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Distinguishing driver mutations from passenger mutations within tumor cells continues to be a 

major challenge in cancer genomics.  Many computational tools have been developed to address 

this challenge; however, they rely heavily on primary protein sequence context and 

frequency/mutation rate.    Rare driver mutations not found in many cancer patients may be missed 

with these traditional approaches. Additionally, the structural context of mutations on 

tertiary/quaternary protein structures is not taken into account and may play a more prominent role 

in determining phenotype and function. This dissertation first presents a novel computational tool 

called HotSpot3D, which identifies regions of protein structures that are enriched in proximal 

mutations from cancer patients and identifies clusters of mutations within a single protein as well 

as along the interface of protein-protein complexes.   This tool gives insight to potential rare driver 

mutations that may cluster closely to known hotspot driver mutations as well as critical regions of 

proteins specific to certain cancer types. A small subset of predictions from this tool are validated 

using high throughput phosphorylation data and in vitro cell-based assay to support its biological 

utility. We then shift to studying the druggability of mutations and apply HotSpot3D to identify 
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potential druggable mutations that cluster with known sensitive actionable mutations. We also 

demonstrate how utilizing integrative omics approaches better enables precision oncology; 

Combining multiple data types such as genomic mutations or mRNA/protein expression outliers 

as biomarkers of druggability can expand the druggable cohort, better inform treatment response, 

and nominate novel combinatorial therapies for clinical trials.   Lastly, we improve driver 

predictions of HotSpot3D by creating a supervised learning approach that integrates additional 

biological features related to structural context beyond just positional clustering.  Overall, this 

dissertation provides a suite of computational methods to explore mutations in the context of 

protein structure and their potential implications in oncogenesis. 
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Chapter 1: Introduction 
 

Cancer is the 2nd leading cause of death according to the American Cancer Society, and by 

2030, the global burden is expected to grow to 21.4 million new cancer cases and 13.2 million 

cancer deaths annually. Cancer was first considered to be a genetic disease in the late nineteenth 

and early twentieth centuries when David von Hasemann and Theodor Boveri observed a 

chromosomal anomaly in dividing cancer cells1,2. This notion was further supported when the same 

genetic alteration, a translocation between chromosome 9 and 22, appeared in multiple instances 

of chronic myeloid leukemia1. Cancer can be caused by the acquisition of various mutations over 

an individual’s lifetime. Most of these mutations are somatic mutations, which cause changes in 

DNA sequence. These include single base changes, insertions or deletions of varying sizes, 

rearrangements, and copy number aberrations1.   
Somatic mutations can be divided into two classes based on their impact on cancer 

development. Driver mutations play a causal role in tumor initiation/progression and are positively 

selected during the progression of cancer because they confer growth advantage to the cancer cells. 

Passenger mutations, however, do not confer growth advantage to cells and thus are not selected 

for. These have no direct role in tumor formation and can already be present in the cell at the time 

a driver mutation is introduced. Therefore, they are carried over in all subsequent cells when clonal 

expansion occurs1,2. The number of driver mutations and aberrant cancer genes driving the cancer 

phenotype are not completely understood. However, it is estimated that a typical tumor may have 

about two to eight driver mutations3.   

Cancer has widely been considered as a ‘disease of the genome’. Renato Dulbecco 
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advocated sequencing the whole human genome to systematically find those genes that drive 

cancer2. Initially, the genome was studied using low throughput sequencing such as targeted gene 

sequencing, capillary-based sequencing, and DNA microarrays. More recently, massively parallel 

sequencing (MPS) also known as Next-Gen Sequencing has allowed the identification of somatic 

mutations in cancer at a faster rate and larger scale. In the beginning, MPS could sequence around 

1 billion bases or 1 gigabase (Gb) in a single run, which eventually grew to more than 600Gb. The 

onslaught of faster sequencing methods led to the sequencing of the first cancer genome in 20082.  

