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ABSTRACT OF THE DISSERTATION

Exploring Quantum Dynamics and Thermodynamics in Superconducting Qubits

by

Mahdi Naghiloo

Doctor of Philosophy in Physics
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Professor Kater Murch, Chair

Quantum technology has been rapidly growing due to its potential revolutionary

applications. In particular, superconducting qubits provide a strong light-matter

interaction as required for quantum computation and in principle can be scaled up to

a high level of complexity. However, obtaining the full benefit of quantum mechanics

in superconducting circuits requires a deep understanding of quantum physics in such

systems in all aspects. One of the most crucial aspects is the concept of measurement

and the dynamics of the quantum systems under the measurement process. This thesis

is intended to be a pedagogical introduction to the concept of quantum measurement

from an experimental perspective. We study the dynamics of a single superconducting

qubit under continuous monitoring. We demonstrate that weak measurement is a

versatile tool to investigate fundamental questions in quantum dynamics and quantum

thermodynamics for open quantum systems.



Chapter 1

Introduction

Quantum mechanics has revolutionized our understanding of nature since its devel-

opment in the 20th century. Its prescription for the workings of nature is full of

unexpected rules that remain counterintuitive even after over a century of confirma-

tions. In the past decades, we have witnessed enormous progress in technology and

control over quantum systems. These technologies aim to use the counterintuitive

properties of quantum mechanics for real-life applications such as secure communica-

tion [1], high-precision sensing [2], and information processing [3]. These ambitious

and revolutionary goals have driven a tremendous effort in the implementation of

quantum devices in a variety of platforms ranging between, photonics, atomic sys-

tems, nano-mechanical structures, and superconducting circuits. Each platform offers

a unique capability over others; photons are suited for transmitting quantum infor-

mation, while atoms can serve as long-lived quantum memories. In this regard, su-

perconducting circuits have gained a lot of attention for quantum computation owing

to the strong light-matter interaction achievable in these circuits.

Apart from computational goals, the superconducting circuit architecture is a

powerful technology to explore quantum physics and can serve as a testbed for fun-

damental questions in science. In part, this is because the characteristics of quantum

systems made of artificial atoms are rather easy to manipulate which opens possibili-

ties to explore non-trivial quantum systems by the versatile design and engineering of

1



superconducting circuits. The pronounced interplay between science and engineering

in the superconducting circuit technology brings on active research from different per-

spectives ranging from fundamental studies to practical applications. In particular,

understanding the physics of open quantum systems and the concept of measurement

is considered a core problem in modern physics [4].

Open systems appear in many disciplines in science, from environmental science

to social science and atomic physics to biophysics. With recent progress in quantum

technology and its applications, a deeper understanding of open quantum systems

is required to face practical challenges. However, the importance of open quantum

systems is not limited to practical applications. From the fundamental point of view,

many questions tie into open quantum systems in some ways—questions such as how

classical laws emerge from underlying quantum laws, the classical-quantum bound-

ary [5–7], the arrow of time [8–10], and exploring quantum thermodynamics [11].

The dynamics of open quantum systems cannot be described by the Schrödinger

equation due to the interaction with the environment. This interaction results in

dissipation and decoherence in quantum systems. Superconducting circuits naturally

tend to interact with all available degrees of freedom which makes them highly con-

trollable systems yet presents a challenge to preserve quantum coherence. Therefore,

one of the most active areas of research in quantum circuit technology is directed

toward understanding and controlling decoherence channels and encoding quantum

information in states that are protected from decoherence [12–17]. Another approach

to cope with dissipation and decoherence is to come up with clever designs and pro-

tocols out of imperfect parts that enable to correct for imperfections and perform a

perfect tasks [18–21].

From the quantum measurement point of view, if we are able to monitor dis-

sipation of a quantum system, we could then maintain its coherence [22, 23]. In

fact, measurement on quantum system can be used as a resource for feedback to

control dynamics [24, 25], to herald non-trivial states [26], and to prepare entangled

states [27–29]. Therefore the concept of measurement in open quantum systems is

2



important in many ways.

In particular, weak measurement enables one to continuously monitor a quantum

system without destroying its quantum coherence [30]. This provides a powerful tool

to explore quantum dynamics in its most fundamental level [31–35]. Understanding

the dynamics of continuously monitored systems in turn opens new ways for novel

applications such as sensing [36,37] and parameter estimation [38].

Also, superconducting circuits and quantum measurement techniques have a lot

to offer to the newly emerging field of quantum thermodynamics [11]. The hope is

that understanding the dynamics of quantum systems lead us to an understanding of

underlying thermodynamic law in the quantum regime. In this context, the quantum

system (e.g. a qubit) is in contact with the environment as a reservoir. By contin-

uous monitoring of the reservoir, we can learn about energy exchange between the

system and the reservoir. These observations would be helpful to understand the un-

derlying thermodynamical laws and fluctuations in the system. This raises many new

questions about the relevant thermodynamics parameters in the quantum regime like

heat, work, and entropy [39], the validity of the classical thermodynamics laws for

quantum systems [40, 41], the emergence of thermalization and irreversibility [8, 42]

from quantum mechanical principles, and the energy-information connection [43,44].

Many of these questions can be addressed by a deep understanding of open quantum

system dynamics given from quantum measurement techniques.

Finally, the superconducting quantum systems can be engineered to realize non-

trivial systems such as hybrid systems [45], “giant” atoms [15], engineered baths [46,

47], and non-Hermitian systems [48–50] where each of these hybrid systems opens

new opportunities to explore unprecedented areas in physics. In particular, non-

Hermitian systems which obey Parity-Time (PT) symmetry have gained a lot of

attention both from theoretical [51–58] and experimental [48, 59] perspective owing

to their topological and nonreciprocal properties.

3



1.1 Thesis overview

1.1 Thesis overview

This thesis is intended to be a pedagogical introduction to quantum measurement

with a focus on experiments in the superconducting qubit platform. A goal of this

thesis is to provide a clear and simple picture of quantum measurement in supercon-

ducting qubit circuits for those who are new to the field. To this end, I will try to

address questions I encountered when beginning this research and cover questions I

have received from other students during my PhD studies. Chapter 2 provides a basic

theoretical discussion about the light-matter interaction and preliminary theory for

measurement and characterization of superconducting circuits. Chapter 3 provides

basic experimental knowledge about quantum measurement and superconducting cir-

cuits in close connection with the theoretical discussions of Chapter 2. Chapter 4

provides a pedagogical discussion of generalized measurements and continuous mon-

itoring of a qubit and provides experimental procedures for two types of continuous

measurements corresponding to measurement operators σz and σ−. Chapter 5 and

6 discuss two experiments in close connection with the pedagogical discussions of

previous chapters.

In Chapter 5, we will study how measurement affects the dynamics of quantum

systems. In particular, I discuss the situation where the spontaneous emission of a

quantum emitter is measured by homodyne detection. Typically, spontaneous emis-

sion is associated with the sudden jump of an atom or molecule from an excited state

to lower energy state by emission of a photon. Spontaneous jump dynamics occur

because most of detectors are sensitive to energy quanta. However, light has both

wave and particle nature, and here we explore how the spontaneous emission process

is altered if we detect the wave rather than the particle nature of light. To do this,

we interfere the spontaneously emitted light from a quantum emitter with another

electromagnetic wave, measuring a specific amplitude of the emission. The dynamics

of the quantum emitter under such a detection scheme are drastically different than

what is observed when photons are detected, for the state of the quantum emitter can

4



1.1 Thesis overview

no longer simply jump between energy levels. Rather, the emitter’s state takes on

diffusive dynamics and follows a continuous quantum trajectory between its excited

and ground state.

Figure 1.1: Photon detection vs. homodyne detection (discussed in Chapter 5): The
behavior of a quantum emitter depends on how we detect its emission. If we hire a catcher as a
detector which is sensitive to the energy quanta (addresses the particle notion of light), the emitter
behaves like a pitcher (spontaneous jump behavior). However, if we instead “listen” to the emitter,
it behaves according to the wave nature of its emitted energy (diffusive behavior).

Chapter 6 discusses quantum thermodynamics under the guise of Maxwell’s de-

mon. The thought experiment of Maxwell demon, whereby knowing the position and

velocity of the molecules, a demon can sort hot and cold particle in a box was in

apparent violation of 2nd law of thermodynamics. This thought experiment revealed

a profound connection between energy and information in thermodynamics and has

driven a lot of theoretical and experimental studies to understand this connection

in many different platforms. In Chapter 6, we study the experimental realization of

Maxwell’s demon in a quantum system using continuous monitoring. We show that

the second law of thermodynamics can be violated by a quantum Maxwell’s demon

unless we consider the demon’s information. In our case, this information is quantum

information which is susceptible to decoherence.

5



1.1 Thesis overview

Image courtesy: LI's group

Figure 1.2: Quantum Maxwell’s demon (discussed in Chapter 6): We experimentally study
a quantum version of Maxwell’s demon who sorts particles that are in a quantum superposition of
both hot and cold. We will see that the information obtained by the demon can be lost due to the
decoherence and inefficient detection. Image adopted from Li’s group.
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Chapter 2

The Light-Matter Interaction

This chapter provides the basic theoretical concepts of the light-matter interaction.

The aim of this chapter is to pedagogically introduce concepts related to the rest of

this thesis, especially Chapter 3 where we experimentally discuss qubit-cavity char-

acterization.

We consider the simplest example1 of the light-matter interaction where a two-

level quantum system (a qubit) interacts only with a single mode of light2. In practice,

this situation can be achieved by placing the qubit inside a cavity that supports a

discrete set of modes. By a proper choice of qubit and cavity frequencies, cavity

mode geometry, qubit placement and orientation, the qubit can effectively interact

with only one of the modes of the cavity3.

1One would think that the simplest situation is a qubit in free space. However free space supports
infinite continuum of modes. In this regard, the free space situation is not the simplest situation.

2A mode of light contains photons all of the same frequency, polarization, and spatial distribu-
tion.

3However this assumption works fine for many practical situations, it may not be accurate enough
in general. In fact, this is an issue of fundamental importance see for example see [60,61]
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2.1 One-dimensional cavity modes

2.1 One-dimensional cavity modes

The electromagnetic mode of a cavity can be described by Maxwell’s equations in

classical electrodynamics. In the next section, we discuss the proper description of an

electromagnetic field in quantum mechanics. Here we focus on a one-dimensional (1D)

cavity but we will see that the result can be simply extended to higher dimensions.

Here, I follow the conventional quantization found in quantum optics textbooks

(e.g. Ref. [62, 63]) and discuss the quantization of electromagnetic field of an actual

cavity (a volume bounded by perfect conductors) which is relevant to the three-

dimensional (3D) architecture of cavity quantum electrodynamics (cQED)1.

In order to quantize the electromagnetic field, we may solve Maxwell’s equations

for a given set of boundary conditions and identify a corresponding canonical position

q and canonical momentum p. Then we transition to the quantum case by promoting

q and p to operators2.

x

y

Ex(z,t)

z=LBy(z,t)

z

Figure 2.1: One dimensional cavity: Two infinite superconducting walls separated by distance

L form a cavity that supports a discrete number of electromagnetic modes in the z-dimension (the

second mode is shown). Due to the translational symmetry in x and y directions, the electromagnetic

fields are only functions of z. For simplicity, we assume the electric field (red lines) has polarization

along x axis and consequently the magnetic field (blue lines) is along y axis.

1Often in quantum circuit literature, this discussion is introduced by quantization of an LC
circuit; we will discuss this when we study the qubit. In this chapter we will see theoretically
why a cavity bounded by superconducting walls is an LC circuit, and later study this physically in
Chapter 3 (See Fig. 3.1).

2This is a convenient way to quantized photons, massless particles. For “massive” particles (e.g.
electron in a box) one can solve the Schrödinger equation.
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2.1 One-dimensional cavity modes

For a one-dimensional cavity, consider a pair of infinite perfect conducting walls

separated by the distance L along the z-direction as depicted in Figure 2.1. This

configuration can be considered as one-dimensional because we have a continuous

translational invariance in x and y dimensions. Therefore the electric and magnetic

fields only depend on the z-coordinate. For simplicity, we assume that the electric

field is polarized along x-axis which implies that the magnetic field is only along the

y-axis. This is an empty cavity with no external current or charge source, therefore

for Maxwell’s equations we have,

O× ~E = −∂
~B

∂t
→ ∂Ex(z, t)

∂z
= −∂By(z, t)

∂t
, (2.1.1a)

O× ~B = ε0µ0
∂ ~E

∂t
→ −∂By(z, t)

∂z
= ε0µ0

∂Ex(z, t)

∂t
, (2.1.1b)

O · ~E = 0 → ∂Ex(z, t)

∂x
= 0, (2.1.1c)

O · ~B = 0 → ∂By(z, t)

∂y
= 0. (2.1.1d)

Given perfect conducting walls, the electric field is required to vanish at the bound-

aries; Ex(z = 0, t) = 0 and Ex(z = L, t) = 0. One can show that the solution for

electric and magnetic field inside the cavity are,

Ex(z, t) = E q(t) sin(kz), (2.1.2a)

By(z, t) = E µ0ε0

k
q̇(t) · cos(kz). (2.1.2b)

The normalization constant E is conveniently set to be E =
√

2ω2
c

V ε0
where V is the

effective volume of the cavity1. The parameter, k = mπ/L, m = 1, 2, ... is wave

number corresponding to the frequency ωc = k√
µ0ε0

. The function q(t) describes the

time-evolution for modes and has a dimension of length2. Each integer value m

1Here the constant E is defined in a way that the total energy in the cavity finds a compact
form in Equation (2.1.4) which conveniently ensures that q̂ and p̂ obey the canonical commutation
relation [q̂, p̂] = i~.

2The actual form for q is q(t) = sin(ωt+φ). But for now, we rather to implicitly represent it by
q(t) and we will see that it acts as the canonical position.
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2.1 One-dimensional cavity modes

corresponds to one mode of the cavity. Figure 2.1 shows the electric and magnetic

field for the second mode of the cavity (m = 2). The total electromagnetic energy

(per unit of volume) stored in one mode can be written as,

H =
1

V

ˆ
dV

(
ε0
2
|Ex(z, t)|2 +

1

2µ0

|By(z, t)|2
)
. (2.1.3)

By substituting Equation (2.1.2) in (2.1.3), one can show that total energy is equal

to,

H =
1

2

[
p2(t) + ω2

cq
2(t)
]
, (2.1.4)

where p(t) = q̇(t). From Eq. (2.1.4), it is apparent that the energy of an electromag-

netic mode is analogous to the energy of a classical harmonic oscillator if we consider

q(t) and p(t) as the canonical position and momentum. Having canonical position

and momentum identified, the Hamiltonian may be treated quantum mechanically

by promoting the canonical parameters to be operators (p, q −→ p̂, q̂). This results

in a quantum Hamiltonian for a harmonic oscillator:

Ĥ =
1

2

[
p̂2(t) + ω2

c q̂
2(t)
]
. (2.1.5)

Therefore, we may conclude that each mode of the cavity acts as a quantum harmonic

oscillator1. Note that in the classical description of Equation (2.1.2), we already found

that the cavity has discrete modes. However in that picture, each mode could have

continuous amount of energy. The transition to a quantum mechanical description

happens in Equation (2.1.4) → (2.1.5) which results in quantization of the energy

spectrum for each mode. To see this, it is convenient to define non-Hermitian opera-

1In this transition, we may keep/drop the time-dependence to work in Heisenberg/Schrödinger
picture.
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2.1 One-dimensional cavity modes

tors1

â =
1√
2ωc

(ωcq̂ + ip̂), (2.1.6a)

â† =
1√
2ωc

(ωcq̂ − ip̂), (2.1.6b)

which are annihilation and creation operators for a photon in the corresponding mode

of the cavity and obey the commutation relation [â, â†] = 1. The electric and magnetic

fields, which are now operators, can be represented by â and â† as,

Êx(z, t) = E0(â+ â†) sin(kz), (2.1.7a)

B̂y(z, t) = iB0(â− â†) cos(kz). (2.1.7b)

The Hamiltonian Eq. (2.1.5) also takes a compact representation in terms of â and

â†,

Ĥ = ωc(â
†â+

1

2
) = ωc(n̂+

1

2
), (2.1.8)

where the operator n̂ = â†â is the number operator. Knowing the Hamiltonian for the

electromagnetic field of a single cavity mode, we can describe the state of the cavity

by solving the corresponding eigenvalue problem. Considering Hamiltonian (2.1.8)

we have,

Ĥ|n〉 = En|n〉, n = 0, 1, 2, ... (2.1.9)

where {|n〉} are photon number states or Fock states representing the energy eigen-

state for the single mode cavity field with the corresponding energy En = ωc(n+ 1
2
).

The photon-number states {|n〉} form a complete basis to describe any arbitrary state

of the cavity. That means at any given time, the cavity is either in one of states |n〉
1Here ~ is introduced indicating we enter quantum world. However, we set ~ = 1 throughout

this thesis except for few confusing situations.
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2.1 One-dimensional cavity modes

or in some linear superposition of them,
∑

n cn|n〉. However, In general, the cavity

state can be in a mixed state, an incoherent superposition of Fock states, like thermal

states, which are conveniently represented by the density matrix ρ =
∑

n Pn|n〉〈n|.

2.1.1 How to visualize the state of light

We may describe the quantum state of the light inside the cavity by a wave function

|ψ〉 which can be represented in any arbitrary basis e.g. photon-number basis, |ψ〉 =∑
n cn|n〉. Now the question is what is the best way to characterize and visualize |ψ〉.

One way to do this is by looking at the expectation value of the electric and magnetic

fields, 〈ψ|E|ψ〉 and 〈ψ|B|ψ〉 and their fluctuations. In the previous section we learned

that electric and magnetic fields are quantum objects and are described by operators,

Eq. (2.1.7). From these equations, it is apparent that the electric and magnetic

operators are directly related to the canonical position and momentum respectively.

Ê ∝ (â+ â†) ∝ q̂ (2.1.10a)

B̂ ∝ (â− â†) ∝ p̂ (2.1.10b)

The only difference between operators {Ê, B̂} and {q̂, p̂} is an extra spatial depen-

dence term in the electromagnetic operators which depends on the details of the

geometry in the system1. Therefore, a general way to visualize the state of light,

regardless of the geometry of the cavity, is to look at the probability distribution of

photons in phase space, W (q, p). This “quasi-probability” distribution2 is known as

the Wigner function. There are a bunch of different representations for the Wigner

1The spatial dependence has to do with the geometry of the problem which sets the spatial
property for all photons in the same way. Let me explain this by a question; What is the difference
between a Fock state, let’s say |1〉, of a cylindrical cavity and a rectangular cavity? The is no
difference. They both represent having a photon in a cavity. But if you were asked about the spatial
probability distribution of that photon inside that cavity, then the answer indeed depends on the
geometry of each cavity. Later when we discuss the qubit placement inside the cavity, we will see
this spatial dependence comes into play implicitly in the coupling between cavity and qubit.

2It is called “quasi-probability” because unlike a normal probability distribution, the Wigner
function may be negative for a non-classical light.
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2.1 One-dimensional cavity modes

function in different bases. For example, in the canonical position basis {|q〉}, the

Wigner function has the following definition for a given pure state |ψ〉,

W (q, p) =
1

2π

ˆ +∞

−∞
〈q + x/2|ψ〉〈ψ|q − x/2〉e+ipxdx. (2.1.11)

In this section, we will see that Wigner function has an intuitive distribution for

classical light (e.g. coherent light, thermal light) but it is somewhat nonintuitive for

non-classical light (e.g. single photon state). Now we briefly discuss a few common

states of light for a single mode of a cavity.

Fock state– As we introduced earlier, Fock states, or photon-number states,

are eigenstates of the quantum harmonic oscillator. Thus they have the simplest

representation in the photon-number basis1 and describing the situation where exactly

n photons exist in the cavity,

|ψ〉 = |n〉 (Fock state) (2.1.12)

including vacuum state |0〉 where there is no photon in a cavity2. Photon-number

states are orthogonal to each other, 〈n|m〉 = δn,m, which means, experimentally, one

should be able to distinguish |n〉 from |m〉 without any ambiguity. Considering this

orthogonality, it is easy to check that the expectation values of the electromagnetic

field operators (Eq. 2.1.7) for photon-number states are zero regardless of the num-

ber of photons. But the expectation value for the electromagnetic field squared (e.g.

〈E2〉) and electromagnetic fluctuations (e.g. ∆E =
√
〈E2〉 − 〈E〉2) are nonzero even

1They are simple in terms of representation but experimentally, the preparation of a cavity in a
Fock state is not simple [64].

2There is no clear spatial visualization of photon-number states inside a cavity. But for our
purpose one may have some sort of visualization by combining both notions of light; wave and
particle. In that sense, one can imagine that each photon is a packet of energy that extended inside
the cavity so that its spatial probability distribution follows the distribution of the energy on that
mode. A conventional way to characterize the state of the light is by calculating its Wigner function
which is somehow a probability distribution as a function of canonical position and momentum but
it doesn’t give any visualization in real space.
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2.1 One-dimensional cavity modes

for a vacuum state1.

Exercise 1: Show that 〈E〉 = 0, 〈B〉 = 0 for a Fock state |n〉, but 〈E2〉 6= 0, 〈B2〉 6= 0.

What is the electric field uncertainty ∆E for the vacuum state?

For example the Wigner function for state |0〉 and |1〉 has following form,

|0〉 → W0(q, p) =
1

2π
e−(q2+p2) (2.1.13)

|1〉 → W1(q, p) =
1

2π
(2q2 + 2p2 − 1)e−(q2+p2). (2.1.14)

It is somewhat easy to find some classical interpretation for a Wigner function when

it is not negative. For that just consider that q and p are related to the electric and

magnetic fields. For example the vacuum state (Eq. (2.1.13)) depicted in Fig. 2.2a

shows the probability is maximum for q = 0, p = 0, corresponding to zero electric

and magnetic field. But there is some probability for a non-zero electromagnetic field

around zero which comes from vacuum fluctuations and accounts for a vacuum energy

ωc/2. So even an empty cavity has some amount of energy and electric and magnetic

field fluctuate around zero2.

However, the Wigner distribution is not very intuitive for photon-number states

other than the vacuum state. For example, as it is apparent from Equation (2.1.14)

(also depicted in Fig 2.2b), the Wigner function is negative in some region for the

state |1〉. It is hard to interpret the negative probability density, thus states with

negative Wigner functions are called non-classical states.

Note that the photon-number states are eigenstates of the harmonic oscillator

Hamiltonian (Eq. 2.1.8), thus the Fock state Wigner functions are stationary and do

not evolve in time.

1However, 〈E〉 and 〈B〉 for a superposition of two or more Fock states can be non-zero.
2This makes the vacuum state non-classical.
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W0(q,p)
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p
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W1(q,p) p
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Figure 2.2: Wigner distribution for photon-number states: a, The vacuum state |0〉 has

a Gaussian distribution centered at the origin of the phase space. b, The single photon state |1〉
exhibits negative probabilities around the origin.

It is worth here to mention some common operational relations for Fock states:

â|n〉 =
√
n|n− 1〉 (2.1.15a)

â†|n〉 =
√
n+ 1|n+ 1〉 (2.1.15b)

n̂|n〉 = â†â|n〉 = n|n〉 (2.1.15c)

Where â(â†) annihilates (creates) a photon and n̂ leaves the state intact and gives

the number of photons. With that, let’s finish the discussion of Fock states by a

“counterintuitive” question.

Exercise 2: Consider a situation where the single cavity mode contains superposition

of two Fock states described by |ψ〉 =
√

0.99|0〉 +
√

0.01|100〉. What is the average

number of photons in the cavity? If you annihilate a photon by acting annihilation

operator â on this state, then how many photons remain in the cavity? Interpret the

result.

Coherent state– One of the most common types of light is coherent light which

is also known as classical light. In fact, the output of a laser or a signal generator is

coherent light. Experimentally, one can simply send the output of a signal generator
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2.1 One-dimensional cavity modes

at the right frequency to a cavity to produce a coherent state in the cavity. The

coherent state can be represented in the photon-number basis as,

|ψ〉 = |α〉 =
∑
n

cn|n〉 , cn = e−|α|
2/2 α

n

√
n!
, (2.1.16)

where cn indicates the contribution of each photon-number state in the coherent state.

The parameter α is a constant1 whose magnitude is related to the average number of

photons, 〈n̂〉 = |α|2, of the coherent state |α〉. In Figure 2.3 we plot cn versus n for

two different values of α.

1.0
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α=0.5
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Figure 2.3: Photon number distributions for coherent states: The blue (red) distribution

shows the photon number distribution for a coherent state which has an average photon number

n̄ = 1/4 (n̄ = 16). The photon number distribution for the higher average number of photons is

more like a Gaussian distribution.

The blue distribution is for α = 1/2 which corresponds to the average number of

photons n̄ = 〈n〉 = 1/4. That means if we measure the number of photons in the

cavity, we mostly (c2
0 = 0.882 ∼ 0.78) find zero photons but on average we get 1/4

photon. The red distribution shows the distribution of photon-states for the coherent

state that has 16 photons on average2. The fact that the distribution for the higher

1Note, α = |α|eiφ can be any complex number. We will later see that the phase φ has a very
simple meaning (the phase of the oscillations) when we discuss the coherent state in analogy with a
classical oscillator.

2It is important to distinguish coherent light with other incoherent mixed distributions of pho-
tons. It is possible that an incoherent light gives the same distribution of photons as a coherent
light does, but a coherent state requires a certain relative phase between Fock states. For example,
a qubit evolves totally different interacting with coherent light versus incoherent light even if they
have a same photon number distribution.
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2.1 One-dimensional cavity modes

average number of photons is more like a Gaussian distribution, follows from the

central limit theorem for a Poisson distribution.

Exercise 3: Show that in the limit α� 1 the photon distribution cn approaches to

a Gaussian distribution centered at |α|2 and variance of |α|2.

It is easy to show that coherent state is the eigenstate of annihilation operator,

â|α〉 = α|α〉. (2.1.17)

However, since â is a non-Hermitian operator, the corresponding eigenstates {|α〉} do

not form a orthogonal basis1. Unlike the photon-number state, the coherent state is

not an eigenstate of the Hamiltonian (2.1.8), therefore it has time evolution2. But

it turns out that the time evolution of a coherent state is simply a rotation in phase

space.

Exercise 4: Show that a coherent state remains a coherent state under the time

evolution but α acquires a phase: |α〉(t) = |αt〉, where αt = e−iωctα.

Now it is the time to discuss why coherent light often is considered classical

light. As we see in Equation (2.1.16), a coherent state is indeed a superposition of

quantized photon number states. But it turns out that most of its characteristics can

be understood in a close analogy with a classical light. In other words, when a cavity

is populated with coherent light, the behavior of the cavity corresponds to classical

oscillatory motion. For example, by considering Equation (2.1.17) and the fact that

|α〉(t) = |e−iωctα〉, it is easy to show that the expectation value of the electromagnetic

1Two coherent states |α〉 and |β〉 are orthogonal only in the limit of |α− β| � 1.
2Here we assume that we are in Schrödinger picture which is more intuitive and convenient to

discuss the evolution of the system. However, calculating the expectation values are often more
straightforward in Heisenberg picture.
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field (Eq. 2.1.7) for a coherent state is non-zero and oscillatory in time,

〈αt|E|αt〉 = 2R[αt]E0 sin(kz) cos(ωct)

= 2|α|E0 sin(kz) cos(ωct+ φ), (2.1.18a)

〈αt|B|αt〉 = 2I[αt]B0 cos(kz) sin(ωct)

= 2|α|B0 cos(kz) sin(ωct− φ), (2.1.18b)

where we used the fact that αt = e−iωctα and α itself is a complex number α = |α|eiφ.

You may notice that the expectation value for the electric and magnetic fields are

similar to the classical solutions of Maxwell’s equation (Eq. 2.1.2). Therefore, the

quantum description of the coherent state is consistent with our classical understand-

ing of the oscillating electric and magnetic modes of a harmonic oscillator.

In addition, one can show that the coherent state has minimum quantum fluctu-

ations equal to the vacuum fluctuations. This is a minimum uncertainty allowed by

the Heisenberg uncertainty principle, assuming no squeezing. These fluctuations can

be considered as an intrinsic uncertainty related to determining both the amplitude

and phase of the electromagnetic field.

Exercise 5: Show that coherent state has minimum fluctuations (like a vacuum state)

in each quadrature, 〈(∆I)2〉 = 〈(∆Q)2〉 = 1/4, where I = (â+ â†)/2, Q = (â− â†)/2i.

Thus the Wigner function for a coherent state is a vacuum Wigner function dis-

placed in phase space (Fig. 2.4a) by an amount α which can be written in this form,

|α〉 → Wα(q, p) =
1

2π
exp(−(q −R[α])2 − (p− I[α])2), (2.1.19)

where R[α] (I[α]) is the real (imaginary) part of α.

As illustrated in Figure 2.4b, the coherent state evolves around the origin of

phase space by frequency ωc. That means the energy swings back-and-forth from

electric (potential) to magnetic (kinetic). Therefore one may realize that the coherent
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Figure 2.4: Winger function for a coherent state: a, The Wigner function for a coherent

state is a Gaussian distribution displaced from the origin by amount of α. The coherent state has

minimum uncertainty in each quadrature like a vacuum state. b, The evolution of coherent state

under harmonic oscillator Hamiltonian is simply a rotation around the origin.

state’s Wigner function is very similar to the classical “phasor diagram” of a noisy

signal. The difference is that when considering classical signals, we assume one can in

principle reduce the noise and make it arbitrarily small. But for the coherent state the

“noise” in each quadrature is quantum noise, originating from vacuum fluctuations

as described by the Heisenberg uncertainty principle. In the limit of large average

photon number, the noise (either classical or quantum) is negligible compared to the

actual signal. Therefore, the classical picture and quantum picture completely overlap

in that limit.

