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Paired tumor-normal sequencing of thousands of patient’s exomes has revealed millions of 

somatic mutations, but functional characterization and clinical decision making are stymied 

because biologically neutral ‘passenger’ mutations greatly outnumber pathogenic ‘driver’ 

mutations. Since most mutations will return negative results if tested, conventional resource-

intensive experiments are reserved for mutations which are observed in multiple patients or rarer 

mutations found in well-established cancer genes. Most mutations are therefore never tested, 

diminishing the potential to discover new mechanisms of cancer development and treatment 

opportunities. Computational methods that reliably prioritize mutations for testing would greatly 

increase the translation of sequencing results to clinical care. The goal of this thesis is to develop 

new approaches that use datasets of protein-coding somatic mutations to identify putative cancer-

causing genes and mutations, and to validate these predictions in silico and experimentally. This 

effort will be split among several inter-related efforts, which taken together will help 

experimental biologists and clinicians focus on hypotheses that can yield novel insights into 

cancer biology, development, and treatment. 
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1. Introduction 
The genetic nature of cancer has been appreciated almost since the beginning of the genetics era: 

Theodore Boveri suggested that chromosomes were the unit of heredity and carried cancer-

causing factors at the turn of the 20th century[1]. However, it was not until the 1970s that the first 

descriptions of transforming proto-oncogenes were published[2]. The first tumor suppressors 

were described in the following decade, beginning with the gene RB1[3]. With these genetic 

underpinnings well established, tumors became some of the first biological samples to be whole-

genome and whole-exome sequenced.  

Ley et al. set the template for cancer genome sequencing studies when they published the first 

complete tumor genome, an acute myeloid leukemia[4]. In the following years, numerous cancer 

genomes were published, many under the auspices of The Cancer Genome Atlas, a major 

collaborative effort funded by the NIH that had a goal of sequencing 10,000 cancer genomes. 

These studies each encompassed dozens or hundreds of patients and focused on cancers 

including glioblastoma, ovarian carcinoma, breast cancers, colorectal cancers, endometrial 

carcinomas, squamous cell lung tumors, and many others[5-26]. Beginning in 2010-2011, the 

arrival of inexpensive exome-capture (in which a DNA sample is enriched for the 1% of the 

genome that is exonic) allowed independent groups to publish substantial cancer mutation 

datasets as well, initially focusing on lung and breast cancers[27-30]. For groups interested in 

analyses that encompass all cancer types, the literature now encompasses thousands of patients 

and millions of somatic mutations[31-34].  
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1.1 Cancer Genome Sequencing 
We describe the process of sequencing and analyzing cancer genomes briefly, though reviews 

are available[35-37]. We focus on the process of exome-sequencing and identifying protein-

coding variants, since these are the data used throughout this dissertation.  

The process of tumor sequencing begins when patients are biopsied at both the tumor site and a 

matched normal tissue (usually blood or skin). Once samples are gathered and DNA is extracted, 

libraries are constructed by shearing DNA and extracting short fragments (often a few hundred 

base-pairs long). Multiple vendors sell exome capture kits, which can be used to limit the library 

to protein-coding exons. Libraries can then be sequenced on any of a variety of instruments, 

most of which sequence multiple molecules in parallel and make use of “sequencing-by-

synthesis” design. Once sequencing reads have been quality controlled, they can be aligned to 

the reference human genome using various short-read alignment algorithms. 

The next step is critical: by comparing the aligned exomes, one from a patient’s healthy normal 

tissue and one from the tumor, mutations that are present only in the tumor can be identified. 

These are the somatic mutations that this dissertation depends on. There are many somatic 

variant callers that can be applied to this problem[38, 39], but these tools frequently make 

discordant variant calls[35].  

In fact, one of the largest caveats to this dissertation is the extent to which we depend on 

mutations identified and published by multiple sequencing centers. These groups may use 

different analytic pipelines - including different exon capture protocols, sequencing instruments, 

quality controls, alignment algorithms and variant callers - all of which can introduce both false 

positives and false negatives into published sets of observed somatic mutations. Rather than try 
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to identify these errors post-hoc, we strive to produce rigorous analytic techniques that are robust 

to systematic errors that may be present in published datasets. However, it must be 

acknowledged that the results of even the most carefully planned analysis are only as reliable as 

the data used for design and validation. 

1.2  Converting Mutations to Treatments 
Even with these caveats, the study of these mutations offers multiple areas of discovery, 

including the description of new diagnostic and prognostic markers, the discovery of new drug 

targets and improved use of existing drugs, and the discovery of previously undescribed cancer 

genes. However, realizing these benefits and improving treatments for patients will require that 

mutations be functionally characterized using targeted experimental approaches. For instance, 

our group identified several mutations that activate HER2 and drive tumor development in 

multiple cell and animal models of breast cancer[40], and followed those studies by extending 

the results into models of colorectal cancer[41]. As of writing, there is mounting evidence that 

patients with these mutations can be treated successfully with anti-HER2 targeted drugs[42]. 

HER2 is an exceptionally well-studied oncogene (reviewed in [43]), with rigorously validated 

model systems and reagents available to researchers who are interested in studying it. Despite 

this developed research infrastructure, it took our group several years and thousands of man-

hours to translate these observed mutations into improved treatments for patients. The time and 

cost will be considerably greater for mutations that occur in genes that have historically been less 

studied, or that occur in cancers with fewer available model systems.  

Even so, the cost and effort of characterizing observed somatic mutations would likely be 

worthwhile if most studied mutations led to improved patient care. Unfortunately that is not the 

case. Only a small proportion of observed mutations are believed to underlie tumorigenesis 
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(“drivers”), although the exact proportion remains unknown[44]. Genome instability is a 

characteristic feature of most tumors, and cancers vary widely in terms of overall mutation rate - 

as much as four orders of magnitude, increasing from AML to melanoma[45]. Particularly in 

tumors with high background mutation rates, it is likely that only a small fraction of mutations 

act as drivers, with the rest being incidental to disease development (“passengers”).    

These passenger mutations greatly stimy the necessary functional assessment of genome 

sequencing results. Given the cost of experiments, and the low proportion of mutations that act 

as drivers, testing a given mutation poses a high risk, low reward opportunity for most 

investigators. There are two exceptions. The first is for mutations which occur in multiple 

patients (e.g. R882C/H/P in newly established cancer gene DNMT3A[46]). These “recurrent” 

mutations are much more likely to act as drivers, justifying the cost of experiments. The other 

exception is when mutations are within well-established cancer genes (e.g. V777L in HER2[40]). 

Because these genes generally have well-developed research infrastructures, the cost of 

characterizing mutations is considerably less than if the mutations were in a less-familiar gene. 

Given these considerations, driver mutations which occur in fewer numbers or less studied genes 

are unlikely to ever be tested. 

This situation can be described as a bottleneck at the interface of high-throughput, low cost 

hypothesis generation and low-throughput, high cost hypothesis testing. The goal of this 

dissertation is to mitigate the bottleneck by improving the prioritization of genes and mutations 

for functional characterization. If prioritized mutations and genes can be functionally tested with 

a high or even moderate success rate, it is much more likely that even rare mutations will be 

tested. As such, we design our analytic methods with the goals of providing highly precise and 

biologically relevent predictions. In this dissertation, we develop several new, interrelated 
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methods that use exomic somatic mutation datasets to identify putative cancer-causing genes and 

mutations, and we validate these predictions using both in silico and in vitro methods. Each of 

these methods can be used as a filter. When assembled together, they can be used to reduce large 

sets of mutations to only the most promising hypotheses.  

The three approaches we explore are 1) the use of the somatic mutations to identify cancer genes 

that possess non-random sets of mutations and likely experience selection during tumor 

development, 2) the use of unsupervised approaches for making functional impact predictions for 

individual mutations, and 3) identifying functional regions of proteins by considering the 

patterns of somatic mutations in aligned gene families. The remainder of this chapter explores 

each of these topics briefly, while chapters 2-4 discuss each topic and our results in-depth. The 

pan-cancer dataset that is used across all three efforts is described in chapter 2. 

1.3  Specific Approaches 

1.3.1 Identifying Cancer Genes  
The term “cancer genes” encompasses both tumor suppressors (TSGs), which exert a pro-tumor 

effect through a loss-of-function, and oncogenes, which exert a pro-tumor effect through a gain-

of-function. Many cancer genes were identified prior to genetic sequencing, and mutations 

within them can be prioritized without additional information (for instance, the aforementioned 

activating mutations in HER2). However, new cancer genes can also be identified through 

observed patterns of somatic mutations[45]. That is, we can use somatic mutation data to identify 

genes that appear to be under selection, possessing non-random mutation patterns. Then 

mutations in these putative cancer genes can be prioritized for further testing. Taking a gene-

centric approach to the problem of identifying putative drivers is very appealing, because many 
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elements of experimental design are dictated by the target gene, making this approach critical to 

translating mutation data to new biological knowledge.  

Several tools have been developed to prioritize genes whose mutations are likely nonrandom. 

The best known methods rely on mutation significance[45, 47], though newer methods also rely 

on other signals of selection, including functional impact scores[48], intra-gene mutation 

clustering and recurrence[49], post-translational modifications[50], and DNA lesion 

likelihood[51]. Earlier work also demonstrated the importance of co-mutation events[52] and 

patient-specific mutation rates in detecting cancer genes[53]. The goal is to identify the small 

subset of genes (and mutations) which are crucial to cancer progression. 

Three challenges exist for the field of in silico cancer gene discovery. First, while individual 

methods are well-designed, it is clear that combining complementary methods (which rely on 

detecting different signals of selection) would improve detection of cancer genes overall[54, 55]. 

For instance, Tamborero et al. showed that genes identified by multiple methods are more likely 

to be found in the Cancer Gene Census, the best available list of predicted and known cancer 

genes; however, the authors were unable to produce a true combination classifier that models 

interactions between different tools to make predictions[55]. A second shortcoming of these 

methods is that they treat cancer genes as a single class and do not attempt to separate oncogenes 

and TSGs. This is particularly undesirable in the case of oncogenes, which are of great interest 

since they can be targeted by small-molecule inhibitors. However, recent studies demonstrate 

how rates of truncating mutations, mutation clustering, and copy-number data can be used to 

separate oncogenes and TSGs[56]. The final challenge is a lack of external validation. Since no 

panel of bona fide cancer genes exists, studies must rely on simulation or inter-method 

comparisons to gauge performance. Neither is ideal. Simulation studies are highly dependent on 
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the assumptions used to produced simulated ata, while comparisons between methods are 

ambiguous (methods either agree and reinforce one another, or they are complementary and 

produce novel insights). 

Although there is great promise in cancer gene prediction as a way of facilitating functional 

studies, the shortcomings outlined above limit the overall impact of the field. Fortunately, each 

of these shortcomings can be addressed though supervised modeling, in which a statistical model 

is trained to separate experimentally validated “gold panel” cancer genes from other genes (for a 

description of supervised modeling in general, see [57]). The model can make its predictions 

based on combinations of existing tools or newly developed gene descriptors, allowing it to 

make better predictions than individual tools can in isolation. Moreover, such a model could be 

trained to identify oncogenes and tumor suppressors as separate groups, providing even more 

context to its predictions, and possibly further improving performance over methods which treat 

all cancer genes as a single group. Through careful design, the same gold panel can be used to 

both train and assess the performance of the model, and also to compare its performance to other 

tools. The ultimate result will be a set of putative oncogenes and a set of putative tumor 

suppressors. The mutations observed within these genes would then be the focus of further 

studies. Chapter 2 explores these possibilities in-depth. 

1.3.2 Predicting Mutation Functional Impact 
Even if cancer genes can be reliably identified, only a subset of the mutations within them likely 

act as drivers. Predicting the effects of protein-coding mutations is a complex but well-

established problem. Several statistical functional impact scores (FIS) are in use, each aiming to 

predict whether a given amino acid change is neutral or functional with regard to protein 

function. Methods such as SIFT use a conservation-based approach, in which evolutionarily 



8 
 

conserved residues are assumed to be critical for protein function[58]. Others such as Polyphen2 

and VEST use a machine-learning based approach and integrate multiple data types[59, 60], 

while newer methods like CADD extend these principles to non-protein-coding variants[61]. 

More recently, methods such as CHASM and CanDrA have focused on somatic mutations in 

cancer, rather than all mutations occuring over evolutionary time[62, 63].  

With the exception of SIFT, these methods use supervised modeling to make predictions. In this 

approach, a model is trained using mutations that are designated as pathogenic or neutral. An 

advantage of this strategy is that models can be developed for specific tasks by choosing 

appropriate training data. For instance, curated training data allows CanDrA and CHASM to 

detect cancer drivers specifically[62, 63]. However, there are two major weaknesses to this 

approach when applied to the problem of identifying driver mutations in cancer.  

The first major weakness is that there are no “gold standard” datasets of rigorously validated 

drivers and passengers available for model training. Instead, models must be trained using proxy 

“silver standard” mutation sets, which introduce biases that can skew models towards known 

biology and can limit generalizability[64]. Previously, diverse sources including HGMD, dbSNP, 

UniProt, COSMIC, and simulated mutations have provided training examples[59-63]. These 

training sets introduce assumptions as to what constitutes a passenger or driver, biasing the 

model and limiting its generalizability. In general, supervised modeling may not be tractable if 

available datasets do not adequately represent the sought-after classes of mutations. 

The second major shortcoming is that no method utilizes two unique features of somatic 

mutations in cancer: recurrence and the configuration of mutations within tumors. In general, 

mutations which appear in multiple tumours are more likely to be causative. However, current 
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methods are blind to this pattern, as they are generally trained with datasets in which distinct 

mutations appear only once. These methods are also blind to tumor configuration. For instance, 

consider a breast tumor with three mutations: two are in olfactory receptors, and one is in HER2. 

Knowing the context, it is clear that the HER2 mutation should be carefully considered, even if it 

does not seem likely to be functional on the basis of gene homology or biochemistry. This 

illustrates how taking tumor configuration into account can yield important new information.  

These shortcomings make applying current FISs to cancer somatic mutation data non-intuitive. 

To address these concerns we will develop an unsupervised, parsimony-guided paradigm for 

functional impact prediction and apply it to the problem of identifying cancer driver mutations. 

To do so we will make use of an expectation-maximization (EM) framework. EM is a general 

approach to fitting statistical models when some data is unobserved. For instance, EM can be 

used to fit regression models when data is incomplete[65]. It has also been applied to problems 

such as finding recurrent motifs in unaligned DNA sequences[66]. 

We will focus on using EM to create a model for predicting mutational functionality, with the 

functionality labels “missing” for the purposes of training. This is essentially an unsupervised 

form of training. Since it does not rely on labeling mutations as drivers or passengers at the 

outset, this approach introduces fewer assumptions and should improve the generalizability of 

the final model. In lieu of labeled training mutations, the algorithm will assume that drivers 

should be more equitably distributed among patients than passenger mutations or, equivalently, 

that the proportion of mutations that are drivers drops as tumor mutation rates increase. This 

assertion follows from previous observations; studies by Youn et al demonstrate that cancer 

genes (which are enriched in driver mutations) are mutated in relatively hypo-mutated tumors 

more often than chance[53]. More recently, Tomasetti et al used mathematical modeling to 
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suggest that cancers depend on a small but consistent number of driver events, over all mutation 

rates[67].  

This approach elegantly solves the shortcomings we identified above: recurrent mutations will be 

accurately represented in the training data, leaving this aspect of the data intact; the algorithm 

will be constantly adjusting scores assigned to mutations such that a few drivers are given to 

each tumor, taking into account the combinations of mutations within tumors to do so; and 

finally, the algorithm will not make use of pre-labeled training data, avoiding unnecessary 

assumptions and biases that can limit generalizability.  

The final result of this effort will be a model that assigns mutations a score that represents the 

likelihood that they act as drivers. While it could be used as a stand-alone FIS, such a model 

would be particularly useful when used in combination with the other methods we describe, 

especially for identifying which mutations among a group of otherwise similar variants should be 

prioritized for testing. Our efforts on this topic are discussed in chapter 3.  

1.3.3 Identifying Tumor Drivers in the Kinome 
Although the specific effects of many mutations are unknown, many strategies rely on 

aggregating mutations to draw biological conclusions. For instance, mutations can be drawn 

from several genes to identify gene networks and pathways that are related to tumor growth[68]. 

As discussed above, many tools also query mutations at the gene level to identify genes with 

non-random patterns of mutations that are likely related to cancer development. As the number 

of mutations increases, even regions within proteins can be assessed[69]. Even though 

knowledge of specific mutations may be lacking, this approach can guide researchers towards the 

most promising mutations for further study. However, one limitation of these approaches is that 
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they operate genome-wide, often without taking into account relevant knowledge of specific 

gene families or protein types. 

For instance, one particularly well studied gene family is the protein kinases. They are an 

evolutionarily conserved group of phosphotransferases. There are approximately 500 protein 

kinase domains encoded in the human genome, spread between roughly 485 genes. These 

signaling molecules have well-known links to a variety of human diseases as well as particular 

links to cancer due to their widespread functions in regulating cell behaviors (reviewed in [70, 

71]). Genome-wide FISs are applicable to protein kinases but do not make use of specialized 

kinase knowledge, nor do they account for the structural relationships between mutations.  

Torkamani and Schork observed that known disease-causing protein kinase mutations are not 

randomly distributed throughout the protein and developed a machine-learning method for 

identifying disease-causing mutations[72-74]. When applied to cancer mutations, they observed 

that predicted functional mutations clustered in hotspots, suggesting that functional mutations 

may be shared among protein kinases[75]. Recent studies used machine-learning approaches to 

predict new activating mutations in EGFR[76]. Another approach is to seek common structural 

effects of functional mutations. Dixit and colleagues demonstrated over several studies that 

activating mutations shift the active-inactive equilibrium towards the active conformation, and 

that this is broadly true for several protein kinases[77, 78]. Furthermore, they identified the 

catalytic and activation loops as particularly prone to gain-of-function events[79, 80].  

It is clear that mutations occuring in one protein kinase can be used to draw inferences in 

another, and that somatic protein kinase mutations can be analyzed under a variety of regimes. 
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However, these kinase-specific methods rely on prior structural knowledge, which may have no 

analog in other gene families, limiting generalizability.  

We will attempt to identify and validate functional, driver protein kinase mutations using an 

approach different from those above. Rather than using protein kinase structural knowledge to 

find functional mutations, we will first pursue the reverse task: using observed mutations and a 

kinase alignment to identify homologous kinase positions that experience non-random mutations 

and presumably host driver mutations. To find these mutations, we will develop a series of 

statistical tests, very similar to those used for identifying cancer genes. Mutations at these 

positions will then be our putative driver mutation list.  

Unlike our other efforts, the results of this analysis will be mutations that exclusively occur in 

protein kinases, a group of enzymes which our lab is specifically equipped to study. Therefore, 

we will take the opportunity to validate putative drivers identified by this approach using basic 

mammalian cell culture techniques. These experiments are fully described in chapter 4.  

1.4 Connectedness of Approaches 
Taken together, these methods will form a framework for prioritizing mutations for functional 

characterization. Although they are interrelated, the analyses themselves make use of different 

assumptions and paradigms to draw conclusions. As such, they can be used in series, each 

filtering out large portions of passenger mutations, eventually leaving a small set of mutations 

that should be markedly enriched for driver events. This can be accomplished without limiting 

scope to recurrent mutations, or those which occur in known cancer genes. Since we rely on 

observed somatic mutations exclusively in each analysis, we are not limiting potential 

hypotheses with prior beliefs. Instead, we are making use of the same somatic mutations from 
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multiple perspectives, ultimately gleaning biological hypotheses that are more precise and 

reliable than was previously possible. Ultimately, these improvements could spur experiments on 

a wider variety of hypotheses discovered during high-throughput sequencing efforts. 

1.5 Candidate Contributions 
Chapters 2, 3, and 4 are substantially adapted from previously written manuscripts (cited at the 

beginning of each chapter). These manuscripts are at various points in the process of publication, 

but will ultimately appear in peer-reviewed scholarly journals. I (Runjun D. Kumar) substantially 

designed and executed relevant experiments, wrote these manuscripts, and adapted them to this 

dissertation. This is reflected by the fact that I am the lead author on each of the manuscripts 

themselves. Portions of this introduction, especially section 1.3, are also adapted from these 

manuscripts. In addition to being the primary author of the works presented in this dissertation, I 

am also the creator of all tables and figures.  
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2. Identifying Cancer Genes 
This chapter is adapted from: 

Kumar RD, Searleman AC, Swamidass SJ, Griffith OL, Bose R. (2015). Statistically identifying 

tumor suppressors and oncogenes from pan-cancer genome-sequencing data. 

Bioinformatics. 31(22). pp 3561-3568. 

