborne, L.R., Digilio, M.C., Giannotti, A. and Dallapiccola, B. (1999) Detection of an atypical 7q11.23 deletion in Williams syndrome patients which does not include the STX1A and FZD3 genes. *Journal of Medical Genetics*, **36**, 478–480.

- 35. Heller, R., Rauch, A., Lüttgen, S., Schröder, B. and Winterpacht, A. (2003) Partial deletion of the critical 1.5 Mb interval in Williams-Beuren syndrome. *Journal of Medical Genetics*, **40**, e99–e99.
- 36. Hirota,H., Matsuoka,R., Chen,X.-N., Salandanan,L.S., Lincoln,A., Rose,F.E., Sunahara,M., Osawa,M., Bellugi,U. and Korenberg,J.R. (2003) Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on Chromosome 7q11.23. *Genet Med*, 5, 311–321.
- 37. Gagliardi, C., Bonaglia, M.C., Selicorni, A., Borgatti, R. and Giorda, R. (2003) Unusual cognitive and behavioural profile in a Williams syndrome patient with atypical 7q11.23 deletion. *Journal of Medical Genetics*, **40**, 526–530.
- 38. Dai, L., Bellugi, U., Chen, X.-N., Pulst-Korenberg, A. m., Järvinen-Pasley, A., Tirosh-Wagner, T., Eis, P. s., Graham, J., Mills, D., Searcy, Y., *et al.* (2009) Is it Williams syndrome? GTF2IRD1 implicated in visual—spatial construction and GTF2I in sociability revealed by high resolution arrays. *Am. J. Med. Genet.*, **149A**, 302–314.
- 39. Tassabehji,M., Hammond,P., Karmiloff-Smith,A., Thompson,P., Thorgeirsson,S.S., Durkin,M.E., Popescu,N.C., Hutton,T., Metcalfe,K., Rucka,A., *et al.* (2005) GTF2IRD1 in Craniofacial Development of Humans and Mice. *Science*, **310**, 1184–1187.
- 40. Antonell, A., Campo, M.D., Magano, L.F., Kaufmann, L., Iglesia, J.M. de la, Gallastegui, F., Flores, R., Schweigmann, U., Fauth, C., Kotzot, D., *et al.* (2010) Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams—Beuren syndrome neurocognitive profile. *Journal of Medical Genetics*, 47, 312–320.
- 41. Porter, M.A., Dobson-Stone, C., Kwok, J.B.J., Schofield, P.R., Beckett, W. and Tassabehji, M. (2012) A Role for Transcription Factor GTF2IRD2 in Executive Function in Williams-Beuren Syndrome. *PLOS ONE*, **7**, e47457.
- 42. Serrano-Juárez, C.A., Venegas-Vega, C.A., Yáñez-Téllez, M.G., Rodríguez-Camacho, M., Silva-Pereyra, J., Salgado-Ceballos, H. and Prieto-Corona, B. (2018) Cognitive, Behavioral, and Adaptive Profiles in Williams Syndrome With and Without Loss of GTF2IRD2. *Journal of the International Neuropsychological Society*, **24**, 896–904.
- 43. Kozel Beth A., Danback Joshua R., Waxler Jessica L., Knutsen Russell H., de las Fuentes Lisa, Reusz Gyorgy S., Kis Eva, Bhatt Ami B. and Pober Barbara R. (2014) Williams Syndrome Predisposes to Vascular Stiffness Modified by Antihypertensive Use and Copy Number Changes in NCF1. *Hypertension*, **63**, 74–79.
- 44. Adamo, A., Atashpaz, S., Germain, P.-L., Zanella, M., D'Agostino, G., Albertin, V., Chenoweth, J., Micale, L., Fusco, C., Unger, C., *et al.* (2015) 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. *Nat Genet*, 47, 132–141.

- 45. Chailangkarn, T. and Muotri, A.R. (2017) Modeling Williams syndrome with induced pluripotent stem cells. *Neurogenesis*, **4**, e1283187.
- 46. Chailangkarn, T., Trujillo, C.A., Freitas, B.C., Hrvoj-Mihic, B., Herai, R.H., Yu, D.X., Brown, T.T., Marchetto, M.C., Bardy, C., McHenry, L., *et al.* (2016) A human neurodevelopmental model for Williams syndrome. *Nature*, **advance online publication**.
- 47. Kinnear, C., Chang, W.Y., Khattak, S., Hinek, A., Thompson, T., de Carvalho Rodrigues, D., Kennedy, K., Mahmut, N., Pasceri, P., Stanford, W.L., *et al.* (2013) Modeling and Rescue of the Vascular Phenotype of Williams-Beuren Syndrome in Patient Induced Pluripotent Stem Cells. *STEM CELLS Translational Medicine*, **2**, 2–15.
- 48. Khattak,S., Brimble,E., Zhang,W., Zaslavsky,K., Strong,E., Ross,P.J., Hendry,J., Mital,S., Salter,M.W., Osborne,L.R., *et al.* (2015) Human induced pluripotent stem cell derived neurons as a model for Williams-Beuren syndrome. *Molecular Brain*, **8**.
- 49. Lalli, M.A., Jang, J., Park, J.-H.C., Wang, Y., Guzman, E., Zhou, H., Audouard, M., Bridges, D., Tovar, K.R., Papuc, S.M., *et al.* (2016) Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. *Hum Mol Genet*, **25**, 1294–1306.
- 50. Malenfant, P., Liu, X., Hudson, M.L., Qiao, Y., Hrynchak, M., Riendeau, N., Hildebrand, M.J., Cohen, I.L., Chudley, A.E., Forster-Gibson, C., *et al.* (2011) Association of GTF2i in the Williams-Beuren Syndrome Critical Region with Autism Spectrum Disorders. *J Autism Dev Disord*, **42**, 1459–1469.
- 51. Swartz, J.R., Waller, R., Bogdan, R., Knodt, A.R., Sabhlok, A., Hyde, L.W. and Hariri, A.R. A common polymorphism in a Williams syndrome gene predicts amygdala reactivity and extraversion in healthy adults. *Biological Psychiatry*, 10.1016/j.biopsych.2015.12.007.
- 52. Fan,C.C., Schork,A.J., Brown,T.T., Spencer,B.E., Akshoomoff,N., Chen,C.-H., Kuperman,J.M., Hagler,D.J., Steen,V.M., Hellard,S., *et al.* (2018) Williams Syndrome neuroanatomical score associates with GTF2IRD1 in large-scale magnetic resonance imaging cohorts: a proof of concept for multivariate endophenotypes. *Translational Psychiatry*, **8**, 114.
- 53. Crespi,B.J. and Hurd,P.L. (2014) Cognitive-behavioral phenotypes of Williams syndrome are associated with genetic variation in the GTF2I gene, in a healthy population. *BMC Neuroscience*, **15**, 127.
- 54. Popp,B., Trollmann,R., Büttner,C., Caliebe,A., Thiel,C.T., Hüffmeier,U., Reis,A. and Zweier,C. Do the exome: A case of Williams-Beuren syndrome with severe epilepsy due to a truncating de novo variant in GABRA1. *European Journal of Medical Genetics*, 10.1016/j.ejmg.2016.09.002.
- 55. Egloff, M., Nguyen, L.-S., Siquier-Pernet, K., Cormier-Daire, V., Baujat, G., Attié-Bitach, T., Bole-Feysot, C., Nitschke, P., Vekemans, M., Colleaux, L., *et al.* (2018) Whole-exome