It worth mentioning here that the coherent state has a very important role in

quantum measurement. In particular, a precise measurement of the phase of a co-

herent signal is an essential component for most quantum measurement experiments.

Usually, we are not interested in the natural oscillation frequency of a coherent signal.

Therefore we go to a frame that exactly rotates with that frequency. In that rotat-

ing frame, the coherent state doesn’t rotate anymore in phase space. The coherent

state Wigner distribution is either along q or p or somewhere between and remains a

steady-state. So in the rotating frame we freeze the time evolution for the oscillator.

For simplicity let us assume the oscillator state is along the q axis, which means all
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2.2 Qubit

the energy is potential (like a stretched spring or a pendulum at its turning point).

In the rotating frame, the coherent state is stationary and the phase is fixed unless,

for any reason, the coherent state experiences an external phase shift (or a kick) on

top of its normal phase evolution due to a perturbative interaction. In such case,

the coherent state rotates to a new place in phase space. We can easily detect that

displacement in the rotating frame1(see Figure 2.5). We will see in the next chapter

that this type of phase detection is the essence of qubit readout measurement.
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Figure 2.5: Phase shifts for coherent state in the rotating frame: The phase shift of a

coherent signal is easily detectable in the rotating frame.

2.2 Qubit

Experimentally there are many ways to realize a qubit. Here we discuss theoretically

how to realize a qubit with a superconducting circuit. In our circuit toolbox we have

only three elements to work with: capacitors, inductors, and Josephson junctions

(JJ)2 (Fig. 2.6). The most important element is the Josephson junction which intro-

duces a circuit nonlinearity necessary to form a qubit. In order to realize a qubit, the

idea is to make a nonlinear (anharmonic) oscillator out of Josephson junction and use

1Rotating frames are useful in many ways; both in theory and experiment. Theoretically, some-
times it is easier to solve a problem in a rotating frame or it is more clear to see the dynamics of a
system. Experimentally, as we will see in the next chapter, it is very natural and easy to work in
a rotating frame. Otherwise, it wouldn’t possible to precisely measure the phase shifts in a rapidly
rotating signal (typically ωc/2π ∼ 5 GHz).

2Of course we wanted to avoid resistors in our toolbox but this is something that comes for free.
Even in superconducting circuits, there are various ways that energy can dissipate. e.g. photon
emission/radiation, coupling to phonons.
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Capacitor Inductor JJ

Figure 2.6: Circuit QED toolbox: Quantum circuit technology relies on these three elements.

The required nonlinearity comes from the JJ which is basically a dissipationless nonlinear inductor.

only the two lowest energy states as a qubit1.

2.2.1 Josephson junctions

The Josephson junction (JJ) comprises of a thin (∼ 1 nm) layer of an insulator

sandwiched between two superconducting slabs (Fig 2.7). The superconducting leads

consist of many atoms, but due to their superconducting state they can be described

by a single complex number, Ψ1,2 =
√
n1,2e

iθ1,2 , where n1,2 and θ1,2 indicate the

number of Cooper pairs and the phase of the superconducting order parameter on

each side of the junction.

Superconductor

Insulator
Ψ1

Ψ2

Figure 2.7: Josephson junction: The JJ consists of two superconductors separated by a thin

layer of insulator. The Cooper pairs on each side can tunnel through the insulator and create a

super-current I. Remarkably, the current can be non-zero even when V = 0. The highly nonlinear

I-V characteristics of the JJ can be exploited for quantum circuits.

It has been shown2 that, effectively, a JJ can be though of as a dissipationless

1Normally in circuit QED literature the transmon discussion is introduced by a circuit called
Cooper pair box. The transmon is a Cooper pair box in a limit of a large shunt capacitance—see a
nice discussion in Ref [65]. Here, I approach the discussion of the qubit by starting from transmon
as a nonlinear oscillator.

2There is a straightforward derivation for Josephson equations based on microscopic BCS theory,
See for example Ref. [66].
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2.2 Qubit

nonlinear inductor which has the I-V characteristics,

I = I0 sin(δ) (2.2.1a)

V =
Φ0

2π
δ̇, (2.2.1b)

where δ = θ2 − θ1 and I0 is a critical current above which the JJ becomes a normal

dissipative junction. One can then infer the effective inductance of the Josephson

junction is,

V = L
dI

dt
→ Φ0

2π
δ̇ = LI0δ̇ cos(δ)→ L =

Φ0

2πI0 cos(δ)
→ L =

LJ0

cos(δ)
, (2.2.2)

where Φ0 = h
2e

is the flux quantum, and we define LJ0 = Φ0

2πI0
as the Josephson

inductance at zero current. It is apparent that the Josephson inductance is a func-

tion of current L = L(I). This dependence can be explicitly shown by using Equa-

tion (2.2.1)a in (2.2.2),

L =
LJ0√

1− ( I
I0

)2
. (2.2.3)

Moreover, one can use two JJs (assuming identical JJs) in a loop to effectively have

a tunable JJ where the critical current can be tuned by passing an external flux Φext

through the loop,

ISQUID
0 = 2I0| cos(

πΦext

Φ0

)| (2.2.4)

where I0 is the critical current of an individual junction.

Exercise 6: Derive Equation (2.2.4). What is the effective critical current for an

asymmetric SQUID where two non-identical JJs are placed in a loop?
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2.2 Qubit

The total energy stored1 in a JJ can be calculated by adding up the energy changes

dU/dt = V I (assuming there was no current (δ = 0) at t = −∞) and obtain2,

U =

ˆ t

−∞
I(t′)V dt′ =

I0Φ0

2π

ˆ t

−∞
sin(δ)δ̇dt′

=
I0Φ0

2π

ˆ t

−∞
sin(δ)dδ = EJ [1− cos(δ)], (2.2.5)

where we define the Josephson energy EJ = Φ0I0/2π = ~I0/2e. In the next subsec-

tion, we will shunt a JJ by a capacitor and quantize the LC circuit (or JJ-C circuit).

We will see that the parameter δ is the canonical position for that anharmonic oscil-

lator. In the next chapter, we provide details from the experimental perspective, e.g.

fabrication and characterization of a JJ.

2.2.2 Transmon qubit

The fact that the inductance of the JJ is a function of current passing through the

JJ, makes it an interesting nonlinear element which can be leveraged for a qubit

architecture. In particular, one can imagine shunting the JJ by a capacitor to have

the anharmonic oscillator depicted in Figure 2.8. The total energy of the circuit is,

C JJ

Figure 2.8: Transmon circuit: The transmon circuit consists of a JJ shunted by a relatively

large capacitor so that EJ � EC .

Htrans =
Q2

2C
+ EJ [1− cos(δ)], (2.2.6)

1Naturally, a JJ also has some small capacitance, but for our purposes and simplicity we ignore
this since we are eventually going to shunt the JJ to a much larger capacitor to make a transmon
qubit.

2For a normal inductor the energy is simply U =
´
V Idt =

´
LIdI = LI2/2. But for JJ the

inductance L is a function current I.
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2.2 Qubit

where Q is the total charge in the capacitor C and we use Equation (2.2.5) for JJ

energy. It is convenient to represent the total charge in capacitor in terms of number

of Cooper pairs1, Q = 2em. Therefore the total energy can be written in this form,

Htrans = 4ECm
2 + EJ [1− cos(δ)], (2.2.7)

where we define the charging energy EC = e2/2C. The first terms is the kinetic

energy stored in capacitor and last term is the potential energy stored in JJ (in-

ductor). Similar to quantization of harmonic oscillator, here m and δ are canonical

momentum and position for the transmon circuit. Therefore, we may transition to

the quantum regime by promoting them to be operators and then we arrive at the

quantum Hamiltonian,

Ĥtrans = 4ECm̂
2 + EJ(1− cos δ̂). (2.2.8)

Now, we have a Hamiltonian for the transmon circuit. In order to find the energy

transitions of the transmon, we need to find the eigenvalues and eigenstates for this

Hamiltonian. This Hamiltonian has an analytic solution in the δ̂-basis2 in terms of

Matthieu functions (see for example Ref. [67]). More conveniently, one can truncate

the Hilbert space and perform numerical diagonalization3 in m̂-basis.

In the limit of EJ/EC � 1 which implies δ � 1, one may expand the last term up

to the 4th-order of δ and obtain the harmonic oscillator Hamiltonian plus a nonlinear

term,

Ĥtrans = 4ECm̂
2 + EJδ

2/2− EJδ4/24 + · · · (2.2.9)

1When I < I0, only pairs of electrons tunnel through the JJ insulating barrier, called Cooper
pairs. Thus in this case it makes sense to represent charge in terms of the number of Cooper pairs,
m.

2In δ-basis you have m̂ = i~ ∂
∂δ̂

then you obtain a solvable 2nd-order differential equation.
3Numerical calculation in number basis is more convenient because the first term is diagonal

and 2nd term is tri-diagonal, 〈m± 1| cos(δ)|m〉 = 1/2. Note, eiδ|m〉 = |m− 1〉.
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2.2 Qubit

This is convenient approximation because we can follow same procedure for harmonic

oscillator quantization and use creation and annihilation operators. Looking at the

first two terms in the Hamiltonian (2.2.9) in analogy to a harmonic LC circuit1 we

have,

4Ec ↔
1

2C
(2.2.10a)

EJ
2
↔ 1

2L
(2.2.10b)

ωJ =
√

8EJEc ↔ ωLC =
1√
LC

(2.2.10c)

Similarly one can define creation and annihilation operators2 and write down the

Hamiltonian (2.2.9) in terms of b̂ and b̂†,

Ĥtrans = ωJ b̂
†b̂− EC

12
(b̂+ b̂†)4 + ...

= ωJ b̂
†b̂− EC

2
(b̂†b̂†b̂b̂+ 2b̂†b̂) + ..., (2.2.11)

where the first term comes from first two terms in Equation (2.2.9) and the last terms

comes from the third term in Equation (2.2.9).

Exercise 7: Derive Equation (2.2.11). Note that you will need normal ordering and

the rotating wave approximation to ignore the terms that do not conserve the energy.

One can rearrange Equation (2.2.11) in this form,

Ĥtrans = (ωJ − EC)b̂†b̂− EC
2
b̂†b̂†b̂b̂ (2.2.12a)

= ω01b̂
†b̂+

α

2
b̂†b̂†b̂b̂, (2.2.12b)

where we arrive at a Hamiltonian for an anharmonic oscillator with a lower energy

1For this analogy, consider a LC circuit energy as E = m2

2C + δ2

2L where m and δ are charge and
flux respectively.

2Here we have, δ̂ =
√

~ZR

2 (b̂+ b̂†), m̂ = i
√

~
2ZR

(b̂− b̂†) , where ZR =
√

8EC

EJ
.
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Figure 2.9: Transmon energy levels: A typical transmon (EJ/EC = 40) potential (Eq (2.2.8)

in solid black curve) in comparison with a nonlinear oscillator (Eq. (2.2.9) in the solid red curve)

and a harmonic oscillator (dashed parabola). The first three energy levels are also depicted for the

transmon (nonlinear oscillator) in comparison to the harmonic oscillator. The typical values for

transition energies/frequencies are shown. Note E01 = ~ω01 and we set ~ = 1.

transition ω01 =
√

8EJEC − EC and an anharmonicity α/2π = −EC as in shown in

Figure 2.9.

Exercise 8: Find the first three eigenvalues for the anharmonic oscillator Hamil-

tonian (2.2.12b). You may use perturbation theory. In case you prefer to do this

numerically is makes sense to do it for the original Hamiltonian (2.2.8).

With reasonable anharmonicity α/2π = E12 −E01 (typically α/2π ∼ −300 MHz)

we can individually address the lower states and leave higher levels intact1. Therefore

we consider a transmon circuit as a two level system which can be described as a

1This is true as long as the Rabi oscillation we induced in the lower transition is much less that
anharmonicity, ΩR � α.
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2.3 Qubit-cavity interaction

pseudo-spin with the Pauli operator,

Ĥq = −ωq
2
σz, (2.2.13)

where ωq = ω01 the lowest transition in the transmon circuit1.

2.3 Qubit-cavity interaction

In previous sections, we quantized a single mode of the electromagnetic field for a

cavity and showed that it results in a harmonic oscillator Hamiltonian (Eq. 2.1.8). In

this section, we consider only the lowest mode of the cavity (m = 1) which has the

minimum frequency. This mode has maximum electromagnetic field amplitude at the

center of the cavity (z = L/2). Here, we study the interaction between this mode of

the cavity (as a quantum harmonic oscillator) and a two-level quantum system (qubit)

which is represented by Hamiltonian (2.2.13). Assume that we place the qubit right

at the center of the cavity. The dimension of the qubit is much smaller than the

dimension of the cavity therefore with a good approximation, the qubit only interacts

with the electromagnetic field at z = L/2 as depicted2 in Figure 2.10.

The qubit interacts via its electric dipole moment to the electric field of the cavity

via the interaction Hamiltonian,

Hint = −d̂ · Êx(
L

2
, t) ,where d̂ =

 0 d

d∗ 0

 . (2.3.1)

The parameters d is the magnitude of the dipole of the qubit which can be in any

direction. Let’s define dx as the magnitude of the qubit dipole aligned with electric

field of the cavity. Then the effective dipole operator can be represented as d̂ = dxσx =

1The minus sign is because we use the NMR convention in which 〈σz〉 = 1 for the ground state.
2The assumption that the qubit interacts only with the electromagnetic field at the center of the

cavity is a classical interpretation. In quantum picture, each photon is a packet of energy extended
to the entire cavity. But this classical picture is very clear to convey the fact that by placing the
qubit at the center of the cavity, statistically, the qubit experiences a stronger electromagnetic field.
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2.3 Qubit-cavity interaction

x

y

Ex(z,t)

z=L zd

Figure 2.10: The qubit-cavity interaction: The qubit is placed at the center of the cavity

where the electromagnetic field is maximum for the first mode of the cavity. The qubit interacts

with the electric field via its electric dipole d.

dx(σ++σ−) where σ+ (σ−) are the raising (lowering) operators for the qubit. Without

loss of generality, we can assume dx is real1. Then the interaction Hamiltonian reads,

Hint = −g(â+ â†)(σ+ + σ−), (2.3.2)

where we use Equation (2.1.7a) and define g = dxE0 to quantify the interaction

strength or qubit-cavity coupling energy2.

2.3.1 Jaynes-Cummings model

Now we have all the pieces to describe the combined qubit-cavity system. Note

that the qubit Hamiltonian (Eq. 2.2.13) by itself has two eigenstates {|g〉, |e〉} cor-

responding to two eigenvalues (energies) {∓ωq/2}. Similarly, a single cavity mode

Hamiltonian (Eq. 2.1.8) by itself has an infinite number of eigenstates {|n〉} with

eigenvalues {ωc(n + 1/2)} corresponding to n photons in that mode. Here we are

interested to know what are the eigenstates and eigenvalues of the hybrid system of

the cavity and qubit combined via the interaction Hamiltonian (Eq. 2.3.2). The total

1Note, the complex dx means that the electric dipole has non-zero moment along σy.
2If we place the qubit off-center the coupling g would be smaller. In fact, the placement of the

qubit inside the cavity is, to some extent, a knob to adjust the qubit-cavity coupling.
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2.3 Qubit-cavity interaction

Hamiltonian1 has three parts,

HRabi = ωc(â
†â+

1

2
)− 1

2
ωqσz − g(â+ â†)(σ− + σ+). (2.3.3)

In the case of no interaction between qubit and cavity (g = 0) the eigenstates of

the qubit-cavity system are simply the tensor product of the cavity and qubit eigen-

states {|g〉|n〉, |e〉|n〉} which are called bare states or the bare basis and, obviously,

with eigenvalues that are simply the sum of eigenvalues for each qubit and cavity

eigenstates, {±ωq/2 + ωc(n+ 1/2)}.

|g〉|0〉 → qubit in ground state, no photons in the cavity (2.3.4)

|g〉|n+ 1〉 → qubit in ground state, n+ 1 photons in the cavity (2.3.5)

|e〉|n〉 → qubit in excited state, n photons in the cavity (2.3.6)

However bare states no longer are the energy eigenstates for the system when the qubit

and cavity interact (g 6= 0). Yet, we can represent the total Hamiltonian in the bare

basis and attempt to diagonalize it to find its eigenstates and eigenvalues. Before we

do this, we simplify the interaction Hamiltonian by the rotating wave approximation

(RWA). This approximation is valid in most practical situations where the coupling

strength is much less than both the qubit and cavity frequency, g � ωq, ωc, and also

|ωc − ωq| � |ωc + ωq|. Having this situation in mind, let’s revisit the interaction

Hamiltonian where we have four terms,

Hint ⇒ â†σ− + âσ+ + â†σ+ + âσ− (2.3.7)

The first term describes ‘the decay of the qubit and creation of a photon for the

cavity’ and second term accounts for ‘an excitation of the qubit and annihilation of

a photon in the cavity’. These processes somehow “conserve” the total energy in

1Here we refer to it as the Rabi Hamiltonian —the JC Hamiltonian comes from the Rabi Hamil-
tonian once taking the RWA.
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2.3 Qubit-cavity interaction

the system since the energy change would be ±(ωc − ωq), which is much less that

the total energy in the system even in the few photon regime where Etot ∼ ωc + ωq.

However, the last two terms correspond to ‘the excitation (decay) of the qubit and

creation (annihilation) of a photon for cavity’ which requires a relatively substantial

energy change ±(ωc +ωq) in the system, especially when we have only a few photons

in the system. This means that the last two processes are much less likely to occur

compared to the first two processes so we can simply ignore those terms1. This also

can be understood from energy-time uncertainty principle which implies that the

last two processes happen on much faster time-scales and normally are averaged out

compared to the first two processes2. Therefore with this rotating wave approximation

(RWA) we obtain the Jaynes-Cummings Hamiltonian,

HJC = ωc(â
†â+

1

2
)− 1

2
ωqσz − g(â†σ− + âσ+). (2.3.8)

Although the RWA simplifies the Hamiltonian, still we have to deal with an infinite

dimensional Hilbert space (since the number of photons n ranges from 0→∞) which

means the Hamiltonian is a semi-infinite matrix which makes it tricky to diagonalize.

Normally in such situation we truncate the Hilbert space at some point, but fortu-

nately in this case we can go around this problem and diagonalize the Hamiltonian

in the infinite dimension Hilbert space. If we use the bare basis to represent the HJC

1One would expect RWA breaks in the regime of many photons. See for example [68, 69] for
beyond RWA.

2For example, see chapter 4 of the Ref. [62] for more detailed discussion of RWA
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in the form of matrix we find,

HJC =



1
2
ωc −

ωq

2
0 0 0 0 0

0 3
2
ωc −

ωq

2
g 0 0 0

0 g 3
2
ωc +

ωq

2
0 0 0

...

0 0 0 0 (n+ 1
2

)ωc −
ωq

2

√
n+ 1g

0 0 0 0
√
n+ 1g (n+ 1

2
)ωc +

ωq

2


, (2.3.9)

which shows the Hamiltonian is block-diagonal and all blocks follow a general form

(except the first block which has only one element 1
2
ωc− ωq

2
corresponding to the abso-

lute ground state of the system). Having a block-diagonal Hamiltonian makes it easy

to find its eigenvalues. We only need to diagonalized individual blocks and the re-

sulting eigenvalues of each block indeed are the eigenvalues of the entire Hamiltonian.

For each block Mn we have,

Mn =

 (n+ 1
2
)ωc − ωq

2

√
n+ 1g

√
n+ 1g (n+ 1

2
)ωc + ωq

2

 , (2.3.10)

where n = 1, 2, . . .. The eigenstates of Mn and |g〉|0〉 corresponding to n = 0, form a

complete set of eigenstates for the entire qubit-cavity system. For the eigenvalues we

have,

Eg = −∆

2
(2.3.11)

E∓ = (n+ 1)ωc ∓
1

2

√
4g2(n+ 1) + ∆2. (2.3.12)
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2.3 Qubit-cavity interaction

where ∆ = ωq − ωc. The eigenstate associated with each of these eigenvalues are

called the dressed states of the qubit and cavity,

|0,−〉 = |g〉|0〉 (2.3.13)

|n,−〉 = cos(θn)|g〉|n+ 1〉 − sin(θn)|e〉|n〉 (2.3.14)

|n,+〉 = sin(θn)|g〉|n+ 1〉+ cos(θn)|e〉|n〉 (2.3.15)

where θn = 1
2

tan−1(2g
√
n+ 1/∆) which quantifies the “level of hybridization”. In

the limit of ∆→ 0 where qubit and cavity have a the same energy we have θn = π/4

and the dressed states are in maximum hybridization,

|n,∓〉 =
1√
2

(|g〉|n+ 1〉 ∓ |e〉|n〉) , (2.3.16)

which means each of the dressed states has a 50 %-50 % characteristic of the cav-

ity photon and qubit excitations. These states are called polaritons. The energy

difference between the first two polariton states is 2g.

A nice way to look at dressed state energy levels is by comparing them to the

corresponding uncoupled system energy levels, the bare states. For that, consider

Figure 2.11 where we display the energy levels of an uncoupled qubit-cavity system

compared to the dressed state energy levels for different values of the qubit-cavity

detuning. The bare state energy levels are depicted by solid black lines. The dressed

states are depicted by bars that are color-coded by blue (red) for cavity- (qubit-)

like states. In the first panel, the qubit and cavity are far detuned (∆ � 0) which

means θn ' 0 and the effective coupling is negligible. Therefore the dressed states

energy levels almost overlap with the uncoupled cavity-quit state, the bare states

(as depicted in panel 1). In the second panel, we change the energy level for the

qubit. The detuning ∆ is still negative but it is getting smaller and smaller in terms

of magnitude. The dressed states start pushing away each other and deviate from

the corresponding bare states. In this situation, θn ∈ (0, π/4) and the upper dressed
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ωc ωq

∆<0
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∆<<0
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ωc
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∆>>0
Cavity Qubit
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2g

Figure 2.11: Dressed states vs bare states: The panels illustrate the dressed states of the

qubit-cavity system for different qubit-cavity detunings in comparison with the bare states (refer to

the main text for a more detailed description). Note that this illustration is not accurate and lacks

some details but we rather to avoid them here.

state acquires some qubit character, and similarly, the lower dressed state acquire

some photon character. In panel three ∆ = 0 and the hybridization is its maximum

level, θn = π/4 and the dressed states (which we now call polaritons) push each

other away and deviate maximally from the bare states. The separation between two

polaritons is 2g. Now both polaritons have acquired equal photon and qubit character

as depicted by color-coded bars in panel 3. If we further increase the energy level

of the qubit (see panel 4) then again we get dressed states. Note that in panel 4,

unlike in panel 3, the lower (upper) polariton has more photon (qubit) character. By

increasing the detuning further, as in panel 5, we effectively decouple the qubit and

cavity and the dressed states again approach the bare states. If we keep increasing the

qubit frequency even further then the qubit energy will approach the higher level of

the cavity and we would see another avoided crossing corresponding to n = 1. Every

time qubit level crosses one of the cavity levels, we may expect an avoided crossing

and hybridization1.

1Considering the higher energy levels of the cavity one might think that it is also possible that
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2.3 Qubit-cavity interaction

It is convenient to plot transition energy versus detuning since (as we will see in

Chapter 3) we normally characterize the system by measuring the transition frequen-

cies by doing spectroscopy. For example, when n = 0 we have,

E∓ − Eg = ωc ∓
1

2

√
4g2 + ∆2 + ∆/2. (2.3.17)

In Figure 2.12, we plot the energy E± − Eg versus detuning which clearly shows the

avoided crossing. The transition energy levels are color coded so that again red (blue)

is the qubit- (photon-) like transition.

0.6

0.8

1

1.2

1.4

 (E
 - 

E g)/
ω

c

-2 -1 0 1 2
 ∆/g

+ −

(E - Eg)/ωc−

+(E - Eg)/ωc

Figure 2.12: Avoided crossing: The transition energy from higher and lower dressed states to

the ground state versus the detuning ∆. The transition energy is scaled by the energy of the cavity

ωc and the detuning is scaled by the coupling rate g. The dashed lines indicate the bare
states’ transition. Note that you can somehow see a similar avoided-crossing curve
in Figure 2.11 by connecting the upper (lower) dressed states in different detunings
together.

qubit level couples to two or multiple cavity energy levels at the same time. This is true, but usually,
this effect is only significant when the qubit-cavity coupling is so strong (g ∼ ωc, ωq) that qubit and
cavity energy levels push each other even when they are far detuned. This regime is known as
ultra strong coupling [70, 71]. But normally the coupling rate g � ωc, ωq. Therefore, in order to
have hybridization the qubit energy has to be very close to the cavity energy (∆� ωc, ωq). In our
case, we can safely assume that qubit effectively couples only to one cavity energy level at a time.
However, I should warn you that in our description of the avoided crossing which is represented
in Figure 2.11, we have ignored the higher transmon energy levels which would make the situation
much more complicated. Considering the transmon as a two-level system is good for intuition, but
to be accurate one must include more transmon levels.
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In this section, we learned that if we put a qubit inside a cavity, the energy levels

hybridize and we have dressed states. Yet, just as we considered transmon as a two-

level system (TLS) by addressing only lower transition, here also we consider the

ground state and the lower dressed state as our new qubit.

2.3.2 Dispersive approximation

In this section, we perform another approximation to the interaction Hamiltonian.

This approximation is valid in the regime that cavity and qubit are far detuned ∆� g.

In such situations, the interaction is relatively weak. In principle, in this regime, the

cavity and qubit do not directly exchange energy unlike what we explicitly have in

the interaction term1 in the JC Hamiltonian (2.3.8). For that, consider the unitary

transformation

T̂ = eλ(σ−a†−σ+a),

where λ = g
∆

. If we apply this transformation2 to the JC Hamiltonian (2.3.8) and use

the Baker-Campbell-Hausdorff relation to evaluate all terms up to order λ2 we have,

T̂ ĤJC T̂ † = ωc(â
†â+

1

2
)− 1

2
ωqσz −

g2

∆
â†âσz +

g2

2∆
σz. (2.3.18)

We may ignore constant terms3 since these do not affect dynamics, and obtain the

JC Hamiltonian in the dispersive limit,

Ĥdis = ωcâ
†â− 1

2
ωqσz −

g2

∆
â†âσz. (2.3.19)

1Note that this doesn’t mean that in this limit the JC interaction term is not valid. It means
that the effect of the coupling is so weak such that we can approximately represent the Hamiltonian
in a simpler form.

2Applying a unitary transformation is somehow a change of frame. So we do not add/remove
any physics.

3The term g2

2∆σz (Lamb shift) is also a constant shift in qubit frequency that we can absorb it
into ωq.
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Exercise 9: Show that Equation (2.3.18) is true by using Baker-Campbell-Hausdorff

relation,

eλB̂Âe−λB̂ = Â+ λ[B̂, Â] +
λ2

2!
[B̂, [B̂, Â]] +O[λ3],

and keeping the terms up to the order λ2.

The dispersive Hamiltonian (2.3.19) describes the situation were the cavity and

qubit are far detuned and coupling is weak and dressed states are almost overlapping

with the bare states (see Figure 2.11 panel 1). Yet, there is a very small interaction

as described by the last term in Equation (2.3.19). In order to make better sense of

this interaction, we re-arrange the terms in Equation (2.3.19) as follows,

Ĥdis = (ωc − χσz)â†â−
1

2
ωqσz, (2.3.20)

where χ = g2

∆
is the dispersive shift or dispersive coupling rate1. We see that the

dispersive interaction is manifested as a qubit-state-dependent frequency shift for the

cavity. If the qubit is in the ground (excited) state |g〉 (|e〉) then 〈σz〉 = 1 (〈σz = −1〉)

which means that the cavity frequency shifts by +χ (−χ). Therefore one can detect

this frequency shift for the cavity to determine the state of the qubit.

Alternatively, one can rearrange the terms in ((2.3.19)) as,

Ĥdis = ωcâ
†â− 1

2
(ωq + 2χn̄)σz, (2.3.21)

and interpret the interaction as a shift in qubit frequency due to photon occupation

(n̄ = â†â) in the cavity2.

1Note that we define ∆ = ωq − ωc and usually we prefer to have ωq < ωc because of the
transmon higher levels and also to avoid coupling to higher frequency cavity modes [72]. Therefore
the dispersive coupling is often negative.

2In chapter 4 we will use this interpretation to calibrate dispersive shift and average photon
number in the system.
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2.4 Dynamics of a driven qubit

2.4 Dynamics of a driven qubit

In this section we discuss some of the most basic and important dynamics of the

qubit. Essentially, we want to know what happens to the qubit if we continuously

drive it with a coherent signal. We may take two approaches to solve this problem.

One approach is semi-classical, where we treat the coherent drive as a classical signal.

The other approach is fully quantum, where we treat the drive as a coherent state of

light. For most purposes, the semi-classical approach works perfectly fine and captures

almost all the physics we are interested in. Therefore, we discuss the semi-classical

approach (for fully quantum mechanical approach see Ref. [62]).