2.1 Introduction 
In this chapter we develop new approaches to the problem of detecting cancer genes from 

somatic mutation data and use them to identify new putative cancer genes. We use a pan-cancer 

dataset of 1.7 million mutations and a manually curated set of 99 high confidence (HiConf) 

cancer genes to develop a panel of five statistical tests. The tests detect different signals of 

positive selection and are designed to detect putative oncogenes and TSGs (see Figure S2.1 for 

representative examples). Several of our tests make use of previously described signals of 

selection, such as functional impact bias, mutation clustering, or rates of truncating events[48, 

49]. We also identify patient and cancer type bias as new signals of selection and leverage them 

to markedly improve detection of oncogenes. We then integrate these tests into a random forest 

model which can identify oncogenes and tumor suppressors as separate types of cancer genes. 

We validate by assessing the performance of previous tools and our new methods against several 

independent panels of known and putative cancer genes. Finally, we explore the performance of 

these methods in specific cancer types and suggest new putative cancer genes. By producing a 

model that uses several signals of selection to identify oncogenes and tumor suppressors as 

separate classes, and by validating performance using objective criteria, we address many of the 

shortcomings of previous studies that attempted to identify cancer genes from somatic mutation 

data. 
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2.2 Materials and Methods 

2.2.1 Data Gathering and Quality Control 
Mutation Annotation Files (MAFs) were drawn from data repositories for the TCGA, ICGC and 

COSMIC. Only columns for Cancer Type, Study, Patient Identifier, Chromosome, Start Position, 

End Position, Reference and Variant Allele were retained. A small number of hg18-based studies 

(accounting for ~2% of the dataset) were converted to hg19 using the UCSC Genome Browser 

liftOver utility with default settings[81]. Patient samples were frequently included in more than 

one dataset, potentially producing duplicate or contradictory mutations. For a given patient and 

genomic position, only mutations from the most recent dataset were retained. Data were 

annotated with the ANNOVAR software suite using RefSeq libraries[82]. Mutations were also 

labelled with functional impact scores to allow the use of Oncodrive-fm[48]. In cases where a 

gene was related to multiple transcripts and isoforms, the transcript which preserved the most 

mutations was used first, with mutations from alternate isoforms being annotated as such. Data 

was gathered July 27th to August 1st, 2013.  

2.2.2 HiConf Cancer Gene Panel Construction 
As our goal is to use mutation data to find potential cancer genes that can be confidently carried 

into biological experiments, we sought high confidence (HiConf) cancer genes that are 

biologically established as a training data set. This HiConf panel was focused towards known 

cancer genes that have previously been detected through genetic criteria, and which could 

plausibly be detected with exome sequencing data. The following steps were taken to ensure the 

HiConf cancer gene panel met these criteria. The Cancer Gene Census (CGC) provided 

candidates[83]. Genes which have only been observed in translocations (as per the CGC 

annotations) were immediately eliminated, as our dataset lacks translocation events and it is 
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often unclear whether translocation partners are active cancer genes individually. This left 204 

candidate genes. 

A literature search was then performed. A gene qualified for the HiConf panel if a scientific 

publication could be found which fulfilled one of the following: 1) Demonstrated a cancer-like 

phenotype in cell lines when the gene was activated or inhibited. 2) Demonstrated a change in 

disease progression in mouse models of cancer when the gene was activated or inhibited. 3) 

Demonstrated the gene as a causative agent of a Mendelian human tumor syndrome. Importantly, 

all means of gene alteration (RNAi, ectopic expression, drug or antibody targeting, null models, 

etc.) were accepted for animal and cell studies, and any phenotype outlined in the Hallmarks of 

Cancer was accepted as cancer-like[84]. The sources for the literature search included OMIM 

and PubMed. The literature search left 99 HiConf cancer genes (Table 2.1). Based on the 

preponderance of literature recovered, these genes were further categorized as oncogenes 

(ONCs, gain of function causes pro-cancer phenotype) or TSGs (loss of function causes pro-

cancer phenotype).  

2.2.3 Comparison Tools 
Three existing tools were applied to the dataset: MutSigCV[45], OncodriveCLUST[49], and 

Oncodrive-fm[48]. 

MutSigCV identifies likely cancer genes by detecting genes with elevated mutation rates. 

MutSigCV v1.3 was run on the dataset using scripts downloaded from 

http://www.broadinstitute.org/cancer/cga/mutsig following the provided instructions and default 

settings. The MutSigCV p-value was used to assess tool performance. OncodriveCLUST is a 

cancer gene detection method which uses intra-protein mutation clustering to identify possible 

cancer genes. Software was downloaded from http://bg.upf.edu/group/projects/oncodrive-
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clust.php, and run on the dataset using the included instructions and default settings. Oncodrive-

fm detects genes with unusually impactful mutations, as judged by a suite of functional impact 

scores (SIFT, PolyPhen2 and MutationAssessor)[48]. The Oncodrive-fm method was re-

implemented in R, using the dataset itself as an internal null distribution. 

2.2.4 Calculation of Individual Tests 
We assembled five statistical tests that target several signals of positive selection in cancer 

genes. Patient Distribution and Cancer Type Distribution operate similarly and detect genes that 

are mutated in nonrandom sets of patients or cancer types. Unaffected Residues is our method to 

identify genes with unusual levels of mutation recurrence. VEST Mean uses VEST scores[60] to 

identify functional impact bias among genes. Finally, Truncation Rate is our approach to 

detecting genes that have unusual numbers of truncation events; either an enrichment (as is 

expected of TSGs) or depletion (as is expected of oncogenes).  

Patient Distribution and Cancer Type Distribution are calculated similarly. Each mutation occurs 

within a patient (or cancer type). A randomly mutated gene should be mutated in a random set of 

patients (or cancer types). This null hypothesis can be tested using the Pearson Chi-Square 

Goodness-of-Fit test, with the entire dataset providing the null expectations. For each gene g, a 

chi-square statistic was calculated: 

 

Where O is the observed count of mutations for a given patient (or cancer type), E is the 

expected number of mutations for the same patient (or cancer type), and P is the number of 
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unique patients (or cancer types). The expected count for a given patient (or cancer type) and 

gene is the product of the total number of mutations in the patient (Np) and the total number of 

mutations in the gene (Ng) divided by the number of mutations in the dataset (N). The p-value is 

calculated by simulation since the low expectations would violate normality assumptions 

required to use the theoretical chi-square distribution. Given the number of mutations in a gene, 

the test statistic is calculated for 10,000 random draws from the full list of patient (or cancer 

type) labels with replacement, and the upper tail probability of a higher test statistic under the 

null distribution is reported. All mutations, including synonymous mutations, are used when 

calculating Patient Distribution and Cancer Type Distribution. 

Unaffected Residues detects high levels of recurrence by considering the number of un-mutated 

residues in a gene. First, given the number of mutations and the protein length, the probability of 

a residue being un-mutated is calculated based on the Poisson distribution. Because the mutation 

count is zero, the estimated probability of an unaffected residue simplifies to:  

 

Where n is the number of mutations in the protein, l is protein length, and  is the estimated 

probability of a given residue being un-mutated. Once  is calculated, the binomial 

distribution is used to calculate the probability of a gene having at least the observed number of 

unaffected residues:  
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Where x is the observed number of unaffected residues and l is the protein length. Unaffected 

Residues, represents the probability of a gene having as many or more unaffected residues as 

observed if mutation location is entirely random. Only nonsynonymous protein-coding mutations 

are used to calculate this test, as recurrent synonymous mutations can suggest alignment errors 

and may produce false positives.  

VEST Mean is calculated in a very similar manner as the individual sub-scores used within 

Oncodrive-fm[48], but uses the Variant Effect Scoring Tool as the base functional impact 

score[60]. It is the upper tail probability of a gene having a mean VEST score greater than that 

observed, given the number of mutations, based on 10,000 random draws with replacement from 

all observed VEST scores. VEST scores are limited to missense mutations, so imputation was 

required for other mutations. We used the same rationale as was used in Oncodrive-fm. 

Synonymous and non-coding mutations were assigned a value of 0, the lowest functionality 

score under VEST, while in-frame and frameshift indels, premature stop, nonstop, and splice site 

mutations were assigned the highest value of 1. Synonymous and nonsynonymous mutations are 

used in this calculation. 

To use Truncation Rate, a gene’s mutations are categorized as truncating (i.e. Splice Site, 

Frameshift Insertion/Deletion, Premature Stop/Nonsense) or non-truncating. Then the upper tail 

binomial probability of at least the observed number of truncation events (using the truncation 

rate across the dataset for the null distribution) is calculated as: 
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Where  = 182,030 truncation events / 1,703,709 mutations = 0.107, t is the observed number 

of truncating events for a given gene, and n is the total number of mutations in the gene. 

Synonymous and nonsynonymous mutations are used in this calculation. 

2.2.5 Imputation of Missing Data 
Our tests rely on very basic annotations (e.g. Sample ID, Cancer Type, Mutation Type, etc.) and 

consequently we had very low rates of missingness. Two exceptions warrant note, and both are 

related to Unaffected Residues. This test requires a valid protein length to be calculated; 

however, after integrating datasets, ~4% of genes had protein lengths smaller than the most 

downstream mutations. In these cases, the test uses the most downstream mutation position as a 

conservative proxy of protein length. The other exception is in model training. Most of our tests 

are calculable for virtually all genes. The exception is Unaffected Residues, which cannot be 

calculated for the ~10% of genes with no coding nonsynonymous mutations. The data matrix 

was filled in by mean imputation prior to model training. Missing values were excluded from the 

calculation or assessment of individual tests. 

2.2.6 Generation of Ensemble Model 
We compared Random Forests, SVMs and Naïve Bayes classifiers in separating the three gene 

classes (Unknown Function, HiConf Oncogenes, HiConf TSGs) using the individual tests of our 

panel. Random Forests and SVMs both performed well. Random Forests were chosen because 

they have been used in previous tools such as OncodriveROLE[56] and worked well with default 

settings (mtry=2, trees=500).  

To generate the scores and predictions used in the study, we trained a random forest (RF5) on the 

five individual tests (Patient Distribution, Cancer Type Distribution, Unaffected Residues, 

Truncation Rate, VEST Mean) and labels generated from the HiConf panel (22,801 unknown 
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genes, 48 TSGs, 51 Oncogenes). TSGs and ONCs were up-sampled during training to better 

calibrate the model (trees were trained on 300 unknowns, 30 TSGs and 30 ONCs). 5-fold cross 

validation was used to generate predictions, repeated 50 times. The repeated cross validation 

runs were averaged to generate the stable predictions presented in the final results.  

2.2.7 Assembly of Validation Gene Panels 
In addition to the manually curated HiConf gene panel, we also sought out additional panels of 

established cancer genes. These panels are necessary to validate the performance of our random 

forest model, since even with cross validation its performance on the HiConf panel could be 

over-optimistic.  

We gathered the High Confidence Driver (HCD), Cancer5000 and TSGene lists as presented in 

Schroeder et al. (2014)[56]. These were originally generated by Tamborero et al. (2013), 

Lawrence et al. (2014) and Zhao et al. (2013) respectively[31, 55, 85]. In addition to the filters 

applied by Schroeder and colleagues, we ensured independence by depleting these lists for any 

members of the HiConf panel, leaving 149, 96 and 55 genes in the respective panels. Note that 

while they are independent of the HiConf list, they do overlap with one another. 

While the HCD and Cancer5000 lists may contain both oncogenes and TSGs, the TSGene list is 

composed of TSGs exclusively. To generate an oncogene-only list, we defined the Kinase list as 

any kinase bearing a known activating cancer mutation in Kin-Driver[86]. This panel consists of 

29 genes after being depleted of HiConf genes.  
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2.2.8 Cancer Subset Analysis 
Cancers with at least 500 patients or 200,000 mutations were considered in the cancer type 

analysis. Tests and RF5 models were applied using identical procedures to the pan-cancer 

analysis.  

2.2.9 Statistics and Software 
All comparisons of AUROCs were performed as two-sided DeLong Tests[87] with adjustment 

for ties. All analyses were performed in R v2.15. Modeling was performed using methods 

available through the randomForest[88] and e1071 (Support Vector Machines, Naïve Bayes) 

packages. AUROCs, ROC plots and DeLong Tests were performed using the pROC package.  

2.2.10 Data Availability 
The dataset is available along with a script, instructions and sample data to be used to train RF5 

models on any dataset. Please see www.github.com/Bose-Lab/Improved-Detection-of-Cancer-

Genes.  

2.3 Results 

2.3.1 Description of Data 
The analytic flow follows the schema in Supplementary Figure S2.2. The final dataset includes 

1,703,709 mutations across 10,239 patients (Supplementary Figure S2.3). 22,902 genes appear at 

least once in the dataset, with a median of 49 mutations per gene. This is one of the largest 

assembled pan-cancer data sets and is publicly accessible (See section 2.2.1 for more details).  

2.3.2 Developing a Panel of Known Cancer Genes  

Based on a criteria-driven literature review, 99 genes were collected into a high-confidence 

cancer gene panel (HiConf, Table 2.1, see section 2.2.2 for details). The HiConf gene panel was 

further divided into 48 TSGs (with 15,698 mutations) and 51 ONCs (with 11,243 mutations). 
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Rather than defining a separate set of presumptively neutral genes, the remaining 22,801 genes 

were labelled as “unknown”. Most unknown genes are neutral with regards to cancer 

progression, and the set as a whole is treated as neutral for the purposes of training and 

assessment.  

2.3.3 Assessing Individual Tests 
Individual methods of cancer gene prediction must separate the distinct mutation patterns of 

ONCs, TSGs and neutral genes. In particular, TSGs tend to be enriched in truncation events, 

while oncogenes are depleted; in addition, oncogenes tend to have clustered mutations 

(Supplementary Figure S2.1). We performed statistical tests for each of five signals of positive 

selection, and refer to them as follows: Truncation Rate (rate of truncating events), Unaffected 

Residues (intra-gene mutation clustering/recurrence), VEST Mean (functional impact bias), 

Patient Distribution (bias in patient labels), and Cancer Type Distribution (cancer type bias). 

OncodriveCLUST, Oncodrive-fm, and MutSigCV were also applied to the dataset[45, 48, 49].  

We use the Area Under Receiver Operator Characteristic (AUROC) to gauge performance as it is 

threshold independent and testable[87]. In particular, we consider the following classification 

tasks: separation of the HiConf oncogenes (ONCs) and tumor suppressors (TSGs) from other 

genes of unknown function (UK) as separate and pooled classes, and separation of ONCs and 

TSGs from one another.  

Patient Distribution is notable because it relies on a novel cancer gene signal which we call 

patient bias. The contribution of tumors to the pan-cancer dataset is highly unequal because 

tumor mutation rates vary by up to four orders of magnitude (Supplementary Figure S2.3). 

However, mutations within HiConf TSGs and oncogenes are much more evenly distributed 

between patients (Figure 2.1A). Patient Distribution makes use of a chi-square statistic to detect 
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genes which are frequently mutated in relatively hypo-mutated tumors. Unlike many of the other 

statistics and tools we assessed, Patient Distribution detects HiConf oncogenes and HiConf 

TSGs equally well (Figure 2.1B, Table 2.2). In fact, it is the single best test for detecting 

oncogenes and the HiConf panel as a whole, with AUROCs of 0.894 and 0.900, respectively. 

HiConf oncogenes including TRAF7 and ALK are missed by previously published tools at the 

p<0.05 cutoff, but are easily detected by Patient Distribution. 

Cancer Type Distribution is very similar to Patient Distribution, but relies on cancer type bias to 

identify cancer genes. For instance, it easily highlights VHL, a HiConf tumor suppressor which 

is frequently truncated in renal clear cell carinomas. It also identifies the HiConf tumor 

suppressor PTCH1, which is not identified by existing tools.  

Unaffected Residues is our test of mutation clustering and recurrence. Rather than testing for 

clustering directly, as was the approach taken by OncodriveCLUST[49], we instead examine the 

number of unmutated residues. Unaffected Residues is a one-tailed binomial test for the number 

of unmutated residues, assuming the number of mutations per residue is poisson distributed. It is 

the second best method for detecting HiConf ONC (AUROC=0.855) and third best for the whole 

HiConf panel (AUROC=0.861). It is superior to Oncodrive-CLUST in these tasks (Table 2.2). 

The top four genes according to Unaffected Residues are KRAS, PIK3CA, BRAF and TP53, all 

of which are HiConf cancer genes with well known mutation clusters.  

VEST Mean tests for functional impact bias. It reports the probability of a randomly mutated 

gene having a higher average functional impact, very similar in concept to the method used in 

Oncodrive-fm[48], but with better oncogene detection (AUROC=0.796 vs 0.710, Table 2.2). It is 

also the best method for detecting TSGs (AUROC=0.938). 
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Truncation Rate is the final test and has unique properties. It is well appreciated that TSGs are 

enriched in protein-truncating mutations (Figure 2.1C). This pattern lead Vogelstein and 

colleagues to suggest that genes with greater than 20% truncating events be considered putative 

TSGs[44]. Truncation Rate formalizes this concept using a one-sided binomial test, which 

reports the probability of a randomly mutated gene bearing an equal or greater number of 

truncation events (i.e. splice site, premature stop and frameshift indels), given a fixed number of 

mutations. However, as a one-sided test, Truncation Rate is also sensitive to the relative 

depletion of truncation events in oncogenes (Figure 2.1D). It is by far the best method for 

separating oncogenes and TSGs (AUROC=0.922, Table 2.2, ROC curves in Supplementary 

Figure S2.4).  

2.3.4 Integration into a Single Model 
As Table 2.2 illustrates, the tests we have identified are complementary, each having different 

performances in our classification tasks. We hypothesized that a model integrating the full panel 

would be able to separate all three gene classes (HiConf Oncogenes, HiConf TSGs, all other 

genes of unknown function) from one another. To test this hypothesis, we trained a Random 

Forest model on the five individual test values as predictor variables. Gene labels were generated 

from the HiConf panel, resulting in 51 oncogenes (ONC), 48 tumor suppressors (TSG), and 

22,801 unknown genes (UK). Most of the UK genes are passenger genes, so this large class 

serves as a neutral class for training. Training was performed in 5-fold cross validation, with 

results averaged over 50 repetitions.  

The five-test model, which we refer to as RF5, produces a score for probability of membership in 

each class. These scores summate to 1, allowing genes to be visualized in a ternary plot (Figure 
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2.2). UK genes which are placed near the ONC and TSG regions are putative cancer genes, while 

HiConf ONCs and TSGs which are assigned to the Unknown region are false negatives.  

As Figure 2.2 shows, RF5 is able to delineate most HiConf ONCs and TSGs from the bulk of 

UK genes. It also suggests a large number of UK genes which appear similar to ONCs and 

TSGs. Simultaneously, RF5 separates the ONCs and TSGs from one another. When assessed for 

performance at each task separately, RF5 is significantly better or not significantly different from 

the best individual tests. It performs markedly better than VEST Mean in detecting TSGs 

(AUROC=0.980 vs 0.938), the same as Patient Distribution in detection ONCs (AUROC=0.891 

vs 0.894), and the same as Truncation Rate in separating ONCs and TSGs (AUROC=0.924 vs 

0.922, Table 2.2). HiConf genes which are identified by few of the individual tests can often be 

identified confidently by RF5, demonstrating the importance of integrating multiple approaches 

(Supplementary Figure S2.5A).  

2.3.5 Detection of Validation Gene Panels 
The HiConf panel serves as our primary method of assessment for pre-existing tools and our new 

methods. However, RF5 is trained to detect the HiConf panel, and it is possible the RF5 

performance estimates are optimistic even with cross-validation. Therefore, we retrieved four 

validation panels and depleted them of the HiConf panel members to ensure independence (see 

section 2.2.7). We then assessed the ability of our methods to prioritize the validation panels over 

other genes of unknown function (Table 2.3).  

The High Confidence Driver (HCD) panel was defined by Tamborero et al. (2013) using a 

variety of existing tools including Oncodrive-fm[55]. After excluding HiConf cancer genes, it 

consists of 149 members. We find that RF5 has the best performance (AUROC=0.884) on this 

set, but that VEST Mean and Oncodrive-fm are not significantly different. This is expected, as 
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the list was defined in part using Oncodrive-fm. We also examined the Cancer5000 gene panel, 

which has 96 members after depletion of HiConf genes[31]. It overlaps by roughly 50% with the 

HCD panel, and RF5 still has the strongest performance (AUROC=0.943). This panel was 

defined using MutSigCV, which performs well as expected (AUROC=0.882). 

Unlike the HCD and Cancer5000 panels, the TSGene and Kinase panels are largely composed of 

TSGs and oncogenes, respectively (see section 2.2.7). The TSGene panel consists of 55 

manually curated tumor suppressors[85]. VEST Mean has the highest performance 

(AUROC=0.876), but RF5 is not significantly worse. The Kinase panel consists of 29 manually 

curated kinases that are known to harbor activating mutations in cancer[86]. RF5 again has the 

strongest performance (AUROC=0.801). 

