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Chapter 1

Introduction

1.1 Motivation

Student feedback plays an important part in assessing student satisfaction. However, in most

cases, this feedback will be short and low quality, especially if it is asked for frequently. If

they have a choice students will often leave no label, or if they are required to, will leave

a label that may not accurately reflect the content of the review. So it is useful to have a

system that automatically classifies reviews for later analysis, especially one that is tailored

to the domain of homework reviews for a specific class. The problem of classifying student

feedback by sentiment has been explored by comparing algorithms [1] and looking at long

term trends [3]. This paper uses a relatively large dataset of student homework reviews

from a Computer Science class at Washington University in St. Louis over several semesters.

Among other topics, this paper analyzes in what cases a machine learning classifier trained

on the data is useful over a classifier that doesn’t rely on the data, what parts of the feature

space are needed for the model to be successful, and what kinds of reviews are important to

the model. Specifically, a simple Naive Bayes model with TFIDF features will be analyzed.

Rather than attempting to get the best possible accuracy, this relatively simple model will

be studied and used to understand qualities of the homework reviews. Hopefully readers will

be able to take away a better understanding of this dataset that transfers to similar domains

and informs the actions taken to utilize student feedback in the form of free-form .

1



1.2 Background

1.2.1 Course Review Dataset

After every homework assignment, students in CSE427S ”Cloud Computing with Big Data

Applications” were asked to leave a message on how they felt about the homework. The

homework reviews cover the last six semesters, with the most recent one using 1-5 star

review labels, and the previous five using positive, negative, and neutral. The majority of

experiments and analysis is done on the five semesters of data. This includes 426 negative,

194 neutral, 788 positive, and 671 unlabeled reviews. Each review contains an average of 4.8

sentences and 424 characters.

1.2.2 Sentiment Classification

The main task considered is classifying whether a review is positive or negative. This problem

has been studied extensively[10]. Current state of the art models use neural networks to

exploit the complexity of natural languages and perform quite well[17]. The long runtime,

need for a lot of data, and lack of interpretability of these models makes them less useful for

this specific problem. This paper uses three methods described below, two out of the box

algorithms of which do not use training data and one learned one which does.

1.2.3 Rules-based Classifier

One baseline classifier used VADER (Valence Aware Dictionary and sEntiment Reasoner)

[6]. This is a rule-based method that classifies test reviews based on a dictionary of positive

and negative words and lexical features that is specifically tuned to social media.

2



1.2.4 Pretrained Classifier

The next baseline is TextBlob sentiment polarity package. Like the rules-based classifier, it

does not use training data, but it is the result of a pretrained Naive Bayes model on imdb

movie reviews data. While it is trained similarly to how the learned model will be trained,

it will not have data specific to this domain.

1.2.5 Learned Classifier

To compare against these baselines, a machine learning classifier will be built that learns to

classify new reviews from training reviews and their labels.

Feature Representation A trigram bag of words model is used as feature representation.

Preprocessing involved saving the top 1000 total most frequent unigrams, bigrams, and

trigrams, where an n-gram is a group of n adjacent words, in the reviews and using these as

features. No tokenization or stopword removal is done. Common ways of reprenting these

features are prescence, which is a binary variable representing whether or not an n-gram

is in the review, and count, the number of times it appears. Instead of these, TFIDF is

used as the feature representation because of its general success in text classification due

to its ability to make rarer words more important to the classifier by multiplying the term

frequency (TF) by the inverse document frequency (IDF).

Inference Algorithm Multinomial Naive Bayes is a probabilistic classifier that is com-

monly used for text classification. It was also chosen because it is a fast linear classifier that

can be easily analyzed. Bayes Rule is used to calculate the probability that a document is

of a class and assumes that all features are independent given a class. In this case xi is the

TFIDF score of an n-gram in that review, and pci is the probability of finding that n-gram in

that class based on the training data, and c is the class, positive or negative. A smoothing

parameter α is incorporated into the probabilities as a pseudocount to avoid overfitting.

P (y = c) is calculated as the proportion of reviews belonging to that class.

3



P (y = c|X) =
P (y = c)P (X|y = c)

P (X)
∝ count(y == c)

d∏
i=1

(pxi
ci )

This can be interpreted as a linear classifier in the two class case.

ĉ = argmaxcP (y = c|X) = argmaxc logP (y = c|X) = sign(log
npos

nneg

+
d∑

i=1

xi ∗ log
ppos,i
pneg,i

)

The score will be defined as the log probability difference between the positive and negative

class. If it is positive, the review will be classified as positive, otherwise negative. The bias

term is log npos

nneg
and offers the flexibility to be adjusted. The log difference in each feature is

the weight of a feature.

A more detailed introduction to Naive Bayes can be found in [9]

4



Chapter 2

Bias of Classifier

2.1 Initial Classification

2.1.1 Setup

A learned classifier is built in this section using the Naive Bayes classifier with TFIDF

features. A smoothing parameter of α = .3 is used. All model and parameter choices were

made before testing, for their common use, simplicity, and history of performing well on

similar datasets. Most of the experiments in this paper don’t use the full dataset and involve

random selection of data points. Unless otherwise stated, experiments were done fifty times

with different random seeds to reduce the effect of randomness. Reported data is the mean

result, and errorbars in plots represent a standard deviation in each direction of the collected

data.

2.1.2 Results

Before looking at the success of classification decisions, an analysis is done here to see if the

classifier accurately predicts the correct proportion of positive and negative reviews. While

it may be appropriate in some cases to prefer one class to the other, here we assume that

if the training and test set have the same proportion of positive labels, the classifier should

predict that proportion on the test set. Plots in this chapter use a dotted line to show this

ideal. If two classifiers predict the same number of positives, then accuracy can be used as

5



Figure 2.1: Positive predictions with Multinomial Naive Bayes on different vectorizations

Figure 2.2: Positive predictions with Logistic Regression on different vectorizations

6



Figure 2.3: Positive predictions with Multinomial Naive Bayes on training sets

a fair measure that equally weights false positives and false negatives no matter the label

balance.

