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by 
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Developmental, Regenerative, and Stem Cell Biology 

Washington University in St. Louis, 2019 

Professor Jason C Mills, Chair 

 

 

Gastric diseases affect many people around the world, yet surprisingly little is known 

about the basic dynamics of gastric epithelial cells. Loss of acid-secreting parietal cells has long 

been observed to precede pre-cancerous gastric metaplasias like Spasmolytic Polypeptide-

Expressing Metaplasia (SPEM), yet no signaling component from dying parietal cells has yet 

been implicated in initiating the metaplastic responses. Also, experiments pulsing 3H-thymidine 

and or examining intracellular components suggest that gastric mucous neck cells are short-lived 

transient intermediates between the gastric stem cell and mature zymogenic “chief” cells, yet 

specifics about this transition remain elusive.  Here, we develop a novel mouse line and new 

techniques for tracing gastric cell lines to further probe these interactions. 

To identify the changes in parietal cell signaling upon injury which lead to chief cell 

dedifferentiation and the appearance of SPEM, we bred mice expressing the human diphtheria 

toxin receptor solely in parietal cells. Injection of diphtheria toxin specifically kills parietal cells 

through apoptosis. Surprisingly, while the parietal cells died in similar numbers to those in mice 



xi 

 

treated with tamoxifen, no SPEM or chief cell dedifferentiation was observed, and proliferation 

only increased through the neck, with minimal proliferation in the base. We also showed that 

SPEM can still arise if we inject tamoxifen or DMP-777 after the parietal cells are already killed 

via diphtheria toxin. These experiments indicate that chief cell dedifferentiation is not simply 

triggered by the loss of parietal cells, nor are dying parietal cells necessary for acute drugs to 

initiate metaplasia. However, the signal which initiates the metaplasia remains unknown. 

  Furthermore, we studied the dynamics of long-lived cells in the mouse stomach using a 

modified BrdU pulse-chase protocol. Published reports describing gastric epithelial cell 

population dynamics have relied on continuous infusion or relatively short pulse-chases of DNA 

markers such as 3H-thymidine. Here, we pioneer a new technique, pulsing BrdU throughout our 

normal tamoxifen injury regimen to label nearly all cells in the unit, allowing us to chase for 

months and track long-lived label-retaining cells. Following our pulse of tamoxifen and BrdU, 

we find that nearly two thirds of chief cells retain label even through a 9-month chase, indicating 

that they are either longer-lived than expected or that chief cells slowly divide to maintain their 

own population without being replaced by newer cells from higher in the unit. We also find 

subpopulations of label-retaining neck cells and parietal cells exist after a 9-month chase, 

shedding more light on their population dynamics. To further test whether neck cells give rise to 

chief cells, as others have reported, we administered a short BrdU pulse followed by various 

chase lengths and found that most neck cells do not directly give rise to chief cells, indicating 

that neck cells likely have a functional, as yet unidentified purpose, other than acting as a 

precursor to chief cells. Finally, we show through additional tamoxifen and Helicobacter pylori 

injury that long-lived chief cells give rise to acute and chronic SPEM cells and find that SPEM 

cells can directly redifferentiate back into chief cells upon recovery from injury. Altogether, we 
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suggest for the first time that chief cells may be a stable population in the gastric unit, largely 

maintaining their own census at homeostasis and in injury independently of neck cell transitions 

or parietal cell status.
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Chapter 1: Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

The following section is modified from a review published in Disease Models & Mechanisms 

Burclaff, Joseph, and Jason C. Mills. "Plasticity of differentiated cells in wound repair and 

tumorigenesis, part I: stomach and pancreas." Disease models & mechanisms 11, no. 7 (2018): 

dmm033373. 
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1.1 Introduction to plasticity 

The series of sequential cell fate choices governing how normal, adult differentiated cells arise 

from their precursors has been well delineated over the last decades. The opposite process, in 

which cells dedifferentiate to reacquire progenitor properties, though noted by pathologists over 

a century ago (Adami, 1900) and demonstrated by occasional, pioneering studies only reentered 

the scientific mainstream with the demonstration a decade ago by Yamanaka and others that 

multiple adult cell types can be induced to return to pluripotency (Takahashi and Yamanaka, 

2006). Since then, research has expanded to also examine the native capacity of mature cells in 

vivo to reverse their differentiated state in nearly all tissues (Mills and Sansom, 2015; Tata and 

Rajagopal, 2016). The plasticity of cells in a tissue manifests in multiple ways: stem cells (SCs) 

can interconvert to other SC populations, mature cells can dedifferentiate to recapitulate the 

earlier stages of their ontogeny, and mature cells can transdifferentiate to mature cell types of 

different lineages (Jopling et al., 2011). 

Cellular plasticity may be key to regeneration following large-scale injury, yet a tissue’s capacity 

for plasticity may also carry an inherent potential for adverse consequences like cancer. Here, we 

will discuss how plasticity may help refine a long-standing model for how cancer begins. The 

well-established ‘multi-hit model’ postulates that tumors arise as long-lived SCs accrue 

mutations necessary for tumorigenesis (Fearon and Vogelstein, 1990). Recently, though, it has 

become clear that individual stem cells in mice may not be as long-lived as traditionally believed 

(Lopez-Garcia et al., 2010; Snippert et al., 2010; Baker et al., 2014), raising the question of how 

a single SC could accumulate multiple mutations over the course of years (Mills and Sansom, 

2015). Even if the SC population remains stable over time, intestinal SCs are relatively short-

lived, as SCs divide frequently and stochastically, commonly jostling each other out of the niche 
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in mice (Lopez-Garcia et al., 2010; Snippert et al., 2010) and in humans (Baker et al., 2014). 

Although some intestinal SCs tend to be longer-lived (Ritsma et al., 2014) and SCs with 

oncogenic mutations hold a competitive advantage over wild-type SCs in the intestinal crypt 

(Snippert et al., 2014), the question remains whether SCs are the sole population that 

accumulates tumor-inducing mutations over the lifetime of an organism. Moreover, in organs 

such as the pancreas that lack a constitutive SC, other cell types must accumulate such 

mutations. 

Increasing evidence shows that plasticity can be involved in the origin of cancers in numerous 

epithelial tissues (Giroux and Rustgi, 2017) and even astrocytes (Friedmann-Morvinski and 

Verma, 2014). This dissertation examines the gastric chief cells, which undergo plasticity 

following injury and may accrue the ‘multiple hits’ defined by Kinzler and Vogelstein 

(Vogelstein and Kinzler, 1993) and initiate tumor formation. Similar events in the intestine, 

pancreas, and skin are further reviewed in the following works (Burclaff and Mills, 2018a; 

Burclaff and Mills, 2018b). A more complete understanding of the process of mutation 

accumulation may further our understanding of how every organ produces tumors with a 

multitude of phenotypes that vary not only from person to person but even within a single 

person: tumors initiated by cells stem cells or cells at various stage of differentiation or 

dedifferentiation may contribute to this diversity (Visvader, 2011; Song and Balmain, 2015). 

Plasticity can allow post-mitotic cells to re-enter the cell cycle, and we have proposed that cycles 

of proliferation and quiescence can favor tumorigenesis as accumulated mutations can become 

fixed in long-lived differentiated cell populations. We have termed this the ‘cyclical hit’ model 

in which cell lineages cycle through phases of dedifferentiation and redifferentiation, allowing 
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for the accumulation and unmasking of mutations in long-lived cells (Figure 1) (Mills and 

Sansom, 2015; Saenz and Mills, 2018b). 

Before discussing the work done for this dissertation, we survey the current state of plasticity 

research in the stomach which experiences the recruitment of long-lived, mature secretory cells 

back into the cell cycle upon certain types of physiological injury. We discuss how recent 

advances in our knowledge of these events and their governing mechanisms address how mature 

cells might initiate or be involved in tumorigenesis, challenging the idea that adult SCs are the 

sole cell type responsible for both accumulating mutations and spawning cancers (White and 

Lowry, 2015). We end by postulating how the changes undergone in gastric plasticity might be 

governed by conserved cellular programs, which hold important implications for cancer 

initiation.  

 

Figure 1.1 Proposed models of mature cells acting as cancer cells of origin. 

We propose that long-lived mature cells may accumulate and store mutations, eventually acting 

as – or giving rise to cells that can act as – cells of origin for tumors in diverse tissues. This 
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mutational accumulation may occur in two main ways: A) Mature cells (dark blue) may 

accumulate mutations (orange triangles) as they maintain their mature functioning cell fate over 

time. The mutations themselves or outside stressors may cause dedifferentiation (teal cell). If the 

acquired mutations are sufficiently carcinogenic, they may then block the cell in the 

dedifferentiated state, causing it to expand as a clone that can give rise to cancer (red). B) The 

‘cyclical hit’ model describes mature cells which dedifferentiate and redifferentiate multiple 

times in response to injury/inflammation. Each time cells are called back into the cell cycle, 

replicative stress can promote mutation accumulation. Differentiated cells can store such 

mutations indefinitely. Eventually, a mutation or combination of mutations is sufficient to block 

the cell in one of its replicative phases and lead to clonal expansion and potential tumorigenesis. 

 

1.2 Introduction to the stomach 

The stomach body (corpus) is lined by an epithelium that is flat on the luminal surface but 

invaginates into glands descending towards the musculature. The gland and its surface epithelial 

cells form the gastric unit, containing mucus-secreting surface pit foveolar cells at the surface, 

mucous neck cells interspersed between acid secreting parietal cells in the neck region 

(Bredemeyer et al., 2009), and zymogenic chief cells at the base (Karam, 1993; Karam and 

Leblond, 1993b; Karam and Leblond, 1993a; Karam and Leblond, 1993c) (Figure 2A). 

Proliferation in the healthy gastric epithelium is overwhelmingly confined to morphologically 

undifferentiated cells located above the neck cells at the isthmus of the unit. Based on their 

ultrastructure and on nucleotide tracing studies (Hattori and Fujita, 1976b; Mills and Shivdasani, 

2011), these isthmal cells have long been assumed to be multipotent SCs that fuel replacement of 

all mature cells in the gastric unit, though the extant data do not rule out other self-renewal 

mechanisms (Bjerknes and Cheng, 2002; Quante et al., 2010; Willet and Mills, 2016; Wright, 

2016).  

Although several candidate markers have been identified in cells that populate the gastric unit 

(Phesse and Sansom, 2017), none of these have been shown to be enriched exclusively in the 
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isthmal cells. This means that a verified marker of gastric epithelial SCs in the body of the 

stomach remains to be identified.  

 

Figure 1.2: The gastric unit and its response to injury. 

A) The healthy gastric unit, with pit cells at the opening to the gastric lumen, stem cells at the 

isthmus, parietal cells and neck cells in the middle of the unit, and chief cells at the base. Not 

pictured: endocrine and tuft cells. Proliferation (red nuclei) is confined to the isthmus, with new 

pit cells migrating up and parietal and mucous neck cells migrating down. Neck cells transition 

to chief cells at the zone between neck and base. Colored arrows mark the direction of cell 

changes. B) A metaplastic gastric unit following injury such as Helicobacter pylori infection or 

acute pharmacological agents. Parietal cells quickly die and mature chief cells become 

metaplastic cells co-expressing chief and neck cell markers. Proliferation occurs from the 

isthmus through the base, with paligenotic chief cells re-entering the cell cycle.  
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1.3 Gastric Plasticity 

Chief cells are large, long-lived, and non-proliferating cells that devote their energies to 

producing digestive enzymes. However, surprisingly, chief cells in both mice and humans are 

plastic; they can disassemble their complex secretory apparatus (Capoccia et al., 2013; Lo et al., 

2017) to re-enter the cell cycle and, potentially in some cases, act as reserve SCs upon injury 

(Stange et al., 2013b). In humans, Helicobacter pylori infection can cause chronic atrophic 

gastritis. In this condition, parietal cells die (atrophy), and increased proliferation is observed 

among the remaining cells in the gastric unit. In mouse models, both H. pylori and various drugs 

can be used to kill the parietal cells and force the recruitment of other cells as additional reserve 

SCs (Sigal et al., 2015; Petersen et al., 2017b). Drugs that mimic the H. pylori-induced cellular 

changes include high doses of the selective estrogen receptor modulator tamoxifen (Huh et al., 

2012b; Saenz et al., 2016), the neutrophil elastase inhibitor DMP-777 (Goldenring et al., 2000; 

Nomura et al., 2005), and its ortholog L635 (Weis et al., 2013). In all cases, the observed 

changes include loss of parietal cells, loss of mature chief cells, and the emergence of 

metaplastic cells. In the stomach, the metaplastic cells that emerge upon parietal cell death 

express large amounts of trefoil factor 2 (TFF2, also Spasmolytic Polypeptide), so the cell 

lineage shifts in chronic atrophic gastritis have been called Spasmolytic Polypeptide Expressing 

Metaplasia (SPEM).  

SPEM cells were originally thought to arise via proliferation from the isthmal SCs undergoing an 

alternate differentiation path, and some continue to believe that to be the case (Hayakawa et al., 

2015; Hayakawa et al., 2017; Kinoshita et al., 2018a), yet lineage tracing studies with multiple 

genetic drivers from the base and isthmus of the gastric unit in mice, with corroboration in 

human tissues, indicate that the majority of SPEM cells, at least in the acute setting, likely arise 
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from chief cells that reprogram to express TFF2 and re-enter the cell cycle (Lennerz et al., 2010; 

Nam et al., 2010; Goldenring et al., 2011a; Capoccia et al., 2013; Leushacke et al., 2017; Matsuo 

et al., 2017; Mills and Goldenring, 2017) (Figure 2B). Gene promoters that have been used to 

lineage trace chief cell reprogramming into progenitor cells include: Tumor necrosis factor 

receptor superfamily, member 19, (Tnfrsf19, known as Troy), which is mostly expressed in 

mature chief cells; basic helix loop helix family member A15 (Bhlha15, known as Mist1), which 

is almost exclusively expressed in chief cells; and Leucine Rich Repeat Containing G Protein-

Coupled Receptor 5 (Lgr5) mRNA, which is likewise almost exclusively expressed in chief cells. 

Recent work further supports the interpretation that mature chief cells are the predominant 

source of acute SPEM cells, showing that SPEM can arise even when any potential proliferative 

contribution from the SC or progenitor cells is abrogated (Radyk et al., 2018). Interestingly, 

SPEM cells recapitulate many aspects of immature cells in the early developing stomach where 

there are abundant proliferating cells that co-express TFF2 and markers of chief cell 

differentiation (Keeley and Samuelson, 2010). The SPEM cells are not characteristic of the adult 

isthmal SCs, which lack granules or other ultrastructural characteristics of any specific 

differentiated cell lineage (Karam and Leblond, 1993a).  

While parietal cell loss is nearly always correlated with SPEM, a recent study demonstrated that 

highly targeted parietal cell apoptosis alone is insufficient to induce metaplasia (Burclaff et al., 

2017). The cause and mechanism of SPEM initiation remain enigmatic, though several players 

have been implicated, such as requirement for a signaling cascade including Extracellular Signal-

regulated Kinase (ERK), Cluster of Differentiation 44 (CD44), and Signal transducer and 

activator of transcription 3 (STAT3) (Khurana et al., 2013), macrophages, and interactions 

between interleukins (IL) IL-33 and IL-13 (Petersen et al., 2014; Petersen et al., 2017a). Our 
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recent work also showed that a sequential, stepwise process of 1) autodegradation, 2) induction 

of metaplastic gene expression like SRY-box 9 (SOX9) and TFF2, and 3) cell cycle re-entry 

characterized the process chief cells used to reprogram (Willet et al., 2018a). Each step has 

checkpoints that cells must traverse to complete proper tissue regeneration. For example, 

blocking lysosomal functioning stopped cells from inducing SOX9/TFF2, and inhibiting 

mTORC1 stopped cell cycle re-entry. The stages and checkpoints were preserved in pancreatic 

regeneration, and additional experiments as well as other literature indicated that kidney and 

liver regeneration follow the same sequence. Thus, there is support for a conserved cellular 

regenerative/dedifferentiation program that has been called ‘paligenosis’, suggesting that cells, in 

addition, to programs for cell death (apoptosis) have programs to regain regenerative ability 

(Messal et al., 2018).  

1.4  Gastric Tumorigensis  

Since Pelayo Correa’s early work mapping the histological stages of gastric cancer progression 

(Correa, 1988), it has been known that patients with metaplasia/chronic atrophic gastritis have an 

increased risk for gastric cancer (Hattori, 1986; Kakinoki et al., 2009; Goldenring et al., 2010) 

and that gastric cancer seems to arise in a stepwise fashion. The stages of gastric tumorigenesis 

cannot be fully studied in mice, as no mouse models of gastric cancer faithfully replicate late-

stage human disease (Petersen et al., 2017b). Humans with extensive metaplasia and SPEM 

nearly invariably also get intestinal metaplasia, but intestinal metaplasia does not seem to be a 

common feature of injury response in mice. In some mouse models, however, SPEM can 

progress to proliferative lesions with histological abnormalities resembling human dysplasia 

(Nomura et al., 2004; Petersen et al., 2017b). The architecture of the gastric unit is useful to 

consider, as the spatial separation between the normal isthmal and basal proliferation zones via 
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chief cell dedifferentiation allows for inferences to be made about the cells of origin for 

metaplasias and dysplasias (Radyk and Mills, 2017). Multiple recent studies have shown how 

proliferative dysplasia can be induced solely by expressing activated Kirsten Rat Sarcoma 

(KRAS) using multiple promoters found in chief cells (Choi et al., 2016; Leushacke et al., 2017; 

Matsuo et al., 2017). Such studies show that chief cells are able to act as cells of origin for 

tumorigenesis. As there is no known promoter reliably specific to the isthmal SC in the stomach, 

similar direct evidence does not exist for the SC acting as another potential cell of origin, though 

of course this is certainly a possibility awaiting better genetic tools in future work. The ability of 

the chief cells to act as cells of origin for gastric cancer is consistent with the ‘cyclical hit’ model 

of tumorigenesis, whereby long-lived chief cells may accumulate and store mutations in rounds 

of dedifferentiation and redifferentiation in chronic inflammation or metaplasia, possibly leading 

to tumorigenesis (Figure 1) (Mills and Sansom, 2015; Saenz and Mills, 2018b). 

1.5  Conclusion 

In the search for the cell of origin for epithelial cancers, investigators have long favored stem and 

progenitor cells as the likely culprits owing to their constitutive proliferative capacity and 

supposed longevity (Fearon and Vogelstein, 1990; Vogelstein and Kinzler, 1993). However, 

interestingly, before the rise of the specific field of Developmental Biology, pathologists had 

considered three possible cancer cells of origin with relatively equal potential: 1) stem cells (or 

‘mother cells’, as they were known over a century ago) (Adami, 1900); 2) ‘rests’ or cryptic 

embryonic cells that never really differentiated in the adult; and 3) differentiated cells that can 

become proliferative again after potentially accumulating deleterious phenotypes. We are in the 

process of shifting our understanding of how tissues renew towards accepting that the more 

fluid/plastic notions of a century ago might describe reality more comprehensively than the rigid 



11 

 

stem-cell-based, unidirectional differentiation theories that predominated the latter half of the 

Twentieth Century. A more nuanced understanding of stem and differentiated cells and tissue 

repair, now with molecular underpinnings of the underlying cellular processes, may help refine 

models of tumorigenesis. For example, intestinal SCs live shorter than had been expected 

(Lopez-Garcia et al., 2010; Snippert et al., 2010). Thus, the longest-lived cells in many adult 

solid organs may actually be the differentiated populations. Thus, while many types of tumors 

may still arise ultimately from SCs (Visvader, 2011), the studies presented in this review give 

cause to re-imagine the multi-hit model to include the potential contribution of fully 

differentiated post-mitotic cells such as gastric chief cells (Choi et al., 2016; Leushacke et al., 

2017) either as direct cells of origin for tumors or as sources for the stem/progenitor cells that go 

on to spawn cancer.  

Opportunities to inhibit tumor initiation at the cell of origin may arise in multiple tissues if 

common pathways can be identified and manipulated to block their dedifferentiation. As a start, 

we can look at the many similarities between the stomach and the pancreas, in which mature 

secretory acinar cells undergo a similar plastic event following injury (Burclaff and Mills, 

2018a). Both systems begin with large, long-lived secretory cells that undergo paligenosis to 

give rise to smaller, simpler cells reminiscent of embryonic cell types. Both systems also lose 

similar maturity markers and share many signal-transducing and metaplastic genes, and both 

involve a role for inflammation. Recent evidence indicates that paligenosis may be the process 

used during dedifferentiation of mature non-secretory cells in other organs as well, including 

liver and kidney (Willet et al., 2018a), and evidence for proliferative dedifferentiation is also 

being delineated in diverse tissues such as glia, warranting investigation into further mechanistic 

conservation (Friedmann-Morvinski and Verma, 2014). Our scope is expanded to describe 
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plasticity in the skin and intestine in published work (Burclaff and Mills, 2018b) to continue to 

discuss its implications for tumorigenesis and further highlight the conservation of plasticity-

related genes and processes across tissues.  

Data from the stomach and pancreas support a model wherein mutations are acquired and stored 

through cycles of differentiation and dedifferentiation until a neoplastic mutation such as Kras 

activation inhibits a paligenotic cell’s ability to redifferentiate, which we describe as the cyclical 

hit model (Figure 1). This model also might help answer longstanding questions about tumor 

development. So-called ‘oncofetal’ gene expression in adult tumors has long puzzled oncologists 

(Uriel, 1979), with genes that are normally expressed only in early development becoming re-

expressed in many tumors (Ahrlund-Richter and Hendrix, 2014). Metaplastic gene re-expression 

is the second stage of paligenosis (Willet et al., 2018a), consistent with the expression of 

embryonic genes being observed in ADM (Jensen et al., 2005), and the metaplastic stomach 

establishes morphology and cell types similar to the developing fetal gastric epithelium (Keeley 

and Samuelson, 2010; Osaki et al., 2010). It is thus likely that tumor cells express these 

embryonic genes because the genes were reintroduced via a paligenosis event that occurred at 

some point in one of their cellular ancestors.  

Clearly, we are at only the beginning of the beginning of understanding how cell plasticity plays 

a role in tumorigenesis and even in how tumors can adapt to chemotherapy and radiation therapy. 

The following dissertation presents many projects describing the dynamics of this plasticity, and 

all indications are that there may be an explosion of new ideas and potential therapeutic 

approaches as the concepts of cell plasticity and dedifferentiation, and the underlying conserved 

mechanisms and cellular processes, begin to be more deeply explored. 
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Chapter 2: Targeted Parietal Cell Apoptosis 

Is Insufficient To Induce Metaplasia In The 

Stomach 
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2.1 Abstract 

Parietal cell (PC) atrophy is widely considered to cause metaplasia in the stomach. We bred mice 

with PC-specific diphtheria toxin receptor expression and found that targeted PC death increased 

proliferation in the normal stem cell zone but did not cause metaplastic reprogramming of chief 

cells. Furthermore, the metaplasia-inducing agents tamoxifen or DMP-777 still induced 

metaplasia even following previous ablation of PCs via diphtheria toxin. Thus, we demonstrate 

the surprising finding that PC atrophy alone is not sufficient to induce metaplasia and that 

completion of metaplastic reprogramming of chief cells requires further mechanisms beyond PC 

injury/death. 

2.2 Parietal Cell Death and Metaplasia 

Metaplasia in the stomach consistently occurs in the setting of parietal cell (PC) atrophy: in 

autoimmune gastritis patients(Adams et al., 1964), in Helicobacter pylori induced atrophic 

gastritis(Yoshizawa et al., 2007), and in animal models of acute injury(Nomura et al., 2005; Huh 

et al., 2012a). Thus, we and others have proposed that PC death causes metaplasia. For example, 

PCs might constitutively elaborate gastric-differentiation-promoting factors whose loss during 

PC atrophy might lead to aberrant (metaplastic) differentiation of remaining cells(Mills et al., 

2001). Alternatively, the immune response to PC death could cause metaplasia, or dying PCs 

might elaborate specific injury-induced factors or by-products that trigger metaplasia. 

Here, to better determine the specific role of PCs, we employed a method to precisely induce PC 

apoptosis. We bred PC-specific, Cre-inducible simian Diphtheria Toxin Receptor(Buch et al., 

2005; Zhao et al., 2010) (Atp4b-Cre;LSL-DTR) mice [hereafter called “DTR mice” (Figure 2.1)]. 

In these mice, PCs are the only cells that can respond to apoptosis-inducing diphtheria toxin. As 

a positive control for PC atrophy and Spasmolytic Polypeptide-Expressing Metaplasia (SPEM), 
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the metaplasia seen in direct temporal and spatial correlation with human and mouse PC atrophy 

(Lennerz et al., 2010), we used a system previously described by us and others(Huh et al., 2012a; 

Sigal et al., 2015; Saenz et al., 2016) involving injections of high-dose (5 mg/20 g mouse body 

mass) tamoxifen (“TAM”). Consistent with previous results, TAM caused atrophy of >90% of 

PCs and increased cell proliferation throughout the gastric unit. In >75% of gastric units, the 

pathognomonic pattern of SPEM was identified: GIF+ chief cells (ZCs) at the base of the units 

co-expressing the epitope for the lectin GSII. As previously shown, many SPEM cells were also 

proliferative (yellow arrowheads, Figure 2.3A,B). Three daily injections with 225 ng DT also 

killed >90% PCs and increased mucosal cell proliferation in the isthmal region deep to the 

foveolar cells (Figure 2.3A-C). Both atrophy and proliferation were maintained by daily DT 

injection up to 14 days, while cessation of injection at D3 allowed for complete recovery within 

the same timeframe (Figure 2.3C).  
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Figure 2.1: Atp4b-Cre;LSL-DTR drives iDTR specifically in parietal cells.  

Top) Natural fluorescence in Atp4b-Cre;LSL-DTR;ROSAmTmG mice. Cells with Cre driver 

express GFP (green), and all cells without Cre driver express mTomato (red). Bottom) IF 

staining for GFP (green), driven by Cre driver, and the parietal cell marker VEGFB (red). 

 

To confirm that DT was directly targeting PCs, we grew gastroids from DTR mice crossed with 

mTmG reporter mice(Muzumdar et al., 2007). In these mice, PCs express membrane-associated 

eGFP (as in Figure 2.1). We cultured these gastroids with vehicle or DT for three days (Figure 

2.2) in the absence of Wnt3a, R-Spondin 1 and Noggin. Control gastroids had negligible death. 

DT treatment of DTR-derived organoids resulted only in specific extrusion of eGFP+ cells 
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without change in overall gastroid size or number. Thus, DT causes specific killing of parietal 

cells. 

 

Figure 2.2: DT specifically kills parietal cells. 

Top) Gastroids from DTR mice with the Atp4b+ parietal cell lineage fluorescing green (Atp4b-

Cre;LSL-DTR;ROSAmTmG mice) and all other lineages in red. The same gastroids were 

monitored over 3 days of control or DT treatment. Note DT treatment does not affect gastroid 

survival, but PCs are specifically extruded into lumen of gastroids by Day 1 (arrowheads in 

inset) and then are largely gone by Day 3. PC extrusion – which is consistent with cell death in 

these cultures – does not occur in controls. Bottom) Immunofluorescence co-staining with anti-
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GFP (green) and anti-PC-marker H+/K+ATPase (red) antibodies. 

 

In marked contrast to the TAM atrophy model, the DT treatment never caused substantial SPEM 

at any timepoint (n>40 total mice examined to date), and proliferation was almost entirely 

excluded from the base of the unit, localizing instead to the upper isthmus and neck regions 

(Figure 2.3A, B). SPEM is thought to arise from reprogramming of ZCs and reentry into the cell 

cycle (Goldenring et al., 2011b; Mills and Sansom, 2015), so we examined the morphology of 

the basal cells carefully. Whereas ZCs after TAM treatment had the expected simple columnar 

morphology with scant GIF that occurs in SPEM cells, the ZCs in DT-treated DTR mice 

maintained largely normal morphology with apical GIF granules still apparent (Figure 2.3D). 

CD44v9, a marker upregulated during proliferative metaplasia, was increased only in the 

proliferating neck of DT treated mice, but not in the base, contrasting with TAM treatment, 

which caused CD44v9 expression in neck and base (Figure 2.4). Clusterin, a secreted protein 

increased in SPEM(Weis et al., 2013), also labeled cells in the base of the gastric unit in TAM 

mice, while in DT mice, it marked only rare basal cells (Figure 2.4). Thus, apoptosis of PCs 

alone, even for as long as two weeks, was not sufficient to cause metaplasia. 
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Figure 2.3: Diphtheria toxin-mediated parietal cell ablation does not cause metaplasia 

 A) Stomachs following three days of vehicle, DT, or TAM injections (top: green: GSII, red: 

anti-GIF, magenta: anti-BrdU); arrowheads = representative proliferating SPEM cells (yellow 
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cytoplasm+magenta nucleus). Bottom: red:anti-VEGFB (parietal cells). B,C) Quantification of 

immunofluorescence staining. D) Bases of units with anti-E-Cadherin (green) and anti-GIF (red). 

E) Stomachs as for panel A (red: anti-CD44v9, green: GSII, magenta: anti-BrdU; bottoms of 

units traced in white). F) qRT-PCR from whole corpus at D3. For all data: “*”, “**”, “***” = 

p<0.05, 0.01, 001; n≥3 mice per group. 
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Figure 2.4: Changes in protein localization for markers of SPEM and chief cell 

differentiation following TAM and DT. 

A) Base of D14 DT treated unit with anti-E-Cadherin (green) and anti-GIF (red). (B-D) 

Immunofluorescence of stomachs following three days of vehicle, DT, or TAM injections. B) 

Red CD44v, Green: GSII, magenta: BrdU. C) Red: GIF, Green: Tff2. D) Red: GIF, Green: 

Clusterin. 

 

We next examined expression of transcripts associated with normal gastric differentiation and 

metaplasia (Weis et al., 2013). We observed a significant decrease in GIF mRNA expression 

across the whole corpus of the stomach in DT mice and a trend towards a decrease in the critical 

chief cell differentiation factor MIST1 (BHLHA15); however, both markers were far more 

substantially reduced in TAM mice (Figure 2.3F). Further corroborating histological findings, 

Clusterin and another commonly used SPEM marker HE4 (Wfdc2)(Nozaki et al., 2008) were 

significantly increased following TAM, but were unaffected by DT treatment (Figure 2.3F). Of 

eight other transcripts that showed statistically significant changes, TAM – but not DT – 

treatment caused significantly increased expression of genes involved in metaplasia and the 

immune response (Cd14, Ceacam10, Cftr, Ctss, Dmbt1, Vil1). Consistent with the histology, 

both TAM and DT increased proliferation-related transcripts (Ccnb2, Chek2) (Figure 2.5). 



22 

 

 

Figure 2.5: Quantitative Real-Time PCR of selected transcripts implicated in SPEM.  

Transcripts were analyzed from RNA isolated from the whole gastric corpus of mice treated with 

vehicle, DT or TAM for three days. 12 transcripts with significant changes in experimental 

groups compared to control (* indicates p≤0.05, ** indicates p≤0.01) are shown. 
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The results described thus far argued against the model wherein PCs constitutively elaborate 

factors that promote differentiation, as non-metaplastic ZCs can clearly be maintained in the 

absence of PCs. However, it was still possible PC atrophy caused metaplasia, but the manner of 

death was critical. Perhaps PCs dying in H pylori infection or TAM – but not DT – treatment 

release metaplasia-inducing signals when they are injured. If true, metaplasia should not occur in 

DTR mice once PCs were already dead. Thus, we injected DTR mice with DT to kill PCs first 

and then co-injected DT and TAM for three days (DT+TAM). Mice injected with DT for 5 days 

showed increased isthmal/neck proliferation without SPEM, as expected; however, mice that 

received DT then TAM exhibited proliferative SPEM similar to what occurred with TAM alone 

(Figure 2.6A-C). Therefore, SPEM can occur even without substances released from injured 

PCs. Similar results were obtained with another atrophy/SPEM-inducing agent, DMP-

777(Nomura et al., 2005), with DMP-777 treatment causing SPEM just as effectively even if 

PCs were already pre-killed by DT (Figure 2.6D-F; Figure 2.7). 
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Figure 2.6: SPEM can be induced in the absence of parietal cells 

A Stomachs following five days control, DT, or DT then TAM injections (green: GSII, red: anti-

GIF, magenta: anti-BrdU; arrowheads = representative proliferating SPEM cells (yellow 

cytoplasm+magenta nucleus). B) Immunofluorescence data quantified. C) H&E. D) Stomachs 



25 

 

following 16 days control, DT, or DT then DMP-777, stained as for panel A. E) 

Immunofluorescence data quantified. F) H&E. For all data: “*”, “**”, “***” = p<0.05, 0.01, 001 

vs. Control in ANOVA with Dunnett; n≥3 mice per group 

 

 

 

Figure 2.7: DMP-777 control showing deletion of parietal cells.  

IF of stomachs following 16 days control, DT, or DT then DMP-777 for the PC marker VEGFB 

(red). 

 

 

Overall, our results show that PC atrophy may be required but is not sufficient for metaplasia. 

Furthermore, signals from injured/dying PCs do not seem to be required for metaplasia 

induction. Additionally, we observe that the DTR mice had increased proliferation only in the 

normal isthmal progenitor zone, whereas TAM/DMP777 treatment showed both isthmal 

proliferation and proliferation of metaplastic cells in the base. Thus, the results are also 

consistent with previous findings that the stomach has two distinct cellular sources for 

progenitors: 1) constitutive stem cells in the isthmus and 2) ZCs in the base which can be 

induced to undergo metaplastic cell cycle reentry. If, as we have shown here, atrophy alone is not 

sufficient to induce cell cycle reentry, then ZCs undergoing metaplasia must require additional, 

as yet unidentified factors (e.g. cytokines/specific immune cell activation) to undertake this 

cellular reprogramming 
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2.3 Methods and Materials 

 

Animals and injections 

All experiments involving animals were performed according to protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specified-pathogen-free barrier facility under a 12 hour light cycle. Wild type C57BL/6, 

Gt(ROSA)26Sortm1(HBEGF)Awai (iDTR)(Buch et al., 2005), and B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (mT/mG)(Muzumdar et al., 2007) mice 

were all purchased from Jackson Laboratories. ATP4b-Cre mice(Syder et al., 2004) were crossed 

with iDTR mice, which express the inducible simian diphtheria toxin receptor under the control 

of the Rosa26 promoter. Littermate controls were housed together when possible to minimize 

differences in gastric microflora. To selectively kill parietal cells, Diphtheria Toxin (225 

ng/mouse, Sigma) was injected intraperitoneally one or three times per day. Since parietal cells 

(PCs) die at a comparable rate to those previously published with D3 TAM, most analysis was 

done at D3 DT. Diphtheria Toxin was dissolved in sterile 0.9% sodium chloride saline. To 

induce SPEM, Tamoxifen (5 mg/20 g body weight, Toronto Research Chemicals Inc.) was 

injected intraperitoneally daily for three days or DMP-777 (7 mg/20 g body weight, gift of 

DuPont-Merck Corporation) was gavaged daily for 14 days. Tamoxifen was dissolved in a 

vehicle of 10% ethanol and 90% sunflower oil (Sigma), and DMP-777 was suspended in 1% 

methylcellulose (Sigma) in distilled H2O. 