- sequence analysis highlights the role of unmasked recessive mutations in copy number variants with incomplete penetrance. *European Journal of Human Genetics*, **26**, 912–918.
- 56. Delio, M., Pope, K., Wang, T., Samanich, J., Haldeman-Englert, C.R., Kaplan, P., Shaikh, T.H., Cai, J., Marion, R.W., Morrow, B.E., *et al.* (2013) Spectrum of elastin sequence variants and cardiovascular phenotypes in 49 patients with Williams–Beuren syndrome. *Am. J. Med. Genet.*, **161**, 527–533.
- 57. Yang, W. and Desiderio, S. (1997) BAP-135, a target for Bruton's tyrosine kinase in response to B cell receptor engagement. *PNAS*, **94**, 604–609.
- 58. Grueneberg, D.A., Henry, R.W., Brauer, A., Novina, C.D., Cheriyath, V., Roy, A.L. and Gilman, M. (1997) A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I. *Genes Dev.*, 11, 2482–2493.
- 59. Roy, A.L., Meisterernst, M., Pognonec, P. and Roeder, R.G. (1991) Cooperative interaction of an initiator-binding transcription initiation factor and the helix—loop—helix activator USF. *Nature*, **354**, 245–248.
- 60. O'Mahoney, J.V., Guven, K.L., Lin, J., Joya, J.E., Robinson, C.S., Wade, R.P. and Hardeman, E.C. (1998) Identification of a Novel Slow-Muscle-Fiber Enhancer Binding Protein, MusTRD1. *Molecular and Cellular Biology*, **18**, 6641–6652.
- 61. Franke, Y., Peoples, R.J. and Francke, U. (1999) Identification of GTF2IRD1, a putative transcription factor within the Williams-Beuren syndrome deletion at 7q11.23. *CGR*, **86**, 296–304.
- 62. Osborne, L.R., Campbell, T., Daradich, A., Scherer, S.W. and Tsui, L.-C. (1999) Identification of a Putative Transcription Factor Gene (WBSCR11) That Is Commonly Deleted in Williams–Beuren Syndrome. *Genomics*, **57**, 279–284.
- 63. Makeyev, A.V. and Bayarsaihan, D. (2009) Alternative splicing and promoter use in TFII-I genes. *Gene*, **433**, 16–25.
- 64. Tipney,H.J., Hinsley,T.A., Brass,A., Metcalfe,K., Donnai,D. and Tassabehji,M. (2004) Isolation and characterisation of GTF2IRD2, a novel fusion gene and member of the TFII-I family of transcription factors, deleted in Williams–Beuren syndrome. *Eur J Hum Genet*, **12**, 551–560.
- 65. Lazebnik, M.B., Tussie-Luna, M.I. and Roy, A.L. (2008) Determination and Functional Analysis of the Consensus Binding Site for TFII-I Family Member BEN, Implicated in Williams-Beuren Syndrome. *J. Biol. Chem.*, **283**, 11078–11082.
- 66. Palmer, S.J., Santucci, N., Widagdo, J., Bontempo, S.J., Taylor, K.M., Tay, E.S.E., Hook, J., Lemckert, F., Gunning, P.W. and Hardeman, E.C. (2010) Negative Autoregulation of

