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ABSTRACT OF THE DISSERTATION 

Characterizing the Humoral Response to Flavivirus Infection 

by 

Estefanía Fernández  

Doctor of Philosophy in Biology and Biomedical Sciences 

Immunology 

Washington University in St. Louis, 2019 

Professor Michael S. Diamond, Chairperson 

Flaviviruses are positive (+) sense, single-stranded RNA viruses of the Flaviviridae family 

that are transmitted by mosquitoes. For our studies, we focused on Zika virus (ZIKV) and Japanese 

encephalitis virus (JEV). Most human infections with ZIKV historically resulted in a mild self-

limiting febrile illness. However, since 2013, a worldwide spread and increase in ZIKV infections 

has been observed. Notably, ZIKV has been associated with autoimmune ascending paralysis 

(Guillain-Barré Syndrome) and ophthalmologic effects in adults and intrauterine growth restriction 

and microcephaly in developing fetuses. Current vaccine efforts utilize technologies implemented 

for related flaviviruses (yellow fever virus (YFV), Dengue virus (DENV), and JEV) including 

subunit-based, chemically inactivated, and live-attenuated vaccines. Furthermore, co-circulation 

of flaviviruses, such as DENV and ZIKV in regions of South America, make it desirable to 

generate a vaccine that protects against both.  

JEV infections are usually clinically asymptomatic or result in a mild self-limiting febrile 

illness. However, disseminated infection and viral penetration of the blood-brain barrier into the 

central nervous system results in meningitis and encephalitis, which are associated with high 
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morbidity and mortality. Children are especially vulnerable to neuroinvasion due to lack of prior 

immunity and the relative immaturity of their immune responses. Although vaccination programs 

in endemic countries have decreased the incidence of disease, existing vaccines have limitations 

including multiple dose requirements and reactogenicity. Finally, a major issue in vaccine efficacy 

is the derivation from genotype III (GIII) strains, the concurrent diversity of JEV worldwide, and 

the scarcity of efficacy testing across multiple genotypes. Currently, there are five genotypes of 

JEV that encompass approximately 100 unique strains. In addition, the dominant genotypes vary 

by country and are not static over time.  

We are interested in understanding the immunologic restriction of flavivirus infection by 

characterizing the interaction between viruses and the humoral response. We identified a panel of 

mouse and human derived anti-ZIKV monoclonal mAbs and found that ZIKV specific mAbs 

strongly neutralize multiple strains of ZIKV of Asian and African lineages compared to mAbs that 

recognize a cross-reactive determinant. Additionally, we identified a novel conformational inter-

dimer epitope that when bound, results in significant reduction in in vitro infection and in vivo 

protection. We tested the prophylactic and therapeutic efficacy of the strongest neutralizing mAbs 

in adult male mice for lethality and pregnant female mice for transplacental protection of fetuses. 

We also tested a panel of anti-DENV mAbs derived from naturally infected patients. We confirmed 

that EDE1 mAbs, which have stronger virus binding in the absence of glycosylation compared to 

EDE2 mAbs, are more potent neutralizers of multiple ZIKV strains. We demonstrated that viral 

seeding of immune privileged sites, such as testis and fetus, occurs by the second day post-

infection and mAb administration after this may reduce but not eliminate viral burden and effects 

in the acute and persistent stages of infection. For JEV, we generated a panel of mouse and human 

anti-JEV mAbs. We identified a subset of domain I and domain III specific mAbs that can 
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neutralize JEV strains representative of four different genotypes. Subsequent in vivo testing 

demonstrated a broad range of effective doses that protected prior to and following infection with 

highly virulent strains of JEV representative of multiple genotypes. We anticipate that further 

understanding of epitope specificity for neutralization and protection is essential for understanding 

the efficacy of current (for JEV) and future (for ZIKV) vaccines to multiple strains and genotypes. 

Moreover, this will improve our understanding of correlates of protection of flavivirus vaccines 

which remain poorly understood, apart from YFV. 
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1.1 Overview of Flaviviruses  

Flaviviruses, which form a genus in the Flaviviridae, include mosquito and tick-transmitted 

arthropod-borne viruses. Flaviviruses with significant impact on human health and disease 

include dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever virus 

(YFV), tick-borne encephalitis virus (TBEV), and Japanese encephalitis virus (JEV) 1–3. 

Historically, Flaviviruses are categorized by different vector transmission or sequence 

relatedness 4,5. By vector analysis, viruses are classified based on tick vectors, mosquito 

vectors, and those not transmitted by arthropod vectors 4. Sequencing analysis of structural 

(envelope protein) and non-structural proteins (NS3 and NS5) have found the viruses 

distribute similarly between the clades distinguished (Figure 1.1) 5. Additionally, the clades 

identified by sequencing analysis correspond to those observed by vector transmission 4.   

1.2 Flavivirus virology and structure 

Flavivirus genomes are organized as one open reading frame (ORF) encoding a single 

polyprotein that is co- and post-translationally cleaved into three structural (capsid (C), pre-

membrane/membrane (prM/M), and envelope (E)) and seven non- structural (NS) proteins by 

host and viral proteases. The NS proteins are involved in viral replication and immune evasion, 

among other functions 6–10.  

Multiple copies of C protein bind a single copy of viral RNA and forms the nucleocapsid 

(NC) that is contained within an endoplasmic reticulum (ER)-derived membrane 11,12. PrM has 

two C-terminal transmembrane helices that anchor to the ER surface and assists in E protein 

processing in the ER, folding during maturation, and prevents premature activation that may 

otherwise occur at acidic pH 13,14.   
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Pulse-chase data of TBEV glycoproteins indicates that prM and E form a heterodimeric 

complex soon after synthesis, and that prM is necessary for proper E protein folding 15. In the 

immature state, prM and E form 60 icosahedral spikes that protrude from the membrane 

surface and result in a slightly larger viral particle, ~600 Å 16. The spikes are made up of 

trimers of prM-E where prM functions as a cap for the DII-FL at the tip of the E protein16. 

Maturation during transit through the trans-golgi network results in furin-mediated cleavage 

of prM to M 17 (Figure 1.2). Upon cleavage of the prM and release of pr at neutral pH in the 

extracellular space18, the virion rearranges to a mature structure with 90 E protein homodimers 

in an anti-parallel orientation in rafts of three to form a herringbone array and a smooth virion 

surface 19.  The cleavage process is not completely efficient and may result in partially mature 

virions. The transitions undergone by viral particles expose different epitopes on the E protein 

that are essential for receptor-binding, entry, and fusion.  

Potential N-linked glycosylation sites are found in structural and NS1 proteins 20–22, but the 

quantity and sites may differ between flaviviruses. N-linked glycosylation may alter overall 

protein structure and therefore impact host-range and cellular tropism. For example, DENV E 

protein is glycosylated at positions N67 and N153 whereas WNV and JEV E proteins are 

modified only at the analogous N154 in some but not all strains 23,24. Cryo-EM studies have 

shown interactions between DC-SIGN on host cells and the N67 glycan on DV2 25;  this 

interaction functions as an attachment factor to concentrate virus rather than as a bona fide 

entry receptor 26,27. Mutations of N67, but not N153, of DV2 demonstrated a decrease in viral 

replication in mammalian cells although no difference was observed in mosquito cells 28. In 

contrast, mutation of N154 in WNV showed reduced replication in mosquito cells 29 and 

mosquitoes 23 as well as decreased neuroinvasiveness 30. Finally, the presence or absence of 
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glycosylation sites may alter antibody binding and neutralization. E-dimer epitope (EDE) 

mAbs (discussed in Chapter 4) are human-derived anti-DENV mAbs that have been 

subdivided in EDE1 and EDE2 based on their binding affinity for glycosylation site in the 150 

loop. EDE1 mAbs bind better in the absence of the glycan versus EDE2 mAbs, which bind 

better in the presence of the glycan (discussed in Chapter 4) 2.   

1.3 Flavivirus E protein 

The E protein (~53 kDa) is the primary surface protein involved in cellular attachment, 

fusion, and entry 26,27,31,32. A receptor-binding domain is implicated in both cellular tropism 

and host range 19,33–35. The E protein also is the principal target for neutralizing antibodies. 

Discussed in this section are characteristics common to flaviviruses. Unique features will be 

discussed in the corresponding virus-specific sections below.  

The E protein is subdivided into three domains: a central β-barrel domain (domain I, DI), 

an extended dimerization domain containing a hydrophobic fusion loop (FL) epitope at the 

distal end (domain II, DII), and an immunoglobulin-like segment implicated in receptor-

binding and entry (domain III, DIII). Exposure to acidic pH in the endosome results in 

rearrangement of the E protein, trimerization, and exposure of DII-FL, which facilitates 

membrane fusion between the virus and the outer lipid layer of the host cell 36–39. The fusion 

loop is highly conserved across flaviviruses and because of this, antibodies generated against 

DII-FL are cross-reactive therefore lack type specificity. These anti-DII-FL antibodies 

variably neutralize virions in part because of differential exposure of this epitope in the 

ensembles of flavivirus structural states 40–43. In vivo studies using murine models have shown 

a protective role for DII-FL specific antibodies, possibly through effector functions, but with 

limited efficacy40,44.  
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DIII contains the putative receptor-binding domain and is also the region against which 

highly effective neutralizing antibodies are made 45. DIII is a continuous ~100 amino acid 

residues that forms a beta (b)-barrel structure made up of six antiparallel strands resembling 

an immunoglobulin constant domain 46. Single mutations generated by type-specific antibody 

selection to flaviviruses have been mapped to DIII and more specifically, to similar regions 

across multiple viruses 47. The lateral ridge (DIII-LR) epitope includes the N-terminal linker 

region along with the BC, DE, and FG loops which, when folded, forms a single patch 46,48,49 

and the A-strand epitope are primary sites for neutralizing epitopes by the humoral response. 

In vivo studies of anti-DIII mAb administration prior to and following infection have shown 

significant protection against flavivirus dissemination and subsequent lethality 43,48,50–53.  

1.4 Flavivirus entry, replication, and assembly 

Flaviviruses bind and enter target cells through clathrin-dependent receptor-mediated 

endocytosis facilitated by surface glycoproteins and cellular receptors, including heparin 

sulfate34,35, DC-SIGN27,54, and CLEC5A55,56. After low pH-dependent fusion between the 

virus and host membranes in the endosome, uncoating of the nucleocapsid, and finally release 

of the viral RNA genome into the host cytoplasm 57. The positive-sense RNA of flaviviruses 

allows for immediate viral protein translation of the single open reading frame by host 

machinery, cleavage of the polypeptide into viral proteins by host and viral proteases, and 

subsequent viral replication mediated by NS5, the RNA-dependent RNA polymerase, 1,58,59.  

Genome packaging occurs concurrently with RNA replication and immature viral particles 

are assembled in the lumen of the ER60. Viral particles then bud from the endoplasmic 

reticulum and once in the trans-Golgi, prM undergoes furin-mediated cleavage, and infectious 

virus is released by exocytosis (as discussed above). Flaviviruses do not exist in a single 
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homogeneous state and can also be found as subviral particles (SVPs), immature forms, and 

variants of the canonical mature form (partially mature virions). Subviral particles have an 

outer surface made of E and M proteins and a lipid membrane that is smaller than a mature 

viral particle and lacks genome content, and therefore is not subsequently infectious 18,61. 

Recombinant SVPs can be generated using in vitro systems; as they retain immunogenic 

properties, they have been applied as vaccine platforms for inducing protective immunity. 

Immature viruses exist in a non-infectious spiky configuration. Mature virus exists as the 

smooth form often depicted but is also susceptible to variations in temperature and efficiency 

of furin-mediated cleavage. For DENV, an increase in temperature from 28°C to 35°C results 

in structural reorganization to generate a larger virion with a bumpier surface 62,63 which may 

impact virus stability, in the case of ZIKV.   

1.5 Antibody-mediated protection against enveloped viruses  

Neutralizing antibody titers are commonly used as correlates of protection following 

vaccination or natural infection 64. Virus neutralization is defined as antibody binding via the 

Fab segment to the respective epitope on the virion and therefore inhibiting subsequent steps 

of infection or production of viral progeny65.  

Antibodies may also act through effector functions between the Fc segment and Fc 

receptors (FcR) or complement proteins to protect against viral infection. Antibody-dependent 

cellular cytotoxicity (ADCC) occurs when an antibody, for example HIV-1 mAb A32, detects 

a virus-infected cell by the Fab segment and simultaneously engages effector cells, such as 

natural killer cells, via the Fc region 66. The complement system, particularly the classical 

complement pathway, is implicated as an antiviral response as well as detrimental to the host 

67,68. Antibody mediated protection in vivo is an interplay of mAb-antigen interaction and the 
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effector functions initiated via Fc-FcR interactions on effector cells. For example, studies on 

anti-influenza mAbs (anti-HA head) demonstrated a requirement of Fab-antigen binding to 

initiate mAb-FcR interaction 69. The development and functional testing of mAbs may be 

limited by changes in the antigenic makeup of the virus over time, particularly for viruses with 

error-prone polymerases, and changes in antigenic availability based on environmental factors, 

such as temperature 62,63. 

1.5.1 Antibody-defined epitopes in flaviviruses  

The antibody response against flaviviruses is categorized by breadth of reactivity to 

viruses within and between related serologic groups. DENV is often used to exemplify the 

nomenclature as type-specific (a single DENV serotype), subcomplex-specific (more than 

one serotype), complex reactive (all serotypes), or reactive to multiple flaviviruses (cross-

reactive). In many cases, type-specific mAbs most potently neutralize infection of a given 

virus and allow distinction between closely related viruses. 

Domain I is the central domain within the E monomer and together with DIII, forms a 

hydrophobic pocket for the DII-FL from the opposing E monomer. Most antibodies 

generated against DI are type-specific with limited in vitro neutralization potential 42. 

Within DI, the sites most commonly targeted are the DI-LR (e.g., bound by DV2-106 70 

and WNV mAb E121 42) and the DI-DII linker region (e.g., bound by WNV mAbs CR4353 

and 7G5 42,71). In vivo therapeutic studies show 35% survival for animals treated with E121 

compared with only 10% survival for those treated with 7G5 42.  A chimpanzee-derived 

anti-DENV4 mAb, 5H2, mapped to DI by phage display library, neutralized three 

independent strains of DENV4, and was able to protect rhesus monkeys from infection-

induced lethality72,73 
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One of the most immunodominant epitopes of the human humoral response to 

flaviviruses falls within the DII-FL, residues 98-110. As discussed above, DII-FL is highly 

conserved across flaviviruses, is transiently exposed during viral infection, and elicits a 

cross-reactive, limited neutralizing humoral response.  A single mutation at W101 is 

sufficient to abolish binding of most DII-FL specific mAbs, although loss of binding is also 

observed at residues G104, G106, and G107 42,74–78.  

Studies on DENV, WNV, and YFV have mapped potent neutralizing mAbs to DIII, 

specifically, there are two epitopes that have been found to be critical for binding. The DIII 

A-strand is a short (~7 amino acid) segment made up of residues 305-313 on DENV that 

is bound by complex and subcomplex-specific mAbs. DENV mAb 1A1D-2 is potently 

neutralizing (PRNT50 = 0.3 ug/ml) and cross-reacts with DENV-1, DENV-2, and DENV-

3 79. Mapping studies showed binding of 1A1D-2 was sensitive to mutations at residues 

305, 307, and 310 52. The DIII lateral ridge (DIII-LR) is a discontinuous epitope made up 

of residues of the BC (330-333), DE (365-368), FG (389-391) loops, and N-termini linker 

region. Antibodies that map to this region, such as WNV E16, are type-specific and 

neutralize at nanomolar concentration (PRNT50= 4-18 ng/ml) 48,50.  

Additional structural, quaternary epitopes have been identified that are comprised of 

residues in multiple domains within E protein dimers. The E-dimer epitope (EDE) was first 

identified through mapping of monoclonal mAbs generated from a DENV-infected patient 

80. The EDE is made up of DII-FL and additional DII residues along with DI and DIII 

amino acids found in the opposite E subunit of the dimer (discussed in Chapter 4). 

Additionally, CR4354 is a human mAb that binds a structural hinge region formed between 

E-DI and E-DII but is unable to bind a linear epitope 81.  
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1.6 Zika virus 

1.6.1 Unique features of the E protein 

Since the ZIKV epidemic began, research groups have sought to understand the 

cause of its emergence and its unique pathogenesis (i.e., congenital syndrome) that is not 

observed for related flaviviruses. Cryo-EM data demonstrates general similarities between 

the structures of mature ZIKV, DENV, and WNV. One difference is the protrusions of E 

protein glycan seen on ZIKV, not present on related viruses 82. ZIKV only has a single 

glycosylation site (N154) compared to two glycosylation sites (N67 and the analogous 

N153) observed on DENV 82. A second potential difference is the stability of ZIKV E 

protein on the virion, however, the data presented thus far has not demonstrated a 

conclusive effect of physiologic temperatures on ZIKV E protein stability 83,84. These 

differences, along with differences in genetics (discussed below), have implications in the 

development of cross-reactive and cross-neutralizing mAbs.  

1.6.2 Vaccination strategies against Zika virus  

This section is adapted from a review published in Current Opinions in Virology 85 

Introduction Historically, Zika virus (ZIKV) infection caused a mild, self-limiting febrile 

illness that was associated with conjunctivitis, rash, headache, myalgia, and arthralgia 86. 

However, during the recent epidemics in Asia and the Americas, more severe and unusual 

clinical consequences have been observed. Infection of fetuses during pregnancy, 

particularly during the first trimester, has been associated with placental insufficiency and 

congenital malformations including cerebral calcifications, microcephaly, and miscarriage 

87–91. In adults, ZIKV infection is linked to an increased incidence of Guillain-Barré 

syndrome (GBS), an autoimmune disease characterized by ascending paralysis and 
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polyneuropathy 92 that occurs during the acute phase of ZIKV infection or shortly afterward 

93–95.  

ZIKV was identified in 1947 from a sentinel Rhesus monkey in the Zika Forest of 

Uganda 96,97. Prior to 2007, seroprevalence studies in Asia and Africa suggested ZIKV 

infections occurred periodically without evidence of severe disease 86,98. Contemporary 

outbreaks of ZIKV arose in 2007 on Yap Island in the Federated States of Micronesia 

followed by an epidemic in French Polynesia in 2013 99; these events were associated with 

a high prevalence of infection, with greater than 11% of people on the islands presenting 

with ZIKV-associated symptoms 92,99. A study in French Polynesia of patients diagnosed 

with GBS during the outbreak found that all had neutralizing antibodies against ZIKV 

compared to 56% of patients presenting to hospitals with non-febrile illnesses 92. The next 

ZIKV outbreak began in late 2014 in northeastern Brazil, which was followed by a rapid 

spread to many other countries in the Americas in 2015 and 2016, including locally-

transmitted infections in Florida and Texas in the United States 100–102. Associated with the 

ZIKV epidemic were cases of GBS and congenital defects that correlated temporally with 

the growing number of infections 94. Aedes aegypti and Aedes albopictus mosquitoes have 

tested positive for ZIKV and are believed to be primary agents of transmission 103,104. In 

addition to mosquito vectors, sexual transmission of ZIKV was established from male-to-

female 105,106 and subsequently from male-to-male and female-to-male 107,108. Diagnostic 

studies have confirmed viral RNA in semen, sperm, and vaginal secretions of symptomatic 

patients up to 6 months following the onset of symptoms 109–111.  

ZIKV belongs to the Flavivirus genus of the Flaviviridae family of positive-

stranded, enveloped RNA viruses. ZIKV has an 11 kb RNA genome and one open reading 
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frame. Translation of infectious viral RNA in the cytoplasm generates a polyprotein that is 

cleaved into three structural proteins (capsid (C), pre-membrane/membrane (prM/M), and 

envelope (E)) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, 

and NS5). ZIKV strains are classified into two genetic lineages, African and 

Asian/American. As the African lineage shows greater divergence 112, some studies have 

divided them into two African subtypes 113. The existence of multiple lineages, however, 

does not impact antibody neutralization significantly and thus, ZIKV has been classified 

as a single serotype114. ZIKV is related genetically to several pathogens that cause disease 

globally including Dengue (DENV), yellow fever (YFV), West Nile (WNV), Japanese 

encephalitis (JEV), and tick-borne encephalitis (TBEV) viruses. Of these viruses, ZIKV is 

most closely related to the four serotypes of DENV and shares 54–59% amino acid identity 

across the viral E protein 115. The sequence similarity between ZIKV and DENV poses 

unique issues for diagnosis and vaccination, and has implications for disease pathogenesis 

due to antibody cross-reactivity 115–118.  

Studies on related flaviviruses have shown that antibody responses against the viral 

E protein can serve as correlates of protection in animals and humans 43,71,119–121. The 

historical efficacy of the YFV, TBEV, and JEV vaccines in preventing infection and 

epidemics suggests that an effective vaccine targeting all strains of ZIKV should be 

feasible, especially given the limited (3–5%) amino acid variability between E proteins of 

the two lineages 112. In terms of prioritization, pre-pubescent children and men and women 

of child-bearing age living within or traveling to endemic areas might be priority recipients 

in a ZIKV vaccination campaign (Figure 1.3) 122.  
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ZIKV vaccine epitope targets of humoral immunity The ZIKV E protein is composed 

of three ectodomains (DI, DII, and DIII), which are displayed on the surface of the virion 

and contribute to entry into susceptible cells. A large proportion of anti-ZIKV antibodies 

generated during human infection target the fusion loop present in DII (DII-FL), which is 

highly conserved across flaviviruses. Animal studies have shown some protective activity 

of DII-FL antibodies in the context of flavivirus infection even though they generally have 

poor neutralizing capacity in vitro 41,44. Most DII-FL antibodies are not ideal from a 

protection perspective because their epitope is partially inaccessible on the mature virion 

123 and they require Fc-dependent effector functions for in vivo activity, the latter of which 

also is responsible for antibody dependent enhancement (ADE) of infection (see below) 

124. DIII adopts an immunoglobulin-like fold and is believed to participate in viral 

attachment and entry to host cells, which could influence cellular tropism and host range 

31,32,125. The lateral ridge epitope within DIII (DIII-LR) is recognized by type-specific, 

strongly neutralizing anti-ZIKV antibodies 117,126,127 (e.g., ZV-67 and Z004) that likely 

block infection by preventing E protein rearrangements required for fusion 48,128. A panel 

of mAb generated from an infected individual against DII (SMZAb2) and DIII (SMZAb1 

and SMZAb5) protected rhesus macaques against heterologous infection, however, the 

exact epitopes were unindentified129. Additionally, several classes of conformational anti-

ZIKV antibodies that potently neutralize infection and recognize quaternary epitopes 

formed by adjacent E proteins have been described. E-dimer-dependent (EDE) antibodies 

(e.g., C10) bind to conserved sites along the E dimer interface to cross-link the E protein 

in a prefusion state. Specifically, EDE antibodies bind to DII-FL and additional sites of DII 

(b strand and ij loop) of one E subunit along with residues in DI and DIII of the opposite 
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E subunit of the dimer2,130. Although originally identified in the context of a humoral 

response to DENV 130, cross-reactive EDE antibodies neutralize ZIKV infection in cell 

culture and protect against lethal infection in mice 2,115,131–133. Another conformational 

epitope is recognized by neutralizing antibodies (e.g., ZIKV-117) that bind across two 

adjacent ZIKV E protein dimers in DII. These inter-dimer binding antibodies can prevent 

fetal infection and disease in pregnancy models of ZIKV in mice 117. A group of protective 

human antibodies with distinct binding activity was described recently 118; Z3L1 and Z23 

preferentially recognize ZIKV-specific epitopes in DI and DIII, respectively, whereas Z20 

binds to an epitope in DII across the E dimer interface but in a distinct pattern from EDE 

antibodies 118. Collectively, these studies define a suite of protective antibodies that bind 

distinct epitopes and suggest that vaccines capable of targeting accessible epitopes on the 

soluble E protein or conformational epitopes on the virion should elicit polyclonal antibody 

responses with broad protective activity against most, if not all, ZIKV strains.  

ZIKV vaccine approaches Many approaches have been used for developing flavivirus 

vaccines against YFV, DENV, JEV, WNV, and TBEV including subunit-based (protein or 

DNA plasmid), chemically inactivated, and live-attenuated vaccines. Moreover, novel 

lipid-encapsulated modified mRNA vaccines 134,135 and viral vectored vaccines 136 have 

recently been adapted for ZIKV. Remarkably, in less than one year, several of these 

vaccines have progressed beyond pre-clinical studies in animals and are advancing into 

phase 1 human trials (Table 1.1). Additional platforms (e.g., live-attenuated vaccines) are 

in pre-clinical testing and expected to enter human trials in 2017 137.  

DNA and adenovirus-vectored vaccines Leading candidates for ZIKV immunization 

include DNA plasmid-based and adenovirus-vectored vaccines incorporating the prM and 
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E genes to produce a secreted E protein or subviral particle that elicits neutralizing antibody 

response. DNA plasmid-based vaccines have utility due to their ease of production, relative 

stability, and low reactogenicity 138. Additionally, they lack risk of reversion, as can be 

observed with some live-attenuated virus vaccines. One limitation of DNA plasmid 

vaccines is that they must be introduced into cells (e.g., by electroporation) for optimal 

protein production 139. Their low reactogenicity, however, makes this vaccine class a 

candidate for use in pregnant women 138,140. Adenovirus-vectored vaccines share ease of 

production and stability with DNA plasmid vaccines; additionally, they have broad cellular 

tropism and can be manufactured to high titer, which allows for optimal delivery and 

immunogenicity. Limitations for adenovirus vaccines include their ability to induce toxic 

inflammatory responses at high doses, the potential for pre-existing immunity to naturally 

occurring human adenoviruses that results in accelerated clearance and dampened 

immunogenicity, and a size limit on the gene inserted 141. Reactogenicity has been 

circumvented by deletion of genes required for replication, which also allows for larger 

inserts 141. Identification of monkey adenoviruses as vaccine vectors can bypass pre-

existing immunity to human adenoviruses 142.  

Full-length prM-E (amino acids 93-794) DNA vaccines from a French Polynesian 

ZIKV strain (H/PF/2013) in a cytomegalovirus promoter-driven plasmid vector were 

constructed with mutations in the signal sequence or the E protein stem and transmembrane 

regions to improve expression 143. Immunization of six rhesus macaques using a prime and 

boost scheme induced humoral immunity and protected against viremia independent of the 

challenge dose of a heterologous ZIKV strain (PRVABC59) when administered eight 

weeks after the boost 144. Analysis of the pre- and post-challenge serum of immunized 
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animals demonstrated an inverse correlation between neutralizing antibody titer and 

viremia 144.  

Engineering of the M-E genes (amino acids 216-794) of a Brazilian ZIKV isolate 

(BeH815744) into a mammalian expression plasmid yielded high levels of humoral and 

cellular immunity in BALB/c mice when assessed at three weeks following a single 

immunization 143. Upon challenge of BALB/c mice with homologous or heterologous 

strains of ZIKV four weeks following immunization, the M-E plasmid vaccine abrogated 

ZIKV viremia. Antibody mediated responses were sufficient to confer protection, as CD4+ 

or CD8+ T cell depletion did not impact vaccine efficacy and passive transfer of vaccine-

derived antibody to naïve mice protected against challenge 143. Intramuscular 

immunization of four rhesus macaques with this ME plasmid induced protective humoral 

and cellular immune responses against a homologous strain of ZIKV, but only after 

boosting 136.  

Full-length prM-E (amino acids 93-794) from a ZIKV consensus sequence was 

incorporated into a eukaryotic plasmid (pVax1) with the addition of an IgE leader sequence 

to improve expression 145. Serial immunization of wild-type and immunodeficient mice 

induced humoral and cellular immunity that protected against challenge with a virulent 

American strain of ZIKV (ZIKV-PR209). Notably, vaccination also reduced disease 

severity in immunodeficient mice. Primary immunization of five rhesus macaques 

promoted a humoral response that was enhanced upon boosting 145.  

A rhesus adenovirus serotype 52 (RhAd52) vaccine encoding the M-E genes from 

ZIKV BeH815744 induced broadly neutralizing humoral and cellular immunity after a 

single dose in four rhesus macaques 136. The M-E sequence also was codon optimized and 
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inserted into a replication-defective adenovirus 146. A single immunization of female 

C57BL/6 mice with RhAd52-M-E induced ZIKV-specific neutralizing IgG that was 

augmented upon boosting. Immunized female mice were mated with naïve sires, and 

neonatal mice were challenged with a heterologous ZIKV strain at day 7 after birth and 

followed for 21 days 146. Maternally transmitted vaccine immunity protected suckling mice 

against ZIKV-induced weight loss and lethality.  

Modified mRNA vaccines Although lipid encapsulated modified mRNA vaccines have 

been developed in the oncology field 147, more recently they have been adapted for viral 

vaccines, with two now described for ZIKV 134,135. Many mRNA vaccines are non-

amplifying and all platforms lack the capacity to integrate into the genome 147. Modified 

mRNA vaccines contain a type I cap, a poly(A) tail, and untranslated regions that optimize 

translation efficiency and intracellular stability as well as nucleoside modifications (e.g., 

introduction of pseudouridine bases) to minimize the indiscriminate activation of innate 

immunity.  

A lipid encapsulated mRNA vaccine encoding full-length prM-E of an Asian 

(Micronesia 2007) strain of ZIKV induced robust neutralizing antibody responses in mice 

against ZIKV 134. Challenge studies with a heterologous African ZIKV strain (Dakar 

41519) in immunodeficient (AG129) or immunocompetent (C57BL/6 and BALB/c) mice 

showed protection against weight loss and lethality when a prime and boost regimen was 

administered intramuscularly, and this effect was durable even 18-weeks after initial 

vaccination. A modified prM-E mRNA vaccine encoding mutations destroying the 

conserved fusion loop epitope in domain II of the E protein protected against ZIKV and 

diminished production of antibodies enhancing DENV infection in cells or mice 134.  
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A single intradermal dose of nucleoside-modified lipid encapsulated mRNA 

vaccine encoding prM-E of ZIKV H/PF/2013 (French Polynesia) induced a strong antibody 

response in C57BL/6 and BALB/c mice that persisted for 12- and 20-weeks, respectively 

135. Challenge with a heterologous Asian-American ZIKV (PRVABC59, Puerto Rico) at 

2- and 20-weeks post vaccination yielded no detectable viremia. Furthermore, a single 

intradermal dose inoculation of rhesus macaques also induced high levels of neutralizing 

antibody 135. Non-human primates challenged with the heterologous ZIKV strain 

(PRVABC59) at 5-weeks following mRNA vaccination were protected from developing 

viremia compared to placebo-immunized animals 135.  A single intramuscular dose of a 

lipid-encapsulated mRNA vaccine showed increased serum neutralization titers and 

decreased lethality in a lethal model of infection. The protective effect was particularly 

observed when a modified vaccine was generated with an abrogated fusion loop epitope 

(IgEsig prM-E FL) or substitution with the JEV signal sequence (JEVsig prM-E)134. 

Inactivated virus vaccines Purified, inactivated whole virus vaccines have been 

developed to circumvent issues associated with live-attenuated vaccines. This approach 

eliminates the possibility of viral replication yet retains, to varying degrees, the antigenicity 

of the structural proteins. Inactivated viral vaccines are considered desirable, especially for 

populations that are relatively immunocompromised (newborns, elderly, acquired or 

genetic immune deficiencies, or pregnant women) where live-attenuated virus vaccines 

may be contraindicated 148,149. Inactivated whole virus vaccines have been used 

successfully for several flaviviruses including YFV, JEV, TBEV, and WNV (the latter for 

veterinary use only) 150.  
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An inactivated ZIKV vaccine (ZPIV) was developed based on a previous vaccine 

targeting JEV 151. A Puerto Rican strain (PRVABC59) of ZIKV was cultured to high titer 

in Vero cells, purified, and inactivated with formalin treatment 143. A single immunization 

of BALB/c mice with alum-adjuvant ZPIV yielded ZIKV specific IgG titers (1/100) that 

correlated with protection against challenge with a heterologous strain of ZIKV 143. ZPIV 

testing in rhesus macaques also induced neutralizing antibodies and cellular immunity after 

two doses 136,152. Subsequent challenge of nonhuman primates with homologous or 

heterologous strains of ZIKV resulted in complete protection against plasma viremia, or 

viral RNA in urine, cerebrospinal fluid, colorectal, and cervicovaginal secretions 136.  

Live-attenuated vaccines. Arguably, the most successful flavivirus vaccine is YF-17D, a 

live-attenuated virus that was generated in the 1930s after 176 serial passages of the parent 

YFV Asibi strain in mouse and chicken tissues 153,154. A single YF-17D dose induces high 

levels of neutralizing antibodies in most individuals and confers protection in 95% of 

recipients, which can last up to 40 years 154. A chimeric vaccine against JEV was developed 

by substituting the prM-E genes of JEV into the backbone of the YF-17D capsid and non-

structural protein genes. Immunization of subjects in endemic regions with ChimerVax 

JE™ resulted in responses that neutralized JEV strains of multiple genotypes 155,156 and is 

available in Australia, Malaysia, Philippines, Thailand, and Myanmar 157. This chimeric 

vaccine platform also was adapted for DENV. Different industry groups have refined 

tetravalent formulations incorporating either chimeric DENV-YFV virus strains (approved 

as Dengvaxia1) or DENV-DENV chimera (phase 3 trials of TAK-003) to achieve an 

attenuated strains for vaccination 158,159. Although a multi-dose regimen of Dengvaxia1 



 19 

protected flavivirus-immune individuals from subsequent symptomatic DENV infection, 

it had less efficacy for naïve subjects160,161.  

