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Abstract of the Thesis 
Microfluidic Assessment of Stem Cell-Derived Pancreatic β Cells 

by    
Arvind Rajamani Srivatsava 

Master of Science in Biomedical Engineering Washington University in St. Louis, 2019  

Research Advisor: Professor Jeffrey Millman  

 

Contemporary and traditional methods of perifusional analysis of cells, pancreatic β cells in 

particular, involve the utilization of costly equipment exhibiting difficulties in setup and 

inflexibilities in operation and application. Microfluidic devices in general are inexpensive, easy to 

fabricate and are capable of screening multiple microenvironmental conditions, with the potential 

to generate concentration gradients for the study of biological phenomena such as cell migration. 

Utilization of these devices for cellular fluorescence imaging is also possible, paving the way for 

more sophisticated methods of dynamic assessment. Herein, we fabricated a pre-designed 

microfluidic device from photolithography, containing microwells capable of immobilizing human 

β islet or stem cell-derived β cells for perifusional analysis with low (2mM) and high (20mM) 

concentrations of glucose, following subsequent dynamic estimation of insulin produced using the 

insulin ELISA. The main aim was to compare and contrast insulin secretory behavior of human 

islet and stem cell-derived β cells with dynamic study of calcium ion activity during insulin 

exocytosis through fluorescence imaging, using an alternative method of assessment, namely, 

microfluidics.  
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Chapter 1 

Introduction and Background 

 

1.1. Diabetes Mellitus and Β Cell Function 

 

Diabetes Mellitus (DM) is one of the most rapidly growing diseases and is a group of metabolic 

disorders which leads to the inability of the body to regulate blood glucose levels (Mohammed et 

al. 2009). It comprises of Type-1 DM, which is autoimmune and involves the degeneration and 

destruction of insulin-secreting pancreatic β cells located in the islets the Langerhans leading to an 

insulin deficiency (Mohammed at al. 2009, Pagliuca et al. 2014) and Type - 2 Diabetes. The latter 

leads to insulin resistance in peripheral tissues such as the muscle and adipose, which further leads 

to reduction in insulin secretion caused by glucotoxicity and lipotoxicity as a result, later during the 

course of the disease (Mohammed at al. 2009). Type -1 diabetes (T1D) is currently one of the most 

prominent diseases in the United States and the rest of the world, with about 1.25 million Americans 

currently living with T1D comprising 200,000 youth less than 20 years of age and more than 1 

million adults who are 20 years and older (JDRF). Around 40,000 people a year in the United States 

are diagnosed with T1D, and an estimated 5 million people are expected to be diagnosed with the 

disease by the year 2050 (JDRF). Considering these odds, research around the treatment of this 

disease is of vital importance and highly necessary at this point of time. Intensive insulin therapy 

was treated as an effective method to reduce complications arising from T1D. One of the elements 

of this involved a multi-component program with administration of “continuous subcutaneous 
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insulin infusion (CSII)” (Hirsch et al. 1990) injections coinciding with each meal on a 24-hour day 

(Kirsch et al. 1990). However, since this could not emulate the normal pulsatile insulin secretory 

pattern in the native human β cell and it comes with the risk of hypoglycemia, it is not considered 

the most effective method of treatment (Mohammed et al. 2009). Other treatments, such as donor 

pancreatic transplantation were also looked at as viable options for the treatment of the disease and 

reduce hypoglycemic episodes, the procedure was ultimately limited by its high morbidity and 

mortality rates (Mohammed et al. 2009).  

 

Another method of treatment currently employed is the transplantation of cadaveric human islets. 

Patients who were transplanted with these islets could remain insulin independent for 5 years or 

longer (Pagliuca et al. 2014). Since the scarcity and quality of such islets were the major limitations 

to this method, it may not have been considered a mainstream viable method of treatment. On the 

other hand, an unlimited supply of stem cell derived β cells could be differentiated from stem cells 

and could serve as treatments for millions of patients through transplantation procedures to a 

vascularized location in the body coupled with immunoprotection (Pagliuca et al. 2014). Stem cell 

derived β cells, owing to their uniform and consistent supply, could also serve as specimens for 

diabetes drug design and discovery, unlike cadaveric human islets, which were scarce, exhibited 

high variability from donor to donor due to various reasons such as cause of death, genetics, etc 

(Pagliuca et al. 2014).  

 

Concerning the current experimental analysis, two different types of pancreatic β cells were used: 

Human-derived β cells which were sourced from cadaveric pancreas, and stem cell derived β cells, 

synthesized and produced in the Millman Lab. This experiment focuses on the calcium ion signaling 
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and insulin secreting properties of both of these kinds of cells, in response to glucose stimulation. 

The function of insulin is to keep the blood glucose levels within the natural limits by regulating 

glucose uptake by muscle and fat cells as well regulating the hepatic glucose output (Leibiger et al. 

2008) or gluconeogenesis from lactate and amino acids. Insulin release comprises of the packaging 

of insulin in secretory granules (small and ~0.3um in diameter), the movement of these granules 

towards the plasma membrane, the exocytotic fusion of the granules with the plasma membrane 

and the subsequent retrieval of the secreted membranes by endocytosis (Rorsman et al. 2003). Both 

human islets and the stem cell derived (SCD) β cells have different mechanisms that trigger insulin 

secretion, both of which release insulin in different quantities equivalent to the concentration of 

glucose in the blood, and in this case, the perfusing fluid, and this mechanism is often referred to 

as the stimulus-secretion coupling (Leibiger et al. 2008).  
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Figure 1.1. Human Islet Insulin Release Mechanism. Mechanism of insulin release from islet β 

cells upon stimulation with glucose. (Sourced from Macdonald et al. 2005) 

 

In human islet (HI) β cells, the insulin secretion mechanism upon glucose stimulation first begins 

with the facilitated diffusion of high extracellular glucose through the glucose transporter protein, 

GLUT-2 into the cell. The subsequent ATP molecules produced through glycolysis of glucose and 

subsequent metabolism causes an increase in the ATP/ADP ratio, which triggers the closing of K+ 

channels. This leads to the accumulation of intracellular potassium ions which results in an overall 

positive potential difference between the inside of the cell and outside, which in turn triggers the 

opening of voltage-gated Ca2+ ion channels leading to the influx of calcium ions into the cell. This 

influx of calcium ions into the cell induces the exocytosis of the insulin granules [Figure. 1.1.]. The 

SCD β cells, which are hiPSC-derived, work similarly to adult Human islets in sensing changing 

glucose concentration, with subsequent membrane depolarization and calcium influx and 
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accumulative behavior with the release of insulin granules through the function of glucose 

transporter proteins, metabolic enzymes and potassium ion channels (Pagliuca et al. 2014). Insulin 

secretion response is typically characterized to have two phases [Figure. 1.2.], the first phase being 

a large spike occurring 1-3 minutes after glucose stimulation (Mohammed et al. 2009), attributed 

to the exocytosis of readily releasable insulin granules close to the plasma membrane which release 

insulin in response to nutrient and non-nutrient secretagogues (Wang et al. 2009), followed by the 

second phase of insulin release, where the insulin quantity reduces to a suprabasal level and 

continues to increase gradually as long as external glucose stimulation persists (Mohammed et al. 

