
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Arts & Sciences Electronic Theses and 
Dissertations Arts & Sciences 

Winter 12-15-2018 

Tunable Electronic and Optical Properties of Low-Dimensional Tunable Electronic and Optical Properties of Low-Dimensional 

Materials Materials 

Shiyuan Gao 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds 

 Part of the Materials Science and Engineering Commons, Mechanics of Materials Commons, 

Nanoscience and Nanotechnology Commons, and the Physics Commons 

Recommended Citation Recommended Citation 
Gao, Shiyuan, "Tunable Electronic and Optical Properties of Low-Dimensional Materials" (2018). Arts & 
Sciences Electronic Theses and Dissertations. 1723. 
https://openscholarship.wustl.edu/art_sci_etds/1723 

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open 
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an 
authorized administrator of Washington University Open Scholarship. For more information, please contact 
digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/283?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1723?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS 

Department of Physics 

 

Dissertation Examination Committee: 

Li Yang, Chair  

Erik Henriksen  

Rohan Mishra  

Alexander Seidel 

Zohar Zussinov 

 

 

 

Tunable Electronic and Optical Properties of Low-Dimensional Materials  

by 

Shiyuan Gao 

 

 

A dissertation presented to  

The Graduate School  

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

December 2018 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

© 2018, Shiyuan Gao 

 

 

 

 

 

 

 

 

 

 



ii 

 

Table of Contents 
Acknowledgments.......................................................................................................................... iv 

Abstract of the Dissertation ........................................................................................................... vi 

Chapter 1: Introduction ................................................................................................................... 1 

Chapter 2: Theoretical Background ................................................................................................ 7 

2.1 Density Functional Theory ............................................................................................... 8 

2.1.1 Hohenberg-Kohn Theorems and Kohn-Sham Equation ....................................................... 8 

2.1.2 Plane-Wave Pseudopotential Method ................................................................................. 10 

2.2 Quasiparticle and GW Approximation ........................................................................... 11 

2.2.1  Theoretical Formalism ........................................................................................................ 11 

2.2.2  Practical Implementation .................................................................................................... 13 

2.3 Exciton and Bethe-Salpeter Equation ............................................................................ 15 

2.3.1  Excitons in Bulk and Two Dimensions ............................................................................... 15 

2.3.2  Bethe-Salpeter Equation ..................................................................................................... 16 

2.3.3  Optical Property .................................................................................................................. 17 

Chapter 3: Renormalization of the Quasiparticle Band Gap in Doped Two-Dimensional 

Materials ....................................................................................................................................... 20 

3.1 Introduction .................................................................................................................... 20 

3.2 Computational Details and Intrinsic Properties ............................................................. 22 

3.3 GW Self-Energy and Effective Mass Model: h-BN and MoS2 ...................................... 24 

3.4 Band Gap Renormalization of Monolayer Black Phosphorus ....................................... 33 

3.5 Band Gap Renormalization of ReSe2 on Graphene ....................................................... 38 

3.6 Summary ........................................................................................................................ 41 

Chapter 4: Dynamical Excitonic Effects in Doped Two-Dimensional Materials ......................... 42 

4.1 Introduction .................................................................................................................... 42 

4.2 Dynamical Effects in Bethe-Salpeter Equation .............................................................. 44 

4.3  Calculation Details and Comparison of Different Approximations ............................... 49 

4.4 Excitonic Spectrum and Absorption Lineshape ............................................................. 55 

Chapter 5: Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide 

Heterostructures ............................................................................................................................ 60 

5.1 Introduction .................................................................................................................... 60 



iii 

 

5.2 Interlayer Coupling at the Single-Particle Level ............................................................ 61 

5.3 Interlayer Coupling at the Excitonic Level .................................................................... 64 

5.4 Tunable Excitonic Properties ......................................................................................... 68 

Chapter 6: Edge-insensitive Magnetism and Half Metallicity in Graphene Nanoribbons ........... 73 

6.1 Introduction .................................................................................................................... 73 

6.2 Magnetism in Doped Graphene Nanoribbons ................................................................ 74 

6.3 Stoner Model of Iterant Magnetism ............................................................................... 82 

Chapter 7: Half-Metallicity with Strong Magnetic Anisotropy in Doped One-Dimensional 

Helical Tellurium Atomic Chain .................................................................................................. 87 

7.1 Introduction .................................................................................................................... 87 

7.2 Magnetism in Single Tellurium Chain ........................................................................... 89 

7.3 Strong Magnetic Anisotropy .......................................................................................... 94 

7.4 Discussion ...................................................................................................................... 96 

References ..................................................................................................................................... 99 

 

  



iv 

 

Acknowledgments 
I would first like to express my deep gratitude towards my advisor Prof. Li Yang. As I was going 

through my PhD and trying to learn to be a good researcher, he was giving me tremendous 

freedom and encouragement to let me pursue my own ideas, while correcting me when I had 

wandered off-track. He not only helped me grow more independent but also cared about my 

future. I could not have come to this place without his guidance and support.  

I would like to give thanks to the members of my committee, Prof. Zohar Zussinov, Alexander 

Seidel, Erik Henriksen and Rohan Mishra for their time and support. I would also like to thank 

my collaborator Dr. Catalin Spataru at Sandia National Labs who had been really kind to me and 

offered me great support both in and outside of research, and Prof. Giovanni Vignale at 

University of Missouri, whose insight and appreciation of the beauty of physics has been truly 

inspiring for me. Meanwhile, I have also benefitted a lot from the great classes taught by, and 

discussions I had with Prof. Carl Bender, Zohar Zussinov, and Willem Dickhoff.  

I would also like to thank my past and present group members, Yufeng Liang, Ryan Soklaski, 

Vy Tran, Ruixiang Fei, Wenshen Song, Xiaobo Lu, Linghan Zhu, Hongxia Zhong, Jahyun Koo, 

Yuanyuan Pan and Jizhang Wang for their friendship and support. It’s been a pleasure working 

with you.  

I owe a deep thank-you to my girlfriend Chunyu Song for her company and support during my 

PhD. She had made me a better person in so many ways.  

Finally, I would like to thank my parents, who have in large part shaped who I am today. They 

both have what I believe to be the greatest asset a normal person can have – the combination a 

great sense of responsibility and an appreciation of beauty towards everyday life, nature and 



v 

 

human knowledge. They are also very supportive for letting me make my own decision along the 

course of my life. I feel truly lucky to be their son.  

 

Shiyuan Gao 

Washington University in St. Louis 

Dec 2018 

 

  



vi 

 

ABSTRACT OF THE DISSERTATION 

Tunable Electronic and Optical Properties of Low-Dimensional Materials 

by 

Shiyuan Gao 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2018 

Professor Li Yang, Chair  

 

Two-dimensional (2D) materials with single or a few atomic layers, such as graphene, hexagonal 

boron nitride (h-BN) and transition metal dichalcogenides (TMDCs), and the heterostructures or 

one-dimensional (1D) nanostructures they form, have attracted much attention recently as unique 

platforms for studying many condensed-matter phenomena and holds great potentials for 

nanoelectronics and optoelectronic applications. Apart from their unique intrinsic properties 

which has been intensively studied for over a decade by now, they also allow external control of 

many degrees of freedom, such as electrical gating, doping and layer stacking. In this thesis, I 

present a theoretical study of the electronic and optical properties of many different 2D materials 

and nanostructures using first-principles density functional theory and many-body perturbation 

theory. I will show what we learn from these theoretical calculations about the relation between 

the partially extended, partially confined structure and the tunability of their electronic and 

optical properties with free-carrier doping and electrical gating.  

First, we investigate the effect of free-carrier doping on the quasiparticle and exciton properties 

of 2D material. On one hand, we discuss the origin of the doping-induced band gap 

renormalization in 2D materials and demonstrate the simplifications that can be made to the 
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theory to allow more efficient calculation. On the other hand, using MoS2 as an example, we 

study the effect of dynamical screening on the electron-hole interaction and excitonic properties 

in doped 2D material using the Bethe-Salpeter Equation. Combining them, we show that the 

quasiparticle band gap of 2D material drops as a non-linear function of doping density by several 

hundred meV due to the free-carrier screening, but this is offset by the drop in the exciton 

binding energy and makes the exciton energy remain nearly constant.  

Then, we switch gear to study the effect of electrical gating on excitons in bilayer TMDC 

heterostructures. We reveal the important role of interlayer coupling in deciding the band 

alignment and excitonic properties. We show that due to the interlayer coupling of valence states, 

the excitons are superpositions of intralayer and interlayer electron-hole pairs which can be 

described by a simple tight-binding model. As a result, their dipole oscillator strength and 

radiative lifetime can be tuned by over an order of magnitude with a practical external gate field 

of a few V/nm.  

Finally, we study the effect of quantum confinement on the formation of magnetism in confined 

nanostructures. In two one-dimensional structures, graphene nanoribbon and tellurium chain, we 

find doped free-carriers can have half-metallic ferromagnetic ground state due to the Stoner 

mechanism. This comes from the quantum-confinement of the electronic state which enhances 

the density of state and Stoner parameter at the same time. For graphene nanoribbons, we find 

magnetism in general edge types with large spin polarization energy up to 17 meV/carrier. It can 

bypass the requirement of specific zigzag edge in previous proposals of graphene nanoribbon 

magnetism. For tellurium chain, we find magnetic ground state with a significant 6 meV/carrier 

spin-polarization energy. Due to the strong spin-orbit interaction of tellurium and its unique 

helical chain structure with chirality, the spins of the magnetic carriers are pinned along a 
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specific direction with an enhanced magnetic anisotropy energy that is larger than the spin-

polarization energy, making it of broad interest for spintronics applications.  
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Chapter 1: Introduction 
Until very recently, almost all naturally occurring and man-made crystalline materials are bulky 

from a microscopic view, extending in all three spatial directions by thousands to millions of unit 

cells. This was changed by the discovery of single layer two-dimensional (2D) materials, starting 

with the isolation of graphene by Novoselov and Geim in 2004 [1] and followed by other 

materials such as hexagonal boron nitride (h-BN), transition metal dichalcogenide (TMDC) and 

black phosphorus (BP) [2-4]. These 2D materials have promising applications is many different 

areas including electronics, optoelectronics, photonics and sensing technologies [5-8]. For 

example, the TMDCs are promising for spintronics and valleytronics applications due to their 

valley selective optical transition and spin-orbit splitting [9, 10]. In addition, many phenomena 

central to modern condense matter physics, such as strong correlation and topological physics, 

can be studied with these materials. For example, graphene with its massless Dirac dispersion 

have unconventional Landau levels and could become a quantum spin Hall insulator with spin-

orbit coupling [11, 12]. More recently, 2D materials with 2D Ising magnetism [13], Heisenberg 

magnetism [14], iterant magnetism [15], and charge-density waves [16, 17] have been 

discovered, which has greatly expanded our view of various electronic instabilities and 

associated phase transitions in 2D.  

Apart from the intrinsic properties, these 2D materials and their derivative nanostructures are 

also unique in that they allow more degrees of freedom to be controlled externally, with for 

example electrical gating, doping, layer stacking and twisting [18, 19]. With a top and a bottom 

gate, the doping density and vertical electric field can be tuned independently and continuously 

in experiments. With the freedom to stack different layers of 2D materials together, unlimited 
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number of different composite materials can be made. And with an interlayer twist, a Moiré 

superlattice at a much larger length scale can be created on top of the host material. Many 

interesting physical systems can be realized by controlling these degrees of freedom. For 

example, exciton condensate is expected to occur in a gated heterostructure due to the strong 

excitonic effect in 2D materials [20, 21]. But perhaps the most striking example is the recent 

discovery of superconductivity and Mott insulating phase in magic-angle twisted bilayer 

graphene, which opens a new route for studying the long-standing puzzle of unconventional 

superconductivity [22, 23]. On the application side, these degrees of freedom allow the 

engineering and control of many material properties such as the electronic and optical band gap. 

Despite many research efforts into this direction, much more have remain unexplored.  

In this regard, it is a huge endeavor, up to condensed matter physicist and material scientists, to 

understand the relation between the intrinsic atomic structure, tunable external environment and 

the properties of these low-dimensional materials. Many research efforts have been made but 

there are even more open questions remaining.  

For example, a topic that will be discussed in this thesis is the quasiparticle band gap of 2D 

materials. It is known that for a given 2D material, the band gap usually increases dramatically as 

the number of layers decrease [24, 25], which come from a combination of the quantum 

confinement of the electronic state and the reduced dielectric screening due to the surrounding 

vacuum [26]. The dielectric screening in 2D material is particularly interesting: the dielectric 

function 𝜀(𝑞) goes to 1 in the long wavelength limit (𝑞 → 0) but quickly approach a bulk value 

that is much larger when 𝑞 becomes comparable to the inverse of the layer thickness [27]. This 

behavior lead to false convergence of many calculations before this is finally understood and 

resolved [28-31]. However, despite its common occurrence in experiments, less is known about 
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how the band gap would change with respect to the introduction of doping, which in itself also 

changes the dielectric screening of the system in a way that is completely different from bulk 

materials. This is one of the topics that will be addressed in chapter 3 and 4 of this thesis.  

Overall, in this thesis, we theoretically investigate the change in the electronic and optical 

properties of low-dimensional materials in response to the doping and gating, using the tool of 

first-principles calculations. First-principles, or ab initio, calculations are theoretical calculations 

that use only the atomic structure as input and predicts material properties based only on 

fundamental laws of quantum mechanics, without any free parameters. Aided by the 

advancement in theoretical formalism, computer algorithms and modern computer hardwire, 

these calculations can be performed at high accuracy for materials and serve as a bridge that 

connects simple physical concepts with experimentally relevant observables.  

Because finding the state of electrons in a solid is a complicated quantum many-body problem, 

any realistic calculations must rely on some level of approximations. Here we use density 

functional theory (DFT) as a mean-field starting point and use many-body perturbation theory 

for the calculation of excited state properties. DFT is a powerful method that has been used all 

cross physics, chemistry and material science. It can accurately predict the ground state 

properties, such as total energy, lattice structure, electron density and the shape of the band 

structure of most materials. However, to get an accurate description of the excited state 

properties such as the quasiparticle band gap, we need to go one step further and use the GW 

approximation, which includes the non-local electron exchange and correlation effects. Finally, 

we use the Bethe-Salpeter Equation (BSE) to include the electron-hole correlation effect and 

study excitons – pairs of electron and hole bounded together by their mutual Coulomb 
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interaction. The excitonic effect is particularly strong in 2D materials due to reduced screening 

and dominates their optical properties.  

This thesis is organized as follows. In Chapter 2, we go through the theoretical background and 

discuss the theories and computational methods behind these works. After that, we first study the 

effects of free-carrier doping on the quasiparticle and exciton properties of 2D materials in 

chapter 3 and 4. Chapter 3 focuses on the quasiparticle gap side of the story and deals with the 

GW approximation. We distill the dominant contribution in doping-induced band gap 

renormalization of 2D materials and discuss simplifications to the theoretical formalism that 

make use of the low-density limit to make the calculations more efficient. The simplified 

theoretical formalism is applied to different 2D materials, including one with in-plane anisotropy 

(black phosphorus) and one bilayer system with incommensurate lattice constant (ReSe2 + 

graphene). Chapter 4 focuses on the exciton side of the story and deals with the BSE. We discuss 

the breakdown of the commonly used static approximation in BSE, the way to include to the 

dynamical effects and why the renormalization of band gap and exciton binding energy tends to 

cancel each other. We also discuss how the absorption spectrum and exciton states evolve upon 

increasing doping.  

In chapter 5, we switch gear to study the effect of electrical gating on excitons in a bilayer 

TMDC heterostructure. It is commonly perceived that these bilayer heterostructure have “type 

II” band alignment, meaning the valence band maximum and conduction band minimum belong 

to different layers. Therefore, the lowest exciton state is seen as an “interlayer” state, whereas the 

“intralayer” states locate in higher energies. From the result of first-principle GW+BSE 

calculations with different gate field, we extract a simple tight-binding model and show that 

despite this common interpretation, each of the eigenstates are actually superpositions of 
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intralayer and interlayer electron-hole pairs and are continuously tunable by external electric 

field. This leads to anti-crossing behavior in their energy and give them tunable optical oscillator 

strength and radiative lifetime. 

Then in chapter 6 and 7, we switch topic again to study magnetism in one-dimensional 

nanostructures. Although magnetism usually originates from transition-metal atoms with 

partially-filled d or f orbital, we find that these localized orbitals may be not be necessary in a 

doped narrow 1D nanostructure, due to the divergent van Hove singularity in the density of state 

and the confinement of the electronic wavefunction. Specifically, from DFT calculation, we find 

that the electronic ground state can be ferromagnetic for doped graphene nanoribbon and 

tellurium chain due to the Stoner mechanism. Chapter 6 deals with graphene nanoribbon, gives 

the theoretical explanation of this mechanism and show that it is insensitive to the specific edge 

structures, which often strongly affect the property of graphene nanoribbon. Chapter 7 deals with 

tellurium chain and discusses the implication of this magnetic ground state when combined with 

its unique chiral structure and strong spin-orbit coupling.  

 

 

 

 

 

 

 

 



6 

 

 

 

 

 

  



7 

 

Chapter 2: Theoretical Background 
When we are interested in calculating the properties of a solid, the general problem we are facing 

is the motion of electrons and nuclei described by the following Hamiltonian:  

𝐻̂ = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2
𝑖 − ∑

𝑍𝐼𝑒2

|𝑟𝑖−𝑅𝐼|𝑖,𝐼 +
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗 − ∑
ℏ2

2𝑀𝐼
∇𝐼

2
𝐼 +

1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝑅𝐼−𝑅𝐽|𝐼≠𝐽    (2.1) 

where 𝑟𝑖 and 𝑅𝐼 are the position of electrons and nuclei, respectively. Usually one can take 

advantage of the fact that the nuclei mass 𝑀𝐼 is much larger than the electron mass 𝑚𝑒 and make 

the adiabatic (Born-Oppenheimer) approximation to separate the electron’s motion from that of 

nuclei’s and treat the nuclei’s motion classically. This keeps the first three terms in Eq. (2.1) and 

turns the Hamiltonian into that of N interacting electrons moving in the potential of the nuclei. 

Trying to solve this problem exactly in general in hopeless, not only because N is usually a very 

large on the order of Avogadro number for a solid, but more importantly because the number of 

possible eigenstates as given by the dimension of the Hilbert space grows exponentially with N.  

Trying to solve this problem of interacting electrons is one of the central topics of condensed 

matter physics. Within the numerous approaches [32], we will focus on density functional theory 

(DFT) and the many-body Green’s function method. They are the state-of-the-art tools that have 

achieved excellent accuracy in the study of the ground and excited state properties, such as 

structure, ground state energy, band gap and exciton, of weakly-correlated materials [33]. The 

rest of this chapter will be a brief introduction of these methods, from theoretical formulation to 

practical implementations.  
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2.1 Density Functional Theory 

2.1.1 Hohenberg-Kohn Theorems and Kohn-Sham Equation 

The idea behind DFT originates from the two Hohenberg-Kohn Theorems published in 1964 

[34]. They connect the ground-state properties of an N-electron system, which in principle need 

3N spatial coordinates to describe, to the electron density, which only need 3 spatial coordinates 

to describe.  