Immunofluorescence 
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Mice were given an intraperitoneal injection containing 5-bromo-2’-deoxyuridine (BrdU, 120 

mg/kg) and 5-fluoro-2’-deoxyuridine (12 mg/kg) in sterile water 90 min before sacrifice. 

Following sacrifice, stomachs were immediately excised and flushed with PBS, then pinned out 

and fixed in freshly prepared methacarn (60% methanol, 30% chloroform, 10% glacial acetic 

acid) for 20 minutes and stored overnight in 70% ethanol. Tissues were arranged in 3% agar in a 

tissue cassette, underwent routine paraffin processing, and 5μm sections were cut and mounted 

on glass slides. Sections underwent a standard deparaffinization and rehydration protocol, were 

blocked in 1% BSA, 0.3% Triton-X100, in PBS, left overnight with primary antibodies, washed 

in PBS and incubated for one hour with secondary antibodies, washed, incubated 5 minutes in 1 

g/ml bisbenzimide (Molecular Probes), washed, then mounted using glycerol:PBS.  

Primary Antibodies used in this study: rabbit anti-human gastric intrinsic factor (1:10,000, gift of 

Dr. David Alpers, Washington University), goat anti-Brdu (1:20,000, gift of Dr. Jeff Gordon, 

Washington University), goat anti-VEGFb (1:100, Santa Cruz), goat anti-Clusterin (1:100, Santa 

Cruz), mouse anti-E-Cadherin (1:200, BD Biosciences), rabbit anti-GFP (1:100 Santa Cruz), 

mouse anti-TFF2 (1:500, Abcam), rat anti-CD44 v10-e16, ortholog of human v9 (1:200, Cosmo 

Bio), or 1 g/ml fluorescently labeled GSII lectin (Alexafluor488, 594, Molecular Probes). 

Secondary Antibodies included AlexaFluor (488, 594 or 647) conjugated donkey anti-goat, anti-

rabbit, or anti-mouse (1:500, Molecular Probes). 

Immunofluorescence quantification 

All timepoints were quantified with at least three mice, with representatives from both genders. 

Stomachs were fluorescently stained with bisbenzimide and either anti-BrdU or anti-VEGFb 

markers along with the neck cell marker GSII lectin and zymogenic cell marker anti-GIF. Images 
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were captured as TIFF files from a Zeiss Axiovert 200 microscope with Axiocam MRM camera 

and with Apotome optical sectioning filter. Each stomach had at least 5 images taken containing 

10+ well-oriented gastric units each. Units were counted using the neck staining, and total 

quantifications of proliferating cells (BrdU+) or PCs (VEGFb+)(Mills et al., 2003) were averaged 

over total unit numbers per mouse. 

For quantifying units exhibiting SPEM, SPEM was defined exclusively in corpus gastric units as 

either 5+ cells per unit co-expressing GSII and GIF or GSII-expressing cells extending to the 

base of the unit. 

Genotyping 

Tissue was lysed with DirectPCR reagent (Viagen Biotech Inc) with added Proteinase K (New 

England BioLabs) at 55 ⁰C for 11 hours, then 85 ⁰C for 15 minutes. Genotyping PCR was run 

with Redtaq (Sigma). Primers: H+/K+ATPase-Cre Forward: AGGGATCGCCAGGCGTTTTC, 

Reverse: GTTTTCTTTTCGGATCCGCC. 

Corpus gastroid culture 

Gastric glands from the corpus of the stomach were isolated from Atp4b-Cre;LSL-DTR; 

ROSAmT/mG mice (Muzumdar et al., 2007) according to (Barker et al., 2010) and (Stange et al., 

2013a). Whole gastric glands were mixed with Matrigel, distributed in 48-well plates and grown 

in Advanced DMEM/F12 medium (Invitrogen), 50% Wnt3a conditioned medium, 10% R-

Spondin1 and Noggin conditioned medium supplemented with 10mM HEPES, 1X N-2, 1X B27, 

1X glutamax (Invitrogen), 2.5 mM N-Acetylcysteine (Sigma-Aldrich), 50 ng/mL EGF, 100 

ng/mL FGF10 (Peprotech) and 10 nM gastrin (Sigma-Aldrich). 10 µM ROCK inhibitor (Y-
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27632, Sigma-Aldrich) was provided for the first 3 days. Three days after initial culturing, 

gastroids were treated with 10 ng/mL of diphtheria toxin in the absence of Wnt3a, R-Spondin 1 

and Noggin. Fresh medium containing DT was added the following day. Using Cytation 3 

(Biotek), all wells were microscopically scanned every 24 hours throughout the whole 

experiment, and the number of dead gastroids was scored. 

Quantitative RT-PCR 

Total RNA was extracted from corpus stomach tissue using the RNeasy Mini Kit (Qiagen). RNA 

was treated with DNAse I then cDNA was synthesized with Superscript III (Invitrogen) and 

random primers. qRT-PCR was performed using PowerUp SYBR Green Master Mix 

(ThermoFisher) and gene specific primers (Figure 2.8) on a QuantStudio 3 PCR System 

(ThermoFisher) and data analyzed using QuantStudio Design & Analysis Software. Every run 

was standardized to TATA Box Binding Protein (TBP) primers. All primers were exon-spanning 

when possible, (i.e. for genes having multiple exons of sufficient length). For full list of primers, 

see Supplemental Table. All graphs and statistics were completed in GraphPad Prism, using one-

way ANOVA with either Dunnett’s or Tukey’s post-hoc multiple comparison tests to determine 

significance. 

Gene Forward Primer 5'→3' Reverse Primer 3'→5' 

TBP CAAACCCAGAATTGTTCTCCTT ATGTGGTCTTCCTGAATCCCT 

GIF  GAAAAGTGGATCTGTGCTACTTGCT AGACAATAAGGCCCCAGGATG 

Mist1  GAGCGAGAGAGGCAGCGGATG AGTAAGTATGGTGGCGGTCAG 

TFF2  TGCTTTGATCTTGGATGCTG GGAAAAGCAGCAGTTTCGAC 

Clusterin  CCAGCCTTTCTTTGAGATGA CTCCTGGCACTTTTCACACT 

Wfdc2/HE4  TGCCTGCCTGTCGCCTCTG TGTCCGCACAGTCCTTGTCCA 

Mal2  GCTTTCGTCTGTCTGGAGATTG ACACAAACATGACCCATCCTTG 

Arhgap9  TGCTGCCTGACTTTCGTGATG GCGGTCATTCGGTTCTTATCC 

Casp1  GAAAGACAAGCCCAAGGTGAT GGTGTTGAAGAGCAGAAAGCA 
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Ccnb2  TGAAGTCCTGGAAGTCATGC GAGGCCAGGTCTTTGATGAT 

CD14  CTCTGTCCTTAAAGCGGCTTAC GTTGCGGAGGTTCAAGATGTT 

Ceacam1  CCTCAGCACATCTCCACAAAG TATAGCCGTAGTGTTTCCCTTG 

Ceacam10  CTCCGATTTCTGTGCGATTTC GTCCGTGGCAGATTGTGAAC 

Cenpk  AATACTGGACACTCTTAACG GGATCTTAGTTGTCAGTTCAT 

CFTR  CTGGACCACACCAATTTTGAGG GCGTGGATAAGCTGGGGAT 

Chek2  TCGGCTATGGGCTCTTCA CGTCCTTCTCAACAGTGGTC 

Ctss  TCTATGACGACCCCTCCTG TTGCCATCCGAATGTATCCTT 

Cxcl17  AGGTGGCTCTTGGAAGGTG CTCTGGAGGGTCTTTGCGA 

Dmbt1  ACCTCCTCACGGTGCTACAG GCTTCTTCACATCCTCCACTG 

ETV5  GCTCTTGGTGCTAAGTAGGA TCTGATGGGTGGGTGACA 

Fignl1  TTATATTCCCCTCCCAGAAGC GCCAGAAAACCCATCAGACT 

Glipr1  CCAGCTTCGGTCAAAAGTGAG TGGGTGTATCCGTGAATGCAG 

Gpx2  CAGGGCTGTGCTGATTGAG CGGACATACTTGAGGCTGTTC 

Ly6a  GACTTCTTGCCCATCAATTACC TTAGTACCCAGGATCTCCATAC 

Lyz2  GCCAGAACTCTGAAAAGGAATG CTTTGGTCTCCACGGTTGTAG 

Mad2l1  TGCTTACAACTACTGACCCCG ACTGCCATCTTTCAAGGACTTC 

Mmp12  CATGAAGCGTGAGGATGTAGAC CTAGTGTACCACCTTTGCCA 

Ms4a6b  TCCCTCCAATCTACACTTTACC GACTTTGTCTCCGTGACGATG 

Ms4a6c  AAAAGACGAGTCCCAGCCTAC ATGGGACAGGAGGAACAGATG 

Muc4  GCTGCCTGTATTCTTGCCT ATGTTCTGGTGCTGCTGGA 

Pigr  GATTTGGGAGGCAATGACAAC GCTTTCTTGGATTCTTCTGGC 

Prom1  TGGATAACACAGGAAGGAAGAG CAGGGTAGAGGCAAATGTCAG 

Slfn9  TCCTTAGTGGTGAAACGGTCT TCAGGTTGCTCACTCTGGTTG 

Tmem48  GCTGCTACAAATGGGAGGAT CACGGAAGGCGTCTGACTA 

Top2a  CGAAATGGCTATGGAGCTAA TATCTTTGTCCAGGCTTTGC 

Traf4  CAGGTGTTAGGCTTGGCTATC CGATTAGGGCAGGGGACTA 

Tyrobp  GGTGTTGACTCTGCTGATTGC AAGCTCCTGATAAGGCGACTC 

Ube2c  CAACATCTGCCTGGACATC CCTGCTTTGAATAGGTTTCTTGC 

Vil1  TCAAAGGCTCTCTCAACATCAC GGTGCTGGAAGGAACAGG 

Figure 2.8: Primers used for quantitative RT-PCR 
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Chapter 3: Gastric chief cells self-maintain, 

independent of isthmal stem cells, in 

homeostasis and injury 
 

3.1 Abstract 

Background & Aims 

Chief cells are thought to arise from mucous neck cells in the adult mammalian stomach during 

homeostasis. The cellular source of injury-induced Spasmolytic Polypeptide-Expressing 

Metaplasia (SPEM) is debated and there is no evidence yet of how SPEM resolves upon 

recovery from injury. We investigated the dynamics of the chief cell lineage in homeostasis and 

following injury to further investigate these topics.  

Methods 

We used pulse-chase experiments of varying lengths with two nucleotide analogues during 

homeostasis and throughout acute tamoxifen injury to track long-lived label-retaining cells.  

Results 

BrdU-labeling was seen to enter chief cells very slowly with continual pulsing, and the majority 

of the labeled chief cells were nonadjacent to the transitional zone. Varying pulse and chase 

windows of BrdU showed that BrdU exited the neck but did not enter the chief cell population. 

Our label-retention assays showed that the majority of chief cells retain label for over 9 months 

at homeostasis. When labeled chief cells are challenged with acute or chronic injury, label is 
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retained in metaplastic cells, and this can be following back into healthy chief cells upon 

recovery from acute injury.  

Conclusions 

Our data is consistent with a model wherein chief cells are a self-sufficient cell population at 

homeostasis maintained through infrequent self-replication, with neck cells shown not to give 

rise to chief cells, as had previously been believed. Chief cells are also able to maintain their own 

population following injury through dedifferentiating into metaplastic cells which can then 

redifferentiate upon resolution of the insult. 

3.2 Introduction 

The lineage relationships between the stem cells, progenitors, and differentiated cells of the adult 

mammalian stomach have been poorly defined, largely due to the lack of specific markers and 

genetic tools to investigate the gastric stem cell. All cells in the healthy stomach are posited to 

arise from  a multipotent stem cell at the isthmus of the gastric unit (Karam and Leblond, 1993a). 

In this model, stem cells give rise to immature progenitors of most mature gastric lineages that 

mature as they migrate to their functional location within the gastric unit. This model also posits 

a special relationship between mucous neck cells and gastric chief cells. Immature mucous neck 

are borne from the isthmal stem cell then migrate down the unit and differentiate into mature 

mucous neck cells, a process that takes about two weeks. When mucous neck cells reach top of 

the base, they transdifferentiate into zymogenic ‘chief’ cells w are estimated to live for around 

half a year (Karam and Leblond, 1993c; Quante et al., 2010; Goldenring et al., 2011a). The 

conversion of neck cells to chief cells is supported by the existence of ‘transitional’ cells 

between neck and chief cells which express markers of both populations (Suzuki et al., 1983), 

experiments showing that labels such as 3H-Thymadine slowly fill into the base after the neck 
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cells are labeled in long pulses (Karam and Leblond, 1993c), and experiments showing increased 

transitional cells when chief cell maturation is blocked (Ramsey et al., 2007).  

Gastric injury induces the loss of mature chief characteristics and the appearance of metaplastic 

cells co-expressing chief and neck cell markers termed Spasmolytic Polypeptide-Expressing 

Metaplasia (SPEM) (Schmidt et al., 1999). Lineage tracing from the chief cell-marking Mist1 

locus indicates that these metaplastic cells arise via dedifferentiation of chief cells (Nam et al., 

2010). However, Mist1 expression has also been shown in rare isthmal cells (Hayakawa et al., 

2015; Kinoshita et al., 2018b), questioning the specificity of the lineage marker, and nearly all 

other genetic drivers which mark chief cells have also been shown to have some isthmal activity 

as well (Phesse and Sansom, 2017), making further genetic lineage tracing approaches currently 

unfeasible. SPEM can arise from pre-existing cells without the need for cellular division (Radyk 

et al., 2018), supporting the chief cell origin. SPEM resolves within weeks following acute injury 

(Huh et al., 2012b), yet it is not yet known on a cellular level what becomes of the metaplastic 

cells. 

In this study, we use multiple pulse-chase experiments with 5-bromo-2'-deoxyuridine (BrdU), 

including experiments pulsing BrdU during injury, to mark long-lived label-retaining cells 

allowing us to track the dynamics of the chief cell population at homeostasis and following 

SPEM-inducing injury independently of genetic lineage tracing. We find that chief cells appear 

to self-replicate at homeostasis and that the majority of neck cells are not fated to becoming chief 

cells, contrary to current belief. We then illustrate the conversion of chief cells to SPEM cells 

following acute and chronic injury, and further indicate that metaplastic cells can re-differentiate 

back into chief cells. Following our results, we suggest a model wherein chief cells are a largely 

self-maintaining population at homeostasis and following injury. 
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3.3 Methods and Materials 

Animals and Injections 

All experiments involving animals were performed following protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specified pathogen-free barrier facility under a 12-hour light cycle. Wild type C57BL/6 mice 

were purchased from Jackson Laboratories (Bar Harbor, ME). Littermate controls were housed 

together when possible. To induce SPEM, tamoxifen (5 mg/20 g body weight; Toronto Research 

Chemicals, Inc, Toronto, Canada) was injected intraperitoneally daily for 3 days. Tamoxifen was 

dissolved in 10% ethanol and 90% sunflower oil (Millipore Sigma, MO). 5-bromo-2’-

deoxyuridine (BrdU; MilliporeSigma) was administered via drinking water (800 mg/L) for up to 

8 weeks, changed on the third day. 5-ethynyl-2’-deoxyuridine (EdU; Baseclick, Bavaria, 

Germany) was injected intraperitoneally daily for 4 days (30 mg / kg mouse mass, dissolved in 

PBS). 

 

Immunofluorescence 

Upon sacrifice, stomachs were immediately excised, flushed with phosphate buffered saline 

(PBS), inflated, and fixed overnight in cold formalin (3.4% formaldehyde in PBS; Millipore 

Sigma, MO). The following day, stomachs were transferred to 70% ethanol then cut into rings, 

embedded in 3% agar, and underwent routine paraffin processing. 5 μm sections were mounted 

on glass slides. Slides were deparaffinized and rehydrated with xylenes and isopropanol, and 

antigen retrieval was done via pressure cooking in a Tris solution. Slides were blocked with 1% 

bovine serum albumin and 0.3% Triton X-100 in phosphate-buffered saline for 1 hour, then 

primary antibodies were incubated overnight at 4 °C. The following day, secondary antibodies 

https://www.sciencedirect.com/topics/medicine-and-dentistry/specific-pathogen-free
https://www.sciencedirect.com/topics/medicine-and-dentistry/c57bl-6
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were applied for 1 hour then slides were mounted using ProLong Gold antifade reagent with 

DAPI (Invitrogen, CA).  

 

Primary antibodies used in this project include: rabbit anti-human gastric intrinsic factor 

(1:10,000; a gift from Dr. David Alpers, Washington University, St Louis, MO), goat anti–5-

bromo-2’-deoxyuridine (1:20,000; a gift from Dr. Jeff Gordon, Washington University, St Louis, 

MO), Rabbit anti-Ki67 (1:100; Abcam, Cambridge, UK), Sheep anti-pepsinogen II (1:1000, 

Abcam), Rabbit anti-αSMA (1:200, Abcam), goat anti-clusterin (1:200, Santa Cruz), rat anti-

BrdU (1:200, Abcam), rat anti-CD44 v10-e16, ortholog of human v9 (1:200, Cosmo Bio), AAA 

Lectin (1:500, EY Labs), and 1 g/mL fluorescently labeled GSII lectin (Alexa Fluor 488, 594, 

and 647; Molecular Probes). Secondary antibodies included AlexaFluor (488, 594, or 647) 

conjugated donkey anti-goat, anti-rabbit, anti-sheep, anti-rat, or anti-mouse antibodies (1:500; 

Molecular Probes). EdU was imaged using the BCK-EdU488 kit following the manufacturer’s 

instructions. 

 

Helicobacter pylori infection 

The mouse-adapted, wild-type pre-mouse Sydney strain of Helicobacter pylori, PMSS1, was 

kindly provided by Dr. Rick Peek (Vanderbilt University). Growth of the PMSS1 strain prior to 

inoculation of mice has been previously described(Saenz et al., In press.). Mice were fasted for 

4-6 hours prior to oral gavage with 200 μL of an overnight H pylori culture (~1 x 108 

cfu/mouse), then fasted for an additional 1-2 hours after infection. Mice were then allowed to 

feed ad libitum and were sacrificed 8-12 weeks after infection. Mouse stomachs were excised 

and opened along the lesser curvature. Food was gently scraped away, and the forestomach 
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removed. Stomachs were pinned out in cold formalin and fixed overnight at 4°C. The next day, 

stomachs were cut in longitudinal sections and underwent routine paraffin processing.  

 

Immunofluorescence Quantification 

All quantifications were from at least three mice, with both sexes used. Quantifications were 

done on stomachs stained fluorescently for anti–5-bromo-2’-deoxyuridine, neck cell marker GSII 

lectin and chief cell marker anti-GIF. Single GIF+ cells were scored as mature chief cells; Single 

GSII+ cells as mucous neck cells, and GIF+/GSII+ cells were considered metaplastic. Slides were 

imaged on a Zeiss Axiovert 200 microscope with an Axiocam MRM camera. For BrdU-retention 

assays, only fully imaged units with >3 label-retaining chief, SPEM, or neck cells were 

quantified, and at least 20 label-retaining units were quantified per stomach when possible. 

Counts were done using Axiovision LE64 software to selectively overlay color channels to count 

label-retaining cells co-staining with GIF and/or GSII, as previously described (Radyk et al., 

2018). Counts were averaged over the total number of units quantified per mouse, then all mice 

for a condition were averaged for the final value. Graphs were completed in GraphPad Prism (La 

Jolla, CA), using one-tailed student t-tests to determine significance, *P<0.05, **P<0.01, and 

***P<0.001. 

3.4 Chief cells take up little BrdU upon extended continuous pulsing 

To track the cellular dynamics of the corpus unit independent of genetic lineage tracing, we 

performed continuous BrdU labeling experiments. We administered BrdU in drinking water 

continuously for up to eight weeks, harvested stomachs, then immunostained and quantified the 

proportion of each cell lineage labeled with BrdU. All cells that performed DNA-replication 

during our labeling window will be BrdU+. Due to the continuous labeling paradigm, once a cell 
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is labeled it will remain labeled during the entire pulse window, allowing us to interpret the 

entire proliferative history of the gastric corpus unit during our labeling window. As shown in 

Figure 3.1, neck cells readily labeled with BrdU, with 70% labeled at two weeks, 77% at four 

weeks, and 88% at eight weeks, with neck cells near the isthmus incorporating label before those 

lower in the unit, consistent with data published by Karam for a similar experiment giving 

continuous 3H-Thymadine (Karam and Leblond, 1993c). Parietal cells incorporated BrdU as a 

lower rate than neck cells, as expected, with 24% labeling at two weeks, 37% by four weeks, and 

50% at eight weeks, slightly below the rate reported by Karam yet following a similar trend 

(Karam, 1993). However, chief cells remained largely BrdU-negative, with less than 10% BrdU+ 

at all timepoints (Figure 3.1A-B). Surprisingly, we noticed that the chief cells that did take up 

BrdU were often nonadjacent to the transitional zone between the unit neck and base, contrary to 

what would be expected if chief cells derive from BrdU+ transitional cells. Less than one quarter 

of BrdU+ chief cells were adjacent to the transitional zone, with the rest distributed throughout 

the base (Figure 3.1C). BrdU+ chief cell were also often found in pairs regardless of position 

(Figure 3.1D), suggesting that chief cells may infrequently divide into additional chief cells at 

homeostasis, consistent with other works describing a low level of proliferation at the unit base 

(Suzuki et al., 1983; Karam and Leblond, 1993c). 
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Figure 3.1: Continuous BrdU marks few chief cells in the healthy stomach 

A) Stomachs of mice administered BrdU via drinking water for two or eight weeks. BrdU (white 

nuclei) incorporation into the main gastric epithelial cell types was tracked (Top panels: GSII+ 

neck cells in green, GIF+ chief cells in red, GSII+GIF+ transitional cells seen as yellow. Bottom 
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panels: Ezrin-expressing parietal cells in red). B) BrdU uptake quantified from images such as in 

panel A for each cell population, counted as percentage of the population per unit positive for 

BrdU. C) The location within the base of each BrdU+ chief cell was noted, counted as numbers 

of cells below the lowest GSII+ (or GSII+CIF+) cell. D) Representative images of BrdU+ chief 

cell pairs, stained as for panel A. 

 

3.5 BrdU administered throughout acute injury marks nearly all epithelial 

cells 

 

With less than 10% of chief cells incorporating BrdU within an 8-week pulse, pulsing long 

enough to mark all chief cells then still chasing multiple months to deplete label from all non-

chief cells would be impractical. To label chief cells in a more feasible time window, we tried 

continuous labeling with BrdU throughout acute gastric injury using high doses of the selective 

estrogen receptor modulator, tamoxifen (TAM). Three daily injections of TAM causes ablation 

of nearly all parietal cells and initiates a proliferative and metaplastic response from the 

remaining epithelial cells (Huh et al., 2012b; Saenz et al., 2016). To test whether there is enough 

proliferation for BrdU to mark nearly all cells, we continuously labeled with BrdU in the 

drinking water one day prior to treating with TAM through two days following TAM treatment. 

At the end of the BrdU+TAM labeling period, BrdU marked 98.3±0.2% of neck cells, 

96.3±0.7% of SPEM cells, and 77.9±3.5% of chief cells (Figure 3.2A-B). TAM-induced SPEM 

resolves within two weeks (Huh et al., 2012b), so we performed the same experiment followed 

by a chase with normal drinking water for up to nine months. Over 80% of chief cells were 

BrdU+ following one month chase, along with 80% of parietal cells and 65% of neck cells 

(Figure 3.2C-D). Parietal and neck cells regularly lost label for the first six months before 

leveling out with around 20% of parietal cells (Figure 3.3A) and 8% of neck cells retaining label 

from months six through nine. Chief cells maintained label throughout the full chase, with 
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65.9±4.7% BrdU+ even after nine months, notably longer than their calculated half-year survival 

rate (Karam and Leblond, 1993c; Quante et al., 2010). BrdU was diluted from nearly all isthmal 

cells within the first months and nearly all neck cells by five months, indicating that the chief cell 

population maintains BrdU with no contributions from the upper unit, either through living much 

longer than previously recognized or through infrequent self-replication. 
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Figure 3.2: BrdU+TAM pulse chases indicate that chief cells are a self-maintaining 

population 

A) Stomach of a mouse administered BrdU alongside three daily injection with TAM. BrdU 

(white nuclei) incorporated into all main cell types of the damaged gastric epithelium (GSII+ 

neck cells in green, GIF+ chief cells in red, GSII+GIF+ SPEM cells seen as yellow). Right panel 
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shows same gastric units with only DAPI and BrdU for better visualization of BrdU uptake. B) 

BrdU uptake for each cell population quantified from images such as in panel A, counted as 

percentage of the population per unit positive for BrdU. C) Stomachs of mice given the 

BrdU+TAM pulse as in panel A then chased for 1-9 months with normal drinking water. Stained 

as for panel A. D) BrdU uptake for each cell population quantified from images of 1-9 months 

chased, such as in panel C, counted as percentage of the population per unit positive for BrdU. 

 

 

Figure 3.3: BrdU retention in parietal cells and other epithelial lineages 

A) BrdU (white nuclei) is retained in parietal cells (red, Ezrin) through 9 months of chasing, with 

long held label generally seen in the lower-most parietal cells. B) Label is seen in endocrine 

cells, tuft cells, and stromal cells following three a month chase, but not in pit cells. 
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3.6 Chief cells are not the predominate terminal maturation state for neck 

cells 

Both continuous labeling with BrdU and the BrdU+TAM pulse-chase experiments suggested that 

chief cells maintain their own census in the adult stomach, so we next tested the dynamics of 

neck cells, as they have been considered transient intermediate precursors to chief cells. We 

administered BrdU for two weeks, by which point six neck cells (69.9±4.2% of total), but less 

than one chief cell (4.3±0.9% of total) per unit incorporated label. After the continuous 2 weeks 

of BrdU labeling, we then chased with normal water for up to eight weeks to see if chief cells 

would gain label as neck cells lost it, as would occur if neck cells transitioned into chief cells. 

After the eight-week chase, only two neck cells per unit retained label (net loss of 4) while still 

only one chief cell per unit had BrdU (no net gain) (Figure 3.4A-B). To find other mechanisms 

by which the neck cells could be losing their label, we stained for cleaved caspase 3 and Ki67 in 

uninjured stomachs. As expected, no apoptosis was observed in the neck region, and Ki67 was 

generally only expressed in the uppermost neck cells (Figure 3.4C), making it unlikely that BrdU 

was lost through programmed cell death or diluted by proliferation. We did notice BrdU+ pit 

cells fairly regularly at 4 weeks chase (Figure 3.4D), beyond what would be expected for cells 

with a published lifespan of 3-4 days (Karam and Leblond, 1993b), otherwise we observed no 

process other than dilution in proliferative isthmal cells for any gastric cells to lose BrdU label. 

Regardless of how neck cells lose their BrdU, our experiments indicate that neck cells are not 

predominately fated to become chief cells, again consistent with chief cells maintaining their 

own population. 
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Figure 3.4: Chief cells are not the final fate for neck cells 

A) Stomachs of mice administered BrdU for two weeks then chased for 4-8 weeks. BrdU (white 

nuclei) retained in all main cell types of the damaged gastric epithelium was tracked (GSII+ neck 

cells in green, GIF+ chief cells in red, GSII+GIF+ transitional cells seen as yellow). B) BrdU 

retention for neck and chief cells quantified from images such as in panel A for the pulse and for 

2, 4, and 8 week chases. C) Healthy stomachs stained with GSII (green), GIF (red), and either 

cleaved caspase 3 (white, left panel) or Ki67 (white, right panel) to check for cells undergoing 

apoptosis or entering the cell cycle. D) Stomach of mice administered BrdU for two weeks then 

chased for 4 weeks often had BrdU+ pit cells (AAA, red). 
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3.7 Chief cells give rise to SPEM cells following gastric injury 

All of our experiments thus far support a model wherein chief cells self-maintain their population 

at homeostasis from self-duplication.  We next probed whether the same is true following injury. 

We performed previously mentioned experiments with BrdU+TAM injury to drive high labeling 

throughout the chief cell population and then chased for 3 months. As noted above, at the end of 

the 3 month chase 75±7% of chief cells retain label (Figure 3.5A), while the pit, isthmus, and 

upper mucous neck cells are unlabeled. In fact at the 3 month chase stage, we only observe an 

average of 0.8 BrdU+ epithelial cells in the pit-isthmus-upper neck region that were not 

obviously mature parietal cells based on morphology. Separate staining showed that rare gastric 

cell populations like endocrine cells, tuft cells, and stromal cells retained label at 3 months. Pit 

cells were never seen retaining label after 3 months chase (Figure 3.3B). 
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Figure 3.5: Metaplastic cells arise from chief cells following chronic and acute injury 

A) Stomach of mouse given BrdU+TAM pulse then a 3 month chase (BrdU, white; GIF, red; 

GSII, green). B)  Stomach of mouse given BrdU+TAM pulse, 1 month chase, then infected with 

Helicobacter pylori, stained as for panel A. C) Stomach of mouse given BrdU+TAM pulse, 3 

month chase, then 3 days TAM, stained as for panel A. D) BrdU retention for neck (green), chief 

(red), and SPEM (yellow) cells quantified for panels A-C. E) Stomach of mouse given BrdU 

over only two days of TAM (BrdU, white; GIF, red; GSII, green). Right panels: split colors 
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showing GIF, GSII, and BrdU separately, arrowheads denote SPEM cells that have not yet 

proliferated (GIF+, GSII+, BrdU-). *P<0.05, **P<0.01, and ***P<0.001 in one-tailed Student’s t 

tests.  

 

To address whether chief cells sourced SPEM, we combined our TAM+BrdU experiments with 

Helicobacter pylori (HP) infection. HP infection causes the appearance of small, focal regions of 

SPEM beginning around 6 weeks after initiation of infection (Saenz et al., 2018). We generated 

TAM+BrdU mice and allowed them to rest for 1 month and initiated HP infection. We then 

waited an additional 2 months to allow HP infection to cause metaplasia in the corpus. After 2 

months of HP infection, TAM+BrdU mice had small numbers of corpus units with SPEM, while 

the rest of the corpus was unaffected and closely mimicked TAM+BrdU mice without HP 

infection chased for 3 months (Figure 3.6A). Within the metaplastic units, 67±4% of metaplastic 

cells retained BrdU. Additionally, 22±5% of neck cells (GSII only) retained label in metaplastic 

units after HP infection, same as the 22±2% seen in TAM+BrdU mice chased for 3 months 

without HP infection (Figure 3.5B,D).  Given that neck cell label-retention within metaplastic 

units of HP infected mice was similar to TAM+BrdU mice chased for 3 months without HP 

infection, this indicated that neck cells did not transdifferentiate into the metaplastic cells. If 

SPEM cells had arisen from a small number of stem or progenitor cells, we would expect the 

multiple rounds of proliferation to dilute the BrdU. Instead, the BrdU+ metaplastic cells appeared 

to principally arise at the expense of the preexisting labeled chief cell population with minimal 

proliferation. On average, metaplastic units had 6 BrdU+ ‘yellow’ SPEM cells following HP 

infection, while the ‘red’ chief cell population lost 8 labeled cells, with no change in ‘green’ neck 

cells. Similar results were seen in 15 mice over 8-12 weeks’ infection (Figure 3.6B). 
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Figure 3.6 Additional Helicobacter pylori data 

A) Non-metaplastic regions of mice given BrdU+TAM, rested one month, then infected with HP 

for two months closely resemble units in mice given BrdU+TAM followed by a three month 

chase. B) Metaplastic units following 12 weeks HP infection resemble those at 8 weeks. 

To test whether acute drug-induced SPEM arises in the same manner as HP-induced SPEM, we 

generated TAM+BrdU mice and chased them for three month and subsequently injected them 

with an additional three days of TAM to induce metaplasia. Re-injury with TAM induced a 

population of BrdU+ SPEM cells to arise while BrdU+ chief cells decreased and BrdU+ neck cells 

remained their label (Figure 3.5C-D). To ascertain that the expanded label-retaining GIF+GSII+ 

cells were truly metaplastic, we co-stained for additional SPEM markers Clusterin and CD44v 

(Wada et al., 2013; Weis et al., 2013) and found both markers to overlap with the label-retaining 

cells (Figure 3.7A) . These findings are consistent with HP-induced injury and strongly support 

the idea that SPEM arises from pre-existing chief cells following injury. We noticed a lesser 
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amount of label retention following TAM than in HP infection, likely due to label dilution 

because TAM-induced SPEM is much more proliferative than Hp-induced SPEM (Figure 3.7B).  

 

Figure 3.7 Additional SPEM data 

A) BrdU-retaining SPEM cells (BrdU+ and GSII to the base of the unit) following re-injury with 

TAM express clusterin (left) and CD44v (right), indicating that they are fully metaplastic. B) 

Label-retaining SPEM cells following HP infection (left) are largely quiescent (Ki67, red, marks 

nuclei of cells in the cell cycle), whereas SPEM cells following TAM (right) are proliferative  

An alternate model for how SPEM forms posits that progenitors in the isthmus or neck give rise 

to metaplastic cells upon injury (Hayakawa et al., 2015; Kinoshita et al., 2018b).  Previous data 

from our group showed that SPEM can arise from pre-existing cells when all proliferation is 

blocked with fluorouracil (Radyk et al., 2018). To confirm that metaplastic cells arise via 

plasticity of pre-existing cells when proliferation is not constrained, we gave continuous BrdU 

one day prior to injury and then through two days of TAM.  We harvested stomachs following 
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two days of TAM instead of the normal peak-SPEM timepoint of 3 days TAM to view the 

gastric units as SPEM was actively forming. The presence of cells positive for both GIF and 

GSII but not yet BrdU+ (Figure 3.5E) confirmed that SPEM cells arise from existing cells at the 

base of the unit, as all SPEM cells would be BrdU+ if they arose from a progenitor population. 

To further address potential contributions of isthmal progenitors to metaplasia, we injected mice 

that had undergone the BrdU+TAM pulse and three-month chase with EdU for 4 days. After this 

4 day label period, we observed EdU incorporated into isthmal cells, lower pit cells, and upper 

neck cells, as expected. Negligible overlap was seen with BrdU+ cells at the base (Figure 3.8A). 

We then injured mice that had undergone the BrdU+TAM pulse, a three-month chase, and a 4 

day EdU label with TAM and sacrificed the mice the next day. EdU was diluted from the isthmal 

and neck cells due to the high proliferation induced by TAM, and negligible EdU incorporation 

was seen in BrdU+ SPEM cells at the base (Figure 3.8B). Thus, while a minority of SPEM cells 

that no longer retain label may possibly arise from non-chief cells, our observations indicate that 

the principle source of metaplastic cells following injury are pre-existing chief cells. 
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Figure 3.8 EdU+ progenitors do not give rise to EdU+ SPEM cells 

A) EdU (cyan) injected for four days labels isthmal, pit (red), and upper neck (green) cells with 

no overlap with BrdU+ chief cells (white) B) Label-retaining SPEM cells following HP infection 

(left). B)  Mice as in panel (A) injected with TAM three days. No EdU staining is seen in SPEM 

cells. 