2009). The second phase of secretion is explained by the intracellular granules or vesicles 

mobilizing and beginning to dock and fuse with the t-SNARE sites on the plasma membrane (Wang 

et al. 2009), from where insulin exits the cells.  
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Figure 1.2. Biphasic Response of Insulin. Illustration of the biphasic insulin secretion response, 

sourced from Popa et al. 2013 

 

Insulin secreted in response to glucose stimulus is traditionally measured using the Insulin Enzyme-

Linked Immunosorbent Assay (ELISA). This involves the binding of insulin to a primary antibody, 

the complex formed in turn is bound with a secondary antibody, after disposing of the solution 

containing excess primary antibody. The samples are then treated with a TMB substrate (3,3,5,5 - 

tetramethylbenzidene) which is a visualizing reagent that binds with secondary antibody complexes 

and stains the solution in various intensities of the color blue depending indirectly on the 
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concentration of insulin in the sample. Not only is this process time consuming, the reagents and 

ELISA plates required to run this procedure are also expensive.  This assay may not yield a large 

range of dynamic resolution since it is impractical to calculate the instantaneous concentration of 

insulin (it would require too many samples, whose analysis would also be time consuming and very 

expensive) rather than that of samples collected over small intervals of time. Since the insulin 

release activity in both of these kinds of cells are similarly linked to the calcium ion influx activity, 

it becomes almost imperative to target studies towards analyzing the calcium release profile as a 

way of indirectly measuring the viability of SCD β cells and Human islets alike. This form of 

dynamic assessment of ion and cellular activity only aids to get a deeper understanding of the 

functional gap between both these kinds of pancreatic β cells.  

1.2. Microfluidics and Perifusional Analysis 

 

Microfluidics can be defined both as the science of study of fluids through micro-channels, or as 

the technology of manufacturing micro-miniaturized devices containing various chambers and 

convolutions through which fluids are confined (Elveflow). A microfluidic chip consists of a pattern 

of microchannels which are designed and brought about through molding or engraving, the most 

prominent method of fabrication being through the use of photolithography. This pattern or network 

is in turn linked to several holes of different dimensions punched or drilled through the chip, which 

serve as inlets or outlets through which it is connected to the macroenvironment by the help of tubes 

and other fluid transporting equipment (Elveflow). This way, fluids are directed through the device 

in order to achieve efficient levels of mixing, automation and high throughput systems. The 

micropatterns achieved in microfluidic devices can be precisely designed in a way beneficial to the 

type of purpose, providing the ability to assess a myriad of experimental conditions in tandem with 



 8 

one another, offering substantial parameter control, thereby being a more efficient method of 

analysis (Elveflow). Another advantage of microfluidic devices is the relatively smaller volumes of 

fluids, reagents and other chemicals involved, thereby reducing the cost of operation drastically. 

These also have the potential to process and analyze samples with very minor sample handling, 

allowing the user to generate multi-step reactions requiring a lot of functionalities, but a low level 

of expertise. These advantages, coupled with their uncomplicated, ever-improving and swift 

methods of fabrication, make them a prevailing contemporary tool of choice for several different 

areas of research interest, such lab-on-chip devices, which handle picolitres of fluids and comprise 

of a more complex architectures, cell biology studies and in protein crystallization - a faster analysis 

involving staging several different viable microenvironmental conditions, as well as in other areas 

such as micro fuel cells, drug screening and chemical microreactors, etc.  

 

 

Figure 1.3. Microfluidic Concentration Gradient Generation.  A microfluidic design capable of 

generating user-dictated concentration gradients. (Sourced from Yin et al. 2015) 

 

In the case of this perifusional analysis, a typical dynamic perifusional system would comprise of 

a peristaltic pump pushing a perfusing fluid through a sample container containing the cells under 
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study, the perfusate being collected from this chamber in a 96 well plate, which is programmed to 

move automatically according to the number of sample containers in use and the preset sampling 

rate [Figure. 1.4.i)-ii)].  Microfluidic devices find their advantages where traditional systems meet 

their limitations: the latter of which being expense, difficulty in setting up and operation - a plethora 

of technical requirements necessary in order to run the systems themselves (Mohammed et al. 

2009). Moreover, traditional perifusional systems can often be linked with mechanical perturbation 

of the cells under study, inducing stress and hence limiting the maximum functional capability of 

the specimens (Mohammed et al. 2009). In addition, microfluidic devices are capable of generating 

user-described chemical concentration gradients (Adewola et al. 2010) [Figure. 1.3.], as well as 

setting up multiple microenvironmental conditions in different channels of the device, which are 

monumental for cell migration studies (for example, chemokine chemotaxis) and other biological 

studies as well. The presence of parallel microchannels enable the running of multiple experiments 

and a composition of clear and transparent materials like PDMS make microfluidic devices capable 

of dynamic optical fluorescence imaging, which set themselves apart from all the previous methods 

of perifusional analysis. 
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Figure 1.4. Perifusion Equipment. Image of a traditional perifusion system (Sourced from Biorep) 

 

Static analysis of islet function can be achieved through islet multiplexing in a 96 well plate, 

although this being a static method, it only warrants the measurement of bulk insulin produced by 

the cells (secretory capacity) and does not provide insight on the temporal dynamics of insulin 

secretion, comprising of the biphasic response of insulin secretion over time (Mohammed et al. 

2009). In order to study the dynamics of insulin secretion, we chose to employ, fabricate and 

recreate a pre-designed microfluidic device to quantify the dynamic insulin secretion profile of both 

human pancreatic β cells and stem cell-derived β cells, as well as for subsequent calcium 

fluorescence imaging. The device comprises of three layers [Figure. 1.5.] - one containing several 

microwells (diameter 500 um and depth 150 um) designed to immobilize the cells and reduce the 

amount of surface area exposed to flow (Mohammed et al. 2009), the second containing a large 

reservoir which serves to efficiently mix the fluids entering the device through the inlets drilled in 

the simple third layer. The design of the reservoir and the microchannels in the second layer ensures 

minimum shear force imparted to the cell specimens as well as exposes them to a slowly moving 

body of fluid of changing chemical concentrations. This simple design specifically allows for the 

efficient perifusional analysis of the pancreatic β cells and provides scope for multiple experiments 



 11 

to be conducted after simple cleaning procedures with milliQ water and 70% ethanol (Adewola et 

al. 2010).  