Consider the problem of N interacting electrons moving in a large box in an arbitrary external 

potential 𝑣𝑒𝑥𝑡(𝒓). Assuming the ground state is non-degenerate, then it is obvious that the 

ground-state electron density 𝑛(𝒓) is uniquely determined by the potential 𝑣𝑒𝑥𝑡(𝒓). The first 

Hohenberg-Kohn Theorem states that the converse is also true, i.e. one density 𝑛(𝒓) can 

correspond to only one unique 𝑣𝑒𝑥𝑡(𝒓). As a consequence, all ground-state properties, including 

the many-body wavefunction, can be given as universal functionals of 𝑛(𝒓), not explicitly 

depending on 𝑣𝑒𝑥𝑡(𝒓). This inspired Hohenberg and Kohn to write the energy functional as 

follows: 

𝐸𝑣,𝑁[𝑛] = ∫ 𝑣𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 + 𝐹[𝑛]        (2.2) 

where 𝐹[𝑛] is the kinetic and interaction energy functional. The second Hohenberg-Kohn 

Theorem states that for a given potential 𝑣𝑒𝑥𝑡 and total electron number 𝑁, the functional 𝐸𝑣,𝑁[𝑛] 

assumes minimum value when 𝑛 is the actual ground-state density. This enables the calculation 

of ground-state energy by varying the electron density 𝑛 instead of the 𝑁-electron wavefunction, 

provided that we have a good enough approximation of the functional 𝐹[𝑛].  
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There are many ways to obtain an approximate form of the functional 𝐹[𝑛], and the most popular 

one is the Kohn-Sham formalism originally published in 1965 [35]. It begins with further 

separating the electron kinetic energy and Hartree potential energy from Eq. (2.2): 

𝐸𝑣,𝑁[𝑛] = 𝑇[𝑛] + ∫ 𝑣𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛]     (2.3) 

where 𝐸𝑥𝑐[𝑛] ≡ 𝐹[𝑛] − 𝑇[𝑛] − 𝐸𝐻[𝑛] is called the exchange-correlation functional. The 

variational stationary point 
𝛿𝐸𝑣,𝑁[𝑛]

𝛿𝑛
= 0, subjected to the condition ∫ 𝛿𝑛(𝒓)𝑑𝒓 = 0, corresponds 

to the equation  

𝛿𝑇[𝑛]

𝛿𝑛(𝒓)
+ 𝑣𝑒𝑥𝑡(𝒓) + ∫

𝑛(𝒓′)

|𝒓−𝒓′|
𝑑𝒓′ +

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝒓)
=0       (2.4) 

Kohn and Sham noticed that Eq. (2.4) yields the same density as an auxiliary non-interacting 

electron system with the following single-particle Schrödinger Equation:  

[−
ℏ2∇2

2𝑚𝑒
+ 𝑣𝑒𝑥𝑡(𝒓) + ∫

𝑛(𝒓′)

|𝒓−𝒓′|
𝑑𝒓′ + 𝑣𝑥𝑐(𝒓; [𝑛])] ψi(𝒓) = 𝜀𝑖ψi(𝒓)    (2.5) 

with the charge density given by 𝑛(𝒓) = ∑ 𝑓𝑖|𝜓𝑖(𝒓)|2
𝑖 , where 𝑣𝑥𝑐(𝒓; [𝑛]) ≡

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝒓)
 and 𝑓𝑖 

denotes the occupation numbers of the states. This formalism reduces the N-electron problem 

into the problem of solving the single-particle Kohn-Sham Equation (2.5) self-consistently until 

the charge density 𝑛(𝒓) converges. It has become the foundation of most of the modern DFT 

calculations [36].  

Despite a lack of rigorous physical meaning, the eigenvalues and eigenfunctions of the Kohn-

Sham Equation are widely used to describe realistic systems such as the single-particle band 
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structure of solids with great success. Particularly, the shape of the band structure of a solid 

given by Kohn-Sham DFT is quite often an accurate representation of the real one. 

The exchange-correlation potential 𝑣𝑥𝑐 in the Kohn-Sham Equation is of course still unknown in 

general. In fact, the existence of an efficient algorithm to determine the universal functional in 

DFT would imply P=NP [37], which is believed to be highly unlikely. However, very simple 

approximations to 𝑣𝑥𝑐 can already lead to very accurate ab initio description of realistic systems. 

The simplest one is the local density approximation (LDA), which replaces 𝐸𝑥𝑐[𝑛] with that of 

homogeneous electron liquid. One can go a step further to the generalized gradient 

approximation (GGA), which includes the first-order gradient expansion around the 

homogeneous density, without much increase in the computational cost. Despite their simplicity, 

LDA and GGA are the most widely used exchange-correlation functionals of DFT, and they give 

accurate description of the ground state properties of solids such as lattice constant and bulk 

modulus within a few percent of the experimental value. There are many other functionals that 

go further in accuracy with the inclusion of more terms, at the expense of increased 

computational cost, forming the so-called “Jacob’s ladder” [38]. 

2.1.2 Plane-Wave Pseudopotential Method 

There are many different implementations of ab initio Kohn-Sham DFT into the calculation of 

real molecules and solids made of different elements. One important element is the choice of the 

basis set. One common choice is the plane-wave basis, which has a simple, natural definition and 

comes in hand with the extended Bloch states in crystals.  

However, for heavy elements, the core electrons are highly localized in a small region near the 

atomic nucleus and play very little role in the chemical bonding between solids. To make matters 
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worse, the wavefunctions of both the valence and core electrons are very rapidly varying near the 

core region due to the orthogonality requirement of the wavefunctions, which requires very high 

energy components to be captured in a plane-wave basis. Therefore, instead of describing all 

electrons simultaneously, many implementations of DFT leaves out the core electrons and use 

pseudopotentials to reproduce the effects of core electrons to the valence electrons, keeping the 

behavior of valence electrons almost identical to the real atom when it is outside a small core 

radius. This plane-wave pseudopotential method is implemented in many popular ab initio DFT 

packages such as QuantumEspresso [39] and VASP [40], and it will be the primary method used 

in this thesis.  

2.2 Quasiparticle and GW Approximation 

2.2.1  Theoretical Formalism 

In condensed matter physics, the concept of elementary excitation is used to describe the excited 

states of a quantum many-body system. Elementary excitations are emergent phenomena of a 

system such that it behaves like weakly interacting particles. For example, the electron/hole 

quasiparticle are excitations that behave like free electron/hole with the same elementary charge, 

but with their effective mass modified by the interaction. In this picture, the effect of the 

interactions of an electron with the cloud of surrounding medium (other electrons and lattice 

vibrations, etc.) is described by the electron’s self-energy Σ [41]. Other examples of elementary 

excitations include plasmon, phonon, magnon and exciton.  

Although DFT is in principle an exact method for studying the ground state of a quantum many-

body system, it cannot provide accurate information about the excited state properties, including 

the various electronic elementary excitations. One famous example is the “band gap problem” of 

DFT, i.e. DFT consistently underestimates the quasiparticle band gap of materials, predicting 
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values that are of order ~eV below the experimental value, and even falsely predict some narrow 

gap semiconductors such as germanium to be metal. The many-body perturbation theory is a way 

to go beyond DFT and study the excited state properties of materials.  

The idea behind many-body perturbation theory is to start from the independent-particle problem 

and add the Coulomb interaction as a perturbation. In 1965, Hedin formulated a closed set of 

equations that effectively expands the self-energy and Green’s function in terms of the screened 

Coulomb interaction [42]. To first order, it is equivalent to writing the polarizability within the 

random phase approximation (RPA):  

𝜒𝑅𝑃𝐴 =
𝜒0

1−𝑣𝑐𝜒0
           (2.6) 

where 𝜒0 is the non-interacting electron polarizability and 𝑣𝑐 is the Coulomb interaction. It also 

writes the quasiparticle self-energy in terms of the product between the Green’s function and the 

screened Coulomb interaction:  

Σ = 𝑖𝐺𝑊           (2.7) 

which is where the name “GW approximation” comes from. Finally, the Dyson’s Equation 𝐺 =

𝐺0 + 𝐺0Σ𝐺 relates the interacting Green’s function to the self-energy. Usually, the calculation 

stops at “G0W0” level, where both G and W in Eq. (2.7) are calculated from the non-interacting 

value. Partial or full self-consistency, in either G or W, and in either the eigenvalue or the full 

wavefunction, can be made. However, no consistent improvement over the G0W0 is obtained 

with these self-consistent methods. 

Here the screened Coulomb interaction 𝑊 and the polarizability 𝜒𝑅𝑃𝐴 is related by the dielectric 

function: 
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𝜖𝑅𝑃𝐴 =
1

1+𝑣𝑐𝜒𝑅𝑃𝐴
= 1 − 𝑣𝑐𝜒0         (2.8) 

𝑊 = [𝜖𝑅𝑃𝐴]−1𝑣𝑐          (2.9) 

Physically, the dielectric function describes the screening of the medium to a change in the 

potential: 𝑉𝑠𝑐(𝒓, 𝜔) = ∫ 𝑑𝑟′𝜖−1(𝒓, 𝒓′, 𝜔)𝑉𝑒𝑥𝑡(𝒓′, 𝜔). In a periodic lattice, 𝜖 is usually written as 

the Fourier transformed form 𝜖𝑮𝑮′(𝒒, 𝜔), where 𝒒 is a vector in the first Brillouin zone and 𝑮, 𝑮′ 

are the reciprocal lattice vectors. 𝜖𝟎𝟎
−1(𝒒, 𝜔) contains the macroscopic part of the dielectric 

screening, and 𝜖𝟎𝟎
−1(𝟎, 0) corresponds to the dielectric constant of bulk materials. 

2.2.2  Practical Implementation 

In a practical calculation with the GW approximation in a periodic lattice, the non-interacting 

electrons described by the Kohn-Sham Equation is usually used as the starting point. First, the 

non-interacting polarizability 𝜒𝑮𝑮′(𝒒, 𝜔) and the inverse dielectric function 𝜖𝑮𝑮′
−1 (𝒒, 𝜔) is 

calculated from the Kohn-Sham eigenvalues and eigenstates. They are calculated on a q-point 

grid in the Brillouin zone with a cutoff energy in the G-vectors. The calculation of 𝜒𝑮𝑮′(𝒒, 𝜔) 

also involves a summation over all empty bands, which in practice requires a cutoff. The q-grid 

density and the cutoffs in G-vector and number of bands all needs to be converged numerically. 

The frequency-dependence of 𝜒𝑮𝑮′(𝒒, 𝜔) and 𝜖𝑮𝑮′
−1 (𝒒, 𝜔) are usually not calculated explicitly but 

approximated with a plasmon-pole model [43].  

Then, for each k-point and band that we are interested in, the quasiparticle self-energy is 

calculated, and the Dyson’s Equation is solved. Usually, the Dyson’s Equation is solved in the 

first-order approximation, where the quasiparticle is assumed to have a well-localized peak and 
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the wavefunction is the same as the Kohn-Sham wavefunction. Then only the quasiparticle 

energy is updated, according to the quasiparticle equation 

𝜀𝑛𝒌 = 𝜀𝑛𝒌
𝐷𝐹𝑇 + ⟨𝜓𝑛𝒌

𝐷𝐹𝑇|Σ𝑛𝒌(𝜀𝑛𝒌) − 𝑣𝑥𝑐|𝜓𝑛𝒌
𝐷𝐹𝑇⟩       (2.10) 

where 𝑣𝑥𝑐 is the exchange-correlation contribution from DFT. The evaluation of the self-energy 

also involves a summation over the all empty bands, which also needs to be converged 

numerically.  

The GW approximation is very successful in describing the band gap of materials, including bulk 

and the recently-emerging 2D materials. Figure 2.1 shows as an example the DFT and GW band 

structure of monolayer MoS2. As we can see, the GW approximation adds nearly 1eV to the band 

gap.  

 

Figure 2.1 The DFT (blue dashed line) and GW (red solid line) band structure of monolayer MoS2.  
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There are many computational packages development for solving the GW approximation, and 

the Bethe-Salpeter Equation that will be discussed in the next Section. In this thesis, the 

calculation will be conducted with the BerkeleyGW package [44], which is based on plane-wave 

pseudopotential DFT method.  

2.3 Exciton and Bethe-Salpeter Equation 

2.3.1  Excitons in Bulk and Two Dimensions 

Exciton is a composite quasiparticle made of a quasi-electron and a quasi-hole. The electron and 

hole are bounded together with their mutual Coulomb attraction. Because they are charge-

neutral, they can be created from an optical excitation, or recombine to release a photon. The 

exciton phenomenon and more generally speaking, the electron-hole (e-h) correlation, are 

therefore important to the understanding of the optical properties of solid.  

Excitons in bulk materials are categorized into different types. The Wannier excitons are the 

ones with a weakly bounded e-h pair, in which their motion can be described macroscopically as 

free particles with an effective mass bounded by their Coulomb potential. The hydrogen model 

with a screened Coulomb potential is often used to describe this kind of exciton, and different 

energy levels in analogous with the 1s, 2s, 2p … states of the hydrogen can be assigned to them. 

In a bulk crystal, their binding energy is usually on the order of tens of meV. The Frenkel 

excitons are the ones that are highly localized on a few atoms, which are usually more strongly 

bound with binding energy of 0.1-1 eV, and their properties are more specific to the local atomic 

structure. Charge-transfer excitons are also localized excitons, but with electron and hole 

occupying different atoms are forming a strong dipole.  
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In low-dimensional structures, the picture of excitons is changed. For example, in a single-layer 

2D material like MoS2, the exciton is extended like a Wannier exciton in the in-plane direction 

but strongly confined like the Frenkel exciton in the off-plane direction. In a bilayer 

heterostructure, interlayer exciton with electron and hole in opposite layers can be formed (which 

is our subject of study in Chapter 5). In this case, the exciton looks like a Wannier exciton in the 

in-plane direction but a charge-transfer exciton in the off-plane direction. Even considering only 

the in-plane direction, the screening to the Coulomb potential in a 2D material is much weaker, 

leading to Wannier excitons of binding energy of hundreds of meV. The shape of the screened 

Coulomb potential also strongly derivates from that of the bare Coulomb potential, which leads 

to a completely different series of exciton levels.  

2.3.2  Bethe-Salpeter Equation 

From the point of view of many-body perturbation theory, the e-h correlation can be described 

by the Bethe-Salpeter Equation (BSE). Formally, it is given by a Dyson equation for the two-

particle Green’s function: 

𝐿(1,2,3,4) = 𝐿0(1,2,3,4) + 𝐿0(1,2,5,6)𝐾(5,6,7,8)𝐿(7,8,3,4)    (2.11) 

Where 𝐿 and 𝐿0 are the interacting and non-interacting two-particle Green’s function, and the 

interaction kernel is 𝐾(5,6,7,8) = 𝛿(5,6)𝛿(7,8)𝑣𝑐(5,7) − 𝛿(5,7)𝛿(6,8)𝑊(5,6). The two terms 

in the kernel is called the exchange and direct interaction, and the direct interaction is usually the 

dominant term that gives the excitonic effect, whereas the exchange term is responsible for the 

singlet-triplet splitting of excitons.  

In practice, the BSE is often written in the basis of non-interacting e-h pairs as a two-particle 

Schrödinger Equation:  



17 

 

(𝜀𝑐𝒌 − 𝜀𝑣𝒌)𝐴𝑣𝑐𝒌
𝑆 + ∑ 𝐾𝑣𝑐𝒌,𝑣′𝑐′𝒌′(ΩS)𝐴𝑣′𝑐′𝒌′

𝑆
𝑣′𝑐′𝒌′ = ΩS𝐴𝑣𝑐𝒌

𝑆      (2.12) 

where the Tamm-Dancoff approximation is made [45]. Usually in practice the static 

approximation to e-h interaction kernel is made (although we are going to relax this condition in 

Chapter 4), in which case the dominating direct interaction term looks like: 

𝐾𝑣𝑐,𝑣′𝑐′,𝒒=𝒌−𝒌′
𝑑 = − ∑ 𝑀𝑐′𝑐

∗ (𝒌, 𝒒, 𝑮)𝑀𝑣′𝑣(𝒌, 𝒒, 𝑮′)𝜖𝑮𝑮′
−1 (𝒒)𝑣(𝒒 + 𝑮′)𝑮𝑮′    (2.13) 

The eigenstates of Eq. (2.12),  

|𝑆⟩ = ∑ ∑ ∑ 𝐴𝑣𝑐𝒌
𝑆 |𝑣𝑐𝒌⟩𝒌

𝑒𝑚𝑝𝑡𝑦
𝑐

𝑜𝑐𝑐
𝑣         (2.14) 

describes correlated e-h pairs. When the energy of an eigenstate is below the e-h continuum, it is 

a bound exciton, and |𝑆⟩ is the exciton wavefunction. 

In practice, the BSE calculation is usually done on top of a GW calculation, where the band 

energies 𝜀𝑐𝒌, 𝜀𝒗𝒌 are the GW-corrected band energies. First, the e-h interaction kernel is 

calculated from Eq. (2.13) on the same q-point grid on which the dielectric function 𝜖𝑮𝑮′
−1 (𝒒) has 

been calculated. Then the BSE is solved by diagonalizing the matrix given by the left-band side 

of Eq. (2.12). Often for the description of the exciton wavefunction in BSE, a finer k-point grid 

is needed than the q-point grid in the kernel. The e-h interaction kernel on the finer grid is 

interpolated from the coarser grid. Finally, the absorption spectrum is calculated from the BSE 

eigenstates, as described below. 

2.3.3  Optical Property 

The optical absorption of a solid is given by the imaginary part of the macroscopic dielectric 

function, 𝜖2(𝜔). Without including e-h correlation, it is given by the summation of independent 

vertical transitions, derived from the Fermi’s golden rule: 
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𝜖2(𝜔) =
16𝜋2𝑒2

𝜔2
∑ |𝒆̂ ∙ ⟨𝑣𝒌|𝒗|𝑐𝒌⟩|2𝛿(𝜔 − 𝜀𝑐𝒌 + 𝜀𝑣𝒌)𝑣𝑐𝒌      (2.15) 

where 𝒆̂ ∙ ⟨𝑣𝒌|𝒗|𝑐𝒌⟩ is the velocity matrix element along the direction of the polarization of light 

𝒆̂. When e-h correlation is considered, the summation goes through the correlated e-h pairs:  

𝜖2(𝜔) =
16𝜋2𝑒2

𝜔2
∑ |𝒆̂ ∙ ⟨0|𝒗|𝑆⟩|2𝛿(𝜔 − Ω𝑆)𝑆        (2.16) 

In 2D materials, the dielectric function is not a well-defined physical quantity. Instead, one can 

use the absorbance 𝐴(𝜔) to describe how much proportion of light is absorbed going through a 

single layer of material. In a simulation where the periodicity in the off-plane direction is 𝑑, the 

absorbance is related to the calculated dielectric function by 𝐴(𝜔) = 𝜔𝜖2(𝜔)𝑑/𝑐, where 𝑐 is the 

speed of light. Figure 2.2 shows as an example the optical absorbance of monolayer MoS2 

calculated with BSE and using the GW band structure but without e-h correlation. Their large 

difference is the indication of the strong excitonic effect of MoS2. 

 

Figure 2.2 The optical absorbance of monolayer MoS2 with e-h correlation from BSE (blue line) and with 

no electron-hole correlation (yellow line).  
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The first-principles DFT and GW+BSE calculations are high-throughput calculations that usually 

require running on a supercomputer cluster with parallelization. The works presented in this 

thesis are calculated using the computational resources of Lonestar, Stampede and Stampede2 

clusters at Texas Advanced Computing Center (TACC), provided by the Extreme Science and 

Engineering Discovery Environment (XSEDE). 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

Chapter 3: Renormalization of the 

Quasiparticle Band Gap in Doped Two-

Dimensional Materials 

3.1 Introduction 
Almost all the applications of 2D materials are premised on a good understanding the electronic 

properties of the material, especially the quasiparticle band gap. The ab initio GW method has 

been the most successful first-principles approach of calculating the quasiparticle band structure 

of bulk crystals as well as molecules and low-dimensional structures [33, 43, 44, 46]. In 

particular, well-converged GW results in 2D crystals has been achieved recently as the accurate 

treatments to 2D screened Coulomb interaction were established [28-31]. However, much less is 

known about how doping, a common theme in the 2D semiconductors and its heterostructures [4, 

47-49], can affect the electronic structure.  

Doped free carriers have several effects that are particularly enhanced on the electronic structure 

of low-dimensional materials. First, the large density-of-states (DOS) from the van Hove 

singularity magnifies the contribution from electron occupation. Second, the screening from 

doped free carriers has a stronger effect on lower-dimension structures because of the weaker 

intrinsic dielectric screening. Third, free carriers in low-dimensional systems form a low-energy 

acoustic plasmon which can dynamically couple with quasiparticles. These effects result in an 

enhanced many-body renormalization of quasiparticles energy, as shown from previous 

theoretical GW calculations in both semiconducting carbon nanotubes [50, 51] and 2D transition 

metal dichalcogenides (TMDs) [52], and from experimental measurements [53-57]. However, a 

complete picture of the quasiparticle renormalization within a wide range of doping density is 
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not clear because of the limitation of k-point-grid-based first-principle method in resolving the 

low doping density, which is, however, the most essential for experiments and devices. 