Live-attenuated vaccines are a favored immunization strategy against flaviviruses 

because of their ability to induce durable and effective adaptive immunity at relatively low 

production cost162. However, they generally are avoided in immunocompromised 

populations (including pregnant women) due to possible reversion and pathogenicity. For 

YF-17D, there have been rare cases of vaccine associated neurotropic and viscerotropic 

disease following immunization, especially in the elderly 148,154. Several groups have stated 

an intention of developing live-attenuated ZIKV vaccines although to date, no data 

showing immunogenicity or protection has yet been published 137. Recently, a single dose 

of live-attenuated ZIKV vaccine lacking the 3’UTR (ZIKV-3’UTR-LAV) was 

administered to C57BL/6 female mice 35 days prior to mating and a week later were 

challenged with ZIKV. One week after challenge, dams and pups of vaccinated dams had 

enhanced antibody titer, reduced viral burden. Furthermore, A129 male mice demonstrated 

protection against viremia and testicular damage when challenged 30 days after 

immunization. Lastly, a rhesus macaque model showed that immunization with ZIKV-

3’UTR-LAV was able to protect against challenge up to two months after infection163. 

These studies demonstrate that live-attenuated vaccines are highly immunogenic and are 

protective in multiple models of infection, including pregnancy but questions remain as to 

their relative safety when tested in pregnant women.  

ZIKV vaccine challenges Beyond the generation of an immunogenic vaccine that elicits 

protective humoral and cell-mediated immunity, there are unique challenges to developing 

a ZIKV vaccine: (a) Immune enhancement of heterologous DENV infection. The DENV 
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complex is comprised of four genetically related serotypes. Whereas primary infection with 

DENV generates a protective antibody response that protects durably against the 

homologous serotype, secondary infection with a heterologous DENV serotype can result 

in a severe capillary permeability shock syndrome. This disease is attributed in part to 

ADE, whereby cross-reactive antibodies from the first DENV infection bind but fail to 

neutralize the second DENV serotype, and instead augment infection in myeloid cells 

expressing Fc-gamma receptors 124. This phenomenon could be relevant to ZIKV 

vaccination because DENV and ZIKV are related closely to one another, the two viruses 

co-circulate, and their infections produce cross-reactive antibodies targeting the highly 

conserved DII-FL epitope of the E protein. Indeed, studies in cell culture have confirmed 

that ADE can occur reciprocally, with DENV and ZIKV antibodies augmenting infection 

of ZIKV and DENV, respectively 115,164–166. Moreover, anti-ZIKV human monoclonal 

antibodies can enhance DENV infection and disease in mice 167 and reciprocally, anti-

DENV and anti-WNV polyclonal antibodies enhanced ZIKV infection and disease in mice 

168. If ZIKV antibody responses are shown to augment DENV infection and disease in 

humans, vaccine strategies that minimize the generation of cross-reactive antibodies may 

be required to avoid sensitizing ZIKV vaccine recipients to severe DENV infections. In 

this case, soluble E protein or virus-like particle (prM-E) antigens that abrogate the DII-FL 

epitope but retain other protective epitopes may be useful 31,75,134,169. (b) Guillain–Barré 

syndrome. Currently, there is an epidemiological association between ZIKV infection and 

GBS, although a causal link has not yet been established. The pathogenesis of GBS might 

be due to direct ZIKV infection of neurons and glial cells in the spinal cord or to 

autoimmune-mediated targeting, possibly due to antibodies or T cells that cross react 
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between viral and host antigens 95. Prior to deployment of a ZIKV vaccine, it will be 

important to confirm that the elicited humoral or cellular anti-ZIKV responses in humans 

do not promote the development of GBS. (c) Pregnancy. Many vaccines are avoided during 

pregnancy due to the possible risks of infection or inflammation to the developing fetus. 

Indeed, vaccination prior to pregnancy remains the desired approach. Notwithstanding this, 

retrospective analysis of administered live-attenuated or inactivated vaccines have failed 

to establish conclusively adverse outcomes in fetuses of vaccinated mothers 170,171. The 

current recommendation is to administer vaccines if the disease risk outweighs the potential 

of vaccine related effects 172. Several recent studies suggest a relatively high frequency of 

adverse neurodevelopmental effects of fetuses of symptomatic and asymptomatic pregnant 

women following ZIKV infection 91,173–175. With current information, it remains difficult 

to determine whether the risk of exposure to ZIKV in utero surpasses that associated with 

immunization with certain classes of vaccines.  

Conclusions The consequences of the ZIKV epidemic highlight the need for rapid 

development and introduction of a vaccine. Decades of work on related flaviviruses have 

provided mature vaccine technologies and platforms, many of which can be adapted for 

use in immunocompromised and susceptible populations including children and pregnant 

women. Currently, DNA plasmid, modified mRNA, and purified, inactivated vaccines 

have demonstrated immunogenicity and protection in mice and nonhuman primates and 

now are entering Phase 1 clinical testing in humans. While optimism remains high for 

generating protective vaccines against ZIKV across multiple platforms, questions remain 

about their safety because of the unique clinical manifestations of ZIKV and its genetic 
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and serological relatedness to DENV. Parallel discovery and epidemiological efforts are 

needed to address these issues prior to widespread implementation of a ZIKV vaccine. 

1.7 Japanese encephalitis virus  

1.7.1 Virology 

Genotypes of JEV are determined by sequence alignment and differences within 

prM-E 176. There are 4 historically identified genotypes of JEV (genotype I, II, III, and IV) 

differing by a minimum nucleotide divergence of 7% 177–179 and amino acid divergence 

from 4.7-6.5%180. A fifth genotype (genotype V) has been identified, from a patient in 

Malaysia, which has approximately 20% nucleotide divergence from previously 

recognized isolates 178,181–183. Sequence alignment with other members of the flavivirus 

family has shown an ~78% E protein amino acid alignment between JEV and WNV 184, 

the most closely related virus. The variation in sequence likely explains the differential 

mosquito vectors, pathogenicity, and immune system response against the two closely 

related members.  

Structural studies of JEV E protein have identified features that may have a role in 

promoting viral stability. The JEV E dimer has less buried surface area compared to related 

flaviviruses and different residue interaction between dimers 185. Furthermore, a cryo-EM 

structure of JEV reveals spaces present between the E monomers, which may confer virus 

stability and impact conformational changes during assembly and infection  186.  

1.7.2 Epidemiology 

Encephalitic epidemics attributable to JEV infection have been reported since 1871 

and the first large outbreak described in 1924 187 with more than 6,000 cases and 60% 

fatality. JEV was originally isolated in 1934 from the brain of a fatal human encephalitic 
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case in Tokyo 188 and in 1938 from Culex tritaeniorhynchus mosquitoes 188,189. JEV, 

particularly genotypes (G) II and IV, are known to be endemic in tropical regions of 

Southeast Asia 190 where sporadic cases occur throughout the year, mainly affecting 

children younger than 15 years of age 191. Epidemic outbreaks of GI and GIII occur in 

temperate and subtropical regions, such as Japan, following the rainy season 191.  

 Rural areas with open water sources serve as breeding grounds for JEV mosquito 

vectors. Pigs 190 and wading birds 192 are considered the major reservoir and amplification 

hosts as they develop high-titer viremia that can facilitate mosquito transmission. Wading 

birds are commonly referred to as carriers because of their mid-level titers and ability to 

travel larger distances and move between locations that have appropriate mosquito vectors 

as part of the environment.  

 Incidence of disease has been reduced substantially in countries that have 

implemented immunization and surveillance programs (see Current vaccines against JEV 

section below). However, there are still unprotected rural populations in South and 

Southeast Asia that are exposed and susceptible to JEV infection and disease due to their 

proximity to amplifying hosts and the difficulty in obtaining a full course of vaccination 

193. Even with the implementation of JEV vaccination, 81% of annual JEV infections occur 

in countries with vaccination programs 194.  

1.7.3 Clinical presentation of disease 

The annual incidence of clinical JEV infection worldwide is between <1 to >10 per 

100,000, which is approximately 1% of those infected 195.  In endemic areas, symptomatic 

JEV infection is observed in children between the ages of 3 and 6-years old due to the 

absence of previous immunity 196,197. However, people living in areas of epidemic 
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outbreaks or those traveling to endemic areas may be affected irrespective of age due to 

the absence of a previous immune response 197.  

Initial infection manifests 5-15 days after infection as non-specific febrile illness 

accompanied by headache, malaise, and general discomfort. Patients with encephalitis 

experience behavioral abnormalities, seizures, or neurological deficits 198,199. One group 

identified a poliomyelitis-like illness in 15% of children subsequent to JEV infection with 

pronounced viremia 200, however, upper limb paralysis is more commonly observed 201,202. 

Alternatively, older children and adults may present with behavioral abnormalities 203.  

Seizures occur especially among children, although still observed in adults, and when 

present, correlate with a negative outcome 204. A combination of Parkinsonian effects and 

dystonia are more indicative of a long, protracted illness 199.  

1.7.4 Humoral immune response to JEV infection 

Epidermal tissue-resident dendritic cell (DC) are among the first cells in humans to 

detect JEV following arthropod-mediated transmission 205. DCs are myeloid-derived 

antigen presenting cells (APCs) that serve as a link between the innate and adaptive 

immune systems. Skin-resident DCs internalize JEV, migrate to draining lymph nodes 

(DLN) where they present antigen to T cells for clonal expansion and activation of effector 

functions 206. The internalization of JEV leads to the maturation and migration of DCs to 

the DLN and presents the opportunity for viral dissemination and pathogenesis.  

The humoral immune response to flaviviruses is classified into primary, if first 

exposure, or secondary, following an unspecified infection with an alternate flavivirus. 

Primary infection results in early high levels of anti-JEV IgM in the serum and if 

symptomatic, they are also present in the cerebrospinal fluid (CSF). The inability to mount 
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a robust IgM response during primary infection is associated with a poor outcome for JEV 

and also WNV 207,208. The antibody response restricts viral replication and in its absence, 

infectious virus can be isolated from blood of patients for prolonged periods 207. 

Alternatively, secondary infection with JEV following primary infection with a 

heterologous flavivirus can result in high levels of cross-reactive anti-flavivirus IgG early 

after infection 199,207.  

1.7.5 Anti-JEV monoclonal antibodies  

Kimuro-Kuroda et al. generated a panel of mAbs against JEV-JaGAr- 01 (GIII) in 

BALB/c mice and found that JEV-specific mAbs against the E protein were better able to 

neutralize JEV in vitro and protect in vivo 119,207,209. Studies in mice with non-neutralizing 

mAbs found partial prophylactic protection though the mechanism was not further studied. 

Distinct panels of mAbs from BALB/c mice immunized and boosted with JEV-Nakayama 

(GIII) again showed that JEV-specific mAbs were better able to neutralize JEV in vitro 

compared to cross-reactive mAbs; however, not all type-specific mAbs had strong 

neutralization activity 120,210. One key finding was the identification of the E protein as the 

antigenic determinant and specifically a 95 amino acid stretch, residues 303-398, required 

for binding of highly neutralizing mAbs. However, administration of the fragment was 

unable to confer prophylactic protection in mice infected with a heterologous strain, JEV-

Beijing (GIII). Specifically, E-DIII was identified as the target of strongly neutralizing 

mAbs against JEV.  such as E3.3, as has been observed with related flaviviruses46. NMR 

spectrometry and alanine scan mutagenesis identified the top of the ß-barrel, and 

specifically S331 and N332 to be important for mAb binding46,47. Computer modeling of 

E3.3 bound with DIII shows S331 is closely contact with R94 and N332 was closely 
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associated with Y27, Y32, and R9447.  Distinct but spatially related epitopes are also 

targeted by neutralizing mAbs, as judged by competition binding assays 120,211.  

The shift in genotypes over time from GIII to GI has prompted investigators to 

generate mAbs against GI strains.  A group of mAbs were generated with in vitro cross-

neutralization to multiple genotypes and members of the serocomplex, including WNV and 

DENV 212. The use of humanized mAbs derived from immunized chimpanzees has also 

provided a panel of cross-neutralizing mAbs that provide in vivo prophylactic protection 

against a heterologous strain of the same genotype 213. To date, 8 panels of mAbs against 

JEV have been published (Table 1.2). 

1.7.6 Vaccines against JEV 

There are currently 4 classes of licensed JEV vaccines used worldwide, depending 

on the country. Vaccine trials have been limited to testing efficacy against GIII strains, 

from which vaccines are derived due to the high prevalence of GIII strains. The first 

vaccine, JE-VAX®, was licensed in Japan and was derived by inoculating young mice 

intracranially with Nakayama or Beijing-1, infectious strains of JEV. The brains are 

harvested, purified, and formalin inactivated. The recommended regimen is a three-dose 

series with subsequent boost doses. The presence of animal products and development of 

cell-based vaccine technologies have led to the discontinuation of this vaccine strategy. 

Inactivated, cell-based vaccines, such as IXIARO®, are derived by culturing live virus in 

immortalized animal cell lines and inactivating using formalin. A two-dose regiment is 

required and an adjuvant may be included to further boost the immune response. This class 

of vaccines is licensed for infants between 2-6 months old in contrast with remaining 

vaccine platforms that may only be used in infants older than 8 months of age. A live-
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attenuated, cell-based vaccine, SA14-14-2, was formulated by passaging a wild-type 

virulent strain of JEV, SA-14, in chick embryo cells. A single dose is required, an 

advantage over previously described platforms particularly in remote areas where JEV is 

endemic. Most recently, a chimeric JEV vaccine (ChimeriVax-JE) was developed based 

on the YFV vaccine by replacing the structural genes for those of JEV. ChimeriVax-JEV 

is a live, attenuated vaccine that is protective in mouse and non-human primate models 

over a range of doses by assessing viremia and clinical signs 156,214,215 and when is 

protective as a single dose without a further protection seen with a booster dose 216. Recent 

work shows limited efficacy of current GIII-derived vaccine platforms against GV disease 

in mouse model of infection 217, indicating a need to reassess and potentially update the 

available vaccines.  

1.7.7 Conclusions 

Current studies of anti-JEV mAbs are beginning to address the shift in genotype 

and the impact of this on efficacy of current vaccine platforms. A key gap in our 

understanding is how neutralizing epitopes differ across genotypes 212,213. Additionally, 

although mechanisms of neutralization have been hypothesized, it is important to 

characterize the critical steps for infection and determine whether these are unique from 

the steps inhibited by mAb binding and neutralization. 
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Figure 1.1: Phylogenetic tree of the Flavivirus genus 

The distribution of Flaviviruses depending on the proteins utilized for sequence alignment, the structural 
envelope (E) amino acid sequence. The serocomplex is shown in the second column. The fourth column 
denotes the grouping based on vector for transmission (adapted from Mukopadhyay et al., 2005).  
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Figure 1.2: Conformational changes of JEV during maturation 

During virus maturation, the E protein rearranges oligomeric conformation. The transition from immature 
to mature virion exposes different epitopes that may impact viral binding and entry as well as humoral 
immune response (adapted from Li et al., 2008).  

 

 

 

 

 

 

 

 



 42 

 

 

Figure 1.3:  ZIKV vaccine candidates, targets, and challenges. 

(Left) Current platforms entering Phase 1 clinical trials in humans include purified, inactivated virus 
(adapted from Sirohi et al., 2016), DNA plasmid, adenovirus-vectored, and modified mRNA vaccines, all 
of which have demonstrated pre-clinical efficacy in mice and non-human primates. The primary target 
populations are indicated. (Right, top) Structural analysis of monoclonal antibodies derived from infected 
mice and human subjects identified protective epitopes for vaccine targeting: Inter-dimer (adapted from 
Sapparapu et al., 2016), Intra-dimer (EDE) (adapted from Barba-Spaeth et al., 2016), DIII-LR (adapted 
from Ref. [47]), and DI-DII (adapted from Wang et al., 2016). (Right, bottom) Concerns for ZIKV vaccine 
development and deployment include immune-mediated enhancement (ADE) of DENV infection 
and Guillain–Barré syndrome (GBS) due to the possible induction of autoreactive antibodies and/or T 
cells (latter not shown). 
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Table 1.1: ZIKV vaccine candidates entering humans in 2016-2017 
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Table 1.2: Summary of mAbs to JEV 

 

mAb Source Immunization Epitope EC50 Citation 

2B4 BALB/c JEV E, E-DIII 394-397 500 ng/ml 218 

7E5 BALB/c JEV/sw/Chiba/88/2002 52, 276 1:102,400 212 

3-3H8   52 1:102,400 212 

P-JEV Plasmid  B cell, TH 1:10 219 

Hs-1 to Hs-4 Swiss JEV-733913 E protein >1:890 220,221 

NHA  JEV-733913  1:100 211 

A3, B2, E3 Chimpanzee JEVAX  2.55-7.91 nM 213 

503 BALB/c JEV-JaGAr-01 E protein 1:32,000 207,209,222 

J2 BALB/c JEV-Nakayama E-DIII >1:640 120 

J3   E-DIII >1:5120 120 
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Chapter 2: 

Structural Basis of Zika Virus-Specific Antibody Protection 

 

This chapter is adapted from a manuscript published in Cell:  

 

Zhao H*, Fernandez E*, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, 
Pierson TC, Diamond MS, Fremont DH. 2016. Structural basis of Zika virus- specific 
antibody protection. Cell. 2016 Aug 11; 166(4): 1016- 27.  
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2.1 Summary 

Zika virus (ZIKV) infection during pregnancy has emerged as a global public health 

problem because of its ability to cause severe congenital disease. Here, we developed six mouse 

monoclonal antibodies (mAbs) against ZIKV including four (ZV-48, ZV-54, ZV-64, and ZV-67) 

that were ZIKV specific and neutralized infection of African, Asian, and American strains to 

varying degrees. X-ray crystallographic and competition binding analyses of Fab fragments and 

scFvs defined three spatially distinct epitopes in DIII of the envelope protein corresponding to the 

lateral ridge (ZV-54 and ZV-67), C-C’ loop (ZV-48 and ZV-64), and ABDE sheet (ZV-2) regions. 

In vivo passive transfer studies revealed protective activity of DIII-lateral ridge specific 

neutralizing mAbs in a mouse model of ZIKV infection. Our results suggest that DIII is targeted 

by multiple type-specific antibodies with distinct neutralizing activity, which provides a path for 

developing prophylactic antibodies for use in pregnancy or designing epitope-specific vaccines 

against ZIKV. 
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2.2  Introduction 

Zika virus (ZIKV), a flavivirus transmitted by Aedes species mosquitoes, was 

originally identified in 1947 from a sentinel rhesus monkey in the Zika forest of Uganda1,2. 

It is closely related to the four serotypes of dengue (DENV) as well as other globally 

relevant viruses including yellow fever (YFV), West Nile (WNV), and Japanese 

encephalitis (JEV) viruses3. Since its identification almost 70 years ago, there were few 

studies of ZIKV until this past year, when large epidemics in the Americas were 

accompanied by unexpectedly severe clinical manifestations. Although in most instances 

ZIKV infection results in a mild febrile illness associated with rash and conjunctivitis, 

severe neurological phenotypes have been described including Guillain-Barré syndrome 

and meningoencephalitis4,5. Infection in pregnant women6 and mice7–9 is now linked 

causally to fetal abnormalities including microcephaly, spontaneous abortion, and 

intrauterine growth restriction due to placental insufficiency. Like other flaviviruses, ZIKV 

is a positive-sense RNA virus with an ~11-kilobase open reading frame flanked by 5’ and 

3’ non-coding regions. The genome encodes a single polyprotein that is post-translationally 

cleaved by host and viral proteases into three structural proteins (capsid [C], pre-membrane 

[prM], and envelope [E]) and seven non-structural proteins. C forms a nucleocapsid when 

bound to viral RNA; prM complexes with E shortly after synthesis to facilitate folding and 

prevent premature fusion to host membranes; and E mediates viral assembly, attachment, 

entry, and fusion. The ZIKV E protein is divided into three domains: a central b-barrel 

domain (domain I [DI]), an extended dimerization domain (DII), and an immunoglobulin-

like segment (DIII)10. The distal end of DII contains the fusion loop (FL), a hydrophobic 

sequence that inserts into the host cell endosomal membrane during pH-dependent 
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conformational changes that drive fusion. Two high-resolution cryoelectron microscopic 

structures show that, like other flaviviruses, mature ZIKV virions are smooth particles that 

incorporate 180 copies each of the E and cleaved M proteins11,12. As in DENV13, the E 

proteins of ZIKV pack as antiparallel dimers in a herringbone pattern that lie relatively flat 

against the lipid envelope. Neutralizing antibodies have important roles in the protection 

against infection by many flaviviruses and are considered correlates of protection for 

licensed YFV and tick-borne encephalitis virus (TBEV) vaccines14,15. The E protein is a 

primary antigenic target of neutralizing antibodies, which bind epitopes in all three 

structural domains, with many type-specific protective antibodies recognizing 

determinants in DIII16–19. Potently neutralizing anti-flavivirus antibodies also recognize 

complex quaternary epitopes composed of more than one domain or E protein20–22. In 

comparison, antibodies that recognize the fusion loop in DII are more cross-reactive and 

neutralize flaviviruses less efficiently, although they may still have protective activity in 

vivo10,23,24. In this study, we developed six mouse monoclonal antibodies (mAbs) against 

ZIKV after immunizing with live virus and boosting with infectious virus or recombinant 

E proteins. Four of the mAbs (ZV-48, ZV-54, ZV-64, and ZV-67) neutralized infection of 

African, Asian, and American strains of ZIKV to varying degrees, whereas two (ZV-2 and 

ZV-13) inhibited infection poorly. High-resolution crystal structures were determined for 

three Fabs and one single-chain variable fragment (scFv) bound to DIII, defining three non-

overlapping conformational epitopes: the lateral ridge (LR) (ZV-54 and ZV-67), the C-C’ 

loop (ZV-48 and ZV-64), and the ABDE sheet (ZV-2). In vivo passive transfer studies in a 

lethal mouse model of ZIKV infection revealed protective activity of neutralizing DIII LR 
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mAbs. Overall, our results suggest that DIII is targeted by several different type-specific 

antibodies with distinct neutralizing activities. 

2.3 Results  

Generation of mAbs against ZIKV E Protein. To generate a panel of antibodies against 

ZIKV, we serially infected Irf3-/- mice 30 days apart with ZIKV MR-766 (Uganda, 1947) 

and ZIKV H/PF/2013 (French Polynesia, 2013). Irf3-/-  mice were used instead of wild-

type (WT) mice, because ZIKV strains are deficient in evading type I interferon-mediated 

immunity25,26. 3 days before myeloma-splenocyte fusion, mice were boosted intravenously 

with ZIKV H/PF/2013 or recombinant DIII (amino acids 299 to 407 of the ZIKV E 

protein). After screening ~2,000 hybridomas, we isolated six mAbs that recognized ZIKV 

E protein by ELISA (Table 2.1).  

We tested the mAbs for their specificity by evaluating reactivity with cells infected 

by ZIKV, DENV (all four serotypes), or JEV. Five of the mAbs (ZV-2, ZV-48, ZV-54, 

ZV-64, and ZV-67) were ZIKV specific and did not recognize DENV- or JEV-infected 

cells by flow cytometry (Figure 2.1A; data not shown); these mAbs all bound to 

recombinant ZIKV DIII in a direct ELISA (Figure 2.1B). In contrast, ZV-13 was cross-

reactive and bound to cells infected with all serotypes of DENV (Figure 2.1A). Consistent 

with these data, only ZV- 13 bound to WNV E protein, as detected by ELISA (Figure 

2.1B). ZV- 13 recognized the conserved FL in DII, as binding was lost to a ZIKV E protein 

with mutations in highly conserved residues within and immediately proximal to the FL 

(Figure 2.1B).  

Neutralizing Activity against ZIKV In Vitro. We evaluated the mAbs for their ability to 

inhibit ZIKV H/PF/2013 infection. Four (ZV-48, ZV-54, ZV-64, and ZV-67) of the six 
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mAbs had neutralizing activity, whereas two (ZV-2 and ZV-13) did not inhibit infection 

appreciably (Figure 2.1C). To determine the breadth of their activity, the mAbs were 

evaluated for inhibition of infection by three other ZIKV isolates including two African 

(MR-766, Uganda, 1947 and Dakar 41519, Senegal, 1982) and an American (Paraiba, 

Brazil, 2015) strain. Whereas ZV-54 and ZV-67 neutralized all four ZIKV strains, ZV-48 

and ZV-64 had reduced inhibitory activity against the other tested strains (Figure 2.1C; 

Table 2.1). 

Binding Characteristics of Anti-ZIKV mAbs. We next assessed whether the variation in 

neutralizing activity among our antibodies could be explained by differences in binding to 

the ZIKV E protein derived from H/PF/2013. Based on the ELISA data (Figure 2.1B), we 

tested the mAbs for binding to a recombinant DIII produced in E. coli using biolayer 

interferometry (BLI) (Figure 2.2A; Table 2.1) or, for the fusion-loop epitope binding ZV-

13, the monomeric form of the ectodomain of E expressed in mammalian cells (Figure 

2.3; Table 2.1). These biophysical analyses showed that mAbs with stronger neutralizing 

capacity had greater binding affinities for recombinant proteins. The best neutralizing 

antibodies, ZV-54 and ZV-67, had the highest affinities with KD equilibrium values less 

than 10 nM. These two mAbs also showed the slowest dissociation rates, with half-lives of 

33 and 13.8 min, respectively. The mAbs with intermediate neutralizing capacity, ZV-64 

and ZV-48, had lower affinities, with KD equilibrium values around 35 nM, and more rapid 

off rates, having half-lives of 1 and 3.2 min, respectively. ZV-2 and ZV-13, which do not 

inhibit infection appreciably, showed weaker binding, with KD equilibrium values >250 

nM.  
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Based on the interactions of individual mAbs with purified ZIKV proteins, we 

speculated that differences in the stoichiometry of binding to the viral particle, which also 

is a function of epitope accessibility27, might correlate with our neutralization data. To test 

this idea, we captured purified ZIKV subviral particles (SVPs, prM-E) on 96-well plates 

and analyzed binding of biotinylated detection mAbs over a range of concentrations. There 

was an association between the functional avidity of binding and the ability to neutralize 

infection: ZV- 67 and ZV-54 bound more avidly than did ZV-2 and ZV-13 (Figure 2.2B). 

These data also showed that even at the highest concentrations tested, ZV-2 and ZV-13 

failed to saturate binding to the SVPs.  

We confirmed these results with pseudo-infectious reporter virus particles (RVPs) 

in a functional assay. Antibody-mediated neutralization requires engagement of the virions 

by antibody with a stoichiometry sufficient for neutralization. Antibody-dependent 

enhancement of infection (ADE) occurs following engagement of the virion by fewer 

antibody molecules and thus represents a sensitive functional probe for antibody binding 

to an infectious virion. We evaluated the antibody concentration dependence and 

magnitude of ADE of ZIKV and DENV by our anti-ZIKV mAbs using an established assay 

(Pierson et al., 2007) in Fcg receptor II (FcgRII, CD32A) expressing human K562 cells. 

While all ZIKV mAbs enhanced infection to varying degrees, those which bound SVPs 

weakly (e.g., ZV-2) only supported FcgRII-mediated infection at high concentrations 

(Figure 2.2C). Reciprocally, as described previously for WNV antibodies (Pierson et al., 

2007), the most inhibitory anti-ZIKV mAbs (ZV-54 and ZV-67) exhibited ADE, but this 

occurred only at sub-neutralizing concentrations. These experiments also corroborated the 

type-specificity of the mAbs, as only ZV-13 supported ADE of DENV. This latter 
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observation suggests that at least some ZIKV-specific antibodies generated during natural 

infection can enhance DENV infection in vitro. 

Structures of ZIKV Antibodies in Complex with DIII. To gain insight into the basis for 

differential binding and neutralization of the ZIKV mAbs, we generated Fab fragments or 

scFvs and undertook crystal screening using DIII of ZIKV H/PF/2013. X-ray crystal 

structures were obtained for four antibody complexes with DIII: ZV-2 Fab to 1.7-A˚ 

resolution, ZV-48 scFv to 1.7-A˚ resolution, ZV-64 Fab to 1.4-A˚ resolution, and ZV-67 

Fab to 1.4-A˚ resolution (Figure 2.4A; data collection and refinement statistics in Table 

2.2 and antibody-antigen structural analysis in Tables 2.3, 2.4, and 2.5). In all four 

complexes, ZIKV DIII adopts a conserved structure nearly identical to that observed in 

soluble E dimers10 as well as mature virions11,12 with variation observed primarily at the 

N- and C-terminal regions of the domain. Analysis of antibody contact residues indicates 

that ZV-2 and ZV-67 binding is dominated by heavy chain complementarity determining 

region (CDR) usage, whereas ZV-48 and ZV-64, which appear to be siblings and engage 

DIII in a similar manner, primarily use light-chain CDRs (Tables 2.3, 2.4, and 2.5; Figure 

2.5). Notably, 10 of 12 light chain CDR contact residues are identical in ZV-48 and ZV-

64, whereas only 2 of 11 heavy-chain CDR residues are the same, with the most significant 

difference in the short CDRH3 of ZV-48 that makes more contact with DIII than the long 

CDR-H3 found in ZV-64 (Figures 2.4A and 2.5). Comparison of the sequences of ZV-67 

with ZV-54, for the latter of which we lack structural data, suggests that they bind DIII 

very similarly, as only two contact residues differ, CDR-L3 Tyr/PheL96 and CDR-H1 

Ser/ThrH31. 
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ZIKV mAbs Bind Three Spatially Distinct Epitopes on DIII. Analysis of the docking 

of our mAbs onto DIII indicates that ZV-2 and ZV-67 binding should not compete with 

ZV-48 or ZV-64 binding, whereas ZV-48 and ZV-64 should compete with each other 

(Figure 2.4B). To evaluate this prediction experimentally, we set up a competitive BLI 

assay (Figure 2.4C). When ZV-67 was immobilized, we observed that both ZV-64 and 

ZV-2 could bind in a DIII-dependent manner. In contrast, ZV-54 binding was excluded, 

supporting the idea that ZV-67 and ZV-54 recognize the same DIII determinants. 

Analogously, immobilized ZV-48 allowed for the binding of ZV-67 and ZV-2 after DIII 

capture, but ZV-64 was blocked competitively. This analysis strongly supports our 

structural observations and defines three distinct ZIKV type-specific epitopes on DIII.  

ZIKV DIII Epitope Mapping. We examined the precise footprints of our mAbs on ZIKV 

DIII (Figure 2.6A and 2.6B). ZV-2 binds to a large, fairly flat surface on the exposed face 

of the ABDE b sheet of DIII (Table 2.3). The ABDE sheet epitope is highly conserved 

among ZIKV sequences but many of the primary contacts diverge in other flaviviruses. 

Previous structural studies of the DENV cross-reactive mAb 2H12 revealed that it contacts 

six of the same residue positions, especially near the A-B loop28. ZV-48 and ZV- 64 both 

engage the C- and C’-b strands and connecting loop, which project away from the b 

sandwich core of DIII. The C-C’ loop epitope recognized by ZV-48 and ZV-64 is 

remarkably similar to that engaged by the DENV-1 type-specific antibody E11129, with 9 

structurally related positions contacted (Figure 2.6A).  

The epitope recognized by ZV-67 is created by four discrete secondary structure 

elements: the A-strand, B-C loop, D-E loop, and F-G loop. A total of 21 residues are 

contacted by ZV-67, with only one difference between the two ZIKV immunizing strains 
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(EE393 in H/PF/2013, DE393 in MR-766). This epitope region has been termed the LR and 

was described in relation to the binding of the potently neutralizing E16 mAb to WNV 

DIII30. Notably, 13 contact positions of E16 and WNV DIII are shared by ZV-67 (Figure 

2.6A). DV1-E106 is another mAb recognizing the LR-epitope31, and it shares 10 contact 

positions with ZV-67, four of which are conserved in the B-C loops of WNV and ZIKV. 

Another related DIII epitope (termed the A-strand) has been described for two DENV-

complex-specific mAbs, 1A1D-232 and 4E1133 (Figure 2.6A). These A-strand epitope 

binding mAbs do not make significant contact with the B-C or F-G loop residues engaged 

by LR-epitope mAbs. Collectively, the three distinct ABDE sheet, C-C’ loop, and LR 

epitopes recognized by our mAbs represent nearly one half of the total ZIKV DIII surface 

area with no overlap in the contact residues. 

Exposed and Cryptic ZIKV Epitopes. We docked our mAb-DIII structures onto the 

cryoelectron microscopy (cryo-EM)-derived model of the mature ZIKV virion11,12. 

Whereas the LR epitope for ZV-67 was accessible on the mature virion (Figure 2.7A), the 

C-C’ loop and ABDE sheet epitopes were occluded almost completely in all three 

symmetry environments. We next examined the exposure of the ABDE sheet epitope on 

the E ectodomain crystal structure10 and found that Fab binding is blocked sterically due 

to the adjacent positioning of DI (Figure 2.7B). Furthermore, dimerization of E would 

preclude ZV-2 mAb binding as its CDR loops contact several of the same DIII residues 

that are contacted by DII residues in the dimer. Examination of the binding of ZV-64 

reveals that it likely engages the cryptic C-C’ loop epitope in a manner similar to the 

DENV-1 specific mAb DV1-E11129 (Figures 2.7C and 2.7D). Residues on the C-C’ loop 

are intimately involved in lateral E protein contacts on the mature virion, so their exposure 
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would require substantial reorganization of the particle, which perhaps could occur locally 

rather than globally. Our most potent mAbs, ZV-67 and ZV-54, recognize the LR epitope 

in a manner similar to WNV-E16, which can bind up to 120 of the 180 copies of DIII on 

the mature virion30,34 (Figures 2.7C and 2.7E). This is the same stoichiometry observed 

for the binding of the A-strand-specific mAb 1A1D-232, which like 4E1133, can broadly 

neutralize multiple DENV serotypes (Figure 2.7F). The clustering of DIII LR epitopes 

around the 5-fold axis of symmetry appears to preclude binding at this site (Figure 2.7A), 

although minor repacking of the interface could lead to possible binding31. 