2.3.6 Predicted Cancer Genes 
For brevity and clarity we will focus on the top 100 predictions made by RF5 in the pan-cancer 

setting. They include many potentially new cancer genes, of which we will highlight a few 

(Supplementary Figure S2.5B, Supplementary Figure S2.6). Several genes are related to 

chromatin structural and epigenetic regulation. GPS2 and HDAC2 are members of the NCOR-

HDAC3 complex[89] and are predicted TSGs. HIST1H1E, a linker protein in nucleosomes, is 

predicted to be an oncogene. Other novel predicted cancer genes are drawn from a range of 

biological classes: CACNG3 (predicted oncogene) is a voltage-dependent calcium channel 

subunit; NXF1 (predicted TSG) is a nuclear RNA export factor; and HLA-DRB1 (predicted 

TSG) is a subunit of MHC Class II. Additionally, several experimentally known cancer genes are 

linked to human tumors through somatic mutation data for the first time. Among these are the 

oncogenes SGK1[90] and TMEM30A[91] as well as the TSGs RBM5[92], CHD4[93] and 

CHD2[94]. While these are not new cancer genes, their identification by patterns of somatic 
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mutations supports their relevance in human disease. None of these genes are listed in the Cancer 

Gene Census.  

Many top predicted cancer genes are potentially druggable. A query of the Drug Gene 

Interaction Database reveals that 26 of the top 100 predicted cancer genes have known 

interactions with drugs, and an additional 43 belong to a potentially druggable gene 

category[95]. With the majority of top predictions being potentially druggable, the prioritized 

gene list presents opportunities for both new discoveries in cancer biology and more immediate 

pharmacologic interventions.   

RF5 also makes high quality predictions. For instance, very few of the top 100 predicted cancer 

genes are biologically implausible. Among these genes, there is one olfactory receptor (OR4C5) 

and one collagen (COL2A1)[45]. However, technical artifacts remain a concern. For instance, 

the highly ranked genes IL32 and PLAC4 have multiple recurrent frameshift and synonymous 

events. An examination of alignment files from several of the affected patients suggests these 

genes are prone to alignment errors (data not shown). These examples illustrate the need for 

human expertise in scrutinizing prioritized gene lists, and the quality of data and associated 

mutation calls in particular. 

2.3.7 Application to Specific Cancer Types 
Of our tests, only Cancer Type Distribution relies on multiple cancer types; the others may 

perform differently in individual cancers. To address this possibility, the tests from Table 2.2 as 

well as RF5 models were generated for each cancer with at least 500 patients or 200,000 

mutations (breast, colorectal, lung, melanoma and endometrial cancers). This analysis 

demonstrates that the relative performance of these tests is quite consistent across cancer types 
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and that our new methods outperform previous tools in a variety of settings (Supplementary 

Figure S2.7). 

Analyzing the pan-cancer set may allow us to detect additional cancer genes due to increased 

power, but it may also mask cancer-specific cancer genes. To explore this possibility, we 

examined the detection of the HiConf panel in the pan-cancer and cancer-specific datasets. We 

found that 11 HiConf cancer genes were detected in the pan-cancer dataset, but not in the 

individual cancers, while 10 were detected in at least one of the specific cancers, but not in the 

pan-cancer set (Supplementary Figure S2.8A). This suggests that we are likely to make some 

predictions only in the pan-cancer set, and others only in specific cancers. In fact, we found that 

30 of our top 100 pan-cancer predicted cancer genes could only be detected in the pan-cancer set 

(Supplementary Figure S2.8B). These included many promising potential cancer genes such as 

HDAC2, NXF1 and TMEM30A, illustrating the value of pooling cancers. 

We then sought cancer genes that are cancer-specific and compared their detection across cancer 

types. We gathered the top 100 predictions for each of breast, colorectal, lung, melanoma and 

endometrial cancers. Roughly half of the top predictions were cancer-specific (Supplementary 

Figure S2.9). A few examples include: MED23 and MYB as putative TSGs in breast cancer; 

TGIF1 and B3GNT6 as putative TSGs in colorectal cancer; CDK14, IRF2BPL and NTRK2 as 

putative oncogenes in lung adenocarcinoma; CCDC28B and ATAD2 as potential TSGs in 

melanoma; and EIF3C as a potential oncogene in endometrial cancer. We conclude that large 

numbers of cancer genes may be cancer-specific. Taken together, these results suggest the 

importance of searching for cancer-genes in the pan-cancer and specific-cancer settings.  
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2.4 Discussion 
One use of cancer genome sequencing results is the identification of novel cancer genes. This 

problem has two stages: first, cancer genes must be separated from genes bearing only passenger 

mutations; second, cancer genes must be sorted into likely tumor suppressors and oncogenes. 

Both stages are crucial because mechanism-specific predictions are needed to guide downstream 

analyses and experiments. In this chapter, we gathered a pan-cancer dataset of 1.7 million 

variants and a manually curated set of 99 known cancer genes (HiConf panel). Using these data, 

we designed and assessed a panel of statistical tests which identify cancer genes using several 

signals of selection, as well as separate cancer genes by mechanism of action. We also compared 

the performance of these tests to previous tools in accomplishing these tasks.  

In general, we found that HiConf TSGs were easier to detect than HiConf oncogenes. Several 

methods had AUROCs of 0.9 or higher, including the published tool Oncodrive-fm and our tests 

of patient and cancer type bias (Patient Distribution, Cancer Type Distribution). However, the 

best single method for detecting TSGs was our test of functional impact bias, VEST Mean, with 

an AUROC of 0.938.  

In contrast, HiConf oncogenes were less easily identified. This is concerning because oncogenes 

provide more direct targets for drug development. The best performing existing tool for detecting 

the HiConf oncogenes was OncodriveCLUST with an AUROC of 0.808. With the exception of 

Truncation Rate, all of the tests in our panel had AUROCs of 0.80 or greater when detecting 

HiConf oncogenes. Particular improvement was observed with Unaffected Residues, which tests 

for mutation clustering/recurrence and had an AUROC of 0.855, and Patient Distribution, which 

was the best performer with an AUROC of 0.894.  
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Two of our tests warrant emphasis. Patient Distribution uses a novel signal of positive selection. 

It identifies genes with mutations that occur in nonrandom sets of patients, particularly genes 

with mutations that occur in relatively hypo-mutated tumors, as would be anticipated of genes 

bearing driver mutations. For identifying the HiConf panel as a whole (TSG + ONC), Patient 

Distribution is the strongest performer with AUROC of 0.900. Another important member of our 

statistical panel is Truncation Rate. This test is a formalized version of the 20/20 rule for TSGs 

put forward by Vogelstein et al.[44], and uses the binomial distribution to model the expected 

number of truncation events per gene. Truncation Rate can be used to separate TSGs and 

oncogenes with an AUROC of 0.922. It is the only method that usefully accomplished this task.  

Since the individual tests of our panel offered complementary strengths, we also integrated them 

into a single model. We found that a random forest built on our five tests (RF5) was effective at 

separating HiConf oncogenes and TSGs from passenger genes, and from one another. Moreover, 

this integration did not require any loss in performance: RF5 is as good as or better than the 

individual methods at every classification tasks we assessed. We also confirmed these results in 

several independent validation gene panels.  

RF5 identifies many potential pan-cancer cancer genes. These include the predicted oncogenes 

CACNG3 and HIST1H1E, and the predicted TSGs HDAC2, GPS2, NXF1 and HLA-DRB1. It 

also identifies several known cancer genes through genome sequencing for the first time, 

including SGK1, TMEM30A, CHD2, CHD4 and RBM5. Many RF5 predictions are potentially 

druggable. Furthermore, additional cancer genes can be identified when focusing on single 

cancer types. In fact, we found that half of RF5 predictions within tumor types were cancer-

specific. These results illustrate the importance of searching for cancer genes in both the pan-

cancer and specific-cancer settings and suggest many new potential avenues of research. 
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However, there remains room for improvement. As Figure 2.2 illustrates, some oncogenes and 

TSGs could not be detected by RF5, and some were not detectable by any individual test or pre-

existing tool (Supplementary Figure S2.5A). There are two major explanations. Foremost, cancer 

genes will be undetectable if they are primarily altered through means other than somatic 

mutations in the exome. Additionally, our cancer gene panels may include genes that are 

involved in later stages of disease progression, such as metastasis and drug resistance. These are 

true cancer genes, but may be undetectable in the available data as tumor samples largely come 

from newly diagnosed patients[32]. Fortunately, our methods are highly expandable, and 

multiple strategies could improve performance, such as: 1) Introduction of additional, 

heterogeneous data types. 2) Improved tests. 3) Improved model design and training. 4) 

Expansion of the HiConf cancer gene panel.  

In conclusion, our results demonstrate that the detection of putative cancer genes requires a mix 

of complementary methods. We have developed a panel of five statistical tests that outperform 

previous methods. In particular, Patient Distribution detects oncogenes especially well. We have 

also integrated these tests into a single classifier, and demonstrated that it performs as well or 

better than previous tools in both training and validation cancer gene panels. We rely on a 

manually curated set of high-confidence cancer genes to objectively measure the performance of 

our new methods and existing strategies. The innovations presented in this chapter address many 

of the shortcomings present in previous works that attempted to identify cancer genes from 

somatic mutation data.  
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Oncogenes           Tumor Suppressors       

ABL1 ERBB2 IDH1 MET PDGFRA TSHR AMER1 CEBPA MEN1 PRKAR1A SUFU 

AKT1 EZH2 JUN MITF PIK3CA   APC CREBBP MLH1 PTCH1 TET2 

AKT2 FAS KDR MLL REL   ATM CYLD MSH2 PTEN TNFAIP3 

ALK FGFR2 KIT MYC RET   AXIN1 DICER1 MSH6 RB1 TP53 

BCL6 FGFR3 KRAS MYCL1 RNF43   BAP1 EP300 NF1 SETD2 TSC1 

BRAF FLT3 MAP2K1 MYCN SMO   BRCA1 FBXW7 NF2 SMAD4 TSC2 

CARD11 GNA11 MAP2K2 MYD88 SOX2   BRCA2 GATA3 NOTCH1 SMARCA4 VHL 

CCNE1 GNAQ MAP2K4 NFE2L2 STAT3   CDH1 HNF1A NOTCH2 SMARCB1 WT1 

CTNNB1 GNAS MDM2 NKX2-1 TERT   CDKN2A KDM6A PAX5 SOCS1   

EGFR HRAS MDM4 NRAS TRAF7   CDKN2C MAX PIK3R1 STK11   

 

Table 2.1. HiConf cancer gene panel members. The genes included in the HiConf panel are 
listed, according to their status as an oncogene or tumor suppressor (see section 2.2.2).  
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ONC+TSG 

vs. UK 

TSG vs. 

UK+ONC 

ONC vs. 

UK+TSG 
ONC vs. TSG In RF5 Description 

RF5 0.935 0.980 0.891 0.924
b

 
 

Cross-validation predictions of a Random Forest trained on the 

five indicated features and the HiConf panel. 

Patient 

Distribution 
0.900 0.905 0.894* 0.556 Yes 

Detects deviation from expected patient distribution with a chi-

square statistic. P values by resampling. 

Truncation Rate 0.788
a

 0.904 0.694 0.922* Yes 
Detects enrichment or depletion of Frameshift Indels, Nonsense 

and Splice Site events using binomial distribution. 

Unaffected 

Residues 
0.861 0.865 0.855* 0.479 Yes 

Detects clustering using poisson and binomial distributions to 

calculate probability of unaltered residues. 

VEST Mean 0.866 0.938 0.796 0.710 Yes 
Detects high functional impact (based on VEST3). 

P-values from resampling. 

Cancer Type 

Distribution 
0.853 0.905 0.803 0.612 Yes 

Detects deviation from expected cancer distribution with a chi-

square statistic. P values by resampling. 

MutSigCV 0.760 0.896 0.632 0.723 No 
P-value retrieved from MutSigCV. Detects high rates of mutation 

based on gene-specific background mutation rate. 

OncodriveCLUST 0.776 0.741 0.808 0.597 No 
P-value retrieved from OncodriveCLUST summary report. Detects 

high rates of clustering. 

Oncodrive-fm 0.818 0.932 0.710 0.725 No 
P-value retrieved from Oncodrive-fm. Detects high rates of 

functional events using several functional impact scores. 

 

 

Table 2.2. AUROCs of individual tests and RF5 model with HiConf panel. AUROC = Area 
Under Receiver Operator Characteristic, for the separation of the indicated gene classes. 
ONC=HiConf Oncogenes, TSG=HiConf Tumor Suppressor Genes, UK=genes of unknown 
relevance to cancer growth. (*) These performances are not significantly different from RF5 
performance at p<0.05. aTruncation Rate is converted to a two-tail test when identifying the 
combined HiConf panel. bThe ratio of the RF5 TSG and ONC scores is used to separate these 
classes. 
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 HCD Cancer5000 TSGene Kinases 

RF5 0.884 0.943 0.843 0.801 

Patient Distribution 0.713 0.768 0.644 0.745* 

Truncation Rate 0.751
a

 0.836
a

 0.711 0.515 

Unaffected Residues 0.825 0.849 0.792* 0.761* 

VEST Mean 0.876* 0.921* 0.876* 0.731* 

Cancer Type Distribution 0.811 0.861 0.760 0.612 

MutSigCV 0.801 0.882 0.771* 0.525 

OncodriveCLUST 0.686 0.742 0.699 0.657 

Oncodrive-fm 0.876* 0.923* 0.835* 0.627 

 

Table 2.3. AUROCs of individual tests and RF5 with validation gene panels. (*) These 
performances are not significantly different from RF5 at p<0.05. aTruncation Rate is calculated 
as a two-tail test for the HCD and Cancer5000 panels, as they combine TSGs and oncogenes. 
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Figure 2.1. Tests of patient distribution and truncation rate. A) Patients have unequal 
mutation rates, but this effect is less pronounced when considering only HiConf ONCs and 
TSGs. B) Patient Distribution is the p-value from a chi-square goodness-of-fit test for the 
distribution of patients a gene is mutated in, versus the distribution of patients generally. Patient 
Distribution can separate ONCs and TSGs from most other genes, but not from one another. C) 
Distribution of mutation types for each of three gene types. TSGs are relatively enriched for 
truncating events (nonsense, frameshift and splice site) while ONCs are depleted. D) Truncation 
Rate is the binomial upper tail probability of a gene having an equal or higher percentage of 
truncating mutations. Truncation Rate can separate HiConf TSGs and ONCs from one another. 
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Figure 2.2. Predictions from the RF5 ensemble model. Cross-validated predictions of the 
random forest model. N=22,902 genes. Using the three class-specific scores generated by RF5, 
genes can be stratified as oncogene or TSG-like. Genes which are judged as oncogene or TSG-
like, but are not on the HiConf panel, are putatively related to cancer.  
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Figure S2.1. Mutation profiles of typical gene-class members. A) ERBB2 (HER2, 201 
mutations) is a well-known oncogene and has regions of high mutation density which correspond 
to known activating mutations. B) VHL (Von Hippel-Lindau factor, 211 mutations) is a known 
tumor suppressor, and is enriched for truncating (nonsense, frameshift and splice site) events in 
this dataset. C) OR2T33 is an olfactory receptor (201 mutations), with mutations that are 
presumed to be neutral in tumor development. Compared to ERBB2 and VHL, OR2T33 has few 
mutations from tumors with low mutation rates (patients with fewer than 100 mutations total). 
Proteins are broken into 75 equal windows for plotting.   
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Figure S2.2. Cancer gene analysis overview. See section 2.2 for details. 
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Figure S2.3. Pan-cancer dataset composition. 28 major cancer types accounting for 9,377 
samples and 1,670,925 mutations are considered in the figure. A) Exome mutation rates (per Mb) 
are plotted against cancer type for each patient. Boxes enclose interquartile range and highlight 
the median. B) The number of patients per cancer type and percent contribution. C) The number 
of mutations per cancer type and percent contribution. D) Mutation rate (per Mb) distribution for 
all patients with the 28 listed cancer types. *Cervical Adenocarcinoma and Cervical Squamous 
Cell Carcinomas are included together as Cervical Cancers. 
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Figure S2.4. ROC curve for separation of HiConf Oncogenes and TSGs. 
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Figure S2.5. Pan-cancer 
ranking of genes by RF5. A) 
The detection of HiConf genes 
by RF5 and individual tests is 
indicated. Genes are considered 
detected if they are within the top 
500 genes according to the 
indicated test. Genes are ordered 
according to the sum of their RF5 
ONC and TSG scores. Overall 
RF5 rankings are shown to the 
left, and panel membership is 
indicated on the right. B) The top 
100 predicted cancer genes from 
RF5 are shown, along with their 
detection by individual tests. 
Formatting is the same as in 
Panel A. *Note, Truncation Rate 
is calculated as a two sided test 
here.   
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Figure S2.6. Mutation profiles of novel putative cancer genes. 
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Figure S2.7. Performance in specific cancer types. The tests and performance statistics of 
Table 2.2 were calculated for each of 5 cancer types (BRCA = breast, COAD = colorectal, 
LUAD = lung adenocarcinoma, SKCM = melanoma, UCEC = endometrial carcinoma). Cancer 
types required at least 200,000 mutations or 500 patients to be included. RF5 models were 
trained for each cancer type. Tests which are significantly different from RF5 performance 
(DeLong Test p<0.05) are starred (*).  
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Figure S2.8. Detection of 
HiConf and top 100 pan-
cancer predictions in specific 
cancers. A) The HiConf 
cancer genes are listed, and 
their detection by RF5 models 
trained in specific cancer types 
is indicated. Genes are 
detected if they are within the 
top 500 predictions in the 
indicated cancer type. Genes 
are ordered according to the 
sum of their Pan-Cancer RF5 
ONC and TSG scores. Overall 
rankings are shown to the left, 
and panel membership is 
indicated on the right. 
Whitespace indicates that the 
gene was not mutated in the 
specified cancer type. The ratio 
of the RF5 ONC and TSG 
scores for the gene and cancer 
type define whether the gene 
was strongly identified (ratio > 
2:1) as an oncogene or TSG. 
B) The top 100 Pan-Cancer 
RF5 predictions (excluding 
HiConf panel members) are 
listed and their detection in 
individual cancer types is 
indicated. Formatting is the 
same as in Panel A.  
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Figure S2.9. Cancer-specific predicted cancer genes. RF5 models were trained within 5 
specific cancer types. The top 100 predictions (excluding HiConf panel members) from each 
cancer type are listed (from left to right, BRCA = breast, COAD = colorectal, LUAD = lung 
adenocarcinoma, SKCM = melanoma, UCEC = endometrial carcinoma), and their detection in 
other cancer types is indicated. Genes within the top 500 predictions for the cancer type are 
considered detected. Genes are ordered according to the sum of their RF5 ONC and TSG scores. 
Overall rankings are shown to the left for the specified cancer type and pan-cancer datasets, and 
panel membership is indicated on the right. Whitespace indicates that the gene was not mutated 
in the specified cancer type. The ratio of the RF5 ONC and TSG scores for the gene and cancer 
type define whether the gene was strongly identified (ratio > 2:1) as an oncogene or TSG.  
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3. Identifying Drivers with Parsimony 
This chapter is adapted from: 

Kumar RD, Swamidass SJ, Bose R. (2016). Parsimony-guided prioritization of driver mutations 

within an expectation-maximization framework. Submitted. 

3.1 Introduction 
In this chapter, we present a new parsimony-guided paradigm for functional impact prediction 

and apply it to the problem of identifying cancer driver mutations. To do so, we introduce one 

new assumption: drivers are more equitably distributed among samples than passengers. Our 

goal is to use this knowledge to train a parsimonious model that predicts a few drivers in each 

patient. We first adapt an expectation-maximization (EM) framework to identify a parsimonious 

set of simple nucleotide polymorphisms that broadly explains cancer incidence in a training set 

of unlabeled pan-cancer mutations (ParsSNP). We then train a model to identify these putative 

drivers and detect similar mutations prospectively. This approach should be more generalizable 

than existing methods since it uses relatively simple assumptions and avoids the need for pre-

labeled training data. Additionally, unlike most previous methods, our approach is applicable to 

all single nucleotide substitutions (including synonymous, nonsynonymous and premature stop 

mutations) and small frameshift and in-frame insertions/deletions (indels). We first characterize 

the process of training ParsSNP. We then use four classification tasks to assess the ability of 

ParsSNP and other independent tools to detect likely or known driver mutations in pan-cancer 

and other datasets. We also compare the predictions these tools produce in an independent cancer 

exome sequencing dataset, representing a typical usage scenario. Finally, we explore the specific 

mutations and genes that ParsSNP prioritizes in the pan-cancer dataset.  
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3.2 Materials and Methods 

3.2.1 Data Gathering and Quality Control  
We constructed the pan-cancer dataset in chapter 2 and a full description can be found there[96]. 

Mutation data was drawn from the TCGA, ICGC and COSMIC. Data was updated to build hg19 

and duplicate data was deleted[81]. Mutations were annotated with ANNOVAR using RefSeq 

gene and ljb26 libraries[82]. The dataset contains 1,703,709 mutations drawn from 10,239 

tumors representing 28 cancer types.  