More recently, there has been an enormous corpus of cancer sequencing data through large-

scale projects such as The Cancer Genome Atlas (TCGA) and International Cancer Genome 

Consortium (ICGC). TCGA provides whole genome and exome sequencing data of tumor and 

matched normal samples for various cancer types. ICGC also studies genomic alterations in tumors 

across 50 cancer types. These projects provide an unprecedented opportunity for comprehensive 

discovery of cancer mutations genome-wide. There is an urgent need to systematically reveal the 

functional implications and oncogenic potentials of genetic mutations recently identified in these 

large-scale studies. The majority of mutations in cancer samples are incidental passengers; 

distinguishing between driver and passenger somatic mutations to pinpoint the exact genetic 

alterations leading to tumor initiation and/or progression still present significant challenges. To 

meet these challenges, various computational approaches have been developed as effective filters, 

pruning most of the somatic mutations to a shortlist of high-priority, functional candidates for 

experimental validation. The oncogenic potentials of the predicted driver mutations can then be 

confirmed if the mutation leads either to DNA repair deficiency, cell proliferation, or immune 

evasion4. Discerning drivers from passengers will result in a greater understanding of the 

mechanisms governing cancer biology and will also have therapeutic implications.  
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1.1 Existing computational methods to identify driver 

mutations 

Most of the existing computational methods for identifying driver mutations/genes in 

cancer can be divided into three major categories. The first category uses a frequency-based 

approach by identifying recurrent mutations/genes across patient samples and cancer types. We 

expect mutations that play a direct role in cancer initiation and progression to appear more 

frequently across patient samples than expected by chance. This approach requires a large dataset 

with multiple patient samples in order to gain enough statistical power to identify recurrent 

mutations. Additionally, the same mutation may show up in multiple cancer types further 

supporting its role as a driver. Some computational programs seek to identify cancer genes that 

may be more recurrently mutated than genes that do not play a role in cancer. These programs such 

as MuSiC5 and MutSig6 compare a background mutation rate (BMR) to the observed mutation 

rate. The BMR is the probability that a passenger mutation occurs at any genomic position by 

chance4. If the observed mutation rate is significantly greater than the BMR, then the gene is 

considered a ‘cancer gene’. Different computational methods vary according to how they calculate 

their BMR. MuSiC uses a per-gene BMR and a region-based BMR, where the user can define 

regions of interest to calculate a BMR specific to those regions5. MutSigCV estimates BMR for 

every gene per patient. This measurement is based on the number of silent mutations in a gene and 

non-coding mutations located near the gene. Sometimes, it is difficult to find these values with 

reasonable accuracy. Therefore, it is useful to gather this data from genes that share similar 

properties such as replication time or expression levels4,6.  

To alleviate the need for multiple patient samples, the second method to identify driver 
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mutations is to predict functional impact of an individual mutation by evaluating protein sequence 

and/or structure. These methods in particular study changes in amino acid sequence. For missense 

mutations, where one amino acid is substituted for another, we can consider differences between 

the wild type and mutant residues in terms of physiochemical properties of amino acids:  size (van 

der Waals volume and molecular mass), polarity, charge, and hydropathy index (hydrophobicity)7. 

Some algorithms use multiple sequence alignments in a protein family to determine functional 

impact of a mutation. The frequency of the twenty amino acids is considered at each position in 

the alignment. Based on these frequencies, a score is assigned to the mutant residue. An amino 

acid substitution that is found less frequently in a position is predicted more likely to be damaging. 

If a specific amino acid is at a position in the alignment for most of the sequences, the position is 

highly conserved, and any other amino acid substitution at this position is most likely damaging.  

The physiochemical property of the amino acid substitution can be considered simply by 

comparing it to the wild type amino acid. Additionally, family alignments are used to compare the 

mutant residue to the properties of the amino acids found in a specific position in the alignment. 

Mutant residues that differ widely from the physiochemical properties of the amino acids found at 

a position are more likely to have damaging effects.   

Some popular methods that consider functional impact using evolutionary conservation are 

SIFT8 and Polyphen-29. SIFT’s approach is very similar to the approach just described. It utilizes 

the multiple sequence alignment to determine conserved positions and evaluates the actual amino 

acid change in terms of physiochemical properties8. Polyphen-2 in addition to using evolutionary 

conservation and multiple sequence alignment has some other features. It considers structural 

properties of where the amino acid is found on the 3D protein structure as well as protein sequence 

annotations9. It assesses structural information by looking at the region surrounding the mutated 
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residue. Factors that are considered in determining the effects of the mutant residue are solvent 

accessibility, carbon-beta density, crystallographic B-factor, and differences in free energy 

between wild type and mutated amino acid. Additionally, Polyphen-2 uses a supervised machine 

learning algorithm, employing a training data set of “known” damaging variants and non-

damaging variants to predict the effect of new variants based on the features described 

previously8,9. Though these tools are relatively useful in determining damaging variants, they are 

not disease-specific and do not necessarily identify variants that play a driving role in in tumor 

initiation and progression.  