2.4.1 Rabi oscillations: The semi-classical approach

We are interested in qubit dynamics and we ignore the cavity for now1. With that,

assume we have a qubit with Hamiltonian Ĥq = −ωqσz/2 and electric dipole moment

d̂ = ~dσx. The qubit interacts with the electric field of the coherent light (a classical

signal) E(t) = E cos(ωdt) by the interaction Hamiltonian Hint = − ~E · d̂. Therefore,

for the total Hamiltonian we have,

Hsemi−classic = −1

2
ωqσz − E(t) · d̂. (2.4.1)

For simplicity we assume that the dipole moment of the qubit is aligned with the

electric field. Therefore we obtain,

Hsemi−classic = −1

2
ωqσz − A cos(ωdt)σx, (2.4.2)

1We have qubit inside the cavity and the qubit and cavity are already hybridized and we consider
lowest two levels of system (ground state and the lowest dressed-state, or polariton state) as our new
qubit. Moreover we assume that the qubit drive is off-resonant with the cavity transition. Therefore
in this situation we effectively have just a qubit. Although experimentally the cavity still plays a
crucial rule in terms of noise protection and will be essential for qubit readout, this is not our focus
in this section.
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2.4 Dynamics of a driven qubit

where A = Ed quantifies how strong the interaction is. Now we want to know how

the qubit evolves under this Hamiltonian. There are couple of ways we may solve

this Hamiltonian. The first way is to solve the Schrödinger equation for this time-

dependent Hamiltonian. We start with an ansatz instead of starting from scratch.

The idea is that if we have no electric field or turn off the interaction, then we know the

solution for Hamiltonian (2.4.2) would be |ψ〉 = Cg|g〉+ Ce|e〉 and its time evolution

would be |ψ(t)〉 = Cge
+i

ωq
2 |g〉 + Cee

−iωq
2 |e〉 . Now, we hope to find the solutions for

(2.4.2) in the form of,

|ψ(t)〉 = Cg(t)e
+i

ωq
2 |g〉+ Ce(t)e

−iωq
2 |e〉, (2.4.3)

where we just let the coefficients also be time-dependent. Now we plug this ansatz

into the Schrödinger equation,

i
∂|ψ(t)〉
∂t

=

(
−1

2
ωqσz − A cos(ωdt)σx

)
|ψ(t)〉 (2.4.4)

By substituting Equation (2.4.3) into (2.4.4), one can obtain two coupled ordinary

differential equations (ODEs) for Cg(t) and Ce(t),

Ċg = iA cos(ωdt)e
−iωqtCe, (2.4.5a)

Ċe = iA cos(ωdt)e
+iωqtCg. (2.4.5b)

In order to solve this analytically, we do a simplification which is nothing but the

RWA. First, we expand cos(ωdt)e
±iωqt = ei(ωd±ωq)t + e−i(ωd∓ωq)t, then argue that we

are not interested in very short timescales in the dynamics. In fact, in practically,

we normally are not sensitive to short timescales1. Therefore we ignore fast rotating

terms e±i(ωd+ωq)t that are comparatively slow to the rotating terms e±i(ωd−ωq)t. Then

1Assuming that the qubit frequency and drive are both in range of 5 GHz, then the fast oscillatory
terms e±i(ωd+ωq)t oscillate at the 100 picosecond timescale. We are normally interested in qubit
dynamics at microsecond timescale. Even for fast 5 ns rotation pulses, many of these fast oscillations
are averaged out.
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2.4 Dynamics of a driven qubit

we have

Ċg = iA e−i(ωq−ωd)tCe, (2.4.6a)

Ċe = iA e+i(ωq−ωd)tCg. (2.4.6b)

For the qubit initially in the ground state (initial conditions Cg(0) = 1, Ce(0) = 0)

one can show that the solutions are,

Cg(t) =
e−i

∆d
2
t

ΩR

(
ΩR cos(

ΩR

2
t) + i∆d sin(

ΩR

2
t)

)
(2.4.7a)

Ce(t) = i
A e+i

∆d
2
t

ΩR

sin(
ΩR

2
t), (2.4.7b)

where ∆d = ωq − ωd and ΩR =
√
A2 + ∆2

d. Having the solution for |ψ(t)〉, we

can obtain the the evolution for any relevant observables. In order to see what the

dynamics look like, we may look at the population of the qubit excited state,

Pe(t) = |Ce(t)|2 =
A2

Ω2
R

sin2(
ΩR

2
t). (2.4.8)

As depicted in Figure 2.13, the qubit doesn’t respond that much to a far detuned

drive, but as the detuning gets smaller the oscillations grow. For an on-resonant drive

(∆d = 0), we have slowest but highest contrast oscillations of the qubit populations.

The fact that we can fully rotate the qubit from the ground to excited by an on-

resonant drive is very practical. All we need is to know how strong and how long to

drive the qubit with light to put the qubit in the excited state1.

Rotating frame– There is a rather easy way to solve the Hamiltonian (2.4.2) by

going to a rotating frame of drive. That makes the Hamiltonian time-independent2.

For this, we transform the Hamiltonian by a unitary operator U(t). The Hamiltonian

1π pulse calibration! We will see in next chapter how this is done in experiment.
2This example would be useful to see how rotating frame works. Moreover, this solution will

give better picture of detuned Rabi oscillations in the Bloch sphere.
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Figure 2.13: Rabi oscillations: a, The chevron plot. The excited state population Pe versus

time for different detunings ∆q. b, Three cuts from the chevron plot at different detuning values.

The on-resonant drive gives the maximum contrast for the oscillations.

in the new frame can be evaluated by the following relation,

Ĥ = U(t)ĤU †(t)− iUU̇ †. (2.4.9)

Now consider U(t) = e−i
ωd
2
σzt, which basically transforms the Hamiltonian to a frame

that rotates with the frequency of drive, ωd. One can show that the Hamiltonian

(2.4.2) in the rotating frame of the drive would be

Ĥ = −1
2
∆dσz − Ed

2
σx, (2.4.10)

which no longer has time dependence. Now we may diagonalize the Hamiltonian in

qubit energy basis,

Ĥ =
1

2

 −∆d −A

−A +∆d

 . (2.4.11)

to obtain its eigenvalues, E± = ±1
2

√
A2 + ∆2

d and eigenstates,

|V−〉 = cos(θ)|e〉 − sin(θ)|g〉, (2.4.12)

|V+〉 = sin(θ))|e〉+ cos(θ)|g〉, (2.4.13)
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Figure 2.14: Eigenstates on the Bloch sphere for a driven qubit: The eigenstates |V±〉 for

a detuned driven qubit make angle θ respect to the equator in the Bloch sphere. This picture gives

a better understanding of why the population doesn’t reach to the maximum value for a detuned

drive.

where θ = tan−1( A√
A2+∆2

d−∆d

). Figure 2.14 demonstrates the eigenstate |V±〉 in the

Bloch sphere picture. The evolution of the system can be described by

|ψ(t)〉 = C+e
−iE+t|V+〉+ C−e

−iE−t|V−〉 (2.4.14)

where C± are constants determined by the initial condition. We may rewrite Equa-

tion (2.4.14) in terms of |g〉 and |e〉 using (2.4.13),

|ψ(t)〉 =
[
C+e

−iE+t sin(θ) + C−e
−iE−t cos(θ)

]
|e〉

+
[
C+e

−iE+t cos(θ)− C−e−iE−t sin(θ)
]
|g〉 (2.4.15)

For example for a qubit starting in the ground state, |ψ(0)〉 = |g〉, we have C+ =

cos(θ), C− = − sin(θ), then the time evolution would be,

|ψ(t)〉 = −i sin(E+t) sin(2θ)|e〉+ cos(E+t) sin(2θ)|g〉, (2.4.16)

where we used the fact that E+ = −E−. Once again we can calculate the expectation
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2.4 Dynamics of a driven qubit

value for any observable. For example, the probability of being in the excited state

would be1,

Pe = sin2(2θ) sin2(E+t) =
A2

A2 + ∆2
d

sin2

(√
A2 + ∆2

d

2
t

)
, (2.4.17)

which is consistent with the result we had in lab frame where the Hamiltonian was

time-dependent (see Eq. 2.4.8). But, this picture gives a visualization of why the

population doesn’t reach the maximum value for a detuned drive as illustrated in

Figure 2.14.

Generally, in the experiment we use an on-resonance drive to prepare the qubit

states. Figure 2.15 summarizes our discussion of a driven qubit in the lab and rotating

frame by showing Rabi oscillations of a qubit initialized in ground state for both on-

resonant and detuned drives.

z

x

z

x

a b

Figure 2.15: Driven qubit state evolution in the Bloch sphere: The red (blue) line shows

the evolution of a driven qubit in the lab frame (rotating frame of the drive) a, for an on-resonant

drive and b, for a detuned drive.

2.4.2 Dynamics in the presence of dissipation

So far we assume that the qubit is an ideal closed system that undergoes unitary

evolution given by the Schrödinger equation. However, in reality all systems either

1You may need convince yourself that sin2[2 tan−1( A√
A2+∆2

d−∆d

)] = A2√
A2+∆2

d

.
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2.4 Dynamics of a driven qubit

classical or quantum are open systems, meaning they are interacting with their envi-

ronment to some extent. For quantum systems, this interaction degrades the peculiar

quantum property of the system (e.g. superposition and entanglement) resulting in

energy dissipation and decoherence. Dissipation is a curse in many applications of

quantum information. However, dissipation is believed to be the essential piece for

allowing the classical laws to emerge out of the underlying quantum laws.

For our purposes, there are two main mechanisms which we need to consider to

have a more realistic picture of qubit dynamics: relaxation and dephasing.

Relaxation– Placing the qubit inside a cavity protects the qubit from environ-

mental noise and limits the available modes the qubit can interact with. Still, the

qubit finds some ways to relax its energy and decay to the ground state1. For ex-

ample, when you prepare the qubit in the excited state, the qubit eventually decays

to the ground state and relaxes its energy in the form of a photon to one of the un-

known/known decay channels. This process of jumping2 from |e〉 → |g〉 happens in a

random time. This process is not included in the Hamiltonian, therefore we need to

account for that somewhat phenomenologically3.

Let’s say you prepare the qubit in the excited state or in some superposition state

|ψ〉. Having the qubit relax after a time, you are not sure if the qubit is still in

state |ψ〉 or has relaxed into the ground state. You might have a mixed feeling about

the state of the qubit and, in quantum mechanics, this is an absolutely legitimate

feeling because the qubit is indeed in a mixed state which can be described by a

density matrix ρ = a|ψ〉〈ψ| + b|g〉〈g|. Where a is the probability that qubit is still

in state |ψ〉 and b is the probability that qubit has decayed into ground state |g〉4. If

you wait longer, the probability a becomes smaller and smaller while the probability

b approaches to 1 meaning that you are getting certain that the qubit is in the

1Also, sometimes we intentionally provide the qubit with a decay channel to relax its energy.
2For now, we assume this process happens instantaneously which is a very reasonable and valid

assumption. Yet, we will see later that the decay of an atom is not always jumpy.
3In principle one can build these processes into the Hamiltonian if write down the Hamiltonian

for the entire universe: qubit+cavity+environment.
4Here comes a lesson that I learned very late: In quantum mechanics the state of the system is

nothing but your state of knowledge about that system. The reality happens in your mind!?
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2.4 Dynamics of a driven qubit

ground state. The time scale that qubit spontaneously relaxes its energy is called the

relaxation time and is indicated by T1. Experimentally, identifying the T1 is a basic

step of any qubit characterization process. As depicted in Figure 2.16a, the T1 time

is the time by which the population of excited state decays to 1/e of its initial value,

Pe(t) = Pe(0)e−t/T1 . We will see soon how we systematically account for this process

in the qubit dynamics.

x

z

y x

z

y

Relaxation Dephasing

1.0

po
pu

la
tio

n

Time

1.0

co
he

re
nc

e

Time

a b

Figure 2.16: Relaxation and dephasing of a qubit.

Dephasing– There is another imperfection that affects the dynamics of a qubit.

In reality, due to the various noise sources in the system, the frequency of the qubit

shifts around stochastically. This imperfection doesn’t cause the qubit to relax its

energy but instead we lose track of the qubit resonance frequency and thus loose track

of the phase of the qubit wavefunction. Considering the evolution of a superposition

state in the lab frame, the qubit state rotates around the equator of the Bloch sphere.

After time t the phase of the qubit would be φ = ωqt, however, if the qubit frequency

stochastically jitters around ωq, then the final phase at time t would be φ = ωt+ζ(t),

where ζ is our uncertainty about the phase of the qubit which is growing in time1.

1ζ(t) can be considered as a 1D-random-walk distribution.
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2.4 Dynamics of a driven qubit

Therefore, after a time, again we have a mixed feeling about the state qubit and we

lose the quantum coherences as depicted in Figure 2.16b. The time scale that the qubit

loses its coherence is usually called the dephasing time or T ∗2 and it is characterized

by a Ramsey measurement in experiment. In the next section, we discuss how to

systematically account for relaxation and dephasing in qubit dynamics.

Lindblad master equation

In order to account for non-unitary and dissipative processes (e.g. dephasing and

relaxation) in qubit dynamics, we consider the Heisenberg picture where the unitary

evolution of density matrix ρ is described by,

ρ̇ = −i[Ĥ, ρ], (2.4.18)

where Ĥ is the driven qubit Hamiltonian in the rotating frame—see Eq (2.4.10).

Equation (2.4.18) is equivalent to the Schrödinger equation except with the density

matrix approach we can also describe unitary evolution for a mixed state. Moreover,

the Heisenberg picture allows us to add more terms for ρ̇ to describe other non-unitary

processes for the system like dephasing and relaxation1. In general, we have

ρ̇ = −i[Ĥ, ρ] +
∑
i

(
L†iρLi −

1

2
{L†iLi, ρ}

)
, (2.4.19)

where each Li is an “Lindbladian” operator describing a specific non-unitary pro-

cess. For example, the Lindbladian operator for the relaxation process of a qubit is

Lrelaxation =
√
γσ− where γ = 1/T1 accounts for the rate in which the qubit decays.

The dephasing Lindbladian operator Ldephasing =
√
γφσz where γφ = 1/T ∗2 quantifies

in which rate the qubit dephases and we loose coherences.

1Normally these non-unitary processes are positive and trace preserving.
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2.4 Dynamics of a driven qubit

Exercise 10: Explicitly represent the Linblad Master equation (2.4.19) in terms of

Bloch components x = Tr(ρσx), y = Tr(ρσy), , z = Tr(ρσz) for Ĥ = −ΩRσy/2 in

presence of relaxation and dephasing. Now you may solve these equations to obtain

the evolution for the qubit.

In Figure 2.17 we plot the evolution of a driven qubit in the presence dephasing

and relaxation. We will return to the Lindbladian evolution and non-unitary evolution

in Chapter 4 when we discuss continuous measurements.

Figure 2.17: Dephasing and relaxation for the qubit: The solution of the Lindblad equation

for a driven qubit in presence of dephasing and relaxation.
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Chapter 3

Superconducting Quantum

Circuits

The aim of this chapter is to make a clear connection between the theoretical concepts

introduced in the previous chapter and their experimental realization. I will discuss

measurements with superconducting circuits including, transmon qubits, 3D cavities,

and parametric amplifiers from the experimental point of view. I will try to give a

clear explanation of the basic procedures of fabrication and characterization.

3.1 Cavity

In the previous chapter, we discussed a 1D cavity by considering two perfectly con-

ducting walls separated by a distance L. Aluminum is a good choice for these walls

since it becomes superconducting below 1.2 K and can be used to realize a high qual-

ity factor cavity. Copper can also be used when we need to thread external magnetic

flux through the cavity to tune the qubit resonance.

Although we induced the cavity in 1D, it is trivial to extend the result to 3D.

One can show that for a 3D cavity described by Lx, Ly, Lz dimensions and depicted
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Figure 3.1: TE101 mode in rectangular 3D cavity: a, The typical cavity geometry is shown.

Red lines shows the electric field profile along z,x spatial directions for the TE101 mode. The electric

field oscillations are maximum at the center if the cavity. b, The surface current oscillations (red

arrows) have been depicted for the TE101 mode. The induced charges are maximum at the center

(opposite charges at the top and bottom of the cavity). The equivalent circuit diagram is shown for

a section of the cavity. The cut-line (magenta dashed line) indicates one of the planes where the

surface current is tangential.

in Figure 3.1, the Equation 2.1.2 simply generalized to,

E(~r, t) = E q(t) sin(~k · ~r) (3.1.1a)

B(~r, t) = E µ0ε0

k
q̇(t) cos(~k · ~r), (3.1.1b)

where ~k = (nxπ/Lx, nzπ/Lz, nzπ/Lz) and ~r = (x, y, z) and the corresponding reso-

nance frequency of modes are,

f = ωc/2π =
c

2

√
(
nx
Lx

)2 + (
ny
Ly

)2 + (
nzπ

Lz
)2, (3.1.2)

where c is the speed of light inside the cavity. Each mode is described by a set of

integers nx, ny, nz, for example, TE101 corresponds to a mode with an the electric field

profile that has one anti-node in x and z directions (depicted in Figure 3.1a [73]).

Thus we have spatially distributed electromagnetic modes inside a cavity, and

apart from that, all the quantum mechanical descriptions are essentially identical.

Furthermore, we are still interested only in one of these modes. Therefore we consider
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3.1 Cavity

only the lowest mode of the cavity and choose the dimensions so that the other higher

modes’ frequencies are far away from the lowest frequency. The dimensions that we

normally use are Lz ∼ Lx ∼ 3.0 cm and Ly ∼ 0.8 cm which gives a cavity frequency

ωc/2π ∼7 GHz for the TE101 mode. Figure 3.1b shows the surface current and the

equivalent circuit diagram for the TE101 mode1.

Although it is easy to analytically calculate the resonance frequency for the simple

geometries like a rectangular or cylinder cavity, one can use numerical simulations

to get more realistic predictions since they can account for geometry imperfections,

input-output connectors, and qubit chip2. Figure 3.2 shows a simulation result for

cavity transmission by considering other components using Ansys HFSS. The sim-

L
y

Tr
an

m
is

si
on

 S
21

 (d
B)

Frequency (GHz)

-80

-60

-40

-20

10864

Simulation
Measurement

Figure 3.2: HFSS simulation for cavity transmission: The cavity transmission is simulated

by HFSS (red curve) which is in agreement with actual measurement (blue curve).

ulation is in a good agreement with actual transmission measurement of a similar

cavity3.

In order to fabricate a cavity, we literally machine a cavity in two chunks of

aluminum as depicted in Figure 3.2c4.

1For a better circuit diagram visualization, you can replace the inductor with a wire and imagine
that the loop has some effective inductance. In this way, the loop magnetic field gives the correct
direction for the cavity magnetic field at that cross-section.

2Moreover, simulation gives you to have access to more detailed information about the electro-
magnetic field distribution inside the cavity.

3Although, the details of the input/output connectors and pins (e.g. length, shape, soldering
parts, ...) are may not have significant contribution to the cavity frequency, they significantly affect
the cavity quality factor because they can dramatically alter the characteristic impedance of the
ports.

4Symmetrical pieces are not only convenient in terms of the fabrication, but also in this geometry,
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Cavity linewidth- The cavity linewidth κ, can be determined by measuring the

transmission through the cavity. As depicted in Figure 3.3a, we use a vector network

analyzer (VNA) and record S12 (or S21) transmitted power versus the frequency.

The parameter κ is roughly the frequency bandwidth by which the transmitted power

drops by 3 dB a depicted in 3.3b. More rigorously, one can fit the transmitted power

(in linear scale) to a Lorentzian function F (x) = A
(x−fc)2+κ2/4

and extract the cavity

frequency fc = ωc/2π and cavity linewidth κ which is the FWHM of the Lorentzian

fit. We will see in Chapter 4, the parameter κ quantifies how much signal we get

from the cavity and this value needed for calibration of the quantum efficiency during

measurement.
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Figure 3.3: The cavity linewidth characterization: The cavity linewidth κ can be quantified

by measuring the scattering parameters of the cavity. a,b In the transmission measurement S21, the

cavity linewidth can be estimated by the bandwidth that the transmission signal drops by 3 dB. c,

More carefully, one can scale the transmission in the linear form and fit to the Lorentzian function.

The FWHM of the Lorentzian function would be the cavity linewidth.

Cavity phase shift- It is worth discussing the cavity phase shift across resonance.

As depicted in Figure 3.4, the phase of the transmitted signal shifts by π across the

resonance of the cavity1 which can be represented by,

θ = arctan

[
2

κ
(ωc − ω)

]
ω'ωc−−−→ θ =

2

κ
(ωc − ω), (3.1.3)

symmetrical pieces minimize the adverse effect of imperfections where two pieces are connected since
the surface current doesn’t need to pass between pieces at all. Note the cut-line (magenta dashed
line) in Figure 3.1b.

1The reflected signal acquires a 2π phase shift across the cavity resonance. Does this mean it is
better to use reflection to detect the phase shift?
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which varies almost linearly around the cavity resonance frequency with slope 2/κ

which quantifies the sensitivity to the frequency by measuring the phase of the trans-

mitted (or reflected) signal1.
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Figure 3.4: The cavity phase shift across the resonance: The transmitted signal through

the cavity experiences a π phase shift across the resonance of the cavity. Near resonance, the phase

shift is approximately linear with a slope of 2/κ.

Cavity internal and external quality factors- The external quality factor Qext can

be adjusted by the length of the input and output port pin antennas. Normally, we

have two pins corresponding to the weak port and strong ports. The weak port is used

as an input (qubit manipulation and readout) and usually has ∼ 100 times weaker

coupling to the cavity compared to the strong port. The lengths of the port antennas

determine the coupling to a 50 Ω transmission line, determining the external quality

factor Qext. The internal quality factor (often called unloaded quality factor) has to

do with the losses due to the cavity itself, e.g. absorption of photons by the cavity.

The total cavity quality factor is then,

1

Qtot

=
1

Qint

+
1

Qext

. (3.1.4)

Often, the deliberate coupling to the outside is dominant Qint � Qext. Therefore

the total quality factor is almost equal to the external quality factor. Note, that

Qtot = ωc/κ.

1We will see in Chapter 4 that the cavity phase shift and cavity linewidth come into play for
describing continuous measurement in terms of POVMs.

51



3.2 Qubit

For a careful characterization of the internal quality factor and the input and

output coupling strengths, one can perform reflection measurements on each port

(while the other port is terminated by 50 Ω). By analyzing the amplitude and phase

of the reflected signals, one can obtain both the internal and external quality factors

for the cavity and characterize the coupling strength for each port (see Refs. [74,75]).

3.2 Qubit

In Chapter 2 we studied the Josephson junction and the transmon qubit from a theo-

retical perspective. Here we discuss the fabrication and characterization of Josephson

junctions and transmon circuits.

3.2.1 Transmon fabrication:

Josephson junctions can be fabricated by evaporation of aluminum on a silicon wafer

using an electron beam evaporator which allows for directional evaporation. The

common technique for JJ fabrication is the double-angle evaporation technique which

utilizes the evaporation directionality for fabrication. A typical procedure for the JJ

fabrication includes; spin-coating e-beam resists on a silicon wafer, e-beam lithogra-

phy, development, pre-cleaning, double-angle evaporation, lift-off, and post-cleaning.

e-beam resist- We use a stack of two resists for junction fabrication. The bottom

layer normally is a relatively thick (∼ 1µm) and soft resist (MMA). In contrast, the

top layer is a relatively thin (∼ 300 nm) and hard (e.g. ZEP) resist. The reason for

this choice of resist staking is to achieve a wide undercut which is convenient for clean

lift-off as depicted in Figure 3.5. It also enables for a suspended bridge needed for

junction fabrication (Fig. 3.5c). The resist layers can be coated on the substrate by

spin-coating. The thickness of the layers is controlled by the spinning velocity, the

total time of spinning, and the viscosity of the resist. A typical spin-coating recipe

for MMA/ZEP double stack resist is displayed in Table 3.1.

Electron-beam lithography- We use a 30 keV focused beam of electrons in a

52



3.2 Qubit
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Deposited thin film

Silicon substrate

Soft
resist

Deposited thin film

Silicon substrate

Soft
resist

Deposited thin film
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a b c

Figure 3.5: Double stack e-beam resist: a, With a single layer of resist, it is often difficult to

get small and clean patterns. Mainly because the wall of the resist may also get deposited which

connects top layers to the bottom layers which make it difficult to properly lift-off the resist without

peeling off the actual pattern. b, This issue can be avoided by using two layers of the resist. The

top layer provides sharp edges as a mask and the bottom layer act as a spacer. The proper amount

of undercut aids the liftoff process. c, Moreover, the undercut of the lower resist can be used to

created suspended resist (free-standing bridge) which is used for the JJ fabrication in double angle

evaporation.

Step 1 MMA spin-coat, 3000 rpm, 60 seconds
Step 2 Soft bake for 5 minutes,200◦C
Step 3 ZEP spin-coat, 3000 rpm, 60 seconds
Step 4 Soft bake for 3 minutes,180◦C

Table 3.1: Double-stack e-beam MMA/ZEP resist spin coating recipe

scanning electron microscope (SEM) to pattern the resist. The SEM is controlled by

Nanometer Pattern Generation Software (NPGS). For fine features, we need to have a

good focus of the electron beam. To achieve a good focus, we use gold particles which

are easily detectable in the SEM for in-situ focus calibration1. The transmon pattern

is designed in ‘Design CAD’ software using polygons in different layers2. A simple

transmon pattern design in Design CAD software has been shown in Figure 3.6. Each

layer represented in different color.

We use a higher magnification and lower dosage for finer features. Table 3.2

displays typical focus and dosage for each layers.

1We drop gold particles close to the edge of the sample and try to get the best focus at each
point. NPGS uses the focus point data and extrapolates the focus settings for the entire chip. One
can also use single point focus and move the beam by ∼1000 µm and write the pattern with the
same focus settings. Ideally, for the transmon junction, one should be able to distinguish ∼5 nm
gold particles at each focus point.

2NPGS allows for different expose/focus setting for each layer. Therefore, with a multi-layer
pattern, we can optimize the exposure time.
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400 µm

40
0 
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200 nm

200 µm
Layer 0Layer 3

Layer 1,2

Figure 3.6: A simple design for transmon qubit: A qubit design consists of few polygons in

different layers in DesignCAD software. The free-standing bridge design for a JJ and few micrometer

extremities are shown in red (Layer 0). The connector lines in the two steps (Layer 1,2) shown in

blue and capacitor pads (Layer 3) in green. The corresponding e-beam dosage for each layer is

displayed in Table 3.2.

Layer # smallest feature size SEM magnification e-beam current
Layer 0 < 200 nm 1300X 30 pA
Layer 1 ∼ 1 µm 600X 220 pA
Layer 2 ∼ 10 µm 200X 600 pA
Layer 3 >100 µm 50X 10000 PA

Table 3.2: The NPGS settings for s 30 keV electron beam.

Resist development and pre-cleaning- The development recipe has three

steps. We use an ice bath to bring the developer’s temperature down to ∼ 0◦C to

slow down the development process. Figure 3.7 demonstrates the development recipe.

After the development we may use ‘oxygen plasma cleaning’ to further remove resist

residue from the substrate surface.

Electron-beam evaporation- We use a double angle evaporation method to

fabricate JJs as depicted in Figure 3.8. The transmon capacitor pads are also fabri-

cated during this process. The thickness of the aluminum film is normally 30 nm for

the lower layer and 60 nm for the top layer and there is ∼ 1 nm thick of aluminum

oxide layer grown between two layers.

Lift-off and post-cleaning- We use acetone in temperature T ∼ 60◦C for

40 minutes to dissolve the resist which leaves behind the transmon circuit on the

substrate. Figure 3.9 shows the SEM image of the final transmon circuit and the JJ.
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Ice

ZEP developer
(ZED-520A)

MMA developer
(MIBK:IPA::1:3)

Step 1 Step 2 Step 3

IPA

30 sec, blow dry after
15 sec 

Blow dry after

160 sec 
Blow dry after

Before

After

Figure 3.7: e-beam resist development recipe: Step 1, ZEP developer in ice bath, wait for

developer to cool down to T∼ 1◦C. Plunge the sample into the beaker for 30 seconds, then blow

dry immediately. Step 2, MMA developer for 160 seconds and blow dry afterward. Step 3, Rinse

with IPA for 15 seconds. The left panel shows the JJ area in the simple transmon design (Fig. 3.6)

before and after development. Note the undercut and the suspended bridge in the middle.

3.2.2 JJ characterization

For the qubit design, we have a couple of considerations. First, the qubit frequency

and its anharmonicity need to be in the proper range. We would like to have anhar-

monicity somewhere in the range 200 − 300 MHz. According to Equation 2.2.12b,

the anharmonicity is determined by the energy associated to the shunted capacitor,

EC = e2

2C
. This capacitance mostly comes from the transmon pads. Therefore EC

can be set based on the design of the transmon pads (the size and separation of pads).

Exercise 1: What is the capacitance between two sheets of perfect conductors sep-

arated in the horizontal orientation by 2a in a homogeneous medium. What if the

medium has two different dielectric constants on each side as depicted?