The total number of reviews used for these experiments was 448, with a changing randomly

selected subset of positive and negative reviews according to different ratios. 10% of the data

is split for testing in a stratified way, meaning each test set has the same polarity balance as

the training set. Count and prescense refer to two other feature representations described in

section 1.2.2.

Experiments show two biases in the predictions using Naive Bayes and TFIDF. The first is

the data balance bias. The classifier predicts much more of the label with more training data.

The second bias is underprediction bias. At each ratio, the classifier the slight underpredic-

tion of positive labels at each ratio. Figure 2.1 shows that the tfidf feature representation is

responsible for the data balance bias, while Figure 2.2 demonstrates that the underprediction

bias is due to Naive Bayes. The classifier was also evaluated on the training set rather than

a seperate test set. As seen in Figure 2.3, generalization to the test set causes some of the

bias, but not all.

7



Figure 2.4: Positive predictions with Multinomial Naive Bayes after unbalanced data adjust-
ment

Figure 2.5: Positive predictions with Multinomial Naive Bayes after full adjuststment

8



2.1.3 Adjusted Naive Bayes

Although Naive Bayes results can be interpreted as a probability, in two class classification

it is more useful to look at it as a linear model with a threshold to determine class. The

threshold is determined as log nneg

npos
(the opposite of the bias of the linear classifier) where

npos and nneg are the number of positively and negatively labeled reviews respectively. When

the dataset is balanced, the threshold is zero, and it is negative the more imbalanced the

training set is towards a higher fraction of positive reviews, meaning a review with the same

n-grams is more likely to be classified as positive. Because of a failure of the assumptions

of Naive Bayes with TFIDF, the threshold does not work well on this dataset. A simple

way to fix this is to adjust the threshold as a post processing step to the classifier. This is

implemented here by training a classifier on some training data, sorting the scores of each

training point, and choosing the threshold as the average of the points at indices nneg and

nneg + 1. This adjusted threshold should be closer to the positive predictions because it uses

the data instead of the theoretical model that we see is flawed in this case. Figure 2.5 shows

the adjustment improves the positive predictions compared to the previous classifier, mostly

fixing both biases. Figure 2.4 is the adjustment with the underprediction bias intentionally

kept for comparison.

2.2 Unbalanced Bias

2.2.1 Bi-Normal Separation

Bi-Normal Separation (BNS) has been proposed as an alternative to the inverse document

frequency portion of TFIDF [5] [4]. The two formulations are

BNS = |F−1(tpr)− F−1(fpr)|

IDF = log(
pos+ neg

tp+ fp
)

where F−1 is the inverse cumulative normal distribution function, pos and neg are the

term frequencies of an n-gram in a class, true positives (tp) and false positives (fp) are

9



Figure 2.6: Positive predictions with Multinomial Naive Bayes after BNS

the number of times that n-gram appears in a document of that class, and true positive

rate, tpr=tp/pos, and false positive rate fpr=fp/neg. Both attempt to achieve the goal of

weighting more predictive features higher and less predictive features lower. While IDF

highly weights features that occur infrequently in both classes, BNS highly weights features

that occur often in only one class. When the classes become more unbalanced, even n-

grams that are relatively frequent in a class are seen as rare compared to those of the over

represented class. So the features in the overrepresented class that are important get low

weights. BNS on the other hand accounts for the difference in number of documents and

doesn’t run into this problem BNS is compared to the version of TFIDF that is only adjusted

for unbalanced data, not for underprediction.

Figure 2.6 shows the results of applying BNS instead of IDF to the term frequency. This

result is very similar to 2.4. It mainly fixes the problem, but some of the unbalanced data

bias still remains.

2.3 Underprediction Bias

The second bias present is the small but distinct underprediction bias. This is most clear

from looking at the unadjusted results for any vectorization in the balanced data case, but

it seems to extend to all balances. To try to understand why this is happening, the weights

10



Figure 2.7: Histogram of n-grams by
weight

Figure 2.8: Histogram of n-grams by
weight, weighted by total tfidf score

Num Features 100 300 1000 3000
1 .46 .48 .48 .50

Max N-Grams 2 .46 .46 .46 .51
3 .46 .46 .46 .48

Table 2.1: Changing Positive Predictions on Different Feature Spaces

of the unadjusted classifier on balanced data are plotted in figures 2.7 (feature count) and

2.8 (weighted by frequency of features). The weight of a feature is plotted on the x-axis and

the binned count and frequency of features on the y-axis. The distribution is skewed to the

left, and this may explain why too many reviews are classified as positive. An assumption

of Naive Bayes is that all features are independent, but that is not the case in reality. The

bias seems to come from the complex dependencies between features. Table 2.1 seems to

show that using more features and less max n-grams reduces this bias. A similar problem

was found in [13], and in the two class case the authors used a similar adjustment. The

adjustment does seem to fix this issue, with the positive predictions in the balanced case

going from 48.0% to 49.9% after the adjustment.

2.4 Crossvalidated Adjustment

While the adjusted classifier (as described in section 2.1.3) does classify points to better

proportions than the unadjusted, there is still a significant unbalanced bias similar to the

unadjusted classifier. This is because the training data also contains part of the bias as seen
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Figure 2.9: Positive Predictions on Crossvalidation Adjusted Classifier Compared to Training
Set Adjusted Classifier

earlier in figure 2.3. To solve this, five-fold, stratified crossvalidation is used to determine

the threshold. This might work better because the threshold is determined by using the

same method on a small validation set trained on the rest of the training set that is expected

to behave more similarly to the test set. Indeed, as seen in figure 2.9, this works better

than adjusting the threshold just based on training results, and gives almost exactly the

predictions expected. In the rest of the paper, this will be used as the default classifier.

