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Dr. Quing Zhu, Chair 

Worldwide, breast cancer is the most common cancer among women. In the United States alone, 

the American cancer society has estimated that there will be 271,270 new breast cancer cases in 

2019, and 42,260 lives will be lost to the disease. Ultrasound (US), mammography, and magnetic 

resonance imaging (MRI) are regularly used for breast cancer diagnosis and therapy monitoring. 

However, they sometimes fail to diagnose breast cancer effectively. These shortcomings have 

motivated researchers to explore new modalities. One of these modalities, diffuse optical 

tomography (DOT), utilizes near-infrared (NIR) light to reveal the optical properties of tissue. 

NIR-based DOT images the contrast between a suspected lesion’s location and the background 

tissue, caused by the higher NIR absorption of the hemoglobin, which characterizes tumors. The 

limitation of high light scattering inside tissue is minimized by using ultrasound image to find the 

tumor location.  

This thesis focuses on developing a compact, low-cost ultrasound guided diffuse optical 

tomography imaging system and on improving optical image reconstruction by extracting the 

tumor’s location and size from co-registered ultrasound images. Several electronic components 

have been redesigned and optimized to save space and cost and to improve the user experience. In 
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terms of software and algorithm development, manual extraction of tumor information from 

ultrasound images has been replaced by using a semi-automated ultrasound image segmentation 

algorithm that reduces the optical image reconstruction time and operator dependency. This system 

and algorithm have been validated with phantom and clinical data and have demonstrated their 

efficacy. An ongoing clinical trial will continue to gather more patient data to improve the 

robustness of the imaging algorithm.   

Another part of this research focuses on ovarian cancer diagnosis. Ovarian cancer is the most 

deadly of all gynecological cancers, with a less than 50% five-year survival rate. This cancer can 

evolve without any noticeable symptom, which makes it difficult to diagnose in an early stage. 

Although ultrasound-guided photoacoustic tomography (PAT) has demonstrated potential for 

early detection of ovarian cancer, clinical studies have been very limited due to the lack of robust 

PAT systems. 

In this research, we have customized a commercial ultrasound system to obtain real-time co-

registered PAT and US images. This system was validated with several phantom studies before 

use in a clinical trial. PAT and US raw data from 16 ovarian cancer patients was used to extract 

spectral features for training and testing classifiers for automatic diagnosis. For some challenging 

cases, the region of interest selection was improved by reconstructing co-registered Doppler 

images. This study will be continued in order to obtain quantitative tissue properties using US-

guided PAT. 
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1 Introduction to Cancer Imaging 

1.1 Introduction 

In modern medical practice, imaging is essential in diagnosing disease and monitoring treatment 

response. Ultrasound, MRI, X-ray, and nuclear imaging are frequently used in hospital settings 

to image properties of the human body that are related to disease. All of these modalities use 

different methods to monitor the physical or functional properties of tissue. Ultrasound employs 

high-frequency sound waves to image mechanical properties. MRI captures the spin of tissue 

molecules to provide functional information. X-ray imaging exploits different degrees of energy 

absorption to show the contrast among different tissues. Several categories of nuclear imaging 

use radiative contrast agents to observe the functionality of a particular organ. Although each of 

these imaging techniques has its particular strengths and drawbacks, singly and collectively they 

are widely used for cancer diagnosis and treatment monitoring.   

In recent decades, optical imaging techniques in particular have become widely used for medical 

research and preclinical and clinical evaluations. Several optical imaging modalities, for example, 

optical coherence tomography, endoscopy, and spectroscopy, have become popular tools in the 

standard point of care. For cancer imaging, physicians and researchers take advantage of the high-

resolution imaging capabilities of optical imaging. Diffuse optical tomography uses the light 

absorption of hemoglobin to provide a contrast between the background and cancer regions. It 

has already demonstrated considerable potential in cancer diagnosis and treatment monitoring. 

Photoacoustic tomography, another optical imaging technology which uses the light absorption 

of hemoglobin, combines its information with the physics of ultrasound propagation to obtain 
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both the mechanical and functional properties of the target tissue. This thesis discusses 

ultrasound-guided diffuse optical tomography and photoacoustic tomography and their 

applications in cancer imaging. It is organized into the following four chapters. 

The reminder of this chapter briefly reviews medical imaging technologies, as well as diagnosis 

and treatment monitoring for breast and ovarian cancers. 

Chapter 2 discusses the theory and application of ultrasound-guided diffuse optical tomography 

for breast cancer diagnosis, along with the system development and algorithm improvement for 

this technology. 

Chapter 3 focuses on photoacoustic tomography, and includes the system’s development and 

algorithms for diagnosis of ovarian cancer 

Chapter 4 summarizes the above three chapters and discusses several remaining challenges at the 

frontiers of ultrasound-guided diffuse optical tomography and photoacoustic tomography.  

1.2 Popular Medical Imaging Techniques 

The ability to image the internal organs of the human body started with the discovery of the X-

ray by Wilhelm Röntgen in 1895[1]. The absorption variations of X-ray energy in different tissues 

create contrast in an X-ray image, enabling the non-invasive imaging of human organs. Since its 

invention, X-ray imaging has proved a very reliable way to examine bones and diagnose diseases. 

Computed tomography (CT) is an advanced version of X-ray imaging in which a 3-D image is 

generated using multiple sources and detectors around the subject. Different contrast agents can 

also be used to increase the contrast among different tissues. 

Ultrasound imaging gained popularity for medical applications in the late 1950s [2]. High-

frequency sound waves are transmitted into the human body, and the reflected waves from tissue 
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boundaries are recorded using an ultrasound transducer for later processing and image 

reconstruction. Used mainly to image the mechanical properties of tissue, ultrasound imaging 

provides a low-cost and versatile means to examine internal organs. Ultrasound is non-invasive, 

does not require any contrast agent, and, when used prudently, does not have any adverse effect 

on the patient’s body. Doppler imaging and elastography are variants of ultrasound imaging that 

examine different mechanical properties of organs and tissues. 

MRI was developed in the last century after Raymond Damadian discovered the difference in the 

magnetic relaxation times of different tissues. In MRI, the subject is placed in a strong magnetic 

field and the spins of the molecules inside the tissue are aligned with the direction of the applied 

magnetic field. When the excitation is removed, the molecules release the absorbed energy at 

different rates, depending on their properties. The resulting contrast between different soft tissues 

provides very high resolution images that are suitable for cancer diagnosis[3]. 

Optical imaging, the most common form of medical imaging technology, is widely used in disease 

diagnosis, prevention, and treatment[4]. Endoscopy, optical coherence tomography, 

photoacoustic imaging, diffuse optical imaging, and spectroscopy are a few examples of medical 

optical imaging that have been developed in the last few decades. In the field of optical 

tomography, which is the focus of this dissertation, researchers have been advancing different 

techniques for the last two decades. Like ultrasound and X-ray, optical tomography provides a 

non-invasive means to examine the functionality of human organs and tissues. It uses the visible 

spectrum of electromagnetic waves and is implemented a wide variety of imaging techniques. 

Some optical imaging techniques are often combined with conventional imaging modalities to 

improve the performance of both imaging techniques.  
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1.3 Breast Cancer 

Although breast cancer starts with a breast tumor, which presents as a lump inside the breast, not 

all breast lumps are life-threatening.  The breast is a complex structure of fat, ducts, lobules, and 

stroma on top of the chest wall muscle. Still, any lump detected in the breast could be a possible 

life-threatening cancer. In the case of malignant tumors, cancer cells create abnormal breast lumps 

and, at a later stage, spread to other parts of the body through the ducts and bloodstream, in a 

process called metastasis. In metastasis stage, breast cancer becomes deadly. According to the 

National Breast Cancer Foundation, one in eight women will be diagnosed with breast cancer in 

their lifetime, making this the most common form of cancer among women [5]. It is estimated that 

every year more than 250,000 women are diagnosed with breast cancer and more than 40,000 die 

from it. So, early diagnosis and treatment are important to cure breast cancer and save lives [6].  

Aggressive cell growth inside the breast causes malignant tumors. During tumor development, 

new micro blood vessels grow near the tumor zone to supply nutrition to the growing tissues, in a 

process called angiogenesis [7]. Because of angiogenesis, a malignant tumor site usually contains 

more hemoglobin than the surrounding tissue. However, in benign breast tumors the hemoglobin 

concentration is much lower because benign tumors are usually fluid-filled cysts or inflammations 

of lobules, mammary ducts, and stroma. Thus, they contain fewer microvessels than malignant 

tumors, and this difference can be utilized in breast cancer diagnosis using optical imaging 

modalities. 
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1.3.1 Breast Cancer Diagnosis and Treatment Monitoring 

For breast cancer diagnosis and treatment monitoring, different imaging methods have been 

employed, including mammography, ultrasound imaging (US), and magnetic resonance imaging 

(MRI). Mammography is the most commonly used method for breast cancer diagnosis. However, 

in dense breasts it has relatively low sensitivity in early cancer diagnosis [3]. US provides better 

results than mammography but still provides many false positives and results in many unnecessary 

biopsies [8]. MRI has superior sensitivity in breast cancer detection and diagnosis, but its high cost 

makes it less useful for continuous treatment monitoring [9]. Dynamic contrast-enhanced MRI and 

positron emission tomography (PET) are very successful in treatment monitoring and have 

demonstrated their efficacy in early identification of breast cancer patients who are not responding 

to chemotherapy, but their equipment is expensive and they require the injection of contrast agents, 

which prevents them from being used repeatedly for monitoring patients during treatment[10][11]. 

Diffuse optical tomography (DOT) is a noninvasive imaging technique that uses near-infrared 

(NIR) light to assess the optical properties of tissue. NIR light has minimum absorption in water, 

so this technique can image up to 4 cm deep tissue in reflection geometry. The NIR wavelength 

range (∼700 to 900 nm) is also optimally sensitive to both oxygenated and deoxygenated 

hemoglobin, which are two main chromophores of blood[12]. The hemoglobin concentration of 

tissue is related to angiogenesis, thus imaging the hemoglobin concentration provides useful 

information for breast cancer diagnosis. DOT has shown promising results in assessing breast 

cancer because of its sensitivity to oxygenated and deoxygenated hemoglobin [13]. Moreover, 

DOT also has demonstrated great potential in the assessment of tumor vasculature response to 

neoadjuvant chemotherapy [14].  DOT systems are portable, low cost, and require no contrast 
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agents, which make them an ideal alternative to currently used modalities for breast cancer 

diagnosis and monitoring in clinical settings.  

1.4 Ovarian Cancer 

Ovarian cancer has the lowest 5-year survival rate (50% or less) of all the gynecologic cancers [6]. 

Because of the high mortality associated with ovarian cancer, most women screened with an 

ovarian abnormality will undergo oophorectomy, even though they have at most a 2% risk of 

having ovarian cancer [15]. With the current screening and diagnostic abilities, most women (70%) 

with ovarian cancer will be diagnosed at Stage III or IV (widespread intra-abdominal disease), 

where the 5-year survival rate is less than 30%. By contrast, Stage I cancers have a 5-year survival 

rate of 80-90%. Hereditary ovarian cancer is diagnosed approximately 7-14 years earlier than 

cancer caused by sporadic mutations [16][17], which increases the potential cost/benefit ratio of 

its early diagnosis. Technology capable of reliably diagnosing ovarian cancer in earlier stages or 

prior to the development of invasive disease could reduce the high mortality and the large 

economic impact of this disease, particularly in high-risk women. Perhaps an even larger benefit 

would be that many women could avoid surgery because they could be assured that an ovarian 

mass was not cancer.  

1.4.1 Ovarian Cancer Diagnosis  

Because ovarian cancer lacks reliable symptoms and efficacious screening techniques, it is 

predominantly diagnosed in Stages III and IV. Currently, there is no single test for ovarian cancer, 

and the combination of serum marker CA125 screening (sensitivity of <50% [18],[19]), 

transvaginal ultrasound (US) (3.1% positive predictive value [20]), and pelvic exams (sensitivity 

of only 30%) yields low positive predictive value. CT scans have been studied extensively for 
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ovarian cancer detection, and multiple studies confirm that CT has a sensitivity of 45%, a 

specificity of 85%, a positive predictive value of 80%, and a negative predictive value of 50%. 

However, it is poor in the detection of metastases of < 2 cm.  [21]. A 2003 publication [22] 

suggested that MRI was superior to CT for characterizing malignant features of an ovarian mass, 

and MRI is often used when US is not diagnostic.  However, MRI is costly and typically used as 

a secondary imaging method.  Positron emission tomography (PET), using 18F-FDG as a tracer, 

can detect malignant cancers with altered glucose metabolism and has been used for the assessment 

of lymph node involvement [23], evaluation of pretreatment staging, and treatment response and 

detection of cancer metastases. However, it has limited value in lesion localization in early stages 

of ovarian cancer because of the difficulty in distinguishing between the signal from early-stage 

cancers and the background uptake signals coming from the normal tissue [24].  Thus, we still 

need better techniques to interrogate the ovary and rule out cancer. 