 

 

 

 

Figure 1.5. Device Layer Diagram. Illustration of the layers of the designed PDMS Microfluidic 

device (bottom to top): first layer containing the microwells to immobilize islets, second layer 

containing fluid reservoir and third layer containing inlets and outlets. 
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1.3. Fluorescent Staining and Calcium Fluorescence Imaging 

 

Fluorescence imaging is one of the most efficient methods of analyzing and advancing the 

knowledge of cellular biology at the molecular level. In vivo fluorescence imaging is a non-invasive 

method that produces images in “real-time” and is capable of fast data acquisition times. It involves 

the excitation of a fluorophore within the specimen, by a photon of low wavelength, and its 

subsequent emission of a light of higher wavelength (The difference in excitation and emission 

wavelengths referred to as the Stokes shift), due to the return of the outermost electrons in a 

fluorophore molecule to their ground state after reaching a higher elevated orbital state on absorbing 

the incident photon. The emitted photon is then captured by a detector camera for further analysis 

(Hassan et al. 2004) [Figure. 1.6.].  
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Figure 1.6. Fluorescence Microscope. Simple illustration of light pathways in a fluorescence 

microscope, sourced from Ibidi  

 

Fluorescence imaging finds its use among a myriad of biological applications. More specifically, 

Ca2+ is targeted very often for research studies, owing to it being a “ubiquitous intracellular 

messenger that regulates multiple cellular functions such as secretion, contraction, cellular 

excitability and gene expression in all organ systems” (Russell et al. 2011), and hence targeting and 

analyzing calcium ion activity could be considered a key to understanding several cellular and other 

biological processes in the body. Calcium fluorescence imaging, in general, involves the usage of 

fluorophores which specifically bind with calcium ions to form fluorescent complexes whose 

responses compound into a fluorescence emitted signal captured by a microscope or macroscope 

camera. It serves as a efficient tool for in situ imaging of cellular activity and function in different 

organ systems, the brain being one of the prominent areas of application (Russell et al. 2011).   
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More relevant to our application, since the insulin stimulus-secretion coupling in HI and SCD β 

cells is directly linked to the mobility of calcium ions, it becomes possible to analyze this flux 

behavior by means of imparting fluorescence and capturing these changes in fluorescence at 

different stages of stimulation. This was achieved through the use of calcium ion-binding green 

fluorescent dye, Fluo-4 AM, which can be incorporated into the cells through a low glucose KRB 

(Krebs-Ringer Buffer) staining process. In the insulin secretion pathway, Fluo-4 AM binds with 

calcium ions which enter the cells before the insulin granules are released, forming Fluo-4 - Ca2+  

complexes which have altered optical properties and appear green spots of light (emission 

wavelength ~ 540 nm) when excited with blue light of wavelength ~488 nm (Gee et al. 2000). The 

relative green fluorescence intensity is dependent on the concentration of calcium ions entering the 

cells, which in turn depends on the strength or concentration of the stimuli, which are in this case, 

glucose and KCl for control.  
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Figure 1.7. Imaging Equipment. Zeiss Axio Zoom V16 fluorescence microscope used in our 

fluorescence imaging experiment, sourced from Zeiss. 

 

Other dyes such as Fura-2 have also been used for calcium fluorescence imaging, and Fura-2 being 

a ratiometric dye, helps in the direct estimation of calcium ion concentration by first obtaining a 

calibrated calcium ion signal. Fluo-4 AM on the other hand, is usually employed for observing and 

measuring relative changes in the fluorescence intensity signal and hence relative changes in 

calcium ion concentration, which is sufficient for the purposes of our study. Fluo-4 finds use in 

many applications such as flow cytometry, confocal laser scanning microscopy and microplate 

screening assays (Gee et al. 2000). With regard to the current study, it serves as an excellent 

assessment tool owing to its high rates of cell permeation and the ability to quantify cellular Ca2+ 

changes over a very broad range of concentration (Gee et al. 2000).  
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Chapter 2 

Photolithography and Device Preparation 

 

2.1. Introduction and Results 
 

One of the most common methods to design and fabricate a microfluidic device involves the use of 

Photolithography [Figure 2.1]. It is a process that uses high intensity light and a photomask to 

prepare a network of polymer on a silicon wafer (Berkowski et al. 2009). This polymer network is 

formed through a physical change to the photoresist, containing a photosensitive compound and a 

mixture of polymers that become soluble or insoluble after exposure to UV light (Berkowski et al. 

2009). Two types of photoresists exist: positive and negative. A positive photoresist comprises of 

an insoluble polymer that turns soluble in the presence of UV light, while the negative kind of 

photoresist is composed of a soluble polymer turning insoluble, due to polymerization and 

crosslinking, in the presence of UV. The photoresist used in this experiment is SU-8 2050 which is 

a negative photoresist. The reason for using this is accredited to its stable mechanical, thermal and 

chemical characteristics, and it can be coated in thicknesses greater than 1mm (Lee et al. 2015). It 

is also used in a variety of other applications owing to its capability of being patterned into to make 

tall microstructures with high aspect ratios, which is unprecedented in conventional photoresists 

(Lee et al. 2015).  
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Figure 2.1. Lithography Process. A depiction of the lithography and curing process used by 

Mohammed et al. (2009) 

 

The microfluidic device designed for this experiment is comprised of three layers: 1) One 

containing microwells (500 μm in diameter and 150 μm in depth) [Figure. 2.3 i) & ii)], 2) Middle 

layer containing the microchannel (measuring 19 mm x 2 mm x 250 μm in length, width and depth 

respectively) and the reservoir cutout (7 mm in diameter and 5 mm in depth) and 3) the transparent 

layer that covers the first two layers. Layer 1 contains tiny microwells that immobilize the islets 
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[Figure. 2.3. iii)] and maximize the islet surface area exposure to the perfused liquid [Mohammed 

et al. 2009] [Figure. 2.3 iv)]. The flow rate of liquid through the perifusion chamber is decided such 

that the buildup of insulin in the chamber is not allowed to occur (Mohammed et al. 2009) and is 

below the maximum rates above which considerable shear to the islets would begin to occur. The 

flow rate of perfused liquid employed throughout this experiment is 0.5 ml/min, though an even 

larger flow rate of 1 ml/min is still permissible. The specific designs for Layer 1 and Layer 2 are 

first drawn and designed using AutoCAD [Figure.2.2]. The photomasks for the lithography process 

were pre-prepared from the AUTOCAD designs using a Laser Writer.   