2a
b

L

a-a

ε1

ε2

Using HFSS simulation, the capacitance of our normal design ( see Fig. 3.9a, pad

size 400 × 400 µm separated by 200 µm, with connection arms) is about C = 0.057

pF. The contribution of CJ in negligible (estimated to be about 0.35 fF for 200× 100
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1st angle deposition

Silicon substrate

Oxidation

Silicon substrate

Silicon substrate

2nd angle deposition

JJ Silicon substrate
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c d
Lift off

JJ

Figure 3.8: Double-angle evaporation and Josephson junction fabrication: Considering

the indicated cross-section of the freestanding bridge in Figure 3.5 we use double angle evaporation

to fabricate the JJ. a, The first layer of aluminum evaporation is about 30 nm. b, Introducing the

oxygen mixture to form a thin layer of aluminum oxide ∼ 1 nm as the insulator. c, The second layer

of aluminum evaporation is about 60 nm at the opposite angle normal to the substrate surface. d,

Removing the resists and the deposited aluminum in a lift-off process.

nm JJ area, assuming oxide layer thickness ∼ 1 nm).

For a certain qubit design EC is fixed and for a certain qubit frequency ωq =
√

8EJEc − Ec, the only knob is the Josephson energy EJ = ~
2e
Ic, where the criti-

cal current is a function of the junction area and the thickness of the oxide layer,

Ic ∝ area/oxide thickness. Therefore, having the right critical current is critical. For-

tunately, there is a very useful relationship between the resistance of a JJ at room

temperature Rn and the JJ critical current,

Ic =
π∆(0)

2eRn

, (3.2.1)

where ∆(0) ∼ 170 µeV is the aluminum superconducting energy gap at zero tempera-

ture1. The normal resistance of the junction Rn can be measured by sending a probe

1Basically the gap energy depends on the temperature, ∆(T ) = ∆(0) tanh[ ∆(T )
2kBT

]. However since
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a b

Figure 3.9: Qubit pattern SEM.

1mm

Figure 3.10: The HFSS simulation for the transmon shunting capacitor: Using HFSS, the

shunting capacitance is calculated to be C = 0.057 pF (for the simple design shown in Figure 3.6)

which results in EJ ∼ 340 MHz.

current Iprob through the junction and reading the voltage Vprobe across the junction.

With this room temperature resistance measurement, and with our prior knowledge

about the EC (either from previous transmon measurements or simulation) we can es-

timate the frequency of the qubit before the cool-down. The estimation for transmon

energy transition would be,

E01 =

√
h∆(0)

CRn

− e2

2C

f = ω01/(2π) =

√
∆(0)

hCRn

− e2

2hC
, (3.2.2)

the qubit will be operated at temperature close to zero, T � Tc, therefore with good approximation
∆(T ) ' ∆(0).
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3.3 Qubit-cavity system characterization

where h is Planck’s constant1. For example, in order to have qubit frequency around

ω01/(2π) ∼ 6 GHz with our normal transmon geometry (C ∼ 0.057 pF see Fig. 3.10),

the critical current should be Ic ∼ 0.015 µA (Rn = 18 kΩ).

3.3 Qubit-cavity system characterization

In this section, we discuss a typical qubit characterization procedure. Here are the

typical steps before the cool-down:

• Josephson junction room temperature resistance probe,

• Choosing a proper cavity and weak/strong pin length adjustment.

• The qubit placement inside the cavity.

• Characterizing the cavity transmission (qubit chip included).

Then we put the cavity-qubit system inside the fridge and cool them down. The

minimum circuitry inside the fridge is depicted in Figure 3.11. The main qubit char-

acterization includes five basic experiments.

• One-tone spectroscopy, or “punch-out”.

• Two-tone spectroscopy.

• Rabi measurement.

• T1 measurement.

• Ramsey measurement (T ∗2 ).

The first two experiments are in the frequency domain which means we only look

at scattering parameters of the system for characterization. However, the last three

experiments are measured in the time domain and involve preparation and readout

of the qubit state. In the following sections, we discuss how these are performed in

the lab and what we learn from each experiment in more detail.

1Here, we would rather ~ and treat it carefully, since EC doesn’t explicitly depend on ~.
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Figure 3.11: The minimum experimental setup for basic qubit characterization: The

input lines can be used for qubit manipulation signals and cavity probe signals. Note that we don’t

get any signal back from input lines (because of ∼ 2× 50 dB of attenuation). However, because we

have a circulator connected to the strong port, the reflection off of the strong port can be measured

by sending the signal from the input #2 and receiving it back from the output. We will refer to the

fridge circuitry (depicted in left) by the short version (depicted in right) throughout the thesis.

3.3.1 One-tone spectroscopy: “punch-out”

The first step is to check if the qubit is “alive” or not. For that, we need to check

whether the cavity frequency shifts based on the state of the qubit. Of course, at this

point, we don’t know the qubit frequency to carefully manipulate it. Fortunately,

we don’t need it to know what is the qubit frequency to check if it is there. One

way to think about that is if the qubit is coupled to the cavity, the cavity becomes

hybridized with the qubit and we should be able to detect a little bit of nonlinearity

in the cavity.

All we need to do is compare the transmission (or reflection) of the cavity in low

power versus high-power and see if the frequency of the cavity shifts. When we probe

the cavity with very low power we are pretty sure that qubit is in its ground state1.

1If you have not convinced, consider that we only sweep the VNA frequency across the cavity
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3.3 Qubit-cavity system characterization

Therefore we measure the resonance frequency of cavity when qubit is in the ground

state. Next, we turn up the power of the VNA to a very high power. In this case,

we send a huge amount of photons into the cavity which essentially overwhelms the

qubit. Basically, the driving amplitude is so high that the induced current exceeds the

critical current of the junction. Practically, in such a high power regime, we measure

the bare cavity frequency. Now if there is a working qubit inside the cavity we can

see the cavity frequency shift and we say that the cavity “punched out”. There is

VNA
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Bare qubit
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Figure 3.12: The “punch-out” measurement: The low (high) power transmission of the cavity
indicated by the blue (red) trace. For low power probe signal, the qubit remains in the ground state
and we essentially measure the dressed cavity transition indicated by the blue double-sided arrow.
In high power case, the is qubit “washed out” and we essentially measure the bare cavity transition
as depicted by the red double-sided arrow.

one more piece of information we can get from the punch-out measurement. If the

high-power frequency shifts to a lower frequency, we infer that qubit frequency is

below the cavity and vise versa. A bigger shift means that the cavity and qubit are

more strongly coupled1. One can consider the phase shift of the cavity resonance as

a rough estimation of χ = g2/∆ but a careful characterization of χ can be done with

time domain measurements.

resonance frequency so that VNA span is ∼ κ. Considering the avoided crossing picture and the
fact that g � κ, therefore, the qubit couldn’t be in this region. So we are pretty much sure that we
are not driving the qubit in this situation.

1Note, the placement of the qubit inside the cavity also affects the coupling and consequently
the punch-out shift.
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3.3 Qubit-cavity system characterization

If the qubit bare frequency happens to be very close to the cavity bare frequency

∆ < g, then the qubit and cavity may enter the polariton regime and you may clearly

see two peaks (separated by ∼ 2g) in the cavity at low power transmission1. If the

high power peak (bare cavity) is exactly on the middle of low-power peaks, then qubit

and cavity are exactly on-resonance and the separation is exactly2 2g.

3.3.2 Two-tone spectroscopy

Knowing that the qubit is working, the next step is to find the qubit frequency. The

idea is to continuously send a weak microwave signal to the cavity at the low power

cavity resonance—the cavity frequency when the qubit is in the ground state—and

probe the cavity transmission. Therefore, we constantly receive a high transmission

signal because we probe at the resonance of the cavity. While this first tone is on, we

start sending another microwave signal (labeled as BNC3) into the cavity. We sweep

the frequency of the probe tone BNC and monitor the cavity transmission as depicted

in Figure 3.13. During the sweep, once the BNC frequency hits the qubit transition

frequency (BNC= ωq), it excites the qubit4 therefore the state of the qubit is no longer

in ground state (on average) and that causes a shift in the cavity frequency5. Now,

because the VNA frequency (which is fixed) is no longer resonant with the cavity, the

transmitted power drops6 as depicted in Figure 3.13b. If we increase the BNC signal

amplitude (by ∼ 10 dBm), we can also see a second dip at a slightly lower frequency.

1In this case you are directly resolving polariton qubit.
2Therefore, one can use a tunable qubit to directly measure the effective coupling strength g.
3‘BNC’ is simply the name of the generator we normally use in the lab.
4Actually the BNC signal drives Rabi oscillations on the qubit. We saw in previous chapter

(Eq. 2.4.17) that the qubit reaches maximum excitation (Pe = 1) only if the drive is on-resonance
with the qubit.

5Remember interaction Hamiltonian in the dispersive regime (Eq. 2.3.20) which results in the
qubit-state-dependent frequency for the cavity.

6If BNC hits the cavity frequency (which is not shown here) we may also see a dip in transmission.
However, we never mistake that with the qubit dip because that happens exactly at the VNA
frequency. This dip could be due to some nonlinearity induced into the cavity but it is more likely
to be the amplification chain saturation. Which means, when we add the relatively high power BNC
signal on top of VNA and both highly transmitted to amplifiers, the amplifiers may be saturated
and this effect may show up as a dip in the VNA trace.
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Figure 3.13: Two-tone spectroscopy: a, The schematics for experimental setup for two-tone

spectroscopy. A constant fixed frequency signal from the VNA at the cavity low power probes the

cavity while a signal from the BNC sweeps across different frequencies from 4 to 6 GHz. b, The

cavity transmission versus BNC frequency shows a dip at qubit frequency. c, With higher power

for BNC the two-photon transition is also detectable (red trace). Note that the qubit transition is

power broadened.

This dip corresponds to the process by which two photons of drive excited the qubit

from the ground state to second excited state1, |g〉 → |f〉 as depicted in Figure 3.13c.

The second dip gives a useful piece of information which allows us to simply calculate

the transmon anharmonicity, ωeg −ωfe = 2(ω1−ω2) ' 2(5.2− 5.05) GHz = 300 MHz

in this case.

We just discussed spectroscopy in transmission mode. Equivalently, we may use

reflection off the cavity for spectroscopy2. In reflection, most of the signal is reflected

from the cavity, therefore there is not much information in the magnitude of the

signal. But, we can look at the phase of the reflected signal which is sensitive to the

1Transition from |g〉 → |f〉 is a two-photon process which is less probable compared to a one-
photon process. Therefore a higher power is needed to drive that transition.

2The are a couple of reasons we may want to use reflection for spectroscopy. First, we might
have a limited number of input lines so might not have a weak port for the cavity. Or, sometimes we
have low signal-to-noise in transmission and we might have a better chance looking at the reflected
phase. Also, we sometime may not have enough power from the weak port and we can use reflection
port which has much stronger coupling to the cavity.
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cavity resonance frequency1.

3.3.3 Time domain measurement: basics

In this section, we will discuss the time domain measurement of the qubit. Time do-

main measurements require initialization, preparation and manipulation of the qubit

state, and readout. In what follows, we briefly discuss these three steps.

Initialization– In our case the initialization is quite simple. The lifetime of the

system is on the order of tens of microseconds, therefore all we need to do is leave

the qubit for some amount of time (∼100 microseconds) to make sure it is in ground

state with fairly high fidelity2.

Preparation/Manipulation– Unlike the spectroscopy measurements where we

constantly send signals and measure the scattering parameters, in time domain mea-

surements we need to carefully send signals to the system with accurate timing and

proper duration. This means we need to be able to switch the signals on and off with

reasonable accuracy. We use analog RF I/Q mixers to perform switching. Mixers

can be used for modulating and demodulating. For switching purposes, we use mixers

as a modulator3. As depicted in Figure 3.14a, a typical I/Q mixer, ideally, multiplies

the LO signal by signals in port I and Q with 90-degree phase difference4. Therefore

one can use an I/Q mixer in modulation mode to switch a continuous signal. For

that, we send the continuous signal to LO port and we switch it by a DC pulse on

port I or Q. The RF port output is only a segment of the continuous signal LO,

as gated by the DC pulses depicted in Figure 3.14b. This technique gives us enough

control to prepare and manipulate the qubit via Rabi oscillations of the qubit. For

1In spectroscopy by reflection you may get a dip or peak depend on the delay offset of the VNA.
2In our case this fidelity is about 97% which depends on the effective temperature of the system.

One may calculate the probability of thermal excitations for the qubit P thermal
e = exp(−~ω/KBT )

given the temperature of the fridge T and energy of the qubit ωq. However, the effective temperature
for our system is slightly higher than the physical temperature of the fridge as we normally measure
P thermal
e = 0.03 at 10 mK.

3We will see that for readout purposes we use mixers as a demodulator.
4We will see later that this 90-degree phase difference has a very important role in the qubit

preparation and tomography.
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Figure 3.14: I/Q mixer: a, An I/Q mixer can be used as a modulator. Note that the outputs

correspond to I and Q pulses are out of phase by 90 degrees. b, The DC pulse in I/Q ports can be

used to control (switch) a continuous signal. The blue (red) DC pulse is the input for port I (port

Q) and its corresponding output is in-phase (90 out-of-phase) with respect to the local oscillator.

example, If we choose the LO frequency to be the qubit frequency then by applying

a DC pulse to the port I, the pulse rotates the qubit. Thus by choosing a proper

duration and amplitude of the DC pulse, we can prepare the qubit in the excited

state or a superposition state. Figure 3.15 demonstrates qubit preparations for the

excited state and superposition states where we define pulses in port I (port Q) to

rotate the qubit along x-axis (y-axis)1.

Single sideband modulation– In practice, using DC pulses in I/Q ports to manip-

ulate the qubit has two drawbacks due to the mixer nonlinearity. First, the mixer

may not exactly provide 90-degree phase difference between I/Q ports which is not

convenient and requires careful corrections for tomography results. The second draw-

back is that even when we do not apply a pulse to the I/Q ports there may be some

signal leakage from the LO port to the RF port. This leakage can be minimized by

1Of course there is no preferred direction for the qubit as x and y. However, the first pulse (first
rotation) in each run of the experiment sets a clock reference, determining the rotating frame of the
coherent drive. Subsequent signals will rotate the qubit along the same axis if it is in-phase with
the first pulse and will rotate in a different axis if it is out-of-phase with respect to the first rotation
pulse.
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Figure 3.15: Qubit rotation pulses: Pulses in the I,Q ports results in rotation in x, y directions

in the Bloch sphere. a, A π/2 pulse in port I rotates the qubit along the x direction and prepares a

superposition state along y axis. b, π pulse prepares the qubit in the excited state. c, A π/2 pulse

on Q rotates the qubit around the y axis and prepares the qubit in a superposition along x axis.

adding DC offsets to the I and Q inputs. But even very small leakage constantly

drives the qubit and causes imperfections in the experiment. One way around this

issue is to employ a single sideband modulation (SSB) technique for the qubit pulses.

The idea is to set LO frequency to be ωq ± ΩSSB where ΩSSB ∼ 100-500 MHz is

the sideband frequency. Then, for I/Q ports we apply signals with the frequency of

ΩSSB with ±90 degrees out-of-phase to up-convert (down-convert) the LO to qubit

frequency as depicted in Figure 3.16 for the up-converting case. SSB solves both

drawbacks we had with DC pulsing technique. In this case, we don’t need to worry

about “mixer non-orthogonality” because the phase of the output pulse is set by the

phase of the I/Q signal1. Therefore, the phase stability of the arbitrary waveform

1The mixer non-orthogonality, in this case, may cause some issues with carrier leakage or leakages
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Figure 3.16: Single Sideband Modulation (SSB): By up-converting the LO signal by ΩSSB

the mixer outputs at qubit frequency. The relative phase of SSB pulses determines the phase of the

output signal thus the direction of the rotation for the qubit.

generator (AWG) sets our rotation axis accuracy, which is normally good enough for

sideband frequencies of a few hundred MHz. As it is shown in Figure 3.16 the first

pulses in I/Q port defines the preferred axis (we defined this to be the x axis). The

phase of subsequent pulses referenced by AWG determines the rotation axis as it is

shown for 90 out-of-phase pulse which results in a qubit rotation along y axis.

Moreover, we don’t need to worry about small leakage of LO to RF because the

LO frequency is off-resonant by ΩSSB and won’t disturb the qubit.

Readout– We discussed how to manipulate the qubit state by sending signals

with frequency ωq into the system to rotate the qubit. Here we discuss how to

actually measure the qubit state by sending a signal at the cavity frequency ωc. As

we discussed in the previous chapter, the frequency of the cavity depends on the state

of the qubit. Therefore, the natural way to detect the state of the qubit is to measure

the phase shift across the cavity by using homodyne measurement. We take two copies

of a coherent signal that has the frequency of the cavity1) and whenever we decide

in opposite sideband and higher harmonics. But that can be compensated by adjusting the phase
in AWG pulses.

1This frequency is the cavity frequency at low power meaning the dressed-cavity frequency. When
we use the cavity dressed state frequency for readout we usually need to send it at low-power and
this readout is called “low-power readout”. Often the fidelity of low-power readout is not very good
unless we use a parametric amplifier. However, one can also use cavity bare-frequency and again
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to readout the state of the qubit, we send one of the copies to the cavity and take

the transmitted (reflected) signal back and demodulate it with the other copy1. The

demodulation results in a DC signal corresponding to the phase difference between

two copies. By reading the DC signal we can infer whether the cavity frequency shifted

up or down. Figure 3.17 demonstrates the readout process. The phase φ0 accounts for

ωc
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Figure 3.17: Qubit state readout, homophone detection: The qubit-state-dependent phase

shift is detected by comparing the signal which passes the cavity with the reference signal.

the fixed phase difference between two signals due to the different path length and can

be set to zero by adding a phase shifter (φ0 = 0). Therefore the demodulation gives

I = cos(φq) and Q = sin(φq). For most practical situations the phase shift is small

cos(φq) ' 1, and therefore the phase shift (information about qubit state) is encoded

in only in one quadrature of the reflected signal Q = sin(φq) ' φq. The entire readout

process can be simply represented in a phasor diagram (see Figure 3.18). In order

to measure the qubit state, we need to repeat the experiment N times (N > 100)

and each time we detect the phase shift by a value in the Q quadrature. For positive

(negative) values we assign −1 (+1), indicating that we have found the qubit in the

excited (ground) state. After repeating the experiment N times, we gather these

see the phase shift and detect the state of the qubit. This method essentially uses the nonlinearity
induced by the qubit-cavity interaction and requires more power. This method is called high-power
readout [76] and does not require a parametric amplifier.

1Basically, the idea is to make a “microwave interferometer” except here instead of adding signals
together we multiply them together.
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Figure 3.18: Readout in phase space representation: A coherent signal with a minimum

uncertainty in each quadrature probes the cavity whose frequency shifts by ±χ depends on the state

of the qubit. The transmitted (reflected) signal acquires a state-dependent-phase shift ±2χ/κ as

discussed in Section 3.1.

statistics and report the population for ground and excited state as

Pg =
N+

N+ +N−
±
√
N+N−
N3

, Pe = 1− Pg, (3.3.1)

where N± is the number of the experiments where we found the qubit in ground

(excited) state inferred by positive (negative) values for Q. The error
√

(N+N−)/N3

is calculated based on binomial error.

3.3.4 Rabi measurements

Now we are ready to discuss Rabi measurements. Once we know the qubit frequency

from spectroscopy, then the first experiment in the time domain is to see Rabi os-

cillation, since this experiment doesn’t require any pulse calibration. The idea is to

send a qubit signal (with duration t) to the system and right after that send the

cavity readout pulse and readout the state of the qubit. Normally, we repeat this

experiment for different durations1 t and for each timestep, we repeat the experiment

N times. Figure 3.19 summarizes the Rabi experiment setup and procedure. As we

discussed in the previous section, in order to control the qubit signal, we use a mixer

as a switch which is controlled by DC pulses from an arbitrary waveform generator

(AWG). Another mixer is used to control the cavity with the same technique to per-

1Normally we sweep t from 0 to 100 ns in 100 steps. In each step the experiment is repeated
N ∼ 200 times to have a reasonably small binomial error so we can see clear Rabi oscillations.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and

the typical room temperature circuitry are shown.

form homodyne measurement on the cavity and detect the phase shift to readout the

state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The reason we use

a rather short Rabi time (100-200 ns) for Rabi measurement is because we will use

this Rabi sequence to calibrate preparation pulses (π-pulse and π/2-pulse) which are

normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate π-pulses, we first need to make sure that the qubit frequency

is accurate and oscillations are on-resonance with the qubit. One way to check this

is to sweep the qubit frequency while performing Rabi oscillation measurements.

The resulting 2D color plot is called “chevron plot”. By fitting a sine-wave to the

oscillations, one can find the best estimate of the minimum oscillation frequency

1Moreover it is wise to start off by a short sequence for the experiment because we might have
a qubit with short decoherence times or there might be some calibration issue in the system which
could make it hard to see the qubit evolution at longer qubit evolution times.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for different qubit frequencies we obtain the “chevron plot” which can be

used to calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency.

As we discussed in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast

for Rabi oscillations which happens when the qubit pulse is on-resonance with qubit frequency.

which is the qubit frequency1. Later we will see that with Ramsey measurement we

can have a better estimation of the qubit frequency. After doing this calibration, we

know the power, frequency and the duration for π-pulse and π/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure

the lifetime of the qubit we do the following sequence: 1) We prepare the qubit in

the excited state by sending a π-pulse to the qubit. 2) We wait for time t, then 3)

we measure the qubit state by sending readout pulse to the cavity. Therefore we use

the same setup that we had in for Rabi oscillation measurements (see Figure 3.19

for schematics) but we use a slightly different sequence from the AWG. Figure 3.21

summarizes the sequence and a result we get from a T1 measurement.

1Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation.
Moreover, one might think that with a stronger drive we might also stark shift the qubit. So, one
would think in order to find qubit frequency it is better to have longer Rabi sequence and slower
Rabi oscillation to improve precision. But since our main concern is π-pulse calibration, it makes
sense to do Rabi spectroscopy (chevron plot) with actual power that we are going to use for the
π-pulses.
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Figure 3.21: T1 Measurement: The T1 measurement sequence (consider the experimental setup

depicted in Figure 3.19) and a typical result. The qubit lifetime (relaxation time T1) can be measured

by fitting the result to an exponential decay function.

3.3.6 Ramsey Measurement (T ∗2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T ∗2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition

state 1/
√

2(|g〉+ i|e〉) by applying a π/2-pulse to the qubit. 2) Wait for a time, then t

3) apply another π/2-pulse to bring back the qubit to ground state1 and immediately

4) perform readout. The sequence for Ramsey measurement and the result has been

shown in fig 3.22.

3.3.7 Full state tomography

The qubit readout projects the state of the qubit along z axis. Therefore one can

determine the expectation value for σz operator as,

z = 〈σz〉 = Pg − Pe =
N+ −N−
N+ +N−

± 2

√
N+N−
N3

. (3.3.2)

1If the last π/2-pulse has the same phase as the first π/2-pulse we will put the qubit in the
excited state. If we do negative pulse (opposite rotation) we bring the qubit back to ground state.
Either way is fine, all we need is to bring the qubit to an eigenstate.
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Figure 3.22: Ramsey measurement: The sequence for the Ramsey measurement (consider

the experimental setup depicted in Figure 3.19) and the typical Ramsey result. The blue (red)

curve is when the pulses are on-resonance (0.3 MHz off-resonance) with the qubit frequency. The

dephasing time T ∗2 can be determined by fitting the data to exponentially decaying sine function

F (t) = A+B sin(2π∆dt+ φ) exp(t/T ∗2 ).

Similarly, one can determine the expectation value for σx and σy as well by apply-

ing a 90 degree rotation pulse along y and x respectively right before the readout1.

Therefore, a full tomography sequence has 3 copy of each sequence with no rotation

(z), π/2-rotation in phase (x), and π/2-rotation 90 degree out phase (y) right before

the readout as depicted in figure 3.23. The expectation values for σx and σy, can be

AWG Ch1

AWG Ch3
Readout z

π/2-pulse (phase 0)

= Readout x

AWG Ch1

AWG Ch3
Readout z

π/2-pulse (phase 90)

= Readout y

Figure 3.23: Full state tomography readout pulses: A readout pulse without any tomographic

pulse gives the expectation value for σz since it projects the qubit in ground or excited state. A

readout pulse augmented by tomographic pulse can be used to measure the expectation values for

σx, σy or any arbitrary basis in the Bloch sphere.

1This is exactly what we do in Ramsey where we prepare the qubit in x and measure 〈x〉.
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determined in a same way,

x = 〈σx〉 = P (x)
g − P (x)

e =
N+ −N−
N+ +N−

(3.3.3)

y = 〈σy〉 = P (y)
g − P (y)

e =
N+ −N−
N+ +N−

, (3.3.4)

where superscripts (x) and (y) indicate that the readout has in-phase and out-of-phase

rotation pulse respectively.

3.4 Josephson Parametric Amplifier

The signals that carry quantum information at cryogenic temperature are feeble mi-

crowave signals. Especially for weak measurement, these signals often contain ∼ 1

photon per microsecond or less on average. Therefore measurement signals need to

be amplified before processing at room temperature where they would otherwise be

contaminated by thermal noise. Amplification is essential and often multiple steps of

amplification are needed. However, amplifiers add some noise to the signal at each

step of amplification. The added noise is not just a technical subtlety but it is rather

a fundamental property of quantum mechanics [77].

In this section I follow the discussion in Ref. [77] and briefly discuss the Joseph-

son parametric amplifier and phase sensitive amplification. I will try to connect the

discussion to the previous chapters and add some points from the experimental per-

spective. For a detailed study of noise and amplification see the nice discussions in

Ref. [77].

3.4.1 Classical nonlinear oscillators

Similar to the transmon circuit discussed in Chapter 2, the Josephson parametric

amplifier (JPA) is a nonlinear oscillator except that the critical current is much higher
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for a JPA1 compared to the transmon. This means that for JPA there are many more

energy levels bound in the potential. Moreover, a higher critical current means a

weaker nonlinearity. Therefore a JPA can be treated classically as an oscillator which

has a weak nonlinearity. Figure 3.24 shows the schematic for a JPA where we include

the current source and corresponding impedance Z0 to drive (pump) the JPA2. For

Z0CLJ I(t)
iJ

iC iZ

Figure 3.24: JPA Schematic: A Josephson parametric amplifier can be considered as a nonlinear

LC oscillator (shaded region) connected to a current source via impedance Z0 .

the currents flowing in the circuit we have,

iJ + iC + iZ = I(t) (3.4.1a)

I0 sin(δ) + CV̇ +
V

Z0

= I(t) (3.4.1b)

V=VJ= Φ
2π
δ̇

−−−−−−→ I0 sin(δ) + C
Φ0

2π
δ̈ +

Φ0

2πZ0

δ̇ = I(t), (3.4.1c)

where we use Josephson relations for iJ and V which is the voltage across the compo-

nents3. We drive the JPA with a coherent classical signal I(t) = Ip cos(ωp + φp) and

may assume Ip < I0 which insures that iJ < I0. However, we are interested to the

regime where the iJ � I0 which means the δ is small enough so that we can expand

1Typically I
(JPA)
0 ∼ 10I

(Transmon)
0 , (EJ/Ec)

(JPA) = 100(EJ/Ec)
(Transmon).

2Remember, we drive the transmon through the coupling between transmon electric dipole and
the electric field. Here we directly drive the JPA by connecting it to a current source via an effective
impedance Z0.

3The voltage across the parallel components are equal, we substitute its value by the voltage
across the JJ.
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the sin(δ) to up to order δ3,

I0(δ − δ3/6) + C
Φ0

2π
δ̈ +

Φ0

2πZ0

δ̇ = Ip cos(ωp + φp) (3.4.2a)

→ δ̈ + 2Γδ̇ + ω2
0(δ − δ3/6) = ω2

0

Ip
I0

cos(ωp + φp), (3.4.2b)

where ω0 =
√

2πI0
CΦ0

is the natural frequency1 of the JPA resonator (shaded region in

Figure 3.24). The parameter Γ = 1/(2CZ0) accounts for damping of the resonator

due to the coupling to the Z0.

The Equation (3.4.2)b is the well-known Duffing Equation which appears in many

nonlinear situations ranging from the pendulum to harmonic frequency generation

in nonlinear optics. There are variety of methods for solving the Equation (3.4.2)b.

Here I follow the method in Ref [77].

We set the phase of the pump as a reference φp = 0 and consider the solution for

δ to have both components; in-phase and out-of-phase with the pump. Therefore we

use the following ansatz,

δ = δ0 cos(ωp + θ) = δ‖ cos(ωpt) + δ⊥ sin(ωpt), (3.4.3)

where the δ‖(δ⊥) is the amplitude of in-phase (out-of-phase) “oscillations” in the JPA

1We may call this the “unloaded” frequency of the JPA when it is disconnected from load Z0,
or Z0 →∞.
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circuit1 By plugging the ansatz (3.4.3) into (3.4.2)b, we have

(ω2
0 − ω2

p)
[
δ‖ cos(ωpt) + δ⊥ sin(ωpt)

]
+2Γ

[
ω0δ⊥ cos(ωpt)− ω0δ‖ sin(ωpt)

]
−ω2

0/6
[
δ3
‖ cos3(ωpt) + δ3

⊥ sin3(ωpt)
]

−ω2
0/2
[
δ2
‖δ⊥ cos2(ωpt) sin(ωpt) + δ‖δ

2
⊥ cos(ωpt) sin2(ωpt)

]
= ω2

0Id/I0 cos(ωpt). (3.4.4)

Now we apply the RWA for fast oscillating terms2 to obtain the following equations,

(ω2
0 − ω2

p)δ‖ + 2Γω0δ⊥ − ω2
0/8
[
δ3
‖ + δ‖δ

2
⊥)
]

= ω2
0Ip/I0 (3.4.5)

(ω2
0 − ω2

p)δ⊥ − 2Γω0δ‖ − ω2
0/8
[
δ3
⊥ + δ⊥δ

2
‖
]

= 0. (3.4.6)

One can rearrange the above equations in terms of the quality factor of the resonator

Q = ω0Z0C and dimensionless detuning ∆̃ = 2Q(1− ωp/ω0),

δ⊥ + δ‖

[
∆̃− Q

8
(δ2
‖ + δ2

⊥)

]
= QIp/I0 (3.4.7a)

−δ‖ + δ⊥

[
∆̃− Q

8
(δ2
‖ + δ2

⊥)

]
= 0. (3.4.7b)

Figure 3.25 shows the numerical solution to Equation 3.4.7 for δ2
0 and θ versus di-

mensionless detuning ∆̃. Note, δ2
0 = δ2

⊥ + δ2
‖, θ = atan[δ⊥/δ‖]. Unlike in a linear

resonator (e.g. a bare cavity3) where the frequency is independent of the power, for

nonlinear resonator the frequency decreases for higher driving power (Fig. 3.25).