In keeping with established practice, we first removed potentially biologically distinct 

hypermutated samples[32, 45]. Since there is no universal cutoff for defining hypermutation[32, 

56], we used the median mutation burden (715 mutations) to generate two equally sized 

segments that differ only by mutation rate: 435 samples with 851,996 mutations, and 9,804 

samples with 851,713 mutations. The 9,804 non-hypermutated tumors were randomly split 2:1 to 

generate a 6,536 tumor (566,223 mutation) training dataset and a 3,268 tumor (285,490 

mutation) test dataset. 

We also apply our models to external data. We drew 2,314 mutations from the IARC R17 

systematic P53 yeast screen collection as a benchmarking set[97]. Like Reva et al, we averaged 

the normalized scores of all eight downstream targets to reduce technical variation[98]. We also 

constructed the “driver-dbSNP” benchmarking dataset from several sources, consisting of: 

49,880 common SNPs (minor allele frequency > 1% in human populations) from dbSNP build 

142 as presumably non-functional germline mutations; 289 known activating kinase mutations 

from Kin-Driver[86]; and 849 known non-neutral mutations from Martelotto et al’s recent 

benchmarking study[99]. We also drew exome sequencing results from Kakiuchi et al’s study of 

30 diffuse-type gastric carcinomas[100]. Once intergenic and intronic mutations were removed, 
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2,988 mutations remained in this dataset. All external data was re-annotated and treated the same 

as our pan-cancer datasets except where noted. Mutations that could not be annotated are 

excluded. 

At several points in the analysis, we make use of the Cancer Gene Census, a curated list of 

mutations that are associated with cancer[83]. We further narrow this list with the approach used 

by Schroeder et al[56]. Specifically, we remove genes that have only been associated with 

translocation events, since our dataset does not contain similar events and many of these genes 

may not be directly associated with cancer. Similarly, we remove genes that have no recorded 

somatic mutations according to CGC annotations. This leaves 208 genes in the dataset. For the 

remainder of this chapter, when we refer to the CGC, we are referring to this reduced set of 

genes. Where appropriate, we further divide this set into putative oncogenes or tumor 

suppressors based on their annotated genetic profile (dominant or recessive, respectively)[56]. 

Genes with ambiguous profiles are excluded.  

3.2.2 Mutation Level Descriptors 
ParsSNP uses 20 mutation-level descriptors. Rather than directly train on functional, structural or 

evolutionary descriptors, ParsSNP incorporates such data indirectly by including 16 previous 

functional impact scores (FIS) from the ANNOVAR ljb26 libraries[82]. Details are available 

through ANNOVAR, but they include established tools such as SIFT, Polyphen2, 

MutationAssessor, FATHMM, VEST, and CADD. To these we added three additional mutation-

level descriptors. Normalized Position is equal to the mutation position divided by the protein 

length. The Blossum62 score was assigned for amino acid substitutions. The final variable is 

Mutation Type, which is encoded as two descriptors (VarClassS, VarClassT) that indicate if the 
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mutation is silent (including synonymous, intronic and untranslated mutations) or truncating 

(including frameshift, splice site, nonstop and nonsense mutations).   

3.2.3 Gene Level Descriptors 
Four descriptors provide gene-level data. The first is protein length. The rest are drawn from the 

work presented in chapter 2[96]. Unaffected Residues tests for nonrandom mutation recurrence 

within the gene. Truncation Rate tests for enrichment or depletion of truncation events within a 

gene. Finally, Cancer Type Distribution tests for genes that are mutated in nonrandom subsets of 

cancers. We chose these three tests because they are non-redundant with the other information 

sources available to ParsSNP. These tests were calculated as outlined previously using the 

training dataset, and applied to additional datasets as annotations. 

3.2.4 Imputation and Data Scaling 
As our calculations are based on the configuration of mutations within tumors, we cannot simply 

remove mutations with missing data without removing whole samples and quickly depleting the 

dataset. Therefore we make use of data imputation at several levels. 

Most important is the handling of non-missense mutations, to which many FISs do not apply. We 

adapted the strategy of OncodriveFM to impute these values[48]. We consider “truncations” 

(encompassing nonsense, nonstop, splice site, frameshift and inframe indels) as more likely to be 

drivers, while we consider “silent” mutations (including synonymous, intronic and untranslated 

mutations) as less likely. For 9/16 FISs, a classification as functional or neutral is made based on 

thresholds provided by the original authors[82]. For each of these impact scores, truncation 

events with missing values were assigned the average value given to predicted functional 

mutations. Similarly, silent mutations with missing values were assigned the average value of 

neutral missense mutations. For tools that had them, intermediate classes were deemed 
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functional. For the seven scores without classification schemes, we used the 95th and 5th 

percentiles as imputation values for the truncation and silent mutation classes, respectively. 

ParsSNP results are robust to reasonable changes in the percentiles used. 

Remaining missing values are then replaced by mean imputation. Only one of the descriptors had 

more than 5% missingness in the training set, and none were greater than 10%. Finally, the 

training set is scaled so that each descriptor is in the range of[0,1], in keeping with best practice 

for neural network models[101]. Wherever applicable, descriptors, imputation and scaling values 

were calculated using the training set and applied to other datasets.  

3.2.5 Adapting the Expectation-Maximization Algorithm 
The Expectation-Maximization (EM) algorithm can fit statistical models with missing or latent 

data[65]. However, it requires that constraints be placed on the possible solutions. For instance, 

Zaretzki et al used the EM algorithm to predict atomic sites of P450 metabolism using region-

level data, but constrained the number of metabolic sites per region[102]. In ParsSNP’s learning 

phase, the missing data is the status of mutations as drivers or passengers, which is constrained 

so that 1) drivers are relatively equitably distributed among samples, and 2) they are consistent 

with the descriptors. The E-step will use the first constraint, while the M-step uses the second.  

3.2.6 Learning Initialization 
ParsSNP begins with descriptors for an unlabeled training set of mutations (X matrix), with each 

mutation belonging to a biologic sample. ParsSNP uses EM to find a set of labels for the training 

mutations; more precisely, as a probabilistic model, ParsSNP finds a set of probabilities that 

describe the unseen, binary driver/passenger labels (we refer to these probabilities as ‘ParsSNP 

labels’ in the main text). We initialize ParsSNP with a random uniform vector of probabilities. 

Samples are assigned into equally sized folds that will be used during the M-step throughout the 
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training process, such that mutations never inform their own updates. The probabilities are then 

iteratively refined by the E and M-steps until they stabilize. 

3.2.7 The E-step 
The E-step updates probabilities based on the combination of mutations within samples. The 

probabilities for a given sample (Y) are updated under the belief that the unseen total number of 

driver mutations in the sample (t) is between a lower (l) and upper (u) bound. Each probability is 

updated based on the following question: of all the possible configurations of driver/passenger 

binary labels for the sample in which t is between l and u, what proportion require the mutation 

be a driver (weighted by probability)? 

This can be formalized using Bayes’ Law and some additional definitions. M is the unseen vector 

of binary mutation labels which sum to t in each sample, while m is the unseen label of the given 

mutation. Y is the current vector of probabilities, while y is the probability of the given mutation. 

We denote values that exclude the mutation using prime notation. Given these definitions, the 

value of y can be updated with the following equation: 

ynew = E[m | l ≤ t ≤ u] = y * P(l-1 ≤ t’  ≤ u-1) / P(l ≤ t ≤ u) 

While we cannot calculate t and t’  directly, our beliefs regarding the mutation labels M and M’  

are described by Y and Y’. Therefore t and t’ can be treated as poisson binomial random variables 

parameterized by Y and Y’[103]. For each sample in the dataset, Bayes’ Law is applied to each 

mutation. The poisson binomial cumulative density function is calculated exactly in samples 

with fewer than 30 mutations and with a refined normal approximation for samples with 

more[103].  
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The most important parameters in the E-step are the lower and upper bounds. The lower bound is 

the simpler of the two and is fixed at one driver per sample. A higher value lacks biological 

justification in cancer, since tumors have been observed with no exomic mutations[11]. 

However, setting the lower bound to zero leads the algorithm to converge on a vector of very low 

values; this is consistent with the constraint, but non-informative (Supplementary Figure S3.1). 

The upper bound is more complex as the algorithm makes use of two versions. The ‘fixed’ upper 

bound is defined as log2[mutation burden]. Therefore, a sample with 8 mutations is believed to 

have between 1 and 3 drivers, while a sample with 1024 is believed to have between 1 and 10 

drivers; these ranges illustrate how drivers are presumed to be more equitably distributed than 

passengers. Using log2 as a function yields reasonable upper bounds over the range of mutation 

burdens; however, its stringency can cause underflow errors even with double precision 

arithmetic. The problem most often occurs in very mutated samples in early iterations. Therefore, 

we define a second, less stringent ‘sliding’ upper bound that is often used initially and is set to 

some proportion (p) of the total current belief for the sample (default p=0.9). The E-step uses 

whichever is greater of the sliding and fixed upper bounds. For instance, a sample with 1024 

mutations is initialized with a random vector of probabilities, and is therefore currently expected 

to have ~500 functional mutations on average. The sliding upper bound is p*500=450, while the 

fixed upper bound is log2(1024)=10. Given the current probabilities, the probability of the total 

number of drivers being less than 10 is essentially zero, requiring the use of the sliding upper 

bound. The sliding upper bound applies a consistent, downward pressure on probabilities until 

the fixed upper bound can be used without risking underflow errors. The algorithm is robust to 

reasonable alternatives for defining both upper bounds (Supplementary Figure S3.1).  
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These concepts are clearer when viewing the E-step code (see section 3.2.13). An important 

point should be made here however: the upper and lower bounds are “soft” bounds. In the final 

solution, many samples will be assigned a number of drivers beyond the suggested bounds. 

While these bounds are important to understanding the behavior of the E-step, in practice any 

reasonable function for defining these values leads to similar results.  

3.2.8 The M-step 
The M-step follows a standard machine-learning approach. Samples are assigned to one of five 

cross-validation folds, which are fixed so that samples never inform their own updates. ParsSNP 

was robust to changes in the number of folds (Supplementary Figure S3.1). We fit a single layer 

neural network to the data, which is capable of producing well-scaled outputs that can be 

interpreted as probabilities by the E-step and has been used for this reason previously[102]. The 

neural network parameters are set by grid search (weight decay[0.1, 0.01, 0.001], size[6, 12, 18]) 

through bootstrap selection (10 samples of 10,000 mutations each). The cross-validated predicted 

probabilities are then returned and passed to the E-step if the stop criteria are not satisfied.  

3.2.9 Algorithm Stop and Model Training 
The algorithm ends once the vector of mutation probabilities stabilizes. We define stabilization 

as a mean-square difference (MSD) between iterations of less than 1e-5, or a change in MSD of 

less than 5% between iterations. In practice, the second relative cut-off was invoked more often 

than the absolute cut-off, but the algorithm consistently converged by 30 iterations even under 

highly stringent cut-offs.  

Once the algorithm ends, we have a vector of probabilities for the training data that optimally 

meets our constraints, and are interpreted by ParsSNP as the probability of each mutation acting 

as a driver. These probabilities are the ‘ParsSNP labels’ which we refer to in the main text. As 



56 
 

the cross-validation approach we use is non-deterministic, we run the algorithm 50 times and 

average the final outputs to generate a final result (ParsLR was trained with 50 runs, ParsFIS and 

ParsNGene were trained with 10 runs, and cancer-specific models were trained with 5 runs, see 

section 3.2.10 for details). The final ParsSNP neural network model is trained with the labels and 

descriptors using identical settings as the M-step. Note that we could use a different machine 

learner or even different descriptors at this stage: the EM component of ParsSNP has generated a 

set of probabilistic labels for the training data, and now the question is one of modeling. The 

final model is then applied to the various datasets to produce ParsSNP scores.  

3.2.10 Methodological Controls 
Since ParsSNP consists of several components, we include several variations on ParsSNP for 

comparison. ParsLR uses logistic regression rather than a neural network. ParsFIS uses only the 

16 descriptor FISs, while ParsNGene only excludes the three gene-level descriptors described in 

chapter 2 (Truncation Rate, Unaffected Residues, Cancer Type Distribution)[96]. We also 

include supervised versions of ParsSNP, which use neural networks and all descriptors but are 

trained to perform each task directly. The recurrence-trained and CGC-trained models are trained 

in the pan-cancer training set, and assessed in the test set, with labels defined as they were for the 

primary ParsSNP model. The driver-dbSNP- and P53-trained models were trained and tested 

using 10-fold cross validation directly in the corresponding datasets, since we had insufficient 

data for separate training/test sets in these cases. The model type and tuning procedure is 

identical to that used in the M-step of ParsSNP’s training. Since ParsSNP incorporates several 

gene-level descriptors, we ran gene-level tools which are designed to detect cancer genes on the 

pan-cancer training set and then assessed their performance in the test set (MutSigCV, 



57 
 

OncodriveFM, and OncodriveCLUST[45, 48, 49]. We also consider CGC membership as a 

simple approach for defining drivers. 

3.2.11 AUROCs for Measuring Performance 
For comparing ParsSNP with alternate strategies, we follow the strategy of Carter et al and use 

the area-under-receiver-operator-characteristic (AUROC)[63]. The receiver-operator-

characteristic is a curve constructed from the sensitivity and specificity of a classifier at each 

possible threshold. The area under this curve summarizes classifier performance: a classifier 

which can achieve perfect sensitivity and specificity simultaneously has AUROC=1, while 

random guesses should produce AUROC=0.5. AUROCs are advantageous because they 

encompasses all thresholds simultaneously, while remaining statistically testable[87]. This 

maximizes comparability between ParsSNP and the independent tools, which often do not have 

fixed thresholds (e.g. CHASM), or have recommended thresholds that are meant to optimize 

performance in datasets that are different from ours. It is important to note that we have not used 

thresholded predictions from the independent tools: unless otherwise noted, all tools are assessed 

based on their raw scores, even when the original authors provide thresholds. In practice of 

course, users may want to apply thresholds to ParsSNP to improve interpretability. We 

recommend that thresholds be set in a context specific manner, taking into account the relative 

need for sensitivity and specificity, and the relative costs of false positives or negatives.  

3.2.12 Statistics and Software 
ROC curves were compared using Delong tests for correlated or paired data[87]. Gene-to-gene 

comparisons were made using Wilcoxon one- or two-sample tests. All tests were two-sided 

unless otherwise noted. Multiple comparisons were Bonferroni corrected unless otherwise noted. 
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All analyses and calculations were performed in 64-bit R version 3.1 using double precision 

arithmetic. Poisson binomial distributions were calculated with the ‘poibin’ R package[103], 

while neural networks were fitted and tuned using functions from the ‘nnet’ and ‘e1071’ 

packages[104]. ROC analysis were performed with the ‘pROC’ package[105].  

CanDrA, CHASM, FATHMM Cancer, TransFIC and Condel, MutSigCV and OncodriveCLUST 

were applied to our datasets using the software made available through the original publications. 

Oncodrive-fm was re-implemented in R according to the protocol in the original publication.  

3.2.13 Code Availability & URLs 
The software and datasets required to replicate this analysis are available at github.com/Bose-

Lab/ParsSNP. Annovar, http://annovar.openbioinformatics.org; Cancer Gene Census, 

http://cancer.sanger.ac.uk/census/; CanDrA, 

http://bioinformatics.mdanderson.org/main/CanDrA; CHASM, http://www.cravat.us/; 

FATHMM Cancer, http://fathmm.biocompute.org.uk/cancer.html; TransFIC, 

http://bg.upf.edu/transfic/home; Condel, http://bg.upf.edu/fannsdb/; MutSigCV, 

https://www.broadinstitute.org/cancer/cga/mutsig; OncodriveCLUST, 

https://bitbucket.org/bbglab/oncodriveclust/get/0.4.1.tar.gz. 

3.3 Results 

3.3.1 ParsSNP overview  
ParsSNP identifies likely drivers using a training set of unlabeled mutations from a collection of 

biological samples and two constraints. First, predicted drivers should be few in number and 

distributed relatively equitably among samples. Second, predicted drivers must be identifiable 

using the descriptors. Figure 3.1A provides an overview of ParsSNP, with details in section 3.2). 

There is a learning and application phase. 
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In the learning phase, ParsSNP generates probabilistic driver labels for the training mutations. 

The labels are initialized with random values from 0 to 1; they are then iteratively refined by 

expectation-maximization (EM), each step representing a constraint. In the expectation (E) step, 

each label is updated using Bayes Law and the belief that in a sample with N mutations, between 

1 and log2(N) mutations drive tumor growth . Since this range scales logarithmically, the E-step 

ensures that predicted drivers are uncommon and relatively equitably distributed among samples. 

The maximization (M) step builds a probabilistic model and updates the labels using the 

descriptors in cross-validation, ensuring that predicted drivers can always be defined in terms of 

the descriptors. We use a neural network, since this model produces well scaled 

probabilities[102]. The E-step and M-step iterate until convergence.  

In the application phase, the refined labels are used to train a final ParsSNP neural network. For 

clarity, we differentiate between the probabilistic “ParsSNP labels” produced by EM for the 

training data, and the “ParsSNP scores”, which are defined by the model in all datasets (Figure 

3.1A).  

3.3.2 Datasets & Analysis Design 
Our pan-cancer dataset consists of 1,703,709 protein-coding somatic mutations from 10,239 

samples[96], broken into three partitions: a 435 sample (851,996 mutation) “hypermutator” set; a 

6,536 sample (566,223 mutation) “training” set; and a 3,268 sample (285,490 mutation) “test” 

set (see section 3.2.1). We also use experimental and germline data. The “driver-dbSNP” dataset 

has 49,880 common variants from dbSNP plus 1,138 experimentally validated drivers from Kin-

Driver[86] and Martelotto et al[99], while the “P53” dataset has 2,314 mutations from the IARC 

R17 P53 yeast screen[97]. Finally, we assess ParsSNP in a typical usage case with the Kakiuchi 

et al dataset of 30 diffuse-type gastric carcinomas[100]. We also make use of the Cancer Gene 
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Census, excluding genes that are only involved in translocations (see section 3.2.1)[56, 83]. We 

use 23 descriptors, including 16 published FISs, plus three mutation-level and four gene-level 

annotations (see sections 3.2.2 and 3.2.3). 

Since no “gold standard” for cancer drivers exists, we use the above datasets to assess ParsSNP 

in four classification tasks, each designed to represent qualities of driver mutations (see Table 

3.1). The first is detecting recurrent mutations that occur in two or more samples of the test set. 

This is an important task, since recurrent mutations are often considered as driver proxies[62]. 

The second task is identifying test set mutations that are within CGC members, since all else 

equal, mutations in known cancer gene are more likely drivers. Since cancer genes are enriched 

in recurrent mutations, we limit this task to only non-recurrent mutations to avoid redundancy. 

The third task is identifying experimentally defined drivers among common (and presumably 

neutral) germline variants. The driver-dbSNP dataset is meant to resemble real world data, where 

mutations are drawn from many genes and only a few mutations are drivers. The final task is 

identifying disruptive events (mutant activity is <25% of wild type activity) over non-disruptive 

events in P53. This classification task is crucial, since many applications will focus on 

experimental data in one or a few genes. 

Our primary performance measure is the area-under-receiver-operator-characteristic (AUROC). 

AUROCs are useful because they summarize performance across all prediction thresholds and 

are statistically testable, and have been used for these reasons previously[63]. These values are 

equivalent to the accuracy of a tool when sorting random pairs consisting of one driver and one 

passenger, as defined in each task (1-AUROC is the corresponding error rate of the tool). They 

can range from 0.5 (equivalent to classifying mutations by guessing) to 1.0 (perfect classification 

accuracy with no errors; see section 3.2.11 for details). 



61 
 

For each task, we compare ParsSNP to competing methods that are designed to detect cancer 

drivers but were not used as descriptors. These “independent tools” include CanDrA, a 

supervised ensemble method trained to detect recurrent mutations in pan-cancer data[62]; 

CHASM, a supervised model that is trained using curated cancer mutations[63]; FATHMM 

Cancer, a Hidden-Markov-Model based approach[106]; TransFIC, a method of recalibrating 

FISs for cancer data (the base score is MutationAssessor, which had the best performance in the 

original study)[107]; and Condel, an ensemble method that was not designed specifically for 

cancer, but was shown by its authors to be useful for detecting drivers[108]. Each tool was 

applied to the datasets using the published software (see section 3.2.13). Matching or improving 

upon the performance of these tools will demonstrate the value of ParsSNP as a method for 

detecting driver mutations.  

3.3.3 ParsSNP Training, Robustness and Performance 
An EM approach requires careful empirical testing to ensure it returns an appropriate result. 

ParsSNP consistently converged within 15-20 iterations (Supplementary Figure S3.2A). It was 

highly reproducible, with an average pairwise correlation of 0.99 over 50 runs. Though small, the 

variations lead us to average the 50 runs for the final labels. They are right-skewed as expected, 

suggesting a minority of mutations as drivers (Figure 3.1B). After training the final ParsSNP 

model using these labels, we assessed the contribution of descriptors to the neural network using 

Garson’s algorithm (as described by Olden et al[109], Figure 3.1C). We find that all descriptors 

make at least moderate contributions to the model.  