Moreover, previous works and methods cannot be directly applied to studying several newly 

emerged 2D materials such as black phosphorus (BP) whose electronic structure is significantly 

anisotropic. 

In this chapter, we have developed an effective mass model and applied asymptotic analysis to 

resolve band gap renormalization, using the GW approximation and the framework of previous 

work [52]. The effective mass model supplements the ab initio calculation by bridging the gap 

around low doping density. It reveals that the change of the dielectric screening, which appears 

in term of the Coulomb-hole self-energy, is the dominating contributing factors to the band gap 

renormalization at low doping density. The change in electron occupation, which appears in term 

of the screened-exchange self-energy, is more important at high doping density. Additionally, we 

study band gap renormalization of doped monolayer BP, where we generalize our method to 

systems with strong anisotropy and show that the smaller DOS of BP near the band edge 

enhances the band gap renormalization at high doping density. Finally, we show that the 

effective mass model allows the calculation of band gap renormalization in lattice-mismatched 

bilayer system.  

The rest of this Chapter is organized as follows: In Section 3.2 we lay down the theoretical 

framework of our approach, show the computational details, and discuss the materials’ intrinsic 

properties. In Section 3.3 we construct our effective mass model of the GW self-energy and band 

gap renormalization of doped h-BN and MoS2. In Section 3.4, we discuss band gap 

renormalization of monolayer BP, where our model is generalized to anisotropic systems. In 

Section 3.5, we discuss band gap renormalization of ReSe2 on a graphene substrate, where our 
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model is generalized to bilayer system without lattice matching. Finally, the main results will be 

summarized in Section 3.6.  

3.2 Computational Details and Intrinsic Properties 
In this chapter, we choose three prototypical monolayer 2D structures, including hexagonal BN 

(h-BN), 2H-phase MoS2, and BP, and one bilayer 2D heterostructure, ReSe2 on top of graphene. 

They cover 2D materials from semiconductors to insulators and from isotropic ones to 

anisotropic ones. To study the effect of doping, we calculate the quasiparticle band structure of 

these materials from the first-principles DFT+GW method. The DFT calculation serves as a 

mean-field starting point for the GW calculation. It is performed using the plane-wave 

pseudopotential method implemented in Quantum Espresso [39]. The GGA-PBE exchange-

correlation functional [58] is used along with a plane-wave cutoff of 90 Ry, 75 Ry, 35 Ry and 

100 Ry for h-BN, MoS2, BP and ReSe2, respectively. Doping is introduced by changing the total 

electron number with a compensating jellium background. This resembles the gate-tunable 

electrostatic doping commonly seen in 2D materials. Our calculation shows that doping has very 

little effects on the DFT eigenvalues and wavefunctions. This is not surprising because DFT is 

known for its deficiency at capturing many-electron effects that are, however, crucial for our 

studied band gap renormalization. 

Beyond DFT, we employ the GW approximation to study quasiparticle energies. The self-energy 

in a doped material is expanded into three terms: 

 Σ = 𝑖𝐺𝑊 = 𝑖(𝐺𝑖𝑛𝑡𝑊𝑖𝑛𝑡 + 𝛿𝐺𝑊𝑖𝑛𝑡 + 𝐺𝑖𝑛𝑡𝛿𝑊 + 𝛿𝐺𝛿𝑊) ≡ Σ𝑖𝑛𝑡 + Σ1 + Σ2 + Σ3   (3.1) 

The first, “intrinsic” term (Σ𝑖𝑛𝑡) indicates the self-energy contribution coming from the intrinsic 

(undoped) system. The second term (Σ1) is the self-energy correction due to the change of 
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electron (hole) occupation alone under the intrinsic screening. The third term (Σ2) is due to the 

change in screening, and the last term (Σ3) is related to both factors. The calculation details of 

these doping-related terms will be discussed in the next section. As we will see, the dielectric 

screening 𝑊 = 𝜖−1𝑣 and its change upon doping 𝛿𝑊 play a central role in this band gap 

renormalization. 

The intrinsic term (Σ𝑖𝑛𝑡) of the self-energy is calculated with the usual GW routine implemented 

in the BerkeleyGW package [44]. Truncated Coulomb interaction [59] is used along with 

sufficient vacuum to eliminate interactions between layers. The static dielectric function is 

calculated within the random phase approximation (RPA) with 8 Ry energy cutoff, 120 and 140 

conduction bands, and 24 × 24 × 1 and 28 × 20 × 1 k-point grid respectively for h-BN and BP, 

which grants a converged band gap within 0.1 eV. For ReSe2, 10 Ry cutoff, 320 conduction 

bands and 10 × 10 × 1 k-point grid is used. For MoS2, 10 Ry cutoff, 256 conduction bands and 

24 × 24 × 1 k-point grid is used. Although it has been shown that the true convergence of the 

band gap in MoS2 would require a much larger number of bands and dielectric cutoff [30], as far 

as our main concern of band gap renormalization goes, this set of parameters is enough. This is 

because the doping effect is mainly concentrated on small q and head (G=G’=0) part of the 

dielectric function 𝜖𝑮𝑮′
−1 (𝒒, 𝜔) [52]. The dynamical part of the dielectric function is then 

constructed from the generalized plasmon-pole (GPP) model. 

Figure 3.1 shows the calculated static dielectric function 𝜖𝟎𝟎
−1(𝒒, 𝜔 = 0) of intrinsic h-BN, MoS2 

and BP. The dielectric function approaches 1 in the limit as 𝑞 → 0, following the formula 

𝜖𝟎𝟎
−1(𝒒) ≈ 1/(1 + 2𝜋α2𝐷𝑞), where the 2D polarizability α2𝐷 captures the macroscopic dielectric 

screening behavior of 2D materials [27]. Due to this weaker screening, 2D semiconductors and 
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insulators have unusually large quasiparticle band gaps, exciton binding energies and band gap 

renormalizations compared with their bulk counterparts.  

 

Figure 3.1 Static dielectric function 𝜖00
−1(𝒒, 𝜔 = 0) of intrinsic h-BN, MoS2 and BP with the same size of 

vacuum (20Å). 

 

3.3 GW Self-Energy and Effective Mass Model: h-BN and 

MoS2 

As we can see from Eq. (3.1), to determine the quasiparticle self-energy of the doped system, the 

primary goal is to find the change in the dielectric screening, given by the dielectric function 

𝛿𝜖𝑮𝑮′
−1 (𝒒, 𝜔) of a 2D crystal. To illustrate this process in detail, we use p-doped h-BN as an 

example. h-BN is a wide-gap 2D insulator which has been commonly used as substrate and 
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encapsulation for other 2D materials in Van der Waals heterostructures [60]. Its valence band 

maximum (VBM) is at the K point and conduction band minimum (CBM) at Γ point.  

For a doped system, the change to the dielectric screening is concentrated on the head part of the 

dielectric function with small q and low frequency ω and requires a smaller number of bands to 

converge [52]. For this purpose, within the first-principles approach, the static dielectric function 

𝜖𝟎𝟎
−1(𝒒, 𝜔 = 0) of the doped system is calculated on an 120 × 120 × 1 k-point grid, as shown by 

the dots in Fig. 3.2. For the frequency-dependent part, a simple plasmon-pole model 

𝛿𝜖𝟎𝟎
−1(𝒒, 𝜔) =

𝛿𝜖𝟎𝟎
−1(𝒒,0)𝜔𝑑

2(𝒒)

𝜔2−𝜔𝑑
2(𝒒)

, where 𝛿𝜖𝟎𝟎
−1(𝒒, 0) = 𝜖𝟎𝟎

−1(𝒒, 0) − 𝜖𝑖𝑛𝑡,𝟎𝟎
−1 (𝒒, 0), well describes the 

difference between the intrinsic and doped dielectric function, and the plasmon frequency 𝜔𝑑(𝒒) 

is extracted from the ab initio calculation and shown in the inset of Fig. 3.2.  

Following ref. [52], the GW self-energy of the doped system can be calculated according to Eq. 

(3.1) term by term. The first correction term Σ1 is given by 

Σ1
𝑛𝒌(𝐸) = − ∑ ∫

𝑑2𝑞

(2𝜋)2

𝑮,𝑮′

𝑓𝑛,𝒌−𝒒𝑀𝑣𝑛
∗ (𝒌, −𝒒, −𝑮)𝑀𝑣𝑛(𝒌, −𝒒, −𝑮′) 

                                                                  × 𝜖𝑖𝑛𝑡,𝑮𝑮′
−1 (𝒒, 𝐸 − 𝜀𝑛,𝒌−𝒒)𝑣2𝐷(𝒒 + 𝑮′)    (3.2) 

where 𝑣 is the doped band index, 𝑓𝑛𝒌 is the electron occupation, 𝜀𝑛𝒌 is the mean-field (DFT) 

energy and 𝑀𝑛𝑛′(𝒌, 𝒒, 𝑮) is the plane-wave matrix element. This self-energy is calculated from 

first-principle by taking the difference of the total self-energy of the intrinsic system from that of 

a doped one, both of which are evaluated with the dielectric function of the intrinsic system. To 

capture the change in occupation, the intrinsic dielectric function is calculated on a relatively 

dense k-point grid of 36 × 36 × 1. 
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Figure 3.2 Static dielectric function of p-doped h-BN. Dots are from the ab initio calculation and the 

solid lines come from the effective mass model. The inset shows the plasmon-pole frequency. 

 

The other two terms Σ2 and Σ3 are expressed in summations that only involve intra-band 

transitions with small momentum as follow: 

Σ2
𝑛𝒌(𝐸) = ± ∫

𝑑2𝒒

(2𝜋)2
|𝑀𝑛𝑛(𝒌, −𝒒, 𝟎)|2 𝛿𝜖𝟎𝟎

−1(𝒒,0)

2[1±
𝜀𝑛,𝒌−𝒒−𝐸

𝜔𝑑(𝒒)
]

𝑣2𝐷(𝒒)      (3.3) 

Σ3
𝑛𝒌(𝐸) = − ∫

𝑑2𝒒

(2𝜋)2
𝛿𝑓𝑛,𝒌−𝒒|𝑀𝑛𝑛(𝒌, −𝒒, 𝟎)|2 𝛿𝜖𝟎𝟎

−1(𝒒,0)

1−[
𝜀𝑛,𝒌−𝒒−𝐸

𝜔𝑑(𝒒)
]

2 𝑣2𝐷(𝒒)      (3.4) 

The ± in Eq. (3.3) is for conduction and valence states, respectively. Due to the interaction of the 

quasiparticle with the low-energy acoustic plasmon, Σ2 and Σ3 contains a resonance profile near 

the mean-field energy 𝜀𝑛𝒌. To this end, we employ the “on-shell” approximation to Σ2 and Σ3 by 
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rigidly shifting the whole resonance profile along the energy axis such that the on-shell energy 

coincides with the QP solution [23]. The on-shell self-energy Σ1, Σ2 and Σ3 of the VBM and 

CBM at K for p-doped h-BN calculated from first-principles are shown by the dots on Fig. 3.3.  

However, this first-principles approach suffers a drawback as the dense k-point sampling 

required to accurately capture the electron occupation and dielectric screening limits its 

resolution at smaller doping density (~1012/cm-2), which is, unfortunately, the most useful range 

for device applications. Therefore, we propose a first-principle-based effective mass model to 

solve this problem and gain insight for the band gap renormalization behavior at low doping 

density.  

 

Figure 3.3 On-shell self-energy of p-doped h-BN at VBM and CBM. Dots represent the ab initio result 

and the solid line is from the effective mass model. 
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To construct the effective mass approximation for the dielectric function, we decompose the 

static polarizability function 𝜒 of the doped system as a sum of interband transitions and 

intraband transitions within the doped band. We assume the interband part remains the same as 

the polarizability of the intrinsic system, neglecting the small contributions from the virtual 

interband transitions near the VBM. The intraband part, within the effective mass approximation, 

is approximated by the non-interacting polarizability of the two-dimensional electron gas 

(2DEG), given by the Lindhard function [61]: 

𝜒2𝐷𝐸𝐺(𝑞, 𝜔 = 0) = −
𝑁𝑠𝑁𝑣𝑚∗

2𝜋
[1 − Θ(𝑞 − 2𝑘𝐹)√1 −

4𝑘𝐹
2

𝑞2 ],      (3.5) 

where 𝑁𝑠 = 𝑁𝑣 = 2 is the spin and valley degeneracy, 𝑚∗ is the effective mass of the 2DEG 

(𝑚∗ = 0.78 for p-doped h-BN), 𝑘𝐹 is the fermi wave vector and Θ is the step function. The 

singularity of 𝜒2𝐷𝐸𝐺 at 𝑞 = 2𝑘𝐹 manifests itself as a kink in the dielectric function, as indicated 

by the arrow in Fig. 3.2.  

Given the assumptions above, the static polarizability within the effective mass model is 

𝜒𝑮𝑮′(𝒒, 0) = 𝜒𝑮𝑮′
𝑖𝑛𝑡 (𝒒, 0) +

1

𝐿
𝜒2𝐷𝐸𝐺(𝒒, 0) for all G-vectors with 𝐺𝑥 = 𝐺𝑦 = 0, where L is the cell 

periodicity in the z-direction. The RPA dielectric function is then determined by 𝜖𝑮𝑮′(𝒒, 0) =

𝛿𝑮𝑮′ − 𝜒𝑮𝑮′(𝒒, 0)𝑣2𝐷(𝒒 + 𝑮′), where 𝑣2𝐷(𝒒) =
4𝜋

𝒒𝟐
[1 − 𝑒−𝒒𝑥𝑦𝐿/2 cos (

𝑞𝑧𝐿

2
)] is the 2D truncated 

Coulomb interaction. The input from ab initio calculations can be further reduced by observing 

that the behavior of the intrinsic polarizability 𝜒𝑮𝑮′
𝑖𝑛𝑡 (𝑞, 0) as 𝑞 → 0 is determined by the 2D 

polarizability: 𝜒𝑮𝑮′
𝑖𝑛𝑡 (𝑞, 0) = 𝜒𝑮𝑮′

𝑖𝑛𝑡 (0,0) −
𝛼2𝐷

𝐿
𝑞2. In practice, we find that only including the 𝐺𝑧 =

0, ±1 elements of 𝜒𝑮𝑮′
𝑖𝑛𝑡 (0,0) is sufficient to construct an effective mass model for 𝜖𝟎𝟎

−1(𝑞, 0) that 

accurately reproduces the ab initio one, as shown by the lines in Fig. 3.2. Meanwhile, within the 
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effective mass approximation, the plasmon-pole frequency follows the 2DEG dispersion relation 

𝜔𝑑
2𝐷𝐸𝐺(𝒒) = √2𝜋𝑛𝑞

𝑚
(1 +

𝑞

2
)

2

(1 +
𝑞3

8𝜋𝑛
+

𝑞4

32𝜋𝑛
)/(1 +

𝑞

4
) [62], which also fits the ab initio values 

well, as shown by the inset of Fig. 3.2. 

With the effective mass model, we calculate the asymptotic behavior of self-energy terms Eq. 

(3.2)-(3.4) in the low density limit. At low doping density, keeping only the leading contribution, 

Σ1 at the VBM reduces to 

Σ1
𝑉𝐵𝑀~ ∫

𝑑2𝒒

(2𝜋)2𝑞<𝑘𝐹
𝜖𝑖𝑛𝑡,𝟎𝟎

−1 (𝒒, 0)𝑣2𝐷(𝒒).         (3.6) 

Meanwhile, the on-shell self-energy Σ2 and Σ3 are reduced to the following as 𝑞 → 0: 

Σ2
𝑉𝐵𝑀~ −

1

2
∫

𝑑2𝒒

(2𝜋)2

𝛿𝜖𝟎𝟎
−1(𝒒,0)

1−𝜀𝒒/𝜔𝑑(𝒒)
𝑣2𝐷(𝒒),            (3.7) 

Σ3
𝑉𝐵𝑀~ ∫

𝑑2𝒒

(2𝜋)2𝑞<𝑘𝐹
𝛿𝜖𝟎𝟎

−1(𝒒, 0)𝑣2𝐷(𝒒),          (3.8) 

where the term 𝜀𝒒/𝜔𝑑(𝒒) is dropped from Eq. (3.4) because as 𝑞 → 0, 𝜀𝒒 ∝ 𝑞2 while 𝜔𝑑(𝒒) ∝

√𝑞 so 𝜀𝒒/𝜔𝑑(𝒒) → 0. In the leading order, both Σ1 and Σ3 affect only the band which has been 

doped (and does not affect the self-energy at the CBM), while Σ2 affects all states at the same 

time. 

Equations (3.6) and (3.8) share a similar form of an integral over the doped region. Equation 

(3.6) shows that Σ1 correspond to “bare” exchange energy of a 2DEG, where the bare interaction 

refers to the screened interaction of the intrinsic system without the additional screening from the 

2DEG. Meanwhile, Eq. (3.8) suggests that Σ3 correspond to the difference between the “bare” 

exchange and the screened exchange energy of 2DEG. In fact, Σ3 cancels most part of Σ1, 
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because 𝜖𝑖𝑛𝑡,𝟎𝟎
−1 (𝒒, 0) ≫ 𝜖𝟎𝟎

−1(𝒒, 0) for 𝑞 < 𝑘𝐹 and thus Σ1 ≫ Σ1 + Σ3. Their sum  

Σ1
𝑉𝐵𝑀 + Σ3

𝑉𝐵𝑀~ ∫
𝑑2𝒒

(2𝜋)2𝑞<𝑘𝐹
𝜖𝟎𝟎

−1(𝒒, 0)𝑣2𝐷(𝒒)        (3.9) 

is the actual screened exchange contribution to the self-energy. It grows linearly with the doping 

density because 𝜖𝟎𝟎
−1(𝒒, 0) is linear in q as 𝑞 → 0. Due to the 2DEG polarizability from Eq. (3.5), 

it is also proportional to inverse of the density-of-state effective mass 1/𝑁𝑠𝑁𝑣𝑚∗. The linear 

behavior from this asymptotic analysis, as shown by the red line from Fig. 3.3, accurately 

describes the ab initio results, and works well even up to relatively high doping density.  

On the other hand, Σ2, which corresponds to the Coulomb-hole part of the self-energy [42], has a 

very different asymptotic behavior at low doping density. The integral in Eq. (3.7) goes over the 

whole BZ. As the integrant, the change in dielectric function 𝛿𝜖𝟎𝟎
−1(𝒒, 0), given by the difference 

between the curves in Fig. 3.2, is rapidly increasing at low doping density but saturates at high 

doping density. This causes the term Σ2 to dominate the low-density part of the band gap 

renormalization and saturate at high density. The self-energy calculated from Eq. (3.7) is shown 

by the black and blue curves in Fig. 3.3 and they are also in good agreement with the ab initio 

results. To sum up, it is shown that the band gap renormalization is dominated by the nonlinear 

Coulomb-hole term (𝛴2) in the low doping density region, while the linearly increasing screened 

exchange term (𝛴1 + 𝛴3) takes over in the high doping density region as the Coulomb-hole term 

saturates. 

Finally, we show the quasiparticle band gap renormalization of p-doped h-BN in Fig. 3.4. Based 

on our calculated DFT and GW band structure shown in Fig. 3.4 (a), intrinsic h-BN has an 

indirect band gap of 6.4 eV with VBM at the K point and CBM at Γ point of the Brillouin zone. 

The direct band gap at K is 7.3 eV. Fig. 3.4 (b) shows the renormalization of the direct band gap 
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at K. With hole doping, the band gap drops rapidly by about 1 eV with doping density around 

1012-1013cm-2. With further increase in doping density, the band gap renormalization saturates to 

a slower rate. The renormalizations of the VBM and CBM quasiparticle energy are shown in the 

inset of Fig. 3.4 (b). They are nearly symmetric because the dominating Coulomb-hole self-

energy term given by Eq. (3.7), which is not sensitive to which band is occupied by doped 

carriers, makes almost equal but opposite contribution to valence and conduction band. The 

small asymmetry is from the fact that the screened exchange term affects the doped band, 

causing the VBM energy to have a larger shift than the CBM at large doping density. 