- GTF2IRD1 in Williams-Beuren Syndrome via a Novel DNA Binding Mechanism. *J. Biol. Chem.*, **285**, 4715–4724.
- 67. Lucena, J., Pezzi, S., Aso, E., Valero, M.C., Carreiro, C., Dubus, P., Sampaio, A., Segura, M., Barthelemy, I., Zindel, M.Y., *et al.* (2010) Essential role of the N-terminal region of TFII-I in viability and behavior. *BMC Medical Genetics*, **11**, 61.
- 68. Gunbin, K.V. and Ruvinsky, A. (2012) Evolution of General Transcription Factors. *J Mol Evol*, **76**, 28–47.
- 69. Bayarsaihan, D., Dunai, J., Greally, J.M., Kawasaki, K., Sumiyama, K., Enkhmandakh, B., Shimizu, N. and Ruddle, F.H. (2002) Genomic Organization of the Genes Gtf2ird1, Gtf2i, and Ncf1 at the Mouse Chromosome 5 Region Syntenic to the Human Chromosome 7q11.23 Williams Syndrome Critical Region. *Genomics*, 79, 137–143.
- 70. Enkhmandakh,B., Bitchevaia,N., Ruddle,F. and Bayarsaihan,D. (2004) The early embryonic expression of TFII-I during mouse preimplantation development. *Gene Expression Patterns*, **4**, 25–28.
- 71. Fijalkowska,I., Sharma,D., Bult,C.J. and Danoff,S.K. (2010) Expression of the transcription factor, TFII-I, during post-implantation mouse embryonic development. *BMC Research Notes*, **3**, 203.
- 72. Danoff,S.K., Taylor,H.E., Blackshaw,S. and Desiderio,S. (2004) TFII-I, a candidate gene for Williams syndrome cognitive profile: parallels between regional expression in mouse brain and human phenotype. *Neuroscience*, **123**, 931–938.
- 73. Roy, A.L. (2001) Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. *Gene*, **274**, 1–13.
- 74. Cheriyath, V., Desgranges, Z.P. and Roy, A.L. (2002) c-Src-dependent Transcriptional Activation of TFII-I. *J. Biol. Chem.*, **277**, 22798–22805.
- 75. Sinai, L., Ivakine, E.A., Lam, E., Deurloo, M., Dida, J., Zirngibl, R.A., Jung, C., Aubin, J.E., Feng, Z.-P., Yeomans, J., *et al.* (2015) Disruption of Src Is Associated with Phenotypes Related to Williams-Beuren Syndrome and Altered Cellular Localization of TFII-I. *eNeuro*, **2**, ENEURO.0016-14.2015.
- 76. Caraveo,G., Rossum,D.B. van, Patterson,R.L., Snyder,S.H. and Desiderio,S. (2006) Action of TFII-I Outside the Nucleus as an Inhibitor of Agonist-Induced Calcium Entry. *Science*, **314**, 122–125.
- 77. Deurloo, M.H.S., Turlova, E., Chen, W.-L., Lin, Y.W., Tam, E., Tassew, N.G., Wu, M., Huang, Y.-C., Crawley, J.N., Monnier, P.P., *et al.* (2018) Transcription Factor 2I Regulates Neuronal Development via TRPC3 in 7q11.23 Disorder Models. *Mol Neurobiol*, 10.1007/s12035-018-1290-7.

- 78. Palmer, S.J., Tay, E.S.E., Santucci, N., Cuc Bach, T.T., Hook, J., Lemckert, F.A., Jamieson, R.V., Gunnning, P.W. and Hardeman, E.C. (2007) Expression of Gtf2ird1, the Williams syndrome-associated gene, during mouse development. *Gene Expression Patterns*, 7, 396–404.
- 79. Carmona-Mora, P., Widagdo, J., Tomasetig, F., Canales, C.P., Cha, Y., Lee, W., Alshawaf, A., Dottori, M., Whan, R.M., Hardeman, E.C., *et al.* (2015) The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation. *Hum Genet*, **134**, 1099–1115.
- 80. Masuda, T., Zhang, X., Berlinicke, C., Wan, J., Yerrabelli, A., Conner, E.A., Kjellstrom, S., Bush, R., Thorgeirsson, S.S., Swaroop, A., *et al.* (2014) The Transcription Factor GTF2IRD1 Regulates the Topology and Function of Photoreceptors by Modulating Photoreceptor Gene Expression across the Retina. *J. Neurosci.*, **34**, 15356–15368.
- 81. Hasegawa, Y., Ikeda, K., Chen, Y., Alba, D.L., Stifler, D., Shinoda, K., Hosono, T., Maretich, P., Yang, Y., Ishigaki, Y., *et al.* (2018) Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. *Cell Metabolism*, **27**, 180-194.e6.
- 82. Widagdo, J., Taylor, K.M., Gunning, P.W., Hardeman, E.C. and Palmer, S.J. (2012) SUMOylation of GTF2IRD1 Regulates Protein Partner Interactions and Ubiquitin-Mediated Degradation. *PLoS ONE*, **7**, e49283.
- 83. Vullhorst,D. and Buonanno,A. (2005) Multiple GTF2I-like Repeats of General Transcription Factor 3 Exhibit DNA Binding Properties EVIDENCE FOR A COMMON ORIGIN AS A SEQUENCE-SPECIFIC DNA INTERACTION MODULE. *J. Biol. Chem.*, **280**, 31722–31731.
- 84. Makeyev, A.V., Enkhmandakh, B., Hong, S.-H., Joshi, P., Shin, D.-G. and Bayarsaihan, D. (2012) Diversity and Complexity in Chromatin Recognition by TFII-I Transcription Factors in Pluripotent Embryonic Stem Cells and Embryonic Tissues. *PLOS ONE*, 7, e44443.
- 85. Chimge, N.-O., Mungunsukh, O., Ruddle, F. and Bayarsaihan, D. (2007) Expression profiling of BEN regulated genes in mouse embryonic fibroblasts. *J. Exp. Zool.*, **308B**, 209–224.
- 86. Chimge, N.-O., Mungunsukh, O., Ruddle, F. and Bayarsaihan, D. (2007) Gene expression analysis of TFII-I modulated genes in mouse embryonic fibroblasts. *J. Exp. Zool.*, **308B**, 225–235.
- 87. Enkhmandakh,B., Makeyev,A.V., Erdenechimeg,L., Ruddle,F.H., Chimge,N.-O., Tussie-Luna,M.I., Roy,A.L. and Bayarsaihan,D. (2009) Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development. *PNAS*, **106**, 181–186.