ParsSNP is trained such that putative driver mutations should be distributed relatively equitably 

among samples (i.e. enriched in the least mutated samples, and depleted in hypermutators on a 

per-mutation basis). We tested to ensure ParsSNP scored mutations in this way (Figure 3.1D). 



62 
 

Mutations from less mutated tumors were more likely to be identified as drivers regardless of 

ParsSNP threshold; this pattern continues into the hypermutator set, which was not used for 

training. On average, hypermutators have 23-times more mutations than nonhypermutators 

(1,958:86.6), but only 5.5 times more mutations with ParsSNP scores over 0.1 (7.17:1.3). At a 

very stringent cutoff of 0.5, the ratio is only 3.3 (0.23:0.07). Therefore, ParsSNP assigns putative 

drivers relatively evenly in both the training and held-out hypermutator sets, suggesting that the 

parsimony-guided training worked as intended.  

Both the training data and several tunable parameters may affect algorithm behavior. To test 

consistency across datasets, we split the training data into two equal halves and found that 

ParsSNP produced highly correlated scores (r=0.96, Supplementary Figure S3.2B). We also 

compared the results of fifteen alternative parameters settings (Supplementary Figure S3.1), 

definitions in sections 3.2.5-3.2.8). The algorithm consistently converged and usually produced 

labels that were highly correlated with the reference; even when results differed, the overall 

ordering of mutations was highly consistent, suggesting that ParsSNP will identify a consistent 

set of putative drivers over reasonable parameters and data.  

To help understand ParsSNP’s performance, we applied several methodological controls to the 

classification tasks in addition to the primary ParsSNP model. These controls include versions of 

ParsSNP that use a simplified model (logistic regression), versions that lack gene-level 

descriptors, stand-alone gene-level tools, and models that are explicitly trained to perform the 

tasks through supervised learning rather than the unsupervised EM training (Supplementary 

Figures S3.3-S3.6, see section 3.2.10 for model descriptions). We found that using logistic 

regression rather than a neural network slightly degraded ParsSNP’s performance in most tasks. 

We observed that gene-level tools generally do not perform well in the tasks when used in 
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isolation; however, removing the gene-level descriptors from ParsSNP does markedly degrade 

performance in most tasks. We also found that supervised learning is not as effective as the 

unsupervised EM training in 12 of 16 comparisons. As expected, supervised models often 

performed well at the tasks they were trained to perform, but unlike ParsSNP their performance 

was inconsistent in other tasks. We conclude that the most important source of ParsSNP’s 

performance is the combination of the novel feature set (particularly the inclusion of gene-level 

features) with the unsupervised EM training. The following sections explore ParsSNP’s 

performance in the classification tasks in-depth. 

3.3.4 Testing ParsSNP with Pan-Cancer Data 
ParsSNP was applied to the withheld test dataset of 3,268 pan-cancer tumors (285,490 

mutations). Because the independent tools do not apply to synonymous and truncating mutations, 

the analysis was limited to 182,483 missense mutations, except where noted.  

The first classification task we considered was identifying recurrent mutations, since they are 

often treated as drivers[62]. ParsSNP scores are positively correlated with mutation recurrence in 

the test set (Figure 3.2A), and overall are more highly associated with recurrence than any of the 

independent tools (Figure 3.2B). Overall, ParsSNP identified 9,434 recurrent missense mutations 

with AUROC=0.656 (95% CI 0.650-0.663), better than any independent tool (Figure 3.2C, Table 

3.1, all Delong tests p<2.2e-16). CanDrA was the next best (AUROC=0.608, 95% CI 0.601-

0.615), which is not surprising considering it was trained with recurrent mutations[62]. 

Recurrence also provides an opportunity to assess ParsSNP performance within genes, which is 

crucial since ParsSNP uses gene-level descriptors and 75% of its variation is between genes 

(based on sums-of-squares). We found that ParsSNP generally performed as well in single genes 

as it did in the entire dataset (Figure 3.2D).  
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The second classification task was identifying mutations in one of 208 CGC members, which 

should be enriched in driver events. We limited scope to non-recurrent missense mutations to 

avoid confounding with the prior analysis. ParsSNP identifies the 3,760 non-recurrent cancer 

gene mutations with AUROC=0.833 (95% CI 0.825-0.841), better than the independent tools 

(Figure 3.2E, Table 3.1, all Delong tests p<2.2e-16).  

Unlike the independent tools, ParsSNP generates scores for non-missense mutations. It is 

biologically intuitive that there will be an interaction between mutation type and gene type in 

predicting drivers: we expect that truncations (frameshifts, premature stops) are less likely to be 

drivers than missense mutations when present in oncogenes, while the opposite is true in tumor 

suppressor genes (TSG), and silent mutations are unlikely to be drivers regardless of gene 

type[44]. We split CGC members into putative oncogenes and TSGs (see section 3.2.1) and 

found that ParsSNP was able to identify precisely the expected pattern (Figure 3.2F). We 

questioned which descriptors were responsible, since ParsSNP is not directly aware of gene type. 

Truncation Rate, which separates oncogenes and TSGs based on rates of truncation events [96], 

showed a marked interaction with mutation type (Supplementary Figure S3.7A). The ability to 

detect interactions between the descriptors illustrates the value of using a neural network rather 

than a simpler model (Supplementary Figure S3.7B). 

3.3.5 Testing ParsSNP with Experimental Data 
In our third classification task, we assessed ParsSNP’s performance in the driver-dbSNP dataset, 

which combines a large number of (presumably neutral) common germline variants with 

relatively few experimentally validated drivers. 13,738 genes are mutated at least once in the 

dataset, and 49 have at least one functional mutation. ParsSNP detected the drivers with 

AUROC=0.975 (95% CI 0.970-0.981, Figure 3.3A), slightly better than FATHMM Cancer 
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(Table 3.1, Delong test p=0.205) and significantly better than the other independent tools (all 

Delong tests p<1e-4). We also performed a precision-recall analysis, which suggested that 

CanDrA, ParsSNP and FATHMM Cancer were the best performers, with area-under-precision-

recalls (AUPRs) of 0.84, 0.83 and 0.83 respectively (Figure 3.3B). We conclude that ParsSNP 

prioritizes rare drivers over common germline variants better than existing tools. 

The fourth classification task focuses on the IARC P53 dataset, which consists of P53 

transactivation activity against downstream targets for 2,314 missense mutations[97]. Like many 

FISs, ParsSNP ascribes higher scores to mutations that abrogate P53 activity (Figure 3.3C). 

However, ParsSNP is more strongly associated with the P53 fold activity change than any 

independent tool (Figure 3.3D). ParsSNP is a strong performer when identifying the 475 

mutations that reduce P53 activity to 25% or less of wild type activity, though it was statistically 

tied with CHASM (Delong test p=0.39) and Condel (Delong test p=0.59, Table 3.1, Figure 

3.3E).  

3.3.6 Summary of ParsSNP Performance 
As Table 3.1 shows, ParsSNP outperforms most or all of the independent tools in every 

classification task. Out of the 20 comparisons, ParsSNP outperformed existing methods 19 times, 

17 of which were statistically significant. The three statistical ties are: ParsSNP and FATHMM 

Cancer in the driver-dbSNP task; ParsSNP and CHASM in the P53 task; and ParsSNP and 

Condel in the P53 task. Importantly, we note that there is no single tool that can act as an 

alternative to ParsSNP across all tasks. We anticipate that ParsSNP will be applied to diverse 

data that will resemble the classification tasks to varying degrees. Therefore, the fact that 

ParsSNP performs very well against existing methods in all tasks is an extremely important 
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finding, since it suggests that ParsSNP’s performance relative to other tools will be consistent in 

novel datasets.  

Moreover, as a summary of accuracy, seemingly modest differences in AUROCs can imply large 

performance gains under particular conditions. For instance, several tools perform well in the 

driver-dbSNP task, often with AUROCs over 0.90. However, since AUROCs of 1.0 represent 

perfect accuracy with no errors, even small gains represent large drops in the AUROC error rate: 

ParsSNP’s performance in this task (AUROC=0.975) represents more than a two-fold reduction 

in errors when compared to CHASM (AUROC=0.948), which is the most cited of the 

independent tools. Another valuable consideration is the precision (positive-predictive-value) if 

only a few predictions can be tested. For instance, ParsSNP and CanDrA had the top overall 

performance in the Recurrence task (AUROCs=0.656 and 0.608, respectively). The difference 

between these tools is emphasized when considering just the top 100 candidate drivers identified 

by each. At this threshold, ParsSNP has a precision of 98% (2 mutations of 100 are false 

positives), while CanDrA has a precision of only 84% (16 false positives), an 8-fold increase in 

false positives. These examples illustrate how dramatically ParsSNP reduces errors compared to 

other methods under typical conditions. 

3.3.7 Application of ParsSNP to an Independent Dataset 
We illustrate the advantages of ParsSNP in a typical usage scenario by applying it to recent data 

from Kakiuchi et al. This dataset contains 2,988 protein-coding mutations from 30 exome-

sequenced diffuse-type gastric carcinoma patients[100]. For comparison, we also apply CanDrA 

and CHASM, the most recently published and the most cited of the independent tools, 

respectively. We define candidate drivers as those with scores in the top one percent for each 

tool (30 candidates per tool).  
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We compared the candidate drivers generated by these tools (Figure 3.4). We found that 

approximately one third (11 out of 30) of ParsSNP’s candidate drivers overlap with other 

methods. These candidate drivers include missense mutations in well-established cancer genes 

including PIK3CA, FGFR2 and P53 (gene symbol: TP53). Two thirds of ParsSNP’s candidate 

drivers (19 out of 30) were not identified by other tools at this cut-off. These mutations include 

truncations in known TSGs (ARID1A, CDKN2A, SMAD4 and P53)[96, 110], recurrent 

mutations (CDC27 Y173S), and confirmed drivers (RHOA Y42C)[100]. For comparison, 

mutations uniquely identified by CanDrA included biologically implausible drivers such as 

mutations in titin and dystrophin (TTN and DMD), which are very large skeletal muscle 

proteins[45], and mutations which have been experimentally confirmed as functionally neutral 

(ERBB2 R678Q)[40]. Mutations uniquely identified by CHASM were frequently in genes with 

no known or suspected role in cancer development, illustrated by the fact that only 2 out of these 

27 mutations are present in members of the CGC[83]. These results show that ParsSNP identifies 

many likely drivers that other tools do not detect; furthermore, many of the mutations identified 

exclusively by other tools are unlikely to act as cancer drivers.  

We also explored which mutations would be identified as drivers on a per-patient basis, since 

ParsSNP and similar tools will frequently be used in this fashion as it becomes common to 

exome-sequence clinical cases. Table 3.2 shows the top five candidate drivers as identified by 

ParsSNP, CanDrA and CHASM in patients 313T, 319T and 361T from the Kakiuchi dataset. In 

patient 313T, ParsSNP correctly identifies RHOA Y42C as a driver, and also suggests PIK3CA 

H1047L (H1047R is a confirmed driver[111]) and a truncation in the tumor suppressor ARID1A. 

Of these three plausible drivers, CanDrA and CHASM only identify the PIK3CA mutation. In 

patient 319T, ParsSNP identifies several truncations in known tumor suppressors SMAD4, 
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ARID1A and P53, which the other tools miss since they do not apply to truncations. ParsSNP 

also informatively suggests that these truncations are more likely to be drivers than the R56C 

mutation in BAP, which is itself a known cancer gene[83]. Finally, ParsSNP identifies missense 

mutations in the known cancer genes P53, FGFR2 and NOTCH2 in patient 361T, as well as a 

truncation in the tumor suppressor CDKN2A[83]. Of these, CanDrA and CHASM only identify 

the P53 and FGFR2 mutations. However, they also identify an implausible candidate driver in 

dystrophin (DMD R137Q)[45]. Based on these observations, we conclude that ParsSNP 

identifies candidate drivers that are more biologically plausible than those produced by 

competing methods, both across whole datasets and within individual patients. 

3.3.8 ParsSNP and Novel Driver Identification 
Another use of ParsSNP is to identify biological hypotheses. We pooled ParsSNP scores for the 

hypermutator, training and test sets. To narrow focus, we considered only the 75 unique 

mutations with ParsSNP scores over 0.5 (Table 3.3). They include recurrent driver mutations in 

BRAF (V600E), IDH1 (R132C/L) and NRAS (Q61R), but 54/75 mutations are not recurrent, 

including the top three: CTNNB1 P687L (ParsSNP=0.795), NRAS E153A (0.789), and 

CTNNB1 F777S (0.787). Most of the mutations are within CGC members, but thirteen are not: 

two are in TATA-binding protein (TBP A191T and R168Q) and three are in a calcium-

dependent potassium channel (KCNN3 R435C, L413Q and S517Y). Moreover, TBP and 

KCNN3 have generally elevated ParsSNP scores by one-sample Wilcoxon test (Supplementary 

Figure S3.8, Bonferroni p<0.05). Taken together, ParsSNP suggests these genes as putative 

cancer genes, with TBP A191T and R168Q, and KCNN3 R435C, L413Q and S517Y as the most 

promising driver mutations.  
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We also examined the differences in ParsSNP scores between hypermutators and non-

hypermutators (training and test). While many genes have elevated scores exclusively in the 

nonhypermutators, none could be detected in only the hypermutators (Supplementary Figure 

S3.9A). However, a differential functionality analysis on a per-gene basis (Supplementary Figure 

S3.9B) highlighted two genes: RNF43 (a ubiquitin ligase[112]) and UPF3A (involved in 

nonsense mediated decay[113]) have modestly but significantly elevated ParsSNP scores in the 

hypermutated samples, suggesting that they may play a role in hypermutator biology.  

3.3.9 Avenues for Model Improvement 
Two possible approaches for improving ParsSNP are to add additional data or focus the model 

on particular cancer types. Testing ParsSNP on subsets of the training data shows that 

performance is roughly constant for each classification task until the dataset drops to less than 

~250-500 samples (~5-10% of the training data, Supplementary Figure S3.10). Since adding pan-

cancer data appears unlikely to improve importance, we next considered how narrowing scope to 

a single cancer type would affect ParsSNP. Versions of ParsSNP were trained and tested in 

breast, lung adenocarcinoma, melanoma, colorectal adenocarcinoma or head and neck squamous 

cell carcinoma (cancers with at least 150 patients and 25,000 mutations in the training set, Table 

3.4). The pan-cancer version of ParsSNP generally outperformed these more targeted models. 

However, predictions made by cancer-specific and full ParsSNP models were not very 

correlated, and aggregate performance may mask important differences in predicted drivers 

(Table 3.4). Additional data for these cancer types will clarify if these results are a consequence 

of noise or true biological differences.  

We also explored the use of thresholding to optimize ParsSNP predictions. Since ParsSNP is 

trained using unlabeled mutations, there is no single objective criterion for setting a ParsSNP 
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threshold. One option is to set thresholds so as to optimize the percentage of samples assigned a 

number of drivers meeting the E-step boundaries. This approach suggests a cutoff of 0.07 for 

nonhypermutators, and 0.12 for hypermutators (Supplementary Figure S3.11A). Alternatively, a 

threshold could be selected to optimize accuracy in the classification tasks, suggesting a range of 

0.08 to 0.16 (Supplementary Figure S3.11B). While a ParsSNP cutoff of 0.1 may be reasonable 

in many situations, the observed variations suggest that thresholds be set in a context specific 

manner, taking into account the relative importance of sensitivity and specificity for the task at 

hand. 

3.4 Discussion 
Cancer genome sequencing studies identify large numbers of mutations, and it is likely that only 

a small fraction are drivers[44, 67]. The presence of many passenger mutations can make it 

difficult to direct experimental and clinical decision-making. FISs are designed to filter out 

passengers, but shortcomings include limited generalizability due to biases introduced through 

pre-labeled training data. 

ParsSNP avoids the use of pre-labeled training data by using parsimony to generate its own 

labels. This requires two constraints: 1) Putative drivers should be relatively equitably distributed 

among samples, which is the basis of the E-step. 2) Putative drivers should be definable in terms 

of the descriptors, which is enforced by the M-step. Using these constraints, we found a single 

set of labels in the training pan-cancer set, and trained a model to generate ParsSNP scores.  

In the four classification tasks, we found that ParsSNP outperformed existing methods in 19 out 

of 20 comparisons. Moreover, no single existing method could consistently rival ParsSNP in 

these tasks, an important consideration since ParsSNP and other tools will likely be applied to 
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diverse datasets in practice. To illustrate a typical usage case, we applied ParsSNP to an 

independent set of thirty diffuse-type gastric cancer genomes, and found that it identified known 

and likely candidate drivers that other methods did not detect. When combined with the 

aggregate results in the classification tasks, this analysis leads us to conclude that ParsSNP is 

superior to existing methods for quickly identifying likely cancer drivers in somatic cancer 

mutation data. 

Many avenues can be explored to improve ParsSNP performance and broaden its applications. 

We showed that simply adding pan-cancer data to the training set is unlikely to accomplish this 

goal. However, expanding the set of descriptors is one promising possibility: whereas ParsSNP 

uses 23 descriptors, CHASM had access to 49[63], and CanDrA had 95[62]. The ParsSNP 

method can also be adapted beyond protein-coding somatic mutations in cancer. For instance, 

none of the assumptions that underpin ParsSNP are cancer-specific. One can envision a version 

of ParsSNP that is trained using germline mutations from patients with other polygenic diseases, 

although the set of descriptors would need modifications.  

Methods are also needed for identifying regulatory drivers of cancer, which will become more 

prevalent as datasets involve greater proportions of whole-genome-sequenced samples[114]. 

ParsSNP could be well suited to this task, but several challenges will need to be overcome. 

ParsSNP’s current descriptors are largely applicable only to protein-coding mutations. 

Fortunately, frameworks for defining informative descriptors for regulatory variants already 

exist[61, 115]. It seems plausible that combining descriptors as defined by these studies with a 

ParsSNP training approach could produce models that effectively identify regulatory and 

protein-coding drivers.  
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The identification of pathogenic mutations can guide experimental and clinical decisions. We 

believe that ParsSNP can aid in this task by leveraging the configuration of mutations within 

samples to generate more biologically relevant predictions. We demonstrated the strength and 

generalizability of ParsSNP when detecting driver mutations in cancer using a variety of 

datasets; moreover, beyond the direct applications we have demonstrated, ParsSNP represents a 

novel paradigm for the problem of functional impact prediction.  
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  AUROCs for Each Classification Task 

   Recurrence CGC driver-dbSNP P53   

  

Detection of 
recurrent mutations 
(present in >1 
samples) in the pan-
cancer test set. 

Detection of 

mutations in CGC 

members in the pan-

cancer test set (no 

recurrent mutations). 

Detection of 

experimentally 

validated drivers 

against dbSNP 

common variants.  