Another popular method to identify functional driver genes investigates the combinations 

of mutations at the pathway/network level. Proteins often interact with other proteins in pathways 

to maintain normal function. Cancer progression can occur due to the disruption of a particular 

pathway. Many proteins may play a role in a specific pathway but with varying degrees of mutation 

rate. We gain statistical power by grouping genes together and looking at the collective mutation 

rate. When studying a single gene, the gene by itself may not be significantly mutated and would 

not be considered a ‘cancer gene’. However, large-scale cancer genomic studies have reached a 

power plateau in discovering single, significantly mutated genes. One way to identify multiple 

driver cancer genes acting in conjunction is to use pre-defined gene sets to assess whether the gene 

set is significantly enriched in mutations. A method known as Gene Set Enrichment Analysis 

(GSEA) can be used10. This tool is originally used to analyze gene expression data, but the 

algorithm can be used to identify groups of genes that are significantly mutated. This approach 

uses a ranked gene list by mutation rate and determines whether a pre-defined gene set has higher 

ranks than would be expected by chance. Another popular tool to identify significant cancer 

pathways is called PathScan11. This tool is more sophisticated in the sense that it considers 
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significance of mutation rate on a per-patient basis. It will identify the gene sets that are enriched 

per patient sample, and then it will evaluate p-values across all patient samples to identify pathways 

that are highly mutated more than expected by chance. These two methods require prior knowledge 

of gene sets. Therefore, new cancer pathways that are significantly mutated in cancer patient 

samples cannot be discovered.  

To overcome this limitation, there are several approaches that attempt to identify novel 

cancer pathways via de novo approaches. The naïve approach would be to test all possible 

combinations of genes with a specified gene set size to evaluate the mutation rate; however, this 

approach would be computationally heavy and, more importantly, would exact a heavy toll in 

multiple test correction, the test battery being virtually powerless. Instead, we can narrow down 

the number of combinations of genes that we look at by only focusing on the ones that have specific 

features. It is hypothesized that tumors have relatively few driver mutations from the same 

pathway; rather, each mutation comes from distinct pathways and plays a different molecular role 

in the initiation and progression of cancer12. Therefore, we would assume that driver mutations in 

genes from the same pathway would be mutually exclusive in the same sample. When looking 

across samples, we would group the mutually exclusive sets of genes to be in the same pathway; 

gene sets that show statistically significant mutual exclusivity would be labeled as driver pathways. 

The mutual exclusive mutations in these pathways can give insight into possible driver mutations. 

Though this approach can assist in uncovering novel cancer driver pathways and mutations, it does 

so under the assumption that co-occurring driver mutations in the same pathway occur at a lower 

frequency. There can, however, be instances of co-occurring driver mutations4.    
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1.1.1 Shortcomings of Current Computational Methods 
These current methods are relatively reliable and have helped to discover cancer driver 

mutations and genes; however, there are some shortcomings and factors that should be considered. 

Though frequency-based methods have helped uncover a large number of driver mutations, the 

problem with these traditional methods is that possible rare/medium recurrent driver mutations can 

be missed. Even though these mutations may be in relatively few patient samples, they could still 

be important functional drivers of cancer. Additionally, instead of just looking at recurrent 

mutations at the same position, some tools have looked at clustering of nearby mutations on the 

primary sequence. These frequency-based methods consider the linear DNA sequence and have 

not considered the impact of mutations on tertiary or quaternary protein structures. Some mutations 

may be far apart on primary sequence, but close in physical space. Clustering and enrichment of 

these mutations on the protein structures can indicate specific domains and regions that are 

important for normal function and when mutated, can lead to tumor initiation and progression. 

Some of the methods that do consider certain structural properties of a mutated amino acid look 

only at the single residue itself but do not consider interactions with proximal residues.  