In Vivo Protection Studies. Recently, we and others have generated in vivo models of 

ZIKV pathogenesis in mice deficient in type I IFN signaling25,26. To evaluate whether 

neutralizing mAbs protected against ZIKV infection in vivo, we treated 4- to 5-week-old 

WT C57BL/6 mice at day 1 with anti-Ifnar (2 mg) and anti-ZIKV or isotype control mAbs 

(250 mg) and then infected animals at day 0 with an African ZIKV strain that is more 

pathogenic in mice than isolates from Asia or the Americas25. Treatment of mice with anti-

Ifnar mAb and a non-binding isotype control mAb (CHIKV-166) resulted in high levels of 

ZIKV RNA in serum at day 3 (Figure 2.8A) and significant weight loss and mortality 

(Figures 2.8B and 2.8C). In comparison, treatment with anti-Ifnar mAb and the DIII LR 

mAbs ZIKV-54 or ZIKV-67 resulted in reduced viremia and complete clinical protection. 

Consistent with a recent vaccine study that showed antibody-mediated protection against 

ZIKV viremia in BALB/c mice35, our neutralizing anti-ZIKV mAbs can protect against 

lethal ZIKV infection in IFN-deficient C57BL/6 mice. This model is a stringent test of 

protection, since in humans, the overwhelming majority of infections does not result in 

lethality. 
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2.4 Discussion 

We set out to develop a panel of mAbs against ZIKV that could provide insight into 

epitopes that are recognized by neutralizing antibodies. After inoculating mice with 

infectious ZIKV, we generated and characterized a panel of ZIKV-specific mAbs at both 

the functional and structural level. Four of the mAbs were ZIKV specific, bound to sites 

within DIII, and neutralized infection of a contemporary Asian strain of ZIKV. Whereas 

ZV-54 and ZV- 67 neutralized other ZIKV strains efficiently, ZV-48 and ZV-64 showed 

reduced inhibitory activity against American and African ZIKV strains. Sequence analysis 

of the VL region of ZV-48 and ZV-64 suggest they are sibling clones, although the VH 

domains of the IgG heavy chains are distinct and make little contact with DIII. In 

comparison, the functionally related ZV-54 and ZV-67 mAbs have highly similar VL and 

VH sequences (Figure 2.5). From these analyses, we defined three spatially distinct type-

specific epitopes on ZIKV DIII (LR, C-C’ loop, and ABDE sheet) with functionally 

different properties. Finally, in vivo passive transfer studies revealed protective activity of 

ZV-54 and ZV- 67 against an African ZIKV strain in a lethal challenge model in mice.  

Type-specific protective and neutralizing mAbs in DIII have been observed in 

studies with other flaviviruses. As no other ZIKV-specific mAbs have been described to 

date, it remains uncertain whether the DIII epitopes reported here are immunodominant in 

humans. However, antibodies to DIII, which is prominently displayed on the surface of 

flaviviruses (Pierson and Diamond, 2013), appear less dominant in the human response 

against other flaviviruses36–38. The structures of three other antibodies with reactivity 

against ZIKV have been published recently. Dai et al. (2016) described the 3.0-A˚ structure 

of ZIKV E protein in complex with a cross-reactive murine antibody, 2A10G6. This 
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antibody bound the highly conserved FL in DII and was poorly neutralizing (PRNT50 of 

249 mg/mL) yet still protected mice against lethal ZIKV infection. ZV-13 had a similar 

neutralizing profile in vitro and also bound to a DII-FL epitope. Barba-Spaeth et al. (2016) 

reported 2.4-A˚ and 2.6-A˚ structures of ZIKV E protein complexed with Fab fragments of 

C8 or A11 antibodies, both of which recognize EDE dimer epitopes22. Although these 

cross-reactive anti-DENV antibodies inhibited ZIKV infection efficiently (FRNT50 of ~14 

and 135 ng/mL, respectively, against H/PF/2013), no protection experiments with C8 or 

A11 and ZIKV were undertaken in animals.  

Three of our mAbs recognized cryptic epitopes in the ABDE sheet (ZV-2) and C-

C’ loop (ZV-48 and ZV-64) on DIII, which are not predicted to be accessible on the mature 

virion11,12. So how were these antibodies generated in vivo? ZV-48 and ZV-64 were the 

product of serial infections with two different strains of ZIKV (MR-766 and H/PF/2013) 

and a final 3-day boost with purified DIII prior to fusion and hybridoma generation. While 

it is possible that ZV-48 and ZV-64 were selected against the recombinant protein during 

the last boost, given the extensive somatic hypermutation seen in the sequences (Figure 

2.5), it seems more likely that viral breathing (Dowd et al., 2011) allows exposure of the 

C-C’ loop, as observed previously for a neutralizing DENV-1 mAb29. For ZV-2, it is more 

difficult to comprehend, as this mAb was a product only of prime-boosts with infectious 

ZIKV MR-766 and H/PF/2013. Other possible ways to generate antibodies against cryptic 

epitopes include exposure of the epitope on partially mature viruses, SVPs, ‘‘broken’’ viral 

particles, or cleaved soluble envelope proteins.  

The two mAbs (ZV-48 and ZV-64) that bound to the C-C’ loop showed reduced 

neutralizing activity against the American and African strains. Sequence alignment of the 
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C-C’ loop contact residues in DIII of all four tested strains failed to reveal an explanation 

for the loss of inhibitory activity relative to the Asian H/PF/ 2013 ZIKV strain. Only a 

single amino acid change (A343V) in the crystallographic footprint was identified in MR-

766 and Dakar 41671, and this substitution was not present in the Paraiba, 2015 sequence. 

This phenotype is similar to a neutralizing mAb (DV1-E111) that bound the C-C’ loop of 

DENV-1 DIII, in which we observed a genotype-dependent pattern of neutralization29  that 

mapped to a single conservative amino acid substitution in DII remote from the footprint 

of the epitope39.  

We observed protection in vivo by DIII LR neutralizing mAbs (ZV-54 and ZV-67). 

This result is similar to that observed for other DIII LR mAbs against flaviviruses that 

protected against lethal infection by WNV17, DENV-118, or DENV-219. Although 

mechanistic studies with ZV-54 and ZV-67 remain to be performed, protective mAbs 

against WNV and DENV that bound the DIII LR epitope inhibited infection at a post-

attachment stage including blocking viral fusion from the endosome40.  

A key question remains whether neutralizing antibodies will protect pregnant 

women and their developing fetuses from ZIKV infection and congenital malformations, 

including microcephaly. Although we and others have developed models of infection of 

pregnant mice with resultant injury to the fetus7,9, we chose not to perform such protection 

studies because mice, in contrast to many other mammalian species, lack expression of the 

neonatal Fc receptor (FcRn) on their trophoblasts in the chorioallantoic placenta41. Rather, 

FcRn is expressed in the mouse yolk sac endoderm, and thus, the transfer of IgG in mice 

is believed to be predominantly postnatal42. As reduced levels of transport of maternal or 

exogenous IgG into the fetus occur in mice, protection by a given antibody may be 
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underestimated. Passive antibody transfer studies during pregnancy may require 

experiments in mammals with more similar placental anatomy that are susceptible to ZIKV 

infection (e.g., nonhuman primates).  

Our studies identify ZIKV DIII as a potential target of neutralizing antibodies and 

thus a possible immunogen for vaccines. DIII has been used previously in the context of 

different flavivirus vaccines43,44. Although neutralizing antibodies are generated in several 

animal species in response to soluble DIII immunogens, the titers have been lower than 

expected, possibly because of immunodominance of regions of DIII that normally are 

inaccessible on the viral particle. Alternatively, the mouse VH-CDR3 regions are shorter 

and vary in amino acid composition compared to other species (Shi et al., 2014), which 

could impact immunodominance against DIII epitopes in a species-specific manner. Our 

structural analysis provides a hierarchy of neutralization efficacy associated with distinct 

epitopes on DIII. Masking of epitopes that fail to elicit neutralizing antibodies could be 

combined with epitope-focused vaccine design approaches45 to generate DIII variants that 

induce more protective responses.  

In summary, we identified a panel of type-specific ZIKV mAbs, several of which 

bind to distinct regions on DIII and have disparate functional activities. Type-specific anti-

ZIKV mAbs could be useful for diagnostic assays that distinguish ZIKV antigens from 

closely related flaviviruses, including DENV. Alternatively, their characterization may 

provide a path forward for developing prophylactic antibodies for use in pregnancy, for 

therapeutic antibodies to potentially prevent viral persistence, or for the design of domain 

and minimal epitope-specific vaccines against ZIKV infection. 

2.5  Experimental Procedures  
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Ethics Statement. This study was carried out in accordance with the recommendations in 

the Guide for the Care and Use of Laboratory Animals of the NIH. The protocols were 

approved by the Institutional Animal Care and Use Committee at the Washington 

University School of Medicine.  

Viruses. ZIKV strain H/PF/2013 (French Polynesia, 2013) was obtained from X. de 

Lamballerie (Aix Marseille Université). ZIKV Brazil Paraiba 2015 was provided by S. 

Whitehead (Bethesda) and originally obtained from P.F.C. Vasconcelos (Instituto Evandro 

Chagas). ZIKV MR-766 (Uganda, 1947) and Dakar 41519 (Senegal, 1982) were provided 

by the World Reference Center for Emerging Viruses and Arboviruses (R. Tesh, University 

of Texas Medical Branch). Nicaraguan DENV strains (DENV-1 1254-4, DENV-2 172-08, 

DENV-3 N2845-09, and DENV-4 N703-99) were generously provided by E. Harris 

(University of California, Berkeley). Virus stocks were propagated in C6/36 Aedes 

albopictus cells25. ZIKV Dakar 41519 was passaged in vivo in Rag1-/- mice (M.J.G. and 

M.S.D., unpublished data) and a brain homogenate was used. Virus stocks were titrated by 

focus-forming assay (FFA) on Vero cells as described46.  

mAb Generation. Irf3-/- mice were infected and boosted with 103 FFU of ZIKV (MR-766 

and H/ PF/2013, respectively) and given a final intravenous boost with infectious 106 FFU 

of ZIKV (H/PF/2013) or purified DIII 3 days prior to fusion with P3X63.Ag.6.5.3 myeloma 

cells. Hybridomas secreting antibodies that reacted with ZIKV-infected Vero cells were 

cloned by limiting dilution. All mAbs were purified by protein A affinity chromatography. 

The VH and VL sequences of mAbs were amplified from hybridoma cell RNA by a 5’ 

RACE procedure.  
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ZIKV mAb Domain Mapping by ELISA. A MAXISORP 96-well plate (Nunc) was 

coated with 50 µL of 2 µg/mL of recombinant ZIKV E, ZIKV E-FL (fusion-loop mutant), 

ZIKV DIII, WNV-E, or DV4-E overnight at 4°C. Plates were washed three times with PBS 

with 0.02% Tween 20 followed by incubation with PBS, 2% BSA, and 0.02% Tween 20 

for 1 hr at 37°C. MAbs (0.5 µg/mL) were added for 1 hr at room temperature. Plates were 

washed again and then sequentially incubated with 2 mg/mL of HRP-conjugated anti-

mouse IgG and tetramethylbenzidine substrate. The reaction was stopped by the addition 

of 1 N H2SO4 to the medium, and emission (450 nm) was read using an iMark microplate 

reader (Bio-Rad). 

Neutralization Assays. Serial dilutions of mAbs were incubated with 100 FFU of different 

ZIKV for 1 hour at 37°C. mAb-virus complexes were added to Vero cell monolayers in 

96-well plates. After 90 min, cells were overlaid with 1% (w/v) methylcellulose in MEM 

supplemented with 4% FBS. Plates were harvested 40 hr later and fixed with 1% PFA in 

PBS. The plates were incubated sequentially with 500 ng/mL of ZV-16 (E.F., unpublished 

data) and HRP-conjugated goat anti-mouse IgG in PBS supplemented with 0.1% saponin 

and 0.1% BSA. ZIKV-infected foci were visualized using TrueBlue peroxidase substrate 

(KPL) and quantitated on an ImmunoSpot 5.0.37 macroanalyzer (Cellular Technologies).  

mAb Binding to Flavivirus-Infected Cells. Vero or C6/36 cells were inoculated with 

different flaviviruses in DMEM supplemented with 10 mM HEPES, penicillin and 

streptomycin, and 10% FBS. At different time points after infection (ZIKV H/PF/2013, 

MOI of 5, 24 hr, Vero cells; DENV strains, MOI of 0.01, 120 hr, C6/36 cells), cells were 

fixed with 4% PFA diluted in PBS for 20 min at room temperature and permeabilized with 

HBSS, 10 mM HEPES, 0.1% saponin (Sigma), and 0.025% NaN3 for 10 min at room 
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temperature. Fifty-thousand cells were transferred to a U-bottom plate and incubated for 1 

hr at 4°C with 5 µg/mL of anti-ZIKV mAbs or isotype controls (negative, CHK-16647; 

positive, WNV E53 [Oliphant et al., 2006]). After washing, cells were incubated with an 

Alexa Fluor 647-conjugated goat anti-mouse IgG (Invitrogen), fixed in 1% PFA in PBS, 

processed on a FACS Array (BD Biosciences), and analyzed using FlowJo software (Tree 

Star).  

Biolayer Interferometry Binding Assays. The binding affinity of purified ZIKV E or 

ZIKV DIII protein with ZIKV mAbs was monitored by BLI using an Octet-Red96 device 

(Pall ForteBio). Briefly, 100 µg of each antibody was mixed with biotin (EZ-Link-NHS-

PEG4-Biotin, Thermo Fisher) at a molar ratio of 20:1 biotin:protein and incubated at room 

temperature for 30 min. The unreacted biotin was removed by passage through a desalting 

column (5 mL Zeba Spin 7K MWCO, Thermo Fisher). The antibodies were loaded onto 

streptavidin biosensors (ForteBio) until saturation, typically 2 mg/mL for 3 min, in 10 mM 

HEPES (pH 7.4), 150 mM NaCl, 3 mM EDTA, and 0.005% P20 surfactant with 3% BSA. 

Association and dissociation were measured at 25°C for all mAbs. The real-time data were 

analyzed using Biaevaluation 4.1 (GE Healthcare). Association and dissociation profiles, 

as well as steady-state equilibrium concentration curves, were fitted using a 1:1 binding 

model.  

SVP Production and Binding Assay. ZIKV SVPs were generated as described previously 

for WNV (Hanna et al., 2005). Briefly, a plasmid encoding the prM-E gene of ZIKV 

H/PF/2013 was transfected into HEK293T cells. SVPs were harvested every 24 hr and 

stored aliquoted at 80°C. 96-well high-binding plates (Immulon 4HBX; Thermo Scientific) 

were coated with 1 mg/mL of ZV-67 in coating buffer (15 mM sodium carbonate, 35 mM 
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sodium bicarbonate [pH 9.6]) overnight at 4°C. Plates were blocked with PBS-T + 1.5% 

BSA, followed by capture of SVPs diluted in blocking buffer for 1 hr at 37°C. Plates were 

incubated with the indicated concentrations of biotin-conjugated mAbs for 30 min at 37°C, 

followed by incubation with 30 ng/mL streptavidin-HRP for 30 min at 37°C. The plates 

were developed with SureBlue TMB substrate (KPL) and stopped with 1 M HCl. Plates 

were analyzed at 450 nm, with a 570 nm correction (BioTek).  

ADE Studies. RVP production and ADE assays were performed using approaches detailed 

in prior studies with WNV and DENV RVPs27,48 using plasmids expressing the C-prM-E 

genes of ZIKV H/PF/2013 or DENV-2 16681 and a plasmid encoding a WNV replicon 

expressing GFP. Infection of human K562 cells were carried out at 37°C and GFP-positive 

infected cells were detected by flow cytometry 48 hr later. 

Mouse Protection Experiments. C57BL/6 mice (4- to 5-week-old, Jackson Laboratories) 

were inoculated with ZIKV by subcutaneous (footpad) route with 105 FFU of mouse-

adapted ZIKV Dakar in a volume of 50 mL. One day prior, mice were treated with 2 mg 

of an Ifnar-blocking mAb (MAR1-5A3) by intraperitoneal injection25. ZIKV mAbs were 

administered as a single 250 ug dose 1 day before infection via an intraperitoneal route. 

Serum samples were obtained at day 3 after ZIKV infection and extracted with the Viral 

RNA Mini Kit (QIAGEN). ZIKV RNA levels were determined by TaqMan one-step qRT-

PCR on an ABI 7500 Fast Instrument using published primers and conditions49.  

Statistical Analysis. All virological data were analyzed with GraphPad Prism software. 

Kaplan-Meier survival curves were analyzed by the log rank test, and weight losses and 

viremia were compared using an ANOVA with a multiple comparisons test. A p value of  
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<0.05 indicated statistically significant differences. SVP ELISA data were analyzed by 

non-linear regression analysis using a one-site binding model. 
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Table 2.1: Characteristic of Anti-ZIKV mAbs 
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Figure 2.1:  Profile of Neutralizing mAbs Against ZIKV 

(A) Cells were infected with DENV-1, DENV-2, DENV-3, DENV-4, or ZIKV (H/PF/2013), and stained 
with indicated anti-ZIKV mAbs or isotype controls and processed by flow cytometry. The data are 
representative of several independent experiments. Blue arrows indicate binding of cross-reactive mAbs 
(ZV-13 or WNV E53) to DENV and ZIKV-infected cells. Red arrows indicate binding of ZIKV mAbs to 
ZIKV-infected cells. (B) The indicated flavivirus proteins (ZIKV E, ZIKV E-FL [fusion loop mutant], 
ZIKV DIII, WNV E, and DENV-4 E) were incubated with the indicated anti-ZIKV mAbs or controls (WNV 
E60 [flavivirus cross-reactive] and WNV E24 [WNV type-specific]). Binding was determined 
by ELISA and the results are representative of two independent experiments performed in triplicate. (C) 
Focus reduction neutralization tests (FRNT). Different ZIKV strains (H/PF/2013, Paraiba, 2015, Dakar 
41519, and MR-766) were incubated with increasing concentrations of mAbs for 1 hr at 37°C prior to 
infection of Vero cells. Subsequently, an FRNT assay was performed (Experimental Procedures). The 
results reflect pooled data from two or more independent experiments performed in triplicate. 
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Figure 2.2:  Differential Binding and ADE Activity of Different Anti-ZIKV mAbs 

(A) Quantitative analysis of DIII binding to anti-ZIKV mAbs by BLI. Shown in the top panel are binding 
curves obtained by passing different concentrations of DIII over biotinylated anti-
ZIKV antibody immobilized on a biosensor surface. The kinetic values were obtained by simultaneously 
fitting the association and dissociation responses to a 1:1 Langmuir binding model (KD, kinetic). The lower 
panels show the steady-state analysis results (KD, equilibrium). Plotted in the bottom panels (open circles) 
is the binding response (nm) versus concentration of DIII offered. In each case, the binding was saturable. 
Bottom insets, Scatchard plots suggest a single binding affinity for each interaction. The data are 
representative of two independent experiments per mAb. (B) Left: ZIKV SVPs were adsorbed to 96-well 
plates and detected with the indicated biotinylated anti-ZIKV or control (WNV E60 [flavivirus cross-
reactive] and WNV E16 [WNV type-specific]) mAbs by ELISA. Right: the relative avidity of binding was 
calculated. Data are representative of five independent experiments, and the avidity values reflect the mean 
of the five experiments. Error bars indicate SDs. (C) ADE studies. Serial dilutions of anti-ZIKV or control 
(WNV E60 [flavivirus cross-reactive] and WNV E16 [WNV type-specific]) mAbs were mixed with (left) 
ZIKV H/PF/2013 or (right) DENV-2 RVPs (which encode for GFP) prior to infection of 
FcγRIIa+ human K562 cells and processing by flow cytometry. One representative experiment of two is 
shown. Error bars indicate the range of duplicate technical replicates. 
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Figure 2.3:   BLI Binding Data 

ZV-13 mAb binding to recombinant soluble ZIKV E protein was assayed by BLI. Randomly biotinylated 
ZV-13 mAb was coated onto Streptavidin biosensor pins. The pins were equilibrated in binding buffer alone 
(HBS-EP +1% BSA) before being plunged into wells containing various concentrations of recombinant 
ZIKV E ectodomain protein. The association lasted ten minutes before the pins were placed back in binding 
buffer to allow for dissociation. The real-time data were analyzed using Biaevaluation 4.1 (GE Healthcare). 
Association and dissociation profiles, as well as steady-state equilibrium concentration curves, were fitted 
assuming a 1:1 binding model. 
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Figure 2.4:  Structures of Anti-ZIKV Fabs and scFv Complexed with DIII 

(A) Ribbon diagrams of four ZIKV DIII (H/PF/2013) complexes with antibody fragments. The crystal 
structure of ZV-2 Fab (outer left, green), ZV-48 scFv (inner left, cyan), ZV-64 Fab (inner right, cyan), and 
ZV-67 Fab (outer right, magenta) are shown with light chains rendered in paler colors. DIII is colored dark 
blue with contact segments labeled. (B) Docking of the ZV-2, ZV-48, and ZV-64 complexes onto ZV-67-
DIII. DIII is rendered as a molecular surface with each mAb contact surface color coded. Simultaneous 
docking of ZV-2 and ZV-67 with either ZV-48 or ZV-64 buries nearly half of the solvent surface of DIII 
and creates no van der Waal contacts between adjacent mAbs. (C) Five mAbs were probed for competitive 
and non-competitive binding against the DIII antigen by BLI. In one experiment, biotin-labeled ZV-67 was 
captured on the streptavidinsensor, the antibody was then loaded with ZIKV DIII followed by either ZV-
54 or ZV-64, and finally, ZV-2 was added. In another experiment, ZV-48 was immobilized and ZV-64 or 
ZV-67 was added after DIII followed by ZV-2. Additional BLI signal indicates an unoccupied epitope (non-
competitor), whereas no binding indicates epitope blocking (competition). In this experiment, ZV-48 
competed with ZIKV-64 as expected given that they both bind nearly identical epitopes, while ZV-67 
competed with its presumed sibling clone ZV-54. A dash (-) represents that no 2nd or 3rd antibody was 
offered. 
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Figure 2.5: mAb Sequence Alignments and Antigen Contacts  

Amino acid sequence alignment of the variable heavy chain (VH) and light chain (VL) of the mAbs ZV-2 
(A), ZV-48 and ZV-64 (B), and ZV-54 and ZV-67 (C) against the C57BL/6 germline. Nucleotide and amino 
acid sequences were analyzed using NCBI/IgBlast and IMGT/V-Quest to identify the germline V, D and J 
gene members with the highest sequence identity. The top sequence in each alignment is the presumptive 
germline IgV, D, and J genes. Red stars indicate positions of somatic hypermutation. Red triangles mark 
insertions at the junctions of rearrangement. The mAb-DIII contact residues are boxed in the color of 
the epitope they bind: green for the ABDE epitope, cyan for the C-C’ loop epitope, and magenta for the LR 
epitope. Absent residues are denoted with (.). Consensus variable domain numbering is given above the 
aligned sequences, with insertions as described (Al-Lazikani et al., 1997). Complementarity determining 
regions (CDR 1-3) are marked at the top of the alignment. The secondary structure elements are indicated 
in blue (arrows for β sheet and coil for α helices). A table of the number of somatic mutations for 
each antibody is provided at the bottom. 
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Figure 2.6:  Structural Definition of ZIKV-Specific DIII Epitopes 

(A) Sequence alignment of DIII from our ZIKV immunizing stains (H/PF/2013 and MR-766), WNV, 
DENV-1, DENV-2, DENV-3, and DENV-4 and highlighting of structurally defined DIII epitopes. The 
ABDE sheet epitope of ZV-2 is shown in green, the C-C′ loop epitope of ZV-48 and ZV-64 is shown in 
cyan, and the LR epitope of ZV-67 is shown in magenta. DIII residues are colored if they make van der 
Waals contact of ≤3.90-Å distance, and the total number of contacts for each epitope residue are shown 
below the ZIKV sequences. For comparison, the same structurally defined DIII epitopes of WNV E16 
(magenta, LR), DV1-E106 (magenta, LR), DV1-E111 (cyan, C-C′ loop), DV2 1A1D-2 (pink, A-strand), 
DV3 2H12 (light-green, A-B-loop), and DV4 4E11 (pink, A-strand) are displayed. The ZIKV β strands are 
labeled and shown in dark blue above the sequences. (B) Delineation of the epitope contact regions on the 
ZIKV DIII structures of ZV-2 (ABDE sheet), ZV-48 (C-C′ loop), ZV-64 (C-C′ loop) and ZV-67 (LR). DIII 
epitope residues are colored as in (A), with side chains drawn as sticks and labeled if they make eight or 
more van der Waals contacts. 
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Figure 2.7:  Accessibility of ZIKV DIII Epitopes 

(A) Mapping of the three distinct ZIKV DIII epitopes onto the mature virion (5IRE) (Sirohi et al., 2016). 
The surface distribution of the ABDE sheet (green), C-C′ loop (cyan), and LR (magenta) epitopes are 
rendered on the three symmetrically unique E proteins colored olive, wheat, and gray. While the ABDE 
sheet and C-C′ loop epitopes are dominantly buried in all three symmetry environments, the LR epitope is 
solvent accessible on the mature virion. (B) Docking of the ZV-2-DIII complex onto the crystal structure of 
dimeric ZIKV (5JHM) (Dai et al., 2016). Shown above is the ZV-2 Fab docked to a soluble E monomer, 
which indicates that the ABDE sheet epitope is occluded by DI with clashes by the VH domain. Below, the 
ZIKV dimer is depicted, showing how it would sterically clash with the ZV-2 VLdomain. ZV-2 CDR loops 
contact several of the same DIII residues that are contacted by the DII fusion loop in the dimer. (C) Docking 
of the ZV-64-DIII and ZV-67-DIII complexes onto the cryoelectron microscopymodel of the M-E dimer 
that forms the mature virion. ZV-67 binding to the LR epitope allows for the projection of the Fab away 
from the viral membrane whereas ZV-64 binding to the C-C′ loop epitope positions the Fab in the plane of 
the viral envelope and membrane. (D) Comparative docking of the DV1-E111 Fab-DIII complex (Austin 
et al., 2012) onto the cryptic C-C′ loop epitope suggests similar steric clashes as predicted for ZV-64. (E) 
Comparative docking of the WNV-E16 Fab-DIII complex (Nybakken et al., 2005) onto the exposed LR 
epitope. (F) Comparative docking of the DV2-1A1D-2 Fab-DIII complex (Lok et al., 2008) and DV4-4E11 
scFv-DIII complex (Cockburn et al., 2012) onto the exposed A-strand epitope. 
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Figure 2.8:  In Vivo Protection of Anti-ZIKV mAbs 

4- to 5-week-old C57BL/6 mice were passively transferred 2 mg of anti-Ifnar1 mAb and 250 µg of the 
indicated mAbs (CHK-166, ZV-54, or ZV-67) via an intraperitoneal injection1 day before 
subcutaneous inoculation with 105 FFU of ZIKV Dakar 41519. (A and B) (A) On day 3 after 
infection, serum was collected for analysis of viral RNA by qRT-PCR. (B) Daily weights were measured. 
For (A) and (B), statistical significance was analyzed by a one-way ANOVA with a Dunnett’s multiple 
comparisons test (∗∗p < 0.01; ∗∗∗p < 0.001). (C) ZV-54 and ZV-67 protected against ZIKV infection 
compared to the control CHK-166 mAb (∗∗∗p < 0.001, log rank test). The results are pooled from two 
independent experiments with n = 8–9 mice for each treatment condition. 
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Chapter 3: 

Neutralizing human antibodies prevent Zika virus replication and 
fetal disease in mice 

 

This chapter is adapted from a manuscript published in Nature: 

 

Sapparapu G*, Fernandez E*, Kose N, Cao B, Fox JM, Bombardi RG, Zhao H, Nelson CA, 
Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, 
Crowe JE. 2016.  Neutralizing human antibodies prevent Zika virus replication and fetal 
disease in mice. Nature. 2016 Nov 7; 540(7633): 443-447.  

 

 

G.S., E.F., I.U.M., B.J.D., M.S.D. and J.E.C. planned the studies. G.S., E.F., N.K., J.M.F., 
R.G.B., B.C., A.L.B., T.B. and E.D. conducted experiments. H.Z., C.A.N. and D.H.F. provided 
protein reagents. G.S., E.F., M.S.D., B.C., B.J.D., I.U.M. and J.E.C. interpreted the studies. G.S., 
E.F., M.S.D. and J.E.C. wrote the first draft of the paper. D.H.F., B.J.D., M.S.D. and J.E.C. 
obtained funding. All authors reviewed, edited and approved the paper. 
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3.1 Summary 

Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause 

severe disease, including congenital birth defects during pregnancy1. To develop 

candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal 

antibodies from subjects that were previously infected with ZIKV. We show that a subset 

of antibodies recognize diverse epitopes on the envelope (E) protein and exhibit potent 

neutralizing activity. One of the most inhibitory antibodies, ZIKV-117, broadly 

neutralized infection of ZIKV strains corresponding to African and Asian-American 

lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique 

quaternary epitope on the E protein dimer–dimer interface. We evaluated the therapeutic 

efficacy of ZIKV-117 in pregnant and non-pregnant mice. Monoclonal antibody 

treatment markedly reduced tissue pathology, placental and fetal infection, and mortality 

in mice. Thus, neutralizing human antibodies can protect against maternal–fetal 

transmission, infection and disease, and reveal important determinants for structure-based 

rational vaccine design efforts. 
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3.2 Main 

Recent ZIKV epidemics are linked to Guillain–Barré syndrome in adults and 

microcephaly in fetuses and newborn infants2–5. Although ZIKV infection can potentially 

cause severe disease, specific treatments and vaccines for ZIKV are not currently available. 

We sought to isolate neutralizing human monoclonal antibodies (mAbs) with broad 

specificity against all ZIKV strains and protective activity in vivo. We tested the serological 

response of subjects who had previously been infected with ZIKV in diverse geographic 

locations. Serum from each subject contained antibodies that were shown by ELISA assays 

to react with ZIKV E protein and to neutralize infection of a contemporary Asian isolate 

(H/PF/2013) from French Polynesia (Figures 3.1A and 3.1B). We studied the B cells of 

subject 1001 in greater detail. Based on the results of replicate assays, the frequency of B 

cells that secrete antibodies against ZIKV E protein in the peripheral blood was between 

0.36% and 0.61% (Figures 3.1C and 3.1D). We next tested the reactivity of antibodies 

with domain III (DIII) of the E protein from ZIKV or the related dengue (DENV) and West 

Nile (WNV) viruses. Only a subset (6%) of the ZIKV-E-reactive antibodies bound to DIII, 

and most were specific for ZIKV (Figure 3.1C). Comparative binding to a wild-type or 

mutant ZIKV E protein lacking the conserved fusion loop epitope in DII (mutant denoted 

hereafter as E-FLM) established immunodominance (binding around 70% of mAbs) of the 

fusion loop. 

We obtained 29 cloned hybridomas secreting mAbs that bound to ZIKV E protein 

from the cells of three donors (mAb ZIKV-195 from subject 1011, mAb ZIKV-204 from 

subject 973, and the remaining 27 mAbs from subject 1001). All of the mAbs except for 

one belonged to the IgG1 isotype (two could not be determined), with an equal distribution 
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of κ and λ light chains (Table 3.1); sequence analysis of cDNA of the antibody variable 

gene regions revealed that each mAb represented an independent clone (Table 3.1). We 

determined the half-maximal effective concentrations for binding to ZIKV E protein (EC50) 

and neutralization (IC50) of infection (Figure 3.2A and 3.3); most of the mAbs bound to E 

protein at low concentrations (EC50 < 100 ng ml−1), whereas only four of the 29 mAbs 

exhibited strong neutralizing activity (IC50 = 5–420 ng ml−1). We next determined how 

many antigenic sites on ZIKV E were recognized using quantitative competition binding. 

We identified four major competition groups (designated A, B, C or D). Group A mAbs 

had 23 members that were directed against the fusion loop in DII, as determined by 

differential binding to E and E-FLM (Figure 3.3), and had only one clone (ZIKV-88) with 

moderate neutralizing potency. The group B mAb ZIKV-116 neutralized ZIKV infection 

and bound to E, DIII and E-FLM. Group C mAbs (ZIKV-19 and ZIKV-190) bound to E 

and E-FLM weakly, but did not potently neutralize infection. The group D mAb ZIKV-

195 neutralized with moderate potency and was similar in binding to both E and E-FLM. 

The most inhibitory group D mAb, ZIKV-117, bound to both E and E-FLM weakly. 