Photoacoustic tomography (PAT) is an emerging technique in which a short-pulsed laser beam 

penetrates diffusively into a tissue sample [25].  Transient acoustic waves, or photoacoustic waves, 

arise from thermoelastic expansion resulting from a transient temperature rise (on the order of 

10mK), and are then measured around the sample by US transducers.  The acquired photoacoustic 

waves are used to reconstruct, at ultrasound resolution, the optical absorption distribution, which 

reveals optical contrast that is directly related to the microvessel density of tumors or tumor 

angiogenesis [7]. If two optical wavelengths are used, photoacoustic waves can be used to 

reconstruct the distribution of tumor hypoxia, which is an important indicator of tumor metabolism 

and therapeutic response.  These functional parameters are critical in the initial diagnosis of a 

tumor and the assessment of tumor response to treatment.  Due to intense light scattering in tissue, 

to date, pure optical methods require direct contact with the ovary, which necessitates an invasive 
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access procedure [26]. Photoacoustic techniques minimize the deleterious effects of intense light 

scattering by measuring ultrasonic waves generated from the ovarian tissue; they, therefore, have 

great potential to non-invasively reveal tumor functional information.  The penetration depth of 

PAT is scalable with ultrasound frequency.  In the diagnostic frequency range of 3 to 8 MHz, the 

penetration depth in tissue can reach 4-5 cm using NIR light [27], which is comparable with the 

penetration depth used in conventional transvaginal US. Several studies have proven that 

photoacoustic imaging could be an effective tool for the early diagnosis of ovarian cancer [28]. 
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2 Ultrasound Guided Diffuse Optical 

Tomography 

2.1 Diffuse Optical Tomography 

Diffuse optical tomography (DOT) is a noninvasive technique which uses near-infrared (NIR) light 

to image optical properties of tissue.  Due to the low water absorption in the NIR spectrum, the 

light can penetrate several centimeters inside soft tissue, i.e., breast and brain.  Reflected or 

transmitted light measured at the tissue surface is used to reconstruct tomographic images[1][2]. 

DOT has demonstrated huge potential in cancer diagnosis and treatment monitoring by mapping 

hemoglobin concentration, which is related to vasculature content and tumor angiogenesis.  It is 

possible to measure oxygenated, deoxygenated and total hemoglobin concentrations using 

multiple wavelengths. It also provides information regarding oxygen saturation, lipid and water 

concentration. These measurements could be effectively used to diagnose cancers vs. benign 

lesions and monitor treatment response because malignant tumors typically have higher 

hemoglobin content as compared to benign lesions and the hemoglobin changes differ between 

treatment responders and non-responders [3]–[7]. 

Diffuse optical tomography can be classified into three categories based on the type of source 

signal. They are: time domain, frequency domain, and direct current diffuse optical tomography 

[8]. Time domain DOT uses short light pulses and records the broadened reemitted signal. 

Amplitude modulated light is used as a source in frequency domain DOT and reemitted signal has 

reduced modulation depth. Carrier signal usually has several hundreds of MHz frequency for 

frequency domain DOT. Direct current or continuous wave DOT uses a fixed amplitude light 

source, which may be modulated with low-frequency carriers to improve noise performance. Time 



12 
 

domain DOT provides the most information; however, it requires an expensive detector and longer 

data acquisition time. Continuous wave DOT is low-cost but provides less information compared 

to the other two categories. Frequency domain DOT has optimum cost and performance in 

providing useful information, which makes it the popular choice among researchers who are 

working in the DOT domain.  

DOT suffers from intensive light scattering inside the tissue and scattering causes uncertainty in 

reconstructed target location and inaccuracy of target quantification.  These problems can be 

largely overcome by using other imaging techniques to guide the DOT for localization and 

reconstruction. US, Mammography, MRI guided DOT [7][9][10] have been investigated for 

various applications with a promising outcome. US-guided DOT has been developed by our group, 

and its utility in cancer diagnosis and treatment monitoring has demonstrated from several clinical 

studies [7][11]. 

2.2 Ultrasound-guided DOT 

In the US-guided DOT approach, co-registered US images are captured and size and depth 

information of the tumor has to be incorporated in DOT reconstruction as a Region of Interest 

(ROI). A dual-zone mesh image reconstruction [12] is used to segment the ROI and background 

region with finer and coarse mesh sizes respectively.  This scheme effectively reduces the total 

number of voxels with unknown optical absorption for imaging reconstruction, which is an 

underdetermined problem.  Additionally, the total absorption of each voxel is reconstructed and 

divided by the voxel size to provide accurate absorption distributions.  Since lesion absorption is 

higher than background in general, the total absorption, which is the product of voxel size and 

lesion absorption, of a lesion in a smaller voxel is about the same scale of total absorption of 
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background in a larger voxel.  Therefore, the inversion is well-conditioned and converges in fewer 

iterations. 

Absorption map of each wavelength was reconstructed using the dual-mesh approach with lesion 

parameters obtained from the co-registered US.  Because the spatial resolution of diffused light is 

weaker than that of US, the ROI is chosen to be at least two to three times larger than that seen by 

using US in x-y dimensions.   In addition, because the depth localization of diffused light is very 

poor, a tighter ROI in the depth dimension is set using the co-registered US.  The weight matrix 

was computed using the fitted optical properties of each patient’s normal contralateral breast.  The 

scattered field Usd measured from the lesion area was related to the internal absorption coefficients 

∆µa using the following equation: 

[𝑈𝑠𝑑]𝑚×1 = [𝑊𝐿 ,𝑊𝐵]𝑚×𝑁[𝑀𝐿 ,𝑀𝐵]𝑇
𝑁×1

 

Where 𝑚 = 𝑠 × 𝑑 the total number of source-detector pairs, WL, WB are the weight matrix for 

lesion and background regions respectively. ML and MB are the total absorption of the lesion and 

background respectively; can be expressed using the following two equations: 

[𝑀𝐿] = [∫ ∆𝜇𝑎
𝜆(𝑟′)𝑑3𝑟′,

1𝐿

…… . ∫ ∆𝜇𝑎
𝜆(𝑟′)𝑑3𝑟′,

𝑁𝐿

] 

And 

[𝑀𝐵] = [ ∫ ∆𝜇𝑎
𝜆(𝑟′)𝑑3𝑟′,

1𝐵

…… . ∫ ∆𝜇𝑎
𝜆(𝑟′)𝑑3𝑟′,

𝑁𝐵

] 
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To obtain the unknown absorption information, the conjugate gradient method was used to solve 

the inverse problem formulated as minimize ‖𝑈𝑠𝑑 − 𝑊𝑀‖2, where ‖. ‖ is the Euclidean norm. 

Since this is an ill-posed problem due to the limited source and detection pairs and correlated 

diffused scattering field, the dual mesh technique utilizes the tumor location and size information 

extracted from co-registered  US images for reconstruction to partially resolve this problem [12]. 

In our US-guided DOT, we are using four wavelengths that gives us the ability to estimate 

oxygenated (oxyHb) and deoxygeneated hemoglobin (deoxyHb) in the tumor region. We can 

estimate these two parameters for each voxels using the following equations: 

[
 
 
 
 𝜇𝑎

𝜆1(𝑟′)

𝜇𝑎
𝜆2(𝑟′)

𝜇𝑎
𝜆3(𝑟′)

𝜇𝑎
𝜆4(𝑟′)]

 
 
 
 

=

[
 
 
 
 
 𝜀𝐻𝑏

𝜆1 𝜀𝐻𝑏𝑂2
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𝑜𝑥𝑦𝐻𝑏(𝑟′)
] 

[
𝑑𝑒𝑜𝑥𝑦𝐻𝑏(𝑟′)

𝑜𝑥𝑦𝐻𝑏(𝑟′)
] =

[
 
 
 
 
 𝜀𝐻𝑏

𝜆1 𝜀𝐻𝑏𝑂2

𝜆1

𝜀𝐻𝑏
𝜆2 𝜀𝐻𝑏𝑂2

𝜆2

𝜀𝐻𝑏
𝜆3 𝜀𝐻𝑏𝑂2

𝜆3

𝜀𝐻𝑏
𝜆4 𝜀𝐻𝑏𝑂2

𝜆4
]
 
 
 
 
 
−1

×

[
 
 
 
 𝜇𝑎

𝜆1(𝑟′)

𝜇𝑎
𝜆2(𝑟′)

𝜇𝑎
𝜆3(𝑟′)

𝜇𝑎
𝜆4(𝑟′)]

 
 
 
 

 

Where, 𝜇𝑎
𝜆𝑥(𝑟′) are absorption coefficients obtained at imaging voxel 𝑟′ for a particular 

wavelength (x=730,780,800,830 nm). 𝜀𝑦
𝜆𝑥  (y=Hb or HbO2) is wavelength dependent extinction co-

efficient. The total hemoglobin concentration and oxygen saturation can be estimated using the 

following two equations: 

𝑡𝑜𝑡𝑎𝑙𝐻𝑏(𝑟′) = 𝑑𝑒𝑜𝑥𝑦𝐻𝑏(𝑟′) + 𝑜𝑥𝑦𝐻𝑏(𝑟′) 
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𝑌% =
𝑜𝑥𝑦𝐻𝑏(𝑟′)

𝑡𝑜𝑡𝑎𝑙𝐻𝑏(𝑟′)
 

2.3 Compact and Robust US-guided DOT System Design 

Our group is working on ultrasound guided frequency domain diffused optical tomography for 

over two decades. Chen et al. reported the first generation of ultrasound guided DOT in 2001 [13]. 

This system used only two wavelengths as light sources. It has 12 sources and 8 detectors and 

guided by a 2-D ultrasound system, developed in the lab. This system provides promising results 

with phantom study thus motivated the lab to develop the next version of the US-DOT system. 

In the second version of the US-DOT system [14], the lab made ultrasound system was replaced 

by a commercial ultrasound system, which is readily available in the examination site. A combined 

probe holder was designed to integrate the ultrasound guidance for optical imaging. This version 

was reported in 2006 and it has the option for selecting one of the three available modulation 

frequencies.  This version used three different wavelengths for light delivery to improve the 

estimation of oxygenated hemoglobin information. This system was used in a clinical study and 

successfully employed for diagnosing benign and malignant breast tumors. A software developed 

using LabView programming controlled this 2nd generation DOT system. 

Ten years after the second generation DOT, a new version of the DOT system was developed to 

improve the performance of the previous generation [11]. Since no obvious advantage was not 

achieved with the option with multiple modulation frequencies, in this version, only one 

modulation frequency (140 MHz) was used. To further improve the performance in oxygen 

saturation estimation, this system was equipped with a source of four different wavelengths. C++ 

based custom made software was used to control the data acquisition; however, data processing 
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option was not available in the custom software. A customized data acquisition board was also 

designed in the lab to provide better flexibility during the experiment. This system was used to 

collect almost 300 patient data from three different hospitals in Connecticut, USA. This data 

provides an effective means to evaluate the DOT system performance for neoadjuvant 

chemotherapy monitoring. 

 

Figure 2. 1 Block diagram of the ultrasound-guided DOT system. The DOT system consists of source and detection 

subsystems controlled by a laptop through a FPGA. 

To make the US-DOT technology suitable in the clinical settings, a new version of the US-DOT 

system was required to provide better user-friendliness and robust data acquisition ability. In 2018, 

we reported this latest version of the US-DOT system, which was intended to design for clinician 

[15]. In this prototype, four laser diodes of wavelengths 730, 785, 808 and 830 nm were 

sequentially switched by 4 x 1 and 1 x 9 optical switches to 9 source positions on a hand-held 

probe. Fourteen photomultiplier tubes (PMT) receive the reflected light from each source location 

simultaneously. After signal conditioning, the data is saved on the hard disk through the 
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customized data acquisition board. The entire data acquisition requires about 3 to 4 seconds.   The 

sources and detectors were placed between 3.52 and 8.5 cm in the distance on the probe thus 

provides us a reliable signal up to 5 cm depth.  The system used heterodyne detection with the 

laser diodes modulated at 140.02 MHz, and the detected signals were mixed with the 140 MHz 

reference signal to separate the 20 kHz signal for optical image reconstruction. The output of the 

mixer at each channel was further amplified and filtered at 20 KHz before passing to analog to 

digital converter (ADC).   An instrument case satisfying the medical safety standards was custom-

designed and manufactured by Nexus LLC.  Figure 2.1 shows the diagram of the system and Figure 

2.2 shows the clinical set-up at the Radiology Breast Imaging Clinics of Washington University 

School of Medicine in St Louis. 