Although many of the known drivers have been identified using frequency-based single 

gene tests, mutations at interaction sites between proteins may be overlooked by such approaches. 

Much of the previous pathway approaches identify key pathways and genes that may be critical to 

cancer phenotypes. However, they do not pinpoint the exact mutations involved in disrupting key 

interaction sites between proteins. These mutations, in turn, can affect protein-protein binding 

affinity and consequently functional protein complexes and pathways. By studying clustering of 

cancer mutations at protein-protein interfaces on quaternary structures, we can identify the key 

mutations that disrupt protein complexes.   
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Current methods to identify driver mutations would benefit by analyzing mutation clusters 

on protein structures across multiple patient samples and cancer types to determine hotspot 

regions. This would give insight into key intra-molecular and inter-molecular structural regions 

that could play a role in cancer. In addition to positional clustering of mutations on structure, much 

of the current methods do not look at biological/physiochemical properties of neighboring residues 

on protein structure when determining function; The structural context of individual mutations 

contributes to varied functional roles and therefore must be taken into consideration.   

In chapter 2, we present a novel structure-based algorithm called HotSpot3D, which 

identifies mutation clusters containing significantly proximal pairs of mutations both within a 

single protein structure and along the interface of protein-protein complexes. We apply this tool to 

a pan-cancer set of TCGA mutations to identify potential driver mutations in the form of rare 

mutations co-clustering with hotspot mutations, cancer type specific clusters, and mutations 

clustering with drug binding pockets.  

 In chapter 3, we explore the druggable landscape of cancer by determining which driver 

mutations are also drug targets. Most often, disease-related variants do not significantly overlap 

with variants that can realistically be drug targets. Therefore, our scope of mutations having 

therapeutic implications is limited. In this chapter, we utilize a hand-curated database of variants 

with known drug targets in cancer in the form of SNPs, in-frame indels, copy number variations, 

and expression outliers to explore the current druggable landscape of cancer in the genomic, 

transcriptomic, and proteomic realms. We evaluate what fraction of a cancer cohort can be treated 

based on on-label drug therapy as well as drug repurposing based on mutational evidence. 

Additionally, RNA-seq and protein expression data can reveal druggable expression outliers based 

on our database. We integrate genomics and transcriptomic/proteomics druggable evidence as a 
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way to improve predictions of druggability as well as discover novel combinatorial therapies. 

HotSpot3D is then utilized to predict putative drug targets from known drug targets. We 

hypothesize that mutations found in a single cluster most likely have a similar response to a 

potential drug. Therefore, we can potentially employ targeted drugs for treating patients with non-

canonical cancer mutations that cluster with known druggable mutations. This tool has valuable 

implications in developing future, novel therapeutic strategies and can narrow the scope of 

mutations biotech/pharmaceutical firms experimentally test for druggability. 

 In chapter 4, we expand on the utility of HotSpot3D by looking beyond just positional 

clustering/enrichment of mutations on protein structure. We integrate various other biological 

features such as proximity of mutations to functional sites, physiochemical property changes in 

mutations as well as in comparison to surrounding residues, solvent accessibility, domain, 

conservation, etc. We create a supervised learning approach integrating these structural features 

and training on a set of curated known driver and neutral mutations. We use this model to predict 

putative high confident activating driver mutations in Kinases, but we also explore the structural 

signatures and mechanisms contributing to oncogenesis for these class of mutations.  
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2.1 Abstract 

Local concentrations of mutations are well-known in human cancers. However, their 3-

dimensional (3D) spatial relationships have yet to be systematically explored. We developed a 

computational tool, HotSpot3D, to identify such spatial hotspots (clusters) and to interpret the 

potential function of variants within them. We applied HotSpot3D to >4,400 TCGA tumors across 

19 cancer types, discovering >6,000 intra- and inter-molecular clusters, some of which showed 

tumor/tissue specificity. In addition, we identified 369 rare mutations from genes including TP53, 

PTEN, VHL, EGFR, and FBXW7 and 99 medium recurrence mutations from genes such as RUNX1, 