We mapped the epitopes of representative mAbs using a shotgun alanine-scanning 

mutagenesis library6 of ZIKV prM and E protein variants (Figure 3.2B and 3.4). Loss-of-

binding analysis confirmed that group A mAbs bound to the fusion loop in DII, whereas 

the group B mAb bound to DIII. Group B mAb ZIKV-116 bound to an epitope involving 

residues T309, E393 and K394 along the lateral ridge of DIII (DIII-LR), which was 

confirmed in an ELISA that showed reduced binding to DIII with mutations A310E and 

T335K in DIII-LR7. The epitope mapping studies suggest that the group D mAb ZIKV-

117 binds specifically to DII across two adjacent dimers at the ‘dimer–dimer’ interface 
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(Figure 3.2C). We were unable to isolate virus neutralization escape mutant viruses for 

ZIKV-117, despite six passages in cell culture under mAb selection pressure. 

Because of their potency, we assessed whether group B mAb ZIKV-116 and group 

D mAb ZIKV-117 could inhibit diverse ZIKV strains encompassing the African and Asian-

American lineages. ZIKV-117 neutralized all of the ZIKV strains tested, including two 

African (MR 766 and Dakar 41519), two Asian (Malaysia P6740 and H/PF/2013), and an 

American (Brazil Paraiba 2015) strain with IC50 values of 5 to 25 ng ml−1 (Figures 3.2D 

and 3.2E). ZIKV-116 inhibited four of the five strains efficiently, but was inactive against 

MR 766, the original African strain (Figures 3.2D and 3.2E). Alignment of the sequences 

of ZIKV H/PF/2013 and MR 766, with respect to residues in DIII-LR7 that ZIKV-116 

binds, revealed only one difference (a conservative E393D change). Given these data, we 

hypothesize that the DIII-LR epitope of ZIKV-116 is displayed differently on MR 766 

owing to allosteric effects of changes in other parts of the E protein, which could regulate 

epitope accessibility8,9. 

As recent studies have suggested that cross-reactive ZIKV-specific human mAbs 

can enhance DENV infection in vivo10, we tested whether these two ZIKV-neutralizing 

mAbs could bind to DENV-infected cells. ZIKV-117 showed a restricted type-specific 

binding pattern as it failed to stain cells infected with DENV-1, DENV-2, DENV-3 or 

DENV-4, or bind to purified WNV E protein (Figure 3.5 and data not shown). In 

comparison, ZIKV-116 bound to cells infected with DENV-1, DENV-2 or DENV-4, but 

did not bind to DENV-2 DIII or WNV DIII in ELISA. 

In vivo models of ZIKV pathogenesis and antibody prophylaxis have been 

reported7,10,11 in mice deficient in type-I interferon signaling. To determine whether ZIKV-
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117 had therapeutic activity, we treated 4–5-week-old wild-type male C57BL/6 mice at 

day −1 with anti-Ifnar1 mAbs, and then inoculated animals with 103 focus-forming units 

(FFU) of a mouse-adapted African strain of ZIKV-Dakar7. Animals were treated with a 

single dose of ZIKV-117 or non-binding isotype control (human (h)CHK-152)12, on day 

+1 (100 µg; 6.7 mg kg−1) or day +5 (250 µg; 16.7 mg kg−1). Animals treated with hCHK-

152 sustained significant lethality compared to those receiving ZIKV-117 (Figure 3.6A), 

which were protected even when administered only a single dose 5 days after virus 

inoculation. 

We and others have demonstrated placental injury and fetal demise following ZIKV 

infection of pregnant mice with deficiencies in type-I interferon signalling13–15. To assess 

the protective ability of ZIKV-117 during fetal development, we treated Ifnar1−/− pregnant 

dams mated to wild-type male mice with a single 250 µg dose of ZIKV-117 or isotype 

control mAb (hCHK-152) on embryo day 5.5 (E5.5), the day before ZIKV inoculation. 

Whereas inoculation with ZIKV-Brazil at E6.5 following administration with hCHK-152 

resulted in high levels of maternal infection and almost uniform fetal demise by E13.5, 

treatment with ZIKV-117 improved fetal outcome (Figure 3.6B and 3.6C). 

Because of the extent of demise at E13.5 after ZIKV infection of Ifnar1−/− dams, 

we could not recover adequate numbers of fetuses to measure viral titerss. Accordingly, 

we switched to a wild-type mouse model with an acquired type-I interferon deficiency 

using the mouse-adapted African ZIKV-Dakar strain. Wild-type pregnant dams were 

treated at day −1 (E5.5) with an anti-Ifnar1 mAbs. At the same time, these animals were 

administered vehicle control (PBS), 250 µg isotype control hCHK-152, or 250 µg ZIKV-

117. One day later, dams were inoculated subcutaneously with 103 FFU of ZIKV-Dakar. 
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Fetuses from dams treated with anti-Ifnar1 mAbs and given PBS or hCHK-152 showed 

high levels (for example, around 105 to 107 FFU equivalents per gram) of viral RNA in the 

placenta and fetal brain (Figure 3.6D). In comparison, mice treated with anti-Ifnar1 and 

ZIKV-117 had reduced virus levels in the placenta and fetal brain (for example, around 

10° to 103FFU equivalents per gram). This phenotype was associated with transport of 

human ZIKV E-specific IgG across the maternal–fetal placental barrier (816 ± 53 ng 

ml−1 for the placenta and 1,675 ± 203 ng ml−1 for the fetal head; Figure 3.7). As levels of 

neonatal Fc receptor in the mouse placenta are lower than other mammalian species16, 

reduced levels of transport of maternal or exogenous IgG into the fetus is expected17. 

Although this factor could underestimate the therapeutic effect of exogenous anti-ZIKV 

IgG or maternal antibodies, we nonetheless achieved levels in the placenta and fetal head 

that were orders of magnitude above the IC50 neutralization value for ZIKV-117. Dams 

treated with ZIKV-117 also had substantially lower levels of viral RNA in the maternal 

brain and serum (Figure 3.6E). 

Antibody-dependent enhancement of flavivirus infection occurs when type-specific 

or cross-reactive antibodies fail to reach a stoichiometric threshold for neutralization and 

instead facilitate infection of FcγR-expressing myeloid cells18. Because antibodies can 

promote antibody-dependent enhancement of ZIKV in cell culture19,20, we evaluated the 

protective efficacy of a recombinant form of ZIKV-117 IgG containing a leucine (L) to 

alanine (A) substitution at positions 234 and 235 (LALA)21, which lacked efficient binding 

to FcγR, retained interactions with FcRn22, and neutralized ZIKV in vitro equivalently 

compared to the parent mAb (Figure 3.8). The LALA variant of ZIKV-117 showed similar 

protective activity against infection of the placenta and fetus relative to the parent mAb 



 84 

(Figure 3.6F). As the protection conferred by ZIKV-117 in the pregnancy model is 

probably due to neutralization and not Fc effector functions, LALA variants could be used 

without a risk of antibody-dependent enhancement. 

We next assessed the post-exposure efficacy of ZIKV-117 during pregnancy. Mice 

treated with anti-Ifnar1 mAbs at E5.5 were inoculated with 103 FFU of ZIKV-Dakar at 

E6.5 and then administered a single dose of PBS, 250 µg of hCHK-152, or 250 µg of ZIKV-

117 at E7.5. Compared to PBS or isotype control mAb treatment, administration of ZIKV-

117 markedly reduced the viral burden in the dams, the placenta and fetus when measured 

at E13.5 (Figures 3.6G and 3.6H). 

The reduction in viral load mediated by ZIKV-117 was associated with decreased 

damage of the placenta (as judged by labyrinth layer and overall placenta area), less 

trophoblast cell death, and increased body size of the fetus (Figure 3.9A- 3.9C) compared 

to fetuses of PBS- or hCHK-152-treated dams. ZIKV-117 protected against ZIKV-induced 

placental insufficiency, as the placental area and fetal size from infected dams treated with 

anti-ZIKV mAbs were similar to that of uninfected placentas14. In situ hybridization 

revealed an almost complete absence of viral RNA in the junctional zone and decidua of 

the placenta in animals treated with ZIKV-117 compared to staining observed in PBS- or 

hCHK-152-treated controls (Figures 3.9D and 3.10). We also observed vascular damage 

associated with ZIKV infection of the placenta14, characterized as diminished vimentin 

staining of fetal endothelial cells, which was rescued by ZIKV-117 to levels seen in 

uninfected placentas (Figure 3.9E). The histopathological data suggests that ZIKV-117 

treatment can reduce the ability of ZIKV to cross the fetal endothelial cell barrier, and 

thereby prevent vertical transmission and improve fetal outcome. 
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Our most potent neutralizing antibodies exhibited a breadth of inhibitory activity 

against strains from Africa, Asia, and the Americas. Even a single ZIKV-117 dose given 5 

days after infection protected mice against lethal infection, a timeline similar to the most 

protective antibodies against other flaviviruses23. Prophylaxis or post-exposure therapy of 

pregnant mice with ZIKV-117 reduced infection in mothers, and in placental and fetal 

tissues. As the extent to which these observations in mice translate to humans remains 

unclear, protection studies in non-human primates, which share a placental architecture 

similar to humans, seem warranted. If the results were consistent, ZIKV-117 or human 

antibodies with similar profiles10,19 could be developed as a treatment measure during 

pregnancy for at-risk humans. By defining key epitopes on the E protein associated with 

antibody-mediated protection, our studies also inform vaccine efforts to design new 

immunogens that elicit highly protective antibody responses against ZIKV. 

3.3 Methods 

Research subjects. We studied eight subjects in the United States with previous or recent 

ZIKV infection (Table 3.2). The studies were approved by the Institutional Review Board 

of Vanderbilt University Medical Center; samples were obtained after informed consent 

was obtained by the Vanderbilt Clinical Trials Center. Two subjects (972 and 973) were 

infected with an African lineage strain in 2008 (one subject while working in Senegal, the 

second acquired the infection by sexual transmission from the first, as previously 

reported24). The other six subjects were infected during the current outbreak of an Asian 

lineage strain, following exposure in Brazil, Mexico or Haiti. 

Generation and quantification of human B-cell lines secreting ZIKV E protein 

specific antibodies. Peripheral blood mononuclear cells (PBMCs) from heparinized blood 
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were isolated with Ficoll-Histopaque by density gradient centrifugation. The cells were 

used immediately or cryopreserved in the vapour phase of liquid nitrogen until use. Ten 

million PBMCs were cultured in 384-well plates (Nunc) using culture medium (ClonaCell-

HY Medium A, StemCell Technologies) supplemented with 8 µg ml−1 of the TLR agonist 

CpG (phosphorothioate-modified oligodeoxynucleotide ZOEZOEZZZZZOEEZOEZZZT, 

Invitrogen), 3 µg ml−1 of Chk2 inhibitor (Sigma), 1 µg ml−1 of cyclosporine A (Sigma), and 

clarified supernatants from cultures of B95.8 cells (ATCC) containing Epstein–Barr virus. 

After 7 days, cells from each 384-well culture plate were expanded into four 96-well 

culture plates (Falcon) using ClonaCell-HY Medium A containing 8 µg ml−1 of CpG, 3 µg 

ml−1 of Chk2 inhibitor, and 107 irradiated heterologous human PBMCs (Nashville Red 

Cross) and cultured for an additional 4 days. Supernatants were screened in ELISA 

(described below) for reactivity with various ZIKV E proteins, which are described below. 

The minimal frequency of ZIKV E-reactive B cells was estimated based on the number of 

wells with E protein-reactive supernatants compared with the total number of 

lymphoblastoid cell line colonies in the transformation plates (calculation: E-reactive B-

cell frequency = (number of wells with E-reactive supernatants) divided by (number of 

LCL colonies in the plate) × 100). 

Protein expression and purification. The ectodomains of ZIKV E (H/PF/2013; GenBank 

Accession KJ776791) and the fusion-loop mutant E-FLM (containing four mutations: 

T76A, Q77G, W101R, L107R) were expressed transiently in Expi293F cells and purified 

as described previously7. ZIKV DIII (residues 299–407 of strain H/PF/2013), WNV DIII 

(residues 296–405 of strain New York 1999) and DENV-2 DIII (residues 299-410 of strain 

16681) were expressed in BL21 (DE3) as inclusion bodies and refolded in vitro25. Briefly, 
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inclusion bodies were denatured and refolded by gradual dilution into a refolding buffer 

(400 mM L-arginine, 100 mM Tris (pH 8.3), 2 mM EDTA, 5 and 0.5 mM reduced and 

oxidized glutathione) at 4 °C. Refolded proteins were purified by size-exclusion 

chromatography using a Superdex 75, 16/60 (GE Healthcare). 

Generation of human hybridomas. Cells from wells with transformed B cells containing 

supernatants that exhibited reactivity to ZIKV E protein were fused with HMMA2.5 

myeloma cells (gift from L. Cavacini) using an established electrofusion technique26. After 

fusion, hybridomas were suspended in a selection medium containing 100 µM 

hypoxanthine, 0.4 µM aminopterin, 16 µM thymidine (HAT Media Supplement, Sigma), 

and 7 µg ml−1 ouabain (Sigma) and cultured in 384-well plates for 18 days before screening 

hybridomas for antibody production by ELISA. After fusion with HMMA2.5 myeloma 

cells, hybridomas producing ZIKV E-specific antibodies were cloned biologically by 

single-cell fluorescence-activated cell sorting. Hybridomas were expanded in post-fusion 

medium (ClonaCell-HY Medium E, STEMCELL Technologies) until 50% confluent in 

75-cm2 flasks (Corning). 

For antibody production, cells from one 75-cm2 flask were collected with a cell 

scraper and expanded to four 225-cm2 flasks (Corning) in serum-free medium (Hybridoma-

SFM, Life Technologies). After 21 days, supernatants were clarified by centrifugation and 

filtered using 0.45-µm pore size filter devices. HiTrap Protein G or HiTrap MAbSelectSure 

columns (GE Healthcare Life Sciences) were used to purify antibodies from filtered 

supernatants. 

Sequence analysis of antibody variable region genes. Total cellular RNA was extracted 

from pelleted cells from hybridoma clones, and an RT–PCR reaction was performed using 
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mixtures of primers designed to amplify all heavy-chain or light-chain antibody variable 

regions27. The generated PCR products were purified using AMPure XP magnetic beads 

(Beckman Coulter) and sequenced directly using an ABI3700 automated DNA sequencer. 

The variable region sequences of the heavy and light chains were analysed using the 

IMGT/V-Quest program28,29. 

ELISA and EC50 binding analysis. Wells of microtitre plates were coated with purified, 

recombinant ectodomain of ZIKV E, DIII, DIII-LR mutants (DIII containing A310E and 

T335K mutations) or DIII of related flaviviruses DENV-2 or WNV and incubated at 4 °C 

overnight. In ELISA studies with purified mAbs, we used recombinant ZIKV E protein 

ectodomain with His6 tag produced in Sf9 insect cells (Meridian Life Sciences R01635). 

Plates were blocked with 5% skimmed milk in PBS-T for 1 h. B-cell culture supernatants 

or purified antibodies were added to the wells and incubated for 1 h at ambient temperature. 

The bound antibodies were detected using goat anti-human IgG (γ-specific) conjugated 

with alkaline phosphatase (Southern Biotech) and pNPP disodium salt hexahydrate 

substrate (Sigma). In ELISAs that assessed binding of mAbs to DIII and DIII LR mutants, 

we used previously described murine mAbs ZV-2 and ZV-54 (ref. 7) as controls. A goat 

anti-mouse IgG conjugated with alkaline phosphatase (Southern Biotech) was used for 

detection of these antibodies. Colour development was monitored at 405 nm in a 

spectrophotometer (Biotek). For determining EC50, microtitre plates were coated with 

ZIKV E or E-FLM that eliminated interaction of fusion-loop specific antibodies. Purified 

antibodies were diluted serially and applied to the plates. Bound antibodies were detected 

as above. A nonlinear regression analysis was performed on the resulting curves using 

Prism (GraphPad) to calculate EC50 values. 
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ELISA for detection of human antibodies in murine tissues. Fetal head and placental 

tissues were collected at E13.5 from groups treated with ZIKV-117 or PBS (as a negative 

control), homogenized in PBS (250 µl) and stored at −20 °C. ELISA plates were coated 

with ZIKV E protein, and thawed, clarified tissue homogenates were applied undiluted in 

triplicate. Bound antibodies were detected using goat anti-human IgG (Fc-specific) 

antibody conjugated with alkaline phosphatase. The quantity of antibody was determined 

by comparison with a standard curve constructed using purified ZIKV-117 in a dilution 

series. 

Biolayer interferometry competition binding assay. His6-tagged ZIKV E protein was 

immobilized on anti-His coated biosensor tips (Pall) for 2 min on an Octet Red biosensor 

instrument. After measuring the baseline signal in kinetics buffer (PBS, 0.01% BSA, and 

0.002% Tween 20) for 1 min, biosensor tips were immersed into the wells containing first 

antibody at a concentration of 10 µg ml−1 for 7 min. Biosensors then were immersed into 

wells containing a second mAb at a concentration of 10 µg ml−1 for 7 min. The signal 

obtained for binding of the second antibody in the presence of the first antibody was 

expressed as a percentage of the uncompeted binding of the second antibody that was 

derived independently. The antibodies were considered competing if the presence of first 

antibody reduced the signal of the second antibody to less than 30% of its maximal binding 

and non-competing if the signal was greater than 70%. A level of 30–70% was considered 

intermediate competition. 

Shotgun mutagenesis epitope mapping. Epitope mapping was performed by shotgun 

mutagenesis essentially as described previously6. A ZIKV prM/E protein expression 

construct (based on ZIKV strain SPH2015) was subjected to high-throughput alanine 
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scanning mutagenesis to generate a comprehensive mutation library. Each residue within 

prM/E was changed to alanine, with alanine codons mutated to serine. In total, 672 ZIKV 

prM/E mutants were generated (100% coverage), sequence confirmed, and arrayed into 

384-well plates. Each ZIKV prM/E mutant was transfected into HEK-293T cells and 

allowed to express for 22 h. Cells were fixed in 4% (v/v) paraformaldehyde (Electron 

Microscopy Sciences), and permeabilized with 0.1% (w/v) saponin (Sigma-Aldrich) in 

PBS plus calcium and magnesium (PBS++). Cells were incubated with purified mAbs 

diluted in PBS++, 10% normal goat serum (Sigma), and 0.1% saponin. Primary antibody 

screening concentrations were determined using an independent immunofluorescence 

titration curve against wild-type ZIKV prM/E to ensure that signals were within the linear 

range of detection. Antibodies were detected using 3.75 µg ml−1 of AlexaFluor488-

conjugated secondary antibody (Jackson ImmunoResearch Laboratories) in 10% 

NGS/0.1% saponin. Cells were washed three times with PBS++/0.1% saponin followed by 

two washes in PBS. Mean cellular fluorescence was detected using a high-throughput flow 

cytometer (HTFC, Intellicyt). Antibody reactivity against each mutant prM/E clone was 

calculated relative to wild-type prM/E protein reactivity by subtracting the signal from 

mock-transfected controls and normalizing to the signal from wild-type prM/E-transfected 

controls. Mutations within clones were identified as critical to the mAb epitope if they did 

not support reactivity of the test MAb, but supported reactivity of other ZIKV antibodies. 

This counter-screen strategy facilitates the exclusion of prM/E mutants that are locally 

misfolded or have an expression defect. 

Vertebrate animal studies ethics statement. This study was carried out in accordance 

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the 
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National Institutes of Health. The protocols were approved by the Institutional Animal Care 

and Use Committee at the Washington University School of Medicine (Assurance number 

A3381-01). Inoculations were performed under anaesthesia induced and maintained with 

ketamine hydrochloride and xylazine, and all efforts were made to minimize animal 

suffering. No statistical methods were used to predetermine sample size. The experiments 

were not randomized and the investigators were not blinded to allocation during 

experiments and outcome assessment. 

Viruses and cells. ZIKV strain H/PF/2013 (French Polynesia, 2013) was obtained from X. 

de Lamballerie (Aix Marseille Université). ZIKV Brazil Paraiba 2015 was provided by S. 

Whitehead (Bethesda) and originally obtained from P. F. C. Vasconcelos (Instituto 

Evandro Cargas). ZIKV MR 766 (Uganda, 1947), Malaysia P6740 (1966), and Dakar 

41519 (Senegal, 1982) were provided by the World Reference Center or Emerging Viruses 

and Arboviruses (R. Tesh, University of Texas Medical Branch). Nicaraguan DENV 

strains (DENV-1 1254-4, DENV-2 172-08, DENV-3 N2845-09, and DENV-4 N703-99) 

were provided generously by E. Harris (University of California, Berkeley). Virus stocks 

were propagated in C6/36 Aedes albopictus cells (DENV) or Vero cells (ZIKV). ZIKV 

Dakar 41519 (ZIKV-Dakar) was passaged twice in vivo in Rag1−/− mice (M. Gorman and 

M. Diamond, unpublished data) to create a mouse-adapted strain. Virus stocks were titrated 

by focus-forming assay (FFA) on Vero cells. All cell lines were checked regularly for 

mycoplasma contamination and were negative. Cell lines were authenticated at acquisition 

with short tandem repeat method profiling; Vero cells, though commonly misidentified in 

the field, were used as they are the standard cell line for flavivirus titration. 
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Neutralization assays. Serial dilutions of mAbs were incubated with 102 FFU of different 

ZIKV strains (MR 766, Dakar 41519, Malaysia P6740, H/PF/2013, or Brazil Paraiba 2015) 

for 1 h at 37 °C. The mAb–virus complexes were added to Vero cell monolayers in 96-well 

plates for 90 min at 37 °C. Subsequently, cells were overlaid with 1% (w/v) 

methylcellulose in MEM supplemented with 4% heat-inactivated FBS. Plates were fixed 

40 h later with 1% PFA in PBS for 1 h at room temperature. The plates were incubated 

sequentially with 500 ng ml−1 mouse anti-ZIKV (ZV-16, E.F. and M.S.D., unpublished 

data) and horseradish-peroxidase-conjugated goat anti-mouse IgG in PBS supplemented 

with 0.1% (w/v) saponin (Sigma) and 0.1% BSA. ZIKV-infected cell foci were visualized 

using TrueBlue peroxidase substrate (KPL) and quantitated on an ImmunoSpot 5.0.37 

macroanalyzer (Cellular Technologies). 

mAb binding to ZIKV- or DENV-infected cells. C6/36 Aedes albopictus cells were 

inoculated with a MOI 0.01 of ZIKV (H/PF/2013) or different DENV serotypes 

(Nicaraguan strains DENV-1 1254-4, DENV-2 172-08, DENV-3 N2845-09, DENV-4 

N703-99). At 120 h post infection, cells were fixed with 4% PFA diluted in PBS for 20 min 

at room temperature and permeabilized with HBSS supplemented with 10 mM HEPES, 

0.1% saponin and 0.025% NaN3 for 10 min at room temperature. 50,000 cells were 

transferred to U-bottom plates and incubated for 30 min at 4 °C with 5 µg ml−1 of anti-

ZIKV human mAbs or negative (hCHK-152)12, or positive (hE60)30 isotype controls. After 

washing, cells were incubated with Alexa-Fluor-647-conjugated goat anti-human IgG 

(Invitrogen) at 1:500, fixed in 1% PFA in PBS, processed on MACSQuant Analyzed 

(Miltenyi Biotec), and analysed using FlowJo software (Tree Star). 
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Recombinant antibody expression and purification. Total RNA was extracted from 

hybridoma cells and genes encoding the VH and VL domains were amplified in RT–PCR 

using IgExp primers31. The PCR products were directly cloned into antibody expression 

vectors containing the constant domains of wild-type γ1 chain, LALA mutant (leucine (L) 

to alanine (A) substitution at positions 234 and 235) γ1 chain for the VH domains, and 

wild-type κ chain for the VL domain in an isothermal amplification reaction (Gibson 

reaction)32. Plasmids encoding the heavy and light chain were transfected into 293F cells 

and full-length recombinant IgG was secreted into transfected cell supernatants. 

Supernatants were collected and IgG purified using Protein G chromatography and eluted 

into PBS. The functional abrogation of the binding of the LALA variant IgG was confirmed 

in an ELISA binding assay with recombinant human FcγRI. The binding of wild-type 

ZIKV-117 or LALA antibody to FcγRI was evaluated, in comparison with the binding 

pattern of control antibodies (human mAb CKV06333 LALA mutated IgG). 

Adult mouse lethal protection experiments. C57BL/6 male mice (4–5-week-old, 

Jackson Laboratories) were inoculated with 103 FFU of mouse-adapted ZIKV-Dakar by 

subcutaneous route in the footpad. One-day before infection, mice were treated with 2 mg 

anti-Ifnar1 mAb (MAR1-5A3, Leinco Technologies) by intraperitoneal injection. ZIKV-

specific human mAb (ZIKV-117) or an isotype control (hCHK-152) was administered as 

a single dose at day +1 (100 µg) or day +5 (250 µg) after infection through an 

intraperitoneal route. Animals were monitored for 21 days. 

Pregnant mouse protection experiments. Wild-type C57BL/6 mice were bred in a 

specific pathogen-free facility at Washington University School of Medicine. 

(1) Ifnar1−/− dams, prophylaxis studies: Ifnar1−/− female and wild-type male mice were 
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mated; at E5.5, dams were treated with a single 250 µg dose of ZIKV mAb or isotype 

control by intraperitoneal injection. At E6.5, mice were inoculated with 103 FFU of ZIKV 

Brazil Paraiba 2015 by subcutaneous injection in the footpad. (2) Wild-type dams, 

prophylaxis studies: wild-type female and male mice were mated; at embryonic days E5.5, 

dams were treated with a single 250 µg dose of ZIKV mAb or isotype control by 

intraperitoneal injection as well as a 1 mg injection of anti-Ifnar1 (MAR1-5A3). At E6.5, 

mice were inoculated with 103 FFU of mouse-adapted ZIKV-Dakar by subcutaneous 

injection in the footpad. At E7.5, dams received a second 1 mg dose of anti-Ifnar1 through 

an intraperitoneal route. (3) Wild-type dams, therapy studies: wild-type female and male 

mice were mated; at embryonic days E5.5, dams were treated with a 1 mg injection of anti-

Ifnar1 (MAR1-5A3). At E6.5, mice were inoculated with mouse-adapted 103FFU of ZIKV-

Dakar by subcutaneous injection in the footpad. At E7.5, dams received a second 1 mg 

dose of anti-Ifnar1 as well as a single 250 µg dose of ZIKV mAb or isotype control through 

an intraperitoneal route. All animals were euthanized at E13.5, and placentas, fetuses and 

maternal tissues were collected. Fetus size was measured as the crown-rump length × 

occipitofrontal diameter of the head. 

Measurement of viral burden. ZIKV-infected tissues were weighed and homogenized 

with stainless steel beads in a Bullet Blender instrument (Next Advance) in 200 µl of PBS. 

Samples were clarified by centrifugation (2,000g for 10 min). All homogenized tissues 

from infected animals were stored at −20 °C. Tissue samples and serum from ZIKV-

infected mice were extracted with RNeasy 96 Kit (tissues) or Viral RNA Mini Kit (serum) 

(Qiagen). ZIKV RNA levels were determined by TaqMan one-step quantitative reverse 

transcriptase PCR (qRT–PCR) on an ABI7500 Fast Instrument using published primers 
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and conditions34. Viral burden was expressed on a log10 scale as viral RNA equivalents per 

g or ml after comparison with a standard curve produced using serial tenfold dilutions of 

ZIKV RNA. 

Viral RNA in situ hybridization. RNA in situ hybridization was performed with 

RNAscope 2.5 (Advanced Cell Diagnostics) according to the manufacturer’s instructions. 

PFA-fixed paraffin embedded placental sections were deparaffinized by incubation for 

60 min at 60 °C. Endogenous peroxidases were quenched with H2O2 for 10 min at room 

temperature. Slides were boiled for 15 min in RNAscope Target Retrieval Reagents and 

incubated for 30 min in RNAscope Protease Plus before probe hybridization. The probe 

targeting ZIKV RNA was designed and synthesized by Advanced Cell Diagnostics 

(catalogue number 467771). Negative (targeting bacterial gene dapB) control probes were 

also obtained from Advanced Cell Diagnostics (catalogue number 310043). Tissues were 

counterstained with Gill’s haematoxylin and visualized with standard bright-field 

microscopy. 

Histology and immunohistochemistry. Collected placentas were fixed in 10% neutral 

buffered formalin at room temperature and embedded in paraffin. At least three placentas 

from different litters with the indicated treatments were sectioned and stained with 

haematoxylin and eosin to assess morphology. Surface area and thickness of placenta and 

different layers were measured using Image J software. For immunofluorescence staining 

on mouse placentas, deparaffinized tissues were blocked in blocking buffer (1% BSA, 

0.3% Triton, PBS) for 2 h and incubated with anti-vimentin antibody (1:500, rabbit, Abcam 

ab92547). Secondary antibody conjugated with Alexa 488 (1:500 in PBS) was applied for 
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1 h at room temperature. Samples were counterstained with DAPI (4′6′-diamidino-2-

phenilindole, 1:1,000 dilution). 

Statistical analysis. All virological data were analysed with GraphPad Prism software. 

Kaplan–Meier survival curves were analysed by the log rank test, and viraemia was 

compared using an ANOVA with a multiple comparisons test. P < 0.05 indicated 

statistically significant differences. 

3.4 Acknowledgements 

We thank N. Murphy, J. Govero, M. Gorman, J. Miner, R. Fong and S. Reddy for technical 

help and advice on experiments. This work was supported by US N.I.H. grants R01 

AI073755 (to M.S.D., D.H.F and J.E.C.), R01 AI104972 (to M.S.D.), US N.I.H. contracts 

HHSN272201400024C (to J.E.C.), HHSN272201400058C (to B.J.D.), 

HHSN272201400018C (to D.H.F, M.S.D, and J.E.C) and HHSN272201200026C 

(CSGID; to D.H.F), and by a Preventing Prematurity Initiative grant from the Burroughs 

Wellcome Fund and an Investigator award from the March of Dimes (to I.U.M.). E.F. was 

supported by an N.I.H. Pre-doctoral training grant award (T32 AI007163). 

 

 

 

 
 

 

 

 



 97 

3.5 References 

1. Coyne, C. B. & Lazear, H. M. Zika virus — reigniting the TORCH. Nat. Rev. Microbiol. 
14, 707–715 (2016). 

2. Oehler, E. et al. Zika virus infection complicated by Guillain-Barre syndrome--case 
report, French Polynesia, December 2013. Euro Surveill. 19, (2014). 

3. Musso, D. & Gubler, D. J. Zika Virus. Clin. Microbiol. Rev. 29, 487–524 (2016). 
4. Araujo, A. Q. C., Silva, M. T. T. & Araujo, A. P. Q. C. Zika virus-associated neurological 

disorders: a review. Brain 139, 2122–2130 (2016). 
5. Gatherer, D. & Kohl, A. Zika virus: a previously slow pandemic spreads rapidly through 

the Americas. J. Gen. Virol. 97, 269–273 (2016). 
6. Davidson, E. & Doranz, B. J. A high-throughput shotgun mutagenesis approach to 

mapping B-cell antibody epitopes. Immunology 143, 13–20 (2014). 
7. Zhao, H. et al. Structural Basis of Zika Virus-Specific Antibody Protection. Cell 166, 

1016–1027 (2016). 
8. Dowd, K. A., DeMaso, C. R. & Pierson, T. C. Genotypic Differences in Dengue Virus 

Neutralization Are Explained by a Single Amino Acid Mutation That Modulates Virus 
Breathing. MBio 6, e01559-15 (2015). 

9. Dowd, K. A., Mukherjee, S., Kuhn, R. J. & Pierson, T. C. Combined Effects of the 
Structural Heterogeneity and Dynamics of Flaviviruses on Antibody Recognition. J. Virol. 
88, 11726–11737 (2014). 

10. Stettler, K. et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika 
virus infection. Science (80-. ). 353, 823–826 (2016). 

11. Swanstrom, J. A. et al. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies 
Isolated from Dengue Patients Are Protective against Zika Virus. MBio 7, e01123-16 
(2016). 

12. Pal, P. et al. Development of a highly protective combination monoclonal antibody 
therapy against Chikungunya virus. PLoS Pathog. 9, e1003312 (2013). 

13. Mysorekar, I. U. & Diamond, M. S. Modeling Zika Virus Infection in Pregnancy. N. Engl. 
J. Med. 375, 481–484 (2016). 

14. Miner, J. J. et al. Zika virus infection during pregnancy in mice causes placental damage 
and fetal demise. Cell 165, 1081–1091 (2016). 

15. Yockey, L. J. et al. Vaginal exposure to Zika virus during pregnancy leads to fetal brain 
infection. Cell 166, 1247–1256.e4 (2016). 

16. Kim, J. et al. FcRn in the Yolk Sac Endoderm of Mouse Is Required for IgG Transport to 
Fetus. J. Immunol. 182, 2583–2589 (2009). 

17. Pentšuk, N. & van der Laan, J. W. An interspecies comparison of placental antibody 
transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth 
Defects Res. B Dev. Reprod. Toxicol. 86, 328–344 (2009). 

18. Pierson, T. C. et al. The Stoichiometry of Antibody-Mediated Neutralization and 
Enhancement of West Nile Virus Infection. Cell Host Microbe 1, 135–145 (2007). 



 98 

19. Dejnirattisai, W. et al. Dengue virus sero-cross-reactivity drives antibody-dependent 
enhancement of infection with zika virus. Nat. Immunol. 17, 1102–1108 (2016). 

20. Charles, A. S. & Christofferson, R. C. Utility of a Dengue-Derived Monoclonal Antibody 
to Enhance Zika Infection In Vitro. PLoS Curr. 8, 1–31 (2016). 

21. Hessell, A. J. et al. Fc receptor but not complement binding is important in antibody 
protection against HIV. Nature 449, 101–104 (2007). 

