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ABSTRACT OF THE DISSERTATION 

Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior 

Using Mouse Models and Human Genetics  

by 

Nathan Kopp 
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Washington University in St. Louis, 2019 

Professor Joseph D. Dougherty, Ph.D. Chair 

 
 

Williams syndrome is a neurodevelopmental model caused by the deletion of 26-28 genes on 

chr7q11.23. The loss of these genes affects multiple organ systems resulting in severe 

cardiovascular disease, craniofacial dysmorphology, intellectual impairment, a specific Williams 

syndrome cognitive profile made up of deficits in visual-spatial processing with preserved 

language skills, and a characteristic hypersocial personality. The reciprocal duplication occurs at 

a lower frequency and manifests with diametric phenotypes to the deletion. This suggests that 

this locus harbors dosage sensitive genes that play a role in neurodevelopment. Large efforts 

have been taken to identify which genes are responsible for causing the different aspects of the 

disorder. Only the cardiovascular phenotype has been linked to the hemizgosity of the ELN gene. 

In order to incorporate the complexity of genetic contributions to complex traits, we synthesize 

genetic and behavioral analyses in both humans and mouse models. We performed whole exome 

sequencing on 85 individuals with Williams syndrome to test the hypothesis that genetic 

variation on the remaining chr7q11.23 allele contributes to variation in the social phenotype. We 
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show that the social phenotype consists of deficits in several aspects of social behavior, but 

social motivation is preserved in Williams syndrome. Whole exome sequencing revealed that 

there is little common variation contribution to the variability of the social phenotype but did 

suggest involvement of SNPs in the BAZ1B and GTF2IRD1 genes. Using mouse models, we 

generated three new mouse lines to test the hypothesis that two genes in the syntenic region, 

Gtf2i and Gtf2ird1, share overlapping DNA targets and both contribute to overlapping behavioral 

phenotypes suggesting an oligogenic contribution of these genes to phenotypes relevant to WS. 

Finally, we show that loss of function mutations in both Gtf2i and Gtf2ird1 are not sufficient to 

reproduce the full phenotype that is produced by deleting the entire syntenic Williams syndrome 

critical region in mice. Taken together these data suggest an oligogenic pattern of contribution to 

the phenotypes seen in WS.   
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Chapter 1: Introduction  
 

The aim of human genetics is to identify the genes that contribute to human biology. This 

approach will allow us to study the underlying mechanisms that manifest as interesting human 

phenotypes, such as our complex central nervous system, which gives rise to many diverse 

behaviors. Geneticists have developed and employed many approaches to elucidate genes that 

are important for specific human traits. These include linkage analysis, genome-wide association, 

whole-exome sequencing studies, and whole-genome sequencing studies. These tools have 

driven the progress of genotype-phenotype correlations and resulted in many important 

discoveries.  

 Along with sophisticated approaches, human genetics has been informed by identifying 

genes that cause human diseases. The underlying genetic causes of the disorder highlights the 

functional pathways in which the causal gene plays an important role. From these natural 

experiments the genetic search space is narrowed from the 3 billion base pairs that make up the 

human genome to a specific gene that can then be studied at different levels of genomic and 

biological organization. Some disorders are not caused by the disruption of one gene, but by a 

change in the dosage of many contiguous genes. These copy number variation disorders point to 

a region in the genome that affect multiple aspects of human development, such as 

neurodevelopment, cardiovascular development, and craniofacial development. However, copy 

number disorders offer a unique challenge, because while they emphasize the importance of a 

specific genomic region, there are still many genes and many phenotypes to disentangle. The 
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question then becomes, which genes in the region are responsible for causing the specific 

phenotypes seen in the disorder.  

 Williams-Beuren syndrome (WS) is one such copy number variation disorder. It is 

caused by the deletion of chromosome 7q11.23, referred to as the Williams syndrome critical 

region (WSCR), and results in a constellation of phenotypes that include cardiovascular disease, 

craniofacial dysmorphology, a specific cognitive profile, and a characteristic hypersocial 

personality (1, 2). There are 26-28 genes that are commonly deleted in WS. Large efforts have 

been put forth to connect specific genes in the region to specific phenotypes in the syndrome. 

The only substantiated monogenic contribution of a causal gene in the WSCR is to the 

cardiovascular phenotype driven by the elastin gene (ELN) (3), leaving much more work to be 

done to understand how the genes in this region affect complex phenotypes such as cognition 

and social behavior.  

The research presented in this thesis uses both human genetic techniques as well as 

mouse models to dissect the effect of genes in the WSCR on different aspects of behavior. I 

analyzed the whole-exome sequences of 85 individuals with WS to test if variation on the 

remaining chr7q11.23 allele, as well as exome-wide variation, contributes to the social 

phenotype, providing the largest genetic analysis of individuals with WS. I have also leveraged 

the experimental advantages of the mouse model organism to ask how two genes in the WSCR, 

Gtf2i and Gtf2ird1, interact in the developing mouse brain. I go on to show that in the mouse, 

these genes are not sufficient to produce the behavioral and transcriptional phenotypes of the full 

deletion. I have tested several longstanding hypotheses in the field of Williams syndrome 

genetics through my experiments and provide evidence that the genetic risk for the phenotypes 

observed in WS are not solely driven by these two transcription factors. 
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1.1 History and description of Williams syndrome 
 Williams-Beuren syndrome (OMIM #194050) was first recognized as a syndrome by two 

physicians in the early 1960’s. First, in 1961 Williams et al. described four cases of children that 

were being treated for supravalvular aortic stenosis (SVAS). Williams observed that the children 

were “mentally deficient” and had similar facial features. He thought the similarities could be a 

part of a previously unrecognized syndrome (4). In 1962 Bueren et al. described three more 

patients that had SVAS, intellectual disability, and craniofacial features that were remarkably 

similar to the patients described by Williams et al. Beuren mentioned that all the children had a 

friendly nature and “loved everyone” (5). This observation is the first description of the 

gregarious personality that is now recognized as a hallmark of WS.  

Since the association between the cardiovascular disease, intellectual disability, and 

craniofacial features made by Williams and Beuren, the genetic etiology of WS has been well-

defined. The ELN gene on chromosome seven was discovered to be the cause of familial SVAS , 

in a linkage analysis of one kindred (6). Subsequently, it was shown that individuals with WS 

were hemizygous for the ELN gene and that the hemizygosity extended beyond the ELN locus, 

suggesting that WS is caused by a contiguous deletion on chromosome seven (3).  These findings 

lead to the use of ELN FISH probes as the first clinical genetic test for WS (7). Using artificial 

chromosomes the 1.5Mbp region on chromosome seven that is deleted in WS has been 

delineated (8–10). The region contains 26 genes that are commonly deleted and two more genes 

that are deleted in the longer 1.8Mbp version of the deletion.   The WSCR was found to be 

demarcated by three regions of low copy repeats: the centromeric, medial, and distal regions (9, 

11). Within each region there are three blocks that consist of repeated genes. Block A contains 

the three pseudogenes of the STAG3 gene, PMS2L, and GATS. The medial block B contains the 
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functional genes GTF2I, NCF1, and GTF2IRD2, where the centromeric and telomeric block B 

contains the corresponding pseudogenes. Block C contains POM121, NSUN5, and TRIM50 (11). 

The low copy repeat blocks themselves are demarcated by Alu repeats. These low copy repeats 

facilitate non homologous allelic recombination (NHAR), which leads to the recurrent deletion 

and duplication of the region (12). The most common 1.5Mbp deletion, which occurs in about 

95% of cases, is caused by misalignement of the B centromeric and B medial blocks, which have 

99.6% sequence identity. The less common larger 1.8Mbp deletion, with a prevalence of 3-5% of 

cases, occurs by the misalignment of the A centeromeric and A medial blocks, which have 

98.2% sequence identity (13). This well-defined and common genetic cause of most cases of WS 

makes studying this disorder an excellent opportunity to make genotype-phenotype correlations.  

 Along with the well-characterized genetic cause of WS, the phenotypic spectrum of the 

constellation of symptoms in WS has been thoroughly described and reviewed by many 

researchers (1, 2, 13–16). The cardiovascular disease in WS manifests as SVAS as well as other 

focal artery stenoses and affects all elastic vessels. Other issues also relate to connective tissues 

such as lax skin and join hypermobility have been attributed to ELN haploinsufficiency. The 

facial dysmorphology consists of periorbital fullness, long philtrum, full lips, stellate irises, low 

nasal bridge, micrognathia, microcephaly, and dental problems. The deletion also affects the 

endocrine system and results in precocious puberty, subclinical hypothyroidism, and an 

increased prevalence of diabetes milletus. Neurological symptoms include poor balance and 

coordination, hypotonia, and hyperacusis.  

Of particular interest to this thesis are the cognitive and behavioral phenotypes of WS. 

The deletion of the WSCR has a specific effect on cognition and this gestalt is termed the 

Williams syndrome cognitive profile (WSCP). Individuals with WS have a wide range of 
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intellectual ability as measured by different tests for intelligence quotient (IQ). IQ scores span 

from severe intellectual disability (ID) to average scores of IQ. Despite overall lower levels of IQ 

the WSCP consists of relative strengths in auditory rote memory and verbal skills coupled with 

impairment in visual spatial construction. The definition of the WSCP was standardized by 

Mervis et al. (17).  Along with a specific cognitive profile, WS is associated with a characteristic 

hypersocial personality (14).  The social aspect of WS consists of increased attention to faces. 

Eye tracking studies have shown that individuals with WS fixate on eyes for longer periods of 

time compared to typically developing children (18). In observational studies, children with WS 

tend to focus on the experimenter rather than toys (14).  Individuals with WS are more likely to 

approach strangers and have overall increased global sociability as measured by the Salk 

Institute Sociability Questionnaire (19).  While there are prosocial aspects to the hypersocial 

phenotype of WS, it also consists of a maladaptive component. Individuals with WS have 

difficulties in social cognition and responding appropriately in social situations (20). Beyond 

differences in sociality, individuals with WS have other psychiatric comorbidities, that include 

anxiety, specifically non social anxiety, phobias, and attention deficit/hyperactivity disorder 

(ADHD) (21, 22). Thus, the constellation of symptoms that make up WS gives geneticists a 

unique window into the genetic underpinnings of many different aspects of human cognition and 

behavior.  

 The presence of the low copy repeats that are responsible for the recurrent deletion of the 

WSCR should also predispose the region to duplications. The first case of an individual with the 

duplication was described in 2005 (23). The duplication of the region results in dup7q11.23 

syndrome (OMIM #609757).  The symptoms of 7q11.23 have been described by Mervis and 

Morris (24, 25). The phenotypes are generally more mild than in the deletion of the region. Mild 
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craniofacial dysmorphology has been reported but it is not as consistent as in WS. There are 

some cases that have cardiovascular anomalies that present as dilated blood vessels. However, 

the most consistent phenotype of the duplication is language delay. The duplication has been 

associated with autism spectrum disorders (ASD) (26), but in a rigorous study of ASD 

symptomology in 7q11.23 dup syndrome and WS, it was found there is a similar prevalence of 

ASD diagnosis in both disorders (27, 28). However, in contrast to the social fearlessness in WS, 

it was reported that there is a higher proportion of children with the duplication that have 

separation anxiety (29). The observation of some diametric phenotypes in 7q11.23dup syndrome 

compared to WS corroborates the idea that genes in this region are dosage sensitive and affect 

aspects of human behavior. One goal of the work I have done was to use human genetics to 

provide evidence for the role of specific genes in the WSCR to the behavioral phenotypes.  

1.2 Genotype-phenotype correlations using human genetics 
 The knowledge that the WSCR causes WS and dup7q11.23 has launched many efforts to 

try and dissect the region to identify which genes are responsible for specific symptoms in each 

disorder. One avenue of research has been to make these genotype-phenotype correlations 

directly in humans. Human research in WS has employed three strategies: 1) compare 

individuals with atypically small deletions of the WSCR to individuals with the typical deletion 

to ask what the differences are when some genes are spared, 2) use iPSC lines derived from 

patients with WS, dup7q11.23, and atypical deletions to test molecular and cellular effects of the 

region, and 3) using classical human genetic strategies to identify variation in the general 

population in this region that is associated with phenotypes of interest. While each strategy has 

unique benefits and limitations, each has provided insight into the genetic contributions of the 

WSCR to different phenotypes seen in WS.   
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1.2.1 Atypical deletions 
 WS is caused by the deletion of 1.5Mbp, which covers 26 genes, in 95% of cases. In 3-

5% of cases of WS, a 1.8Mbp deletion removes one copy of two more genes, NCF1 and 

GTF2IRD2. In addition, there are a very small percentage of cases that are caused by atypically 

small deletions that maintain the normal copy number of a subset of genes. Researchers have 

explicated the different phenotypes of individuals with atypical deletions to understand the 

contribution of the spared genes to the phenotypes observed in typical cases of WS.  

 While most cases of WS are caused by de novo deletions, there are instances of smaller 

inherited deletions that allow the study of atypical deletions across several family members. Two 

families were ascertained based on the presence of SVAS and only a few clinical features of WS.  

These families were tested to show that they had smaller deletions that encompassed the ELN 

gene and the LIMK1 gene. The phenotypes of the family members that had the deletion included 

cardiovascular disease, usually SVAS, a few of the craniofacial features of WS but not all of 

them, and deficits in their visual spatial cognition with auditory rote memory similar to the 

unaffected family members, consistent with the WSCP (30). This, along with expression data 

showing that LIMK1 is present in the brain, led the authors to conclude that the LIMK1 gene is 

important for the manifestation of the visual spatial impairment (30). Another study analyzed the 

two aforementioned families and three more kindred with inherited small deletions. The three 

new deletions all included ELN and LIMK1, and either extended centromerically or 

telomerically. All of the family members had two copies of the GTF2I gene. The affected 

members in each kindred had some craniofacial features, and fit the WSCP with poor visual 

spatial cognition. All affected family members had similar overall IQ that was in the normal 

range. These data gave further support that the LIMK1 gene is sufficient to cause the visual 
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spatial deficit, and since none of the deletions included the GTF2I gene, this gene was 

considered important for contributing to intellectual disability (31). In contrast to the above 

families that support the hypothesis that LIMK1 is sufficient to cause the visual spatial 

phenotype, another study that described four new patients (including two brothers with the same 

inherited deletion) with small deletions that cover LIMK1 showed that they had no visual spatial 

deficits (32).  None of the individuals described in the study had the characteristic facial features 

or intellectual disability. These conflicting results highlight the complexity of using humans with 

atypical deletions to make conclusive genotype-phenotype correlations. The conflicting results 

could be due to confounds from incomplete penetrance of these genes, environmental factors, 

and contributions from other genetic loci in the genome. 

 Other atypical deletions in patients have led to the hypothesis that most of the genetic risk 

of the region is harbored in the telomeric end of the deletion. This is supported by the lack of any 

phenotypes besides SVAS in on of the patients described above that had the typical centromeric 

breakpoint that extended to LIMK1 (32, 33), and three patients described by Botta et al. (34) and 

Heller et al. (35) that had the typical telomeric break point that extended through ELN but spared 

STX1A, who presented with the full phenotypic spectrum of WS. This pattern is also mentioned 

by Hirota et al. (36), who detailed the lack of the WSCP and most craniofacial features in three 

cases with typical centromeric breakpoints but telomeric breakpoints that extend through ELN 

but spare GTF2I  in all cases. These findings, as well as others that are reported (2, 37–40) have 

lead the field to focus on two paralogous transcription factors in the telomeric end of the 

deletion, GTF2IRD1 and GTF2I as major contributors to the WS profile.  

 Two case studies provide specific support for the role of GTF2IRD1 in craniofacial 

development and GTF2I in the intellectual disability and social phenotypes. Tassabehji et al. 
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(39) analyzed the facial features of a patient with a typical centromeric breakpoint and telomeric 

breakpoint that falls within GTF2IRD1 deleting its transcription start site, leaving GTF2I intact. 

The patient did not have the hypersocial phenotype, yet her language development was delayed, 

and she had visual spatial deficits, however, not to the same extent that is normally seen in 

typical WS. Her facial features were intermediate of what is typically seen in WS. Dai et al. (38) 

described another patient with the typical centromeric break point that extended through 

GTF2IRD1 and spared only GTF2I. This patient had all the typical craniofacial features of WS 

and performed higher on verbal tasks but still had difficulty with some spatial tasks, but not as 

large of a deficit as seen in typical WS. Finally, the patient did not show the hypersocial 

phenotype, which led the authors to conclude that GTF2I plays an important role in this domain.  

 Larger deletions that delete the NCF1 and GTF2IRD2 as well as the typical genes in the 

WSCR, can provide insight into the contribution of these two genes. In general individuals with 

larger deletions tend to have more cognitive difficulties (37, 41). Comparing the larger deletion 

groups with a typical deletion group showed similar overall cognitive functioning, but specific 

areas of further deficit in the larger deletion group. These areas pertained to cognitive flexibility 

and spatial perception (41). Individuals with larger deletions also had more social cognition 

problems and obsessive behaviors than the typical deletion (42).  The GTF2IRD2 gene has been 

suggested to cause the slightly more severe phenotype because of its similarity to the other 

member of the GTF2I family and the evidence that it is expressed in the brain. The NCF1gene 

has been shown to modify the cardiovascular phenotype, and deletion of this gene is protective 

against hypertension in WS (43). These studies show that the larger deletion further exacerbates 

the cognitive phenotypes of the typical deletion and modifies the cardiovascular phenotype, 

suggesting that multiple genes contribute to multiple phenotypic domains in WS.  
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Studying atypical deletions in patients with WS has provided insight into the contribution 

of loci within the region to phenotypes in specific cases. This study design has several inherent 

limitations that should caution the field from making too strong of conclusions. First, the atypical 

deletions are rare events and each patient represents a unique deletion, except in the case of 

inherited deletions. This makes it impossible to generalize the conclusions from one case to the 

others and limits the potential to perform and make statistical inferences. Second, there is an 

ascertainment bias towards individuals with ELN deletions, which means the atypical deletions 

rarely affect just one of the genes in the region, making it difficult to test if one gene is sufficient 

to cause a specific phenotype. Third, these studies ignore the consequences of environmental and 

background genetic variation. It would be beneficial to be able to compare typical and atypical 

deletions to their parent’s data to get an idea of the effect size of the deletion in the context of 

other inherited genetic variation. Finally, each of the cases is described by different clinicians 

with different and biased expertise for specific phenotypes. This makes it difficult to directly 

compare phenotypes across studies especially when some of the phenotypes weren’t 

investigated. Overall, the study of atypical human deletions consistently shows that several genes 

can contribute in some degree to many phenotypes, such as craniofacial features, the WSCP, and 

overall cognitive ability. The telomeric end of the deletion seems to harbor the largest risk for 

most of the phenotypes observed in WS (2, 34, 36, 38).  

1.2.2   Human induced pluripotent stem cell (iPSCs) studies 
Patients with atypical deletions of WS allows for the study of the effects of specific genes 

or sets of genes on observable clinical phenotypes, but does not permit the study of underlying 

cellular or molecular changes. The advent of human derived induced pluripotent stem cells 

(iPSCs) as a model for human disease circumvents the need to obtain specific tissues from a 
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human patient – particularly a challenge for the brain – and let’s researchers query cellular 

morphology and function, and look at the disruption of different molecular pathways. The 

Williams syndrome field has adopted these approaches to study the effects of the deletion and 

duplication of the region at a cellular level in different affected tissues (44–49). This strategy has 

highlighted the roles of GTF2I (44) as well as other genes, such as BAZ1B (49) and FZD9 (46).  

 Two early iPSC studies looked at the effect of the typical deletion on cardiovascular (47) 

and neuronal phenotypes, establishing this technique as a model for the study of WS (48). 

Kinnear et al. used iPSC to test the cardiovascular phenotype of cells with the WSCR. They 

showed that when the cells were differentiated into vascular smooth muscle cells, the WS cell 

lines were more immature based on lower expression of markers in mature smooth muscle cells. 

They went on to show that rapamycin can rescue this immaturity phenotype (47). Khattak et al. 

used the same patient’s cells to investigate the functioning of iPSC derived neurons with the WS 

deletion. The main electrophysiological deficit was in the repolarization of the cells due to lower 

expression of potassium channels. This study also profiled the transcriptomes of the WS derived 

neurons and wild type (WT) derived neurons and found that synaptic genes were among the most 

differentially expressed (48). Since these studies used stem cells from the same patient that was 

selected for severe cardiovascular disease, they don’t represent independent biological 

experiments. Further, the patient was also diagnosed with clinical autism, which has a higher 

prevalence in WS, but this could affect the interpretation of the neural phenotypes that are not 

generalizable to typical cases of WS. These studies show the potential for identifying 

physiological differences at the cellular level in cases of typical deletions, however they did not 

attempt to make specific genotype-phenotype correlations.  
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 iPSCs can be used to make assertions about the contribution of specific genes to specific 

cellular phenotypes, which helps understand the functional roles of genes in the WSCR. Adamo 

et al. performed RNA-seq experiments in iPSCs from four separate patients with WS, two 

patients with 7q11.23dup syndrome, and three related normal controls and three external control 

cell lines, and showed that there were symmetrical changes in expression of genes in disease 

related pathways. They performed a similar experiment after differentiating the iPSCs into 

neurons, and observed enrichment of genes involved in axon guidance, cell polarity, and 

transmission of nerve impulses. To test the specific contributions of GTF2I, they performed 

RNAi knockdown of GTF2I in the 7q11.23dup and WT cell lines, and showed that about 10-

20% of the transcriptional changes observed in the full WS deletion can be attributed to GTF2I. 

They went on to show that GTF2I interacts with the chromatin modifiers LSD1, a histone 

demethylase, and HDAC2, a histone deacetylase (44). They argue that most the transcriptional 

changes caused by decreased dosage of GTF2I are indirect, and propose that the dysregulation of 

the GTF2I target, BEND4, is a likely candidate that contributes to the downstream transcriptional 

changes. They remark that there is considerable variation between patient cell lines and the 

expression of BEND4, which highlights the importance of considering the genetic background. 

Overall, this study does suggest that GTF2I plays a role in the transcriptional phenotype, but 

does not account for all of it.  

 Additional iPSC studies provided evidence for functional roles of genes on the 

centromeric end of the deletion in neuronal phenotypes (46, 49), which the atypical deletion 

human studies have suggested do not contribute to the phenotypic spectrum of WS. Neural 

progenitor cells derived from typical deletion WS cases showed increased apoptosis that was not 

seen in cell lines derived from WT or an atypical case, whose deletion spanned from CLDN3 to 
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RFC2. Reasoning that FZD9, which is not deleted in the atypical case, and regulates 

programmed cell death, the authors showed that knocking down FZD9 in the WT cell lines could 

recapitulate the apoptosis phenotype and overexpressing FZD9 in the WS cell lines could 

ameliorate the apoptosis phenotype (46).  Transcriptional profiling of WS and WT derived 

neuronal cell lines along with BAZ1B knockdown showed as much as 42% of the transcriptional 

difference between WS and WT neurons were caused by decreased expression of BAZ1B. The 

transcriptional changes along with genes bound by BAZ1B, suggested a role for this gene in the 

regulation of Wnt signaling as well as synaptic development. Decreased expression of BAZ1B 

resulted in neural progenitor cells maintaining a proliferative state, which prevented proper 

differentiation into neurons. This phenotype could be rescued by antagonizing Wnt/Beta-catenin 

signaling (49). Together, these two iPSC studies strengthen the evidence for genes in the 

centromeric end of the deletion to play an important role in neural development, which could 

lead to the striking cognitive and behavioral phenotypes of WS. They also further implicate 

specific pathways such as Wnt signaling and synaptic functioning in the pathogenesis of WS.  

 It has been shown for WS that iPSCs are a valuable model to understand cellular and 

molecular phenotypes caused by the typical deletion as well as by specific genes in the region. 

While this model has its advantages it also has several limitations. iPSCs study designs allow for 

the testing of disease relevant tissues using human cells, however, the cells are artificially 

differentiated outside the context of the organ-specific microenvironment. This can lead to 

unforeseen changes in the biological functioning of the cells. Further, the study of cells in vitro 

precludes making associations with the cellular changes directly to behavior at the organismal 

level. For example, iPSC differentiated neurons do not form the complex anatomical circuits 

equivalent to what is seen in the brain in vivo.  In spite of these limitations, in the case of WS 
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these studies have provided further insight into genes such as FZD9, BAZ1B, and GTF2I, and 

suggest that they all contribute to neuronal phenotypes.  

1.2.3  Human general population association studies 
Another strategy that employs human genetics to identify genotype-phenotype 

correlations of genes in the WSCR, is to test variation in these genes for association with traits in 

the general population, both in samples of individuals with WS and in case-control designs. The 

duplication of the WSCR was found to be significantly associated with autism spectrum disorder 

(ASD) diagnosis in a case-control study design (26). Association analyses have further 

implicated the general transcription factor 2i family of genes in social and cognitive phenotypes 

(50–53). The advent of next generation sequencing technology offers new potential to implicate 

not only common variants, but also rare variants in the pathogenesis of WS (54).  

Candidate gene associations have implicated two single nucleotide polymorphisms 

(SNPs) in the GTF2I in ASD as well as in neural phenotypes related to social cognition (50, 51). 

While these studies were not unbiased screens of the whole genome, the authors reasoned that 

the WSCR contains loci that affect social behavior. When variants in STX1A, CLIP2, and GTF2I 

were tested for association with ASD diagnosis in families with at least one affected child, only 

two SNPs in GTF2I, rs4717907 and rs13227433, were found to be over transmitted in the 

probands (50). Using this previous finding, these two SNPs were further associated with a metric 

that captures the low social anxiety and reduced social communicative skills of individuals with 

WS in a sample of 488 individuals attending university (53). The imputed rs13227433 genotype 

was also found to be associated with reduced amygdala reactivity to threatening stimuli, a neural 

phenotype that has been documented in WS (51) in a sample of 808 university students. Finally 

the SNP, rs2267824, located within the GTF2IRD1 gene, was associated with a metric that 
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captures the neuroanatomical gestalt of the WS brain in a sample of 1,863 people from the 

general population, suggesting that it contributes to brain anatomy that is specifically observed in 

individuals with WS (52). These candidate gene focused studies corroborate the role of both 

GTF2I and GTF2IRD1 in behavior and brain development related to WS.		

Association studies are valid study designs to identify genomic loci that correlate with a 

trait of interest, but they have several limitations. The detection of a significantly associated 

variant does not mean the causal variant has been detected. Rather, in most cases an association 

elucidates a region in the genome that contains the causal variant. In addition, association studies 

based on genotyping with SNP-chips are only able to test common SNPs, which are expected to 

have small effect sizes, so in order to detect these effects large sample sizes are required. To 

overcome this, next generation sequencing technologies can be used to query the role of rare 

variants in modifying the phenotypes of WS. Since WS is caused by the contiguous deletion of 

1.5-1.8Mbp on chromosome seven, individuals with WS only have one remaining copy of the 

region, which could unmask the effects of recessive alleles (55). This hypothesis was tested for 

the cardiovascular phenotype, looking specifically at variants in the ELN. With a sample size of 

55 individuals, no one specific variant associated with severity of the cardiovascular disease 

(56). This approach could be applied to other genes in the WSCR as well as other phenotypes in 

the region to understand how the genetic variation associates with different aspect of the 

disorder.  

The human approaches taken to study the genotype-phenotype correlations within WS 

has, so-far, have highlighted the variability of the phenotypes and a complex relationship with 

the genes in the region. My work has focused on describing how genetic variation within the 

WSCR and in the whole exome can modify the social phenotype of WS. I analyzed the whole 
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exome sequencing data of 85 individuals with WS to associate genetic variants with the social 

phenotype. I can use the variation across individuals with WS that have received the same 

standardized social questionnaire to ask how much does genetic variation contribute to the social 

phenotype. This allowed me, in an unbiased, way to test for genes in the WSCR and the whole 

exome that are important for modifying social behavior in WS, which could inform clinicians 

taking care of individuals with WS as well as inform genes involved social behavior in the 

general population.  

1.3 Introduction to the general transcription factor 2I family 
Performing gene associations in humans, while informative on what locations of the 

genome are important for different traits, are not conducive to conducting controlled experiments 

that could lead to a mechanistic understanding of how genes exert their effects on behavior. 

Along with the human studies I did, I leveraged the experimental advantages of the mouse model 

to focus on the interactions of two genes in the WSCR, Gtf2i and Gtf2ird1. I chose to investigate 

these genes to test the hypothesis that they contribute to the cognitive and behavior phenotypes 

as the human literature has suggested and to extend the current research by testing how they 

interact. This family is made up of three paralogous transcription factors that are located in the 

WSCR. GTF2I and GTF2IRD1 are deleted in the 1.5Mbp deletion, and GTF2IRD2 is deleted in 

the larger 1.8Mbp deletion. These transcription factors have been extensively studied in different 

model systems, including cell lines and mouse models, usually focusing either on GTF2I or 

GTF2IRD1. Since both seem to contribute to overlapping phenotypes and they share overlapping 

DNA binding targets, these transcription factors merit further investigation. 
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1.3.1  General background on the GTF2I family  
Different groups discovered the GTF2I family of genes independently. GTF2I was 

discovered in several contexts, including a target of Bruton’s tyrosine kinase in B-cells (BAP-

135) (57), a protein that stabilizes the serum response factor complex (SPIN) (58), and as a 

transcription factor in the WSCR that can bind to the E-box and Inr element (59), which were all 

shown to be the same GTF2I protein. GTF2IRD1 has a similar history in which it was discovered 

many independent times as a gene expressed in the muscle (MusTRD1) (60) as well as a 

transcription factor in the WSCR (WBSCR11) (61, 62).  

All three are multiexonic genes that are subject to extensive alternative splicing. GTF2I is 

made up 35 exons, GTF2IRD1 contains 27 (63), and GTF2IRD2 has only 16 exons due to the 

replacement of the 3’prime end of the gene with a CHARLIE8 transposon (64).  The sequence 

features that distinguish these genes as a family are the I repeats, of which GTF2I contains 6, 

GTF2IRD1 contains 5, and GTF2IRD2 has 2. These are helix-loop-helix domains that are 

thought to be important for protein-protein interactions and DNA binding (65). They also have a 

conserved N-terminal leucine zipper (66, 67), that is involved in homo and heterodimeriziation 

that can affect DNA binding function. The evolutionary history of these genes points to 

GTF2IRD1 as the ancestral gene that was duplicated to produce GTF2I. These two genes are 

present in all land mammals with the duplication and inversion of GTF2I giving rise to 

GTF2IRD2, which is present in all placental mammals (68). This conserved evolutionary history 

in mammals makes studying these genes tractable in mouse models. The mouse Gtf2ird1 and 

human GTF2IRD1 share 87.9% amino acid identity and the mouse Gtf2i and human GTF2I 

share 97.3% amino acid identity (69). Given the similar evolutionary history of these genes, it is 
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important to understand to what extent these genes share overlapping function, as well as how 

they differ.  

 GTF2I was the first gene discovered and has been the best studied, probably due to its 

higher abundance in many different tissues and due to the availability of effective antibodies. 

The expression of GTF2I is described as ubiquitous, with higher expression early in 

development. In the mouse, Gtf2i mRNA is maternally deposited by the mother in the fertilized 

egg and is highly expressed in the inner cell mass, and continues to be highly expressed 

throughout development (70, 71). In situ hybridization experiments in the mouse brain showed 

uniform expression of Gtf2i from embryonic day 18.5 to postnatal day seven, with enhanced 

expression of the mRNA in Purkinje cells, the hippocampus, and cerebral cortex in the adult 

brain, all of which was described as neuronal. The protein showed a similar expression pattern, 

with protein detected in both the nucleus and the cytoplasm, with enrichment in the hippocampus 

and cerebellum (72). The presence of GTF2I in both the nucleus and the cytoplasm suggests that 

this transcription factor has functions beyond regulating nuclear transcription.  

 Along with its roles as a basal transcription factor, GTF2I plays a role in the cytoplasm 

that allows it to convey cellular information to the nucleus. GTF2I was first discovered due to its 

ability to bind the Inr element at transcription start sites but also at upstream enhancers (73). It 

was shown that some of its transcriptional activity was due to tyrosine phosphorylation by SRC 

that allowed cytoplasmic GTF2I to translocate to the nucleus, suggesting that GTF2I can induce 

transcriptional changes based on signal transduction pathways (74). Interestingly Src knockout 

mouse models show phenotypes such as hyperactivity and hypersociability, suggesting that 

disruption of this gene and its downstream pathways can recapitulate some features of Gtf2i 

knockout models (75). Another effect that phosphorylation of GTF2I by SRC has is to inhibit 
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agonist induced calcium entry (76). The cytoplasmic phosphorylated GTF2I competes with 

TRPC3 protein, a calcium channel, to bind PLC-γ, which prevents the localization of TRPC3 to 

the membrane and inhibits calcium entry into the cell. This was shown to affect neuron 

morphology and calcium electrophysiology in neurons that are missing one copy of Gtf2i. The 

neurons with less Gtf2i had more complex axons and increased calcium entry (77). These studies 

have elaborated the complex cellular role that GTF2I plays in both transcription and signal 

transduction and how it can affect neural phenotypes, which may contribute to phenotypes in 

WS. No studies have been done that show what happens to transcription genome-wide in the 

brain when Gtf2i is increased or decreased, which the work I present in chapter three describes. 

Also, given the dual role of this transcription factor the paucity of data concerning its effect on 

transcription makes it difficult to disentangle which functionality of Gtf2i is contributing to 

affect behavior.  

 In contrast to the extensive transcriptional roles and signal transduction function of 

GTF2I, GTF2IRD1 has mostly been characterized as having a role in transcriptional regulation. 

The expression of this gene was described using a lacZ reporter in the mouse. Ubiquitous 

expression was seen at embryonic day 7.5 with more localized expression occurring after 

organogenesis. In the developing brain it is expressed most highly in the pituitary, developing 

hypothalamus and thalamus, and hindbrain with little expression in the telencephalon. The gene 

is expressed less in adulthood across all tissues, and within the brain it is the most highly 

expressed in the olfactory bulbs, Purkinje neurons, and neurons of the piriform cortex. It is 

highly expressed in adult brown adipose tissue (78).  The low expression of this gene in vivo 

along with poor antibodies has made this protein difficult to study in vivo. However, work in 

cells that highly express this gene show that is mostly localized to the nucleus in a punctate 
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pattern and in close proximity to other chromatin regulators such as SP1 and H3K27Me2/3 and 

H3K4Me3 marks. A yeast 2 hybrid screen further suggested that GTF2IRD1 interacts with 

chromatin modifiers such as ZMYM2 and ZMYM3 along with proteins involved in ubiquitin 

pathways such as USP20 and USP33 (79). These data suggest that it plays a role in 

transcriptional regulation.  