2.5 Test Time Adjustment

If the test distribution, or at least the desired positive prediction rate, is known there is

a way to always predict the same positive as are expected in the test set. Sort the test

predictions by score and choose the cutoff so that the desired number of positive predictions

is made. This can be a better solution if you don’t want the training distribution to decide

the threshold, and it will be used in certain experiments in this paper when appropriate.
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Chapter 3

Adjusted Results

Now that we have adjusted the classifier to give the proportion of positive predictions that

we expect, this chapter looks at the result of applying the classifier to the review data.

Accuracy is used as the main performance metric here, even on unbalanced data because we

are confident the classifier gives the expected number of positive predictions. Without this

guarantee, using this metric would overvalue classifiers that overpredict the more common

class, but if the positive predictions are the same, it is a fair measurement, and it penalizes

false positives and false negatives equally.

3.1 Highest Weighted n-Grams

One advantage of the Naive Bayes classifier is its interpretability. Each feature, in this

case uni-, bi-, or tri-gram, can be interpreted as a weight to a linear model calculated by

logP (x|class) where P (x|class) =
α + tfidf(xi ∈ class)

α ∗ count(class) +
∑

x tfidf(xi ∈ class)
. A larger choice

of α will cause more smoothing, in general weighting common words more highly. Tables

3.1 and 3.2 show the list of the highest weighted positive and negative features respectively.

Although larger choices of α do tend to give more common words, there isn’t a large difference

even when it is an order of magnitude larger. The difference between the chosen α of .3 and

a very low choice and slightly larger one, there is almost no difference in this ranking.

Overall, it seems that at least the order of the most important features is not sensitive to

this parameter choice.
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α = 0.0001 α = 0.3 α =1 α =10
1 liked liked liked and
2 liked this liked this liked this liked
3 liked this homework liked this homework liked this homework how
4 hdfs hdfs good can
5 very interesting very interesting hdfs interesting
6 think about think about very interesting mapreduce
7 world world fun is
8 real world real world think about us
9 of mapreduce of mapreduce and how data
10 similar to similar to world me
11 cool cool real world good
12 happy happy of mapreduce hadoop
13 applications applications similar to hdfs
14 already already helps me enjoyed
15 pig and pig and understanding of understanding
16 properties properties cool spark
17 was helpful was helpful happy fun
18 review of review of pig and helpful
19 help us help us works about
20 more about more about help us of mapreduce

Table 3.1: Most positively weighted n-grams with different alphas (chosen is α = .3)
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α = 0.0001 α = 0.3 α = 1 α = 10
1 spring spring spring spring
2 break break break break
3 spring break spring break spring break spring break
4 issues issues issues confusing
5 frustrating frustrating frustrating issues
6 unsure unsure unsure frustrating
7 the homeworks the homeworks the homeworks unsure
8 expected expected expected expected
9 ta ta ta ta
10 did not did not did not the question
11 supposed supposed supposed did not
12 given given given supposed
13 supposed to supposed to supposed to given
14 were not were not were not supposed to
15 to answer to answer rather rather
16 the time the time to answer to answer
17 annoying annoying the time annoying
18 is too is too annoying spent
19 figuring figuring is too is too
20 due to due to figuring figuring

Table 3.2: Most negatively weighted n-grams with different alphas (chosen is α = .3)
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Figure 3.1: Correlations
Between Learned and Pre-
trained

Figure 3.2: Correlations
Between Learned and Rule-
Based

Figure 3.3: Correlations
Between Pretrained and
Rule-Based

3.2 Correlations Between Classifiers

The classifiers have been introduced in section 1.2.2. Two of them, the rule-based and

pretrained classifiers do not rely on the data, while the learned is trained on the data. Figures

3.1, 3.2, and 3.3 show one data point for each review and the score of each classifier. There

is a strong positive correlation between every pair, with positively rated reviews from one

classification likely to be rated positively by another. The correlation between the pretrained

and learned is very strong, likely because they were both trained with similar methods, but

just different data. The rule-based tends to be more different from these two, likely because

it uses a more unique method to judge the reviews.

3.2.1 Uniquely Classified Reviews

After seeing the correlations between classification methods, it would be interesting to try

to understand how they differ. To see qualitative examples of differences, between the the

classifier learned on this data and ones that don’t, the pretrained and rule-based classification

scores are averaged for each review and compared to the score from the learned classifier. The

top three biggest positive and negative differences are shown in tables 3.3 and 3.4 respectively.

These reviews may give us insights into the unique data in these homework reviews compared

to generic sentiment classification. All of the reviews with the most positive differences

mention course specific technologies that tend to appear often in positive reviews, but not

in a generic sentiment classification model, like “MapReduce”, “Hadoop”, “combiner”, and
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Review
Rule-Based and
Pretrained Score

Learned Score

I liked this assignment. I feel like it further gave us a
really good understanding of how to implement
MapReduce. It was good to get more experience
building all the components of MapReduce from scratch.
I also liked being able to see the pieces of the algorithm
come together, as well as the different ways to execute
the program. More good insight into how the program
works in general. Overall happy with the assignment.

.70 4.17

This homework is very helpful for us to understand and
remember the context that we learnt in the last lecture
better. I got a better understanding about the map
reduce, and learned more about the using and
techniques of it. And I also got more familiar to the
using of the Hadoop, got used to the basic commend of
it.