- 88. O'Leary, J. and Osborne, L.R. (2011) Global Analysis of Gene Expression in the Developing Brain of Gtf2ird1 Knockout Mice. *PLoS ONE*, **6**, e23868.
- 89. Corley, S.M., Canales, C.P., Carmona-Mora, P., Mendoza-Reinosa, V., Beverdam, A., Hardeman, E.C., Wilkins, M.R. and Palmer, S.J. (2016) RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome. *BMC Genomics*, 17, 450.
- 90. Borralleras, C., Sahun, I., Pérez-Jurado, L.A. and Campuzano, V. (2015) Intracisternal Gtf2i Gene Therapy Ameliorates Deficits in Cognition and Synaptic Plasticity of a Mouse Model of Williams—Beuren Syndrome. *Mol Ther*, 10.1038/mt.2015.130.
- 91. Ortiz-Romero, P., Borralleras, C., Bosch-Morató, M., Guivernau, B., Albericio, G., Muñoz, F.J., Pérez-Jurado, L.A. and Campuzano, V. (2018) Epigallocatechin-3-gallate improves cardiac hypertrophy and short-term memory deficits in a Williams-Beuren syndrome mouse model. *PLOS ONE*, **13**, e0194476.
- 92. Howard,M.L., Palmer,S.J., Taylor,K.M., Arthurson,G.J., Spitzer,M.W., Du,X., Pang,T.Y.C., Renoir,T., Hardeman,E.C. and Hannan,A.J. (2012) Mutation of Gtf2ird1 from the Williams–Beuren syndrome critical region results in facial dysplasia, motor dysfunction, and altered vocalisations. *Neurobiology of Disease*, **45**, 913–922.
- 93. Segura-Puimedon, M., Sahún, I., Velot, E., Dubus, P., Borralleras, C., Rodrigues, A.J., Valero, M.C., Valverde, O., Sousa, N., Herault, Y., *et al.* (2014) Heterozygous deletion of the Williams–Beuren syndrome critical interval in mice recapitulates most features of the human disorder. *Hum. Mol. Genet.*, **23**, 6481–6494.
- 94. Li,H.H., Roy,M., Kuscuoglu,U., Spencer,C.M., Halm,B., Harrison,K.C., Bayle,J.H., Splendore,A., Ding,F., Meltzer,L.A., *et al.* (2009) Induced chromosome deletions cause hypersociability and other features of Williams–Beuren syndrome in mice. *EMBO Molecular Medicine*, **1**, 50–65.
- 95. Osborne, L.R. (2010) Animal models of Williams syndrome. *Am. J. Med. Genet.*, **154C**, 209–219.
- 96. Sakurai, T., Dorr, N.P., Takahashi, N., McInnes, L.A., Elder, G.A. and Buxbaum, J.D. (2011) Haploinsufficiency of Gtf2i, a gene deleted in Williams Syndrome, leads to increases in social interactions. *Autism Res*, **4**, 28–39.
- 97. Martin, L.A., Iceberg, E. and Allaf, G. Consistent hypersocial behavior in mice carrying a deletion of Gtf2i but no evidence of hyposocial behavior with Gtf2i duplication: Implications for Williams–Beuren syndrome and autism spectrum disorder. *Brain Behav*, 10.1002/brb3.895.
- 98. Durkin, M.E., Keck-Waggoner, C.L., Popescu, N.C. and Thorgeirsson, S.S. (2001) Integration of a c-myc Transgene Results in Disruption of the Mouse Gtf2ird1 Gene, the Homologue

- of the Human GTF2IRD1 Gene Hemizygously Deleted in Williams–Beuren Syndrome. *Genomics*, **73**, 20–27.
- 99. van Hagen, J.M., van der Geest, J.N., van der Giessen, R.S., Lagers-van Haselen, G.C., Eussen, H.J.F.M.M., Gille, J.J.P., Govaerts, L.C.P., Wouters, C.H., de Coo, I.F.M., Hoogenraad, C.C., *et al.* (2007) Contribution of CYLN2 and GTF2IRD1 to neurological and cognitive symptoms in Williams Syndrome. *Neurobiology of Disease*, **26**, 112–124.
- 100. Schneider, T., Skitt, Z., Liu, Y., Deacon, R.M.J., Flint, J., Karmiloff-Smith, A., Rawlins, J.N.P. and Tassabehji, M. (2012) Anxious, hypoactive phenotype combined with motor deficits in Gtf2ird1 null mouse model relevant to Williams syndrome. *Behavioural Brain Research*, **233**, 458–473.
- 101. Young, E.J., Lipina, T., Tam, E., Mandel, A., Clapcote, S.J., Bechard, A.R., Chambers, J., Mount, H.T.J., Fletcher, P.J., Roder, J.C., *et al.* (2008) Reduced fear and aggression and altered serotonin metabolism in Gtf2ird1-targeted mice. *Genes, Brain and Behavior*, 7, 224–234.
- 102. Qiu,Y., Arbogast,T., Lorenzo,S.M., Li,H., Shih,T., Ellen,R., Hong,O., Cho,S., Shanta,O., Timothy,P., *et al.* (2019) Oligogenic effects of 16p11.2 copy number variation on craniofacial development. *bioRxiv*, 10.1101/540732.
- 103. Iyer, J., Singh, M.D., Jensen, M., Patel, P., Pizzo, L., Huber, E., Koerselman, H., Weiner, A.T., Lepanto, P., Vadodaria, K., *et al.* (2018) Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster. *Nature Communications*, **9**, 2548.
- 104. Li,D.Y., Toland,A.E., Boak,B.B., Atkinson,D.L., Ensing,G.J., Morris,C.A. and Keating,M.T. (1997) Elastin Point Mutations Cause an Obstructive Vascular Disease, Supravalvular Aortic Stenosis. *Hum Mol Genet*, **6**, 1021–1028.
- 105. Ashe,A., Morgan,D.K., Whitelaw,N.C., Bruxner,T.J., Vickaryous,N.K., Cox,L.L., Butterfield,N.C., Wicking,C., Blewitt,M.E., Wilkins,S.J., *et al.* (2008) A genome-wide screen for modifiers of transgene variegation identifies genes with critical roles in development. *Genome Biology*, **9**, R182.
- 106. Fujiwara, T., Sanada, M., Kofuji, T. and Akagawa, K. (2016) Unusual social behavior in HPC-1/syntaxin1A knockout mice is caused by disruption of the oxytocinergic neural system. *J. Neurochem.*, 10.1111/jnc.13634.
- 107. Gao, M.C., Bellugi, U., Dai, L., Mills, D.L., Sobel, E.M., Lange, K. and Korenberg, J.R. (2010) Intelligence in Williams Syndrome Is Related to STX1A, Which Encodes a Component of the Presynaptic SNARE Complex. *PLOS ONE*, **5**, e10292.
- 108. Hoogenraad, C.C., Koekkoek, B., Akhmanova, A., Krugers, H., Dortland, B., Miedema, M., van Alphen, A., Kistler, W.M., Jaegle, M., Koutsourakis, M., *et al.* (2002) Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115