Other studies have shown that GTF2IRD1 binds to specific genomic regions to affect 

transcription and the Gtf2ird1 genes is under tight transcriptional and posttranslational 

regulation.  In the mouse retina Gtf2ird1 binds to the LCR enhancer and promoter regions of 

opsin genes to promote transcription (80). Hasegawa et al. showed that Gtf2ird1 expression is 

induced in mouse brown adipose tissue in cold conditions and associates with the PRDM16 

complex to repress fibrotic gene transcription (81).  In addition, GTF2IRD1 has been shown to 

negatively autoregulate its own transcription. The N-terminal leucine zipper was proposed to 

increase binding to its own upstream regulatory element and mutating the leucine zipper resulted 

in a difference in bind affinity to the sequence (66). Finally, GTF2IRD1 is post translationaly 

modified by the addition of a SUMO group that alters its protein-protein interactions and targets 

the protein for degradation (82). The extensive roles of Gtf2ird1 in transcriptional regulation and 

its tightly regulated mRNA and protein expression suggest that this gene plays an important 

biological role that could contribute to the phenotypes of WS.    

The DNA binding of these two transcription factors has been studied genome-wide in 

different model systems. The core binding motifs for the fourth I repeat of GTF2I and 

GTF2IRD1 was identified as RGATTR using the SELEX method (83). In a similar experiment 

the binding site of the full length GTF2IRD1 was determined to be 

GGGRSCWGCGAYAGCCSSH (65).  Chip-Chip experiments in mouse embryonic stem cells 
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revealed 5,744 binding peaks for Gtf2i and 625 binding peaks for Gtf2ird1, most of which were 

located in promoters of genes. When binding was investigated in embryonic craniofacial tissue 

they identified 1,181 Gtf2i binding peaks and 1,520 Gtf2ird1 binding peaks, again most were 

located in promoter regions. They showed examples of sites where both proteins were located at 

the same promoter regions suggesting they can overlap in the genes they regulate. Most of the 

binding sites were located in areas of bivalent chromatin marks (84). GTF2I binding has been 

assessed in human iPSC cells using ChIP-seq and was found to bind 1,554 genes at their 

promoters. About half of these binding sites were also targets of the LSD1 histone demethylase 

(44). Gtf2i has also been shown to help target CTCF to promoter regions.  Genome-wide binding 

analysis of Gtf2i and Gtf2ird1 show that they have overlapping targets and cooperate with other 

chromatin regulators. Further study of the binding patterns of these proteins in vivo in other 

relevant tissues will continue to elucidate the role these genes play in transcription regulation and 

downstream affected pathways.  

 Given that both GTF2I and GTF2IRD1 are transcription factors and they bind many 

genes in the genome, their affects on transcription genome wide have been minimally described 

and with contrasting results. Gtf2ird1 overexpression in mouse embryonic fibroblasts led to 

around 1,000 upregulated genes and 1,000 downregulated genes covering pathways such as 

ubiquitin cycle, RNA binding, and cell cycle (85).  In contrast, Gtf2i overexpression in mouse 

embryonic fibrobalsts led to fewer changes with only 90 genes upregulated and 68 genes 

downregulated. These genes made up categories such as transcription regulation, immune 

response, and apoptosis (86). The effects of knocking out each transcription factor was assessed 

in embryonic day 9.5 mouse models. In the Gtf2i null embryos there were 217 upregulated and 

2,356 downregulated genes spanning categories such as cytoskeleton remodeling, cell cycle, 
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transcription, and the ubiquitin cycle. However, Gtf2ird1 null embyros showed only 38 

upregulated genes and 498 downregulated genes that did not show any enrichment for specific 

GO categories (87). These findings somewhat mirror the overexpression data. 

Another Gtf2ird1 mouse model profiled the transcriptomes of the developing brain at 

embryonic day 15.5 and postnatal day 0 and showed no significantly differentially expressed 

genes (88). Yet another Gtf2ird1 model that showed overgrown lip epidermal tissue revealed 

1,165 upregulated genes and 1,073 down regulated genes. Gene set enrichment analysis on the 

upregulated genes highlighted pathways such as cell cycle, the ribosome, proteasome, and 

ubiquitin mediated proteolysis. Down regulated genes showed enrichment in calcium signaling, 

oxidative phosphorylation, and cardiac muscle contraction (89). Finally, transcriptome profiling 

of the hippocampus in a mouse model that has the entire syntenic WSCR deleted showed down 

regulation of genes in the Pik3 kinase pathway as well as Bdnf (90, 91). 

 Overall, transcriptional studies of Gtf2i and Gtf2ird1 seem to be dependent on many 

factors that include tissue type, stage in development, how the genes are mutated, and mouse 

strain. The transcriptome data generated in the E9.5 embryos should be cautiously interpreted 

since both the Gtf2i and Gt2ird1 null mutants described were embryonic lethal and showed 

neural tube closure defects as well as vascular defects. Comparing these very severe embryos to 

the WT embryos show that many of the transcriptional changes detected are probably 

consequences of the disrupted development of the embryo, which make teasing out the direct and 

indirect effects of reducing the expression of Gtf2i and Gtf2ird1 difficult. The discrepancy 

between the transcriptome findings of the brain and the lip tissue could arise for several reasons. 

Different mutants were used and in vivo analysis of the Gt2ird1 protein was lacking in both 

studies. It would be beneficial to know how the mutations are affecting the protein levels as well 
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as the normal WT levels of protein expression between these two tissue types. The lip tissue also 

showed a clear morphological phenotype that specifically affected the epidermal tissue and not 

the dermal tissue, cartilage, or underlying muscle. The striking difference between genotypes in 

the lip tissue could be driven by a clear disruption of a specific cell type (92), while in the brain 

there could be more subtle effects in different cell types diluting the signal. Incorporating 

multiple levels of information such as ChIP-seq, RNA-seq, and tissue specific expression of 

these genes will aid in constructing a more complete understanding the role of these transcription 

factors.  

1.3.2  Mouse models of Gtf2i and Gtf2ird1 
Along with understanding what the molecular functions of these two transcription factors 

are, in order to provide useful insight into the etiology of WS, the affect these two transcription 

factors have on behavior should also be studied. Previously, I have described the evidence that 

supports the functioning of these genes in behavior, cognition, and physical attributes that we 

have gleaned from human studies. As mentioned, human studies come with their own 

limitations: in rare partial deletions one is making inferences based on single individuals. 

Likewise, one is unable to model behavioral consequences in iPSCs. Model organisms, 

specifically the mouse, have been instrumental in understanding both the functional roles of 

genes as described in the previous section and the consequences of dosage changes of genes on 

behavior. The mouse is an attractive model in which to model WS for several reasons: 1) a 

region of chromosome five in the mouse is syntenic to the WSCR in humans, 2) geneticists have 

a large tool kit in which to accurately modify the mouse genome to test specific mutations or sets 

of mutations, 3) mice are able to be bred so that the same mutation can be studied in a large, 

controlled sample allowing for statistical inferences, and 4) mice are social animals that display 
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behaviors in domains that are disrupted in WS. Many different mouse models have been used to 

try and understand the behavioral consequences of genes in the WSCR, with varying degrees of 

face validity to WS. The strain of mouse and how the mutations were generated play a large role 

in the manifestation of phenotypes in mouse models. This makes synthesizing the data from 

different labs and experiments difficult, but consistent phenotypes across many different models 

can provide strong corroborative evidence for genotype-phenotype correlations.  

Large deletion mouse models 

The mouse model with the highest construct validity is a hemizygous deletion of the 

syntenic WSCR on the mouse chromosome five and is termed the complete deletion (CD) mouse 

(93). The mouse was generated using the cre-lox system with a loxP site situated in exon two of 

Gtf2i and the other loxP site in intron five of Fkbp6 on the C57BL/6J background. This mouse 

model showed phenotypes that are consistent with most of the phenotypes of WS that can be 

tested in the mouse. The physical features include mild cardiovascular phenotypes, smaller 

skulls, reduced brain size, decreased volume of hippocampus, and more immature neurons in the 

dentate gyrus as determined by doublecortin immunostaining. A battery of behavior tests in the 

CD mice showed deficits in motor coordination, decreased motor tonicity strength, increased 

startle response to stimulus noise, and a decreased habituation to a social stimulus (93). Another 

study of the CD mice showed deficits in working memory as tested by the spontaneous 

alternating T-maze and novel object recognition, which was reported as normal in a previous 

study. The social phenotype was replicated as well as a decrease in the number of marbles buried 

in the marble burying task (91). Finally, the role of Gtf2i in the manifestation of the behavioral 

phenotypes in the CD animal was tested by delivering adeno-associated virus 9 (AAV9) that 

carried the mouse Gtf2i cDNA into the cisterna magna of CD mice. The addition of Gtf2i cDNA 
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rescued the increased social phenotype, partially rescued the motor coordination, but did not 

affect the marble burying deficits (90). This mouse model showed deficits in motor coordination 

and increased startle to a stimulus noise. Humans with WS are known to have poor balance as 

well as hyperacusis. The mice also recapitulated the hypersocial phenotype of WS as tested in 

these behavioral tasks using only male mice. The CD model is a great tool to understand how the 

entire WSCR affects mouse behavior and the underlying mechanisms. However, the work done 

in the CD mouse should be expanded to include female mice to understand any sex or sex by 

genotype interactions. This would also inform how robust the phenotypes are. For instance the 

social phenotypes have only been tested in males using an unconventional method.  Including 

social tasks that probe different aspects of sociality would help pinpoint the specific pathways 

involved in manifesting the disorder.  

 There are two other large deletion models that attempt to localize which genes are 

involved in specific mouse behaviors by splitting the WSCR into two halves and deleting each 

half (94). These mice were generated using the cre-lox system on the C57BL/6J background. The 

proximal deletion mice (PD) are hemizygous for Gtf2i through Limk1. The distal deletion mice 

(DD) are hemizygous for Trim50 through Limk1. Breeding the PD and DD mice together results 

in four littermate genotypes, which include a mouse that is hemizygous for the whole region on 

two different chromosome and is homozygous null for Limk1, this is called the P/D mouse. The 

DD and P/D mice showed similar shortened skulls with more severe differences in the P/D mice. 

This indicates that genes on the distal half of the deletion contributing to the craniofacial 

phenotypes, but perhaps genes in the proximal half can exacerbate the phenotype. There were 

mixed results on a series of behavior tasks that probe social behavior. The partition task showed 

all three genotypes spent more time at a partition that held a social stimulus than WT littermates. 
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A direct social task showed only the PD mice spent more time investigating a conspecific 

compared to WT littermates. The three chamber social approach task showed a significant 

preference for the social stimulus in the PD and P/D mice but no such preference in the WT or 

DD animals. Finally in a test of social dominance the PD and P/D mice had a decrease win ratio 

suggesting reduced dominance behavior. The P/D mice showed decreased locomotor activity and 

poor balance, and the partial deletions had intermediate values. Altered response to sensory 

stimuli was tested using the acoustic startle response and pre-pulse inhibition. This was only 

altered in the PD mice with no phenotype in the P/D or DD genotypes. In a learning and memory 

task, the DD mice showed decreased freezing in contextual and cued fear memory. Studying the 

two half deletions can help further localize the genes involved in specific phenotypes. These 

studies suggest that the DD genes are involved in the craniofacial phenotypes and fear memory 

recall. The PD genes affect, in some tasks, social behavior and the response to sensory stimuli 

(94). Genes in both halves of the deletions may contribute to balance deficits, which is more 

affected when both halves are deleted. Overall, it seems like some phenotypes such as the 

balance and craniofacial differences are being influenced by multiple genes.  

Gtf2i and Gtf2ird1 mouse models 

The larger mouse models of WS test the affects of knocking out the entire region on 

mouse behavior. One of the advantages of mouse models is the wide range of tools geneticists 

have at their disposable to manipulate the genome, permitting the study of very specific 

mutations of single genes. Single gene knockout mice exist for several different genes in the 

WSCR, with many genes having multiple different mouse models (95). For Gtf2i there are two 

mouse models that decrease the expression of Gtf2i to varying degrees. One model has a gene 

trap cassette in intron 3 of Gtf2i  (Gtf2iGt(YTA365)Byg/β) that has been characterized in (29, 87, 96, 
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97) and results in a null allele. The second Gtf2i model has a targeted deletion of exon 2 

(Gtf2iΔex2), which contains the canonical translation start codon, and produces an N-terminally 

truncated protein that begins at a methionine in exon five and is described in (67, 90). The 

former model is embryonic lethal in the homozygous state (29, 87, 96) and the latter model 

produces viable homozygous animals at a lower than expected Mendelian ratio (67). There are 

four different mouse models of Gtf2ird1 that have been described in the literature: 1) the 

Gtf2ird1XE465 model has a gene trap lacZ cassette located in intron 22 (87), which makes a fusion 

protein, 2) the Gtf2ird1 Tg(Alb1-Myc)166.8 model has a myc transgene that randomly integrated 

into the locus replacing the transcription start site and the first exon of Gtf2ird1(39, 98–100), 

which has no detectable expression, 3) the Gtf2ird1tm1Hrd model was made by homologous 

recombination removing exon 2, which contains the canonical translation start codon, and has 

increased expression of Gtf2ird1 transcript but produces an N-terminally truncated protein at 3% 

of WT levels (66, 78, 92), and 4) the Gtf2ird1tm1LR model was made by homologous 

recombination removing exons 2,3,4 and part of 5, which still makes an aberrant Gtf2ird1 

transcript but protein analysis was not done (101). All of the Gtf2ird1 models can produce viable 

homozygous animals except for Gtf2ird1XE465, which expire embryonically. This more severe 

phenotype has been attributed to the production of a fusion protein whose function is unknown 

(88). While there are many mouse models of both of these genes that have been tested on 

different mouse backgrounds and on different behavioral tasks, synthesizing the data across all 

the experiments can provide strong evidence of the roles of these genes on behaviors.  

 The two mouse models of Gtf2i have shown hypersocial phenotypes (90, 96, 97). The 

specific social phenotypes queried by the specific tasks differ. In two experiments the Gtf2i 

heterozygous mutants display a lack of habituation to a social stimulus that is normally observed 
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in WT littermates (96). Another experiment using the N-terminally truncated protein, and 

showed that heterozygous and homozygous mutants investigate a social stimulus for more time 

compared to WT littermates (90). The most convincing experiment employed a social operant 

learning paradigm, in which the heterozygous mutants will work harder for more social rewards 

(97).  Besides the social phenotypes other behaviors have been documented such as impaired 

novel object recognition, increased anxiety, motor coordination marble burying in homozygous 

animals, and smaller craniums (67, 90, 96). The work done in single Gtf2i mutants supports its 

role in the social aspect of WS, and potentially in anxiety, motor ability, and the craniofacial 

features.  

 The several Gtf2ird1 mutant mouse models show many behavioral and physical deficits, 

but in some models exhibited findings that contrast other models. Furthermore, some of the 

phenotypes are only seen in the homozygous knockouts, which don’t reflect the gene dosage 

effects that are expected to be seen in humans with WS. One consistent phenotype seen in two 

models of Gtf2ird1 is a motor coordination deficit, which was also seen in the larger deletions of 

the WSCR and in one Gtf2i model (92, 100). Other phenotypes such as activity levels and 

anxiety-like behaviors are discrepant across models. Some models report increased activity and 

decreased anxiety, while another reports the opposite (92, 100, 101). Social behavior has only 

been tested in one Gtf2ird1 mouse model, using the resident intruder paradigm, which showed 

decreased aggression, but an increase is social investigation by the Gtf2ird1 heterozygous and 

homozygous mutants (101).  Two models have reported facial dysmorphisms in the mice, one 

which affects the cranium and the other affects the soft tissue of the face (39, 92). The 

contrasting evidence in these mouse models could be due to the mouse background on which 

each model was made or how the gene itself is disrupted. The evidence shows that this gene may 
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also contribute to motor deficits, the social phenotype, and the craniofacial phenotype that is 

observed in WS.  

 Overall, single gene knock out models of both Gtf2i and Gtf2ird1 show overlapping 

behavior phenotypes, specifically in social and motor deficits. However, these genes have not 

been studied in combination, which is what is expected in the deletion of WS. This leaves open 

the question if this two paralogous transcription factors can interact with each other to 

synergistically affect behavior? Understanding how these genes function together will give a 

more complete understanding of how genes in the WSCR interact to produce the full phenotypic 

spectrum of WS. These hypotheses are addressed in chapters three and four of this thesis.  

1.4 Conclusions 
Both human and mouse genetic experiments have demonstrated that the WSCR is an 

important genomic region for a variety of traits, such as craniofacial development, cardiovascular 

health, cognition, anxiety, and social behaviors. The field has employed many different strategies 

to further understand the genes responsible for causing the phenotypes of WS and thus providing 

insight on the biological mechanisms of different human characteristics. Still the only strong 

monogenetic contribution of a gene in the WSCR to a specific phenotype of WS is the role ELN 

plays in the cardiovascular disease. Even this monogenic contribution can be modified by 

another gene in the region NCF1. There is evidence for the role of several genes contributing to 

several different phenotypes. This oligogenic hypothesis may help the field further understand 

how the genes in the WSCR work together to produce the WS phenotypes, as has been shown for 

other copy number variation disorders (102, 103). The work I describe in this thesis uses both 

human genetics and mouse models to expand the knowledge of how genes in the WSCR affect 

behavior. I use whole-exome sequencing to analyze the largest genetic dataset of individuals 
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with WS, to test the hypothesis that variation in the remaining WSCR allele and exome-wide can 

modify the social phenotype. I then use newly generated mouse models to understand where 

Gtf2i and Gtf2ird1 bind genome-wide in the developing brain and what are the transcriptional 

and behavioral consequences on mutating these genes. I am able to test the hypothesis that these 

genes both affect the same phenotypes, testing the oligogenic contribution of these genes on 

behavior. Finally, I use mouse models to directly compare the affects of both Gtf2i and Gtf2ird1 

to the affects of the entire WSCR to test if these two genes, which have been highly speculated in 

the literature as driving the phenotypes of WS, are sufficient to replicate the phenotypes 

produced by all the genes in the WSCR. My data suggest that these genes do contribute to 

behavior, but other genes in the region or the effect of deleting the entire WSCR has more 

striking behavioral consequences. This leads me to conclude that the complex phenotypes that 

are disrupted in WS are caused by complex genetic interactions of genes in the region and 

require more than loss of just these two genes.  Further testing of the oligogenic relationship of 

genes will highlight the complex biology of human traits and the pathobiology of WS.  
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Chapter 2: Exome sequencing of 85 Williams 
Beuren syndrome cases rules out coding 

variation as a major contributor to 
remaining variance in social behavior 

 

Nathan D. Kopp, Phoebe C. R. Parrish, Michael Lugo, Joseph Dougherty, and Beth A. Kozel 

From:  

Exome sequencing of 85 Williams Beuren syndrome cases rules out coding variation as a major 

contributor to remaining variance in social behavior. 

Kopp, Nathan D., Phoebe CR. Parrish, Michael Lugo, Joseph D. Dougherty, and Beth A. Kozel. 
“Exome sequencing of 85 Williams-Beuren syndrome cases rules out coding variation as a major 
contributor to remaining variance in social behavior”. Molecular Genetics and Genomic 
Medicine (2018):1-17 
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2.1 Abstract 
Large, multigenic deletions at chromosome 7q11.23 result in a highly penetrant constellation of 

physical and behavioral symptoms known as Williams Beuren syndrome (WS).  Of particular 

interest is the unusual social-cognitive profile evidenced by deficits in social cognition and 

communication reminiscent of autism spectrum disorders (ASD) that are juxtaposed with normal 

or even relatively enhanced social motivation.   Interestingly, duplications in the same region 

also result in ASD-like phenotypes as well as social phobias.  Thus, the region clearly regulates 

human social motivation and behavior, yet the relevant gene(s) have not been definitively 

identified. Here, we deeply phenotyped 85 individuals with WS and used exome sequencing to 

analyze common and rare variation for association with the remaining variance in social 

behavior as assessed by the Social Responsiveness Scale.  We replicated the previously reported 

unusual juxtaposition of behavioral symptoms in this new patient collection, but we did not find 

any new alleles of large effect in the targeted analysis of the remaining copy of genes in the 

Williams syndrome critical region. However, we report on two nominally significant SNPs in 

two genes that have been implicated in the cognitive and social phenotypes of Williams 

syndrome, BAZ1B and GTF2IRD1. Secondary discovery driven explorations focusing on known 

ASD genes and an exome wide scan do not highlight any variants of a large effect. Whole exome 

sequencing of 85 individuals with WS did not support the hypothesis that there are variants of 

large effect within the remaining Williams syndrome critical region that contribute to the social 

phenotype. This deeply phenotyped and genotyped patient cohort with a defined mutation 

provides the opportunity for similar analyses focusing on noncoding variation and/or other 

phenotypic domains.   
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2.2 Introduction 
 Williams Beuren syndrome (WS) (OMIM #194050) is a neurodevelopmental disorder 

caused by a 1.5 to 1.8 Mbp deletion on chromosome 7q11.23. The deletion causes a constellation 

of symptoms that include cardiovascular pathology, craniofacial dysmorphology, and a unique 

cognitive and personality profile(4,	14,	17).  The well-defined genetic lesion that causes WS is 

an opportunity to assess genotype-phenotype correlations. To date, only the cardiovascular 

phenotype has been convincingly linked to the haploinsufficiency of a single gene - the ELN 

gene(6, 104). Studying rare events that result in atypical deletions sparing different genes in the 

Williams syndrome critical region (WSCR), as well as single gene knock out studies in mouse 

models, have suggested that GTF2IRD1 and BAZ1B play a role in the craniofacial 

abnormalities(39, 105).  Likewise, the genes STX1A, LIMK1, CYLN2, BAZ1B, GTF2IRD1, and 

GTF2I (31, 38, 49, 96, 99, 106–109) have been implicated in the cognitive and behavioral 

phenotypes.  

 Understanding contributions to social phenotypes in particular for WS may define genes 

that regulate human social behavior, providing insight not only into WS, but also in other 

disorders as well as possible modifiers of social behavior in the general population. Deleting one 

copy of the genes in the WSCR produces the personality profile observed in WS, which consists 

of prosocial behaviors such as gregariousness, empathy, retained expressive language skills, and 

low levels of social anxiety, in spite of high anxiety in other domains(14, 19, 110–112). Despite 

the high social motivation of individuals with WS, they exhibit deficits in social cognition and 

communication(20, 113, 114). The Williams syndrome critical region duplication, 7q11.23 

duplication syndrome (Dup7) (OMIM#609757), conversely, is characterized by diametric social 

behaviors to those seen in WS, including separation anxiety, poor eye contact, and language 
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impairment, as well as overlapping phenotypes such as restricted and repetitive behavior and 

poor social communication (27).  It has also been shown that the prevalence of ASD in WS and 

Dup7 is higher than in the general population and the male sex bias for ASD diagnosis is present 

among individuals with Dup7(27, 115).  The similarities and differences in the social 

communication domains of WS and ASD have been described, and suggest that while both 

disorders show deficits in social communication, the WS group was not as impaired as the ASD 

group (113, 114). Unlike ASD, there is no sex bias in the frequency of WS and severity of social 

and cognitive phenotypes are similar across both sexes (21, 116). 

As in many diseases of haploinsufficiency, within WS there remains considerable 

variability in expressivity of the phenotypes, despite the very homogeneous genetic cause. It is 

thought that both genetic background and the environment introduce variation in the expression 

of a phenotype. The fact that individuals with WS are hemizygous for 26-28 genes has led to the 

assertion that variation in the remaining allele could contribute to the severity of symptoms in 

WS(13, 56). The presence of only one copy of genes in the WSCR could unmask the effects of 

recessive alleles in the region that are more difficult to detect in a diploid setting. Indeed, this 

logic has been applied to investigate the variability in the cardiovascular phenotype. Delio et al. 

2013 sequenced the exons that make up the ELN gene in a sample of 55 individuals with WS, but 

found no clear link between severity of phenotype and remaining genetic variation.  However, no 

similar studies have investigated the social profile of WS, in spite of the fact that there is some 

evidence that common variation in the region can influence social behavior in the general 

population.  For example, variation in the GTF2I gene has been associated with the WS 

cognitive profile, autism, oxytocin reactivity, amygdala activity, and social anxiety(53, 117, 117, 

118). Furthermore, genes outside of the WSCR are also likely to affect aspects of social 
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behavior. In particular genes that are associated with ASD have a profound effect on social 

interaction and could harbor variants that modify the phenotype of individuals with WS.  

Here, we employ whole exome sequencing to understand how genetic variation within 

the WSCR, and other protein coding genes, impacts the severity of the WS social phenotype. We 

generate a rich catalogue of genetic variants identified from 85 individuals with the typical WS 

deletions; each individual has also been assessed with the Social Responsiveness Scale-2 (SRS) 

questionnaire, a quantitative measure of reciprocal social behavior. The SRS was first developed 

to quantify autistic traits in both the general and clinical populations(119, 120). SRS scores have 

also been used to describe different aspects of the social phenotype in WS (20). We then employ 

a three-tiered approach to screen for the existence of alleles that contribute to SRS scores in the 

context of a potentially sensitizing WSCR deletion, ordering the analyses to conserve statistical 

power.  First, we describe the genetic variants observed in the remaining WSCR and test if they 

can explain the variance in the SRS scores. We find little evidence that these common or rare 

variants in the region are associated with SRS scores. Next, we go beyond the WSCR and test 

variants in 71 genes known to be associated with ASD (121), reasoning variation that contributes 

to autistic features in non-WS children may modify autistic features in the WS cohort as well. 

Finally, we test variants throughout the whole exome. We find no genetic variants of sufficient 

effect size to support the hypothesis that they contribute to the social phenotype in this sample of 

individuals with WS. However, we have more thoroughly described the variation in the WSCR 

region as it relates to social behavior and provide the largest genetic dataset to date of individuals 

with typical WS deletions for future analyses of other phenotypic domains.  
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2.3 Results 
2.3.1 SRS variability in Williams syndrome 

The unique social profile of Williams syndrome includes increased social motivation 

(e.g. indiscriminate approach to strangers), strong eye contact, use of affective language, 

emotional sensitivity as well as poor social judgment and restricted interests(19, 110–113, 122). 

Many comorbidities, such as specific phobias, ADHD, and anxiety, have been commonly 

reported in WS as well(21, 22, 123–125).  To quantify social features in our WS cohort, we used 

a standard instrument for assessing social reciprocity, parent-reported SRS scores from 85 

individuals with WS.  

We examined the SRS and its subscores in depth. In our sample, the SRS T-scores are 

continuously distributed in the WS population with a male mean T-score±SD of 64.58±12.28 

(mean male raw score±SD 74.53±32.03) and female mean T-score±SD of 62.94±11.04	(mean 

female raw score±SD 67.08±26.04)  (Figure 1). There is no significant difference in SRS T-

scores (t70.76=0.6365, p=0.52) or raw scores (t65.907=1.1445, p=0.257) between sexes. To 

benchmark the WS values, Constantino and Todd, 2003 measured raw SRS scores in 788 twin 

pairs from the general population ranging in ages between 7 and 15 and estimated the mean male 

raw score±SD as 35.3±22.0	 and	 the	 female	 mean	 raw	 score±SD as 27.5±18.4;	 males	 and	

females	were	significantly	different.	In	our	analysis,	we	show	that	individuals	with	WS	have	

SRS	scores	that	are	shifted	towards	the	more	impaired	end	of	the	spectrum,	and	we	do	not	

detect	 any	 significant	 sex	 differences	 in	 WS,	 which	 has	 been	 observed	 in	 the	 general	

population.		



 
 

37 

Our	results	largely	replicate	the	results	seen	in	Klein-Tasman	et	al.	2010.	The	overall	

T-score	distribution	reveals	 that	40%	of	our	samples	 fall	 into	 the	no	clinically	significant	

impairment	 range,	 followed	 by	 41.1%	 with	 mild	 to	 moderate	 deficits,	 and	 18.9%	 with	

severe	deficits.	The	number	of	individuals	showing	no	clinical	signs	in	our	sample	is	higher	

than	the	13.4%	observed	when	the	parents	completed	the	SRS	in	Klein-Tasman	et	al.	2010,	

but	more	 similar	 to	 the	 teacher	 reported	 results	 of	 38.8%.	 The	 sub	 scores	 also	 follow	 a	

similar	pattern	to	what	has	been	reported	previously	(20).	There	 is	a	significant	effect	of	

sub	 scale	 on	 the	 T-scores	 (F4,420	 =	 24.759,	 p	 <	 0.001)(Figure	 1B).	 Post	 hoc	 Tukey	 all-

pairwise	comparisons	show	that	social	motivation	has	significantly	better	T-scores	than	all	

other	 sub	 scales,	 consistent	 with	 Klein-Tasman	 et	 al.	 2010.	 The	 social	 awareness	 and	

communication	 scales	 are	 not	 different	 from	 each	 other,	 but	 both	 show	 less	 impairment	

than	 social	 cognition	 and	 restricted	 and	 repetitive	 behaviors.	 	 Social	 cognition	 and	

restricted	 and	 repetitive	 behaviors	 were	 significantly	 more	 impaired	 than	 all	 other	 sub	

scales,	but	not	each	other.		

The	distribution	 of	 SRS	 scores	 in	WS	point	 to	 the	 possibility	 of	 additional	 genetic	

variants	that	modify	the	social	phenotype.	First,	we	see	a	larger	standard	deviation	in	the	

SRS	data	in	our	sample	compared	to	that	of	the	norming	population	from	Constantino	and	

Todd	2003.	The	extra	variance	suggests	individuals	with	WS	are	more	sensitive	to	genetic	

or	environmental	factors	that	modify	social	behavior.		Second,	in	our	sample	there	are	only	

two	individuals	that	show	severe	social	motivation	deficits,	and	these	individuals	also	show	

severe	deficits	in	the	total	SRS	T-score	as	well	as	all	other	sub	scales.	 	These	outliers	also	

suggest	some	individuals	may	harbor	additional	rare	variants	of	large	effect	size	resulting	
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in	a	phenotype	 that	 is	more	 frankly	autistic.	To	 test	 these	 two	hypotheses,	we	generated	

and	analyzed	exome	sequence	from	this	cohort	of	WS	patients.		

2.3.2	Identification of variants in the Williams syndrome critical region	
Williams syndrome individuals are hemizygous for 1.5-1.8Mbp on chromosome 7q11.23. 

Since they only have one remaining allele, our primary hypothesis was that second hits in genes 

believed to impact social phenotypes within the WSCR would produce more extreme social 

phenotypes. We performed whole exome sequencing on 85 individuals, all of whom have an 

SRS score. We called 120 variants in the remaining WSCR and annotated them with the allele 

frequency in our sample, ExAC allele frequency, mutation consequence, clinical significance as 

assessed by ClinVar, and scores that assess deleteriousness of missense variants catalogued in 

dbNSFP.  (Supplemental Table S1). Table I shows the 55 exonic variants discovered in the 

region.  For display purposes we have only included the CADD PHRED score and the MetaLR 

score, which is a composite score that incorporates information from nine other measures  of 

deleteriousness and has been shown to have more predictive power than the individual 

component scores(126).  

We first examined this set of variants to determine if any loss-of-function variants might 

be present in individuals with particularly severe SRS scores in our sample.  Upon inspection of 

the exonic variants, we notice no severe likely protein truncating variants. As homozygous nulls 

for at least two genes in this region(ELN and GTF2I) are expected to be lethal(96, 127), we also 

assessed missense mutations in these genes that might alter function. Based upon the predictions 

of MetaLR all the missense mutations called are expected to be tolerated. None of the variants 

were reported as pathogenic in ClinVar. The highest CADD scores observed are a novel variant 

and SNP rs35607697, both located in the TBL2 gene. Another novel variant was identified as a 
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synonymous change in the BAZ1B gene. Similar results are found for non-exonic variants in the 

region (Supplemental Table S1). This suggests that beyond the reduced copy number of the 

entire WSCR, neither a second rare deleterious coding variant nor any common missense 

mutations in the WSCR explain individuals with outlier SRS scores.  It should be noted that we 

did not identify any variants in GTF2I, one of the primary candidates for mediating the social 

cognitive profile.  

2.3.3 Association analyses 

 To test the hypothesis that individual variants in the WSCR can explain the variance in 

the SRS scores in our sample, we perform classic quantitative trait loci associations. Rare disease 

populations by definition will have small sample sizes such as in this study. We calculated the 

power of our current study to be able to detect variants with different effect sizes and also 

calculated the number of samples that would be needed to reach a certain power given an effect 

size (Figure 2). We calculated the power for analyzing variants in the WSCR, variants in 71 

ASD genes, and the remaining variants identified throughout the exome. Since we are 

conducting fewer tests in the WSCR, we have the most power in this analysis, however we are 

still only powered to detect very large effect sizes that might be unmasked by the hemizygosity 

of the region, such variants would need to explain more than 10% of the heritability of the trait to 

achieve 80% power. Most effect sizes for common variants in diploid regions of the genome 

typically assessed by GWAS for complex traits explain around 1% of the heritability of the 

trait(128). In order to be able to detect variants that explain 5% of the variance of the trait with 

80% power using only variants in the WSCR would require 312 individuals (Figure 2B).  
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We then performed a quantitative trait association analysis of common variants in the 

WSCR on the SRS T-scores from the whole cohort. We used PLINK to test for an association on 

each of the 34 common variants in the WSCR, defined as MAF > 0.05, which corresponds to an 

allele count of at least four in the WSCR due to the hemizygosity of the region. We adjusted for 

age, sex, and ancestry. We found no association between any SNP and SRS that survived 

multiple comparison corrections (Figure 3A). The top five SNPs are displayed in Table II. 

Interestingly, the most significant SNP, rs2074754, is located in the BAZ1B gene, which has been 

previously implicated in contributing to the cognitive phenotypes in WS (49). Furthermore, the 

next most nominally significant SNP is rs61438591, an intronic variant in the GTIF2RD1 gene, 

another gene highly implicated in the cognitive and social phenotypes seen in WS(92, 99–101).  

Since the common variants in WSCR showed no association, we wanted to test for the 

possibility that rare variants could contribute to the variability in SRS T-scores. To test this, we 

used SKAT-O, which tests all variants in the region at once and weights each variant by its 

minor allele frequency. Similarly, we included age, sex, and ancestry as covariates. We tested 

each gene in the WSCR independently, because we hypothesized only certain genes in the 

region, such as STX1A, LIMK1, CYLN2, BAZ1B, GTF2IRD1 (31, 38, 49, 96, 99, 106–109) that 

have been implicated in the cognitive phenotypes would contribute to the social phenotype rather 

than the entire region. While no gene p-value survives multiple testing corrections, the ELN gene 

has the most nominally significant p-value of 0.013   

The results of our analysis of variation in the WSCR suggest that common and rare 

variants in the remaining allele do not strongly influence social behavior in WS. This does not 

exclude the possibility that a second deleterious hit or common variation in other genes outside 

the region contributes to the variation in the SRS T-scores. To test this, we next examined 
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variation in 71 genes known to be associated with autism spectrum disorders(121). These genes 

should be enriched for loci that affect social behavior and genetic variation in these genes could 

contribute to variability seen in WS. We called 1,367 variants in the 71 genes (Supplemental 

Table S2). We annotated the variants as above, with clinical significance and measures of 

deleteriousness compiled in dbNSFP. There are 313 (22.9%) variants that had at least one 

submission to ClinVar. None of these variants had previous evidence to support pathogenicity. 