MTOR, CA3, PI3, and PTPN11, all residing within clusters having potential functional 

implications. As a proof of concept, we validated our predictions in EGFR using high throughput 

phosphorylation data and cell-line based experimental evaluation. Finally, drug-mutation 

cluster/network analysis predicted over 800 promising candidates of druggable mutations, raising 

new possibilities for designing personalized treatments for patients carrying specific mutations.  
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2.2 Introduction 

With tens of thousands of tumor-normal pairs already sequenced, accumulation of cancer 

genomic data continues to accelerate. The vast majority of mutations are incidental with no 

discernable role in tumor development. Various computational approaches1-6 have been developed 

to winnow mutation lists down to the drivers, including searching for genes or pathways having 

mutation rates higher than that explained by chance, genes having either mutually exclusive or co-

occurring mutations, or those having neighboring mutations on the linear DNA/protein sequences.  

Mutational impact on protein structure has not yet been systematically analyzed, but recent 

developments are moving in this direction. For example, MuPIT7, an extension of LS-SNP/PDB8, 

maps sequence variants onto protein structures, Interactome3D9 annotates protein-protein 

interactions with structural details, other web tools10-12 map and visualize variants on protein 

structures, SpacePAC13 identifies mutation clusters via simulation, CLUMPS14 clusters cancer 

genes and examines protein-protein interactions where at least one protein is known to be cancer 

related, and Mechismo identifies interaction sites contributing to the binding forces between 

proteins and other peptides15. However, no system yet provides comprehensive analysis for 

understanding mutational consequences or implications for drug delivery.  

Here we present a novel computational tool, HotSpot3D, which identifies mutation-

mutation and mutation-drug clusters using three-dimensional structures and correlates these 

clusters with known or potentially interacting functional variants, domains, and proteins. We 

describe its testing and subsequent application to more than 4,000 TCGA tumors across 19 cancer 

types. Over 6,000 interacting cluster discoveries are identified, many of which are likely 

undetectable by conventional approaches, with a subset supported by high throughput 

phosphorylation data and cell-line based experimental evaluation included in this study as well as 
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accumulated experimental evidence16-18. We also report 800 promising candidate, druggable 

mutations, generally characterized by complex, multi-dimensional interactions between drugs and 

mutations. The list furnishes substantial possibilities for future therapeutics.  

2.3 Results 

2.3.1 Intra- and inter-mutation clusters across 19 cancer types 
HotSpot3D is a multifaceted tool that integrates sequence mutations with three-

dimensional protein structures (Methods and Supplementary Note). It identifies significant 

spatial mutation and mutation-drug clusters in the form of novel or rare mutations co-clustering 

with known hotspot residues, medium recurrent mutations that collectively exhibit enrichment, 

cancer type-specific mutation clusters within and between proteins, and mutations potentially 

interacting with cancer drugs. HotSpot3D utilizes structures from the Protein Data Bank (PDB)19 

and mutation/drug co-structures from DrugPort (Methods and Figure 1a).  We evaluated 

HotSpot3D clustering performance and compared it to existing tools to demonstrate its 

advancement for mutation cluster analysis (Figure 1a-d and Supplementary Note). 

We applied HotSpot3D to somatic non-truncational mutations (549,295 unique missense 

mutations and 4,201 in frame indels) in 4,405 samples from 19 major cancer types (Methods). To 

identify potential intra-molecular (within a single protein), inter-molecular (between proteins in a 

complex), and drug-mutation interactions (e.g. near drug binding pocket), we focused on detecting 

pairs within the typical protein interaction range of 10Å20. We applied Hotspot3D to specifically 

target intra-molecular mutation pairs separated by at least 20 amino acids (Methods). Clustering 

was performed on pairs within significant proximity (P < 0.05) and ultimately compared to a 

known cancer gene list of 624 genes.  
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Among the 5,822 intra-molecular clusters identified, 698 clusters are from 244 known 

cancer genes and 5,124 clusters are from 2,275 non-cancer genes.  38 clusters (35 “cancer genes” 

and 3 “non-cancer genes”) were above the cluster closeness (Cc) threshold (Cc > 10.3, see 

Methods). The top 5 cancer genes exhibiting high cluster closeness are TP53, KRAS, BRAF, IDH1, 

and PIK3CA, as expected and due largely to their high mutation rates in cancer (Figure 2a). TP53 

has the highest cluster closeness, a result of both numerous mutations in close proximity (192 

unique mutations) and mutation recurrence (38 hotspot residues) throughout the gene. We 

observed a shift towards higher cluster closeness for mutation clusters in cancer genes as compared 

to non-cancer genes (P≈5.3e-13)	(Figure 2a inset) (Methods).  