.60 4.12

Problem 1 is mainly about using combiner.
Implementing combiner is similar to Reducer, and I
can even use reducer function directly. The last two
question of this problem show us how to use TARN
Resource Manager Web UI to monitor our MapReduce
task, and use data to indicate how combiner works.
And the second problem helps me understand how
distributed cache and partitioner works in HDFS.

-.31 3.48

Table 3.3: Reviews that the learned classifier scored most positively compared to rule-based
and pretrained
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Review
Rule-Based and
Pretrained Score

Learned Score

This homework took me a long time. I worked hard on
it but I did not feel like I had a sufficient background in
any of this information. I think spending more time
making sure everyone understands the infromation
before we have homeworks on it would be beneficial.
This homework took me upwards of six hours to
complete, and I still do not feel like I understand all of
the information real well. I would prefer doing
exercises rather than answering questions, but that may
just be me.

.41 -1.92

This homework was okay. There were only three
questions, each of which only required writing a few
commands in the spark shell, so I thought it would be
quick. However, I had issues overcoming bugs and
interpreting errors. The main problem I had was with
the join operation. It would freeze, and it took me a
long time to figure out how to fix it. Besides that, most
of the other parts of the problems went smoothly
though. It was tedious, but now I understand spark
better I think.

.39 -1.72

This assignment took a lot longer than expected. It took
a while to do the set up described in Lab 6. Another
tricky part was learning how all the different Pig
commands worked, especially the grouping. I felt like
the instructions could have been clearer in that I had
some confusion on some of the steps in writing the Pig
script. Overall, this assignment was fine but it could
have been better if the instructions were a bit more
clear

.51 -1.62

Table 3.4: Reviews that the learned classifier scored most positively compared to rule-based
and pretrained
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“reducer”. The reviews with the most negative differences do not have obvious phrases that

explain it like the positive differences do, but the language often involves things taking long

and many uncertain words, both of which may be specific to negative reviews in this context.

These differences show that there is potential that learning on the data will be beneficial in

classifying test data.

3.3 Sensitivity to Training Size

A natural question to ask is if our classifier trained specifically on this data can outperform

the rule-based and pretrained models that can classify sentiment, but weren’t specically

trained on these reviews. Adjustments based on the training set were used to calibrate these

two models, so it does fit the data, but just to adjust the threshold, not to learn feature

weights. Here randomly selected balanced datasets with different data sizes are used with

90% for training and 10% for testing. The training size is reported on the x-axis. Since the

rule-based and pretrianed classifiers only need the data for calibration, it is expected that

they give the same performance regardless of data size. First, figure 3.4 shows the positive

predictions each classifier makes. The learned classifier struggles with only 100 datapoints,

underpredicting with high variance, but besides that all of the classifiers predict very near the

expected 50%. Figure 3.5 shows the accuracies. As expected, the rule-based and pretrained

classifiers have a stable accuracy. The pretrained classifier performs slightly better. The

learned classifier improves mean accuracy with every increase in data size with an upward

trend that indicates it still has room to grow. With only 300 datapoints, the accuracy of the

learned surpasses the others, performing significantly better with enough data. This shows

that training a classifier on the dataset is useful for maximizing accuracy as opposed to using

a generic model.

3.4 Application to Homework Reviews

The ultimate goal of sentiment classification in this case may be to get new reviews and be

able to classify them automatically based on previous data. It is important to know whether
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Figure 3.4: Positive Predictions with Different
Size Datasets

Figure 3.5: Accuracies with Different Size
Datasets

Mean Train Std Train Mean Test Std Test
Positive 233 93 29 13
Negative 126 59 16 10

Table 3.5: Homework Split Statistics
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Real Mean Std
Pos Preds .64 .11
Accuracy .71 .07

Table 3.6: Performance on Real Homework Split
Synthetic Mean Std
Pos Preds .65 .14
Accuracy .71 .08

Table 3.7: Performance on Synthetic Homework Split

the sentiment can be predicted well or if there is some expected loss of predictive power

because the new review will use new terms specific to that homework that therefore won’t

yet be in the training set. For instance “spring break” is a strong indicator of a negative

review, but it likely only appears in the reviews of one or two homeworks and only during the

spring semester. To test this, an experiment is done on the homework reviews one semester

at a time, for each homework, training on all of the other homeworks of the semester and

testing on the left out homework. This is done only on the last three out of five semesters of

data because they had more reviews per homework. In total, this was 27 experiments with an

average test ratio of 11%, average positive ratio in training of 65%, and a mean total training

size of 359. The full statistics on the mean and standard deviation of positive and negative

and train and test sizes is in table 3.5. To see how impeding this split is, a synthetic data set

is created from the reviews in all three semesters drawn from normal distributions of these

same statistics for the same number of expirements. To remove the effect of randomness,

this is done 50 times and the average mean and average standard deviation is found. This

setup assumes that the number of positive and negative examples in the training and test

sets are normally distributed, and each of the number of train positives, test positives, train

negatives, and test negatives are independent. The results of the real homework split are

in table 3.6 and the synthetic in table 3.7. Both were able to predict the correct number

of positives and they have nearly the same mean accuracy. There does not seem to be any

drawback to not using training examples from a homework to predict the sentiment of a

review from that same homework.
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Chapter 4

Feature Selection

There is a lot of work on regularization for sentiment classification[11]. Some parts of the

review or certain features may be irrelevant or even harmful to the classifier. Even if regu-

larization techniques don’t work, they will reveal how important parts of the review are for

classification.