There are 33 missense variants predicted to be deleterious by MetaLR that are seen in 36 

individuals in our sample. Despite having a putatively deleterious variant the distribution of SRS 

T-scores is similar between individuals either carrying or lacking deleterious variants in these 

genes (t82.999=0.6878, p-value=0.4935). There are seven variants that should result in a truncated 

protein, one stop gain in the USP45 gene and six frameshift mutations. Only one sample 

harboring one of these mutations has a severe SRS T-score of 77. All of these protein-truncating 

mutations are also observed in the ExAC cohort.  

We next tested for associations of each of the 381 common variants (MAF> 0.05) in 

these genes. No SNP was significant after multiple testing corrections (Figure 3B). The top five 

SNPs are located in Table II. Since each of these genes has been associated with ASD, we 

hypothesized that rare and common variants in each of the genes could contribute to SRS. We 

performed SKAT-O on the variants located in the autosomal ASD genes altogether, which also 

showed that there is little evidence to support variants in these 68 ASD genes have a strong 

effect on SRS T-scores, p=0.431 

While it would be underpowered for any but the largest effect sizes (Figure 2A), for 

thoroughness we did an unbiased scan of the whole exome. We also examined the polygenic 

contribution of common variants to the SRS. The common variant analysis was performed on 
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66,620 variants (Figure 3C). The most nominally significant single SNP is rs527221 located in 

the DMPK gene, which is responsible for causing type 1 myotonic dystrophy (129) (Table II). 

While there is suggestive evidence for single variants such as rs527221, we calculated the 

polygenic risk scores (PRS) for each of the individuals in our sample to test if exome wide there 

are many SNPs of small effect that contribute to the social phenotype in WS. We used the 

summary statistics from the most recent PGC GWAS on autism spectrum disorders to calculate 

the PRS for our sample(130). We reasoned the polygenic risk of autism would be correlated with 

the SRS because this is a questionnaire used to assess behaviors that are affected by autism. 

Variants from the PGC GWAS were included if the p-value for the variant was under the 

threshold determined by the high resolution screen in the PRSice software(131). Interestingly, 

only the PRS for the motivation sub score was nominally significant (p=0.033), but after 

permutation to determine an empirical p-value it was not significant (p=0.308). The correlations 

of the PRS for each of the samples and the sub score as well as total SRS are shown in 

supplemental figure 1. Counterintuitively, there is a negative correlation between the PRS and 

motivation sub score. While this is the largest correlation between the PGS and sub scores it 

implies that more genetic risk for autism leads to a lower and less impaired social motivation T-

score. However, given the small sample size and small number of SNPs available from whole 

exome sequencing compared to whole genome genotyping we are wary of making strong 

conclusions from this analysis.  

We and others (20) have shown that individual sub scores of the SRS  are affected 

differently by the deletion of the WSCR. Therefore, we wanted to rule out the possibility that 

variants are indeed affecting specific sub scales of social behavior, but that testing the total SRS 

score is masking those effects. Thus, in an exploratory manner, we repeated the quantitative trait 
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loci associations for each of the sub scores of the SRS using the variants in the WSCR, 71 ASD 

genes, and the remaining whole exome variants. Since the sample size is small we conducted 

these associations for exploratory and hypothesis generating purposes. The top five SNPs from 

each association are reported in supplemental tables 3-5. For each of the analyses we see similar 

variants showing the highest association as were associated with the total SRS, likely due to the 

high correlation between the SRS and the sub scores (Supplemental Figure 2). Thus, an 

analysis of the total SRS was not masking independent genetic effects on each sub scale. 

2.4 Discussion 
 Phenotypic variability has been appreciated in many of the symptom domains of WS 

including the cardiovascular phenotypes, the unique cognitive profile, and in social 

behavior(132–134). Here, we have described the variability of reciprocal social behavior in a 

sample of 85 individuals with the typical WS deletion using the SRS-2. Our results replicate the 

findings of Klein-Tasman et al. 2010, revealing that overall individuals with WS have SRS 

scores that are shifted to the more socially impaired end of the distribution, with most problems 

relating to the social cognition and restricted and repetitive behavior sub scales of the SRS while 

social motivation is spared. 

 We also note that sex differences in the general population have been reported 

previously in the literature for SRS. These sex differences were not consistent with different 

genetic factors contributing to the SRS in boy and girls, but due to discrepant effects of common 

genetic and environmental factors on SRS, such as differences in sensitivity to environmental 

factors or the X-inactivation phenomenon (119). However, we do not see evidence of sex effects 

in our sample of individuals with WS. The magnitude of the difference between males and 

females in our sample is similar to what was reported in the general population, so our lack of a 
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significant finding could be due to our small sample size. The standard deviation of the SRS is 

large in both the general population and still larger in the WS population, so it may also be that 

larger sample sizes are needed to overcome the considerable variance in the data. The fact that 

the WS population has a larger standard deviation could also suggest that individuals with the 

deletion are sensitized to other factors that contribute to variation in the SRS such as background 

genetic variation or environmental factors.  

We performed whole exome sequencing on our sample of 85 individuals to test for 

additional genetic contributions to the variability seen in social behavior in individuals with WS. 

We used the identified variants to test the hypothesis that genetic variation in the remaining 

WSCR allele can explain some of the variability in SRS T-scores. Genes in this region have a 

dosage sensitive effect on social behavior evidenced from the contrasting social phenotypes of 

the WS deletion and the reciprocal duplication, suggesting that variants in the remaining WSCR 

allele that affect expression or function of the genes could further contribute to the social 

phenotype(13). We called 120 variants in the WSCR with 55 variants being exonic. We used 

evidence such as the amino acid change, clinical significance suggested by the ClinVar database, 

and multiple algorithms to predict the consequences of the variants. Within the WSCR we do not 

find any variants that cause protein truncation. None of the missense variants are predicted to be 

deleterious based on the MetaLR composite score. Of the nine variants that have been submitted 

to ClinVar, all were described as benign or likely benign. A quantitative trait association analysis 

using the common variants in the region resulted in no SNP that survived multiple testing 

corrections. The most significant SNP, rs2074754, is a synonymous SNP in the BAZ1B gene. 

This gene encodes for a protein product in the bromodomain protein family that modifies 

chromatin to affect transcription and has been implicated in the cognitive phenotypes in WS. 
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Knocking down this gene in human derived induced pluripotent stem cells upregulates genes 

involved in mitosis as well as downregulating genes that are involved in the development of the 

nervous system(49) The second most nominally significant SNP, rs61438591, is an intronic 

variant in GTF2IRD1, which encodes for a transcription factor that has been suggested to 

contribute to the cognitive and social behavior deficits (38, 39, 49, 92, 100, 101).  If future 

studies with increased power replicate this association, it would suggest that noncoding variation, 

perhaps controlling the expression of this gene, might contribute to variation is social behavior.  

We also tested the association of all variants in the WSCR using SKAT-O. This test indicated no 

variants with sufficient effect size were detected in the WSCR.  

While we have not shown evidence that variants in the remaining WSCR contribute to 

the social phenotype in WS, we cannot conclusively discard this hypothesis. However, our study 

does clearly indicate that the alleles genotyped here are either not causative or exert too small an 

effect size on SRS for our current power (Figure 2), but it does not rule out variants of small 

effect on social behavior in the region. Research on other copy number variants associated with 

ASDs showed that larger CNVs tended to have genes of smaller individual effect size and 

suggests the phenotype of the overall CNV is due to the cumulative effect of each of those 

genes(121). Further we did not detect any variants in the gene GTF2I, which has been highly 

suspected of contributing to the social behaviors in WS(31, 38, 53, 90, 96). The lack of variant 

calls in our sample could be due to the fact that GTF2I is under stringent purifying selection. 

Indeed, looking at the ExAC data covering this gene, they show that there are fewer missense 

variants than expected by chance. ExAC discovered 62 synonymous and 56 missense mutations 

in 60,706 people(135). In our sample of 85 individuals we would expect to see variants in ExAC 

that have an allele frequency of greater than 0.0059, which is an allele count of one in our 
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sample. There are ten variants with an allele frequency greater than 0.0059 detected in ExAC, 

only three of which are exonic. Thus, we would need a much larger sample size to investigate 

coding variants in GTF2I. The two linked variants in GTF2I that have previously been associated 

with oxytocin responsiveness and amygdala reactivity, rs1322743 and rs4717907, are intronic 

and were not covered in our sequencing(51, 118).  

  We further used the genetic data to investigate the role of variation in 71 genes that have 

been associated with ASD. WS and ASD do show phenotypic overlap(114, 136), and we 

reasoned that these genes should be enriched for functional roles in social behaviors. Likewise, 

the presence of outlier scores on the SRS that indicated severe impairment, suggested there could 

be possible second deleterious hits on top of the WS deletion in our dataset. Second hits are 

expected to be rare but have been observed in WS to explain a case of a child with comorbid 

seizures(54).  Inspecting the 1,367 variants discovered in the ASD genes, 313 variants have been 

previously submitted to ClinVar, none of which show evidence for any pathogenicity. We 

observed seven protein-truncating mutations that do not associate with severe SRS T-scores. 

Several missense mutations were predicted to be deleterious, but there was no association 

between individuals that had a putative deleterious variant and a more impaired SRS score. 

Testing the common and rare variants in these genes showed no associations with the social 

phenotype.  Similar results were found when we performed the association analyses on all of the 

variants discovered in the cohort. The most significant SNP was rs527221, a nonsynonymous 

variant in the DMPK gene, which is responsible for causing type 1 myotonic dystrophy, severe 

childhood forms of which have been associated with ASD(137). We also tested if polygenic risk 

for increased ASD liability is associated with the SRS T-score and sub scores. This boosts our 
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ability to detect the impact of many loci with small effects. The largest correlation was between 

the PRS and the social motivation sub score, although this was not significant.  

WS seems to affect specific domains of social behavior as evidenced by significant 

differences between the sub scores of the SRS. This observation led us to an exploratory 

examination of associations with the sub scores of the SRS and test if different genetic variants 

contribute to each sub score. Overall using variants from the WSCR, ASD genes, or the whole 

exome identified the same variants as nominally significant. The SRS and the sub scores are very 

correlated, but the social motivation in the WS sample is the least correlated to all other scores. 

This reflects that fact that social motivation tends to be rated within the normal range in WS, 

while the other scores are often higher. Interestingly, the whole exome association on the 

motivation T score leads to the lowest FDR values compared to the other scores, suggesting that 

there may be more genetic signal when using this sub scale. Indeed, this decoupling of the social 

motivation subscale from other SRS items highlights the possibility that the social motivation 

subscale might provide useful clinical information going forward; individuals carrying the 

WSCR deletion yet not showing a spared social motivation might warrant a deeper examination 

for additional factors impacting their presentation. 

There are several limitations to our current study that should be addressed in future 

research. First the current study genotyped and assessed only the probands and not their parents. 

Having genetic information from trios would allow us to distinguish between variants that are 

inherited or de novo, which would aid in interpretation and prioritization of variants. Further, 

being able to compare the SRS score of the individual with WS to biparental SRS mean would 

let us control for effects of background genetic variation(120). Second, we are limited to 

investigating exonic variation. While interpretation of exonic variants is more straightforward 
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because they potentially disrupt coding sequences, and can aid in the detection of deleterious rare 

variants, we could be missing important regulatory information that is located in promoters or 

introns of genes. Third, we were not able to control for intellectual functioning of the individuals 

with WS. The SRS has been reported to not correlate with intellectual functioning(138), but 

Klein-Tasman et al. 2010 found significant negative correlations between intellectual functioning 

and the total SRS T-score when parents completed the report, but not when teachers completed 

the report. SRS values have been shown to be dependent on levels of expressive language, 

nonverbal IQ, and behavioral problems. A subset of SRS questions was selected to ameliorate 

these dependences(139). The short form of the SRS as well as other questionnaires that assess 

adaptive skills and social behaviors could be used in the future to provide supporting information 

about the social phenotype and underlying genetics in WS. Finally, while our study represents 

the largest single collection of WS samples reported to date, it is only powered to detect strong 

effects of common variants due to our small sample size. This is challenging to overcome due to 

the low prevalence of WS.  

In conclusion, we have tested the hypothesis that variation in the remaining WSCR allele 

affects the social phenotype of individuals with WS, by applying whole exome sequencing to a 

sample of 85 individuals with typical WS deletions. We show that common and rare variants in 

the region do not associate with SRS T-scores in our sample. Further, we show that variation 

outside of the region does not account for the social variability. This is not to say that genetic 

variation does not play a significant role in phenotypic variability in WS, but that it will require 

larger sample size to detect. In the future, applying whole genome sequencing to a sample of 

individuals with WS might elucidate the roles of genetic variation in the regulatory elements. 

Whole genome data could also allow for more accurate breakpoint determination. Redundant 
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sequences in the low copy number repeat areas at either end of the WS deletion prevent accurate 

end point detection by CMA.  This will be an interesting avenue to pursue in order to investigate 

how deletion size variation among individuals with typical 1.5 to 1.8 MB deletions contributes to 

social behavior.  For example, Porter et al. showed that those with larger (1.8Mb deletions) had 

decreased executive functions(41). It is also worth noting that the current genetic data set has 

additional clinical data available, which can be queried in the future for the presence of more 

substantial associations with other WS related phenotypes.  

2.5 Materials and Methods 
Ethical Compliance and samples 

This study was conducted with approval of the IRBs at Washington University School of 

Medicine and the National Institutes of Health.  Consent was obtained prior to inclusion in the 

study.  Once enrolled, participants provided a DNA sample by blood or saliva and their care-

givers filled out health related questionnaires.  The 85 individuals that make up our sample have 

ages that range from 2.5 to 65.5 years with a mean of 16.1 years. Caregivers provided a self-

reported ethnicity. The majority of the sample was reported as white (77 individuals). There are 

two individuals that are African American, three Chinese, and three others.  

Confirmation of diagnosis 

WS diagnosis and typical deletion size was confirmed using either chromosomal microarray or 

quantitative PCR.  In some cases, clinical microarray results were derived from the medical 

record.  Array type varied by individual.  For the remaining individuals, some received a 

research array (Cytoscan HD, Applied Biosystems) with analysis using the accompanying ChAS 

software.  Others underwent deletion size assessment using quantitative PCR for genes within 
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and outside of the Williams region using Taqman copy number probes (Thermo-Fisher, AUTS2: 

Hs04984177_cn, CALN1: Hs04946916_cn, FZD9: Hs03649975_cn, CLIP2: Hs00899301_cn, 

HIP1: Hs00052426_cn, POM121C: Hs07529820_cn).  Copy number analysis was done 

according to the manufacturer’s instructions and output data analyzed using their Copy Caller 

software.  All individuals were confirmed to have deletions that included the WSCR genes ELN, 

FZD9 and CLIP2, but did not include genes external to the typical deletion such as CALN, 

AUTS2, POM121C or HIP1 (data not shown).  

Social Responsiveness Scale 

The social responsiveness scale-2 (SRS) is a 65-item questionnaire that measures aspects of 

social interaction that make up the core symptoms of autism spectrum disorders. The output is a 

total raw score as well as a T-score that is adjusted for sex, age, and the relationship of the 

reporter to the proband. The total score is made up of the scores of five subcategories that are 

impaired in ASDs: social awareness (AWR), social cognition (COG), social motivation (MOT), 

social communication (COM), and behaviors typical of autism such as restricted interests and 

repetitive behaviors (RRB). The response to each question ranges from 1 (not true) to 4 (almost 

always true). The T-scores are binned into four groups: normal < 59, mild between 60 and 65, 

moderate between 66 and 75, and severe > 76. For this study, the age-specific (pre-school, 

school age, or adult) SRS-2 was completed by the participant’s caregiver and analyzed as a T-

score that is adjusted for sex, age, and the relationship of the reporter. We provide values from 

the general population that have been previously reported for comparison (119, 138). 

Sequencing and Variant calling 
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Whole exome sequencing and alignment was performed at Washington University in St. Louis 

by the McDonnell Genome Institute on 85 DNA samples from individuals with WS. Exomes 

were captured using Nimblegen SeqCap EZ Choice HGSC Library version 2.1, which targets 

45.1 Mbp covering 23,585 genes and 189,028 non-overlapping exons. Exomes were aligned to 

the GRCh37-lite genome using bwa  –mem v0.7.10(140) default settings, samtools v0.1.19(141) 

was used to assign mate pairings, sort, and index the bam files. Duplicates were marked using 

Picard MarkDuplicates v1.113.  

Variant calling was done following GATK best practices on the aligned exomes (142). Briefly, 

using GATK v3.6.0 indels were realigned and the base quality scores recalibrated. Variants were 

initially called per sample using the haplotype caller tool, followed by jointly calling variants. To 

improve variant calls, we recalibrated variants and used a truth sensitivity tranche of 97 for 

SNPs, and a truth sensitivity tranche of 94 for indels. These thresholds were chosen to maximize 

the number of known and novel variants while still being stringent enough to limit the number of 

false positive variant calls. To further filter the variants we used the VariantFiltration tool to 

filter variant sites that had lower than a 10x average coverage or an inbreeding coefficient less 

than -0.20 to remove sites with excess heterozygosity. Genotype calls were filtered and 

considered to be missing if they had a genotype quality score of less than 20, which refers to a 

99% probability that the call is correct. Finally, using vcftools v0.1.14(143), we removed sites 

that had a genotype missing rate of greater than 10%, as well as sites that no longer showed any 

variation. This produced a call set of 202,820 variant sites. The final call set has a Ti/Tv ratio of 

2.76 and a dbSNP rate of 88.5%. These metrics are consistent with quality variant calls and a low 

false positive rate.  

Variant annotation 



 
 

52 

The variant call set was split into three groups using vcftools: 1) variants in the Williams 

syndrome critical region (WSCR) defined by hg19 coordinates chr7:72,395,660-74,267,841 2) 

variants located in 71 genes associated with ASD(121), and 3) the remaining non-overlapping 

variants. All sets include exonic variants as well as variants located in introns that are pulled 

down by the capture reagents.  Bcftools v1.2(141) was used to split multiallelic sites into 

separate lines for each allele and left normalized so positions would be compatible with 

ANNOVAR annotation files version 2016-02-01(144). The ANNOVAR table_annovar.pl 

function was used to annotate all three variant call sets with the RefSeq gene annotation, variant 

consequence, ExAC allele frequency(135), sample specific allele frequency, dbsnp147 name, 

clinical significance assessed by ClinVar(145). Missense variants were also annotated with 

measures of deleteriousness compiled in dbNSFPv3.3a(146). We highlight the CADD PHRED 

score and MetaLR as two measures of variant deleteriousness. CADD scores are defined at each 

base in the genome and for every possible single nucleotide change(147). CADD scores compare 

65 annotations, including functional data as well as conservation scores, between fixed human 

derived alleles and simulated variants. Deleterious variants should be depleted in the observed 

fixed alleles and not in the simulated variants. CADD PHRED scores represent the relative rank 

of a CADD score compared to all other possible allele CADD scores; a CADD score of 10 

means this allele is ranked as the top 10% of all possible CADD scores. Larger CADD PHRED 

score indicates an increased predication of deleteriousness. MetaLR uses logistic regression to 

incorporate information from 9 other variant annotations that consider function as well as 

conservation(126). The model was trained on true deleterious variants and true neutral variants 

described in the Uniprot database. The composite MetaLR score was found to have greater 

predictive ability than any of the single scores that make up MetaLR.    
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Power Analysis  

We performed a power analysis to provide the limits of genetic effects that we would be able to 

detect given our cohort size. For future studies we also calculate the sample sizes that would be 

needed to detect different magnitudes of genetic effects. We used the Genetic Power Calculator 

(148). We calculated the predicted power of the current sample size n=85 using a p-value 

threshold corresponding to the Bonferroni corrected alpha for each set of analyses (WSCR 34 

variants, alpha=0.00147, ASD 381 variants, alpha=0.000131, WEX 66620 variants, 

alpha=7.5x10-7. Our main hypothesis is variants on the remaining WSCR allele affect the social 

phenotype; we wanted to calculate the sample sizes that would be required to detect different 

size genetic effects in the WSCR at different levels of power. We again used the alpha threshold 

based on the 34 common variants we identified in the exons of the WSCR and report the sample 

size required to achieve a specific power.  

Association analyses 

Common variant analysis 

The variant call files were converted to plink binary bed format using the GATK tool 

VariantToBinaryPed. We used PLINK v1.9(149) --linear option to conduct a quantitative trait 

association using the SRS T-score as the quantitative trait. Ancestry was controlled for by 

including the first four principle components, determined by the --pca function in PLINK, as 

covariates along with sex and age. We used alleles that had a minor allele frequency (MAF) of 

0.05 or greater. We performed the association analyses on the three separate groups of variants 

described in the previous section. It should be noted that allele frequency in the Williams 

syndrome critical region is inflated because of the hemizygous state of the region in individuals 



 
 

54 

with WS. A MAF of 0.05 in this region corresponds to an allele count of four. In all cases we 

report the effect size of a variant under an additive model. Though the small sample size of this 

study limits power, in an exploratory fashion we also performed the same quantitative trait 

analysis on each of the sub scores of the SRS using variants in the WSCR, ASD genes, and the 

whole exome.  

SKAT-O 

SKAT-O (150)was implemented in the R v3.1.3 environment. SKAT-O fits a multiple linear 

regression of all SNPs located in a user provided region. The framework in SKAT-O allows for 

correlation between SNPs in a region, where if all SNPs are perfectly correlated this would 

become a burden test, but also allows SNPs in the same region to have effects in opposite 

directions. Significance is assessed by region rather than by SNP. We considered each gene that 

harbors a variant in the WSCR as a separate region for a total of 26 regions. To test for an overall 

effect of variants in the ASD genes we collapsed the 61 autosomal genes into one region.  We 

used the beta function shape parameters (1,50) to put more weight on SNPs that have lower 

minor allele frequency, reasoning that rare causal alleles potentially have a greater effect size. 

We again controlled for age, sex, and the first four principal components.  

Polygenic Risk Score 

Polygenic Risk Scores (PRS) can be used to test if there is a contribution of many loci of small 

effect on the phenotype of interest by summing the effects of variants that may have not reached 

genome-wide significance. For a discovery set, we used the publically available summary 

statistics from the most recent Psychiatric Genome Consortium genome wide association study 

(GWAS) of autism spectrum disorder (130), reasoning that genetic risk for autism would 
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contribute to SRS scores. The best-fit PRS was determined using the high-resolution 

functionality in the PRSice software(131). All of the variants identified throughout the exome 

with a MAF >0.05 and that are also present the in the discovery set were used to calculate the 

PRS. Sex, age, and the first four PCs were included as covariates. After clumping there were a 

total of 23,191 variants used to calculate the PRS.  PRSice was used to calculate the significance 

of the PRS at the best-fit p-value threshold using 10000 permutation to determine an empirical p-

value. PRS for each of the samples was calculated for the total SRS T-score as well as the sub 

scores.  

Other statistical analyses 

All remaining statistical tests were done in the R v3.1.3 environment. Two sample t-tests were 

used to compare the means of two groups. ANOVA was used to test differences in mean of sub 

scales of SRS. TukeyHSD post hoc comparison was performed using the multcomp package. 

The qqman(151) package was used to generate manhattan and qq plots.  
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2.7 Figures 

  

Figure 1: Distribution of Social Responsiveness in 85 individuals with typical WS deletion. A Distribution of 
the raw SRS scores B Severity bins of SRS and subcategory scores.  
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Figure 2: Power analysis. AThe power to detect variants of different effect sizes for the current study. The alpha 
for the three different sets of analyses was determined by using the Bonferroni correction based on the number of 
SNPs tested in each analysis. (WSCR: variants in the WSCR, ASD: variants in the 71 ASD genes, WEX: all 
remaining variants exome wide). B The predicted sample sizes that would be required to achieve different levels of 
power for detecting variants of different effect sizes. The sample size predictions were only done using the alpha for 
the number of SNPs tested in the WSCR. The horizontal dashed line indicates the sample size of the current study.  
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Figure 3: Variants in the WSCR, ASD genes, or whole exome do not contribute to SRS variability in a sample 
of WS with typical deletions. A qq plot showing distribution of p-values for common variants in the WSCR. Locus 
zoom plot showing the SNPs tested in the WSCR, highlighting the most nominally significant SNP in BAZ1B. B qq 
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and manhattan plot for variants called in 71 genes associate with ASD from Sanders et al. 2015. C qq and manhattan 
plot for variants exome wide. Blue line demarcates a suggestive p value threshold of 1x10-5. 
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Supplemental Figure 1: Polygenic Risk Score correlation with SRS and SRS subscores. A-F Panels show the 
correlation between the polygenic risk score (PRS) for the sub scores of the SRS calculated using variants from the 
PGC ASD GWAS that fall below the p-value threshold calculated from the best-fit PRS. Pearson correlation values 
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between the samples PRS and the SRS subscore shown as the inset. 

 

Supplemental Figure 2: SRS and sub scales are correlated. Heatmap display of the Pearson correlation values of 
the SRS and sub scale T-scores in 85 individuals with WS. Values of the correlation are labeled in the plot.  
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Table 1: Annotation of 55 exonic variants discovered in the WSCR 
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Table 2: Top five SNPs from quantitative trait locus associations  
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Supplemental Table S1: Annotation of 120 variants discovered in the Williams syndrome critical region 
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Supplemental Table S2: Genetic variants in 71 genes associated with autism spectrum 
disorder
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 Supplemental Table S3: Top 5 SNPs for each SRS subscore for variants in the Williams syndrome Critical 
Region
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Supplemental Table S4: Top 5 SNPs for each SRS subscore for variants in 71 genes associated with Autism 
spectrum disorder 

 

 

 

Supplemental Table S5: Top 5 SNPs for each SRS subscore for variants discovered across the whole exome 
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Chapter 3: The effects of Gtf2ird1 and Gtf2i 
DNA binding on transcription and behavior 

supports the important function of the N-
terminal end of Gtf2ird1.  

 

Nathan Kopp, Katherine McCullough, Susan E. Maloney, Joseph Dougherty 
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3.1 Abstract  
The two transcription factors Gtf2i and Gtf2ird1 have been thought to play a role in the 

craniofacial, cognitive, and behavioral phenotypic domains of WS. There exist many mouse 

models of each of these transcription factors that show behavioral phenotypes. Further, some 

phenotypes such as balance, anxiety, and social behavior, mouse models of both transcription 

factors show deficits in the same direction, however the affect of these genes on behavior have 

not been studied in combination. To examine how these genes could mediate behavioral 

consequences we described the genomic binding sites of these transcription factors in the 

developing brain. We then characterized two new mouse models generated using the 

CRISPR/Cas9 system to test how mutating both Gtf2i and Gtf2ird1 can modify the 

transcriptional and behavioral phenotype observed in a single Gtf2ird1 mutant.  The Gtf2ird1 

mutant was shown to make a N-truncated protein that has decreased capacity to bind the 

promoter of Gtf2ird1 but still can bind genome-wide. Despite little differences in DNA-binding 

and transcriptome-wide expression, the mutation still caused balance, marble burying, and 

activity phenotypes, supporting a functional role for the N-terminus of Gtf2ird1. Mutating both 

Gtf2i and Gtf2ird1 did not modify the transcriptomic or behavioral phenotypes, suggesting that 

Gtf2ird1 mutation largely drives the behavioral phenotypes observed. 

3.2 Introduction 
The Williams syndrome critical region (WSCR) contains 26 genes that are typically 

deleted in Williams syndrome (WS) (OMIM#194050). The genes in this region are of interest for 

their potential to contribute to the unique physical, cognitive, and behavioral phenotypes of WS, 

which include craniofacial dysmorphology, mild to severe intellectual disability, poor visual 

spatial cognition, balance and coordination problems, and a characteristic hypersocial personality 
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(2,	13,	15).  Single gene knock out mouse models exist for many of the genes in the region, with 

differing degrees of face validity to the phenotypes of WS (92–96, 101). Two genes have been 

highlighted in the human and mouse literature as playing a large role in the social and cognitive 

tasks, Gtf2i and Gtf2ird1. Mouse models of each gene have shown social phenotypes as well as 

balance and anxiety phenotypes (92,	96,	97,	101,	152,	153). Since there is evidence that each 

gene affects similar behaviors, we set out to test the hypothesis that that knocking down both 

genes simultaneously would lead to more severe phenotypes, suggesting that multiple genes in 

the WSCR locus affect similar behaviors. Investigating both genes together, rather than 

individually could provide a more complete understanding of how the genes in the WSCR 

contribute to the phenotypes of WS.  

 Gtf2i and Gtf2ird1 are part of the General transcription factor 2i family of genes. A third 

member Gtf2ird2 is located in the WSCR that is variably deleted in patients with WS that have 

larger deletions(41). This gene family has arisen from gene duplication events, which resulted in 

high sequence homology between the genes (68). The defining feature of this gene family is the 

presence of the helix-loop-helix I repeats, which are involved in DNA and protein binding (154). 

Gtf2i has roles that include regulating transcriptional activity in the nucleus, but this 

multifunctional transcription factor also resides in the cytoplasm where it conveys messages 

from extracellular stimuli and regulates calcium entry into the cell (74, 76). So far, Gtf2ird1 has 

only been described in the nucleus of cells and is thought to regulate transcription and associate 

with chromatin modifiers (79). The DNA binding of these two transcription factors has been 

studied in ES cells and embryonic craniofacial tissue. They recognize similar and disparate 

genomic loci, suggesting that both genes interact to regulate specific regions of the genome (84, 

155). However, the DNA binding of these genes has not been studied in the developing brain, 
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which could provide insight on how the general transcription factor 2i family contributes to 

cognitive and behavioral phenotypes. 

We performed ChIP-seq on Gtf2i and Gtf2ird1 in the developing mouse brain to define 

where these genes bind and also to test the downstream consequences of disrupting the binding. 

We used the CRISPR/Cas9 system to make a mouse model with a mutation in just Gtf2ird1 and 

a mouse model with mutations in both Gtf2i and Gtf2ird1 to test how adding a Gtf2i mutation 

modifies the affects of Gtf2ird1 mutation. We showed that the mutation in Gtf2ird1 resulted in 

the production of an N-truncated protein that disrupts the binding of Gtf2ird1 at the Gtf2ird1 

promoter and deregulates the transcription of Gtf2ird1. While there are mild consequences of the 

mutation on transcription genome-wide the mutant mouse exhibited clear balance and marble 

burying deficits, as well as increased activity. Comparing the single gene mutant to the double 

mutant did not reveal more severe transcriptional changes or behavioral phenotypes. This 

suggests that Gtf2ird1 drives the majority of the phenotypes observed in the current studies, and 

the N-terminal end of this protein has functional consequences on DNA-binding and behavior.  

3.3 Results 

3.3.1 Gtf2i and Gtf2ird1 bind at active promoters and 

conserved sites 

The paralogous transcription factors, Gtf2i and Gtf2ird1, have been implicated in the 

craniofacial and behavioral phenotypes seen in humans with WS as well as mouse models (38, 

96, 97, 100, 101, 153). However, the underlying mechanisms by which the general transcription 

factor 2i family acts are not well understood. One approach to begin to identify how these 
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transcription factors can regulate phenotypes is by identifying where they bind in the genome. 

This has been done in ES cells and embryonic facial tissue and revealed that both of these 

transcription factors bind to genes involved in craniofacial development (84). However, these are 

not relevant tissues that could explain their affects on brain development and subsequent 

behavior. To overcome this we performed ChIP-seq for Gtf2ird1 and Gtf2i in the developing 

embryonic day 13.5 (E13.5) brain, a time point when both of these proteins are highly expressed.  

We identified 1,410 peaks that were enriched in the Gtf2ird1 IP samples compared to the 

input. The Gtf2ird1 bound regions were strikingly enriched in the promoter of genes and along 

the gene body, more so than would be expected by randomly sampling the genome (Figure 1A) 

(χ2 = 1537.8, d.f. =7, p < 2.2x10-16). The bound peaks were found mostly in H3K4me3 bound 

regions (Fisher’s exact test, p<2.2x10-16), suggesting that they are in active sites in the genome. 

While the Gtf2ird1 bound regions were also enriched in repressed regions of the genome as 

defined by H3K27me3 marks (Fisher’s exact test, p< 2.2x10-16), 94% of the peaks were in 

H3K4me3 regions opposed to the 11% of Gtf2ird1 peaks found in H3K27me3 regions (Figure 

1B), suggesting the Gtf2ird1 may have more of a role in activation than repression. 

 To understand the common function of the genes that have Gtf2ird1 bound at the 

promoter we performed GO analysis. The top ten results were consistent with the functions 

previously described for Gtf2ird1, specifically regulation of transcription and chromatin 

organization, and we highlighted new categories, such as protein ubiquination (Figure 1C). To 

further test if these regions have functional consequences we compared the conservation of the 

Gtf2ird1 peaks to a random sample of the genome and found that the Gtf2ird1 peaks are more 

conserved (t=18.131,d.f.=2403, p < 2x10-16) (Figure 1D). We conducted motif enrichment 

analysis using HOMER to identify other factors that share binding sites with Gtf2ird1 (Figure 
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1E). The GSC motif, which is similar to the core RGATTR motif for Gtf2i and Gtf2ird1, was 

identified in 4.64% of the targets (65). Interestingly, the CTCF motif was found at 11% of the 

Gtf2ird1 targets, further supporting its role in chromatin organization.   