After certain power, the JPA bifurcates signaling that the system has more than

one steady state. For amplification purposes, the “sweet spot” is right before this

1Note that δ is ‘the difference between the phases of the superconducting order parameter on
each side of the junction’. But it easily parameterizes the current and voltage in the circuit as we
shall see in Equation (3.4.1). So we may simply refer to it as the “oscillation” in the circuit for now.

2For example; cos3(ωpt)→ 3/4 cos(ωpt) and cos2(ωpt) sin(ωpt)→ 1/4 sin(ωpt).
3For a cavity which hybridized with a qubit, you may see similar nonlinear behavior in the

punch-out experiment during the transition between low to high power.
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Figure 3.25: Duffing resonator response: a. Solutions to Equations 3.4.7. a The resonance

frequency decreases by increasing the power and ultimately the system enters the bi-stable regime

where there are more that one solution to the Equation 3.4.7. b, This bifurcation behavior also can

be seen in the phase response of the oscillator. Right before the bifurcation, the system exhibits

sharp response respect to the detuning and power. The sensitivity for power is more clearly shown

in Figure 3.26

bifurcation where the system exhibits maximum sensitivity as manifest by a sharp

slope in phase.

In order to understand how an amplifier works at the sweet spot, let’s look at

the phase θ versus deriving power Ip/I0 as depicted in Figure 3.26. Figure 3.26 is a
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Figure 3.26: JPA transfer function: The change in phase of the oscillations in JPA versus the

power of the drive. This curve is a cross section from Figure 3.25b at ∆̃ = 1.72 (red dashed line),

shwing a sharp response of the phase to the small changes in the power which is the essence of the

JPA amplification.

cross section of Figure 3.25b at ∆̃ = 1.72 (red dashed line). The fact that the phase

response is also sharp with respect to the small change in the power right before the
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bifurcation power is the essence of JPA amplification1.

Exercise 2: Use the input-output theory and show that the similar sensitivity man-

ifested in the reflected signal off of the JPA. Show that the phase of the reflected

signal dramatically changes by a small change in the signal power.

3.4.2 Paramp operation

Now we turn to connect our understanding of the JPA and its transfer function to the

actual situation that happens in the experiment. Figure 3.27 displays the minimum

circuitry inside the fridge when we add the paramp in the line.

We use an input line to send the pump signal to the paramp. Ideally, the pump

(which is relatively strong coherent signal) should be isolated from the qubit system.

A directional coupler and a circulator (the circulator C1 in Figure 3.27) prevent the

pump signal from entering the cavity2. The other circulator (C2 in Figure 3.27)

directs the incoming pump signal to the paramp and sends the reflected signal to the

output line.

Paramp calibration: single pump

The first step in the paramp setup is to find the paramp resonance frequency and

tune it to the frequency where we wanted to operate the paramp. This can be

done by looking at the phase of the reflection tone off of the paramp as depicted in

Figure 3.28a3. Normally the phase response of the paramp shifts down by increasing

the probe tone power (which somewhat acts as a pump as well).

After we convince ourselves that we have a resonance frequency of the paramp

1Note that θ here is the phase of the oscillation inside the resonator. Using the input-output
relation, one can show that the similar behavior also manifested at the phase of the reflected signal
from the resonator (e.g see chapter 3 in Ref. [78]).

2Practically, sometimes multiple circulators are used for more isolation.
3The nonlinear response of the paramp helps to find its resonance. Similar to the punch out

experiment, one would see a shift in the phase resonance by increasing the pump power.
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Figure 3.27: The minimum experimental measurement setup with paramp: The input

lines can be used for qubit manipulation signals and cavity probe signals. An additional input line

is dedicated to the paramp pump. The pump signal passes by a directional coupler and circulator

to reach the paramp and the reflected signal (which have acquired a phase shift) goes to the output

line. A DC line also is used to flux bias the paramp.

at the right place, we start pumping that with a separate signal generator and use

VNA as a weak signal probe as depicted in Figure 3.28b. By increasing the power of

the pump and adjusting the frequency of the pump and several back-and-forths we

should be able to see the gain profile. Once we see some gain we may tweak the pump

power and frequency and even the flux bias to optimize the gain profile. Normally

a symmetrical Lorentzian shape gain profile (20 dB peak/ 100 MHz bandwidth) is

desirable as depicted by the dashed line in Figure 3.28b.

Paramp calibration: double pump

The single pump paramp operation is not the best way to pump the paramp for

practical reasons. Mainly because the isolation provided by the directional coupler
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Figure 3.28: The paramp single pump operation: a, By looking at the phase response of the

JPA, we obtain a rough estimation of proper power and flux bias to have sharp behavior at a desired

frequency. b, Then we add a pump and set the power and frequency to the estimated values. We

should be able to see a small amount of gain by adjusting the power. Then we fine tune the power,

flux bias, pump frequency, and pump phase to obtain a reasonable amount of gain ∼ 20 dB and

bandwidth ∼ 100 MHz.

and circulator is not perfect. Therefore the pump signal can leak into the cavity. This

issue is important when the pump frequency is the same as the cavity frequency. This

happens in the situation of weak z-measurement where the pump and cavity come

from a same generator. In low-power measurement, any leakage of photons in cavity

frequency dephases the qubit.

In order to get around this issue, we use a “double-pump” technique. In this

case instead of pumping the paramp with the frequency of ωc we use two pumps at

ωc ± ΩSB where ΩSB is the sideband frequency which is typically between 100-500
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MHz. With the double pump technique, the paramp effectively works at the cavity

frequency but the pump signals are off-resonance with the cavity.

For the double pump paramp operation, we first operate the paramp in the single-

pump mode and then simply modulate the pump tone by ΩSB. Normally we should

see the gain profile by adjusting the pump power1. Figure 3.29 demonstrates the

schematics for the double pump operation.
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Figure 3.29: The paramp double pump operation.

3.4.3 Phase-sensitive amplification: phase vs amplitude

As we discussed in Subsection 3.4.1 The essence of JPA amplification is that right

before the bifurcation the reflected phase is very sensitive to the pump power as

depicted in Figure 3.26. In the phase sensitive mode of amplification, where the signal

and pump have the same frequency2, and we can amplify one of the quadratures and

de-amplify the other quadrature. In Figure 3.30 we demonstrate the situation for

amplification of each quadrature. Note, that in case of qubit readout, or weak z-

1Often double pump needs higher power but will give more stable performance for the paramp.
2Not only do the signal and pump have the same frequency, but their phases are fully correlated.

Practically they come from a same generator.
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Figure 3.30: Phase sensitive amplification: The upper (lower) panel demonstrates the paramp

operation for amplification when the information encoded in the amplitude (phase) of the signal.

measurement, the information is encoded in the phase of the signal, but in the case

of homodyne detection of qubit spontaneous emission, the information is encoded in

the amplitude of the signal. We will discuss the qubit measurement more fully in

Chapter 4. We will also discuss more practical situations and some consideration to

improve the performance of the paramp (e.g. “dumb-signal” cancellation).
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Chapter 4

Quantum Measurement

The concept of measurement is very important in all disciplines of science and technol-

ogy. However, measurement is a crucial concept in the science of quantum mechanics.

This is not simply because quantum systems are small and delicate, but this is be-

cause measurement fundamentally disturbs the quantum system.

In this chapter, we will discuss the basics of quantum measurement in a pedagogical

manner. This chapter includes the basic notion of projective measurement and more

generalized types of measurement, including weak measurement. We will discuss con-

tinuous measurement and the stochastic master equation for the qubit-cavity system

introduced in the previous chapters.

4.1 Projective measurement

Consider a quantum two-level system represented by the Hamiltonian Ĥ = −ωqσz/2

with eigenstates | ± z〉 and eigenvalues ∓ωq
2

. The (pure) state of the system |ψ〉 is

described by a normalized vector in Hilbert space which can be visualized as a vector

pointing from the center of the Bloch sphere to a certain point on its surface1 with

unit radius (Fig. 4.1).

In this visualization, a projective measurement can be thought to project the

1For a qubit system the Hilbert space is 2D. Note that the surface of the Bloch sphere is a 2D
manifold.
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4.1 Projective measurement

ψ+i

-i

x
-y

z

Figure 4.1: Bloch sphere: Projective measurement of the state |ψ〉 in the i-basis. The red and

blue arrows indicates the backaction of the measurement.

state |ψ〉 into a specific basis (direction). A projective measurement along the i-basis

(where i can be any direction but we mostly consider i = x, y, z) can be described

by two projection operators Π̂±i =| ±i〉〈±i|. Every time we perform a projective

measurement in i-basis, we collapse the state of the qubit and find it either in the

|+ i〉 or | − i〉 (Fig. 4.1).

At this point, one may ask why we consider this destructive operation as a mea-

surement. The point is that the probability of the state being collapsed into | ± i〉 is

related to the state |ψ〉. To understand this, it is convenient to represent the qubit

state in the measurement basis {| ± i〉},

|ψ〉 = c+|+ i〉+ c−| − i〉. (4.1.1)

According to Born’s rule, the probability of finding the qubit in the states | ± i〉

are P± = 〈ψ|Π±z|ψ〉 = |〈±i|ψ〉|2 = |c±|2. Therefore, if we perform a projective

measurement for N � 1 copies of |ψ〉 (or repeat the same experiment N times),

we would get N± ' P±N times result ±1 indicating that we collapse the qubit

state into | ± i〉. Therefore we figure out the ratio P+/P− (note we also know that

P+ + P− = 1). Since the c± are complex numbers, we still need to figure out the

relative phase between the eigenstates | ± i〉. To find the relative phase we must

perform another set of projective measurements along another basis j 6= i. The best

84



4.1 Projective measurement

choice for the second basis is when |〈±j| ± i〉|2 = 1/2.

We now proceed with an example: Consider a projective measurement in the

z-basis, Π±z = | ± z〉〈±z| on a qubit state

|ψ〉 =
1√
2

(|+ z〉+ | − z〉). (4.1.2)

Assume that the measurement apparatus outputs a signal V = ±1 when the state

is projected to the state | ± z〉1. Since the qubit is initially prepared in an equal

superposition of the state of the measurement basis, neither measurement outcome is

more likely than the other. The qubit will be collapsed into |±z〉 with the probability

of P± = 〈ψ|Π±z|ψ〉 = 1/2 and outputs ±1. But after the measurement, we know

certainly that the qubit state is | ± z〉. If we were to make another measurement, we

would find the same result. This means we have gained information. However, we

are now completely uncertain about the measurement result in the x-basis because

| ± z〉 = 1√
2
(|+x〉± |−x〉) . Therefore we have gained full information in z-basis but

lost all information in x-basis. This is a consequence of the Heisenberg uncertainty

principle; we can not be certain about two non-commuting observables at the same

time2.

In a more general case, the qubit state can be a mixture of |ψn〉’s with the proba-

bilities Pn, which no longer can be written as a single state vector |ψ〉. However, this

can be represented by a density matrix,

ρ =
∑
n

Pn|ψn〉〈ψn|. (4.1.3)

The density matrix ρ fully represents our state of knowledge about the system by

accounting for both the quantum superposition and classical uncertainty of the sys-

1We discuss this in the previous chapter for qubit readout measurement. In the next section, we
will discuss the mechanism by which the measurement outcome is actually is generated for general
measurements.

2This doesn’t mean we can not perform measurements on two non-commuting observables at
the same time, see Ref. [31]
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4.1 Projective measurement

tem. One can simply visualize the mixed state as a vector (norm<1) obtained by

a weighted average over states with classical uncertainty. Similarly, projective mea-

surement projects the mixed state along the measurement basis;

∑
n

Pn|ψn〉〈ψn| → | ± i〉〈±i|. (4.1.4)

Here we specifically focus on a projective measurement along z-basis, which is the

energy eigenbasis for the qubit. For example, we represent the density matrix ρ in

the measurement basis {| ± z〉} we have,

ρ = P++|+ z〉〈+z|+ P−−| − z〉〈−z|

+ P+−|+ z〉〈−z|+ P−+| − z〉〈+z| (4.1.5)

=

 P++ P+−

P−+ P−−

 . (4.1.6)

The diagonal element P++ (P−−) is a real number that represents the probability of

projecting the qubit into |+z〉 (|−z〉) where P+++P−− = 1. The off-diagonal elements

are complex numbers and represent quantum coherences and we have P ∗+− = P−+.

Therefore, a density matrix, in general, has three independent unknowns which means

three sets of projective measurements (e.g. in the x, y, and z bases) are needed to

fully characterize the state of the qubit1.

Experimentally, we are usually able to project the qubit only along its energy

eigenbasis. But we can add unitary rotations before projection along z to realize

an effective projective measurement along any arbitrary basis as discussed in the

previous chapter. Projective measurements in the z-basis give us the ratio P++/P−−,

and since the probabilities must add to one, we obtain diagonal elements. Projective

measurements in the x-basis (y-basis) give us Re[P+−] (Im[P+−]).

1Recall the full state tomography discussion in the previous chapter. We will discuss full state
tomography in this chapter more fully.
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4.2 Generalized measurement in the σz basis

4.2 Generalized measurement in the σz basis

In this section, we discuss quantum measurement in a more detailed approach allowing

us to study generalized quantum measurement. Here we introduce the discussion in

close relation to an actual lab experiment.

4.2.1 Simple Model

A quantum measurement is normally modeled by a system S with Hamiltonian HS

and a meter M with Hamiltonian HM. The measurement is performed by turning

“ON” the interaction between the meter and system, Hint, for a certain time t which

entangles the state of the qubit with the state of the meter. By performing a subse-

quent measurement on the meter we collapse the entanglement and gain information.

Let’s first study this by a simple model1. Consider Figure 4.2 where the system

is a qubit HS = −ωqσz/2 probed by a free particle2 HM = P̂ 2/2m passing by the

qubit. Once the free particle is at a minimum distance from the qubit, they interact

by Hint = −gσz ⊗ P̂ δ(t). Note that we assume the interaction is instantaneous and

happens only at time t = 0 when the particle has reached a minimum distance from

the qubit. The parameter g is measurement strength and in our model one can think

of it as a measure of how close the particle passes by the qubit3.

Here we assume that we have minimum uncertainty in position and momentum

of the particle which results in Gaussian distributions in the screen4.

Now, assume the qubit is initially in state ψ = α|0〉+β|1〉 and the meter is in the

1I follow Andrew Jordan’s discussion from the KITP conference, 2018.
2A free particle described by a Gaussian wave packet, which has minimum uncertainty in both

position and momentum.
3smaller distance causes a stronger push and pull (larger g) which results in larger separation

on the screen.
4More realistically one can assume that the interaction happens in a time scale T around t = 0,

in that case then effective coupling would be g =
´ +T/2

−T/2 g(t)dt and the separation is ∝ 2g. Therefore

the measurement strength depends on both interaction strength and interaction time. But here we
assume that g(t) = gδ(t), meaning that the qubit and particle intact only at time t = 0 when they
have minimum distance.
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4.2 Generalized measurement in the σz basis

g

t=0

Free Particle

Qubit

x

Screen

0 +g-g

Figure 4.2: Quantum measurement, simple model: A free particle passes by and interacts

with a qubit. The interaction is in the form of a push or pull depending on the state of the qubit. The

position of the particle when it hits the screen tells us about the state of the qubit. The free particle

has its natural Gaussian distribution. The separation between the two distributions is proportional

to the interaction strength and the interaction time.

state Φ which can be effectively represented as,

Φ = Ne−
x2

4σ2 , (4.2.1)

where σ quantifies the minimum fluctuation in position for the particle1. The qubit

and particle interact at t = 0 and the total system (qubit+meter) evolves under

unitary evolution,

Utot = e+igσz⊗P̂ (4.2.2)

which entangles the qubit and particle state. Therefore, the state of total system

would be,

Ψtot = Utotψ ⊗ Φ

= N
[
α|0〉 exp(−(x− g)2

4σ2
) + β|1〉 exp(−(x+ g)2

4σ2
)

]
. (4.2.3)

1Here we skipped irrelevant details of the free particle wave function and dynamics. Basically,
the free particle is a wave packet moving along z direction, Φ(r, t) = N exp(k · r − ωpt) exp(r2/4σ2)
where k · r = kzz. Upon the interaction with the qubit at t = 0, z = 0, the particle gets pulled or
pushed and obtains little bit of momentum along x direction as well, k · r = kzz + kxx. We only
care about the particle position at the screen, so we describe the particle state by its position in the
x-direction at z = L where the screen is located.
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4.2 Generalized measurement in the σz basis

If we then measure the position that particle landed on the screen and found that it

to be x = x̃ (the wave function of meter collapses) then our state of knowledge about

the state of qubit would be,

ψ = Ñ

[
α exp(+

gx̃

2σ2
)|0〉+ β exp(− gx̃

2σ2
)|1〉
]
. (4.2.4)

Where Ñ is a normalization constant. Therefore we learn about the state of the qubit

via an indirect measurement. This type of measurement is more general than pro-

jective measurement. As the measurement strength becomes stronger, we approach

projective measurement, and if the measurement strength is weak, we are in the weak

measurement limit. Now we interpret the result of Equation (4.2.4) in these two

limits.

Projective measurement limit- Now consider the situation where g � σ which

means the measurement is strong such that two distributions are well separated with

negligible overlap. That means we are pretty sure about which distribution x̃ belongs

to, x̃ ∼ +g or x̃ ∼ −g as depicted in Figure 4.3. Therefore one of the terms in 4.2.4

g

t=0

Free Particle

Qubit

x

Screen

0
+g-g

Figure 4.3: Strong measurement: If the particle strongly interacts with the qubit, the separation

between two distributions would be large enough so that we can readout the qubit state just by

knowing in which distribution the particle has landed.
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4.2 Generalized measurement in the σz basis

is suppressed.

x̃ ∼ +g
g�σ−−→ ψ = |0〉, (4.2.5a)

x̃ ∼ −g g�σ−−→ ψ = |1〉. (4.2.5b)

This means that the qubit wave function is also projected to one its eigenstates in this

limit. In this case it is easy to define a threshold at xth = 0 by which two histograms

and completely separated. If x̃ > xth (x̃ < xth) we realize that the qubit has been

projected into the ground (excited) state.

Weak measurement limit- Now consider the situation g < σ, meaning that the

two distributions significantly overlap. Now if we obtain x̃, we are not sure which

distribution x̃ belongs to. Yet, based on Equation (4.2.4), our knowledge about the

qubit state is updated. If x̃ is positive (negative) the qubit state shifts more toward

the ground (excited) state because one of the terms dominates over the other in

Equation (4.2.4). Therefore by this measurement we slightly disturb the qubit but

still we know what is the qubit state because we have measured that disturbance. In

g

t=0

Free Particle

Qubit

x

Screen

0
+g-g

σ

Figure 4.4: Weak measurement: In the limit that the particle weakly interacts with the qubit,

the separation between the two distributions would be smaller. This gives partial information about

the state of the qubit.

the next section we will discuss this type of measurement more rigorously.
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4.2 Generalized measurement in the σz basis

4.2.2 POVM

In the previous section, we studied a general type of measurement which is indirect

and applies to a wide range of measurements. Formally, this type of measurement

can be described in terms of POVMs1. For that, let’s revisit the result we had in the

previous subsection in terms of the density matrix. For a projective measurement,

the qubit state which can be described by ρ =
∑

n |ψn〉〈ψn| undergoes projection to

one of the eigenstate

∑
n

|ψn〉〈ψn|
x̃>xth−−−→ |0〉〈0| (4.2.6a)∑

n

|ψn〉〈ψn|
x̃<xth−−−→ |1〉〈1|, (4.2.6b)

which means the final density matrix is the result of acting with the projector Πn on

the initial density matrix,

ρ
x̃>xth−−−−−→

Π0=|0〉〈0|

Π0ρΠ0

Tr[Π0ρΠ0]
,with probability P0 = Tr[Π0ρΠ0] (4.2.7a)

ρ
x̃<xth−−−−−→

Π1=|1〉〈1|

Π1ρΠ1

Tr[Π1ρΠ1]
,with probability P1 = Tr[Π1ρΠ1], (4.2.7b)

where Tr[ΠnρΠn] in denominator is the normalization factor. Note that we have∑
n Πn = |0〉〈0|+ |1〉〈1| = 1.

In a more general manner, one can describe partial measurements (including

weak and strong measurements) by a set of operators Ωn which obey the constraint∑
n Ω†nΩn = 1. In this case we have similar operations

ρ
nth outcome−−−−−−−→

Ωn

ΩnρΩ†n

Tr[ΩnρΩ†n]
,with probability Pn = Tr[ΩnρΩ†n], (4.2.8)

except now Ωn is not necessarily a projector. Actually Ωn is called POVM and,

in general, can be described by a weighted sum over all projection operators. For

1POVM stands for ‘positive operator-valued measured’.
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4.2 Generalized measurement in the σz basis

example the POVM corresponding to the general measurement discussed in our model

(Eq. 4.2.3) can be described by

Ωx̃ = N
[
exp(−(x̃− g)2

4σ2
)|0〉〈0|+ exp(−(x̃+ g)2

4σ2
)|1〉〈1|

]
. (4.2.9)

One can check that Ωx̃ acting on ρ = |ψ〉〈ψ|, according to the Equation (4.2.8),

results in Equation (4.2.4). Note, the measurement outcome x̃ is a continuous variable

indicating the position the particle detected on the screen in our model, but can be

a discrete value depending on the type of apparatus one uses for the meter1.

4.2.3 POVM in terms of physical parameters

Now we translate our model into the language of cavity QED and describe the actual

weak measurement that we perform on the qubit in experiment. In our case the

qubit is probed by a microwave coherent signal. So essentially we need to replace

wave packet of the free particle with a coherent signal. There is, of course, a exact

correspondence between a Gaussian wave packet and a coherent signal. As depicted

in Figure 4.5 the coherent signal is initially prepared along quadrature I. It has

minimum uncertainty along each canonical position and momentum2. When the

signal passes the cavity and interacts with the qubit, it acquires a phase shift which

depends upon the state of the qubit. As we discussed in Chapter 2, the phase shift of

the coherent signal can be translated to a displacement in IQ plane. Assuming the

phase shift happens along the Q quadrature3, the measurement outcome is a signal Ṽ

that we obtain for Q quadrature of the homodyne measurement. The corresponding

1We will see later in this chapter that this value, in our experiment, is a “semi-continuous”
digitized homodyne voltage.

2Remember in our model, the wave packet also has minimum uncertainty for position and
momentum.

3This can be done in the experiment by adjusting the phase of the probe signal.
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Figure 4.5: Weak measurement cQED: a, The qubit-state-dependent phase shift of the cavity

probe signal. b, A more realistic schematic for the phase shift detection.

POVM would be very similar to our model,

ΩṼ = N

[
exp(−(Ṽ − g)2

4σ2
)|0〉〈0|+ exp(−(Ṽ + g)2

4σ2
)|1〉〈1|

]
. (4.2.10)

However we need to figure out g and σ in terms of actual parameters in the measure-

ment [79]. As we discussed in Chapter 2, the (dimension-less) variance of coherent

state in each quadrature is 1/4 which is the minimum fluctuation (see Exercise 7

of Chapter 2). However in the actual experiment we collect the signal for a certain

amount of time ∆t with collection efficiency of η, which means the actual variance

we have in the experiment is σ2 = 1/(4ηκ∆t) where κ is the cavity linewidth1. The

separation between the two Gaussian distributions results from the phase shift in the

cavity frequency and also the number of photons inside the cavity, as depicted in Fig-

ure 4.5. We have a 2χ frequency shift of the cavity resonance frequency which, in the

1You may think it as a shot noise improvement in the variance. We get ηκ∆t amount of signal
from the cavity during the measurement which improves the uncertainty by a factor of 1/

√
ηκ∆t.
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4.2 Generalized measurement in the σz basis

limit of χ� κ, resulting in a phase shift of 4χ/κ of the cavity probe (see the discus-

sion in Chapter 3 for the cavity phase shift). Therefore the separation 2g = 4χ
√
n̄/κ

where
√
n̄ accounts for phasor vector length in IQ plane as depicted in Figure 4.5.

So we have,

ΩṼ = N
[
e−ηκ∆t(Ṽ−2χ

√
n̄/κ)2|0〉〈0|+ e−ηκ∆t(Ṽ+2χ

√
n̄/κ)2|1〉〈1|

]
. (4.2.11)

We also define the signal-to-noise ratio (SNR) to be,

S =

(
2g

σ

)2

=
64χ2n̄η∆t

κ
. (4.2.12)

Normally in this experiment, the separation between two Gaussian distributions is

always scaled1 to be 2g = 2. This means, one can rewrite the POVM as

ΩṼ = N
[
e−4χ2n̄η∆t/κ(Ṽ−1)2 |0〉〈0|+ e−4χ2n̄η∆t/κ(Ṽ+1)2 |1〉〈1|

]
. (4.2.13)

where now Ṽ is the scaled signal and the variance of the scaled signal is σ2 =

κ/(16χ2n̄η∆t).

It is convenient to define k = 4χ2n̄/κ as the measurement strength2 which quan-

tifies how strong we are measuring the system regardless of the measurement time

and efficiency.

ΩṼ = N
[
e−kη∆t(Ṽ−1)2 |0〉〈0|+ e−kη∆t(Ṽ+1)2 |1〉〈1|

]
. (4.2.14)

We also define a characteristic measurement time τ = 1/(4kη) which quantifies how

long we should collect the signal to achieve σ2 = 1 (SNR=4).

1In our model this can be adjusted by the position of the screen and in actual experiment we
can simply amplify/attenuate the signal or just simply scale the signal after digitization. Note that
scaling doesn’t change the SNR.

2The definition for measurement strength k seems to be different from literature by a factor of
two. This wouldn’t be an issue if we scaled the signal consistently. Here I define k such that the the
measurement operator in the Lindblad equation is exactly

√
kσz.
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4.3 Continuous measurement in σz basis

To sum up this discussion, Equation (4.2.14) describes weak measurement on the

qubit state |ψ〉 → ΩṼ |ψ〉 or in a more general form,

ρ→
ΩṼ ρΩ†

Ṽ

Tr[ΩṼ ρΩ†
Ṽ

]
(4.2.15)

and we obtain the signal Ṽ with a probability

P (Ṽ ) = Tr[ΩṼ ρΩ†
Ṽ

] = ρ00e
−2kη∆t(Ṽ−1)2

+ ρ11e
−2kη∆t(Ṽ+1)2

, (4.2.16)

where ρ00 (ρ11) is the probability for the qubit to be in the ground (excited) state

before the measurement1.

4.3 Continuous measurement in σz basis

In the previous section we studied how the state of the qubit changes under a gener-

alized measurement for a time ∆t. In this section we are going to study continuous

monitoring of the qubit state in the limit of very weak measurement.

For that we start from the probability distribution of signal Ṽ Equation (4.2.16).

In the limit of very weak measurement, ∆t → 0, the variance of the distributions

σ2 = 1/(4kη∆t) � 1 which means that the two distributions almost overlap as

depicted in Figure 4.6. In this limit one can show that,

P (Ṽ ) ' e−2kη∆t(Ṽ−ρ00+ρ11)2

= e−2kη∆t(Ṽ−〈σz〉)2

, (4.3.1)

which means we can replace two distributions with one distribution which is centered

at 〈σz〉 as depicted in Figure 4.6. Consequently the measurement operator ΩṼ in

Equation (4.2.14) can be represented in a compact form up to a renormalization

1Note that there is a factor of 2 difference between exponents in Equation (4.2.14) which is an
operator and Equation (4.2.16) which is a probability distribution.
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Figure 4.6: Measurement signal distribution in the weak limit: In the limit of weak

measurement, the separation between the two distributions is much smaller than the variance of

distributions. In such a case, we can approximate the two distributions by a distribution centered

at 〈σz〉 as shown in Exercise 1.

constant,

ΩṼ ' e−kη∆t(Ṽ−σ̂z)2

(4.3.2)

Exercise 1: Verify Equation (4.3.1) by expanding Equation (4.2.16). For that you

need to show (up to a normalization constant) that

pe−(x−1)2/a2

+ qe−(x+1)2/a2 a�1−−−−→
p+q=1

e−(x−p+q)2/a2

.

The fact that the measurement signal has a Gaussian distribution centered on

〈σz〉 means one can think of the measurement signal as a noisy estimate of 〈σz〉 which

can be represented as1,

Ṽ = 〈σz〉+
dW√
4kη∆t

(4.3.3)

where dW is a Wiener increment which is a zero-mean Gaussian random variable

with variance of ∆t.