 
Figure 3.4 (a) DFT and GW band structure of intrinsic h-BN. (b) Renormalization of the direct band gap 

at K for p-doped h-BN. Inset shows the quasiparticle energy. Dots represent the ab initio result and the 

solid line is from the effective mass model. 

 

In Fig. 3.5, we show similar results for the n-doped MoS2. Despite having a much smaller 

intrinsic band gap around 2.7 eV (without considering the spin-orbit coupling), MoS2 shares 
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similar honeycomb lattice structure and isotropic effective mass with h-BN. Therefore, MoS2 

shows a similar band gap renormalization behavior. A moderate doping density around 1013 cm-2 

can induce a band gap reduction of 400 meV. The solid line is from our effective mass model. It 

perfectly captures the low-density results while slightly overestimates the reduction for high 

doping densities. This is not surprising because our effective mass model does not include the 

band structure effects and the off-diagonal elements of the dielectric function, which would 

gradually gain importance at higher doping density. 

 

Figure 3.5 (a) DFT and GW band structure of intrinsic MoS2. (b) Quasiparticle band gap renormalization 

of n-doped MoS2. Dots represent the ab initio result and the solid line is from the effective mass model. 
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3.4 Band Gap Renormalization of Monolayer Black 

Phosphorus 
BP is a layered semiconductor that has attracted great interest recently [4, 63, 64]. It has a direct 

band gap that is tunable with the number of layers, ranging from 0.3 eV in bulk to 2.0 eV in a 

monolayer [25]. Adatoms and doping have been found to strongly affect the band gap of thin-

film BP [65]. It also shows strong in-plane anisotropy, which results in unusual behaviors of 

anisotropic exciton and thermal and electrical transport [66, 67]. The band structure of 

monolayer BP is shown in Fig. 3.7 (a). The most special character is that, near the band edge at Γ 

point, BP has a parabolic band dispersion with large effective mass in the x (zigzag)-direction 

and an almost linear band dispersion with very small effective mass in the y (armchair)-direction. 

Consequently, the screening in intrinsic and doped BP are also anisotropic. Therefore, we must 

modify the above isotropic effective mass model to calculate the band gap renormalization in 

doped monolayer BP. 

The static dielectric function 𝜖𝟎𝟎
−1(𝒒, 𝜔 = 0) of intrinsic and doped BP is calculated on a 

112 × 80 × 1 k-point grid and their values along the x- and y-directions are shown in Fig. 3.6 

(a), respectively. It is clear that the dielectric screening of both the intrinsic and doped system are 

anisotropic. Notably the kink at 𝑞 = 2𝑘𝐹  due to the singularity in the 2DEG polarizability is still 

present in the dielectric function of doped BP, although 𝑘𝐹 takes different values in x and y 

directions. Before the kink 𝜖−1 is isotropic and corresponds to a constant polarizability of the 

2DEG despite its anisotropic effective mass, while after the kink 𝜖−1 turns up and merges into 

the intrinsic dielectric function. It should be noted that although the effective mass along x- and 

y-directions differ by about a factor of 7, the difference of the intrinsic and doped dielectric 

function is only weakly dependent on the direction of 𝒒. 



34 

 

Contrast to the static case, the band anisotropy has a much greater impact on the frequency-

dependent part of the dielectric function. The polar plot in Fig. 3.6 (b) shows the loss function 

𝐼𝑚[𝜖00
−1(𝒒, 𝜔)] as a function of 𝜔 and the direction of 𝒒. The darker region in the plot 

corresponds to a peak in the loss function corresponding to the plasmon excitation, showing that 

the plasmon is highly anisotropic in BP. We find that the angular-dependent plasmon frequency 

can be well fitted by the relation 𝜔𝑑(𝒒) ∝ √
cos2 𝜃

𝑚𝑥
+

sin2 𝜃

𝑚𝑦
, where 𝑚𝑥 = 1.22𝑚0 and 𝑚𝑦 =

0.16𝑚0 are the electron effective masses in the two directions and θ is the direction of 𝒒. Apart 

from this anisotropy, the plasmon frequency is follows the characteristic of 2DEG and is 

proportional to √𝑞 and √𝑛 for small 𝑞 and low doping density 𝑛. The screening properties of BP 

obtained with our ab initio calculation agree well with a previous study using the effective 

Hamiltonian approach [68].  

The quasiparticle self-energy of the doped BP is expanded similarly into Σ1, Σ2 and Σ3 following 

Eq. (3.1). Each term is calculated according to Eq. (3.2)-(3.4) with the difference that the integral 

over q now needs to be done in 2D instead of 1D. The ab initio static dielectric function 

𝜖𝟎𝟎
−1(𝒒, 𝜔 = 0) and the plasmon frequency 𝜔𝑑(𝒒) on the 2D grid is used as input for the 

integrals. We find these two-dimensional integrals can be further simplified by modelling the 

angular dependence of 𝜖𝟎𝟎
−1(𝒒, 𝜔 = 0) and 𝜔𝑑(𝒒). By assuming  𝛿𝜖𝟎𝟎

−1(𝒒, 𝜔 = 0) to be the 

average of x- and y-direction and isotropic, as well as using the angular dependence of 𝜔𝑑(𝒒) 

shown above, we can further reduce the q-points needed to for the ab initio calculation to only 

along the line Γ-X and Γ-Y. This yields similar result to the full 2D integration with a difference 

in the on-shell self-energy at VBM and CBM of less than 10 meV.  
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Figure 3.6 (a) First-principles static dielectric function of n-doped BP in different direction. (b) Polar plot 

of the loss function in n-doped BP. The dashed line is a fit to the plasmon frequency with the anisotropic 

effective mass.  

 

The resulting quasiparticle band gap renormalization of n-doped BP is shown in Fig. 3.7 (b). The 

quasiparticle band gap drops rapidly from 1.95eV to around 1.58eV with light doping up to 

density n = 2×1012cm-2. However, there is a notable difference from h-BN and MoS2 that the 

band gap renormalization of BP is less saturated at high doping density. As the inset in Fig. 3.7 

(b) shows, this is due to a continued decrease of the CBM quasiparticle energy at large doping 

density, while the VBM quasiparticle energy has already saturated to nearly constant. The on-
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shell self-energy values at VBM and CBM, shown in Fig. 3.7 (c) and (d), reveal the reason 

behind this unusual behavior. Same as h-BN and MoS2, the Coulomb-hole term Σ2, as shown by 

the red curves, is dominant at low doping density but saturates at higher doping density. 

However, the screened-exchange term Σ1+Σ3 as shown by the magenta curve in Fig. 3.7 (d), 

which controls the CBM self-energy renormalization at high density, is notably larger than that 

in h-BN and MoS2.  As we have discussed in the asymptotic analysis, the screened-exchange 

self-energy is inversely proportional to the density-of-state effective mass. Due to the lack of 

valley degeneracy and highly anisotropic, quasi-1D band dispersion, electrons in BP has a small 

DOS effective mass √𝑚𝑥𝑚𝑦 ≈ 0.44, which is about 2 times smaller than MoS2 and 3 times 

smaller than h-BN. The calculated slope of the screened-exchange self-energy versus doping 

density is indeed 3 times larger for BP than h-BN, which confirms that the smaller DOS of BP is 

the root cause of its large, unsaturated band gap renormalization.  
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Figure 3.7 (a) DFT and GW band structure of intrinsic BP. (b) Quasiparticle band gap renormalization of 

n-doped BP. Dots represent the ab initio result and the solid lines are from the effective mass model. (c) 

(d) The on-shell self-energy Σ1, Σ2 and Σ3 at the VBM and CBM as a function of doping density. 
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3.5 Band Gap Renormalization of ReSe2 on Graphene 
Direct ab initio calculation on multiple layers of different 2D materials can be difficult in general 

due to the existence of lattice mismatch, which leads to very large unit cell or no unit cell at all. 

However, most experimental studies of 2D material involve some substrate that are adjacent to the 

monolayer, which can strongly modify the dielectric screening properties of the material and lead 

to different band gap renormalization behavior. The effective mass model of band gap 

renormalization we have developed neglects the details of the crystal structure and only uses the 

physical quantities that are macroscopic in the in-plane direction. Therefore, it can be generalized 

to deal with such cases. Here we demonstrate such a calculation, dealing with the band gap 

renormalization of monolayer 1T-ReSe2 placed on top of a single layer of graphene substrate. 

ReSe2 is a newly-discovered 2D TMDC with direct band gap and in-plane anisotropic electronic 

and optical properties [69-71]. 

We start with the case of free-standing monolayer ReSe2, which have a calculated intrinsic direct 

band gap of 2.17 eV at the Γ point within G0W0 approximation. Following the procedure in Section 

3.3, the change in the quasiparticle self-energy at the band edge is calculated with effective-mass 

model. We use an electron effective mass of 0.96𝑚0 and hole effective mass of 1.24𝑚0 (where 

𝑚0 is the bare electron mass), obtained by fitting the first-principle DFT band structure, and a 2D 

polarizability 𝛼2𝐷 = 6.9 Å, obtained by fitting the dielectric function at small q-vector according 

to 𝜖𝟎𝟎
−1(𝒒, 𝜔 = 0) ≈ 1/(1 + 2𝜋𝛼2𝐷𝑞) . As shown in Figure 3.8 (a), a substantial band gap 

renormalization is observed, which starts off rapidly at low doping density where the dominant 

contribution comes from the Coulomb-hole self-energy, and gradually transforms into a linear 

trend where the dominant contribution comes from the screened-exchange self-energy. Within a 
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doping density of 1012 cm-2, the quasiparticle band gap of a freestanding monolayer is reduced by 

320 meV, which is significantly larger than the experimental measurements [72]. 

This overestimated band gap renormalization may be from the graphene substrate, which 

introduces extra dielectric screening that shall significantly reduce the self-energy correction and 

quasiparticle band gap. A direct GW calculation combining ReSe2 and graphene is a formidable 

if not impossible task due to lattice mismatch. However, the lattice mismatch problem can be 

bypassed here for the calculation of doping effect, by taking advantage of the fact that the band 

gap renormalization is mainly decided by dielectric screening of the long-wave and low-frequency 

limit. To this end, for monolayer ReSe2 on graphene substrate, we compute the non-interacting 

static polarizability of the whole system at small 𝒒 and zero in-plane G-vector by summing the 

polarizability of individual ReSe2 and graphene layers: 

𝜒𝐺𝑧𝐺𝑧
′(𝒒, 𝜔 = 0) = 𝜒𝐺𝑧𝐺𝑧

′
𝑅𝑒 (𝒒, 0) + 𝜒

𝐺𝑧𝐺𝑧
′

𝑔𝑟𝑎 (𝒒, 0)      (3.10) 

For each layer, the asymptotic behavior of the polarizability at low doping density and small q-

vector is used: 

𝜒𝐺𝑧𝐺𝑧
′

𝑅𝑒 (𝒒, 0) = (
2𝜋

𝐿
)

2
𝑓𝑅𝑒

∗ (𝐺𝑧)𝑓𝑅𝑒(𝐺𝑧 − 𝐺𝑧
′)𝐺𝑧𝐺𝑧

′ +
1

𝐿
(−𝛼2𝐷𝑞2 + 𝜒2𝐷𝐸𝐺(𝑞, 𝜔 = 0; 𝑛𝑅𝑒))𝑓𝑅𝑒(𝐺𝑧 − 𝐺𝑧

′)    

(3.11)  

𝜒
𝐺𝑧𝐺𝑧

′
𝑔𝑟𝑎 (𝒒, 0) = (

2𝜋

𝐿
)

2
𝑓𝑔𝑟𝑎

∗ (𝐺𝑧)𝑓𝑔𝑟𝑎(𝐺𝑧 − 𝐺𝑧
′)𝐺𝑧𝐺𝑧

′ +
1

𝐿
𝜒𝑔𝑟𝑎(𝑞, 𝜔 = 0; 𝑛𝑔𝑟𝑎)𝑓𝑔𝑟𝑎(𝐺𝑧 − 𝐺𝑧

′) (3.12) 

Where L is the simulation cell periodicity in the z direction, 𝜒2𝐷𝐸𝐺 is the Lindhard function of 

2DEG and 𝜒𝑔𝑟𝑎 is the polarizability function of graphene [73]. The form factor 𝑓(𝐺𝑧) describes 

the distribution of the corresponding wavefunction in the x direction, and it is assumed to have the 
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form of the Fourier transform of step function: 𝑓(𝐺𝑧) =
𝐿

𝜋𝑑
sin(

𝜋𝑑𝐺𝑧

𝐿
) 𝑒

2𝜋𝑖𝑧0
𝐿 , where 𝑑 is the step 

width that correspond to an effective layer thickness (obtained by fitting the first-principles 

𝜒𝐺𝑧𝐺𝑧
′(𝑞 → 0, 𝜔 = 0) of individual monolayers) and 𝑧0 is a vertical displacement (which is used 

to apply a 6.8 Å separation between the layers). This setup allows the calculation of band gap 

renormalization of ReSe2-graphene system as a function the doping density in the graphene and 

ReSe2 layer independently. The results with graphene substrate included are presented in Figure 

3.8(b), where the doping density of graphene is set to different values. With the inclusion of 

graphene substrate, the quasiparticle band gap of ReSe2 monolayer is only reduced by 130 meV 

within a doping density of 1012 cm-2 in ReSe2. Furthermore, we find that when any appreciable 

free-carrier is present in ReSe2, the band gap of ReSe2 becomes insensitive to the charge density 

in graphene. Although when the ReSe2 layer remains intrinsic, doping in graphene can renormalize 

the band gap of ReSe2 by 50-100 meV. 

 

Figure 3.8 (a) Quasiparticle band gap renormalization of n-doped free-standing ReSe2. (b) Quasiparticle 

band gap renormalization of n-doped ReSe2 on top of graphene substrate. The x-axis is the electron 

density in ReSe2 and the different curves correspond to different values of electron density in graphene. 



41 

 

3.6 Summary 
In summary, we have discussed the band gap renormalization in doped 2D materials within the 

GW approximation for three prototypical materials. We have combined ab initio results and 

effective mass model to determine the dielectric screening, quasiparticle self-energy and band 

gap renormalization at arbitrary doping density. With asymptotic analysis, we have shown that 

the main contribution to the band gap renormalization can be separated into two terms. One is 

the Coulomb-hole term coming from the change of the dielectric screening, which is highly 

nonlinear and dominant at low doping density. The other is the screened-exchange term coming 

from the change in electron occupation, which is linear and more important at high doping 

density. There were demonstrated in two prototype materials: h-BN and MoS2. We have also 

studied the anisotropic dielectric screening of BP. We find BP has a larger band gap 

renormalization at high doping density, which we attribute to the smaller density-of-state of BP 

near the band edge. Finally, using ReSe2/graphene heterobilayer as a prototype, we extended this 

approach to describe the screening effect of a bilayer system with two different materials with 

lattice mismatch, which would not be possible without the effective mass model.  
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Chapter 4: Dynamical Excitonic Effects in 

Doped Two-Dimensional Materials 

4.1 Introduction 
One of the most prominent features of two-dimensional (2D) materials is the enhanced many-

body interactions due to quantum confinement and the reduced electronic screening. This is 

evident from the significant shift of optical absorption spectra of semi-metallic graphene [74, 75] 

and the huge exciton binding energies in monolayer transitional metal dichalcogenides (TMDCs) 

and black phosphorus in an order of a few hundred meV [25, 76-81]. Meanwhile, doping is 

critical to the proper functioning of electronic and photonic devices. It is widely observed in 2D 

materials by either inevitable defects or intended electrostatic [9, 82-86] and chemical [48, 49, 

87] processes. The doped free carriers make the structure more metallic and impact a wide range 

of many-body interactions, including quasiparticles (QP), excitons, and higher-order excitations 

such as trions and biexcitons [47, 83-85]. In particular, the enhanced van Hove singularity (vHS) 

in reduced-dimensional structures can boost doping effects, evidenced by the huge 

renormalization of excitonic effects in doped carbon nanotubes [50, 51].  

Recent experimental measurements have raised more questions about excitonic effects in doped 

2D materials, e.g. settling the discrepancies in excited-state properties as measured under various 

doping conditions [76, 49]. Unfortunately, limited progress has been made towards this goal. 

Effective Hamiltonian theories developed for quantum wells can only qualitatively explain the 

trend of the spectral evolution [88-90], and models of effective static electron-hole (e-h) potential 

could reproduce the binding energy of small carrier complexes [91-93] but not their doping 

dependence. The ab initio GW+BSE approach [33, 43, 45] has been very successful in predicting 
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the QP band gaps and optical properties of intrinsic (undoped) 2D materials [25, 79, 80], but it 

remains elusive how this framework can be extended to excitonic properties in doped 2D 

materials. It motivates us to further develop this approach to describe the full evolution of optical 

properties of 2D semiconductors from intrinsic to heavily-doped cases. 

In this chapter, we have developed a generalized plasmon-pole (GPP) model for capturing the 

essential dynamical screening, making it possible to efficiently calculate the excitonic properties 

(energies and oscillator strength) in doped 2D systems. With this methodological advancement, 

we focus on monolayer MoS2, a prototypical 2D semiconductor of broad interest, on which 

spectrum resolution of a few meV have been achieved experimentally recently [94]. We reveal 

the importance of including dynamical effects for describing the effective screened interaction 

within the e-h pairs in the presence of extra charge carriers. The calculation shows good 

agreement with experiments in the evolution of the bright exciton energy according to the doping 

density, while it also raises questions of interpretations of the observed exciton energy spectrum. 

Doping can impact excitonic effects and optical spectra through several mechanisms, as shown 

in the schematic diagram in Figure 4.1. First, within the single-particle picture, the Pauli 

blocking effect (Burstein-Moss shift [95, 96]) of doped carriers raises the e-h continuum energy 

(Econt) relative to the band gap linearly, due to the constant 2D density of states. More 

importantly, reduced-dimensional systems are susceptible to the changes of electronic screening, 

which can result in large renormalization in the excited state properties [97-99]. On one hand, 

screening from the doped free carriers can induce a large nonlinear QP band gap renormalization 

(BGR) due to the carrier plasmon [52], and result in negative electronic compressibility [53, 100, 

101]. On the other hand, screening results in the reduction of exciton binding energy, which is 

the center of our discussion. Interestingly, experimental measurements show that the energy of 
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the neutral exciton stays nearly constant in various doping conditions, with a small and linear 

blue shift roughly following the Fermi energy [47, 83-86], suggesting a nearly exact cancellation 

between the change in QP band gap and exciton binding energy. As we will see, this cancellation 

cannot be trivially reproduced from the widely used static BSE; dynamical corrections, arising 

from the strong correlation effects of doped carriers, need to be treated carefully. 

 

Figure 4.1 Schematic diagram showing the doping effects, including a reduction of QP band gap Eg, a 

reduction of exciton binding energy Eb, and a rise of e-h continuum energy Econt relative to the band gap 

due to Pauli blocking. Changes in the exciton energy Ω is a combination of these effects. 

 

4.2 Dynamical Effects in Bethe-Salpeter Equation 
The widely used GW+BSE approach starts with the G0W0 approximation to the QP self-energy, 

where the (inverse) dielectric function 𝜖𝑮𝑮′
−1 (𝒒, 𝜔) and the screened Coulomb interaction  

𝑊𝑮𝑮′
−1 (𝒒, 𝜔) =  𝜖𝑮𝑮′

−1 (𝒒, 𝜔)𝑣(𝒒 + 𝑮′) is constructed from the random-phase approximation 
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(RPA). Beyond single-particle excitation, for studying excitonic effects, the BSE can be 

formulated as a generalized eigenvalue problem:  

(𝐸𝑐𝒌 − 𝐸𝑣𝒌)𝐴𝑣𝑐𝒌
𝑆 + ∑ 𝐾𝑣𝑐𝒌,𝑣′𝑐′𝒌′(ΩS)𝐴𝑣′𝑐′𝒌′

𝑆
𝑣′𝑐′𝒌′ = ΩS𝐴𝑣𝑐𝒌

𝑆     (4.1) 

where the correlate e-h excitation 𝑆 of energy ΩS is expanded on the basis of e-h pairs |𝑆⟩ =

∑ 𝐴𝑣𝑐𝒌
𝑆 |𝑣𝑐𝒌⟩, and 𝑣 and 𝑐 stand for the valence and conduction band index, respectively. Here 

we have restricted our discussion within the e-h excitations under the Tamm-Dancoff 

approximation [45]. 