 Gtf2i Chip-seq showed similar results to that of Gtf2ird1. We identified 1,755 WT Gtf2i 

peaks that had significantly higher coverage in the WT IP compared to the KO IP 

(Supplemental Figure 1A). These peaks were significantly enriched for promoter regions as 

well as the gene body when compared to random genomic targets (Figure 2A)(χ2 = 911.63, 

d.f.=7, p < 2.2x10-16). Similar to Gtf2ird1, the majority of the Gtf2i peaks  (78.7%) overlapped 

H3K4me3 peaks (Fisher’s exact test, p< 2.2x10-16), with a smaller subset of peaks (20.7%) 

overlapping with the H3K27me3 mark (Fisher’s exact test p<2.2x10-16). This suggests that these 

peaks are located mainly in active regions of the genome (Figure 2B). Summarizing the 

common functions of these target genes by GO analysis, showed enrichment for biological 

processes such as intracellular signal transduction and phosphorylation (Figure 2C).  For 

example, Gtf2i binds within the gene body of the Src gene (Figure 2D), which has been shown 

to phosphorylate Gtf2i itself to activate its transcriptional activity as well as regulate calcium 

entry into the cell (74, 76). Along with binding to gene promoters, the Gtf2i binding sites are 

significantly more conserved than random sampling the genome, further suggesting important 

functional roles of these regions (Figure 2E). Motif enrichment of the Gtf2i peaks revealed GC 

rich binding motifs such as for the KLF/SP family of transcription factors. Interestingly, the Lhx 

family of transcription factors motif is enriched. Finally, we see an enrichment of the CTCF 

motif, which Gtf2i has been shown to help target CTCF to specific genomic regions (156) 

(Figure 2F).  
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3.3.2 Gtf2i and Gtf2ird1 binding sites have distinct features yet overlap at a 
subset of promoters  

One way in which Gtf2i and Gtf2ird1 can interact is by binding the same sites in the 

genome. We set out to determine how the binding regions of these two genes were similar or 

different, as well as directly scanning for shared targets. First, we compared the Gtf2i and 

Gtf2ird1 chip peaks and found that the proportion of annotations of the binding sites are 

significantly different (χ2 = 282.84, d.f.=7, p < 2.2x10-16) (Figure 3A). While both transcription 

factors mainly bind in promoters and the gene body, Gtf2ird1 has a higher proportion of peaks at 

the promoter compared to Gtf2i, whereas Gtf2i has more peaks that fall in intergenic regions 

when compared to Gtf2ird1. Interestingly, when we compared them directly to each other the 

Gtf2ird1 bound peaks were significantly more conserved than the Gtf2i bound peaks 

(t=7.81,d.f.=2736.5, p=8.2x10-15) (Figure 3B). Next, to identify common targets, we looked at 

the overlap of the genes that had either of the transcription factors at their promoter, and we 

identified a significant overlap of 148 genes (Fisher’s exact test p < 1x10-38) (Figure 3C). The 

GO functions of the overlapped genes highlight specific roles in synaptic functioning and signal 

transduction (Figure 3D). The Mapk14 gene is an example of a gene involved in signal 

transduction that has both Gtf2i and Gtf2ird1 bound at its promoter (Figure 3E). Interestingly, 

Mapk14 is known to phosphorylate Baz1b (157), another transcription factor in the WSCR. 

Shared targets such as this one suggest there are points of convergence where having both genes 

deleted, such as in WS, might result in synergistic downstream impacts, and further implicates 

another gene in the WSCR.  
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3.3.3 Frameshift mutation in Gtf2ird1 results in truncated protein and affects 
DNA binding at the Gtf2ird1 promoter 

To investigate the functional role of Gtf2ird1 and Gtf2i at these bound sites and 

understand how these two genes interact, we set out to make loss of function models of Gtf2ird1 

individually and a double mutant with mutations in both Gtf2i and Gtf2ird1. We designed two 

gRNAs, one for Gtf2ird1 and one for Gtf2i, and injected them simultaneously into FVB mouse 

embryos, to obtain single gene mutations, as well as double gene mutations. We first 

characterized the consequences of a one base pair adenine insertion in exon three of Gtf2ird1. 

This is an early constitutively expressed exon, and the frameshift mutation introduced a 

premature stop codon in exon three, which we expected to trigger nonsense-mediated decay 

(Figure 4A). We crossed heterozygous mutant animals to analyze Gtf2i and Gtf2ird1 transcript 

and protein abundance in heterozygous and homozygous mutants compared to WT littermates 

(Figure 4B).  The western blots and qPCR were performed using the whole brain at embryonic 

day 13.5 (E13.5). As expected, the Gtf2ird1 mutation did not affect the protein or transcript 

levels of Gtf2i (Figure 4C,D). Contrary to our prediction that the frameshift mutation would 

cause nonsense-mediated decay, we observed an ~0.8 CT increase in Gtf2ird1 transcript with 

each copy of the mutation and a 40% reduction of the protein in homozygous mutants compared 

to WT with no significant difference between the WT and heterozygous mutants (Figure 4E, F).  

This suggests that the mutation did have an effect on protein abundance and disrupted the normal 

transcriptional regulation of the gene.  

Similar results were reported in a mouse model that deleted exon two of Gtf2ird1, which 

showed reduced levels of an N-terminally truncated protein caused by a translation re-initiation 

event at methionine-65 (66). We noticed a slight shift in the homozygous mutant band, which 

may correspond to the loss of the N-terminal end of the protein. The N-terminal end codes for a 
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conserved leucine zipper, which participates in dimerization as well as DNA-binding (66, 158). 

Mutating the leucine zipper was shown to affect binding of the protein to the Gtf2ird1 upstream 

regulatory (GUR) element that is located at the promoter of Gtf2ird1 (Figure 4G). Given the 

previous findings that Gtf2ird1 negatively autoregulates its transcription and mutating the 

leucine zipper affects binding to the GUR, we hypothesized that the frameshift mutation 

diminished the ability of Gtf2ird1 to bind to its promoter resulting in increased transcript 

abundance. We tested this by performing ChIP-qPCR in the E13.5 brain in WT and Gtf2ird1-/- 

mutants. In the WT brain, Gtf2ird1 IP enriched for the GUR 13-20 times over off-target 

sequences, which was significantly higher than the Gtf2ird1 IP in the Gtf2ird1-/- brain (Figure 

1H,I). Taken together, nonsense transcripts of Gtf2ird1 with a stop codon in exon three can 

reinitiate at a lower level to produce an N-truncated protein with diminished binding capacity at 

the GUR element.  

3.3.4 Truncated Gtf2ird1 does not affect binding genome wide 
Given that the one base pair insertion did not result in a full knock out of the protein, but 

did affect its DNA binding capacity at the GUR of Gtf2ird1, we tested whether the mutant was a 

loss of function for all DNA binding. We performed ChIP-seq in the E13.5 Gtf2ird1-/- mutants 

and compared it to the WT Chip-seq data to test the consequences of the mutation on DNA 

binding genome-wide. The ChIP-seq data confirmed the decrease in binding at the TSS of 

Gtf2ird, however, a small peak is still present at the TSS in the mutant animal, suggesting that 

the mutation has greatly decreased the binding at this locus (Figure 4J). We compared the 

coverage of the genomic regions identified in the WT ChIP-seq data as bound by Gtf2ird1 in the 

mutant and WT samples. Surprisingly, the only peak that was identified at an FDR < 0.1 as 

having differential coverage between the two genotypes was the peak at the TSS of Gtf2ird1 
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(Figure 4K). This suggests that this frameshift mutation has a very specific consequence on how 

the protein binds to its own promoter that does not affect its binding elsewhere in the genome. 

The Gtf2ird1 promoter has two instances of the R4 core motif in the sense direction and one 

instance of the motif in the antisense orientation. We searched the sequences under the identified 

peaks for similar orientations of the binding motif and found only three other peaks, of which 

none showed any difference in coverage between genotypes.  None of the three other peaks 

matched the exact spacing of the three motifs found in the Gtf2ird1 promoter. This suggests that 

the leucine zipper is important for a specific configuration of binding sites that is only present in 

this one instance in the mouse genome.   

3.3.5 Gtf2ird1 frameshift mutation shows mild transcriptional differences  
 The N-truncated Gtf2ird1 clearly affected the expression levels of Gtf2ird1 and affected 

its binding at the promoter of Gtfi2rd1. Although we didn’t see binding genome-wide perturbed, 

, it is possible losing the N terminal altered the proteins ability to recruit other transcriptional co-

regulators, and thus impact expression.  Therefore, we tested the effects of this mutation on 

transcription genome-wide in the E13.5 brain. We compared the whole brain transcriptome of 

WT littermates to either heterozygous or homozygous mutants.  

Strikingly similarly to the ChIP-seq data, the only transcript with an FDR < 0.1 is 

Gtf2ird1, which was in the same direction as we saw in the qPCR (Figure 4L and Supplemental 

Figure 2A). We leveraged the WT ChIP-seq data to see if the presence of Gtf2ird1 at a promoter 

correlates with gene expression. Binning the genes according to expression level showed that the 

distribution of Gtf2ird1 targets was different than expected by chance (χ2 = 48.83, d.f.=3 p < 

1.42x10-10), suggesting that highly expressed genes are more likely to have Gtf2ird1 bound at 

their promoters (Figure 4M). To see if there was a more subtle general effect below our 
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sensitivity for a single gene, we tested if the bound Gtf2ird1 targets that are expressed in the 

brain at E13.5 as a population had their expression shifted. However, we saw only a small trend 

towards significance between the bound genes and unbound genes, with a mean increase in 

expression of 0.014 log2 CPM fold change in Gtf2ird1 targets (Kolgmogorov-Smirnov test 

D=0.038, p=0.079).  While this is perhaps unsurprising, because the frameshift mutation did not 

disturb binding genome wide (Figure 4N), the homozygous mutant do have an overall decrease 

of ~ 50% protein levels which should mimic a WSCR deletion. Thus, transcriptional 

consequences of haploinsufficiency of this gene might be similarly small.   

3.3.6 Frameshift mutation in Gtf2ird1 is sufficient to affect behavior 
Although we observed small differences in DNA binding and overall brain transcription, 

another Gtf2ird1 model also reported no little effects of Gtf2ird1 on expression transcriptome 

wide in the brain, yet the model still showed behavioral phenotypes (88, 101). Therefore we 

tested if our mutation had downstream consequences on adult mouse behavior. There are many 

single gene knock out models of Gtf2ird1 and they each show distinct behavioral differences and 

in some instances the results are contradictory (39, 92, 100, 101). One consistent phenotype 

across models is motor coordination deficits, which is also an area of difficulty in individuals 

with WS. Similarly, we observed a significant effect of genotype (H2=7.88, p =0.01945), on how 

long the animals could balance on a ledge. Homozygous animals fell off the ledge sooner than 

WT littermates (p=0.021) (Figure 5A). Marble burying has not been reported in other Gtf2ird1 

models, but in larger WS models that either delete the entire syntenic WSCR or delete the 

proximal half of the region that contains Gtf2ird1 have shown decreased marble burying 

phenotypes (90, 93). We observed a similar significant effect of genotype on the number of 

marbles buried (F2,75=7.92, p =0.00076), with the Gtf2ird1-/- mutants burying fewer marbles than 
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WT (p=0.0176) and Gtf2ird1+/- littermates (p=0.00067) (Figure 5B). Reports of overall activity 

levels in Gtf2ird1 mouse models have been discrepant (92, 100). Here we showed that there was 

only a trend towards a significant main effect of genotype (F2,71=2.97, p=0.057) on total distance 

traveled in a one hour locomotor task, but there is a main effect of sex (F1,71=18.77, p=4.76x10-5) 

and a genotype by sex interaction (F2,71=4.98, p=0.0095) (Figure 5C). Activity levels were 

increased in the female Gtf2ird1-/- mutants at later time points compared to WT females, and to 

an intermediate extent in the Gtf2ird1+/- mutants (Supplemental Figure 3A). There were no 

differences in total distance traveled between the male genotypes (Supplemental Figure 3B). 

The time spent in the center of an open field is used as a measure of anxiety-like behavior in 

mice. Anxiety-like behaviors in Gtf2ird1 models have also been discrepant in the literature 

(101). Here we showed that there was only a trend for a main effect of genotype when we 

controlled for sex (F2,71=3.070, p=0.0526) (Figure 5D and Supplemental Figure3C, D).  

Finally, as individuals with WS also show high prevalence of phobias, as well as 

intellectual disability, we tested learning and memory using the conditioned fear task (2, 21). On 

day one the mice were trained to associated a tone with a footshock and we observed that the 

mice increased their freezing over time (F2,122=26.77, p=2.28x10-10), as expected, and there was a 

time by genotype interaction (F4,122=3.99, p=0.004) where the WT mice froze more during the 

last five minutes of the task compared to both the Gtf2ird1+/- (p=0.007) and the Gtf2ird1-/- 

mutants (p=0.002) (Figure 5E). On the second day, contextual fear memory was tested. We 

placed the mice in the same chamber in which they were delivered the footshock and measured 

their freezing behavior in the absence of the footshock and the tone. All genotypes exhibited a 

fear memory response as indicated by the significant effect of the context compared to baseline 

of day one (F1,61=31.83, p=4.63x10-7) but no main effect of genotype (F2,61=1.24, p=0.30). Each 



 
 

97 

genotype group froze more during the first two minutes of day two than on day one (WT: 

p=4.7x10-6, Gtf2ird1+/-: p=0.034, Gtf2ird1-/-: p=0.0061) (Supplemental Figure 3E). When we 

analyzed the entire time of the experiment of contextual fear we similarly saw no main effect of 

genotype (F2,61=2.36, p=0.010), but a significant effect of time (F7,427=4.43, p=9.14x10-5) and a 

time by genotype interaction (F14,427=2.19, p=0.0077), suggesting that the freezing behavior of 

the genotypes differ at certain time points during the task. Post hoc analysis showed that during 

minute two the WT animals are freezing significantly more than the Gtf2ird1+/- mutants 

(p=0.0008) suggesting a reduced contextual fear memory response (Figure 5F). On day three of 

the experiment, we tested cued fear by placing the animals in a different context but played the 

tone that was paired with the shock on day one. All genotypes had a similar response to the tone 

(F2,61=1.12, p=0.334) (Figure 5G). These differences could not be explained by differences in 

shock sensitivity (flinch: H2=3.34, p=0.19, escape: H2=2.98, p=0.23, vocalization: F2,56=4.24, 

p=0.12) (Supplemental Figure 3F).  

Overall, these behavior analyses show that the N-terminal truncation and/or the decreased 

total protein levels of the Gtf2ird1 mutant can still result in adult behavioral phenotypes, 

specifically in the domains such as balance, activity, and marble burying. The most severe 

phenotypes were observed in the homozygous mutants.  

3.3.7 Generation of Gtf2i and Gtf2ird1 double mutant 
 The evidence that this frameshift mutation in Gtf2ird1 has functional consequences on 

some of its DNA binding capacity as well as leads to behavioral phentoypes led us to 

characterize a double mutant that was generated during the dual gRNA CRISPR/Cas9 injection. 

This mutant allowed us to test the effects of knocking out Gtf2i along with mutating Gtf2ird1, as 

well as test the consistency of the previous Gtf2ird1 phenotypes across different mutations. The 
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double mutant described here has a two base pair deletion in exon five of Gtf2i and a 590 base 

pair deletion that encompasses most of exon three of Gtf2ird1 (Figure 6A). We carried out a 

heterozygous cross of the double mutants to similarly test the protein and transcript abundance of 

each gene in the heterozygous and homozygous state. The homozygous double mutant is 

embryonic lethal due to the lack of Gtf2i, which has been described in other Gtf2i mutants 

(Figure 6B) (87, 96). We were able to detect homozygous embryos up to E15.5. Thus we 

focused molecular analyses on E13.5 mice for the reasons mentioned above. The two base pair 

deletion in exon five of Gtf2i leads to a premature stop codon and is a full knock out of the 

protein, and decreases the transcript abundance consistent with the degradation of the mRNA due 

to nonsense-mediated decay (Figure 6C,D).  The 590 base pair deletion in Gtf2ird1 removes all 

of exon three except the first 14 base pairs. This mutation has a larger effect on protein levels 

compared to the one base pair insertion, but a small amount of a truncated protein is still made at 

about 10% of the level of WT protein. We observed the same increase in transcript abundance 

that was detected in the one base pair insertion mutation (Figure 6E,F).  

3.3.8 Knocking down both Gtf2i and Gtf2ird1 produces mild transcriptome 
changes  

To test if having both Gtf2i and Gtf2ird1 mutated had a larger effect on the transcriptome 

we performed whole brain RNA-seq analysis on WT E13.5 brains and compared them to Gtf2i+/-

/Gtf2ird1+/- littermates. There were only mild differences between the transcriptomes of the two 

genotypes similar to what was seen when we compared WT littermates to Gtf2ird1-/- mutants 

(Figure 6G). We also compared WT transcriptomes to the homozygous double mutants, which 

showed a greater difference between genotypes. However, this is probably due to the fact that the 

homozygous double mutants have a very severe phenotype, which includes neural tube closure 

defects. The GO terms suggested that overall nervous system development and glial cell 
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differentiation is disrupted (Supplemental Figure 4A,B). We also coupled the Gtf2i ChIP-seq 

data with the RNA-seq data. Unlike what we saw with Gtf2ird1 bound genes, there was 

association between the expression levels of genes and the presence of Gtf2i (χ2 = 6.58, d.f.=3 

p=0.086) (Figure 6H). This is consistent with a previous report of Gtf2i ChIP-seq data. There is 

a slight but significant shift to higher expression of genes of about 0.02 log2 CPM fold change 

that are bound to Gtf2i compared to genes that are not bound (Kolgmogorov-Smirnov test 

D=0.075, p=9.50x10-5) (Figure 6I).  

3.3.9 Double mutants show similar behavioral consequences similar to single 
Gtf2ird1 mutants 

To test the effects of mutating both Gtf2i and Gtf2ird1 we crossed the heterozygous 

double mutant to the single Gtf2ird1 heterozygous mouse (Figure 7A). This breeding strategy 

produced four littermate genotypes, WT, Gtf2ird1+/-, Gtf2i+/-/Gtf2ird1+/-, and Gtf2i+/-/Gtf2ird1-/- 

for direct and well-controlled comparisons. To test the effects of adding a Gtf2i mutation along 

with a Gtf2ird1 mutation we compared the Gtf2ird1+/- to their Gtf2i+/-/Gtf2ird1+/- littermates. The 

final genotype tested the effects of the heterozygous Gtf2i mutation in the presence of both the 

Gtf2ird1 mutations. To be thorough we tested the protein and transcript abundance of each gene 

in the four genotypes. As expected all genotypes with the Gtf2i mutation showed decreased 

protein and transcript levels. The Gtf2ird1 results reflected what was previously shown for each 

mutation, however, the Gtf2i+/-/Gtf2ird1-/- did not show any further detectable decrease in protein 

abundance compared to the Gtf2i+/-/Gtf2ird1+/- genotype (Supplemental Figure 5A-D).   

We repeated the same behaviors that were performed on the one base pair Gtf2ird1 

mutants. We saw a similar significant effect of genotype on balance (H3=10.68, p=0.014), with 

the Gtf2i+/-/Gtf2ird1-/- falling off sooner compared to WT littermates (p=0.025) (Figure 7B). 
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There was no significant difference between the Gtf2ird1+/- and Gtf2i+/-/Gtf2ird1+/- genotypes, 

suggesting that in the heterozygous state decreasing the dosage of Gtf2i does not strongly modify 

the Gtf2ird1+/- phenotype. These results were replicated in a subsequent cohort (Supplemental 

Figure 5E).  There was a significant effect of genotype on the number of marbles buried 

(F3,76=2.93, p=0.039). Post hoc analysis showed a significant difference between only the 

Gtf2ird1+/- and Gtf2i+/-/Gtf2ird1-/- littermates (p=0.050) (Figure 7C), with a trend in the same 

direction as was previously seen in the Gtf2ird1-/- mutants.  We saw a main effect of genotype on 

activity levels in the one hour locomotor task (F3,69=3.22, p=0.028), but we did not see the same 

main effect of sex (F1,69=2.29, p=0.14), or a sex by genotype interaction (F3,69=1.82, p=0.15); 

however we did see a three way sex by time by genotype interaction (F15,345=1.95, p=0.018). The 

combined sex data showed that the Gtf2i+/-/Gtf2ird1-/- travel more distance in the later time 

points than the WT and Gtf2ird1+/- at time point 40 (Figure 7D). When we looked at the data by 

sex we saw a larger effect in the females with the Gtf2ird1+/- and Gtf2i+/-/Gtf2ird1+/- intermediate 

to the Gtf2i+/-/Gtf2ird1-/- (Supplemental Figure 5F, G). There was also a main effect of 

genotype on the time spent in the center of the apparatus (F3,69=3.60, p=0.018). The Gtf2i+/-

/Gtf2ird1-/- spent less time in the center during the first ten minutes of the task compared to WT 

(p=0.0019) littermates with the Gtf2ird1+/- and Gtf2i+/-/Gtf2ird1+/- showing intermediate values 

(Figure 7E).  

Finally, we repeated the conditioned fear memory task using this breeding strategy. All 

genotypes increased their freezing after each foot shock on day one as expected. The WT 

animals exhibited higher freezing during minute one of baseline, but this difference diminished 

during minute two (Figure 7F). All animals showed a contextual fear memory response when 

they were re-introduced to the chamber on day two (F1,68=81.21, p=3.21x10-13) (Supplemental 
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Figure 5H) but there was no main effect of genotype (F3,68=1.61, p=0.19) (Figure 7G). On day 

three, when cued fear was tested, there was a significant effect of genotype on the freezing 

behavior (F3,68=3.17, p=0.030) and a time by genotype interaction (F21,476=1.63, p=0.040). 

During minute five of the task the Gtf2i+/-/Gtf2ird1-/- mutants froze significantly more than the 

WT (p=0.030) as did the Gtf2ird1+/- (p=0.024) (Figure 7H). The cued fear phenotype could not 

be explained by differences in sensitivity to the foot shock (Supplemental Figure 5I).  

By crossing these two mutant lines we tested the hypothesis that the double heterozygous 

mutant would be more severe than a mutation only affecting Gtf2ird1. Comparing the Gtf2ird1+/- 

and Gtf2i+/-/Gtf2ird1+/-, showed mild deficits compared to WT littermates that in some cases 

were intermediate to phenotypes of the Gtf2i+/-/Gtf2ird1-/-. There were no instances when either 

the Gtf2ird1+/- or Gtf2i+/-/Gtf2ird1+/- genotype was significantly different than the other, 

suggesting that in the behaviors that we have tested, Gtf2i mutation does not modify the effects 

of a Gtf2ird1 mutation. This unique cross also allowed us to characterize a new mouse line 

Gtf2i+/-/Gtf2ird1-/-, which had the largest impact on behaviors. The phenotypes of Gtf2i+/-

/Gtf2ird1-/- were always in the same direction as the phenotypes in the Gtf2ird1-/- mouse model, 

but we also saw a significant cued fear deficit when the Gtf2i mutation was added. This further 

supports that the behaviors tested here, such as activity levels, balance, anxiety-like behaviors, 

marble burying, and learning and memory are largely affected by homozygous mutations in 

Gtf2ird1.  

3.4 Discussion 
We have described the in vivo DNA binding sites of Gtf2ird1 and Gtf2i in the developing 

mouse brain. This is the first description of these two transcription factors in a tissue that is 

relevant for the behavioral phenotypes that are seen in mouse models of WS. Gtf2ird1 showed a 
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preference for active sites and promoter regions. The conservation of the Gtf2ird1 targets was 

higher on average than would be expected by chance, which provides evidence that these are 

functionally important regions of the genome.  The functions of genes that are bound by Gtf2ird1 

include transcriptional regulation as well as post translational regulation. A role for Gtf2ird1 in 

regulating genes involved in protein ubiquniation has not been described before. Genes involved 

in chromatin organization were also found to be bound by Gtf2ird1. This supports the role of 

Gtf2ird1 in regulating chromatin by transcriptionally controlling other chromatin modifiers. 

Along with its localization pattern in the nucleus and its direct interaction with other chromatin 

modifiers such as ZMYM5 (79, 82), this data suggests that Gtf2ird1 can exert its regulation of 

chromatin at several different levels of biological organization. The motif enrichment of Gtf2ird1 

peaks showed that CTCF may be present along with Gtf2ird1, further implicating the importance 

of Gtf2ird1 in chromatin biology. Interestingly, Gtf2i has been show to interact with and target 

CTCF to specific sites in the genome (156). It would be interesting to test if Gtf2ird1 has a 

similar relationship with CTCF and targets it to unique genomic loci.  

Overall, Gtf2i showed a similar preference for promoters and active regions, although it 

had more intergenic targets than Gtf2ird1, and the conservation of Gtf2i peaks was significantly 

lower than the Gtf2ird1 peaks. The genes bound by Gtf2i were enriched for signal transduction 

and phosphorylation. Interestingly, Gtf2i was bound to the gene body of the Src gene. Src is 

known to phosphorylate Gtf2i to induce its transcriptional activity (74). Phosphorylation of Gtf2i 

by Src also antagonizes calcium entry into the cell (76). While, knocking out Gtf2i did not affect 

the expression of Src, it would be interesting to understand the functional consequence of Gtf2i 

bound to Src, especially since knockout mice of Src exhibit similar behaviors as Gtf2i knock out 

mice (75).  
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The overlap of targets of Gtf2i and Gtf2ird1 was significant, and the genes that did 

overlap were enriched for synaptic activity and signal transduction. This was evidence that these 

genes could interact via their binding targets to produce cognitive and behavioral phenotypes. To 

test how mutating both Gtf2i and Gtf2ird1 would modify the phenotypes of just Gtf2ird1 we 

characterized two new mouse models. We used the CRISPR/Cas9 system to generate multiple 

mutations in the two genes individually as well as together from one embryo injection. The ease 

and combinatorial possibilities of this technology will be amenable to testing many unique 

combinations of genes in copy number variant regions, which will be important to fully 

understand the complex relationships of genes in these disorders.  

We saw that a frameshift mutation that we expected to trigger non-sense mediate decay in 

Gtf2ird1 did not and resulted in a mild reduction in protein levels in the homozygous mutant and 

an N-terminal truncation. Even making a larger 590bp deletion of exon three in Gtf2ird1 did not 

result in the degradation of the mRNA, but did have a larger effect on the protein, even though 

some protein product was still made. This phenomenon has been seen in at least two other mouse 

models of Gtf2ird1 (66, 101). These were made using classic homologous recombination 

removing either exon two or exon two through part of exon five. In both models Gtf2ird1 

transcript was still made, but no in vivo protein analysis was done due to poor quality antibodies 

and the low expression of the protein. The presence of an aberrant protein that can still bind the 

genome, as the mutant described here can, could explain the lack of transcriptome differences in 

the brain shown here as well as in (88). It could also be that the mutant protein can still interact 

with other binding partners and be trafficked to the appropriate genomic loci. This mutation did 

disrupt the binding of Gtf2ird1 to its own promoter, which resulted in an increase in transcript 
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levels. The property that specifies the Gtf2ird1 binding to its own promoter must be very unique, 

as DNA binding genome-wide was not perturbed in the mutant.  

Nonetheless, the mutated Gtf2ird1 protein was still sufficient to cause adult behavioral 

abnormalities. This supports the hypothesis that the N-terminal end of the protein has other 

important functions beyond DNA binding. Similarly, the N-truncation of Gtf2i did not affect 

DNA-binding, but still resulted in behavioral deficits (67). The single Gtf2ird1 homozygous 

mutant showed balance deficits, which is consistent across many mouse models of WS. We also 

observed decreased marble burying. This task is thought to be mediated by hippocampal 

function, suggesting a possible disruption of the hippocampus caused by this mutation (159). We 

saw an increase in overall activity levels in female Gtf2ird1 mutants. This could relate to the 

high prevalence of Attention Deficit/Hyperactivity Disorder seen in WS (22).  

Given the prior evidence that these two transcription factors are both involved in the 

cognitive and behavioral phenotypes of WS (34, 95), and the evidence that their shared binding 

targets regulate synaptic genes, we tested if having both Gtf2i and Gtf2ird1 mutated could 

modify the phenotype seen when just Gtf2ird1 was mutated. Contrary to our prediction, we did 

not see a large effect of adding a Gtf2i mutation to differences in transcriptome wide expression 

or behavioral phenotypes. This was also surprising given that we successfully reduced Gtf2i 

protein and it has been described in the literature as regulating transcription (58). It could be that 

by using the whole E13.5 brain we are diminishing the effects of transcriptional differences seen 

in a specific rare cell types. This potential confound could be overcome using single cell 

sequencing technologies in the future.  
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 When Gtf2i was knocked down it the presence of two Gtf2ird1 mutations, we saw 

phenotypes in the same direction as the homozygous one base pair insertion Gtf2ird1 mutant as 

well as significant results in the cued fear memory task. Thus, the behaviors tested in this study 

seem to be mainly driven by Gtf2ird1 homozygosity, which is consistent across the two different 

mutations. This does not exclude the possibility that Gtf2i can modify the phenotype of Gtf2ird1 

knockdown in other behavioral domains. For example, it would be interesting to see the effect of 

adding Gtf2i on top of a Gtf2ird1 mutation on social behaviors.   

Our study has provided the first description of the DNA-binding of both Gtf2i and 

Gtf2ird1 in the developing mouse brain and showed that they have unique and overlapping 

targets. These data will be used to inform downstream studies to understand how these two 

transcription factors interact with the genome. We generated two new mouse models that tested 

the importance of the N-terminal end of Gtf2ird1 and the affect of mutating both Gtf2i and 

Gtf2ird1. We provided evidence that despite either gene having little effect on transcription the 

Gtf2ird1 mutation affects balance, marble burying, activity levels, and cued fear memory.  

3.5 Materials and Methods 
Generating genome edited mice 

To generate unique combinations of gene knockouts we designed gRNAs targeting early 

constitutive exons of the mouse Gtf2i and Gtf2ird1 genes. The gRNAs were tested for cutting 

efficiency in cell culture by transfecting N2a cells with the pX330 Cas9 expression plasmids 

(Addgene) that had each gRNA cloned into it. The DNA was harvested from the cells and 

cutting was detected using the T7 endonuclease assay. The gRNAs were in vitro transcribed 

using the MEGAShortScript kit (Ambion) and the Cas9 mRNA was in vitro transcribed using the 
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mMessageMachine kit (Ambion). The two gRNAs and Cas9 mRNA were then injected into FVB 

mouse embryos and implanted into donor females. FVB mice were used for their large pronuclei 

and large litter sizes. The resulting offspring were genotyped for mutations by designing gene 

specific primers that had the illumina adapter sequences concatenated to their 3’ prime end to 

allow for deep sequencing of the amplicons surrounding the expected cut sites. The large 590 bp 

deletion was detected by amplifying 3.5kb that included exon two, exon three and part of intron 

three then using a Nextera library prep (Illumina) to deep sequence the amplicon. We described 

two founder mice obtained from these injections. Each founder line was bred to FVB/ANTJ mice 

to ensure the mutations detected were in the germline and on the same chromosomes in the case 

of founders with mutations in both genes. The mice were also crossed until the mutations were 

on a complete FVB/ANTJ background, which differs from the FVB background at two loci; 

Tyrc-ch, which gives the chinchilla coat color of FVB/ANTJ and 129P2/OlaHSd Pde6b allele, 

which the FVB/ANTJ are WT for and prevents them from becoming blind in adult hood. The 

coat color was genotyped by eye, and the Pde6b gene was genotyped using the primers provided 

by the Jackson Laboratory website.  

Western blotting 

Embryos were harvested on embryonic day 13.5 (E13.5) and the whole brain was 

dissected in cold PBS and flash frozen in liquid nitrogen. The frozen brains were stored at -80° C 

until they were to be lysed. The frozen brain was homogenized in 500ul of 1xRIPA buffer 

(10mM Tris HCl pH 7.5, 140mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% DOC, 0.1% SDS, 

10mM Na3V04, 10mM NaF, 1x protease inhibitor (Roche)) along with 1:1000 dilution of 

RNAase inhibitors (RNasin (Promega) and SUPERase In (Thermo Fisher Scientific). The 

homogenate incubated on ice for 20 minutes and was then spun at 10,000g for 10 minutes at 4° C 
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to clear the lysate. The lysate was stored as two aliquots of 100ul in the -80° C for protein 

analysis and 250ul of the lysate was added to 750ul of Trizol LS and stored at -80° C for later 

RNA extraction and qPCR. Total protein was quantified using the BCA assay and 25-50ug of 

protein in 1x Lamelli Buffer with B-mercaptoethanol was loaded onto 4-15% TGX protean gels 

from Bio-Rad. The protein was transferred to a .2um PVDF membrane by wet transfer. The 

membrane was blocked with 5% milk in TBST for one hour at room temperature. The membrane 

was cut at the 75KDa protein marker and the bottom was probed with a Gapdh antibody as an 

endogenous loading control, and the top was probed with an antibody for either Gtf2i or 

Gtf2ird1. The primary incubation was performed overnight at 4° C. The membrane was then 

washed three times in TBST for five minutes then incubated with a secondary antibody HRP 

conjugated antibody diluted in 5% milk in TBST for one hour at room temperature. The blot was 

washed three times with TBST for five minutes then incubated with Clarity Western ECL 

substrate (Bio-Rad) for five minutes. The blot was imaged in a MyECL Imager (Thermo 

Scientific).  The relative protein abundance was quantified using Fiji (NIH) and normalized to 

Gapdh levels in a reference WT sample. The antibodies and dilutions used in this study were: 

Rabbit anti-GTF2IRD1 (1:500, Novus, NBP1-91973), Mouse anti-GTF2I (1:1000 BD 

Transduction Laboratories, BAP-135), and Mouse anti-Gapdh  (1:10,000, Sigma Aldrich, 

G8795), HRP-conjugated Goat anti Rabbit IgG (1:2000, Sigma Aldrich, AP307P) and HRP-

conjugated Goat anti Mouse IgG (1:2000, Bio Rad, 1706516).  

Transcript abundance using RT-qPCR 

RNA was extracted from Trizol LS using the Zymo Clean and Concentrator-5 kit with on 

column DNAase-I digestion following the manufacturer’s instructions. The RNA was eluted in 

30ul of RNAse free water and quantified using a Nanodrop 2000 (Thermo Scientific).  One ug of 
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RNA was transcribed into cDNA using the qScript cDNA synthesis kit (Quanta Biosciences). 

The cDNA was used in a 10ul PCR reaction with 500nM of target specific primer and the 

PowerUP Sybr green master mix (Applied Biosystems). The primers were designed to amplify 

exons that were constitutively expressed in both Gtf2i (exons 25 and 27) and Gtf2ird1 (exons 8 

and 9) and span an intron. The RT-qPCR was carried out in a QuantStudio6Flex machine 

(Applied Biosystems) using the following cycling conditions: 95° C 20 seconds, 95° C 1 second, 

60° C 20 seconds, repeat steps 2 through 3 40 times. Each target and sample was run in triplicate 

technical replicates, with three biological replicates for each genotype. The relative transcript 

abundance was determined using the delta CT method normalizing to Gapdh.  

ChIP 

Chromatin was prepared as described in (160). Briefly, frozen brains were homogenized 

in 10mL of cross-linking buffer (10mM HEPES pH7.5, 100mM NaCl, 1mM EDTA, 1mM 

EGTA, 1% Formaldehyde (Sigma)). The homogenate was spun down and resuspended in 5mL 

of 1x L1 buffer (50mM HEPES pH 7.5, 140 mM NaCl, 1mM EDTA, 1mM EGTA, 0.25% Triton 

X-100, 0.5% NP40, 10.0% glycerol, 1mM BGP (Sigma), 1x Na Butyrate (Millipore), 20mM 

NaF, 1x protease inhibitor (Roche)) to release the nuclei. The nuclei were spun down and 

resuspended in 5mL of L2 buffer (10mM Tris-HCl pH 8.0, 200mM NaCl, 1mM BGP, 1x Na 

Butyrate, 20mM NaF, 1x protease inhibitor) and rocked at room temperature for five minutes. 