22. Oliphant, T. et al. Development of a humanized monoclonal antibody with therapeutic 
potential against West Nile Virus. Nat. Med. 11, 522–530 (2005). 

23. Foy, B. D. et al. Probable Non-Vector-borne Transmission of Zika Virus, Colorado, USA. 
Emerg. Infect. Dis. 17, 880–882 (2011). 

24. Nelson, C. A., Lee, C. A. & Fremont, D. H. Oxidative Refolding from Inclusion Bodies. 
in Methods in molecular biology 1140, 145–157 (2014). 

25. Yu, X., McGraw, P. A., House, F. S. & Crowe, J. E. An optimized electrofusion-based 
protocol for generating virus-specific human monoclonal antibodies. J. Immunol. Methods 
336, 142–151 (2008). 

26. Thornburg, N. J. et al. Human antibodies that neutralize respiratory droplet transmissible 
H5N1 influenza viruses. J. Clin. Invest. 123, 4405–4409 (2013). 

27. Brochet, X., Lefranc, M.-P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and 
integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic 
Acids Res. 36, W503–W508 (2008). 

28. Giudicelli, V. & Lefranc, M. P. IMGT/junctionanalysis: IMGT standardized analysis of 
the V-J and V-D-J junctions of the rearranged immunoglobulins (Ig) and T cell receptors 
(TR)2011. Cold Spring Harb. Protoc. 716–725 (2011). 

29. Williams, K. L. et al. Therapeutic Efficacy of Antibodies Lacking FcγR against Lethal 
Dengue Virus Infection Is Due to Neutralizing Potency and Blocking of Enhancing 
Antibodies. PLoS Pathog. 9, e1003157 (2013). 

30. Thornburg, N. J. et al. H7N9 influenza virus neutralizing antibodies that possess few 
somatic mutations. J. Clin. Invest. 126, 1482–1494 (2016). 

31. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred 
kilobases. Nat. Methods 6, 343–345 (2009). 

32. Fong, R. H. et al. Exposure of Epitope Residues on the Outer Face of the Chikungunya 
Virus Envelope Trimer Determines Antibody Neutralizing Efficacy. J. Virol. 88, 14364–
14379 (2014). 

33. Lanciotti, R. S. Genetic and serologic properties of Zika virus associated with an 
epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14, 1232–1239 (2008). 

	
 

 



 99 

 

 

Figure 3.1:  Human antibody and B-cell response to ZIKV infection 

A, B, Serum samples from humans with a previous ZIKV infection were tested for binding to ZIKV E 
protein in ELISA (A) (with two technical replicates) and neutralization of ZIKV (B) (at least two 
independent repeats in triplicate). Subject 1001 had the highest endpoint titre in the binding assay and 
displayed potent neutralizing activity. Subject 657 was a control without history of exposure to ZIKV. c, 
Supernatants of Epstein–Barr virus (EBV)-transformed B-cell cultures from subject 1001 were tested for 
binding to ZIKV E or DIII of ZIKV E or related flavivirus E proteins; the WNV-reactive clone and all but 
one DENV-reactive B-cell line also reacted with ZIKV E protein. The frequency of antigen-specific cells 
against each viral protein was determined with a threshold absorbance value at 405 nm (A405 nm) of 1.5 as 
indicated. d, In four additional separate B-cell transformation experiments, the frequency of B cells reactive 
with intact ZIKV E or E-FLM was determined. 
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Figure 3.2:  Characterization of anti-ZIKV mAbs 

A) We tested 29 mAbs in binding, neutralization, and competition binding assays. The EC50 against ZIKV 
E and the IC50 (by focus reduction neutralization test) against H/PF/2013 strain for neutralizing antibodies 
(highlighted in blue) are shown. The mAbs are displayed in four groups (A, B, C or D) based on a 
competition binding assay. The values are the percentage of binding that occurred during competition 
compared to non-competed binding, which was normalized to 100% and the range of competition is 
indicated by the box colours. Black filled boxes indicate strongly competing pairs (residual binding <30%), 
grey filled boxes indicate intermediate competition (residual binding 30–69%), and white filled boxes 
indicate non-competing pairs (residual binding ≥ 70%). The IC50 against H/PF/2013 strain for neutralizing 
antibodies is shown with neutralizing clones highlighted in blue. B, A ribbon diagram of three protomers 
of ZIKV E (DI in red, DII in yellow and DIII in blue) is shown with critical residues highlighted as spheres 
from epitope mapping experiments for representative antibodies in each of the competition binding groups. 
The colours of the critical residues correspond to the competition group designation as in A. The mutations 
in the E-FLM and DIII-LR mutants are indicated by black and silver spheres, respectively. C, 
Representative mAbs from each competition binding group are listed with the domains and residues critical 
for binding. FL, fusion loop. D, Two mAbs were tested for neutralization of five strains of ZIKV. The 
concentrations (ng ml−1) at which 50% or 90% neutralization occurred are listed in E. The neutralization 
data are pooled from at least three independent experiments performed in triplicate. 
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Figure 3.3:  Binding of human mAbs to Zika E protein, E-DIII or E-FLM 

mAbs are organized by competition binding groups A to D. Purified mAbs were tested for binding to 
different antigens as indicated in ELISA as described in Methods. Non-linear regression analysis of the data 
was performed, and the data plotted are the mean and s.d. 
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Figure 3.4:  High resolution epitope mapping of ZIKV mAbs 

a, An alanine scanning mutation library for ZIKV envelope protein was constructed, in which each amino 
acid of prM/E was mutated individually to alanine (and alanine to serine) and expression constructs arrayed 
into 384-well plates, one mutation per well. Each clone in the ZIKV prM/E mutation library, expressed in 
HEK-293T cells, was tested for immunoreactivity with five mAbs from competition groups A–D, measured 
using an Intellicyt high-throughput flow cytometer. Shown here for each of the five mAbs is the reactivity 
with the ZIKV E protein mutants that identified the epitope residues for these mAbs. mAb reactivity for 
each alanine mutant are expressed as percent of the reactivity of mAb with wild-type ZIKV prM/E. Clones 
with reactivity <30% relative to wild-type ZIKV prM/E were identified as critical for mAb binding. Bars 
represent the mean and range of at least two replicate data points. Binding of group B mAbs, ZIKV-116 to 
wild-type ZIKV E DIII (b) or DIII LR mutant (c) was compared with mouse mAbs ZV-2 and ZV-54. 
Binding of ZIKV-116 was decreased by mutations in DIII-LR. Data plotted are mean ± s.d. 
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Figure 3.5:  Binding of human mAbs to permeabilized DENV-infected C6/36 cells 

C6/36 cells were infected with DENV-1, DENV-2, DENV-3, DENV-4 or mock infected. Cells were stained 
with the indicated anti-ZIKV mAbs, an isotype negative control (hCHK-152), or a positive control (a cross-
reactive antibody to DENV; chimeric human E60 (chE60)) and processed by flow cytometry. The data are 
representative of two independent experiments. The numbers in the box indicate the fraction of cells that 
stained positively. 
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Figure 3.6:  Protective activity of ZIKV-117 in adult male and pregnant female mice 

A, We treated 4–5-week-old wild-type male mice with 2 mg of anti-Ifnar1 mAb followed by subcutaneous 
inoculation with 103 FFU of mouse-adapted ZIKV-Dakar. Mice were treated with a single 100 µg or 250 µg 
dose of isotype control mAb (hCHK-152) or ZIKV-117 on D+1 or D+5 (n = 10 per group from two 
independent experiments), respectively. Significance was analysed by the log-rank test (*P < 0.05; 
**P < 0.01). B,C, Ifnar1−/− female mice were mated with wild-type sires. At E5.5, dams were treated with 
250 µg of either hCHK-152 isotype control mAb or ZIKV-117. Bars indicate the median values and reflect 
data pooled from four independent experiments. Significance for fetal survival and viral RNA was analysed 
by chi-square (B; ****P < 0.0001) and Mann–Whitney (C; *P < 0.05) tests, respectively. D-F, Wild-type 
female mice were mated with wild-type sires. At E5.5, dams were treated with anti-Ifnar1 mAb and one of 
the following: PBS (D,E), 250 µg (D-F) of hCHK-152 isotype control mAb, 250 µg of ZIKV-117 (D-F) or 
250 µg of ZIKV-117 LALA (f). At E6.5, dams were inoculated with 103 FFU of ZIKV-Dakar. D-F, Fetuses 
and placentas (D,F) and maternal brain and serum (e) were collected on E13.5 and viral RNA was measured 
by qRT–PCR. Bars indicate the median values of samples collected from three biological replicates 
(D, n = 20–36; E, n = 5–9; F, n = 23–28). Significance was analysed by ANOVA with a Dunn’s multiple 
comparison test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). G,H, Wild-type female mice were 
mated with wild-type sires. At E5.5, dams were treated with anti-Ifnar1 mAb. At E6.5, dams were 
inoculated with 103 FFU of ZIKV-Dakar. At E7.5 (day +1 after infection), dams were treated with PBS, 
250 µg of hCHK-152 isotype control mAb, or 250 µg of ZIKV-117. G, H, Fetuses and placentas (G) and 
maternal brain and serum (H) were collected on E13.5 and viral RNA was measured by qRT–PCR. Bars 
indicate the median values of samples collected from three biological replicates (G, n = 8–20; H, n = 3–7). 
Significance was analysed by ANOVA with Dunn’s (G) or Tukey’s (H) multiple comparisons test 
(*P < 0.05, ***P < 0.001, ****P < 0.0001). Dashed lines indicate the limit of detection of the assay. 
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Figure 3.7:  Detection of human IgG in placenta or fetal head tissues in ZIKV-117- or PBS-treated 
pregnant mice  

As described in Figure 3.6, wild-type female mice were mated with wild-type sires and monitored for 
pregnancy. At E5.5, dams were treated with anti-Ifnar1 mAb and PBS or 250 µg of ZIKV-117. One day 
later (E6.5), dams were inoculated with 103 FFU of ZIKV-Dakar. Fetuses and placentas (n = 4 each) were 
collected on E13.5, homogenized, and tested for human IgG by ELISA. Human antibody in tissues was 
captured on ELISA plates coated with ZIKV E protein and detected using goat anti-human IgG (Fc-specific) 
antibody. The quantity of antibody was determined by comparison with a standard curve constructed using 
purified ZIKV-117 in a dilution series. Four replicate measurements were performed for each mouse tissue 
and the results were averaged. The graphs represent the mean + s.e.m. from 3 mice per group. 
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Figure 3.8:  Comparison of wild-type and LALA-mutated antibodies 

A, Binding to recombinant human FcγR1. The functional abrogation of the binding of the LALA variant 
IgG was confirmed in an ELISA binding assay with recombinant human FcγRI. ZIKV-117 wild-type bound 
to FcγRI, whereas the ZIKV-117 LALA antibody did not. Wild-type and LALA versions of another human 
mAb, CKV063, were used as controls. Binding to human FcγRI is one representative experiment of two, 
and error bars indicate s.e.m. of triplicate technical replicates. B, Neutralization assays. Wild-type ZIKV-
117 and LALA antibodies exhibited equivalent neutralizing activity in vitro to each other and to the 
hybridoma-derived antibody. Neutralization assays are representative of two independent experiments 
completed in triplicate. 
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Figure 3.9:  Effect of ZIKV-117 treatment on the placenta and the fetus  

A, Cartoon depicting murine placental structures and zones. B-E, Pregnant dams were treated with PBS, 
hCHK-152, or ZIKV-117 as described in Fig. 3d–f before infection with ZIKV-Dakar or mock-infected. B, 
Haematoxylin and eosin staining of placenta at E13.5. Placental labyrinth zone is marked with a solid line. 
Low power (scale bar, 1 mm) and high power (scale bar, 50 µm) images are presented in sequence. Black 
arrows indicate apoptotic trophoblasts in areas corresponding to regions of ZIKV infectivity (see panel D, 
below). C, Measurements of thickness and indicated areas of placenta and fetus body size. Each symbol 
represents data from an individual placenta or fetus. Significance was analysed by ANOVA with a Dunn’s 
multiple comparison test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, P > 0.05, NS, not 
significant). D, In situ hybridization. Low (scale bar, 500 µm) and high (scale bar, 50 µm) power images 
are presented in sequence. Black arrows indicate cells positive for ZIKV RNA in the junctional zone of the 
placenta. The images in panels are representative of several placentas from independent dams. E, Low 
(scale bar, 50 µm) and high (scale bar, 10 µm) power magnified images of immunofluorescence staining of 
placentas for vimentin (in green, which marks fetal capillary endothelium) from ZIKV-infected dams 
treated with PBS or ZIKV-117 or from uninfected pregnant animals. Nuclei are counter-stained blue with 
DAPI. 
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Figure 3.10: In situ hybridization of Ifnar1+/- placenta after inoculation with ZIKV-Brazil and 
treatment with ZIKV-117 

As described in Figure 3.6Bs, Ifnar1−/− female mice were mated with wild-type sires and monitored for 
pregnancy. At E5.5, dams were treated with 250 µg of either hCHK-152 isotype control or ZIKV-117. At 
E6.5, dams were inoculated with 103 FFU of ZIKV-Brazil. Collected placentas were fixed in 10% neutral 
buffered formalin at ambient temperature and embedded in paraffin. At least three placentas from different 
litters with the indicated treatments were sectioned for in situ hybridization staining using negative or 
ZIKV-specific RNA probes. Low (scale bar, 500 µm) and high (scale bar, 50 µm) power images are 
presented in sequence. 
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Chapter 4: 

Human antibodies to the dengue virus E-dimer epitope have 
therapeutic activity against Zika virus infection 

 

This chapter is adapted from a manuscript published in Nature Immunology:  

 

Fernandez E, Dejnirattisai W, Cao B, Scheaffer SM, Supasa P, Wongwiwat W, Esakky P, Drury 
A, Mongkolsapaya J, Moley KH, Mysorekar IU, Screaton GR, Diamond MS. 2017. Human 
antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus 
infection. Nat Immnol. 2017 Sep 25; 18: 1261-1269. 
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4.1 Summary 

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and 

neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance 

ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV 

infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to 

DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses 

of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against 

lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, 

wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, 

diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because 

neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their 

established inhibitory effects against DENV, it may be possible to develop therapies that control 

disease caused by both viruses. 
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4.2 Introduction 

Zika virus (ZIKV) is an arthropod-transmitted, positive-sense RNA virus that is 

closely related to viruses causing human disease, such as dengue (DENV), yellow fever 

(YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Historically, ZIKV 

infection in humans has been associated with a self-limiting mild, febrile illness1. Since its 

epidemic emergence in 2007, ZIKV infection has become linked to more severe clinical 

syndromes. For example, infection of pregnant women, particularly during the first 

trimester, can result in congenital Zika syndrome, which includes microcephaly, 

neurodevelopmental abnormalities, and fetal demise2–4. In adults, ZIKV infection is 

associated with Guillain–Barré syndrome (GBS), an autoimmune disease characterized by 

ascending paralysis and polyneuropathy5,6.  

The ZIKV genome is organized as a single open reading frame that has genes 

encoding three structural (capsid (C), pre-membrane/membrane (prM/M), and envelope 

(E)) and seven nonstructural (NS) proteins. The ZIKV E protein is composed of three 

domains: a central β-barrel domain (domain I; DI), an extended dimerization domain 

containing a hydrophobic fusion loop (FL) epitope at the distal end (domain II; DII), and 

an immunoglobulin-like segment implicated in receptor-binding and entry (domain III; 

DIII)7. In the immature state of the virion, the prM and E proteins form 60 spiky 

heterotrimers that protrude from the viral membrane surface8. Maturation during transit 

through the trans-Golgi network results in furin-mediated cleavage of prM to M. After this 

cleavage event, the E protein homodimers re-arrange in an anti-parallel orientation to form 

a herringbone array and a smooth virion surface. The transitions undergone by the viral 

particles expose different epitopes on the E protein that are essential for receptor-binding, 
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entry, and fusion. The E protein is also the primary target for neutralizing antibody 

responses. 

ZIKV strains are classified into two genetic lineages, the African and the Asian–

American lineages. Because their neutralization by serum and monoclonal antibodies 

(mAbs) is quite similar, ZIKV is categorized as a single serotype9. Genetic clustering 

places ZIKV in close relationship to DENV, with the E proteins showing 54–59% amino 

acid identity10,11. 

The humoral response to ZIKV infection has been studied by several groups, with 

advances made in our understanding of the epitopes engaged by protective mAbs12. MAbs 

that target the conserved DII-FL epitope generally are poorly neutralizing against ZIKV; 

despite this, passive transfer studies in mice have suggested that these mAbs can offer some 

degree of protection against ZIKV infection, possibly because of 'virus breathing' and 

further exposure of this epitope7,13,14. DII-FL-specific mAbs generated against DENV or 

ZIKV also have the potential to induce reciprocal antibody-dependent enhancement (ADE) 

of ZIKV or DENV infection in myeloid cells bearing transmembrane Fcγ receptors 

(FcγRs)15,16 and in mice17. In comparison, strongly neutralizing and protective mouse and 

human mAbs to ZIKV have been described that bind epitopes in DIII (lateral ridge or A-

strand18–20), across adjacent dimers in DII19, or to sites in DI21. A distinct class of cross-

reactive mAbs that engage DII-FL are the EDE-specific mAbs. These mAbs were isolated 

from DENV-infected patients, bind to an inter-dimer quaternary epitope with contact 

residues in DI, DII, and DIII, and cross-react with ZIKV10,11,16,22. EDE-specific mAbs are 

classified by their binding in the context of N-linked glycosylation at position Asn154 of 
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the E protein. EDE1 mAbs, which bind in the absence of the N-linked glycan, inhibit ZIKV 

more potently than do EDE2 mAbs10,16. 

Studies in mice, nonhuman primates, and humans have shown that ZIKV can infect 

and persist in several immune-privileged sites including the eye4,23,24, brain23,25,26, 

testis27,28, and placenta25,29. Here we evaluated the therapeutic activity of EDE1 mAbs in 

ZIKV infection. Although EDE1-B10 showed protective activity when administered 

within 5 d of infection, it was less effective at clearing infection from immune-privileged 

tissues after ZIKV disseminated to these sites. In the context of pregnancy, leucine and 

alanine (LALA) variants of EDE1, which cannot bind FcγR, protected against ZIKV 

infection, as did recombinant wild-type (WT) mAbs. Our studies suggest that it may be 

possible to develop EDE1 LALA mAb therapeutics that prevent both ZIKV and DENV 

infection without the possibility for pathological antibody-dependent immune 

enhancement. 

4.3 Results 

Human mAbs to DENV inhibit ZIKV infection. Previous studies have established that 

the EDE1-C8 and EDE1-C10 mAbs bind to and neutralize ZIKV with half-maximal 

effective concentration (EC50) values ranging from 9 to 14 ng/ml10,30. We compared the 

ability of another EDE1 mAb, EDE1-B10, to neutralize the four serotypes of DENV and 

the two lineages of ZIKV. EDE1-B10 strongly neutralized virions of the DENV-1, DENV-

2, and DENV-3 serotypes (EC50 ~28–138 ng/ml) and showed weaker activity against 

virions of the more distantly related DENV-4 serotype (Figure 4.1A). We tested EDE1-

B10 for its ability to inhibit virus strains that represented the African (HD78788) and 

Asian–American (Brazil PE243) lineages of ZIKV and found that it had a stronger 
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neutralization profile (EC50 ~2–4 ng/ml) than that of EDE1-C8 and other published EDE-

specific mAbs10,16 (Figure 4.1B). As with other EDE-specific mAbs, EDE1-B10 engages 

a quaternary epitope on the virion and does not bind monomeric E protein although the 

epitope is restored on covalently linked E-dimers30,31. Like many other flavivirus-specific 

antibodies, subneutralizing concentrations of EDE-specific mAbs can trigger ADE of 

FcγR-expressing myeloid cells. To prevent possible ADE, we engineered LALA 

substitutions into the Fc region of EDE1-B10 and EDE1-C8, which disrupted engagement 

of the mAbs with Fc receptors and prevented ADE, but did not change neutralizing activity 

against ZIKV (Figures 4.1C and 4.1D)32. Thus, mAbs to DENV EDE strongly neutralize 

ZIKV infection, and LALA variants that do not promote ADE can be generated without a 

loss of inhibitory activity in cell culture.  

EDE1 mAb therapy controls ZIKV infection. We tested EDE-specific human mAbs for 

their ability to protect mice against ZIKV-induced lethality when administered as a post-

exposure therapy. To create a lethal challenge model in 4- to 5 week-old C57BL/6 mice, 

we passively transferred a blocking antibody specific for the type I interferon receptor 

Ifnar1 1 d before infection with 103 focus-forming units (FFUs) of a mouse-adapted 

African strain of ZIKV (ZIKV-Dakar)18,19. The mice were then treated with a single dose 

of EDE1-B10, EDE1-C8 (EC50 = 2–15 ng/ml), EDE2-A11 (EC50 = 69–125 ng/ml)10, or an 

isotype control mAb (Flu 28C) 1 d (day +1; 100 µg), 3 d (day +3; 250 µg), or 5 d (day +5; 

250 µg) after infection and the weight and survival of the mice were monitored for 21 d 

(Figures 4.2A and 4.3). The mice that were administered EDE1-B10, EDE1-C8, or EDE2-

A11 were protected against lethality when they were treated at 1 or 3 d after infection. 

Furthermore, treatment with EDE1-B10 at 5 d after infection resulted in partial protection 
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against lethality and weight loss (Figures 4.2A and 4.3). Given the greater neutralization 

activity of EDE1-B10 in vitro, relative to that with the other EDE-specific mAbs, and its 

ability to robustly protect against lethality, most of the subsequent in vivo studies were 

performed with only EDE1-B10. 

As a first step toward determining how EDE1 mAbs protect against disease, we 

defined the kinetics of viral dissemination for the tissues of interest. Within 2 d of infection, 

ZIKV RNA was readily detectable in the serum (1.7 × 105 FFU equivalents per ml; Figure 

4.2B), brain (3.5 × 103 FFU equivalents per g tissue; Figure 4.2C), testis (4.8 × 103 FFU 

equivalents per g tissue; Figure 4.2D), epididymis (5.0 × 102 FFU equivalents per g 

tissue; Figure 4.2E), and eye (8.8 × 102 FFU equivalents per g tissue; Figure 4.2F). At the 

last time point assessed (day +5), viral titers were still increasing in these organs. 

We then evaluated the efficacy of EDE1-B10 therapy on the control of ZIKV 

infection at different immune-privileged sites during the acute and persistent phases of 

infection. Adult C57BL/6 male mice were pretreated with an Ifnar1-specific blocking 

antibody and inoculated with 105 FFUs of mouse-adapted ZIKV-Dakar. The mice were 

then administered a single dose of EDE1-B10 or an isotype control mAb at day +1 (100 

µg), day +3 (250 µg), or day +5 (250 µg) after infection, and viral RNA levels were assessed 

at day +5 (acute phase) or at day +21 (persistent phase) after infection. Treatment at day 

+1 decreased the levels of ZIKV RNA in serum at day +5 (52-fold; P < 0.001; Figure 

4.2G). Similarly, EDE1-B10 therapy at day +1 reduced viral RNA levels in the following 

tissues at day +5 (Figures 4.2H-4.2J) and day +21 (Figures 4.2L-4.2N), relative to that 

observed in mice treated with the isotype control mAb: brain (1,760-fold and 42-fold, 

respectively; P < 0.001), testis (1,650-fold and 312-fold, respectively; P< 0.001), and 
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epididymis (4,780- fold and 206-fold, respectively; P < 0.001). Whereas reduced levels 

were observed in the eye at day +5 after EDE1-B10 therapy at day +1 (1,550-fold; P < 

0.001; Figure 4.2K), ZIKV RNA levels were low at day +21 in EDE1-B10 and isotype 

control mAb groups suggesting clearance occurred independently of mAb treatment 

(Figure 4.2O). 

In another set of experiments, we treated mice with EDE1-B10 at day +3 after 

infection and evaluated viral burden in tissues at day +5 and day +21 after infection. 

Treatment with EDE1-B10 at day +3 after infection had less of an effect on viral RNA 

levels at day +5 than treatment with EDE1-B10 at day +1, with smaller reductions observed 

in serum (fourfold; P < 0.05), brain (ninefold; P < 0.001), testis (threefold; P > 0.05), 

epididymis (116-fold, P < 0.001), and eye (threefold; P < 0.05) (Figures 4.2G-4.2K). In 

comparison, EDE1-B10 treatment at day +3 after infection resulted in decreased ZIKV 

RNA levels in the testis (62-fold; P < 0.05) and epididymis (1,800-fold; P < 0.05) at day 

+21 after infection, although levels in the brain were not affected, as compared to the 

treatment with the isotype control mAb (Figures 4.2L-4.2N). 

Finally, we evaluated EDE1-B10 therapy at day +5 after infection for its effect on 

viral burden at day +21. However, treatment with EDE1-B10 beginning at day +5 after 

infection failed to decrease ZIKV RNA levels at day +21 in any of the sites tested, as 

compared to that after treatment with the isotype control mAb (Figures 4.2L-4.2O). To 

begin to define why EDE1-B10 was protective at some sites but not others, we measured 

mAb levels in tissues at day +5 after therapy was initiated at day +1 or day +3 after infection 

(Figure 4.4). Although the levels of EDE1-B10 in serum at day +5 were relatively 

equivalent, levels of the mAb in the brain and testis were lower (P < 0.01) when therapy 
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was started at day +1 after infection than at day +3 after infection. This may reflect the 

dimished systemic viral burden associated with treatment at day +1 after infection, which 

we speculate limits pro-inflammatory immune responses that compromise the function of 

the blood–brain barrier and the blood–testis barrier and allows EDE1-B10 access. Notably, 

lower amounts of EDE1-B10 penetrated into the eye at day +5 after treatment regardless 

of when the treatment was initiated, which may be due to a less permeable blood–retinal 

barrier33. Because treatment at day +5 failed to reduce viral RNA levels at day +21, this 

suggested that once immune-privileged sites were seeded, it may be difficult to accumulate 

sufficient amounts of the EDE1-B10 mAb to control or clear the infection. In summary, 

these experiments show that there is a narrow window of time after infection during which 

treatment with the EDE1-B10 mAb is able to reduce ZIKV RNA levels in some, but not 

other, immune-privileged sites once viral seeding had occurred. 

To corroborate the protective effects observed with EDE1-B10 therapy, we 

evaluated ZIKV infection in the male reproductive tract at day +21 using RNA in 

situ hybridization (ISH). RNA ISH confirmed the absence of ZIKV RNA in the testis and 

epididymis of mice treated with EDE1-B10 at day +1 after infection and showed reduced 

viral RNA levels when treatment was initiated at day +3 after infection (Figures 

4.5A and 4.6). By comparison, mice treated with the isotype control mAb had high viral 

RNA levels, similar to those reported for untreated, infected mice27. Treatment with EDE1-

B10 at day +1 or day +3 after infection also protected against ZIKV-induced inflammation 

and damage to the seminiferous tubules that was observed in mice treated with the isotype 

control mAb (Figures 4.5B and 4.6) and described previously27,28. In contrast, treatment 

that was initiated at day +5 after infection minimally protected against ZIKV infection or 
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injury. We also evaluated the functional effect of EDE1-B10 treatment in the testis by 

computer-assisted sperm analysis. Whereas ZIKV-infected mice treated with the isotype 

control mAb showed low numbers of motile sperm, treatment with EDE1-B10 at day +1 

or day +3 after infection but not at day +5 after infection resulted in higher numbers of 

motile sperm (16-fold and 100-fold, respectively; P < 0.001) at day +21 after infection 

(Figure 4.5C), which were similar to those observed in age-matched, uninfected male mice 

(Figure 4.5C). These data suggest that EDE1-B10 treatment can reduce viral persistence 

in select immune-privileged sites (for example, brain and testis) and protect against tissue 

injury when administered within a few days of infection. 

EDE1-B10 therapy in maternal and fetal tissues. In pregnant mice that are deficient in 

type I interferon signaling, placental damage, and fetal infection and injury, occur after 

ZIKV infection24,29,34,35. To assess the protective ability of EDE1-B10 treatment during 

pregnancy, we mated Ifnar1−/− dams with WT C57BL/6 sires, and on embryonic day 6.5 

(E6.5), we inoculated the dams subcutaneously with a Brazilian ZIKV strain (Paraiba 

2015)19,34. One day after infection (at E7.5), we administered a single 250-µg dose of 

EDE1-B10 or an isotype control mAb and monitored the effects on the Ifnar1−/− dam and 

the Ifnar1+/− placenta and fetus. Seven days after ZIKV inoculation (at E13.5), we observed 

a 90% rate of fetal demise in the group that was treated with the isotype control mAb versus 

a 10% rate of fetal demise in the group that was treated with EDE1-B10 (P < 0.0001) 

(Figure 4.7A, left). Histological analysis confirmed that the fetal demise caused by ZIKV 

infection was prevented by the EDE1-B10 therapy (Figure 4.7A, right). Consistent with 

these data, EDE1-B10 treatment at day +1 after infection reduced viral RNA burden in the 

maternal serum (~71-fold; P < 0.01) and brain (~39,000-fold; P < 0.05) at day +7 after 
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infection, as compared to that after treatment with the isotype control mAb (Figure 4.7B 

and 4.7C). Analysis of the placentas by ISH showed ZIKV RNA in the maternal decidua 

and the junctional layer of the placenta in the mice that were treated with the isotype control 

mAb; in contrast, viral RNA staining was not observed in the dams that were treated with 

EDE1-B10 (Figure 4.7D). Histological analysis after ZIKV infection showed reductions 

in the size of the labyrinth layer of the placenta in the control-mAb-treated dams, but this 

was not seen for the dams that were treated with EDE1-B10 at day +1 after infection 

(Figure 4.7E). 

The extent of fetal demise after ZIKV infection of Ifnar1−/− dams precluded 

virological assessment of EDE1-B10 protection in the fetus. To obtain such data, we used 

a second model of ZIKV infection in pregnancy with an acquired deficiency of type I 

interferon signaling19,34. WT females that were mated with WT males were treated with an 

Ifnar1-specific blocking mAb at E5.5. One day later (at E6.5), the dams were inoculated 

subcutaneously with mouse-adapted ZIKV-Dakar, and 1 d (at E7.5) or 3 d (at E9.5) later 

they were treated with EDE1-B10 or an isotype control mAb. Treatment of pregnant dams 

with EDE1-B10 at day +1 after infection resulted in reduced levels of viral RNA in the 

maternal serum (~240-fold; P < 0.001) and brain (~3,000-fold; P < 0.05), as compared to 

that in the serum and brain of dams that were treated with the isotype control mAb (Figures 

4.8A and 4.8B). When treatment was initiated at day +1 after infection, we observed 

markedly less ZIKV RNA levels in the placenta and fetal head (660,000-fold and 4,900-

fold, respectively; P < 0.0001) of EDE1-B10-treated dams than in those of the control-

mAb-treated dams (Figures 4.8C and 4.8D). Treatment of dams with EDE1-B10 at day +3 

after infection also reduced ZIKV RNA levels in the maternal serum (22-fold; P < 0.05) 
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and brain (114-fold; P < 0.001), as compared to that in the dams that were treated with the 

isotype control mAb (Figures 4.8A and 4.8B). Although ZIKV levels in the placenta (23-

fold; P < 0.0001) and fetal head (19-fold; P < 0.0001) were lower in the EDE1-B10-treated 

group than in the control-mAb-treated group, therapy administered at this time point did 

not prevent virus seeding (Figures 4.8C and 4.8D). 

We next evaluated whether antibody effector functions were required for EDE1-

B10-mediated protection. We generated a mutant version of the EDE1-B10 mAb (LALA 

variant)32 that was unable to bind to FcγR and promote ADE (Figure 4.1C), and we tested 

its efficacy in vivo during pregnancy. Like therapy with the recombinant WT EDE1-B10 

mAb, treatment of dams with EDE1-B10 LALA at day +1 after infection resulted in 

reduced viral RNA levels in the maternal serum (240-fold; P < 0.01), maternal brain 

(3,000-fold; P < 0.05), placenta (633,000-fold; P < 0.0001), and fetal head (4,600-fold; P < 

0.0001) (Figures 4.8A and 4.8B). Analogous experiments with paired recombinant WT 

EDE1-C8 and EDE1-C8 LALA yielded similar results (Figure 4.9). Thus, in 

utero protection mediated by EDE1 mAbs occurs independently of Fc effector functions 

and is probably mediated by direct virus neutralization. The mutant mAbs that are unable 

to bind FcγR could be safer immunotherapies, as they lack the potential to mediate ADE 

and immunopathogenesis. 

To corroborate the protective effects the EDE-B10 mAb in the placenta, we 

analyzed tissue sections for virus infection and tissue injury. RNA ISH of placentas from 

dams that were treated at day +1 after infection showed a virtual absence of ZIKV-infected 

cells in the decidua and placenta, and mice that were treated at day +3 after infection also 

showed reduced viral RNA staining in these tissues, as compared to that in the tissues of 
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control-mAb-treated dams (Figure 4.8E). Histological measurements of the placental 

layers showed that treatment at day +1 after infection, but not at day +3 after infection, 

with EDE1-B10 restored the area and width of the junctional area, the total placental area, 

and the overall fetal size (Figures 4.8F-4.8I), as compared to treatment with the isotype 

control mAb. These data confirm a narrow therapeutic window for EDE1-B10 in 

preventing ZIKV infection and injury to the developing placenta and fetus. 