 

Figure 2. 2  Photograph of the US-guided DOT system used with a commercial US system.  The system is used at 

the Radiology Department of Breast Imaging Clinics of Washington University School of Medicine in St Louis. 
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2.3.1 Electronic Component Design 

Combined Mixer, Amplifier, and Filter 

A custom-made detection circuit has been designed and built to miniaturize the detection 

subsystem of the fourth generation DOT system.  As this system has high frequencies (140MHz 

and 140.02 MHz), the design needs to be robust to minimize the coherence noise at 20 kHz.  The 

primary challenge of designing this combined board was to reduce the multi-frequency 

interferences. A three-layered printed circuit board (PCB) has been designed to meet this 

challenge. Inserting a ground layer between the top and bottom layer reduced the interference. All 

traces of a layer (top or bottom) carrier signal with a single frequency to provide better interference 

immunity. Grounded (GND) through holes has been placed on both sides of the signal carrying 

traces to provide better signal confinement. All these improvements result in a combined frequency 

mixer, second-stage amplifier, and the bandpass filter in one miniaturized board to reduce the size 

of the detection channel. A gain-adjustable second stage amplifier has been designed to provide 

flexibility in controlling the dynamic range of the detection system. 

 

Figure 2. 3 Combined mixer, amplifier and filter was used in each detector channel 
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This combined board replaced three separate components (mixer, amplifier, and filter) of the 

detection channel of the 3rd generation DOT system. While the three components in the previous 

system occupied 22.5 cm X 3.0 cm X 5.5 cm in total, this combined board occupies only 10 cm X 

3 cm X 5.5 cm. Therefore, 2887.5 cm3 volume was reduced using this new combined board design 

for 14 detection channels. The lab designed filter also reduced the cost by $200 per channel. This 

new combined board design not only reduces the cost and size, but it also provides comparable 

noise performance. Noise performance has been measured after inserting this combined box for 

several days with different combinations of the system state. Overall, recorded single-channel 

noise was 7±8 mV, which is the same as the 3rd generation DOT system. 

 

Figure 2. 4 Laser diode current driver for DOT source 

Laser Diode Current Driver 

The DOT system has two main blocks, source and detection subsystems. In our earlier prototypes, 

we used four units of Thorlab’s DC current driver boards and four units of temperature-controlled 
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laser diode mounts with an AC modulation port to drive four laser diodes. These units were bulky 

and expensive.  A custom-made laser diode driver board was designed to reduce the volume and 

cost of these components.  This board can accommodate up to six laser diodes of type A or C with 

stable feedback control of DC current for each laser diode. Six built-in bias-tees, each with a radio 

frequency (RF) input provides AC modulation to each laser diode output.  The outputs of the laser 

diodes were multiplexed via two optical switches (piezosystem jena) to 9 different positions on 

the hand-held probe.  Four miniature pigtailed laser diodes with a thermal block from OZ Optics 

(LDPC-T3) were used as sources, and the temperature of the diodes was controlled using four 

units of control modules from Thorlabs (TCM1000T TEC). 

PMT Gain Controller 

In this prototype, we have used PMTs for detecting reemitted signals for their superior sensitivity 

and noise performance. Each PMT requires different gains to provide the same signal amplification 

in all receiving channels. In the older versions, a potentiometer was used for each PMT to provide 

different voltage to obtain the same signal output at each channel. This method makes data 

acquisition slow and reduces the user-friendliness of the system. This limitation was eliminated by 

designing a PMT gain controller board. This gain controller was designed using a 16-channel 

digital to analog converter (DAC), which accepts a digital signal from the control software through 

the custom designed data acquisition board, converted that signal into an analog voltage, and 

provides desired gains to each PMT.  

2.3.2 Light Delivery and Probe Design 

The ultrasound probe was located in the center of the probe to localize the lesion. In order to use 

PMT detectors in their maximum dynamic range and prevent the saturation when the source and 
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detection positions are very close, the source-detector distances have been optimized by locating 

nine sources on one side of the probe and the 14 detectors on the opposite side of the probe. Figure 

2.2 insert shows the close-up view of the hand-held probe.  A US transducer can be easily inserted 

into the combined probe holder before coregistered imaging and then unplugged after imaging. 

This handheld probe was designed and manufactured by an external contractor named Nexus LLC. 

 

Figure 2. 5 PMT gain controller provides different gains to each PMT through control software 

2.3.3 Data Acquisition Board 

Same as the 3rd generation DOT system, we have used a custom-made Field Programmable Gate 

Array (FPGA) based DAQ board to reduce the DAQ size and improve its robustness. This 

miniaturized DAQ can accommodate up to 16 detection channels with two 8-channel ADC chips. 

In addition to data acquisition, this board is used for controlling the optical switches, laser diodes, 

and PMT gains.  A laptop PC is used to communicate with the FPGA via a USB port. This 

customized data acquisition board was designed for the third generation DOT system by an 

external contractor. For the fourth generation system, it’s FPGA firmware has been modified to 

add the control of laser diode diver and PMT gain control. 
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2.3.4 PC Based Control Software 

Improvements in robustness and user-friendliness of the software for DOT are among the most 

critical steps toward extensive use in clinics.  A new graphical user interface was developed using 

C++ with three modules.  The first module is DAQ as discussed above.  The second module 

consists of an automated system calibration [16]. The third module is for imaging reconstruction 

which incorporates our recently developed outlier removal and data selection method before 

reconstruction to eliminate the need for time-consuming data preprocessing [17].  It also includes 

a semi-automated method to select the region of interest (ROI) from co-registered ultrasound 

images and then uses the ROI for DOT image reconstruction [18]. This PC based control software 

was updated with the help of other lab members and reported in ref. [15]. 

 
Figure 2. 6 Custom made 16 channel data acquisition board 
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2.3.5 System Evaluation 

Several phantom studies have been performed to evaluate the performance of the newly developed 

system. These phantom studies were performed with the help of other lab members and reported 

in ref. [15]. After obtaining satisfactory performance, the system was moved to Washington 

University, School of Medicine for neoadjuvant chemotherapy monitoring. In the next two 

sections, system evaluation methods and results have been provided in details. 

Phantom Study 

Multiple phantom experiments have been designed to evaluate the performance of the system. 

Phantoms were placed in the Intralipid solution with an absorption coefficient of 0.015-0.02 cm-1 

and reduced scattering coefficient of 7-8 cm-1. In the first sets of experiments, the sensitivity of the 

system to differentiating high contrast and low contrast phantoms has been tested. Two sets of 

solid phantoms with an absorption coefficient of 0.11 and 0.23 cm-1 and reduced scattering 

coefficient the same as the Intralipid medium measured at 780 nm have been used.  These 

phantoms of three different sizes (diameters of 1, 2, 3 cm) located at different depths include two 

small (1 cm) high and low contrast balls (SHC, SLC), two medium (2 cm) high and low contrast 

balls (MHC, MLC), and two large (3 cm) high and low contrast balls (LHC, LLC).   

Figure 2.7 shows an example of reconstructed images of an SHC ball located at the 1.5  cm depth 

inside the Intralipid solution. The reconstructed maximum absorption coefficients of four 

wavelengths (730, 785, 808 and 830 nm) are 0.233, 0.238, 0.216, 0.211 respectively. 

Figure 2.8 shows the reconstruction accuracy (in %) of the maximum reconstructed absorption 

coefficient of six solid high-contrast and low-contrast phantoms located at different depths.  The 
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absorption coefficient at the top depths of the phantoms are shown in the Figure.  For high contrast 

phantoms, our DOT system is accurate (89.4%) in the depth range of 1 to 2 cm for 1 cm diameter 

phantom (89.4%, SHC), and 1 to 2.5 cm for 2 cm (97.2%) and 3 cm (87.6%) diameter phantoms 

(MHC, LHC) .  For low contrast phantoms, DOT system is accurate in the depth range of 0.5 cm 

to 2 cm for 1 cm diameter phantom (73%), (SLC), and 0.5 to 2.5 cm for 2 cm (69.5%) and 3 cm 

(72.1%) diameter phantoms (MLC, LLC).  For high contrast phantoms located too close to the 

surface for less than 1 cm, the accuracy of reconstruction is lower (64.4%) due to lacking central 

sources in the combined probe.   

 

Figure 2. 7 Reconstruction accuracy (%) for six different phantoms located at different depths (depth of the top 

phantom positions are marked in the figure).  
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Figure 2. 8 Target absorption maps (730nm, 785nm, 808nm, 830nm) of a SHC phantom located at 1.5 cm depth.  For each absorption map, 7 slices from 0.5 cm 

to 3.5 cm depth with  0.5 cm increment  have reconstructed.  The spatial dimensions of each slice are 9 cm by 9 cm.  Color bar is the absorption coefficient in the 

unit of cm-1. 
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To further evaluate the stability of the system over time, a series of experiments of multiple 

phantoms were measured at different days.  One example of the stability result is presented in 

Figure 2.9.  It shows the maximum reconstructed absorption coefficients of the 1 cm diameter 

high-contrast target measured at four optical wavelengths over time.  The target was located at 1.0 

cm in depth (target surface).  The experiments have been repeated for five days and one 

measurement per day was performed.  The average error for four wavelengths over five days was 

5.4%, which is negligible considering the measurement errors of locating the targets precisely 

inside the Intralipid solution at the desired depths. 

 

Figure 2. 9 Maximum reconstructed absorption coefficient of the small high-contrast phantom located at 1.0 cm depth 

(phantom top position) and imaged on different dates. The reconstructed absorption coefficients at 730,785, 808 and 

830 nm are presented. The black dashed line represents the calibrated (true) absorption of the phantom. 

Next, to evaluate the sensitivity of the system to oxygenated and deoxygenated hemoglobin, a 

hollow glass bulb filled with oxygenated and deoxygenated hemoglobin was used as a blood 

phantom.  Hemoglobin solution was purchased from Instrumentation Laboratory (Multi-4, Level 

2, Instrumentation Laboratory, MA) as the oxy-Hb sample. The Multi-4, Level 2 product 
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specification provided by Instrumentation Laboratory is total hemoglobin 139 g/L, with HbO2 

percentage of approximately 97%.  The de-oxygenated hemoglobin (Hb) solution is prepared by 

adding Sodium dithionite (Na2S2O4) solution into the diluted oxygenated hemoglobin (HbO2). 

0.05 g Sodium dithionite is dissolved in 0.5 mL, phosphate buffer saline (PBS) solution (with 10 

µL mixed solution corresponding to 1 mg Sodium dithionite) with a pH of 7.4.  We then add the 

Sodium dithionite solution into 3.5 mL HbO2 solution to prepare an Hb solution. Solution 

preparation and mixing were carried out on top of dry ice to keep the temperature at around 0 °C 

and slow down the speed of de-oxygenated Hb reacting with O2. After sealing the glass ball, we 

incubated it at around 37 °C for 6 minutes for the Sodium dithionite to be effective. We calibrated 

the de-oxygenating process with a standard UV-Vis spectrometer (Varian Cary®, Agilent, US).  

For each ball and Hb solution, we finished our DOT measurements in less than 10 minutes. Figure 

2.10 presents the experimental setup for the hemoglobin phantom experiments. 

                

Figure 2. 10 (a) Glass ball (0.9 cm radius) filled with HbO2 solution and connected to holding fibers. (b) Sketch of 

the experimental setup  
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The images were reconstructed from measured data and the maximum reconstructed µa were 

compared with the calibrated values with the spectrometer. We used the maximum reconstructed 

µa to compute SO2. We analyzed the DOT-measured SO2 of the hemoglobin target at different 

calibrated SO2 values (~5-10% and ~97%) and Figure 2.11 shows the calculated spectrum from 

our US-guided DOT system which follows the literature data [18]. The results of the DOT system 

with four wavelengths are comparable with the data obtained from the spectrometer.  

  

Figure 2. 11 Oxygenated and deoxygenated hemoglobin spectrum; reconstructed absorption coefficients using the 

DOT system. 

To evaluate the performance of the system sensitivity to oxygenated and deoxygenated 

hemoglobin over time, five samples of oxygenated hemoglobin and five samples of deoxygenated 
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hemoglobin were prepared separately on different dates and each sample was measured with the 

spectrometer and then imaged with the ultrasound-guided DOT system.  

Figure 2.12 shows the comparison of these five oxygenated and deoxygenated samples of 

calibrated value with the spectrometer and calculated value with the DOT system.  It can be seen 

that the DOT measurements follow the spectrometer results closely.   

 

Figure 2. 12 Oxygenated and deoxygenated hemoglobin calibrated with the spectrometer and measured with the 

DOT system. 

Clinical Results 

The system is currently being used in patients undergoing neoadjuvant treatment at Washington 

University in St Louis. The study protocol was approved by the institutional review board and was 

HIPPA compliant.  Written informed consent was obtained from patients.  The final pathologic 

response was evaluated by the Miller-Payne system.   In the Miller-Payne (MP) system, the patient 

pathologic response is divided into five grades based on a comparison of tumor cellularity between 

pre-neoadjuvant core biopsy and definitive surgical specimen.  MP 1 and 2 are considered non-
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responders, MP 3 judged to be partial responders, MP 4 regarded as the almost complete 

pathological response (pCR), and MP 5 deemed a complete pathological response (pCR).     