3.8 Metaplastic cells can redifferentiate into chief cells following recovery 

from injury 

To track SPEM cell fate upon recovery, we treated mice with the TAM+BrdU pulse, a three-

month chase, a second round of TAM, then allowed them to recover for two weeks. While many 

units completely diluted their label (<4 BrdU+ GIF and/or GSII positive cells) due to the high 
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proliferation, units that were not washed out retained BrdU in 47±7% of chief cells (Figure 3.9A-

B). Upon recovery, an average of 7.3±0.3 chief cells per unit retained label, equal to the sum of 

the 2.8±0.1 chief cells and 4.6±0.3 SPEM cells retaining label following the TAM injury. This 

indicates that SPEM cells re-differentiate into chief cells with minimal additional proliferation or 

death.  

 

Figure 3.9: Metaplastic cells can redifferentiate into chief cells following recovery from 

injury 

A) Stomach of mouse given BrdU+TAM pulse, 3 month chase, 3 days TAM, then allowed to 

recover for 2 weeks (BrdU, white; GIF, red; GSII, green). B) BrdU retention for neck (green), 

chief (red), and SPEM/transitional (yellow) cells quantified for panel A. *P<0.05, **P<0.01, and 

***P<0.001 in one-tailed Student’s t tests.  

3.9 Discussion 

In this study, we combined nucleotide analog labeling techniques with acute and chronic gastric 

injury models to test the dynamics of gastric cells at homeostasis and following injury. Our 

pulse-chasing strategies, including pulsing BrdU throughout TAM injury then tracking label-

retaining cells, expanded upon previous reports which mostly relied on long pulses or simple 

pulse-chase set-ups. Our combined results indicate that chief cells largely maintain their own 
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census at the unit base independently from other lineages at homeostasis, and they retain the 

capability to replace themselves upon injury (Figure 3.10, Figure 3.11). 

 

 

 

Figure 3.10: Chief cells appear to maintain an independent population at homeostasis 

(Left) Our proposed model for how each major gastric cell population is maintained in 

homeostasis. Stem cells (grey) give rise to pit cells (purple) neck cells (green) and parietal cells 

(blue). Chief cells form a self-maintaining population at the base largely independent of input 

from upper cell populations. Colors on arrows denote cell conversions. (Middle) Upon 

metaplasia inducing injury such as infection with Helicobacter species or acute drugs, units lose 

their parietal cells and see proliferative expansion of the isthmus and neck cells. Chief cells 
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dedifferentiate to metaplastic cells (yellow) and re-enter the cell cycle as well. (Right) As the 

injury resolves, SPEM cells can redifferentiate into chief cells, then the unit reverts to its normal 

homeostatic maintenance.  
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Figure 3.11: Models for BrdU pulse-chase experiments comparing the canonical isthmal 

stem cell model with our independent base model. 
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Multiple experiments suggest that chief cells form a largely self-maintaining population. Our 

TAM+BrdU pulse chase strategy allows us to monitor label retention in chief cells, and we see 

2/3 of chief cells maintaining label after nine months (Figure 3.2). This longer-than-expected 

label retention has three possible explanations: 1) the population could be replenished from other 

label-retaining cells, 2) individual chief cells may live longer than nine months, or 3) BrdU+ 

chief cells may infrequently self-replicate, spreading their label between progeny. Option 1 is 

unlikely since neck and parietal cells reach their minimal retention levels by five months. 

Individual chief cells were calculated to live around 160 days by two independent studies 

(Karam and Leblond, 1993c; Quante et al., 2010), making option 2 unlikely as well. Option 3 

seems correct, as chief cells are known to proliferate and die at low levels (Suzuki et al., 1983; 

Karam and Leblond, 1993c), and we likewise show low levels of BrdU accumulate in chief cells 

over time. The majority chief cells that incorporate BrdU in our continuous BrdU experiments 

are nonadjacent to the transitional zone, with BrdU uptake scattered from the upper-most to the 

lower-most chief cell (Figure 3.1). This is only possible if chief cells are either dynamically 

migrating in the base or, consistent with our model, if they are self-propagating. 

Our conclusion that chief cells predominately maintain their own census is also supported by our 

two-week BrdU pulse-chase experiments (Figure 3.4). A two-week pulse is sufficient for 68% of 

neck cells to incorporate label. Following an eight-week chase, all but 16% of necks cell lose 

label, yet there is no increase in BrdU+ chief cells, indicating that neck cells predominately have 

a fate other than transitioning into gastric chief cells. This is supported by a paper showing that 

neck cells have a distinct function, with protective proteins expressed by neck cells seen coating 

the canaliculi of neighboring parietal cells (Hanby et al., 1999). The authors point out that having 

a cell with one secretory function converting to a cell with a distinct secretory function would be 
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unique throughout the GI tract and unlikely to occur. However, as no apoptotic death is observed 

in neck cells and lower neck cells are not proliferative (Figure 3.4), it is unclear from our 

experiments what the final fate of these cells might be.  

While our experiments suggest a new model for cellular dynamics in the homeostatic stomach, 

our data does not conflict with the body of gastric literature. Published continual labeling 

experiments show label incorporation into neck cells significantly earlier than in chief cells, 

helping lead to the model wherein neck cells transition into chief cells (Karam and Leblond, 

1993c; Ramsey et al., 2007). Our results agree with this, as neck cells label long before chief 

cells, yet chief cells will eventually label with continuous pulsing based on their low intrinsic 

proliferation. Even our data that label is retained by a small proportion of neck cells, transitional 

cells, and parietal cells for several months is consistent with the expansive works published by 

Dr. Karam in 1993, as he is never able to fully label any of these populations with 3H-thymadine 

infusion (Karam, 1993; Karam and Leblond, 1993c). Our model also does not conflict with 

papers showing non-expanding subpopulations within the chief cell zone at homeostasis, such as 

Lgr5+ chief cells or the minority of chief cells labeled by Mist1CreERT2;RosaYFP (Leushacke et 

al., 2017; Weis et al., 2017), or with those showing expanding chief cell subpopulations, such as 

Troy+ chief cells, which are shown to slowly expand to fill the base even at homeostasis (Stange 

et al., 2013b). Our BrdU+TAM strategy labels nearly all chief cells (>80%) regardless of 

subpopulation. A more-proliferative subset of chief cells could slowly replace less-proliferative 

subsets at homeostasis while still retaining label as full population. 

The transitional zone between the neck and chief cells remains enigmatic. Our data shows that 

neck cells do not predominately mature into chief cells, questioning whether the transitional zone 

is used for neck-to-chief cell transitioning, as has long been believed (Suzuki et al., 1983; Karam 
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and Leblond, 1993c). It is intriguing to speculate that the transitional zone may allow small 

numbers of cells to move down from neck to base and up from base to neck, though our 

experimental design cannot sufficiently test this. A two-way model would be consistent with 

ours and published data. Multiple papers show that a small number of chief cells can eventually 

obtain label that was only pulsed into neck cells, with <5 chief cells per unit eventually gaining 

label following a TFF2-CreERT2 pulse (Quante et al., 2010) and 10% of chief cells taking up 

3H-Thymadine following a short pulse and longchase (Hattori and Fujita, 1976a). Yet another 

report indicates that chief cell progeny can occasionally escape the base and populate full gastric 

units at homeostasis (Stange et al., 2013b). Our data do not conflict with either of these 

phenomena. We never stain 100% of the chief cells, and 20% of the labeled population is lost 

within the nine month chase. This could result from chief cell proliferation diluting the label or 

from a small contribution from the necks to the base. Surprisingly, we observed that nearly one 

transitional cell and nearly one neck cell per unit retain label even following nine months 

chasing. This can either indicate that a subset of both populations live an order of magnitude 

longer than expected, or it could be marking a small number of chief cell-derived cells able to 

cross up through the transitional zone into the neck of the unit. Further work is needed to clarify 

these transitional zone dynamics.  

We also show that chief cells can directly become SPEM cells following chronic Hp infection or 

acute injury with TAM and that these SPEM cells can redifferentiate into chief cells upon 

recovery. One major limitation of using label-retention to track cells throughout an injury 

response is that it is impossible to determine the origin of a BrdU-negative cell. In mice given 

BrdU-TAM, a three month chase, and then re-injury with TAM, a BrdU-negative SPEM cell 

could result from many things: 1) a chief cell which was already BrdU-negative 
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dedifferentiating, 2) a BrdU+ chief cell dedifferentiating but diluting its label through 

proliferation, or 3) a cell from higher in the unit becoming a SPEM cell. Thus, all we can 

conclude is that BrdU+ SPEM cells must derive from pre-existing BrdU+ cells. BrdU+ SPEM 

cells likely arise via chief cell dedifferentiation since the two BrdU+ neck cells per unit found 

following BrdU+TAM and a three month chase would need to divide several times to give rise to 

the 6 BrdU+ SPEM per unit, yet the neck cells retain their label in both injury models. Similarly, 

it is extremely unlikely that BrdU+ SPEM cells could result from isthmal progenitors, as less than 

1 label-retaining cell is seen near the isthmus in each unit prior to injury, necessitating numerous 

rounds of proliferation to form 6 SPEM cells. This was further confirmed by showing that SPEM 

cells arise before proliferation occurs in early TAM treatment and by injecting three-month 

chased mice with EdU for 4 days before causing TAM-induced SPEM. EdU was retained in 

upper isthmal and pit cells, but negligible EdU is seen near the metaplastic bases. This indicates 

either that if SPEM cells were to arise from the isthmus, they would proliferate enough to lose 

label before becoming SPEM cells. Similar limitations remain for analyzing BrdU-negative chief 

cells following recovery from the TAM insult. Thus, while we cannot say that all SPEM cells 

arise from or redifferentiate to chief cells, we can say that the BrdU+ portion likely do, showing 

that chief cells have the ability to maintain at least a portion of their population following injury.  

Growing published evidence supports that chief cells are more independent than previously 

assumed. While it was long believed that parietal cell loss triggers SPEM, our lab demonstrated 

that parietal cell loss alone is not sufficient to induce chief cell dedifferentiation and highlighted 

that neck cells can undergo regenerative proliferation with no change in the base (Burclaff et al., 

2017). Another study revealed that chief cells can dedifferentiate with parietal cells present 

(Busada et al., 2019). These reports are consistent with chief cells functioning largely 
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independently from all other gastric lineages, which has been obscured by the temporal 

intertwining of parietal cell death, neck cell proliferation, and chief cell dedifferentiation 

following physiological insults. 

Our data is consistent with a new model wherein chief cells largely maintain their own 

population at homeostasis and through injury recovery (Figure 3.10). As a population, we see 

that chief cells can undergo two rounds of dedifferentiation and redifferentiation without dying. 

In the initial BrdU+TAM pulse, chief cells dedifferentiate and proliferate minimally to acquire 

label then redifferentiate into BrdU+ chief cells. The second TAM injury repeats this process, 

though it dilutes some of the label. This holds implications for gastric health. Our lab has 

proposed a Cyclical Hit Model of Tumorigenesis by which long-lived cells able to re-enter the 

cell cycle following injury such as the gastric chief cells, pancreatic acinar cells, and intestinal 

Paneth cells may initiate tumors independently of stem cell contribution (Mills and Sansom, 

2015; Burclaff and Mills, 2018b; Burclaff and Mills, 2018a; Saenz and Mills, 2018a). Cycles of 

dedifferentiation, proliferation, and redifferentiation in chief cells could cause mutations which 

are then maintained within the long-lived chief cell population until a neoplastic mutation locks 

the cells in a proliferative, cancerous state. Thus, it is important to search for conserved 

mechanisms for dedifferentiation between organs - such as the conserved Paligenosis pathway 

that was recently identified between SPEM and pancreatic acinar cells dedifferentiating in 

acinar-to-ductal metaplasia (Willet et al., 2018b) - to find potential therapies for blocking or 

reversing this plasticity to prevent or treat early cancers. 
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Chapter 4: Chief cells can differentiate in the 

absence of parietal cells 

4.1 Introduction 

Parietal cells (PCs) have long been regarded as important for proper zymogenic chief cell 

maintenance and function. Mature chief cells are lost, many to dedifferentiation, following 

parietal cell injury in autoimmune gastritis (Adams et al., 1964) or chronic Helicobacter pylori 

infection (Lennerz et al., 2010). The relationship between PC loss and metaplasia has been 

known for decades, with researchers commenting on the “intimate association among the parietal 

cell loss in the fundic gland, a rise in pH value and the development of intestinal metaplasia” 

(Watanabe et al., 1980) 40 years ago. Multiple acute drugs recapitulate this relationship in mouse 

models, including DMP-777 (Nomura et al., 2005), L-635 (Weis et al., 2013), and tamoxifen 

(TAM) (Huh et al., 2012b; Saenz et al., 2016), all of which cause PC loss and result in loss of 

chief cells to dedifferentiation within 2-14 days. This dependence of s on PCs is further 

published upon in gastric development, where several models have shown that PCs, or their 

secreted components, are necessary for the development of mature chief cells. Models for the 

constitutive killing of PCs have used the driver for Atp4b, a component of the H+/K+-ATPase 

proton pump, to express diphtheria toxin (DT) (Li et al., 1996; Bredemeyer et al., 2009), Simian 

Virus 40 (Li et al., 1995), or herpes herpes simplex virus (Canfield et al., 1996). All of these 

models cause chronic loss of PCs from birth and result in a severe or complete depletion of chief 

cells in adult mice. Similar loss of formation can be seen even without killing the PCs, such as 

when acid secretion is blocked through constitutive knockout of ATP4b (Xiao et al., 2010) or 

with loss of Sonic Hedgehog expression from PCs (Franic et al., 2001). Intriguingly, constitutive 



62 

 

knockout of ATP4a, which is also necessary for acid secretion, did not result in depletion (Spicer 

et al., 2000). From these experiments and pathological observations of the absence of mature 

chief cells in areas of atrophic gastritis in human patients, gastroenterologists have long 

considered the chief cell population to be dependent on PCs. 

 

Recent work from our lab has questioned this conclusion. When mice with an Atp4b-driven 

inducible DT receptor (HKiDTR) were injected with DT, nearly all PCs were killed, yet there 

were surprisingly minimal effects on the chief cells, with most remaining mature (GSII-) and 

non-proliferative. This was seen even when DT injections were administered for 16 days 

(Burclaff et al., 2017). This clearly indicated that chief cells do not need PCs present to maintain 

survival and maturity and that the loss of PCs in a gastric unit does not actively drive chief cell 

loss or dedifferentiation. This acute model as used in its introductory publication could not show 

whether chief cells could develop in the absence of PCs, though, as chief cells are calculated to 

live nearly half of a year, so minimal turnover would be expected in 16 days (Karam and 

Leblond, 1993c; Quante et al., 2010).  

4.2 Results 
To test whether chief cells can develop in the absence of PCs, two approaches were used. In the 

first, we tested whether mature chief cells could redevelop following TAM-induced metaplasia 

in the absence of PCs. We injected HKiDTR mice with TAM for three days to kill PCs and cause 

chief cell dedifferentiation and metaplasia (Huh et al., 2012b). We then continued to inject daily 

with DT to keep PCs away for 14 days but without direct effecting the chief cells or their 

precursors. One mouse was sacrificed immediately following the 3 days of TAM, showing that 

the drug killed PCs and caused chief cell dedifferentiation as expected. Other control mice were 
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injected with TAM three days then allowed to recover for 14 days or with vehicle for three day 

then 14 days of diphtheria toxin. Following the full 17-day time course, the TAM-then-rest mice 

were seen to recover full chief cell and PC populations, with proliferation contained in the 

isthmus as would be expected at homeostasis. As in the HKiDTR paper, mice only injected with 

DT for 14 days had full PC loss and proliferation throughout the isthmus and neck, yet the chief 

cells remained largely unchanged at the base (Figure 4.1A). Interestingly, mice treated with 

TAM then DT appeared very similar to DT alone, with no sign of metaplasia at the base and a 

full contingent of GIF+/GSII- mature chief cells, even though PCs were still absent (Figure 4.1A) 

TAM-then-rest mice were seen to ‘overshoot’ in their chief cell population, with 18.1 chief cells 

seen per unit following TAM recovery compared to 12.9 in a healthy unit. DT-alone or TAM + 

DT were both seen with chief cell counts nearer their homeostatic levels, with 12.9 ad 14.0, 

respectively (Figure 4.1B) Altogether, this shows that chief cells can recover following 

metaplastic injury in the absence of PCs, though it is unclear whether these were newly-formed 

chief cells or metaplastic cells which re-differentiated into chief cells.  
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Figure 4.1: Chief cells recover from tamoxifen even in the absence of PCs.  

A) Stomachs from adult mice following three days of TAM then 14 days of recovery (left), three 

days TAM then 14d DT (center), or just 14d DT injections (right) (top: green: GSII, red: anti-

BrdU, magenta: anti-GIF). Bottom: Hematoxylin and eosin staining of the same stomachs as on 

top to visualize loss of PCs (large, round, bright pick cells). B) Quantification of GIF+/GSII- 

chief cells per gastric unit via immunofluorescence staining. 

 

Since it is unknown whether chief cells recovering from injury follow the same developmental 

pathways as those forming initially in newborn mice, we also tested if PCs were necessary for 

these first chief cells to form in developing pups. We analyzed the stomach of a P5 mouse and 

found that, consistent with the literature (Keeley and Samuelson, 2010), the epithelium of the 

developing stomach largely consists of GIF+/GSII+ precursors instead of mature chief or neck 

cells (Figure 4.2A) We thus picked P5 as the starting point and injected HKiDTR pups with DT 
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daily from P5-P21, when populations of all mature gastric cell types are known to exist. H&E 

staining on the P21 stomachs showed that PCs were efficiently killed at similar levels to adult 

HKiDTR mice, yet a full population of GIF+/GSII- chief cells was still seen to develop at the 

base of the units. Proliferation was also seen throughout the necks of the DT-injected pups, again 

similar to adult mice, while proliferation is seen contained to the isthmus in control littermates by 

P21 (Figure 4B). Since PCs were effectively killed before and during chief cell development, this 

shows that mature PCs are not necessary for even primary chief cell development in a young 

mouse stomach. 

 

Figure 4.2: Chief cells develop in the young stomach even in absence of PCs.  

A) Representative stomach from a P5 pup (green: GSII, magenta: anti-GIF). B) Stomachs of 

HKiDTR (left) or WT (right) pups following DT injections from P5-P21 (green: GSII, red: anti-

BrdU, magenta: anti-GIF). 
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4.3 Discussion 

Many papers have shown that PCs or their secreted acid are necessary for chief cell formation in 

mice. All of these were done with mechanisms for constitutively ablating PCs or knocking out 

their acid secretion. The HKiDTR mouse model allows us to cleanly and inducibly ablate PCs, 

which initially allowed us to demonstrate that PC loss does not necessarily initiate the full 

metaplastic regenerative response as seen after all other forms of PC injury (Burclaff et al., 

2017). This mouse model allows us to take a further look at the question of chief cell 

development. Here, we show that chief cells can recover following injury in adult mice and 

develop for the first time in young mice all in the absence of mature PCs.  

 

While our conclusion appears contradictory to the wealth of literature, there are several distinct 

reasons for why our experiments might be showing different results. DT and TAM models are 

very acute and fast acting damage models, allowing us to look at PC death and chief cell 

dedifferentiation and recovery in a couple of weeks instead of the months-long experiments done 

with constitutive mutations in most published work. We do not believe that the amount of time 

that PCs are gone directly affects chief cell form and function, as the bases appear very similar 

after two weeks DT as they do at three days DT. Instead, it is plausible that constitutive loss of 

PCs or their acid from birth to adulthood might have allowed for colonization of the stomachs 

with pathogenic bacteria which secondarily effected the metaplastic responses seen. Another 

possibility arises from the experimental set up for how PCs are killed between experiments. Our 

model expresses a toxin receptor on the PCs, only allowing a small amount of toxin into each 

cell upon injection. Other models drive toxin or viral factors directly into the parietal cells. As 
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neighboring cells are suspected to phagocytose dead cell debris of neighbors at the unit base 

(Karam and Leblond, 1993c), it is possible that developing chief cells ingest toxin-filled PC 

debris and are collaterally killed. Finally, it is also possible that other published PC-killing 

experiments are more effective in their PC ablation, possibly killing PCs at an earlier stage or 

even earlier in the development of the stomach in newborn mice. HKiDTR mice lose 95% of 

PCs following DT injections, yet it is possible that chief cell maturation may eb supported by the 

remaining 5% of PCs, the not-yet-killed pre-PCs, or a small population of PCs which arose 

before P5. Our current model and data are insufficient to test which of these possibilities may be 

the cause of our conflicting data.  

 

Even though we cannot say specifically how our model results in different chief cell dynamics 

than the body of published literature, our results still add important data and advance the field of 

stomach development. We show for the first time that chief cells can develop and recover from 

injury in the absence of PCs. This may be important for advancing our knowledge of human 

health, as precancerous metaplasias are known to begin with atrophic gastritis, or loss of PCs 

(Correa, 1988). Our results indicate that the progression to further damaged states might not 

result from the loss of any specific PC factor or the physical loss of the cells themselves. Instead, 

focus should be given to inflammation and colonizing pathogens to identify what specific factor 

may be driving the metaplastic changes in the bases of the gastric units. 

 

4.4 Methods and materials 

 

Animals and Injections 
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All experiments involving animals were performed following protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specified pathogen-free barrier facility under a 12-hour light cycle. Wild type C57BL/6 mice 

were purchased from Jackson Laboratories (Bar Harbor, ME). Littermate controls were housed 

together when possible. HKiDTR mice were derived from ROSA26iDTR/iDTR mice purchased 

from Jackson Laboratories bred to Atp4b-Cre mice from our in-house stock.  

 

To ablate PCs, diphtheria toxin (225ng/mouse in 0.9% sodium chloride saline; Sigma) was 

injected intraperitoneally every day for up to 16 days. To induce SPEM, tamoxifen (5 mg/20 g 

body weight; Toronto Research Chemicals, Inc, Toronto, Canada) was injected intraperitoneally 

daily for 3 days. Tamoxifen was dissolved in 10% ethanol and 90% sunflower oil (Sigma), 

following the procedure outlined in (Saenz et al., 2016).  

 

Immunofluorescence 

 

Mice were given an intraperitoneal injection of 5-bromo-2’-deoxyuridine (BrdU, 120 mg/kg) and 

5-fluoro-2’-deoxyuridine (12 mg/kg) in sterile water 90 min before sacrifice. Following sacrifice, 

stomachs were immediately excised and flushed with PBS, then inflated and fixed overnight in 

cold formalin (3.4% formaldeyde in phosphate buffered saline; Sigma). Tissues were arranged in 

3% agar in a tissue cassette, underwent routine paraffin processing, and 5μm sections were cut 

and mounted on glass slides. Sections underwent a standard deparaffinization and rehydration 

protocol, were blocked in 1% BSA, 0.3% Triton-X100 in PBS, left with primary antibodies 

https://www.sciencedirect.com/topics/medicine-and-dentistry/c57bl-6
https://www.sciencedirect.com/topics/medicine-and-dentistry/tamoxifen
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overnight, washed then and incubated for one hour with secondary antibodies, washed, washed, 

then mounted using ProLong Gold antifade reagent with DAPI (Invitrogen, CA). 

 

Primary Antibodies used in this study: rabbit anti-gastric intrinsic factor (gift of Dr. David 

Alpers, Washington University), goat anti-Brdu (gift of Dr. Jeff Gordon, Washington 

University), and 1 g/ml fluorescently labeled GSII lectin (Alexafluor488, 594, Molecular 

Probes). Secondary Antibodies included AlexaFluor (488, 594 or 647) conjugated donkey anti-

goat or anti-rabbit (Molecular Probes). 

 

Immunofluorescence quantification 

 

Chief cell census was quantified with at least three mice for each condition. Stomachs were 

fluorescently stained with DAPI and anti-BrdU along with the neck cell marker GSII lectin and 

chief cell marker anti-GIF. Images were captured as TIFF files from a Zeiss Axiovert 200 

microscope with Axiocam MRM camera and with Apotome optical sectioning filter. Each 

stomach had at least 5 images taken and only well-oriented gastric units were counted. Total 

chief cell counts were averaged over total number of units counted for each mouse.
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Chapter 5: MNU can be used to initiate 

gastric tumorigenesis 

5.1 Introduction 

The risk of developing cancer increases as a person ages, but we still don’t know why. The 

intersection of cellular dedifferentiation and response to inflammation may hold the key. In 

response to inflammation, one tissue can take on the characteristics of a different tissue in a 

process called metaplasia. Metaplasia almost always occurs following inflammation, and this is 

known to increase cancer risk, yet it remains unclear how. Mature cells can be recruited back 

into the cell cycle in adult organs, termed dedifferentiation. The ability of differentiated cells to 

be called back into a proliferative, more progenitor-like state may be a normal, evolutionarily 

conserved feature of many adult tissues. Organisms may use this process to reserve differentiated 

cells as potential stem cells during injury/inflammation (Mills and Sansom, 2015). 

We believe that metaplasia arises when cells dedifferentiate and re-enter the cell cycle in 

response to injury (Mills and Sansom, 2015). As normally post-mitotic cells re-enter the cell 

cycle, they increase their risk of acquiring mutations. If the mutations do not cause death or cell 

cycle arrest, the cells redifferentiate to their mature state once the tissue recovers. Through cycles 

of dedifferentiation and redifferentiation, mutations accumulate in these long-lived cells until a 

tumor-inducing mutation occurs, locking the cells into a proliferative state. For example, 

pancreatic adenocarcinomas arise when mature acinar cells with constitutively active K-Ras 

undergo metaplastic dedifferentiation, but activating K-Ras does nothing until another signal 

causes the acinar cells to dedifferentiate and proliferate (von Figura et al., 2014). Likewise, 
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melanocytes with constitutively active BRAF only induce melanomas upon dedifferentiation 

(Kaufman et al., 2016). This could explain why tissue surrounding a tumor can harbor the same 

mutations without malignancy. The cancer-driving power of the mutations are only fully realized 

when the cell re-enters the cell cycle and can no longer redifferentiate.  

Newly developed model systems from our lab should allow us to test this hypothesis in the 

mouse stomach. We previously discovered that injecting a high dose of tamoxifen causes death 

of the acid-secreting parietal cells, inflammation, and rapid and reversible gastric metaplasia, 

with mature enzyme-secreting cells at the base dedifferentiating to re-enter the cell cycle. This 

response occurs in a pattern recapitulating precancerous metaplasias caused by Helicobacter 

pylori in human patients (Huh et al., 2012b; Saenz et al., 2016). We also bred mice expressing 

the human diphtheria toxin receptor specifically on parietal cells. Treatment with diphtheria 

toxin kills all parietal cells and results in inflammation and increased proliferation of the 

constitutive stem cell, but not metaplasia (Burclaff et al., 2016). Both systems cause similar 

parietal cell death and stem cell proliferation; the only difference is the lack of dedifferentiation 

with metaplastic proliferation after diphtheria toxin. These systems will allow us to specifically 

test for the first time whether metaplastic dedifferentiation of mature, long-lived cells is critical 

for mutation accumulation and cancer initiation as opposed to increased stem cell proliferation 

and inflammation alone. 

 

5.2 Results 

Previous reports show that FVB mice form more tumors with less death than C57Bl6 mice when 

treated with the carcinogen N- methyl-N-nitrosourea (MNU) (Yamamoto et al., 2002). 25 

FVB/NJ mice were ordered from Jackson Laboratories then treated with a published protocol for 
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MNU (Yamachika et al., 1998), wherein 240ppm MNU is given in the drinking water for a full 

week on alternating weeks for ten weeks. To test whether rounds of injury/metaplasia increase 

chances for tumor formation, mice were split into three groups: 10 mice were treated with MNU 

with rounds of tamoxifen administered on weeks 1, 3, and 5, 10 were treated with MNU and 

rounds of vehicle, and 10 were only given rounds of tamoxifen with no MNU (Figure 5.1A). 

Published literature shows that tumors should form by week 36. 

 

Starting 10 weeks following the MNU cycles, mice were live-imaged to test for tumor formation 

using a FMT imager to track tumorigenesis. ProSense 680 (Perkin Elmer, enzymatically 

activated by Cathepsin B and other lysosomal enzymes) and MMPSense 750 FAST (Perkin 

Elmer, enzymatically activated by MMP-2, MMP-9 and others) have both been shown to be able 

to track gastric cancer in mice in vivo (Ding et al., 2012), even in a context of chronic 

inflammation (Zhang et al., 2008). Immunofluorescent signal was observed in the abdomen of 

HD-TAM treated mice, so we performed a bio-distribution assay to quantify the amount of 

fluorescence coming from each individual harvested organ. This indicated that the signal was 

originating in the spleen and liver, with minimal signal emanating from the gastric tissue (Figure 

5.2B,C).  
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Figure 5.1: MNU timecourse and in vivo fluorescence imaging.  

A) The timecourse for the pilot trial of MNU + rounds TAM or vehicles. Following published 

protocols, MNU was given via drinking water on alternating weeks for 10 weeks. TAM or VEH 

were injected on two consecutive days on weeks 1, 3, and 5. Living mice were to be imaged 

starting on week 20 for tumor formation. B) The stomach regions of mice were seen to fluoresce 

in the channel for ProSense680 at D3 TAM. C) The Bio-distribution of the ProSense 680 probe 

was checked in freshly harvested organs immediately following in vivo live imaging. Most 

signal was seen in the spleen and liver, with negligible fluorescence originating from the 

stomach (upper right). 

 

 

Once we found that the in vivo immunofluorescence probes gave non-stomach-specific signal, 

we tried an alternate form of in vivo live imaging on the same mice: PET/CT scanning using 

Fludeoxyglucose (18-FDG) glucose analogue to highlight tissues with highly metabolic cells. 

Signal was seen around the expected area for the stomach in many mice (Figure 5.2A). To 

determine whether the signals originated from the stomachs themselves, the mice with the best 

PET/CT signaling were sacrificed by the Small Animal Radiology Core personnel. Stomachs 

showed signal, yet the upper duodenum and other nearby organs did as well, so it remains 

unclear whether the signal seen on the PET scanning was truly stomach specific. Since we were 

not allowed to be present during the sacrifice due to the radioactive injections, we were unable to 
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fix the stomachs ourselves, resulting in poor orientation for scanning for polyps on the full 

stomach or histological staining (Figure 5.2B).  

 

Figure 5.2: PET/CT Scanning on MNU treated mice.  

A) Signal seen in live mice using PET/CT Scanning with 18-FDG. Hearts, kidneys, and bladders 

are expected to fluoresce due to their high metabolic activity. Stomach tissue was not always 

seen (blue circle, left image), yet some mice had high signal in what appeared to be the outline of 

the stomach epithelium (blue circle, right image). B) Stomach pinned out after fixing following 

harvesting at the Small Animal Cancer Imaging Core. 

 

Throughout the experiment, many mice died from infection, fighting, isofluorane and imaging, 

or sacrifice for bio-distribution imaging, leaving only 7 TAM+MNU mice, 6 VEH+MNU mice, 

and 3 TAM-only mice living longer than 30 weeks. Of these, 5/7 TAM+MNU, 2/6 VEH+MNU, 

and 0/3 TAM-only mice showed evidence of gastric polyps/tumors, nearly all in the antral 

portion of the stomach (Figure 5.3 A,B) While not quantified, many mice showed polyps in their 

liver, kidneys, or other organs as well (Figure 5.3C). 
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Figure 5.3: MNU induced tumors.  

A) The most impressive tumors were seen in an MNU+TAM mouse which died at week 30. 

Most tumor formation was confined to the antral region (blue arrowhead) with some sparse 

polyps seen in the corpus region as well (yellow arrowhead). 2) Polyp formation on the badly-

oriented stomachs following the bio-distribution assay for 18-FDG was monitored via 

hematoxylin and eosin staining did not allow for proper staging of the polyp severity. C) A large 

cancerous kidney found in a dead mouse at week 30, an example of MNU off-target effects. 

 

A second trial was begun to increase N and to fix stomachs with better orientation. In this trial, 

the same 10 week MNU protocol was followed, but TAM or VEH was injected every 4 weeks 

throughout the entire experiment to test whether the rounds of metaplasia have more effect after 

the cells had undergone the MNU treatments. 15 MNU+TAM, 15 MNU+VEH, 5 TAM-only, 

and 5 VEH-only mice were tested. Mice died from all groups nearly weekly starting at week 17, 

with cause of death generally undetermined. So many mice died that the remaining mice were all 
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sacrificed at week 26 to have enough N to use the data, yet almost no polyps were seen at this 

early time point. 

5.3 Discussion 

 

These pilot trials were mainly used to test the techniques for long-term carcinogenesis studies, 

and they were successful in that manner. The 10-week published MNU protocol was seen to 

cause polyp formation in the stomachs of FVB/N mice when they lived for longer than 30 weeks 

from the beginning of the experiment. While there were rarely well-oriented fixed stomachs 

available to directly analyze polyp/tumor pathology, preliminary numbers indicate that TAM-

treated mice are twice as likely to form polyps/tumors as VEH-treated mice within the MNU 

protocol. This is consistent with the Cyclical Hit Model of Tumorigenesis, wherein long-lived 

cells may undergo rounds of dedifferentiation and redifferentiation resulting from physiological 

injury over the lifetime of an animal. These rounds of entering and leaving the cell cycle may 

allow the long-lived cells to accumulate and store mutations, eventually leading to tumorigenesis 

in a stem cell-independent manner (Burclaff and Mills, 2018b; Burclaff and Mills, 2018a). 

 

The pilot studies also showed us many ways to improve experimental design for future trials. It 

was demonstrated that TAM-treated mice have more fluorescence in their spleen and liver than 

in their stomachs when probed with ProSense 680 and MMPSense 750 FAST. Since these two 

organs reside near the stomach, it is difficult to ascertain if any signal is specific to the stomach 

when imaging live mice. PET/CT scanning with 18-FDG appears to mark the actual stomach, 

with the curve of the antrum likely visible in some images. However, bio-distribution imaging 
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indicated that the upper duodenum also had signal, so future work should verify that the signal is 

stomach-specific. 

 

The issue of mice dying was also highlighted by both trials. While some death may be 

unavoidable in these experiments due to their length and number of injections, a large amount of 

early death seemed to result from the mice fighting. All FVB/N mice used were males ordered in 

bulk from Jackson Laboratories. Future studies should consider using female mice or males bred 

in-house and only housed with direct siblings to reduce fighting. If the mice can be kept alive 

throughout the experiment, it will be exciting to see further studies repeat these trials to properly 

determine whether rounds of injury and/or metaplasia increase tumor incidence and rate.  

 

5.4 Methods and Materials 

 

Animals and tumorigenesis 

All experiments involving animals were performed following protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specified in-and-out facility under a 12-hour light cycle. Wild type FVB/N mice were 

purchased from Jackson Laboratories (Bar Harbor, ME). Mice were kept on a low-fluorescence 

chow prior to in vivo fluorescence imaging to minimize autofluoresence throughout the GI tract. 

To induce tumorigenesis, mice were given N- methyl-N-nitrosourea (MNU, 240ppm, Toronto 

Research Chemicals) in their drinking water on alternating weeks for 10 total weeks. 