Sexual transmission is an established route of ZIKV infection36–41. Male-to-female 

transmission of ZIKV has been modeled in pregnant mice through direct intravaginal 

inoculation of virus29. Although recent vaccine studies indicate that adaptive immune 

responses can protect against in utero transmission for ZIKV inoculated subcutaneously42, 

no study has shown this in the context of vaginal transmission. We assessed whether 

administration of EDE1-B10 through a peripheral route could prevent in utero transmission 

following intravaginal inoculation of ZIKV (Figure 4.10). WT dams that were mated with 

WT sires were then treated with the Ifnar1-specific blocking mAb and a single 250-µg dose 

of EDE1-B10 or isotype control mAb at E5.5. At E6.5, the dams were inoculated with 

mouse-adapted ZIKV-Dakar via the intravaginal route. At E7.5, the dams were given a 

second dose of anti-Ifnar1. At E13.5, we determined the viral RNA burden in maternal and 

fetal tissues, including those of the female reproductive tract. Treatment with EDE1-B10 

reduced ZIKV RNA levels in the maternal serum (427-fold; P < 0.05) and brain (45,490-

fold; P < 0.01) (Figures 4.10A and 4.10B), as compared to those in the control-mAb-

treated mice. In EDE1-B10-treated dams, ZIKV RNA levels were diminished, relative to 

those in the control-mAb-treated mice, in all female reproductive-tract tissues, including 

the vagina (106,840-fold; P < 0.01), cervix (12,450-fold; P < 0.01), and ovaries (341,300-
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fold; P < 0.01) (Figures 4.10C-4.10E). Because EDE1-B10 treatment also reduced ZIKV 

RNA levels in the placenta (1,725,600-fold; P < 0.0001) and fetal head (3,020-fold; P < 

0.0001) (Figures 4.10F and 4.10G), this indicated that circulating neutralizing antibodies 

can prevent transvaginal transmission of ZIKV to the placenta and fetus. Consistent with 

these data, staining by ISH showed a virtual absence of ZIKV RNA in the placenta and 

decidua of EDE1-B10-treated dams, as compared to that in control-mAb-treated dams 

(Figure 4.10H). Overall, these experiments establish that EDE1-B10 therapy can protect 

against ZIKV infection and transmission to the fetus after subcutaneous or intravaginal 

inoculation. 

4.4 Discussion  

A primary goal of this study was to identify human mAbs that could potently 

neutralize ZIKV and provide post-exposure protection in vivo, including reduction of 

infection in key immune-privileged sites. Prior studies had shown that EDE-specific mAbs 

that had been isolated from DENV-infected subjects could neutralize DENV and ZIKV in 

vitro10,11 and protect against ZIKV lethality in vivo when administered as prophylaxis22. 

Studies with more ZIKV-specific human mAbs that do not cross-react with DENV also 

have demonstrated post-exposure therapeutic activity in lethality models in mice17,19–21. On 

the basis of in vitro neutralization studies, we defined EDE1-B10 as a candidate 

immunotherapeutic because of its strong inhibitory activity against three virus strains that 

encompass the genetic diversity of ZIKV, as well as its neutralizing activity against DENV-

1, DENV-2, and DENV-3. Of interest, EDE1-B10 failed to bind or neutralize DENV-4 

efficiently; this phenotype was similar to that described for cross-reactive mouse mAbs to 

DENV that react with the DII-FL epitope43. 
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We compared EDE1-B10 with the previously published EDE-specific 

mAbs10,11 EDE1-C8 and EDE2-A11 for their post-exposure therapeutic activity against 

lethal ZIKV challenge. Although all three EDE-specific mAbs completely protected when 

given 3 d after ZIKV inoculation, EDE1-B10 also reduced lethality when administered 5 

d after infection. The combination of increased neutralizing and protective activity led us 

to select EDE1-B10 for subsequent studies. We assessed how EDE1-B10 functioned at 

immune-privileged sites, which were seeded within 2 d of virus inoculation. ZIKV 

replication in immune sanctuary sites may contribute to its persistence in human and animal 

body fluids, including semen, urine, and saliva27,28,44,45. During the acute phase of infection, 

EDE1-B10 treatment markedly reduced viral RNA in multiple immune-privileged sites 

when administered at day +1 after infection. However, the reductions were lower in 

magnitude when EDE1-B10 treatment was initiated at day +3 after infection. 

Correspondingly, persistence of ZIKV RNA at day 21 after inoculation was markedly 

diminished at most immune-privileged sites when therapy was initiated at day +1 after 

infection. However, when therapy was started at day +3 after infection, viral RNA persisted 

at day +21 after infection at several immune-privileged sites (eye, brain, and testis). Thus, 

the likely protective role of the EDE1 mAbs is to limit ZIKV dissemination, with antibody-

mediated clearance of already infected sites being substantially less efficient. Consistent 

with this observation, protection of the placenta and fetuses by the WT and LALA variants 

of EDE1-B10 and EDE1-C8 was equivalent in the dam model of infection and was not 

dependent on Fc-dependent interactions. These results contrast with those in HIV32, Ebola 

virus46, influenza A virus47, and respiratory syncytial virus48 studies in which antibody 

effector functions enhanced protection. Fc effector functions may contribute to antibody-
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mediated protection of these viruses because, unlike ZIKV, they bud from the plasma 

membrane and express structural proteins on the cell surface, which can serve as targets 

for antibody-dependent cellular cytotoxicity and phagocytosis. 

Sexual transmission is an established route of ZIKV spread and of concern to 

individuals within and traveling to endemic regions, particularly for those of child-bearing 

age. Our study shows that systemic mAb administration can protect against intravaginal 

transmission of ZIKV infection in the context of pregnancy. This observation is relevant, 

as studies in macaques suggest that ZIKV replication in the female reproductive tract 

precedes infection of peripheral organ tissues that contribute to viremia49. Our passive 

antibody-transfer experiments in mice suggest that ZIKV vaccines that induce robust 

neutralizing antibody responses and protect against in utero transmission after 

subcutaneous virus challenge42 may also prevent sexual transmission. 

ZIKV epidemics in the Americas now occur in DENV-endemic regions. Cross-

reactive antibodies against ZIKV and DENV could protect or mediate 

pathogenesis50 depending on the stoichiometry of binding and mechanism of action31. Our 

preclinical studies with LALA variants of EDE1-B10 and EDE1-C8 provide a first step 

toward developing a safe and effective therapeutic antibody against both ZIKV and DENV, 

without the possibility for pathogenic immune enhancement. Nonetheless, as the extent to 

which these findings in mice translate to humans remains unclear, protection studies with 

EDE1 mAbs in nonhuman primate models of ZIKV infection in pregnancy are warranted. 

If these data are promising, then human clinical trials will be required to show efficacy. 

The design of such trials will be challenging given the ephemeral nature of mosquito-
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transmitted virus epidemics in a given locale and the absolute need for safety in the context 

of transmission studies with pregnant women. 

4.5 Methods  

Viruses. ZIKV-Brazil (Paraiba, 2015) was provided by S. Whitehead (US National 

Institutes of Health) and was originally obtained from P.F.C. Vasconcuelos (Instituto 

Evandro Chagas). Mouse-adapted ZIKV-Dakar 41519 was passaged twice in vivo in 

immunodeficient Rag1−/− mice (M.S.D., unpublished data) and grown in Vero cells. The 

DENV-2 strain D2S20 was a gift from S. Shresta) and was grown in the C6/36 Aedes 

albopictus cell line. Primary isolates of DENV-1 (02-0435; GenBank accession 

number JQ740878), DENV-3 (2-1969; GenBank accession number JQ740881), and 

DENV-4 (1-0093; GenBank accession number JQ740883) were obtained from DENV-

infected patients in Thailand (provided by P. Malasit and S. Noisakran). DENV-2 strain 

DF-699 (GenBank accession number FM210221) was isolated from a patient in Vietnam 

(provided by C. Simmons). DENV-2 strain 16681 was a gift from the Armed Forces 

Research Institute of Medical Sciences (AFRIMS), Thailand. Additional ZIKV strains 

from Brazil (PE243, provided by A. Kohl, R.F. de Oliveira Freitas, and L.J. Pena) and 

Africa (HD78788, provided by A. Sakuntabhai) were used for neutralization assays. Virus 

stocks were titered by the focus-forming assay (FFA) on Vero cells, as previously 

described51. 

Antibody generation. Activated antibody-secreting cells (CD19+, CD3−, CD20lo or 

CD20−, CD27hi and CD138hi) were sorted by flow cytometry. To amplify the VH- and VL-

encoding genes, one-step RT–PCR (Qiagen) and nested PCR (Qiagen) were performed. 

The nested PCR products were cloned into expression vectors encoding the human IgG1 
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constant region or the LALA-variant IgG1 (leucine-to-alanine substitutions at positions 

116 and 117) for the VH gene and the human Igκ constant region for the VL gene. Plasmids 

encoding the heavy and light chains were co-transfected into HEK 293T cells by the 

polyethylenimine method (Sigma). WT and LALA-variant IgG1 were purified by Protein 

G plus/Protein A agarose (Merck). 

Neutralization assays. Serial dilutions of mAbs were incubated with 102 FFU of the 

different DENV serotypes or ZIKV strains for 1 h at 37 °C. The mAb–virus complexes 

were added to Vero cell monolayers in 96-well plates for 2 h at 37 °C. Subsequently, the 

cells were overlaid with 1.5% (wt/vol) carboxymethyl cellulose in modified Eagle's 

medium (MEM) supplemented with 3% heat-inactivated FBS. Plates were fixed 72h later 

for DENV and 48 h later for ZIKV with 4% paraformaldehyde (PFA) in PBS for 10 min 

and then permeabilized with 2% Triton X-100 in PBS for 10 min at room temperature. 

Plates were stained with mAb 4G2 (cross-reactive mouse mAb to the FL epitope of 

flaviviruses) at 37 °C for 1 h followed by incubation with peroxidase-conjugated goat anti-

mouse-immunoglobulin (Sigma) at a dilution of 1:1,000 in 0.05% Tween–PBS for 1 h at 

37 °C. Foci were visualized by adding DAB substrate (Sigma) at a concentration of 0.6 

mg/ml. 

ADE assay. Serial dilutions of mAbs were incubated with virus at a multiplicity of 

infection (MOI) of 5 at 37 °C for 1 h before adding them to U937 myelomonocytic 

leukemia cells. After 24 h of incubation at 37 °C, cells were harvested and washed with 

FACS buffer (2% FBS, 0.5% BSA, and 0.1% NaN3 in PBS). Cells were fixed and 

permeabilized for 10 min at room temperature with 4% PFA in PBS and 0.5% (wt/vol) 
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saponin in FACS buffer, respectively. Finally, the cells were stained with Alexa-Fluor-

647-conjugated 4G2 mAb and analyzed using a BD LSRFORTESSA X-20 flow cytometer. 

Mouse experiments. Mouse studies were performed in accordance with the 

recommendations of the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health and were approved by the Institutional Animal Care and Use 

Committee at the Washington University School of Medicine (assurance number A3381-

01). Mice were inoculated with ZIKV after anesthetizing them with ketamine 

hydrochloride and xylazine, and all efforts were made to minimize pain and suffering. 

Antibody-protection studies were performed in the following models: a lethal challenge 

model in which WT C57BL/6 mice (4–5 weeks old; Jackson Laboratories) were 

administered 2 mg anti-Ifnar1 mAb (MAR1-5A3, Leinco Technologies) by an 

intraperitoneal (i.p.) injection 1 d before inoculation with 103 FFU of mouse-adapted 

ZIKV-Dakar by the s.c. route in the footpad. Cross-reactive EDE mAbs (EDE1-C8, EDE1-

B10, or EDE2-A11) or isotype control (Flu 28C) human mAbs were administered by the 

i.p. route as a single dose at day +1 (100 µg, 5 mg per kg body weight (mg/kg)), day +3 

(250 µg, 12.5 mg/kg), or day +5 (250 µg, 12.5 mg/kg) after infection. All of the mice were 

monitored for lethality for 21 d. Time course studies in which WT C57BL/6 mice (8–9 

weeks old; Jackson Laboratories) were treated with 0.5 mg of anti-Ifnar1 mAb by 

intraperitoneal injection 1 d before inoculation with 105 FFU of mouse-adapted ZIKV-

Dakar by the subcutaneous route. Mice were euthanized at day +1, day +2, day +3, day +4, 

or day +5 after infection. Acute-phase mAb protection studies in which WT C57BL/6 mice 

(8–9 weeks old; Jackson Laboratories) were treated with 0.5 mg anti-Ifnar1 mAb by 

intraperitoneal injection 1 d before inoculation with 105 FFU of mouse-adapted ZIKV-
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Dakar by the subcutaneous route. Cross-reactive EDE1-B10 or an isotype control mAb 

(Flu 28C) was administered by the administered route as a single dose at day +1 or day +3 

after infection as described above. All of the mice were euthanized at day +5 after infection, 

and tissues were harvested following extensive perfusion with PBS. Persistence-phase 

mAb protection studies in which WT C57BL/6 mice (8–9 weeks old; Jackson Laboratories) 

were treated with 0.5 mg anti-Ifnar1 mAb by intraperitoneal injection 1 d before 

inoculation with 105 FFU of mouse-adapted ZIKV-Dakar by the subcutaneous route. 

Cross-reactive EDE1-B10 or an isotype control mAb (Flu 28C) was administered by the 

intraperitoneal route as a single dose at day +1, day +3, or day +5 after infection as 

described above. All animals were euthanized at day +21 after infection, and tissues were 

harvested. 

Pregnancy studies were done in WT C57BL/6 mice that were bred in a specific-

pathogen-free facility at Washington University School of Medicine. In some 

experiments, Ifnar1−/− females and WT males were mated. At embryonic day E6.5, dams 

were inoculated with 103 FFU of ZIKV-Brazil (Paraiba 2015) by the s.c. route. At E7.5, 

dams were treated by the intraperitoneal. route with a single 250-µg dose of EDE1-B10 or 

an isotype control mAb. In another series of experiments, WT female and male mice were 

mated. At E5.5, dams were treated with 1 mg of anti-Ifnar1 by the intraperitoneal route. At 

E6.5, the mice were inoculated with 103 FFU mouse-adapted ZIKV-Dakar by the 

subcutaneous route. At E7.5, all of the mice received a second 1-mg dose of anti-Ifnar1 

mAb through an intraperitoneal route. For treatment, mice received a single 250-µg dose 

of EDE1-B10, EDE1-B10 LALA, EDE1-C8, EDE1-C8 LALA, or isotype control mAb by 

the intraperitoneal route on E7.5 (day +1 after infection) or E9.5 (day +3 after infection, 
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excluding the LALA mutants). All of the mice were euthanized at E13.5, and placentas, 

fetuses, and maternal tissues were collected. Finally, in another series of studies, WT 

female and male mice were mated. At E5.5, dams were treated via an intraperitoneal route 

with 1.5 mg of anti-Ifnar1 mAb and a single 250-µg dose of EDE1-B10 or isotype control 

mAb. At E6.5, mice were inoculated with 105 FFU mouse-adapted ZIKV-Dakar in 10 µl 

by the intravaginal route. At E7.5, all of the mice received a second 1-mg dose of anti-

Ifnar1. At E13.5, the mice were euthanized, and placentas, fetuses, and maternal tissues 

were collected. 

Measurement of viral burden. Tissues from ZIKV-infected mice were weighed and 

homogenized with stainless steel beads in a Bullet Blender instrument (Next Advance) in 

600 µl (brain) or 200 µl (testis, epididymis, eye, vagina, cervix, and ovaries) of PBS. 

Samples were clarified by centrifugation (2,000g for 10 min). All of the homogenized 

tissues from the infected mice were stored at −80 °C. Tissue samples and serum from 

ZIKV-infected mice were extracted with the RNeasy 96 Kit (for tissues) or Viral RNA 

Mini kit (for serum) (Qiagen). ZIKV RNA levels were determined by Taqman one-step 

qRT–PCR on an ABI7500 Fast Instrument using published primers and conditions52. Viral 

burden was expressed on a log10 scale as viral RNA equivalents per g or ml after 

comparison with a standard curve produced using serial tenfold dilutions of ZIKV RNA. 

Measurement of EDE1-B10 in tissues. Tissues of ZIKV-infected mice that were perfused 

were weighed and homogenized with stainless steel beads in a Bullet Blender instrument 

(Next Advance) in 600 µl (brain) or 300 µl (testis, epididymis, and eye) of PBS. Samples 

were clarified by centrifugation (2,000g for 10 min). All of the homogenized tissues from 

infected animals were stored at −80 °C. Flat-bottom 96-well MaxiSorp (ThermoFisher) 
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plates were coated with goat anti–human (IgG H+L chain) antibody (KPL) and then 

blocked with PBS + 2% BSA (Sigma) for 1 h at 37 °C. Tissue homogenates were diluted 

in PBS + 2% BSA and incubated for 1 h at 4 °C. Plates were washed six times and then 

incubated with AffiniPure horseradish peroxidase (HRP)-conjugated goat-antihuman-IgG 

(Jackson Immuno) for 1 h at 4 °C and developed with TMB substrate. The reaction was 

stopped by addition of 2N H2SO4, and emission (450 nm) was read using a TriStar LB 941 

reader (Berthold Technologies). EDE1-B10 levels are shown in 'µg/ml' after comparison 

with a standard curve and logistical regression produced using serial threefold dilutions of 

EDE1-B10 in corresponding homogenates of tissues from naive mice. 

Viral RNA in situ hybridization (ISH). RNA ISH was performed with RNAscope 2.5 

(Advanced Cell Diagnostics) according to the manufacturer's instructions. PFA-fixed 

paraffin-embedded placental sections were deparaffinized by incubation for 60 min at 60 

°C. Endogenous peroxidases were quenched by treatment with H2O2 for 10 min at room 

temperature. Slides were boiled for 15 min in RNAscope Target Retrieval Reagent and 

incubated for 30 min in RNAscope Protease Plus before probe hybridization. The probe 

targeting ZIKV RNA was designed and synthesized by Advanced Cell Diagnostics (catalog 

number 467771). A negative control probe (targeting bacterial gene dapB) was also 

obtained from Advanced Cell Diagnostics (catalog number 310043). Tissues were 

counterstained with Gill's haematoxylin and visualized with standard bright-field 

microscopy. 

Histology. Testis and epididymis were collected and fixed overnight in 4% PFA in PBS. 

Subsequently, 5-µm-thick sections from EDE1-B10-treated or isotype-control-mAb-

treated mice were processed for histology by H&E staining. Collected placentas were fixed 
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in 10% neutral-buffered formalin at room temperature and embedded in paraffin. Placentas 

were sectioned and stained with H&E to assess morphology. Surface area and thickness of 

the placenta and of the different layers were measured using ImageJ software. 

Computer-assisted sperm analysis. Mature sperm from the cauda epididymis of EDE1-

B10-treated or isotype-control-mAb-treated mice at day +21 after infection were collected 

immediately after euthanasia as reported53. The sperm suspension, in vitro fert medium 

(Cook Medical), was analyzed using the HTM-IVOS Vs12 integrated visual optical system 

motility analyzer (Hamilton-Thorne Research) as described previously54. All 

measurements of motile sperm were made within 60 min of dissection of the cauda 

epididymis.  

Statistical analysis. All data were analyzed with GraphPad Prism software. Kaplan–Meier 

survival curves were analyzed by the log-rank test. Viral burden and viremia were analyzed 

by the Mann–Whitney test. Motile sperm and placental and fetal measurements were 

analyzed by ANOVA using either a Kruskal–Wallis or Holm–Sidak test with a multiple-

comparisons correction. Fetal outcome was assessed by Fisher's exact test. 
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Figure 4.1: EDE1-B10 is a human mAb to DENV that cross-neutralizes ZIKV infection 

(a) Serial dilutions of EDE1-B10 were tested for neutralization of DENV-1, DENV-2, DENV-3, and 
DENV-4 serotypes using a focus-reduction neutralization test. (b) EDE1-B10 was tested for 
neutralization of ZIKV strains from Africa (HD78788) and Brazil (PE243). The data in a,b are expressed 
as the percentage of neutralized virus. (c,d) ADE (c) and neutralization (d) studies with WT and LALA 
recombinant variants of EDE1-B10 and EDE1-C8 with DENV-2 (16681) and ZIKV (HD78788). 
Infection of U937 cells (c) in the presence of mAbs EDE1-B10, EDE1-C8, or their LALA mutants is 
presented as the percentage of infection. Data are representative of three independent experiments (a–
d). 
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Figure 4.2: EDE1-B10 protects against ZIKV-induced lethality and viral burden 

(a) Four- to five-week-old male WT mice were treated with anti-Ifnar1 followed by s.c. infection with 
mouse-adapted ZIKV-Dakar. Mice were then treated with isotype control mAb or EDE1-B10 at day +1 
(100 µg, left), day +3 (250 µg, middle), or day +5 (250 µg, right) after infection. Weight and survival 
data were pooled from two (EDE1-B10) or three (isotype) independent experiments (isotype-mAb-
treated, n = 19 mice per group; EDE1-B10-treated, n = 10 mice per group). (b–f) Eight- to nine-week-
old male WT mice were treated with anti-Ifnar1 followed by s.c. inoculation with mouse-adapted ZIKV-
Dakar. Viral RNA was measured in serum (b), brain (c), testis (d), epididymis (e), and eye (f) by qRT–
PCR at 1 d (D+1), 3 d (D+3), or 5 d (D+5) after infection. Bars indicate median values from two 
experimental replicates (n = 8 mice per group). (g–k) Eight- to nine-week-old male WT mice were 
treated with anti-Ifnar1 followed by subcutaneous inoculation with mouse-adapted ZIKV-Dakar. Mice 
were treated with isotype control mAb or EDE1-B10 at day +1 (100 µg) or day +3 (250 µg) after 
infection. At day +5 after infection, viral RNA was measured in serum (g), brain (h), testis (i), 
epididymis (j), and eye (k). Bars indicate median values collected from two experimental replicates (n = 
8 mice per group). (l–o) Eight- to nine-week-old male WT mice were treated with anti-Ifnar1 followed 
by s.c. inoculation with mouse-adapted ZIKV-Dakar. Mice were treated with isotype control mAb or 
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EDE1-B10 at day +1 (100 µg; isotype, n = 9; EDE1-B10, n = 10), day +3 (250 µg; isotype, n = 10; 
EDE1-B10, n = 15), or day +5 (250 µg; isotype, n = 8; EDE1-B10, n = 9) after infection. At day +21 
after infection, viral RNA was measured in the brain (l), testis (m), epididymis (n), and eye (o). Bars 
indicate median values collected from three experimental replicates. Throughout, the dashed lines 
indicate the limit of detection of the assay. *P < 0.05, **P < 0.001, and ***P < 0.0001 (log-rank (a) or 
Mann–Whitney (g–n) test). Data from two (a, b–k) or three (a, l–o) independent experiments (a: mean 
± s.d.). 
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Figure 4.3: EDE-specific mAbs protect against ZIKV-induced lethality 
 
Four to five week-old WT male mice were treated with anti-Ifnar1 mAb followed by subcutaneous 
infection with 103 FFU of mouse-adapted ZIKV-Dakar. Mice then were treated with isotype-control, 
EDE1-C8, or EDE2-A11 mAbs at day +1 (100 µg, left) or day +3 (250 µg, right). Data were pooled 
from two (isotype-control mAb) or three (EDE1-C8 and EDE2-A11) independent experiments (isotype-
control mAb, n = 19; EDE1-C8, n = 10; EDE2-A11, n = 10). Statistical significance was analyzed (log-
rank test: ****, P < 0.0001). 
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Figure 4.4:  Levels of EDE1-B10 mAb in tissues at day +5 after infection. 
 
Eight to nine week old WT male mice were treated with a single dose of EDE1-B10 mAb at day +1 or 
+3 as described in Figure 4.2. a. At D+5, tissues were harvested and EDE1-B10 levels were assessed 
by ELISA using a standard curve. Bars indicate median values. Data were pooled from two independent 
experiments, and symbols correspond to individual mice (n = 8 per group). Statistical analysis was 
determined (Mann-Whitney test: **, P < 0.01; ***, P < 0.001). 
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Figure 4.5: EDE1-B10 protects against testis infection and injury. 
 
Eight- to nine-week old male WT mice were treated with isotype control or EDE1-B10 mAb at day +1 
(n = 6 mice per group), day +3 (n = 4 mice per group), or day +5 (n = 8 mice per group) after infection, 
as described in Figure 4.2. (a) Low-magnification (top) and high-magnification (bottom) images after 
RNA ISH staining of testis at day +21 after infection using ZIKV-specific RNA probes. (b) Low-
magnification (top) and high-magnification (bottom) images of hematoxylin and eosin (H&E)-stained 
samples of testis from mice that were treated with isotype control or EDE1-B10 mAbs at day +1 (n = 4 
mice per group), day +3 (n = 4 mice per group), or day +5 (n = 7 mice per group). (c) The number of 
motile sperm from each mouse, as determined by computer-assisted sperm analysis (uninfected: n = 10; 
day +1: isotype, n = 8; EDE-B10, n = 10; day +3: isotype, n = 10; EDE-B10, n = 15; day +5: isotype, n = 
9 per group). Bars indicate median values. In a,b, scale bars, 500 µm (top) and 20 µm (bottom). *P < 
0.01; n.s., not significant (ANOVA with a Dunn's multiple-comparison test). Data are representative of 
two (a,b) or three (c) independent experiments. 
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Figure 4.6: ISH and histological analysis of epididymis from mice treated with EDE1-B10. 

Eight- to nine- week old male WT mice were treated with isotype control or EDE1-B10 mAb at day +1 
(n=6 mice), day +3 (n=4 mice), day +5 (n=8 mice) after infection, as described in Figure 4.2. a. RNA in 
situ hybridization (ISH) staining of epididymis at day +21 using ZIKV-specific RNA probes. Low power 
(scale bar = 500 µm) and high power (scale bar = 20 µm) images are presented in sequence. The images 
in the panels are representative of sections from 4 to 6 mice. b. H & E staining of epididymis. Low 
power (scale bar = 500 µm) and high power (scale bar = 20 µm) images are shown in sequence. The 
images are representative of sections from 3 to 5 mice. 
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Figure 4.7: EDE1-B10 protects Ifnar1-/- pregnant dams. 

Ifnar1−/− female mice were mated with WT sires. At E6.5, dams were infected with ZIKV-Brazil and 
treated on E7.5 with 250 µg of an isotype control mAb or EDE1-B10. Dams were harvested on E13.5 
to assess fetal survival and maternal viral burden. (a) Left, fetal outcome, presented as intact versus 
resorbed fetuses at the time of harvest. Middle and right, images of fetal histology; black arrow indicates 
a partially resorbed fetus in the uterus. Scale bars, 1 mm. (b,c) Viral burden in the maternal brain (b) 
and serum (c). Horizontal bars indicates median values, and dashed lines indicate limit of detection for 
the assay. (d) Low-magnification (top) and high-magnification (bottom) images after RNA ISH staining 
of placentas at E13.5. Scale bars, 500 µm (top) and 20 µm (bottom). The images are representative of 
placenta from one (isotype control mAb) or three (EBE-B10) dams. (e) Low-magnification (top) and 
high-magnification (bottom) H&E-stained images of a placenta at E13.5. Placental labyrinth zone is 
marked with a solid line. The images are representative of placenta from one (isotype control mAb) or 
three (EDE1-B10) dams. Scale bars, 1 mm (top) and 100 µm (bottom). Blue arrows indicate apoptotic 
trophoblasts in the labyrinth zone. *P < 0.05, **P < 0.01, and ***P < 0.0001 (Fisher's exact test (a) or 
Mann–Whitney test (b,c)). Data were pooled from two independent experiments (a–c) or are 
representative of one (d,e), two (a), and three (d,e) experiments. 
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Figure 4.8: Therapeutic effect of EDE1-B10 in WT pregnant dams. 
 
WT female mice were mated with WT sires. At E5.5, dams were treated with anti-Ifnar1. At E6.5, dams 
were infected subcutaneously with 103 FFU of mouse-adapted ZIKV-Dakar. At E7.5 (day +1 after 
infection) or E9.5 (day +3 after infection), dams were treated with 250 µg of either isotype control (day 
+1, n = 9 mice; day +3, n = 6 mice), EDE1-B10 (day +1, n = 12 mice; day +3, n = 12 mice), or EDE1-
B10 LALA (day +1, n = 5 mice) mAbs. (a–d) At E13.5, viral RNA was assessed by qRT–PCR in the 
maternal serum (a), maternal brain (b), placenta (c), and fetal head (d). Bars indicate median values. 
Dashed lines indicate the limit of detection for the assay. (e) Low-magnification (top) and high-
magnification (bottom) images after RNA ISH staining of placenta at E13.5. Scale bars, 500 µm (top) 
and 20 µm (bottom). (f–i) Measurements of the placenta (f–h) and fetal body size (i) from isotype-
treated (n = 7 per group) or EDE1-B10-treated (day +1, n = 7; day +3, n = 5) dams. Bars indicate median 
values. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 (Kruskal–Wallis or Holm–Sidak's 
multiple-comparisons test (a–d, day +1 samples), Mann–Whitney test (a–d, day +3 samples), or 
Kruskal–Wallis test with a Dunn's multiple-comparison test (f–h)). Data were pooled from eight (a–d) 
or three (f–i) independent experiments or are representative of three (e) independent experiments. 
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Figure 4.9: Protection of pregnant mice with WT and LALA EDE1-C8 mAbs 
 
WT female mice were mated with WT sires. At E5.5, dams were treated with anti-Ifnar1 mAb. At E6.5, 
dams were infected subcutaneously with 103 FFU of mouse-adapted ZIKV-Dakar. At E7.5 (day +1), 
dams were treated with 250 µg of either isotype-control mAb or EDE1-C8 (wild-type or LALA variant). 
At E13.5, placentas and fetal heads were harvested, and viral RNA was assessed by qRT-PCR. Bars 
indicate median values. Data were pooled from two independent experiments, and symbols correspond 
to individual mice (isotype mAb, n = 16; EDE1-C8, n = 20; EDE1-C8 LALA, n = 12). Statistical 
significance was determined (Kruskal-Wallis test: ***, P < 0.001; ****, P < 0.0001). Dashed line 
indicates the limit of detection for the assay. 
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Figure 4.10: Treatment with EDE1-B10 prevents maternal and fetal ZIKV infection after 
intravaginal inoculation of pregnant dams 
 
WT female mice were mated with WT sires. At E5.5 (day −1 before infection), dams were treated with 
anti-Ifnar1 and a single 250-µg dose of either isotype control mAb (n = 5) or EDE1-B10 (n = 8). At 
E6.5, dams were inoculated intravaginally with 105FFU of mouse-adapted ZIKV-Dakar. (a–d) At E13.5, 
viral RNA was assessed by qRT–PCR of maternal serum (a), maternal brain (b), vagina (c), cervix (d), 
ovary (e), placenta (f), and fetal head (g). Bars indicate median values. Dashed line indicates limit of 
detection for the assay. (h) Low-magnification (top) and high-magnification (bottom) images after RNA 
ISH staining of placenta at E13.5 from uninfected (n = 3) or from infected and mAb-treated (n = 4 per 
group) dams. Scale bars, 500 µm (top) and 20 µm (bottom). *P < 0.05, **P < 0.01, and ***P < 0.0001 
(Mann–Whitney test (a–g)). Data were pooled from three independent experiments (a–g) or are 
representative of three (h) independent experiments. 
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Chapter 5: 

Mouse and human monoclonal antibodies protect against infection 
of multiple genotypes of Japanese encephalitis virus  

 

This chapter is adapted from a manuscript published in Nature Immunology:  

 

Fernandez E, Kose N, Edeling MA, Adhikari J, Sapparapu G, Lazarte SM, Nelson CA, Govero 
J, Gross ML, Fremont DH, Crowe JE, Diamond MS. 2018. Mouse and human monoclonal 
antibodies protect against infection of multiple genotypes of Japanese encephalitis virus. 
mBiol. 2018 Feb 27; 9: e00008-18. 
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5.1 Summary 

Japanese encephalitis virus (JEV) remains a leading cause of viral encephalitis 

worldwide. Although JEV-specific antibodies have been described, an assessment of their 

ability to neutralize multiple genotypes of JEV has been limited. Here, we describe the 

development of a panel of mouse and human neutralizing monoclonal antibodies (mAbs) 

that inhibit infection in cell culture of four different JEV genotypes tested. Mechanism-of-

action studies showed that many of these mAbs inhibited infection at a postattachment step, 

including blockade of virus fusion. Mapping studies using site-directed mutagenesis and 

hydrogen-deuterium exchange with mass spectrometry revealed that the lateral ridge on 

domain III of the envelope protein was a primary recognition epitope for our panel of 

strongly neutralizing MAbs. Therapeutic studies in mice demonstrated protection against 

lethality caused by genotype I and III strains when mAbs were administered as a single 

dose even 5 days after infection. This information may inform the development of vaccines 

and therapeutic antibodies as emerging strains and genotypic shifts become more prevalent. 

Although Japanese encephalitis virus (JEV) is a vaccine-preventable cause of viral 

encephalitis, the inactivated and live attenuated platforms available are derived from strains 

belonging to a single genotype (GIII) due to its historical prevalence in areas of JEV 

epidemics. Related to this, studies with vaccines and antibodies have focused on assessing 

the in vitro and in vivo protective responses to homologous or heterologous GIII strains. 