4.1 Word Regularization

If the reviewer includes one strong positive or negative statement, that may be enough to

classify the review on its own. The idea here is to train the classifier like normal, but when

evaluating a review, only use the top N n-Grams that appear in the review with the highest

absolute value weight according to the classifier. Make a classification decision using only

these weights. 426 positive and 426 negative reviews were used with a random 10% test set

for 50 iterations to get the results in figure 4.1. Even using just the top n-gram gives fairly

good accuracy, although the accuracy slowly increases by using more and more information

into the review until it appears to saturate at about 13.
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Figure 4.1: Accuracies Using Only N Most Informative n-Grams

Positive Predictions Train All Train First
Test All .50 .50
Test First .59 .50

Table 4.1: Positive Predictions Using Just First Sentence

4.2 Sentence Regularization

Sentences are natural groupings of words, and it is reasonable that only some are useful

for sentiment classification, while others are noisy or misleading. It has been found that

selecting for certain sentences can improve performance [14].

4.2.1 First and Last Sentence

One may think that a review’s sentiment is summarized by the first and/or last sentence,

while the middle tends to be more detailed information that is unneccesary or detrimental

to classification. For both the first and last sentence, four classifications are done, with

every combination of using the one sentence or the whole for the training and test sets.

Like for word regularization, the expirement is run on 426 positive and 426 negative reviews

with a random 10% test set for 50 iterations. Tables 4.1 and 4.2 show the percent positive

predictions for each combination with the first and last sentences respectively. In both
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Positive Predictions Train All Train Last
Test All .50 .48
Test Last .55 .51

Table 4.2: Positive Predictions Using Just Last Sentence
Accuracies Train All Train First
Test All .72 .71
Test First .65 .67

Table 4.3: Accuracies Using Just First Sentence
Accuracies Train All Train Last
Test All .73 .68
Test Last .63 .60

Table 4.4: Accuracies Using Just Last Sentence

Accuracies Mean Std
All Sentences .73 .05
Most Informative Sentence .71 .05
Random Sentence .64 .05

Table 4.5: Accuracies Using Just Most Informative Sentence in Test

cases when training on the whole dataset and testing on just the one sentence, the positive

probability is significantly higher. This seems to indicate that both the first and last sentence

(but especially the first) alone are more positive than the review in general. Tables 4.3 and

4.4 show the accuracies with the just the first or last sentence. In all categories, the first

sentence is more valuable information than the last. Also, testing on the whole review is

more valuable than training on it. Even the worst category, training and testing on the last

sentence does significantly better than randomly guessing. Surprisingly, when using just the

first sentence to test, training on the first sentence only actually does better than training on

everything, perhaps evidence of the power of regularization and looking for specific features

used in the first sentence rather than training on irrelevant parts of the review.

4.2.2 Most Informative Sentence

Rather than assuming the first or last sentence is the most important summarizer, there may

be a better way to choose a sentence from a review that can adequately describe the full
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Most Informative Mean Std
First Sentence .22 .05
Last Sentence .23 .04
Random Sentence .21

Table 4.6: How Often Most Informative Sentence is a Particular Sentence

review. The method used in this section is to train on the whole dataset, then go through

each test review sentence by sentence, score each sentence according to the classifier, and

choose the sentiment by the polarity of the sentence with the absolute highest score. This

one sentence may summarize the review enough to classify it correctly. Table 4.5 shows that

the accuracy goes down very slightly using only one sentence, but is significantly better than

testing a random sentence, which has abou the same accuracy as testing on the first or last

sentence as in tables 4.3 and 4.4. The fact that it is so close does indicate that almost no

information is lost from only using an important portion of the review. Another way to

analyze this is to see how often the most informative sentence ends up being the first or last

sentence. Table 4.6 shows those results. The first and last sentence end up being informative

at almost an equal rate, and since there are an average of 4.79 sentences per review, the first

and last sentence are each only slightly more likely to be the most informative as any random

sentence.

25



Chapter 5

Review Selection

Although there has been a lot of discussion in the literature of reducing the number of

features in a text classifier (as done in Chapter 4), finding ways to reduce the number of

documents is less common. In these experiments, we want to reduce the number of reviews

used by the classifier.

5.1 Positive and Negative Balance

Many experiments in this paper have used an equal number of positive and negative exam-

ples, but it is not clear whether that is important to get good results. It may be that either

the positive or negative reviews offer more information or that the balance doesn’t matter.

To test this, different ratios of positive and negative randomly selected data with certain

ratios are chosen, and a test set of equal positive and negative reviews are chosen. To ensure

that an equal number of positive and negative predictions are made despite the makeup of

the test set, the predictions are ordered and the lowest half taken as negative and highest as

positive as described in section 2.5. The results are shown in figure 5.1. Generally the results

seem symmetric, meaning that positive or negative reviews are not structered differently in

a way that makes one class more valuable in prediction. A very unbalanced training set

decreases accuracy. Although the total size is the same, the model gain in the number of

examples in the majority class is less significant than the loss in examples of the minority

class. The relative results would not change based on the positive ratio of the test set here

because the number of positive test predictions is fixed. If the exact test size is unknown,

but it is expected to be the same size as the training set, then different data sizes would
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Figure 5.1: Accuracies from an equally balanced training set and from a training set with
50 negative examples and the growing only positive

Figure 5.2: Accuracies with Different Training Sizes Selected by Lengths
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Figure 5.3: Accuracies with Different Training Sizes Selected by Lengths

give the benefit of a more accurate threshold, especially using the crossvalidation in section

2.4, but optimizing the threshold is a different problem than learning good weights from the

data. So to learn good weights from limited data, a balanced data set seems better.

Figure 5.2 further enforces this argument. It shows the accuracy of a classifier with different

training data sizes with an equal number of positive and negative example and one classifier

with a set 50 negative examples and the rest positive. The same process is used to ensure that

the positive predictions are balanced. This expirement shows that adding positive examples

while keeping the number of negative the same does nothing to improve accuracy, while a

growing equal training set continues to improve.