 

                

Figure 2.2. AutoCAD Drawings. AutoCAD drawings used to make the photomasks 

 

We then proceeded to spin coat the silicon wafer with the photoresist of choice - SU-8 2050 which 

was capable of producing the range of thickness dimensions (Elveflow) as per our requirement. The 

coated wafers would then undergo baking cycles on hot plates before and after being exposed to 

UV light at different energies before leaching away the soluble, unexposed portions of the 

developed photoresist pattern to leave the patterned masters which would subsequently act as 

reverse molds for the fabrication of the microfluidic device layers. The baking cycle prior to UV 
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exposure aims to remove the solvent from the photoresist, thereby solidifying it to an extent, while 

the post exposure baking (PEB) is to sustain the photoactive reaction started in the photoresist due 

to UV exposure (Microchem). After PEB, the soluble portions of the photoresist were washed away 

using SU-8 developer solution (1-methoxy-2-propanol acetate) and then air-dried to produce the 

finished silicon wafers containing the required pattern masters for subsequent device fabrication. 

 

      

Figure 2.3. Device and Microwell Design.  i) & ii) - Images of the finished microfluidic device; 

iii) Immobilized SCD β cells in Microfluidic device; iv) Microwell design in Layer 1. 
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2.2. Materials and Methods 

 

2.2.1. AutoCAD files and Laser Writing 
 
The photomasks for Layer 1 and Layer 2 were designed using AutoCAD 2018 software. Designs 

for both layers were modeled after 50mm diameter sized wafers [Figure. 2.2]. Design files were 

then used to direct the patterns drawn on the photomask substrates by the Laser Writer to generate 

the photolithographic masks for selective photoresist exposure.  

 

2.2.2. Spin-Coating, Preliminary Baking Cycles and Photo-Exposure 
 
Layer 1: 

Photoresist SU8 - 2050 was applied on a silicon wafer of diameter 50 mm and spin coated at 1300 

RPM for 35 seconds. The coated wafer was then baked on a hot plate for 5 minutes at 65 ℃ and 

then for a longer duration of 30 minutes at 95 ℃. After baking, the coated wafer was placed in a 

Mask Aligner where the photomask prepared earlier through Laser Writing is mounted in the 

Aligner. The wafer was then exposed to UV light at an exposure energy of 290 mJ/cm2 for 3 

minutes. The mask and wafer were removed, and the exposed wafer was baked (post exposure 

baking) for 5 minutes at 65 ℃ and then for 45 minutes at 95 ℃ before being immersed in and 

treated with SU-8 developer solution with agitation for about 30 minutes. The developed wafer was 

then rinsed with isopropanol and water and air dried.  

Layer 2: 

SImilar steps were followed for Layer 2, The Photoresist SU8-2050 was spin coated at 500 RPM 

for 35 seconds and then soft baked at 65 ℃ for 7 minutes, followed by baking at 95 ℃ for 5 minutes. 
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The coated wafer was then exposed to UV light at an exposure energy of 385 mJ/cm2 before 

undergoing post exposure baking at 65 ℃ for 5 minutes and 95 ℃ baking for 15 minutes. The 

baked wafer was then treated with SU8 developer solution for about 30 minutes and then rinsed 

with isopropanol and water. The finished and developed wafer was then air dried.  

 

 

2.2.3.  Polydimethylsiloxane (PDMS) Curing Step and Device Preparation 
 
To fabricate the microfluidic device, 30 g of Sylgard 184 base elastomer was mixed with 3 g of 

Sylgard 184 elastomer curing agent for a mixing ratio of 10:1 separately in petridishes containing 

the patterned wafers for Layer 1 and Layer 2 and an empty petridish for Layer 3. The mixture was 

vigorously stirred until bubbles can be seen. The curing mixture was then deaerated in a vacuum 

desiccator for long enough until all the bubbles in the mixture disappear. Each of the petridishes 

are then cured in an oven overnight at ~70 ℃. After curing, using scalpels, the patterned polymer 

was shaped and removed from the petridishes and inlet holes for Layer 3 and the reservoir hole for 

Layer 2 was punched out using hole-punches. The polymer slabs and a glass slide (to stick the 

layers) were then immersed in 70% ethanol and sonicated in a water bath for 20 minutes, to disinfect 

and remove impurities. As a final step, in order to bond the layers together along with the slide, the 

slabs were exposed to UV ozone plasma in an Asher/Plasma Cleaner for 30 seconds at 100W with 

the surfaces to be bonded being exposed. The layers and the glass slide were then aligned and firmly 

pressed together to complete the process of device fabrication.  
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2.3. Summary and Conclusion 

 

Here we have recreated and designed a novel microfluidic device for the study and analysis of 

immobilized pancreatic islet activity. PDMS, specifically Sylgard 184 elastomer, is of choice for 

this device, owing to its inert and biocompatible properties. Sylgard 184 is a commercially available 

PDMS elastomer which is commonly used in several biological studies in tandem with applications 

such as producing elastomers with tunable stiffness (Palchesko et al. 2012). In order to fabricate a 

functional PDMS microfluidic device, the steps involved began with the fabrication of the masters 

or the mold for the elastomer to form over and take shape, the former being prepared through the 

process of negative photolithography using SU8- 2050 as the photoresist. After curing, cleaning 

and bonding the PDMS layers, the device is then prepared and ready to be used for pancreatic β 

cell functional studies.  

 

The presence of microwells in the prepared device would be vital for containing cells and reducing 

possible shear damage, while the device as a whole would help orchestrate dynamic perfusion 

insulin activity studies in response to step changes in glucose concentration, intended to emulate in 

vivo conditions. Since the device itself is made of transparent materials, this would allow for further 

easier and convenient analyses of islet cells using imaging. The photolithographic method of 

producing microfluidic devices is one of the more conventional methods, it is limited in the sense 

that it requires cleanroom fabrication and is time consuming and expensive. Several new methods 

of producing such microfluidic devices have become more preferable, including such as 3D 

printing, injection replica molding approaches, polymer laminates and other methods of 

nanofabrication (Gale et al. 2018).  
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All of these approaches make fabricating microfluidic devices much easier, thereby steadily 

increasing the preference to design and employ them for screening and staging multiple experiments 

and microenvironmental conditions. With regard to this experiment, the device is ready to be used 

after perfusing 70% ethanol and milliQ water to disinfect and clean the working reactor system 

confined within the device, after which we proceeded to the next steps of loading the device with 

islet cells and perfusing with low and high concentrations of glucose solution and studying the 

subsequent insulin activity.  
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Chapter 3 

Perifusional Analysis with Glucose 

 

3.1. Introduction and Results 

 