 

Figure 2. 13 pCR of a triple receptor negative breast cancer of a 51-year-old woman with a high grade invasive ductal 

carcinoma treated with carboplatin and docetaxel every three weeks for 6 cycles.  Left panel: US images obtained at 

pretreatment, at the end of cycle 1 (EOC1), 2 (EOC2), 3 (EOC3), and before surgery.  On US, the tumor manifest as 

an oval mass with well-defined margins, measuring 2.02 cm maximally before treatment, decreased mildly to 1.49 cm 

at the completion of cycle 1, but was unchanged in size from the end of cycle 2 to before surgery.  Right panel: tHb 

concentration maps obtained at the corresponding time points.  Each map shows six sub-images marked as slice 1 to 
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6 and each sub-image shows spatial x and y distribution (9 cm by 9 cm) of tHb concentration reconstructed from 0.5 

cm to 3.0 cm depth range from the skin surface. The spacing between the sub-images in depth is 0.5 cm.  The color 

bar is tHb in micromoles per liter.  The tHb reduced from 83.3 mol/L measured before treatment to 69.0, 55.3, 37.9 

mol/L measured before completion of cycle 1, cycle 2, and cycle 3. A reduction of 17.2%, 33.6%, 54.5% occurred at 

the end of cycle 1, 2 and 3, respectively.   The hemoglobin level remains unchanged to the end of the treatment before 

surgery.  This patient had a complete pathologic response with no residual tumor, Miller-Payne grade 5. 

An example of conventional US and US-guided DOT generated Hb maps acquired throughout 

neoadjuvant treatment in a 51-year-old woman with a pCR is shown in Figure 2.13.  The patient 

presented with a high grade (Nottingham Histologic Score 9/9) triple-receptor-negative, (i.e., ER-

,PR-,Her2Neu-) invasive ductal carcinoma and was treated with carboplatin and docetaxel every 

three weeks for six cycles.  US and US-guided NIR DOT was obtained prior to treatment, at the 

completion of cycles 1, 2, 3 and before surgery.  US image showed a substantial decrease from 

baseline to the end of cycle 1, with more subtle size reduction during the remainder of neoadjuvant 

treatment. US-guided NIR DOT shows a progressive decline in total hemoglobin (tHb) 

concentration during the first three cycles, which correlated with a complete pathologic response 

of  MP grade of 5.   

2.4 Algorithm Improvement for US-guided Diffuse Optical 

Tomography 

In the US-guided DOT approach, co-registered US images are captured and measurements of size 

and depth are then incorporated in DOT reconstruction as a Region of Interest (ROI). A dual-zone 

mesh image reconstruction is used to segment the ROI and background region with finer and 

coarse mesh sizes.  This scheme effectively reduces the total number of voxels with unknown 

optical absorption for imaging reconstruction.  Additionally, total absorption of each voxel is 

reconstructed and the total is then divided by the voxel size to provide absorption distributions.   

Because lesion absorption is higher than background in general, the total absorption, which is the 

product of voxel size and lesion absorption, of a lesion in a smaller voxel is about the same scale 
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of total absorption of background in a larger voxel.  Therefore, the inversion is well-conditioned 

and converges in fewer iterations. Thus, US identified ROI is critical to guide dual-zone mesh 

DOT reconstruction.   

Extraction of tumor size and location from US images has been done manually, which requires 

experienced users to make these measurements and slows down the DOT reconstruction.  Similar 

to other medical imaging techniques, automatic US image segmentation is a challenging task, 

because US image contrast is low and boundaries are often not clear due to speckle.  Researchers 

have explored several methods to obtain a reliable segmentation from medical images, which 

includes operator assisted region growing techniques [19], rule-based segmentation where some 

known image primitives are used for an unsupervised segmentation [20], atlas-based image 

segmentation where a known structure is searched in the image for segmentation [21], and neural 

network and c-mean clustering which generate statistical models to classify pixels into different 

segments. In this manuscript, we introduce a simple adaptive threshold based method [22], which 

is fast on data processing and easy for implementation; moreover, it also provides comparable 

accuracy for DOT reconstruction as compared with manual processing.  This method utilizes 

image histogram to obtain an adaptive threshold for each input image. For some US images, the 

posterior shadow of a tumor extends to the chest wall and make the segmentation difficult. To 

avoid this problem, Hough Transform based line detection is used to determine the chest wall 

location and use it as the deep boundary of the tumor.   

20 patients (10 benign and 10 malignant cases) are used to evaluate the performance of the 

segmentation method.  Reconstructed absorption images are compared with manual processing 

method and similar results are obtained.  To the best of our knowledge, this is the first report of an 
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automated segmentation method of using a US image to guide DOT image reconstruction. The 

method can be implemented into MIR or x-ray guided DOT imaging reconstruction. 

2.4.1 Extract Tumor Size and Location 

To automatically detected lesion size and location for DOT reconstruction, an adaptive threshold 

based segmentation method is used. For some cases, the posterior shadow of the tumor is extended 

to the chest wall in the US images. In those cases, it is difficult to determine the tumor size because 

the deeper boundary of the tumor cannot be accurately determined.  Under these circumstances, 

locations of the chest wall are determined and used as estimates of the deeper boundary of the 

tumor. To determine the chest wall, Hough Transform [23] is used together with an edge detection 

method. 
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Figure 2. 14 (a) A typical US image captured in co-registration mode (b) Cropped US image  

Pre-processing 

A typical co-registered US image acquired by an image capture card is given in Figure 2.14 (a).  

For reference, the horizontal axis is marked as z-axis and the vertical axis is marked as the x-axis. 

Measurement in the y-axis is considered the same as the x-axis, assumed that lesions are symmetric 
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in x and y-axis. Since the pixel intensity is the critical information needed in the segmentation 

algorithm, the US grayscale image is automatically cropped first from the captured image using 

Hough Transform and Sobel [24] edge detection method. Figure 2.14(b) shows the cropped US 

image. 

 

Figure 2. 15 Depth markers detected on US image 

Depth marker detection is the next step before applying segmentation procedure because the 

markers vary with depth range, which depends on the user selection from the front panel of US 

machine.  To determine the depth markers, a binary image is generated using a fixed pixel intensity 

of 150 out of 256 gray scale levels as the threshold. Since the depth markers are mainly white, this 

pixel intensity will help to separate them from the background. Then all the white regions consist 

of 3 to 50 pixels and located outside of the right border of the US image are marked as depth 

markers. This pixel range is obtained by examining the available US images collected from 

different manufacturers. This depth marker detection procedure detects horizontal ticks along with 

numbers which makes it suitable to use for images collected from a wide range of US machines. 
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Figure 2.15 shows the captured image with automatically detected depth markers. When positions 

of those depth markers are known, the difference between two markers in x-axis provides the 

number of pixels per centimeter, which are then used to convert the measured tumor size and depth 

into centimeter. 

Adaptive Threshold-based Segmentation 

To extract the required information from the US image, the first step is to segment the lesion from 

the rest of the image.   Then the radius and center of the lesion can be measured from the segmented 

lesion. A single threshold point is used to separate the two zones, i.e., lesion and background. This 

threshold point is determined adaptively for each input images.  Because US images have speckle 

noise, some complex segmentation techniques, such as fuzzy c-mean clustering, active contour 

model [25] do not provide any improvement while demanding computation resources due to 

complex processing.  Moreover, DOT does not require precise segmented information. Thus, 

instead of using a complex segmentation algorithm, threshold-based segmentation is used here to 

obtain tumor information. 

Lesions in breast US images usually appear as hypoechoic masses, which separate them from the 

background tissue. To segment a hypoechoic mass, a threshold point is set to separate the tumor 

from the rest of the image. US images usually have very low contrast. Histogram equalization is 

applied on the grey scale image. Histogram equalization stretches the input histogram over the 

available range which is 0 to 255 in greyscale and thus increases the contrast. Then a simple 

procedure is followed to detect the threshold point adaptively. Since the intensity varies 

significantly between different images, it is the best to use an adaptive threshold point for every 

input images. 
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This adaptive threshold point detection procedure starts with obtaining the histogram of the US 

image. Figure 2.16 (a) shows the histogram of an input image. The histogram shows a peak and a 

hump with a notch between them as indicated in the figure. This histogram shape is obtained from 

all US images after histogram equalization because of the presence of a significant amount of black 

(provides the peak) and grey pixels (the hump) in a US image. This notch shows the threshold for 

separating the grey background from the black tumor. To detect this point automatically, the slope 

of the histogram envelope is calculated. Pixel intensity of the point when the sign of the slope has 

changed is considered as the threshold value. In the next step, this threshold value is used to 

generate a binary image. 

Threshold

Inserted Seed

(a) (b)
 

Figure 2. 16 (a) Histogram of a US image; threshold is marked with an arrow (b) Inserted seed on the cropped image 

by user 

After obtaining the threshold for the US image, a binary image is generated where the tumor region 

is marked as black and background are white. However, the tumor is not the only black zone in 

the binary image. To remove the unwanted black regions user needs to insert a seed in the 

approximate tumor location by clicking the tumor in US image as shown in Figure 2.16 (b). If 
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there exist multiple tumors, then multiple seeds are required to be inserted in the probable 

locations. Any region that is not containing the seed is discarded. Finally, only the tumor region is 

survived. Then the MATLAB function ‘regionprop' is used to measure the tumor center and radius 

automatically. This information is then passed to the optical reconstruction code. The flow diagram 

in fig. 2.17 shows the steps for the entire procedure. 
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Figure 2. 17  Flow diagram of the tumor boundary detection procedures 

2.4.2 Chest Wall Detection Using Hough Transform 

Detection of chest wall depth is not essential to obtain tumor location and size. However, for some 

cases when the posterior shadow extends to the bottom of the US image, it is difficult to define the 

bottom of the tumor. In such cases, chest wall location is considered as the bottom of the tumor. 

We defined chest wall depth as the distance from the skin to the top layer of chest wall muscle. An 

automated chest wall depth detection method was developed and applied to the co-registered US 

images. Detection of the chest wall is based on the fact that chest wall muscles appear as line 

structures in US images (see Figure 2.18 (a)) [26]. Therefore, line detection algorithms can be used 

for automatic detection. We chose Hough Transform as a line detection method because it is robust 

and straightforward when combined with an edge detection method. Here, Canny edge detection 

[27] is used as an edge detection method. The binary image generated by the Canny edge detection 

is shown in Figure 2.18 (b).  

It is clear from Figure 2.18 (b) that if Hough transform is applied to the edge detected image 

without any restriction, it will detect several unnecessary structures. For example, due to 
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subcutaneous fat and breast tissue interfaces, some linear structures appear at the top of the US 

image. There are other linear structures also visible in the image. Hough transform detects all these 

linear structures. To avoid these unnecessary line structures, we modeled chest as a linear structure 

which is mainly horizontal with a small slope and it should appear at the lower half of the image. 

After applying Hough transform and restrictions mentioned above, survived linear structures are 

marked in green lines as shown in Figure 2.18 (c). Finally, the mean value of all the points of these 

detected lines is considered as the chest wall depth. A flow diagram of the entire procedure is given 

in Figure 2.19.  

(a) (b) (c)
Chest wall

 

Figure 2. 18  (a) Breast US image with chest wall marked with arrows.  (b) Edge detected binary image from (a).   

(c) Detected chest wall location on the original input image. The yellow and red stars indicate the separation points 

between line pieces. Green lines indicate the detected linear structures after restriction applying. 
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Figure 2. 19 Flow diagram of the chest wall detection method 

2.4.3 Results 

The proposed US segmentation method is evaluated in two steps. First, the US segmented 

reconstruction results are obtained and deviation is calculated against manually segmented 

reconstruction results.  Second, both automated and manually segmented results are used to 

generate absorption maps and the corresponding hemoglobin concentration maps and compared. 
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Validation of US Segmentation 

To evaluate the performance of the US segmentation algorithm, tumor boundary for all 20 cases 

were delineated by an experienced US image examiner. These readings are taken as standard in 

this study. Then the experimental results were compared with those manual measurements.  

Two input images with manually marked tumor boundaries are presented in Figure 2.20 (a) and 

2.23(a). In Figure 2.20 (b) and 2.23(b), segmented images using the proposed method are 

presented. It is clear from these figures that the segmented tumor by the proposed algorithm is 

comparable to the manual measurement. To obtain a quantitative evaluation of the US 

segmentation procedure, US images from 10 benign and 10 malignant cases are collected. The 

center coordinate of the tumor and radius in both axes are measured manually. The same 

information is also collected from the proposed segmentation method. The deviation is calculated 

between the two methods for 20 images. Comparison of the average measurements from these 20 

images is given in Table 2.1. From the table, we found that manual measurements are slightly 

smaller than the proposed measurement. However, deviation from different measurements never 

exceeds 0.25 cm, which is the resolution of the optical reconstruction. So, optical reconstruction 

will not be affected by this small deviation. 
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Figure 2. 20 (a) US image with manual markers to measure sizes of the tumor.   The measurements were 3.1cm in 

spatial direction x and 1.6 cm in depth direction z using manual measurements. (b) Segmented US image using the 

semi-automated procedure and the measurements were 3.3 cm in spatial x direction and 1.6 cm in depth direction.  