An epidemiological shift in JEV genotype distribution warrants the induction of broadly 

neutralizing antibody responses that inhibit infection of multiple JEV genotypes. Here, we 

generated a panel of mouse and human neutralizing monoclonal antibodies and evaluated 
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their inhibitory activity, epitope location, and capacity for protection against multiple JEV 

genotypes in mice. 
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5.2 Introduction 

Despite the existence of inactivated and live attenuated vaccine platforms, Japanese 

encephalitis virus (JEV) remains a primary cause of viral encephalitis. It is particularly 

prevalent in Asia, with approximately 68,000 clinical cases (1, 2) and an estimated 10,000 

to 15,000 deaths per year (1). JEV circulation is endemic in southern tropical and 

subtropical areas (e.g., Australia, Indonesia, and Singapore), with epidemics occurring in 

northern temperate regions (e.g., Japan, Bhutan, and Nepal) (3, 4). JEV is transmitted 

primarily by the Culex tritaeniorhynchus mosquito and is maintained in an enzootic cycle 

with pigs and wading birds. In contrast, humans are infected as incidental dead-end hosts 

(5, 6). The high incidence of JEV in rural areas has been attributed to the presence of open 

water sources, the preferred breeding grounds for Culex mosquitoes (7). Approximately 5 

to 15 days after mosquito inoculation of JEV, a nonspecific febrile illness develops, 

characterized by malaise, headache, and general discomfort (2). Symptomatic JEV 

infection is observed most commonly in children in areas of endemicity, children and 

adults in areas with JEV epidemics, and travelers to areas of endemicity and epidemics (3, 

8). Severe clinical JEV disease occurs in about 1% of infected humans, with progression 

to encephalitis, seizures, or neurological deficits (9, 10). Beyond death, which occurs in 20 

to 30% of clinical cases, severe long-term complications include paralysis, dystonia, and 

cognitive deficits (10–12). JEV is a flavivirus of the Flaviviridae family and is related to 

other viruses that cause human disease, including Zika (ZIKV), West Nile (WNV), dengue 

(DENV), tick-borne encephalitis (TBEV), and yellow fever (YFV) viruses. JEV is an ~50-

nm enveloped, positive-stranded RNA virus with an ~11-kb genome flanked by 5 = and 3 

= untranslated regions. The genome encodes a single open reading frame that is co- and 
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posttranslationally cleaved by viral and host proteases into three structural proteins (capsid 

[C], premembrane [prM], and envelope [E]) and seven nonstructural proteins. The E 

protein is necessary for virus binding, entry, and fusion in host cells (13) and the 

ectodomain is divided into three domains: domain I (E-DI) is the central -barrel domain, 

domain II (E-DII) is an extended dimerization domain with a distal hydrophobic fusion 

loop (FL), and domain III (E-DIII) is an immunoglobulin-like fold (14). Structural analysis 

of the JEV E protein shows a smaller dimer interface with increased contacts at the E-DI-

DIII pocket compared to those of related flaviviruses (15). Although most phylogenetic 

analyses define four JEV genotypes based on sequence variation of the E protein, multiple 

strains belonging to a fifth genotype were recently identified in Malaysia and South Korea 

(16–18). The genotypes cluster within particular geographic distributions: for example, 

genotype I (GI) and GIII strains are more common in temperate regions, whereas GII and 

GIV strains are more common in tropical climates (19–21). GIII has been the predominant 

genotype historically, and as such, existing vaccines against JEV are derived from 

prototypical GIII strains such as JEV-Nakayama and JEV-SA14 (21). Recent reports have 

noted a substantial increase in GI infections in Asian countries, including China and Japan 

(22, 23). The humoral response to JEV, like that of other flaviviruses, is considered 

necessary for limiting infection, and neutralizing antibody titers often serve as a correlate 

of protection (24). Indeed, JEV type-specific mouse monoclonal antibodies (mAbs) with 

protective activity (e.g., E3.3) have been identified and were derived against GIII strains 

(25–28). Moreover, a humanized mAb (B2) that was derived from a chimpanzee 

immunized with JE-VAX also protected mice against JEV-Nakayama, a strain of the 

homologous JEV genotype (GIII) (29). Other neutralizing mAbs (e.g., 2H4 and 2F2) in 
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goat and monkey models of infection (30) protected against JEV strains from the 

homologous genotype to which they were raised. Notwithstanding these data, no study has 

comprehensively profiled the inhibitory activity of anti-JEV mAbs against multiple 

genotypes in vitro and in vivo, and no fully human anti-JEV mAbs have been described. 

The shift in prevalence from GIII to GI may require a different antibody repertoire for 

protection against infection and thus has implications for the efficacy of existing vaccines 

that were derived from GIII strains. Here, we generated a panel of mouse and human mAbs 

against JEV after immunizing mice and humans with a GIII vaccine strain (JEV-SA14-14-

2) or mice with pathogenic GII and GIII strains of JEV. Six of the mouse mAbs (JEV-31, 

JEV-106, JEV-128, JEV-131, JEV-143, and JEV-169) neutralized infection of strains 

representative of the four JEV genotypes (GI, GII, GIII, and GIV) that we tested to various 

degrees. Site-directed mutagenesis and hydrogen-deuterium exchange mass spectrometry 

(HDX-MS) mapping data identified sites within E-DI (JEV-169), E-DIII (JEV-31, JEV-

106, JEV-128, JEV-131, JEV-143, and hJEV-69), and additional regions of the E 

ectodomain (JEV-117 and hJEV-75) as key epitopes for neutralization. Passive transfer 

studies in lethal JEV challenge mouse models showed protective efficacy for some mouse 

and human mAbs even when administered up to 5 days after GI or GIII infection. These 

data may be relevant for the development of antibody-based therapeutics or anti-JEV 

vaccines with broader protective activity, which may be important as the predominant 

genotypes shift over time. 

 
5.3 Results  

Anti-JEV mAbs. We generated a panel of neutralizing murine mAbs against JEV to begin 

to address the impact of shifting genotype epidemiology on antibody-mediated protection. 



 154 

We inoculated and boosted adult C57BL/6 mice deficient for interferon (IFN) regulatory 

factor 3 (Irf3-/-) with 102 focus-forming units (FFU) of a vaccine strain of JEV (JEV-SA14-

14-2). Additionally, we inoculated Irf7-/- mice with JEV-Nakayama (GIII), boosted with 

JEV-Bennett (GII), and administered a final intravenous boost with JEV-Nakayama before 

splenocyte-myeloma cell fusion. We immunized Irf3-/- and Irf7-/- rather than wild-type 

(WT) mice, as JEV replicated to higher titers and induced stronger neutralizing antibody 

responses in these animals (data not shown). We screened ~3,800 hybridoma supernatants 

from five independent fusions for binding to JEV-infected cells by flow cytometry and 

direct virus binding by enzyme-linked immunosorbent assay (ELISA) and cloned 13 JEV 

mAbs by limiting dilution for further characterization. Using a single-endpoint 

neutralization assay, we identified 8 mAbs with 95% neutralizing activity against infection 

of JEV-SA14-14-2 in Vero cells (data not shown). We then tested these mouse mAbs for 

their ability to bind recombinant JEV E ectodomain, JEV E-DI, JEV E-DIII, WNV E 

ectodomain, or ZIKV E ectodomain by ELISA (Table 5.1). JEV-169 bound E-DI, and the 

remaining mAbs recognized E-DIII, with the exception of JEV-117, which recognized JEV 

E ectodomain but not the domain fragments. JEV-31 and JEV-117 showed cross-reactivity 

to WNV E protein, whereas JEV-143 cross-reacted with ZIKV E protein. 

To generate human mAbs against JEV, we screened neutralization profiles from 

donors immunized with a two-dose regimen of a commercially available inactivated JEV 

vaccine, IXIARO, that was based on a genotype III strain (Figure 5.1A). We obtained 

hybridoma supernatants derived from donors that bound to JEV-SA14-14-2, determined 

the single-endpoint neutralization titer (data not shown), and cloned 4 anti-JEV mAbs. 

Three of the human mAbs bound to E-DIII, whereas hJEV-75 bound to the E ectodomain 
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but not to E-DI or E-DIII (Table 5.1). hJEV-11 and hJEV-80 cross-reacted with WNV E 

protein, whereas hJEV-69 and hJEV-75 appeared specific to JEV and did not bind either 

WNV or ZIKV E proteins.  

Breadth of neutralization of mAbs. We performed focus reduction neutralization tests 

(FRNTs) on Vero cells to assess the inhibitory capacity of our anti-JEV mAbs against the 

vaccine strain, JEV-SA14-14-2, and available prototype strains representative of multiple 

genotypes. We did not test a representative genotype V strain of JEV, as one was not 

available from the World Arbovirus Reference Collection. We determined the mAb 

concentration that reduced the number of foci of infection by 50% (50% effective 

concentration [EC50]) (Figure 5.1B and C; Table 5.1). JEV-31 and JEV-169 had the 

strongest neutralization activity against the four genotypes tested (GI, GII, GIII, and GIV), 

with EC50 values between 84 and 365 ng/ml and 49 and 315 ng/ml, respectively. JEV-106, 

JEV-128, JEV-131, and JEV-143 had intermediate neutralizing activity, with EC50 values 

between 147 and 548 ng/ml, 102 and 1,629 ng/ml, 95 and 509 ng/ml, and 346 and 818 

ng/ml, respectively, against strains of the four genotypes. As expected, the JEV-SA14-14-

2 vaccine and JEV-SA14 parental strain were neutralized to similar levels by most mAbs, 

with the exception of JEV-117, which showed a remarkable ~1,000-fold shift in EC50 

values. In general, JEV-27 and JEV-117 had the weakest neutralizing activity, with EC50 

values between 1,441 and 4,830 ng/ml and 10,000 ng/ml, respectively.  

We identified four human mAbs with neutralizing activity against JEV-SA14-14-

2, which we characterized in greater detail. hJEV-11 and hJEV-80 exhibited relatively 

weak neutralizing activity (1,509 to 10,000 ng/ml and 857 to 10,000 ng/ml, respectively) 

against the other strains tested (Figure 5.1C; Table 5.1). In comparison, hJEV-69 and 
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hJEV-75 inhibited infection of multiple JEV strains more potently. hJEV-69 had greater 

activity against the GI strains (2372/79 and MAR 859; EC50, 335 to 1,102 ng/ml) than 

against the GIV strain (JKT 7887; EC50, 3,111 ng/ml), whereas hJEV-75 had the strongest 

neutralizing activity against GI, GII, and GIII strains (EC50, 9 to 457 ng/ml) but did not 

inhibit the GIV strain (JKT 7887; EC50, 10,000 ng/ml). Overall, the mouse-derived mAbs 

had greater breadth of neutralization against multiple genotypes of JEV than the human-

derived mAbs. This finding could reflect the different immunogens used (live versus 

inactivated viruses for mice or humans, respectively), species-specific differences in the 

antibody repertoire, or the limited size of the panel of mAbs that we obtained.  

Mechanism of neutralization. Antibody neutralization of flaviviruses can occur by 

inhibiting attachment, internalization, and/or fusion (31). To determine how the 

neutralizing mAbs inhibited infection in cell culture, we performed pre- and post-

attachment neutralization assays (32–34). MAbs were incubated with JEV-SA14-14-2 

before or after virus binding to cells, and infection was measured by FRNT (32–34). As 

expected, all mAbs efficiently neutralized infection when premixed with virus (Figure 

5.2A and 5.3 [solid lines]). All mouse mAbs also inhibited JEV infection when added after 

virus adsorption to the cell surface, although to a lesser extent, suggesting that at least part 

of their blocking activity was at a post-attachment step (Figure 5.2A; Figure 5.3, dashed 

lines). Similarly, hJEV-69 and hJEV-75 neutralized in both pre- and post-attachment 

assays (Figure 5.2B).  

We next determined whether the neutralizing mouse and human mAbs could block 

fusion by adapting a virus fusion from without (FFWO) assay at the plasma membrane (32, 

33). JEV-SA14 was adsorbed to a monolayer of Vero cells on ice and subsequently 
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incubated with the mAbs. Fusion at the plasma membrane was induced by brief exposure 

to low-pH-buffered medium at 37°C. After washing, cells were incubated overnight in the 

presence of 10 nM concanamycin A1 to prevent canonical endosomal fusion and allow 

viral replication. As described for other flaviviruses (33), in the absence of mAb treatment, 

~20% of cells produced viral antigen that was measurable by flow cytometry; in contrast, 

minimal viral antigen (~2 to 3% of cells) was detected when fusion was induced under 

neutral-pH conditions (Figure 5.2C and D). All neutralizing mouse mAbs tested inhibited 

plasma membrane fusion under acidic conditions and subsequent viral antigen expression. 

In contrast, hJEV-69 and hJEV-75 inhibited fusion at the plasma membrane less efficiently 

(Figure 5.2C and D).  

Epitope mapping. To begin to assess the basis for differential inhibition by the 

neutralizing mAbs, we mapped their epitopes. We defined key peptide regions and amino 

acid residues required for mAb binding by using both hydrogen-deuterium exchange mass 

spectrometry (HDX-MS) (35) and alanine-scanning site-directed mutagenesis (36) of the 

E protein of JEV-SA14-14-2. 

(i) HDX-MS. As HDX-MS should show slower exchange at mAb binding sites (increased 

protection), we analyzed five mouse mAbs (JEV-31, JEV-106, JEV-128, JEV131, and 

JEV-143) that engaged E-DIII. The mAbs were mixed in a 1:1 ratio with E-DIII, and HDX 

was performed for 10, 30, 60, 120, 900, 3,600, and 14,400 s. The quenching and protein 

digestion conditions were optimized to obtain 32 different peptides that spanned the 11-

kDa JEV E-DIII protein (Figure 5.4A). All five mAbs showed changes in deuterium 

uptake compared to unliganded E-DIII. Representative kinetic plots are shown for eight of 

the peptides spanning E-DIII in the presence of JEV-31 (Figure 5.5A). The deuterium 
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uptake studies showed that binding of JEV-31, JEV-106, JEV-128, JEV-131, and JEV-143 

protected regions in the N-terminal region and A strand (residues 304 to 310), BC loop 

(residues 326 to 342), and DE loop (residues 355 to 371) of E-DIII (Figure 5.5B; Figure 

5.4B), regions that correspond to the well-defined lateral ridge (LR) epitope (37) (E-DIII-

LR). 

(ii) Alanine-scanning mutagenesis. The amino acid binding sites of neutralizing mouse 

and human anti-JEV mAbs also were mapped by alanine-scanning mutagenesis and 

mammalian cell expression (36) of the JEV prM-E protein. Residues in the E protein 

ectodomain were replaced with alanine with two exceptions: alanine residues were mutated 

to serine, and cysteines were not mutated to prevent protein misfolding (data not shown). 

We characterized a residue as critical for mAb binding if the mutation resulted in less than 

25% binding compared to the wild-type protein (Figure 5.5C and 5.6). We found that 

alanine substitution of certain amino acids (e.g., T321, D332, and I383), which correspond 

to sites in E-DIII-LR, caused loss of binding of most of the neutralizing murine and human 

mAbs tested, especially JEV-31, JEV-131, JEV-143, and hJEV-69 (Figure 5.6A and B). 

JEV-131 showed a broader binding footprint, as loss of binding was observed for alanine 

substitution of additional residues, including G299, L345, P376, and V384. JEV-117 and 

hJEV-75 demonstrated loss of binding following mutations in other regions of the E 

ectodomain (Figure 5.6C) that correspond to previously defined epitopes for related 

flaviviruses, including residues in the E-DI-DII-hinge region (K136 for JEV-117 and S275 

for hJEV-75), E-DI-LR (L180 for hJEV-75), E-DII-hinge (E49), E-DII-LR (N82 for hJEV-

75), and E-DII-central interface (W217 for hJEV-75) (15, 38). The loss of binding observed 

within E-DIII for alanine substitutions of residues F308 (JEV-117 and hJEV-75) and F310 
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(JEV-117) corresponds to sites within the previously described A-strand epitope (39) (data 

not shown). This pattern of mutagenesis and binding also correlates with the inability of 

JEV-117 and hJEV-75 to recognize isolated domains by ELISA (Table 5.1). JEV-169 

demonstrated loss of binding with three different mutations in DI (L25, G184, and L285) 

and a single mutation in DII (M204), although these residues do not correspond to any 

published epitope. Because alanine substitutions can have only moderate structural 

differences compared to other residues, we also made charge substitutions in amino acids 

at different E-DIII epitopes, including the A strand (S309K, K312E, and H395K), DIII-LR 

(S331K, S364K, N367K, and K369E), C-C’ loop (T349K), and FG loop (R387E and 

D389K). Loss of binding in the E-DIII-LR epitope (S331K and S364K) but not in other E-

DIII regions was observed for the murine mAbs JEV-31, JEV-106, JEV-128, JEV-131, 

and JEV-143 (data not shown). Unexpectedly, we did not observe loss of binding for hJEV-

69, suggesting it may recognize E-DIII somewhat differently than the neutralizing mAbs 

of mouse origin.  

In vivo protection studies. To evaluate whether neutralizing mAbs could protect against 

JEV infection in vivo, we developed challenge models of JEV-induced lethality in mice by 

using GIII (Nakayama) and GI (MAR 859 and 2372/79) strains. Once models were 

established, we treated 4- to 5-week-old male WT C57BL/6 mice on day 1 with a single 

10- µg (0.5-mg/kg) prophylactic dose of seven different anti-JEV mAbs or an isotype-

control mAb and then inoculated animals on day 0 with different pathogenic JEV strains. 

(i) Nakayama (GIII). Whereas JEV-31, JEV-106, JEV-143, and JEV-169 protected 

all mice from lethal infection (Figure 5.7A), JEV-27, JEV-128, and JEV-131 
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conferred partial (25 to 89%) protection. We also observed protection (60 to 80%) 

with similar doses of hJEV-69 and hJEV-75 (Figure 5.7B).  

(ii) MAR 859 (GI). JEV-31, JEV-128, JEV-131, and JEV-169 conferred partial 

protection, ranging from 40 to 55% (Figure 5.7C).  

(iii) 2372/79 (GI). JEV-31, JEV-131, and JEV-169 provided complete protection 

against lethality, whereas JEV-106 and JEV-128 provided more limited (25 to 30%) 

protection (Figure 5.7D).  

To define the therapeutic potential of our most protective mAbs, a single 250-µg (15-

mg/kg) dose was administered to mice 5 days after infection (Figure 5.7E and F). Whereas 

JEV-31 and JEV-169 completely protected against lethality induced by JEV-Nakayama 

(GIII), these mAbs showed more limited therapeutic activity against JEV-2372/79 (GI), as 

they protected 50 to 60% of mice, respectively. Administration of hJEV-75 at 5 days after 

infection also had significant protection against both JEV-Nakayama (GIII) and JEV-

2372/79 (GI) strains. Overall, our data show that a single mAb that broadly neutralizes 

multiple JEV genotypes can provide therapeutic activity in vivo against multiple strains. 

5.4 Discussion 

We sought to identify murine and human mAbs that broadly neutralize infection of 

JEV strains corresponding to most genotypes. We inoculated mice with attenuated or 

infectious strains of JEV to generate a panel of eight anti-JEV mAbs and characterized 

them at the functional and structural levels. From our analyses, we identified three classes 

of antibodies based on neutralization profile, epitope binding, and in vivo efficacy. The 

two mAbs JEV-27 and JEV-117 had the weakest inhibitory profiles. Four mAbs (JEV-106, 

JEV-128, JEV-131, and JEV-143) had intermediate neutralization abilities, and two mAbs 
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(JEV-31 and JEV-169) were strongly and broadly neutralizing. Binding analysis revealed 

two mouse mAbs (JEV-31 and JEV-117) that were cross-reactive with WNV. JEV-143 

cross-reacted with ZIKV, and five other mouse mAbs (JEV-27, JEV-106, JEV-128, JEV-

131, and JEV-169) appeared more type specific. JEV-31, which cross-reacted with WNV 

and was one of the most strongly neutralizing mAbs in our panel, recognized an epitope in 

the E-DIII-LR. A single JEV-specific neutralizing murine mAb, JEV-169, mapped to E-

DI. We also generated the first human mAbs for JEV isolated from B cells of recipients of 

a chemically inactivated JEV vaccine; to our knowledge, this also is the first isolation of 

human mAbs from an individual immunized with an inactivated flavivirus vaccine. We 

identified two strongly neutralizing JEV-specific human mAbs: one (hJEV-69) that 

recognized E-DIII-LR and another (hJEV-75) that mapped to residues in the E-DI-LR, E-

DI-DII-hinge, E-DII-LR, and E-DII-hinge. Future studies will need to assess the inhibitory 

potential of the anti-JEV humoral response against contemporary strains of JEV of all 

genotypes, including GV strains. Type-specific and cross-reactive neutralizing mAbs have 

been identified against JEV. Although others have identified E-DIII-specific anti-JEV 

mAbs from mice (25, 27, 28), this class of antibodies appears less immunodominant in 

humans, at least against some (40–44) but not all (45, 46) flaviviruses. Murine-derived E-

DIII-specific mAbs (2H4, A3, and E3.3) against JEV had stronger neutralizing activity in 

vitro than E-DII-specific mAbs (25, 30, 47, 48). Humanization of chimpanzee-derived E-

DI (A3 and B2)- and E-DIII (E3)-specific mAbs demonstrated equivalent in vitro 

neutralization compared to the parental mAbs, and this finding correlated with protection 

against JEV infection in mice by the homologous genotype (GIII) (29). We performed 

epitope-mapping studies on our mouse mAbs by using complementary approaches: HDX-
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MS and alanine-scanning mutagenesis. Epitope mapping by HDX-MS identified a series 

of short peptides that were recognized by our strongest neutralizing E-DIII-specific mAbs 

(JEV-31, JEV-128, JEV-131, and JEV-143). Subsequent analysis by alanine-scanning 

mutagenesis confirmed and extended these findings by defining individual amino acid 

residues in E-DIII-LR (T321, D332, and I383) required for optimal mAb binding (JEV-31, 

JEV-131, JEV-143, and hJEV-69). HDX provided information on mAb reactivity with a 

peptide segment but lacked residue-level specificity. Reciprocally, alanine-scanning 

mutagenesis defined specific amino acids required for optimal binding but is of limited 

utility if mutation of more than one residue is required for significant loss of binding. Loss-

of-binding analysis of the neutralizing hJEV-75 mAb identified residues across E-DI and 

E-DII, particularly within the previously defined E-DI-LR, E-DII-LR, and E-DI-DII-hinge 

epitopes. JEV-117, a mouse mAb that was poorly neutralizing, exhibited a similar loss-of-

binding profile to hJEV-75. Although further studies are warranted, the differential 

functional activities of JEV-117 and hJEV-75 may be due to differences in accessibility of 

their epitopes or affinity of binding. Higher resolution studies, including X-ray 

crystallography and cryo-electron microscopy, are necessary to determine the precise 

geometry of binding and a complete footprint of interacting residues. We observed some 

variation in neutralizing activity of some mAbs against different JEV strains and 

genotypes. This piece of data is analogous to that observed with mAbs against different 

DENV-3 genotypes (49, 50). The inter-genotypic amino acid sequence divergence in the 

E protein among genotypes ranges from 0.6% (GII versus GIII) to 5.6% (GIII versus GIV) 

(51). Infection with one JEV genotype is believed to confer long-term immunity against 

both homologous and heterologous genotypes. We assumed it might be straightforward to 
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generate mouse and human mAbs that neutralized all JEV genotypes available to us. 

Indeed, there are limited amino acid changes in E-DIII among the JEV strains that we 

tested, with only 5 amino acid differences (residues 315, 327, 333, 336, and 366); 

accordingly, the variation in neutralization of different JEV genotypes by E-DIII-specific 

mAbs was limited (~10-fold). Two mAbs (JEV-117 and hJEV-75) effectively neutralized 

the JEV-SA14-14-2 vaccine strain but remarkably lost inhibitory activity against the 

parental JEV-SA14 strain. These mAbs mapped to epitopes that also contained residues 

outside E-DIII, in E-DI and E-DII. An alignment of the genotypic variation in JEV 

sequences (Figure 5.8) failed to show a direct correlation with the residues identified in 

loss-of-binding studies for JEV-117 and hJEV-75. Although the sites of genotypic 

variation between JEV-SA14-14-2 and JEV-SA14 are not coincident with JEV-117 or 

hJEV-75 epitope residues, there are several residues in close proximity. For JEV-117, the 

H/Q264 genotypic variation is within 5 Å of the epitope residue at position 262; M/K279 

also is within 5 Å of epitope residue 49, and the K/E138 site of genotypic variation is within 

10 Å of epitope residue 136. For hJEV-75, the M/K279 genotypic variation is within 5 Å 

of epitope residue 49 or within 10 Å of epitope residues 273 and 275. Similarly, the K/E138 

site of genotypic variation is within 10 Å of epitope residue 49, and the H/Q264 site of 

genotypic variation is also within 10 Å of the epitope residue 262. As an alternative 

explanation, differences in strain and genotype residues allosterically could affect the 

display of JEV-117 and hJEV-75 epitopes. This idea has been described as a basis for 

differential neutralization of flavivirus genotypes by other antibodies (52, 53). Clearly, 

further studies with higher-resolution epitope mapping of the JEV-117 and hJEV-75 mAbs 

(e.g., atomic resolution structures of the Fab-E complexes) may resolve this question of 
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differential neutralization of JEV strains. Overall, our results have potential implications 

for assessing the breadth of the protective efficacy of existing and new JEV vaccines. It 

may be critical to assess whether antibody responses against the vaccine strain of a given 

JEV efficiently neutralize infection of heterologous genotypes that may emerge. 

Mechanism-of-action studies showed that all neutralizing murine E-DIII-LR mAbs 

could block virus fusion, as was observed previously for E16, a WNV-specific mAb (33). 

Although hJEV-69 exhibited a loss-of-binding profile similar to those of E-DIII-LR-

specific mouse mAbs, charge substitutions in this region (S331K and S364K) did not affect 

hJEV-69 binding, suggesting a somewhat unique epitope. Consistent with this observation, 

FFWO studies of hJEV-69 indicated that although it inhibited at a post-attachment stage, 

it did not efficiently block pH-dependent fusion. Although further studies are required, the 

neutralizing human mAbs could block at a post-entry step before fusion. Alternatively, the 

FFWO, which is a measure of viral fusion at the plasma membrane, may not fully 

recapitulate the events occurring in the late endosome. We performed protection studies in 

vivo with our mouse and human mAbs and JEV strains corresponding to the two most 

commonly circulating genotypes (GI and GIII). To our knowledge, the protective effect of 

JEV mAbs against genotype I strains in vivo has not been studied previously. Several of 

our neutralizing mAbs (JEV-31, JEV-106, JEV-131, JEV143, JEV-169, and hJEV-75) 

completely protected against lethal JEV-Nakayama (GIII) infection when administered as 

prophylaxis. A subgroup of mAbs (JEV-31, JEV-131, and JEV-169) also completely 

protected against JEV-2372/79, a GI strain, with all mAbs tested partially preventing lethal 

infection by a highly homologous second GI strain, JEV-MAR 859, with 99% amino acid 

identity at the E protein. Remarkably, post-exposure therapeutic administration of a single 
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dose of JEV-31 or JEV-169 at 5 days after infection also conferred complete or partial 

protection against GIII or GI strains, respectively. A single post-exposure dose of hJEV-

75 also provided high levels of protection against GI or GIII strains. Although prior studies 

have reported in vivo efficacy of murine and humanized E-DIII mAbs against JEV (26, 29, 

30), these challenge studies were performed with single, homologous JEV genotypes, and 

protection was limited to prophylaxis, with the exception of a single study (30). The post-

exposure protection we observed is similar to that seen previously for other E-DIII-LR 

mAbs, including E16 and WNV (54) and E106 and DENV-1 (55). One caveat of our study 

is that administration of anti-JEV antibody at day 5 preceded the development of central 

nervous system symptoms (e.g., seizures, tremors, paralysis, or lethargy). More detailed 

window-of-treatment analysis is needed to determine which mAbs retain protective 

efficacy after the development of disease onset. In summary, we identified a panel of anti-

JEV mAbs that map to epitopes in E-DI and E-DIII with broadly neutralizing activity 

against multiple JEV genotypes. Although both mouse and human neutralizing mAbs can 

block infection at a post-attachment stage, the mouse mAbs appear to have a greater 

capacity to block pH-dependent viral fusion. Studies using liposome-based fusion 

experiments (32, 33, 56) and cell entry assays (33) will be required to corroborate these 

findings. Overall, our combination of in vitro mAb neutralization analyses with mechanism 

of action, epitope mapping, and in vivo activity provides insight into developing and 

refining vaccine and therapeutic countermeasures against emerging JEV strains and 

genotypes. 
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5.5 Methods 

Viruses. JEV strains 2372/79 (Thailand 1979, GenBank accession no. U70401), MAR 859 

(Cambodia 1967, accession no. U70410), Bennett (Korea 1951, accession no. HQ223285), 

Nakayama (Japan 1935, accession no. EF571853), SA14-14-2 (China 1954, accession no. 

JN604986), SA14 (China 1954, accession no. M55506), and JKT 7887 (Indonesia 1981; 

accession no. L42160) were provided by the World Reference Center for Emerging Viruses 

and Arboviruses (K. Plante, S. Weaver, and R. Tesh, Galveston, TX). Virus stocks were 

propagated in C6/36 Aedes albopictus cells for 5 days prior to collection, and their titers 

were determined by focus-forming assay (FFA) on Vero cell monolayers, as described 

previously (57).  

MAb generation.  

(i) Mouse mAbs. Irf3-/- mice were infected and boosted with 102 FFU of JEV-SA14-14-2 

and given a final intravenous boost with 106 FFU of JEV-SA14-14-2 3 days prior to fusion 

with P3X63.Ag.6.5.3 myeloma cells. Irf7-/- mice were infected and boosted with 102 FFU 

of JEV-Nakayama and JEV-Bennett, respectively, and given a final boost with 103 FFU of 

JEV-Nakayama 3 days prior to fusion. Antibodies from hybridomas that bound to JEV-

infected Vero cells by flow cytometry and JEV-SA14-14-2 by direct ELISA were cloned 

by limiting dilution. All hybridomas were screened initially with a single-endpoint 

neutralization assay using neat hybridoma supernatant incubated with 102 FFU of JEV-

SA14-14-2 for 1 h at 37°C. MAb-virus complexes were added to Vero cell monolayers for 

1 h at 37°C followed by 1% (wt/vol) methylcellulose in modified Eagle medium (MEM) 

supplemented with 4% fetal bovine serum (FBS). Plates were fixed with 2% 

paraformaldehyde (PFA) in phosphate-buffered saline (PBS) 30 h later and sequentially 
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stained with 500 ng/ml WNV E60 (cross-reactive mAb) (38) and horseradish peroxidase 

(HRP)-conjugated goat anti-mouse IgG in PBS supplemented with 0.1% saponin and 

0.02% Tween 20. JEV-infected foci were visualized using TrueBlue peroxidase substrate 

(KPL) and quantitated on an ImmunoSpot 5.0.37 macroanalyzer (Cellular Technologies). 

Hybridoma supernatants with greater than 85% neutralization were purified commercially 

(Bio-X Cell) after adaptation for growth under serum-free conditions.  

(ii) Human mAbs. The human donors used in this study were born in the United States 

and Colombia and had not experienced prior JEV infection. However, they were not tested 

for prior exposure to other flaviviruses (e.g., WNV or DENV). Donors were immunized 

voluntarily with a two-dose regimen of a commercially available inactivated JEV vaccine, 

IXIARO, as part of an occupational exposure program. Peripheral blood was obtained for 

research purposes after informed consent approximately 1 month after boosting, with prior 

Institutional Review Board approval from Vanderbilt University Medical Center. 

Peripheral blood mononuclear cells (PBMCs) from heparinized blood were isolated using 

Ficoll-Histopaque and density gradient centrifugation. The cells were cryopreserved in the 

vapor phase of liquid nitrogen until use. Ten million PBMCs were cultured in 384-well 

plates (Nunc) using culture medium (ClonaCell-HY medium A; StemCell Technologies) 

supplemented with 8 µg/ml 1 of the Toll-like receptor (TLR) agonist CpG 

(phosphorothioate- modified oligodeoxynucleotide  ZOEZOEZZZZZOEEZOEZ ZZT; 

Invitrogen), 3 µg/ml of Chk2 inhibitor (Sigma), 1 µg/ml of cyclosporine (Sigma), and 

clarified supernatants from cultures of B95.8 cells (ATCC) containing Epstein-Barr virus. 

After 7 days, cells from each 384-well culture plate were expanded into four 96-well 

culture plates (Falcon) using ClonaCell-HY medium A containing 8 µg/ml 1 of CpG, 3 
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µg/ml of Chk2 inhibitor, and 107 irradiated heterologous human PBMCs (Nashville Red 

Cross) and cultured for an additional 4 days. Supernatants were screened by ELISA 

(described below) for reactivity with JEV-SA14-14-2. Hybridoma cell lines were cloned 

by single-cell flow cytometric sorting in a sterile FACSAria III cytometer (BD 

Biosciences).  

Neutralization assays. Serial dilutions of mAbs were incubated with 102 FFU of different 

JEV strains for 1 h at 37°C as described previously (57). MAb-virus complexes were added 

to Vero cell monolayers for 1 h at 37°C followed by 1% (wt/vol) methylcellulose in 

modified Eagle medium (MEM) supplemented with 4% FBS. Plates were fixed and 

processed as described above. Nonlinear regression analysis was performed, and EC50 

values were calculated after comparison to wells infected with JEV in the absence of mAb. 

Flavivirus E ectodomain and JEV E-DI and JEV E-DIII expression and purification. 