Through photolithography and elastomer curing techniques, we have designed and fabricated a 

microfluidic perifusional device. We first proceeded to test the glucose switching action of the 

microfluidic device, to test the stability of the glucose concentration profile vital for producing a 

nearly stable insulin secretion profile during the next study of islet activity. The setup for studying 

glucose switching has been illustrated in Figure. 3.1.i). It comprised of dual syringe pumps capable 

of producing uniform flow rates of glucose solution, two large capacity syringes containing 2mM 

and 20mM glucose solutions, mounted on these pumps with tubing to a Y connector, the common 

outlet of which was connected to the inlet of the microfluidic system. The outlet of the system 

dispensed glucose samples at intervals of every 2 minutes and concentrations of glucose were 

measured using Wako glucose assay, the results of which are illustrated in Figure. 3.1.ii). The low 

glucose region appears fairly stable until the glucose switch performed at the end of 8 minutes, 

causing a spike in glucose concentration at the end of 10 minutes [Figure. 3.1.ii)], constituting a 

step change in glucose concentration, before stabilizing at high glucose. These results help establish 

the fast glucose switching action of the microfluidic device, allowing us to proceed further with 

using the device with cells to study insulin release activity.  
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i) 

 

ii) 

Figure 3.1. Experiment Setup and Glucose Switching. i) An illustration of the microfluidic 

perifusion setup used; ii) Glucose switching from 2mM to 20mM at the end of the 8th minute - 

immediate step change observed 

 

We next proceed to assess the efficacy of the device in providing a suitable environment for human 

islets and stem cell-derived β cells to function normally under low glucose conditions and in a 

temperature-controlled environment at body temperature (37 ℃). The setup we used to study low 

glucose is illustrated in Figure. 3.1.i), comprising of one syringe pump producing a flow rate of 30 

mL/h or 0.5 mL/min of low glucose solution. The device was kept temperature controlled at 37 ℃ 

on a hot plate, with most of the tubing immersed in a water bath at the same temperature. Human 

insulin and KRB buffer samples were collected from the outlet tubing of the device over intervals 

of 20 minutes. The samples collected were used to quantify the insulin content using Insulin ELISA. 
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Before running the experiment, KRB buffer and low glucose (2mM) in KRB solutions were 

prepared ahead of the experiment and 20-30 islet clusters of SC β cells were loaded into the main 

perifusional chamber or reservoir of the microfluidic device, ensuring that they were immobilized 

and did not move even through slight agitation [Figure. 2.3 iii)]. SC β cells were perfused with low 

glucose KRB solution (2mM) for a total experimental runtime of 110 minutes. After 50 minutes 

from first being exposed to the low glucose solution, the cells completely stabilize in insulin release 

activity [Figure. 3.2.], showing their adaptation to their microenvironmental conditions. 

Furthermore, they show a stable insulin release profile until the end of perifusion runtime. The 

initial spike in insulin release was expected, owing to their fast insulin release action in response to 

the new glucose stimulus. These results show that the microfluidic device provided a suitable 

microenvironment for the study of islet cells and islet activity, without presenting the cells with any 

mechanical or any other technical perturbation.  

 

       

Figure 3.2. Low Glucose Perifusion. Insulin secretion profile under low glucose conditions: near 

stable profile observed after a duration of 50 minutes. 
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Finally, we expanded the experiment further to study insulin release activity of human islets in the 

presence of step change in glucose concentration - from 2 mM to 20 mM. Our setup for the 

experiment comprised of two syringe pumps mounted with 60mL syringes filled with low and high 

concentrations (2 mM and 20 mM, respectively) of glucose solutions, similarly configured as that 

of the glucose switching experiment [Figure. 3.1.i)]. Insulin contained in KRB samples were 

collected every two minutes. The loaded ~5-10 islets in the device were first perfused with low 

glucose for a total of 50 minutes to obtain a stable low glucose insulin release profile before 

switching to high glucose for 20 minutes and once again back to low glucose for 10 minutes. The 

insulin release profile obtained [Figure. 3.3.] showed slightly undetectable insulin concentration at 

low glucose due to very few islets used, but still recorded a sharp peak in insulin release (first phase) 

at the point of switching glucose solutions, followed by a more stable (with respect to time) second 

phase of insulin secretion, confirming the same results obtained with previously employed methods 

of perifusional analysis. Hence, here we were able to demonstrate the efficacy of a microfluidic 

device in eliciting a insulin release response for a step change in glucose concentration. We were 

also able to study the biphasic response in insulin secretion using said device, in a manner similar 

to other methods of perifusion. 
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Figure 3.3. Glucose Step Experiment. Absorbance corresponding to concentration of insulin 

versus time. Biphasic behavior of insulin secretion is observed upon step change in glucose 

concentration from 2mM to 20mM at the end of 10 minutes. 

 

3.2. Materials and Methods 
 

3.2.1. Preparation of KRB Buffer, low glucose and high glucose solutions for perifusion 

KRB Buffer (250 mL) for perifusional analysis was prepared using the composition in Table 3.1. 

BSA was used to prevent the adherence of insulin to the walls of the device (Adewola et al. 2010). 

The solution was then brought to a pH of 7.4 using NaOH. For 2 mM (low) glucose solution, 0.018 

g of alpha-D-glucose was made up to 50 mL using prepared KRB Buffer. For 20 mM glucose 

solution, 0.18 g of alpha - D- glucose was made up to 50mL using prepared KRB Buffer. 
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Table 3.1. KRB Buffer Components. Components comprising 250 mL of Krebs-Ringer Buffer. 

 

3.2.2. Estimation of insulin content in samples using Insulin ELISA 

25 μL of samples along with standard solutions were pipetted out into a 96 well plate, and 100 μL 

of secondary antibody was added to all of the wells using a multichannel pipette. The plate was 

then covered and kept in a shaker for an hour. After shaking, the media was dumped out and the 

wells were washed with human ELISA wash buffer 6 times and media repeatedly dumped out. The 

plate was then made to dry on a napkin before adding 100 μL of TMB substrate to the wells using 

a multichannel pipette. The plate was then kept on a shaker for 15 more minutes, after which 100 

μL of stop solution was immediately added to stop the reaction. The plate was then read in a plate 

reader with light wavelength at 450nm. This way a standard curve was obtained whose equation 

was used to calculate the insulin concentration over the concerned period of time.  
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3.3. Summary and Conclusion 
 

Here, we have demonstrated how the fabricated microfluidic device through photolithography and 

PDMS curing steps, could be used as an alternative to traditional methods of perifusion. We have 

shown that the device is capable of fast glucose switching action - ~2 minutes interval in response 

change corresponding to a flow rate of 0.5 mL/min. This quick glucose switching action is ideal for 

the study of glucose associated activity in islets, such as insulin secretion. Islets show a swift 

response to changes in glucose concentration, thereby making it essential for the change in glucose 

concentration to happen in a quick manner to produce an accurate insight into the insulin release 

activity of these cells. To put this forth in a practical sense, we showed how the cells produced a 

stable insulin release profile after a short while, in the presence of low glucose flow, further 

emphasizing on the compatibility of the cells with the device, and showing that they are merely 

immobilized in the microwells and not bonded to the substrate in any way.  