The nuclei were spun down and resuspended in 950ul of buffer L3 (10mM Tris-HCl pH 8.0, 

1mM EDTA, 1mM EGTA, 0.3% SDS, 1mM BGP, 1x Na Butyrate, 20mM NaF, 1x protease 

inhibitor) and sonicated to a fragment size of 100-500bp in a Covaris E220 focused-

ultrasonicator with 5% duty factor, 140 PIP, and 200cbp. The sonicated chromatin was diluted in 

with 950ul of L3 buffer and 950ul of 3x covaris buffer (20mM Tris-HCl pH 8.0, 3.0% Triton X-
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100, 450mM NaCl, 3mM EDTA). The diluted chromatin was pre-cleared using 15ul of protein G 

coated streptavidin magnetic beads (ThermoFisher) for two hours at 4° C. For IP, 15ul of protein 

G coated streptavidin beads were conjugated to either 10ul of Gtf2ird1 antibody (Rb anti 

GTF2IRD1 NBP1-91973 LOT:R40410) or 10ul of Gtf2i antibody (Rb anti GTF2I Bethyl 

Laboratories) for one hour at room temperature. 80ul of the pre-cleared lysate was saved to be 

the input sample. 400ul of the pre-cleared lysate was added to the beads and incubated overnight 

at 4° C.  The IP was then washed two times with low salt wash buffer (10mM Tris-HCl pH 8.0, 

2mM EDTA, 150mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with a high salt buffer 

(10mM Trish-HCl pH 8.0, 2mM EDTA, 500mM NaCl, 1.0% Triton X-100, 0.1% SDS), two 

times with LiCl wash buffer (10mM Tris-HCl pH 8.0, 1mM EDTA, 250mM LiCl (Sigma), 0.5% 

NaDeoxycholate, 1.0% NP40), and one time with TE (10mM Tris-HCl pH 8.0, 1mM EDTA) 

buffer. The DNA was eluted off of the beads with 200ul of 1x TE and 1% SDS by incubating at 

65° C in an Eppendorf R thermomixer shaking at 1400rpm. The DNA was de-crosslinked by 

incubating at 65° C for 15 hours in a thermocycler. RNA was removed by incubating with 10ug 

of RNAse A (Invitrogen) at 37° C for 30 minutes and then treated with 140ug of Proteinase K 

(NEB) incubating at 55° C in a thermomixer mixing at 900rpm for two hours. The DNA was 

extracted with 200ul of phenol/chloroform/isoamyl alcohol (Ambion) and cleaned up using the 

Qiagen PCR purification kit and eluted in 60ul of elution buffer. Concentration was assessed 

using the highsensitivity DNA kit for qubit (Thermo Fisher Scientific). 

ChIP-qPCR 

Primers were designed to amplify the upstream regulatory element of Gtf2ird1. Two off 

target primers were designed that are 10kb upstream of the transcription start site of Bdnf and 

7kb upstream of the Pcbp3 transcription start site. The input sample was diluted 1:3, 1:30, and 
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1:300 to create a standard curve for each primer set and sample. Each standard, input, and IP 

sample for each primer set was performed in triplicate in 10ul reactions using the PowerUP Sybr 

green master mix (Applied Biosystems) and 250nM of forward and reverse primers.  The 

reactions were performed in a QuantStudio6Flex machine (Applied Biosystems) with the 

following cycling conditions: 50° C for 2 minutes, 95° C for 10 minutes, 95° C 15 seconds, 60° 

C for 1 minute, repeat steps 3 through 4 40 times. The relative concentration of the input and IP 

samples were determined from the standard curve for each primer set. Enrichment of the IP 

samples was determined by dividing the on target upstream regulatory element relative 

concentration by the off target relative concentration.  

ChIP-seq 

ChIP-seq libraries were prepared using the Swift Accel-NGS 2S plus DNA library prep 

kits with dual indexing (Swift Biosciences). The final libraries were enriched by thirteen cycles 

of PCR. The libraries were sequenced by the Genome Technology Access Center at Washington 

University School of Medicine on a HiSeq3000 producing 1x50 reads.  

Raw reads were trimmed of adapter sequences and bases with a quality score less than 25 

using the Trimmomatic Software (161). The trimmed reads were aligned to the mm10 genome 

using the default settings of bowtie2 (162). Reads that had a mapping quality of less than 10 

were removed. Picard tools was used to remove duplicates from the filtered reads 

(http://broadinstitute.github.io/picard). Macs2 was used to call peaks on the WT IP, Gtf2ird1-/- 

IP, and Gtf2i-/-/Gtf2ird1-/- IPs with the corresponding sample’s input as the control sample for 

each biological replicate (163). Macs2 used an FDR of 0.01 as the threshold to call a significant 

peak. High confidence peaks were those peaks that had some overlap within each biological 
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replicate for each genotype using bedtools intersect (164). The read coverage for the high 

confidence peaks identified in the WT IPs was determined using bedtools coverage for all 

genotypes. To identify peaks with differential coverage, we used EdgeR to compare the WT 

peaks coverage files to the corresponding mutant peak coverage and differential peaks were 

defined as having an FDR < 0.1 (165). The peaks with FDR < 0.1 and log2FC > 0 fine the Gtf2i 

high confidence peaks calls, since this mutation represents a full knockout of the protein. 

Annotations of peaks and motif analysis was performed using the HOMER software on the high 

confidence peaks (166). Peaks were annotated at the transcription start (TSS) of genes if the peak 

overlapped the +2.5kbp or -1kbp of the TSS using a custom R script. GO analysis on the ChIP 

target genes was performed using the goseq R package. We used E13.5 H3K4me3 and E13.5 

H3K27me3 forebrain narrow bed peak files from the mouse ENCODE project to overlap with 

our peak datasets (167). Deeptools was used to generate bigwig files normalized to the library 

size for each sample by splitting the genome into 50bp overlapping bins (168). Deeptools was 

used to visualize the ChIP-seq coverage within the H3K4me3 and H3K27me3 peak regions. 

PhyloP scores for the WT ChIP-seq peaks and random genomic regions of the same length were 

retrieved using the UCSC table browser 60 Vertebrate Conservation PhyloP table. The 

Epigenome browser was used to visualize the ChIP-seq data as tracks. 

RNA-seq 

1ug of E13.5 whole brain total RNA extracted from Trizol LS was used as input for 

rRNA depletion using the NEBNExt rRNA Depletion Kit (Human/Mouse/Rat). The rRNA 

depleted RNA was used as input for library construction using the NEBNext Ultra II RNA 

library prep kit for Illumina. The final libraries were indexed and enriched by PCR using the 

following thermocycler conditions: 98° C for 30 seconds, 98° C 10 seconds, 65° C 1 minute and 
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15 seconds, 65° C 5 minutes, hold at 4° C, repeat steps 2 through 3 6 times. The libraries were 

sequenced by the Genome Technology Access Center at Washington University School of 

Medicine on a HiSeq3000 producing 1x50 reads.  

RNA-seq analysis  

The raw RNA-seq reads were trimmed of Illumina adapters and bases with quality scores 

less than 25 using Trimmomatic Software. The trimmed reads were aligned to the mm10 mouse 

genome using the default parameters of STARv2.6.1b (169) . We used HTSeq-count to 

determine the read counts for features using the Ensembl GRCm38 version 93 gtf file (170). 

Differential gene expression analysis was done using EdgeR. We compared the expression of 

genes that are targets of either Gtf2ird1 or Gtf2i to non-bound genes by generating a cumulative 

distribution plot of the average log CPM of the genes between genotypes.  GO analysis was 

performed using the goseq R package.  

Behavioral tasks 

Animal statement 

All animal testing was done in accordance with the Washington University in St. Louis 

animal care committee regulations. Mice were group housed in same-sex, mixed-genotype cages 

with two to five mice in a cage in standard mouse cages with dimensions 28.5 x 17.5 x 12 cm 

with corn cob bedding. The mice had ad libitum access to food and water and followed a 12 hour 

light-dark cycle with the lights on from 6:00am-6:00pm. The rooms the animals were housed in 

were kept at 20-22° C and a relative humidity of 50%. All mice were maintained on the 

FVB/AntJ ((171)) background from Jackson Labs. All behaviors were done in adulthood 
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between ages P60-P130. A week prior to beginning behavior testing the mice were handled by 

the male experimenter. On days of testing the mice were moved to the testing room and allowed 

to habituate to the room and the male experimenter for 30 minutes before testing started. The 

number of mice and behaviors are listed in Table 1 and Table 2.  

Ledge 

To test balance, we timed how long a mouse could balance on a plexiglass ledge with a 

width of 0.5cm and a height of 38cm as described in (171). The mice were timed up to 60 

seconds. If the mouse fell off within the first five seconds the time was restarted and the mouse 

was given another attempt. If after the third attempt the mouse fell off within the first five 

seconds that time was recorded. We tested all mice on the ledge and then allowed for a 20 

minute rest time then repeated the testing on all the mice for a total of two trials for each mouse. 

The average of the two trials were used in the analysis.  

One hour locomotor activity 

We assessed activity levels in a one hour locomotor task, as previously described (171). 

Mice were placed in the center of a standard rat cage with dimensions 47.6 x 25.4 x 20.6cm. The 

rat cage was located inside of a sound-attenuating box with white light set to 24 lux. The mice 

could freely explore the cage for one hour. A plexiglass lid with air holes was placed on top of 

the rat cage to prevent the mice from jumping out of the cage. The position and horizontal 

movement of the mice was tracked using the ANY-maze software (Stoelting Co.: RRID: 

SCR_014289). The apparatus was divided into two zones, the edge zone was 5.5cm bordering 

the cage, and a 33 x 11cm center zone. The animal was considered in a particular zone if 80% of 

the mouse was detected in the zone. ANY-maze recorded the time, distance, and number of 
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entries into each zone. After the task, the mouse was returned to its home cage and the apparatus 

was thoroughly cleaned with 70% ethanol.  

Marble burying 

Marble burying is a species-specific task that measures the compulsive digging behavior 

of mice. Normal hippocampal is thought to be required for normal marble burying phenotypes. 

We tested marble burying as previously described (171). A rat cage was filled with aspen 

bedding to a depth of 3cm and placed in a sound-attenuating box with white light set at 24 lux. A 

5 x 4 grid of evenly spaces marbles was laid out on top of the bedding. The experimental mouse 

was placed in the center of the chamber and allowed to freely explore and dig in the chamber for 

30 minutes. A plexiglass lid with air holes was placed on top of the rat cage to prevent the mice 

from escaping. After 30 minutes the animal was returned to their home cage. Two scorers 

counted the number of marbles not buried. A marble was considered buried if two-thirds of the 

marble was covered with bedding. The number of marbles buried was then determined, and the 

average of the two scorers was used in the analysis. After the marbles were counted the bedding 

was disposed of and the rat cage and marbles were cleaned with 70% ethanol.  

Contextual and Cued Fear Conditioning  

Learning and memory were tested using the contextual and cued fear condition paradigm 

as previously described (172). Contextual fear memory is thought to be driven by hippocampal 

functioning whereas cued fear is thought to be driven by amygdala functioning. On day one of 

the experiment, animals were placed in a Plexiglas chamber (26cm x 18cm x 18cm; Med 

Associates Inc.) with a metal grid floor that had an unobtainable peppermint odor. A chamber 

light was on for the duration of the five-minute task. During the first two minutes, the animal 
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freely explored the apparatus, and this was considered the baseline. An 80dB white noise tone 

was played for 20 seconds at 100 seconds, 160 seconds, and 220 seconds during the five-minute 

task. During the last two seconds of the tone, the mice received a 1.0mA foot shock.  The tone is 

the conditioned stimulus (CS) and the foot shock is the unconditioned stimulus (UCS). The 

animal’s freezing behavior was monitored by the FreezeFrame (Actimetrics, Evanston, IL) 

software in 0.75s intervals. Freezing was defined as no movement besides respiration, and was 

used as a measure of the fear response of mice. After the five-minute task the mice were returned 

to their home cage. On day two, we tested contextual fear memory. The mice were placed in the 

same chamber as day with the unobtainable peppermint odor, and the freezing behavior was 

measured over the eight-minute task. The first two minutes of day two were compared to the first 

two minutes of day one to test for the acquisition of the fear memory. The mice were then 

returned to their home cage. On day three, to test cued fear, the mice were placed in a new black 

and white chamber that was partitioned into a triangle shape and had an unobtainable coconut 

scent. The mice were allowed to explore the chamber and the first two minutes were considered 

baseline. After minute two the 85 dB tone (CS) was played for the remaining eight minutes.   

Statistical Analysis 

All statistical analyses were performed in R v3.4.2. All statistical tests are reported in 

Supplemental Table 1. The ANOVA assumption of normality was assessed using the Shapiro-

Wilkes test and manual inspection of qqPlots, and the assumption of equal variances was 

assessed with Levene’s Test. When appropriate ANOVA was used to test for main effects and 

interaction terms. Post hoc analyses were done to compare between genotypes. If the data 

violated the assumptions of ANOVA non-parametric tests were performed. If the experiment 

was performed over time, linear mixed models were used to account for the repeated measures of 
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an animal using the lme4 R package. Post hoc analyses were then conducted to compare between 

genotypes within time bins. Post hoc analyses were done using the multcomp R package (173). 

Animals were removed from analysis if they had a value that was 3.29 standard deviations above 

the mean or had poor video tracking and could not be analyzed.  
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3.7 Figures 
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Figure 1: Gtf2ird1 binds preferentially to promoters in conserved, active sites in the genome. A Gtf2ird1 
binding peaks are annotated primarily in promoters and gene bodies. The distribution of peak annotations is 
significantly different from random sampling the genome. B Gtf2ird1 peaks were enriched in H3K4me3 sites 
marking active regions of the genome and to a lesser extent in H3K27me3 marking repressed regions. C GO 
analysis of genes that have Gtf2ird1 bound to the promoter. D The conservation of sequence in Gtf2ird1 bound 
peaks is significantly higher than expected by chance. E Motifs of transcription factors enriched under Gtf2ird1 
bound peaks. 

 

Figure 2: Gtf2i binds at promoters in conserved, active sites in the genome.  A Gtf2i binding sites are annotated 
mostly in gene promoters and the gene body. The distribution of peaks is significantly different than would be 
expected by chance. B 78.7% of Gtf2i peaks overlap with H3K4me3 peaks marking active regions. 20.7% of the 
Gtf2i peaks fall within H3K27me3 peaks marking inactive regions. C GO analysis of genes that have Gtf2i bound at 
the promoter. D Epigenome browser shot of Gtf2i peak bound within the Src gene. E Genomic sequence under Gtf2i 
peaks are more conserved than we would expect by chance. F Motifs of transcription factors that are enriched in 
Gtf2i bound sequences. 
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Figure 3: Comparison of Gtf2ird1 and Gtf2i binding sites. A Gtf2i and Gtf2ird1 have different distributions of 
annotated binding sites. B Gtf2ird1 bound sequences are more conserved than Gtf2i bound sequences. C The 
overlap of genes that have Gtf2i and Gtf2ird1 bound at their promoters. D GO analysis of genes that have both Gtf2i 
and Gtf2ird1 bound at their promoters. E Epigenome browser shot of Mapk14 showing peaks for both Gtf2i and 
Gtf2ird1.  

 



 
 

120 

 



 
 

121 

Figure 4: Frameshift mutation in Gtf2ird1 exon three results in a decreased amount of an N-truncated 
protein with diminished binding at Gtf2ird1 promoter and has little effect on transcription in the brain. A 
The sequence of exon three of Gtf2ird1 that was targeted by the gRNA underlined with the PAM sequence in blue. 
The mutant allele contains a one base pair insertion of an adenine nucleotide that results in a premature stop codon. 
B Breeding scheme of the intercross of Gtf2ird1+/- to produce genotypes used in the experiments. C, D Mutation in 
Gtf2ird1 does not affect the protein or transcript levels of Gtf2i.  E Frameshift mutation decreases the amount of 
protein in Gtf2ird1-/- and causes a slight shift to lower molecular weight. F The abundance of Gtf2ird1 transcript 
increases with increasing dose of the mutation. G Schematic of Gtf2ird1 upstream regulatory element (GUR) that 
shows the three Gtf2ird1 binding motifs. The arrows indicate the location of the primers for amplifying the GUR in 
the ChIP-qPCR assay.  H,I WT ChIP of Gtf2ird1 shows enrichment of the GUR over off target regions. There is 
more enrichment in the WT genotype compared to the Gtf2ird1-/- genotype. J Profile plots of Gtf2ird1 ChIP-seq data 
confirms diminished binding at the Gtf2ird1 promoter. K Differential peak analysis comparing WT and Gtf2ird1-/- 
ChIP-seq data showed only the peak at Gtf2ird1 is changed between genotypes with an FDR <0.1. L Differential 
expression analysis in the E13.5 brain comparing WT and Gtf2ird1-/- showed only Gtf2ird1 as changed with FDR < 
0.1. M The presence of Gtf2ird1 at gene promoters is not evenly distributed across expression levels. N The 
expression of genes bound by Gtf2ird1 is not different compared to all other genes between WT and Gtf2ird1-/- 
mutants. 
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Figure 5: Homozygous Frameshift mutation in Gtf2ird1 is sufficient to cause behavioral phenotypes. A 
Homozgyous mutants have worse balance than WT littermates in ledge task. B Homozygous mutants bury fewer 
marbles than WT and heterozygous littermates. C Overall activity levels are not affected when both sexes are 
combined. D There is no difference in time spent in the center of the apparatus between genotypes. E Acquisition 
phase of fear condition paradigm. WT animals freeze more during the last five minutes of the task. F WT animals 
showed greater freezing in contextual fear memory task than Gtf2ird1+/-. G There were no differences between 
genotypes in cued fear.  

 

Figure 6: Mutating both Gtf2i and Gtf2ird1 does not result in larger differences in brain transcriptomes. A 
Generation of double mutant. gRNA target is underlined in exon five of Gtf2i with the PAM sequence in blue. The 
two base pair deletion results in a premature stop codon within exon five. The Gtf2ird1 mutation is a large 590 base 
pair deletion covering most of exon three as shown in the IGV browser shot. B Heterozygous intercross to generate 
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genotypes for ChIP and RNA-seq experiments. The homozygous double mutants are embryonic lethal but are 
present up to E15.5. C The two base pair deletion in Gtf2i decreases the protein by 50% in heterozygous mutant and 
no protein is detected in the homozygous E13.5 brain. D The mutation decreases the abundance of Gtf2i transcript 
consistent with nonsense-mediated decay. E The 590 base pair deletion in Gtf2ird1 leads to decrease protein levels 
in heterozygous and homozygous mutants. There is still a small amount of protein made in the homozygous mutant. 
F The 590 base pair deletion increases the amount of Gtf2ird1 transcript. G Volcano plot comparing the expression 
in the E13.5 brain of WT and heterozygous double mutants. The highlighted genes represent an FDR < 0.1. H The 
presence of Gtf2i at the promoters does not correlate with the expression of a gene. I The fold change of genes 
between WT and homozygous double mutants that have Gtf2i bound at their promoters were slightly upregulated 
when compared to the fold change of genes that did not have Gtf2i bound. 

 

Figure 7: Gtf2i does not modify the phenotype of Gtf2ird1 mutation. A  Breeding scheme for behavior 
experiments. B The Gtf2i+/-/Gtf2ird1-/- animals fell off ledge sooner than WT littermates. C There was main effect of 
genotype on marbles buried. Post hoc analysis showed that the Gtf2i+/-/Gtf2ird1-/- buried fewer marbles than the 
Gtf2ird1-/- genotype.  D The Gtf2i+/-/Gtf2ird1-/- had increased overall activity levels in a one hour activity task. E 
The Gtf2i+/-/Gtf2ird1-/- showed decreased time in the center of the apparatus compared to WT, with the Gtf2ird1+/- 
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and Gtf2i+/-/Gtf2ird1+/- having intermediate values. F All genotypes showed increased freezing with increased 
number of footshocks. G All genotypes showed a similar contextual fear response. H There was a main effect of 
genotype on cued fear with the Gtf2ird1+/- and Gtf2i+/-/Gtf2ird1-/- showing an increased fear response compared to 
WT. 

 

Supplemental Figure 1: Differential peak binding comparing the WT and homozygous Gtf2i IP. A The 
highlighted peaks have an FDR < 0.1 and a log2FC > 0. These were used as the high confidence Gtf2i peaks.  

 

Supplemental Figure 2: RNA-seq analysis of E13.5 brain comparing the WT and Gtf2ird1+/- mutants. A Only 
Gtf2ird1  showed a difference with FDR < 0.1.   
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Supplemental Figure 3: The effects of frameshift mutation in Gtf2ird1. A Female heterozygous and homozygous 
mutants have increased activity levels. B There is no difference in activity levels in male mice. C There is no 
difference between genotypes in females with respect to the time spent in the center of the apparatus. D There is no 
difference between genotypes in males with respect to the time spent in the center of the apparatus. E All genotypes 
showed a contextual fear response. Baseline refers to the first two minutes of the task on day one and context refers 
to the first two minutes of the task on day two. F There was no difference in shock sensitivity between genotypes. 

 

Supplemental Figure 4: RNA-seq analysis of homozygous double mutant. A The homozygous double mutant 
showed significant changes (FDR < 0.1, highlighted in green) across many genes. Genes are labeled that had an 
FDR < 0.1 and a log2FC > 1 or log2FC < -1. B GO analysis of all nominally significant genes. 
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Supplemental Figure 5: Biochemical and behavioral characterization of the Gtf2ird1+/- x Gtf2i+/-/Gtf2ird1+/- . A, 
B Western blot and qPCR confirm decrease in Gtf2i protein and mRNA. C Western blot shows that the large 
Gtf2ird1 deletion decreases the protein, but adding the one base pair insertion mutation does not further decrease the 
protein made. D Gtf2ird1 mutation increases mRNA abundance. E Replication of ledge task in independent cohort. 
F Gtf2i+/-/Gtf2ird1-/- females have increased activity levels. G Gtf2i+/-/Gtf2ird1-/-  males to a lesser extent have 
increased. H All genotypes showed a contextual fear memory response. I There is no difference between genotypes 
in shock sensitivity. 

Table 1: Behavior and animal cohort for Gtf2ird1+/- x Gtf2ird1+/- 

 

Table 2: Behavior and animal cohorts for the Gtf2ird1+/- x Gtf2i+/-/Gtf2ird1+/- 
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Supplemental Table S1: Table of summary statistics and statistical tests  
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Chapter 4: Gtf2i and Gtf2ird1 mutation are 
not sufficient to reproduce mouse phenotypes 

caused by the Williams syndrome critical 
region 

 

Nathan Kopp, Katherine McCullough, Susan E. Maloney, and Joseph D. Dougherty 

From a manuscript submitted and is in review at Human Molecular Genetics as:  

Kopp N., McCullough, K., Maloney, S.E., and Dougherty, J.D.  Gtf2i and Gtf2ird1 mutation are 
not sufficient to reproduce mouse phenotypes caused by the Williams syndrome critical region 
(2019) In review.  
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4.1 Abstract 
Williams syndrome is a neurodevelopmental disorder caused by a 1.5-1.8Mbp deletion on 

chromosome 7q11.23, affecting the copy number of 26-28 genes. Phenotypes of Williams 

syndrome include cardiovascular problems, craniofacial dysmorphology, deficits in visual-spatial 

cognition, and a characteristic hypersocial personality. There are still no genes in the region that 

have been consistently linked to the cognitive and behavioral phenotypes, although human 

studies and mouse models have led to the current hypothesis that the general transcription factor 

2 I family of genes, GTF2I and GTF2IRD1, are responsible. Here we test the hypothesis that 

these two transcription factors are sufficient to reproduce the phenotypes that are caused by 

deletion of the Williams syndrome critical region (WSCR). We compare a new mouse model 

with loss of function mutations in both Gtf2i and Gtf2ird1 to an established mouse model lacking 

the complete WSCR. We show that the complete deletion model has deficits across several 

behavioral domains including social communication, motor functioning, and conditioned fear 

that are not explained by loss of function mutations in Gtf2i and Gtf2ird1. Furthermore, 

transcriptome profiling of the hippocampus shows changes in synaptic genes in the complete 

deletion model that are not seen in the double mutants.	Thus,	we	have	thoroughly	defined	a	

set	of	molecular	and	behavioral	consequences	of	complete	WSCR	deletion,	and	shown	that	

genes	or	combinations	of	genes	beyond	Gtf2i	and	Gtf2ird1	are	necessary	to	produce	these	

phenotypic	effects.	

4.2 Introduction 
Contiguous gene disorders provide a unique opportunity to understand genetic 

contributions to human biology, as their well-defined genetic etiology delimits specific genomic 

regions strongly affecting particular phenotypes. Williams syndrome (WS; OMIM #194050) is 
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caused by a 1.5-1.8Mbp deletion of 26-28 genes on chromosome 7q11.23 in the Williams 

syndrome critical region (WSCR). Williams syndrome is phenotypically characterized by 

supravalvular aortic stenosis, craniofacial dysmorphology, and a distinct cognitive profile 

consisting of intellectual disability, severe visual-spatial deficits, yet relatively strong language 

skills. Other common cognitive and behavioral difficulties include high levels of anxiety, 

specific phobias, and a characteristic hypersocial personality manifested as strong eye contact, 

indiscriminate social approach, and social disinhibition  (see (2, 14, 15) for reviews). Despite 

increased social interest, individuals with Williams syndrome have difficulties with social 

awareness and social cognition (20, 174). In contrast, the reciprocal duplication results in 

dup7q11.23 syndrome (OMIM #609757), which presents with both similar and contrasting 

phenotypes to WS, such as high levels of anxiety yet less social interest (175). It is also 

associated with autism spectrum disorders (121). The recurrent deletion and duplications of 

chr7q11.23 indicate that one or more genes in this region are dose sensitive and have a large 

effect on human cognition as well as human social behavior.  

 Substantial efforts have been taken to understand which genes in the WSCR contribute to 

different aspects of the phenotype. Three approaches have driven advances in genotype-

phenotype correlations in the WSCR: phenotyping individuals with atypical deletions in the 

region, human induced pluripotent stem cell models, and mouse models. Patients with atypical 

deletions have firmly connected haploinsufficiency of the elastin  (ELN) gene with supravalvular 

aortic stenosis and other elastic tissue difficulties in WS (6, 104). However, human studies have 

not conclusively linked other genes to specific phenotypes. Three atypical deletions that span the 

ELN gene to the typical telomeric breakpoints showed the full spectrum of the WS phenotype, 

suggesting that most of the phenotypes are driven by the telomeric end of the deletion, which 
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contains genes for two paralogous transcription factors GTF2I and GTF2IRD1 (34, 35). Indeed, 

most of the atypical deletions that have been reported that delete the centromeric end of the 

region and don’t affect the copy number of GTF2I and GTF2IRD1, show mild to none of the 

characteristic facial features or cognitive and behavioral phenotypes of WS (31–33, 36–40, 99). 

While there are contrasting examples of deletions that spare GTF2I and still have mild facial 

characteristics of WS, lower IQ, and the overfriendly social phenotype (40, 176), the 

preponderance of evidence from these rare partial deletions have led to the dominant hypothesis 

being that GTF2I and GTF2IRD1 mutation are necessary to cause the full extent of the social, 

craniofacial, visual-spatial and anxiety phenotypes. However, there are limitations to these 

human studies, primarily due to the rarity of partial deletions. First, because of the variable 

expressivity of the phenotypes even in typical WS, it can be difficult to confidently interpret any 

phenotypic deviation in the rare partial deletions (20, 56, 174). Second, given the rarity of WS 

and partial deletions, and lack of relevant primary tissue samples, it is challenging to link genetic 

alterations to the specific downstream molecular and cellular changes that could mediate the 

organismal phenotypes. 

 To overcome this second barrier, researchers have turned to using patient induced 

pluripotent stem cells to study the effects of the WSCR deletion and duplication on different 

disease relevant cell types (44, 45, 47–49). While linking molecular changes to organismal 

behavior is not possible with cell lines, this approach is amenable to studying cellular and 

molecular phenotypes, such as changes to the transcriptome and cellular physiology. By studying 

differentiated neural precursor cells from an individual with a typical WS deletion and an 

individual with an atypical deletion that spares the copy number of the FZD9 gene, Chailangkarn 

et al. (45) showed that FZD9 is responsible for some of the cellular phenotypes, such as 
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increased apoptosis and morphological changes. Lalli et al. (49) used a similar approach to show 

that knocking down the BAZ1B gene in differentiated neurons was sufficient to reproduce the 

transcriptional differences and deficits in differentiation that were observed in WS differentiated 

neurons. Finally, Adamo et al. (44) studied the effects of GTF2I on iPSCs from typical WS 

deletions, dup7q11.23, and typical controls. By overexpressing and knocking down GTF2I in the 

three genotypes, they showed that GTF2I was responsible for 10-20% of the transcriptional 

changes. Overall, using iPSCs from patients with WS has highlighted a role for both the GTF2I 

family and other less appreciated genes in the molecular consequences of the WSCR mutation. 

This suggested the possibility that several genes may play a role in the cognitive phenotypes and 

GTF2I alone may not be sufficient for all neural molecular changes and hence cognitive 

phenotypes. However, iPSC studies face the limitation that they cannot be used to model whole 

organismal effects like anxiety or social behavior. Further, while some cellular and molecular 

phenotypes can be evaluated, both gene expression and cellular physiology using in vitro 

differentiation systems do not perfectly reflect the phenotype of mature neural cells, fully 

integrated into a functioning or dysfunctioning brain.  

 Mouse models have been used to link genes in WSCR to specific molecular and cellular 

phenotypes, as well as to the functioning of conserved organismal behavioral circuits that could 

be related to human cognitive phenotypes. Mouse models are particularly suitable because a 

region on mouse chromosome five is syntenic to the WSCR, enabling models of corresponding 

large deletions, including a mouse line with a complete deletion  (CD) of the WSCR genes that 

shows both behavioral disruptions and altered neuronal morphology (93). In addition, a key 

advantage over human partial deletions is that researchers can easily manipulate the mouse 

genome to delete targeted subsets of genes in the locus, and generate large numbers of animals 
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with identical partial mutations, enabling statistical analyses to overcome variable expressivity. 

For example, there are mouse models of large deletions that show that genes in the distal and 

proximal half of the region may contribute to separate and overlapping phenotypes (94). 

Likewise, many single gene knockouts exist that show some phenotypic similarities to the human 

syndrome, though a limitation is that some of these studies model full homozygous loss of 

function, rather than a hemizygous decrease in gene dose. Nonetheless, specifically for Gtf2ird1 

(92, 100, 101) and Gtf2i (29, 67, 96), multiple mouse models of either gene have shown 

extensive behavioral deficits including social and anxiety-like behaviors, some of which present 

contrasting evidence. However, each of these studies has been conducted in isolation, by 

different labs, with fairly different phenotyping assays, making it difficult to directly compare 

findings to other mouse models of WS.  

 Mouse models uniquely enable a direct way to test the sufficiency of individual 

mutations to recreate the organismal phenotypes detected when the entirety of the WSCR is 

deleted. By crossing different mutant lines together, we can create genotypes unavailable in 

human studies and conduct a well-powered and controlled study to directly test if specific gene 

mutations are sufficient to reproduce particular phenotypes of the full deletion. Since both human 

and mouse literature suggest that GTF2IRD1 and GTF2I each contribute to the molecular, 

cognitive, and social phenotypes, we set out here to test if loss of function of both of these genes 

is sufficient to recapitulate the phenotypes of the entire WSCR deletion at both the molecular and 

behavioral circuit levels, or if instead, as hinted by the iPSC studies and other human mutations, 

other or more genes may be involved. Using CRISPR/Cas9 we generated a new mouse line that 

has loss of function mutations in both Gtf2i and Gtf2ird1 on the same chromosome. We then 

crossed them to the CD full deletion model to directly compare behavior and transcriptomes of 
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the Gtf2i/Gtf2ird1 mutants to both WT and CD littermates. Examining both previously defined 

and newly characterized behavioral and molecular disruptions, we demonstrate that mutation of 

these two genes is not sufficient to replicate any of the CD phenotypes. In contrast to a dominant 

hypothesis arising from human partial deletions, this study provides strong evidence that 

Gtf2i/Gtf2ird1 mutation alone may not be responsible for key WS cognitive and behavioral 

phenotypes.  

4.3 Results 
4.3.1 Generation and validation of Gtf2i and Gtf2ird1 loss of function mutation 
on the same chromosome. 

Prior work from comparing phenotypes of humans with partial deletions of the WSCR 

highlighted GTF2I and GTF2IRD1 as likely involved in cognitive phenotypes in WS (34, 38, 

39). Likewise, single gene mutant mouse models of both genes showed that each may contribute 

to relevant phenotypes (92, 96, 97, 100, 101). We wanted to test if heterozygous loss of function 

mutants of both Gtf2i and Gtf2ird1 are sufficient to replicate the phenotypes that are caused 

when animals are hemizygous for the entire WSCR (Figure 1A).  

Therefore, to test the sufficiency of these genes, we generated a mutant of Gtf2i and 

Gtf2ird1 genes on the same chromosome using CRIPSR/Cas9. Two gRNAs were designed to 

target constitutive exons of Gtf2i or Gtf2ird1 (Figure 1B) and were co-injected with Cas9 

mRNA into the eggs of the FVB strain. Of the 57 pups born we detected 21 editing events using 

the T7 endonuclease assay. From these animals PCR amplicons around each targeted site were 

deeply sequenced and mutations were characterized via manual inspection of the reads in IGV. 

Of the founders there were five that only had mutations in Gtf2i, five with mutations only in 

Gtf2ird1, and 15 that had mutations in both genes (Supplemental Figure 1A). Most founders 
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had more than one allele within a gene indicating high rates of mosaicism (60%, 15/25 mice). 

Breeding a selection of the mosaic founders to WT animals revealed that some of the founders 

were mosaic in the germline as well (40%, 4/10 mice), with one founder transmitting three 

different alleles.  

 To test if haploinsufficiency of both Gtf2i and Gtf2ird1 is sufficient to replicate the 

phenotype of hemizygosity of the entire WSCR, we moved forward with characterizing a mouse 

line that has a G > C polymorphism followed by an eight base pair insertion in exon five of Gtf2i 

and a five base pair deletion in exon three of Gtf2ird1; these will be referred to as the Gtf2i* 

mouse line (Figure 1B). These mutations are inherited together indicating that they are on the 

same chromosome. The mutations cause frameshifts and introduce premature stop codons in 

early constitutive exons (Figure 1B), and were thus expected to trigger nonsense mediated decay 

and lead to loss-of-function alleles, mimicking the effective gene dosage of WSCR region 

deletions for these two genes.  