JEV E protein (residues 1 to 399 corresponding to the E ectodomain of the JEV-SA14-14-

2 strain) was prepared as previously described (15). A JEV E-DI synthetic gene was 

designed based on a DENV-4 DI construct (58) with modifications such that JEV E 

residues 1 to 50 were linked to residues 135 to 195 by a glycine dipeptide, and residues 

135 to 195 were connected by a serine residue to residues 281 to 298. This fragment was 

cloned into the pFM1.2 mammalian expression vector (59) downstream of a pHLsec signal 

sequence and terminated with a C-terminal tobacco etch virus (TEV) protease and 

hexahistidine affinity tag. Transient expression and purification were completed using 

established protocols (60). JEV E-DIII (residues 299 to 399) was cloned into the NdeI and 

XhoI restriction enzyme sites of pET21a for expression in BL21(DE3) Codon Plus 

Escherichia coli cells by autoinduction (61). The protein was refolded from inclusion 
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bodies and purified by size exclusion essentially as described previously (62). WNV (63) 

and ZIKV (60) E ectodomain proteins were produced and purified based on established 

protocols.  

JEV mAb domain mapping. MaxiSorp 96-well plates (Thermo, Fisher) were coated with 

50 µl of 4 µg/ml of recombinant JEV E (15), JEV E-DI, JEV E-DIII, WNV E, or ZIKV E 

overnight at 4°C. Plates were washed three times with PBS with 0.02% Tween 20 followed 

by incubation with PBS and 2% bovine serum albumin (BSA) for 1 h at 37°C. MAbs were 

added (1 µg/ml) for 1 h at room temperature. Plates were washed again and sequentially 

incubated with biotin-conjugated anti-mouse IgG, streptavidin-HRP, and 3,3’, 5,5’-

tetramethylbenzidine (TMB) substrate. The reaction was stopped by addition of 2 M H2SO 

4 , and emission (450 nm) was read using a TriStar LB 941 reader (Berthold Technologies). 

Pre- and postattachment neutralization assays. For preattachment assays, serial 

dilutions of MAbs were prepared at 4°C in Dulbecco’s modified Eagle medium (DMEM) 

with 2% FBS and preincubated with 102 FFU of JEV-SA14-14-2 for 1 h at 4°C. MAb-

virus complexes were added to a monolayer of Vero cells for 1 h at 4°C. Unbound virus 

was removed with three washes of chilled DMEM, and adsorbed virus was allowed to 

internalize during a 37°C incubation for 1 h. Cells were overlaid with 1% (wt/vol) 

methylcellulose in MEM supplemented with 4% FBS. For postattachment assays, 102 FFU 

of JEV-SA14-14-2 was adsorbed onto a monolayer of Vero cells for 1 h at 4°C. After 

removal of unbound virus, serial dilutions of MAbs were added to virus-adsorbed cells for 

1 h at 4°C. Virus then was allowed to internalize for 1 h at 37°C, and subsequently cells 

were overlaid with methylcellulose as described above. Thirty hours later, the plates were 

fixed with 2% PFA and analyzed for antigen-specific foci as described above.  
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Fusion blockade assay. The assay for plasma membrane fusion inhibition with flavivirus 

mAbs was described previously (32–34). Briefly, Vero cells (2 x 104 per well) were seeded 

in flat-bottom 96-well plates overnight at 37°C. The following day, cells were preincubated 

with 10 nM concanamycin A (Sigma catalog no. C9705), which blocks acidification of 

endosomes and viral fusion, for 30 min on ice and subsequently incubated with JEV-SA14 

(multiplicity of infection [MOI] of 50) for 2 h. Cells were washed twice with chilled PBS 

followed by incubation with 100 µg/ml (murine) or 50 µg/ml (human) MAbs for 30 min 

on ice. Cells were pH shifted with warmed DMEM (buffered to pH 5.5 or control pH 7.5) 

at 37°C for ~7 min. The cells were rinsed and incubated for 24 h at 37°C in DMEM with 

10 nM concanamycin A. Subsequently, cells were rinsed, fixed, permeabilized, and 

sequentially stained for 1 h at 4°C with JEV-13 (1 µg/ml) and goat anti-mouse Alexa Fluor 

647-conjugated secondary antibody (1:2,000). Samples were processed by flow cytometry 

(MacsQuant), and data were analyzed using FlowJo software. 

Hydrogen-deuterium exchange. Continuous HDX labeling of JEV E-DIII with or 

without the mAbs was performed at 25°C for 0, 10, 30, 60, 120, 900, 3,600, and 14,400 s 

as previously described with the following modifications (64). Briefly, stock solutions of 

JEV E-DIII both with and without the mAbs were prepared in PBS (pH 7.4) and incubated 

at 25°C for at least 1 h. Continuous labeling with deuterium was initiated by diluting the 

stock samples 10-fold in deuterated PBS buffer (Sigma-Aldrich). HDX control samples 

(nondeuterated) were prepared in the same way with H2O. Quenching was performed under 

reducing conditions by adding a solution of 500 mM Tris (2-carboxyethyl)phosphine 

hydrochloride (TCEP HCl) and 4 M guanidine hydrochloride in PBS buffer (pH 7.4 

[adjusted using sodium hydroxide]) to the reaction vial at a 1:1 vol/vol ratio. The sample 
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was mixed and incubated for a minute at 25°C before being loaded onto our custom-built 

HDX platform for desalting, online pepsin digestion, and reversed-phase separation and 

directly injected into the mass spectrometer for analysis.  

The sample was passed over a custom-packed 2- by 20-mm pepsin column at 200 µl/min; 

immobilized pepsin was prepared according to a published protocol (65). The peptides 

resulting from digestion were captured by a 2.1- by 20-mm Zorbax Eclipse XDB-C 8 trap 

column (Agilent) and desalted at 200 µl/min 1 of H2O containing 0.1% trifluoroacetic acid 

for 3 min. The peptides were separated by a 2.1 x 50 mm C18 column (2.5- µm XSelect 

CSH C18; Waters) with a 9.5-min gradient of 5 to 100% acetonitrile in 0.1% formic acid 

at a flow rate of 100 µl/min delivered by a LEAP 3 x Ti pump (Leap Technologies, NC). 

The linear part of the gradient from 0.3 min to 5.5 min raised the acetonitrile content from 

15% to 50%, during which time most of the peptides eluted from the C18 column. The 

entire fluidic system was kept in an ice bath, except for the pepsin column, to minimize 

back exchange. Duplicate measurements were carried out for each of the time points.  

HDX data analysis and epitope assignment. Acquired spectra were analyzed using HDX 

workbench software (66) against a peptide set generated as described below. The deuterium 

level was normalized to the maximum deuterium concentration (80%) contained in the 

reaction vial. The peptide list used to search the HDX data was identified first by a tandem-

MS experiment in a data-dependent mode on a linear trap quadrupole-Fourier transform 

(LTQ-FT) mass spectrometer (Thermo). The six most abundant ions were submitted to 

collision-induced dissociation fragmentation. Product-ion spectra were then submitted to 

MassMatrix (version 2.4.2) for identification (67) and manually inspected, and the 

validated peptides were used for the HDX analysis. The epitopes were identified as 
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regions/sequences of amino acids (not single residues) that show a significant difference 

in HDX for the bound versus unbound states, as determined from the peptide-level HDX-

MS data. Criteria for the selection of peptides as potential epitopes are explained further in 

the Immune Epitope Database (IEDB) submission mentioned below in the “Accession 

number(s)” section.  

Site-directed mutagenesis epitope mapping. Epitope mapping was performed by alanine 

scanning mutagenesis as described previously (36). A JEV prM-E protein expression 

construct (based on JEV-SA14-14-2) was subjected to commercial alanine-scanning 

mutagenesis (Genewiz) to generate a mutant library. Each residue within the JEV E protein 

was changed to alanine, with alanine codons mutated to serine and cysteine residues left 

unchanged. In total, 400 mutants were generated and sequence confirmed. Each JEV E 

protein mutant was transfected into human 293T cells and allowed to express for 24 h and 

then fixed and permeabilized with Foxp3 transcription factor staining buffer (Thermo 

catalog no. 00-5523-00). Cells were incubated sequentially with purified MAbs at 

concentrations optimized for staining (range, 30 to 1,000 ng/ml) and Alexa Fluor 647-

conjugated secondary antibody (Invitrogen) in permeabilization buffer. Fluorescence 

signal was detected by flow cytometry (MacsQuant) and analyzed using FlowJo software. 

Antibody reactivity against each mutant was compared to that of the WT prM-E protein 

after subtracting the signal from mock-transfected controls and normalizing to the signal 

from WT prM-E transfected controls. Mutations were identified as critical to the MAb 

epitope if the mutants showed less than 25% binding compared to the wild type. For charge 

mutants, we substituted residues in the A strand (S309K, K312E, and H395K), DIII-LR 
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(S331K, S364K, N367K, and K369E), C-C’ loop (T349K), and FG loop (R387E and 

D389K) and transfected and stained as described above.  

Mouse experiments. Animal studies were carried in accordance with the 

recommendations of the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health and were approved by the Institutional Animal Care and Use 

Committee at the Washington University School of Medicine (assurance no. A3381-01). 

Mice were inoculated with JEV after induction of anesthesia using ketamine hydrochloride 

and xylazine, and all efforts were made to minimize pain and suffering. Antibody 

protection studies were performed according to the models described below.  

(i) Genotype I. WT C57BL/6 male mice (3 weeks old; Jackson Laboratories) were 

inoculated with 103 FFU of JEV-MAR 859 or JEV-2372/79 subcutaneously in the 

footpad. Anti-JEV or isotype control (CHK-152) mAbs were administered 

intraperitoneally as a single dose on day 1 (10 µg, 0.5 mg/kg) or day 5 (250 µg, 

12.5 mg/kg) after infection. Animals were monitored for lethality for 28 days.  

(ii) Genotype III. WT C57BL/6 male mice (4 to 5 weeks old; Jackson Laboratories) 

were inoculated with 102 FFU of JEV-Nakayama subcutaneously in the footpad. 

Anti-JEV or isotype control (CHK-152) mAbs were administered intraperitoneally 

as a single dose on day 1 (10 µg, 0.5 mg/kg) or day 5 (250 µg, 12.5 mg/kg) after 

infection. Animals were monitored for lethality for 28 days. 

 Statistical analysis. Statistical significance of FFWO was determined by one-way 

ANOVA with Dunnett’s multiple comparisons to an isotype control mAb. Statistical 

significance of alanine shotgun mutagenesis was determined by one-way ANOVA with 

Holm-Sidak’s multiple comparisons of each mutant to V315 for each MAb. Kaplan-Meier 
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survival curves were analyzed by the log rank test for each mAb compared to an isotype 

control mAb.  

Accession number(s). The epitopes of the five JEV-specific mAbs (E31, E106, E128, 

E131, and E143) have been deposited in the Immune Epitope Database (IEDB) under 

submission no. 1000721. 
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Table 5.1: Binding and neutralization of inhibitory anti-JEV mAbs  
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Figure 5.1: Neutralization activity of anti-JEV mAbs. 

(A) Serum samples from humans previously immunized against JEV with an inactivated virion vaccine 
were tested against a panel of JEV strains (2372/79 [GI], MAR 859 [GI], Bennett [GII], SA14 [GIII], SA14-
14-2 [GIII], Nakayama [GIII], and JKT 7887 [GIV]) by focus-forming assay (FFA) for neutralization 
activity. Serial serum dilutions were incubated with 102 FFU for 1 h at 37°C, and Vero cells were 
subsequently infected and stained. (B) Neutralization curves of eight mouse anti-JEV mAbs (JEV-27, JEV-
31, JEV-106, JEV-117, JEV-131, JEV-128, JEV-143, and JEV-169) against the indicated strains. (C) 
Neutralization curves of human-derived anti-JEV mAbs (hJEV-11, hJEV-69, hJEV-75, and hJEV-80) 
against the indicated strains. All data are representative of three independent experiments performed in 
triplicate. 
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Figure 5.2: Mechanism of neutralization by anti-JEV mAbs. 

(A and B) The preattachment inhibition assay (solid lines) was performed by incubating 102 FFU of JEV-
SA14-14-2 with serial dilutions of mAbs starting at 10 µg/ml for 1 h at 4°C before addition to prechilled 
Vero cells at 4°C and subsequently following the FFA protocol. The postattachment assay (dashed lines) 
was performed by adding 102 FFU of JEV-SA14-14-2 to cells for 1 h at 4°C. After extensive washing to 
remove unbound virus, serial dilutions of mAbs were added, starting at 10 µg/ml, and incubated for 1 h at 
4°C, and the FFA then was completed at 37°C. Data are representative of three experiments performed in 
triplicate. (C) The fusion-from-without (FFWO) assay was performed after incubating Vero cells at 4°C 
with JEV-SA14 (MOI of 50) for 2 h. For these experiments, we used JEV-SA14 instead of JEV-SA14-14-
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2 because it could be grown to a higher titer. Cells were washed extensively, and the indicated mAbs were 
added for 30 min. Plasma membrane fusion was induced by exposing the cells briefly (~7 min) to an acidic 
pH buffer. After pH normalization, cells were incubated with 10 nM concanamycin for 24 h to inhibit 
infection via the endosomal pathway and collected, fixed, permeabilized, and stained for E protein 
expression. The treatment and percentage of positive cells are shown. (D) The data are pooled from three 
independent experiments, each performed in triplicate, with error bars (standard deviation) and were 
analyzed using one-way ANOVA with Dunnett’s multiple comparisons to the isotype control condition. 
****, P < 0.0001; ns, not significant. 
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Figure 5.3: Mechanism of neutralization by JEV neutralizing mAbs. 

Shown are the pre- and postattachment assays for mouse MAbs (JEV-31, JEV-106, JEV-128, and JEV-
131) against JEV-SA14-14-2, as described in Figure 2. Data are representative of three experiments, each 
performed in triplicate.  
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Figure 5.4: Sequence coverage map of peptic digestion of JEV E-DIII.  
 
(A) A total of 32 peptides were identified with complete sequence coverage for JEV E-DIII. Each bar 
indicates a peptide identified by mass spectrometry. The colored bars represent the average deuterium 
uptake percentage (D%) for the duplicate analysis of seven exchange time points. (The warmer the color, 
the higher the deuterium uptake is.) The deuterium uptake percentages for the duplicate analyses are 
indicated inside the bars, along with the standard deviation and the charge states of the peptide in 
parentheses. (B) Comparison of the kinetics of HDX for eight different peptides covering the entire E-DIII 
in the absence (E-DIII alone, black lines) or presence (E-DIII plus mAbs) of various mAbs (colored lines). 
Each region (column) is represented by a peptic peptide, as measured by mass spectrometry. Each row 
represents a state bound with a mAb (JEV-106, orange; JEV-128, maroon; JEV-131, green; JEV-143, light 
blue); the antibody is listed on the left. Regions showing reduced rates of exchange for the sample of E-
DIII with MAbs (non-black lines) are considered to contain the epitopes. Regions with no difference are 
examples of regions that do not contain the epitopes and can be viewed as controls.  
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Figure 5.5: Epitope mapping by hydrogen-deuterium exchange and alanine-scanning 
mutagenesis.  

(A) Representative HDX kinetic plots for eight different peptides spanning JEV E-DIII in the presence 
(blue lines) or absence (black lines) of JEV-31. Regions showing reduced rates or extents of exchange are 
considered to contain the binding epitopes. All experiments were performed in duplicate, and data are 
representative of two independent experiments. (B) Heat map depicting the average difference of deuterium 
incorporation between E-DIII alone and the corresponding E-DIII-mAb complex states across all seven 
time points (ΔD%). Negative values of ΔD% indicate less deuterium incorporation in the DIII-mAb state. 
The regions with significant protection are shown in red. Peptides with no or little change in deuterium 
uptake are indicated by white and green. (C) Representative alanine-scanning mutagenesis. 293T cells were 
transfected with 1 µg of the indicated plasmid and incubated overnight prior to fixation, permeabilization, 
and staining with JEV-31, JEV-106, JEV-117, JEV-128, JEV-131, and JEV-143. Loss of binding was 
detected by flow cytometry. Data are representative of three independent experiments, with error bars 
(standard error of the mean [SEM]) and were analyzed by one-way ANOVA with Holm-Sidak’s multiple 
comparisons of each mutant compared to V315 for each mAb. Superscript letters indicate significance: 
a, P < 0.05; b, P < 0.01; c, P < 0.001; d, P < 0.0001. 
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Figure 5.6: Structural representation of JEV E epitopes defined by alanine-scanning mutagenesis 
and HDX. 

(A) JEV E-DIII epitopes for each of the eight mouse and human JEV mAbs were defined by alanine-
scanning mutagenesis (shaded gray boxes) and HDX (boldface letters). Genotypic differences from the 
JEV-SA14-14-2 strain (GIII) are highlighted by a star: V315 is A in the JEV-2372/79 (GI), JEV-MAR 859 
(GI), JEV-Bennett (GII), and JEV-Nakayama (GIII) strains; S327 is T in the JEV-2372/79 (GI), JEV-MAR 
859 (GI), and JEV-Bennett (GIII) strains; K336 is N in the JEV-2372/79 (GI) and JEV-MAR 859 (GI) 
strains; and A366 is S in the JEV-2372/79 (GI), JEV-MAR 859 (GI), and JEV-Bennett (GIII) strains. For 
comparison to the JEV E-DIII epitopes, immediately below we show the structurally defined E-DIII 
epitopes of ZIKV in complex with ZV-2 (green, ABDE epitope), ZV-48 (cyan, C-C') and ZV-67 (magenta, 
lateral ridge [LR]), WNV E16 (magenta, LR), DV1-E106 (magenta, LR), DV1-E111 (cyan, C-C′ loop), 
DV2-1A1D-2 (pink, A strand), DV3-2H12 (light green, AB loop), and DV4-4E11 (pink, A strand). (B) 
JEV E-DIII epitopes defined by alanine-scanning mutagenesis are depicted on the JEV E-DIII structure 
(based on the full-length JEV E structure, PDB accession no. 3P54). (C) JEV epitopes defined by alanine-
scanning mutagenesis, HDX mapping, and surface exposure are shown in the context of the full-length JEV 
E structure. 
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Figure 5.7: Protective efficacy of anti-JEV mAbs in mice. 

(A and B) Four- to 5-week-old male C57BL/6 mice were passively administered 10 µg of the indicated (A) 
mouse or (B) human MAb via intraperitoneal injection 1 day prior to inoculation with 102 FFU of JEV-
Nakayama via the subcutaneous route. JEV-31 (n = 9), JEV-106 (n = 8), JEV-143 (n = 8), and JEV-169 
(n = 10) provided complete protection against lethality. JEV-27 (n = 8), JEV-128 (n = 9), and JEV-131 (n = 
9) provided partial protection compared to the isotype control mAbs. (C and D) Three-week-old male 
C57BL/6 mice were passively administered 10 µg of the indicated mAb as described above 1 day prior to 
inoculation with 103 FFU of (C) JEV-MAR 859 (JEV-31, n = 8; JEV-131, n = 9; JEV-169, n = 8) or (D) 
JEV-2372/79 (JEV-31, n = 9; JEV-106, n = 9; JEV-131, n = 9; JEV-169, n = 9). (E and F) Two hundred 
fifty micrograms of the indicated mAb was administered 5 days postinfection to (E) 4- to 5-week-old mice 
infected with 102 FFU of JEV-Nakayama (JEV-31, n = 9; JEV-106, n = 9; JEV-143, n = 9; JEV-169, n= 9; 
hJEV-75, n = 8) or (F) 3-week-old mice infected with 103 FFU of JEV-2372/79 (JEV-31, n = 10; JEV-
131, n = 9; JEV-143, n = 9; JEV-169, n = 10; hJEV-75, n = 9). Data are pooled from at least two independent 
experiments. Survival was analyzed for each MAb compared to the isotype control mAb by the log rank 
test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant. 
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Figure 5.8: Alignment of sequences of different JEV strains.  
 
Genotypic differences from the JEV-SA14-14-2 strain (GIII) are highlighted as shaded black residues. 
The secondary structure elements above the alignment are derived from the structure of JEV E protein 
(PDB accession no. 3P54). The GenBank identification numbers for each viral sequence are described in 
Materials and Methods. The JEV-Nakayama strain includes an unknown amino acid at position 209 
(denoted by an X).  
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Conclusions and Future Directions 
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6.1 Summary and Future Directions: mAb-defined ZIKV epitopes 

We initially mapped a panel of human- and murine-derived ZIKV neutralizing and non-

neutralizing mAbs1. These studies identified two epitopes bound by non-neutralizing mAbs 

and multiple epitopes bound by mAbs that neutralize with variable efficacy.  

Cross-reactive mAbs to flavivirus infections have been largely mapped to the fusion 

loop epitope of DII (DII-FL)2–4. The DII-FL is highly conserved across flaviviruses and 

although bound by type-specific mAbs, these tend to be weakly neutralizing5. We isolated 

one murine (ZV-13) and two human (ZIKV-12 and ZIKV-15) mAbs that recognize the 

DII-FL. Binding studies with ZV-13 identified cross-reactivity with flaviviruses, including 

all DENV serotypes that share 54-59% homology by alignment of the E protein amino acid 

sequence6 and the more distantly related JEV, with 53% homology by E protein. Previous 

studies have shown variable in vitro neutralization efficacy of DII-FL specific mAbs. For 

example, DV2-305 and WNV-E534 neutralized their respective viruses while DV2-36 and 

WNV-E28 were unable to neutralize their indicated flaviviruses. Neutralization studies 

with ZV-13 demonstrate an inability to inhibit infection against any of the ZIKV strains 

tested. Conversely, DENV-derived cross-reactive 2A10G62 neutralized ZIKV in vitro and 

provided complete protection against ZIKV in a murine lethality model7. A consequence 

of DII-FL specific mAbs is the potential for antibody-dependent enhancement (ADE), 

where previous cross-reactive mAbs are present but fail to neutralize a secondary infection 

and instead augment infection in FcR-bearing myeloid cells8. This phenomenon has been 

observed in vitro and in vivo in the context of sequential DENV infection of differing 

serotypes. We described the ability of ZV-13 to enhance secondary DENV and ZIKV 
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infection in vitro. Recently, convalescent plasma from DENV- or WNV-infected patients 

was shown to enhance secondary ZIKV infection in vitro and in vivo as shown by increased 

lethality and disease score, particularly for those receiving the plasma from DENV-infected 

patients9. An important consideration is the predominance of the human immune response 

to the cross-reactive epitopes instead of the type-specific immune response10. Future 

studies should focus on identifying features of the cross-reactive mAbs that are promote 

protection in order to skew the humoral immune response toward a broadly-neutralizing 

response.  Vaccine design will need to take this into consideration in order to avoid 

sensitizing recipients to subsequent augmented disease, especially if vaccines will be 

implemented in regions where DENV and ZIKV co-circulate.  

The antibodies that bound E-DIII were specific to ZIKV and were the most strongly 

neutralizing. Within DIII, the lateral ridge (DIII-LR) specific mAbs (ZV-54 and ZV-67) 

reduced in vitro infection of four strains of ZIKV representative of the two current lineages. 

Similarly, ZIKV-116, a human mAb isolated from an infected patient was also a potent 

neutralizer of ZIKV in vitro, with reduced inhibitory activity against the historical strain 

MR 766. Administration of ZV-54 or ZV-67 one day prior to infection was able to confer 

complete protection in a murine lethal model of infection. Previous studies on related 

flaviviruses have shown a similar protective in vivo effect of DIII-LR specific mAbs 

against lethality by WNV11, DENV-112, and DENV-25. The mechanism of neutralization 

of the human and murine mAbs is undertermined but studies with a comparable mAb (E16) 

against WNV13 indicates inhibition at a post-attachment step, potentially by inhibiting 

fusion at the plasma membrane. The ability of DIII-LR mAbs against ZIKV to bind and 

neutralize may be potentiated by the accessibility of the epitope on the mature virion, as 
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was observed by docking ZV-67 onto a previously published cryo-EM structure of a mature 

ZIKV virion14,15.  

A second E-DIII epitope bound by neutralizing ZIKV mAbs (ZV-48 and ZV-64) is the 

C-C’ loop, a cryptic epitope found to also be important in related flaviviruses16. Previous 

studies conducted with DV1-E111 found the C-C’ loop residues bound by mAb to be 

important for E-dimer associations on the mature virion indicating that exposure of this 

epitope may require structural reorganization. The variability in neutralization of DV1-

E111 against different DV1 strains also highlights potential structural organization 

variation that impacts mAb binding and therefore neutralization. This group of mAbs were 

unable to neutralize heterologous strains of ZIKV in vitro and compared with ZV-54 and 

ZV-67 had higher EC50 values against the ZIKV strains against which they were derived 

(H/PF/2013). The last E-DIII epitope bound by ZIKV-specific mAb (ZV-2) was the ABDE 

sheet, a site exposed on the mature virion, conserved between ZIKV strains, but is highly 

divergent across flaviviruses and is therefore not cross-reactive. An analogous mAb against 

DENV, 2H12, was found to bind six of the same residue positions17. However, 2H12 does 

neutralize multiple serotypes of DENV and may only bind in the context of extensive 

conformational changes implying that it may only exist as a cryptic epitope. Future studies 

may interrogate whether there are variations in E-dimer associations between flaviviruses 

that may permit the same site to be exposed in one virus (as in ZIKV) but cryptic in another 

(DENV). Differential binding analysis by biolayer interferometry further confirmed the 

neutralization profiles as the most potent, DIII-LR specific, neutralizing mAbs (ZV-54 and 

ZV-67) had greater binding affinity and slower dissociation rates compared to the C-C’ 

loop (ZV-48 and ZV-64) and ABDE (ZV-2) mAbs.  
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Lastly, mAbs against structural epitopes in ZIKV were found to be potently 

neutralizing in vitro and protective in adult and pregnant models of infection. ZIKV-117 

was isolated from a ZIKV-infected patient and potently neutralized all five strains of ZIKV 

against which it was tested in vitro. Therapeutic administration of ZIKV-117 one or five 

days post-infection conferred complete protection against ZIKV lethality in adult male 

mice. Administration of ZIKV-117 in three models of infection early in pregnancy (E6.5) 

demonstrated 1) Ifnar+/- pups had 90% protection against ZIKV induced lethality when 

ZIKV-117 was administered one day prior to infection 2) wild-type (WT) dams and the 

pups had reduced viral load in the placenta and fetal when ZIKV-117 was administered 

one day prior to infection and 3) WT dams and pups had reduced viral load in the placenta 

and fetal heads when ZIKV-117 was administered one day after infection. Dams and pups 

were assessed seven days post-infection including maternal tissues to determine viral 

distribution and we observed that prophylactic administration prevented virus from 

entering maternal brain while therapeutic administration only decreased the viral load 

present in the brain. Epitope mapping by alanine scanning mutagenesis identified residues 

within E-DII but not those comprising the DII-FL. Subsequent cryo-EM studies 

demonstrated that ZIKV-117 cross-links the E monomers within a dimer also identified a 

novel binding pattern in which ZIKV-117 can also cross-link the E monomers across the 

E dimer18. This pattern of binding may sterically impede mAb binding and thus saturation 

can be achieved at lower concentration.  

The E-dimer epitope (EDE) was introduced in Chapter 1 as eliciting protective mAbs 

against DENV and ZIKV19,20. The EDE epitope is made up of residues present in all three 

domains within the E protein and as such, can only be found in the whole virion. In vitro 
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studies with a panel of EDE1 and EDE2 mAbs found the ability to neutralize multiple 

strains of ZIKV representative of the Asian and American lineages. EDE1-B10 was able 

to bind and neutralize multiple strains of ZIKV in vitro. We first determined the kinetics 

of viral seeding of immune privileged sites in an adult murine model following infection 

and found that by two days post-infection, the brain, testis, epididymis, and eye had become 

infected with ZIKV. We next assessed the ability of EDE1-B10 to protect immune 

privileged sites from viral seeding when administered at different time points following 

infection in the acute and long-term stages. When administered one day post infection, 

EDE1-B10 was able to reduce viral seeding significantly suggesting that it was preventing 

viral entrance into the immune privileged sites. Administration of EDE1-B10 at three days 

post infection showed limited protection in the acute phase of infection (day +5) but more 

marked reduction when assessed long-term (day +21) indicating that while it may reduce 

viral burden in immune privileged sites, it was not completely able to prevent seeding. 

Follow up studies demonstrated that EDE1-B10 was able to reach immune privileged sites.  

Treatment with EDE1-B10 five days post infection was unable to reduce infection 

indicating that viral seeding had occurred and viral replication had exceeded the potential 

for mAb neutralization. Two additional important findings from the study in male mice 

were 1) the eye was negative for viral RNA by 21 days post-infection for the isotype- and 

EDE1-B10 treated mice indicating that it is naturally cleared and 2) EDE1-B10 

administration up to three days post-infection was able to rescue testicular damage and 

sperm motility. In the pregnancy model of infection, systemic prophylactic EDE1-B10 

administration was able to reduce viral RNA burden in maternal tissues (brain and female 

reproductive tract) and fetal tissues following intravaginal infection. 
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The potential for immune enhancement following secondary infection has been 

previously discussed. Briefly, sub-neutralizing levels of mAb from a primary infection may 

bind virus and allow for viral internalization by Fc-receptor mediated pathways. The 

internalization of virus can subsequently permit viral replication for release on infection 

progeny. In order to address this concern, studies using the structural mAbs (ZIKV-117 

and EDE1-B10) modified at the Fc-receptor binding region (LALA) were completed. In 

vitro studies demonstrated equivalent neutralization against multiple strains of ZIKV by 

ZIKV-117 LALA and EDE1-B10 LALA as well as an inability to cause antibody-

dependent enhancement (ADE) in myeloid cells. Administration of ZIKV-117 LALA 

prophylactically or EDE1-B10 LALA one day following infection showed equivalent 

reduction in viral RNA burden following subcutaneous infection. This result indicates that 

LALA variants of strongly neutralizing mAbs ZIKV-117 and EDE1-B10 may be 

considered as prophylactic or for acute administration following infection without risk of 

severe disease resulting from enhancement.  

Our studies have focused on single mAb therapy administration for reduction of viral 

burden which may limit the window at which protection can be observed. Future studies 

should look into combination mAb therapy at later time points post-infection. Furthermore, 

our studies in wild-type mice were completed with a mouse-adapted strain of ZIKV that 

may vary from contemporary, circulating strains. In vitro assays indicate that in vivo 

protective efficacy will be observed but our mAbs will need to be evaluated in other models 

of infection as they continue to arise. It will be important to test our panel of mAbs, 

particularly the human-derived mAbs, in non-human primate models of infection.  

6.2 Summary and Future Directions: mAb inhibition of JEV 
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We generated a panel of eight anti-JEV mAbs from mice immunized with the 

vaccine (JEV-SA 14-14-2) or virulent strains (JEV-Nakayama and JEV-Bennett) of JEV. 

We identified six mAbs to be directed at DIII, one mAb against DI (JEV-169), and one 

mAb (JEV-117) to unable to bind either domain by ELISA but able to bind the full-length 

E protein. In vitro neutralization studies against a panel of JEV strains representative of the 

four lineages indicates a wide breadth of neutralization efficacy against the different 

genotypes and between strains of the same genotype. We tested individuals mAbs in vivo 

against JEV-2372/79 (GI) or JEV-Nakayana (GIII) in a murine lethal model of infection 

and noted that the strongest neutralizing mAb in vitro, JEV-169, was not consistently the 

most protective mAb. Future studies should identify residue-level mapping of JEV-169 to 

determine if the site is variably exposed during viral maturation which may explain 

discrepancy observed in vitro and in vivo data.  

We also identified two human-derived mAbs from vaccinated individuals that are 

able to neutralize the panel of JEV representative of the four genotypes. hJEV-69 bound 

E-DIII by ELISA and alanine scan mutagenesis indicated loss of binding at various 

residues, however, a pattern consistent with an epitope is yet to be determined. hJEV-75 

was strongly neutralizing against JEV-SA 14-14-2 and significantly decreased 

neutralization potential against JEV-JKT 7884 (GIV). Domain mapping by ELISA was 

unable to identify binding of hJEV-75 to a specific domain and alanine scan mutagenesis 

of E-DIII indicated a single residue, E373, for loss of binding. In vivo studies with 

prophylactic administration of human-derived JEV mAbs indicated 80% and 100% 

protection by hJEV-69 and hJEV-75, respectively.   
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The time course to lethality varies across flaviviruses and while the kinetics of viral 

dissemination has been extensively studied in realted viruses, such as DENV, WNV, and 

ZIKV, similar studies have been limited in JEV. Future studies should aim to understand 

the kinetics of viral entry to the central nervous system as that usually precipitates lethality. 

Particularly, it should be determined whether there are differences in viral dissemination 

kinetics between strains of JEV that may alter the window of therapy between strains of 

JEV. Lastly, the emergence of a GV strain raises the concern of efficacy of current 

vaccination on emerging strains, therefore currently available panels of mAbs should be 

tested in vitro and in vivo against JEV-Muar (GV) to determine further breadth of humoral 

response.  

6.3 Conclusions 

The rapid rise of ZIKV infections and the associated clinical manifestations that 

occurred in 2014 suggests that there is potential for emerging arboviruses to cause sudden 

distress. Similarly, the emergence of new genotypes of existing flaviviruses, such as JEV, 

suggests that current flaviviruses have the potential to alter their current infectious 

capability by further altering their genome. The work presented in this dissertation provides 

insight into how current vaccination strategies may be optimized to improve breadth of 

protection by epitope analysis and the potential for acute management of emerging 

flaviviruses. 
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