The e-h interaction kernel 𝐾 is dominated by the attractive direct term  

𝐾𝑣𝑐𝒌,𝑣′𝑐′𝒌′
𝑑 (ΩS) = − ∑ 𝑀𝑐′𝑐

∗ (𝒌, 𝒒, 𝑮)𝑀𝑣′𝑣(𝒌, 𝒒, 𝑮′)𝜖𝑮̃𝑮′;𝑐𝑣𝑐′𝑣′𝒌
−1 (𝒒, ΩS)𝑣(𝒒 + 𝑮′)𝑮𝑮′  (4.2) 

Where 𝒒 = 𝒌′ − 𝒌 and 𝑀𝑛′𝑛(𝒌, 𝒒, 𝑮) is the plane-wave matrix element containing the band 

structure information [44]. The dynamical effects are incorporated into the effective dielectric 

function, which is given by (neglecting finite lifetime effects) [50, 51, 102, 103]: 

 (4.3) 

The static approximation for BSE, which neglects the last term in this equation, is commonly 

used for intrinsic semiconductors and typically reproduces the excitonic properties accurately 

because the differences ΩS − (𝐸𝑐 − 𝐸𝑣) can be neglected in comparison to the characteristic 

energy of the loss function  𝜖𝑮𝑮′
−1 (𝒒, 𝜔) (the plasmon energy) [45]. 
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However, the approach described above cannot fully capture the excitonic effects when doping is 

introduced, due to the following reasons. First, the acoustic carrier plasmon in the 2D electron 

gas (2DEG), which falls on a similar energy-scale as that of the exciton binding energy, 

dynamically couples with QP and e-h excitations [104-106]. This corresponds to a characteristic 

dynamical screening time similar as the e-h scattering time, which invalidates the static screening 

approximation. Second, beyond excitons, the success in describing the trion binding energy in 

doped monolayer TMDCs by an effective pairwise interaction of intrinsic systems [91, 92] 

irrespective of the doping density, contradicts the simple picture of static free-carrier screening. 

It has been suggested that dynamical correlations of excitons could explain this puzzle [107, 

108]. Third, the correlation effects naturally grow stronger in the low doping limit as the 

interaction energy of electrons dominates over the kinetic energy [61], making vertex corrections 

beyond RPA more important in the screening process. To date, the importance of dynamical 

effects has been noted in bulk noble metals [109] and doped semiconducting carbon nanotubes 

[50, 51], but has never been studied in 2D materials. 

The BSE is hardly solvable with the dynamical effects in the form of Eq. (4.3), but it can be 

greatly simplified if we make a plasmon-pole approximation (PPA) to the dielectric function. 

Assuming there is only a single plasmon-pole  

  (4.4) 

Eq. (4.3) can be simplified into 

    (4.5) 
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where 𝜔̃𝑮𝑮′(𝒒) and 𝐴𝑮𝑮′(𝒒) are the frequency and amplitude of the pole, respectively.  Here we 

have also approximated the terms on the denominator of Eq. (4.3) by (𝐸𝑐𝒌+𝒒 − 𝐸𝑣′𝒌) − Ω𝑆 ≈

(𝐸𝑐′𝑘 − 𝐸𝑣𝒌+𝒒) − Ω𝑆 ≈ 𝐸𝑖𝑛𝑡
𝑆 , where 𝐸𝑖𝑛𝑡

𝑆 = ∑(𝐸𝑐𝒌 − 𝐸𝑣𝒌)|𝐴𝑣𝑐𝒌|2 − Ω𝑆 is the average e-h 

interaction energy, which approximately equals to the binding energy 𝐸𝑏
𝑆 = 𝐸𝑐𝑜𝑛𝑡 − ΩS  for 

tightly bound states. It becomes clear from Eq. (4.5) that the dynamical effect serves as a positive 

correction to the static dielectric function (with 𝐴𝑮𝑮′(𝒒) being negative by the way it is defined) 

and weakens the screening to the e-h interaction compared with the static approximation. The 

BSE can now be solved self-consistently as a generalized eigenvalue problem with only a few 

self-consistent steps additional to the regular problem, if we are interested in a few optically 

active excitonic states which typically dominate the optical spectra. 

 

Figure 4.2 (a) The RPA static dielectric function at different doping densities. (b) The effective dielectric 

function 𝜖𝟎̃𝟎
−1(𝒒, 𝐸𝑏) from GPP-BSE for the primary excitonic state compared with intrinsic and doped 

static dielectric functions 𝜖𝟎𝟎
−1(𝒒, 0). Doping densities of 0.03×1013 cm−2 (green) and 0.60×1013 cm−2 (red) 

are shown. 

Due to the elusive nature of vertex corrections beyond RPA, we employ the single-pole 

Hybertsen-Louie GPP approximation [43] to the dielectric function in calculating e-h 
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interactions, which preserves the generalized f-sum rule, an exact constraint to the dielectric 

function to all orders in the diagrammatic expansion, thus including correlation effects beyond 

RPA [110]. We will call this approximation the GPP-BSE approximation, as opposed to the 

commonly used static BSE (S-BSE) approximation. 

With the GPP-BSE approximation, the head part of the effective dielectric function is simplified 

to be  

     (4.6) 

where 𝜔𝑃(𝑞) ≈ √2𝜋𝑛2𝐷𝑞 is the 2D plasma frequency and 𝑛2𝐷 is the total (intrinsic + doped) 2D 

charge density. Contributions from the parts with nonzero G-vector are small enough to be 

neglected [52]. The static dielectric function 𝜖𝟎𝟎
−1(𝒒, 0) of the intrinsic system, shown in Fig. 

4.2(a) for monolayer MoS2, approaches 1 as 𝑞 → 0, signifying the vanishing long-range 

screening effects in 2D systems, whereas it drops to 0 in the doped system, signifying the 

metallic screening. After including dynamical effects, however, the effective dielectric function 

of the doped system, shown in Fig. 4.2(b), diverts from its static value and rises sharply to 1 as 

𝑞 → 0. It results from the 2D plasmon dispersion where plasmon energy vanishes as 𝑞 → 0, 

which delineates the frequency-range within which the doped carriers can respond. The 

consequence is a reduced effective screening as the carriers are unable to catch up with the 

dynamics of the e-h pair.  
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4.3  Calculation Details and Comparison of Different 

Approximations 
The calculation is conducted on n-doped monolayer MoS2 as a prototypical example, with the 

procedure described as follows. The DFT calculations were conducted using a plane-wave basis 

with a 70 Ry energy cutoff with norm-conserving pseudopotentials including the semi-core states 

of Mo, and GGA-PBE [58] type of exchange-correlation functional, using the 

QuantumESPRESSO package [39]. Rigid-band doping is used to mimic electrostatic doping. 

The QP band gap is determined using the G0W0 approximation with the same GPP 

approximation to the frequency-dependence of the dielectric function. The dielectric matrix is 

calculated on a 36×36×1 k-grid with a summation of Nc=256 empty bands and a cutoff of 10 Ry. 

The same number of bands are used in the summation of the self-energy with the static reminder 

approximation to accelerate convergence [111]. A truncation to the Coulomb interaction [59] is 

applied to eliminate interactions between periodic images. For the doped system, k-grid up to 

48×48×1 for the dielectric matrix is used to calculate BGR. The BSE is solved on a finer 

120×120×1 k-grid in order to capture the phase-space blocking effect. To construct the e-h 

interaction kernel, the head part of the dielectric matrix 𝜖𝟎𝟎
−1(𝒒, 0) with small q is calculated 

directly on this finer k-grid to capture its rapid variation near q=0 [28], and interpolated from a 

24×24×1 coarse grid elsewhere. A spin-orbit splitting of ∆𝑆𝑂=160 meV, which is not affected by 

the GW corrections [112], has been included as a rigid shift to the exciton energy. The 

BerkeleyGW [44] package is used for these calculations.  

For the GPP-BSE calculation, which is not part of the BerkeleyGW package, the head part of the 

dielectric function is read out from the program, modified according to Eq. (4.6) into 𝜖𝟎̃𝟎
−1(𝒒, 𝐸𝑖𝑛) 

with a series of different input values 𝐸𝑖𝑛, and then put back in to solve for the BSE matrix. The 
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e-h interaction energy 𝐸𝑖𝑛𝑡
𝑆  of each low-lying exciton eigenstates S is then calculated and plotted 

against 𝐸𝑖𝑛 to find the solution that satisfy the self-consistency condition 𝐸𝑖𝑛𝑡
𝑆 = 𝐸𝑖𝑛, as 

illustrated in Figure 4.3. Note that the self-consistency condition breaks the orthogonality 

between different eigenstates. However, the low-lying exciton eigenstates (1s, 2s, etc.) are well 

separated from each other in energy and thus well-defined solutions still exist.  

 

Figure 4.3 The self-consistent solution of BSE using the effective dielectric function Eq. (4.6) 

for the 1s and 2s exciton states at doping density 0.3×1012cm-2. 
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Figure 4.4 (a) The energy of the band continuum edge and exciton as a function of the doping density 

from S-BSE and GPP-BSE. (b) Cancellation between BGR (ΔEcont, lower curve) and exciton binding 

energy reduction (−ΔEb, upper curve) that determines the change in exciton energy in GPP-BSE. Dashed 

line corresponds to the complete vanishing of exciton binding energy. (c) Binding energy of the 1s and 2s 

excitonic states as a function of the doping density from GPP-BSE. 
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Figure 4.4 summarizes the resulting energy of the primary exciton state of n-doped monolayer 

MoS2 versus the doping density 𝑛, calculated from the GPP-BSE and S-BSE approximation. Fig. 

4.4(a) shows the evolution of e-h continuum and exciton energy. The most striking feature is that 

the exciton energy within the GPP-BSE approximation is nearly flat at low doping densities and 

slightly increases at higher doping densities. This nearly fixed exciton energy at the low doping 

density comes from an almost exact cancellation between the nonlinear BGR and exciton 

binding energy reduction, as shown in Fig. 4.4(b). For higher doping densities, the reduction of 

the exciton binding energy is nearly saturated while the e-h continuum energy still increases 

linearly due to Pauli blocking. Thus, the exciton energy also increases linearly.  

In comparison, the exciton energy calculated from S-BSE shows a wiggling blueshift at low 

doping densities, as shown in Fig. 4.4(a). This difference shows that the overestimation of 

screening from the static e-h interaction kernel, as seen by comparing the static versus effective 

dielectric function in Fig. 4.2(b), is indeed important in doped systems.  

It is worth noting that dynamical effects also reduce the exciton binding energy of intrinsic 

monolayer MoS2 by 40 meV, which quantifies the margin of error expected from the common 

static approximation in intrinsic 2D semiconductors. It also needs to be noted that the electron-

phonon interaction is neglected in our calculation, which may introduce an extra variation of 

optical properties [113]. However, phonon modes will not be abruptly changed by doping in 

MoS2 [114]. Accordingly, we expect the electron-phonon coupling does not significantly change 

our results.  

The cancellation between quasiparticle band gap and exciton binding energy at the low energy 

limit can be understood theoretically as the following. If static approximation is used in both GW 
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and BSE, the dominant term in GW approximation, following the discussion in Chapter 3, would 

be the static Coulomb-hole self-energy (i.e. Eq. (3.7) with the plasmon frequency 𝜔𝑑(𝒒) → ∞): 

|ΔΣstatic
𝐶𝐻 |~

1

2
∫

𝑑2𝒒

(2𝜋)2
|𝛿𝜖𝟎𝟎

−1(𝒒, 0)|𝑣(𝒒)            (4.7) 

which take equal but opposite value for VBM and CBM. The reduction in the band gap in static 

approximation is therefore just 2|ΔΣstatic
𝐶𝐻 |. Meanwhile, the correction to the exciton energy 

under first-order perturbation is  

ΔΩ𝑆~ ∑ 𝐴𝒌+𝒒
∗ 𝐴𝒌⟨𝒌|𝛿𝜖𝟎𝟎

−1(𝒒, 0)𝑣(𝒒)|𝒌 + 𝒒⟩𝒌,𝒒       (4.8) 

which, in the low-density limit where 𝑘𝐹 is much smaller than the extension of exciton 

wavefunction in k-space, reduces to ΔΩ𝑆~ − ∫
𝑑2𝒒

(2𝜋)2 |𝛿𝜖𝟎𝟎
−1(𝒒, 0)|𝑣(𝒒), exactly cancelling the 

band gap renormalization.  

However, the static approximation grossly overestimates the GW correction to the band gap, and 

the inclusion of dynamical effect within GPP, which produces much more accurate band gap 

value, effectively adds a quasiparticle renormalization factor 𝑍 ≡ 1/(1 −
𝜕Σ(𝐸)

𝜕𝐸
) to the static self-

energy: Δ𝐸𝑄𝑃 ≈ 𝑍 ∙ ΔΣstatic. For example, for the VBM and CBM of MoS2, 𝑍 ≈ 0.8. Therefore, 

using S-BSE with a GW band gap obtained from the GPP model (or any model that includes 

dynamical effect, including what we used in Chapter 3) causes red shift in the exciton energy. By 

including the dynamical effects under the same level of approximation (GPP), we effectively 

reduce ΔΩ𝑆 by a fraction that is close to 𝑍, thereby recovering the cancellation between the two 

and at the same time producing a much more accurate band gap value compared with the static 

approximation. 
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It is important to point out that a tentative alternative form of PPA may be the low-energy 

acoustic plasmon of the doped carrier that matches the full-frequency RPA. The effective 

dielectric function within such PPA takes the following form [50, 51]:  

    (4.7) 

where 𝜔𝑎𝑝(𝑞) the frequency of the low-energy acoustic plasmon of the doped carriers obtained 

within RPA, and 𝜖𝑖,𝟎𝟎
−1 (𝒒, 0) is the static dielectric function of the intrinsic system. Figure 4.5 

shows the exciton energies obtained from this approximation. The exciton effectively feels 

almost no screening from the doped carrier and the binding energy only slowly and linearly 

decrease upon doping, because the energy of this plasmon 𝜔𝑎𝑝(𝑞) is well below the e-h 

interaction energy for small q. The band gap, on the other hand, still drops rapidly as doping is 

first introduced [52], so the combined effect leads to a quick drop of exciton energy of around 

300 meV at light doping, until BGR saturates and binding energy reduction and Pauli-blocking 

effect takes over as doping density increases. This rapid variation of exciton energy with doping 

contradicts the basic experimental observations, and we believe the discrepancy originates from 

vertex corrections which are generally more important at lower free carrier density. The GPP-

BSE approximation, on the other hand, approximately take into account these vertex corrections, 

and cures the large discrepancy produced by RPA dynamical screening. Note that the GPP 

approximations here is validated a posteriori through comparison with experiment, and its 

disagreement with the full-frequency RPA in both GW [115] and BSE should not be regarded as 

a drawback of GPP, but rather an indication of the importance of vertex corrections.  
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Figure 4.5 Same as Figure 4.3(a)(b) but using the low energy acoustic plasmon from RPA as pole. 

 

4.4 Excitonic Spectrum and Absorption Lineshape 

Excitonic effects are also generally more robust when dynamical effects are included. For 

example, as marked in Fig. 4.4(a), in S-BSE the exciton merges into the e-h continuum and 

dissociates before the doping density reaches 0.6×1013cm-2, while in the GPP-BSE it survives 

until the doping density reaches 4×1013cm-2. Considering the screening from the dielectric 

environment that could further reduce exciton binding [98, 99], such a density (4×1013cm-2)  is 

expected to be the upper limit for exciton dissociation in experiments. 

Interestingly, the exciton energy spectrum does not scale linearly with the doping density. The 2s 

exciton state is far more sensitive to the doping level, as shown in comparison to the 1s state in 

Fig. 4.4(c). It quickly vanishes when the doping density reaches around 1012cm-2, leaving the 1s 

state as the only bound excitonic state. This is because a weaker bound state has slower 

dynamics and thus allows more time for the carrier screening to catch up, and consequently feels 

a stronger effective screening, as given by Eq. (4.6). As a result, we find the higher quantum-

number excitonic states are more unstable against doping than the primary 1s state. This is 
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different from a recently reported experimental finding in WS2 [86], in which the higher 

excitonic states would survive large doping densities. We speculate from their extremely small 

amplitude that the experimental 2s and 3s states may be pinned to defects, although more works 

are needed to settle this discrepancy definitively. 

In Fig. 4.6, the change of exciton energy and oscillator strength relative to the intrinsic system in 

our calculation are directly compared to experiments on doped monolayer MoS2 and WS2. The 

GPP-BSE approximation achieves remarkable agreement with experiment in exciton energy 

within our numerical accuracy, while the e-h binding energy have changed a few hundred meV. 

It also reproduces the oscillator strength of exciton better than the S-BSE approach, although 

there's a small disagreement at large doping density, which may emerge from the many-body 

effects beyond GPP such as the coupling with trions. 

 

Figure 4.6 (a) Exciton energy shift from different approximation compared with experiments [47, 83, 86]. 

(b) Exciton oscillator strength change from different approximations compared with WS2 reflectance 

contrast spectra experiment [86]. 
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As experimentally observed in the optical spectra of quasi-2D semiconducting quantum wells 

[116-119] and monolayer TMDCs [47, 83-86], when the doping density increases, spectrum 

weights are first transferred from exciton to trion, and then the exciton and trion peak in the 

spectrum merge into an asymmetric line shape called the Fermi-edge singularity (FES). This 

transition from discrete bound states to FES has been studied in model systems for quantum 

wells [88-90, 120]. As is shown in Fig. 4.7, the spectra obtained from the GPP-BSE 

approximation are in stark contrast with the ones obtained from the S-BSE. Apart from the 

aforementioned exciton energy levels, the spectra differ markedly in their absorption edges as 

they evolve from discrete symmetric excitonic peaks to continuous asymmetric FES. At high 

doping densities, the S-BSE predicts a complete absence of excitonic effects, as its absorption 

line merges with the single-particle prediction. However, in the GPP-BSE a broad FES is 

retained at higher doping densities, because the important dynamical many-electron response is 

rectified by our effective dielectric model. Fig. 4.7 also shows how the real-space exciton 

wavefunction evolves with doping. As the doping density increases, apart from a slightly wider 

spread due to weaker binding, an Airy-type pattern also emerges due to the Pauli blocking in k-

space.  
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Figure 4.7 (left) The evolution of absorption line shape with doping calculated from S-BSE (yellow) and 

GPP-BSE (blue). The dashed line represents the absorption calculated without e-h interaction. The arrows 

donate the e-h continuum energies. A 0.03 eV Gaussian broadening is applied to the spectrum. (right) 

Modulus squared real-space wave function of the primary exciton state from solving GPP-BSE. It is 

plotted as a function of electron position with the hole fixed at the center and is integrated out along the 

off-plane z-direction. 
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Finally, we have to address that, in the GPP-BSE approximation, the dynamical effects are 

treated equally in GW and BSE, which also improves the cancellation between QP self-energy 

and excitonic correction [109, 121]. It should be noted that the GPP-BSE is only a crude 

approximation to the complicated dynamical response of the many-body system, where more 

higher-order vertex corrections come into play at lower doping densities, as the dimensionless 

Wigner-Seitz radius rs increases with decreasing density. On the other hand, as the doping 

density increases, the effects of vertex corrections are lessened, and RPA becomes a better 

approximation, and consistently the difference between GPP-BSE and S-BSE becomes smaller. 

Graphene, on the other hand, has a constant rs due to its linear dispersion [73], which suggests 

that the vertex corrections to its dielectric response are small for all doping density. And indeed, 

static BSE has been able to capture the optical response of doped graphene [122, 123]. 