 

We could also demonstrate how the cells could respond positively in the presence of a glucose step 

gradient from 2 mM (low) to 20 mM (high) concentrations. A two phase insulin secretion profile 

as expected was observed - with the first phase appearing as an abrupt spike in the secretion of 

insulin with respect to time and the second phase appearing as a stable secretion of insulin with 

respect to time, before low glucose was once again made to flow through the device. This way, we 

have put forth and re-demonstrated the utility and compatibility of our microfluidic device for the 

study and perfusional analysis of pancreatic human islet and stem cell derived pancreatic β cells. 

To explore the further functionality and advantage of using such a device, we shall proceed to 

imaging experiments with human islets and stem cell derived β cells to study calcium ion 

fluorescence intensity profile in tandem with insulin release activity.   
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Chapter 4 

Calcium Fluorescence Imaging of HI and SCD Β Cells 

 

4.1. Introduction and Results 
 
Having demonstrated the use of the microfluidic device as a system capable of mimicking 

traditional perifusional systems in terms of assessing insulin release activity in response to glucose 

stimulation, we motioned towards the imaging aspect of our experiment, utilizing one of the main 

advantages of using a transparent microfluidics device for the purpose. Through calcium 

fluorescence imaging and perifusional analysis, we first aimed to obtain the fluorescence intensity 

profile equivalent to calcium ion activity in the cells upon glucose stimulation and directly 

comparing it with the insulin secretion profile, estimated through the insulin ELISA assay. During 

the process of insulin granule exocytosis upon glucose stimulation, the influx of calcium ions is 

expected to occur, subsequently binding with the Fluo-4 AM fluorophore present in the cells to 

produce fluorescence. We expect to see a larger intensity of fluorescence corresponding to a larger 

concentration of glucose stimulus. To confirm the responsivity of these cells to the low and high 

glucose concentrations, we introduce a KCl control step after the high glucose regime, where we 

would expect to see a drastic increase in the fluorescence intensity and insulin owing to KCl 

depolarization of the islets leading to a large influx of calcium ions and a simultaneously large 

release of insulin. 

 

We began our experiment by preparing perifusing fluids - namely low glucose (2 mM) glucose 

solution in KRB (Krebs-Ringer Buffer), high glucose (20 mM) KRB and 30 mM KCl in KRB 
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solutions. ~ 35 clusters of cadaveric donors pancreatic (HI) β cells were stained with the fluorescent 

dye Fluo-4 AM through a series of washing steps with low glucose Krebs-Ringer Buffer. 10 mL of 

low glucose KRB was perifused into the microfluidic device after cleaning with milliQ water and 

70% ethanol. The cells were then loaded into the device, which was then set up in as shown in 

Figure. 4.1.i), with the tubing and device heated to 37 ℃. The device was heated on a thermal stage 

below a fluorescence macroscope. The cells were then perfused with low glucose for 20 minutes to 

equilibrate the cells and marginally stabilize low glucose insulin activity. Readings were then taken 

in the low glucose regime for 10 minutes before switching into high glucose for 15 minutes and 

finally with 30 mM KCl for another 15 minutes. Images were captured in a time series of a total of 

200 cycles with acquisition occurring every 15 seconds. The perfusate was simultaneously collected 

over intervals of every 1 minute. The time series images acquired were analyzed using ImageJ/Fiji 

software, and a fluorescence intensity profile was generated (Figure. 4.2. shows the fluorescence 

intensity profiles for all of the islets imaged). Every three perfusate samples (worth 3 minutes in 

total) were acquired at a time were mixed to form one sample of many and analyzed using Insulin 

ELISA to obtain a insulin secretion profile which was then directly compared to the fluorescence 

intensity profile of an islet with the most positive (with respect to the expected data acquired)  

response to glucose and KCl as illustrated in Figure. 4.3.  
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i) 

 

ii) 

Figure 4.1. Experiment Setup and Fluorescence Images.  i) Illustration of the imaging and 

perifusion setup; ii) HI clusters stained with 20 μM fluo-4 AM exhibiting increasing intensities 

(from left to right) from low glucose (t = 9.25 min), high glucose (t = 20.5 min) and KCl (t = 29 

min) stimulation 

 

We categorized the individual islet fluorescence responses as follows: i) Positive responses, which 

showed a near-stable low glucose response prior to spiking after a high glucose switch (t = 10 min) 

and spiking even further in response to the KCl control (t = 25 min), as expected; ii) Uncertain 
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responses, most of which had not stabilised in fluorescence intensity during the low glucose regime, 

and hence were uncertain with respect to their high glucose response, but nevertheless positively 

responding to the KCl control; iii) Negative responses, both of which did not respond to high 

glucose and the KCl control entirely, or to the degree expected [Figure. 4.2]. The fraction of success, 

or the number of islet clusters positively responding to high glucose and KCl stimulation with 

respect to the total number of islet clusters imaged was 6 out of 18 clusters. Directly comparing a 

positive fluorescence islet response to the insulin secretion profile obtained using the ELISA 

[Figure. 4.3] first showed a very small spike in insulin concentration (first phase) after t = 10 min 

(High glucose stimulation) corresponding a larger spike in fluorescence intensity, followed by a 

very weak second phase of insulin secretion correlated with a dip in fluorescence intensity until t = 

25 min (KCl control stimulation). After this point, both profiles showed a large increase in calcium 

ion activity as well as insulin concentration. This spike in fluorescence intensity during KCl control 

stimulation confirmed that most of the cells were functional and barely glucose-responsive, 

corroborated by the increased insulin secretion during high glucose and KCl stimulation, albeit to 

a much lower degree than what was originally expected.   
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Figure 4.2. ROI’s and HI Analysis. Fluorescence intensity profiles of all human islets obtained 

with corresponding ROI’s 
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Hence, these results demonstrate that through the use of dynamic microfluidic perifusion and 

simultaneous dynamic calcium fluorescence imaging, we could show and obtain a direct 

relationship between Ca2+ activity within the Human islets and insulin release activity. Furthermore, 

from the data obtained, we made an additional observation that the resolution of measured data 

acquired using image acquisition every 15 seconds was evidently higher than that obtained by 

ELISA, where samples were collected on an average of every 3 minutes [Figure. 4.3]. 