Table 2. 1 Comparison between manually and semi-automatic extracted information from US images 

  Manual 

Segmentation 

(cm) 

Proposed 

Segmentation 

(cm) 

Deviation 

=Manual-proposed 

(cm) 

  z center position 1.49 1.56 -0.07 

Benign  x center position 0.14 0.19 -0.02 

Cases z-radius 0.95 0.97 -0.1 

 x-radius 1.55 1.65 -0.05 

  z center position 1.9 1.98 -0.07 

Malignant x center position 0.13 0.15 -0.03 

Cases z-radius 1.15 0.99 -0.06 

 x-radius 1.34 1.4 -0.03 
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To evaluate the repeatability of the proposed US segmentation algorithm, we have measured four 

parameters (lesion depth, z-radius, x-radius, x-center) from three different sets of US images and 

reconstructed the corresponding total hemoglobin maps.  For each case, these images were 

collected from the same lesion location; however, some deviation was expected because the 

operator intended to hold the probe still for each data set and may move little between different 

data sets to obtain best US images. For each case, mean and standard deviation are given in Table 

2.2.  This deviation for depth is less than 1.5 mm and for other three spatial measurements is 

smaller than 0.25 cm (image grid size) and thus does not have any significant effect on optical 

reconstruction. As shown from the table, the maximum deviation obtained from benign cases is 

4.45 µM and 2.06 µM for the malignant case. 

 

Figure 2. 21 (a) US image with manual markers to measure sizes of the tumor.   The measurements were 0.88 cm in 

spatial direction x and 0.77 cm in depth direction z using manual measurements. (b) Segmented US image using the 

semi-automated procedure and the measurements were 0.9 cm in spatial x direction and 0.73 cm in depth direction.  

Validation of Optical Reconstruction 

The ultimate goal of the US segmentation algorithm is to assist DOT reconstruction. In this section, 

the performance of optical reconstruction is evaluated using tumor information extracted from both 
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Table 2. 2 Evaluation of the repeatability of the proposed method 

 

Depth (cm) 

z-radius 

(cm) 

x-radius 

(cm) 

x center 

(cm) 

Total Hemoglobin 

(µM) 

 1.86 ± 0.042 1.48 ± 0.074 2.02 ± 0.233 0.47 ± 0.048 23.66 ± 0.905 

 1.78 ± 0.001 1.57 ± 0.006 3.45 ± 0.189 0.3 ± 0.014 62.81 ± 0.384 

 1.69 ± 0.013 1.44 ± 0.079 3.07 ± 0.118 0.45 ± 0.124 50.25 ± 4.452 

 2 ± 0.006 0.4 ± 0.006 0.53 ± 0.006 0.58 ± 0.143 62.69 ± 0.362 

 1.08 ± 0.003 0.39 ± 0.019 1.03 ± 0.070 -0 ± 0.026 42.33 ± 0.001 

Benign  1.18 ± 0.006 0.56 ± 0.009 1.12 ± 0.166 0.09 ± 0.051 28.26 ± 0.022 

Cases 1.61 ± 0.036 0.75 ± 0.024 1.61 ± 0.046 -0.1 ± 0.297 67.15 ± 0.018 

 1.16 ± 0.009 0.24 ± 0.009 0.49 ± 0.024 0.15 ± 0.116 123.58 ± 0.317 

 1.8 ± 0.040 2.52 ± 0.083 3.46 ± 0.114 -0.01 ± 0.079 64.11 ± 0.002 

 1.32 ± 0.020 0.26 ± 0.004 0.48 ± 0.042 0 ± 0.013 83.98 ± 0.002 

 1.35 ±0.019 0.72 ± 0.012 0.93 ± 0.027 0.21 ± 0.117 109.78 ± 0.129 

 2.55 ± 0.031 1.92 ± 0.029 2.84 ± 0.065 0.16 ± 0.077 172.66 ± 0.000 

 2.97 ± 0.018 1.45 ± 0.036 2.34 ± 0.016 -0.63 ± 0.243 198.14 ± 1.734 

 1.66 ± 0.008 0.88 ± 0.009 1.07 ± 0.031 0.48 ± 0.106 93.36 ± 2.061 

Malignant  2.03 ± 0.029 0.65 ± 0.078 0.43 ± 0.009 -0.49 ± 0.035 95.73 ± 0.038 

Cases 1.45 ± 0.027 1.09 ± 0.009 1.45 ± 0.024 0.52 ± 0.079 107.23 ± 1.375 

 2.59 ± 0.001 0.3 ± 0.030 0.55 ± 0.014 0.19 ± 0.028 135.49 ± 0.060 

 1.94 ± 0.073 1.34 ± 0.137 2.76 ± 0.219 0.53 ± 0.082 77.77 ± 0.556 

 1.79 ± 0.014 0.77 ± 0.026 0.81 ± 0.037 0.46 ± 0.099 156.49 ± 0.992 

 1.57 ± 0.016 0.65 ± 0.000 0.97 ± 0.015 0.24 ± 0.010 88.84 ± 0.001 
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manual and proposed segmentation process. Optical data of the same 20 patients were used to 

generate absorption maps for four different wavelengths. Then the absorption information is used 

to obtain hemoglobin concentration. Both manual and semi-automatic features are used to generate 

different absorption maps. In Figure 2.21 and 2.22, absorption maps for a benign case are 

compared and a malignant case is presented in Figure 2.24 and 2.25. It is clear from these figures 

that the reconstructed map is almost similar. Average maximum absorption from 20 cases is 

compared in Table 2.3. From the table, we can see that mean optical absorption obtained from 

manual measurement was 0.21±.06 cm-1 for malignant and 0.12±.06 cm-1 for benign cases, where 

for the proposed method it was 0.24±.08 cm-1 for malignant and 0.12±.055 cm-1 for benign tumors. 

Finally, Figure 2.26 shows boxplots for oxygenated, de-oxygenated and total hemoglobin 

concentrations for the same 20 cases for both manual and proposed automated procedure. We can 

see from this figure that results for both techniques are almost similar. For benign cases, mean 

total hemoglobin concentration for all 10 cases is 58.95±27.76 µM from manual segmentation and 

58.64±27.93 µM for the proposed automated segmentation. For malignant cases, this measurement 

is 115.23±39.62 µM from manual segmentation and 114.64±49.66 µM for the automated 

segmentation. Values for oxygenated hemoglobin, for benign cases, is 35.73±20.67 µM for manual 

segmentation method and 38.32±21.67 µM for proposed segmentation method. For malignant 

cases, this measurement is 72.30±23.07 µM and 75.27±27.92 µM for manual and proposed 

segmentation method respectively. Deoxygenated hemoglobin concentration is 35.41±15.31 µM 

and 37.13±16.21 µM for benign cases using manual and proposed segmentation method 

respectively. For malignant cases, this measurement increases to 50.26±19.63 µM and 

48.04±22.88 µM for manual and proposed segmentation method. Thus, the performance of the 

proposed feature extraction technique is quite acceptable. 
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Figure 2. 22 Optical absorption maps of four wavelengths using three times of the size measured by US in x-dimension.  Depth used in optical reconstruction is 

the same as US measurement.  Each optical absorption map has seven image slides of 0.5 cm from the skin surface to the chest wall with 0.5 cm step in depth. 

Manually measured tumor information from 2.20 (a) is used in these maps  
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Figure 2. 23 Optical absorption maps using three times of the size identified by US in x-dimension. Depth used in optical reconstruction is the same as US 

measurement. Tumor information for these maps was extracted from 2.20 (b)   
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Figure 2. 24 Optical absorption maps of four wavelengths using three times of US measured size in x and same size as US measurement in z. Tumor dimension 

and location was extracted from 2.23 (a) to generate these maps 
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Figure 2. 25 Optical absorption maps using three times of US measured size in x and same size as US measurement in z. To generate these maps tumor 

information was extracted from 2.23 (b). 
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Table 2. 3 Average absorption coefficient using manual and automatically segmented tumor information 

Average (Standard Deviation) of maximum reconstructed absorption 

with manual tumor segmentation(cm-1) 

 Malignant Benign Ratio 

740 nm 0.19 (0.08) 0.11 (0.06) 1.72 

780 nm 0.22 (0.07) 0.12 (0.06) 1.83 

808 nm 0.22 (0.05) 0.14 (0.08) 1.57 

830 nm 0.22 (0.05) 0.13 (0.05) 1.69 

Average (Standard Deviation) of maximum reconstructed absorption 

with proposed tumor segmentation(cm-1) 

 Malignant Benign Ratio 

740 nm 0.21 (0.08) 0.14 (0.05) 1.5 

780 nm 0.25 (0.09) 0.12 (0.05) 2.08 

808 nm 0.24 (0.08) 0.12 (0.06) 2 

830 nm 0.24 (0.08) 0.12 (0.06) 2 

 

 

Figure 2. 26 Comparison of total hemoglobin concentration for 10 benign and 10 malignant cases. 
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2.5 Summary 

System and algorithm development for diffuse optical tomography was one of two aims of this 

PhD research. To make the ultrasound-guided diffuse optical tomography technology suitable for 

clinical applications several design modifications have been done. Probe holder for the system was 

redesigned to accommodate the optimized source and detector locations. Instead of purchasing the 

commercial laser current drivers and heat sink, custom designed current driver was used which 

reduced the cost and area requirements as well as added flexibility in component placement and 

spacing. In the detector side, combined mixer, amplifier and filter board design make the detector 

more compact than the previous prototype, significantly reduced the cost and provided a similar 

performance in terms of signal integrity. Software controlled PMT gain setting was an important 

step to make the system more suitable for clinical technicians. After all these system modifications, 

users now can control the system using the graphical interface of the software and thus satisfied 

the critical goal of this research which is making the ultrasound-guided diffused optical system 

suitable for clinical application. 

Semi-automatic segmentation of tumor in the ultrasound image was another component that makes 

the optical image reconstruction less operator dependent. This segmentation procedure requires 

minimum input from the users, which make this image reconstruction procedure suitable for 

anyone with little knowledge about breast ultrasound images. A part of this segmentation 

algorithm was automatic chest wall detection, which proved suitable for another study where the 

chest wall height of several hundreds of breast ultrasound images was determined using this chest 

wall detection algorithm. Current DOT image reconstruction is providing meaningful optical 

reconstructed images from over 90% cases. Improvement is going on to make it more effective. 
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3 Ultrasound Guided Photoacoustic 

Tomography 

Alexander Graham Bell first reported photoacoustic effect in the late 1800s [1]. However, 

photoacoustic imaging was not feasible for clinical diagnosis until the advances made in ultrasound 

transducers, computers, and laser systems. Wang et al. [2] reported some early experiments 

demonstrating the efficacy of photoacoustic tomography for medical imaging. In photoacoustic 

tomography, acoustic waves are generated by shining the tissue with short duration NIR laser 

pulses.  The amplitude of the acoustic wave depends on the number of photons absorbed by the 

tissue. Conventional ultrasound transducers can be used to detect this acoustic wave, which makes 

this technology suitable to use in clinical settings. Since human tissue is highly scattering medium 

for photons, photons cannot reach deeper than 5 cm inside an organ; thus, PAT has depth limitation 

of 5 cm, which is suitable for many applications including ovarian cancer detection. 

Ovarian cancer is the deadliest among all gynecological cancers. It has five years survival rate of 

less than 30% when detecting at stage III or IV. However, survival change can dramatically 

increase to 80-90% when it is discovered in stage I or II [3]. Unfortunately, most of the time this 

cancer can develop inside the human body without expressing any significant symptoms. Thus, 

make it very hard to detect at an early stage. Lack of suitable tools to early diagnose of ovarian 

cancer makes the diagnosis even harder. Therefore, any patient with ovarian abnormality has to go 

through oophorectomy, which significantly reduces the quality of life of the patient. Currently 

used methods, i.e., CA125 screening, CT, ultrasound, MRI still struggling to improve the 

sensitivity and specificity [4]–[9]. Our newly developed PAT system has demonstrated huge 

potential for early detection of ovarian cancer in a convenient way. 
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This chapter will present the image reconstruction principles of US and PAT followed by their 

application is an ovarian cancer diagnosis. It consists of the description of our newly developed 

system, evaluation report, and solution for a practical problem. 

3.1 Imaging Principle 

For ovarian cancer diagnosis, we are using co-registered ultrasound and PAT images and RF data. 

Following two sections will briefly describe the relationship between the Co-registered US/PAT 

images and ovarian cancer diagnosis. 

3.1.1 Ultrasound Imaging 

Compressional waves are used in ultrasound imaging to image tissue mechanical properties. 

Particles inside the medium compress and extend to propagate the wave through the medium. 

Ultrasound transducers are generating a propagating wave by vibrating at the tissue surface. This 

vibration creates a local pressure p, which propagates along the z-axis. Thus, the pressure wave 

equation can be expressed by: 

 𝜕2𝑝

𝜕2𝑧2
−

1

𝑣𝑠
2

𝜕2𝑝

𝜕𝑡2
= 0 

3. 1 

Where 𝑣𝑠 is the speed of sound in medium (about 1500 m/s in human tissue). This equation will 

take the following form when expressing the equation for the 3D space. 