In conclusion, we have shown that the inclusion of dynamical excitonic effects and beyond-RPA 

screening in BSE is crucial for correctly studying the optical properties of doped 2D 

semiconductors. We have developed the sum-rule-preserving GPP-BSE approximation to these 

effects, which produces good agreement with experiments. Our result, in particular the evolution 

of exciton binding energy, is important for interpreting experimental measurements and 

quantitatively understanding and predicting the doping effects in 2D semiconductors. Moreover, 

our method paves the way of understanding electronic structures of doped 2D devices and further 

studies on charged excitations, such as trions, in doped materials.  
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Chapter 5: Interlayer Coupling and Gate-

Tunable Excitons in Transition Metal 

Dichalcogenide Heterostructures 

5.1 Introduction 
Two-dimensional (2D) transition metal dichalcogenides (TMDC) and its heterostructures have 

attracted a lot of attentions recently as a promising candidate for photonics, optoelectronics, and 

valleytronics devices [8, 10]. With the type II band alignment, TMDC bilayer heterostructures 

possess ultrafast charge transfer and long-lived interlayer exciton as its lowest-energy optical 

excitation, which is desirable for light harvesting applications [124-126], as well as realizing 

high-temperature excitonic superfluidity [20]. In particular, because the interlayer charge transfer 

and exciton photoemission in these structures depends critically on the interlayer coupling [127-

130] and the widely-used gate field can efficiently tune the band offset and interlayer 

interactions, the range of tunable optoelectronic properties of these heterostructures may be 

substantially enhanced over that of semiconductor quantum wells [131]. 

The first-principle DFT + GW/BSE method has been very successful in studying and predicting 

excited-state properties of 2D structures. However, previous calculations have only studied the 

band structure and excitonic properties of intrinsic TMDC heterostructures [132-134]. In these 

calculations, the role of interlayer coupling is not yet well addressed. Particularly, how the 

external gate field impacts the interlayer coupling and interlayer excitations is largely unknown. 

In this sense, it is essential to have a reliable study that can capture this interlayer coupling and 

excitons and how those electron-hole pairs and optical response are tuned by the external gate 

field.  
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In this chapter, we study gated MoS2/WS2 and MoSe2/WSe2 heterostructures with first-principles 

DFT + GW/BSE calculations. We first study the band structure and interlayer coupling at the 

DFT level. Then we construct a simple model that accounts for the interlayer coupling and 

provides accurate results for the low-energy excitation spectrum both at the single-particle level 

and including electron-hole interactions. The model is benchmarked against the first-principles 

results without spin-orbit coupling (SOC) first, and then SOC is added as a perturbation. This 

approach allows us to predict the energy, dipole strength, and radiative lifetime of the excitons 

under arbitrary external field, with input parameters obtained from the first-principle results. As 

we will show, apart from the obvious linear response of the band alignment to the external field, 

the interlayer coupling between the valance bands of the bilayer leads to anti-crossing behavior 

of the lowest energy excitons, changing its nature continuously from interlayer to intralayer. Our 

result reveals the nature of the excitons in TMDC heterostructures and explains their gate 

tunability, which will help to interpret and predict experimental optical measurement. 

5.2 Interlayer Coupling at the Single-Particle Level 
In the following, we use MoS2/WS2 as the primary example. Figure 5.1 shows a simple 

schematic picture of the band alignment MoS2/WS2 bilayer heterostructure based on our 

calculation. The conduction band minimum (CBM) and valence band maximum (VBM) belongs 

to MoS2 and WS2 respectively, forming a type II band alignment. SOC further splits the spin-up 

and spin-down bands. Finally, due to the band alignment, the lowest optical transition (exciton) 

is interlayer, while the intralayer transitions lays higher up in energy. To further quantify this 

picture, we turn to the first-principles calculation, beginning with the DFT picture. 
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Figure 5.1 Schematic energy level diagram of MoS2/WS2 heterostructure showing its relative band 

alignment and related optical transitions without the interlayer coupling (not to scale).  

 

The DFT calculation is done with plane-wave pseudopotential method implemented in Quantum 

Espresso [39], using the PBE exchange-correlation functional [58] and including the semi-core 

states of Mo and W. The plane-wave cutoff is chosen to be 75 Ry to ensure the converged 

results. The structure is relaxed with the van der Waals (vdW) DFT-D2 functional [135, 136]. A 

vacuum of at least 15 Å is added in the vertical direction to avoid spurious interactions between 

adjacent slabs. We adopt the stable AB-stacking configuration between the two layers, which can 

be achieved experimentally by epitaxial growth [137]. The interlayer coupling strength may 

change with a different stacking configuration or twisting angle [138], but the physical picture 

and the model we are about to present remains the same. The relaxed lattice constant and 

interlayer distance (vertical distance from Mo to W) is 3.18 Å and 6.21 Å for MoS2/WS2, and 

3.32 Å and 6.54 Å for MoSe2/WSe2, which agrees with previous calculations [139, 140]. (The 

lattice mismatch between the two layers is less than 0.5 %, which will not significantly affect the 
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calculated results.) A saw-tooth like potential in the vertical direction is used to simulate the 

external gating field along with the dipole correction. The positive direction of the external field 

is defined as pointing from the MoS2 layer towards the WS2 layer (see Figure 5.2(b)). While a 

gate field usually leads to charging of the material, electrostatic doping effects [50-52, 141] can 

be avoided in experimental set-ups where the sample is not directly contacted by metal 

electrodes. 

Figure 5.2(a) shows the DFT band structure of MoS2/WS2 without external field, with the color 

indicating the projection of the wavefunction onto either layer. To simplify the problem, SOC is 

not included here for the sake of argument, but will be included later in the final result. As 

expected, the DFT result confirms the Type II band alignment, where the VBM at the K point is 

in the WS2 layer and the CBM is at the Γ point in the MoS2 layer. However, the projection of the 

electronic wavefunction shows that the VBM wavefunction is not 100% WS2, but rather have a 

layer projection of 90% WS2 and 10% MoS2, indicating the presence of interlayer coupling. This 

is more evident by looking at how the VBM and CBM energy changes in response to a vertical 

electric field, as indicated by dots in Figure 5.2(c). Because of the interlayer coupling, the two 

bands at VBM shows anti-crossing behavior as the electric field reverses their order. In contrast 

to this, due to the lack of interlayer interaction, the two bands at CBM pass through each other. 

This coupling behavior can be described by a simple model of a 2×2 matrix (
𝜀𝑀𝑜 𝑡

𝑡 𝜀𝑊
), where 

𝜀𝑀𝑜 and 𝜀𝑊 are the energy of the VBM of each layer alone. Under external electric field 𝐸, the 

relative band alignment of the two layers responds as 𝜀𝑀𝑜(𝐸) − 𝜀𝑊(𝐸) = 𝜀𝑀𝑜(0) − 𝜀𝑊(0) −

𝑒𝐸𝑑/𝜖, where d is the interlayer separation and the parameter 𝜖 reflects the material’s screening 

response to the vertical electric field. For the MoS2/WS2 bilayer we find 𝜖 = 6.5 by fitting the 
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VBM energy, in close agreement with the fully ab initio calculated vertical dielectric constant 

MoS2 (6.3) and WS2 (6) [142]. The same value for 𝜖 also describes the response of CBM energy 

to the electric field, where the coupling is negligible. With a value of 𝑡 = 45 𝑚𝑒𝑉 for the 

parameter describing the interlayer coupling strength at the VBM, this simple model perfectly 

describes the first-principles result as demonstrated in Fig. 5.2(c).  

 

Figure 5.2 (a) DFT band structure of MoS2/WS2 heterostructure without SOC, with the color indicating 

the projection of the wavefunction onto each layer. (b) Schematic plot showing an external electric field 

applied to the heterostructure. (c) The energy of the top two valence bands and bottom two conduction 

bands at K point as a function of the external electric field, without including SOC. 

 

5.3 Interlayer Coupling at the Excitonic Level 
In addition to the single-particle level, the interlayer coupling also plays a critical role in 

determining the properties of the heterostructure at the excitonic level. In order to show that, a 
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many-body GW+BSE calculation is performed, which is proven to be reliable in calculating 

excited-state properties of monolayer TMDCs [80, 143]. The dielectric function is evaluated with 

an 18×18×1 k-point grid, 10 Ry energy cutoff and 400 conduction bands in the summation. The 

quasiparticle band gap is then determined from a single-shot G0W0 calculation. The excitonic 

effects are included by solving the BSE on a finer k-point grid of 90×90×1. A slab Coulomb 

truncation is implemented to avoid interactions between periodic images [59]. These calculations 

are done with the BerkeleyGW package [44].  

For MoS2/WS2, the GW correction increases the direct band gap at K from 1.62 eV to 2.42 eV. A 

scissor operator is used to fit the GW correction to the first two valence and conduction bands 

near the K point, which introduces no more than 0.01 eV error compared with the full GW result. 

Our further calculations show that the GW correction is insensitive to the external electric field. 

At the BSE level, we determine the energy and dipole oscillator strength of the interlayer 

exciton, as shown by the dots in Figure 5.3. In the following, we reveal the key role played by 

the coupling between the valence bands in explaining these results. Focusing on the lowest-

energy interlayer and intralayer excitons, i.e. the so-called “1s” exciton, the BSE can be written 

in the basis of individual (uncoupled) layers as 

(𝜀𝑐 − 𝜀𝑣)𝐴𝑣𝑐
𝑆 + ∑ ⟨𝑣𝑐|𝐾|𝑣′𝑐′⟩𝐴𝑣′𝑐′ = ΩS𝐴𝑣𝑐

𝑆
𝑣′𝑐′ ,       (5.1) 

where |𝑆⟩ = ∑ 𝐴𝑣𝑐
𝑆

𝑣𝑐 |𝑣𝑐⟩ is the exciton eigenstate, 𝑣 and 𝑐 are the layer index of the valence and 

conduction band, 𝜀𝑣 and 𝜀𝑐 are the bare band edge energies of each layer (without including the 

interlayer coupling), ΩS is the exciton energy, and 𝐾 is the electron-hole interaction kernel. We 

have absorbed the k-point indices and focus on the effect of interlayer coupling. The non-zero 
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matrix elements of the kernel 𝐾 are the binding energies of the exciton between two individual 

layers (MoS2 intralayer, WS2 intralayer, and interlayer exciton, respectively): 

⟨𝑣𝑀𝑜𝑐𝑀𝑜|𝐾|𝑣𝑀𝑜𝑐𝑀𝑜⟩ = −𝜀𝐵,𝑀𝑜, 

⟨𝑣𝑊𝑐𝑊|𝐾|𝑣𝑊𝑐𝑊⟩ = −𝜀𝐵,𝑊, 

⟨𝑣𝑊𝑐𝑀𝑜|𝐾|𝑣𝑊𝑐𝑀𝑜⟩ = ⟨𝑣𝑀𝑜𝑐𝑊|𝐾|𝑣𝑀𝑜𝑐𝑊⟩ = −𝜀B,𝑖𝑛𝑡𝑒𝑟, 

which are treated as parameters in the model and are extracted from the ab initio calculation. It’s 

worth noting that the intralayer exciton binding energy here should be differentiated from that of 

an isolated monolayer, because although it assumes no interlayer hopping, it does reflect the 

impact of dielectric screening from the other layer. 

Combining the above assumptions, the BSE Hamiltonian can be written in the bare electron-hole 

basis as a 4-by-4 matrix:  

(

𝜀𝑐𝑀𝑜
− 𝜀𝑣𝑊

− 𝜀B,𝑖𝑛𝑡𝑒𝑟 𝑡

𝑡 𝜀𝑐𝑀𝑜
− 𝜀𝑣𝑀𝑜

− 𝜀𝐵,𝑀𝑜

𝜀𝑐𝑊
− 𝜀𝑣𝑊

− 𝜀𝐵,𝑊 𝑡

𝑡 𝜀𝑐𝑊
− 𝜀𝑣𝑀𝑜

− 𝜀B,𝑖𝑛𝑡𝑒𝑟

)

(↔ 𝑣𝑊𝑐𝑀𝑜)
(↔ 𝑣𝑀𝑜𝑐𝑀𝑜)
(↔ 𝑣𝑊𝑐𝑊)
(↔ 𝑣𝑀𝑜𝑐𝑊)

 

The eigenvalues and eigenvectors of this matrix describe the energy and layer composition of the 

exciton eigenstates. The off-diagonal interlayer coupling 𝑡 is responsible for mixing the 

intralayer and interlayer exciton. This simple model can reproduce the exciton energy and dipole 

strength from the ab initio calculation very well, as shown in Figure 5.3, thus validating the 

assumptions made above. The parameters used in this model for MoS2/WS2 and MoSe2/WSe2 

heterostructures are summarized in Table I.  
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Heterostructure 𝛜 𝒕 𝜺𝑩,𝑴𝒐 𝜺𝑩,𝑾 𝜺𝑩,𝒊𝒏𝒕𝒆𝒓 

MoS2/WS2 6.5 45 meV 0.6 eV 0.57 eV 0.51 eV 

MoSe2/WSe2 7.4 49 meV 0.56 eV 0.53 eV 0.49 eV 

Table 5.1 Key parameters in the model for MoS2/WS2 and MoSe2/WSe2 heterostructure. 

 

 

Figure 5.3 (a) Energy of the exciton eigenstates in MoS2/WS2 heterostructure as a function of the external 

electric field. Dots indicate the first-principles result and the line comes from the model. Color of the line 

indicate the character of the hole in the exciton. Red means the hole is in MoS2 and blue is in WS2. (b) 

Squared transition dipole of the lowest energy exciton as a function of the external electric field, relative 

to the squared transition dipole of the lowest energy exciton in single layer MoS2 (for which we find a 

value –in atomic units- of 0.02 per unit area). Dash line shows similar result without considering electron-

hole interaction. The results are obtained in the absence of spin-orbit coupling. 

 

Without interlayer coupling, the interlayer exciton energy would change linearly with the electric 

field E via the (quantum-confined) Stark effect [131, 144], while its oscillator strength would be 

independent of E. However, as shown in Figure 5.3(a), due to the interlayer coupling, the 

interlayer and MoS2 intralayer exciton states mix leading to an anti-crossing behavior. The 
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electric field can gradually tune the nature of the lowest-energy exciton of the heterostructure 

from primarily interlayer to primarily intralayer. During this process, the overlap of the electron 

and hole wavefunction gradually increase, resulting in a gradually enhanced exciton oscillator 

strength, as shown in Figure 5.3(b). This model demonstrates how the interlayer coupling 

enables the tuning of excitonic properties with external electric field.  

5.4 Tunable Excitonic Properties 
Having benchmarked our model against first principles calculations in the absence of SOC, we 

now proceed to add this additional effect which splits the spin-up and spin-down bands and 

changes the exciton energy, as shown in the schematic plot Fig. 5.1. Because spin along the 

vertical direction is a good quantum number near the K point [145], we can include SOC as a 

perturbation. We take the spin-orbit correction to be the band energy difference between a 

noncollinear spin-orbit DFT calculation and a spin-unpolarized DFT calculation without 

interlayer coupling: Δ𝜀𝑛𝒌𝜎
𝑆𝑂 = 𝜀𝑛𝒌𝜎

𝑆𝑂 − 𝜀𝑛𝒌. The spin-orbit correction to the GW quasiparticle 

energies is assumed to be the same as the spin-orbit correction to the DFT energies [30]. The 

spin-orbit splitting at the VBM is around 160 meV for MoS2 and 440 meV for WS2, while at the 

CBM it is only 3 meV for MoS2 and 40 meV for WS2. The interlayer interaction couples the 

like-spin bands the same way as discussed before. Therefore, the band anti-crossing like the one 

in Fig. 5.2(c) is still present, but only with valence bands of like-spin, as shown in Fig. 5.4.  

SOC affects the excitonic properties via the spin-orbit splitting of the band edge energies that 

enter the diagonal of the aforementioned BSE Hamiltonian. We neglect the k-point dependence 

of the spin-orbit splitting since the exciton is centered closely around the K point. We’ve 

neglected the impact of SOC on the exchange part of the electron-hole interaction, which is 

below 20 meV, much smaller than the SOC splitting. Then the full exciton eigenstate is solved 
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with the interlayer coupling following the same procedure. Finally, the imaginary part of the 

dielectric function is calculated using formula 𝜖2(𝜔) =
16𝜋2𝑒2

𝜔2
∑ |𝒆 ∙ ⟨0|𝒗|𝑆𝜎⟩|2𝛿(𝜔 − Ω𝜎

𝑆 )𝑆𝜎 , 

where 𝒆 is the polarization of the incident light, 𝒗 is the velocity operator and |𝑆𝜎⟩ is the exciton 

eigenstate with spin 𝜎. Higher excitonic states in the series such as the 2s state are not included.  

 

Figure 5.4 The energy of the top valence bands and bottom conduction bands at K point versus the 

external electric field for (a) MoS2/WS2 and (b) MoSe2/WSe2 heterostructure including the spin-orbit 

coupling. The dotted are the DFT-calculated results and the lines are from our interlayer coupling model. 

The blue and red lines represent spin-up and spin-down bands, respectively. 

 

The calculated exciton energies together with the simulated absorption spectrum 𝜖2(𝜔) at 

different electric fields are shown in Figure 5.5(a) and 5.5(b) for MoS2/WS2 and MoSe2/WSe2, 

respectively. After including SOC, the spin-up bands (associated exciton states indicated by blue 

dashed lines) of WX2 and the spin-down bands (associated exciton states indicated by red dashed 

lines) of MoX2 (X=S, Se) have the higher energy at the K point. The top valence band, mainly 
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from WX2 and responsible for the lowest energy interlayer exciton, moves further apart from the 

like-spin band from MoX2. Therefore, for the lowest energy exciton, the impact of the interlayer 

coupling is weaker at zero field with the inclusion of SOC and the anti-crossing behavior is 

apparent only for |E| > 5V/nm for MoS2/WS2, resulting in a more linear Stark shift and a smaller 

oscillator strength of lowest exciton at low field. On the other hand, the anti-crossing behavior is 

seen in the higher-lying exciton states at relatively low electric field values as shown in Fig. 

5.4(a), which provides an easy way to experimentally determine the strength of the interlayer 

coupling by optical absorption measurements.  

The MoSe2/WSe2 bilayer heterostructure shares a very similar band alignment (see Fig. 5.4(b)) 

and interlayer coupling with MoS2/WS2 (see Table I). Therefore, as shown in Fig. 5.5(b), the 

dependence of exciton energy and optical absorption on the electric field in MoSe2/WSe2, 

including the anti-crossing behavior, is very similar to that of MoS2/WS2, with only quantitative 

difference. Specifically, the exciton energies are about 0.2 eV lower in MoSe2/WSe2. Moreover, 

due to slightly different band energy and SOC, the anti-crossing point for the lowest exciton is 

moved to an even higher electric field around 6V/nm. 

Although the anti-crossing behavior in energy is inaccessible at low electric field for the lowest 

exciton, the impact of the interlayer coupling can still be seen from the tunability of the radiative 

lifetime. The radiative lifetime of the lowest exciton is an important parameter for 

photoluminescence and electron-hole separation process. For 2D materials, the intrinsic radiative 

lifetime of exciton at zero temperature is directly related to the dipole strength by 𝜏𝑆
−1 =

8𝜋𝑒2Ω𝑆𝜇𝑆
2

ℏ2𝑐𝐴𝑢𝑐
, where Ω𝑆 is the energy of the exciton state S, 𝜇𝑆

2 is the modulus square dipole strength 

of the exciton divided by the number of k-points, and 𝐴𝑢𝑐 is the area of the unit cell. Then the  
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Figure 5.5 (a, b) Imaginary part of dielectric function 𝜖2 for (a) MoS2/WS2 and (b) MoSe2/WSe2 

heterostructure calculated from the model including spin-orbit coupling for different electric field values. 

Blue and red dashed line indicate the energy of the exciton with electron spin up and down, respectively. 