 

 

 

Figure 4.3. Comparison of Fluorescence Intensity with Insulin-1. Insulin secretion profile for 

Human islets compared to a positive calcium fluorescence islet response (high glucose induced at t 

= 10 min and KCl at t = 25 min) 
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We then proceeded to take the step further to assess the insulin release and Ca2+ activity of the SCD 

β cells synthesized and differentiated by the Millman Lab. We first aimed to obtain fluorescence 

response profiles for all islets imaged, directly comparing them to their corresponding insulin 

secretion profile obtained using the insulin ELISA, before comparing and contrasting the calcium 

fluorescence and insulin secretion data of these cells with that previously obtained using the Human 

islets.  Around 25 islet clusters of SCD β cells were stained using the similar Fluo-4 AM protocol 

and loaded onto the microfluidic device after pretreating and pre-equilibrating the latter with milliQ, 

70% ethanol and low glucose KRB. The cells were then equilibrated with low glucose KRB for 20 

minutes before data was collected for 8 minutes in the (2 mM) low glucose region. At the end of 8 

minutes, high glucose (20 mM) was switched in for 15 minutes, followed by KCl (30 mM) control 

solution for 10 minutes. Perfusate samples were once again collected every 1 minute with images 

acquiesced every 15 seconds for a total of 200 cycles. The images obtained were also analysed 

similarly with the use of ImageJ/Fiji software [Figure 4.5], and every 3 samples (every 3 minutes) 

were assayed using ELISA.  
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Figure 4.4. SCD β Cell Fluorescence Images. Images of SCD β clusters stained with 20 μM fluo-

4 AM exhibiting increasing intensities (left to right) corresponding to low glucose stimulation at t 

= 7.75 min, high glucose stimulation at 9.25 min and KCl stimulation at t = 30.5 min respectively. 
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Figure 4.5. ROI Analysis of SCD β cells-1. Regions of Interest (ROIs) used with the analysis of 

SCD β cells 
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Figure 4.6. ROI Analysis of SCD β Cells -2.  Fluorescence intensity profiles of all HI islets 

obtained with corresponding ROI’s 

 

The fluorescence intensity profile of all of the islets, as illustrated in Figure. 4.6. showed an abrupt 

spike in calcium activity after high glucose was switched in (t = 8 min), followed by a marginal to 

large increase in the fluorescence intensity observed after KCl was introduced to the system at t = 

25 min. Hence, the unexpected fraction of success obtained in this case was 16 positive islet 

responses out of 16 islets, which was scrutinized by directly comparing the fluorescence intensity 

data with the insulin secretion profile. Both profiles showed a substantial spike in insulin secretion 

and Ca2+ activity at the end 8 minutes [Figure. 4.7]. In this case, the fluorescence intensity remained 

nearly uniform corresponding to a slowly increasing second phase of insulin secretion up until the 
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end of 25 minutes, when the KCl was switched in. Thereafter, both profiles exhibited a large 

increase in Ca2+ and insulin secretion activity in response to KCl, out of which, the insulin 

concentration reached a highly saturated value not within the standard range used with the ELISA 

[Figure. 4.7]. The fluorescence activity obtained in the KCl control regime confirmed the viability 

of the SCD β cells analysed, bolstered by the insulin secretion data acquired and compared.  

 

We proceeded to contrast the data obtained from both HI and SCD β cells by directly comparing 

their fluorescence intensity profiles obtained [Figure. 4.8] As also evident from the fractions of 

success obtained, we observed a stark contrast in glucose and KCl response in the case of SCD β 

cells compared to the Human islets, the change in responses of the latter almost completely masking 

the fluorescence changes obtained using human islets. We could attribute this very large and 

unexpected difference in responses to various experimental and biological factors concerning this 

in vitro study of comparing HI and SCD β cell activity. 
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Figure 4.7. Comparison of Fluorescence Intensity with Insulin -2.  Insulin secretion profile of 

SCD β cells with high glucose stimulation at t = 8 min and KCl control stimulation at t = 23 min. 

 

Hence, here we compared and contrasted the glucose-stimulated functional activity of human islets 

and SCD β cells by dynamically analyzing Ca2+ fluorescence islet profiles through imaging, 

comparing them directly with an equivalently matched insulin secretion profile through the 

utilization of a versatile microfluidic device bringing about the ability to perform both types of 

dynamic analyses.  
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Figure 4.8. Comparison of Fluorescence Data of HI and SCD β Cells. Comparison of HI β cell 

fluorescence data with SCD β cell fluorescence data shows a much higher glucose and KCl response 

in the case of SCD β cells as compared to human islets. 
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4.2. Materials and Methods 

 

4.2.1. Fluo-4 AM Staining Protocol 

Fluo-4 AM was obtained from the company ThermoFisher Scientific as 50 μg vials. A 2mM stock 

of Fluo-4 AM was made by mixing 50 μg of Fluo-4 with 22.8 μL of DMSO (dimethyl sulfoxide). 

10 μL of this sample was mixed with 1 mL of low glucose KRB (2mM) to produce a 20μM staining 

solution. Both HI and SCD β cells were collected in a 1.5mL centrifuge tubes and were first washed 

twice with 200 μL of low glucose KRB after draining nutrient media. The supernatant was removed 

after each washing before adding 500 μL of staining solution in the tube. The cells were then 

incubated in this solution for 45 minutes at body temperature. The supernatant was then removed 

and the washing steps with low glucose KRB were repeated, leaving 200 μL of low glucose KRB 

supernatant after the second washing step. The cells were loaded into the microfluidic device for 

analysis. 

 

4.2.2. Image Analysis using ImageJ/Fiji Software 

Images were acquiesced using a Hamamatsu CCD camera used with a Zeiss Axio Zoom V16 

Macroscope for fluorescence imaging at 50X magnification. The time series images were present 

as a stack of multiple images which were analyzed as a hyperstack using ImageJ/Fiji software. They 

were first corrected for translational movement using the StackReg feature, after which they were 

analyzed with Regions of Interest (ROI’s) for each entire islet cluster, and a fluorescence intensity 

profile was generated using the data, with background noise subtraction. Plots of the intensity 

profile were made using Microsoft Excel. 
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4.3. Summary and Conclusion 
 
Here, we demonstrated studies involving the simultaneous dynamic perifusion and calcium 

fluorescence imaging of HI and SCD β cells by means of employing a microfluidic device for the 

purpose. Our first study revolved around applying this analysis towards Human islets, where we 

were able to directly compare a positive calcium fluorescence intensity profile with the human 

insulin secretion profile, and found similar changes in magnitude of insulin secretion and 

fluorescence intensity, with a small spike and steady change in insulin (representing the first and 

second phases of insulin secretion, respectively) and a transient spike in fluorescence at high 

glucose (t = 10 min) and more significant increases in both towards the KCl control region. The 

KCl control was used as an indicator of the responsiveness of the islet β cells, using which we 

observed that while most of the islets were KCl-responsive, some islets yielded only a small 

response to the high glucose and a marginal response to the KCl (fraction of success being 6 out of 

18 islets imaged), and were categorized accordingly.  