 We first performed RT-qPCR and western blots to confirm the effects of the frameshift 

mutations at the transcript and protein levels in embryonic day 13.5 (E13.5) littermates that were 

WT, heterozygous, and homozygous mutant at the locus. We used E13.5 brains for two reasons 

1) homozygosity of Gtf2i null mutants is embryonic lethal (87, 96) and 2) both Gtf2i and 

Gtf2ird1 proteins are more highly expressed during embryonic time points in the brain, with 

undetectable levels of Gtf2ird1 in the WT adult mouse brain (Supplemental Figure 1B and C). 

 The frameshift mutation in exon five of Gtf2i reduced the amount of transcript detected 

by qPCR, consistent with nonsense mediated decay. This mutation led to a 50% decrease of the 

protein in heterozygous animals and no protein in homozygous mutants (Supplemental Figure 
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1D). Indeed we were not able to recover pups that were homozygous for the Gtf2i* mutations 

after birth, but we were able to harvest homozygous embryos up to E15.5. The embryos had 

exencephaly consistent with other Gtf2i mouse models (87, 96).  

 In contrast, the frameshift mutations in exon three of Gtf2ird1 increased the amount of 

transcript, as expected. Increases in transcript of Gtf2ird1 due to a loss of function mutation have 

been described in another Gtf2ird1 mouse model, and both EMSA and luciferase reporter assays 

indicated that Gtf2ird1 protein represses the transcription of the Gtf2ird1 gene (66). The increase 

in transcript was commensurate with the dosage of the mutation (Supplemental Figure 1E). 

However, we saw that the protein levels in our mutants did not change with dosage of the 

mutation and did not follow the trend of the transcript (Supplemental Figure 1E).  

Production of detectable protein after the frameshift was surprising, especially since the 

increased Gtf2ird1 mRNA levels were indeed consistent with prior studies of loss of functional 

Gtf2ird1 protein, so we investigated this phenomena further. We noticed that the homozygous 

Gtf2ird1 protein bands looked slightly shifted in the western blots. This lead us to hypothesize 

that there could be a translation reinitiation event at the methionine in exon three downstream of 

the frameshift mutation in a different open reading frame (Supplemental Figure 1F). In another 

targeted mutation of Gtf2ird1, where the entire exon two, which contains the conical start codon, 

was removed, the authors noted that there was still three percent of protein being made, and the 

product that was made was similarly shifted (66). From our mutation we would expect a 65aa N-

terminal truncation, which corresponds to a 7KDa difference between WT. We ran a lower 

percentage PAGE gel to get better separation between WT and homozygous animals and we saw 

a slight shift, suggesting that there was reinitiation of translation at methionine-65 in a different 

open reading frame (Supplemental Figure 1G). This was indicative of the loss of the N-
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terminal end of the protein, which contains a leucine zipper that is thought to be important in 

DNA binding (66). This is consistent with the mRNA evidence that the allele is loss of function. 

We therefore tested the hypothesis that we had abolished the DNA binding capacity of 

the truncated protein, to confirm loss of function. We performed ChIP-qPCR and pulled down 

DNA bound to Gtf2ird1 protein and then amplified the promoter region of Gtf2ird1, which has 

previously been shown to be bound by the Gtf2ird1 protein. We compared this to two off-target 

regions in the genome near Bdnf and Pcbp3. We performed this experiment in E13.5 brains of 

WT and homozygous Gtf2i* embryos. There was a 15-20 fold enrichment of the on target 

Gtf2ird1 promoter region compared to the off target regions in the WT animals, while the 

truncated protein did not show any enrichment  (Supplemental Figure 1H,I). This suggested 

that while a truncated protein was still being made it did not have the DNA binding functionality 

of the WT protein. This indicated that the frameshift mutation in exon three of Gtf2ird1 was a 

loss-of-function mutation and provided evidence that the N-terminal end of the protein, which 

contains a leucine zipper, is necessary for DNA binding. Thus, we confirmed we had generated a 

mouse line with loss of function alleles on the same chromosome for these Gtf2i* genes. 

 To test the sufficiency of mutation in these two transcription factors to replicate 

phenotypes observed by deleting the entire WSCR, we crossed the Gtf2i* mutant to the CD 

mouse (Figure 1C), which is hemizygous from exon five of Gtf2i to Fkbp6 (Figure 1A). The 

Gtf2i* mutants were generated on the FVB/AntJ background, whereas the CD mice were 

generated on the C57BL/6J background. Therefore, we only used the first generation from this 

cross for all experiments to ensure all mice had the same genetic background. As above, we 

assessed the transcript and protein levels of genotypes from this cross to confirm loss of function. 

Again, the CD/Gtf2i* genotype was embryonic lethal, but we did observe that genotype up to 
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E15.5. The levels of Gtf2i transcript and protein were similar between CD heterozygous and 

Gtf2i* heterozygous animals (Figure 1D). The levels of Gtf2ird1 transcript increased in Gtf2i* 

animals similar to what was seen in Gtf2i* heterozygous animals on the pure FVB/AntJ 

background. In contrast, the CD heterozygous animals had decreased levels of Gtf2ird1 

transcript. In the CD/Gtf2i* animals the level of transcript returned to WT levels. Again, the 

levels of Gtf2ird1 transcript were not reflected in the protein levels. We saw a trend to similar 

slight decreases in protein levels in the both heterozygous genotypes; however, they were not 

significantly different from WT levels. This was interesting because in the CD animals were 

missing one entire copy of this gene, opposed to a frameshift mutation. This also suggested that 

the frameshift mutation in exon three of Gtf2ird1 did affect the amount of protein being made, 

but not drastically. We did see a significant decrease in protein levels (60% of WT) in the 

CD/Gtf2i* genotype (Figure 1E). Again suggesting that the frameshift mutation was decreasing 

the levels of protein.  

4.3.2 Gtf2i* mutation is not sufficient to reproduce WSCR-mediated 
alterations of vocal communication  

We next tested if haploinsufficiency for both genes would recapitulate behavioral 

phenotypes seen in mice hemizygous for the entire WSCR (CD mice) (Table 1). Since single 

gene knockout studies of both Gtf2i and Gtf2ird1, and larger deletion models showed evidence 

for disrupted social behavior we wanted to directly compare the effects of Gtf2i* 

haploinsufficiency to the effects of hemizygosity of the entire WSCR on social behavior.  

We first measured maternal separation induced ultrasonic vocalizations (USVs) in 

postnatal day three and postnatal day five pups. This is a form of developmental communication 

and was shown to be increased in mice that had three or four copies of Gtf2i compared to mice 
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with normal copy number or only one functional copy (29). We saw a significant effect of day 

(F1,116.00=5.43, p=0.021) and genotype on the call rate (F2,60.7= 6.09, p=0.004), as well as a 

genotype by day interaction (F2,61.64=6.80, p=0.002). Post hoc analysis within day showed that on 

day five CD mice made fewer calls than WT littermates  (p<0.001) and Gtf2i* mutant littermates 

(p=0.045) (Figure 2A). We included the weight of the mouse as a covariate to make sure the 

decrease in call number was not due to differences in weight. We saw that weight has a trending 

effect (F1,75.48=3.95, p =0.05), but the day by genotype interaction term remained significant. 

We also observed differences in the temporal and spectral features of the calls. There was 

a significant effect of genotype on pause length between bouts (F2,60=11.9069, p=4.31e-5), with 

CD mice exhibiting longer pauses on day five compared to WT mice ( p=0.0004) and Gtf2i* 

mice (p=0.0014); this is correlated with fewer calls produced by CD animals (Supplemental 

Figure 2A). There was a also significant genotype by day interaction for the duration of a call 

bout (F2,61=7.26, p=0.001), with CD mice exhibiting a shorter duration on day five compared to 

WT (p=0.046) (Supplemental Figure 2B). Overall, our study of vocalization provides evidence 

that Gtf2i and Gtf2ird1 mutation alone are not sufficient to produce a CD-like deficit in this 

behavior.  

Maternal-separation induced USVs are only produced during a transient period of 

development from postnatal day three to postnatal day 10, peaking at postnatal day seven and 

postnatal day nine in FVB/AntJ and C57BL/6J strains, respectively (177). Therefore the 

alteration in the CD animals could reflect an overall shift in developmental trajectory. To assess 

this, we checked weight gain and developmental milestones in our cohorts. No differences in 

developmental weights were observed between genotypes. The detachment of the pinnae at 

postnatal day five, a physical milestone, was similar across all genotypes  (χ2=2.593, p=0.4628, 
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Supplemental Table 1). However, there were weight deficits in CD animals in adulthood 

(Supplemental Figure 2C). There was a significant effect of day on weight (F4,240=1610.9, p < 

2.2e-16), a significant effect of genotype (F2,60=7.2059, p=0.001568), and a significant day by 

genotype interaction (F8,240=6.9258, p=3.332e-8). These data suggest that gross developmental 

delay in CD animals does not explain the observed communication deficit.  

4.3.3 Gtf2i* mutation is not sufficient to reproduce WSCR-mediated 
alterations of social behavior  

We went on to test adult social behaviors. We first applied the standard three-chamber 

social approach, which has not been reported in CD mice. In this task the mice are allowed to 

freely explore an apparatus with three chambers: a center chamber, a social chamber that 

contains a cup with a sex and age-matched mouse, and an empty chamber that only contains an 

empty cup (Figure 2B). This test measures the voluntary social approach of mice. We saw the 

expected preference for the social stimulus across all mice (F1,53=83.2013, p=1.894x10-12), with 

no impact of genotype (F2,53=1.1516, p=0.3239) or genotype by stimulus interaction 

(F2,53=0.5845, p=0.5609). Post hoc comparisons within genotypes confirmed that all genotypes 

spent significantly more time investigating the social stimulus than the empty cup (WT p <0.001; 

Gtf2i* p < 0.001; CD p=0.00456; Figure 2C). Thus, sociability as measured in this task is not 

sensitive enough to discern a hypersocial phenotype in these animals.  

In a test for social novelty, a novel stranger mouse was then placed in the empty cup. All 

genotypes showed the expected preference for the novel stimulus animal  (F1,53=50.3816, 

p=3.137x10-9), again with no effect of genotype  (F2,53=1.3948, p=0.2568) or genotype by 

stimulus interaction (F2,53=0.5642, p=0.5722). Post hoc comparisons showed that all the 

genotypes spent significantly more time investigating the novel stimulus  (WT p < 0.001; Gtf2i* 
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p =0.00321; CD p=0.0012; Supplemental Figure 2D). Additionally in this task, we did notice a 

significant effect of genotype on overall distance traveled (F2,53=3.98, p 0.024) with the Gtf2i* 

mutants traveling further distance than the WT animals in the sociability trial (p=0.0305; 

Supplemental Figure 2E), and a corresponding trend during  the social novelty trial (F2,53=2.87, 

p=0.115). This suggests that the double mutants have a slight hyperactive phenotype in this task 

that is not seen in the CD mutants.  

Previous reports on social phenotypes in mouse models of WS have described a lack of 

habituation to a social stimulus. To test this we repeated the three-chamber social approach task 

in a new cohort of animals with an extended sociability trial to test if the Gtf2i* mutants or the 

CD animals showed the preference for the social stimulus after the prolonged amount of time. 

Similar to the classic three-chamber results we saw a significant effect of the social stimulus in 

the first five minutes (F1,56=19.3683, p=4.891e-5), there was a trend of a genotype effect 

(F2,56=3.098, p=0.053) and no interaction (F2,56=0.4650, p=0.6350). Interestingly, we observed a 

significant preference for the social chamber in the WT and Gtf2i* mutants, but the CD animals 

only trended in this direction (Supplemental Figure 2F). To determine if the CD mutants do 

indeed maintain a prolonged social interest compared to WT littermates, we examined the last 

five minutes of the 30 minute sociability trial. While there was a significant effect of stimulus  

(F1,56=4.82, p=0.03), there was still no effect of genotype (F2,56=0.0523, p=0.949) or an 

interaction (F2,56=0.454, p=0.637). In fact, the significant effect of chamber was driven by the 

proportion of animals investigating the novel empty cup more than the social stimulus 

(Supplemental Figure 2G). These data lead us to conclude that the double mutants and CD 

animals show a WT-like habituation to social stimulus in this task.  



 
 

147 

 We also tested social dominance in the tube test in these mice. Previous studies using 

partial deletions of the WSCR showed that the proximal deletion which contains Gtf2i and 

Gtf2ird1 as well as deletions of both the proximal and distal regions in mice resulted in different 

win/loss ratios than WT mice and mice lacking just the distal end of the WSCR (94). In contrast, 

here, the Gtf2i* and CD animals did not exhibit dominance behavior different than chance would 

predict (WT vs Gtf2i* p=0.8318, WT vs CD p=1). Gtf2i* and CD animals also had similar 

proportions of wins when paired together (Gtf2i* vs CD p=0.6291) (Figure 2D).  

The contrasts in our findings with those reported in prior papers could be due to 

differences in background strain. Different inbred mouse strains show different dominance 

behavior (178), and other phenotypes, such as craniofacial morphology in WS models has been 

shown to be strain dependent (39, 95, 101). We tested the effects of the background strain of the 

Gtf2i* and CD models by performing the same task on the respective background of each line 

and comparing them to their WT littermates. Thi showed that the Gtf2i* mutants had a WT-like 

phenotype while the CD mice had a submissive phenotype with significantly more losses to WT 

littermates (Supplemental Figure 2H). Thus, the submissive phenotype of the CD allele is 

dependent on strain which is not observed in the Gtf2i* mutants. 

 Finally, we tested the male mice in a resident-intruder paradigm. In this task, male mice 

were singly housed for 10 days to establish their territory and, in a series of three test days, novel 

WT C57BL/6J animals were introduced into their territories as intruders. This task measures 

both social interactions and bouts of aggression between two freely moving animals (Figure 2E). 

In our study, only one mouse showed aggressive behavior towards the intruder mouse, so we did 

not further quantify this behavior. Assessment of the social interactions showed a significant 

main effect of genotype  (F2,31=5.241, p=0.011) with no effect of day (F2,62=2.470, p=0.093) or 
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day by genotyping interaction (F4,62=0.1095, p=0.978). Post hoc tests within each day showed 

that the CD animals spent less total time on day two (p=0.0248) and day three (p=0.0318) 

engaged in anogenital sniffing compared to the WT animals (Figure 2F). These differences 

could not be explained by differences in total activity levels between the genotypes (F2,31=1.399, 

p=0.262; Supplemental Figure 2I). The decrease in total time spent in anogenital sniffing was 

driven by a shorter average bout time (F2,31=5.852, p=0.007, Supplemental Figure 2J) and not 

the number of times the animals initiated the sniffing behavior (F2,31=2.7961, p=0.0765; 

Supplemental Figure 2K). The same differences also held for nose-to-nose sniffing (Figure 

2G). There was a significant effect of genotype (F2,31= 3.737, p=0.0352) and no effect of day 

(F2,62=3.01, p=0.056) or day by genotype interaction (F4,62=0.8156, p=0.520). Post hoc analysis 

showed that on day two the CD animals participated in nose-to-nose sniffing significantly less 

than the WT animals (p=0.0160), while the trend was present in the other days but was not 

significant. These results indicated that some aspect of social behavior was disrupted in these 

animals and Gtf2i* mutants could not recapitulate the full CD phenotype. While we predicted 

that the WS models would show increased social interest similar to the human condition, 

individuals with WS have difficulties with other aspects of social behavior, such as social 

cognition and social awareness (20, 174), which may be reflected in these data.  

4.3.4 Gtf2i* mutation is not sufficient to reproduce WSCR mediated 
alterations of motor behavior 

Along with a characteristic social behavior, WS also presents with other cognitive 

phenotypes including poor coordination, increased anxiety, specific phobias, repetitive 

behaviors, and mild intellectual impairment (21). Human studies and mouse models have 

suggested that GTF2I and GTF2IRD1 contribute in aspects of the visual-spatial deficits and other 

cognitive phenotypes (36, 38). These genes are also highly expressed in the cerebellum, which 
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could contribute to the coordination problems (72, 78). Therefore, we next tested if CD mice had 

any motor phenotypes and if haploinsufficiency of these two transcription factors were sufficient 

to reproduce any deficits.  

 We performed a sensorimotor battery to assess balance, motor coordination and strength 

in mutants and WT littermates. All genotypes were similar in the time to initiate walking, and 

reach the top of a 60 degree inclined screen or a 90 degree inclined screen. All genotypes were 

able to hang onto an inverted screen for the same amount of time (Supplemental Figure 3A-D). 

CD animals were significantly quicker on turning around on a pole and quicker to get off of the 

pole than WT animals (Supplemental Figure 3E-F), which may be related to body size. There 

was a significant effect of genotype on time to fall in the ledge task (H2=12.505,p=0.001925), in 

which CD animals fell off the ledge faster than either WT (p=0.0071) or Gtf2i* (p=0.0069) 

littermates (Figure 3A). Similarly, there was a significant effect of genotype on the time spent 

balancing on a platform task  (H2= 7.1578, p=0.02791) (Supplemental Figure 3G). Despite their 

comparable performance in strength and coordination tasks, the CD animals tended to have 

poorer balance, while the double mutants performed similar to WT animals. These findings 

suggest that other genes in the WSCR contribute to this balance deficit. 

To test motor coordination in a more sensitive manner, we evaluated the mice on an 

accelerating rotarod. This task was performed over three days and tests coordination by 

quantifying how long a mouse can stay on a rotating rod. There was a main effect of day  (F2,339 

= 81.58, p< 2.2x10-16 ) and a main effect of sex (F1,63=10.0227, p = 0.002383), but no main 

effect of genotype (F2,63=2.0394, p=0.13861). We did not observe a sex by genotype interaction 

(F2,63=0.8155, p=0.447035) but did see a day by genotype interaction (F4,333=3.6270, 

p=0.006558). A post hoc comparison between genotypes within each day of testing showed that 
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Gtf2i* animals fell off more quickly compared to CD animals on day three (p=0.04) with no 

difference between WT and CD animals (Supplemental figure 3H). In contrast to the balance 

deficit seen on the ledge task but consistent with pole and screen performance, the rotarod results 

showed that all genotypes have similar motor coordination.  

Marble burying is a species-specific behavior that assesses the natural tendency of mice 

to dig. This task also requires motor skills and has been used as a proxy for repetitive behaviors 

(179), which are seen in individuals with WS. It has been previously shown that CD animals 

bury fewer marbles than WT littermates (90, 91). Here we similarly show that there was 

significant effect of genotype in this task (F2,66=15.243, p=3.61x10-6). CD animals buried fewer 

marbles than both WT (p<0.001), and Gtf2i* mutants  (p=0.000265)  (Figure 3B), indicating 

that Gtf2i* mutation is not sufficient to recapitulate CD phenotype. The differences in marble 

burying was not explained by any differences in activity levels between the genotypes during the 

task (F2,65=0.8974, p=0.4126; Supplemental Figure 3I). However, we did see a significant 

effect of genotype on distance traveled in the center of the apparatus (F2,66=13, p=0.0015), with 

CD mice traveling less distance in the center compared to WT (p=0.0301) and Gtf2i* (p=0.002) 

littermates (Figure 3C). There was also a corresponding significant effect of genotype on time 

spent in the center (F2,66=14.389, p=0.00075) with CD mice spending less time in the center than 

WT (p=0.0079) and Gtf2i* (p=0.0017) littermates. Avoidance of the center is generally 

interpreted in rodents as an increase in anxiety-like behavior (Figure 3D). Thus, these results 

provided further support to the hypothesis that genes besides Gtf2i* contribute to an anxiety-

related phenotype. It also suggested that the decreased marbles buried may be secondary to the 

decreased time in center and could reflect a phenotype secondary to anxiety rather than a direct 

stereotypy phenotype.  



 
 

151 

Finally, to test if the mutants have normal sensorimotor gating we looked at PPI. Similar 

to other tasks, contrasting evidence has been observed in WS mouse models in this task. Mouse 

of models of just Gtf2i showed no phenotype (96), whereas the proximal deletion mice showed 

decreased PPI; however, when combined with the distal deletion the phenotype that was 

suppressed (94). Here we show that all genotypes exhibited the expected increased PPI with an 

increasing pre-pulse stimulus (F2,112=620.61, p < 2e-16), but with no effect of genotype 

(F2,56=0.7742,p=0.466) or a pre-pulse by genotype interaction (F4,112=1.926,p=0.111)  

(Supplemental Figure 3J). A decrease was observed for overall startle response to the 120dB 

stimulus by CD animals, but when we included weight in the statistical model this effect 

disappeared (genotype F2,55=1.48, p=0.2365; weight F1,55=26,001, p=4.34e-6). Thus, the only 

phenotypic difference seen simply reflected the smaller size of the CD mice and not a change in 

sensorimotor gating (Supplemental Figure 3K).  

4.3.5 WSCR mutation does not produce robust anxiety-like behaviors 
 WS patients have heightened anxiety (21), and mouse models of Gtf2i (67, 96) and 

Gtf2ird1 (100, 101) mutations have produced mixed evidence to support the role of these genes 

in anxiety phenotypes. Larger deletion models that have either the proximal or distal regions 

deleted showed anxiety-like phenotypes in the open field, but not in light-dark boxes (94). 

Similarly the CD model has been shown to not have any differences in the open field task (93). 

We wanted to directly compare animals with Gtf2i and Gtf2ird1 mutations to CD animals in the 

same tasks to test exploratory and anxiety-like phenotypes. First, we looked at the behavior of 

the mice in an one hour locomotor activity task. We did not see any effect of genotype on the 

total distance traveled (F2,66=0.6324, p=0.53449), however there was a trend towards a time by 

genotype interaction (F10,330=1.7817, p=0.06283; Figure 3E) with the Gtf2i* mutants traveling 
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further distance. This was consistent with the behavior observed during the three-chamber social 

approach task. In contrast to the marble burying task, here we did not see a significant main 

effect of genotype on the time spent in the center of the chamber (F2,66=2.3104, p=0.10720) 

though we observed a trend in the first ten minutes for CD mice to spend less time in the center 

(Figure 3F). However, the Gtf2i* mice did not show a similar trend. To further test for anxiety-

like phenotypes, we performed elevated plus maze testing. Across the three days of testing, all 

genotypes spent similar percent time in the open arms of the apparatus (F2,63=0.6351, p=0.5332; 

Supplemental Figure 3L). Overall, our experiments indicate there may be a subtle increase on 

some tasks in anxiety-like behavior in CD mice. However, if there is such a phenotype, we see 

no evidence that Gtf2i* mutations are sufficient to produce it.  

4.3.6 Gtf2i* mutation is not sufficient to reproduce WSCR mediated 
alterations of fear conditioning 
 Finally, as patients with WS have both intellectual disability and increased prevalence of 

phobias (21, 180), we tested associative learning and memory of the mice using a contextual and 

cued fear conditioning paradigm. These behaviors are also mediated by brain regions that have 

shown to be altered in mouse models of WS and human patients, namely the amygdala and 

hippocampus. Individuals with WS have altered structural and functional reactivity in the 

hippocampus and amygdala as reviewed in (15) compared to typically developing controls. Both 

of these regions play a role in both contextual and cued fear conditioning (181). Likewise, CD 

mice have been shown to have altered morphology and physiology in the hippocampus (93, 182), 

thought to be important in contextual fear conditioning.  

We therefore tested associative learning and memory of the animals using a three day 

conditioned fear task (Figure 4A). During the conditioning trial on day one we saw a significant 
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difference in baseline freezing during the first two minutes, when the mice were initially 

exploring the apparatus. There was a main effect of genotype  (F2,53=5.31,p=0.00794) and a main 

effect of minute (F1,53=7.28, p=0.009), with the CD animals freezing more than the WT animals 

(p=0.04) and the Gtf2i* mutants (p=0.05) during minute one prior to any shock. By minute two 

of baseline, all animals showed similar levels of freezing. During the pairing of the foot shock 

with the context and tone during minutes three through five, we saw a significant effect of time 

(F2,106=100.3071, p < 2.2x10-16) and genotype (F2,53=3.4304, p=0.039723) as well as a time by 

genotype interaction (F4,106=3.9736, p = 0.004812). Specifically, all mice increased the amount 

of freezing after each foot shock, but after the last foot shock the Gtf2i* mutants froze less than 

the CD animals (p=0.002; Figure 4B), but similarly to the WT littermates. On the subsequent 

day, to test contextual fear memory, mice were put back in the same apparatus and freezing 

behavior was measured. Comparing the average of the first two minutes of freezing during fear 

memory recall on day two to the baseline of the conditioning day, we saw that all genotypes 

exhibited contextual fear memory; indicated by the increased levels of freezing when put back in 

the same context they were conditioned in (F1,53=36.4882, p=1.56x10-7; Supplemental Figure 

4A). Looking across time during the fear memory recall we saw a significant effect of time 

(F7,371=2.7166, p=0.009291) with no main effect of genotype  (F2,53=1.2507, p=0.294625), but a 

time by genotype interaction (F14,371=2.499, p=0.002085). Post hoc analysis within time showed 

that CD mice froze more than WT and Gtf2i* littermates during minute three of the task (Figure 

4C). 

To test cued fear conditioning, on the subsequent day the mice were put in a different 

context and were played the tone that was paired with the foot shock during the conditioning 

day. All animals had similar freezing behavior during baseline (F2,53=1.061, p=0.353). For the 
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duration of the tone, there was a significant effect of time (F7,371=21.5824, p<2x10-16) but no 

effect of genotype (F2,53=0.3014, p=0.741) or genotype by time interaction (F14,371=0.2128, 

p=0.999) (Figure 4D). Finally, the differences in freezing behavior could not be explained by 

sensitivity to the foot shock as all mice showed similar behavioral responses to increasing shock 

doses (F2,56=1.4521, p=0.2427; Supplemental Figure 4B). Overall, CD mice showed an 

enhancement of fear response to a contextual fear memory, and mutations in Gtf2i* were not 

sufficient to reproduce this phenotype. 

4.3.7 Gtf2i* mutation is not sufficient to reproduce WSCR mediated 
alterations of hippocampal gene expression. 
 In addition to permitting behavioral phenotyping, mouse models also allow for well-

powered and controlled examination of the molecular consequences of mutation in the 

environment of a fully developed and functioning central nervous system. Therefore, we turned 

from behavioral phenotyping of cognitive tasks to molecular phenotyping in the brains of these 

mice to 1) identify candidate molecular mediators of the behavioral phenotypes and 2) determine 

to what extent any transcriptional phenotype of WSCR mutation might be mediated by the 

haploinsufficiency of these two transcription factors. We specifically focused on the 

hippocampus, since we saw deficits in marble burying and differences in contextual fear 

memory, two behaviors thought to be mediated by hippocampal function (159, 181). Other 

studies in the CD animals have also shown there to be differences in LTP in the hippocampus as 

well as differences in Bdnf levels (91, 182). Yet the transcriptional consequences genome-wide 

of WSCR loss hav not been characterized in the hippocampus.  

 First, we conducted a targeted analysis of the genes in the WSCR locus. Of the 26 genes 

that make up the WSCR, only 15 were measurably expressed in the adult mouse hippocampus. 
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Consistent with expectation, all genes in the WSCR region showed a decrease in RNA 

abundance in the CD animals, and genes that lie immediately outside the region were not 

affected. Gtf2i* mutants only showed disruption of Gtf2i and Gtf2ird1 in directions consistent 

with what was previously seen in our RT-qPCR. This confirmed the genotype of the samples, 

and indicated that these transcription factors are not robust trans regulators of any other genes in 

the locus  (Figure 5A).  

 Next, we conducted differential expression analysis comparing WT to CD littermates to 

identify the molecular consequences of WSCR loss. At an FDR < 0.1 we found 39 genes to be 

differentially expressed. Of the 39 genes, 15 were genes that are located in the WSCR. This 

small number of differentially expressed genes was surprising given that several of the WSCR 

genes are described as transcription factors. In addition to these differentially expressed genes, 

the magnitude of the changes were small (Figure 5B and Supplemental Figure 5A). 

Interestingly, Slc23a1 showed to be slightly but consistently more lowly expressed in the CD 

animals compared to the WT animals. This is a GABA transporter, suggesting that inhibitory 

signaling could be altered in the hippocampus. This gene has also been shown to decreased in 

WS-derived cortical neurons (45). Also of note, the Iqgap2 gene was shown to be elevated in the 

CD animals compared to WT animals. This gene was also upregulated in WS iPSCs (44). We 

also looked at genes that have been investigated previously in the CD mouse, such as Bdnf and 

Pi3kr (90, 91) and we show that there was little change in gene expression between genotypes 

(Supplemental Figure 5B).  

 To determine if Gtf2i* loss is sufficient to drive these transcriptional changes, we next 

examined differential expression comparing Gtf2i* mutants to WT littermates. In contrast to 

WSCR mutation, we found only Gtf2i and Gtf2ird1 to be differentially expressed at an FDR < 
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0.1 (Figure 5C). To get a broader idea of how similar the transcriptomes of the two genotypes 

are we compared the genes that are nominally up and downregulated between each mutant line 

and WT controls. We saw that there was about a 9% overlap between CD and Gtf2i* up and 

down regulated genes  (Figure 5D). This is slightly below the amount of genes shown to be 

changed by GTF2I in iPSCs (44). Again this suggests that other genes in the WSCR are driving 

90% of the transcriptional changes in the CD hippocampus.  

To understand what role the nominally changed genes have in common we conducted a 

GO analysis. The biological processes that the CD genes were found to be involved in included 

synaptic functioning as well as nervous system differentiation. Interestingly processes that 

control balance were enriched and we and others have reported on balance deficits in CD 

animals (Figure 5E). When comparing these to 1000 random differential gene lists these 

biological processes are very specific to the genotype comparisons. For instance, out 1000 

random test, positive regulation of excitatory synapses only occurred in the top 10 enriched GO 

terms two times (Supplemental Table 2). The cellular components that the genes are enriched 

for are extracellular, which is a similar result to the iPSC studies (44), as well as synapses. The 

molecular function ontologies, which are enriched for the differentially expressed genes included 

calcium binding  (Supplemental Figure 5). When comparing these to randomly determined 

gene expression changes, all but the extracelluar components seem to be specific to the CD 

versus WT comparison  (Supplemental Table 2). In contrast, the Gtf2i* GO analysis showed 

that these genes are enriched for more general organ system development and are not very 

nervous system specific  (Figure 5F and Supplemental Table 3).  

Overall, we have shown that the hemizygous loss of the WSCR has a mild but significant 

effect on the hippocampal transcriptome. Yet, the changes that do occur point to aberrations in 
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synapses and nervous system development. Furthermore, loss of function mutations in Gtf2i and 

Gtf2ird1 have an even smaller effect on the transcriptome and can only account for 9% of the 

changes incurred by loss of the WSCR.  

4.4 Discussion  
Contiguous gene disorders such as WS provide insight into regions of the genome that 

have large effects on specific aspects of human cognition and behavior. The specific cognitive 

profile of WS is characterized by deficits in visual-spatial processing with relative strengths in 

language, and the archetypal behavioral profile consists of increased social interest, strong eye 

contact, high levels of anxiety, and in some cases specific phobias and hyperactivity. Here we 

used a new mouse model to test if loss of the paralogous transcription factors Gtf2i and Gtf2ird1 

are sufficient to phenocopy the behaviors and transcriptomic changes of mice that lack the entire 

WSCR.  

 Overall, CD mice consistently have more severe phenotypes than the Gtf2i* mutants. We 

saw that the CD animals have a deficit in social communication as measured by maternal 

separation induced pup ultrasonic vocalizations. The Gtf2i* mutants on average make fewer calls 

than the WT littermates, however not significantly so, but this may suggest that these two 

transcription factors contribute slightly to this phenotype but other genes in the region are 

necessary to produce the full phenotype seen in the CD animals. Previously it was shown that 

animals that have increased copy number of Gtf2i increased the number of pup USVs emitted 

while animals with only one copy produced similar number of calls to WT animals (29). This 

was interpreted as increased separation anxiety. Here we see that lower copy number of the 

entire region produces the opposite effect of increased Gtf2i copy number. Decreased USVs 

could mean there is a lack of motivation to make the calls or an inability to make as many calls. 
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A model of Gtf2ird1 mutant animals was shown to have different USV production due to a 

difference in the muscle composition of the larynx (92). This has not been shown in the CD 

animals but it could contribute to the phenotype as well as differences in the skull morphology 

(93). Another possible explanation is that since the production of USVs is a developmentally 

regulated trait, it could be that deleting 26 genes could disrupt typical developmental trajectories. 

While we do not see any gross developmental problems such as lower weight or delayed 

detachment of pinnae, the deletion could have a more severe effect on brain development, thus 

affecting developmentally regulated behavioral traits. 

 To our surprise, there was no detectable social phenotype in the Gtf2i* mutants or CD 

animals in the classical three-chamber social approach assay. Our results showed that all 

genotypes on average prefer to investigate the social stimulus for a similar amount of time. The 

preference for social novelty is also intact across all the groups. In an attempt to test if the WS 

models fail to habituate to a social stimulus we showed that after thirty minutes of having the 

opportunity to investigate an unfamiliar mouse or an empty cup, all genotypes habituate to the 

social stimulus and by the end of the thirty minutes seem to have a small preference for the 

empty cup. The three-chamber social approach task has been done in the larger partial deletion 

models where they have shown that the proximal deletion and the trans full deletion models have 

a significant preference for the social stimulus, and the WT and distal deletion mice do not show 

a preference, suggesting that the proximal deletion, which harbors genes such as Gtf2i and 

Gtf2ird1, are involved in this social task (94). Mouse models that are haploinsufficient for only 

Gtf2i have shown in the three-chamber approach task that after eight minutes WT animals 

investigate a novel object the same amount as a social stimulus, but the Gtf2i mutants still have a 

significant preference suggesting a lack of habituation (96). In another Gtf2i model, Martin et al. 
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compared animals with one, two, three, and four copies of Gtf2i in the three-chamber social 

approach task, and showed that only animals with one and three copies of Gtf2i displayed a 

significant preference for the social stimulus (97), but WT animals did not. These three-chamber 

social approach tests are interpreting a lack of significance as evidence for increased social 

behavior and not directly comparing the levels of investigation between genotypes (183). 

Furthermore, in some cases the WT controls are not showing the expected preference for the 

social stimulus, thus, possibly confounding interpretation of the mutant preference.  