Tamoxifen (5 mg/20 g body weight; Toronto Research Chemicals) or vehicle (10% ethanol, 90% 

sunflower oil, Sigma) were injected intraperitoneally for two days.  
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Live near-infrared fluorescence imaging 

Mice were pre-imaged on a FMT Imager without probes injected to record the natural 

autofluorescence of the stomach region. Immediately following the pre-imaging, mice received 

ProSense 680 (2nmol/150µl, Perkin Elmer) via tail-vein injection. The following day, mice were 

injected with MMPSense 750 FAST probes (2nmol/100µl, Perkin Elmer) 6 hours before 

imaging.  

To image, mice were knocked out using isofluorane then their full abdomen was shaved smooth 

with an electric razor and Nair hair remover. Mice were imaged for the manufacturer-installed 

channels for Prosense 680 and MMPSense 750 Fast on a fluorescence molecular tomography 

(FMT4000, Perkin Elmer) system with a Region of Interest drawn around the stomach area of 

their upper left abdominal quadrant.  

 

PET/CT Scanning 

All PET/CT scanning and relevant injections were done by the Small Animal Cancer Imaging 

core at Washington University. Mice were fasted overnight prior to imaging, then injected with 

18-FDG. Kinetic imaging was taken for 1 hour after probe injection. Images were viewed using 

Inveon Research Workplace software 

 

Histology 

When possible, stomachs were harvested, flushed in PBS, opened along the greater curvature, 

then pinned out in fresh 10% formalin overnight at 4 °C. Images of full stomachs were taken 
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using a dissecting microscope (Olympus SZX7). Stomachs were then cut into thin strips and 

embedded in agar for normal processing and mounting onto glass slides. Polyp pathology was 

imaged after staining for hematoxylin and eosin following the standard protocol.
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Chapter 6: Nitric Oxide may act as a damage 

signal between dying parietal cells and the 

gastric epithelium 

6.1 Introduction 

The major physiological and morphological changes of SPEM are becoming better 

understood, yet work remains to characterize its molecular regulation, especially the mechanism 

by which it is initiated. SPEM consistently seems to occur in units with injured/dead parietal 

cells (PCs), suggesting that there are intercellular signals passed between PCs and the stem cells, 

neck cells, and chief cells which respond to their atrophy. Two possible mechanisms could 

explain how this signaling occurs. Healthy PCs may secrete signals that promote normal adult 

gastric differentiation and inhibit SPEM. In this idea, SPEM changes only begin after sufficient 

PC atrophy occurs such that there may be differentiation-promoting/SPEM-inhibiting products 

are lost from the PCs as they are killed. The other, not mutually exclusive, possibility is that 

injured/dying PCs may express an as-yet-uncharacterized damage signal which is received by the 

surrounding cells to actively induce SPEM (Mills and Shivdasani, 2011). To date, several 

paracrine-acting factors have been identified to originate from healthy PCs, supporting the first 

theory. Known PC-elaborated factors include amphiregulin, sonic hedgehog, VEGF-B, BMP4, 

and EGF family members (Goldenring et al., 1996; Mills et al., 2001; Nitsche et al., 2007; Nam 

et al., 2009; Huh et al., 2010; Xiao et al., 2010). To our knowledge, no one has published factors 

that PCs secrete specifically during injury that might affect neighboring epithelial cells.  
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Nitric oxide (NO) is a small, short-lived, soluble gaseous signaling molecule often used 

in intercellular and intracellular signaling. NO is a well-studied signaling molecule implicated in 

many systems throughout the body including neuronal, cardiovascular, renal, pulmonary, 

endocrine, and immune system signaling (Nathan, 1992). The mammalian body has three nitric 

oxide synthases (NOS): the constitutively expressed neuronal and endothelial synthases (nNOS 

and eNOS), which are activated by intracellular calcium and calmodulin, and the inducible nitric 

oxide synthase (iNOS), which is regulated at the transcriptional level by cytokines and other 

signals (Nathan, 1992) 

There is only one known protein receptor for NO in the cell: soluble guanylyl cyclase 

(sGC), which converts GTP to cGMP when activated by NO binding (Pyriochou and 

Papapetropoulos, 2005). NO remains bound to sGC with a half-life of around 2 minutes, which 

decreases to 5 seconds with MgGMP present, indicating that sGC can have quick and dynamic 

response times (Kharitonov et al., 1997). NO levels are also extremely dynamic. Physiological 

levels of NO can range over six orders of magnitude, from picomolar to micromolar levels 

(Hetrick and Schoenfisch, 2013). These levels can also change quickly due to NO’s low half-life 

(<10 seconds), and data shows that iNOS can inactivate within minutes (Palmer et al., 1987; 

Hetrick and Schoenfisch, 2013). Both of these characteristics make NO-sGC signaling extremely 

responsive to quick stimuli. 

 While sGC is the only known protein receptor for NO and it is considered the ‘classical’ 

signaling mechanism, NO can also have sGC independent effects within the cell (Martinez-Ruiz 

et al., 2011). NO has been shown to S-nitrosylate thiol-containing proteins, binding to cysteine 

residues (Stamler, 1994). NO is also able to form disulfide bridges and induce post-translational 
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modifications to various proteins (Burke et al., 2013). Several enzymes include cysteines at their 

active sites, so NO can have wide ranging effects outside of NO-sGC signaling.  

Preliminary data from our lab indicate that inducible nitric oxide synthase expression is 

observed in PCs following injury. NO produced in these dying cells could explain why SPEM 

only occurs locally in units with dying PCs. Thus, NO may be one of the key activating signals 

inducing SPEM. Here, we study whether NO signaling propagates the gastric damage response 

following PC injury and attempt to determine whether it acts through sGC in the process. 

6.2 Results 

Previous unpublished data from our lab indicated that inducible nitric oxide synthase 

(iNOS) expression is observed in PCs 6-12 hours post HD-TAM and in tissue from human 

gastric cancer patients following H pylori infection, though no expression is seen in homeostatic 

PCs (Khurana, S.S. Dissertation, 2014). To continue this project, I began by confirming iNOS 

expression in PCs following HD-TAM as well as in tissue from mice injected with DMP-777  

(gift of Dr James Goldenring, Vanderbilt University). While iNOS is seen in some PCs following 

damage, its expression is often light with only rare individual PCs expressing high iNOS (Figure 

6.1). This may be a result of experimental technique or it could be indicative of an extremely 

short and controlled expression time for iNOS within dying cells. Regardless, it makes 

quantifying iNOS+ PCs impractical.  
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Figure 6.1: iNOS expresses in individual PCs following injury.  

A) Immunofluorescence staining of parietal cells after 12h TAM (Blue: hoescht, green: VEGFb 

(PCs), red: iNOS). B) Immunohistochemical staining for iNOS following 6hr TAM. Grey 

arrowheads show PCs lightly expressing for iNOS. C) Immunofluorescence staining of parietal 

cells after 7 days of DMP-777, stained as in A.  

 

To test whether NO introduced to the full mouse body is sufficient to increase gastric 

proliferation, the NO donor S-nitroso-N-acetyl penicillamine (SNAP) was injected 

intraperitoneally into uninjured mice (Singh et al., 1996). When injected at 3mg/kg mouse 

weight for 3 days, SNAP caused significantly increased gastric proliferation, though it only 

effected a subset of mice (Figure 6.2A,B). Also, the proliferation increase was still confined to 

the isthmus of the gastric units, and no SPEM or other damage response signatures were seen. 

The biphasic proliferative response and lack of metaplasia may result from the method of 

introduction, as physiological NO is a short-lived and locally-acting signal. Therefore, a diffuse 
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injection of an NO donor having any effect on gastric proliferation was considered as a positive 

indication that local NO may have important effects.  

 

 
Figure 6.2: The NO donor SNAP has a limited effect on gastric proliferation.  

A) Quantification of proliferating cells per unit in mice injected with varying concentrations of 

SNAP for three days. B) Compiled proliferation data from all experiments where mice were 

injected with vehicle or 3mg/kg SNAP for 2 or 3 days. SNAP is seen to significantly increase 

proliferation, though the effect is mainly seen in a subset of the mice.  

 

We next wanted to see whether NO production via iNOS expression is necessary for the full 

damage response to occur. Aminoguanidine hemisulfate (AG) inhibits iNOS activity without 

affecting basal NO production from eNOS or nNOS (Corbett and McDaniel, 1996). If NO is 

active as PCs are injured yet still alive, we would expect the effect to be seen early in the damage 

response. Therefore, we injected AG before and alongside 24 hours HD-TAM and monitored 

proliferation. We saw no difference in BrdU+ cells per unit at 24h TAM with or without AG co-

injected (Figure 6.3) 
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Figure 6.3: Inhibition of iNOS activity has no significant effect on proliferation. 

 

Seeing that NO levels appear to effect gastric proliferation following SNAP injections, we 

wanted to test whether NO acted through its sole known protein receptor, sGC. Staining for sGC 

indicated expression in the cytoplasm of chief cells and, to a lesser extent, neck cells (Figure 

6.4A), consistent with the cellular populations shown to respond to PC injury. To test the 

necessity of sGC for the proper damage response, sGCflox/flox mice were purchased from Jackson 

Laboratories and bred to Mist1-CreERT mice. Interestingly, Mist1-CreERT; sGCflox/flox mice did 

not appear to lose sGC expression following low dose tamoxifen administration, and sGC-floxed 

mice showed no difference in their response to HD-TAM (Figure 6.4B,C). 
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Figure 6.4: sGC in chief and neck cells is unchanged following floxing.  

A) Immunofluorescence staining for sGC in a wild type stomach (blue: hoescht, red: sGC, 

yellow: GIF, green: GSII). sGC is seen to strongly overlap with GIF expression and is also 

expressed, to a lesser extent, in GSII+ neck cells. B) Immunofluorescence staining for sGC in 

control mice and in Mist1CreER;sGCflox/flox mice after a week of low-dose tamoxifen to induce 

the Cre recombinase. C) Quantification of proliferating cells per gastric unit show no change 

between control mice and mice with sGC floxed. 

 

 

All of the experiments done so far modulated NO levels or reception on a systemic level, but NO 

is known to be a highly localized signaling agent. To model more physiological NO expression 

from PCs, TetO-iNOS-lacZ mice (Mungrue et al., 2002) were crossed with a constitutively 

active PC-specific Cre driver line (ATP4b-Cre) and a ROSA26-LSL-rtTA.IRES.EGFP line, 

which will only express the rtTA “Tet-On” system in the presence of a Cre driver. These crosses 

should result in mice that express iNOS specifically in PCs, and only  following induction via 

doxycycline injection. They have the added benefit of driving LacZ reporter expression in any 



87 

 

cell that expresses iNOS. Unfortunately, the LacZ reporter was only seen in rare clumps of non-

PC cells following induction (Figure 6.5). Since NO was not being produced in PCs or 

efficiently across the stomachs, it was impossible to draw conclusions from these mice. 

 

Figure 6.5: Sporadic iNOS is driven from Tet-On iNOS overexpression mice. 

 LacZ coloration was developed in Tet-On iNOS mice, yet LacZ was only seen in rare units and 

in those it is expressed in the pit cell region. No parietal cell-specific expression was observed 

(not shown). 

 

6.3 Discussion 

 

NO expression is known to affect proliferation and other cellular processes in many 

physiological systems. Its solubility and short half-life, along with the highly controlled 

expression of iNOS allowing for dynamic NO concentration changes, make NO a prime 

candidate signal for how injured PCs might alert the rest of the gastric unit to damage and the 

need for increased proliferation. Experimental data support that NO may be active in such a role, 

as iNOS is seen in some PCs following injury and full-body NO increases raised gastric 

proliferation. Yet many complicating factors are seen for each experiment. While iNOS is seen 
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in some PCs following injury, it often stains extremely lightly, only staining as highly expressed 

in rare individual cells. SNAP shows a relatively weak effects compared to the full range of 

proliferation seen following injury, yet, it must be remembered that these blunt systemic drugs 

lack the intricate intra-glandular gradients that would be expected from a local signaler such as 

NO. Inhibiting iNOS activity via AG with D3 or 24h TAM had no noticeable effect on 

proliferation. Also, sGC expression was seen in chief cells and neck cells, two populations of 

cells known to proliferate following PC injury, however, sGC staining remained consistent even 

in sGC-floxed mice, so no conclusions could be drawn from these experiments. Likewise, our 

‘Tet-On’ system to drive iNOS expression specifically in PCs following doxycycline injection 

could not be verified, as the LacZ reporter that should be driven alongside iNOS expression only 

appeared in rare clusters of cells.  

 

Thus, while NO still holds promise as an agent used by injured cells to initiate proliferation of 

their surrounding cells, our available tools were insufficient to fully test whether this is the case 

in the stomach following PC injury.  

 

6.4 Methods and Materials 

 

Animals and Injections 

All experiments involving animals were performed following protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specified pathogen-free barrier facility under a 12-hour light cycle. Wild type C57BL/6 mice 

were purchased from Jackson Laboratories (Bar Harbor, ME). Littermate controls were housed 

together when possible. To induce SPEM, tamoxifen (5 mg/20 g body weight; Toronto Research 

https://www.sciencedirect.com/topics/medicine-and-dentistry/c57bl-6
https://www.sciencedirect.com/topics/medicine-and-dentistry/tamoxifen
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Chemicals, Inc, Toronto, Canada) was injected intraperitoneally daily for 3 days. Tamoxifen was 

dissolved in 10% ethanol and 90% sunflower oil (Sigma), following the procedure outlined in 

(Saenz et al., 2016). S-nitroso-N-acetyl penicillamine (SNAP, Sigma) was dissolved in 0.9% 

saline and normally injected three times daily with 3 mg /kg mouse mass. Aminoguanidine 

(Sigma) was also dissolved 0.9% saline and injected at 400mg/kg.  

 

Immunofluorescence 

Mice were given an intraperitoneal injection containing 5-bromo-2’-deoxyuridine (BrdU, 120 

mg/kg) and 5-fluoro-2’-deoxyuridine (12 mg/kg) in sterile water 90 min before sacrifice. 

Following sacrifice, stomachs were immediately excised and flushed with PBS, then pinned out 

and fixed in freshly prepared methacarn (60% methanol, 30% chloroform, 10% glacial acetic 

acid) for 20 minutes or fixed overnight in cold formalin (3.4% formaldeyde in phosphate 

buffered saline; Sigma Aldrich, MO). Tissues were arranged in 3% agar in a tissue cassette, 

underwent routine paraffin processing, and 5μm sections were cut and mounted on glass slides. 

Sections underwent a standard deparaffinization and rehydration protocol, were blocked in 1% 

BSA, 0.3% Triton-X100 in PBS, left with primary antibodies overnight, washed then and 

incubated for one hour with secondary antibodies, washed, washed, then mounted using ProLong 

Gold antifade reagent with DAPI (Invitrogen, CA). 

 

Primary Antibodies used in this study: rabbit anti-human gastric intrinsic factor (gift of Dr. 

David Alpers, Washington University), goat anti-Brdu (gift of Dr. Jeff Gordon, Washington 

University), goat anti-VEGFb (1:100, Santa Cruz), rabbit anti-iNOS (Abcam), rabbit anti-sGC 

(Sigma) or 1 g/ml fluorescently labeled GSII lectin (Alexafluor488, 594, Molecular Probes). 
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Secondary Antibodies included AlexaFluor (488, 594 or 647) conjugated donkey anti-goat, anti-

rabbit, or anti-mouse (Molecular Probes). 

 

Immunofluorescence quantification 

All timepoints were quantified with at least three mice, with representatives from both genders. 

Stomachs were fluorescently stained with bisbenzimide and either anti-BrdU or anti-VEGFb 

markers along with the neck cell marker GSII lectin and zymogenic cell marker anti-GIF. Images 

were captured as TIFF files from a Zeiss Axiovert 200 microscope with Axiocam MRM camera 

and with Apotome optical sectioning filter. Each stomach had at least 5 images taken containing 

10+ well-oriented gastric units each. Units were counted using the neck staining, and total 

quantifications of proliferating cells (BrdU+) or PCs (VEGFb+) were averaged over total unit 

numbers per mouse. 

 

Tet-On system 

TetO-iNOS-lacZ mice (Mungrue et al., 2002) were crossed with a constitutively active PC-

specific Cre driver line (ATP4b-Cre) and a ROSA26-LSL-rtTA.IRES.EGFP line. To activate the 

rtTA, mice were injected intraperitoneally with Doxycycline hyclate (10 mg/mL solution in 0.9% 

saline injected at 10uL/g mouse mass, Sigma) daily for three days.  

 

For LacZ staining, we followed a modified version of the protocol used in (Stange et al., 2013b). 

Freshly harvested stomachs were fixed in 4% PFA for 1 hour at 4 °C then washed in a solutions 

containing 100 mM sodium phosphate, 2 mM MgCl2, 0.1% sodium deoxycholate, and 0.02% 

Triton x-100. Stomachs were then stained overnight in a solution containing 1 mg/mL X-gal, 5 
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mM potassium ferricyanide, and 5mM potassium hexacyanoferrate. The following day, the 

stomachs were washed then post-fixed overnight in 4% PFA before being processed into blocks 

as usual.
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Chapter 7: Neck cells undergo many of the 

defined steps of Paligenosis when re-entering 

the cell cycle following injury 

7.1 Introduction 

Recent work from our lab has highlighted that long-lived, mature cells between organs follow a 

conserved pathway to revert to a regenerative state, which we have termed paligenosis (Willet et 

al., 2018b). The pathway was defined in gastric chief cells and pancreatic acinar cells, and 

corresponding data was shown in numerous other organs. As chief cells and acinar cells are both 

terminally differentiated secretory cells, in is unproven whether paligenosis occurs in less 

mature, non-secretory, or even intermediate cells. 

Neck cells are triangular cells found interspersed between parietal cells in the neck of the gastric 

unit. Classical papers using 3H-Thymidine pulse chase experiments indicate that neck cells are a 

short-lived intermediate population between the stem cell and the chief cell population at the 

base of the gastric unit with a turnover time of 9-16 days (Hattori and Fujita, 1976a; Karam and 

Leblond, 1993c). The idea that neck cells transdifferentiate into chief cells is further supported 

by the presence of transitional cells found between the neck and chief cell regions co-expressing 

neck and chief cell markers (Suzuki et al., 1983; Ramsey et al., 2007). Some have argued that 

neck cells should be regarded as an independent population since they appear to secrete 

protective proteins, and it would be unique throughout the GI tract to have a functional 

population mature into a separate functional population (Hanby et al., 1999), however, the 
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prevailing agreement in the field is that neck cells largely act as the bridge between stem cells 

and chief cells (Goldenring et al., 2011a). 

While the contribution of neck cells in tamoxifen-mediated spasmolytic polypeptide-expressing 

metaplasia (SPEM) has been largely overlooked due to the large changes undergone by the 

parietal cell and chief cell populations, our recent work with HKiDTR mice highlight that neck 

cells re-enter the cell cycle following parietal cell injury (Burclaff and Mills, 2018a). Neck cells 

are normally non-proliferative, with around 0.33 neck cells per unit taking up BrdU in a 90 min 

pulse (Burclaff et al., 2017), raising the question of how neck cells re-enter the cell cycle when 

the parietal cells are injured. Do neck cells follow the same paligenosis pathway as more mature 

secretory cells, or are they able to re-enter the cell cycle in a different manner due to their 

smaller size and simpler structure? Our lab’s tamoxifen (TAM) and targeted diphtheria toxin 

(DT models should allow us to test this. 

7.2 Results 

As recently published by our lab, mature cells need to undergo key regulatory changes to 

properly re-enter the cell cycle following injury (Willet et al., 2018b). Chief and acinar cells both 

have active Mtorc1 at homeostasis, as detected via phosphor-S6 immunostaining. This is quickly 

shut off following injury yet needs to return before the cells proliferate. Autophagy and 

lysosomal activity must also occur to reduce the levels of rough ER, secretory vesicles, and 

mitochondria in the complex secretory cells. Finally, metaplastic genes are seen to express in 

both cell types, including Sox9 and CD44v. All of these processes can be tested with specific 

attention paid to the neck cells following injury from TAM or targeted DT. 

We first tested whether metaplastic genes express in neck cells following injury.  Unlike chief 

and acinar cells, neck cells express high Sox9 at homeostasis, and this was not seen to change 
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following injury (Figure 7.1). However, other metaplastic genes such as CD44v and clusterin 

quickly express in neck cells following PC injury, as already shown in (Burclaff et al., 2017), 

consistent with the paligenosis pathway. 

 

Figure 7.1: Sox9 expression in healthy and injured stomachs.  

Immunofluorescence staining for Sox9 in healthy stomachs and stomachs of mice treated with 

DT or TAM for 3 days (red: GIF, green: GSII, white: SOX9). SOX9 expression in GSII+ appears 

consistent regardless of damage status.  

 

 

We next examined mTorc1 activity using immunofluorescence staining for its downstream target 

pS6. Unlike chief and acinar cells, neck cells are not normally pS6+, so the initial deactivating 

step could not occur. However, mTorc1 was seen to activate throughout the neck regions by 24h 

TAM or DT, indicating that neck cells use mTorc1 activity in their proliferative response to 

injury similar to chief cells (Figure 7.2A) Intriguingly, nearly all neck cells are pS6+ following 

DT even in units where the PCs have not yet died, raising questions about how they recognize 

that damage is occurring, but that is outside the scope of this project. To test whether this 

mTorc1 activity is necessary for neck cell proliferation, we treated mice with rapamycin before 
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and alongside TAM or DT. When cell type-specific proliferation was quantified at D3 TAM or 

DT following rapamycin treatment, neck cell-specific proliferation was significantly decreased 

for both (Figure 7.2B,C). This indicates that neck cells have an mTorc1-activation checkpoint 

before they can properly proliferate, consistent with the paligenosis pathway. 

 

Figure 7.2: Neck cells have dynamic mTorc1 activity following injury.  

A) Immunofluorescence for pS6 (green) in a healthy mouse stomach or 24h after injection with 

TAM or DT to HKiDTR mice. B,C) Quantification of proliferating cells by population following 

three daily injections of TAM or DT (Red = chief cells, yellow = SPEM cells, green = neck cells, 

blue = no differentiation markers expressed). 
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We next looked at autophagy and lysosomal activity in neck cells following injury. Neck cells 

would be expected to have less need for these processes, as they are already much smaller and 

less complex than chief cells, yet the question remains whether they necessitate any level of 

downscaling to successfully re-enter the cell cycle. Neck cells are closely latticed between 

parietal cells which are constitutively high for autophagy and lysosomy proteins, making 

analyzing neck cell autophagy by immunofluorescence difficult. We instead used transmission 

electron microscopy (tEM) to count autophagic events happening in individual neck and chief 

cells following TAM and DT. Autophagy is easy to identify in tEM images, determined as a 

double membrane surrounding contents separated from the rest of the cytoplasm (Figure 7.3A). 

A low level of autophagic events were seen in both cell types at homeostasis. These increased in 

both cell types 24h following TAM or DT, with a greater change seen in chief cells, as expected 

(Figure 7.3B). This indicates that increased autophagy does occur in neck cells following injury. 

To test whether this autophagy was necessary for proper re-entry into the cell cycle, we analyzed 

the proliferative response to TAM in lysosomal-defective Gnptab-/- mice. The main phenotype of 

these mice is gland dropout following TAM, yet to probe neck cell-specific effects we had to 

quantify proliferation in the remaining full units. With that selection bias, the total decrease in 

proliferation was less than expected, yet neck cell-specific proliferation was still significantly 

decreased (Figure 7.3C). To avoid the gland dropout, we tried inhibiting lysosomal function by 

injecting Lys05, which is published to de-acidify lysosomes with 10x the efficiency of 

hydroxychloroquine (McAfee et al., 2012). We injected Lys05 before and throughout TAM, and 

extremely varied phenotypes were seen, ranging from full proliferative SPEM to SPEM lacking 

proliferation to regions with no SPEM and very few proliferating cells (Figure 7.3D). Due to the 

variance, we did not quantify neck cell-specific proliferation, but the stomachs lacking SPEM or 
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proper proliferation reinforce the need for lysosomal activity for the proper regenerative response 

to occur across gastric cell types. So while we were ultimately unable to directly prove that neck 

cells need lysosomal activity to proliferate, data from several experiments indicate that they have 

increased autophagy and that neck cells with inhibited lysosomes proliferate less following 

injury, consistent with paligenosis in chief cells. 

 

Figure 7.3: Neck cells activate autophagy following injury.  
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A) Example transmission electron microcopy image of two chief cells 8h following TAM. Chief 

cells are outlined in red. Autophagic events are circled in yellow. B) Quantification of 

autophagic events per cell in neck cells and chief cells in healthy stomachs or stomachs 24h 

following TAM or DT injections. C) Quantification of proliferating cells by population 

following three daily injections of TAM either alone or with Lys05 injected one day prior and 

alongside the TAM (Red = chief cells, yellow = SPEM cells, green = neck cells, blue = no 

differentiation markers expressed). * denotes significance for the population indicated P < 0.05. 

D) Immunofluorescence images of stomachs following injections with Lys05 and TAM (red: 

GIF, green: GSII, white: BrdU). All mice were treated identically, yet phenotypes ranged from 

proliferative SPEM (left) to non-proliferative SPEM (middle) to no proliferation or SPEM 

(right). 

 

Unpublished data from our lab implicate another gene, Ifrd1, in the paligenotic response in chief 

and acinar cells, with Ifrd1-/-mice unable to properly proliferate following gastric or pancreatic 

injury (Mark Lewis, unpublished). We bred Ifrd1-/- mice with HKiDTR mice to test whether the 

knockout has any effect on neck cell proliferation. Across four knockout or control mice, 

proliferation was unchanged following DT treatment (Figure 7.4). 
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Figure 7.4: IFRD1 status has no effect on neck cell proliferation following injury.  

Quantification of proliferating cells per unit at D3 DT showed no difference in proliferative 

capacity between HKiDTR or HKiDTR;Ifrd1flox/flox mice.  
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7.3 Discussion 

Paligenosis presents a useful paradigm for studying how non-proliferative cells re-enter the cell 

cycle following injury. This may advance our knowledge of acute injury responses, chronic 

inflammatory or metaplastic conditions, and possibly even cancer initiation (Burclaff and Mills, 

2018b; Burclaff and Mills, 2018a). Our understanding of paligenosis is still nascent, and more 

phases and necessary proteins in the mechanism are currently being fleshed out by our group. 

However, as the mechanistic knowledge increases, it will also be important to say which cell 

types can and do undergo this important process. Will any non-proliferative cell that becomes 

regenerative following injury undergo the conserved changes? Will it depend on maturation 

state, cell age, or some cadre of genes being expressed by the cell at homeostasis? Here, we tried 

to answer some of these questions by looking at the regenerative response of gastric neck cells, 

which are smaller, shorter-lived, and less complex than chief cells. 

Neck cells were found to undergo very similar changes as chief cells following injury, though 

often to a lesser extent. While neck cells express novel genes such as CD44v and Clusterin 

before proliferating, Sox9, one of the main metaplastic genes used to describe paligenosis, is 

already expressed by neck cells, possibly indicating that they may naturally be in a more 

metaplastic or closer to a regenerative state. Likewise, mTorc1 activation is necessary for proper 

neck cell proliferation, yet there is no mTorc1 originally active in the cells, so neck cells undergo 

less initial changes than chief cells. Finally, autophagy appears to occur and be necessary for 

proper proliferation in neck cells, yet neck cells were seen to increase their autophagic events per 

cells by a much smaller amount than chief cells.  

While the three main changes defined in the introductory paligenosis paper may occur in neck 

cells, they lack other characteristics of the cell types shown to undergo paligenosis. For example, 
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they have no noticeable change in Sox9 and they do not need to lose mTorc1 activity in Phase 1. 

Ifrd1 depletion also has no effect following DT, while it decreases basal proliferation following 

TAM. As future work in our lab and others should continue to define further steps and proteins 

involved in paligenosis, each newly defined aspect should be tested in neck cells or other 

intermediate and non-secretory cells to help solidify which cell types can undergo the full 

response.  

7.4 Methods and Materials 

 

Animals and Injections 

All experiments involving animals were performed following protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specified pathogen-free barrier facility under a 12-hour light cycle. Wild type C57BL/6 mice 

were purchased from Jackson Laboratories (Bar Harbor, ME). Littermate controls were housed 

together when possible. HKiDTR mice were bred from ROSA26iDTR/iDTR mice purchased from 

Jackson Laboratories bred to ATP4b-Cre mice from our in house stock. Data for GNPTAB-/- 

mice were taken directly from counts done for previously published experiments (Willet et al., 

2018b). 

 

To ablate PCs, diphtheria toxin (225ng/mouse in 0.9% sodium chloride saline; Sigma) was 

injected intraperitoneally every day for up to 16 days. To induce SPEM, tamoxifen (5 mg/20 g 

body weight; Toronto Research Chemicals, Inc, Toronto, Canada) was injected intraperitoneally 

daily for 3 days. Tamoxifen was dissolved in 10% ethanol and 90% sunflower oil (Sigma), 

following the procedure outlined in (Saenz et al., 2016). mTorc1 activity was inhibited with daily 

https://www.sciencedirect.com/topics/medicine-and-dentistry/c57bl-6
https://www.sciencedirect.com/topics/medicine-and-dentistry/tamoxifen
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injections of rapamycin beginning one day before TAM or DT (Sigma). Rapamycin was 

prepared by dissolving 30mg/mL in 100% ethanol then suspended the ethanol solution 1:50 in 

0.25% Tween20, 0.25% PEG in 1xPBS, and 100µL/20g mouse mass was injected. Lysosomal 

activity was inhibited by injecting 40 or 60mg/kg mouse mass Lys06 daily beginning one day 

before TAM or DT (dissolved in PBS, Selleck Chemicals).  

 

 

Immunofluorescence 

Mice were given an intraperitoneal injection of 5-bromo-2’-deoxyuridine (BrdU, 120 mg/kg) and 

5-fluoro-2’-deoxyuridine (12 mg/kg) in sterile water 90 min before sacrifice. Following sacrifice, 

stomachs were immediately excised and flushed with PBS, then inflated and fixed overnight in 

cold formalin (3.4% formaldeyde in phosphate buffered saline; Sigma). Tissues were arranged in 

3% agar in a tissue cassette, underwent routine paraffin processing, and 5μm sections were cut 

and mounted on glass slides. Sections underwent a standard deparaffinization and rehydration 

protocol, were blocked in 1% BSA, 0.3% Triton-X100 in PBS, left with primary antibodies 

overnight, washed then and incubated for one hour with secondary antibodies, washed, washed, 

then mounted using ProLong Gold antifade reagent with DAPI (Invitrogen, CA). 

 

Primary Antibodies used in this study: rabbit or goat anti-gastric intrinsic factor (gift of Dr. 

David Alpers, Washington University), goat anti-Brdu (gift of Dr. Jeff Gordon, Washington 

University), rabbit anti-Sox9 (Millipore), goat anti-clusterin (Santa Cruz), mouse anti-CD44v 

(CosmoBio), rabbit anti-pS6 (Cell Signaling), goat anti-cathepsin D (Santa Cruz), and 1 g/ml 

fluorescently labeled GSII lectin (Alexafluor488, 594, Molecular Probes). Secondary Antibodies 
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included AlexaFluor (488, 594 or 647) conjugated donkey anti-goat, anti-mouse, or anti-rabbit 

(Molecular Probes). 

 

Tissue preparation and imaging for electron microscopy was done as previously described 

(Ramsey et al., 2007). 

 

Immunofluorescence quantification 

Proliferation counts were quantified from at least three mice for each condition. Stomachs were 

fluorescently stained with DAPI and anti-BrdU along with the neck cell marker GSII lectin and 

ZC marker anti-GIF. Images were captured as TIFF files from a Zeiss Axiovert 200 microscope 

with Axiocam MRM camera and with Apotome optical sectioning filter. Each stomach had at 

least 5 images taken and only well-oriented gastric units were counted. BrdU+ cell types were 

identified as ZC (red, GIF+/GSII-), transitional/SPEM cells (yellow, GIF+/GSII+), neck cells 

(green, GIF-/GSII+), or non-secretory cells (blue, GIF-/GSII-). Total counts were averaged over 

total unit numbers per mouse. 
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Chapter 8: Conclusions and Future 

Directions 

8.1 Overall summary 

Surprisingly little is known about the cellular populations of the stomach compared to other well-

studied organisms. Since the stomach field lacks genetic drivers to mark most cell types in the 

adult stomach, much of our knowledge of the lifespans and interactions of gastric cells comes 

from simple pulse-chase experiments using 3H-thymadine or by analyzing fixed tissues with 

immunostaining or in electron microscopy. This evidence has led the field to believe that all cells 

in the stomach arise from the isthmal stem cells, with neck cells transitioning to chief cells after 

around two weeks of migrating to the unit base, yet no direct proof of this has been shown.  

Gastric cancer is the third most deadly form of cancer worldwide (Ferlay et al., 2015), yet little is 

known about the earliest steps of tumor progression. Pelayo Correa, a trailblazer in modeling 

gastric carcinogenesis, described a pathway to gastric cancer beginning with irritants causing 

superficial gastritis followed by atrophic gastritis, or chronic loss of parietal cells and mature 

chief cells,  which then leads to intestinal metaplasia and eventually dysplasia and carcinoma 

(Correa, 1988). Thus, atrophic gastritis is an important step that should be well understood for 

the prevention and early treatment of gastric tumorigenesis. In the decades following Pelayo’s 

work, the pathological condition of atrophic gastritis has been histologically described as 

Spasmolytic Polypeptide-Expressing Metaplasia (Schmidt et al., 1999), and it has become 

understood that the loss of mature chief cells is likely a result of their dedifferentiation into the 

metaplastic cells themselves (Nam et al., 2010). Furthermore, atrophic gastritis/SPEM has been 

shown to increase risk of cancer in patients (Kakinoki et al., 2009). Yet with these advances in 
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our understanding of the significance of SPEM, little is known about how it is initiated. Many 

papers have postulated that the loss of parietal cells causes the metaplastic changes to occur, as 

parietal cells are lost before all physiological forms of SPEM, but this has never been specifically 

tested. In the present work, we undertook multiple strategies to investigate what causes chief 

cells to dedifferentiate following injury, determine lifespan and fate dynamics for neck cells and 

chief cells at homeostasis and following injury, and test mechanisms involved in the re-entry of 

chief and neck cells to the cell cycle following injury. 