 

The SCD β cells utilized as part of the second study, in contrast, showed more responsiveness, in 

terms of their steep changes in Ca2+ fluorescence upon stimulation with high glucose and KCl. The 

cells showed a large first phase insulin response in equivalence with an abrupt spike, tailed by stable 

Ca2+ fluorescence behavior upon stimulation with high glucose (t = 8 min), and ultimately showing 

an even larger increase in fluorescence, equivalently compared to the increase in insulin secretion 

upon treatment with KCl (t = 25 min). In this case, all of the islets were observed to have responded 

to the glucose and KCl stimulation, with the fraction of success being 16 out 16 islets imaged. After 

directly comparing best case fluorescence intensity profiles of both HI and SCD β cells, it could be 

concluded that Human islets used had reduced viability in vitro. This could be attributed to both 
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experimental and biological reasons such as the high functional variability of these cells from donor 

to donor depending on reasons such as the cause of death, or could also be attributed to the 

purification, handling and logistics involved before the cells are procured and ready for analysis. In 

addition to this, the foreign microenvironment may also have a role to play in reducing viability of 

these cells due to limited adaptability in artificial nutrient mediums, as well as in the perfusing 

fluids flowing through the microfluidic environment.  

 

The SCD β cells, in contrast, were evidently more adaptable to in vitro conditions, cultured and 

differentiated in large numbers and were more adapted to artificial nutrient mediums as compared 

to human islets. This could serve as a possible explanation for their superior performance during 

this experimental run. While this experiment might have yielded results contrasting with originally 

anticipated observations, it is still clear that healthy human islets perform better and function in a 

way necessary to sustain a normal and regulated blood sugar level, which, at the moment, place 

them above current SCD β cells, in terms of functional capabilities. Perhaps subsequent test runs 

with different donor islets might demonstrate this. With the current progress of research in this field, 

it could be possible that in the near future, islet transplantation therapy could be substituted with 

equivalently functioning SCD β cell treatment, which would serve to eliminate the current gap 

existing between them, and microfluidic analysis could potentially play a significant role in 

bridging this gap.  
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Chapter 5 

Future Directions and Possible Improvements 
 

Microfluidics is no doubt a means for efficient assessment of cellular and other biological activity 

in a variety of research scenarios, owing to their versatility, ability to generate multiple 

experimental conditions for a single assessment, etc. With regard to our current experiment, we 

proceeded to fabricate these devices through conventional SU-8 photolithography. This process of 

fabricating microfluidic devices requires the use of specific facilities like a cleanroom, as well as 

requires a lot of labor when sophisticated designs of microfluidic devices are involved (Kamei et 

al. 2015). Specific channel heights and other dimensions as part of a convoluted design of the 

microfluidic device becomes an arduous task sometimes having the requirement to depend on 

different kinds of photoresists capable of producing the desired dimensions, as well as a myriad of 

spin coating or baking conditions which would be required to produce dimensions of different 

thickness. It is overall a time consuming, expensive and labor-intensive process (Kamei et al. 2015).  

 

It also may not be completely possible to generate the most intricate of designs using 

photolithography, taking the example of the microwells in the device that we used - The laser writer 

did not have enough precision to completely separate (a few micrometers distance) each well from 

the other. These limitations make photolithography an unwise choice to fabricate microfluidic 

devices where the designs are highly convoluted and/or several devices need to be produced over a 

short span of time, or even when the required facilities for fabrication are not available. 3D 

bioprinting of lithography molds for PDMS device fabrication could potentially be an easier, cost-
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effective and better solution for the rapid production of PDMS-based microfluidic devices (Kamei 

et al. 2015). It would be possible this way to construct some of the most complicated and intricate 

of designs, even those structures that can exceed a height of 1 mm (Kamei et al. 2015), which is not 

possible with conventional photolithography. Production of these molds using 3D bioprinting also 

circumvents the necessity to work in a cleanroom or other specific facilities as opposed to 

photolithography.  

 

The dynamic microfluidic perifusional analysis of islet activity, specifically the study and 

quantification of insulin released in response to glucose stimulation using insulin ELISA is 

definitely effective, but comparing it with the resolution of measurement obtained with calcium 

imaging (a measurement for every 15 seconds), it becomes impractical to use a large number of 

samples for the ELISA, due to it becoming extremely time-consuming and expensive. A possible 

future aim in this research could look at the prospect of indirectly determining and quantifying the 

insulin release activity through dynamic measurement of fluorescence intensity changes in response 

to calcium ion influx during glucose stimulation. This method of quantification could very well 

provide a large scale of resolution since every measurement of fluorescence intensity change could 

correspond to a value of insulin quantity secreted and would serve as an accurate and inexpensive 

method of insulin quantification as opposed to the Insulin ELISA.  

 

Another research approach which is gaining some attention is the estimation of insulin through 

luciferase assays. Luciferases are a class of oxidative enzymes that catalyze the reaction of luciferin 

to oxyluciferin resulting in the emission of light (bio-luminescence) (Bitesizebio).  The regulatory 

regions of the genes that express the gene of interest are cloned in an expression vector and the 
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resulting vector DNA is introduced into the cells.  When these cells are made to rupture and are 

treated with luciferin and other cofactors, it should theoretically lead to the bioluminescence of the 

oxyluciferin generated due to the luciferase enzymatic activity which can be measured using a 

luminometer (Bitesizebio). Since the luciferase gene is linked to the gene of interest, the intensity 

of luminescence produced would directly quantify the relative concentration of protein expressed 

by the gene. The luciferase assay is sensitive, convenient and relatively inexpensive.  

 

An example of application of such an assay for insulin quantification was conducted in this study 

where Gaussia luciferase was inserted into the C-peptide of proinsulin (Burns et al. 2015). Under 

standard or induced conditions (in the presence of ER toxins, fatty acids or cytokines) the luciferase 

would be co-secreted with insulin in “close correlation” (Burns et al. 2015), possibly producing 

bioluminescence with luciferin leading to easy quantification of insulin. Such a method does not 

involve a perifusional analysis and helps in identifying different pathways of insulin secretion much 

faster. All of these methods and future research on the assessment and study of islet activity could 

very well pave the way for the complete treatment and eradication of Type-1 Diabetes. 
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