5.2 Length

There is a difference in the lengths of reviews. Since more reviews for training gives better

accuracy, it seems like using longer reviews would also provide more information. To test

this, the longest and shortest reviews from each class are chosen to reduce the data size. Sur-

prisingly, figure 5.3 shows that using both the longest and shortest reviews reduces accuracy,

with the longest doing the worst. This may be due to factors like the longer reviews being

lower quality or more likely to be mislabeled. It may also be because the longest reviews

28



Figure 5.4: Accuracies with Different Polarity Selections

are similar to each other and this cancels out the benefit of more n-grams in each individual

review.

5.3 Polarity

It is plausible that a training set with more polar sentiment would be able to generalize

better to test data because there will be more of the predictive n-grams that match the class

label. This is experiment tests how the polarity of selected reviews affects the classifier. A

balanced dataset of different training sizes made up of different reviews is tested. A random

subset of reviews along with the most and least polar reviews are selected and compared.

The most polar reviews are chosen as the positive reviews classified as most positive by

the pretrained classifier, divided by the number of words of a review to find those that

express a strong average sentiment. The most polar negative reviews are those classified

as the most negative per word. The reviews that are “medium” polar are those in the

positive class with the least average positive sentiment or in the negative class with the

least average negative sentiment. Figure 5.4 shows that the most polar reviews outperform

random, especially with a higher training size, while the medium polar reviews usually lag

slightly behind random. This demonstrates that the more polar reviews are more valuable

to the classifier. The medium polar review perform surprisingly well considering it was only
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Figure 5.5: Accuracies with Different Training Sizes Selected by Clustering

using reviews that did supported the label the least. This may show that the pretrained

classifier is able to identify reviews that use polar words to help the classifier, but even when

pretrained disagrees with the label, there is still enough polar information in the reviews to

make a decent classifier, maybe because they still contain phrases specifically important to

this domain.

5.4 Clustering

The loss of generalization abilities because of less training data is because n-grams in a

test review don’t have as correct of weights as they would if there was more training data.

The most polar reviews would likely give extra coverage to the most important weights,

but it could still be choosing similar reviews, learning weights that were already learned well

enough. It may be better to find a diverse set of reviews that has good coverage of the feature

space. Although redundant reviews are wasteful, finding a set of the most unique reviews

would give results of ones that are mislabeled or off-topic. The approach used in this section

is to use k-means on the tfidf feature matrix separately on positive and negative reviews,

setting k to be the number of reviews to be selected in each class. Then for each cluster, one

review is chosen as the one closest to the cluster center. This gives one seperate review for

each seperate grouping of positive reviews and negative reviews. Figure 5.5 shows the result
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Figure 5.6: Accuracies with Different Training Sizes Selected by Combining Clustering and
Most Polar

of this selection process compared to a random selection. The method gives a significant

improvement when using very few reviews, but loses its benefit with a larger number of

reviews. This is likely because with many reviews in a cluster, the clusters adequately

represented reviews using different phrasings or on different topics, but this becomes less

meaningful with very few reviews in each cluster.

5.5 Combining Methods

Independently, there is a benefit to using more polar reviews and using reviews that are

cluster centers. Since the polar reviews performed best with more data, and the clustering

performed best with fewer, combining them may get the benefits of both. To do that, this

combined algorithm goes to every cluster, and instead of choosing the review closest to the

center, chooses the most polar review in that cluster. Figure 5.6 shows the performance of

this combined selection method compared to the random baseline and the two previously

successful methods. The combined method does seem to outperform both of the previous

methods, especially choosing cluster centers. It outperforms the most polar slightly at almost

all training sizes, most notably at the smallest and largest sizes. This method does seem to

retain the good properties of both.
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5.5.1 Most Representative Reviews

To give a qualitative idea of how this combined selection chooses the best reviews for the

classifier, it is used here to select three positive and three negative reviews from the whole

dataset to train on. They are all very polar, yet don’t overlap in topic. In a way these

reviews can be seen as very representative of the dataset because they would be able to train

a classifier much better than a random selection.

Positive Reviews:

1. This homework was fun and entertaining.

2. this homework is very helpful for me to review the content of the course!

3. i feel homework 2 is very fair in terms of difficulty. if you follow the professor Neumann

and understand the concepts about Mapreduce procusdures, you can do well in home-

work and it will not take you so much time. If the professor keeps asking homework

questions like this, i can expect I will learn a lot from this class

Negative Reviews:

1. homework 7 is long and difficult. i dislike the questions don’t have any hints, it is

making a very difficult, i have to flip pages after pages in the book and google a lot to

understand the materials so i can answer the questions. Having hints like on the pre-

visous homework, it helps a lot i know where to go and read the materials, understand

it and answer the question.

2. This homework is too hard for us. Although we can get some hints from ppt used in

our class, we can’t finish our homework without TA help. And the pyspark command

line is too hard to think. For problem 2b, we feel it is too complicate to get answer.

For problem 2e, we clound’t run out the outcome. And we don’t know why. And no

TA answer this problem in piazza. We feel desperate!
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3. This homework took me two day to finish. I used python for spark. Although I have

learned python before. It still took me some time to learn how to write pyspark code.

All of the outputs will be shown in the command window is sometimes annoying. It

becomes a little bit hard to review the codes written before.
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Chapter 6

Combined Classifier

6.1 Motivation

The learned classifier can successfully classify reviews as positive or negative better than

the rule-based and pretrained classifiers. This chapter aims to improve the performance

further using just these three classifiers and the original feature set. Two opportunities for

improvement are identified. 1. Some reviews may be mislabeled. 2. Although the learned

classifier is the best with enough data, it may still benefit from being influenced by the

nonlearned classifiers.