In Chapter 2, we set out to identify signals from dying parietal cells which initiate the 

metaplastic response by developing a new model for selectively ablating parietal cells through 

apoptosis using an inducible diphtheria toxin receptor. As parietal cell death has long been linked 

to the chief cell changes, we expected this model to cause the normal SPEM response, similar to 

our high dose tamoxifen model, but in a more defined system allowing for easier analysis of 

damage signals. Instead, we found that targeted apoptosis of parietal cells caused increased 

proliferation through the neck of the gastric unit, but no proliferation or metaplasia in the chief 

cells (Burclaff et al., 2017). We further show that metaplasia can still be initiated when parietal 

cells are killed via DT and then the mice are co-injected with TAM or DMP-777. This work 

presents interesting hints about the dynamics of the gastric epithelial populations, as chief cells 

and parietal cells no longer appear as interconnected in their fates as previously believed. It also 

suggests that neck cells and chief cells may be more independent than previously understood, as 

necks can be called to proliferate following injury despite the absence of a chief cell response 

During my time in lab, papers were published questioning the veracity and specificity of the 

Mist1 promotor to track chief cell fate (Hayakawa et al., 2015; Kinoshita et al., 2018b). As Mist1 

lineage tracing accounts for the bulk of the published data proving that chief cells give rise to 
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SPEM cells (Nam et al., 2010), we developed a novel BrdU pulse-chase strategy to track the fate 

of long-lived cells in the stomach, as discussed in Chapter 3. Normal continuous pulsing with 

Brdu marks >10% of chief cells even after 8 weeks, so we pulsed BrdU throughout three days of 

TAM injections, allowing us to mark nearly all epithelial cells once the stomachs recovered from 

the TAM injury. BrdU is quickly diluted from proliferative populations, allowing us to track 

long-lived label-retaining cells over months of chasing. The results were surprising, with two 

thirds of chief cells retaining label even at 9 months chase, showing that they do not die and get 

replaced from neck cells in their published life-span of half a year. This indicates that the chief 

cell population is either extremely long-lived or that it maintains itself through rare duplication 

events. We tested whether all necks give rise to chief cells, as Karam also indicated (Karam and 

Leblond, 1993c), by pulsing BrdU into the necks for two weeks without injury, then chasing to 

see whether the label-retaining neck cells transitioned into chief cells. By 4 and 8 weeks of 

chase, neck cell labeling drastically decreased while chief cell staining stayed largely consistent, 

indicating that the majority of neck cells must have some ultimate fate other than becoming a 

chief cell and strengthening the idea that the chief cells are a self-maintaining population. We 

next tracked label-retaining chief cells upon injury with TAM or Helicobacter pylori, and the 

label-retention in chronic and acute metaplastic cells indicate that SPEM arises from chief cells 

in both insults. Finally, we tracked label retaining SPEM through recovery and found that these 

cells can redifferentiate into chief cells, supporting the Cyclical Hit Model, which posits that 

tumors can arise from long-lived non-stem cells which can cycle between dedifferentiating and 

redifferentiating in rounds of injury, accumulating and storing mutations along the way until one 

traps it in a proliferative, neoplastic state. 
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We further tested the independence of gastric chief cells by testing whether they can develop in 

the absence of mature parietal cells. Many papers have shown that chief cells do not develop 

correctly when parietal cells are ablated via Atp4b-Cre-driven viruses or toxins, yet these 

systems add high amounts of the expressed toxic substance to the gastric unit, and most wait 

until adulthood to test whether the chief cells are present. Our HKiDTR mice allowed us to test 

whether chief cells depend on parietal cells in much quicker and less toxic experiments. We 

injected with TAM for three days then DT for two weeks and showed that the metaplastic bases 

could redifferentiate into chief cells even with parietal cells continuously ablated. To test 

whether chief cells could develop in pups with no parietal cells present, we injected HKiDTR 

mice with DT from P5-P21, yet we again found that chief cells could develop normally with no 

parietal cells present. Further work will need to be done to ascertain why our model behaves 

differently than previous models. Possible explanations include that a lower level of toxin is 

introduced, that pre-parietal cells present already at P5 may be sufficient to provide necessary 

signals, or that ablating parietal cells for more than a couple weeks allows for outside pathogens 

to infect the stomach, causing a secondary metaplastic effect. Regardless, our experiments 

indicate for the first time that chief cells do not rely on parietal cells to develop or to maintain 

their maturation state.  

Overall, the work in this dissertation has questioned multiple long-held notions in gastric 

epithelial cell dynamics. The new HKiDTR mice allow us to show that parietal cell loss is not 

sufficient to cause chief cell dedifferentiation, and that parietal cells are not even necessary for 

chief cells to recover from injury or develop in young pups. Our novel strategy for pulse-chasing 

BrdU throughout TAM injury also indicates that the relationship between neck cells and chief 

cells needs to be examined further, neck cells do not appear to become chief cells. The BrdU 
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evidence supports a model wherein chief cells in the adult stomach are a wholly self-maintaining 

population, both at homeostasis and following acute or chronic injury. These experiments may 

lay the groundwork for an entirely new understanding of the stomach, with the cell fates less 

interconnected than previously believed, and the possibility that not every cell type is actually 

replenished from a multipotent isthmal stem cell.  

8.2 Future directions 

1. Do cellular dedifferentiation, inflammation, and metaplasia increase cancer risk? 

As discussed in Chapter 5, the carcinogen N- methyl-N-nitrosourea (MNU) can be used to drive 

tumorigenesis within the mouse stomach (Yamamoto et al., 2002). Tumor formation appears to 

be increased with rounds of metaplasia and inflammation caused by HD-TAM in pilot 

experiments, yet more work needs to be done to show this with statistical significance. The 

model has already been expanded to help with other projects in the lab. We have a paper under 

review investigating Ddit4, a gene we found to be necessary for cells to properly respond to 

tamoxifen-induced damage. A key figure in this paper is subjecting Ddit4 knockout mice to the 

MNU system, and we found that the knockout mice formed more and larger tumors than wild 

type mice (Miao, et al. Under review). We have multiple other projects being run looking at 

further genes involved in the stomach’s response to injury, and MNU-tumorigenesis experiments 

will help advance the significance of these as well. 

We believe that the dedifferentiation of long-lived chief cells elicited by HD-TAM allows for 

increased accumulation and retention of tumor-causing mutations, as illustrated in the Cyclical 

Hit Model in Chapter 1 (Burclaff and Mills, 2018b; Burclaff and Mills, 2018a). We now have the 

tools to test this theory in our lab.  HD-TAM causes increased proliferation from the gastric 

stem/progenitor cells, neck cells, and chief cells, while injections of diphtheria toxin (DT) to 
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HKiDTR mice increases proliferation in the isthmus and through the neck, but no metaplastic or 

proliferative effects are seen in the long-lived chief cells (Burclaff et al., 2017). Using these 

models side-by-side within an MNU timecourse will allow us to track whether cycles of chief 

cell dedifferentiation and redifferentiation increases tumorigenesis over rounds of injury and 

increased stem//progenitor cell proliferation alone.  

We prepared for testing this theory by engineering a mouse line with the human diphtheria toxin 

receptor (DTR) gene driven directly by the ATP4b (HK) promotor (HKDTR) instead of relying 

on a promotor-cre allele and an inducible LSL-DTR allele (HKiDTR). We made this transgenic 

mouse in the FVB/N mouse background, since previous literature indicates that mouse strain has 

a large effect on sensitivity to MNU, and FVB mice were shown to have high tumor formation 

with a low mortality rate over the MNU timecourse (Yamamoto et al., 2002).  

We prepared DNA for transgenic induction by synthesizing each gene portion separately 

(Genescript) then ligating them together within a pGIT3G plasmid (gift of Dr Blair Madison, 

Washington University). The construct included two copies of the cHSIV promotor in tandem 

followed by the nucleotides -1035 to +25 of the mouse Atp4b gene, the portion often used to 

drive parietal cell-specific gene expression (Zhao et al., 2010). A Kozak sequence 

(gcc)GCCACCATGG immediately followed the promotor, then the DTR gene itself followed 

(genbank #M93012 bp 56-682 (626 bp) from mRNA). To finish the construct, we added a gG-

IVS2 intron and the SV40 late PolA sequence. The full construct is modeled in Figure 8.1 
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Figure 8.1: Transgenic construct for HKDTR mouse engineering.  

A pGIT3G-ATP4b-intron-DTR plasmid was constructed by combining individual gene segments 

for insulators, the Atp4b promotor, the human diphtheria toxin receptor, an intron, and an SV40 

polyA site. 

 

We digested the full construct with SfiI, removing the 2.2kb backbone from the 7.3kb vector, 

separated the DNA bands with a long electrophoresis run, then extracted using a GeneJET Gel 

Extraction Kit (Thermo Fisher). Purified DNA was sent to the Washington University Mouse 

Genetics Core to be injected into the pronuclei of fertilized FVB/N oocytes. We received 16 

founders from the core, as genotyped using DTR primers (DTR For: 

CTGGACCTTTTGAGAGTCACTTTATCCTCC, DTR Rev: 
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CTCTCCTATGGTACCTAAACATGAGAAGCC). Founders were paired with wild type 

FVB/N mice (Jackson Laboratories) to breed. 

We next tested whether P1 progeny from each founder line developed a healthy stomach and 

properly caused PC ablation upon DT injection. Lines found to cause irregular development of 

the stomach were discontinued (Figure 8.2A), leaving only founder lines which developed and 

responded to DT properly (Figure 8.2B-D) 

 

Figure 8.2: Checking for proper HKDTR mouse development.  

A) Some HKDTR founder lines failed to develop correctly, forming few and small parietal cells 

and some corpus units appearing more antral-like. B) HKDTR lines with proper corpus gastric 

unit development were selected for. C) HKDTR lines show good parietal cell loss upon DT 

injection. D) HKDTR mice with D3 DT show proliferation through the neck but not in the base, 

consisted with previously reported HKiDTR phenotypes. 
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Future work will breed large numbers of mice expressing the HKDTR allele and run MNU 

carcinogenesis trials similar to those detailed in Chapter 5. All trials will use the 10 week 

protocol for administering 240ppm MNU in drinking water every other week. Trials will test the 

effect of rounds of DT, TAM, or VEH (2 days injected every three weeks) either during or 

following the 10 weeks of MNU. PET/CT scanning and stomach histology will be used to test 

time to tumorigenesis emphasizing tumor number, size, and position. We hypothesize that 

MNU+TAM mice should develop more gastric corpus tumors quicker than MNU+DT, with both 

developing significantly more than MNU+VEH treated mice.   

 

2. Do dying parietal cell secrete metaplasia-inducing signals? 

While HKiDTR mice efficiently kill parietal cells upon DT injection without initiating SPEM, 

they do not prove that dying parietal cells cannot secrete signals sufficient to drive chief cell 

dedifferentiation. DT is known to kill its targeted cells purely through apoptosis, while agents 

such as TAM and DMP-777 are believed to kill some cells through necrosis or other more 

immunogenic methods. These differences in death mechanism may account for differences seen 

in the chief cell response to DT vs TAM. To test this, Atp4b-Cre;iDTR;mTmG mice can be used 

to FACS sort parietal cells away from other gastric populations, as in (Willet et al., 2018b). 

Parietal cell can be cultured ex vivo for multiple days, as described in (Gliddon et al., 2008). 

This protocol was successfully completed in previous work in our lab, but a yeast infection 

prevented useful data from being obtained (data not shown). When parietal cells are cultured at 

high concentrations, TAM, DT, DMP-777, or VEH will be added to kill the parietal cell in each 

drug-dependent way. Media from each well will then be collected and gavaged into the stomachs 
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of untreated mice. Mice gavaged with media from DT or vehicle treated parietal cells would be 

expected not to have any gastric effects, while those from TAM or DMP-777 may experience 

chief cell dedifferentiation if dying parietal cells secrete metaplasia-inducing signals.  

If metaplasia is found to occur following gavage with media from DMP-777 or TAM-treated 

parietal cells, each media can be probed using ELISA for levels of candidate proteins such as 

known cytokines and interleukins. Mass spectrometry can also be used to discover new candidate 

proteins in an unbiased manner. Newly implicated proteins can be studied further in vivo, with 

simple experiments tracking their expression at homeostasis or in injury, testing their necessity 

for SPEM through knock-out experiments from the Atp4b-Cre promotor, and testing whether 

they are sufficient to induce SPEM through knock-in experiments, possibly using the Mist1-

CreERT2 promotor to inducibly express them directly to the base of the gastric unit.  

 

Closing Remarks 

The experiments proposed above will complement the other work completed in this dissertation 

to significantly advance our knowledge of plasticity and gastric cell dynamics. As shown in 

Chapter 3, it is becoming increasingly clear that mature cells can undergo multiple rounds of 

dedifferentiation and redifferentiation, a trait that will likely be conserved in other tissues such as 

the pancreas as well. This experimental data shows that the rounds of plasticity needed for the 

Cyclical Hit Model of Tumorigenesis (Mills and Sansom, 2015; Burclaff and Mills, 2018b; 

Burclaff and Mills, 2018a; Saenz and Mills, 2018a) to be feasible can occur in vivo. I test that 

the rounds of plasticity can occur in vivo in Chapter 3, so undertaking the MNU + TAM or DT 

timelines proposed ere will finally directly test whether the chief cell plasticity increases tumor 
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formation over increased proliferation alone. This will be important information for the stomach 

as well as every other organ with long-lived cells shown to have the ability to re-enter the cell 

cycle. 

The second experiment proposed above will show whether chief cells are completely 

independent of parietal cells. Chapters 2 and 4 show that the presence of parietal cells is not 

necessary for chief cells to maintain their mature state, re-differentiate following injury, or 

develop in young pups. A recent publication even shows that SPEM can occur before parietal 

cells are lost (Busada et al., 2019). The future work outlined above will allow us to demonstrate 

whether signals from parietal cells dying through necrosis or other non-apoptotic forms of death 

are sufficient for triggering chief cell dedifferentiation and the full regenerative SPEM response.   

This will inform the field whether our long-held belief that the fates of chief cells and parietal 

cells are closely intertwined is valid or if both populations maintain themselves independently of 

the other and just happen to respond to similar injury stimuli on similar timescales. 

 



114 

 

Appendix 1: Modeling murine gastric 

metaplasia through tamoxifen-induced acute 

parietal cell loss 
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A1.1 Summary 

Parietal cell loss represents the initial step in the sequential progression toward gastric 

adenocarcinoma. In the setting of chronic inflammation, the expansion of the mucosal response 

to parietal cell loss characterizes a crucial transition en route to gastric dysplasia. Here, we detail 

methods for using the selective estrogen receptor modulator tamoxifen as a novel tool to rapidly 

and reversibly induce parietal cell loss in mice in order to study the mechanisms that underlie 

these pre-neoplastic events. 

A1.2 Introduction 

Gastric adenocarcinoma remains one of the leading causes of cancer-related deaths 

worldwide (1). The sequence of events leading to the development of gastric dysplasia and 

neoplasia begins with the loss of acid-secreting parietal cells, a process known as oxyntic 

atrophy, followed by the expansion of pre-neoplastic changes in the setting of chronic 

inflammation (2). The early mucosal response to oxyntic atrophy includes reorganization of the 

gastric unit, characterized initially by an increased proliferation of gastric progenitor cells and 

the reprogramming of post-mitotic chief cells at the base of the gastric gland into a proliferating 

population of metaplastic cells (3). Overall, the pattern of gastric unit reorganization that 

characterizes the response to oxyntic atrophy is known as spasmolytic polypeptide-expressing 

metaplasia (SPEM), as the metaplastic chief cells express spasmolytic polypeptide (also known 

as trefoil factor family 2; TFF2). SPEM can either be a transient alteration in the gastric 

landscape, followed by repair and restoration of normal architecture, or it can represent a crucial 

pre-neoplastic event en route to gastric dysplasia in the setting of chronic inflammation. The 

study of the mechanisms underlying the development and evolution of SPEM has been 

accelerated by recently developed tools (4-6) that rapidly induce SPEM in animal models of 
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gastric dysplasia. Here, we describe the discovery and use of the selective estrogen receptor 

modulator, tamoxifen, as a model for studying SPEM.  

In addition to its widespread therapeutic use as hormonal therapy, tamoxifen has recently 

found a role in conditional gene targeting in the mouse (7). Notably, the development of a 

ligand-dependent Cre-ER recombinase, in which the Cre enzyme is fused to a mutated hormone-

binding domain of the estrogen receptor, has allowed for the use of tamoxifen to modulate gene 

expression in a spatiotemporal fashion (8). As a result, tamoxifen now serves as a tool for 

regulating tissue-specific Cre activity.  

However, the use of tamoxifen for induction of the Cre-ER recombinase led to a 

serendipitous discovery in the mouse stomach that has broadened its role beyond the Cre-ER 

system and implicated tamoxifen as a unique agent for studying the early events following 

oxyntic atrophy (9, 10). Serial intra-peritoneal injections of various strains of wild-type mice 

with tamoxifen induced apoptosis in the vast majority of parietal cells, metaplastic changes in the 

chief cells at the bases of the gastric glands, and an increased proliferation of gastric progenitor 

cells, changes characteristic of and consistent with SPEM. This effect is reproducible (11), 

estrogen-independent, and reversible, with a normalization of gastric histology within weeks of 

tamoxifen discontinuation (10). The tamoxifen administration protocol described below therefore 

offers a unique method for reproducing oxyntic atrophy and dissecting early pre-neoplastic 

events leading to gastric dysplasia.   

A1.3 Materials 

Preparation of tamoxifen stock 

1. Tamoxifen (see Note 1). 
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2. Sterile sunflower seed oil (see Note 2). 

3. Ethanol (200 proof). 

4. Sonic dismembrator with microtip (2 mm). 

5. Eppendorf tubes (1.5 mL). 

6. Benchtop vortex machine. 

7. Pipettor. 

8. Protective headphones. 

 

Mouse injection 

1. Insulin syringe with needle (0.5 mL, 27 gauge x 0.5 inch). 

2. Balance. 

3. Alcohol wipes. 

A1.4 Methods 

Carry out all procedures at room temperature unless otherwise specified. 

The following protocol corresponds to a tamoxifen solution dissolved in 10% ethanol and 90% 

sunflower seed oil (see Note 3). 

Preparation of tamoxifen stock 

1. Weigh mice (see Note 4). 
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2. Weigh out 25 mg of dry tamoxifen and place it in a 1.5 mL Eppendorf tube (see Note 5). 

3. Slowly add 100 µL of 100% ethanol, trying to keep the tamoxifen at the bottom of the 

tube. Do not shake, mix, or pipet. 

4. Measure 900 µL of sterile sunflower seed oil in a separate 1.5 mL Eppendorf tube.    

5. Sonicate the tamoxifen/ethanol mixture in the Eppendorf tube at 40% amplitude in 20-

second pulses until the tamoxifen is completely dissolved (see Note 6).  

6. Immediately combine the tamoxifen/ethanol mixture with the sunflower seed oil. Cap and 

vortex the solution to ensure adequate mixing (see Note 7).  

7. The tamoxifen mixture can be stored at 4ºC for up to three days or at -20ºC indefinitely 

(see Note 8). Allow the mixture to warm to room temperature prior to injection.  

 

Tamoxifen treatment 

1. Using the insulin syringe needle, measure out the appropriate amount of the tamoxifen 

mixture so as to inject 5 mg tamoxifen for every 20 g mouse body weight (see Note 9). 

2. Sanitize the injection site by wiping the mouse abdomen with an alcohol wipe. Intra-

peritoneally inject the vehicle (10% ethanol/90% sunflower seed oil) or tamoxifen mixture (see 

Note 10).  

3. Repeat the injection for three consecutive days using the same tamoxifen stock, stored at 

4ºC. 
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4. Mouse stomachs can be harvested at any time following the first injection or thereafter, 

and tissue can be processed accordingly (see Note 11, Figures A1.1 and A1.2). 

 

Figure A1.1: Tamoxifen treatment results in acute parietal cell loss.  

Representative hematoxylin and eosin stain of gastric corpus from wild-type C57BL/6 mice 

after intra-peritoneal injection with 3 days of either vehicle (a; Control) or 5 mg/20 g body 

weight tamoxifen (b; HD-TAM). Note the relative decrease in parietal cells (black arrowhead) 

compared to the vehicle-treated mouse. An apoptotic body (yellow arrowhead) adjacent to a 

dying parietal cell is highlighted (inset) 
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Figure A1.2 Tamoxifen treatment causes acute parietal cell loss and alters the GSII 

expression pattern in gastric units. 

 (a) Representative immunostain of the gastric corpus of a mouse intra-peritoneally injected 

with vehicle alone (Control) for 3 days demonstrates normal-appearing gastric units, 

highlighted by abundant parietal cells (stained with H+/K+ ATPase; green) and neck cells 
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(stained with GSII; red). Nuclei are stained with Hoescht (blue), and representative gastric 

units are highlighted by dashed lines. (b) A representative immunostain of the gastric corpus 

from a mouse intra-peritoneally injected with 5 mg/20 g body weight tamoxifen for 3 days 

(HD-TAM) shows an acute loss of parietal cells, as demonstrated by the relative paucity of 

VEGFb-staining cells (green). Fragments of parietal cells are highlighted by the white 

arrowheads. In addition, note the shift in GSII expression (red) toward the bases of glands in 

tamoxifen-treated mice compared to the vehicle-treated controls. Nuclei are stained with 

Hoescht (blue), and representative gastric units are highlighted by dashed lines 

 

A1.5 Notes 

1. The source of tamoxifen has no appreciable effect on the ability to induce parietal cell 

loss. Tamoxifen stocks from three separate commercial suppliers, Sigma (St. Louis, MO), 

Cayman Chemical Company (Ann Arbor, MI), and Toronto Research Company (Toronto, 

Canada), have demonstrated similar efficacy (10). In addition, parietal cell toxicity is specific to 

tamoxifen and not a general toxic effect of selective estrogen receptor modulators, as treatment 

with raloxifene, a member of the estrogen receptor modulator family with pro- and anti-

estrogenic effects, had no appreciable toxicity at a comparable dose (10). 

2. To sterilize the sunflower seed oil, heat an appropriate amount in an Erlenmeyer flask on 

a hot plate to 85-90°C for 15-20 minutes. Do not boil. Allow the flask to cool and store 40-mL 

aliquots at room temperature. Alternatively, the sunflower seed oil can be autoclaved prior to 

use. 

3. The free base form of tamoxifen and one of its commonly used active metabolites, 4-

hydroxytamoxifen (see Note 12), are largely insoluble in water. The original formulation for 

intra-peritoneal injection was found to be soluble in 60% ethanol (12), and its solubility has since 

been optimized in a sunflower seed oil/ethanol mixture (see Note 13). Tamoxifen citrate, an oral 

formulation that has been developed for administering tamoxifen to mice via chow (13; see Note 
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10), is soluble in water at 0.3 mg/L at 20°C. Tamoxifen free base powder should be stored at -

20°C in the dark.  

4. Our experience has shown that three different wild-type mouse strains (C57BL/6, 

BALB/c, and FVB/N; all purchased from the Jackson Laboratory) have similar gastric mucosal 

responses to tamoxifen treatment (10). In our limited experience with the strain, BALB/c mice 

are particularly sensitive to tamoxifen treatment, with mice commonly dying of unknown causes 

during treatment. Mice are typically used at 6-8 weeks of age, but SPEM is effectively induced 

in mice as old as 6 months of age. The effects on older mice are less obvious, potentially due to 

increased body fat causing changes in tamoxifen metabolism and distribution.  

5. An injection dose of 5 mg/20 g mouse weight over 3 days results in a dramatic 

phenotype, with >90% loss of parietal cells, a significant increase in gastric progenitor cells, and 

morphologic changes in the chief cells at the bases of glands in the gastric corpus, histologic 

changes consistent with the induction of SPEM (10, Figures A1.1B and A1.2B). However, we 

have previously shown that tamoxifen injections at lower doses (≤1 mg/20 g body weight) can be 

used for efficient, inducible Cre-mediated recombination in the context of the Cre-ERT/loxP 

system, without the development of SPEM (9). It is thus possible to obtain specific 

recombination of floxed alleles in tamoxifen-inducible Cre lines in a dose-dependent manner 

while avoiding the stomach-altering effects seen at higher tamoxifen doses. Interestingly, though 

this has not been formally tested, SPEM induction by tamoxifen seems to have an all-or-none 

response, where no detectable damage can be seen at ≤ 1 mg/20 g mouse body weight, but ≥ 3 

mg/20 g mouse body weight causes near complete SPEM, without an intermediate phenotype. 

6. Make sure to wear protective headphones when using the sonicator. 
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7. Vortex the solution for at least 20 seconds. Allow the solution to sit at room temperature 

for several minutes. Proper mixing is crucial, and the mixture should be homogeneous. If it looks 

cloudy or layered, discard the mixture and start over. 

8. No appreciable decline in the ability of tamoxifen to induce SPEM has been seen for 

tamoxifen mixtures stored at 4°C over the duration of injections. Similarly, the tamoxifen stock 

can be stored at -20° until further use. Our lab, however, makes a fresh tamoxifen stock prior to 

each treatment regimen and uses this stock for the duration of the treatment. 

9. Given the viscosity of the tamoxifen mixture, aspiration into the syringe can take 10-15 

seconds. 

10. Various tamoxifen formulations and numerous modes of tamoxifen administration have 

been reported. We focus here on intra-peritoneal administration, which we use most commonly, 

though we also observe SPEM induction with oral gavage. It is worth noting that other methods, 

in addition to oral gavage (14), for inducing Cre recombinase activity via tamoxifen have been 

used, including via drinking water (15), chow (13, 16), and subcutaneous implantation (17).  In 

that respect, we can only attest that oral gavage and intra-peritoneal administration of tamoxifen 

cause SPEM and have not tested the effects of other modes of tamoxifen administration. 

11. The effects of tamoxifen on the mouse stomach can be seen within 12-24 hours of the 

first intra-peritoneal injection (10). Our laboratory nomenclature designates the first day of 

tamoxifen injection as day 0 (D0), with the last day of injection corresponding to day 2 (D2). A 

recent report found that a single intra-peritoneal injection at 4 mg/25 g mouse body weight 

induced a 57% loss of parietal cells in the gastric corpus (11). In our experience, the peak effect 

(i.e., maximal parietal cell loss, see Figures A1.1B and A1.2B) is seen at one day following the 
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third tamoxifen injection (D3). We have also achieved ≥90% loss of parietal cells at D3 even 

after a single injection of tamoxifen at 5 mg/20 g mouse body weight. The single-injection 

protocol, however, shows more variability between mice than the 3-day injection protocol. A 

recovery of the gastric epithelium and a return to normal histology are seen within 14-21 days 

(10). Like previously described pharmacologic induction of SPEM (see Note 14), the effects of 

tamoxifen on the mouse stomach are transient. Many studies using tamoxifen-inducible Cre lines 

wait at least 2 weeks prior to assessing recombination, by which point parietal cells have largely 

recovered. This may explain how tamoxifen-induced parietal cell loss is often missed by 

investigators using tamoxifen to induce gene recombination in the stomach. 

12. Tamoxifen is a prodrug that is hepatically metabolized to produce two predominant 

active metabolites, 4-hydroxytamoxifen and N-desmethyl-4-hydroxytamoxifen (18). Multiple 

studies have used 4-hydroxytamoxifen for induction of the Cre-ERT2 system. It is worth noting 

that 4-hydroxytamoxifen has shown higher affinity for the estrogen receptor than tamoxifen in 

vitro (19) and a greater inhibitory effect on proliferation of normal human breast cells as well as 

breast cancer cell lines in culture (20-22). Differential effects between tamoxifen and 4-

hydroxytamoxifen have also been reported in apoptosis of human mammary epithelial cells (23) 

and uterine gene expression in rats (24). In our limited experience, intra-peritoneally 

administered 4-hydroxytamoxifen, at commonly used doses for Cre recombinase induction, 

induces less SPEM in mice compared to similar doses of tamoxifen. 

13. It has been speculated that the observed effects of intra-peritoneal tamoxifen 

administration could be unrelated to the tamoxifen itself and rather an effect of the ethanol 

solvent on parietal cells. Though the effect of ethanol on parietal cell membranes and H+/K+ 

ATPase function has been reported (25), our experience has shown that intra-peritoneal injection 
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of mice with ethanol does not induce substantial parietal cell loss. On the other hand, excluding 

ethanol as a solvent results in poor solubility of tamoxifen. Oral gavage or intra-peritoneal 

injection of the resulting suspension, rather than solution, might cause suboptimal absorption and 

less substantial and/or consistent SPEM induction. Differences in solubilization methods may 

also explain why some investigators using tamoxifen for Cre recombinase induction may not 

have observed SPEM in their control mice. 

14. Previous methods for inducing oxyntic atrophy and SPEM have been described, varying 

in their mechanism of action, onset of effect, and degree of inflammation (see Table 1). Chronic 

infection of mice with Helicobacter felis (26) or of Mongolian gerbils with Helicobacter pylori 

(27) results in the emergence of SPEM within months of infection. In contrast to these chronic 

infectious models, pharmacologic induction of SPEM has provided a more rapid and reversible 

means for achieving the same result. The neutrophil elastase inhibitor DMP-777 has been shown 

to cause a rapid loss of parietal cells in rats and mice within 3-4 days of daily dosing (4, 5). 

Treatment with this parietal cell-specific apical membrane protonophore leads to the emergence 

of SPEM within 7-10 days, in the absence of inflammation. Like tamoxifen (10), the effects on 

parietal cell loss can be mitigated by pretreatment with omeprazole. More recently, a related 

variant of DMP-777, known as L-635, was found to produce a more rapid onset of SPEM in 

mice within 3 days of treatment (6). The mechanism of action of L-635 is similar to that of 

DMP-777, though, unlike DMP-777, the onset of SPEM is accompanied by an exuberant 

inflammatory response.     
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A2.1 Abstract 

Cre/loxP technology has been widely used to study cell type-specific functions of genes. 

Proper interpretation of such data critically depends on a clear understanding of the tissue 

specificity of Cre expression. The Dmp1-Cre mouse, expressing Cre from a 14-kb DNA 

fragment of the mouse Dmp1 gene, has become a common tool for studying gene function in 

osteocytes, but the presumed cell specificity is yet to be fully established. By using 

the Ai9 reporter line that expresses a red fluorescent protein upon Cre recombination, we find 

that in 2-month-old mice, Dmp1-Cre targets not only osteocytes within the bone matrix but 

also osteoblasts on the bone surface and preosteoblasts at the metaphyseal chondro-osseous 

junction. In the bone marrow, Cre activity is evident in certain stromal cells adjacent to the 

blood vessels, but not in adipocytes. Outside the skeleton, Dmp1-Cre marks not only the 

skeletal muscle fibers, certain cells in the cerebellum and the hindbrain but also gastric and 

intestinal mesenchymal cells that express Pdgfra. Confirming the utility of Dmp1-Cre in the 

gastrointestinal mesenchyme, deletion of Bmpr1a with Dmp1-Cre causes numerous large 

polyps along the gastrointestinal tract, consistent with prior work involving inhibition of BMP 

signaling. Thus, caution needs to be exercised when using Dmp1-Cre because it targets not 

only the osteoblast lineage at an earlier stage than previously appreciated, but also a number 

of non-skeletal cell types. 

A2.2 Introduction 

Dentin matrix protein 1 (DMP1) is an extracellular phosphorylated glycoprotein belonging to the 

SIBLING (small integrin-binding ligand N-linked glycoprotein) family of proteins.1 Originally 

discovered in the dentin matrix, DMP1 is also highly expressed in other mineralized tissues 

including bone and cartilage.2,3,4 Functional studies have demonstrated important functions of 

DMP1 in regulating not only biomineralization but also phosphate homeostasis in both mice and 
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humans.5,6,7,8 Expression of DMP1 has also been detected in a variety of non-mineralizing tissues 

in the mouse, these including brain, liver, muscle, kidney, and pancreas, but its function there is 

not known.9 

Cre/loxP technology enables gene deletion in specific cell types and thus allows for interrogation 

of gene function in a cell type-specific manner. Conditional deletion in specific lineages depends 

on the unique expression pattern of the Cre recombinase. The Dmp1-Cre transgenic mouse line 

was generated to express Cre from a 14-kb promoter fragment (−9 624 to +4 439) of the mouse 

Dmp1 gene.10 The promoter encompassed a 9 624-bp promoter, the 95-bp exon 1, the 4 326-bp 

intron I plus the 17-bp initial noncoding sequence of exon II. The initial characterization of the 

mouse line with the Rosa26R mouse (expressing β-galactosidase upon Cre recombination) 

identified strong Cre activity in osteocytes and odontoblasts but not osteoblasts.10 However, 

detection of β-galactosidase expression relied on an enzymatic reaction in vitro known to be 

susceptible to tissue preparation and reaction conditions. In fact, a more recent analysis of 

Dmp1-Cre with a reporter mouse expressing a fluorescent protein revealed Cre activity in 

additional cell types besides osteocytes, most notably skeletal muscle and osteoblasts.11 The 

study also implicated cells within the bone marrow and those in the brain, but did not provide a 

detailed description. Thus, a systematic survey of tissues targeted by Dmp1-Cre in the mouse is 

warranted. 

Much work has been done to decipher the contribution of BMP signaling to gastrointestinal 

development and maintenance, but the specific role of BMP reception by mesenchymal tissue 

remains unclear. In the stomach, Mx1-Cre-mediated Bmpr1a deletion resulted in polyp 

formation at the esophageal and antral transition zones.12 Similarly, Bmpr1a removal by the 

ubiquitous inducible CAGGCreER driver cause dantral polyps and antral-pyloric hyperplasia.13 
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Conversely, overexpression of the secreted BMP antagonist Noggin in parietal cells and 

intestinal villi caused gastric cysts and intestinal polyps, respectively.14,15 However, when BMP 

signaling was selectively disrupted in the intestinal epithelium through deletion of Bmpr1a, no 

polyps formed despite increased proliferation and altered morphology within the epithelium.16 

On the other hand, stromal deletion of Bmpr2 with nestin-Cre led to colorectal epithelial 

overgrowth and polyp formation, but the interpretation there was complicated by the fact that 

nestin-Cre targets multiple lineages including the epithelium.17 Overall, BMP signaling within 

the mesenchymal compartment likely contributes to normal gastrointestinal development and 

maintenance, but this notion warrants further investigation. 

Here we assess the cell types targeted by Dmp1-Cre in 2-month-old mice by monitoring the 

expression of a red fluorescent protein (dtTomato) from the Ai9 reporter allele. Consistent with 

previous findings, Dmp1-Cre targets not only osteocytes but also osteoblasts and preosteoblasts, 

along with a subset of bone marrow stromal cells, as well as the skeletal muscle and certain brain 

cells. Unexpectedly, Dmp1-Cre selectively targets gastrointestinal mesenchymal cells with high 

efficiency. Deletion of Bmpr1a with Dmp1-Cre results in polyposis throughout the stomach and 

intestines, demonstrating a critical role of mesenchymal BMP signaling in maintaining a normal 

gastrointestinal tract. 

A2.3 Materials and Methods 

Mouse strains 

Dmp1-Cre, Ai9, and Bmpr1af/f mouselines are as previously described.10,18,19 Ai9 mice were 

purchased from the Jackson Laboratory (Bar Harbor, ME, USA); Dmp1-Cre and Bmpr1af/f mice 

were generously provided by Dr Jian Q Feng (Baylor College of Dentistry) and Dr Yuji Mishina 

(University of Michigan), respectively. Littermate mice with the genotype of Dmp1-Cre; 
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Bmpr1af/f (CKO) or Bmpr1af/f (control) were generated by breeding the two genotypes as 

previously produced.20 The mice were in a mixed genetic background between C57BL6 and 129 

strains. Both males and females were analyzed with similar results. All mouse procedures used in 

this study were approved by the Animal Studies Committee at Washington University. 

 

Cryostat sections 

Two-month-old mice were perfused with 4% paraformaldehyde (PFA) as described previously.21 

After perfusion, tibias were dissected and fixed in 4% PFA at 4 °C overnight. The fixed tibias 

were decalcified in 14% EDTA (pH 7.4) for 3 days, incubated in 30% sucrose at 4 °C overnight 

and then snap-frozen in optimal cutting temperature (OCT) embedding medium. Frozen sections 

were cut at 8 μm thickness with a cryostat equipped with CryoJane (Leica, Buffalo Grove, IL, 

USA). The sections were kept at −20 °C until analyses. 