 
∇2𝑝 − 𝜌𝐾

𝜕2𝑝

𝜕𝑡2
= 0 

3. 2 

Where 𝜌 is the density of the medium and K is the compressibility constant which is related to the 

pressure-velocity using the following equation, 
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𝑣𝑠 = √
1

𝜌𝐾
 

3. 3 

When ultrasound wave propagates through the medium, its velocity is affected by the acoustic 

impedance of the medium which can be expressed by the following equation, 

 
𝑍 =

𝑝

𝑣
= 𝜌𝑣𝑠 = √

𝜌

𝐾
 

3. 4 

When the propagating US wave enters from one type of tissue to another type of tissue with 

different acoustic impedance, then some portion of the wave is reflected from the tissue boundary. 

The reflection coefficient of the tissue determines the portion of the incident wave enters the 

second medium, and the portion is reflected the first medium. The incident angle of the wave and 

the acoustic impedance of the mediums determine the reflection coefficient of the tissue. When 

the wave propagates from medium 1 to medium 2, the reflection coefficient can be expressed using 

equation 3.5, 

 

𝑅 =
(

𝑍2

𝑐𝑜𝑠𝜃𝑡
) − (

𝑍1

𝑐𝑜𝑠𝜃𝑖
)

(
𝑍2

𝑐𝑜𝑠𝜃𝑡
) + (

𝑍1

𝑐𝑜𝑠𝜃𝑖
)
 

3. 5 

Where 𝜃𝑡 and 𝜃𝑖 are the transmission angle and incident angle respectively, and Z1 and Z2 are the 

acoustic impedance of medium 1 and medium 2 respectively. As shown in Figure 3.1, the incident 

ultrasound wave is reflected from different tissue boundaries as they have different acoustic 

impedances. This recorded signal is called A-line. Multiple A-lines are combined to reconstruct a 

US image. 

Other than the transmission and reflection, the acoustic wave is also affected by the attenuation of 

the tissue. Thus, as the wave propagates deeper in the tissue its amplitude attenuates and soon goes 

below the noise level. This attenuation is inversely proportional to the frequency of the incident 
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wave. The attenuation for the softest human tissue is between 1.35 and 1.68 dBcm-1MHz-1. All 

medical US image reconstruction procedure tries to estimate the pressure distribution inside the 

human body from the reflected waveform, which is captured by the transducer. This pressure 

distribution is related to the internal structure of the subject, which may reveal significant clinical 

information. Since the ovarian tumor has a different structure than the background, using US 

images, it can be readily separable from the background. Some extracted features from US beams 

can be used for diagnosing benign and malignant tumors as they are related to the structure of the 

subject [10].  

 

Figure 3. 1: Ultrasound wave reflected from different tissue boundaries [11] 
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Two types of US images can be generated using the US system. Stacking multiple A-lines at 

different times will produce M-mode images, which reveals the pressure change with time. On the 

contrary, stacking a-lines collected at different locations generates B-mode images. For ovarian 

cancer detection, we are interested in B-mode imaging because ovarian tumor changes its shape 

very slowly thus collecting meaningful information from M-mode images will take a long time, 

which is not feasible in the clinical setting. In the rest of the chapters, B-mode US image will be 

referred to as US image, since in our experiments we never work with M-mode images. 

B-mode ultrasound images can be collected by shifting a single transducer in space to collect a-

lines at various locations. However, this method is not fast enough to obtain good quality images. 

In our applications, we have used an ultrasound transducer array, which consists of multiple 

ultrasound transducers at close spacing. By applying electric pulses at a variable delay, a focused 

steering wavefront can be generated. When the reflected signal came back, they can be added after 

delay correction to obtain a focused beam. This method is shown in Figure 3.2 and 3.3. 

Several features related to the mechanical properties of the tissue can be derived from US beams. 

After the beamforming, demodulating the carrier signal provides an envelope signal. After scan 

conversion, a B-mode US image is obtained from this envelope signal. These steps of US image 

reconstruction is presented in Figure 3.4. 
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Figure 3. 2 Transmission focusing and steering in US mode [11] 

 

Figure 3. 3 Receiving Beamforming in US mode [11] 

 

Digital signal 

from US 

transducer

Delay and 

Sum 

beamforming

Demodulator Scanconversion US image

 

Figure 3. 4 High-level block diagram for US image reconstruction 
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3.1.2 Photoacoustic Imaging 

Obtaining functional information from the target location is the primary motivation for 

photoacoustic imaging. In PAT mode, short laser pulses are applied to the tissue to produce 

acoustic waves, which is detected by ultrasound transducers. During PAT imaging, effect of 

intense light scattering inside the human tissue is reduced by using the acoustic detection, at the 

same time information related to the light absorption is preserved by using light to generate 

acoustic waves. Thus, PAT combines the advantages of optical and US imaging.  

When the short laser pulses shine the tissue surface, it creates acoustic pressure as expressed by 

the following equation, 

 
𝑝0 =

𝛽

𝜅𝜌𝐶𝑉
𝜂𝑡ℎ𝐴𝑒 

3. 6 

Here, 𝛽 is the thermal coefficient of the volume expansion, 𝐶𝑉 denotes the specific heat capacity 

at constant pressure, 𝐴𝑒 is the specific optical absorption and 𝜂𝑡ℎis the heat conversion efficiency 

of the target. Optical absorption is the product of the absorption coefficient of the target 𝜇𝑎 and 

the incident fluence F. After replacing the optical absorption and the constants with Grueneisen 

parameter, equation 3.6 can be expressed as, 

 𝑝0 = Γ𝜂𝑡ℎ𝜇𝑎𝐹 3. 7 

This is the initial pressure that we want to image in PAT images. This pressure wave propagates 

in 3D space following the forwarding wave equation, which is expressed in equation 3.8 

 
(∇2 −

1

𝑣𝑠
2𝜕𝑡2

)𝑝(𝑟, 𝑡) = −
Γ

𝑣𝑠
2

𝜕𝐻(𝑟, 𝑡)

𝜕𝑡
 

 

3. 8 
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 𝐻(𝑟, 𝑡) = 𝜂𝑡ℎ𝜇𝑎𝐹(𝑟, 𝑡) 3. 9 

As we can see from equation 3.8, pressure propagation of the PAT wave follows the propagating 

wave equation. Thus, solving this equation can provide us the PAT distribution in 3D space. 

Unfortunately, pressure distribution reconstruction by solving this equation requires 3-D 

ultrasound transducer, which can record spherical wave, propagates from the pressure source. This 

type of transducer is very expensive and not suitable for clinical application. Thus, we are using 

an ultrasound transducer array to capture a portion of the propagating wave. Then apply the similar 

delay and sum algorithm describes in section 3.1.1 to reconstruct a PAT image. This is certainly 

not providing the exact initial pressure estimation but provides enough information to diagnose 

benign and malignant ovarian cancer by providing light absorption related to tissue 

microvasculature. 

3.2 Photoacoustic System Development 

PAT has already demonstrated its efficacy in deep tissue imaging [12]. To utilize the advantage of 

PAT imaging, several systems [13]–[19] has been developed. However, none of them provided 

real-time US/PAT images. Our group has developed several US/PAT systems for co-registered 

US/PAT imaging [17][14][20][21]. Alqasemi et al. have developed a 128 channel real-time 

US/PAT system which can provide co-registered US/PAT images at 15 frames per second [21]. 

This system has been used for both ex-vivo [22] and in-vivo [23] sample study. However, the 

image quality of the system was degraded over time due to poor connections and grounding.  

In this research, we focus on developing a coregistered US/PAT system for in-vivo ovarian cancer 

characterization. This system utilizes the PAT modality to provide functional parameters of 

ovarian tumor and structural information can be obtained from US images. Along with the real-
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time coregistered US/PAT images, this system can save raw data, which could be utilized to extract 

other spectral features during offline processing. This system was customized from a commercial 

US system for real-time coregistered US/PAT data acquisition and processing. A Ti:Sapphire 

optically pumped Q-switched Nd:YAG laser has been used as a light source. A 3D printed probe 

holds four optical fibers around the US transducer for shining the tissue sample. During the 

experiment, data obtained using four wavelengths to calculate oxygen saturation. Wavelength 

tuning and data saving have been synchronized using a C++ based customized control software 

loaded on a separate control computer. Different system parameters have been evaluated using 

phantoms before using it for human subject imaging. 

3.2.1 Customizing Commercial Ultrasound System  

A commercial US system (EC-12R, Alpinion Medical Systems, Republic of Korea) was 

programmed to obtain PAT data for this study. This machine can read instructions written in 

python; thus it is possible to operate it in US, PAT or co-registered US/PAT mode. This system 

can save raw PAT data, which can be acquired for offline processing and feature extraction. This 

US system receives ten ns trigger pulse at 15 Hz rate from the laser source and saves one PAT 

frame data at each trigger pulse. One US frame data was also collected with each PAT frames 

when operating in co-registered mode. More details regarding the system can be found in [17]. 

3.2.2 Automatic Wavelength Tuning 

In this study, we have used four different wavelengths (740, 780, 800, 830 nm) to illuminate the 

same spot sequentially and saved the corresponding US and PAT data. Customized software was 

developed to sweep the wavelengths and collect data automatically. This software can be set to 

sweep over some fixed wavelengths or a user-defined range of wavelengths with a set interval. 

This control software was loaded on a laptop, which is connected to the US system using an 
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Ethernet cable and the motor driver (for wavelength tuning) using a serial port. Along with the in-

vivo patient data, we have collected ex-vivo sample data. This software can also control the stage 

for ex-vivo data collection automatically. The whole control block is shown in Figure 3.5.  

 

Figure 3. 5 Control block of real-time coregister US/PAT system 

 

Figure 3. 6 3D printed handheld probe for holding optical fiber around ultrasound transducer 

3.2.3 Probe Design 

A 128-channel curved trans-vaginal US transducer was used for the study, which has a center 

frequency of 6 MHz with 80% bandwidth. It has an elevation height of 6 mm and 145.5-degree 

field of view. Four 1 mm core optical fibers were arranged around the transvaginal probe to deliver 

light to the sample. A 3D-printed hand-held probe (Figure 3.6) was designed to hold these optical 
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fibers around the US probe. Inside and outside of the 3D-printed probe was covered by thin 

aluminum tape with 85% reflection coefficient at 750 nm for high-intensity light output. The 

position of the optical fibers was determined to obtain optimum light energy at 10 mm away from 

the probe, which is typical vaginal muscle thickness. 

3.2.4 Optical Setup 

Optical setup for this system was adapted from the optical setup used in the previous version of 

real-time PAT system developed by our group [23]. Briefly, A Ti:Sapphire (Symphotics TII, LS-

2134, Symphotics, Camarillo, California) optically pumped with a Q-switched Nd:YAG laser 

(Symphotics-TII, LS-2122) has been used to illuminate the sample orthogonal to the imaging plane 

of the transducer. The laser can deliver 8 to 12 ns trigger pulses at 15 Hz with tunable wavelength 

from 680 to 950 nm. A stepper motor (Sigma Koki SGSP-25ACTR-B0) was connected with a 

crystal to tune the wavelength automatically. A motor driver (LOTIS TII CU 2350) controls this 

motor, which can receive the command from external PC using a serial port. 

Laser output from this system was passed to the four optical fibers through a custom-made lens 

array that consists of four cylindrical lenses (12.5mm H x 25mm L x 150mm FL Cylinder Lens 

VIS-NIR Coating, Edmund Optics PCX). This lens array split the incoming beam from the laser 

into four beams. A 90-10 beam splitter withdraws a portion of the output laser before the incident 

on the custom-made lens. This splitted laser beam is converted into electrical pulses using a single 

element US transducer and saved in a computer using a data acquisition card (NI PCI-5112). The 

saved fluence information is later used for signal normalization. The complete system with the 

optical setup is shown in Figure 3.7. 



63 
 

3.2.5 Results 

System Calibration 

Before collecting patient data, system performance was evaluated using phantom experiments. US 

transparent, opaque blood-filled Silicon tube was inserted inside the chicken breast to mimic the 

blood vessel inside the vagina muscle wall. Then the chicken breast was merged into 0.04% 

intralipid solution.  Co-registered US/PAT data was collected at different depths for SNR 

(20log10(max PAT envelope/system noise)) measurements at 780 nm. PAT signal strength was 

measured from the blood tube location, and the noise was measured after removing the chicken 

breast. SNR vs. depth plot is shown in Figure 3.8. From the figure, we can see that the SNR is 

plummeting at 7.3 dB/cm. With this rate, we can obtain a reliable signal (3dB) up to ~3.5 cm. 

Noise equivalent depth (0 dB) was ~4 cm. 