The algorithm described in the next section is inspired by several previous approaches.

Weakly supervised learning, as described in [16] aims to train on data with unreliable labels.

Labeling unlabeled data with confident labeled data is explored in [2] and confident classifiers

“teaching” each other in [12]. Transfer learning can be applied here to use the rule-based

and pretrained classifiers usefully as is done in [15] with a generative model that takes into

account sentiment and domain importance.

6.1.1 Mislabeling

To explore the quality of labeling, 100 balanced test reviews were manually labeled. The

classifier was also trained on an equal training set on the rest of the reviews. The comparison

is shown in table 6.1. It seems there is some room for improvement by the classifier, but also
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Classifier Self
Positive Predictions .47 .53
Accuracy .71 .79

Table 6.1: Classifier compared to self labeling

Figure 6.1: Ensemble Accuracies Compared To Each Classifier

there are many reviews that couldn’t even be classified by a human annotator, indicating that

there might be an upper bound on the performance of the automated sentiment classifier.

6.1.2 Ensemble

An ensemble of classifiers often outperforms each individually[8]. This experiment uses a

majority vote between the three classifiers at each training size to determine the classification.

Figure 6.1 shows that this strategy just gives performance between rule-based and pretrained,

probably because those two often agree with each other. It doesn’t improve with more

training points like the learned classifier. This provides further evidence that the weights

from the learned classifier are unique and important. Any successful combination of the

classifiers will have to rely heavily on the learned model.
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6.2 Algorithm

This section describes my algorithm. The labels, rule-based classifier, and pretrained clas-

sifiers are used to reassign labels to grow a set of reviews and labels that are more reliable.

The learned classifier contributes to this labeling more and more as the size of the trusted

data grows, and at the end uses this clean data to make predictions.

First, an initial seed set of size s is constructed with the same balance as the training data

(here it is assumed that there are equal positive and negatives). This initial seed is chosen

as the most polar positive and negative reviews according to a weighted average of their

scores according to the rule-based classifier, pretrained classifier, and label, according to

hyperparameter weights wr, wp, and wl respectively. Now iteratively, a batch size (b) of new

reviews is added to the trusted reviews pool. These are chosen as the b most polar reviews,

which not already in the verified set, according to the same score used previously plus the

learned classifier fit on the verified data. The weight of the learned classifier is a linear

function that grows each iteration at rate g. Verified reviews are given the weight of their

combined score which is often different from the original label. If there are unlabeled reviews,

the same process continues without using the label in the score. The final classification is

given by the learned classifier fit on the full, newly labeled data. The full pseudocode is

shown in algorithm 1.

6.3 Parameter Analysis

The weight parameters for the unlearned classifier were chosen as wr = 1, wp = 2, and

wl = 2 to make the two classifiers roughly equal to each other and added together equal

to the label influence, taking into account the scale of their outputs. The batch size was

chosen as b = 10 to balance efficieny and quality. The default seed size and classifier growth

were chosen as s = 200 and g = 10/num iterations where num iterations = (n − s)/b. The

changing parameters are compared to the normal learned classifier on the same amount of

training data, which doesn’t change with the x-axis.
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Algorithm 1: Iterative Relabeling Classification Algorithm

unlearned scores = wr ∗ rulebased scores + wp ∗ pretrained scores + wl ∗ numeric labels
unlearned pos = unlearned scores[label==‘positive’]
unlearned neg = unlearned scores[label==‘negative’]
most pos reviews = pos reviews[sorted(unlearned pos)[-s/2:]]
most neg reviews = neg reviews[sorted(unlearned neg)[:s/2]]
verified reviews = [most neg reviews, most pos reviews]
verified labels = [b/2*‘negative’ + b/2*‘positive’]
num verified = b
wl = 0
while num verified < n do

wl = wl + g
learned scores = naivebayes.fit(verified reviews, verified labels)
total pred = unlearned scores + wl ∗ learned scores
sorted pred = sorted(abs(total pred))
most certain reviews = reviews[sorted pred[-b:]]
most certain labels = sign(sorted pred[-b:])
verified reviews = [verified reviews, most certain reviews]
verified labels = [verified labels, most certain labels]
num verified+ = b

end while
final pred = naivebayes.fit(verified reviews, verified labels).predict(reviews test)
return final pred
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Figure 6.2: Accuracies of Iterative with Different Classifier Weights

6.3.1 Classifier Weight

As the growth weight of the learned classifier increases, more power is given to switch labels

based on the classifier’s results on a set of verified reviews. Figure 6.2 shows the performance

with different weighting of the learned classifier. Here the x axis refers to the maximum clas-

sifier weight after all iterations. The performance deteriorates with larger classifier weights,

and it never does better than the baseline.

6.3.2 Seed Size

The choice of seed size determines how much data is labeled as verified before the learned

classifier gets involved and labels can be switched. A higher one would make the classifier

less important in general and make this more similar to the normal method. Figure 6.3

shows that a low confidence threshold makes performance slightly worse, but the choice is

not very important.
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Figure 6.3: Accuracies of Iterative with Confidence Thresholds

6.4 Results in Different Settings

With the current training data, the iterative classifier fails to make improvements. Two

different settings are proposed that might make this iterative classifier useful. 1. Noisy

labels - It might be that there is not enough noise in the data justify flipping labels, but here

noise is artificially added to the training set. 2. Unlabeled data - This tests the iterative

classifier’s natural ability to use unlabeled data to expand training size. In both cases, the

iterative classifier is compared to a baseline with a simpler solution to the setting.