1In fact, this interpretation in Equation (4.3.3) comes in very handy for simulating quantum
trajectories.
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4.3 Continuous measurement in σz basis

4.3.1 Stochastic Schrödinger equation

Now we study qubit evolution under the measurement operator ΩṼ . I follow the

discussion in Ref. [80]. For now we assume η = 1 and consider a normalized qubit

pure state |ψ(t)〉 at time t. The qubit state at a later time t+ ∆t would be,

|ψ(t+ ∆t)〉 = ΩṼ |ψ(t)〉 (4.3.4a)

∝ e−k∆t(Ṽ−σ̂z)2|ψ(t)〉 (4.3.4b)

∝ e−k∆t(σ̂2
z−2Ṽ σz)|ψ(t)〉, (4.3.4c)

where we ignore the constant term proportional to the Ṽ 2) in the exponent since we

are eventually going to renormalize |ψ(t + ∆t)〉. We now substitute Ṽ from Equa-

tion (4.3.3) (for now η = 1),

|ψ(t+ ∆t)〉 = exp(−k∆tσ̂2
z + 2k∆tσ̂z〈σz〉+

√
kσ̂zdW)|ψ(t)〉. (4.3.5)

Now we replace ∆t → dt implying the continuous limit and expand the exponential

but only keeping terms up to first order in dt,

|ψ(t+ dt)〉 =
(

1− kdtσ̂2
z + 2kdtσ̂z〈σz〉+

√
kσ̂zdW + k

2
σ2
z(dW)2

)
|ψ(t)〉, (4.3.6)

then we replace (dW)2 = dt according to stochastic calculus (Itô rule)1 and arrive at,

|ψ(t+ dt)〉 =

(
1− k

2
σ̂z[σ̂z − 4〈σz〉]dt+

√
kσ̂zdW

)
|ψ(t)〉. (4.3.7)

Now we need to normalize the state |ψ(t + dt)〉 because, so far, we have ignored

normalization constants. One can show that

〈ψ(t+ dt)|ψ(t+ dt)〉 = 1 + 4k〈σz〉2dt+
√

4k〈σz〉dW +O[t]3/2, (4.3.8)

1The Wiener increment dW has dimension of
√
t, see Ref. [80] for more details.
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where we just keep terms up to the first order in dt and second order in dW . By

using a binomial expansion, one can show that

[〈ψ(t+ dt)|ψ(t+ dt)〉]−
1
2 = 1− k

2
〈σz〉2dt−

√
k〈σz〉dW +O[t]3/2. (4.3.9)

When we multiply the Equation (4.3.9) by Equation (4.3.7) (and again keep terms up

to dt and (dW)2), we obtain the normalized Stochastic Schrödinger Equation (SSE),

d|ψ(t)〉 =

(
−k

2
(σz − 〈σz〉)2dt+

√
k(σz − 〈σz〉)dW

)
|ψ(t)〉, (4.3.10)

where we define d|ψ(t)〉 = |ψ(t+ dt)〉 − |ψ(t)〉. For a given measurement record {Ṽ }

one can infer dW (see Equation 4.3.3) and integrate this equation to obtain the qubit

pure state evolution under measurement with perfect efficiency.

For example, the evolution of a qubit initialized in a pure state ψ(0) = α0|0〉+β0|1〉

and subject to continuous measurement for time T can be obtained by integrating

the Equation (4.3.10) as follows,

 αi+1

βi+1

 =

 αi

βi

− k
2
dt

 (1− zi)2 0

0 (1 + zi)
2

 αi

βi

+ dWi

√
k

 1− zi 0

0 −1− zi

 αi

βi

 ,
(4.3.11)

where zi = |αi| − |βi|2 and [i = 1, 2, ..., N ] where N = T/dt. Therefore, given the

initial values α0, β0, one can update the next values using the measurement record

dWi at each step1 and reconstruct the quantum trajectory as depicted in Figure 4.7 for

N = 101, dt = 0.01, k = 1, α0 = β0 = 1/
√

2. One can also add any unitary dynamics2,

1In the actual experiment we obtain Vi = zi + dW/
√

4kdt as the measurement signal (See,
Eq. 4.3.3). So, one can rewrite 4.3.10 in terms of Vi. But since efficient detection is not practical,
we leave the 4.3.10 in this form which is more convenient for simulating a quantum trajectory
because one can simply use a Gaussian noise generator of variance dt to generate dW. Although for
simulation purposes, the unnormalized version of Equation (4.3.7) works even better since one can
manually normalize the state at each step.

2For example, for adding Rabi oscillation to the dynamics one also needs to consider terms like
α̇ = iΩRβi and β̇ = iΩRαi in the state update. Similar to Equation (2.4.6a) and Equation (2.4.6b).
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Figure 4.7: SSE update trajectory: The measurement signal Vi is used to infer dWi. The

pure state evolution can then be reconstructed with the SSE. In the right panel, the evolution is

represented in terms of Bloch coordinates.

the SSE is used to describe more general dynamics of the qubit state evolution.

4.3.2 Stochastic master equation

The SSE in the form of (Eq. 4.3.10) is only applicable for pure state evolution. How-

ever one can generalize this equation to describe mixed state evolution as well. An

easy way to obtain the generalized form is to represent (Eq. 4.3.10) in terms of density

matrix1 in this form,

ρ = |ψ〉〈ψ| → dρ = d|ψ〉〈ψ|+ |ψ〉d〈ψ|+ d|ψ〉d〈ψ|, (4.3.12)

where by substituting d|ψ〉 from Equation (4.3.10) we arrive at the Stochastic Master

Equation SME2

dρ = −k
2

[σz, [σz, ρ]]dt+
√
k(σzρ+ ρσz − 2〈σz〉ρ)dW (4.3.13)

1The trick here is that we use a pure state |ψ〉 to obtain the SME, and once we arrived at the
equations for the SME in terms of density matrix, these equations can be applied to any density
matrix, either pure or mixed. One can start from the beginning of the subsection 4.3.1 and follow
the steps in density matrix formalism and directly obtain the SME.

2Note, here we have double-commutator.
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4.3 Continuous measurement in σz basis

4.3.3 Inefficient measurement

In last two sections, we assumed that the measurement is perfectly efficient, η = 1. In

this section we relax this assumption and account for inefficient detection. Inefficient

detection can be modeled by considering two concurrent independent measurements

on the system but ignoring the measurement outcome of one of them. For that, we

consider two measurement apparatuses performing measurements on the system. The

measurement strength of the first (second) apparatus is k(1)(k(2)) where k(1) = ηk and

k(2) = (1− η)k and the measurement outcome is V (1)(V (2)),

V (m) = 〈σz〉+
dW(m)

√
4k(m)∆t

, (4.3.14)

where m = 1, 2. Considering both measurements, the qubit evolution would be,

dρ = −k
(1)

2
[σz, [σz, ρ]]dt+

√
k(1)(σzρ+ ρσz − 2〈σz〉ρ)dW(1)

− k(2)

2
[σz, [σz, ρ]]dt+

√
k(2)(σzρ+ ρσz − 2〈σz〉ρ)dW(2) (4.3.15)

Now we ignore the second measurement outcome and average over all possible values

for dW(2). Since dW(2) is a zero mean Gaussian noise increment, the last term in

Equation (4.3.15) vanishes and we arrive at the SME for inefficient detection1,

dρ = −k
2

[σz, [σz, ρ]]dt+
√
ηk(σzρ+ ρσz − 2〈σz〉ρ)dW (4.3.16)

1Similarly, one can model other types of imperfections and sources of decoherence in the system
(e.g. relaxation and dephasing) by considering that the environment performs measurements on the
system (via a measurement operator

√
γX̂ which depends on the type of decoherence) and we do

not have access to the outcomes of these measurements.
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4.3 Continuous measurement in σz basis

where we replace k(1) = ηk, and k(1) + k(2) = k and have simply dropped the super-

script for dW(1). For completeness, let’s represent the SME in this form,

dρ = k

[
σzρσz −

1

2
(ρσ2

z + σ2
zρ)

]
dt+

√
ηk(σzρ+ ρσz − 2〈σz〉ρ)dW

ρ̇ = k [σzρσz − ρ] + 2ηk(σzρ+ ρσz − 2〈σz〉ρ)(V (t)− 〈σz〉), (4.3.17)

where in the last line we substitute dW in terms of the actual measurement signal

V (t) according to Equation (4.3.3).

The first term in 4.3.17 is the Lindbladian term1 L†ρL− 1
2
{L†L, ρ} with Lindbla-

dian operator L̂ =
√
kσz as we introduced in Chapter 2 (See Eq. 2.4.19). The second

term which includes the measurement record and depends on quantum efficiency is

the state update due to the measurement (which is referred to as “unraveling” in the

literature2).

In last three subsections, we specifically discussed generalized measurements corre-

sponding to the measurement operator
√
kσz, and found the the resulting SME. This

SME has a general form and simply can be extended to any relevant measurement

operator
√
kĉ,

ρ̇ = k

[
ĉρĉ† − 1

2
(ρĉ†ĉ+ ĉ†ĉρ)

]
+ 2ηk(ĉρ+ ρĉ† − 〈ĉ+ ĉ†〉ρ)(V (t)− 〈 ĉ+ ĉ†

2
〉),

(4.3.18)

where k still represents the measurement strength. We will see that the measurement

operator can even be non-Hermitian.

We can also add other type of imperfections to the dynamics. For example,

the qubit decoherence due to the dephasing can be modeled by considering that

environment also measures the system with measurement operator
√

γ2

2
σ̂z where the

1The term L†ρL− 1
2{L

†L, ρ} = D[L]ρ is usually called ‘dissipation superoperator’ term.
2In the literature you might find the argument that “unraveling is not unique” [78, 81]. It is

true that there are many ways to unravel SME so that the average of many trajectories converge to
the same Lindbladian evolution. But once you choose your efficient detector then the unraveling is
unique. What about inefficient detector?
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4.3 Continuous measurement in σz basis

γ2 is the dephasing rate1. However we do not have access to that measurement

record. Therefore we sum over all possible outcomes for the environment (as we did

for inefficient detection treatment) and obtain,

ρ̇ = (k +
γ2

2
) [σzρσz − ρ] + 2ηk(σzρ+ ρσz − 2〈σz〉ρ)(V (t)− 〈σz〉)

(4.3.19)

One can show that Equation (4.3.19) has following representation in terms of

Bloch components x ≡ 〈σx〉, z ≡ 〈σz〉,

ż = 4ηk(1− z2)(V (t)− z) (4.3.20a)

ẋ = −2(k +
γ2

2
)x− 4ηkxz(V (t)− z). (4.3.20b)

It is worth discussing the ensemble behavior of these equations, which occurs when

we average over all possible measurement signals (that means we measure the system

but disregard or don’t have access to the measurement results). Let’s consider the

special case where the qubit is prepared in the superposition state z = 0, x = 1. It

is apparent that in this case that ż = 0 but the quantum coherence x decays by the

rate 2κ+ γ2,

x = e−(2k+γ2)t. (4.3.21)

Apart from the natural dephasing rate γ2 which is ideally negligible, the qubit also

dephases due to the unmonitored measurement photons,

Γ = 2k =
8χ2n̄

κ
, (4.3.22)

1This effect is significant if the total measurement time is comparable to the dephasing time or
the measurement strength k is comparable to the dephasing rate γ2. The dephasing rate is ideally
γ2 = γ1

2 = 1
2T1

where the T1 is the relaxation time for the qubit.
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4.4 Bayesian update

which is called measurement induced dephasing1.

One can also add unitary evolution to the SME (4.3.17) to account for a coherent

drive on the qubit and obtain the full version of SME,

ρ̇ = −i[HR, ρ] + k [σzρσz − ρ]

+ 2ηk(σzρ+ ρσz − 2〈σz〉ρ)(V (t)− 〈σz〉), (4.3.23)

where HR represents the Hamiltonian for a drive on the qubit2. In Section 4.7 and

4.8, we will study the combined unitary and non-unitary evolution of the qubit for

both z-measurement
√
kσz, and σ−-measurement3 √γ1σ− in more details.

4.4 Bayesian update

Although the SME (Eq. 4.3.17) is a formal description for open quantum systems,

the fact that it is a nonlinear equation makes it less convenient to work with. There

is a fairly straightforward method to reconstruct qubit trajectory which is based on

Bayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
, (4.4.1)

1Later we will utilize this equation for calibration.
2Normally we consider HR = ΩR

2 σx or ΩR

2 σy where we assume that drive is resonant. In
general, any coherent drive, detuned, or along any axis can be added to the SME. The coherent
drive’s Hamiltonian is conveniently represented in the rotating frame of the drive. Note that this
is convenient because the experiment happens in the rotating frame of the drive. The preparation
and tomography pulses are from the same generator that that is used for the drive, therefore we
pulse the qubit in rotating frame of the drive. This should not be confused with cavity homodyne
measurement. Homodyne measurement happens in the rotating frame of the cavity. Therefore, the
experiment involves two independent rotating frames for two different purposes.

3In this thesis, we interchangeably use ‘σ−-measurement’ and ‘x-measurement’ for the measure-
ment corresponding to the measurement operator

√
γ1σ−.
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4.4 Bayesian update

where P (A|B) is the probability of event A given that event B has happened. In

connection with quantum measurement one can assume that:

event A → finding the qubit in ground/excited state,

event B → obtaining the measurement signal V.

Therefore, one can use Bayes’ rule to infer the qubit evolution conditioned on the

measurement signal V . According to Bayes’ rule we have,

Pi+1(0) = P (0|Vi) =
P (Vi|0)Pi(0)

P (Vi)
(4.4.2a)

Pi+1(1) = P (1|Vi) =
P (Vi|1)Pi(1)

P (Vi)
, (4.4.2b)

where Pi(0) and Pi(1) are the probabilities for the qubit to be in the ground and the

excited state before the measurement—these are our prior knowledge in the ith step

of the update. Then we get the updated probabilities for the qubit state, Pi+1(0) and

Pi+1(0) conditioned on measurement outcome Vi. The updated probabilities would

be our prior knowledge for the next step of state update. The probability P (Vi) is

the unconditioned probability for getting signal Vi based on our prior knowledge.

The Bayesian approach is powerful because it connects the unknown conditional

probability P (0|Vi) to a well-known conditional probability P (Vi|0). Note that P (Vi|0)

and P (Vi|1) are nothing but the Gaussian distributions separated by ∆V = 2 as we

discussed in Equation (4.2.16),

P (Vi) ∝ ρ00e
− (Vi−1)2

2σ2 + ρ11e
− (Vi+1)2

2σ2 , (4.4.3a)

P (Vi|0) ∝ e−
(Vi−1)2

2σ2 , (4.4.3b)

P (Vi|1) ∝ e−
(Vi+1)2

2σ2 , (4.4.3c)

where σ2 = 1/(4kη∆t) as we discussed in Section 4.3.

Now in order to clearly connect Bayes’ theorem to the quantum trajectory, we
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4.4 Bayesian update

proceed by dividing two conditional probabilities in Equation (4.4.2a) and (4.4.2b),

Pi+1(0)

Pi+1(1)
=
P (0|Vi)
P (1|Vi)

=
Pi(0)

Pi(1)

P (Vi|0)

P (Vi|1)
, (4.4.4)

and substitute the last term form Equation (4.4.3b) and (4.4.3c),

Pi+1(0)

Pi+1(1)
=
Pi(0)

Pi(1)
exp(+

∆V

σ2
Vi), (4.4.5)

where we prefer to explicitly have ∆V (which equals 2) in our representation1. Now

by considering the fact that Pj(0) + Pj(1) = 1, one can calculate Pi+1(0) and Pi+1(1)

given the prior knowledge Pi(0) and Pi(1) and measurement outcome Vi.

Before we proceed further, let’s switch the notation to the density matrix language

which later allows us to make comparison between Bayesian update and SME update.

For that we have Pi+1(0)→ ρ00(t+dt) and Pi(0)→ ρ00(t) and similarity for Pi+1(1)→

ρ11(t+ dt) and Pi(1)→ ρ11(t) and obtain,

ρ00(t+ dt)

ρ11(t+ dt)
=
ρ00(t)

ρ11(t)
exp(+

∆V

σ2
Vi). (4.4.6)

Equation (4.4.6) only allows us to calculate the evolution for diagonal elements

of the density matrix. In order to account for off-diagonal elements2. Let’s as-

sume that the qubit at time t, before the ith-measurement, was in state |ψ(t)〉 =√
ρ00(t)|0〉+ eiφ

√
ρ11(t)|1〉. After the measurement the state would be |ψ(t+ dt)〉 =√

ρ00(t+ 1)|0〉 + eiφ
√
ρ11(t+ 1)|1〉 where we assume that the measurement doesn’t

1Note that the sign in the exponent depends on which way the Gaussian shifts for the ground
and excited states. The convenient choice is when the Gaussian shifts in the positive direction for
ground state which is consistent with the interpretation in Equation (4.3.3).

2Here I follow Korotkov’s discussion in [82]
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change the relative phase1 φ. The density matrix before the measurement would be,

ρ(t) = |ψ(t)〉〈ψ(t)| = ρ00(t)|0〉〈0|+ ρ11(t)|1〉〈1|

+e−iφ
√
ρ00(t)ρ11(t)|0〉〈1|+ eiφ

√
ρ11(t)ρ00(t)|1〉〈0| (4.4.7)

and similarly for after measurement ρ(t + dt) = |ψ(t + dt)〉〈ψ(t + dt)|. Therefore we

arrive at a relation for off-diagonal elements,

ρ01(t+ dt)

ρ01(t)
=

√
ρ00(t+ dt)ρ11(t+ dt)√

ρ00(t)ρ11(t)
. (4.4.8)

One can add a damping term to this relation to phenomenologically account for

additional dephasing (e.g. a finite T ∗2 time, finite efficiency),

ρ01(t+ dt)

ρ01(t)
=

√
ρ00(t+ dt)ρ11(t+ dt)√

ρ00(t)ρ11(t)
e−γdt, (4.4.9)

where γ = 8χ2n̄(1−η)
κ

+ 1/T ∗2 accounts for both depashing due to imperfect detection

and finite qubit coherence time.

4.4.1 Bayesian update in terms of the Bloch components

It is convenient to represent the Bayesian update in terms of z = 〈σz〉, x = 〈σx〉. By

considering that, z = 2ρ00 − 1 and x = 2ρ01 and the fact that ρ00 + ρ11 = 1, one can

show that the Equation 4.4.6 and 4.4.9 can be represented in the following form2,

z(t+ dt) =
1 + z(t) + (z(t)− 1)e−V (t)S/∆V

1 + z(t)− (z(t)− 1)e−V (t)S/∆V
(4.4.10a)

x(t+ dt) = x(t)

√
1− z(t+ dt)2√

1− z(t)2
e−γdt (4.4.10b)

1In the Bloch sphere picture, this is to say that the measurement back-action only kicks the
state up or down but not to the sides. In Korotkov’s terminology there is only “spooky” backaction,
no “realistic” backaction.

2We define z = 〈σz〉 = Tr(ρσz) = ρ00 − ρ11 = 2ρ00 − 1. Note for off-diagonal elements we have
ρ01 = ρ∗10 and here we assumed that ρ01 is real. Therefore x = 〈σx〉 = Tr(ρσx) = 2ρ01 and y = 0
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where S = (∆V/σ)2 is the signal-to-noise ratio. Theses equations, similar to the SME

(4.3.19), can be use to update the qubit trajectory for continuous z-measurement.

Note that, unlike the SME, here we have not made any assumption about dt or

the measurement strength1. So the dt can in general be any duration, dt→ ∆t = T ,

and in that case V (t)→ V (T ) = 1/T
´ T

0
V (t)dt. Therefore, the Equation (4.4.10) can

be used to obtain final Bloch coordinate positions z(T ) and x(T ) without integration.

For example, in a simple situation where the qubit starts in a superposition of the

measurement operator eigenstates x(0) = 1, z(0) = 0 we have,

z(T ) =
1− e−V (T )S/∆V

1 + e−V (T )S/∆V
= tanh(

S

2∆V
V (T )) (4.4.11)

x(T ) =
√

1− z(T )2e−γdt = sech(
S

2∆V
V (T )) (4.4.12)

Therefore the final state is determined only by the averaged signal V (T ). This is

because all measurements commute with one another and commute with the Hamil-

tonian2.

4.5 Bayesian vs SME

We have introduced two approaches for qubit state update. The SME approach

(Eqs. 4.3.20) and the Bayesian update approach (Eqs. 4.4.10). Now the question is

“What is the difference? And what are the pros and cons of each approach? More

importantly, do they even agree?” We know that in order to arrive at the SME,

we did a bunch of expansions and approximations regarding the weak measurement

limit. However, for the Bayesian update we did not make any assumption (except the

assumption that Bayes’s rule applies). So, in principle one should arrive at the SME

by expanding the Bayesian result. For that, let’s start off by Equations (4.4.10a) and

substitute S/∆V = 8ηkdt and calculate dz = z(t + dt)− z(t) (we drop the notation

1We need to make that assumption if we add unitary dynamics to the Bayesian update.
2Note, if we add a Rabi drive then the Hamiltonian would not commute with the measurement

operator. So we have to do step-wise integration similar to the SME.
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4.6 Generalized measurement in the σx basis

showing time dependence for compactness),

dz =
(1− z2) sinh(4ηkV dt)

cosh(4ηkV dt) + z sinh(4ηkV dt)
(4.5.1a)

= 4ηkV (1− z2)dt− (4ηk)2V 2(z + z3)dt2 +O[dt]3/2, (4.5.1b)

where we expand1 sinh and cosh to arrive at Equation (4.5.1b). Now we substitute

V = z+ dW√
4ηkdt

only in the second term in 4.5.1b and keep terms up to the first order

of dt (remember (dW)2 = dt), therefore we have,

dz = 4ηkV (1− z2)dt− 4ηk(z − z3)dt+O[dt]3/2 (4.5.2)

→ ż = 4ηk(1− z2)(V − z) +O[dt]1/2, (4.5.3)

where ż = dz/dt. Equation (4.5.3) is in agreement with the SME (4.3.20a).

Exercise 2: By a similar procedure as we did in this subsection, show that the

Bayesian equation for ẋ, from Equations (4.4.10b) is also in agreement with the SME

Equation (4.3.20b) in the limit of weak measurement.

Now the question is why we bother considering SME while we have the exact

equations from the Bayesian update. The answer is that SME has greater flexibility

and can be used for any measurement operator. We will see in the next section that

for x-measurement2 there is no Bayesian update equation.

4.6 Generalized measurement in the σx basis

In this section, we study continuous measurement with the measurement operator
√
γσ−. This measurement operator occurs in homodyne detection of qubit emission.

1We keep terms up to the second order of dt, but remember V includes a term which is effectively
in the order of 1/

√
dt, Equation (4.3.3).

2By x-measurement, we mean the measurement with measurement operator σ−. We refer to it as
x-measurement because the measurement signal in that measurement is related to the Re[σ−] = σx.
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4.6 Generalized measurement in the σx basis

We may refer to this measurement as x-measurement since, as we will see later,

we normally set the measurement phase so that the homodyne signal in related to

Re[σ−] = σx.

4.6.1 POVM

We follow a phenomenological approach to formulate the corresponding POVM. Con-

sider a qubit which decays into a transmission line by rate of γ1 as depicted in Fig-

ure 4.8. This configuration can be described by the interaction Hamiltonian1

Hint = −γ1(σ−â
† + σ+â), (4.6.1)

where γ1 is the relaxation rate for the qubit and â†(â) is creation (annihilation)

Homodyne 
detector

Qubit emission

ωq

LO

Transmission line

Figure 4.8: x-measurement schematic: A qubit decays into a modeof the transmission line

where we perform homodyne measurement.

operator for the corresponding electromagnetic mode of the transmission line2. Now

assume that the qubit is initially is in state

ψ = α0|g〉+ β0|e〉, (4.6.2)

and the transmission line is in the vacuum state |Φ〉 = |0〉tr where we use superscript

·tr for the transmission line. After time dt, the unnormalized state of total system

1The interaction Hamiltonian before taking the RWA is Hint = −γ1(σ− + σ+)(â+ â†).
2What happens to the cavity in this interpretation? One can think of that the cavity mediates

the qubit emission. In this interpretation, the qubit has faster relaxation into the transmission line
when the qubit and cavity are closer in frequency. However, a more realistic interpretation considers
that the qubit and cavity hybridize. Therefore, the first two eigenstates of the combined qubit-cavity
system act as a effective qubit as discussed in Chapter 2. This interpretation is more accurate in
the limit of strong hybridization, where the qubit state is a polariton state.
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4.6 Generalized measurement in the σx basis

would be in an entangled state,

Ψtot = α0|0〉|0〉tr + β0

√
1− γ1dt|1〉|0〉tr + β0

√
γ1dt|0〉|1〉tr. (4.6.3)

If we perform photon detection on transmission line, the (unnormalized) state of the

qubit would be,

detecting no photon |0〉tr → ψ = α0|g〉+ β0

√
1− γ1dt|e〉 (4.6.4a)

detecting a photon |1〉tr → ψ = |g〉, (4.6.4b)

where γ1dt is the probability of a relaxation event when the qubit is excited.

However, if we perform homodyne measurement instead of photon detection, then

the field of the transmission line collapses to a coherent state |α〉tr and we will obtain

a measurement outcome α,

Ψtot =
(
α0|g〉+ β0

√
1− γ1dt|e〉

)
|α〉tr〈α|0〉tr + β0

√
γ1dt|g〉|α〉tr〈α|1〉tr

= e−|α|
2/2
(
α0|g〉+ β0

√
1− γ1dt|e〉+ α∗β0

√
γ1dt|g〉

)
|α〉tr, (4.6.5)

where we use 〈α|0〉tr = e−|α|
2/2 and 〈α|1〉tr = α∗e−|α|

2/2 and we absorb constants in

the normalization factor1. We assume that α is real2 and define V = α
√
γ1dt where

V is the homodyne signal. Therefore the qubit state after the measurement will be

ψ = e
− V 2

2γ1dt

(
α0|g〉+ β0

√
1− γ1dt|e〉+ V β0|g〉

)
. (4.6.6)

Note that ψ is not normalized yet. One can show that the corresponding POVM

connecting the qubit state before the measurement (Equation 4.6.2) to qubit state

1Note, |α〉 = e−|α|
2/2
∑
n
αn
√
n!
|n〉 therefore, 〈n|α〉 = αn

√
n!
〈0|α〉 where 〈0|α〉 = e−|α|

2/2.
2This choice makes the measurement to be Re[σ−] so we call it x-measurement. Experimentally,

the paramp phase ( the phase of our phase sensitive parametric amplifier) can be set so that all
information is encoded only in the “real” quadrature.
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4.6 Generalized measurement in the σx basis

after the measurement (Equation 4.6.6) has this form (up to a normalization factor),

ΩV = e
− V 2

2γ1dt

(
|g〉〈g|+

√
1− γ1dt|e〉〈e|+ V |g〉〈e|

)
, (4.6.7)

= e
− V 2

2γ1dt

(
1− γ1dt

2
σ+σ− + V σ−

)
, (4.6.8)

where we find Eq. 4.6.8 by expanding Eq. 4.6.7 up to the first order in dt [83].

Exercise 3: Show that ΩV is a POVM by verifying
´

Ω†V ΩV dV = 1 and obtain the

missing normalization factor in Equation (4.6.8) (for answer see Ref. [83]).

Now let’s look at the probability of getting a measurement signal V ,

P (V ) = |ΩV |ψ〉|2 = 〈ψ|Ω†V ΩV |ψ〉 (4.6.9)

= e
− V 2

γ1dt
(
1− γ1(dt− V 2)〈σ+σ−〉+ V 〈σ+ + σ−〉

)
, (4.6.10)

= e
− V 2

γ1dt

(
1− γ1dt

2
(1− V 2)(1 + z) + V x

)
, (4.6.11)

where z = 〈σz〉 and x = 〈σx〉. In the limit of continuous measurement dt → 0 we

have,

P (V ) ' e
− V 2

γ1dt (1 + V x) , (4.6.12)

' exp

[
− 1

γ1dt
(V 2 − 2γ1dtV x)

]
(4.6.13)

' exp

[
−(V − γ1xdt/2)2

γ1dt

]
, (4.6.14)

It is convenient to rescale the signal to have variance σ2 = γ1dt therefore we arrive

at1,

P (V ) ' 1√
2πγ1dt

exp

[
−(V − γ1xdt)

2

2γ1dt

]
, (4.6.15)

1We could do this rescaling right at the beginning by defining the homodyne signal as V =√
γ1dt/2. This scaling may have to do with the fact that with homodyne measurement we only

collect half of the signal on average.
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4.6 Generalized measurement in the σx basis

where we also added the normalization factor. Equation (4.6.15) is analogous to

Equation (4.3.1), However this time the measurement signal distribution is shifted by

γ1〈x〉 and has variance of γ1dt as depicted in Figure 4.9. Therefore, the homodyne

0.5 0 0.5

σx

σ>>

γ1dt

γ1dt

Figure 4.9: Homodyne measurement signal distribution in the weak limit, x-
measurement: Note that γ1dt� 1 therefore

√
γ1dt� γ1dt

signal can be described in the form1,

V = γ1〈x〉dt+
√
γ1dW = γ1〈x〉dt+

√
γ1dξdt, (4.6.16)

where dW and dξ are zero-mean Gaussian distributions with variance of dt and dt−1

respectively (therefore
√
γ1dW has variance of γ1dt).