- haploinsufficiency to neurodevelopmental abnormalities in mice. *Nat Genet*, **32**, 116–127.
- 109. Meng, Y., Zhang, Y., Tregoubov, V., Janus, C., Cruz, L., Jackson, M., Lu, W.-Y., MacDonald, J.F., Wang, J.Y., Falls, D.L., *et al.* (2002) Abnormal Spine Morphology and Enhanced LTP in LIMK-1 Knockout Mice. *Neuron*, **35**, 121–133.
- 110. Gosch, A. and Pankau, R. (1997) Personality characteristics and behaviour problems in individuals of different ages with Williams syndrome. *Developmental Medicine & Child Neurology*, **39**, 527–533.
- 111. Reilly, J., Klima, E.S. and Bellugi, U. (1990) Once more with feeling: Affect and language in atypical populations. *Development and Psychopathology*, **2**, 367–391.
- 112. Tager-Flusberg, H. and Sullivan, K. (2000) A componential view of theory of mind: evidence from Williams syndrome. *Cognition*, **76**, 59–90.
- 113. Klein-Tasman, B.P., Mervis, C.B., Lord, C. and Phillips, K.D. (2007) Socio-Communicative Deficits in Young Children with Williams Syndrome: Performance on the Autism Diagnostic Observation Schedule. *Child Neuropsychology*, **13**, 444–467.
- 114. Klein-Tasman, B.P., Phillips, K.D., Lord, C.E., Mervis, C.B. and Gallo, F. (2009) Overlap with the Autism Spectrum in Young Children with Williams Syndrome. *J Dev Behav Pediatr*, **30**, 289–299.
- 115. Richards, C., Jones, C., Groves, L., Moss, J. and Oliver, C. (2015) Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. *The Lancet Psychiatry*, **2**, 909–916.
- 116. Brawn, G. and Porter, M. (2014) Adaptive functioning in Williams syndrome and its relation to demographic variables and family environment. *Research in Developmental Disabilities*, **35**, 3606–3623.
- 117. Jabbi, M., Chen, Q., Turner, N., Kohn, P., White, M., Kippenhan, J.S., Dickinson, D., Kolachana, B., Mattay, V., Weinberger, D.R., *et al.* (2015) Variation in the Williams syndrome GTF2I gene and anxiety proneness interactively affect prefrontal cortical response to aversive stimuli. *Transl Psychiatry*, 5, e622.
- 118. Procyshyn, T.L., Spence, J., Read, S., Watson, N.V. and Crespi, B.J. (2017) The Williams syndrome prosociality gene GTF2I mediates oxytocin reactivity and social anxiety in a healthy population. *Biology Letters*, **13**, 20170051.
- 119. Constantino JN and Todd RD (2003) Autistic traits in the general population: A twin study. *Arch Gen Psychiatry*, **60**, 524–530.
- 120. Moreno-De-Luca, A., Evans, D.W., Boomer, K.B., Hanson, E., Bernier, R., Goin-Kochel, R.P., Myers, S.M., Challman, T.D., Moreno-De-Luca, D., Slane, M.M., *et al.* (2015) The Role of

- Parental Cognitive, Behavioral, and Motor Profiles in Clinical Variability in Individuals With Chromosome 16p11.2 Deletions. *JAMA Psychiatry*, **72**, 119–126.
- 121. Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E., Cicek, A.E., Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., *et al.* (2015) Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. *Neuron*, **87**, 1215–1233.
- 122. Klein-Tasman,B.P. and Mervis,C.B. (2003) Distinctive Personality Characteristics of 8-, 9-, and 10-Year-Olds With Williams Syndrome. *Developmental Neuropsychology*, **23**, 269–290.
- 123. Einfeld,S.L., Tonge,B.J. and Florio,T. (1997) Behavioral and Emotional Disturbance in Individuals With Williams Syndrome. *American Journal on Mental Retardation*, **102**, 45–53.
- 124. Einfeld,S.L., Tonge,B.J. and Rees,V.W. (2001) Longitudinal Course of Behavioral and Emotional Problems in Williams Syndrome. *American Journal on Mental Retardation*, **106**, 73–81.
- 125. Switaj, D.M. (2001) Identification and measurement of anxiety and obsessive-compulsive tendencies in the Williams Syndrome behavioral phenotype.
- 126. Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K. and Liu, X. (2015) Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. *Hum Mol Genet*, **24**, 2125–2137.
- 127. Li,D.Y., Brooke,B., Davis,E.C., Mecham,R.P., Sorensen,L.K., Boak,B.B., Eichwald,E. and Keating,M.T. (1998) Elastin is an essential determinant of arterial morphogenesis. *Nature*, **393**, 276–280.
- 128. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., *et al.* (2009) Finding the missing heritability of complex diseases. *Nature*, **461**, 747–753.
- 129. Brook, J.D., McCurrach, M.E., Harley, H.G., Buckler, A.J., Church, D., Aburatani, H., Hunter, K., Stanton, V.P., Thirion, J.-P., Hudson, T., *et al.* (1992) Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. *Cell*, **68**, 799–808.
- 130. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia (2017) *Mol Autism*, **8**.
- 131. Euesden, J., Lewis, C.M. and O'Reilly, P.F. (2015) PRSice: Polygenic Risk Score software. *Bioinformatics*, **31**, 1466–1468.