6.4.1 Noisy Labels

A noisier dataset is simulated by flipping a percentage of labels in the training set, but

keeping the labels the same in the test set. The simple baseline to compare against is one

that doesn’t use the original labels at all, but instead labels everything with the pretrained

classifier. Figure 6.4 shows that the performance of the normal classifier deteriorates with

more noise, and the iterative classifier is able to correct this. However, it is consistently

worse than the baseline method.
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Figure 6.4: Accuracies with Different Polarity Selections

6.4.2 Unlabeled Data

Instead of using 700 training examples, only 100 are used in this experiment with a seed

size of 50. Then different amounts of unlabeled data are added to training for the benefit of

the iterative classifier, but not the normal one. A baseline classifier that labels all unlabeled

points with the pretrained classifier and then uses the learned classifier on the full data is

also used. Figure 6.5 shows that the iterative classifier uses some of the unlabeled data

successfully, but after getting more becomes a worse classifier. In all cases, it was better to

use pretrained labels. It is also interesting to see that none of these methods were able to

use the unlabeled data as well as they would labeled data. The baseline method stopped

improving after only 100 more unlabeled data examples even though it has been shown that

usually more data can improve the accuracy at this number of training examples.

6.5 Discussion

This iterative approach decreases accuracy of the classifier under any tested parameter se-

lections. Flipping the labels seems to have no effect in the best case and make them less

accurate in the worst case. Rather than building a verified dataset, this method becomes

unreliable and more biased towards bad data as it goes on. It seems that the two benefits
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Figure 6.5: Accuracies with using Unlabeled Data

theorized about in the motivation, don’t hold. The classifier already seems robust to the

mislabeling in this dataset, so trying to fix this problem isn’t worth it. Even with more

noisy data, it is better to use the simpler method of relabeling. Possibly because of the

high correlation between classifiers, the ensemble didn’t improve performance, even when

weighting them to favor the learned classifier with more data. Unlabeled data is not hard

to deal using a pretrained classifier, and even easier after having a good learned classifier, so

the iterative method also does not benefit in that case. To make this work in practice, there

would have to be a more careful process of building the verified dataset, and to be useful

the options available for a classifier would have to be worse. More testing could be done on

different kinds of datasets to see the benefit of this iterative classifier.
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Figure 7.1: Histogram Comparing
Original Ratings To New

Figure 7.2: Histogram of the
Changes of Ratings From Original To
New

Chapter 7

Star Reviews

The Fall 2018 review data uses a five star labeling system. I relabeled each of these reviews

manually and called these the “new labels” and the student self-reported ones the “original”.

This chapter specifically does analysis that benefits from more descriptive labels and multiple

sources of labeling.

7.1 New Labels

Figure 7.1 shows a histogram of the labels for both the original student labels and the new

ones. Similarly, figure 7.2 details the histogram of changes from the original labels to new.
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Accuracies 5 star 4,5 star 3,4,5 star
Original .73 .67 .65
New .83 .76 .72

Table 7.1: Star Ratings Considered Positive and Accuracy with Original and New Labels

Overall the new labels are more negative than the original, but they estimate the original

pretty well.

7.2 Train and Test on Different Thresholds

This section has two purposes - to find out if it is harder to classify positive reviews if they

have a lower star rating, and to see if the new labels are easier to classify than the old. 100

training points and 20 test points, both sets evenly split between positive and negative, were

used over 50 iterations to get each mean accuracy. The negative class always contained one

and two star reviews (because there weren’t enough one stars alone to do this experiment),

while the positive class contained five star, four and five star, and three, four, and five star.

Table 7.1 shows the results. Using lower rated reviews in the positive dataset significantly

decreases performance. Also, the new labels have a much higher agreement with the classifier

the original. It seems that the new labels are much closer to the classifier’s beliefs and they

match up closer to the text of the review. This is also observed in [7].

7.3 Identifying One Star Reviews

One practical task is to automatically identify all of the one star reviews to follow up with the

student or look at the negative feedback quickly. But the one star reviews are only a small

fraction of the data. In the new labeled data, 79 reviews are labeled one star and 643 higher

than that. To test the practicality of identifying one star reviews, half of each class is put in

training and half in testing. A classifier is learned on the data and the threshold is moved

so that it predicts a certain percentage negative (one star). The recall of predicting one star

reviews is assessed, that is how many of the one star reviews were correctly predicted as

negative. Figure 7.3 shows the results. As the number of negative predictions increases, the
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Figure 7.3: Predicting One Star Reviews

number of correctly identified one star reviews increases at a rate far higher than random.

One would need to look at 25% of total reviews to see 50% of one star reviews, 50% for 80%,

and 70% for 90% with this much training data available. One star reviews can be identified

fairly well, but if the tolerance for missing some is low, this approach may not be efficient

enough.
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Chapter 8

Conclusion

This paper analyzed the sentiment classification performance of a multinomial Naive Bayes

classifier on homework review data. After adjusting for biases in the classifier, it was shown

that with enough data, the learned model outperforms baseline models that don’t use training

data. Different techniques were used to reduce the feature and review spaces. None were

found to improve performance, but by seeing how much accuracy depended on each part

of the model, these experiments show what is important to the model. The attempt to

improve performance by relabeling reviews and using multiple classifiers at the same time

never performed better than the base model.

The lack of success in coming up with a way to combine multiple classifiers or use regular-

ization to improve the model while still using the TFIDF features, may show that the simple

supervised learning method already performs quite well. It was also shown in practical sce-

narios that this could be used to classify positive and negative reviews if there is enough

data, and if there isn’t enough, models that aren’t trained on the data still work well.

There are many areas in this paper that could be explored further. In particular, more

analysis could be done to find reviews that are useless or detrimental to the classifier. Other

parts of the dataset that could be useful, but weren’t analyzed here are the knowledge of what

student wrote each review, what each students’ grade was on each homework assignment,

and the use of neutral and unlabeled reviews.
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