Detection of 

disruptive mutants 

(activity <25% of 

wild type) in IARC 

P53 dataset.  Description 

(9,434/173,049) (3,760/169,289) (1,138/49,880) (475/1,839) (Cases/Controls) 

ParsSNP 0.656 0.833 0.975 0.843 

NN trained with 

parsimony and 23 

descriptors 

Independent Tools 

    

  

CanDrA 0.608* 0.764* 0.959* 0.707* Reference 6 

CHASM 0.584* 0.769* 0.948* 0.853 Reference 7 

FATHMM Cancer 0.578* 0.751* 0.971 0.821* Reference 19 

TransFIC 0.543* 0.559* 0.854* 0.823* Reference 20 

Condel 0.543* 0.608* 0.918* 0.839 Reference 21 

 
Table 3.1. Performance summary of ParsSNP and independent tools. Area-under-receiver-
operator-characteristics (AUROC) are shown for ParsSNP and five independent tools which 
were not used as descriptors. Starred values (*) are significantly worse than the performance 
achieved by ParsSNP (p<0.05, Delong Test). Unstarred values are not statistically significantly 
different from ParsSNP performance (p>0.05, Delong Test). 
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Patient 

Total 

Mutations Rank Top ParsSNP Drivers Top CanDrA Drivers Top CHASM Drivers 

313T 170 1 RHOA Y42C PIK3CA H1047L PIK3CA H1047L 

  2 PIK3CA H1047L NPFFR2 F150V PCDH17 T426N 

  

 

3 ARID1A E1860* MTMR8 S307A RPAP1 G993R 

  

 

4 TMPRSS13 R384W SLITRK4 K110T CDC27 N129S 

    5 PXDN R1409W FBLN2 C1036S VCAN G360R 

319T 75 1 SMAD4 L414fs BAP1 R56C NRXN3 R103C 

  2 ARID1A R2116* TTLL5 S1071N DHX36 A819T 

  

 

3 TP53 R64* KIF4B K1097N EPHB1 A669V 

  

 

4 BAP1 R56C KIF4B D1127H RELN R730H 

    5 FMN2 R1450* KIF4B D1061N ATP8B4 A882E 

361T 58 1 TP53 G202V TP53 G202V FGFR2 D538H 

  

 

2 FGFR2 D538H FGFR2 D538H DMD R137Q 

  

 

3 CDKN2A V115fs DMD R137Q MAN1A1 R284H 

  4 NCOA3 Q1268insPE RIMS2 R208H TP53 G202V 

    5 NOTCH2 H1390P PHACTR4 R367C IMPG1 Y180C 

         
Legend: 

Confirmed as driver in 

original study 
Truncation in known TSG 

Other mutations in CGC 

members 

Mutations large muscle 

protein 

 
Table 3.2. Driver mutations suggested by ParsSNP and other tools in specific patients. For 
patients 313T, 319T and 361T from the Kakiuchi et al study, the top five predicted drivers are 
shown as determined by ParsSNP, CanDrA and CHASM.  
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Rank Gene AA Change ParsSNP Recurrence CGC Rank Gene AA Change ParsSNP Recurrence CGC 

1 CTNNB1 P687L 0.795 1 X 39 LOR *313W 0.586 1 
 

2 NRAS E153A 0.789 1 X 40 CHEK2 Y447D 0.585 1 
 

3 CTNNB1 F777S 0.787 1 X 41 CTNNB1 K170M 0.582 1 X 

4 BRAF V600G 0.786 3 X 42 BRAF L597R 0.582 3 X 

5 IDH1 R132L 0.777 10 X 43 BRAF G466V 0.576 6 X 

6 SF3B1 I1241T 0.775 1 X 44 EEF1B2 W149C 0.571 1 
 

7 IDH1 R49C 0.761 2 X 45 SLC36A2 L345P 0.570 1 
 

8 IDH1 I102T 0.759 2 X 46 PIK3CA M1004I 0.563 3 X 

9 TBP A191T 0.751 1 
 

47 CTNNB1 R661L 0.560 1 X 

10 PPP2R1A I397N 0.706 1 X 48 PPP2R1A R258C 0.560 2 X 

11 RPL8 D176G 0.706 1 
 

49 U2AF1 Q157P 0.559 2 X 

12 BRAF Q609H 0.706 1 X 50 KRAS C118S 0.559 1 X 

13 BRAF L505H 0.694 1 X 51 PPP2R1A R46S 0.558 1 X 

14 BRAF V600E 0.681 519 X 52 RAC1 P106L 0.554 1 X 

15 PPP2R1A C329F 0.680 1 X 53 NFE2L2 R486C 0.549 1 X 

16 BRAF D594G 0.677 3 X 54 MYD88 R301C 0.549 1 X 

17 BRAF L514P 0.677 1 X 55 KRAS Q61R 0.543 9 X 

18 TBP R168Q 0.674 1 
 

56 IDH1 R132C 0.541 56 X 

19 NRAS Q61P 0.663 2 X 57 BRAF S467L 0.541 3 X 

20 PIK3CA M1043V 0.657 11 X 58 BRAF L537S 0.538 1 X 

21 PIK3CA D1045V 0.649 1 X 59 PIK3CA E542G 0.538 1 X 

22 SF3B1 R1245T 0.649 1 X 60 LATS2 V729D 0.534 1 
 

23 BRAF L485S 0.649 1 X 61 OPRD1 C273Y 0.532 1 
 

24 NRAS T50I 0.645 2 X 62 KCNN3 S517Y 0.532 1 
 

25 BRAF M53T 0.629 1 X 63 EZH2 C590S 0.531 1 X 

26 AKT1 L153P 0.625 1 X 64 SF3B1 R451L 0.530 1 X 

27 SF3B1 I1268M 0.624 1 X 65 NRAS Q61R 0.526 96 X 

28 BRAF K601T 0.605 1 X 66 NFE2L2 W8R 0.525 2 X 

29 RAC1 P159L 0.605 1 X 67 CTNNB1 I303M 0.524 2 X 

30 CTNNB1 C429G 0.604 1 X 68 KRAS T158A 0.521 2 X 

31 MYD88 W299C 0.603 1 X 69 KRAS R135T 0.520 1 X 

32 BRAF L597Q 0.602 1 X 70 GNAS D839G 0.508 1 X 

33 BRAF H539P 0.601 1 X 71 SF3B1 R736C 0.507 1 X 

34 SF3B1 M1195V 0.601 1 X 72 BCL2 Y108S 0.506 1 
 

35 KCNN3 R435C 0.598 1 
 

73 NRAS D154G 0.503 1 X 

36 KCNN3 L413Q 0.594 1 
 

74 IDH1 D375Y 0.502 1 X 

37 BRAF G563C 0.590 1 X 75 BRAF G596D 0.501 1 X 

38 U2AF1 R53C 0.588 1 X 
      

 

Table 3.3. Exceptional mutations by ParsSNP score. The top 75 distinct mutations (ParsSNP 
> 0.5) from the full pan-cancer dataset (hypermutators, training and test sets) are listed. The 
gene, amino acid change, ParsSNP score, recurrence in the full dataset (i.e. the number of 
samples the mutation was observed in), and the CGC status of the gene are indicated. 
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Table 3.4. Cancer-specific training and testing of ParsSNP models. Models for each of the 
indicated cancer types were developed using the same methods as were used to develop the pan-
cancer ParsSNP model, using the indicated training data (drawn from the pan-cancer training 
dataset). These models were then assessed by their ability to detect recurrent events and 
mutations in the CGC using the indicated test data (drawn from the pan-cancer test dataset), and 
by their performance in the driver-dbSNP and P53 assessments (using the full assessment 
datasets). The pan-cancer ParsSNP model was also run in these test sets for comparison. The 
reproducibility of cancer-specific models is indicated using the mean Pearson pairwise 
correlation of five training runs for each. The correlation with ParsSNP labels for the same 
cancer type is also indicated. Abbreviations: SKCM=melanoma, LUAD=lung adenocarcinoma, 
COAD=colorectal adenocarcinoma, HNSC=head and neck squamous cell carcinoma, 
BRCA=breast adenocarcinoma. ~Recurrence is re-defined in each cancer-specific subset of 
mutations. ^Recurrence and CGC are only assessed in missense mutations of the test set 
belonging to the corresponding cancer type. *The driver-dbSNP and P53 datasets have no cancer 
types, so models trained in specific cancer types are applied to the full dataset. Cyan - the cancer-
specific model outperformed the pan-cancer ParsSNP model (Delong test p<0.05); pink – the 
pan-cancer ParsSNP model significantly outperformed the cancer specific model (Delong test 
p<0.05); white – the pan-cancer and cancer-specific models were not significantly different 
(Delong test p>0.05).  

  

Cancer 

Type
Samples Mutations Samples Mutations

Cancer 

targeted
ParsSNP

Cancer 

targeted
ParsSNP

Cancer 

targeted
ParsSNP

Cancer 

targeted
ParsSNP Pairwise

with 

ParsSNP

SKCM 250 48374 127 26486 0.658 0.680 0.726 0.820 0.932 0.975 0.820 0.843 0.997 0.867

LUAD 720 131660 322 58542 0.722 0.732 0.770 0.830 0.935 0.975 0.838 0.843 0.995 0.797

COAD 288 34062 150 18199 0.650 0.660 0.813 0.875 0.894 0.975 0.669 0.843 0.922 0.342

HNSC 300 43031 149 21929 0.737 0.676 0.736 0.849 0.946 0.975 0.694 0.843 0.982 0.446

BRCA 716 38776 379 22562 0.791 0.830 0.814 0.839 0.972 0.975 0.814 0.843 0.875 0.543

Data Volume AUROCs in Classification Tasks EM Correlation

Training Test Recurrence~^ CGC^ Drive-dbSNP* P53*
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Figure 3.1. Overview of ParsSNP and label learning. A) 1. Label learning begins with a 
training set of mutations, each belonging to a sample. 2. Descriptors are assigned, and random 
labels generated (portrayed numbers are illustrative). 3. EM updates labels iteratively such that 
putative drivers are distributed among samples (E-step) and defined in terms of descriptors (M-
step). 4. The final labels and descriptors are used to train a neural network model. 5. The 
ParsSNP model produces ParsSNP scores when applied to new mutations. B) Distribution of 
ParsSNP labels after averaging 50 runs (N=566,223). C) Percent contribution of descriptors to 
ParsSNP scores, using Garson’s algorithm for neural network weights (see section 3.3.3). D) The 
ParsSNP model was applied to the training and hypermutator pan-cancer sets to produce 
ParsSNP scores. The fraction of mutation identified as drivers is displayed at various sample 
mutation burdens and ParsSNP thresholds.  
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Figure 3.2. Detection of recurrent mutations and mutations in known cancer genes. A) 
ParsSNP scores plotted against mutation recurrence for missense mutations (N=182,483). Points 
are jittered to aid visualization. B) The association of ParsSNP and the independent tools to 
log(mutation recurrence) for missense mutations, measured by R-square. C) ParsSNP identifies 
9,434 recurrent missense mutations better than the independent tools (all Delong tests p<2.2e-16, 
AUROCs are depicted). D) The ability of ParsSNP to detect recurrent missense mutations in the 
test set is assessed on a gene-by-gene basis. Portrayed genes must be members of the CGC; have 
at least 25 missense mutations; and must have at least 10 mutations in each class. Mutation 
counts (non-recurrent:recurrent) and 95% confidence intervals are included for each gene. E) Out 
of 173,049 non-recurrent missense mutations, ParsSNP identifies the 3,760 which occur in the 
CGC significantly better than the independent tools (all Delong tests p<2.2e-16, AUROCs are 
depicted). F) CGC genes were divided into putative oncogenes and putative tumor suppressor 
genes (TSG) based on the molecular genetic annotation from the CGC dataset (dominant or 
recessive, respectively). The distribution of ParsSNP scores in the test set is displayed by 
mutation and gene type, with the number of genes and mutations in each category displayed. 
‘Truncation’ events include frameshift, premature stop, nonstop and splice-site changes. 
‘Missense’ mutations include missense substitutions as well as inframe insertions/deletions. 
‘Silent’ changes include synonymous nucleotide substitutions as well as non-coding variants.  
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Figure 3.3. Detection of experimentally characterized mutations. A) ParsSNP separates 1,138 
driver mutations from 49,880 common SNPs in the driver-dbSNP dataset slightly better than 
FATHMM Cancer (Delong test p=0.205) and significantly better than the other independent 
tools (all Delong tests p<1e-4, AUROCs are depicted). B) ParsSNP, CanDrA and FATHMM 
Cancer have similar performances under a precision-recall analysis of the driver-dbSNP dataset 
(AUPRs are depicted). C) Plot of ParsSNP scores and P53 transactivation activity change for 
2,314 mutations in the IARC dataset. D) The association of ParsSNP and the independent tools 
with log(P53 activity change) is displayed as measured by R-square values. E) ParsSNP 
identifies 475 disruptive P53 mutations (mutation P53 activity < 25% of wild type) among 2,314 
mutations with similar performance to CHASM (Delong test p=0.39) and Condel (Delong test 
p=0.59), while CanDrA, FATHMM Cancer and TransFIC perform worse (all Delong tests 
p<0.05, AUROCs are depicted).  
 

  



80 
 

 
 
Figure 3.4. Comparing tool predictions in 
an independent dataset. ParsSNP, CanDrA 
and CHASM were applied to the Kakiuchi 
et al dataset, which consists of 2,988 
protein-coding somatic mutations from 30 
diffuse-type gastric carcinoma patients. For 
each tool, the top 30 predicted drivers 
(equivalent to 1% of the dataset) were 
extracted. The overlap between the 
candidate driver lists from each tool is 
diagramed (top left), and the candidate 
drivers themselves are listed according to 
the tools they were identified by. 
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Figure S3.1. Comparison of 
reference and parameter 
variations during learning. The 
results of various alternative 
parameter settings are plotted 
against the reference labels in the 
training dataset (N=566,223). Most 
alternative settings produce 
predictions that are highly 
correlated with the default settings. 
Key: ELOG1.1, E-step uses a 
logarithmic upper-bound with base 
of 1.1 (default=2); ELOG10, 
logarithm base is 10; 
ECONSTANT3, E-step uses a 
constant upper-bound set to 3 
(default upper-bound scales 
logarithmically in base 2); 
ECONSTANT10, constant upper 
bound of 10; ECONSTANT20, 
constant upper-bound of 20; 
EFLOOR0, E-step lower-bound set 
to 0 (default=1); EFLOOR5, 
lower-bound set to 5; E3to10, E-
step uses lower and upper bounds 
of 3 and 10 for all samples; 
ESTEP0.8, E-step sliding bound 
calculated as 80% of current belief 
(default=90%); ESTEP0.95, 
sliding bound calculated as 95% of 
current belief; MCV2, M-step uses 
2-fold cross validation (default=5); LOGISTIC, M-step uses logistic regression (default is a 
tuned neural network); NODES6, M-step uses neural network with only 6 hidden nodes (default 
is tuned, can use more than 6 nodes); DECAY0.1, M-step uses neural network with weight decay 
of 0.1 (default is tuned, can use less stringent decay); DECAY0.1; NODES6, M-step enforces 
use of a simpler neural network than default settings require.  
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Figure S3.2. ParsSNP convergence and reproducibility. A) The EM portion of ParsSNP 
consistently converges in 15-20 iterations. Lines are offset slightly to aid visualization. B) The 
pan-cancer training set was partitioned randomly into two equally sized, independent halves. 
ParsSNP produces highly correlated scores when trained on independent but comparable datasets 
(N=566,223). 
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Figure S3.3. Methodological controls and recurrent missense mutations. ROC curves for 
methodologic controls. AUROCs are depicted. 
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Figure S3.4. Methodological controls and non-recurrent CGC mutations. ROC curves for 
methodologic controls. AUROCs are depicted. 
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Figure S3.5. Methodological controls in the driver-dbSNP dataset. ROC curves for 
methodologic controls. AUROCs are depicted. 
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Figure S3.6. Methodological controls in IARC P53 dataset. ROC curves for methodologic 
controls. AUROCs are depicted. 
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Figure S3.7. Distribution of ParsSNP scores by mutation and gene type. A) Truncation rate 
is a gene- level descriptor that assigns low p-values to genes enriched in truncations (TSG-like) 
and assigns high p-values to genes that are depleted in truncations (ONC-like). ‘Truncation’ 
events include frameshift, pre mature stop and nonstop changes. ‘Missense’ mutations include 
missense substitutions as well as inframe insertions/deletions. ‘Silent’ changes include 
synonymous nucleotide substitutions as well as non-coding variants. Truncations receive higher 
median scores in TSG-like genes, while missense mutations receive higher scores in both TSG-
like and ONC-like genes. This represents a potential non-linear two-way interaction between 
ParsSNP descriptors (Truncation Rate and mutation type). Boxes enclose the inter-quartile 
range. B) ParsLR uses Logistic Regression rather than a neural network model, and does not 
exhibit the same properties as the full ParsSNP model.  
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Figure S3.8. Identification of putative driver genes and mutations with ParsSNP. Genes are 
plotted by the average ParsSNP score of their mutations and their single highest score in the 
entire pan-cancer dataset (training+test+hypermutator). The top ParsSNP scoring mutations are 
generally found in members of the CGC. Two genes not belonging to the CGC have multiple 
exceptional mutations (arrows): TATA Box Binding Protein (TBP), and the calcium-activated 
potassium channel, KCNN3. Both have significantly higher median ParsSNP scores than 
expected by chance (Bonferroni corrected one-sample Wilcoxon p<0.05) and multiple mutations 
with exceptionally high ParsSNP scores, including: TBP A191T (ParsSNP=0.75) and R168Q 
(0.67), as well as KCNN3 R435C (0.60), L413Q (0.59), S517Y (0.53).  
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Figure S3.9. Differential 
functionality between 
hypermutators and non-
hypermutators. A) A one-sample 
Wilcoxon test was performed on 
each gene in both the 
hypermutated and non-
hypermutated (training + test) 
portions of the dataset using 
internal null distributions. The 
minus-log10 p-values of these tests 
are shown. As expected, many 
well-known cancer genes were 
more easily detected in the non-
hypermutators. No genes were 
observed with elevated ParsSNP 
scores exclusively in the 
hypermutators. B) A two-sample 
Wilcoxon test was performed for 
each gene, comparing the ParsSNP 
scores assigned to it in the 
hypermutated and non-
hypermutated segments. Genes are 
plotted by the magnitude of 
median shift (negative values 
indicate lower scores in the 
hypermutated samples) and the –
log10 p-value. This analysis 
indicates that mutations in RNF43 
and UPF3A have modestly but 
significantly elevated scores when 
observed in hypermutators. This 
suggests that these genes may be 
involved in the unique biology of 
these tumors.  
  



90 
 

 
Figure S3.10. ParsSNP performance and dataset size. ParsSNP models were trained on 
progressively smaller subsets of the pan-cancer training data (N=566,223), and performance 
(AUROC) assessed for each classification task. Points represent average performance of 5 
replicates.  
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Figure S3.11. Criteria for thresholding ParsSNP scores. A) The E-step constraints are one 
possible objective criterion for thresholding ParsSNP scores. The value to be optimized is the 
percentage of samples receiving a number of driver mutations that is compatible with the E-step 
upper and lower bounds under the proposed threshold. B) Another approach is to select a 
threshold that optimizes accuracy in the classification tasks.  
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4. Identifying Drivers in Gene Families 
This chapter is adapted from: 

Kumar RD, Bose R. (2016). Analysis of somatic mutations across the kinome reveals loss-of-

function mutations in multiple cancer types. In preparation. 

4.1 Introduction 
In this chapter, we develop new methods for analyzing somatic mutations by aggregating them 

across gene families. In previous chapters, we focused on methods that applied genome wide, 

either at the level of genes or individual mutations. However, these approaches do not account 

for knowledge of specific classes of genes and proteins. One gene family which is well studied 

and plays a large role in cancer development is the kinases. Previous studies make clear that 

driver events in these enzymes have unique qualities, and that kinases share some common 

mechanisms of activation and inactivation[72-80]. However, previous kinase-specific methods 

rely on annotations that are unique to kinases, and may have no analogues in other gene types . 

We identify and validate functional kinase mutations using a different approach. Rather than use 

kinase structural knowledge to find functional mutations, we first pursue the reverse task: using 

observed mutations and a kinase alignment to develop a functionality map of the human kinome. 

To develop the functionality map, we design a series of statistical tests to identify aligned 

positions experiencing non-random mutations. These tests are similar to those we developed in 

chapter 2. This functionality map of the human kinome points us towards relatively few 

homologous positions with non-random mutations, many of which likely have a biological 

effect. Using mamalian cell-culture based techniques, we test eleven mutations across four genes 

at these positions for functionality, and find that all cause some reduction-of-function (ROF). We 

conclude that ROF point mutations are relatively common in the kinome in several cancer types. 
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4.2 Materials and Methods 

4.2.1 Development of Statistical Tests 
We developed a panel of statistical tests which can be used to identify non-random sets of 

mutations that occur at homologous positions in human kinases. Several of these tests are 

adapted from the work presented in chapter 2 [96]. In many cases, null distributions are defined 

empirically (via permutation). Where needed, amino-acid substitution frequencies are defined by 

mutations that are outside kinase domains (but within genes bearing kinase domains). These 

mutations are generated by the same mutational processes that produced mutations within the 

kinase domains, but should not be systematically enriched for biologically non-neutral 

mutations, which we assume is the case for mutations at some of the aligned kinase-domain 

positions. In some cases, the null hypothesis is also conditioned on the alignment and aspects of 

the observed mutations (for instance, most tests assume a fixed number of mutations).  

Careful consideration was given to recurrent mutations which occur in more than one patient. 

These mutations are often presumed to have a functional effect[76], but they may also be 

idiosyncratic to particular genes. Completely excluding recurrent mutations will likely remove 

many biologically important mutations from the dataset; but completely including them will 

likely make the analysis sensitive to positions with even a few recurrent mutations. Therefore, 

our panel includes tests that operate at three levels which reflect different ways of handling 

recurrent events. Mutation-level tests (Mutation Number, Patients, Cancer Types) include all 

mutations in the dataset, and consider recurrent events as non-redundant. Residue-level tests 

(Reference Residues, Variant Residues) treat identical amino-acid substitutions as redundant (e.g. 

CHEK2 K373E, which occurs 48 times in the dataset, is counted as a single event). Finally, 

gene-level tests (Cancer Genes, Gene Relatedness) treat mutations that occur at a single position 
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in a gene as redundant (e.g. CHEK2 S372F and CHEK2 S372Y are treated as a single event). 

This approach should balance the value of recurrent mutations in identifying important positions 

against the risk of finding positions that are not broadly important to kinase function.  

Mutation Number: In this simple test, we identify aligned positions with a higher-than-expected 

number of total mutations. All mutations are used, and the null is set using only non-kinase-

domain mutations. We begin by defining the expected number of mutations per residue type (r). 