4.6.2 SME

Now we turn to state evolution and calculating the SSE and SME. For the SSE we

simply need to calculate the change in state |ψ〉 during the measurement time dt,

d|ψ〉 = |ψ(t+ dt)〉 − |ψ(t)〉 = (ΩV − 1)ψ

= e
− V 2

2γ1dt

(
−γ1dt

2
σ+σ− + V σ−

)
|ψ〉. (4.6.17)

1It worth mentioning that, in case of inefficient detection, the signal would be V =
√
ηγ1〈x〉dt+√

γ1dW. This intuitively makes sense because we always rescale the signal to have variance γ1dt
regardless of the efficiency η. Still, inefficient measurement decreases the SNR since the greatest
mean separation of the homodyne signal conditioned on 〈x〉 scales linearly in η.

112



4.6 Generalized measurement in the σx basis

In order to obtain the SME we calculate dρ = d|ψ〉〈ψ|+ |ψ〉d〈ψ|+ d|ψ〉d〈ψ|,

dρ =

(
−γ1dt

2
σ+σ− + V σ−

)
ρ+ ρ

(
−γ1dt

2
σ+σ− + V σ+

)
+

(
−γ1dt

2
σ+σ− + V σ−

)
ρ

(
−γ1dt

2
σ+σ− + V σ+

)
, (4.6.18)

where we used Equation (4.6.17) and ignored normalization constants. Again, we

only keep terms up to the first order of dt1,

dρ = −γ1dt

2
(σ+σ−ρ+ ρσ+σ−) + V (σ−ρ+ ρσ+)

+γ1σ−ρσ+dt, (4.6.19)

where in the last term, we substitute V from Equation (4.6.16) and keep terms up to

dt and use the Itô rule (dW)2 = dt. By rearranging terms we have,

dρ = γ1dt

(
σ−ρσ+ −

1

2
(σ+σ−ρ+ ρσ+σ−)

)
+ V (σ−ρ+ ρσ+). (4.6.20)

Since we have ignored the normalization constants, now we need to normalize the

result. One can show that the normalized SME has the form

dρ = γ1dt

(
σ−ρσ+ −

1

2
(σ+σ−ρ+ ρσ+σ−)

)
(4.6.21)

+ (V − γ1Tr[(σ− + σ+)ρ]dt) (σ−ρ+ ρσ+ − Tr[(σ− + σ+)ρ]ρ).

Exercise 4: Convince yourself about the normalization step, which is the transition

from Equation (4.6.20) → (4.6.21).

Equation (4.6.21) can be represented in terms of the dissipation superoperator

D[L]ρ = L†ρL− 1
2
{L†L, ρ} and jump superopertatorH[L]ρ = Lρ+ρL†−Tr[(L+L†)ρ]ρ

1Remember V has a term of order
√
t according to Equation (4.6.16).

113



4.6 Generalized measurement in the σx basis

in a more compact form,

dρ = γ1dtD[σ−]ρ+ (V − γ1xdt)H[σ−]ρ (4.6.22a)

= γ1dtD[σ−]ρ+
√
γ1dWH[σ−]ρ (4.6.22b)

→ ρ̇ =
dρ

dt
= γ1D[σ−]ρ+

√
γ1dξH[σ−]ρ (4.6.22c)

where we substitute W and dξ as defined in Equation (4.6.16).

Equation (4.6.22c) describes the evolution of the qubit under radiative decay with

rate γ1 and continuous perfect monitoring of that radiation with homodyne detection.

By comparing to the general form of the SME (Equation 4.3.19), we understand that

the homodyne measurement of the qubit radiation is corresponding to the measure-

ment operator σ− and the measurement strength k = γ1 is the rate in which the

detector receives the emission.

In order to account for imperfect detection we can again use the technique of

multiple detectors. Assume that actual detector receives proportion η of the total

emission at rate γ1, thus the measurement strength of this detector is ηγ1. The

rest of the emission is then measured by a fictitious detector (the environment) with

measurement strength (1 − η)γ1. Both measurement detectors impose their own

backaction on the qubit evolution,

dρ = γ1D[σ−]ρ+
√
γ1dξH[σ−]ρ+

√
γ1dξ

(f)H[σ−]ρ, (4.6.23)

where dξ and dξ(f) represents the collected homdyne signal by actual detector and the

fictitious detector respectively. By averaging over all the fictitious detector outcomes

we arrive at the SME for inefficient detection of the qubit emission,

dρ = γ1D[σ−]ρ+
√
ηγ1dξH[σ−]ρ, (4.6.24)
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4.7 z-measurement procedure

where that the corresponding inefficient homodyne signal can be described by,

V =
√
ηγ1〈x〉dt+

√
γ1dW =

√
ηγ1〈x〉dt+

√
γ1dξdt. (4.6.25)

Similar to the discussion we had for the SME (4.3.19), one can also add unitary

evolution to the SME (4.6.24) to account for a coherent drive on the qubit and obtain

a full version of the SME,

dρ = −i[HR, ρ] + γ1D[σ−]ρ+
√
ηγ1dξH[σ−]ρ. (4.6.26)

To sum up the discussion in this section, we may recast this stochastic master

equation terms of Bloch vector components,

ż = +Ωx+ γ1(1− z) +
√
ηγ1x(1− z)dξ, , (4.6.27a)

ẋ = −Ωz − γ1

2
x+
√
η(1− z − x2)dξ, , (4.6.27b)

where we assume HR = Ω
2
σy.

4.7 z-measurement procedure

In this section, we are going to utilize the basic techniques mentioned in Chapter 3 to

discuss how to actually perform weak measurement and analyze the data to obtain

quantum trajectories. A typical z-measurement includes:

• Qubit calibration and characterization as discussed in Chapter 3.

• Paramp calibration, dumb-signal cancellation, readout calibration, as discussed

in Chapter 3.

• Calibration for χ, η, n̄, k.

• Calibration for preparation and tomography pulses, Rabi tomography.
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4.7 z-measurement procedure

• Data acquisition for quantum state tomography and the actual experiment.

• Post-processing, verifying the measurement trajectory update method by quan-

tum state tomography.

In the following subsections, we discuss each of these steps in greater detail.

4.7.1 Basic characterization

As discussed in Chapter 3 we first need to characterize the qubit-cavity system. The

information we need to obtain in this step is the cavity frequency ωq, cavity linewidth

κ, qubit frequency ωq, qubit relaxation time T1, and qubit dephasing time T ∗2 .

In this stage we also find an initial calibration for π and π/2 pulses (usually Tπ = 20

ns , Tπ/2 = 10 ns for certain amplitude in arbitrary waveform generator (AWG). More

careful calibration should be performed after paramp calibration and dumb-signal

cancellation. See Chapter 3 for more details on basic experiment characterization.

4.7.2 Paramp calibration

As discussed in Chapter 3, we set up the paramp (preferably in double-pump opera-

tion mode) at the cavity frequency (more precisely at ωc−χ so we have an optimum

and symmetric response for the states |g〉 and |e〉).

“Dumb-signal” cancellation— Beside the basic paramp setup and obtaining

a proper gain profile, here we need also consider some practical techniques to optimize

the low-power readout fidelity. The point is that in weak measurement the paramp

should be adjusted to have best performance for weak signal detection1. However,

during the readout we use a much stronger signal to project the qubit (basically

the readout is a very strong measurement). Having calibrated the paramp for weak

measurement, it may not have the best performance for readout where we send a

large number of photons during the readout.

1Moreover the paramp normally works efficiently in the weak signal limit.
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4.7 z-measurement procedure

The trick to go around this issue is called “dumb-signal cancellation”. The idea

is following: although we need a high number of photons during the readout inside

the cavity, after passing the cavity we can coherently cancel the unnecessary part of

the signal and only net phase shifts are amplified by the paramp as demonstrated in

Figure 4.10. The dumb-signal cancellation is basically a copy of the readout pulse

Input #1

Output

Readout
 pulse

Q

Q

I

Q
I

Q

I

δθ<<π

δθ δθ=π

I

δθ=π

Cancellation
 pulse

Figure 4.10: Dumb-signal cancellation: A copy of the readout pulse with proper amplitude

and phase cancels the readout signal in I quadrature while maintaining the information along the Q

quadrature (separation Amp× δθ is preserved) since the paramp works efficiently in the weak signal

regime.

with the right amount of attenuation1 and proper phase to cancel the readout signal

before reaching to the paramp while maintaining the qubit information. The room

temperature circuitry for dumb-signal cancellation is depicted in Figure 4.11.

1One way to estimate the proper amplitude for the dumb signal in the experiment is to send a
continuous readout pulse to the cavity (e.g. run a long readout sequence in continuous mode, or set
the readout pulse always high at mixer) and look at the output signal power with spectrum analyzer.
Now disconnect the readout input but this time send the dumb signal cancellation through the pump
port and adjust to amplitude to have the same output power signal as we had for continuous readout.
By this calibration the amplitude is roughly calibrated and you can find the optimal phase by looking
at average homodyne signals in IQ plane and comparing the output signal before readout and during
the readout.
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4.7 z-measurement procedure

4.7.3 Quantum efficiency calibration

After the paramp is set up for optimal readout performance, we are ready to calibrate

the quantum efficiency η. This includes calibration of the dispersive shift χ, the

average photon number n̄, the measurement strength k, and finally measurement of

the quantum efficiency.

In order to obtain values for χ and n̄, we use a Ramsey measurement1. As dis-

cussed in Chapter 2 (Eq. 2.3.21), the qubit frequency is shifted by the average number

of photons in the cavity, ∆ωq = 2χn̄. Moreover as discussed earlier in this chapter

(Equation 4.3.22), photons in the cavity also induce dephasing of the qubit coherence

by a rate Γ = 8χ2n̄/κ. We can observe these two effects by performing a Ramsey

measurement over a range of average photon number occupation in the cavity. For-

tunately, the ratio Γ/∆ωq = 4χ/κ is independent of n̄, which means we just need

to sweep the average number of photons in the cavity (without knowing the actual

n̄ values) and calculate the ratio to obtain χ (the value for the cavity linewidth κ is

independently known from the basic characterization).

For that, we start by running the Ramsey experiment (typically a 5 µs Ramsey

sequence). We set the frequency to be slightly off-resonant2 as illustrated in Fig-

ure 4.11. The qubit signal generator (BNC2) is set to be 0.4 MHz above the qubit

resonance frequency. By changing the DC offset values at the I/Q inputs of the cavity

mixer, we let photons to leak into the cavity and shift the qubit frequency and also

dephase the qubit, which is measured by the Ramsey measurement. The result of

this sweep labeled as the Ch3 offset (the applied DC offset voltage to the input Q for

the cavity mixer) has been shown in Figure 4.12a. The minimum oscillation, which

is fmin = 0.4 MHz, happens somewhere around 55 mV for the Ch3 offset. As the

1Note that we might have a crude estimation of χ from the punch-out experiment, but that is
not accurate enough for the quantum efficiency calibration.

2It is more convenient to avoid being on-resonance with qubit so there are always oscillations
which makes an easier fitting procedure. Therefore we prefer to be slightly above the actual qubit
frequency (0.4 MHz for 5 µs Ramsey sequence) and by increasing the n̄, qubit will be pushed down
(remember χ is typically negative) and we never Stark shift the qubit into an on-resonance situation.
Typically, we set the qubit drive frequency so that we have ∼ one oscillation in the limit n̄ → 0.
This usually ensures we will sample enough to resolve Ramsey oscillations at higher n̄ in the cavity.

118



4.7 z-measurement procedure
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Figure 4.11: Quantum efficiency calibration setup.

Ch3 offset deviates from a minimum leakage value, the mixer lets photons populate

the cavity and the oscillation frequency increases by 2χn̄. Moreover, the oscillations

decay faster as the average number of photons increases in the cavity as expected by

the relation Γ = 8χ2n̄/κ. Figure 4.12b shows Ramsey oscillations from data both

near and far from minimum leakage. By fitting a decaying sinusoid to the data we

obtain the oscillation frequency f and the Ramsey decay time 1/Γ as a function of

the Ch3 offset value as depicted in Figure 4.12c. In order to obtain χ we plot Γ versus

f and fit a line to the data as depicted in Figure 4.12d. The slope would be 4χ/κ

(the value of the cavity linewidth κ is known from the low-power cavity transmission

measurement). We need one more piece of information from these data. We fit the

curve f (frequency versus Ch3 offset) to a polynomial (parabola is enough) and record

the fit parameters as depicted in Figure 4.12. Later, this data will be used to find

the optimal quadrature for the measurement1.

We repeat the experiment and apply the same analysis for the DC offset of Ch4

while keeping the offset of Ch3 fixed at the minimum leakage value2.

Now, we use the parabolic fit to parametrize the mixer output power in terms of

1The relative phase of the cavity photons and the paramp pump is important for optimizing
amplification and hence quantum efficiency.

2To be more accurate, after finishing the Ch4 offset sweep one can redo the Ch3 offset sweep
with Ch4 offset fixed at the corresponding minimum leakage value.
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Figure 4.12: The χ calibration result: a, The Ramsey experiment result for different offset

values of Ch3. b, Two cuts from the sweep data in a indicated by dashed lines. c, The frequency

and the damping rate for the Ramsey data of panel (a) versus the DC offset of Ch3. By fitting

the red curve to a parabola we get coefficients K0, and K1, and K2, which will be used to find the

optimal quadrature for the measurement d, The damping rate versus the frequency is ideally a line

with a slope of 4χ/κ.

the Ramsey oscillation frequency f . Here we briefly discuss what this means. Ideally,

the mixer output power can be represented by,

fk = K
(Ch3)
2 (Ch3− Ch3min)2 +K

(Ch4)
2 (Ch4− Ch4min)2 (4.7.1)

Where we use the fact that Ch3 and Ch4 are orthogonal and Ch3min = −K(Ch3)
1 /2K

(Ch3)
2
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. The phase of the output signal also can be represented as,

θ = atan


√√√√K

(Ch4)
2

K
(Ch3)
2

(Ch4− Ch4min)

(Ch3− Ch3min)

 (4.7.2)

as depicted in Figure 4.13, the parameter θ sets the angle of the output signal in

the IQ plane (phasor) and fk parametrizes the length of the phasor which has to do

with the number of photons n̄ but we usually keep it in terms of frequency 2πfk =

2π(f − fmin) = 2χn̄. In fact, k = 4χ · 2π(f − fmin)/κ where k is the measurement

strength1. One can show that for a given mixer output power fk and angle θ the

I

Q

θ

fk

Figure 4.13: Mixer output: The output of the mixer is a coherent signal whose phase and

amplitude depend on Ch3/Ch4 amplitude and offset. The parameter fk quantifies the strength of

measurement and θ is the measurement quadrature.

value for Ch3 and Ch4 should be,

Ch3(fk, θ) =

√
fk

K
(Ch3)
2

cos(
π

180
θ)− K

(Ch3)
1

2K
(Ch3)
2

, (4.7.3a)

Ch4(fk, θ) =

√
fk

K
(Ch4)
2

sin(
π

180
θ)− K

(Ch4)
1

2K
(Ch4)
2

., (4.7.3b)

where we represent θ in degrees for convenience. Now we use Equation (4.7.3) to

once again sweep the Ramsey measurement, but this time we sweep the angle θ and

while keeping the frequency fk fixed at a certain value2. Figure 4.14 shows Ramsey

1Note that, we explicitly express f in MHz (Figure 4.12b). One needs to be careful about this
factor of 2π

2It is convenient to set fk at or close to the value that you will be performing the actual
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oscillation measurements for different values of θ value at fk = 0.5. Ideally the
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Figure 4.14: Ramsey measurements for a sweep of different angles.

Ramsey oscillation frequency should be fixed, but in practice the mixer may have

some imperfections and the Equation (4.7.3) does not perfectly predict the mixer

output. But this is not be a problem for calibration for a reason that will be clear

shortly1.

Now we arrive at the last step of the quantum efficiency calibration. In this

step we want to find the optimal angle which gives the best signal-to-noise ratio for

measurement of the qubit state. For that, we compare the weak measurement signal

for a certain time T ∼ 100 ns after preparing the qubit in the ground or excited state

2. We repeat this measurement for different angles and compare the separation of the

two readout histograms to find which angles gives the optimal SNR as depicted in

Figure (4.15). Once we find the SNR for different angles θ, we have all the pieces we

need to calculate the quantum efficiency,

η =
Sκ

64χ2n̄T
=

Sκ

64πχ(f − fmin)T
. (4.7.4)

experiment. Usually fk = 0.1 is a very weak measurement and fk = 1 is a relatively “strong” weak
measurement.

1Eventually, for quantum efficiency calibration, we compare the result of two θ sweeps so imper-
fections do not contribute to the final result.

2Note there is no readout pulse needed in this step.
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Figure 4.15: Calibration of η: Comparison of the measurement histograms for |g〉 and |e〉 for

different θ.

As depicted in Figure 4.15d, the quantum efficiency is maximum at a certain angle

which is ideally aligned with the paramp amplification quadrature.

4.7.4 Tomography pulse calibration

Before we collect data, it is good to fine-tune the preparation/tomographic pulses. A

short Rabi (100ns) sequence with all three types of tomographic readout for x, y, z

(as discussed in Chapter 3) is a simple test to verify the preparation and tomographic

pulses1. Figure 4.16a shows a Rabi tomography result corresponding to a perfect

calibration for preparation and tomography pulses. The fact that the oscillations for

both x and y start from the zero and that y remains always zero means that, for most

part, the pulses are calibrated2 Figures 4.16b,c,d,e show some common imperfect

calibrations.

4.7.5 Data acquisition

After recalibrating the preparation and tomographic pulses. We are ready to run

experimental sequences (including noise calibration and state tomography sequences).

1We may have already calibrated π, π/2-pulses in a “basic qubit characterization” step but note
that we are now pumping the paramp and may need to revisit the qubit calibration. Moreover,
we might need a more complicated preparation for the actual experiment. So it makes sense to
specifically check the preparation pulses before starting the actual experiment.

2One can use a longer Rabi sequence with lower amplitude, T1, or Ramsey sequence to further
tune the calibration.
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Figure 4.16: Rabi tomography diagnosis: a, A perfect calibration. b The π/2 pulses needed to

be weaker, either shorter pulses or lower amplitude. c The π/2 pulse for x (y) needed lower (higher)

amp/duration. d, Mixer orthogonality is slightly higher that 90 degrees. d, Mixer orthogonality is

slightly lower that 90 degrees.

The noise calibration measurement (depicted in Figure 4.15a,b) needs to be col-

lected as a reference to scale the collected digitized weak signal1.

For example, the sequence for continuous monitoring of a driven qubit has been

depicted in Figure 4.17a which includes pulses for heralding, preparation, weak mea-

surement, and readout. The obtained data is depicted as a color plot in Figure 4.17b.

Note that we perform the experiment for different times t (in this case we vary the

measurement time from 0 to 2 µs)2.

4.7.6 Post-processing: Quantum trajectory update

In this step we use the SME (Equations 4.3.20) or Bayesian update (Equations 4.4.10)

to reconstruct quantum trajectories. First, we need to properly scale the digitized

measurement signal to obtain V (t). For that we use the noise calibration data and

subtract the overall offset3. Then we scale the signal so that the separation be-

tween measurement signal histograms of the ground and excited state preparations

1The noise calibration sequence doesn’t have drive or readout, only ground and excited state
preparations and weak measurement for a certain time ∼ 1 µs.

2One may think that only repeating the longest trajectory is enough because then you can update
trajectories as long as you wish. However, in order to verify the validity of trajectory update, you will
need to have trajectories which have different lengths, which provides you with readout measurement
at different times. Later we will discuss how to use the trajectory measurements of different times
to tomographically validate the trajectory update method.

3Note that the overall offset is determined by averaging both signals regardless of the preparation.
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Figure 4.17: Driven z-measurement sequence.

are equal to two. Moreover, the sign for the scaling factor is chosen so that the

histogram corresponding to the ground state preparation is centered at V = +1 as

depicted in Figure 4.18b which is consistent with our convention (for example see

Equation 4.2.14). One can check at this point to make sure that the variance of the
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Figure 4.18: Digitized weak measurement signal scaling.

signal is consistent with the calibrated quantum efficiency.
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4.7 z-measurement procedure

SME update

For quantum trajectories, we use the scaled signal in the SME. In order to account for

a coherent drive HR = −ΩRσy/2, we use the full version of the SME (Equation 4.3.23).

We represent this in terms of Bloch components as,

z[i+ 1] = z[i] + ΩRx[i]dt+ 4ηk(1− z[i]2)(V [i]− z[i])dt (4.7.5a)

x[i+ 1] = x[i]− ΩRz[i+ 1]dt− (2k + γ2)x[i]dt− 4ηkx[i]z[i](V [i]− z[i])dt

, (4.7.5b)

where we also discretized1 the equations to be consistent with the digitized measure-

ment signal with timestep dt ∼ 20 ns. Equation (4.7.5) may not be numerically stable

or accurate when the timestep dt in the experiment is not small enough. There is

an alternative way to update the SME which involves two steps. In this method the

unitary evolution separately implemented by a geometric rotation,

zd = z[i] cos(ΩRdt) + x[i] sin(ΩRdt) (4.7.6a)

xd = x[i] cos(ΩRdt)− z[i] sin(ΩRdt) (4.7.6b)

z[i+ 1] = zd + 4ηk(1− z2
d)(V [i]− zd)dt (4.7.6c)

x[i+ 1] = xd − (2k + γ2)xddt− 4ηkxdzd(V [i]− zd)dt, (4.7.6d)

where zd and xd are dummy variables connecting the two steps. The two-step update

has better performance when dt is not small enough to ensure the stability in single-

step update. In most of practical situations dtΩR � 1 and the two methods are

almost the same (see Figure 4.19).

1Note that, x[i+ 1] uses z[i+ 1] for the rotation terms. Why?
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Tomographic validation

In order to verify that the updated trajectories accurately predict the state evolution

of the qubit, we show the qubit state predicted by the trajectory is consistent with

measurement from quantum state tomography. The idea is to compare the expecta-

tion values for x, y, and z predicted by the quantum trajectory to the expectation

value obtained by the result of projective measurements (readouts). Of course the

readout is a destructive measurement with binary outcome. Therefore in order to

obtain the expectation values one need to repeat the readout measurement on the

same state many times. But it is not possible to perform many readouts on a single

trajectory hence it is impossible to obtain expectation value for a single trajectory

from a projective measurement.

However, instead of using single trajectory, we can use many different trajectories

as long as all that trajectories have the same prediction for 〈x〉, 〈y〉, 〈z〉 at a given

verification time tv. Therefore the tomographic verification at any given time tv

involves post-selection of trajectories that agree at that time.

A nice way to do this is by choosing a random trajectory as a reference, and for

each time step we post-select trajectories that have same prediction as the reference

trajectory. Therefore we can reconstruct the reference trajectory by using the readout
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4.7 z-measurement procedure

outcome of post-selected trajectories. Figure 4.20a shows a reference z-trajectory in

(black line) and a few post-selected trajectories that have the same prediction for 〈z〉

at tv = 0.8 µs within some tolerance indicated by a red window. Note these post-

selected trajectories are from the experiment time t = tv so their readout outcomes

at t = tv are available. The average of the readout outcomes from post-selected

trajectories reconstruct the reference trajectory at that time step which is indicated

by a green circular marker in the zoomed-inset. The agreement between the green

circle and the reference trajectory indicates that quantum trajectories truly predict

the state of the qubit at that time step. By repeating this process for both z, and
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Figure 4.20: Tomographic reconstruction.

x for all time steps, one can reconstruct the reference trajectory and validate the

state update as depicted in Figure 4.20b. The shaded area indicates the binomial

error from the readout outcomes of post-selected trajectories at each time step. The

binomial error can be calculated as,

Bionamial Error =

√
p · q
N

=

√
N+N−

(N+ +N−)3
. (4.7.7)

Where p = N+/N and q = N−/N are the probabilities for two possible outcomes

(p = 1 − q) and N = N+ + N− is the total number of outcomes. In this case, the

total number of outcomes is equal to the total number of post-selected trajectories

for each verification time.

128



4.8 σx measurement procedure

4.8 σx measurement procedure

In this section we discuss the experimental procedure for x-measurement. This section

follows the theoretical discussion of Section 4.6. For most part, the procedure for x-

measurement is similar to z-measurement which is discussed in Section 4.7. Here we

discuss only two steps that are slightly different: the quantum efficiency calibration

and the quantum trajectory update.

4.8.1 Quantum efficiency calibration

The paramp setup is slightly different from the z-measurement. Here, the paramp

pump is similar to the qubit frequency. Practically, the qubit pulses and paramp pump

have to be from the same generator. In an x-measurement the paramp is only used

for state tracking but not readout. Therefore there is no dumb-signal cancellation and

no readout fidelity optimization. High power readout is used and often the fidelity

can be improved by transferring population to the higher excited states prior to the

readout pulse.

The quantum efficiency calibration is relatively easier for x-measurement than

z-measurement. For this, we only need to run the noise calibration sequence with

±x state preparations and plot the histogram of the weak signal after a certain time

of integration and scale the variance to be γ1dt. Then the separation would be

∆V = 2
√
ηγ1.

4.8.2 State update and quantum trajectory

As discussed in Subsection 4.6.2, the SME for x-measurement in terms of Bloch com-

ponents is described by Equation (4.6.27). In order to calculate quantum trajectories,

the digitized homodyne signal needs to be properly scaled. For that we first subtract

the offset (the offset can be determined by taking the average of the signal from the

noise calibration sequence regardless of preparation). Then we scale the signal so
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4.8 σx measurement procedure

that the variance of the histograms is γ1dt. The signal is then ready to be used in

the discretized SME,

z[i+ 1] = z[i] + ΩRx[i] + γ1(1− z[i]) +
√
ηγ1x(1− z[i])(V [i]−√ηγ1x[i]dt), (4.8.1a)

x[i+ 1] = x[i]− ΩRz[i+ 1]− γ1

2
x[i] +

√
η(1− z[i]− x[i]2)(V [i]−√ηγ1x[i]dt). (4.8.1b)
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Chapter 5

Monitoring Spontaneous Emission

of a Quantum Emitter

In this chapter, I discuss the experimental study of a continuously monitored quantum

system. We focus on the dynamics of a decaying emitter under homodyne detection

of its radiation. The aim of this chapter is to connect the this experiment with

discussions provided in the previous chapters.

Unlike classical mechanics, measurement has an inevitable disturbance on quan-

tum systems. This disturbance which is known as measurement backaction and de-

pends on the type of detector that we use for measurement. Therefore, it is natural to

ask how the same quantum system, with the same interaction Hamiltonian to the en-

vironment, behaves differently under different detection schemes on the environment.

Although this doesn’t make much sense in a classical framework, it is understandable

in the quantum case, owing to the entanglement between the detector and the emitter

as we have already seen in the simple model in Chapter 4 (Section 4.2).

A prime example is the detection of spontaneous emission of an excited emitter.

How does the emitter decay under continuous monitoring? Does the decay dynamics

depend on the type of the detector? In other words, does an atom decay regardless

of the detection or it does decay because of the detection? Exploring these questions

underpin the topic of our study in this chapter.
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5.1 Spontaneous emission

5.1 Spontaneous emission

Spontaneously emission is ubiquitous in nature and accounts for most of the light

that we see around us [84]. It is often an undesirable effect but also essential for

diverse applications ranging from fluorescence imaging to quantum encryption using

single photons.

In the spontaneous emission process, an excited emitter (excited atom) releases

its energy in form of photons into one of the available electromagnetic modes of the

environment1. From the quantum measurement point of view, spontaneous emission

is due to the light-matter interaction and entanglement of the state of the emitter

to its electromagnetic environment [85, 86]. In this picture, measurements on the

environment (e.g. photon detection, homodyne detection) collapse the entangled

wavefunction in a specific basis and convey information about the state of the emitter

and consequently cause backaction [87]. Therefore, the choice of measurement may

change the quantum evolution of the emitter [88–91].

A goal in this chapter is to study the dynamics of spontaneous emission under

continuous homodyne measurement. But before discussing homodyne measurement,

it would be illuminating to discuss photon detection. This will be helpful to draw a

connection between these two types of detection.

5.2 Photon Detection

Consider a qubit (as a quantum emitter) interacting with an electromagnetic mode

of the environment. Assume we use a photon detector to monitor the existence of

photon in that mode of the environment2 as depicted in Figure 5.1a.

The emitter which is initially prepared in the excited state interacts with the

1Therefore the spontaneous emission rate can be altered by manipulating the electromagnetic
modes that are available to the emitter via engineering the environment [12,14].

2In general, one can assume that the emitter is interacting with many modes. Then for our
discussion, we should also assume that the detector is sensitive to all of the modes.

132



5.2 Photon Detection

Photon
detector

Electromagnetic mode Spontaneous emission

“click”a

b

Time

Pe

1

0

“click”
c

Time

Pe

1

0

“click”
“click”

“click”
Average
behavior

Figure 5.1: Photon detection: a, The qubit is initially prepared in the excited state and

interacts with an electromagnetic mode. The qubit state and its emission to the mode are entangled

via the interaction Hamiltonian (5.2.1). b, The detection of a photon results is a sudden jump for

the emitter state. c, The average of many jump detections results in an exponential decay for the

state of the qubit.

electromagnetic mode of the environment via the interaction Hamiltonian,

Hint = γ(a†σ− + aσ+), (5.2.1)

where a and a† correspond to the creation and annihilation of a photon in that mode.

The parameter γ quantifies the interaction strength which, in this case, is related to

the decay rate of the emitter to the environment1.