(c, d) Radiative lifetime of the lowest two exciton branches, for MoS2/WS2 (solid line) and MoSe2/WSe2 

(dash line) heterostructure, with blue and red corresponding to their electron spin up and down, at (c) 0K 

and (d) 300K as a function of the external electric field. 
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exciton lifetime at finite temperature can be obtained by thermally averaging the exciton lifetime 

assuming a parabolic dispersion [133, 146]. Figure 5.4(c) and 5.4(d) shows the 0K and 300K 

radiative lifetime of the two lowest exciton branches. The lifetime value at zero electric field is 

in good agreement with a previous calculation [133]. Because of the electric field tuning of the 

exciton oscillator strength, the lifetime of the lowest exciton increases by two orders of 

magnitude as the electric field increase from -6V/nm to 4V/nm. This shows that the lifetime of 

lowest (interlayer) exciton in these heterostructures can be widely tuned by the external gate 

field. Recently, an experiment [147] in MoSe2/WSe2 heterostructure have observed such gate-

tuning of exciton radiative lifetime by an order of magnitude.  

It is worth noting that the same physical picture can also lead to gate-tunable excitons in bilayer 

homojunctions. Indeed, recent experimental works have reported the observation of gate-tunable 

exciton energy and lifetime in bilayer WSe2 [148, 149]. 

In conclusion, we have studied the band alignment and excitonic properties of MoS2/WS2 and 

MoSe2/WSe2 bilayer heterostructures from first principles DFT and GW+BSE calculation. We 

have shown that interlayer coupling is the key to understanding their properties, allowing the 

nature of the lowest-energy exciton to be tuned gradually from interlayer to intralayer by an 

external gate field. This is accurately captured by our simple model which accounts for the 

interlayer coupling in the presence of electron-hole interactions, which predicts an anti-crossing 

behavior of the exciton energy, as well as widely tunable dipole oscillator strength and radiative 

lifetime of the lowest-energy excitons by an order of magnitude with an external gate field of a 

few V/nm. Our result provides a quantitative physical picture of excitons in bilayer vdW 

heterostructures which would benefit future investigations of the gate-tunable excited-state 

properties in 2D heterostructures. 
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Chapter 6: Edge-insensitive Magnetism and 

Half Metallicity in Graphene Nanoribbons 

6.1 Introduction 
Ever since its first isolation in 2004 [1], graphene along with its derivative structures has been a 

long-standing focal point for nanoelectronics research [150, 151]. Particularly, they have many 

desired properties for spintronics and spin qubit devices, including high mobility, long spin 

lifetime, and gate-tunable carrier concentration, in addition to an almost vanishing thickness [7, 

152, 153]. However, due to the absence of localized d or f electrons, magnetism does not 

naturally appear in pristine graphene, and its realization usually relies on specific transition-

metal adatoms, defects, or specific edge structures [154]. One of the most attractive candidates 

for graphene-based spintronic device is the mono-hydrogenated zigzag graphene nanoribbons 

(commonly referred as ZGNRs), in which graphene is terminated by the zigzag edge on both 

sides with single hydrogen atom occupying each dangling bond. It was proposed by Son et al. in 

2006 [155] with ab initio DFT calculations that this structure becomes half-metallic under a 

cross-ribbon electric field. This is because the mono-hydrogenated edge produces a localized 

edge state [156, 157], which leads to a high electronic density-of-state (DOS) and forms a 

ferromagnetic (FM) ordering along the edges and an antiferromagnetic ordering at the opposite 

edges. However, the appearance of this magnetic structure is premised upon precisely realizing 

the mono-hydrogenated edge. Besides, it was shown that this mono-hydrogenated edge is 

energetically less stable [158-162] and would give way to other edge structures, such as the 

mono- and di-hydrogenated armchair (a11 and a22) edges (Figures 6.1 (a) and (b)) and a 

reconstructed zigzag edge with one di- and two mono-hydrogenated sites (z211, Figure 6.1 (c)), 

under standard conditions in terms of environment hydrogen concentrations [163]. 
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Unfortunately, GNRs formed by those more stable edges are semiconducting and non-magnetic. 

This is commonly speculated [164, 165] as the reason why experimental evidence of magnetism 

in ZGNRs has been scarce and indirect [166, 167] for over a decade since the theoretical 

prediction.  

Recently, a few two-dimensional (2D) semiconductors, including GaSe, α-SnO, and InP3, have 

been proposed as potential FM or multiferroic materials under free-carrier doping [168-170]. The 

mechanism behind their magnetic ordering is their unique Mexican-hat-shaped band structure 

that contributes to a significant peak in DOS. By tuning the Fermi level near this peak via 

doping, the electron-electron exchange interactions can overcome the kinetic energy cost and 

allow the doped carriers to form iterant ferromagnetism and half-metallicity. These studies 

opened a new path for realizing magnetism in low-dimensional structures without involving 

localized d or f electrons. One-dimensional (1D) structures like GNRs have intrinsically more 

divergent van Hove Singularities (vHSs) in their DOS, which give rise to better chances of 

realizing magnetism via this mechanism. Particularly, because this is essentially an edge-

unrelated quantum confinement effect, it may bypass the stringent requirement for edge 

structures and offers the potential to realize magnetism and half-metallicity in GNRs.  

6.2 Magnetism in Doped Graphene Nanoribbons 
In this Letter, we consider three types of GNRs as shown in Figure 6.1, which include the two 

common types of edges, ones along the armchair and zigzag directions, and different types of 

edge hydrogen passivation as well. These structures are known to be the energetically most 

stable ones but unfortunately do not exhibit any magnetism intrinsically [163]. Following the 

convention in Ref. [163], we denote these edge structures as a11, a22 and z211 respectively, 

where a/z stands for armchair/zigzag edge, and the number denotes how many hydrogen atoms 
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are bonded with each of the consecutive edge carbon atoms within a unit cell. Additionally, we 

use a number in front to denote the width by the number of C-C dimers or zigzag chains along 

GNRs. We do not include the mono-hydrogenated ZGNRs because they are intrinsically 

antiferromagnetic and doping does not essentially change their edge magnetism [171].  

 

Figure 6.1 Examples of GNRs with three different type of edges considered in this chapter. From left to 

right are (a) 7-a11-GNR, (b) 7-a22-GNR and (c) 4-z211-GNR. The edge dangling bonds are passivated 

by hydrogen atoms. 

 

Our DFT calculation is based on the ab initio pseudopotential projector-augmented wave (PAW) 

method [172] as implemented in the Vienna ab initio simulation package (VASP) [40]. The spin-

polarized GGA with Perdew−Burke−Ernzerhof parametrization (GGA-PBE) [58] is used for the 

exchange-correlation functional. A cutoff energy of 800 eV for the plane-wave basis is used. 

Structural relaxation is performed with a converge criteria of 1×10-2 eV/Å on force and a Γ-

centered k-point grid of 1×1×20. Electron self-consistency loop is performed with a converge 

criteria of 1×10-8 eV for total energy and a Gaussian smearing of 0.0001 eV for electron 

occupation to ensure accurate convergence of the magnetic state. A Γ-centered k-point grid of 1
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×1×200 is used for the armchair (a11 and a22) GNR and 1×1×100 is used for the zigzag 

(z211) GNR. Rigid-band doping, which changes the total number of electrons in the unit cell 

with a compensating jellium background, is used to mimic the electrostatic doping. 

We first focus on the intensively-studied mono-hydrogenated a11-GNRs, which do not exhibit 

any magnetism before doping. Presented in Figure 6.2 are the electronic band structure, DOS, 

and magnetization density of a 4-a11-GNR under a hole doping density of 0.35 hole/nm 

(corresponding to an approximate planar charge density of 7×1013cm-2), obtained using a spin-

polarized DFT calculation. Upon doping, the carriers spontaneously polarize into one spin 

population and form a FM ground state. As shown in Figures 6.2 (a) and (b), the bands 

corresponding to different spins are split, and the Fermi energy only intersects with the band of a 

single spin, making this system a perfect half metal. The splitting between the opposite-spin 

bands at the valence band maximum (VBM) is about 85 meV, equivalent to a Zeeman splitting 

under a huge external magnetic field of 730 T (assuming a spin g factor of 2 and no orbital 

contribution). We also plot the real-space magnetization density (difference between the density 

of opposite-spin electrons) of the spin-polarized states. As shown in Figure 6.2 (c), the 

magnetization density is distributed around the whole GNR, indicating that it is not originated 

from the edge. Magnetization density for wider a11-GNRs and other types of GNRs are plotted 

in the Figure 6.3, which further confirms that the magnetization density does not fall off when 

moving away from the edge.  
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Figure 6.2 The DFT-calculated (a) band structure, (b) spin-projected DOS, and (c) real-space 

magnetization density of hole-doped 4-a11-GNR at hole density 0.35/nm. Fermi energy is set to be zero. 

Inset of (a) shows a zoomed-in view of band structure near the fermi energy, at the region indicated by the 

black rectangle on the main plot. 

 

 

Figure 6.3 Magnetization density plot for p-doped 4-a11-GNR, 7-a11-GNR, 10-a11-GNR, 6-a22-GNR, 

and 4-z211-GNR. The magnetization density does not decay when moving away from the edge, which 

shows the magnetism originate from the bulk state instead of edge state. 
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This doping-induced magnetism and half metallicity are robust for different doping types and 

densities, suggesting the possibility of bipolar spintronics applications. Figure 6.4 (a) shows the 

magnetic moment and spin polarization energy (difference between the FM and paramagnetic 

ground-state energy) per carrier as a function of the electron or hole doping density for this 4-

a11-GNR. As we can see, for both electron and hole doping, the spins of the free carriers are 

completely polarized with a saturated magnetic moment of 1 𝜇𝐵/carrier, forming a perfect half-

metallic state. The half-metallic FM ground state exists for a wide range of doping density up to 

0.1 electron/nm for n-doping and 0.4 hole/nm for p-doping. Beyond this range, the magnetic 

moment rapidly drops to zero, and a paramagnetic ground state is restored. 

Spin polarization energy defines the strength of magnetic orders and determines the spin 

correlation length in 1D and transition temperature in higher dimensions [173]. Although the 

magnetic momentum is saturated for nearly the entire FM phase, the spin polarization energy per 

carrier exhibits an inverted parabola shape with a maximum roughly in the middle. For example, 

for 4-a11-GNR, as shown in Figure 6.4 (a), the maximum is ∆𝐸𝑚𝑎𝑥 = 7 meV at a hole density of 

𝑛𝑚𝑎𝑥 = 0.2/nm. For electron doping, the value is comparatively smaller, with ∆𝐸𝑚𝑎𝑥 = 3 meV 

at 𝑛𝑚𝑎𝑥 = 0.07/nm.  

This doping-induced magnetism and half metallicity are universal in narrow GNRs and can be 

observed in different widths. Figure 6.4 (b) shows a wider 7-a11-GNR, which also exhibit the 

FM ground state under both electron and hole doping. The magnetic moment is fully saturated 

although the spin polarization energy is reduced to around 3~4 meV per carrier. Generally, 

magnetism becomes weaker with increasing ribbon width, and for a11-GNRs with a width larger 

than 1.3 nm, the magnetic order is no longer detectable with a doping density resolution of 
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0.02/nm. This indicates that quantum confinement is the crucial factor to induce the magnetism 

and the magnetic order is limited within narrow GNRs. Recent experiments have demonstrated 

fabrication of high-quality narrow GNRs [153, 174, 175], making our prediction of immediate 

interests.  

 

Figure 6.4 Magnetic momentum (black solid line) and spin polarization energy (blue dashed line) per 

carrier versus electron doping density for (a) 4-a11-GNR, (b) 7-a11-GNR, (c) 6-a22-GNR, and (d) 4-

z211-GNR. The doping density is shown in 1D (number of electron or hole per nm) on the bottom axis 

and in 2D (number of electron or hole per cm2) on the top axis. Positive and negative density correspond 

to electron and hole doping, respectively. 
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Different edge passivations and edge types are known challenges to realize edge magnetism in 

GNRs. However, this is no longer a barrier to prevent the quantum-confinement induced 

magnetism from doped narrow GNRs. As shown in Figure 6.4 (c), the FM ground state is also 

observed in doped 6-a22-GNR which has a different passivation of the armchair edge. The 

magnetic moment per carrier is saturated, and the spin polarization energy reaches above 10 

meV per carrier for hole doping, even larger than that of narrower 4-a11-GNR. Moreover, Figure 

6.4 (d) shows the FM ground state in the doped 4-z211-GNR, whose edge is energetically more 

stable than the mono-hydrogenated zigzag edge [163]. Interestingly, it has the largest spin 

polarization energy among all our studied GNRs, which reaches 17 meV per carrier at an 

electron doping density of 0.35 e/nm, larger than that of the armchair-edge GNRs with similar 

width.  

In these studied GNRs, the corresponding range of planer doping density is within the 1013 cm-2 

range, comparable with those predicted for the magnetic 2D monolayer GaSe [168]. This doping 

density is accessible with the electrostatic gate doping methods without the need for dopant 

atoms, which has been commonly used for a wide range of monolayer 2D materials that have 

similar electron affinity and ionization potential [176, 177]. It is also worth noting that optical 

doping that creates electron and hole simultaneously [56] could also lead to magnetism in the 

same way. Additionally, the spin polarization energy in these GNRs can reach a few times higher 

than that of GaSe (~ 3 meV) and comes close to that of mono-hydrogenated ZGNR [155]. 

Finally, we have calculated the magnetic properties of narrow GNRs with defective edges. 

Magnetism and half-metallicity remain, as shown in Figure 6.5. Given the widely observed 

doping in nanostructures, this magnetism may be helpful for understanding a broad range of 

controversial measurements.  
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Figure 6.5 Magnetic momentum and spin polarization energy per carrier versus hole doping density, and 

real-space magnetization density plot for 7-a11-GNR with two different types of defective edges. The 

first type (a) is a single pentagon due to the removal of one carbon atom. The second type (b) is a Stone–

Wales defect. Both types of imperfections have been widely observed in experiments and can stand for 

general edge imperfections [178]. The defect density here is one per five unit cells, or 10% of the edge. 

The defect does hybridize with the bulk state and leads to different band effective mass and Stoner 

parameter. However, the doping-induced iterant ferromagnetism and half-metallicity remains, and the 

spin-polarization energy is close to that of pristine 7-a11-GNR. The blue dotted line shows the predicted 

spin-polarization energy from Stoner theory (see Eq. 6.4 below). It agrees with the DFT result, showing 

that the same mechanism applies to these defective structures. 
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6.3 Stoner Model of Iterant Magnetism 
The magnetism observed in doped GNRs above and its evolution with the ribbon width and 

doping density can be understood from the Stoner theory of iterant magnetism. In the Stoner 

theory [179], the spin susceptibility of the paramagnetic state is given by 𝜒 =
𝑁0

1−𝐼𝑁0
, where 𝑁0 is 

the DOS at the fermi energy and 𝐼 is the Stoner parameter, decided by the electron exchange and 

correlation effects. Because the FM instability occurs when 𝐼𝑁0 > 1, both an enhanced DOS and 

a larger 𝐼 will increase the likelihood of a FM instability. In a 1D system, because the vHS of 

DOS diverge as 𝐸−1/2 near the band extrema, the FM instability is much easier to be realized, 

which drives the formation of the FM states in doped GNRs. For example, for a 4-a11-GNR, the 

DOS at the Fermi energy is 2.4/eV per carbon atom at a hole density of 0.1 hole/nm, comparable 

to the 2-3/(eV·atom) DOS of bulk 3d transition metals like iron, cobalt and nickel [180].  

The Stoner theory can be quantitatively justified by first-principles DFT results. For a single 

band with effective mass 𝑚, the Stoner model correspond to a rigid shift in opposite directions 

for opposite spins near the band edge:  

𝜀𝑘𝜎 =
ℏ2𝑘2

2𝑚
±

𝐼

2
(𝑛↑ − 𝑛↓)          (6.1) 

where 𝐼 is the Stoner parameter that implicitly includes the exchange and correlation effects at 

mean-field level and 𝑛↑, 𝑛↓ are the density of spin-up and spin-down carriers. The total energy of 

the electrons (per unit length) is  

𝐸𝑡𝑜𝑡(𝑛↑, 𝑛↓) = ∫ 𝜀𝑔(𝜀)𝑑𝜀
𝜀𝐹

↑

0
+ ∫ 𝜀𝑔(𝜀)𝑑𝜀

𝜀𝐹
↓

0
+ 𝐼𝑛↑𝑛↓      (6.2) 

where 𝑔(𝜀) is the DOS of a single-spin band [181], which, after integrating, gives 

𝐸𝑡𝑜𝑡(𝑛↑, 𝑛↓) =
ℏ2𝜋2

6𝑚
(𝑛↑

3 + 𝑛↓
3) + 𝐼𝑛↑𝑛↓        (6.3) 
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Therefore, the spin polarization energy as a function of the doping density is  

∆𝐸(𝑛) = 𝑛(
𝐼

4
−

𝜋2ℏ2

8𝑚
𝑛)          (6.4) 

which is in close agreement with the DFT results shown in Figure 6.4. It leads to a critical 

doping density 𝑛𝑐
𝑆𝑡𝑜𝑛𝑒𝑟 =

2𝑚𝐼

𝜋2ℏ2, below which the paramagnetic state becomes less favorable. It 

also predicts that the spin-polarization energy reaches maximum ∆𝐸𝑚𝑎𝑥
𝑆𝑡𝑜𝑛𝑒𝑟 =

𝑚𝐼2

8𝜋2ℏ2  at the doping 

density 𝑛𝑚𝑎𝑥
𝑆𝑡𝑜𝑛𝑒𝑟 =

𝑛𝐼

𝜋2ℏ2 . We have plotted ∆𝐸𝑚𝑎𝑥 and 𝑛𝑚𝑎𝑥 extracted from DFT calculation 

against the Stoner model predictions in Figures 6.6 (a) and (b), and the theoretical values are in 

good agreement with the ab initio results.  

According to this Stoner model, the FM instability come from the enhanced effective mass and 

Stoner parameter. Therefore, we can classify the strength of magnetism in GNRs according to 

these two parameters. As shown in Figures 6.6 (c) and (d), both the effective mass and the Stoner 

parameter decreases with the width of the nanoribbon. The electronic structures of GNRs falls 

into different groups depending on their width [182, 183]. Among them, the (3N+1)-a11-GNR, 

(3N+3)-a22-GNR, and (2N+2)-z211-GNR exhibit higher effective mass among each edge type 

and are thus more prone to having magnetism. For GNRs within the same family, the effective 

mass is inversely proportional to the effective width of the ribbon. This is due to the quantum 

confinement of graphene’s Dirac dispersion π band [184, 185]. It follows a fitting formula 𝑚 =

𝑎/(𝑤 − 𝑤0), as shown by the dashed line in Figure 6.6 (c), where 𝑤 is the physical ribbon width 

and 𝑤0 is a correction that is found to be positive.  
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Figure 6.6 (a, b) Comparison between Stoner model prediction and DFT result for (a) the maximum spin-

polarization energy and (b) the doping density corresponding to this maximum. (c, d) Evolution of the (c) 

effective mass and (d) Stoner parameter of the valence band with respect to the ribbon width, for the top 

valence band (VB) of a11- and a22-GNR and bottom conduction band of z211-GNR. The dashed lines on 

(c) are a fitting curve for (3N+1)-a11-GNR, (3N+3)-a22-GNR and (2N+2)-z211-GNR (N=1,2,3) 

according to the formula 𝑎/(𝑤 − 𝑤0). The dashed line on (d) is a fitting according to the formula 𝑏/𝑤. 

(e, f) Predicted evolution of (e) the maximum spin-polarization energy and (f) the corresponding planar 

doping density with respect to the ribbon width, for hole-doped (3N+1)-a11-GNR, (3N+3)-a22-GNR and 

electron-doped (2N+2)-z211-GNR. The filled marks indicate the DFT results and the hollow marks 

indicate the predicted values. 