For each, we calculated the expected number of mutations using the mutations and sequences 

that are outside of kinase domains: 

�� =
��
�� 	 

where Er is the expected number of mutations per residue of type r, Or is the observed number of 

mutations affecting residues of type r outside of the kinase domains, and Nr is the total number 

of residues of type r present in gene sequences, but outside of their respective kinase domains. 

Once the expectations per residue type are set, we calculate the expected number of mutations at 

each aligned position (a): 

�� =���	�,�
�

 

Where Ea is the expected number of mutations at an aligned position a; Er is the expected 

number of mutations per residue type r, and Ra,r is the number of residues aligned at a of type r. 

We assume that the presence of mutations at each gene and aligned position can be modeled with 

a poisson distribution, parameterized by Er for the appropriate residue type. It follows that the 

number of mutations for an entire aligned position is therefore also poisson distributed (since it is 
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a sum of poisson variables), and parameterized by Ea. By comparing the observed number of 

mutations at the position with the null distribution, we generate an upper tail p-value for the test.  

Patients and Cancer Types: In these tests, we identify positions with mutations that are not 

randomly distributed among patients and cancer types, given the number of mutations observed 

at the position. They are calculated very similarly to one another, and are described in chapter 

2[96]. Both are calculated as chi-square goodness-of-fit tests, although both use empirical rather 

than theoretical distributions. Both tests use all mutations at the aligned positions. Unlike the 

other tests, the null distribution includes mutations in kinase domains, as well as mutations 

outside kinase domains.  

Each mutation can be assigned to a patient (and cancer type), each of which has a certain 

mutation count associated with it (c). The mutation count is simply the number of times the 

patient (or cancer type) occurs in the dataset. Once each mutation has been associated with a 

value of c, we calculate the test statistic for each aligned position (a): 

��� =�(��,� − ��,�)�
��,��

 

��,� =
����
�  

Where Oa,c is the observed number of mutations at the aligned position from patients (cancer 

types) with mutation count c, Ea,c is the expected number of mutations at the aligned position 

from patients (cancer types) with mutation count c, Na is the number of mutations at the position, 

Nc is the total number of mutations in the dataset from patients (cancer types) with mutation 

count c, and N is the total number of mutations in the dataset.  
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This statistic is compared to a null distribution, which is generated by calculating the statistic for 

random draws with replacement from the set of patient (cancer type) labels, holding the number 

of mutations fixed. The final output is an upper-tail p-value.  

Reference Residues: This test identifies positions where mutated residues appear non-random. It 

is calculated as a chi-square goodness-of-fit test, but uses an empirical null distribution instead of 

a theoretical one. It is a residue-level test, and recurrent mutations with identical residue changes 

are removed. The null distribution is set with mutations from outside of kinase domains. We use 

the expected number of mutations per residue of each type (Er) that was used in Number of 

Mutations. We then calculate the test statistic for each aligned position (a): 

��� =�(��,� − ��,�)�
��,��

 

��,� = 	�,��� 

Where Oa,r is the observed number of mutations at the aligned position from residues of type r, 

Ea,r is the expected number of mutations at the aligned position at residues of type r, and Ra,r is 

the number of residues at the aligned position a of type r.  

This statistic is compared to a null distribution, which is generated by calculating the statistic for 

random draws with replacement from the set of amino acid types (weighted by Ea,r for each 

residue type), holding the number of mutations fixed. The final output is an upper-tail p-value. 

Variant Residues: This test is very similar to Reference Residue Distribution, but tests for 

positions where the newly produced amino acids appear non-random. It is calculated as a chi-

square goodness-of-fit test, but uses an empirical null distribution instead of a theoretical one. It 
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is a residue-level test, and recurrent mutations with identical residue changes are removed. The 

null distribution is set with mutations from outside of kinase domains. We then calculate the test 

statistic for each aligned position (a): 

��� =�(��,� − ��,�)�
��,��

 

��,� =���,�
�

��,� 

Where v is the type of variant residue and r is the type of reference residue. Pr,v refers to the 

probability that a mutation occurring at a residue of type r will result in a residue of type v 

(calculated based on the amino acid substitution frequencies observed outside of kinase 

domains), and Oa,r is the observed number of mutations at aligned position a with reference 

residues of type r. 

This statistic is compared to a null distribution, which is generated by calculating the statistic for 

random draws with replacement of amino acid types (weighted by Ea,v), holding the number of 

mutations fixed. The final output is an upper-tail p-value.  

Cancer Genes: This test identifies positions with mutations that tend to occur in predicted cancer 

genes. It is a gene-level test, and multiple mutations that affect a single gene at a single position 

are only counted once. We associate each gene with a score that represents how likely the gene is 

to be related to cancer. Cancer genes have smaller scores on average (this is the “Unknown 

Score” produced by the RF5 model in chapter 2[96]).  

To perform the test, we calculate the average score for the genes that are mutated at a given 

aligned position. We generate a null distribution by calculating the average score for random 
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draws of genes (weighted by the Er that corresponds to each gene’s aligned residue at the given 

position). The result of the test is a lower-tail p-value.  

Gene Relatedness: This test identifies positions where mutated genes have kinase domains that 

are more closely relate to one another on average than expected by chance, given the mutation 

patterns observed outside of kinase domains. It is a gene-level test, and mutations that affect a 

single gene at a given position are only counted once. The distance matrix of all kinase domains 

in the dataset was calculated from the phylogenetic tree produced by ClustalOmega when it 

produced the alignment.  

To perform the test, we calculate the average pair-wise distance for all genes that are mutated at 

a given aligned position. We generate a null distribution by calculating the average pair-wise 

distance for random draws of genes (weighted by the Er that corresponds to each gene’s aligned 

residue at the given position). The result of the test is a lower-tail p-value. 

4.2.2 Imputation of Missing Data 
The only variable with notable missingness was Cancer Type, which ~20% of mutations lacked. 

We found that excluding these mutations from the Caner Types test or including them under a 

“missing/other” category produced virtually identical results. The final analysis includes them as 

a separate category.  

4.2.3 Experimental Procedures and Reagents 
Experiments were performed as previously described[40]. Briefly, cDNA for KDR, TGBFR1 

and CHEK2 were purchased from Addgene. ERBB2 cDNA was a gift from Dr. Dan Leahy 

(Johns Hopkins University, Baltimore). Mutations were introduced using QuikChange II site-

directed mutagenesis (Agilent). Constructs were then shuttled into the pCFG5 retroviral vector 
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(which includes a zeocin resistance marker and IRES-GFP sequence) using the In-Fusion HD 

cloning system kit (Clonetech), and verified by full-length Sanger sequencing. For KDR, 

TGFBR1 and CHEK2, a c-terminal FLAG tag was introduced. For ERBB2, TGFBR1 and KDR, 

retroviral particles were produced using ϕNX amphotrophic packaging cells. NIH 3T3 cells (and 

IMCE cells, in the case of ERBB2 mutations) were spin-infected with virus, and selected under 

10µg/ml zeocin for 3 weeks. Fluorescence was confirmed at >95% by flow cytometry or >90% 

by microscopy. Cells were serum starved for 6hrs before lysate harvesting for each of these three 

genes. In the case of TGBFR1 and KDR, cells were treated or untreated with ligand prior to 

harvesting. In the case of CHEK2, transient transfections were performed using LTX and Plus 

reagent from Thermo Fisher, using the manufacturers standard protocol in HEK 293T cells. Cells 

were lysed 24hrs after transfection. Transfection efficiency was confirmed by microscopy as 

>50% in all cases.  

ERBB2/HER2 signaling was assayed using pHER2 and pMAPK levels[40]. TGFBR1 activity 

was assayed using pSMAD2 levels[116, 117]. KDR activity was assayed using pKDR[118] and 

pMAPK levels. CHEK2 was assayed with pS516, which is both an autophosphorylation site and 

necessary for full activation of CHEK2, and has been used previously as a proxy of CHEK2 

activity[119-121]. 

NIH 3T3 cells were acquired from the American Type Culture Collection (ATCC). IMCE cells 

were a gift from Dr. Robert Whitehead (Vanderbilt University, Nashville). HEK 293T cells were 

a gift from Dr. Akhilesh Pandey (Johns Hopkins University, Baltimore). Antibodies used include 

HER2 from Thermo-Fisher (Ab-17), phospho-HER2 (pY1248) from Millipore (06-229), p44/42 

MAPK from Cell Signaling Technologies (CST, 137F5), phospho p44/42 MAPK from CST 

(20G11), FLAG from Sigma-Aldrich (F3165), phospho-KDR (pY1175) from CST (19A10), 
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phospho-SMAD2 (S465/467) from CST (138D4), SMAD2 from CST (D43B4), phospho-

CHEK2 (pS516) from CST (#2669). Ligand included VEGF165 (#8065, 10min induction, 

10ng/ml) from CST and TGFβ (20min induction, 5ng/ml). 

4.3 Results 

4.3.1 Description of Data 
We used dGene to identify genes that have kinase domains, ultimately drawing 486 kinase 

domain sequences from 471 unique genes from Uniprot[122, 123]. These kinase domains were 

aligned using ClustalOmega with default settings[124]. The default settings are quite permissive 

to gaps in the alignment; this is acceptable for our purposes, since the analysis assumes that 

aligned residues have homolgous functions, and a more stringent alignment may violate the 

assumption. The final alignment has 1808 positions.  

We draw 64,554 point mutations in these genes from our previous study, updated with additional 

mutations from the cBio portal (Figure 4.1A) [96, 125]. 21,917 of the mutations map to the 

kinase domains, while the remainder are outside the kinase domain. Duplicate mutations from 

multiple sources were removed. We limit scope to just point mutations (missense and silent 

changes), because other types of mutations like insertions and deletions often cannot be mapped 

to a single position on the alignment. 14,665 silent mutations are included in all analyses. 

Positions that are systematically enriched or depleted for silent mutations may be under negative 

or positve selection, respectively, making these events a valuable source of information[126, 

127]. Moreover, there is evidence that some silent mutations have important functional 

consequences at the protein level[128, 129]. The mutations of our dataset come from 8,674 

distinct patients, although the number of patients sequenced to generate these mutations is likely 

10-20% higher, since some patients will have no mutations in any protein kinase.  
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4.3.2 Testing Aligned Positions 
Mutations were mapped onto the alignment of human kinase domains (Figure 4.1B). Mutations 

in these genes that are outside the kinase domain define the null hypotheses, since they are 

produced by the same mutational proceses as mutations within the kinase domains, but are 

unlikely to be systematically enriched for biologically active mutations as the aligned kinase 

domains are. We developed a series of seven statistical tests to identify homolgous positions with 

non-random mutation patterns. The tests are described in Table 4.1. These tests can be calculated 

using basic approaches outlined in section 4.2.1.  

4.3.3 Making the Functionality Map 
Since the tests require multiple mutations and genes to be calculated, they were applied to the 

831 positions (of 1808 total) that had mutations in at least two genes. The p-values from the tests 

were then combined using the Fisher procedure to produce a single p-value for the position[48]. 

These Fisher p-values were then adjusted for multiple-testing to control the false discover rate 

(FDR)[130]. We found 23 significantly mutated positions (SMP) with FDRs less than 0.10 

(Table 4.2).  

When viewed against the known structure of kinase domains, these SMPs compose a map of 

regions that may be important to kinase function. In Figure 4.2, we map these positions onto 

EGFR kinase domain crystal structure. The largest contiguous section of SMPs correspond to 

postions 4 though 8 in Figure 4.2; these are all very well known activation loop (A-loop) 

residues, and many are known to host important functional mutations (Figure 4.2). Additional 

SMPs are distributed throughout the N and C-lobes of the kinase domain. 
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4.3.4 Selecting Mutations for Validation 
We first narrowed focus to just 14,541 unique missense mutations in the kinase domains (Figure 

4.1A). We further focus on the 42 protein kinases which we confirmed or predicted as cancer 

genes in chapter 2, reducing the candidates to 1894 mutations (genes had to have greater than 

even chance of being either an oncogene or tumor suppressor according to the cancer gene 

analysis) [96]. Finally, we limited to scope to the 23 SMPs, resulting in 218 candidate mutations.  

We selected ten of these mutations for functional testing in cell culture (Table 4.3). We sought a 

mix of recurrent and non-recurrent events, as well as mutations from diverse areas of the kinase 

domain. In particular, we tried to test mutations at a variety of SMPs, and avoid mutations that 

were closely related to well studied functional mutations. The mutations we selected represent 

hypotheses suggested by the functionality map, but which would likely be de-prioritized under 

other criteria. The mutations we selected include mutations in TGFBR1, CHEK2 and KDR, as 

well as the ERBB2 R868W mutation (Table 4.3). Five are non-recurrent, and seven are not 

homologuous to known functional mutations, to our knowledge.  

Our group specializes in ERBB2/HER2, and we have particular interest in mutations occuring in 

the terminal portion of the C-lobe. Since none of the mutations observed in this region occurred 

at an SMP, we sought out additional mutations that otherwise did not meet the selection criteria. 

We chose two additional candidates. Position 1430 of the alignment is one of the most 

downstream SMPs; although no mutation was observed in ERBB2 at this position, an R to C 

change occurred at this position 33 times in 23 different genes, including one observation of 

EGFR R958C. We therefore constructed ERBB2 R966C, which corresponds to this position. Of 

the mutations that were observed in this region, S974F occurs at the most highly ranked position, 



103 
 

with an FDR value of 0.20. Although it does not occur at an SMP as defined in our analyis, we 

also included this mutation for testing. 

4.3.5 Experimental Results 
Using a previously described retroviral transduction system[40], we produced NIH 3T3 cells 

stably overexpressing both mutant and wild-type proteins for each of TGFBR1, KDR and 

ERBB2 (see section 4.2.3 for details). We found that we could not stably overexpress wild type 

CHEK2 in this setting: cells retained the selection marker, but stopped expressing the construct. 

Instead, CHEK2 experiments were performed using transient transection in HEK293T cells. 

TGFBR1, CHEK2 and KDR constructs were tagged with FLAG. All experiments were 

performed in duplicate or triplicate. 

TGFBR1. TGFBR1 (Transforming Growth Factor Beta Receptor 1) is a receptor S/T kinase. It 

has well appreciated functions in immune regulation as well as tissue remodeling. It is generally 

thought of as a tumor suppressor and acts to arrest the cell cycle[131], although it can also act as 

a pro-tumor factor in later disease progression, particularly by causing increased cell 

invasiveness, proliferation and migration[116, 132]. We tested two mutations in this gene. We 

found that NIH 3T3 cells overexpressing TGFBR1 S241L and L354P had reduced signaling 

when exposed to the ligand TGFβ when compared with wild type (Figure 4.3A).  

CHEK2: Checkpoint 2 is a cytoplasmic S/T kinase that has important functions in cell cycle 

control, specifically in DNA damage and repair. Much like P53, it is a well appreciated tumor 

suppressor[133]. We transiently transfected HEK 293T cells with wild type CHEK2 and five 

variants. We confirmed previous observations that wild type CHEK2 is constitutively activated 

under these conditions, as judged by phosphorylation at the autophosphorylation site S516[121]. 
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We found that CHEK2 S372F, S372Y, and A392V all had less than 15% of the wild type 

phosphorylation. The highly recurrent mutant K373E had 45% of wild type phosphorylation, 

while A392S had 70% (Figure 4.3B, Supplementary Figure S4.1).  

KDR/VEGFR2. KDR/VEGFR2 (Vascular Endothelial Growth Factor Receptor-2) is a receptor 

tyrosine kinase (RTK). KDR is a well-established oncogene with crucial roles in angiogenesis, 

although there is evidence of an autocrine function as well[134]. We tested two mutations in this 

gene. We found that both the R1032Q and S1100F mutations markedly reduced function, as 

judged by levels of phospho-KDR and signaling through MAPK after exposure to the ligand 

VEGF (Figure 4.3C). 

ERBB2/HER2. ERBB2/HER2 is a member of the EGFR family of RTKs and a well known 

oncogene. Our lab has shown that point mutations in the HER2 kinase domain can trigger 

increased signaling and cell transformation in both breast[40] and colorectal cell lines[41]. We 

found that HER2 R966C and R868W caused a reduction-of-function as judged by levels of 

phospho-HER2 and MAPK signaling (Figure 4.3D). HER2 S974F did not produce a notable 

change in HER2 function when compared to the wild-type construct. These results were also 

confirmed in IMCE cells (Supplementary Figure S4.2). 

The mutations we tested encompass a total of 74 patients with more than 11 distinct cancers 

(Table 4.4). The CHEK2 K373E variant was split among many cancer types, but 17 patients with 

lung adenocarcinoma carried it. The KDR variants R1032Q and S1100F were predominantly 

observed in 11 melanoma patients. Finally, the TGFBR1 S241L and ERBB2 R868W mutations 

were found in colorectal patients. 
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4.4 Discussion 
In this study, we hypothesized that somatic cancer mutations could be used to identify important 

functional regions within proteins. Specifically, we focused on the family of protein kinases, 

which are a conserved set of phosphotransferases that share homologous sequences and 

structural motifs. By mapping mutations onto the alignment of protein kinases and applying a 

panel of statistical tests, we were able to identify homologous positions that bear mutations 

which appear non-random. Since mutations are pooled across all family members, these 

positions should be broadly important to the function of many different protein kinases. 

We found 23 significantly mutated positions (SMPs) within the kinase alignment. SMPs were 

found throughout the kinase domains, with a particular enrichment in and around the A-loop. 

Many of these SMPs contain well characterized activating mutations (Figure 4.2). We tested 

twelve distinct mutations found in several genes with diverse relationships with cancer 

development. We purposely focused on highly novel mutations, including many that are rare or 

non-recurrent, and avoiding mutations with that are closely related to well-studied functional 

mutations. Ten of these mutations were observed in the dataset at one of the SMPs, and an 

eleventh (ERBB2 R966C) was present at an SMP but not directly observed (we also tested 

ERBB2 S974F, which was not present at an SMP). All eleven mutations in SMPs noticeably 

reduced signaling through the corresponding kinase. These mutations were observed in 74 

patients with eleven cancer types, with particularly large numbers of these mutations occurring in 

colorectal carcinomas, lung adenocarcinomas, and melanomas.  

The fact that all eleven tested mutations found at SMPs reduced function is an important finding. 

It illustrates the importance of functional characterization of mutations, particularly given the 

diverse roles protein kinases play in cancer development. Our previous study showed that protein 
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kinases include many predicted tumor suppressors as well as oncogenes[96]. For instance, of the 

42 predicted cancer genes we focused on when selecting mutations to test (Figure 4.1A), 17 are 

predicted to be tumor suppressors, and 25 are predicted oncogenes. In tumor suppressors, focus 

is often on truncating events like frameshift indels; in this study, we found that both highly 

recurrent mutations (like CHEK K373E) and rare mutations (like CHEK S372F/Y and A293V) 

in tumor suppressors can also cause loss- or reduction-of-function. Similarly, while it may be 

tempting to assume that missense mutations in oncogenes are either neutral or gain-of-function, 

this work shows that mutations in these genes can be loss-of-function (for instance, KDR 

R1032Q and S1100F). As it becomes more common for patients to have their tumors exome or 

genome sequenced, this knowledge will be crucial in identifying events that are most like to 

underpin their disease.  

There are many potential extensions to this study, encompassing multiple fields. We have tested 

only a small fraction of the mutations at the SMPs we identified. Direct follow up studies, 

particularly on ROF mutations in the tumor suppressors TGFBR1 and CHEK2 will be necessary 

before these mutations can be confirmed as bona fide cancer drivers. Many other mutations are 

found at other SMPs, and our results suggest that testing these mutations could be fruitful, 

particularly if present in genes with therapeutic implications. Our results also have implications 

for the structural understanding of kinase signaling: for instance, the ERBB2 R966C mutation 

demonstrates the importance of the C-lobe to kinase function, but the exact role this region plays 

is not fully understood.  

Our methods can also be applied in other settings. Although we have focused on the kinase 

family, none of our methods are kinase-specific. Our analysis is equally compatible with other 

conserved gene or domain families: for instance, other gene families of broad importance to 



107 
 

cancer development include nuclear hormone receptors[135] and G-protein coupled 

receptors[136]. Our methods will also become more precise as data volumes continue to 

increase. For instance, within the protein kinases, a more accurate alignment and better 

functional homology may be observed exclusively among tyrosine kinases, or serine/threonine 

kinases. With larger datasets, the number of genes necessary to complete this analysis will 

shrink, allowing increasing granularity. Our methods can even be adapted to single genes, 

provided a sufficient density of observed variants.  

In conclusion, we have demonstrated the use of somatic mutations to identify functional 

positions and mutations within gene families. We developed several statistical approaches for 

identifying positions with non-random mutations, aggregating mutations across homologous 

positions in the human kinome to do so. We identified 23 significantly mutated positions, and 

tested eleven mutations found at these positions from several genes. We confirmed all eleven as 

causing reductions in kinase function. Mutations that reduce the function of tumor suppressors 

are particularly promising as candidate cancer drivers, though other mutations at these SMPs 

warrant study as well. Our methods are highly extensible, providing a framework for using 

somatic cancer data to identify functionally important regions in proteins, and eventually 

identifying mutations that are relevant to cancer development and growth.  
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Test Description 

Mutation Number Detects elevated numbers of mutations using a poisson distribution.  