The interaction Hamiltonian entangles the state of the emitter and the electro-

magnetic mode which can be represented as2 (also depicted in Figure 5.1a),

Ψtot(0) = |e〉|0〉 → Ψtot(t) = β|e〉|0〉+ α|g〉|1〉. (5.2.2)

(5.2.3)

The photon detector monitors the state of the environment by performing mea-

1As discussed earlier, γ is proportional to the available density of state for the emitter to decay.
2Note that this is similar to our discussion in Chapter 4 and Equation (4.6.3), except here the

emitter initially is in the excited state α0 = 0, β0 = 1. This means that if we do not detect a photon,
the emitter is still in the excited state with certainty, which is not the case when the emitter is
prepared in a superposition state as we discussed in Equation (4.6.3).
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5.3 Homodyne detection of spontaneous emission

surements in the photon number basis. If we detect a “click” we learn that the

wave-function of the environment has been collapsed to the state |1〉. This means the

state of the qubit must be in ground state (measurement backaction). If we do not

detect a click, then the emitter is still in the excited state. Therefore the detection of

the spontaneous emission in the form of photons (energy quanta), results in an instan-

taneous jump of the emitter from the excited state to the ground state as depicted

in Figure 5.1b [92, 93]. If we average over many jump detections (or equivalently, if

we disregard the detection results) the state of the qubit would exponentially decay

from the excited to the ground state (Fig. 5.1c).

Before we conclude this subsection, it is worth mentioning a key point. You may

notice that in the quantum measurement interpretation of the spontaneous emission,

the atom decays because a detector collapses the wave function. In other words ‘the

atom decays because the detector clicks’. This is so counterintuitive with our classical

understanding of detection where we would say that the detector clicks because the

atom has decayed1. We will return to this point again in the discussion on homodyne

measurement.

Exercise 1: Consider detecting a photon from a star lightyears away. Does this

mean that our detection of that photon causes that atom decay years ago? Explain

this in terms of the quantum measurement interpretation.

5.3 Homodyne detection of spontaneous emission

In the previous section, we discussed a situation where spontaneous emission is mea-

sured by a photon detector. Now the question is, “What if the emission is measured

with a detector that is not sensitive to quanta, but rather to the amplitude of the

field?” In other words, what if we use a detector that addresses the wave notion of

1The argument ‘the atom decays because the detector clicks’ is true when there is an entangle-
ment between the emitter and the photon.
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Figure 5.2: Homodyne detection: a, The spontaneous emission of the emitter is detected by

homodyne measurement. The local oscillator has a well defined relative phase φ with respect to the

qubit rotating frame which determines the amplification quadrature shown in b. The measurement

happens only in one quadrature along φ-axis. The fluctuations in the orthogonal quadrature are

de-amplified, which means we do not learn about fluctuations in that quadrature. This allows for

noiseless amplification for the φ-quadrature [94]

light as opposed to a photon detector which addresses the particle notion of light.

What would the backaction be in this case? How are measurement outcomes corre-

lated with the state of the emitter?” In this section, we experimentally explore these

questions by performing homodyne measurement of the spontaneous emission of a

qubit.

As we discussed in Chapter 4 (Subsection 4.6.1), Homodyne measurement can

be thought of as projections to the coherent basis |α〉, where α = |α|eiφ [90]. The

measurement outcome α corresponds to the amplitude of the field in the quadrature

a†eiφ + ae−iφ which also contains fluctuations in that quadrature.

In practice, when we perform homodyne measurement along a certain quadrature,

we basically squeeze the outgoing emission along that quadrature as depicted in Fig-

ure 5.2b. This means we amplify the signal along the φ-axis and de-amplify along the

orthogonal axis. Therefore the measurement (or the collapse) happens only along the

quadrature1 φ. Returning to our discussion of ‘the atom decays because the detector

clicks’, this means that the emitter only “decays”2 along the φ-quadrature3.

Therefore the idea for the experiment is 1) to study the spontaneous emission

1Because we do not obtain any information along the other quadrature.
2The word decay is in quotes because, unlike the photon detection, homodyne detection does

not necessarily fully collapse the emitter state.
3The fact that collapse happens in a certain quadrature, results in a certain type of backaction

on the qubit which may confine the qubit evolution in a certain subspace.
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5.3 Homodyne detection of spontaneous emission

dynamics of a qubit by performing a homodyne measurement along the φ quadrature

and 2) to explore the dynamics for different homodyne quadrature measurements.

Note that the interaction Hamiltonian (Eq. 5.2.1) connects the quadrature a†eiφ+

ae−iφ to the corresponding dipole moment of the qubit (emitter), σ−e
iφ + σ+e

−iφ.

For example if we set the phase φ = 0, we showed in Chapter 4 that the homodyne

measurement is actually a noisy estimate of 〈σx〉 which can be described by (see

Equation 4.6.16),

dVt =
√
ηγ〈σx〉dt+

√
γdWt. (5.3.1)

We are interested to know what a detection of the homodyne signal dVt tells us

about the state of the decaying qubit. For that, we use the experimental setup to

perform the sequence depicted in Figure 5.3. For the experimental setup, note that

the qubit pulse and paramp pump share a same generator1 (BNC2) and the paramp is

operated in a double-pump mode. Moreover, regarding the homodyne measurement of

the emitter’s emission, the demodulation should be happen at the qubit frequency but

high-power readout demodulation should be at the bare cavity frequency. Therefore

we use an RF switch to toggle between two frequencies for demodulation purposes.

For the experimental sequence, we prepare the qubit in an initial state (in this

case we prepared the qubit in the excited state, +x, and +y) then start collecting

the homodyne signal for a variable time t (t=40 ns, 80 ns,...). Finally, we perform a

projective measurement to determine the final state of the qubit at that time.

We characterize the correlation between the average of the collected homodyne

signal and the final state (at time t). For that, we average the projective result

conditioned at the average homodyne signal V̄ . Therefore we obtain the conditional

expectation values, 〈σx〉|V̄ , 〈σy〉|V̄ , 〈σz〉|V̄ . In Figure 5.4a-c we plot 〈σz〉|V̄ and 〈σx〉|V̄
parametrically on the X–Z plane of the Bloch sphere for different integration times.

Looking at the experimental result in Figure 5.4, a few points are noticeable;

1This is a practical way to ensure that the paramp pump and the qubit pulse have a well defined
and stable relative phase.
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5.3 Homodyne detection of spontaneous emission

• When the qubit is prepared in the excited state, we see that the x-component

of the state develops a correlation with the averaged homodyne signal.

• The emitter state evolves in a deterministic curve inside the Bloch sphere.

Therefore one can use these “smiley” curves for heralding the system in a nearly

arbitrary point in the Bloch sphere.

• When the emitter is prepared as the +x state, the qubit state sometimes gets

more excited during the decay [89]. This stochastic excitation happens only in

the amplitude measurements of the field and such excitations are not possible

in the case of photodetection [90].

• If we rotate the amplification phase by 90 degrees1, As depicted in Figure 5.4c,

the state evolution for qubit is totally different. This is because the backaction

happens in a different quadrature. This demonstrates how the choice of homo-

dyne measurement phase can be used to control the evolution of the emitter.

We can take advantage of the deterministic “smiley” evolution of the qubit to

characterize the backaction for the qubit at different points in the Bloch sphere. For

that, we let the system evolve from the excited state to a nearly arbitrary place inside

the Bloch sphere on a smiley curve (xi, zi). This acts as heralding of the qubit state to

a specific point in the Bloch sphere, (xi, zi). Then we collect the homodyne signal for

an additional 40 ns. We use results from tomography to calculate the final position

of the qubit (xf , zf ). Therefore, for each point on the smiley curve, we obtain the

conditioned evolution of the qubit based on the sign of the additional collected homo-

dyne signal. This method tells us about the measurement backaction for positive and

negative homodyne signals at each point on the Bloch sphere. The results are sum-

marized in Figure 5.5. The backaction at a specific location in state space, associated

with the detection of a given value of dV , is demonstrated by the vector connecting

(xi, zi) and (xf , zf ). The backaction vector maps demonstrate how positive (nega-

tive) measurement results push the state toward +x (−x). Furthermore, the maps

1or equivalently prepare the system in +y.
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positive or negative dV . The corresponding backaction imparted on the emitter for negative (c) or
positive (d) values of dV are depicted by arrows at different locations in the X-Z plane of the Bloch
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suggest that measurement backaction is stronger near the state −z suggesting that

the measurement strength is proportional to the emitter’s excitation.

Finally, we can look at the individual quantum trajectories of this process. As we

discussed in Chapter 4, all we need is to properly scale the homodyne signal and use

that in the SME (4.6.27),

dx = −γ
2
xdt+

√
η(1− z − x2)(dVt − γ

√
ηxdt), (5.3.2)

dz = γ(1− z)dt+
√
ηx(1− z)(dVt − γ

√
ηxdt), (5.3.3)

dy = −γ
2
ydt−√ηxy(dVt − γ

√
ηxdt). (5.3.4)

Figure 5.6 shows the result for state update from the exited state and the +x state
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5.3 Homodyne detection of spontaneous emission

for 2 µs of continuous measurement. As we see, the evolution of the qubit during the

decay process is no longer jumpy as opposed to the case of photon detection. How-

ever, the average of many trajectories would recover the same exponentially damped

behavior as we discussed in the previous section1. Moreover, in Figure 5.6b stochas-

tic excitations of individual trajectories toward the excited state is clearly apparent.

One can quantify the stochastic excitation by extracting the probability of excita-
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Figure 5.6: Quantum trajectories for decaying atom: a,b, Quantum trajectories of sponta-
neous decay calculated by the stochastic master equation, initiated from −z (a) and +x (b). Several
trajectories are depicted in gray, and a few individual trajectories are highlighted in black. c,d In-
dividual trajectories (x̃, z̃) that originate from −z (c) and +x (d) are shown as dashed lines and the
tomographic reconstruction (see Chapter 4) based on projective measurements are shown as solid
lines.

tion above a certain threshold at different times. Looking at the measurement term

(proportional to
√
η) in Equation (5.3.3) it is clear that the state at +x will be

stochastically excited if the Weiner increment dWt, obtained from the detected sig-

nal dVt, is less than −
√
γ/ηdt, predicting that ∼ 35% of the trajectories should be

excited in the first time step [33].

1Regardless of the type of the detector, we will recover the Lindbladian evolution for the system
if we average over many detection outcomes (this is equivalent to disregarding all measurement
outcomes).
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5.3 Homodyne detection of spontaneous emission

Having access to the stochastic trajectories of a quantum system opens new doors

to investigate the dynamics of open quantum systems. In particular, the stochastic

and non-unitary dynamics of quantum systems combined with a unitary evolution

exhibits a rich dynamics which can be utilized for studying fundamental question in

quantum physics [32,35,90,95].
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Chapter 6

Quantum Thermodynamics:

Quantum Maxwell’s Demon

In this chapter we explore quantum thermodynamics at the extreme level of a single

atom interacting with a bath. The atom is a two level quantum system in contact

with a detector which acts as the atom’s environment. In this chapter we attempt to

put our understanding about quantum dynamics into the language of quantum ther-

modynamics. In particular, we study the information-energy connection in quantum

thermodynamics in the context of Maxwell’s demon.

6.1 Fluctuation theorems: thermodynamics at the

microscope scale

Thermodynamics is normally considered as a theory which describes systems in the

limit of a large number of particles, N → ∞. In this limit, often known as the

thermodynamic limit, fluctuations of energy are absolutely negligible compared to

the total energy in the system. Therefore, it makes sense to describe the state of

the system by a few macroscopic parameters regardless of fluctuations in individual

degrees of freedom. For example, we define an equilibrium state and characterize the

total energy in terms of heat and work by only a few thermodynamic parameters (e.g
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6.1 Fluctuation theorems: thermodynamics at the microscope scale

volume, pressure, temperature) for a gas inside a piston regardless of the position

and the velocity of individual gas molecules. As depicted in Figure 6.1a, the work

fluctuations in a thermodynamic process are negligible in thermodynamic limit so

that the work distribution is effectively a delta function.

However, for microscopic systems which have a finite number of degrees of freedom,

the fluctuations are no longer negligible. In this limit, fluctuations basically drive

the systems in a stochastic manner during the process1 as depicted in Figure 6.1b.

Therefore, the traditional thermodynamics laws need to be revisited for microscopic

systems where thermal fluctuations are significant.
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Figure 6.1: Work fluctuations in the macroscopic and microscopic limit: a. The work

distribution for a system (gas inside a cylinder) in the thermodynamic limit (number of particles

N →∞). The fluctuations are absolutely negligible ∝ N− 1
2 ∼ 0 in this limit. b. The corresponding

system in the limit of a finite number of particles (N → 1). The work distribution fluctuates

substantially ∝ N− 1
2 ∼ N due to thermal fluctuations.

In the past decades, thermodynamics has been successfully extended to nonequi-

librium microscopic systems to account for thermal fluctuations. In particular, the

generalized second law of the thermodynamics, in terms of a fluctuation theorem,

has been experimentally verified for classical systems [96]. For example, it has been

shown that work fluctuations in a nonequilibrium process follow a fairly strong rule

known as the Jarsynski equality (JE),

〈e−βW 〉 = e−β∆F , (6.1.1)

1Similar to the quantum trajectories which are stochastic due to quantum fluctuations.
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6.2 Maxwell’s demon and the 2nd law

which connects the work distribution W from a nonequilibrium process to the equi-

librium free energy difference ∆F [97]. One can recover the second law of thermody-

namics from JE by using Jensen’s inequality,

〈e−βW 〉 = e−β∆F 〈ex〉≥e〈x〉−−−−−→ 〈W 〉 ≥ ∆F. (6.1.2)

Therefore, the JE is considered as the 2nd law of thermodynamics for microscopic

systems. This equality has been verified experimentally for classical systems (see for

example Ref. [98]). However, the extension of thermodynamics to include quantum

fluctuations faces unique challenges because quantum fluctuations and coherence do

not have a clear role in thermodynamics. The newfound experimental capability to

track single quantum trajectories adds to an intense endeavor to study and define

thermodynamic quantities for individual quantum systems.

6.2 Maxwell’s demon and the 2nd law

Consider the schematic in Figure 6.1b in the limit of a few particles in the cylinder. If

we are able to track the particles and react fast enough, we can basically displace the

piston without doing any work! In this case, the work distribution is ideally a delta

function at zero, but we have displacement in the piston ∆F 6= 0. Thus the JE is

no longer valid. In fact, Maxwell came up with a similar idea which was in apparent

violation of the 2nd law soon after the establishment of thermodynamics. Maxwell

considered a box full of air molecules and an intelligent being who has access to the

velocity and position of individual molecules. The demon can sort the hot and cold

particle to either side of the box without doing any work as depicted in Figure 6.2.

The question of, “How the demon can make a oven next to a fridge without doing any

work and violate the 2nd law?”, reveals a profound connection between the energy

and information in thermodynamics1.

1This question of how the demon actually violates the 2nd law was unsolved for decades.
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6.2 Maxwell’s demon and the 2nd law

Figure 6.2: Maxwell’s demon: By knowing the position and the velocity of the particles, a

demon sorts hot and cold particle in a box in apparent violation of the 2nd law.

Owing to the dominant contribution of fluctuations in the dynamics of microscopic

systems, a lot of effort has been directed toward the understanding of the connection

between energy and information in microscopic systems. In particular, the Jarzynski

equality (2nd law) has been generalized to account for the demon’s information,

〈e−βW−I〉 = e−β∆F , (6.2.1)

where I is the mutual information between the demon’s measurement outcome and

the state of the system.

The generalized Jarzynski equality (GJE) has been studied and verified for clas-

sical microscopic systems in which the demon is realized by measuring the thermal

fluctuations and by applying subsequent feedback on the system [41,99–101].

The recent advances in fabrication and control over quantum systems allow for

unprecedented study of the concept of Maxwell’s demon in quantum systems where

instead of thermal fluctuations, the quantum fluctuations are dominant. For exam-

ple, in the minimal quantum situation of a two level quantum system, the generalized

Jarzynski equality is verified in the experiment by considering the mutual informa-

tion between projective measurement outcomes and the state of the qubit [102–105].

Although these experiments use quantum systems, their result can be interpreted as a

classical mixture either because the dynamics doesn’t include quantum coherence or

because the projective measurement destroys the quantum coherence. However, in an

actual quantum situation, the demon can also gain information about the quantum

145



6.3 Continuous monitoring: a quantum Maxwell’s demon

coherences; the off-diagonal elements in the density matrix1 (Fig. 6.3).
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Figure 6.3: Classical demon vs. quantum demon: a, A classical demon’s knowledge about a

quantum system is limited to the populations in the definite states. b, A quantum demon also has

knowledge about the quantum coherence in the system.

In previous chapters, we studied continuous monitoring and weak measurement

of a quantum systems. Through weak measurement we can learn about the quantum

state and quantum coherences without destroying them (completely). Therefore in

this chapter, we attempt to utilize continuous monitoring to study Maxwell’s demon

in the context of quantum measurement.

6.3 Continuous monitoring: a quantum Maxwell’s

demon

The idea is to use our ability of tracking and manipulating the quantum state to

realize a truly quantum Maxwell’s demon. For that, consider the z-measurement setup

(discussed in Chapter 4) and the experimental sequence demonstrated in Figure 6.4.

The experimental protocol consists of five steps:

• In Step 1, the qubit is prepared in a thermal state characterized by an inverse

temperate2 β. Practically this can be done by a proper rotation pulse followed

by a projective measurement and by then disregarding the measurement out-

come.
1One can think of it in this way that; the classical demon is able to identify the particles as either

hot or cold. But the quantum demon in general can also identify particles that are in superposition
of hot and cold.

2Here we represent β in the qubit energy scale so that, initially for the qubit populations we
have P1/P0 = e−β .
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6.3 Continuous monitoring: a quantum Maxwell’s demon
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Figure 6.4: Experimental sequence.

• In Step 2, a projective measurement is performed so that the qubit is projected

to one of its eigenstates. The binary measurement outcome X ∈ {0, 1} is

recorded. This result, along with the projective result in Step 5, will be used to

calculate the transition probabilities and characterize the work distribution for

the experiment.

• In Step 3, the demon, without knowing about the projective measurement result

X, starts monitoring the qubit state while an external drive also acts on the

system. Note the effective Hamiltonian for a resonantly driven qubit in the

rotating frame is Ht = −ΩRσy/2 where ΩR quantifies the drive strength as

discussed in Chapter 2.

• In Step 4, at a certain time, the demon uses his knowledge about the state of

the system to rotate the system back to the ground state and extract work1.

• In Step 5, the experiment is finished by a second projective measurement which

results in a binary measurement outcome Z ∈ {0, 1}.

We repeat this experimental protocol and gather measurement statistics to ex-

perimentally study the 2nd law of thermodynamics. For example, Figure 6.5 shows

the scatter plot of final states of the qubit before and after the rotation feedback in

Step 4 for 200 experiment runs.

1In the actual experiment, in order to avoid feedback delay, we perform a random rotation pulse
and the correct pulses are post-selected in the data analysis.
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6.3 Continuous monitoring: a quantum Maxwell’s demon

X

Z

Figure 6.5: The act of the demon in Step 4: The red (blue) dots are the state of the

qubit before (after) rotation feedback. The circular markers shows the average of the states before

and after feedback. All data are from weak measurement and quantum trajectory reconstructions

except the black cross which comes from the projective measurement after feedback. The agreement

between the cross and green circular markers indicates that the trajectory update and feedback

rotations are faithfully executed.

6.3.1 Examining the Jarzynski equality

Now, we examine the Jarsynski equality 6.1.2 in the following form,

〈e−βW 〉 =

ˆ
P (W )e−βWdW (6.3.1)

where we set ∆F = 0 since the initial and final Hamiltonian are practically the

same in our experiment. In order to obtain the work distribution P (W ) we only use

the projective measurement result and calculate the transition probabilities Pm,n as

demonstrated in Figure 6.6. The work distribution then can be calculated in this

form1,

P (W ) =
∑
m,n

P τ
m,nP

0
nδ(∆U − (Eτ

m − E0
n)), (6.3.2)

where the P 0
n denote the initial occupation probabilities, P τ

m,n are the transition prob-

abilities between initial and final eigenvalues E0
n and Eτ

m of the Hamiltonian Ht, and

τ is the duration of the protocol.

Therefore, we examine the Jarzynski equality by using transition probabilities as

1Note, because quantum systems do not necessarily occupy states with well defined energy (only
eigenstates of the Hamiltonian have a well defined energy), the work distribution is described in
terms of transition probabilities between energy eigenstates [106].
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6.3 Continuous monitoring: a quantum Maxwell’s demon

a
P11

P00

P10

P01

P1

P0

0

1

0

1

0

1

Figure 6.6: Transition probabilities: The projective measurement results are used to calculate

the transition probabilities. The initial probabilities P0(0) and P1(0) are simply calculated based

on the relative occurrence of outcome 0 or 1 in the first projective measurement. For the transition

probabilities Pnm(τ), we calculate the relative occurrence of the result n ∈ {0, 1} in the second

projective measurement conditioned that the result m ∈ {0, 1} is obtained in the first projective

measurement.

follows,

ˆ
P (W )e−βWdW = P0(0)P00(τ) + P1(0)P11(τ)

+P0(0)P10(τ)e+β + P1(0)P01(τ)e−β

= 1. (6.3.3)

Figure 6.7 (square markers) shows the experimental result for the left-hand side

of the Equation (6.3.3) for five different duration times. There is no surprise that the

result deviates from unity, because in Equation (6.3.3), we have ignored the act of

the demon on the system. In other words, the demon violates the second law unless

we account for the information of the demon.

6.3.2 The demon’s information

In this section, we quantify the information that the demon obtains during the mea-

surement. But what is the information? One way to quantify the information is to

measure how much you learned that you didn’t already know [107]. If we already

know that the qubit state is ρ = 0.99|0〉〈0| + 0.01|1〉〈1| and someone measures the

qubit and lets us know that the qubit is in the ground state, we would not learn much.

But it turns out that if the qubit is in the excited state our state of knowledge about
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6.3 Continuous monitoring: a quantum Maxwell’s demon
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Figure 6.7: Violation of the 2nd law: The experimental results violates the Jarzynski equality.

This violation is because we have ignored the demon’s information.

the qubit would be substantially changed. Therefore the amount of information can

be quantified by how unexpected the outcome is. For that, consider Iz(ρ) = − lnPz(ρ)

as the information content of ρ along z−basis which quantifies how much we learn if

we obtain result z = −1, 1 along the z−basis. Now we define information exchange

for the demon as the difference between initial and final information content,

Iz′,z(t) = lnPz′(ρt|r)− lnPz(ρ0), (6.3.4)

where, Pz′ represents the probability of getting the result z′ = −1, 1 in the z′-basis

where the system is diagonal1 [108]. We calculate the probabilities in the diagonal

basis to account for the information encoded in the populations (diagonal elements

in density matrix) as well as coherences (off-diagonal elements) as depicted in Fig-

ure 6.8a. For example, the state of the qubit is indicated by the blue arrow in

Figure 6.8a has the same amount of quantum information as the magenta arrow has

provided that the probabilities are calculated in the diagonal basis for each state.

The expectation value for the information exchange along a quantum trajectory

1The initial state is always a thermal state so the diagonal basis initially is z basis.
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6.3 Continuous monitoring: a quantum Maxwell’s demon
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Figure 6.8: Information dynamics for the quantum Maxwell’s demon: a. The information

is quantified by considering the probabilities in the diagonal basis to account for information encoded

in the coherences. b. The information exchange dynamics along quantum trajectories; the dashed

line shows a typical trace from the ensemble of data (shaded background color). The black solid line

is the average of the information exchange.

would be,

Ĩr =
∑

z,z′=±1

[Pz′(ρt|r) lnPz′(ρt|r)− Pz(ρ0) lnPz(ρ0)], (6.3.5)

where the conditional probabilities come from a single quantum trajectory. The

subscript ·r indicated by ρt is the conditional evolution found by averaging over many

trajectories. We obtain this average value for the information exchange as,

〈I〉 =
∑
r

Ĩr =
∑

z,z′=±1,r

Pz′(ρt) lnPz′(ρt)− Pz(ρ0) lnPz(ρ0). (6.3.6)

6.3.3 Test of the generalized Jarzynski equality

Now we attempt to verify the generalized Jarzynski equality which includes the in-

formation term. For that, we represent Equation (6.2.1) as1,

〈e−βW−I+∆F 〉 =P0(0)P00(t)e−I00 + P1(0)P11(t)e−I11

+P0(0)P10(t)e−β−I10 + P1(0)P01(t)e+β−I01 ,
(6.3.7)

1The sign for W in GJE depends on our definition of the work; the work done by the system,
or the work done on the system e±βW−I+∆F .
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6.4 Information gain and loss

where Iij = lnPi(ρt)−lnPj(ρ0) as we discussed in the previous Subsection. Figure 6.9

shows the experimental result for Equation (6.3.7) which indicates that the generalized

Jarzynski is indeed verified.
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Figure 6.9: Generalized Jarzynski equality for the quantum Maxwell’s demon: The blue

round markers are the experimental result for the generalized Jarzynski equality for different time

durations. The agreement between the dashed line and markers indicates that the GJE is verified,

as opposed to the JE (red square markers).

6.4 Information gain and loss

Now, we study the information dynamics at the ensemble level. In Figure 6.8d (solid

curve) we showed the average information change from many trajectories. You may

notice that the average information is negative. This loss of information is due to

decoherence which is a uniquely quantum feature and only appears if coherences

contribute to the dynamics, and is thus not possible in a classical situation (e.g. See

reference [105]).

One may categorize the information change in two parts and distinguish the con-

tribution of information gain through measurement and information loss due to im-

perfect detection [108]. In principle, imperfect detection arises because the state

evolution of the detector is not exactly known and we must average over possible

configurations of the detector as illustrated in Figure 6.10a. If we consider the detec-

tor uncertainty as an average over inaccessible degrees of freedom, parameterized by

152



6.4 Information gain and loss

a stochastic variable a, the exchanged information (6.3.6) can be written as a sum of

information gain and information loss 〈I〉 = Igain − Iloss where [108],

Igain = S(ρ0)−
∑
a

p(a, r)S(ρt|r,a) > 0 (6.4.1)

Iloss =
∑
r

S(ρt|r)−
∑
a

p(a, r)S(ρt|r,a) > 0 (6.4.2)

a b

z0

I

Q

I

Q
 I 

 

X

Z

X

Z

0.6

0.4

0.2

0.0

-0.2

1.00.80.60.40.20.0

 I   classical 
 I   quantum

2.21.40.80.40.0
β

Figure 6.10: Information gain and loss for the quantum Maxwell’s demon: a, The

inefficient detection can be modeled by averaging over unknown degrees of freedom for the detector.

This basically lowers the signal-to-noise ratio. b, By adjusting the initial preparation for the qubit,

we change the effective temperature for the system. The average of information exchange is negative

for lower temperature (initially purer states) but it is positive for higher temperatures (initially more

mixed states). Considering that only information encoded in coherences are susceptible to the loss,

the more coherences involved in the dynamics, the more information will be lost.

However, we do not have access to a in this experiment. But still, we can explore

the regimes where quantum coherence has different contributions to the dynamics

meaning that the loss has different contributions to the total information change. To

do this, we prepare the system in different initial thermal states and calculate the

average information exchange for different initial temperatures. In Figure 6.10b we

plot the final information exchange (at 2µs) versus different initial thermal states (

characterized by zin = 〈z〉|t=0). The total information change is positive for higher

temperature (for more mixed initial states) but it is negative for lower temperature
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6.4 Information gain and loss

(more pure initial states). This transition of information gain to information loss

can be understood by considering the fact that loss comes from decoherence of lower

temperature (more pure) states. In our case, initially, more pure states will acquire

more coherence through the unitary drive which turns the initial populations into

coherences, these coherences are then lost due to inefficient detection, ultimately

leading to a loss of information.
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Ioffe, and Michael E Gershenson. Superconducting nanocircuits for topologically

protected qubits. Nature Physics, 5(1):48, 2009.

[14] JM Gambetta, AA Houck, and Alexandre Blais. Superconducting qubit with

purcell protection and tunable coupling. Physical review letters, 106(3):030502,

2011.
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Rouchon, and Benjamin Huard. Observing a quantum maxwell demon at work.

Proceedings of the National Academy of Sciences, 114(29):7561–7564, 2017.

[104] Mario A Ciampini, Luca Mancino, Adeline Orieux, Caterina Vigliar, Paolo Mat-

aloni, Mauro Paternostro, and Marco Barbieri. Experimental extractable work-

based multipartite separability criteria. NPJ Quantum Information, 3(1):10,

2017.

[105] Y Masuyama, K Funo, Y Murashita, A Noguchi, S Kono, Y Tabuchi, R Ya-

mazaki, M Ueda, and Y Nakamura. Information-to-work conversion by

maxwells demon in a superconducting circuit quantum electrodynamical sys-

tem. Nature communications, 9(1):1291, 2018.

[106] Peter Talkner, Eric Lutz, and Peter Hänggi. Fluctuation theorems: Work is

not an observable. Physical Review E, 75(5):050102, 2007.

[107] Eric Lutz and Sergio Ciliberto. From maxwells demon to landauers eraser.

Physics Today, 68(9):30, 2015.

[108] Ken Funo, Yu Watanabe, and Masahito Ueda. Integral quantum fluctua-

tion theorems under measurement and feedback control. Physical Review E,

88(5):052121, 2013.

167


	Exploring Quantum Dynamics and Thermodynamics in Superconducting Qubits
	Recommended Citation

	tmp.1561062244.pdf.feK64