 

Immunofluorescence staining 

For detection of Pdgfra, perilipin, or endomucin, immunostaining was performed on cryostat 

sections using mouse polyclonal Pdgfra antibody (1:100; R&D Systems), or rabbit monoclonal 

perilipin antibody (1:100; Cell Signaling Technology, Danvers, MA, USA), or rat monoclonal 

endomucin antibody (1:100, Santa Cruz, Biotechnology, Dallas, TZ, USA). The secondary 

antibodies are as follows: Alexa Fluor 488 goat anti-mouse IgG (for Pdgfa); Alexa Fluor 488 

goat anti-rabbit IgG (for perilipin), and Alexa Fluor 488 goat anti-rat IgG (for endomucin) (all at 

1:500, Life Technologies, Grand Island, NY, USA). Sections were mounted with 
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VECTASHIELD Mounting Medium containing DAPI (Vector Laboratories, Burlingame, CA, 

USA). Images were acquired with a Nikon confocal microscope (Melville, NY, USA). 

 

Analyses of the gastrointestinal tract 

For proliferation assays, mice were injected intraperitoneally with 5-bromo-2’-deoxyuridine 

(BrdU, 120 mg·kg−1) and 5-fluoro-2’-deoxyuridine (12 mg·kg−1) in sterile water 90 min before 

killing. Following killing, stomachs were immediately excised and flushed with phosphate-

buffered saline then inflated with freshly prepared formalin (10% formaldehyde, Sigma, St. 

Louis, MO, USA) in phosphate-buffered saline and the pylorus clamped with a hemostat. 

Inflated stomachs and segments of the small and large intestines were allowed to fix overnight in 

10% formalin then transferred to 70% ethanol. Tissues were arranged in 3% agar in a tissue 

cassette, underwent routine paraffin processing, and 5 μm sections were cut and mounted on 

glass slides. For immunohistochemistry, sections underwent a standard deparaffinization and 

rehydration protocol then were blocked with 5% horse serum for 1 h before staining for BrdU 

using Goat anti-BrdU (1:20 000, gift of Dr Jeff Gordon, Washington University) and biotinylated 

horse anti-goat (1:200, Vector Laboratories) antibodies. Images were acquired using a 

Nanozoomer Slide Scanner (Hamamatsu, Japan, model 2.0-HT). 

A2.4 Results 

Dmp1-Cre targets osteoblast-lineage cells, skeletal muscle, and bone marrow perivascular cells 

To characterize the targeting specificity of Dmp1-Cre, we generated Dmp1-Cre; Ai9 mice (one 

copy each of Dmp1-Cre and Ai9) and analyzed tdTomato expression on sections of the limbs at 

2 months of age. As expected, limb sections from the control Ai9 mice did not exhibit any red 
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fluorescence (Figure A2.1a-f), but those from Dmp1-Cre; Ai9 mice showed strong signals both 

in the long bone and in the adjacent skeletal muscle (Figure A2.1a’–f’). Targeting of the skeletal 

muscle was not previously reported, but was detected here in all muscle fibers (Figure A2.1f’). 

Within the long bone, Dmp1-Cre marked not only osteocytes but also osteoblasts in both cortical 

and cancellous bone (Figure A2.1b’ and c’). In addition, the chondro-osseous junction 

immediately below the growth plate, an area enriched in preosteoblasts, expressed a strong signal 

even though the growth plate was negative (Figure A2.1d’). Red fluorescence was also detected 

in certain cells within the bone marrow, although generally at a lower intensity than those other 

cell types described above (Figure A2.1e’). Co-immunostaining experiments revealed that the 

red fluorescence-positive marrow cells were perivascular as they showed close proximity to the 

endothelium-expressing endomucin (Figure A2.2). On the other hand, perilipin staining showed 

that the bone marrow adipocytes were not targeted by Dmp1-Cre and generally did not show a 

close association with the targeted cells (Figure A2.3). Thus, in addition to osteocytes, Dmp1-

Cre targets early-stage osteoblast-lineage cells, bone marrow perivascular cells as well as the 

skeletal muscle. 
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Figure A2.1: Dmp1-Cre targets osteoblast lineage cells, skeletal muscle, and bone marrow 

cells in 2-month-old mice.  

(a,a’) Confocal microscopy images of direct fluorescence from tdTomato on longitudinal 

sections of the proximal tibia. (b–f’) Images at a higher magnification for different areas of bone 

as indicated. B, bone; M, skeletal muscle; GP, growth plate. Green arrow, osteoblast; white 

arrow, osteocyte. Line in (d’) denotes chondro-osseous junction. 
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Figure A2.2: Dmp1-Cre targets bone marrow cells near blood vessels. 

 Immunostaining against endomucin and direct fluorescence of tdTomato on sections of the tibial 

bone marrow from 2-month-old Dmp1-Cre; Ai9 mice. (a) tdTomato; (b) endomucin; (c) merged 

image. 

 

 

 

Figure A2.3: Dmp1-Cre does not target bone marrow adipocytes.  

Immunostaining against perilipin and direct fluorescence of tdTomato on sections of the tibial 

bone marrow from 2-month-old Dmp1-Cre; Ai9 mice. (a) tdTomato; (b) perilipin; (c) merged 

image. 

 

Dmp1-Cre targets brain cells as well as gastrointestinal mesenchymal cells 
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We next examined other tissues of the Dmp1-Cre; Ai9 mouse for potential targeting by Dmp1-

Cre. No red fluorescence was detected in the liver, the spleen, or the gonadal fat depot. Coronal 

sections of the head through the parietal bone revealed a small number of red cells throughout 

the cerebellum and the hindbrain (Figure A2.4). The positive cells were present in both the 

molecular and granular layers of the cerebellum but did not present a specific distribution 

pattern; their identity was not pursued in the present study. In the stomach and the small 

intestine, Dmp1-Cre targeted many cells within the lamina propria of the mucosa (Figure A2.5). 

Co-immunostaining experiments identified the targeted intestinal cells as mesenchymal cells 

expressing Pdgfra (Figure A2.6). Interestingly, although Pdgfra-positive cells were also present 

in the muscle wall, Dmp1-Cre targeted nearly exclusively those within the laminar propria of the 

mucosa. Thus, Dmp1-Cre may be a useful tool for studying gene function in the mesenchyme of 

the gut mucosa. 
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Figure A2.4: Dmp1-Cre targets cells in the cerebellum and the hindbrain.  

Direct fluorescence of tdTomato on coronal sections of the cerebellum (a-b’) and the hindbrain 

(c,c’). G, representative granular layer; M, representative molecular layer. Brain anatomy based 

on Allen Mouse Brain Atlas. 
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Figure A2.5: Dmp1-Cre targets lamina propria of the stomach and the small intestine.  

Direct fluorescence of tdTomato on cross-sections of the stomach (a,a’) and the small intestine 

(b,b’). M, mucosa; Mu, muscle wall. Inset in (a’) shows higher magnification of a mucosa area, 

denoting epithelium (white arrowhead) versus mesenchyme (yellow arrowhead). 
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Figure A2.6: Dmp1-Cre targets Pdgfra-positive mesenchymal cells in the small intestine.  

Immunostaining against Pdgfra and direct fluorescence of tdTomato on cross-sections of the 

small intestine. M, mucosa; Mu, muscle wall; (a) tdTomato; (b) Pdgfra; (c) merge of tdTomato 

and Pdgfra; (d) merge of tdTomato, Pdgfra and DNA staining by DAPI. 

 

Deletion of Bmpr1a in gastrointestinal mesenchyme results in polyposis 

BMP signaling has been shown to have critical roles in development and maintenance of the 

gastrointestinal tract, but the significance of BMP signaling within the mesenchyme has not been 

demonstrated. The highly efficient targeting of the gastrointestinal mesenchyme by Dmp1-Cre 

prompted us to analyze the gut of mice with the genotype of Dmp1-Cre; Bmpr1af/f (CKO). The 

CKO mice presented a notably higher incidence of rectal prolapse than the control littermates 

after 3 months of age, indicating abnormalities of the gastrointestinal tract. Histological analyses 

of the stomach at 5 months of age revealed that the CKO mice developed large polyps in the 

gastric antrum (Figure A2.7b and b’), whereas the Bmpr1af/f littermate exhibited no abnormality 

as expected (Figure A2.7a and a’). These polyps contain both epithelial and mesenchymal cells, 

with largely unremarkable morphology but occasional foci with mild nuclear crowding and 

hyperplasia (Figure A2.7b’). In the corpus, the CKO mice exhibited a mild pit/foveolar cell 

hyperplasia with expansion of surface cells relative to glandular invaginations (Figure A2.7d’). 

Examination of the intestine revealed large polyps in the CKO mice, typically with 20+ polyps in 
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the small intestine and 50+ in the large intestine, some as large as 2 mm in diameter. The polyps 

appeared largely hamartomatous, composed of a mixture of unremarkable epithelial, 

mesenchymal, and immune cells (Figure A2.8). Some polyps in the small intestine also 

contained foci harboring highly proliferative epithelium (Figure A2.8b’, bracket). Surveying of 

the CKO mice at different ages revealed that the gastrointestinal phenotype was fully penetrant 

by 33 days of age (n=4) but not at 14 days. Thus, Bmpr1a signaling in the mesenchyme is critical 

for maintaining the integrity of the gastrointestinal tract in postnatal mice. 

 

 

Figure A2.7: Dmp1-Cre Bmpr1af/f mice develop gastric hyperplasia and polyps.  

(a,b) H&E staining of sections through the entire stomach of control (Bmpr1rf/f) (a) versus CKO 

(Dmp1-Cre; Bmpr1af/f) (b) littermate mice at 5 weeks of age. (a’,b’) Boxed areas in a and b, 

respectively, shown at higher magnification. (c,d) Gastric units in the gastric corpus of control 

(c) versus CKO (d) littermate mice. (c’,d’) Boxed areas in (c,d) shown at higher magnification. 

(d’), long stretches of surface pit cells with no opening into gastric units. Yellow arrowheads 

denote increased prominence of capillaries. H&E, hematoxylin and eosin. 
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Figure A2.8: Dmp1-Cre Bmpr1af/f mice develop intestinal polyps.  

(a–d) H&E staining of cross-sections through small (a,b) or large intestines (c,d) of control 

(Bmpr1af/f) (a,c) or CKO (Dmp1-Cre; Bmpr1af/f) (b,d) littermate mice. Yellow arrowheads in b 

denote fusing and blunting of villi. (a’–d’) Higher-magnification images of boxed areas in (a–d), 

respectively, showing a polyp in small (b’) or large (d’) intestine. Yellow bracket in (b’) denotes 

a pocket of proliferating epithelial cells stained brown for BrdU labeling. H&E, hematoxylin and 

eosin. 

 

 

A2.5 Discussion 

The current study has three principal findings. First, Dmp1-Cre targets the osteoblast lineage 

starting at the preosteoblast stage, considerably earlier than previously believed. This result 

confirms our previous observation by using the mT/mG reporter mouse.20 Second, Dmp1-Cre 

also targets several non-skeletal tissues, including the skeletal muscle as previously noted, and 

the mesenchyme of the gastrointestinal mucosa as demonstrated here for the first time.21 Finally, 

by exploiting the unintended targeting in the gut, the study clarifies that deletion of the Bmpr1a 

receptor only in the mesenchyme of the gastrointestinal tract without affecting the epithelium is 

sufficient to cause hamartomatous polyps. Overall, Dmp1-Cre joins Osx-Cre as another example 
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for a bone-targeting Cre line to possess additional activities.22 The study further underscores the 

importance of assessing unintended recombination activities of many Cre strains.23 

Although both Osx-Cre and Dmp1-Cre target preosteoblasts, osteoblasts, and osteocytes, they 

show important differences in other aspects. Although Osx-Cre marks a majority of the bone 

marrow stroma, Dmp1-Cre targets a relatively small number of cells in the bone marrow.22,24 The 

Dmp1-targeted cells are near the blood vessels and appear to be stromal cells in nature. Others 

have recently shown that most of the Dmp1-targeted cells in the marrow represent a subset of the 

Cxcl12-abundant reticular cells.25 The two Cre lines also show differences in the gastrointestinal 

tissues. Although Osx-Cre marks the epithelium of the mucosa in a mosaic fashion, Dmp1-Cre 

labels all of the Pdgfra-positive mesenchymal cells within the lamina propria. Distinct from Osx-

Cre, Dmp1-Cre also targets all skeletal muscle fibers, as well as certain cells in the cerebellum 

and the hindbrain, likely reflecting the endogenous DMP1 expression in those tissues as 

previously reported.9 Similarly, Dmp1-Cre activity in the stomach and the intestines is consistent 

with endogenous Dmp1 expression, as documented by the Human Protein Atlas 

(http://www.proteinatlas.org/). Thus, identification of a regulatory sequence truly specific to 

osteocytes would require further dissection of the Dmp1 promoter. Among the other organs 

expressing DMP1, we did not detect Cre activity in the liver but did not examine the kidney or 

the pancreas.9 It should be noted that the efficiency of Cre recombination might vary between 

Ai9 and the floxed gene of interest. The actual deletion efficiency of the targeted gene ought to 

be determined in a gene-specific manner. Nonetheless, we have presented a clear example that 

Dmp1-Cre can be used effectively to delete Bmpr1a in the gastrointestinal mesenchyme. Thus, 

the relevance of the other targeted cell types besides osteocytes should be considered when 

Dmp1-Cre is used in genetic studies. 
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BMP signaling has critical roles in normal development and maintenance of the gastrointestinal 

system. Loss of function mutations in Bmpr1a is a major cause for juvenile polyposis in 

patients.26 Here we show that deletion of Bmpr1a with Dmp1-Cre in the mouse results in the 

formation of numerous polyps throughout the intestine; the phenotype is reminiscent of those 

caused by overexpression of noggin from the villin promoter.14 This similarity, together with the 

lack of polyposis when Bmpr1a was deleted in the epithelium, argues that the effect seen from 

the villin-driven Noggin may largely stem from the inhibition of BMP signaling in the 

mesenchyme instead of the epithelium as originally believed.16 Overall, the study provides 

evidence that BMP signaling within the mesenchyme by itself is critical for proper 

gastrointestinal maintenance. 
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Appendix 3: Metaplastic cells in the stomach 

arise, independently of stem cells, via 

dedifferentiation or transdifferentiation of 

chief cells 
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A3.1 Abstract 

Spasmolytic polypeptide-expressing metaplasia (SPEM) develops in patients with chronic 

atrophic gastritis due to infection with Helicobacter pylori; it might be a precursor to intestinal 

metaplasia and gastric adenocarcinoma. Lineage tracing experiments of the gastric corpus in 

mice have not established whether SPEM derives from proliferating stem cells or differentiated, 

post-mitotic zymogenic chief cells in the gland base. We investigated whether differentiated cells 

can give rise to SPEM using a non-genetic approach in mice. Mice were given intraperitoneal 

injections of 5-fluorouracil, which blocked gastric cell proliferation, plus tamoxifen to induce 

SPEM. Based on analyses of molecular and histological markers, we found SPEM developed 

even in the absence of cell proliferation. SPEM therefore did not arise from stem cells. In 

histologic analyses of gastric resection specimens from 10 patients with adenocarcinoma, we 

found normal zymogenic chief cells that were transitioning into SPEM cells only in gland bases, 

rather than the proliferative stem cell zone. Our findings indicate that SPEM can arise by direct 

reprogramming of existing cells—mainly of chief cells. 

A3.2 Stem Cell Independent Gastric Metaplasia 

Spasmolytic Polypeptide-Expressing Metaplasia (SPEM) arises in the setting of chronic atrophic 

gastritis (CAG) in humans infected with Helicobacter pylori and may be a precursor to intestinal 

metaplasia and gastric adenocarcinoma(Schmidt et al., 1999; Petersen et al., 2017b). CAG is 

characterized by chronic inflammation, parietal cell death, and metaplastic expansion of cells 

coexpressing spasmolytic polypeptide (TFF2) and zymogenic chief cell (ZC) markers. Genetic 

lineage tracing studies have not definitively identified the cell-of-origin for SPEM cells. Tracing 

from Mist1CreERT2-expressing cells indicated ZCs at the gland base gave rise to SPEM (Nam et 

al., 2010; Stange et al., 2013b; Leushacke et al., 2017; Matsuo et al., 2017; Choi et al., 2018). 

Another report disputed this because occasional cells in the upper, isthmal stem cell region of the 
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gland also expressed Mist1CreERT2, indicating SPEM might be derived isthmally (Hayakawa et al., 

2015). We use a new approach to determine if differentiated cells can give rise to SPEM. 

For an isthmal stem cell to generate a gland full of SPEM cells, its progeny must 

proliferate to reach the gland base. We inhibited proliferation with the anti-mitotic drug 5-

Fluorouracil (5FU) and found one 150mg/kg (Stange et al., 2013b) intraperitoneal injection of 

5FU was sufficient to block proliferation for 24h with return to near-normal levels by 48h 

(Figure A3.1A,B). 

Long-term 5FU is toxic beyond 4-5 days, thus we used a SPEM induction method shown 

by multiple labs to cause maximal, synchronous SPEM within three days: high dose tamoxifen 

(HDT) (Huh et al., 2012b; Saenz et al., 2016). Our selected 5FU+HDT regimen caused no mouse 

mortality, but blocked nearly all proliferation at the peak SPEM stage: <0.5 in 5FU+HDT vs. >8 

cells/unit in HDT alone (Figure A3.1C). 
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Figure A3.1: SPEM can occur without proliferation.  

A) IHC staining for BrdU after one dose of 5FU (150mg/kg; intraperitoneal injection). Eosin Y 

counterstain. B) Experimental timeline and proliferation quantification. C) 5FU+HDT 

experimental timeline and proliferation quantification. D) Immunofluorescence of stomachs after 
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72h vehicle, 5FU, HDT, or 5FU+HDT treatment (red, GIF; green, GSII; blue, DAPI). Dotted 

line: gastric unit. E) Cell populations quantified, # indicates significance compared to vehicle, * 

indicates significance between treatment groups. R is significance between red columns, Y 

between yellow columns. F) Immunofluorescence of stomachs (red, GIF; green, Clusterin; blue, 

DAPI). *p≤0.05, **p≤0.01 ***p≤0.001, variance analyzed with ANOVA/Tukey (N ≥ 3 

mice/group) 

 

We monitored SPEM by immunofluorescence for the ZC marker, gastric intrinsic factor 

(GIF; red), and a lectin (GSII; green), which co-labels with TFF2. In control mice, GIF was 

located in ZCs at the gland base, separated from the GSII+ mucous neck cells in the middle of the 

gland. Consistent with previous reports (Huh et al., 2012b; Saenz et al., 2016), HDT caused 

SPEM, defined by pathognomonic GSII+GIF+ co-staining at the gland base (Figure A3.1D), yet 

few SPEM cells appeared at 24h (Figure A3.2). 5FU alone, or with HDT, did not significantly 

alter outcomes at any timepoint. At 72h, similar numbers of SPEM cells formed in HDT and 

HDT+5FU: 6.0±1.5 SPEM cells in HDT, 5.6±1.0 in HDT+5FU (Figure A3.1D,E). Additionally, 

5FU vs. HDT+5FU mice displayed a similar magnitude of GIF+ cell loss and GIF+GSII+ SPEM 

cell increase (Δ -3.7±1.3 GIF+ cells/unit, Δ +5.2±0.8 GIF+GSII+ cells/unit), while GSII+ neck 

cells decreased only slightly (ΔG: -0.76 ±0.75), implicating ZCs as the principal source for 

SPEM cells when proliferation is blocked. 

Equivalent SPEM was confirmed in HDT±5FU mice by qRT-PCR for SPEM-associated 

transcripts Mist1, Gif, He4, and Clusterin (Engevik et al., 2016) (Figure A3.3) and 

immunofluorescence for Clusterin (Figure A3.1F).  
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Figure A3.2: No SPEM occurs 24h after HDT treatment.  

A) Immunofluorescence of stomachs after 24h of vehicle, 5FU, HDT, or 5FU+HDT treatment 

(red, GIF; green, GSII; blue, DAPI). B) Quantification of cell populations, # indicates 

significance of treatment compared to vehicle, * indicates significance between specified 

treatment groups. G is significance between green columns. *p≤0.05, variance analyzed with 

ANOVA/Tukey (N ≥ 3 mice/group) 
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Figure A3.3: qRT-PCR for SPEM-associated genes.  

A) Transcripts of zymogenic cell markers analyzed from RNA isolated from the whole gastric 

corpus of mice treated with vehicle, 5FU, HDT, or 5FU+HDT for 24 hours. B) Same RNA 

described from A analyzed for markers known to increase in SPEM. C) Transcripts of 

zymogenic cell markers analyzed from RNA isolated from the whole gastric corpus of mice 

treated with vehicle, 5FU, HDT, or 5FU+HDT for 72 hours. D) Same RNA described from C 

analyzed for markers known to increase in SPEM. *p≤0.05 **p≤0.01 ***p≤0.001, variance 

analyzed with ANOVA/Tukey (N ≥ 3 mice/group) 
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We examined the differentiation pattern and location of occasional cells escaping the 

5FU blockade at 72h. Proliferating cells in control mice lacked neck/ZC markers, indicating 

proliferation primarily in isthmal stem cells (Figure A3.4A,B). HDT mice harbored proliferating 

isthmal, neck, SPEM, and occasional BrdU+ ZCs (Figure A3.4A,B). The 5FU+HDT regimen 

was designed such that cells escaping 5FU blockade at 72h would be in their first cell cycle, as 

gastric epithelial cells average one division per day (Potten, 1998). As expected, <1 cell/unit was 

BrdU+ at 72h 5FU+HDT, and units with >1 BrdU+ cell were exceedingly rare (Figure A3.4A). 

Proliferating cells could not be found prior to 72h (Figure 3.5). Proliferating cells at 72h 

expressed neck, SPEM, or ZC markers (Figure A3.4B). Interestingly, the largest cohort did not 

label with GSII or GIF. We suspect these cells are parietal cell progenitors based on cells, at 96h 

following HDT, expressing BrdU and beginning to show the characteristic, thick apical staining 

of parietal cell marker, ezrin (Lo et al., 2017) (Figure A3.6). Figure A3.4C plots zones in which 

proliferating cells emerged from isthmus to base, excluding upper pit/foveolar cells (Figure 

A3.7). In control mice, almost all proliferation was in the isthmus. In HDT and 5FU+HDT, 

proliferating cells appeared throughout the gland. Thus, multiple lines of evidence presented here 

indicate, in addition to isthmal stem cells, multiple cell types throughout the gland exhibit 

plasticity and can proliferate in response to damage. 
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Figure A3.4: Metaplastic cells arise below the isthmus  

A) Immunofluorescence of stomachs after 72h vehicle, 5FU, HDT, or 5FU+HDT (green, GSII; 

red, GIF; white, BrdU; blue, DAPI; arrowheads, rare BrdU+ cells in 5FU+HDT). B) Proliferating 
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cell populations quantified. C) Location of BrdU+ cells below the bottom-most AAA+ pit cell. D) 

Hematoxylin & eosin of early human SPEM (yellow circle) E) Immunofluorescence on serial 

section from 2D (red, PGC; green, GSII; blue, DAPI; arrowhead: SPEM cell). Yellow circle is 

SPEM area. F) Human SPEM within gland base showing transitional ZCSPEM forms. Dotted 

box indicates area shown at higher magnification. Cells outlined in colors according to cell type 

(red, normal ZCs; blue, hybrid SPEM; yellow, full SPEM). *p≤0.05 **p≤0.01 ***p≤0.001, 

variance analyzed with ANOVA/Tukey (N ≥ 3 mice/group) 

 

 

Figure A3.5: Proliferation is sufficiently blocked over the course of injury in 5FU+HDT 

mice.  

A) Immunofluorescence of stomachs after 24h of vehicle, 5FU, HDT, or 5FU+HDT (green, 

GSII; red, GIF; white, BrdU; blue, DAPI). B) Quantification of proliferating cell populations. # # 

p≤0.01, variance analyzed with ANOVA/Tukey (N ≥ 3 mice/group) 
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Figure A3.6: Proliferating pre-parietal cells begin to appear 96h after HDT treatment. 

Timeline of treatment scheme. Immunofluorescence of stomachs after 96h of vehicle, 5FU, 

HDT, or 5FU+HDT (green, GSII; red, ezrin; white, BrdU; blue, DAPI). Yellow boxes indicate 

BrdU+ ezrin+ cells with basolateral surfaces of each cell outlined in dashed white line. 

 

We stained for proliferative SPEM with CD44v (CD44v9 in humans) (Engevik et al., 

2016). HDT and 5FU+HDT mice exhibited CD44v staining at the gland base (Supplementary 

Figure 5B) and increased expression of proliferation-associated markers Check2 and Ccnb2 by 

qRT-PCR, indicating basally-located cells are poised to divide in 5FU+HDT stomachs (Figure 

A3.7).  
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Figure A3.7: Proliferation after SPEM induction.  

A) Immunofluorescence of stomachs after 72h of vehicle, HDT, or 5FU+HDT treatment (red, 

GIF; purple, AAA (Anguilla anguilla lectin); white, BrdU; blue, DAPI). Yellow arrowheads 

indicate cells that were not counted in quantification because they are in the pit zone and, thus, 

above the bottom-most AAA+ cell. B) Immunofluorescence of stomachs treated with vehicle, 

5FU, HDT, or 5FU+HDT for 72h (red, CD44v; green, GSII; blue, DAPI). Dotted line: outlined 

unit bases. C) Transcripts of proliferative markers analyzed from RNA isolated from the whole 

gastric corpus of mice treated with vehicle, 5FU, HDT, or 5FU+HDT for 72 hours. 
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Our data suggest stem cells are responsible for pit- and neck cell-localized proliferation 

following HDT; however, SPEM itself is largely derived from ZCs, supporting previous work 

suggesting two foci of proliferation in the stomach (Burclaff et al., 2017). Our mouse 

experiments reflect ZC to SPEM transitions observed in humans previously extensively 

characterized from a large dataset of adenocarcinoma and gastritis biopsy and resection 

specimens (Lennerz et al., 2010). Figures A3.4D-F and A3.8 depict representative stomach 

glands from 10 additional patients with gastric adenocarcinoma. We again observe hybrid cells 

(cells with features of mature ZCs and SPEM cells) occurred predominantly in the base. 

Specifically, we see apparent transition among a variety of cell phenotypes from mature ZCs 

(expressing PGC in large apical granules) to cells expressing abundant PGC with scant GSII 

(likely indicating early SPEM change) to phenotypically complete SPEM conversion (scant PGC 

with abundant GSII) (Figure A3.4F). A stem cell-origin of SPEM in humans would mean cell 

fate changes to SPEM cells should occur at the isthmus, and SPEM cells would have to expand 

downward and replace mature ZCs to populate the base. Thus, the interpretation that SPEM 

originates exclusively from the isthmus would be inconsistent with the presence of cells 

transitioning to SPEM consistently found in the base. 

Differentiated cells are long-lived and may accumulate mutations that become unmasked 

upon cell cycle re-entry after injury. For example, Kras mutations in ZCs or pancreatic acinar 

cells can fuel tumorigenic transformation (Leushacke et al., 2017). Therefore, our current work, 

highlighting how differentiated cells are called back into the cell cycle in an acute injury model, 

should interest those studying tumorigenesis and/or regeneration. 
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Figure A3.8: Human SPEM in gastric cancer patients 

 

A) H&E of human corpus glands with early atrophic gastritis exhibiting focal gland bases 

transitioning to SPEM. Arrows refer to parietal cells in healthy glands. SPEM gland outlined in 

yellow has a wide lumen and lacks parietal cells. B) Same as panel A but a different patient with 

more active gastritis. Early SPEM gland outlined in yellow shows opening of lumen at gland 

base (yellow arrow) and contains degenerating parietal cells (black arrows). C) 

Immunofluorescence of human SPEM (red, PGC; green, GSII; blue, DAPI). Note many hybrid 

forms in gland bases ranging from cells with only red PGC (mature, normal ZCs) to those 



161 

 

showing mature SPEM (prominent green GSII, scant red PGC). D) Immunofluorescence of the 

base of yet another patient’s corpus. A mature SPEM gland is located next to a normal gland 

with mature ZCs. A third gland shows hybrid forms wherein ZCs express focal, apical GSII 

(yellow arrowheads). E) Table detailing the demographic aspects and pathological diagnoses of 

the 10 patients analyzed in this manuscript. 

 

A3.3 Methods and Materials 

Animals and Injections 

All experiments involving animals were performed according to protocols approved by the 

Washington University School of Medicine Animal Studies Committee. Mice were maintained 

in a specified pathogen-free barrier facility under a 12-hour light cycle. Wild-type C57BL/6 mice 

were purchased from Jackson Laboratories (Bar Harbor, ME). All mice used in experiments 

were females 6−8 weeks old. To induce SPEM, tamoxifen (250 mg/kg body weight; Toronto 

Research Chemicals, Inc, Toronto, Canada) was administered daily for 3 days by intraperitoneal 

injection. Tamoxifen was dissolved in a vehicle of 10% ethanol and 90% sunflower oil (Sigma, 

St Louis, MO) as described previously (Petersen et al., 2017b). To block proliferation, 5-FU (150 

mg/kg body weight; Sigma F6627) was given by intraperitoneal injection twice daily for 2 days. 

5-FU was dissolved in a solution containing 10% dimethyl sulfoxide and 0.9% sodium chloride. 

All mice were given an intraperitoneal injection containing BrdU (120 mg/kg) and 5-fluoro-

2′deoxyuridine (12 mg/kg) 90 minutes before sacrifice. 

 

Patient Samples 

Human gastric tissue was obtained with approval from the Institutional Review Board of 

Washington University School of Medicine. The database of metaplastic samples showing 
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hybrid SPEM forms has been described previously (Schmidt et al., 1999; Nam et al., 2010; 

Stange et al., 2013b). 

 

Immunofluorescence and Immunohistochemistry 

Stomachs were excised immediately, flushed with phosphate-buffered saline (PBS) via the 

duodenal stub and then inflated with freshly prepared 4% paraformaldehyde. The stub was 

clamped by hemostat, and the stomach suspended in fixative in a 50-mL conical for 8−12 hours, 

followed by 3 rinses in 70% EtOH, arrangement in 2% agar in a tissue cassette, and routine 

paraffin processing. Sections (5 μm) were cut, deparaffinized, and rehydrated with graded 

xylenes, alcohols, and water, then antigen-retrieved in sodium citrate buffer (2.94 g sodium 

citrate, 500 uL Tween 20, pH 6.0) using a pressure cooker. Slides were blocked in 5% normal 

goat serum, 0.2% Triton-X 100, in PBS. Slides were incubated overnight at 4°C in primary 

antibodies, then rinsed in PBS, incubated 1 hour at room temperature in secondary antibodies 

and/or fluorescently labeled lectin (Alexa Fluor 647 made by directly conjugating E-Y 

Laboratories [San Mateo, CA] lectin to Molecular Probes [Eugene, OR] Alexa Fluor 647), rinsed 

in PBS, mounted in ProLong Gold Antifade Mountant with 4′6-diamidino-2-phenylindole 

(Molecular Probes). For immunohistochemistry, steps were identical except the following. An 

extra quenching step was performed for 15 minutes in a methanol solution containing 1.5% 

H2O2 after antigen retrieval. Substrate reaction and detection was performed using ImmPACT 

VIP Peroxifase (horseradish peroxidase) Substrate Kit (Vector Laboratories, Burlingame, CA) as 

detailed per the manufacturer’s protocol and slides were mounted in Permount Mounting 

Medium. 
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Imaging 

Fluorescence microscopy was performed using a Zeiss Axiovert 200 microscope with an 

Axiocam MRM camera and Apotome II instrument for grid-based optical sectioning. Post-

imaging adjustments, including contrast, fluorescent channel overlay, and pseudo-coloring, were 

performed with Axiovision and Adobe Photoshop CS6. Histology of stomach and 

immunohistochemistry were imaged using an Olympus BX51 light microscope and Olympus 

SZX12 dissecting microscope w/12 MPixel Olympus DP70 camera. Images were analyzed and 

post-imaging adjustments were performed with Adobe Photoshop CS6. 

 

Antibodies 

Primary antibodies used in this study were as follows: fluorescently conjugated Anguilla anguilla 

lectin (Alexa Fluor 647; 1:1000; EY Laboratories), goat anti-BrdU (1:20,000; a gift from Dr Jeff 

Gordon, Washington University, St Louis, MO), rat anti-CD44 v10-e16, ortholog of human v9 

(1:200; Cosmo Bio, Tokyo, Japan), goat anti-Clusterin (1:100; Santa Cruz Biotechnology, Santa 

Cruz, CA), mouse anti-ezrin (1:250; Santa Cruz Biotechnology), fluorescently conjugated GSII 

lectin (Alexa Fluor 647; 1:1,000; Invitrogen, Carlsbad, CA), rabbit anti-human gastric intrinsic 

factor (1:10,000; a gift from Dr David Alpers, Washington University, St Louis, MO), and sheep 

anti-PGC (1:10,000; Abcam, Cambridge, MA). Secondary antibodies included Alexa Fluor 488, 

594, or 647−conjugated donkey anti-goat, anti-rabbit, or anti-mouse (1:500; Molecular Probes). 
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Immunofluorescence and Immunohistochemistry Quantification 

For counts from units expressing neck, chief, and proliferative markers all time points were 

quantified with at least 3 mice as previously described by Burclaff et al, 2017 (Burclaff et al., 

2017). Stomach corpus slides were stained for BrdU, the neck cell marker GSII, and zymogenic 

cell marker GIF. Images were captured as TIFF files from a Zeiss Axiovert 200 microscope with 

an Axiocam MRM camera with an Apotome optical sectioning filter (Carl Zeiss, Jena, 

Germany). Each stomach had at least 5 randomly distributed 20× images taken, which contained 

10 or more well-oriented gastric units. Units were counted using the neck staining, and total 

quantifications of proliferating cells (BrdU) were averaged over the total unit numbers per 

mouse. For total proliferation counts from immunohistochemistry at least 3 mice per treatment 

group were quantified. Stomach corpus slides were stained with an antibody for BrdU. Whole 

slides were scanned using a NanoZoomer 2.0 HT microscope and analyzed with NanoZoomer 

Digital Pathology software (Hamamatsu; Hamamatsu City, Japan). At least 40 corpus units were 

analyzed and counted per stomach. Proliferation rate for each mouse was an average of all units 

counted. 

 

Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction 

RNA was isolated using RNeasy (Qiagen, Valencia, CA) per the manufacturer's protocol. The 

quality of the mRNA was verified with a BioTek (Winooski, VT) Take3 spectrophotometer and 

electrophoresis on a 2% agarose gel. RNA was treated with DNase I (Invitrogen), and 1 μg RNA 

was reverse-transcribed with SuperScript III (Invitrogen) following the manufacturer’s protocol. 

Measurements of complementary DNA abundance were performed by real-time quantitative 
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reverse transcription polymerase chain reaction using either a Stratagene (La Jolla, CA) 

MX3000P detection system or a Bio-Rad (Hercules, CA) CFX Connect system. Power SYBR 

Green master mix (Thermo Scientific, Waltham, MA) fluorescence was used to quantify the 

relative amplicon amounts of each gene (normalizing gene was TATA box binding protein). 

Primer design and sequence are in Figure A3.9. 