Patients Uses a chi-square statistic to detect deviations from expected patient distribution.  

Cancer Types Uses a chi-square statistic to detect deviations from expected cancer type distribution.  

Reference Residues Uses a chi-square statistic to detect deviations from expected distribution of mutated residues. 

Variant Residues Uses a chi-square statistic to detect deviations from expected distribution of variant residues.  

Cancer Genes Detects sets of mutated genes that are enriched in predicted cancer genes. 

Gene Relatedness Detects sets of mutated genes that are more related than expected. 

 

Table 4.1. Summary of statistical tests for aligned gene families. See section 4.2.1 for details.  

  



109 
 

Aligned 

Position 

Mutation 

Number Patients 

Cancer 

Types 

Reference 

Residues 

Variant 

Residues 

Cancer 

Genes 

Gene 

Relatedness 

Combined 

Fisher P 

Combined 

Fisher FDR 

145 6.775E-02 8.350E-01 3.100E-02 1.860E-02 5.321E-01 7.120E-02 2.200E-03 3.111E-04 2.468E-02 

200 3.498E-04 6.509E-01 2.402E-01 8.210E-02 5.279E-01 2.040E-02 5.726E-01 1.571E-03 6.218E-02 

205 8.125E-04 3.960E-01 3.621E-01 5.356E-01 2.000E-03 1.600E-03 4.160E-02 4.103E-06 4.871E-04 

246 1.078E-03 3.010E-02 1.843E-01 6.160E-02 6.437E-01 1.507E-01 6.587E-01 1.407E-03 5.870E-02 

254 1.097E-03 7.889E-01 5.096E-01 1.493E-01 5.100E-02 5.920E-02 7.750E-02 1.051E-03 5.125E-02 

258 1.948E-04 6.281E-01 2.952E-01 4.209E-01 6.859E-01 2.600E-03 2.032E-01 5.135E-04 2.681E-02 

717 3.033E-02 1.100E-02 9.733E-01 4.447E-01 8.939E-01 1.600E-03 2.540E-02 4.961E-04 2.681E-02 

731 3.217E-03 2.248E-01 4.645E-01 2.248E-01 1.192E-01 4.417E-01 8.600E-03 1.813E-03 6.549E-02 

820 1.481E-04 4.870E-02 4.882E-01 1.126E-01 4.400E-03 3.271E-01 4.001E-01 5.100E-05 5.297E-03 

828 5.983E-01 1.400E-02 8.800E-03 6.380E-02 8.210E-02 5.226E-01 1.174E-01 1.413E-03 5.870E-02 

889 2.649E-03 3.000E-04 6.500E-02 7.361E-01 6.670E-02 2.000E-04 4.206E-01 2.278E-07 3.786E-05 

891 6.903E-11 2.810E-02 5.600E-03 5.004E-01 2.874E-01 1.610E-02 2.105E-01 3.414E-11 9.458E-09 

892 1.052E-07 5.348E-01 3.260E-02 5.362E-01 7.099E-01 5.655E-01 9.128E-01 7.155E-05 6.606E-03 

893 5.663E-14 4.741E-01 7.290E-02 2.694E-01 3.064E-01 7.100E-03 7.039E-01 6.819E-12 2.834E-09 

894 5.000E-05 5.000E-05 5.000E-05 4.430E-02 8.560E-02 8.300E-03 2.053E-01 6.821E-12 2.834E-09 

895 2.471E-02 8.411E-01 1.624E-01 3.093E-01 5.500E-03 5.640E-02 9.540E-02 1.692E-03 6.392E-02 

923 1.859E-05 9.208E-01 1.000E-03 2.688E-01 1.738E-01 1.546E-01 6.800E-03 6.802E-07 9.420E-05 

941 1.744E-04 5.129E-01 5.700E-03 7.395E-01 6.822E-01 6.590E-01 1.940E-02 3.563E-04 2.468E-02 

945 8.188E-12 1.306E-01 3.420E-02 7.542E-01 9.766E-01 3.250E-02 1.073E-01 3.912E-10 8.128E-08 

1134 1.550E-04 4.703E-01 1.844E-01 9.618E-01 5.140E-01 6.230E-02 7.200E-03 3.322E-04 2.468E-02 

1430 9.693E-02 2.227E-01 1.826E-01 5.084E-01 3.000E-04 4.830E-02 5.738E-01 1.110E-03 5.125E-02 

1467 1.096E-02 6.619E-01 5.360E-02 2.370E-02 9.936E-01 2.780E-02 2.180E-02 5.163E-04 2.681E-02 

1683 4.750E-04 5.380E-02 5.666E-01 3.820E-02 5.738E-01 2.745E-01 6.350E-02 5.150E-04 2.681E-02 

 

Table 4.2. Test results for 23 significantly mutated positions. The p-values produced by the 
seven tests, as well as the Fisher p-value that combines the seven tests, are listed for each of the 
23 significantly mutated positions (defined as FDR < 0.1).  
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Gene Mutation Occurrences Region Homologous mutations Effect on activity Aligned Position 

TGFBR1 S241L 5 N-lobe  ↓↓↓ 246 

TGFBR1 L354P 1 A-loop EGFR L858R ↓↓↓ 891 

CHEK2 S372F 1 A-loop  ↓↓↓ 892 

CHEK2 S372Y 1 A-loop  ↓↓↓ 892 

CHEK2 K373E 48 A-loop ERBB2 R868W, ALK R1275Q ↓↓ 893 

CHEK2 A392S 1 C-lobe  ↓ 945 

CHEK2 A392V 2 C-lobe  ↓↓↓ 945 

KDR R1032Q 6 N-lobe  ↓↓↓ 820 

KDR  S1100F 7 C-lobe  ↓↓↓ 1134 

ERBB2 R868W 1 A-loop CHEK2 K373E, ALK R1275Q ↓↓↓ 893 

ERBB2 R966C 0
†
 C-lobe EGFR R958C ↓↓↓ 1430 

ERBB2 S974F 1 C-lobe  - 1462
‡
 

 

Table 4.3. Summary of mutations to be functionally tested. Key: strongly inactivating (↓↓↓), 
moderately inactivating (↓↓), modestly inactivating (↓), neutral (-). †ERBB2 R966C was not 
directly observed in the dataset, but this amino acid substitution is common at this SMP in other 
genes. ‡ERBB2 S974F is the most highly ranked of the observed ERBB2 C-lobe mutations as 
judged by position significance, but this position did not meet the FDR<0.1 criteria common to 
the other mutations listed. The alignment column corresponding to Table 4.2 is indicated. 
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Gene Mutation BLCA CESC COAD HNSC KIRC LGG LUAD PRAD SKCM STAD UCEC Other Recurrence 

KDR R1032Q 
  

1 
     

4 
  

1 6 

KDR S1100F 
        

7 
   

7 

TGFBR1 S241L 
  

3 
        

2 5 

TGFBR1 L354P 
         

1 
  

1 

CHEK2 S372F 
   

1 
        

1 

CHEK2 S372Y 
           

1 1 

CHEK2 K373E 3 2 6 4 4 3 17 4 1 2 1 1 48 

CHEK2 A392S 
           

1 1 

CHEK2 A392V 
      

1 
 

1 
   

2 

ERBB2 R868W 
  

1 
         

1 

ERBB2 R966C 
            

0 

ERBB2 S974F 
         

1 
  

1 

Patients Mutated 3 2 11 5 4 3 18 4 13 4 1 6 74 

Total Patients* 254 39 435 341 369 197 809 245 511 264 231 2381 
 

 

Table 4.4. Tested mutations by cancer type. The distribution of each tested mutation among 
cancer types is listed. Abbreviations: BLCA=bladder carcinoma, CESC=cervical squamous cell 
carcinoma and endocervical adenocarincoma, COAD=colorectal adenocarcinoma, HNSC=head 
and neck squamous cell carcinoma, KIRC=kidney renal clear cell carcinoma, LGG=brain lower 
grade glioma, LUAD=lung adenocarcinoma, PRAD=prostate adenocarcinoma, 
SKCM=melanoma, STAD=stomach adenocarcinoma, UCEC=uterine corpus endometrial 
carcinoma. *The total patients reflect samples in the kinase dataset, which may be 10-20% fewer 
than were sequenced in the original studies, since some patients have no mutations in any kinase 
gene.  
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Figure 4.1. Summary of mutations in the kinome. A) The use of mutations in the study. The 
process of choosing mutations for experimentation is in grey; the use of Significantly Mutated 

Positions (SMPs) is outlined. B) Mapping of mutations to the protein kinase alignment. The 
location of 23 identified SMPs is indicated at the bottom, as well as the major regions of the 
aligned domains. 
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Figure 4.2. Significantly Mutated Positions as they appear on the EGFR kinase. The 20 of 
23 SMPs to which EGFR aligns are portrayed. Well-known functional mutations and mutations to 
be validated in vitro are positioned as follows: 1) ERBB2 V777L. 2) TGFBR1 S241L. 3) KDR 
R1032Q. 4) EGFR L858R, TGFRB1 L354P. 5) CHEK2 S372F/Y. 6) ALK R1275Q, ERBB2 
R868W, CHEK2 K373E. 7) BRAF V600E. 8) BRAF K601E. 9) CHEK2 A392S/V. 10) KDR 
S1100F. 11) ERBB2 R966C. 
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Figure 4.3. Functional validation of TGFBR1, CHEK2, KDR and ERB2 mutations. A) The 
mutations TGFBR1 S241L and L354P were tested in NIH 3T3 cells in the absence and presence 
of ligand. B) The mutations CHEK S372F/Y, K373E, and A392S/V were tested by transient 
transfection of HEK 293T cells. C) The mutations KDR R1032Q and S1100F were tested in NIH 
3T3 cells in the absence and presence of ligand. D) The mutations ERBB2 R868W, R966C and 
S974 were tested in NIH 3T3 cells. See section 4.2.3 for details. 
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Figure S4.1. CHEK2 activity in HEK 293T cells. CHEK-FLAG constructs were transiently 
transfected into cells and basal levels of phosphorylation assayed without induction. Image is 
representative of three replicates. 
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Figure S4.2. Confirmation of ERBB2/HER2 results in IMCE cells. We found that IMCE cells 
that stably overexpressed R966C and R868W HER2 had lower phospho-HER2 levels than cells 
expressing the wild type protein, confirming results from NIH 3T3 cells. The portrayed results 
are representative of two independent experiments.  
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5. Conclusions 

5.1 Summary of Results 
There is great promise in cancer genome sequencing. By scrutinizing the genetic alterations that 

occur within tumors, the mechanisms of cancer development can be catalogued, new drug targets 

identified, and better treatments can be developed. As whole-genome and exome sequencing 

grows more economical, this data will become increasingly common, and researchers will have 

the ability to study cancers with both greater granularity and a population-wide perspective. 

RNA sequencing and proteomic datasets will likely be added to these data, producing an 

unprecedented portrait of intracellular processes during disease development and progression.  

However, to convert this information into improved treatments and outcomes for patients will 

likely require targeted, experimental follow-up. Whereas producing sequencing data is 

increasingly high-throughput and inexpensive, validating and elucidating biological mechanisms 

remains low-throughput and labor-intensive. Connecting the one to the other is akin to attaching 

a firehose to a drinking straw.  

In the context of cancer genome sequencing, part of the solution to this dilemma is recognizing 

that most observed somatic mutations are incidental to tumor development. While “drivers” of 

tumor development often need to be explored through experimental approaches, the far more 

numerous “passengers” can be de-prioritized, as they provide little direct information regarding 

mechanisms of tumor development. In this dissertation, we developed three interrelated 

approaches to the problem of filtering out passenger events and prioritizing drivers for 

experimental follow-up.  
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In chapter 2, we developed new methods for using somatic mutations to identify putative cancer 

genes that possess non-random sets of mutations. We designed a series of five simple statistical 

tests which identify cancer genes based on several signals of positive selection and compared 

them with existing methods. We found that known tumor suppressors were easier to detect than 

oncogenes, but that our new methods outperformed existing approaches in detecting both gene 

classes. In particular, Patient Distribution, which identifies genes with mutations occurring in 

non-random sets of patients, outperformed existing methods in identifying the gene panel as a 

whole, with particularly stark improvements in detecting oncogenes. However, other tests had 

complementary strengths. For instance, Truncation Rate, which detects genes with either higher 

or lower than usual rates of truncating events, could separate tumor suppressors and oncogenes 

from each other very effectively, whereas Patient Distribution could not. A single model which 

incorporated all five tests was able to identify known cancer genes better than existing methods, 

and could also separate putative cancer genes into likely oncogenes or tumor suppressors. The 

ability to segregate putative cancer genes into likely oncogenes and likely tumor suppressors is 

critical, since the anticipated role of a gene will often inform how it is handled in the lab (for 

instance, putative oncogenes may be studied as potential therapeutic targets, whereas putative 

tumor suppressors could be useful for developing model systems). 

In chapter 3, we developed ParsSNP, which uses a new paradigm for identifying likely driver 

mutations based on various mutation descriptors without the need for pre-defined training labels. 

ParsSNP uses an expectation-maximization framework: the E-step operates on the assumption 

that driver mutations are more equitably distributed among samples than mutations in general, 

while the M-step ensures that drivers are definable in terms of the descriptors. It ultimately 

identifies a parsimonious set of putative driver mutations that explain cancer incidence broadly. 
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We tested ParsSNP in four benchmarks, each representing qualities expected of driver mutations. 

We found that ParsSNP consistently outperformed existing methods. In particular, ParsSNP 

performed very well at identifying somatic mutations that are recurrent in multiple samples, and 

mutations that occur in known or likely cancer genes as defined by the Cancer Gene Census. It 

also performed as well or better than existing methods in detecting rare, experimentally validated 

driver events among numerous common polymorphisms, and in predicting which mutations 

disrupt P53 function. We conclude that ParsSNP is superior to existing methods for identifying 

drivers in cancer. ParsSNP could be used as a screening method to rule out large numbers of 

likely passengers using a permissive threshold, or it could be used as a final test to choose 

between mutations that have already been deemed as likely drivers. It can provide guidance 

regarding a single mutation, or a set of mutations observed in a single patient. Since it can be 

applied on a mutation-by-mutation basis, ParsSNP can be used in a wide variety of contexts.  

In chapter 4, we developed methods for analyzing mutations across gene families, focusing in 

particular on the human protein kinases. We adapted many of the ideas from chapter 2 to the 

problem of identifying homologous positions in kinase domains that possess non-random sets of 

mutations. Specifically, we developed a panel of seven statistical tests, each sensitive to a 

particular signal of selection. Using these tests, we were able to identify 23 significantly mutated 

positions, which together create a functionality map of a stereotypical kinase. This map 

highlighted important residues throughout the N and C lobes of the kinase, as well as the regions 

abutting the A-loop. We tested eleven mutations from these positions, distributed between 

several known and predicted cancer genes as judged by the results of chapter 2. We found that all 

eleven reduced signaling through the affected kinase. We concluded that mutations that reduce 

kinase signaling are common in cancer and that functional characterization of missense 
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mutations is crucial. The effect of these mutations should not be assumed, even if the affected 

gene is well-characterized as a tumor suppressor or oncogene. The methods we developed can 

also be applied to other conserved domains and structural motifs, allowing functional insights to 

be gleaned from somatic mutation patterns. For instance, this type of homology-based approach 

could be appropriate for other well-studied gene families such as nuclear hormone receptors or 

G-protein coupled receptors. For groups that specialize in particular gene families, the methods 

developed in this chapter are a powerful means of prioritizing mutations for investigation, 

particularly when combined with the cancer gene analysis of chapter 2.  

Although we have generally focused on each method in isolation, there are many scenarios in 

which a combination of these methods could be used to direct experimental projects. For 

instance, our group has particular competence in the study of kinases, especially receptor 

tyrosine kinases. Using the results from chapter 2, a large set of candidate mutations can be 

quickly limited to just those occurring in known and predicted cancer genes. These mutations 

can then be analyzed using the methods outlined in chapter 4, yielding a subset of mutations that 

occur at positions which are likely to have functional importance to the enzyme. If a large 

number of mutations remain, a functional impact score like ParsSNP, discussed in chapter 3, can 

be used to select final candidates for experimental characterization. The methods outlined in this 

dissertation are a powerful and flexible toolset, which should be broadly useful to experimental 

biologists studying cancer genome sequencing results in a variety of genes, cancer types and 

model systems. 
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5.2 Future Directions 
Iterative improvements to the methods described in this dissertation are warranted, as is 

biological characterization of many of the genes and mutations we have identified as putative 

cancer drivers. These ideas are discussed in the relevant chapter sections. Here we will focus on 

larger trends and how this dissertation can remain relevant in a quickly changing field.  

The most important trend is that greater volumes and diversity of data are becoming available. 

Since the work of this dissertation began, major advances in sequencing and annotating non-

protein-coding variants have been made[61, 115, 137]. Moreover, in addition to being DNA 

sequenced, tumor samples are increasingly annotated with transcriptomic, proteomic, or 

epigenomic data from a variety of platforms[14, 15, 21]. The methods discussed in this 

dissertation were developed for somatic protein-coding mutations, but are designed to be 

modular and flexible. Adapting and elaborating them to work with broader data types will likely 

be a fruitful endeavor. 

The methods outlined in chapter 2 can be adapted to new data in several ways. This was a gene-

based analysis, but our methods are largely applicable to other functional units of DNA. For 

instance, as non-protein coding variants become increasingly available, this type of analysis 

could help to identify regulatory regions (e.g. enhancers) or non-coding transcripts (e.g. 

lncRNAs) that are experiencing selection during tumor progression. Some of the tests we 

developed, such as Cancer Type Distribution and Patient Distribution, could be applied directly 

to any arbitrary set of mutations, while others could be adapted or replaced with relatively 

modest effort. Another area of advancement would be to leave the focus on genes but adapt the 

methods to other data types. For instance, tests that detect genes with systematic copy-number 

alterations, expression level changes, epigenomic alterations or even post-translational 
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modifications could be incorporated into the analysis, allowing cancer genes to be identified 

through the integration of multiple platforms.  

The algorithm described in chapter 3 can also be adapted along similar lines. ParsSNP relies on a 

descriptor table to make predictions. As long as appropriate descriptors can be assembled, any 

set of DNA alterations can be analyzed in our expectation-maximization framework. For 

instance, as the ability to informatively annotate non-protein-coding variants grows, ParsSNP 

could be adapted to whole-genome sequencing datasets. There is also no limit to the types of 

data that can be incorporated into the descriptor table. For instance, an expanded descriptor table 

could include functional data from sources like ENCODE, or annotations from transcriptomic or 

proteomic datasets.  

Much like the cancer gene analysis of chapter 2, the gene family analysis of chapter 4 can be 

adapted to larger and more diverse datasets. In principle, the analysis applies to any conserved 

DNA elements where homologous sequences imply similar functions. This could include 

regulatory regions of DNA or non-protein-coding RNA transcripts, for instance. The tests 

underpinning the analysis are completely modular; while many are designed to function in the 

context of gene families, they can be adapted or replaced with moderate effort, allowing the 

analysis to be used on other units of DNA.  

The field of cancer genomics is quickly growing to encompass larger volumes of diverse data 

types. The methods we have described in this dissertation are substantially modular, built with 

simple descriptors and statistical tests, and meant to be used alone or in combination with one 

another. With creativity and diligence, they can be adapted to a wide variety of settings.  
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5.3 Final Thoughts 
It has been 45 years since President Nixon declared the beginning to the “War on Cancer,” and at 

times it can seem as though there is no end in sight. But the scientists of that era could not have 

imagined the tools available to us today. The first cancer genome was only sequenced in 2008, 

and new insights will undoubtedly lead to many new and exciting opportunities.  

Making sense of the data produced in sequencing efforts is a major challenge for traditional 

biologists. Millions of somatic mutations have been observed in thousands of patients, only a 

tiny fraction of which will ever be followed-up experimentally. The fact that so many mutations 

occur incidentally to tumor development is both a challenge and an opportunity. These passenger 

events are challenging because they can discourage risk-taking when selecting mutations for 

further study. But they provide an opportunity, because ruling them out up-front with in silico 

approaches would allow the few remaining drivers to be studied in-depth.  

We have described several interrelated approaches to this problem. In chapter 2, we developed 

methods for identifying cancer genes, whose somatic mutations display evidence of positive 

selection. In chapter 3, we explored unsupervised methods for identifying driver mutations, 

allowing us to produce more generalizable results and better predictions than existing methods 

are capable of. Finally, in chapter 4 we mapped mutations to the aligned human kinome, 

allowing us to use mutations to identify functional regions in these enzymes and prioritize 

mutations at those positions for experimental validation. Together, these approaches are a 

framework for identifying the highest-priority mutations for experimental study, ultimately 

leading to new treatments and better outcomes for cancer patients.  
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