 

Figure 3. 7 Experimental setup for the real-time co-registered PAT system 
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The axial resolution of the co-registered US/PAT system is also measured using a 250 µm black 

thread with 780 nm light. This black thread is placed perpendicular to the imaging plane at the 0-

degree position and worked as a point source. PAT signal coming from the black thread was 

measured after putting it inside a water tank at four different depths from 0.5 to 2 cm with 0.5 cm 

interval. Then FWHM was calculated from the fitted Gaussian curve after deconvolution with the 

transfer function of the transducer. The measured axial resolution was 250.25±44.45 µm.

 

Figure 3. 8 Depth vs SNR 

Clinical Results 

From February 2017 to November 2017, 16 patients were enrolled for ovarian tumor imaging at 

the Siteman Cancer Center of Washington University in St. Louis. These patients were at risk for 

ovarian cancer or had an ovarian or pelvic mass suggestive of malignancy. The study protocol was 

approved by the institutional review board (IRB) and compliant with the Health Insurance 

Portability and Accountability Act (HIPAA). Written informed consent was obtained from all 

patients. Before imaging with the PAT/US system, all the patients were imaged by a radiologist 

(CS, or CR) assisted by a US technician using a commercial transvaginal US system of GE.  After 
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examining the suspicious ovaries or pelvic mass, the commercial probe was then withdrawn, and 

the customized PAT/US probe was inserted transvaginally to image the suspicious masses. For 

each imaging location, 5-10 PAT and US frames were recorded for all four wavelengths.  

Of the 16 patients, one patient did not have any ovarian mass found from US imaging prior to 

PAT/US imaging, and one patients’ data was not recorded properly due to system related 

problems. For the rest 14 patients, one patient had one ovary detected by the commercial 

ultrasound system; however, the location was too deep (> 5 cm) for PAT/US imaging.  Of the total 

13 (mean age 52 years, range 37 to 63 years) patients, one patient’s data was recorded only for a 

single wavelength (780 nm) due to laser tuning problem and this patient’s data was used for 

spectral analysis.  For the rest of 12 patients, six patients had one ovary due to prior surgeries or 

cannot find from the commercial US system.  As a result, 18 ovaries from 12 patients were imaged 

with co-registered PAT/US system and consisted of high grade serous carcinomas (n=2) and 

endometrioid adenocarcinoma (n=3), serous borderline tumors (n=2), sex code stromal tumor 

(n=1), benign fibrothecoma (n=2) and normal ovaries (n=2), benign cystic ovaries (n=6).  The 

patient information and diagnosis based on surgical pathology are provided in Table 3.1. Example 

of an invasive cancer and a benign ovarian mass are presented in Figures 3.9. 

Table 3. 1 Patient characteristics and surgical pathology of ovaries 

Patient  Age 

(y) 

Menopaus

al status 

Serum 

CA125 

(U/ml) 

Surgical pathology of the tubes and ovaries  

001 

(n=2) 

37 pre 85.4 Right ovary (4.5 cm): serous borderline tumor  

Left ovary (9.5 cm): serous borderline tumor  
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002 

(n=2) 

55 pre 2442 Right ovary (11.5 cm): high-grade serous 

carcinoma, involving the ovarian parenchyma and 

surface  

Left ovary (8.5 cm): high-grade serous carcinoma, 

involving the ovarian parenchyma and surface  

003 

(n=2) 

63 post 93 Right ovary (3 cm): endometrioid adenocarcinoma, 

well-differentiated; steroid cell tumor  

Left ovary: no histopathologic abnormality 

004 

(n=1) 

61 post 16.3 Left ovary (13 cm): fibrothecoma  

005 

(n=2) 

50 

 

pre 116.3 Right ovary (8.3 cm): endometrioid 

adenocarcinoma, well differentiated, involving 

ovarian surface  

Left ovary (20 cm): endometrioid adenocarcinoma, 

well differentiated, not involving ovarian surface  

006 

(n=2) 

57 

 

post 19 Right ovary (5 cm): serous cystadenoma  

Left ovary (3 cm): cystic follicles  

007 

(n=1) 

42 

 

post 11.4 Left ovary (19.2 cm): Sertoli-Leydig cell tumor, 

intermediate/moderate differentiation, not present 

on ovarian surface) 

008 

(n=1) 

42 pre 111.2 Right ovary (6 cm): cystic endometriosis  

009 

(n=2) 

57 post 23.6 Right ovary (7 cm): mucinous cystadenoma  

Left ovary (2.1 cm): no histopathologic abnormality  

010 

(n=2) 

47 pre 48.1 Right ovary (7.6 cm): epidermoid cyst  

Left ovary:  epidermoid cyst 

011 

(n=1) 

53 post 84 Right ovary (5.2 cm): cystic atretic follicles  



67 
 

 

3.3 Photoacoustic Image Processing and Ovarian Cancer 

Diagnosis 

With our customized system, we can save co-registered US and PAT images. The spread of the 

PAT signals overlay on top of the US image provides useful information regarding ovarian cancer 

diagnosis. However, the reconstructed PAT/US images only display normalized amplitude; there 

are other information we can extract from the raw or beamformed signals, which can be used to 

make a better judgment regarding ovarian tumor. After building a robust system, we focused on 

extracting useful features for the automatic diagnosis of ovarian tumors. From US and PAT images 

of 16 patients, we have extracted a total of 7 features which is then used statistically analyzed to 

get the significance of these features in benign and malignant tumor classification. Logistic 

regression classifier was trained to check the automatic diagnosis of the tumors. 

Left ovary (3.7 cm): benign simple cyst, focal 

endometriosis  

012 

(n=1) 

43 post N/A Left ovary: cyst (ruptured) 

013 

(n=2) 

49 pre 28.7 Right ovary (2.2 cm): complex cyst  

Left ovary:  complex cyst  

014 

(n=2) 

68 post 845.2 Right ovary (10 cm): high-grade serous carcinoma  

Left ovary (10 cm): high-grade serous carcinoma  

015 

(n=1) 

34 pre 11.3 Right ovary (6 cm): mature teratoma (dermoid cyst)  

016 

(n=2) 

60 post 161.3 Right ovary (5.5 cm): high-grade serous carcinoma  

Left ovary (2.8 cm):   high-grade serous carcinoma  
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Figure 3. 9  Images in a 63-year-old woman after menopause who had a solid right adnexal mass measuring up to 4.5 cm, ascites, and a thickened endometrium at 

contrast-enhanced CT (patient 3). A. Contrast-enhanced CT image. Pathologic findings included a 5-cm ovary (arrow) with well-differentiated stage II endometrioid 

adenocarcinoma and an incidental 2.2-cm benign steroid cell tumor. B. US image (EC-12R; Alpinion Medical Systems) of the right adnexa (arrows). C. The 

coregistered US and photoacoustic tomography shown in color, with extensive diffused vascular distribution covering a large area of the region of interest in the 

depth range of 1–4 cm of a malignant tumor. D. US Doppler image (Logiq 8S; GE Healthcare) of the right adnexa shows a hypoechoic soft tissue mass with 

minimal peripheral flow on color Doppler images (arrows). E. CD31 immunostaining in the suture area, showing numerous and extensive microvessels; F. 

Coregistered US and photoacoustic tomography of benign tumor shows scattered photoacoustic tomography signals. G. US image of the left ovary (arrows). H. 

CD31 immunostaining of surgical sample histopathologic abnormalities. 
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3.3.1 Feature Detection and Classification 

Independent Area Selection 

For each patient, we have collected several sets of data from each view of the ovary. Before 

extracting features, it is necessary to find independent frames to avoid duplicating features. To 

select independent frames only for avoiding correlated features and potentially biased 

classification, the 2-D cross-correlation of the US images was measured between two data sets. 

Before applying the cross-correlation operator, both images were normalized within their range to 

avoid intensity mismatch. Finally, a hierarchical clustering method was applied to make two 

clusters (dependent frames and independent frames) [24]. Hierarchical clustering generates a 

dendrogram based on the feature distance among the samples. Dendrogam is a tree diagram used 

in higherarchical clustering to demonstrate the relationship between the samples to be clustered. 

Samples, which have lower distances according to their features, are placed close in the 

dendrogram, and higher distance samples are set far away. The height of their connected branches 

is also varied according to their feature distance. The dendrogram was then cut automatically to 

obtain two clusters using a threshold on 50% of the maximum distance. Dendrogram of a patient 

data is given in Figure 3.10. This figure shows two clusters connected with a blue line. The distance 

between these two clusters are maximum. One cluster has a high cross-correlation coefficient, 

which are dependent frames and other with low cross-correlation coefficient is considered as 

independent frames.  Features from all dependent frames were averaged, and one feature from 

each independent area was introduced to the classifier. A total of 20 independent benign frames 

and 17 independent malignant frames from all patient data were included for classification. Flow 

chart of the independent area selection algorithm is presented in Figure 3.11. 
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Figure 3. 10 Dendogram for applying hierarchical classifier for independent frame selection 

 

Figure 3. 11 Block diagram for independent frame selection algorithm 
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Feature Extraction 

Three spectral features from PAT data (maximum SS, MBF and MHz intercept) and three spectral 

features from US data (maximum SS, MBF, and 0 MHz intercept) were quantitatively extracted. 

PAT spectral features such as SS, MBF, and 0 MHz intercept are related to the absorber's size and 

concentration and the spectral features from US signals are connected to the scatterer size, 

concentration and acoustic impedance [25] [26]. Menopausal condition of the patient (i.e. pre-

menopausal or post-menopausal) was not considered to be a significant feature, as both pre and 

post-menopausal malignancies were reported in the current study (Table 1). 

For calculating spectral features, an angular window was applied on the beam data to separate the 

region of interest (ROI) from the rest of the tissue. A Hamming window was applied on the 

truncated data to minimize the side lobes. The power spectrum of each beam was then calculated 

using a fast Fourier Transform (FFT).  Any beam lower than 10 dB of the maximum beam data 

were discarded to reduce the effect of noise. The Power spectrum of the beams inside the ROI was 

normalized by the power spectrum of a known phantom at different depths (250 µm black thread 

for PAT and a planar reflector for the US) [21][27]. The approximate point-like target characterizes 

the frequency response of the transducer and the electric receiving system. Finally, a line was fitted 

to the average normalized spectrum within 80% bandwidth of the transducer's central frequency 

(6 MHz).  From the fitted line, maximum SS, MBF and 0-MHz intercept were measured. Similar 

spectral information (maximum SS, MBF and 0-MHz intercept) is also extracted from US beam 

data. As the PAT spectral features for all four wavelengths were highly correlated, hence only one 

wavelength (780 nm) features were used for classification purpose.  
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Figure 3. 12 (a) In vivo coregistered PAT/US image of  the patient with an endometrioid adenocarcinoma of right 

ovary marked by ROI.  (b) In vivo coregistered PAT/US image of the same patient with a normal left ovary marked 

by ROI. In (a) and (b), the angular ROI defines the region where the beam spectrum feature is extracted. (c) The 

spectrum (blue) and linear fitting (red) of PAT beam as well extracted parameters from (a). (d) The spectrum (blue) 

and linear fitting (red) of PAT beam  as well as extracted spectral parameters from (b). (e) The spectrum (blue) and 

linear fitting (red) of US beam as well as extracted spectrum parameters from (a).   (f) The spectrum and linear fitting 

of US beam as well as extracted spectrum parameters from (b). 

Feature Selection 

Some dependent features have been excluded for training and testing to avoid training with non-

significant features. The Spearman's rank correlation coefficient (ρ) between two features was 

determined to measure their dependencies, and excluded the features with  |𝜌| > 0.5 . Seven 
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features (3 PAT features, 3 US features, and CA-125) were initially calculated and based on the 

correlation coefficient, three features (PAT 0-MHz intercept, US midband fit and  US maximum 

spectral slope) were excluded. The remaining four significant features were used for training and 

testing of a logistic classifier model. Table 3.2 is showing the correlation between the two pairs of 

features. 

Table 3. 2 Cross-correlation between features  

 Max. 

PAT SS 

PAT 0-MHz 

intercept 

PAT 

MBF 

Max. 

US SS 

US 0-MHz 

intercept 

US 

MBF  

Maximum 

PAT SS 
1 

-0.65 0.201 -0.061 0.029 -0.091 

PAT 0-MHz 

intercept 
 1 

0.546 0.284 -0.282 0.202 

PAT MBF   1 
0.122 -0.129 0.006 

Max. US SS    1 
-0.908 0.804 

US 0-MHz 

intercept 
    1 

-0.785 

US MBF      1 

 

Classification 

A logistic regression model is a widely used binary classifier, which can describe the relationship 

between several predictor variables X1, X2,… Xn and dichotomous response variable Y (0 for 

benign/normal and 1 for malignant). In this study, a logistic model was used for classification of 

benign/normal and malignant ovaries, using PAT and US features as well as CA-125 level. The 

logistic model was trained using the GLMFIT function in MATLAB, and the coefficients obtained 

from the trained model was used for testing using GLMVAL function. The accuracy of both the 

training and testing models were evaluated for sensitivity, specificity, positive predictive value 
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(PPV), negative predictive value (NPV) as well as the area under the receiver operating 

characteristics (ROC) curve (AUC). 