Gene Sequence 

Clusterin Forward CCAGCCTTTCTTTGAGATGA 

Clusterin Reverse CTCCTGGCACTTTTCACACT 

Gif Forward GAAAAGTGGATCTGTGCTACTTGCT 

Gif Reverse AGACAATAAGGCCCCAGGATG 

He4 Forward TGCCTGCCTGTCGCCTCTG 

He4 Reverse TGTCCGCACAGTCCTTGTCCA 

Mist1 Forward GAGCGAGAGAGGCAGCGGATG 

Mist1 Reverse AGTAAGTATGGTGGCGGTCAG 

Tbp Forward CAAACCCAGAATTGTTCTCCTT 

Tbp Reverse ATGTGGTCTTCCTGAATCCCT 

Figure A3.9: Primers used for quantitative RT-PCR 

 

Graphing and Statistics 

All graphs and statistics were completed in GraphPad Prism (GraphPad, La Jolla, CA) using 1-

way analysis of variance with the Tukey post-hoc multiple comparison test to determine 

significance. Sample sizes were determined based on statistical significance and practicality. P ≤ 

0.05 was considered significant. 
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A4.1 Abstract 

In 1900, Adami speculated that a sequence of context‐independent energetic and structural 

changes governed the reversion of differentiated cells to a proliferative, regenerative state. 

Accordingly, we show here that differentiated cells in diverse organs become proliferative via a 

shared program. Metaplasia‐inducing injury caused both gastric chief and pancreatic acinar cells 

to decrease mTORC1 activity and massively upregulate lysosomes/autophagosomes; then 

increase damage associated metaplastic genes such as Sox9; and finally reactivate mTORC1 and 

re‐enter the cell cycle. Blocking mTORC1 permitted autophagy and metaplastic gene induction 

but blocked cell cycle re‐entry at S‐phase. In kidney and liver regeneration and in human gastric 

metaplasia, mTORC1 also correlated with proliferation. In lysosome‐defective Gnptab−/− mice, 

both metaplasia‐associated gene expression changes and mTORC1‐mediated proliferation were 

deficient in pancreas and stomach. Our findings indicate differentiated cells become proliferative 

using a sequential program with intervening checkpoints: (i) differentiated cell structure 

degradation; (ii) metaplasia‐ or progenitor‐associated gene induction; (iii) cell cycle re‐entry. We 

propose this program, which we term “paligenosis”, is a fundamental process, like apoptosis, 

available to differentiated cells to fuel regeneration following injury. 

 

A4.2 Introduction 

In 1900, George Adami wrote about the relationship between mitotic and differentiated cells, 

stating that he expected mitotic cells would generally devote energy toward replication and 

differentiated cells toward performing physiological functions (Adami, 1900). He also observed 

that upon injury, differentiated cells had the capacity to revert to a more primitive state, 

becoming mitotic again to promote tissue repair. Adami's observations on such cellular plasticity 
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have largely been forgotten, as the focus in the 20th century was nearly exclusively on the 

unidirectional differentiation of stem cells into functional, “post‐mitotic” cells. 

 

However, over the past decade or two, numerous examples have emerged to support plasticity in 

differentiated cells. First, it became clear that normal, somatic cells could be reprogrammed to 

pluripotency (Takahashi & Yamanaka, 2006). Furthermore, in tissues, injury can induce a repair 

process that recruits largely post‐mitotic, differentiated cells back into the cell cycle in most, if 

not all, organs and species, for example, glia (Boerboom et al, 2017; Mindos et al, 2017); lung 

(Logan & Desai, 2015); heart in mammals (Wang et al, 2017) and fish (Karra et al, 2015); in 

multiple gastrointestinal tract organs (Mills & Sansom, 2015). Each such example to date has 

been studied essentially in isolation within the context of a particular type of injury and a single 

organ; however, because the process is so widespread, we have postulated that it may be 

governed by a shared, evolutionarily conserved molecular and cellular program that is 

independent of tissue and species (Mills & Sansom, 2015). 

 

It has long been known that the response of both the corpus of the stomach and the 

digestive‐enzyme‐secreting (exocrine) pancreas to certain types of injury involves phenotypical 

changes in cell differentiation and tissue architecture, known as metaplasia. In the acute setting, 

the metaplastic response appears to be a tissue repair mechanism and can be temporary, with full 

restoration of normal tissue architecture (Nomura et al, 2005; Huh et al, 2012). Chronically, 

however, ongoing damage and long‐term metaplasia are associated with and may fuel the 

majority of gastric and pancreatic adenocarcinomas (Mills & Sansom, 2015; Giroux & Rustgi, 
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2017; Storz, 2017). In both organs, the cells of origin for the metaplastic, proliferating epithelial 

cells are thought to be differentiated secretory cells (zymogenic chief cells in the stomach and 

acinar cells in the pancreas) that reprogram to re‐enter the cell cycle (Mills & Sansom, 2015; 

Murtaugh & Keefe, 2015; Mills & Goldenring, 2017; Radyk & Mills, 2017). 

 

Here, we report that differentiated cells in both pancreas and stomach exhibit high levels of 

mTORC1 activity during homeostasis. Proliferation‐inducing injury caused rapid mTORC1 loss 

and a dramatic induction of autodegradative machinery (lysosomes and autophagy). As the 

functional and structural components were recycled, cells changed gene expression patterns (e.g., 

inducing the metaplastic marker Sox9); thereafter, they reactivated mTORC1 and re‐entered the 

cell cycle. Such changes in mTORC1 activity were corroborated in tissues from human patients. 

Also, established models of injury to differentiated cells in mouse liver (Espeillac et al, 2011) 

and kidney (Chang‐Panesso & Humphreys, 2017) correlate mTORC1 activity with the recruited 

proliferating cells. Blocking mTORC1 with rapamycin in murine pancreas and stomach impaired 

only cell cycle re‐entry but not earlier cellular changes. Differentiated cells in 

autophagy‐defective Gnptab−/− mice were blocked from both SOX9 expression and cell cycle 

re‐entry phases, consistent with the upstream autodegradative phase being necessary for 

downstream mTORC1‐mediated S‐phase entry. 

 

Our results in the context of numerous previous reports on cellular reprogramming lead us now 

to propose that recruiting differentiated cells into a regenerative phenotype occurs via stepwise 

metabolic and molecular phases that constitute a conserved, fundamental, cellular program, akin 
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to mitosis or apoptosis. This cellular program occurs during cell fate changes of various types 

(e.g., reversion, dedifferentiation, transdifferentiation, reprogramming). The lack of a standard 

term for the actual cellular process itself impedes finding shared features that transcend cell 

types, tissues, and model systems. We propose a new, unifying term: “paligenosis” from the 

Greek: pali/n/m (meaning backward or recurrence) + genea (born of, producing) + osis (an action 

or process). 

 

A4.3 Diverse organs show similar changes in metabolic activity during acute 

injury 

To induce injury in the stomach, we employed a high‐dose tamoxifen (“HD‐Tam”) injury model 

that has been used by us and others (Huh et al, 2012; Burkitt et al, 2017; Lee et al, 2017; 

Leushacke et al, 2017). HD‐Tam causes loss of nearly all acid‐secreting parietal cells in the body 

of the stomach (Figures A4.1) and induces mature, differentiated digestive‐enzyme‐secreting 

chief cells at the base of the unit to give rise to a proliferating cell population (Radyk et al, 

2017). These former chief cells maintain low‐level expression of some mature chief cell markers 

and induce expression of wound repair‐associated genes like mucins and TFF2 (aka spasmolytic 

polypeptide). The pattern of parietal cell loss and abundant, proliferative cells co‐expressing 

TFF2 and chief cell markers has been called spasmolytic polypeptide‐expressing metaplasia 

(SPEM) or pseudopyloric metaplasia (Schmidt et al, 1999). Maximal parietal cell loss and 

proliferation stemming from chief cells occurs at 3 days after the first dose of tamoxifen 

(Schematized in Figure A4.2). By 7 days, parietal cells have returned, and the entire stomach 

regenerates to pre‐treatment cell censuses within 14–21 days (Huh et al, 2012). HD‐Tam is a 

rapid, synchronous method to model, in a manner that lends itself to molecular analyses, the 
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mechanisms of stomach repair that also occurs in human stomachs infected with the bacterium 

Helicobacter pylori. 
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Figure A4.1: pS6 is an accurate proxy for rapamycin‐sensitive mTORC1 activity and 

shows that loss of mTORC1 does not affect parietal cell death or induction of metaplastic 

gene expression in reprogramming chief cells.  

A) Injection schemes for injury experiments with rapamycin in stomach (left) and pancreas 

(right). B) Representative epifluorescence images of the distribution of pS6 in the normal and 

injured stomach ±rapamycin treatment. pS6 is restricted to the chief cell zone (base) and pit zone 

of the normal corpus unit. At peak (HD‐Tam day 3) SPEM stages, it is located at high level 

throughout the unit. Upon rapamycin treatment, all pS6 staining is lost throughout the normal 

and injured corpus unit. The characteristic induction of GSII staining in reprogramming chief 

cells at the base of gastric units (indicating SPEM) occurs at least as markedly in the presence of 

rapamycin, indicating mTORC1 is not required for metaplastic gene induction. Green, pS6; 

white, GSII; blue, DAPI. Scale bars: 50 μm. C) At peak metaplasia stages, pS6 235/6 is 

upregulated in the stomach epithelium and rapamycin treatment at this stage abolishes all 

staining. Scale bars: 50 μm. D) Representative epifluorescence images of the loss parietal cells 

(marked by ezrin) upon injury and rapamycin treatment. Treatment with HD‐Tam caused the loss 

of the vast majority of parietal cells throughout the corpus. Rapamycin does not rescue that 

injury. Green, GSII; white, ezrin; blue, DAPI. Scale bars: 50 μm. 
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Figure A4.2: mTORC1 activity undergoes dramatic changes during stomach and pancreas 

metaplastic injury response.  

A,B) Digestive‐enzyme‐secreting (zymogenic) mature cell populations in the stomach (A) and 

pancreas (B) are recruited back into the cell cycle to fuel metaplasia in response to large‐scale 

injury. Digestive enzyme expression (red) decreases, and markers of mucous neck cells (green, 



175 

 

stomach) or duct cells (green, pancreas) increase in metaplastic, proliferating cells (red + green = 

yellow). Stomach is further characterized by loss of acid‐secreting parietal cells (blue). (B) 

Representative epifluorescence images of mouse gastric corpus glands during homeostasis, early 

after injury (HD‐Tam 12 h) and at maximal metaplastic response (HD‐Tam Day 3), stained for 

mTORC1 activity using a downstream target, pS6 as a proxy. Green, pS6; red, GIF (gastric 

intrinsic factor, a chief cell marker); white, GSII (a mucous neck cell marker); blue, DAPI. 

Right—higher magnification images of boxed areas on left focus exclusively on the base of the 

unit where the digestive‐enzyme‐secreting cells are reprogramming. Yellow dashed area outlines 

the base of a single gastric unit. Scale bar, 20 μm; boxed area pull out, 10 μm. C) Western blot of 

pS6 (red) and β‐tubulin control (green) from whole corpus protein extracts at various injury time 

points; pS6 (240/244 or 235/6) vs. tubulin fluorescent intensity from replicate blots quantified 

below (error bars = standard deviation). *P < 0.05, ***P < 0.001. Statistical analysis with both 

antibodies was done using ANOVA with a post hoc Dunnett's test. D) Representative 

epifluorescence images of pS6 staining of pancreas during homeostasis, acute injury (cerulein 12 

h), and maximal injury (cerulein day 5). Green, pS6; red, amylase; blue, DAPI. Boxed areas on 

left depicted at higher magnification on right. Scale bar, 20 μm; boxed area pull out, 10 μm. 

 

To induce injury in pancreas, we used a well‐described rapid method involving daily injection of 

the secretagogue cerulein. Cerulein injections cause large‐scale damage to the 

digestive‐enzyme‐secreting acinar cells of the exocrine pancreas (Adler et al, 1985; Niederau et 

al, 1985; Saluja et al, 1985). To repair the damage, acinar cells re‐enter the cell cycle, forming 

duct‐like structures called ADM (acinar‐to‐ductal metaplasia; schematic in Figure A4.2). In our 

protocol, ADM peaks 5 days after commencement of cerulein. Thereafter, there is continued 

damage if cerulein administration is maintained, but the pancreas gradually adapts to the injury 

over 2 weeks. Similar to HD‐Tam injury in the stomach, cerulein injury models a metaplastic 

process that can also be a precursor for pancreatic ductal adenocarcinoma. 

 

To determine whether the reversion from the differentiated to the replicative state involves 

conserved shifts in cellular energy use, we examined metabolic activity in both tissues using 

phosphorylated ribosomal S6 protein (pS6). The principal mediator of S6 phosphorylation is the 
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S6 kinase enzyme via the cellular metabolism hub mTOR complex 1 (mTORC1). To confirm 

that S6 phosphorylation depends on mTORC1 activity, we treated mice with rapamycin, a 

specific inhibitor of the mTORC1‐mediated S6 kinase activity. We used an antibody against 

residues 240/244 of S6, because those sites are phosphorylated principally by pS6 kinase 1, 

whereas the 235/236 phosphorylation sites can have input from other signaling pathways. For 

example, 235/236 can be phosphorylated by p90 ribosomal S6 kinases that can be activated via 

ERK signaling (Roux et al, 2007). Figure A4.1 shows that rapamycin, which is a specific 

inhibitor of mTORC1‐mediated S6 Kinase activity, abolished pS6 240/44 staining, which was 

normally abundant in gastric pit cells nearer the stomach lumen and in gastric chief cells. 

Rapamycin also blocked S6 phosphorylation efficiently during the HD‐Tam protocol (Figure 

A4.1). Antibodies against 235/236 also showed strong phosphorylation at peak metaplasia as 

well as a similar abrogation of staining in the presence of rapamycin (Figure A4.1). As 

anti‐240/244 antibodies have stronger signal in our experiments and are more specific for 

mTORC1‐mediated phosphorylation, we will use anti‐240/244 pS6 as a surrogate for mTORC1 

activity for the remainder of the manuscript unless otherwise mentioned. 

 

HD‐Tam or cerulein caused dramatic changes in pS6 expression. In stomach, pS6 was largely 

lost by 12 h. By 3 days, when SPEM is maximal in this system, the entire gastric unit expressed 

abundant pS6 (Figure A4.2B). Molecular and cellular changes in the stomach following HD‐Tam 

are sufficiently synchronous across the whole stomach that quantitative, molecular approaches 

can be used (Huh et al, 2012). Quantitatively, phosphorylation status of both pS6 240/244 and 

235/236 in the corpus of the stomach was decreased by nearly half within the first 4 h and 
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returned to at or above baseline by 48 h (Figure A4.2C). In pancreas, despite a slower and less 

synchronous time course, the same pattern of mTORC1 activity could be observed by 

immunofluorescence. pS6 was abundant in acinar cells at baseline, was nearly undetectable by 

24 h, and recovered in many cells by day 5, when ADM is maximal (Figure A4.2D). 

 

Thus, both tissues, when recruiting proliferative cells for repair, undergo a well‐defined pattern 

of changes in mTORC1 activity. During homeostasis, the organs are replete with differentiated 

secretory cells that are not dividing but are energetically active in synthesizing protein using their 

elaborate secretory apparatus (Mills & Taghert, 2012; Lo et al, 2017). When replicating cells 

must be recruited from those differentiated cells, the cells shut off mTORC1 temporarily, then 

re‐induce it at the time of maximal regenerative proliferation. 

 

To further assess whether the upregulation of pS6 is a common feature during the recruitment of 

differentiated cells to regenerate damaged tissue, we examined liver (two‐thirds partial 

hepatectomy) and kidney (tunicamycin‐induced acute injury) for changes in S6 phosphorylation. 

Both injury models have previously been shown to involve recruitment of differentiated cells 

back into the cell cycle (Newberry et al, 2008). In kidney, as expected, tubules in the cortex and 

outer medulla are damaged as evinced by vacuolation (Figure A4.3). Non‐damaged tubules show 

increased BrdU as cells re‐enter the cell cycle (Figure A4.3). The proliferative tubules show 

marked increase in pS6. Similarly, the well‐known recruitment of hepatocytes into the cell cycle 

48 h following partial hepatectomy is also accompanied by increased S6 phosphorylation (Figure 

A4.3). 
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Figure A4.3: Acute kidney injury and partial hepatectomy both cause upregulation of 

mTORC1 activity during proliferative phases.  

A) Upon injury with tunicamycin, tubule cells in the kidney are damaged (white arrowhead) and 

surviving tubule cells (yellow arrowhead) upregulate pS6. Scale bars: 100 μm. B) Upregulation 

of the pS6 is associated with increased proliferation in this injury model as seen by BrdU+ 

nuclei. Scale bars: 100 μm. C) Two‐thirds partial hepatectomy causes a pronounced upregulation 

of pS6 in the remaining hepatocyte mass. Scale bars: 20 μm. D) The pS6+ hepatocytes are highly 

proliferative at this stage. Scale bars: 20 μm. 
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A4.4 mTORC1 is required for injury‐induced proliferation 

During SPEM and ADM, expression of genes encoding secretory cargo (like digestive enzymes) 

is scaled down, whereas wound repair and progenitor‐associated genes are scaled up (Capoccia 

et al, 2013). Many such scaled up genes (e.g., Cd44 and Sox9) are increased in both pancreas and 

stomach during the recruitment of differentiated cells back into the cell cycle. To determine 

whether blocking mTORC1 affected response to injury, we subjected mice to HD‐Tam or 

cerulein and examined the effects of blocking mTORC1 with rapamycin (Figure A4.4). Figures 

A4.1 and A4.4 show that parietal cell death occurred in HD‐Tam even without mTORC1 

activity. The gastric units also remodeled as expected with chief cells assuming the ductular 

morphology, characteristic of SPEM (Figure A4.4). 
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Figure A4.4: Histological changes in the injured stomach and pancreas with and with 

rapamycin treatment.  

A) Representative hematoxylin and eosin counterstained images of HD‐TAM stomach tissue 

±rapamycin. Treatment with tamoxifen causes acute loss of parietal cells (large eosinophilic 

cells) by 12–24 h post‐injury. By 3 days, chief cells have reprogrammed into SPEM cells. The 

general pattern of loss of parietal cells and conversion of chief cells to metaplastic cells is not 

affected by rapamycin (right panels). Scale bars, 50 μm. B) Representative hematoxylin and 

eosin counterstained images of pancreas tissue injured with cerulein at various stages 
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±rapamycin. Cerulein injury causes mosaic, asynchronous conversion of acinar cells into 

proliferative, acinar‐ductal metaplastic cells with maximal features of the process at day 5 in our 

protocol. By 2 weeks, the pancreas has compensated for the continuous injury and recovers a 

relatively normal morphology. Dual treatment with rapamycin and cerulein does not rescue the 

metaplastic response by day 5 and impedes normal tissue compensation by 2 weeks injury, with 

most of the tissue continuing to show abundant metaplastic forms. Scale bars, 50 μm. 

 

We next examined the effects of rapamycin on induced proliferation. We noted that in control 

experiments, without HD‐Tam, proliferation of the cells in the isthmus (the narrow zone between 

pit and upper neck, Figure A4.2), where there is active mitosis in homeostasis, was not affected 

markedly by rapamycin (Figures A4.5A and C). However, rapamycin decreased the 

injury‐induced proliferation by nearly half (P < 0.001; Figure A4.5C). The lack of proliferation 

did not affect SPEM induction, as defined by cells co‐stained with GSII and the chief cell 

marker, GIF (Figure A4.5A and B). Indeed, the SPEM marker SOX9 was induced in 

reprogramming chief cells to levels at least as high as those observed in HD‐Tam without 

rapamycin (Figure A4.6). That cells expressing molecular features of metaplasia can arise in the 

absence of proliferation is consistent with multiple previous reports showing that chief cells can 

give rise directly to SPEM cells without contribution from the isthmal stem cell (Nam et al, 

2010; Radyk et al, 2017). 
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Figure A4.5: Recruitment of proliferating cells during stomach and pancreas metaplastic 

injury depends on mTORC1.  

A) Representative immunofluorescence images of stomach tissue ± metaplastic injury ± 

rapamycin treatment. Green, neck cells (GSII); red, chief cells (GIF); white, proliferating cells 

(BrdU); blue, nuclei (DAPI). Scale bars 20 μm; 10 μm for bottom images. Bottom—boxed areas 

from top pictures are shown at higher magnification with individual bases of gastric units (where 

reprogramming occurs) outlined by dashed lines and proliferating cells by arrowheads. B) Cells 

of each differentiation type, following scheme in Figure A4.2, are quantified by scoring 
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immunofluorescence images from multiple experiments. Metaplastic injury induces a massive 

accumulation of yellow (SPEM) cells and loss of red (Chief) cells (compare vehicle–vehicle with 

vehicle‐Tam, D3) that is not significantly affected by rapamycin treatment (compare 

vehicle‐Tam D3 with Rap‐Tam D3). C) Proliferative cells are quantified as for panel (B). Injury 

induces massive proliferation (compare vehicle–vehicle with vehicle‐Tam D3) significantly 

inhibited by rapamycin (compare vehicle‐Tam D3 with Rap‐Tam D3). D) Top panel arrowheads 

indicate rare proliferative acinar cells during homeostasis with or without rapamycin treatment. 

Cerulein induces proliferation of acinar cells recruited into the cell cycle that is inhibited by 

rapamycin. Boxed areas are magnified in insets. Note multiple BrdU+ cells (green) staining with 

amylase (red) a digestive enzyme, indicating acinar cell origin. BrdU+ cells following rapamycin 

+ cerulein treatment are often not co‐stained with amylase. Blue, DAPI (nuclei). Scale bars 20 

μm; 10 μm for insets. E) Quantification of multiple experiments with mice treated as in panel 

(D). 

Data information: ***P < 0.001; N.S. = not statistically significant; data displayed as mean ± 

SEM from 3 independent experiments with quantification from up to 13 low‐power fields, from 

each of 4–5 total mice; significance determined by ANOVA with Tukey's post hoc test. 
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Figure A4.6: mTORC1 is not required for increased SOX9 during metaplasia.  

A) Representative eosin counterstained IHC images of normal or metaplastic gastric tissue 

stained for SOX9. SOX9, in control tissue, stains the isthmal and mucous neck cells, which are 

proliferative progenitors (yellow arrowheads), of the corpus units and is generally excluded from 

the base of units. Upon injury with HD‐TAM, SOX9 expression is induced in the base of units 

(yellow arrowheads). Treatment with rapamycin does not alter either the normal or metaplasia 

distribution of SOX9 (yellow arrowheads). Scale bars, 50 μm. B) Representative hematoxylin 

counterstained IHC images of normal or metaplastic pancreatic tissue stained for SOX9. SOX9 

expression in normal pancreatic tissue is restricted to the duct (see inset in top left panel which is 
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a high magnification view of the boxed area). At peak metaplasia stages, SOX9 becomes 

expressed in dedifferentiating acinar cells (see bottom left inset). Treatment with rapamycin in 

normal (see top right inset) or injured (see bottom right inset) does not alter SOX9 expression. 

Scale bars 50 μm; inset 25 μm. 

 

Rapamycin had equivalent effects on the pancreas. Metaplastic induction of SOX9 was not 

affected (Figure A4.6); however, cell proliferation was even more substantially blocked than in 

the stomach (Figure A4.5D and E). This may be because the pancreas is entirely dependent on 

reprogramming acinar cells as a source for proliferation, whereas the stomach also has a 

constitutive stem cell that continues to proliferate even in the presence of rapamycin (Figure 

A4.2). Continued HD‐Tam injections kill mice, so we cannot study adaptation of stomachs; 

however, we have maintained cerulein injections for up to 2 weeks by which point wild‐type 

pancreas usually adapts to the injury. Thus, we used the pancreas to determine whether 

mTORC1‐dependent proliferation was required for pancreatic repair. Figure A4.4 shows that 

2‐week cerulein with mTORC1 blocked led to tissue loss relative to cerulein treatment alone. 

 

A4.5 Changes in mTORC1 also characterize human metaplasia 

To determine whether mTORC1 activity is modulated in human disease states, we first examined 

a database of stomach tissues from human patients exhibiting metaplastic response to H. pylori 

infection, previously compiled at Washington University (Lennerz et al, 2010; Radyk et al, 

2017). A representative region from this dataset is shown in Figure 3A. As in mice, 

morphologically normal chief cells showed high pS6. In regions of SPEM, pS6 abundance 

varied. In lesions that had histological features of cells undergoing acute conversion to SPEM 

(what we have previously termed “hybrid SPEM” (Lennerz et al, 2010; Radyk et al, 2017) based 

on examination of a large dataset of SPEM lesions), pS6 levels were high (Figure 3A). In regions 
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where basal cells showed more uniform metaplasia (“established SPEM”), pS6 levels were 

lower. In humans, SPEM is thought to be either transient and rapidly resolve (as in the mouse 

HD‐Tam model) or chronic and persist for decades, involving large patches of the stomach 

(Peterson, 2002). In the chronic case, SPEM is equivalent to the lesion pathologists call chronic 

atrophic gastritis (Rugge et al, 2008). In addition, SPEM is thought to progress to (or predate) 

another, proliferative, pre‐cancerous lesion, intestinal metaplasia (Yoshizawa et al, 2007; Correa 

& Piazuelo, 2012; Spechler et al, 2017) and to increase risk for progression to a cytologically 

atypical lesion, dysplasia, as well as to cancer itself. 

To further clarify the link between mTORC1 activity and metaplastic changes in humans, we 

analyzed pS6 levels in gastric tissue microarrays (Figure A4.7) comprising tissue cores 

representing the following histological phenotypes: normal mucosa, SPEM, IM, dysplasia, and 

gastric adenocarcinoma. pS6 showed consistent, mid‐level expression in nearly all normal 

mucosal samples, in agreement with our smaller sample showing expression of pS6 in normal 

chief cells and with our mouse data (Figure A4.8B). Both cancer and dysplastic lesions showed 

higher average pS6 expression, though there was also more variability in that over a third of such 

lesions showed much stronger expression than normal tissue, while about a third showed lower 

expression (Figure A4.8B). On average, intestinal metaplasia pS6 levels were close to those of 

normal mucosa (Figures A4.8B and A4.9). SPEM lesions showed a clear biphasic pattern with 

the majority like the “established SPEM” with low‐to‐no detectable pS6 (cf. Figures A4.8A and 

A4.9) but with some SPEM lesions having much stronger pS6 (Figures A4.8 and A4.9). 
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Figure A4.7: Patient Demographics. 

 



188 

 

 

Figure A4.8: mTORC1 activity correlates with stages of metaplasia during human gastric 

tumorigenesis.  

A) Immunofluorescent images of human gastric tissue from a patient with intestinal‐type gastric 

adenocarcinoma elsewhere. In this non‐carcinoma containing region of the gastric corpus, 

various states of metaplasia can be observed that reflect mouse injury models. Extensive 

previous work (Lennerz et al, 2010) of a dataset of such resection specimens and of biopsies 

showing SPEM in a non‐cancer setting has indicated likely stages of progression of SPEM from 

essentially normal wherein large, pyramidal‐columnar cells at the base express only chief cell 

markers like pepsinogen C (PGC, green) to “hybrid SPEM” (yellow arrowhead, inset) where 

smaller, cuboidal columnar cells label with varying degrees of PGC and the neck/SPEM cell 

marker GSII (purple) to “established SPEM” characterized by cells that label extensively with 
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GSII and have scant PGC; established SPEM cells are mucus‐stuffed, with peripheral, basal, 

flattened nuclei (blue, DAPI). Higher magnification of each cellular phenotype is shown by 

color‐coded box on right. As parietal cells are lost in SPEM, the remnant one in the yellow 

boxed area (labeled “PC”) is consistent with the normal chief cell phenotype (representative 

individual cells outlined by white dashed lines). Note that there is consistently high expression of 

pS6 (red) throughout the cytoplasm of such normal chief cells but that this pS6 varies in the 

hybrid SPEM lesion and is largely scaled down in the established SPEM region (note pS6 only 

around the nuclei of these cells). Scale bar, 20 μm; pullouts 10 μm. B) Analysis of a human 

gastric tissue microarray with normal, metaplastic, and cancer tissue all represented from patients 

with resections for gastric cancer. Serial tissues sections of the array were stained by 

immunohistochemistry with pS6 or Ki67, counterstained with hematoxylin, and visually graded 

by blinded observers, supervised by a human pathologist, for staining intensity (from score 0 

meaning undetectable to 3 most intense). Top—average histological score is plotted for each 

phenotype. Bottom—the relative fraction of tissue cores with each score is plotted (total scores 

of each type provided at the top of each column. C) Given the biphasic nature of the SPEM 

histological score and given that established SPEM, as observed in panel (A), shows decreased 

pS6, we separated all the SPEM lesions into Ki‐67+ (“proliferative”) and Ki‐67− (“quiescent”) 

and replotted as for panel (B). 
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Figure A4.9: Representative IHC images from human tissue microarray.  

A) Intestinal metaplasia (“IM” indicating the glands to upper left of red dashed line) is generally 

proliferative as evinced by frequent Ki‐67+ cells (left) and is strongly pS6 positive. Most SPEM 

has a quiescent phenotype (glands labeled on “qSPEM” side of panels) characterized by cells 

with abundant mucus, flattened basal nuclei, and a lack of both Ki‐67 and pS6 staining Scale bar, 

200 μm. B) Rare SPEM lesions show cells with cuboidal columnar morphology. These lesions 

show Ki‐67 positivity usually associated with pS6 positivity. Boxed regions are shown at higher 

magnification below. Scale bar, 200 μm; pullout, 50 μm. 

 

SPEM lesions with lower pS6 activity tended to express abundant mucin as well as epitope for 

the SPEM‐identifying lectin GSII (Figure A4.9A); nuclei tended to be flat and eccentric (Figure 

A4.9). pS6‐expressing SPEM cells were more cuboidal columnar, resembling the SPEM cells in 

the acute, proliferative mouse SPEM that resolves in a few days after HD‐Tam. We hypothesized 

that SPEM with increased pS6 represented metaplastic cells that are actively proliferating (like 

D3 HD‐Tam in mice) to repair an injury, whereas the decreased pS6 lesions of established SPEM 

may be mitotically quiescent. Hence, we divided the SPEM lesions into mitotically active 

(“proliferative SPEM”) and inactive (“quiescent SPEM”) based on Ki‐67 staining of the same 

tissue core on another microtome section (Figure A4.9) and then correlated those phenotypes to 

the previously scored pS6 expression for that lesion. Proliferative SPEM was far more likely to 

be associated with pS6 expression, whereas quiescent SPEM was largely negative for pS6 

(Figure A4.8C, P < 0.001 by χ2). Thus, pS6 is low‐moderate in normal, physiologically active 

mucosa and high in most lesions that have increased proliferation (proliferative SPEM, IM, 

dysplasia, cancer). We conclude that metabolic activity correlates with differentiation state and 

recruitment into the cell cycle in humans as well as mice. 
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A4.6 Loss of mTORC1 inhibits cell cycle progression at S‐phase 

Because gastric chief cells respond to injury more synchronously than pancreatic acinar cells, we 

are able to perform molecular analyses based on changes of gene expression. We used this 

approach to determine specifically where the block in cell cycle re‐entry occurs when mTORC1 

activity is inhibited. We analyzed Affymetrix GeneChips of whole gastric corpora ±HD‐Tam 

(3D) ±rapamycin by Gene Set Enrichment Analysis (GSEA) with a combination of both a 

publicly available and custom gene sets. In a control experiment to validate our approach, we 

dissociated gastric epithelial cells from Atp4b‐Cre; ROSA26mTmG mouse stomachs and used 

flow cytometry to isolate parietal cells (GFP+) from other epithelial cells (Tomato+). Expression 

of isolated, amplified RNA applied to GeneChips was analyzed by Partek Genomics Suite, and 

the 94 genes whose expression was enriched ≥ eightfold in parietal cells vs. other epithelial cells 

was computed. As expected, GSEA showed that these PC‐enriched genes were highly 

preferentially expressed in control stomachs vs. HD‐Tam stomachs; the addition of rapamycin 

did not affect this pattern (Figure A4.10). Thus, global gene expression profiling with GSEA can 

detect the loss of parietal cells that epitomizes HD‐Tam‐induced metaplasia and also shows that 

parietal cell loss is independent of mTORC1, consistent with the histological data. In another 

control experiment, we performed GSEA of a published gene set of mature chief cell enriched 

genes (Capoccia et al, 2013) and contrasted HD‐Tam vs. HD‐Tam + rapamycin. There was no 

substantial effect of rapamycin, suggesting that the change in chief cell gene expression induced 

by injury is also not substantially affected by loss of mTORC1 (Figure A4.10). 
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Figure A4.10: Gene Set Enrichment Analyses for Rapamycin + Tamoxifen experiments. 

 

On the other hand, although many transcripts from a previously published gene set of 

SPEM‐associated genes (Nozaki et al, 2008) did not show particular changes when rapamycin 

was administered in HD‐Tam, there was a cluster of genes enriched only when mTORC1 levels 

were normal (Figure A4.10). Injury that causes metaplasia induces both 

wound‐healing‐associated genes (e.g., Clu, Sox9, CD44v) and proliferation‐associated genes. 

Given that rapamycin blocks proliferation specifically in our histological analysis, we next 

examined the effects of rapamycin on the cell cycle using GSEA. Figure A4.11A shows that, 

indeed, rapamycin induces a marked de‐enrichment of cell cycle gene expression in HD‐Tam. 

The block appears specifically at the S‐phase and beyond, as gene sets for G1‐S, S, G2, and 
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G2‐M showed that G1‐S genes were relatively similarly distributed regardless of mTORC1 

activity, whereas genes expressed during the later stages in the cell cycle were skewed toward 

the HD‐Tam alone condition (Figure A4.11B–E). We used a slightly different approach to 

further investigate the interaction of mTORC1 with cell cycle stage by first determining the top 

20 genes skewed most toward the HD‐Tam (vs. vehicle‐treated controls) in each cell cycle stage 

gene set. We then determined the average increased expression of those genes in both HD‐Tam 

and HD‐Tam + rapamycin vs. vehicle controls. Figure 4.11F shows that rapamycin decreased 

expression of the 20 top G1/S‐phase HD‐Tam‐enriched genes by only 16 ± 3%, whereas gene 

expression at other cell cycle stages was inhibited substantially more. Expression of G2/M‐phase 

genes was decreased by 49 ± 3% with rapamycin treatment (P < 0.001, HD‐Tam vs. HD‐Tam + 

rapamycin in G2‐M genes; P < 0.05 for G2‐M vs. G1‐S). 
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Figure A4.11: mTORC1 activity is required predominately for progression through S‐, 

G2‐, and M‐phases during metaplastic induction of proliferation.  

A–E) Microarrays of stomach corpora at D3 ± HD‐Tam ± rapamycin were analyzed using GSEA 

“Difference of Classes” function comparing rapamycin + HD‐Tam (“Tam+Rap”) vs. rapamycin 

vehicle + HD‐Tam (“Tam”). Whitfield Gene Sets specific for either overall cell cycle genes or 

specific phases of cell cycle are depicted. Note that rapamycin correlates with decreased cell 

cycle gene expression that is largely due to decreased S‐G2 phase gene expression. F) The dot 
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plots are of the actual average expression levels (in rapamycin + HD‐Tam and HD‐Tam alone 

Genechips) of the top 20 genes enriched in various Whitfield Gene Sets GSEA comparisons of 

HD‐Tam vs. vehicle controls (both without rapamycin). Expression levels of HD‐Tam and 

HD‐Tam + rapamycin for all genes were normalized to expression level in vehicle control 

Genechip to facilitate plotting and expressed as Log2 such that 1 = 2‐fold enriched vs. control. 