- 132. Anney, R., Klei, L., Pinto, D., Almeida, J., Bacchelli, E., Baird, G., Bolshakova, N., Bölte, S., Bolton, P.F., Bourgeron, T., *et al.* (2012) Individual common variants exert weak effects on the risk for autism spectrum disorders. *Hum. Mol. Genet.*, **21**, 4781–4792.
- 133. Joyce, C.A., Zorich, B., Pike, S.J., Barber, J.C. and Dennis, N.R. (1996) Williams-Beuren syndrome: phenotypic variability and deletions of chromosomes 7, 11, and 22 in a series of 52 patients. *J Med Genet*, **33**, 986–992.
- 134. Porter, M.A. and Coltheart, M. (2005) Cognitive Heterogeneity in Williams Syndrome. *Developmental Neuropsychology*, **27**, 275–306.
- 135. Lek,M., Karczewski,K.J., Minikel,E.V., Samocha,K.E., Banks,E., Fennell,T., O'Donnell-Luria,A.H., Ware,J.S., Hill,A.J., Cummings,B.B., *et al.* (2016) Analysis of protein-coding genetic variation in 60,706 humans. *Nature*, **536**, 285–291.
- 136. Crespi,B.J. and Procyshyn,T.L. (2017) Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. *Neuroscience & Biobehavioral Reviews*, **79**, 14–26.
- 137. Ekström, A.-B., Hakenäs-Plate, L., Samuelsson, L., Tulinius, M. and Wentz, E. (2008) Autism spectrum conditions in myotonic dystrophy type 1: A study on 57 individuals with congenital and childhood forms. *Am. J. Med. Genet.*, **147B**, 918–926.
- 138. Constantino, J.N., Davis, S.A., Todd, R.D., Schindler, M.K., Gross, M.M., Brophy, S.L., Metzger, L.M., Shoushtari, C.S., Splinter, R. and Reich, W. (2003) Validation of a Brief Quantitative Measure of Autistic Traits: Comparison of the Social Responsiveness Scale with the Autism Diagnostic Interview-Revised. *J Autism Dev Disord*, 33, 427–433.
- 139. Sturm, A., Kuhfeld, M., Kasari, C. and McCracken, J.T. (2017) Development and validation of an item response theory-based Social Responsiveness Scale short form. *Journal of Child Psychology and Psychiatry*, **58**, 1053–1061.
- 140. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. *Bioinformatics*, **25**, 1754–1760.
- 141. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, **25**, 2078–2079.
- 142. DePristo,M.A., Banks,E., Poplin,R., Garimella,K.V., Maguire,J.R., Hartl,C., Philippakis,A.A., del Angel,G., Rivas,M.A., Hanna,M., *et al.* (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet*, **43**, 491–498.
- 143. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., *et al.* (2011) The variant call format and VCFtools. *Bioinformatics*, **27**, 2156–2158.

- 144. Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res*, **38**, e164.
- 145. Landrum, M.J., Lee, J.M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Hoover, J., *et al.* (2016) ClinVar: public archive of interpretations of clinically relevant variants. *Nucleic Acids Res*, 44, D862–D868.
- 146. Liu,X., Wu,C., Li,C. and Boerwinkle,E. (2016) dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. *Human Mutation*, **37**, 235–241.
- 147. Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet*, **46**, 310–315.
- 148. Purcell,S., Cherny,S.S. and Sham,P.C. (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. *Bioinformatics*, **19**, 149–150.
- 149. Purcell,S., Neale,B., Todd-Brown,K., Thomas,L., Ferreira,M.A.R., Bender,D., Maller,J., Sklar,P., de Bakker,P.I.W., Daly,M.J., *et al.* (2007) PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. *The American Journal of Human Genetics*, **81**, 559–575.
- 150. Lee,S., Wu,M.C. and Lin,X. (2012) Optimal tests for rare variant effects in sequencing association studies. *Biostat*, **13**, 762–775.
- 151. Turner, S.D. (2014) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. *bioRxiv*, 10.1101/005165.
- 152. Schaefer, M.L., Wong, S.T., Wozniak, D.F., Muglia, L.M., Liauw, J.A., Zhuo, M., Nardi, A., Hartman, R.E., Vogt, S.K., Luedke, C.E., *et al.* (2000) Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. *J. Neurosci.*, **20**, 4809–4820.
- 153. Barak,B., Zhang,Z., Liu,Y., Nir,A., Trangle,S.S., Ennis,M., Levandowski,K.M., Wang,D., Quast,K., Boulting,G.L., *et al.* (2019) Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. *Nature Neuroscience*, **22**, 700.
- 154. Bayarsaihan, D. and Ruddle, F.H. (2000) Isolation and characterization of BEN, a member of the TFII-I family of DNA-binding proteins containing distinct helix—loop—helix domains. *PNAS*, **97**, 7342–7347.
- 155. Bayarsaihan, D., Makeyev, A.V. and Enkhmandakh, B. (2012) Epigenetic modulation by TFII-I during embryonic stem cell differentiation. *Journal of Cellular Biochemistry*, **113**, 3056–3060.
- 156. Peña-Hernández, R., Marques, M., Hilmi, K., Zhao, T., Saad, A., Alaoui-Jamali, M.A., Rincon, S.V. del, Ashworth, T., Roy, A.L., Emerson, B.M., et al. (2015) Genome-wide

- targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I. *PNAS*, **112**, E677–E686.
- 157. Oya,H., Yokoyama,A., Yamaoka,I., Fujiki,R., Yonezawa,M., Youn,M.-Y., Takada,I., Kato,S. and Kitagawa,H. (2009) Phosphorylation of Williams Syndrome Transcription Factor by MAPK Induces a Switching between Two Distinct Chromatin Remodeling Complexes. *J. Biol. Chem.*, **284**, 32472–32482.
- 158. Hinsley, T.A., Cunliffe, P., Tipney, H.J., Brass, A. and Tassabehji, M. (2004) Comparison of TFII-I gene family members deleted in Williams-Beuren syndrome. *Protein Science*, **13**, 2588–2599.
- 159. Deacon, R.M.J., Croucher, A. and Rawlins, J.N.P. (2002) Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. *Behavioural Brain Research*, **132**, 203–213.
- 160. Kopp,N.D., McCullough,K., Maloney,S.E. and Dougherty,J.D. (2019) Gtf2i and Gtf2ird1 mutation are not sufficient to reproduce mouse phenotypes caused by the Williams Syndrome critical region. *bioRxiv*, 10.1101/558544.
- 161. Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, **30**, 2114–2120.
- 162. Langmead,B., Wilks,C., Antonescu,V. and Charles,R. (2019) Scaling read aligners to hundreds of threads on general-purpose processors. *Bioinformatics*, **35**, 421–432.
- 163. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008) Model-based Analysis of ChIP-Seq (MACS). *Genome Biology*, 9, R137.
- 164. Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*, **26**, 841–842.
- 165. Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, **26**, 139–140.
- 166. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H. and Glass, C.K. (2010) Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. *Molecular Cell*, **38**, 576–589.
- 167. Stamatoyannopoulos, J.A., Snyder, M., Hardison, R., Ren, B., Gingeras, T., Gilbert, D.M., Groudine, M., Bender, M., Kaul, R., Canfield, T., *et al.* (2012) An encyclopedia of mouse DNA elements (Mouse ENCODE). *Genome Biology*, **13**, 418.

- 168. Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F. and Manke, T. (2016) deep Tools 2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res*, 44, W160–W165.
- 169. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T.R. (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, **29**, 15–21.
- 170. Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq—a Python framework to work with high-throughput sequencing data. *Bioinformatics*, **31**, 166–169.
- 171. Maloney, S.E., Akula, S., Rieger, M.A., McCullough, K.B., Chandler, K., Corbett, A.M., McGowin, A.E. and Dougherty, J.D. (2018) Examining the Reversibility of Long-Term Behavioral Disruptions in Progeny of Maternal SSRI Exposure. *eNeuro*, 5.
- 172. Maloney, S., Yuede, C.M., Creeley, C.E., Huffman, J., Taylor, G., Noguchi, K. and Wozniak, D.F. (in press) Repeated neonatal isoflurane exposures in the mouse induce apoptotic degenerative changes in the brain with relatively mild long-term behavioral deficits. *Scientific Reports*.
- 173. Hothorn, T., Bretz, F. and Westfall, P. (2008) Simultaneous Inference in General Parametric Models. *Biometrical Journal*, **50**, 346–363.
- 174. Kopp,N.D., Parrish,P.C.R., Lugo,M., Dougherty,J.D. and Kozel,B.A. Exome sequencing of 85 Williams–Beuren syndrome cases rules out coding variation as a major contributor to remaining variance in social behavior. *Molecular Genetics & Genomic Medicine*, **0**.
- 175. Ghaffari, M., Birgani, M.T., Kariminejad, R. and Saberi, A. (2018) Genotype—phenotype correlation and the size of microdeletion or microduplication of 7q11.23 region in patients with Williams-Beuren syndrome. *Annals of Human Genetics*, **82**, 469–476.
- 176. Howald, C., Merla, G., Digilio, M.C., Amenta, S., Lyle, R., Deutsch, S., Choudhury, U., Bottani, A., Antonarakis, S.E., Fryssira, H., *et al.* (2006) Two high throughput technologies to detect segmental aneuploidies identify new Williams-Beuren syndrome patients with atypical deletions. *Journal of Medical Genetics*, **43**, 266–273.
- 177. Rieger, M.A. and Dougherty, J.D. (2016) Analysis of within Subjects Variability in Mouse Ultrasonic Vocalization: Pups Exhibit Inconsistent, State-Like Patterns of Call Production. *Front. Behav. Neurosci.*, **10**.
- 178. Lindzey, G., Manosevitz, M. and Winston, H. (1966) Social dominance in the mouse. *Psychon Sci*, **5**, 451–452.
- 179. Thomas, A., Burant, A., Bui, N., Graham, D., Yuva-Paylor, L.A. and Paylor, R. (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. *Psychopharmacology (Berl)*, **204**, 361–373.