Table 3. 3 Mean value of features and their t-test p values  

Feature name 

  Mean value 

(malignant 

n=17) 

Mean value 

(benign n=20) 

p 

value 

Maximum spectral slope (PAT) 

(dB/MHz) 
1.06±1.49 0.61±1.47 0.378 

PAT 0-MHz intercept (dB) -19.16±5.39 -16.56±5.39 0.164 

PAT mid-band fit (dB) -20.36±10.32 -19.48±6.5 0.771 

Maximum spectral slope (US) (dB/MHz) -0.34±2.25 -0.46±1.77 0.853 

US 0-MHz intercept (dB) 11.16±9.97 13.82±7.03 0.379 

US mid-band fit (dB) -4.75±2.81 -4.55±2.65 0.834 

CA-125 (units/ml) 634.55±1003.17 48.53±35.55 0.033 

 

ROC curve was calculated by varying the threshold from 0 to 1 at 0.01 interval [28]. For each 

threshold, sensitivity, specificity, PPV and NPV were recorded by selecting the training and testing 

samples 20 times.  For each iteration, 20 (13 benign and 12 malignant) samples were randomly 

selected for training and the rest for testing. Average of these 20 iterations provide one sensitivity 

and specificity; we obtained 101 sensitivity and specificity from 101 thresholds. This set of 

sensitivity and specificity was finally used for obtaining the ROC curve for each model. We 

obtained 101 AUC values (each AUC value was the average of 20 AUC values from different 
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sample combinations for training and testing) for each threshold using the "perfcurve” function 

from MATLAB (2015a). 

3.3.2 Results 

Table 3.3 shows the mean and standard deviation of features extracted from benign/normal group 

and invasive epithelial ovarian cancer group and their p values. Figure 3.13 shows the box plots 

of four features of CA-125, PAT midband fit, US 0-MHZ intercept, PAT maximum spectral slope. 

Correlated features as given in Table 3.2 were not included in the box plots.  Figure 3.14 shows 

the AUC for the combination of most significant two PAT features, one US feature and CA-125 

for randomly selected testing data. 

P=0.033 P=0.378

P=0.771 P=0.379

(a) (b)

(c) (d)

 

Figure 3. 13 Boxplot with p-values for selected four features 
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Figure 3. 14 ROC for testing logistic regression model with four features (2 PAT, 1 US and CA125) 

3.4 Co-registered Doppler for Improving Region of Interest 

Selection of Photoacoustic Imaging 

Although this system provides distinguishable PAT images and features for benign and malignant 

tumors, during in-vivo studies, some ovaries are difficult to identify and PAT signal origin is 

unclear due to the presence of large blood vessels near the target location. The celiac artery carries 

a large amount of blood and often shows up near the ovary. Figure 3.15 shows a co-registered US-

PAT image of a benign ovary marked by the circle. However, strong PAT signals (overlays in red 

on top of grey US images) are coming from the side and bottom of the ovary. For this type of 

image, it is difficult to select the region of interest (ROI) for PAT data analysis. In this work, we 
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have provided a solution for this problem by reconstructing the Doppler images using the co-

registered US data. Since the Doppler signal is only coming from the large blood vessels, using 

high US frame rate (1200 Hz), we can identify PAT signals coming from the blood vessels.  

Finding of a phantom study is presented here to prove the efficacy of this technique. 

 

Figure 3. 15 PAT Signal coming from surrounding the blood vessel 

3.4.1 Experimental Setup 

For demonstrating the performance of the proposed solution, we have used a silicon phantom with 

an absorption coefficient of 0.2 cm-1
 to emulate a malignant ovary. Indian ink was used to add the 

absorption to the phantom, and the amount was controlled to obtain the desired absorption 

coefficient. Details phantom fabrication procedure can be found in [29]. Blood mimicking fluid 

was created by mixing 1.7x104 cm-3 30 µm glass spheres (Model 3000E, Poterrs Industries LLC, 

Valley Forge, PA, USA ) with water and glycol mixer with a specific gravity of 1.043 g/cm3.  A 

small amount of Indian ink was mixed with this solution to add absorption. US scattering was 

coming from the glass spheres, and Indian ink provides the PAT absorption as was expected in 

blood. This mixed fluid was then pass through a transparent polyethylene tube of inner diameter 

of 500 µm. A variable speed peristaltic pump (Masterflex, Cole-Parmer, Vernon Hills, IL, USA) 

was used to pump the blood mimicking fluid through the polyethylene tube. Ovary mimicking 

Ovary

Blood Vessel
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phantom was attached on top of the tube during the experiment. The schematic of the experiment 

is given in Figure 3.16. 

Water Tank ReservoirPump

5
 m

m
Solid 

Phantom

Polyethylene Tube

B
lo

od
 P

ha
nt

o
m

W
ater

 

Figure 3. 16 Schematic of the experimental setup 

3.4.2 Doppler Image Reconstruction 

The flow velocity of the blood mimicking fluid through the tube was calculated by estimating the 

phase difference between two consecutive frames. Ideally, only two frames are enough to obtain 

US Doppler images. However, in practice, it is not feasible. We have saved 12 frames for each 

Doppler frame estimation. During the experiment, RF data of one PAT frame and 12 ultrasound 

frames are saved for each location. US data was saved at 1200 frames per second. This frame rate 

is fast enough to estimate the velocity of ±16 cm/s. Though celiac artery can have blood flow at 

around 40 cm/s, we keep this low velocity because of the speed limit of the pump. These channel 

data are used to estimate US envelope data for these US frames. Finally, the phase map is estimated 

using the cross-correlation method to obtain Doppler images after delay line cancellation. This 

delay line canceller discarded the signal coming from the stationary or slow moving artery wall 
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movement, which provides a strong reflection in US images. 2nd order Butterworth IIR filter was 

used to implement the delay line canceller. Block diagram of the Doppler flow reconstruction is 

presented in Figure 3.17.  

 

Figure 3. 17 Doppler image reconstruction flow 

3.4.3 Results 

To validate the Doppler algorithm, we have passed the blood mimicking fluid through the 

polyethylene tube at various speed from 6 cm/s to 14 cm/s at 1 cm/s interval using the pump. The 

actual average speed of the fluid was recorded using the power Doppler mode of the ultrasound 

system. The average velocity was also calculated from the reconstructed flow map. Figure 3.18 

shows the comparison between estimated velocity from the Doppler images and original velocity 

set by the pump. In the test setup described above, the silicon phantom works as a stationary 

absorber and the tube full of blood mimicking fluid works as a blood vessel. PAT signal is 

originated from both stationary phantom and fluid, but the Doppler signal is only coming from the 

fluid mixer. Thus, comparing both we can conveniently locate the ovary location and select our 

region of interest as demonstrated in Figure 3.19. 
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Co-registered US/PAT US Doppler

Co-registered US/PAT US Doppler

Co-registered US/PAT US Doppler

Co-registered US/PAT US Doppler
Co-registered US/PAT Image US Doppler Image

 

 

3.5 Summary 

This chapter described the technology developments that I have accomplished in the field of 

photoacoustic tomography during my Ph.D. research. Developing a robust and stable system for 

PAT application in the clinical setting was a big challenge for advancing this technology. This has 

been done by customizing a commercial ultrasound system. The custom designed control software 

was able to coordinate several systems for obtaining the most stable outcome during in-vivo and 

Figure 3. 18  Velocity comparison between true velocity and estimated velocity 

Figure 3. 19 Doppler assisted ROI selection for coregistered US/PAT image 
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ex-vivo study. This system has created the opportunity to study the performance of PAT not only 

for ovarian cancer diagnosis but also for other organs (colon, rectum, cervix, etc) [30]. 

After developing the system, a pilot study with 16 ovarian tumor patients was performed using 

this system. Reconstructed images and extracted features show significant difference thus validates 

the performance of this system. Though the reported features in this dissertation do not show the 

best statistical significance, further improvement has been achieved by using better calibration 

method. One practical problem related to PAT feature extraction was improved by using co-

registered US Doppler information. Necessary software modifications were done to automatic scan 

and store multiple modality data during the study. This automatic storage capability made the 

system very easy to use in clinical settings. US Doppler image reconstruction will be extended in 

the future for PAT Doppler reconstruction which will provide additional information (oxygen 

consumption [31]) regarding ovarian cancer detection. 
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4 Summary 
4.1 Summary 

The goal of this research was to improve the design of optical imaging technologies for cancer 

monitoring and diagnosis. Improvement has been achieved in both system design and algorithm 

development, making diffuse optical tomography and photoacoustic tomography potentially more 

user-friendly and suitable for clinical use.  

To improve diffuse optical tomography, several system-level designs were altered to reduce the 

cost and space required by the previous design. These modifications also improved system control, 

which enhanced system performance and user-friendliness. Implementing advanced interference 

reduction techniques enabled the same system performance as before, even after different 

components were closely spaced for compactness. Homemade electronics not only reduced the 

cost of the system development but also accommodated other requirements necessary for 

achieving a compact system. The FPGA firmware of the data acquisition board and computer 

software was modified to allow controlling the system through a single computer interface. 

Optical image reconstruction in diffuse optical tomography is dependent on tumor size and 

location measurements from the co-registered ultrasound images, which used to extract manually. 

This manual procedure was replaced with a semi-automatic image segmentation algorithm. This 

simple and light computation algorithm can provide accurate tumor size and location information 

with minimum user input, thus reconstructing the optical images faster. The algorithm also 

estimates the chest wall depth, which can be used in further improving the absorption coefficient 

estimation.  
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All these improvements make diffuse optical tomography a more useful tool for breast cancer 

diagnosis and monitoring. Benefitting from the new improvements in user-friendliness, clinicians 

themselves can now directly reconstruct co-registered images, which was impossible with the 

previous versions. Once validated in large clinical trials and further improved, this technology will 

help to reduce unnecessary biopsies and provide for treatment monitoring in the near future.  

In this work, a new version of photoacoustic tomography system was developed to improve 

ovarian cancer diagnosis in patients with ovarian abnormalities. The previous version 

demonstrated considerable potential by providing encouraging results from ex-vivo studies and a 

very limited number of in-vivo samples. However, that system’s performance deteriorated over 

time and made it unusable for clinical trials. We proceeded to customize a commercial ultrasound 

system for photoacoustic applications; indeed, half of this Ph.D. research focused on system and 

data processing improvements for photoacoustic tomography. Python scripts were written to save 

co-registered US/PAT image and data from a customized commercial ultrasound system. 

Intuitively interfaced control software was developed to co-ordinate the functionalities of the US 

system, laser system, and ex-vivo sample holder. A customized probe holder was designed to 

accommodate optical fibers to illuminate the target and US transducers to record PAT signals. This 

system is easy to use and saves data and images for offline processing.  

Data and images saved by the system were later processed to extract useful features for the 

automatic diagnosis of benign and malignant ovarian cancers. A robust classifier was obtained 

from several features extracted mainly from the saved RF data and combined with pathological 

information (CA-125). Promising results were obtained from the first 16 patient’s data of a trial of 

total 40 patients. 
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4.2 Future Work 

Several improvements have been achieved to make diffuse optical tomography and photoacoustic 

tomography more accessible for full clinical use. However, in the course of the clinical trials, we 

identified opportunities for future improvements.  

In the diffuse optical tomography system, the control software does not receive any feedback 

regarding hardware states, e.g., the status of the laser light or PMT gain. Such hardware feedback 

is essential for the safe operation of the system, because the protocol requires that the laser light 

be turned on only when the probe is placed on the breast. However, a crash makes the software 

lose all track of the laser light’s state, after which bad data could be collected or the light could 

remain on after the probe is removed from the breast. Because of the lack of hardware feedback, 

it also may be possible to turn off the system when the PMT gain is on, or when the laser light is 

turned on. Both actions are harmful to these expensive components. In the future, a firmware 

update will provide hardware feedback for safe operation. 

Improvements are also required in the semi-automated segmentation algorithm. Although this 

algorithm works well for the available set of ultrasound breast tumor images, it may fail to 

correctly identify the tumor area for some complex cases. Because breast tumors can take any 

shape and size, conventional image segmentation may not be very successful in collecting tumor 

size and location information. Work is going on to apply machine learning to identify hidden 

patterns and thus to segment the tumor from the background with better accuracy. Applying 

machine learning will also make the algorithm fully-automated, and thus more user-friendly.  

In the photoacoustic realm, PAT Doppler information will be collected using high-frequency laser 

pulses. This information will enable us to estimate the oxygen consumption in the tumor area, 
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which will be a diagnostic advantage because aggressive cancer cells require more oxygen than 

benign tumors. Therefore, high oxygen consumption in the tumor region will provide a good 

indication of tumor malignancy. Necessary software modifications have already made for data 

collection. Soon, the reconstruction algorithm will be ready for PAT Doppler estimation. Other 

features will be improved by using a better reference object to get better separation from the trained 

classifier. The resulting automated cancer diagnosis will assist radiologists in better detecting 

ovarian cancer. 
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