The three-chamber social approach assay has come under recent criticism due to how 

dependent it is on activity levels of mice and its lower heritability compared to tests of direct 

social interaction (184). The CD animals had not previously been tested in this procedure 

exactly, but have been tested in a modified social approach where the time spent investigating a 

mouse in a cup is measured but with no competing non-social stimulus (90, 91, 93). The data 

showed that the CD animals investigated the social stimulus for more time than the WT animals 

and delivery of Gtf2i cDNA by AAV9 via the magna cisterna can return the investigation time to 

normal levels (90). Here, we showed that all animals preferred the social stimulus. It is possible 

that the standard social approach suffers from several confounding factors, such as lower 

heritability, as well as activity and anxiety-like components that make this task less sensitive to 

detect a hypersocial phenotype in WS models. It could also be that the three-chamber social task 

does not test the specific aspects of social behavior that are disrupted in WS models. For 

example, newer tasks, such as social operant tasks that test motivation to receive a social 

stimulus may more directly test the aspects of social behavior that are affected in WS. This task 

has been performed on Gtf2i mutants and mice that have only one copy of Gtf2i will work harder 

to receive a social reward (97).  
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Direct social tasks have higher heritability than the three-chamber social approach and 

offer a more natural social experience (184), which may make them a more sensitive assay for 

testing social behaviors. Direct tasks have shown that Gtf2i models have increased nose-to-nose 

investigation time (97), mouse models lacking the proximal end of the region have increased 

investigation frequency (94), and Gtf2ird1 mutants make fewer aggressive actions but show 

increased following time (101). We employed the resident-intruder paradigm as a full contact 

social assay. While we did not see bouts of aggression from any of the genotypes, we could see 

differences in social investigation. To our surprise, the CD animals spent less time overall in 

anogenital sniffing and nose-to-nose sniffing of the intruder animals when compared to WT 

littermates. The double mutants were not significantly different from the WT animals but had 

intermediate values between the WT and CD animals. This phenotype was being driven by the 

decreased time per bout of investigation in the CD animals, as all genotypes had a similar 

frequency of the sniffing behavior. This result was contrary to what would be predicted from the 

human condition and previous mouse results. However, while individuals with WS are described 

as having prosocial behavior in terms of increased social approach and friendliness (19), they 

also have difficulties maintaining long term relationships because of deficits in other aspects of 

social behavior (20, 27, 28, 174), and on scales measuring social reciprocity often score in the 

autistic range (174). In addition, there is a high co-morbidity with ADHD which has features of 

impulsiveness (22).  While the CD animals did not show the expected increase in social interest, 

this may be a manifestation of attention deficits that are present from deleting the 26 genes in the 

WSCR, but this needs to be examined. Loss-of-function mutations in Gtf2i and Gtf2ird1 were 

not sufficient to produce as strong an effect in these investigative behaviors. However, the 

somewhat intermediate effect suggests they could contribute to it.  
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One limitation of our study is that some aspects of the social phenotype in the models 

tested here could be masked by the mouse background strain. While we have controlled for 

mouse background strain in our experiments by only using the F1 generation of the FVB/AntJ 

and C57BL/6J cross, the hybrid background may prevent the manifestation of a social phenotype 

caused by the mutations tested. For example, it has been documented that craniofacial 

phenotypes in Gtf2ird1 models are sensitive to background strain (39, 78, 95, 101). Here, the 

double mutants and CD animals on the hybrid background showed no dominance phenotype in 

the tube test. However, when we tested each mutation on the respective mouse background 

strain, we saw that the CD animals had a submissive phenotype, but the double mutants did not. 

Studies done in the larger partial deletions have shown altered win/loss ratios in the tube test in 

the proximal deletion and full trans deletion models (94), suggesting that the CD models on the 

C57BL/6J background can replicate this phenotype, but other genes in the proximal region 

besides Gtf2i and Gtf2ird1 are also required.  

In this study, we have replicated several of the phenotypes previously seen in the CD 

animals, such as marble burying and balance deficits (91, 93, 182). It was shown that CD 

animals bury fewer marbles than WT animals and rescuing the Gtf2i levels in the hippocampus 

did not rescue this phenotype. Both the results presented here and in Borralleras et al. suggest 

that other genes in the region beyond Gtf2i and Gtf2ird1 are important in this behavior. Here we 

have extended the results to suggest that there could be an anxiety-like component to the marble 

burying deficit. By tracking the animals during the task we see that CD animals spend less time 

and travel less distance in the center of the apparatus. This could preclude them from burying as 

many marbles in the center. It could also be that the CD animals do not show the normal 

motivation to dig.  
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CD animals showed difficulty in balancing tasks, but normal motor coordination. Motor 

coordination of WS has been tested using the rotarod.  The larger partial deletion models showed 

that the distal deletion and proximal deletion mice had intermediate phenotypes with the full 

trans deletion mice falling off the rotarod sooner (94). Similarly the CD mice have shown 

deficits in the rotarod and addition of Gtf2i coding sequence does not rescue this phenotype 

(182). The CD mice in this study did not show a deficit in the rotarod despite having poor 

balance on the ledge and platform tasks. CD animals were not able to balance on a ledge or 

platform as long as their WT and Gtf2i* mutant littermates. This suggests that motor 

coordination, as tested by our rotarod paradigm, is intact in these WS models, but balance is 

specifically affected in the CD animals. The discrepancy could be due to body size. The adult 

CD animals are significantly smaller than the WT and Gtf2i* mutants, which could make staying 

on the wider rotarod less challenging. This study also used a different accelerating paradigm 

where the rod itself is continuously accelerating until the mouse falls off while other paradigms 

test the mice at different continuous rotation speeds.  

Along with balance and coordination problems, individuals with WS tend to have 

specific phobias and high levels of non-social anxiety (21). We showed that CD animals had an 

altered fear conditioning response. We saw that the CD animals have an increased fear response 

in contextual fear but not cued fear. It was previously reported that CD animals showed a slight 

decrease in freezing but was not significant (93). Two separate Gtf2ird1 mutations have shown 

contrasting results, one showed an increased fear response (99) while another showed decreased 

fear response (101). It could be that this hybrid background used here is more sensitive to see 

increases in freezing because FVB/AntJ do not exhibit as much freezing in conditioned fear tasks 

as C57BL/6J animals (185). The observed increased contextual fear response could be due to 
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differences in the hippocampus and amygdala, both regions that have been shown to be disrupted 

in WS.  We did not see a robust anxiety-like behavior phenotypes in one hour locomotor task or 

the elevated plus maze, which is consistent with previous findings in the CD model (93). 

However, we did see reduced time and distance traveled in the center during the marble burying 

task. Perhaps suggesting that the novel environment in combination with the novel marbles can 

induce slightly higher levels of anxiety in the CD model.   

Given the behavioral differences in marble burying and contextual fear, two behaviors 

thought to be mediated by the hippocampus (159, 181), we examined the transcriptomes of the 

hippocampus of the Gtf2i* mutants and CD animals and compared them to WT littermates. This 

provided the first transcriptional profile documenting the consequences of the 26 gene deletion in 

a mature brain, and allowed us to determine what portion of that was driven by Gtf2i* proteins. 

Surprisingly, we did not see any significantly differentially expressed genes between the Gtf2i* 

mutants and WT littermates, besides the mutated genes themselves. Looking at the overlap of 

nominally differentially expressed genes between CD-WT and Gtf2i*-WT comparisons, showed 

a small overlap of about 9%. This is slightly less than the estimate from Adamo et al., of 15-20% 

of genes dysregulated in WS iPSCs being attributed to reduced levels of GTF2I. Perhaps these 

general findings suggest that Gtf2i and Gtf2ird1 contribute to small transcriptional changes 

broadly across the genome, and in combination with other genes in the WSCR more profound 

neural specific gene disruptions become apparent. 

Our transcriptional studies overall showed limited impact of Gtf2i* mutation in the brain.  

The global brain transcriptome of Gtf2i mutants has not been investigated, but brain 

transcriptome studies of Gtf2ird1 knockout mouse models have not found any evidence of 

differentially expressed genes (88). These data suggest that in the adult hippocampus these two 
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transcription factors do not greatly affect the transcriptome. There are some limitations to this 

negative result.  It could be that we are diluting some of the signal because we are studying the 

effects on the transcriptome of the whole hippocampus, which has a diverse cellular 

composition. Larger effect sizes might be detected in more homogenous cellular populations.  

Likewise, if these genes regulate dynamics of gene expression rather than baseline values, 

greater differences might become apparent after experimental manipulations that activate 

transcription.   

One additional limitation of our study is that the mutated Gtf2ird1 allele is still producing 

an N-terminally truncated protein.  However, we show that N-truncated Gtf2ird1 does not bind to 

its known target, the promoter region of Gtf2ird1, and this absence leads to increased RNA from 

the locus, consistent with a loss of its transcriptional repressor function.  Thus, we confirmed this 

truncated protein is a loss of function for the only known roles for Gtf2ird1. However, it is 

possible that the protein does have other unknown functions we could not assay here. It has also 

been proven to be a remarkably challenging gene to completely disrupt, across multiple studies 

(66, 101).  The combination of the upregulation of its RNA upon deletion with the ability to re-

initiate at a variety of downstream codons is intriguing.  One possibility is that Gtf2ird1 has an 

unusual amount of homeostatic regulation at both transcriptional and translational levels that are 

attempting to normalize protein levels.  Another possibility is that these kinds of events are 

actually quite common across genes, but that they are detected in Gtf2ird1 because the WT 

protein is at such low abundance it is on par with what is actually an infrequent translation re-

initiation event.  Our detection of Gtf2ird1 protein in the brain required substantial optimization 

and is still only apparent in younger brains. Indeed, in validations of mutations of more abundant 

proteins, the immunoblots may not be routinely developed long enough to see a trace re-



 
 

165 

initiation event that might occur.  Regardless, future studies aimed at understanding the 

transcriptional and translational regulation of this unusual gene would be of interest. 

Examining the profile of CD mutants compared to WT littermates, we do define a 

number of transcriptionally dysregulated genes. Of the genes in WSCR that are expressed in the 

hippocampus all had decreased expression in the CD animals. In addition, there were 24 genes 

outside the WSCR that had a FDR < 0.1 between CD and WT controls. Among these genes is 

Slc23a1, the GABA vesicle transporter, which is down regulated in CD animals. Interestingly 

this gene was also found to be down regulated in human iPSC derived neurons from individuals 

with WS (45). This points to aberrant inhibitory activity in the CD brain, which could lead to 

functional deficits. Also consistent with other human WS derived iPSC studies, the gene Iqgap2 

was shown to be upregulated in the CD hippocampus (44), and has the potential to interact with 

the cytoskeleton through actin binding (186). Broadening the analysis to include nominally 

differentially expressed genes and conducting systems-level analyses, the CD-WT comparison 

highlighted genes involved in the positive regulation of excitatory postsynaptic potential. 

Chailangkarn et al. showed that WS derived iPSC neurons had increased glutamatergic synapses. 

Our data also showed some signal in the GO term for postsynaptic density assembly. Taken 

together these data suggest abnormal synapse functioning in the CD animals and potentially 

altered inhibitory/excitatory balance.  This also suggests pharmacological agents that increase 

GABA tone may be of use in reversing some WS phenotypes.  The RNA-seq data also had signal 

in neuromuscular processes controlling balance. Altered gene expression in the CD animals 

could be contributing to the balance deficits. In contrast to the synapse and neural specific GO 

term enrichment seen in the CD-WT comparison, comparing the transcriptomes of the Gtf2i* 
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mutants and WT shows signal in more general organ development, such as ossification and eye 

development.  

Taken together, our results support the hypothesis that other genes in the WSCR besides 

Gtf2i and Gtf2ird1 are necessary to produce some phenotypes that are seen when the entire 

WSCR is deleted. While these two transcription factors have been highlighted in the human 

literature as large contributors to the WS phenotype, the literature is also consistent with a model 

where most genes contribute to aspects of different phenotypes in WS, but the full phenotypic 

effects occur when all the genes are deleted  (Figure 6). Studying patients with atypical deletions 

highlights the variability of the region. Even within families that have inherited small deletions 

some of the cardiovascular, cognitive, and craniofacial phenotypes have incomplete penetrance 

(31, 32, 40). Comparing the deletion sizes and corresponding phenotypes shows a large overlap 

of genes that are deleted, but no clear pattern of which specific phenotypes are affected. Many of 

atypical deletions described to date that do not have Gtf2i and Gtf2ird1 deleted show no 

overfriendly phenotype, but there are examples where this is not true. Recent work in zebrafish 

that was done to dissect which genes in the 16p11.2 region contribute to craniofacial 

dysmorphology led to a similar conclusion, that multiple genes in the region contribute to the 

phenotype but in combination some have synergistic effects and others have additive effects 

(102). Sanders et al. also suggested that copy number variations with higher gene content are 

more likely to have several genes of smaller effect sizes suggesting an oligogenic pattern of 

contribution (121). Our data suggests that looking beyond the general transcription factor 2I 

family at possible combinations of more genes in the region may more completely reproduce the 

WS phenotype. Given the ease of making new mouse models with current genome editing 
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technology, a combinatorial dissection of the region is feasible and could lead to interesting new 

insight into the underlying mechanisms that contribute to the phenotypic spectrum of WS. 

4.5 Materials and Methods 
Generating genome edited mice 

sgRNAs were designed to target early constitutive exons of the mouse Gtf2i and Gtf2ird1 

genes. The gRNAs were cloned into the pX330 Cas9 expression plasmid (Addgene) and 

transfected into N2a cells to validate the cutting ability of each gRNA using the T7 enzyme 

assay. Primers used to amplify target regions tested by the T7 enzyme assay are in Supplemental 

Table 4. One guide was selected for each gene based on cutting activity  (Supplemental Table 4). 

The gRNAs were in vitro transcribed using MEGAShortScript  (Ambion) and Cas9 mRNA was 

in vitro transcribed, G-capped, and poly-A tailed using the mMessageMachine kit (Ambion). The 

mouse genetics core at Washington University School of Medicine co-injected the Cas9 mRNA 

(25ng/ul) along with both gRNAs (13ng/ul of each gRNA) into FVB/NJ fertilized eggs and 

implanted the embryos into recipient mothers. This resulted in 57 founders. Founders were 

initially checked for any editing events using the T7 assay. There were 36 animals with no 

editing events. We deep sequenced the expected cut sites, as described below, in the remaining 

21 founders to identify which alleles were present.. Founders were crossed to wild type  (WT) 

FVB/AntJ  (https://www.jax.org/strain/004828) animals, which are different from FVB/NJs at 

two loci; Tyrc-ch results in a chinchilla coat color and they are homozygous WT for the 

129P2/OlaHSd Pde6b allele, which prevents them from developing blindness due to retinal 

degeneration. Coat color was visually genotyped and the functional FVB/AntJ Pde6b allele was 

genotyped using primers recommended by Jackson labs  (Supplemental Table 5). The mice 
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were crossed to FVB/AntJ until the mutations were on a background homozygous for the 

FVB/AntJ coat color and Pde6b alleles. 

Genotyping 

Initial founder genotyping was performed by deep sequencing amplicons around the 

expected cuts sites of each gRNA. Primers were designed around the cut sites using the NCBI 

primer blast tool. To allow for Illumina sequencing we concatenated the Illumina adapter 

sequences to the designed primers (Supplemental Table 5). The regions surrounding the cut 

sites were amplified using the following thermocycler conditions: 95° C 4 minutes, 95° C 35 

seconds, 58.9° C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° 

C for 7 minutes, hold at 4° C. A subsequent round of PCR was performed to add the requisite 

Illumina P5 and P7 sequences as well as sample specific indexes using the following 

thermocycler conditions: 98° C 3 minutes, 98° C 10 seconds, 64° C 30 seconds, 72° C 1 minute, 

repeat steps 2 through 4 20 times, 72° C 5 minutes, hold 4° C. The PCR amplicons were pooled 

and run on a 2% agarose gel and the expected band size was gel extracted using the NucleoSpin 

gel extraction kit (Macherye-Nagel). The samples were sequenced on a MiSeq. The raw fastq 

files were aligned to the mm10 genome using bwa v0.7.17 –mem with default settings (140), and 

the bam files were visualized using the integrated genome visualizer  (IGV )v2.3.29 to determine 

the genotype.  

 Once the alleles of the founder lines were shown to be in the germline, we designed PCR 

genotyping assays that can distinguish mutant and WT alleles. Since the Gtf2i mutation and the 

Gtf2ird1 mutation are in linkage and are always passed on together, primers were designed that 

would only amplify the five base pair deletion in exon three of Gtf2ird1. The primer was 
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designed so that the three prime end of the forward primer sits on the new junction formed by the 

mutation with an expected size of 500bp. Beta actin primers, with an expected size of 138bp, 

were also used to help ensure specificity of the mutation specific Gtf2ird1 primers as well as act 

as a PCR control  (Supplemental Table 5). The CD animals were genotyped using primer 

sequences provided by Dr. Victoria Campuzano and primers that amplify the WT Gtf2ird1 allele 

as a PCR control  (Supplemental Table 5).  

 PCR was performed on toe clippings that were incubated overnight at 55° C in tail lysis 

buffer  (10mM Tris pH 8, 0.4M NaCl, 2mM EDTA, 0.1% SDS, 3.6U/mL Proteinase K  (NEB)). 

The proteinase K was inactivated by incubation at 99° C for 10 minutes. 1ul of lysate was used 

in the PCR reactions. Two bands indicated a heterozygous mutation in Gtf2i and Gtf2ird1. The 

cycling conditions for the 5bp Gtf2ird1 deletion were: 95° C 4 minutes, 95° C 35 seconds, 66.1° 

C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° C for 7 minutes, 

hold at 4° C. The cycling conditions for the CD genotyping were: 95° C 4 minutes, 95° C 35 

seconds, 58° C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° C 

for 7 minutes, hold at 4° C.  

Western blotting 

E13.5 whole brains were dissected in cold PBS and immediately frozen in liquid nitrogen 

and stored at -80°C until genotyping was performed. Frozen brains were homogenized in 500ul 

of 1x RIPA buffer (10mM Tris HCl pH 7.5, 140mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% 

DOC, 0.1% SDS, 10mM Na3V04, 10mM NaF, 1x protease inhibitor (Roche)) and RNAase 

inhibitors (RNasin (Promega) and SUPERase In (Thermo Fisher Scientific) and incubated on ice 

for 20 minutes. Lysates were cleared by centrifugation at 10,000g for 10 minutes at 4° C. The 
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lysate was split into two 100ul aliquots for protein analysis and 250ul of lysate was added to 

750ul of Tizol LS (Thermo Fisher Scientific) for RNA analysis. Protein concentration was 

quantified using a BCA assay and loaded at 25-50ug in 1x Lamelli Buffer with B-

mercaptoethanol onto a 4-15% TGX protean gel (Bio-Rad). In some experiments to achieve 

greater separation to detect the N-truncation, the protein lysates were instead run on a 7.5% TGX 

protean gel (Bio-Rad). The protein was transferred to PVDF 0.2um membrane by wet transfer. 

The membrane was blocked for one hour at RT with TBST 5% milk. The membranes were cut at 

75KDa, and the top of the membrane was probed for either Gtf2i or Gtf2ird1, and the bottom of 

the membrane was probed for Gapdh, with the following primary antibodies: Rabbit anti-

GTF2IRD1 (1:500, Novus, NBP1-91973), Mouse anti-GTF2I (1:1000 BD Transduction 

Laboratories, BAP-135), and Mouse anti-Gapdh  (1:10,000, Sigma Aldrich, G8795). Primary 

antibodies were incubated overnight at 4° C in TBST 5% milk. We used the following secondary 

antibodies: HRP-conjugated Goat anti Rabbit IgG (1:2000, Sigma Aldrich, AP307P) and HRP-

conjugated Goat anti Mouse IgG (1:2000, Bio Rad, 1706516) and incubated for 1 hour at room 

temperature. Signal was detected using Clarity Western ECL substrate (Bio-Rad) in a MyECL 

Imager (Thermo Scientific). Quantification of bands was performed using Fiji (NIH) (187) 

normalizing to Gapdh levels and a WT reference sample.  

Transcript measurement using RT-qPCR 

Total RNA from E13.5 brains lysates was extracted from Trizol LS using the Zymo 

Clean and Concentrator-5 with on column DNAase I digestion and eluted in 30ul of water. RNA 

quantity and purity was determined using a Nanodrop 2000 (Thermo Scientific). cDNA was 

prepared using 1ug of total RNA and the qscript cDNA synthesis kit (Quanta Biosciences). 25ng 

of cDNA was used in a 10ul RT-qPCR reaction with 2x PowerUP SYBR Green Master Mix 
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(Applied Biosystems) and 500nM primers that would amplify constitutive exons of Gtf2ird1 

(exons 8/9), Gtf2i (exons 25/27) or Gapdh (Supplemental Table 5). The RT-qPCR was carried 

out in a QuantStudio6Flex machine (Applied Biosystems) with the following cycling conditions: 

95° C 20 seconds, 95° C 1 second, 60° C 20 seconds, repeat steps 2 through 3 40 times.  There 

were three biological replicates per genotype in all experiments and each cDNA was assessed in 

triplicate technical replicates. Relative transcript abundance of Gtf2i and Gtf2ird1 was 

determined using the deltaCT method normalizing to Gapdh.  

ChIP-qPCR 

Chromatin preparation 

Chromatin was prepared by homogenizing one frozen E13.5 brain in 10mL of 1x cross-

linking buffer (10mM HEPES pH7.5, 100mM NaCl, 1mM EDTA, 1mM EGTA, 1% 

Formaldehyde (Sigma)) using the large clearance pestle in a Dounce homogenizer and allowed 

to crosslink for 10 minutes at room temperature with end-over-end rotation. The formaldehyde 

was quenched with 625ul of 2M glycine. The cells were spun down at 200g at 4° C and the pellet 

was washed with 10mL 1x PBS 0.2mM PMSF and spun again. The pellet was resuspended in 

5mL L1 buffer (50mM HEPES pH 7.5, 140 mM NaCl, 1mM EDTA, 1mM EGTA, 0.25% Triton 

X-100, 0.5% NP40, 10.0% glycerol,1mM BGP (Sigma), 1x Na Butyrate (Millipore), 20mM 

NaF, 1x protease inhibitor (Roche)) and homogenized using the low clearance pestle in a Dounce 

homogenizer to lyse the cells and leave the nuclei intact. The homogenate was spun at 800g for 

10 minutes at 4° C to pellet the nuclei. The pellet was washed in 5mL of L1 buffer and spun 

again and resuspended in 5mL of L2 buffer (10mM Tris-HCl pH 8.0, 200mM NaCl, 1mM BGP, 

1x Na Butyrate, 20mM NaF, 1x protease inhibitor) and incubated at room temperature for 10 
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minutes while shaking. The nuclei were pelleted by spinning at 800g for 10 minutes and 

resuspended in 950ul of L3 buffer (10mM Tris-HCl pH 8.0, 1mM EDTA, 1mM EGTA, 0.3% 

SDS, 1mM BGP, 1x Na Butyrate, 20mM NaF, 1x protease inhibitor) and transferred to a 

milliTUBE 1mL AFA Fiber (100)(Covaris). The sample was then sonicated to a DNA size range 

of 100-500bp in a Covaris E220 focused-ultrasonicator with 5% duty factor, 140 PIP, and 

200cbp. The sonicated samples were diluted to 0.1% SDS using 950ul of L3 buffer and 950ul of 

3x Covaris buffer (20mM Tris-HCl pH 8.0, 3.0% Triton X-100, 450mM NaCl, 3mM EDTA). 

The samples were spun at max speed in a tabletop centrifuge for 10 minutes at 4° C to pellet any 

insoluble matter. The supernatant was pre-cleared by incubating with 15ul of protein G coated 

streptavidin beads (ThermoFisher) for two hours at 4° C.  

Chromatin IP 

GTF2IRD1 antibody (Rb anti GTF2IRD1 NBP1-91973 LOT:R40410) was conjugated to 

protein G coated streptavidin beads by incubating 6ug of antibody (10ul) with 15ul of beads in 

500ul TBSTBp (1x TBS, 0.1% Tween 20, 1%BSA, .2mM PMSF) and end-over-end rotation for 

one hour at room temperature. The antibody-conjugated beads were washed three times with 

500ul of TBSTBp. 400ul of the pre-cleared lysate was added to the antibody-conjugated beads 

and rotated end-over-end at 4° C overnight. 80ul of the pre-cleared lysate was added to 120ul of 

1x TE buffer with 1% SDS and frozen overnight to be the input sample.  

 The IP was washed two times with a low salt buffer (10mM Tris-HCl pH 8.0, 2mM 

EDTA, 150mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with a high salt buffer (10mM 

Trish-HCl pH 8.0, 2mM EDTA, 500mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with 

LiCl wash buffer (10mM Tris-HCl pH 8.0, 1mM EDTA, 250mM LiCl (Sigma), 0.5% 
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NaDeoxycholate, 1.0% NP40), and one time with TE (10mM Tris-HCl pH 8.0, 1mM EDTA) 

buffer. The samples were eluted from the beads by incubating with 100ul of 1x TE and 1% SDS 

in an Eppendorf thermomixer R at 65° C for 30 minutes, mixing at 1400rpm. This was repeated 

for a total of 200ul of eluate. The samples and input were then de-crosslinked by incubating in a 

thermocycler (T1000 Bio-Rad) for 16 hours at 65° C. The samples were incubated with 10ug of 

RNAseA (Invitrogen) at 37° C for 30 minutes. The samples were then incubated with 140ug of 

Proteinase K (NEB) at 55° C in a thermomixer mixing at 900rpm for two hours. The DNA was 

extracted using phenol/chloroform/isoamyl alcohol (Ambion) and cleaned up using Qiagen PCR 

purification kit and eluted two times using 30ul of buffer EB for a total of 60ul. The 

concentration was assessed using the highsensitivity DNA kit for qubit (Thermo Fisher 

Scientific). A portion of the input DNA was run on a 2% agarose gel post stained with ethidium 

bromide to check the DNA fragmentation.  

ChIP qPCR 

Primers were designed to amplify the region around the Gtf2ird1 transcription start site 

(TSS), which has been shown to be a target of Gtf2ird1 binding (66). Two primer sets were also 

designed to amplify off target regions, one 10kb upstream of the Bdnf TSS and one 7Kbp 

upstream of the Pcbp3 TSS. These were far enough away from any TSS that it would be unlikely 

that there would be a promoter region. The primers can be found in Supplemental Table 5. A 

standard curve was made by diluting the input sample for each IP sample 1:3, 1:30, and 1:300. 

The input, the input dilutions, and the IP samples for each genotype condition were run in 

triplicate using the Sybr green Power UP mastermix (AppliedBiosystems) and primers at a final 

concentration of 250nM. The PCR was carried out in a QuantStudio6Flex machine (Applied 

Biosystems) with the following cycling conditions: 50° C for 2 minutes, 95° C for 10 minutes, 
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95° C 15 seconds, 60° C for 1 minute, repeat steps 3 through 4 40 times. Relative concentrations 

for the IP samples were determined from the standard curves for that sample and primer set. The 

on target relative concentration for each genotype was divided by either off target relative 

concentration to determine the enrichment of Gtf2ird1 binding.  

Hippocampus RNA-sequencing 

Library preparation 

The hippocampus was dissected from adult animals of the second behavior cohort 

(Table1). We used six animals of each genotype, three males and females of the WT and CD 

animals and two males and four females of the Gtf2i* genotype. The hippocampus was 

homogenized in 500ul of 1x RIPA supplemented with two RNAse inhibitors, RNAsin and 

SUPERase In, and 250ul of the homogenate was added to 750ul of Trizol LS and stored at -80° 

C until RNA extraction. RNA was extracted using the Zymo clean and concentrator-5 kit 

following the on column DNAse I digestion protocol and eluted in 30ul of water. The quality and 

concentration of the RNA was determined using a nanodrop 2000 and Agilent RNA 

Highsenstivity Tape screen ran on the TapeStation 2000 (Agilent). All RINe scores were above 

seven.  

 1ug of RNA was used as input and rRNA was depleted using the NEBNext rRNA 

Depletion kit (Human/Mouse/Rat). RNA-seq libraries were prepared using the NEB Next Ultra 

II RNA library Prep Kit for Illumina. The final uniquely indexed libraries for each sample were 

amplified using the following thermocycler conditions: 98° C for 30 seconds, 98° C 10 seconds, 

65° C 1 minute and 15 seconds, 65° C 5 minutes, hold at 4° C, repeat steps 2 through 3 6 times. 

Each sample had a unique index. Samples were pooled at equal molar amounts and 1x50 reads 
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were sequenced on one lane of a HiSeq3000 at the Genome Technology Access Center at 

Washington University School of Medicine. The RNA-seq data is available at GEO with 

accession number (submitted, waiting on accession number).  

RNA-seq analysis 

The raw reads were trimmed of Illumina adapters and bases with base quality less than 25 

using the Trimmomatic Software (161). The trimmed reads were aligned to the mm10 mouse 

genome using the default parameters of STARv2.6.1b (169). Samtools v1.9 (141) was used to 

sort and index the aligned reads. Htseq-count v0.9.1 (170) was used to count the number of reads 

that aligned to features in the Ensembl GRCm38 version 93 gtf file.  

 The htseq output was analyzed for differential gene expression using EdgeR v3.24 (165). 

Lowly expressed genes were defined as genes that had a cpm less than two across all samples. 

Lowly expressed genes were then filtered out of the dataset. We used the exactTest function to 

make pairwise comparisons between the three groups: WT versus Gtf2i*, WT versus CD, and 

CD versus Gtf2i*. Genes were considered differentially expressed if they had an FDR< 0.1.  

 GO analysis was performed using the goseq R package (188). Nominally significant up 

and down regulated genes for each comparison were considered differentially expressed genes 

and the background gene set included all expressed genes after filtering out the lowly expressed 

genes. The top 10 most significant go terms for each ontology category were reported. To test 

how unlikely it is to see these go terms given the differentially expressed genes from the 

genotype comparisons, we shuffled the genotypes among the samples and repeated the 

differential expression analysis and go term analysis 1000 times and counted how many times 

the same go terms were identified in the top ten most significant go terms.  
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Behavioral tasks 

Animal statement 

All animal testing was done in accordance with the Washington University in St. Louis 

animal care committee regulations. Mice were same sex and group housed with mixed genotypes 

in standard mouse cages measuring 28.5 x 17.5 x 12cm with corn cob bedding and ad libitum 

access to food and water in a 12 hour light dark cycle, 6:00am-6:00pm light. The temperature of 

the colony rooms was maintained at 20-22° C and relative humidity at 50%. Two cohorts of mice 

were used in the behavior and RNA-seq experiments. The CD animals (Del (5Gtf2i-

Fkbp6)1Vcam) were a gift from Dr. Victoria Campuzano and have been previously described 

(93) and were maintained on the C57BL/6J strain  (https://www.jax.org/strain/000664). The first 

behavior cohort (Table 1) used Gtf2i* and CD females as breeders. The second behavior cohort 

(Table 1) used just CD female breeders as male CD animals were frequently not successful at 

breeding. Male and female mice were included in the behavior tasks. Experimenters were blind 

to genotype during all testing. Besides the maternal separation induced pup ultrasonic 

vocalization, all behaviors were done in adult animals older than 60 days and less than 150 days 

old. Mice were moved to the testing facility at least 30 minutes before the test to allow the mice 

to habituate to the room. The male experimenter was present during this habituation so the mice 

could also acclimate to the experimenter. Sex differences were assessed in all experiments, and 

are discussed when they were significant. Otherwise, the data is presented with the males and 

females pooled. Animals were removed from analysis if they were outliers, defined as having 

values greater than 3.5 standard deviations above or below the mean for their genotype group. 

Animals were also removed if the video and tracking quality were too poor to be analyzed. All 

filtering was conducted blind to genotype.  
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Maternal separation induced pup ultrasonic vocalization 

To assess early communicative behaviors we performed maternal separation induced pup 

ultrasonic vocalization (USVs). Animals were recorded on postnatal day three and postnatal day 

five, days when FVB/AntJ animals begin to make the most calls (177). The parents were placed 

in a new cage, and the home cage containing the pups was placed in a warming box  (Harvard 

Apparatus) set at 33° C for at least 10 minutes prior to the start of recording. Pups were 

individually placed in an empty standard-mouse cage (28.5 x 17.5 x 12cm) located in a MDF 

sound-attenuating box (Med Associates) that measures 36 x 64 x 60cm. Prior to recording, the 

pup’s skin temperature was recorded using a noncontact HDE Infrared Thermometer, as it has 

been shown that decreased body temperature elicits increased USVs (189). There was no 

difference in body temperature between genotypes (F2,61= 2.521, p=0.089)(Supplemental Table 

1). USVs were detected using an Avisoft UltraSoundGate CM16 microphone placed 5cm above 

the bottom of the cage, Avisoft UltraSoundGate 416H amplifier, and Avisoft Recorder software 

(gain=3dB, 16bits, sampling rate =250kHz). Animals were recorded for 3 minutes, weighed, 

checked for detachment of pinnae, and then placed back into the home cage in the warming 

chamber. After all animals had been recorded the parents were returned to the home cage. 

Sonograms of the recordings were prepared in MATLAB (frequency range =25-120kHz, FFT 

[Fast Fourier Transform] size=512, overlap=50%, time resolution =1.024ms, frequency 

resolution = 488.2Hz) along with number of syllables and spectral features using a previously 

published protocol (177, 190) based on validated methods (191). 

Sensorimotor battery 
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We assessed motoric initiation, balance, coordination, and strength as described in (171, 

192) over two days using the following tasks: day 1) walking initiation, ledge, platform, pole; 

day 2) 60 screen, 90 screen, and inverted screen. Each task was performed once then the animals 

were allowed a 20 minute break then the tests were repeated in reverse order to control for 

practice effects. The two trials for each task were then averaged to be used in analysis. Walking 

initiation was tested by recording the time it takes for the mouse to exit a demarcated 24 x 24cm 

square on top of a flat surface. To assess balance, the mice were placed on a plexiglass ledge 

with a width of 0.5cm and a height of 38cm. We recorded how long the mouse balanced on the 

ledge up to 60 seconds. Another test of balance required the mouse to balance on a wooden 

platform measuring 3.0cm in diameter, 3.5cm thick and was 25.5cm high. The amount of time 

the animal balanced on the platform was recorded up to 60 seconds. Motor coordination was 

tested by placing the mouse at the top of a vertical pole with the head facing upward. The time it 

took the mouse to turn so the head was facing down was recorded as well as the time it took the 

mouse to reach the bottom of the pole up to 120 seconds. On day two the mice performed screen 

tasks that assessed coordination and strength. Mice were placed head facing downward in the 

center of a mesh wire grid that had 16 squares per 10cm and was 47cm off the ground and 

inclined at 60 degrees. The time it took the mice to turn and reach the top of the screen was 

recorded up to 60 seconds. Similarly the mice were placed in the center facing downward of 

mesh wire screen with 16 squares per 10cm, elevated 47cm from the surface of a utility cart, and 

inclined at 90 degrees. The time it took the mice to turn around and reach the top was recorded 

up to 60 seconds. To test strength, the mice were placed in the center of a mesh wire grid used 

for the 90 screen task and then inverted so the mouse was hanging from the screen that was 
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elevated 47cm. The time the mouse was able to hang onto the screen up to 60 seconds was 

recorded. 