- 180. Mervis, C.B. and John, A.E. (2010) Cognitive and behavioral characteristics of children with Williams syndrome: Implications for intervention approaches. *Am. J. Med. Genet.*, **154C**, 229–248.
- 181. Strekalova, T., Zörner, B., Zacher, C., Sadovska, G., Herdegen, T. and Gass, P. (2003) Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus. *Genes, Brain and Behavior*, **2**, 3–10.
- 182. Borralleras, C., Mato, S., Amédée, T., Matute, C., Mulle, C., Pérez-Jurado, L.A. and Campuzano, V. (2016) Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. *Molecular Brain*, **9**, 76.
- 183. Nygaard, K.R., Maloney, S.E. and Dougherty, J.D. (2019) Erroneous inference based on a lack of preference within one group: autism, mice, and the Social Approach Task. *bioRxiv*, 10.1101/530279.
- 184. Knoll, A.T., Jiang, K. and Levitt, P. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits. *Genes, Brain and Behavior*, 10.1111/gbb.12431.
- 185. Owen,E.H., Logue,S.F., Rasmussen,D.L. and J. M. Wehner (1997) Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. *Neuroscience*, **80**, 1087–1099.
- 186. Brill, S., Li, S., Lyman, C.W., Church, D.M., Wasmuth, J.J., Weissbach, L., Bernards, A. and Snijders, A.J. (1996) The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. *Molecular and Cellular Biology*, **16**, 4869–4878.
- 187. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., *et al.* (2012) Fiji: an open-source platform for biological-image analysis. *Nature Methods*, **9**, 676–682.
- 188. Young, M.D., Wakefield, M.J., Smyth, G.K. and Oshlack, A. (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biology*, **11**, R14.
- 189. Branchi, I., Santucci, D. and Alleva, E. (2001) Ultrasonic vocalisation emitted by infant rodents: a tool for assessment of neurobehavioural development. *Behavioural Brain Research*, **125**, 49–56.
- 190. Maloney, S.E., Chandler, K.C., Anastasaki, C., Rieger, M.A., Gutmann, D.H. and Dougherty, J.D. (2018) Characterization of early communicative behavior in mouse models of neurofibromatosis type 1. *Autism Research*, 11, 44–58.
- 191. Holy, T.E. and Guo, Z. (2005) Ultrasonic Songs of Male Mice. *PLOS Biology*, **3**, e386.

- 192. Wozniak, D.F., Hartman, R.E., Boyle, M.P., Vogt, S.K., Brooks, A.R., Tenkova, T., Young, C., Olney, J.W. and Muglia, L.J. (2004) Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. *Neurobiology of Disease*, **17**, 403–414.
- 193. Moy,S.S., Nadler,J.J., Young,N.B., Nonneman,R.J., Segall,S.K., Andrade,G.M., Crawley,J.N. and Magnuson,T.R. (2008) Social approach and repetitive behavior in eleven inbred mouse strains. *Behavioural Brain Research*, **191**, 118–129.
- 194. Dougherty, J.D., Maloney, S.E., Wozniak, D.F., Rieger, M.A., Sonnenblick, L., Coppola, G., Mahieu, N.G., Zhang, J., Cai, J., Patti, G.J., *et al.* (2013) The Disruption of Celf6, a Gene Identified by Translational Profiling of Serotonergic Neurons, Results in Autism-Related Behaviors. *J. Neurosci.*, 33, 2732–2753.
- 195. Nadler, J.J., Moy, S.S., Dold, G., Simmons, N., Perez, A., Young, N.B., Barbaro, R.P., Piven, J., Magnuson, T.R. and Crawley, J.N. (2004) Automated apparatus for quantitation of social approach behaviors in mice. *Genes, Brain and Behavior*, **3**, 303–314.
- 196. Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z. and Hu, H. (2011) Bidirectional Control of Social Hierarchy by Synaptic Efficacy in Medial Prefrontal Cortex. *Science*, **334**, 693–697.
- 197. Grady,R.M., Wozniak,D.F., Ohlemiller,K.K. and Sanes,J.R. (2006) Cerebellar Synaptic Defects and Abnormal Motor Behavior in Mice Lacking α- and β-Dystrobrevin. *J. Neurosci.*, **26**, 2841–2851.
- 198. Brown, J.A., Emnett, R.J., White, C.R., Yuede, C.M., Conyers, S.B., O'Malley, K.L., Wozniak, D.F. and Gutmann, D.H. (2010) Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. *Hum Mol Genet*, **19**, 4515–4528.
- 199. Boyle, M.P., Kolber, B.J., Vogt, S.K., Wozniak, D.F. and Muglia, L.J. (2006) Forebrain Glucocorticoid Receptors Modulate Anxiety-Associated Locomotor Activation and Adrenal Responsiveness. *J. Neurosci.*, **26**, 1971–1978.
- 200. Brody,S.A., Nakanishi,N., Tu,S., Lipton,S.A. and Geyer,M.A. (2005) A Developmental Influence of the N-Methyl-D-Aspartate Receptor NR3A Subunit on Prepulse Inhibition of Startle. *Biological Psychiatry*, **57**, 1147–1152.
- 201. Wozniak, D.F., Xiao, M., Xu, L., Yamada, K.A. and Ornitz, D.M. (2007) Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14. *Neurobiology of Disease*, **26**, 14–26.
- 202. Yuede, C.M., Olney, J.W. and Creeley, C.E. (2013) Developmental Neurotoxicity of Alcohol and Anesthetic Drugs Is Augmented by Co-Exposure to Caffeine. *Brain Sciences*, **3**, 1128–1152.
- 203. Fox,J. and Weisberg,S. (2011) An R Companion to Applied Regression Second. Sage.

- 204. Jensen, M. and Girirajan, S. (2019) An interaction-based model for neuropsychiatric features of copy-number variants. *PLOS Genetics*, **15**, e1007879.
- 205. Khera, A.V., Chaffin, M., Aragam, K.G., Haas, M.E., Roselli, C., Choi, S.H., Natarajan, P., Lander, E.S., Lubitz, S.A., Ellinor, P.T., *et al.* (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. *Nature Genetics*, **50**, 1219–1224.
- 206. Dai, L., Carter, C.S., Ying, J., Bellugi, U., Pournajafi-Nazarloo, H. and Korenberg, J.R. (2012) Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior. *PLoS ONE*, 7, e38513.
- 207. Guzmán, Y.F., Tronson, N.C., Jovasevic, V., Sato, K., Guedea, A.L., Mizukami, H., Nishimori, K. and Radulovic, J. (2013) Fear-enhancing effects of septal oxytocin receptors. *Nature Neuroscience*, **16**, 1185.