Note that average expression of G1‐phase genes is only somewhat reduced by rapamycin (by 

t‐test of Tam vs. Rap‐Tam, *P < 0.05, **P < 0.01; ***P < 0.001), whereas later phases of the 

cell cycle are substantially reduced (decrease in G2/M‐phase relative to G1‐phase by ANOVA 

with Dunnett's post hoc test is ***P < 0.001). G, H) qRT–PCR of select transcripts. Control 

genes known to be increased or decreased in SPEM (G) and genes associated with specifically 

with G2‐M cell cycle phase (H). Expression was normalized to housekeeping gene Tbp, then 

vehicle control samples for each gene were set at 1, and HD‐Tam and HD‐Tam + rapamycin 

expression was normalized to the control sample (statistics for the entire set of cell cycle genes 

among the different treatments are shown in legend, ***P < 0.001 by ANOVA with Tukey's post 

hoc test; data represented as mean ± SEM of the means from 3 replicates from a total of 3 

independent experiments). 

 

To independently validate the GeneChip findings, we performed qRT–PCR that showed that the 

expected decreases in a parietal cell (Atp4b) transcript and increase in a non‐cell‐cycle SPEM 

transcript (Clu) were not affected by rapamycin (Figure A4.11G). Also matching the GeneChip 

results, the G1 transcript, Ccnd1, was increased similarly regardless of mTORC1 status. As 

expected, a G2/M‐phase transcript cohort was uniformly increased in HD‐Tam but not in 

HD‐Tam + rapamycin (Figure A4.11H). Thus, molecular analysis indicates that inhibition of 

mTORC1 activity does not substantially affect chief cell G1‐phase entry from the quiescent, G0 

state but slows S, G2, and M‐phase progression. BrdU uptake and incorporation into DNA 

occurs during S‐phase; thus, the block in BrdU seen histologically corroborates the molecular 

data suggesting that mTORC1 is required for G1 to S transition. 
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A4.7 Autodegradative machinery is massively upregulated early following 

injury 

We so far have observed that mTORC1 activity is rapidly extinguished within hours of inducing 

injury. Later, as cells re‐enter the cell cycle, mTORC1 is rekindled. Blocking re‐emergence of 

mTORC1 activity inhibits induced proliferation in both stomach and pancreas. In pancreas, 

where repair is entirely dependent on reprogramming, loss of mTORC1 activity blocks tissue 

regeneration. We hypothesized that the scaling down of mature cell architecture to “retool” a cell 

for more efficient proliferation would likely involve activation of lysosomes and autophagic 

machinery. The autodegradation of cellular structure could then liberate key macromolecules 

(nucleotides, amino acids, lipids) that would both stimulate mTORC1 reactivation and provide 

building blocks for replication. Figure A4.12 shows that there is a massive increase of lysosomes 

(by luminal marker Cathepsin D, Figure A4.12A) and autophagosomal puncta (by LC3‐GFP, 

Figure A4.12C) early following injury in gastric chief cells. Figure 5B quantifies a large spike in 

lysosomes, as a percentage of their PGC+ (pepsinogen C; chief cell marker) cell area, by 12–24 h 

of HD‐Tam that begins to resolve by later stages, when many cells have re‐entered the cell cycle. 

Increased lysosomes, autophagosomes, and autolysosomes can also be seen at the ultrastructure 

level (Figures A4.12D and E) on transmission electron microscopy (tEM). tEM analysis shows 

that rER, mitochondria, and secretory granules are all targeted for recycling during these early 

stages. The pancreas also shows an equivalent time course of changes in autodegradative 

machinery, with a spike in lysosome and autophagic puncta 8–24 h following cerulein, followed 

by decreasing, but still elevated levels, at D3 and near baseline levels at the time of maximal 

proliferation and pS6 activity (D5: Figures A4.12F, A4.13). 
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Figure A4.12: Lysosomal and autophagic pathways are upregulated acutely following 

stomach and pancreas injury.  

A) Injured zymogenic cells upregulate Cathepsin D+ puncta (green) 24 h follow HD tamoxifen. 

Red, chief cells (GIF); blue, nuclei (DAPI). Boxed areas are shown at higher magnification at 

right of each panel. Scale bars 20 μm; 10 μm for pullouts. B) Quantification of Cathepsin D+ 

area in chief cells at various stages following injury. **P < 0.01; ***P < 0.001 by ANOVA with 

Dunnett's post hoc test. Each datapoint is an individual counted cell. C) LC3 puncta (detected by 

GFP fluorescence in Lc3‐gfp mice) shows increased autophagosomal puncta paralleling 

Cathepsin D+ results. Green, LC3‐GFP; red, GIF; blue, DAPI. Boxed areas are shown at higher 

magnification and differing fluorescence channels in insets. Scale bars 20 μm. D) Transmission 

electron micrographs of a normal zymogenic cell. Yellow arrowhead indicates a rare lysosome 

seen during homeostatic conditions. E) Transmission electron micrographs of corpus units 24 h 

follow tamoxifen injury. Various selected pullouts highlight double membrane‐bound structures 

attacking cytosolic components in reprogramming chief cells. F) Acinar cells in pancreas have 

increased LC3‐GFP+ puncta following acute injury with cerulein. Green, LC3‐GFP; red, GIF; 

blue, DAPI. Scale bar 20 μm.
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Figure A4.13: Lysosomal activity is raised in the pancreas in early injury. 

 

A4.8 Autodegradative machinery is required for normal progression to later 

stages 

We next sought to address whether autodegradative machinery activation is both upstream of and 

required for metaplasia formation and proliferation. To do this, we used mice defective in 

lysosomal hydrolase trafficking that have been shown previously to have defects in 

autodegradative function specifically in exocrine secretory cells like chief and acinar cells 

(Boonen et al, 2011). Gnptab−/− mice are deficient in an enzyme required for the addition of 

mannose‐6‐phosphate to lysosomal enzymes to ensure their proper trafficking. We treated 

Gnptab−/− and littermate controls (Gnptab−/+ and Gnptab+/+) with HD‐Tam or cerulein. HD‐Tam 

treatment in Gnptab−/− mice caused the expected loss of parietal cells; however, chief cell 

reprogramming was dramatically compromised (Figure A4.14). Most units did not show loss of 

large chief cells with eccentric nuclei at all (red arrowhead, Figure A4.14), suggesting 

reprogramming did not occur, whereas some gastric units showed complete loss of the base zone 

where chief cells normally reside (green arrowhead, Figure A4.14), indicating chief cells were 

aberrantly lost instead of reprogrammed. Rarer gastric units seemed to complete the 
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reprogramming (yellow arrowhead, Fiure A4.14). In pancreas, we detected almost no ADM in 

Gnptab−/− mice (Figure A4.14) by D5. Rather, cells remained in an aberrant acinar morphology 

with considerable loss of eosinophilic cytoplasm but no decrease in size. By 2 weeks, whereas 

wild‐type controls had largely adapted to the cerulein injury, in Gnptab−/− mice, the exocrine 

pancreas comprised only scattered ducts and SOX9− acinar cells, still organized in typical 

lobules. Cytologically, these remnant cells were characterized by generous pale cytoplasms 

ranging from foamy to hyaline and lacking nearly all distinguishing features. 
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Figure A4.14: Histological appearance of Gnptab−/− stomach and pancreas tissue at injury 

time point.  

A) Representative hematoxylin and eosin counterstained images of Gnptab+/− and Gnptab−/− 

stomach tissue. Gnptab−/− chief cell cytoplasms have a hypertrophic, frothy appearance compared 

to control zymogenic cells. Loss of parietal cells (fried‐egg appearing eosinophilic cells) 
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following HD‐Tam is not affected by loss of GNPTAB; however, the base zones in Gnptab−/− 

mice at day 3 HD‐Tam are usually resistant to dedifferentiation (red arrowheads) with large, 

frothy chief cells remaining largely non‐reprogrammed. Another, less common phenotype is that 

all chief cells are lost such that most of the base of the unit disappears (green arrowheads). Rare 

units partially undergo morphological metaplastic changes, though usually those are also 

associated with loss of basal cells (yellow arrowheads). Higher magnification views are to right 

of each panel, with white bracket delineating particular region of interest in Gnptab−/− stomach 

Scale bar 50 μm; pullout, 25 μm. B) Representative hematoxylin and eosin counterstained 

images of Gnptab−/+ and Gnptab−/− pancreas. Similar to the stomach zymogenic cells, pancreatic 

acinar cells also have a hypertrophic, frothy appearance. Whereas control samples treated with 

cerulein show diffuse, asynchronous acinar‐to‐ductal metaplasia, Gnptab−/− mice have acinar 

cells that simply become less eosinophilic and foamy over time without undergoing ADM. By 2 

weeks, wild‐type pancreas has largely adapted to cerulein, whereas Gnptab−/− pancreas 

parenchyma comprises only lobules of excessively pale (hyaline), frothy acinar cells and 

scattered reactive ducts. Scale bar 50 μm; pullout, 25 μm. 

 

We next examined the molecular phenotype of the block in Gnptab−/− mice. In control stomachs 

in response to injury, reprogramming cells in the base showed the expected abundant increase in 

metaplastic genes like Sox9 (Figure A4.15A) and the epitope for GSII (Figure A4.15C). 

Proliferation in the base of the unit, where chief cells were reprogramming, was nearly 

equivalent to the rate of proliferation in the normal stem cell zone in the neck (Figure A4.15B 

and D). The bases of gastric units in Gnptab−/− mice were markedly compromised in both 

metaplastic changes and proliferation (Figure A4.15A–D). In Gnptab−/− mice, chief cells in the 

base remained both BrdU‐ and SOX9‐negative (Figure A4.15E and F). They also failed to 

reactivate mTORC1, as pS6 in these mice was largely not detectable in the base (Figure A4.16). 
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Figure A4.15: Lysosomal function is required for metaplasia‐associated gene expression 

and increased proliferation.  
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A) Immunohistochemical analysis of SOX9 expression at peak SPEM stages following gastric 

injury. In control and Gnptab−/+ mice, SOX9 becomes expressed in reprogramming chief cells in 

the bases of the corpus at SPEM stages, but not in Gnptab−/− mice. Color‐coded boxes shown at 

higher magnification shown at right for panels (A and B). Scale bar, 50 μm; 25 μm pullout. B) 

S‐phase, cell cycle marker BrdU is incorporated throughout the gastric corpus unit at peak SPEM 

stages in control WT or Gnptab−/+ mice. In Gnptab−/− mice, the gastric unit bases, where 

proliferation is recruited from chief cells, show a marked relative deficit in BrdU+ cells. Scale 

bar, 50 μm; 25 μm pullout. C) Immunofluorescence analysis of injured gastric tissue from 

Gnptab−/− and control mice. GIF/GSII co‐expression is the hallmark of SPEM. In control mice, 

the vast majority of corpus unit bases are converted to GIF/GSII co‐expression state. In 

Gnptab−/− mice, bases are resistant to conversion and remain as GIF single positive cells. Red, 

GIF; green, GSII. Scale bar, 20 μm. D) Quantification of randomly sampled 20× fields stained 

with BrdU. Distribution of BrdU in neck region vs. base region (note total = 100%) is plotted. 

Note control mice have equivalent amounts of BrdU‐labeled cells in the neck and base (˜50% in 

each), whereas Gnptab−/− mice BrdU‐labeled cells substantially shifted away from the 

paligenotic base of units and into the isthmal‐neck region, where the constitutive stem cell is 

active. E) Quantification of randomly sampled 20× fields stained with BrdU in control and 

Gnptab−/− mice. Gnptab−/− mice have significantly more BrdU‐negative base cells compared to 

control animals. F) Quantification of control and Gnptab−/− corpus units stained for SOX9 scored 

for the amount of SOX9‐negative chief cells per unit at peak SPEM stages. Gnptab−/− mice have 

significantly more SOX9‐negative bases compared to control animals. G) Representative 

immunofluorescence images of injured control and Gnptab−/− pancreatic tissue at cerulein 5 days. 

Red, amylase; green, BrdU; blue, DAPI. White arrows show proliferating, amylase+ 

acinar‐derived cells (note these are not seen in Gnptab−/− mice). Yellow arrowheads show 

proliferating stromal cells that are not affected by loss of GNPTAB. Scale bar, 20 μm. H) 

Representative immunohistochemistry of SOX9 stained control and Gnptab−/− pancreatic tissue 

at cerulein 5 days. Gnptab−/− tissue has reduced metaplastic phenotype and reduced expression of 

SOX9. Scale bar, 50 μm. I) Quantification of amylase+BrdU+ cells of control and Gnptab−/− 

tissue in randomly sampled 20× fields at 5 days of cerulein injury. 

Data information: **P < 0.01; ***P < 0.001 by t‐test with unequal variance; data represented as 

mean ± SEM of the means from 10 low‐power fields each from 3 independent experiments. 
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Figure A4.16: Lysosomal activity is required to re‐activate mTORC1 following HD 

tamoxifen injury.  

A) At peak metaplasia stages in Gnptab−/+ tissue, pS6 is re‐expressed throughout the stomach 

epithelium, including intense staining within the pit and metaplastic base. Scale bars: 50 μm; 

pullout, 25 μm. B) In Gnptab−/− tissue, pS6 is not reactivated in the base, indicating lysosomal 

activity is required for mTORC1 re‐activation at later stages following injury. Boxed regions are 

shown at higher magnification at right with a representative base (in which pS6 remains inactive 

without lysosomal activity) outlined by dotted line. Lysosomal activity appears dispensable for 

pit cells (at top of gastric unit) mTORC1 activity. Scale bars: 50 μm; pullout, 25 μm. 
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In the pancreas, there was a similar defect in both BrdU (Figure A4.15G and I) and Sox9 (Figure 

A4.15H). The remnant acinar cells that remained in Gnptab−/− mice following 2 weeks of 

cerulein treatment expressed E‐cadherin and low levels of amylase but were not positive for 

other mature acinar nuclear markers like GATA4 or metaplasia markers like CK8/18 (Figure 

4.17). 

 

Figure A4.17: Gnptab−/− acinar cells maintain mature markers following injury. 

 

Finally, to determine whether the dropout of gastric bases was due to increased cell death in the 

absence of lysosomal hydrolase activity, we examined tissue for cleaved caspase 3. In wild‐type 

mice (either with or without rapamycin), we did not detect substantial apoptotic death of the 

chief cells, consistent with our previous observations that death in HD‐Tam is essentially 

confined to parietal cells (Huh et al, 2012; Radyk et al, 2017; Figure A4.1). In Gnptab−/− mice, 

however, we frequently observed multiple cells in some bases of gastric units that were 

undergoing apoptosis (Figure 4.18). Thus, in stomach, aberrant autodegradative function leads 

either to stalling of the chief cell reprogramming process or cell death. In pancreas, we observed 
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a pattern of scattered apoptosis of acinar cells in wild‐type mice ±rapamycin following cerulein 

treatment. Loss of GNPTAB did not seem to affect this basal rate of death, which is consistent 

with the survival of many acinar cell remnants out to 2 weeks, as discussed above. 

 

Figure A4.18: Loss of GNPTAB increases apoptosis of chief cells following injury. 

 

A4.9 Discussion 

There has been a recent burgeoning of examples of cellular plasticity in tissue in response to 

injury, not to mention a growing, already large literature on in vitro systems for reprogramming 

cells back to progenitors. The instances of such plasticity span numerous species and nearly all 
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tissues. Despite the breadth of examples of cellular reprogramming, studies focusing on the 

specific molecular mechanisms responsible for the process are still relatively scant. This is 

particularly true in studies of cells in tissue, likely because investigators have focused more on 

the outcome of cellular reprogramming—regeneration or tumorigenesis—than on the stepwise 

mechanisms differentiated cells use to contribute to those outcomes. Here, we have speculated 

that there could be a shared cellular program that governs the many diverse examples of 

differentiated cells changing their fate to facilitate repair. There have been many terms that either 

focus on the outcome of the program or are overly broad: “dedifferentiation”, 

“transdifferentiation”, “reversion”, “reprogramming”. We now propose “paligenosis” as a 

specific term describing the cellular process differentiated cells use to re‐acquire regenerative 

capacity. We highlight that paligenosis may be a conserved cellular process with shared 

molecular and cellular regulation akin to other basic cellular processes like mitosis and 

apoptosis. 

To support our assertion that there may be a shared program for recruiting differentiated cells, 

we have analyzed the cellular and molecular changes that occur during injury‐induced 

reprogramming in two distinct organs. Upon injury, both the stomach and pancreas have the 

capacity to repair tissue damage through the recruitment of fully differentiated cells into a less 

differentiated, proliferative state to replenish cell numbers. This pattern of change in cell 

phenotype is known to pathologists as metaplasia. We find that the cellular and molecular 

changes that characterize cells undergoing such metaplastic injury response in either stomach or 

pancreas are remarkably similar. Specifically, we found that acutely following injury, 

autodegradative pathways increase alongside a decrease in mTORC1 activity (Figure A4.19). As 

the injury progresses, we observed the induction of genes that are known to occur during 
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metaplasia followed by the rise of mTORC1 activity and increased proliferation (Figure A4.19). 

A similar pattern of changes in mTORC1 activity relative to metaplasia and the differentiated vs. 

proliferative phenotype was observed in human patients. We found that mTORC1 activity was 

specifically required for progression through S‐phase. Previous literature has also shown that 

mTORC1 activity is critical for S‐phase progression of cancer cells following DNA damage, as 

mTORC1 is needed to generate pyrimidines in a nutrient‐poor environment (Robitaille et al, 

2013; Silvera et al, 2017; Zhou et al, 2017). mTORC1 activation is also needed for yeast to pass 

through G1 into S‐phase as they emerge from quiescence (Dhawan & Laxman, 2015; 

Moreno‐Torres et al, 2015). Using an animal model of lysosomal dysfunction, we uncovered that 

normal lysosomal function after injury is required for cell phenotype and gene expression 

changes associated with metaplasia. In pancreas, where constitutive stem cells are not available 

for regeneration, loss of either autodegradative function or mTORC1 activity compromised 

eventual organ repair. 

 

Figure A4.19: Schematic model of shared program: paligenosis. 



209 

 

 Data presented in the paper suggest that differentiated cells revert to a regenerative/proliferative 

state via a program involving stepwise progression through three stages. Progression can be 

blocked at intervening checkpoints. The potential context‐independent nature of this sequence of 

structural‐energetic changes suggests that it is available to differentiated cells in multiple organs 

and species. We have termed this general program of differentiated cells acquiring regenerative 

potential “paligenosis”. 

 

Recent advances in the understanding of how mTORC1 is controlled have described a role for 

the lysosome as an activator of the pathway through the release of nutrients like key amino acids 

(Zoncu et al, 2011). Thus, our current working model is that due to injury‐induced stress, 

autodegradative pathways are upregulated, and flux increases. The activation of autodegradative 

pathways appears to act in parallel with loss of the mature gene regulatory network, as forcing 

expression of key mature‐cell‐promoting transcription factors like MIST1 (BHLHA15) impairs 

the injury/repair process (Direnzo et al, 2012; Lo et al, 2017). MIST1 controls a cassette of genes 

that help direct a cell's energy toward secretion and away from lysosomal activation and 

autophagy (Mills & Taghert, 2012). We reason, as did Adami over a century ago, that to convert 

from the differentiated state (structurally complex, energetically active) to the replicative state 

(structurally simple, energetically active), cellular energy use must be repurposed as an 

autodegradative program is activated to convert differentiated cell structure into building blocks 

for replication. The release of nutrients through the lysosome is sensed in cells during the 

autodegradative phase, resulting in reactivation of mTORC1, which, once the cell has reached 

sufficient energy levels, subsequently facilitates cell cycle progression and growth to replace 

cells lost during the injury. 

Pancreatic adenocarcinoma and—to a lesser extent—gastric adenocarcinoma are commonly 

driven by oncogenic mutations in Kras. In mouse models in both the pancreas (Hingorani et al, 

2005) and stomach (Choi et al, 2016), KrasG12D mutations, in concert with tissue inflammation, 
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promote changes in gene expression and cell phenotypes resembling injury‐induced metaplasia. 

In the pancreas, genetically disabling autophagy in the context of K‐Ras mutations prevents 

K‐Ras from driving high‐grade lesions (Rosenfeldt et al, 2013). Furthermore, cells unable to 

phosphorylate S6 in the context of activating K‐Ras mutations also exhibit less pancreatic cancer 

progression (Khalaileh et al, 2013). A similar critical role for mTORC1 downstream of another 

key driver oncogene pathway, Wnt activation mediated by APC mutation, has been described in 

intestinal carcinogenesis (Morran et al, 2014). Thus, tumorigenesis in diverse tissues may also 

involve modulating lysosomal activity and mTORC1, similar to what we observe in our injury 

models here. Other pathways downstream of K‐Ras, such as PI3K/Rac1 signaling (Heid et al, 

2011; Wu et al, 2014), also play similar roles in injury‐induced metaplasia. 

If there truly is a shared cellular program, paligenosis, underlying the process of recruiting 

mature cells to become regenerative cells, we would expect the general features we have 

described here in stomach and pancreas to be recapitulated in many other tissues and species. 

Obviously, it will be important to conduct new studies in other systems to begin to support that 

assertion; however, we can at this point re‐examine the extant literature to determine whether 

roles for lysosomes/autophagy and/or mTORC1 in the process of cellular reprogramming to a 

regenerative state have previously been described. One such previous study, using a different 

injury protocol, with the endpoint to determine the role of mTORC1 and autophagy in severity of 

pancreatitis, similarly showed a pattern of early autodegradation followed by mTORC1 

activation (Hu et al, 2015). The authors also found that rapamycin worsened severity of 

pancreatitis. In liver, it has long been known that the earliest phase of hepatocyte response to 

partial hepatectomy is massive activation of autophagy/lysosomes (Becker & Lane, 1965). 

mTORC1 is required for the later stages of the process, when proliferation is maximal, consistent 
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with observations we make in the current manuscript (Jiang et al, 2001; Nelsen et al, 2003; 

Buitrago‐Molina et al, 2009; Espeillac et al, 2011). In kidney, the reprogramming process 

involves mTORC1 (Kato et al, 2012), and we show here that mTORC1 activity is increased 

specifically in the tubular cells, which are the cell population called back into the cell cycle to 

regenerate damaged tissue. To our knowledge, lysosomes/autophagy has not been examined in 

regenerating kidney. In mature glial cells that dedifferentiate following axonal injury, activation 

of autophagy/lysosomes is a well‐established early event (Jessen & Mirsky, 2016). To our 

knowledge, mTORC1 activity has not been examined in the process. Furthermore, in tissue 

culture cellular reprogramming models to generate induced pluripotent stem cells, there is an 

emerging literature that an early autophagy phase is followed eventually by mTORC1 activation. 

Inhibition of either autophagy or prolonged inhibition of mTORC1 reduces reprogramming 

efficiency (He et al, 2012; Wang et al, 2013; Wu et al, 2015). Hence, the stages and checkpoints 

appear to be the same as the ones we examine in the current manuscript. 

Thus, there are numerous reports indicating that the pattern we show here systematically of 

autodegradation first, then mTORC1 activation may be universal. Moreover, teleologically, it 

makes sense that a mature cell would first recycle cellular components required for physiological 

function to use them as substrates for subsequent synthesis of components needed for 

proliferation. In organs like the vertebrate pancreas or liver, where there are no constitutively 

active stem cells, repair would likely depend in large part on paligenosis. In tissues with 

constitutive stem cells, like stomach and intestines, the tissues would have the choice of 

regenerating with either constitutive stem cells or paligenotic cells, depending potentially on 

type, extent, and location of injury. 
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Not all differentiated cells are likely to be able to undergo paligenosis. In the stomach, for 

example, we have never observed this phenomenon in mature parietal cells (Huh et al, 2012; 

Mills & Sansom, 2015). Cells that are constitutively undifferentiated and replicative like those of 

the isthmus of the stomach or LGR5+ crypt‐base columnar cells should not need any stage of 

paligenosis (Figure A4.19). They may acquire the building block nucleotides and amino acids 

from the blood and/or extracellular environment, given that, by definition, their lack of 

differentiation means they contain limited non‐nuclear components to recycle. Other cells, such 

as mucous neck cells in the stomach or +4 cells in the intestine (van Es et al, 2012; Roth et al, 

2012; Buczacki et al, 2013), may be able to respond to injury but are less well differentiated and 

thus may be able to skip the autodegradative phase and go directly to the activating mTORC1 

and cell division phase of paligenosis. 

Paligenosis may be beneficial for its potential to provide lifelong tissue repair in adult organs, 

but this capacity also seems inherently tied to increased risk for tumorigenesis. Chronic injury of 

the type that repetitively induces paligenotic/metaplastic events has long been known to increase 

risk for acquisition of mutations and progression to neoplasm. We have proposed that the reason 

that risk increases with age is that cycles of paligenosis and subsequent redifferentiation allow 

accumulation of mutations that may be stored in long‐lived, differentiated cells. Eventually, a 

critical mutation may be unmasked during paligenosis, and a clone of cells that is unable to 

redifferentiate arises. We have termed this the “cyclical hit” model of tumorigenesis (Mills & 

Sansom, 2015; Saenz & Mills, 2018). 

There are numerous questions that our current study prompts. What molecular events underlie 

the competence to pass through each stage of paligenosis? What is the relationship between 
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paligenosis and chronic injury, and what causes the increased risk for cancer? Why are some 

cells able to undergo paligenosis, whereas others are not? We expect that the framework of 

sequential phases of paligenosis that we introduce here, along with the potential checkpoints that 

serve as molecular barriers between each stage of the process, can serve as a starting point for 

future questions. 

 

A4.10 Materials and Methods 

Animal studies and reagents 

All experiments using animals followed protocols were approved by the Washington University 

School of Medicine Animal Studies Committee. WT C57BL/6 mice were purchased from 

Jackson Laboratories (Bar Harbor, ME). Tg(Atp4b‐cre)1Jig/JcmiJ (Atp4b‐Cre) (Syder et al, 

2004), Gt(ROSA)26Sortm4(ACTB‐tdTomato,‐EGFP)Luo/J (ROSA26mtmg) (Muzumdar et al, 

2007), Gnptab (Gelfman et al, 2007),and LC3‐GFP (Mizushima et al, 2004) mice were 

previously described. Gnptab mice were a kind gift from Dr. Stuart Kornfeld of Washington 

University. Tamoxifen (5 mg/20 g body weight; Toronto Research Chemicals) was injected 

intraperitoneally (IP) daily for 2–3 days to induce maximal gastric injury (Huh et al, 2012; Saenz 

et al, 2016). Tamoxifen was prepared by first dispersing in 100% ethanol by sonication and then 

emulsifying in sunflower oil (Sigma‐Aldrich) 9:1 (oil:ethanol). Pancreatitis was induced by 6 

hourly IP injections of 50 μg/kg (in 0.9% saline) cerulein (Sigma‐Aldrich) given every other day 

for up to 2 weeks. Mice were sacrificed 24 h after the final cerulein injection. Rapamycin (60 

μg/20 g body weight; LC Laboratories) was injected IP in 0.25% Tween‐20, 0.25% polyethylene 

glycol in PBS for 3–7 days prior to starting and throughout injury time course. Tunicamycin 
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(Carlisle et al, 2014) and two‐thirds partial hepatectomy (Blanc et al, 2010) injuries were 

performed as previously described. Mice were given an IP injection containing 

5‐bromo‐2′‐deoxyuridine (BrdU; 120 mg/kg) and 5‐fluoro‐2′‐deoxyuridine (12 mg/kg) in sterile 

water 90 min before sacrifice for all BrdU labeling experiments. 

For parietal cell isolation, stomachs were harvested and washed several times with PBS. The 

forestomach and antrum were carefully removed and the remaining corpus minced with a razor 

blade. The tissue was mechanically dissociated using a 50 μm Medicon (Beckman) for two 30‐s 

pulses. Chunks of tissue were further dissociated by incubating in 10 ml HBSS with 5 mM 

EDTA and 1 mM DTT with vigorous shaking for 1 h at 37°C, and then, the solution was run 

through a 100‐μm filter. Single cells were allowed to rest at 37°C, while filtered chunks were 

incubated in 10 ml RPMI 1640 with 5% BSA (Sigma) and 1.5 mg/ml Dispase II (Stem Cell 

Technologies) with vigorous shaking for 1.5 h at 37°C and then filtered again. Dissociated cells 

were pelleted and washed with cold HBSS three times and then resuspended in PBS with 1% 

BSA and 5 mM EDTA. Cells were sorted into a parietal cell population (GFP) and all remaining 

cells (tdTomato) using a MoFlo FACS machine (Dako/Cytomation) 

Imaging and tissue analysis 

Mouse tissues were immediately excised and flushed with phosphate‐buffered saline and fixed 

overnight in 4% paraformaldehyde in PBS. Tissues were washed, embedded in 3% agar, and 

then underwent routine paraffin processing. Sections prepared for immunofluorescence or 

immunohistochemistry underwent standard deparaffinization and rehydration protocols, were 

blocked in 5% normal serum, and left overnight with primary antibodies. Sections were washed 

in phosphate‐buffered saline and incubated for 1 h with secondary antibodies and then washed 
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prior to mounting. For antibodies used in this study, see Appendix Table S2. 

Immunofluorescence images were taken on a Zeiss Apotome or LSM710 confocal (Zeiss). 

Bright field images were taken on a Nanozoomer (Hamamatsu) whole slide scanner or DP70 

microscope (Olympus). Counting of stomach cell populations and proliferation was done as 

previously described (Burclaff et al, 2017), except for analysis of Gnptab−/− mice. To account 

for frequent gland loss in the base of these mice, a different approach was taken. For chief cell 

quantification (SOX9+ and BrdU+), 10 random, 20× fields were chosen in three Gnptab−/− and 

three control animals, and chief cells scored in slides from SOX9 or BrdU immunostained 

sections. For BrdU, distribution, the 10 fields were further subdivided into two rectangular 

regions: a basal one 100 μm perpendicular and 450 μm parallel to the muscularis mucosa and a 

region of the same size immediately adjacent and encompassing the neck of the gastric unit. All 

BrdU+ cells were scored and the proportion in each zone calculated. Quantification of 

proliferation in the pancreas was done by counting 10 randomly sampled whole 20× fields per 

condition. Cathepsin D+ area was calculated by generating a region of interest around PGC+ 

zymogenic cell cytoplasms and using particle counting analysis in ImageJ (NIH) to calculate 

Cathepsin D+ area relative to total cytoplasmic area. Tissue preparation and imaging for electron 

microscopy was done as previously described (Ramsey et al, 2007). 

Human tissue studies 

Human gastric pathological tissue specimens were obtained with approval by the Institutional 

Review Board of Washington University School of Medicine. Figure 3A is a representative 

image from a qualitative analysis of 44 separate curated gastric clinical samples that have been 

previously described (Lennerz et al, 2010; Radyk et al, 2017). The study of tissue microarray 

cases included in this paper was also approved by the China Medical University First Hospital 
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Institutional Review Board and Ethics Committee. This patient cohort was initially treated at the 

China First Medical University, and routine standard of care specimens was obtained from 

patients treated between 2005 and 2009. Tumor, metaplastic, and uninvolved normal tissue from 

each patient was formalin‐fixed and paraffin‐embedded. Staining was scored on the following 

scale: 0, no staining; 1, minimal staining; 2, moderate to strong staining in at least 20% of cells; 

3, strong staining in at least 50% of cells. The scoring system was designed, and independently 

verified, by a human pathologist. 

Bioinformatics, microarray, qRT–PCR, and statistical analyses 

For qRT–PCR and microarray analyses of mouse stomach ±rapamycin, two independent 

experiments were run and a total of two to three separate mice and corresponding microarrays 

were generated for each condition. All mice were harvested 3 days after first injection and 

treated as per protocol in (Figure A4.1). Conditions were Veh‐Veh (rapamycin vehicle regimen + 

3 days of tamoxifen vehicle), Veh‐Tam (3 days of rapamycin vehicle regimen + 3 days of 

HD‐Tam), Rap‐Veh (rapamycin regimen, 3 days of tamoxifen vehicle); Rap‐Tam (rapamycin 

regimen + 3 days of HD‐Tam). RNA for microarray and qRT–PCR analysis was isolated as 

previously described (Lo et al, 2017). For microarray, samples were processed and hybridized to 

Affymetrix Mouse Gene 2.0 ST per the manufacturer's instructions by the Washington 

University Genome Technology Access Core (GTAC). GeneChips were analyzed with Partek 

Genomic Suite 6.6 (Partek, Inc.) analysis software using default settings (Lo et al, 2017). 

Mapping to Gene Symbols was done either via GSEA (Subramanian et al, 2005) or GenePattern 

software (Reich et al, 2006). GSEA was done using default 3.0 settings. GMX files were made 

using previously published microarray data in the case of laser‐capture micro‐dissected chief 
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cells (Capoccia et al, 2013), generated de novo or acquired from GSEA molecular signatures 

database. For the list of parietal cell‐specific genes generated de novo for the current manuscript, 

flow cytometry was used to sort parietal cells and control cells into 500 μl RNA protect reagent 

(Qiagen). RNA was isolated using the RNeasy Micro Kit (Qiagen) following the manufacturer's 

instructions. Mouse Gene 2.0 ST Array (Affymetrix) was used to analyze gene expression, and 

the gene set whose expression was enhanced at least eightfold (96 separate genes) in parietal 

cells vs. control was determined by Partek. For primers used in qRT–PCR, see Appendix Table 

S3. Statistics for cell counts and qRT–PCR were done by Student's t‐test (in the case of pair‐wise 

analysis of significance) or ANOVA (if multiple conditions were compared). For determining 

statistically significant differences among various conditions in ANOVA, the post hoc tests were 

either Tukey's (for multiple crosswise comparisons of means) or Dunnett's (for comparisons of 

multiple experimental samples to a single control). For the tissue microarray, a χ2 analysis was 

performed. 

Western blot 

Approximately 100 mg mouse corpus stomach tissue was lysed in urea buffer (8 M urea, 1% 

SDS, 150 mM Tris–HCl, pH = 7.0) with 1× protease/phosphatase inhibitor cocktail (Thermo). 

Protein concentration was determined using the DC protein assay (Bio‐Rad). Protein (30 μg) was 

separated using a 10% SDS–PAGE gel and transferred to PVDF membranes (Millipore). 

Membranes were incubated overnight at 4°C with Rabbit polyclonal pS6 240/244 or 235/236 

(1:1,000 diluted, CST) and Rabbit polyclonal beta‐tubulin antibody (1:1,000 diluted, CST) and 

then incubated with infrared fluorescent dye‐conjugated secondary antibodies (LI‐COR 

Biosciences). Protein signal intensities were normalized against a tubulin loading control for 
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each sample. Fluorescent intensity values were determined and quantified on Western blots at 

non‐saturating exposures using the ImageJ software. Statistical analysis with both antibodies was 

done using ANOVA with a post hoc Dunnett's test. 

Data availability 

All analyzed microarray data have been deposited in NCBI GEO under accession GSE103570. 
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