85 

 

Meanwhile, the Stoner parameter is mainly decided by the local DOS at the Fermi energy and 

inversely proportional to the width 𝑤. The Stoner parameter I is given by the integral 𝐼 =

∫ 𝛾2(𝒓)𝑣𝑥𝑐[𝑛(𝒓)]𝑑𝒓, where 𝛾(𝒓) = ∑ 𝛿(𝜀𝐹 − 𝜀𝑛)|𝜓𝑛(𝒓)|2
𝑛 /𝑁0 is the local DOS at the Fermi 

energy (normalized by the total DOS), and 𝑣𝑥𝑐[𝑛(𝒓)] = [−
𝑑2

𝑑𝑚2 𝑛(𝒓)𝜀𝑥𝑐[𝑛(𝒓), 𝑚]]|
𝑚→0

 is the 

second derivative of the exchange-correlation energy with respect to the magnetization [186]. 

When the same electronic state is confined within a region of width 𝑤, the local DOS will 

increase as 𝛾(𝒓) ∝ 1/𝑤, which leads to an increase of the Stoner parameter as 𝐼 ∝ 1/𝑤. This 

relation agrees well with the DFT calculation, as shown by the dashed line in Figure 6.6 (d). 

Particularly, we note that when comparing the value per atom, 𝐼 is around a constant value 3.4 

eV, which agrees with the Hubbard U term estimated for graphene nanoribbons [187, 188] and is 

over 6 times larger than that of bulk 3d transition metals like iron [180].  

As a result, both the maximum spin-polarization energy ∆𝐸𝑚𝑎𝑥 and the corresponding planar 

doping density is proportional to 
1

𝑤2(𝑤−𝑤0)
. The specific values of 𝑤0 and proportionality 

constants for different types of GNRs are summarized in the Table 6.1. In Figures 6.6 (e) and (f), 

we show the scaling of ∆𝐸𝑚𝑎𝑥 and 𝑛𝑚𝑎𝑥
2𝐷  with the ribbon width for hole-doped (3N+1)-a11-GNR, 

(3N+3)-a22-GNR, and electron-doped (2N+2)-z211-GNR. It shows the emergence of magnetism 

in different GNRs as the ribbon width is narrowed down to around 1nm due to the strong cubic 

scaling. It is worth noting that the quantum confinement enhancement of the Stoner parameter is 

general and presents in all 1D structures. Therefore, this general mechanism can potentially be 

used to realize magnetism in other nanostructures as well.  
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Table 6.1 Fitting Parameters for the maximum spin-polarization energy and corresponding planar doping 

density according to formula 𝑛𝑚𝑎𝑥
2𝐷 ≈

𝑐

𝑤2(𝑤−𝑤0)
 and Δ𝐸𝑚𝑎𝑥 ≈

𝑑

𝑤2(𝑤−𝑤0)
. The ribbon width 𝑤 is counted 

starting half a C-C bond away from the outermost carbon atom. 

 

In summary, we have predicted the existence of iterant magnetism and half-metallicity in doped 

narrow GNRs within first-principle DFT calculation. The magnetism originates from the bulk 

electronic state of the ribbon and is independent of the specific edge structures. From the Stoner 

theory, the magnetism come from the enhanced effective mass and Stoner parameter due to 

quantum confinement and its strength scales with the ribbon width in an inverse cubic relation. 

Given the widely observed doping in nanostructures, this magnetism is helpful for understanding 

a broad range of controversial measurements. Our findings propose a new route for realizing 

edge-independent magnetism in graphene nanoribbon and show that quantum confinement can 

be a general mechanism for realizing metal-free magnetism in nanostructures. 

 

 

 

 

GNR type 𝑤0 (nm) c (nm) d (meV·nm3) 

n-doped (3N+1)-a11-GNR 0.38 0.048 1.01 

p-doped (3N+1)-a11-GNR 0.22 0.042 0.74 

n-doped (3N+3)-a22-GNR 0.62 0.059 1.54 

p-doped (3N+3)-a22-GNR 0.56 0.050 1.13 

n-doped (2N+2)-z211-GNR 0.70 0.054 1.65 

p-doped (2N+2)-z211-GNR 0.21 0.060 1.87 

n-doped (2N+1)-z211-GNR 0.41 0.019 0.43 

p-doped (2N+1)-z211-GNR 0.21 0.023 0.51 
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Chapter 7: Half-Metallicity with Strong 

Magnetic Anisotropy in Doped One-

Dimensional Helical Tellurium Atomic Chain 

7.1 Introduction 
The bulk trigonal tellurium is a narrow gap semiconductor [189], which consists of helical chains 

of tellurium atoms bonded together by weak van der Waals interactions, as shown by Figure 

7.1(a). Each chain has a periodicity of three atoms and can have either a left-handed or right-

handed helical structure, breaking the inversion symmetry. Recently, this trigonal tellurium (Te) 

has gained increased attention because of experimental advances for achieveing a potential 1D 

van der Waals material [190-193]. Particularly, large-area solution-grown 2D tellurium (termed 

by tellurene) with a pronounced air-stability and high carrier mobility has been successfully 

fabricated by a substrate-free solution phase progress and mechanical exfoliation [191]. 

Moreover, tellurium nanowires have been synthesis by various growth mechanisms down to a 

few nanometers in diameter [194-197]. More recently, it has also been exfoliated from bulk into 

nanowires of 1-2 nm thickness and below 100 nm width, approaching the 1D single-atomic chain 

limit [192]. Thus, when the structure ultimately reaches the limit of a single atomic chain, DOS 

can be substantially enhanced and magnetism may emerge. Moreover, for heavy Te atoms, the 

strong spin-orbit-coupling (SOC) could connect spin with helical structures of the Te chains. 

This may couple the structural chirality with magnetism, enhancing the magnetic order with 

substantial spatial anisotropy and bring new applications, such as magneto-optical effects.  

In this chapter, we study the electronic properties and magnetism of single-atomic Te chain using 

first-principles DFT calculation. We show that the quantum confinement effect can substantially 
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increase the electronic band gap and DOS as the material is thinned down to 1D, opening up the 

possibility of having non-trivial electronic ground state. Interestingly, unlike previous studies 

[168, 169, 170], in which only one type of doped carriers can induce magnetism, both electron-

doping and hole-doping in the 1D Te chain induce a half-metallic ferromagnetic ground state, 

making it a perfect candidate material to realize 1D gate-tunable, defect-free, and metal-free 

ferromagnetism. Employing the Stoner theory, we explain why the Te chain shows such a robust 

ferromagnetic ground state as opposed to other 1D systems. Finally, we show that the helical 

structure combined with the strong spin-orbit interaction of tellurium pins the electron spin along 

the chain direction with an enhanced magnetic anisotropy.  

 

Figure 7.1 The crystal structure of Te. (a) top and (b) side view of the crystle structure of bulk Te. (c) The 

structure of single Te chain. (d) The structure of Te three bundles. 
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7.2 Magnetism in Single Tellurium Chain 
The DFT calculations are performed using the GGA with the PBE exchange-correlation 

functional [58] as implemented in the VASP code [40]. The PAW pseudopotential and plane-

wave basis set with a cut-off energy of 500 eV is used. The structures are fully relaxed until the 

maximum residual force was smaller than 0.01 eV/Å and energies are converged to within 1×10-

5 eV per atom. The Monkhorst-Pack k-point mesh is used with 1×1×36 k-points in the Brillouin 

zone. Because of the high atomic number and large electronic polarizability of tellurium, SOC is 

included in all calculations unless otherwise specified. The carrier density is regulated by the 

rigid-band approximations, which varies the total number of electrons in the unit cell, with a 

compensating jellium background of opposite charge added.  

The band structure of the free-standing single tellurium chain is depicted in Fig. 7.2 (a). At the 

DFT level, the tellurium chain is a semiconductor with an indirect bandgap of 1.40 eV. The 

conduction band maximum (CBM) is located between the Г and Z (Z') points, while the valance 

band minimum (VBM) is located near the zone boundary of the Z (Z') point. Because of the 

large atomic number of Te, SOC dictates the band structure: the bands including SOC, shown in 

black solid lines, are significantly splitted comparing with the bands without including SOC, 

which are shown in the red dashed lines.  

Although the intrinsic Te chain is nonmagnetic, while both a small amount of electron and hole 

doping induce magnetism with a ferromagnetic ground state. Figure 7.3 shows the band structure 

of the electron-doped and hole-doped Te chain with doping density of 0.1/unit cell in the 

ferromagnetic state. In the ferromagnetic state, the spin-up and spin-down bands are split due to 

the exchange interaction, and 𝑠𝑧 remains to be a good quantum number (here we choose the 

direction along the chain as the z axis). Thus, the electron or hole doped 1D Te chain is a half 
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metal: the states at the fermi level are completely from one band of one spin type. In our 

calculations, within the hole density of 0.2 h/unit cell, the Fermi energy only intersects with a 

single spin-up/down band, making the doped 1D Te chain a perfect half metal allowing for fully 

polarized spin transport.  

 

Figure 7.2 (a) Electronic band structure of the intrinsic Te chain. The black solid and red short dashed 

line show the band structures with and without including SOC, respectively. The arrows represent the 

spin directions of the bands for a right-handed Te chain. (b) Total and partial density of states of the 

intrinsic Te chain near the band edges. A Gaussian broadening of 0.001 eV is used. 

 

The doped induced magnetism is robust for a wide range of doping densities. Figure 7.4 shows 

the magnetic moment and spin polarization energy per carrier as a function of the electron and 

hole doping density. A large spin magnetic moment of nearly 1 𝜇𝐵/carrier quickly develops and 

saturates when the hole/electron doping density is larger than 0.01/unit cell. For hole doping, the 
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spin magnetic moment remains saturated up to doping density p = 0.25 h/unit cell and then 

gradually drops to zero, as shown in Fig. 7.4(a), and a nonmagnetic state is restored when the 

doping density larger than p = 0.4 h/unit cell. This doping density per atom is comparable with 

those found in 2D magnetic materials, such as GaSe, InP3 and α-SnO [168-170]. For electron 

doping, the range of the doping-induced magnetism is limited by the stability of 1D structures: 

after the doping density is greater than n = 0.1 e/unit cell, the structure becomes unstable.  

 

Figure 7.3 Electronic band structure of Te chain with (a) hole doping of 0.1 h/unit cell and (b) electron 

doping of 0.1 e/unit cell, respectively. The Fermi level is set at zero. The insets show the band structures 

zoomed near the fermi level.  

 

To study the stability of the ferromagnetic state, we also show in Figure 7.4 the spin polarization 

energy per carrier, defined as the energy difference between the ferromagnetic and nonmagnetic 

state divided by the carrier number. It has a much smaller window of saturation compared with 
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the magnetic momentum per carrier. For hole doping, the spin polarization energy per carrier 

gradually increases to 6 meV at p = 0.1 h/unit cell, reaches a plateau, and then starts falling back 

above p = 0.2 h/unit cell. For electron doping, the spin polarization energy per carrier gradually 

increases to 6 meV at n = 0.05 e/unit cell, and then stays at the level below n = 0.1 e/unit cell. 

Compared with 2D materials, these values are larger than that of monolayer GaSe and α-SnO 

[168, 169], but smaller than InP3 [170].  

 

Figure 7.4 Carrier density dependence of spin magnetic moment per carrier and spin polarization energy 

per carrier for (a) hole and (b) electron doping. Black circles and red triangles represent magnetic moment 

per carrier and spin-polarization energy per carrier, respectively. The short dash line is a guide to the eye.  

 

The iterant magnetism and half-metallicity of Te chain is driven by the exchange splitting 

between the opposite spin states. The splitting is proportional to the total magnetic momentum. 

At a carrier density of 0.1/unit cell, it is 34 meV at the VBM for hole-doping and 60 meV at the 

CBM for electron-doping. This splitting is equivalent to a Zeeman splitting under an external 
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magnetic field of 290 T for hole-doping and 520 T for electron-doping, assuming a spin g factor 

of 2 and no orbital contribution. 

The origin of the ferromagnetism in 1D Te chains is the same as that of GNR as we discussed in 

Section 6.3 due to the following reasons. First, our calculation shows that d or f electronic states 

are not relevant here. As shown in Figure 7.2 (b), the partial DOS (PDOS) analysis represents the 

DOS near the CBM is mainly made up of px+py orbitals and small contribution from pz orbitals, 

while the DOS near the VBM is also mainly composed of px+py orbitals, but small contribution 

from s and d orbitals are present as well. Therefore, the magnetism in the doped Te chain has a 

different origin.  

Then, we check the DFT spin polarization energy against the Stoner model prediction. Te chain 

has an effective mass of 1.8 and a Stoner parameter of 0.2 eV·nm for hole doping, and an 

effective mass of 0.9 and a Stoner parameter of 0.33 eV·nm for electron doping. According to 

Eq. (6.4), we expect the spin polarization energy to be a parabolic function of the doping density, 

with the maximum value ∆𝐸𝑚𝑎𝑥
𝑆𝑡𝑜𝑛𝑒𝑟 = 6 meV occurring at 𝑛𝑚𝑎𝑥

𝑆𝑡𝑜𝑛𝑒𝑟 = 0.14 h/unit cell for hole 

doping, and ∆𝐸𝑚𝑎𝑥
𝑆𝑡𝑜𝑛𝑒𝑟 = 8 meV occurring at 𝑛𝑚𝑎𝑥

𝑆𝑡𝑜𝑛𝑒𝑟 = 0.11 e/unit cell for electron doping. 

Although the electron side is inaccessible due to structural stability, the hole doping case shows 

an excellent agreement with the DFT results in Figure 7.4(a). This suggests that the magnetism 

we find in Te chain is due to the same quantum-confined Stoner mechanism as GNR.  

This is also consistent with our calculation of multi-chain bundles. For a Te three-chain bundle 

(structure shown in Fig. 7.1(c)), where the electronic state is less confined, the ground state 

becomes nonmagnetic. Therefore, we expect to see the emergence of ferromagnetism as a result 
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of quantum confinement in tellurium as the material is thinned down close to the single-atomic 

chain.  

7.3 Strong Magnetic Anisotropy  
In addition to the robust ground state ferromagnetism, the heavy Te element are grants strong 

SOC that exceeds most 1D electronic systems, which fixes the spin of the electron or hole along 

the chain by enhanced anisotropic magnetization energy. The direction of the magnetic 

momentum in the doped 1D Te chain is decided by the chirality of its helical chain structure. For 

example, when the doped electrons/holes occupy the positive crystal momentum in a right-

handed chain, as shown in Fig. 7.3(a), its corresponding total magnetization direction is along the 

+z direction.  

Within DFT, no (meta)stable ferromagnetic state can be found when we fix the spin magnetic 

moment perpendicular to the chain. In other words, the magnetic anisotropy energy in this 

material is even larger than its spin-polarization energy (6 meV), and thus the direction of the 

magnetic moment cannot freely rotate without breaking the magnetic order. By comparison, in 

conventional bulk and 2D magnetic materials, the magnetic anisotropic energy is usually no 

more than a few hundred μeV. To the best of our knowledge, such strong magnetic anisotropy 

has never been observed before.  

In the following, we demonstrate how this strong magnetic anisotropy arises from the SOC with 

Stoner theory and tight-binding (TB) model. We assume the single-electron Hamiltonian to be 

𝐻̂ = 𝐻̂𝑖𝑛𝑡 + 𝐻̂𝑆𝑂 + 𝐻̂𝑠𝑡𝑜𝑛𝑒𝑟, where 𝐻̂𝑖𝑛𝑡 is the TB Hamiltonian the intrinsic Te chain, 𝐻̂𝑆𝑂 is the 

atomic spin-orbit term and 𝐻̂𝑠𝑡𝑜𝑛𝑒𝑟 is the Stoner term. The 𝐻̂𝑖𝑛𝑡 term is constructed with the 

nearest-neighbor Slater–Koster interatomic matrix elements [198] for Te p-orbitals that consists 
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of two parameters describing the σ and π bonding respectively. Additionally, the atomic SOC is 

included with 𝐻̂𝑆𝑂 = 𝜆 ∑ 𝒍𝒊 ∙ 𝒔𝒊𝑖 , where 𝜆 is the SOC parameter and sum goes over atoms 𝑖. The 

parameters are fitted to the DFT band structure, and the resulting TB band structure as shown in 

Fig. 7.5(a) captures the essential features from the DFT calculation, where the spin-orbit splitted 

bands are eigenstates of 𝑠̂𝑧.  

 

Figure 7.5 (a) Band structure of Te chain from the tight-binding model described in the main text. (b) 

Shift in the VBM (dashed line) and CBM (solid line) energy versus the Stoner exchange splitting energy 

when the spin polarization is in the x-direction. The dotted line shows the linear band shift when the spin 

polarization is in the z-direction. 

 

In the Stoner model, the magnetic exchange interaction is introduced by an effective magnetic 

field proportional to the total spin polarization, which leads to an exchange splitting energy of 

𝐻𝑚 = 𝐼(𝑛+ − 𝑛−). The field points toward the direction that lowers the energy of the majority 

spin, so the Stoner Hamiltonian can be written as 𝐻̂𝑠𝑡𝑜𝑛𝑒𝑟 = 𝐻𝑚𝝈 ∙ 𝒎̂, where 𝝈 is the Pauli 
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matrices and 𝒎̂ is the direction of the spin polarization. If the spin polarization is along the z-

direction, and 𝐻̂𝑠𝑡𝑜𝑛𝑒𝑟 simply shifts the band edge by ±𝐻𝑚, thus allowing the system to lower its 

total energy by moving all carriers into the lower band. However, if the spin polarization is in the 

perpendicular direction, then 𝐻̂𝑠𝑡𝑜𝑛𝑒𝑟 does not change the energy of the bands under first-order 

perturbantion. By solving the full Hamiltonian, it leads to a quadratic instead of linear shift of the 

band edge with respect to 𝐻𝑚, as shown in Fig. 7.5(b). Consequently, the gain in exchange 

energy is not enough to compensate the cost in kinetic energy. Therefore, there is no Stoner 

instability in the paramagnetic state towards the perpendicular direction, and the ferromagnetic 

state can only point along the chain direction.  

7.4 Discussion 
There are several unique advantages of the magnetism in the doped 1D Te chain. First, unlike 

previously predicted doping induced magnetism in 2D semiconductors, which can only realize 

magnetism by holes within a specific doping density [168-170], 1D Te chain can be half-metallic 

by either electron or hole doping in a wide range of doping density. This provides possibility for 

bipolar spintronics and more tunable degrees of freedom.  

Second, the spin correlation at finite temperature can benefit from the strong magnetic anisotropy 

found in 1D Te chain. In a classical 1D anisotropic Heisenberg model, the spin correlation length 

grows as 1/T at high temperature and grows exponentially as exp(1/T) at low temperature, with 

the crossover temperature at √𝐸𝑀𝐴𝐸𝐸𝑠𝑝/𝑘𝐵, where 𝐸𝑀𝐴𝐸 is the magnetic anisotropy energy and 

𝐸𝑠𝑝 is the spin-polarization energy (or in terms of the Heisenberg model, the anisotropic and 

isotropic coupling constant) [173]. The huge magnetic anisotropy energy of Te chain will allow 
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for long-range 1D spin correlation at higher temperature, which is much desired for spintronic 

applications. 

The coexistence of ferromagnetism, strong SOC and chiral chain structure also makes the 1D Te 

chain a potential candidate for realizing topological phenomena such as the Majorana zero mode 

[199, 200], where the Te chain has the advantage of having orders of magnitude larger SOC 

energy than the previously used InSb nanowire system [199]. Additionally, chiral chain structure 

with SOC, such as CNT and DNA, are also known to have the chiral-induced spin selectivity 

effect [201-203], where electrons have their spin selected to align or anti-align with their motion 

when transporting through the structure. With much stronger SOC than CNT and DNA, the 1D 

Te chain may not only show spin-selective, but also directional-dependent transport where the 

conductance is different when the current is going in opposite direction, as the signature of its 

half-metallic ferromagnetic ground state.  

In conclusion, within first-principle DFT, we have shown that ferromagnetic ground state exists 

in both electron-doped and hole-doped 1D single-atomic tellurium chain. The magnetism is 

robust over a wide density range of over 0.1/unit cell and has spin polarization energy over 6 

meV/carrier. Within Stoner theory, the magnetism is attributed to the large density of state and 

large Stoner parameter originated from the strong quantum confinement of the 1D structure. 

Furthermore, due to the strong SOC of tellurium and the helical chain structure, the magnetic 

state is highly anisotropic and only stable when the spin is pointing along the chain direction. 
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