One hour locomotor activity 

  We tested the animals’ general exploratory activity and emotionality in an one hour 

locomtor activity  task (171). Animals were placed in the center of a standard rat cage (47.6 x 

25.4 x 20.6cm) and allowed to explore the cage for one hour in a sound-attenuating enclosure 

with the lightening set to 24 lux. The one hour sessions were video recorded and the animals 

position and horizontal movements were tracked using the ANY-maze software (Stoelting Co.: 

RRID: SCR_014289). The apparatus was split into two zones: a 33 x 11cm center zone, and a 

bordering 5.5cm edge zone. ANY-maze recorded total distance traveled in the apparatus, and 

total distance traveled, time spent, and entries into each zone. The mouse was considered to have 

entered a zone when 80% of the body was detected within the zone. The rat cages are thoroughly 

cleaned with 70% ethanol between mice.  

Marble burying 

Marble burying is a task that measures the natural digging behavior of mice and is 

correlated to compulsive behaviors and hippocampal function (179). Following our previously 

published methods (171), a standard rate cage (47.6 x 25.4 x 20.6cm) was filled with autoclaved 

aspen bedding to a depth of 3cm and placed in a sound-attenuating enclosure with lighting set to 

24 lux. 20 glass marbles were arranged in 5 x 4 grid on the surface of the bedding. Mice were 

placed in the center of the rat cage and allowed 30 minutes to explore and bury the marbles. The 

session was recorded using a digital camera and the animals horizontal movements and position 

in the apparatus were tracked using ANY-maze with the same center and edge zones as 
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described in the one hour activity task. After 30 minutes mice were put back in their home cage 

and the number of marbles not buried was counted by two observers. A marble was considered 

buried if 2/3 of the marble was underneath the bedding. The average of the two scorers was used 

to calculate the average number of marbles buried. The marbles and rat cages were thoroughly 

cleaned with 70% ethanol between mice.  

Three-chamber social approach 

To assess voluntary sociability and preference for social novelty we used the three-

chamber social approach assay as previously described (171, 193, 194). The task took place in a 

plexiglass arena with two partitions with rectangular openings  (5 x 8cm) dividing the arena into 

three chambers that each measure 19.5 x 39 x 22cm. The openings could be closed using 

plexiglass doors that slide into the openings. The task consisted of four consecutive 10 minute 

trials. During trial one the animals were habituated to the middle chamber with the openings to 

the side chambers closed. In trial two the animals were allowed to explore the entire apparatus. 

Trial three was the sociability trial. In one side chamber there was an empty steel pencil cup 

(Galaxy Pencil/Utility Cup, Spectrum Diversified Designs, Inc.) that was placed upside with an 

upside clear drinking cup secured to the top to prevent animals from climbing on top of the cup; 

this was the empty side. In the other side chamber there was an identical pencil cup that housed 

an age- and sex-matched, sexually naive, unfamiliar C57BL/6J stimulus animal; this was the 

social side. The pencil cups allowed sniffing behavior to occur and exchange of odor cues, but 

limited physical contact to prevent aggressive behaviors. The experimental animal was allowed 

to explore the whole apparatus. The side of the empty cup and social cup were counterbalanced 

across all the samples. In trial four we tested preference for social novelty. A new stranger 

stimulus animal was placed in the formerly empty cup. All stimulus animals were habituated to 
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the apparatus and the cups for 10 minutes one day prior to testing. Each stimulus animal was 

used only once per day. During all trials the task was video recorded and the animal’s position, 

animal’s head, and movement was tracked with ANY-maze software. We quantified how much 

time the animal spent in each chamber, as well as distance traveled and number of entries. A 2cm 

area around the cups was defined as the investigation zone, and the animal’s head was used to 

determine when it was investigating the stimulus animals or the empty cup. The first five 

minutes of the social and novelty trials were analyzed because this is when the majority of the 

social investigation occurs (195). The entire apparatus was thoroughly cleaned after each animal 

using 2% chlorhexidine  (Zoetis). The stimulus cups were cleaned using 70% ethanol.  

Modified social approach 

To test for habituation to social stimuli over extended amounts of time, we slightly 

modified the social approach task. We used the same apparatus as described above. We included 

an additional day of habituation to the apparatus for the experimental animals on the day prior to 

the actual test to ameliorate novelty induced exploration of the apparatus and to potentiate 

exploration of the investigation zones. During the habituation day the animals were placed in the 

center chamber for 10 minutes with the doors to the side chambers closed. Next, the animals 

were allowed to explore the whole apparatus for 20 minutes. The stimulus animals were 

habituated to the cups in the apparatus for 30 minutes prior to the test day. Trial one and trial two 

were the same as the social approach described above. For trial three, the sociability trial, the 

experimental animals were placed in a cylinder in the center chamber, while the empty cup and 

stimulus animal cup were being placed in the side chambers. This ensures a random starting 

direction for the experimental mouse so we could make an unbiased measure of which chamber 

the experimental mouse chose to enter first. The sociability trial lasted for 30 minutes, in which 
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the experimental animal was allowed to freely explore the apparatus and investigate the empty 

cup and social cup. The social novelty trial was not conducted.  

Tube test of social dominance 

The tube test of social dominance tests for social hierarchy behaviors in mice (171, 196). 

This task took place over five days. Days one and two were habituation trials. During day one, 

the animals were placed in the left entrance of a clear acrylic tube measuring 3.6cm in diameter 

and 30cm in length and allowed to walk through the entire tube and exit the tube on the right 

side. Day two was the same but the mice started on the opposite side of the tube. These two 

habituation days allow the mice to acclimate to the tube, and potentiates task performance. On 

each of three consecutive test days, two mice of different genotypes were placed in the entrances 

to the tube and allowed to meet in the middle, at a clear acrylic partition. When both mice were 

at the acrylic partition, it was removed and the trial began. The trial ended when one mouse was 

pushed out or backed out of the tube so that all four paws were out of the tube, or two minutes 

had passed. The mouse that remained in the tube was considered the dominant winner and the 

mouse that was no longer in the tube was considered the submissive loser. If both mice were still 

in the tube after two minutes it was considered a tie. Each mouse was tested only once each day, 

and the mice were tested against a novel mouse each day. After each test, the tube was cleaned 

with 2% chlorhexidine  (Zoetis) solution. All of the test sessions were recorded using a USB 

camera connected to a PC laptop  (Lenovo). The observer scored the test from the videos.  

Rotarod 

The accelerating rotarod  (Rotamex-5; Columbus Instruments, Columbus, OH) tests 

motor coordination, motor learning, and balance. We used a previously published rotarod 
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paradigm (172, 197, 198) that tests animals on three conditions: 1) stationary rod 2) continuous 

rotation and 3) accelerating rotation during three different sessions that were separated by three 

days to minimize motor learning. During each day the animals had five trials; one stationary 

trial, two continuous trials, and two accelerating trials. During the stationary trial, the animals 

were placed on the stationary rod and the time that the animals stayed on the rod was recorded up 

to 60 seconds. During the continuous trials, the animals were placed on the rod rotating at three 

rotations per minute. The time the animals stayed on the rotating rod was recorded up to 60 

seconds. In the accelerating trials, the animals were placed on the rod that was rotating at two 

rotations per minute. Once the animals were on the rotating rod, the rod began to accelerate at 

0.1rpm and reached 17rpm at 180 seconds. The time the animals stayed on the rod up to 180 

seconds was recorded. The two trials for the continuous rotation and accelerating rotation during 

each session were averaged for analysis. If an animal fell off the rod during any session within 

the first five seconds, the animal was placed back on the rod and the time was reset up to two 

times. If the mouse fell off within five seconds on the third try that time was recorded.  

Elevated Plus Maze 

The elevated plus maze was used to assess anxiety-like behaviors in mice using 

previously published protocols (152, 194, 199). The apparatus had two closed arms that 

measured 36 x 6.1 x 15cm, two open arms, and a central platform that measured 5.5 x 5.5cm. 

The time spent in the open arms was used as a measure of anxiety-like behavior in mice, since 

mice prefer to be in an enclosed area. Each mouse was tested once per day for three consecutive 

days. During the test the animals had five minutes to freely explore the apparatus. The animals 

position, movement, entries into each arm, and time spent in each arm were determined by beam 

breaks of pairs of photocells arranged in a 16 (x-axis) x 16 (y-axis) grid. Beam breaks were 
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monitored by the Motor Monitor software (Kinder scientific). The test was conducted in the dark 

with black lights, and was recorded by an overhead digital camera using the night vision setting.  

Pre-pulse inhibition (PPI) 

To test for normal sensorimotor gating and normal acoustic startle response we 

performed PPI on the animals. Mice were placed in a cage located on top of a force transducer 

inside of a sound-attenuating box with a house light on (Kinder Scientific). The force transducer 

measured the startle response of the animals in Newtons. We used a protocol adapted from (194, 

200). The protocol was run using the Startle Monitor II software (Kinder scientific). The protocol 

started with five minutes of acclimation to the 65dB background white noise, which is played 

continuously throughout the procedure. After acclimation there were 65 trials that pseudo-

randomly alternated between different stimulus conditions, beginning with five consecutive trials 

of the startle stimulus, which was a 40msec 120dB pulse of white noise. The middle trials cycled 

through blocks of pre-pulse conditions, blocks of non-startle conditions, where only the 

background noise is played, and two blocks of startle conditions. Each block consisted of five 

trials. The testing ended with single trials of pulses played at 80dB, 90dB, 100dB, 110dB, 

followed by five more startle trials of 120dB. There were three different pre-pulse conditions, 

where a pulse of 4dB, 8dB, or 16dB white noise above the background sound was played 

100msec preceding the 120dB startle stimulus. The average startle response during the middle 

two blocks of startle trials was considered to be the animal’s acoustic startle response(ASR). 

Each trial measured the startle of the animal for 65msec after the stimulus, and the average force 

in Newtons across this time was used as the startle response. The pre-pulse inhibition was 

calculated as the difference of the average ASR and the startle response during the respective 
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pre-pulse trial (PP) divided by the ASR of the startle trials multiplied by 100: ((ASR – 

PP)/ASR)*100.  

Contextual and Cued Fear Conditioning 

Contextual and cued fear conditioning were used to assess associative learning and 

memory. We followed a previously published method (172, 201). The test occurred over three 

days. A camera placed above the apparatus recorded the session. Freezing behavior during each 

minute was detected in .75s intervals using the FreezeFrame (Actimetrics, Evanston, IL) 

software. Freezing behavior was defined as no movement except for normal respiration, and is 

presented as percent time freezing per minute. During day one, animals were allowed to explore 

the Plexiglas chamber (26cm x 18cm x 18cm; Med Associates Inc.) with a metal grid floor and a 

peppermint scent that was inaccessible to the animals. A trial light in the chamber turned on for 

the duration of the five minute trial. During the first two minutes animals were habituated to the 

apparatus, and freezing during this time was considered the baseline. An 80db white noise tone 

was played for 20 seconds at 100 seconds, 160 seconds, and 220 seconds during the test. During 

the last two seconds of the tone (conditioned stimulus CS) a 1.0mA foot shock (unconditioned 

stimulus UCS) was delivered. The mice were returned to their home cage at the end of the five 

minute trial. On day two contextual fear memory was tested. The animals were placed into the 

same chamber with peppermint scent and the illuminated light and no tone or shock was 

delivered. Freezing behavior was measured over the eight minute task. The amount of time 

freezing in the first two minutes on day two was compared to the baseline freezing on day one to 

test the effects of the contextual cues associated with the UCS from day one. On day threed the 

animals were placed in a new context, a chamber with black walls, and a partition that creates a 

triangle shaped area and an inaccessible coconut odor. During this 10 minute task, the trial light 
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was on for the entire duration. The animals explored the apparatus for the first two minutes to 

determine baseline freezing and then the same 80dB (CS) tone from day one was played for eight 

minutes. The freezing behavior during this time tested the effects of the CS associated with the 

UCS shock from day one. Shock sensitivity was tested for each mouse three days after the cued 

fear test following the procedure previously described in (172). Mice were placed in the chamber 

with the wire grid floor and delivered a two second shock of 0.05mA. The mA of the shock was 

increased by 0.05mA up to 1.0mA. At each shock level the animal’s behavior was observed and 

the current level at which the animal flinched, exhibited escape behavior, and vocalized was 

recorded. Once the animal had exhibited each of the behaviors the test ended. Shock sensitivity 

assessment served to confirm differences in conditioned fear freezing were not confounded by 

differences in reactivity to the shock current. 

Resident intruder 

The resident-intruder paradigm, as described previously (202), was used as a direct social 

interaction test. Only males were used in this experiment. Male mice were individually housed in 

standard mouse cages for 10 days. Cages were not changed so the mice could establish a 

territory. The testing took place over three days in which the home cage of the experimental 

animal was placed in a sound-attenuating box in the dark with two infrared illuminators placed in 

the box. A clear Plexiglas covering with holes was placed over the cage to prevent animals from 

jumping out of the cage. A digital camera using the night vision setting recorded the task. On 

each day a WT C57BL/6J stimulus animal (intruder), age and sex matched was introduced into 

the experimental animal’s (resident) home cage. The animals were allowed to interact for 10 

minutes after which the stimulus animal was removed from the cage. A stimulus animal was only 
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used once per day. The testing was repeated for two more days, during which the experimental 

animals were paired with novel intruders. 

 The videos were tracked using Ethovision XT 13 software (Noldus Information 

Technology) using the social interaction module. This module allows for simultaneous tracking 

of two unmarked animals. The initial tracking was further corrected manually using the track 

editing tools, to ensure the head and the tail points were oriented correctly. All of the video 

tracks were smoothed first with the loess method and then with the minimal distance moved 

method. The variables of interest were the mean bout of time, frequency, and the cumulative 

duration of time that the experimental animal’s nose was less than 0.6cm from the stimulus 

animal’s nose, interpreted as nose-to-nose sniffing, or when the experimental animal’s nose was 

less than 0.45cm from the tail base of the stimulus animal, interpreted as anogenital sniffing. 

These distance thresholds were determined by an experimenter blind to genotype, examining the 

videos using the plot integrated view functionality to ensure that the events called by the 

software accurately defined the social behavior.  

Statistical Analysis 

All statistical tests were performed in R v3.4.2. Western blots and qPCR were analyzed 

using a one factor ANOVA and the post hoc Tukey all pairwise comparison test was used 

determine differences between groups using the multcomp package (173).  

 For all behavior tests the data was assessed for univariate testing assumptions of 

normality and equal variances. Normality was assessed using the Shapiro-Wilkes test as well as 

manual inspection of qq plots. Equality of variances was tested using the Levene’s test. 

Behaviors that violated these assumptions were analyzed using non parametric tests. Repeated 
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measures were analyzed using linear mixed models with the animal as the random effect. 

Significance of fixed effects were tested using the Anova function from the Car (203) package in 

R. Post hoc testing was done using the Tukey HSD test from the multcomp package. Tukey HSD 

test ‘within time point’ was used for post hoc repeated measures comparisons, as appropriate. 

See Supplemental Tables 1 and 6 for descriptions of all statistical tests. 
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4.7 Figures  

 

Figure 1. Generation of double mutant Gtf2i* model. A  Schematic of the syntenic WSCR in mouse on 
chromosome 5. The two transcription factors being tested here are highlighted in grey and the genes that are deleted 
in the CD animals are highlighted in yellow. B Gene models of Gtf2i and Gtf2ird1 showing the multiple isoforms of 
each gene. The WT sequences with the gRNA target underlined and the PAM highlighted in blue with the mutant 
sequences below along with the corresponding amino acid sequence. C  Breeding scheme for the behavior tasks D. 
E13.5 whole brain Gtf2i western and qPCR of Gtf2i* x CD. Gtf2i protein and transcript are similarly reduced in the 
Gtf2i* and CD animals. E E13.5 whole brain Gtf2ird1 western and qPCR of Gtf2i* x CD. Gtf2ird1 protein is 
slightly reduced in the Gtf2i*/CD brain compared to WT. Gtf2ird1 transcript is increased in the Gtf2i* genotype, 
decreased in the CD genotype, and returns to WT levels in Gtf2i*/CD genotype. * p < 0.05, ** p < 0.01, *** p < 
0.001  
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Figure 2. CD mice have deficits in ultrasonic vocalizations and decreased social investigation. A Callrate across 
two days shows that on postnatal day 5 CD animals produce fewer ultrasonic vocalizations than either WT or Gtf2i* 
littermates. B Schematic of the three-chamber social approach task. C All genotypes show preference for social 
stimulus in three-chamber social approach assay. D Gtf2i* and CD animals show similar dominance behavior to WT 
animals in the tube test for social dominance. E Schematic of the resident intruder paradigm. F CD animals show 
decreased time engaged in anogential sniffing in resident intruder task. G CD animals show decreased time engaged 
in nose-to-nose sniffing in resident intruder task. * p < 0.05, ** p < 0.01, *** p < 0.001 Sample sizes are shown as 
numbers in parentheses 
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Figure 3. CD mice have motor deficits. A CD mice fall off a ledge sooner than WT or Gtf2i* mutants. B CD mice 
bury fewer marbles than either the WT or Gtf2i* mutants. C CD mice travel less distance in the center during marble 
burying task D CD animals spend less time in the center during marble burying task. E All genotypes travel similar 
distance in open field. F All genotypes spend similar time in the center during open field. * p < 0.05, ** p < 0.01, 
*** p < 0.001 Sample sizes are shown as numbers in parentheses 
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Figure 4. CD mice have more severe contextual fear phenotypes than double mutants. A The conditioned fear 
task design. Day one animals are delivered a tone and then a footshock throughout the five minute task. Day twp the 
animals are put in the same context without a footshock to measure contextual fear memory. Day three animals are 
put in a new chamber and delivered the tone to measure cued fear memory B Percent time freezing during 
conditioned fear acquisition. CD mice have increased baseline freezing during minute one and Gtf2i* mutants show 
decreased freezing during minute five C Percent time freezing during contextual fear memory recall. CD mice show 
elevated freezing during fear memory recall. D Percent time freezing during cued fear memory recall. All animals 
show increased freezing when the tone is played. * p < 0.05, ** p < 0.01, *** p < 0.001 Sample sizes are shown as 
numbers in parentheses 
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Figure 5. CD mice have altered mRNA for synaptic genes in a hippocampus transcriptome. A CD animals 
show decreased expression of the WSCR that are expressed in the hippocampus. B volcano plot comparing CD and 
WT differentially expressed genes.WSCR genes are highlighted in yellow and genes with FDR < 0.1 are highlighted 
in red. C Besides Gtf2i and Gtf2ird1 there are no significantly differentially expressed genes D There is a 9% 
overlap between nominally significantly up and down regulated genes between CD and Gtf2i* comparisons to WT 
controls. E CD differentially expressed genes are enriched for GO biological processes involved in synapses and 
nervous system development. F Gtf2i* differentially expressed genes are enriched for GO biological processed 
involved in more general organ development. 
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Figure 6. Human atypical deletions support oligogenic contribution of genes in the WSCR to phenotypes. 
Schematic of the WSCR on chr7q11.23. The arrows indicate the regions of low copy repeats. The typical deletion is 
demarcated using the yellow box. Atypical deletions demarcated in blue show no contribution to the WSCP. 
Atypical deletions demarcated in green show contribution to the WSCP. Atypical deletions demarcated in purple 
provide evidence of deletions that spare GTF2I and GTF2IRD1 that show contributions to across phenotypic 
domains including social behavior. Atypical deletions demarcated in red provide evidence that the telomeric region 
is sufficient to produce the full spectrum of phenotypes. The large amount of overlap of all deleted regions and the 
mild phenotypes present across the atypical deletions suggests an oligogenic pattern. SVAS (supravalvular aortic 
stenosis), WSCP (Williams syndrome cognitive pfofile) ID (intellectual disability) NT  (Not tested), - absent, + 
present, -/+ milder than typical WS.  
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Supplemental Figure 1. Generation of loss of function mutations in Gtf2i and Gtf2ird1. A The number of 
founders from gRNA injection shows that two gRNAs are efficient at mutating both targets and have high rates of 
mosaicism. B Gtf2i protein is more highly expressed in the embryonic brain and is detectable in the adult brain, each 
time point includes two biological replicates. C Gtf2ird1 protein is more highly expessed in the embryonic brain and 
not detectable in the adult brain, each time point includes two biological replicates. D Gtf2i protein and transcript 
levels are decreased in  the heterozyous Gtf2i* mice and not detectable in the homozygous Gtf2i* E13.5 brain.  E 
Gtf2ird1 protein is not decreased in heterozygous or homozygous Gtf2i* E13.5 brain, but the transcript is increased 
in heterozygous and homozygous animals. F Schematic of the consequences of the 5 bp deletion in Gtf2ird1 
showing the potential translation re-initation methionine in a new open reading frame. G A slight shift of Gtf2ird1 
protein in animals homozygous and hemizgyous for the 5 bp deletion in exon 3 of Gtf2ird1, suggesting an N-
terminal truncation of Gtf2ird1. H ChIP qPCR of the enrichment of the Gtf2ird1 upstream regulatory sequence 
(GUR)  over an off target sequence 7kbp upstream of Bdnf transcription start site in WT versus Gtf2i* homozygous 
E13.5 brain. I  ChIP qPCR of the enrichment of the Gtf2ird1 upstream regulatory sequence (GUR)  over an off 
target sequence 10kbp upstream of Pcbp3 transcription start site in WT versus Gtf2i* homozygous E13.5 brain. * p 
< 0.05, ** p < 0.01, *** p < 0.001 
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Supplemental Figure 2. Social behaviors in CD and Gtf2i* mutants. A CD animals have increased pauses 
between bouts of USVs. B CD animals have decreased duration of USVs. C CD animals have decreased weight in 
adulthood, developmental weight does not explain differences in USV. D All genotypes show preference for social 
novelty. E Double mutants show increased activity in the social approach and social novelty trials of three 
chambered social appraoch. F WT and double mutants show social preference in the first 5 minutes of the extended 
social approach, but the CD mice are trending. G None of the genotypes show preference for social stimulus during 
the last 5 minutes of the extended social approach. H CD mice on C57BL6/J background show a submissive 
phenotype in tube test of social dominance while the double mutants show no phenotype on FVB/ANTJ 
background. I All genotypes travel similar distance in the resident intruder task. J CD animals have decreased mean 
bout time of anogenital sniffing in the resident intruder task. K However all genotypes have similar frequencies of 
anogential sniffing. * p< 0.05, ** p < 0.01, *** p < 0.0001. Sample sizes are shown as numbers in parentheses 
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Supplemental Figure 3. Motor and anxiety phenotypes in double mutants and CD animals. A All animals 
show similar time to initiate walking. B All animals reach the top of a 60 degree inverted screen in similar amounts 
of time. C All animals reach the top of a 90 degree inverted screen in similar amounts of time. D All animals can 
hang onto an inverted screen for similar amounts of time. E CD animals are able to turn their bodies 180 degrees on 
a pole quicker than WT animals. F CD animals are able to reach the bottom of a pole quicker than WT littermates. 
G CD animals tend to fall off a platform more than double mutants. H On day 3 of the rotorod task double mutants 
fall off sooner than the CD animals. I  All genotypes travel similar total distances in the marble burying assay. J All 
genotypes show normal PPI. K CD animals have decreased startle to 120dB stimulus overall but this is due to 
decreased weight. L All genotypes spend similar amounts of time in the open arm during elevated plus maze. * p< 
0.05, ** p < 0.01, *** p < 0.0001. Sample sizes are shown as numbers in parentheses 
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Supplemental Figure 4. Contextual fear and shock sensitivity in WS mutant models. A All 
genotypes show a contextual fear response. B The response to foot shock is similar across all 
genotypes. * p < 0.05, ** p < 0.01, *** p < 0.001 Sample sizes are shown as numbers in 
parentheses 

 

Supplemental Figure 5. Small changes in hippocampal transcriptomes of WS models. A 
Fold change of differentially expressed genes between WT and CD animals at an FDR < 0.1 
normalized to WT levels. B Fold change of genes previously tested in CD hippocampus RNAseq 
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from Ortiz-Romero et al. 2018. C The top ten enriched Cellular Component gene ontologies for 
genes that are nominally up or down regulated between CD and WT animals. D The top ten 
enriched Cellular Component gene ontologies for genes that are nominally up or down regulated 
between Gtf2i* and WT animals. E The top ten enriched Molecular Function gene ontologies for 
genes that are nominally up or down regulated between CD and WT animals. F The top ten 
enriched Molecular Function gene ontologies for genes that are nominally up or down regulated 
between Gtf2i* and WT animals 

Table 1: Behavior and animal cohorts for the Gtf2i* x CD 
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Supplemental Table 1: Supplemental figures statistic table 
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Supplemental Table 2: Random GO enrichments for CD-WT comparison 
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Supplemental Table 3: Random GO enrichments for Gtf2i*-WT comparison 

 

Supplemental Table 4: Primers for CRISPR sgRNA, validation, and IVT 
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Supplemental Table 5: Genotyping and RT-qPCR primers 
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Supplemental Table 6: Main figures statistic table 

 



 
 

206 

 

 

 

 
  

 

 

 

 

 

 

 

 

 



 
 

207 

Chapter 5: Conclusions and Future 
Directions 

Nathan Kopp 
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5.1 Significance 
In this thesis I have tested three extant hypotheses in the field of Williams syndrome 

biology, using both human and mouse genetics. First, I showed that variation on the remaining 

WSCR allele does not largely modify the social phenotype of individuals with WS as measured 

by the SRS.  The study highlighted two SNPs in BAZ1B and GTF2IRD1, both of which have 

been implicated in the cognitive phenotypes of WS, providing further support for their 

importance in the pathogenesis of WS. I used the data to further describe the genetic variation 

within the exonic compartment of the WSCR, which can be queried to test for associations with 

other clinical phenotypes of WS. While 85 individuals is a small sample size to detect variants 

that have low effect sizes, this was the largest genetic dataset of WS analyzed, and will exist as a 

foundation to which other larger studies can build.  

The second hypothesis I tested was how do the transcription factors Gtf2i and Gtf2ird1 

interact to affect behavior. These genes have been thought to contribute to the behavioral, 

cognitive, and craniofacial aspects of WS, but their affects on behavior have not been studied 

together. I leveraged the advantages of the mouse model system to study these genes. First, I 

generated a dataset that describes where these transcription factors bind in the developing brain 

and then tested the consequences of mutating just Gtf2ird1 or both transcription factors together 

to examine how they interact to potentially affect transcription and behavior. Surprisingly, I 

showed that both transcription factors have little consequence on whole brain transcription, but 

mutating them still results in behavioral deficits mainly driven by homozygosity of Gtf2ird1 

mutations. The work I have done is some of the first in vivo biochemical analysis of Gtf2ird1, 

and I showed that Gtf2ird1 is a difficult gene to knockout. These results help interpret the 

findings of other Gtf2ird1 mouse models that still show some Gtf2ird1 transcription and protein 
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product (66, 101). The Gtf2ird1 mouse model I characterized provided data that supports the 

functional role of the N-terminal end of the protein in behavior, although it did not result in 

decreased DNA binding genome wide. My data and methods will be useful to consider when 

designing future experiments around this gene. I also showed that knocking out Gtf2i along with 

Gtf2ird1 did not result in more severe phenotypes in the heterozygous state. This suggests that 

Gtf2ird1 is the main driver of the phenotypes tested in this study. Overall, I have created two 

new mouse lines to further model and study Williams syndrome and provided genomic datasets 

that can be used to generate future hypotheses concerning these two transcription factors.  

Finally, I used another Gtf2i/Gtf2ird1 double mutant mouse model and a mouse model 

that has the entire WSCR deleted (CD mouse) to test the current leading hypothesis that these 

two transcription factors are sufficient to replicate the phenotypes that are caused by deleting the 

whole region. My data suggests that these genes are not sufficient, which implicates the role of 

other genes in the region or an oligogenic contribution of several genes in the region. I also 

analyzed the adult hippocampal transcriptome of both mouse models and showed differences in 

synaptic genes in the CD compared to the double mutant, suggesting that synaptic functioning 

might be impaired in the CD animals that is not caused by Gtf2i or Gtf2ird1. These data should 

encourage studying the effects of other genes in the WSCR. Using the CRISPR/Cas9 technology 

will allow for the quick generation of mouse models with unique combinations of genes mutated 

so we can begin to dissect the interactions of the genes in the region, similarly to what has been 

done for other copy number disorders (102, 103, 204).  

Overall, this thesis has generated human and mouse genomic datasets that can be used to 

design future studies to elucidate genetic influences on WS phenotypes. It also describes three 

new mouse models that can be used in to further understand how the general transcription factor 
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2i family contributes to WS phenotypes. Finally, it supports a role for genes outside of the 

general transcription factor 2i family, encouraging further characterization of single gene knock 

out mouse models as well as models with combinations of genes knocked out.  

5.2 Future directions 
5.2.1 Human studies 
 I described the analysis of the whole exome of 85 individuals with WS and tested for 

genetics associations with the social phenotype. The exome enriches for variants in the coding 

regions of genes, which aids in the interpretation of their effects. However, the exome covers 

only 1% of the genome and with the growing number of whole genome studies, the human 

genetics field is learning more about the consequences of non coding variation. Thus, it would be 

beneficial to use whole genome sequencing to analyze how the full spectrum of genetic variation 

could modify the phenotypes in WS. First, it would be interesting to catalogue the non-coding 

variation of the WSCR and couple that with the exonic data to look for modifiers within the 

locus.  

Next, we could use the dense genotype data genome wide to calculate polygenic risk 

scores for different phenotypes of interest within the WS sample. I did this using the Psychiatric 

Genomics Consortium GWAS on ASD using the whole exome data, but this misses a lot of the 

common, noncoding variation that was genotyped. Using the whole genome data we could get a 

better understanding contribution of genomic variants to social behavior. Recently, it has been 

shown that high polygenic risk scores can convey similar risk to disease as monogenic causes 

(205). This information could be used to help explain the large variability of the social phenotype 

and other phenotypes of WS.   
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Finally, the genome data could be used to identify the breakpoints of the deletion in 

patients. This is important, because the current diagnostic method, clinical microarray, has 

difficulty accurately identifying the size of the deleted region due to the low copy repeats. I 

attempted to use the whole exome data to determine copy number of the NCF1 alleles by using 

the ratio of the two base pair deletion that distinguishes the pseudogenes from the functional 

copy. This gave promising results, but this strategy cannot distinguish the exact break point of 

the deletion. Since whole genome sequencing provides even coverage it could be used to detect 

the size of the deletion, which has been shown to affect cognitive and behavioral phenotypes 

(41). I have preliminarily tried to call the deletion size using the coverage from the whole 

genome sequencing data. I was able to identify atypical deletions, but the typical deletions all 

had similar profiles with drops in coverage in the area in the low copy repeats. We could 

potentially use the polymorphisms that distinguish between the functional and pseudogenes of 

the regions, but short read whole genome sequencing data may not be able to overcome the 

challenges of the repetitive regions. Long read technology could be used to try and surmount the 

difficulty of mapping to the region to better detect the breakpoints.  

5.2.2 Gtf2i and Gtf2ird1 mouse studies 
 I have generated several new mouse models that can be used as tools to understand Gtf2i 

and Gtf2ird1 biology. One of the more interesting findings from the mutations in Gtf2ird1 was 

not expected, and that is that this is a difficult protein to knock out. Two separate frameshift 

mutations that create premature stop codons with exon three, and a large deletion removing all 

but 14 base pairs of exon three of Gtf2ird1 resulted in more Gtf2ird1 transcript and slightly lower 

levels of a N-truncated protein. The tight regulation of the transcript and protein levels of 

Gtf2ird1 hints at a conserved important function. It would be interesting to further understand 
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how this transcript and protein are regulated. We have data to suggest that Gtf2ird1 transcripts 

that contain the mutant alleles are more stable than the WT transcript. Studying the mRNA 

dynamics and stability of Gtf2ird1 could provide insight on how it is regulated and lead to 

further investigation about why it is regulated so tightly. We have looked into using click-it 

technology to determine the half-life of the WT and mutant mRNA and have the potential to 

clone the mutated alleles into a plasmid vector, which could then be manipulated. This would 

also allow us to directly test if the N-truncated mutation is caused by the hypothesized translation 

re-initiation event at a downstream methionine using pharmaceutical manipulations in cell 

culture.  

 I was initially interested in phenotyping these mouse models for social behaviors, as other 

models knocking out Gtf2ird1 and Gtf2i have shown social phenotypes. In the social tasks we 

have done which include the three chamber social approach, tube test, and resident intruder, we 

have seen either no difference between genotypes, strain dependent effects, social effects in the 

opposite direction, or non replicable phenotypes. The CD model on the C57Bl/6J background 

should have the largest social phenotype as described in the mouse literature. The Dougherty lab 

has a new social operant paradigm that would allow us to test the social motivation of the CD 

animals, which we would predict to have increased motivation. We could then run our other WS 

models through this paradigm as well to test specifically for social motivation deficits.  

 We also see a conditioned fear response in the CD animals and the Gtf2i+/-/Gtf2ird1-/- 

genotype. The oxytocin system has been largely speculated to contribute to the phenotypes in 

WS (118, 206) and it has been shown to affect conditioned fear in mice (207). I have generated 

preliminary data that suggests oxytocin is slightly upregulated in the hypothalamus of CD 

animals, however, I have not noticed an increased in oxytocin positive neurons in the 
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hypothalamus. We can manipulate the oxytocin system, genetically or pharmaceutically, in CD 

animals to test if this rescues or exacerbates the behavioral phenotypes. I have also generated 

RNA-seq data from the adult hypothalamus of the CD and the Gtf2i* animals. This can further 

inform the involvement of oxytocin and vasopressin in behavioral phenotypes and be used to 

design downstream experiments regarding these neuropeptides.  

 I am also interested in understanding how other genes in the WSCR could possibly 

modify the effects of the general transcription factor 2i family. I have generated a new mouse 

model that has a frameshift mutation in just Gtf2i. Characterizing this model will let us 

understand the effects of Gtf2i on behavior without a Gtf2ird1 mutation. In collaboration with 

Dr. Kozel, we could cross our single mutants, double mutants, and the CD animals to a Baz1b 

knock out line to test how this chromatin modifier affects behavior.   

5.3 Summary 
 This thesis used both human and mouse genetics to further understand genetic 

contributions of the WSCR to behavior. I have analyzed the largest genetic dataset of humans 

with WS and showed that variants on the remaining WSCR allele do not largely affect the social 

phenotype, but there is suggesting evidence for the role of variants in the BAZ1B and GTF2IRD1 

genes. This dataset can be used to query other clinically relevant phenotypes of WS. Further, I 

have generated and characterized new mouse models of Gtf2i and Gtf2ird1 and showed that 

other genes in the WSCR are critical for causing the phenotypes seen when the whole region is 

deleted. The data produced here can be used to appreciate the genetic complexity of the WSCR 

and encourage research that looks at the interaction of the genes in the region.  
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