Clustering analysis of protein complexes resulted in 488 clusters, of which 34 were 

comprised only of cancer genes, 122 contained at least one cancer gene, and 332 contained no 

cancer genes. Similar to the intra-molecular analysis, we selected top inter-molecular clusters (Cc 

> 4.1, see Methods) for downstream analyses (Figure 2b). Of the 22 clusters that passed the 

threshold, clusters containing cancer genes exhibit significantly higher cluster closeness than those 

having no cancer genes (Figure 2b inset). 

Oncogenes and tumor suppressor genes (TSGs) have distinct mutation signatures, the 

former characterized by recurrent mutations at activating sites and the latter having higher 

abundances of truncations scattered across their sequences21. However, the mutational patterns of 

non-truncational mutations in TSGs have not been intensively studied. Using 64 oncogenes and 

74 TSGs classified by Vogelstein et al.21, we observed 124 and 89 intra-molecular clusters in 36 

oncogenes and 38 TSGs, respectively. Nine oncogenes (HRAS, KRAS, IDH1, IDH2, BRAF, 

PPP2R1A, SPOP, PIK3CA, and MAP2K1) and five TSGs (TP53, CDKN2A, B2M, FBXW7, and 

MAP2K4) account for >50% of non-truncational mutations included in clusters; Difference 
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between oncogene/TSG in the number of genes with a majority of mutations in clusters is not 

significant (P » 0.4). Clusters in both categories tend to correlate with known functional domains, 

suggesting functional implications   

2.3.2 Significant mutation clusters with cancer type specificity  
To explore cancer type specificities within significant clusters, we performed unsupervised 

clustering of cancers with the 38 intra-molecular clusters (Cc > 10.3) and 22 inter-molecular 

clusters (Cc > 4.1) (Methods and Figure 3). Non-specific intra-molecular clusters included those 

from TP53, PIK3R1, and KRAS (Figure 3a). We further identified 18 intra-molecular clusters that 

were at least 50% specific to one cancer type, suggesting diverse roles in different cell types. High 

specificity is associated with VHL and MTOR, having 95% and 86% of their respective mutation 

clusters specific to KIRC, and DNMT3A with 91% specificity to AML. High-specificity clusters 

can be the result of a hotspot site having most of its mutations in one cancer type, as is the case 

with DNMT3A residue Arg882. Conversely, VHL and MTOR show distribution across multiple 

residues.  

PIK3CA has 6 top-scoring, distinct clusters, exhibiting both UCEC and BRCA specificity 

(Figure 3b). The PIK3CA(4) cluster at centroid Arg88 is primarily UCEC specific (54% of its 

mutations) and is distributed among three different residues (Arg38, Glu39, and Arg88) that show 

little BRCA specificity. Conversely, the PIK3CA(1) cluster is primarily BRCA specific (69% of 

its mutations), and the His1047 centroid is primarily responsible for the overall BRCA specificity. 

Finally, the PIK3CA(5) cluster with centroid Cys420 shows distribution across multiple cancer 

types. We found mild GBM specificity in PIK3CA across 4 residues (Arg38, Glu39, Arg88, and 

Cys90) in the PIK3CA(4) cluster and CESC specificity at Glu726 in the PIK3CA(6) cluster. EGFR 

also has two different clusters that contribute to different cancer types (Figure 3b): an extracellular 
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cluster, EGFR(1), with centroid at Ala289 enriched in LGG/GBM and the kinase domain cluster, 

EGFR(2), with centroid at Leu858 enriched in LUSC/LUAD.   

Several inter-molecular clusters also showed tumor specificity, with 8 clusters >50% 

specific to one cancer type, including well-known oncogenic protein complexes 

ASB9/SOCS4/TCEB1/VHL (KIRC), BTRC/CTNNB1 (UCEC), AKAP13/ARHGEF12/RHOA 

(HNSC), PPP2R1A/PPP2R2A (UCEC), and CBFB/RUNX1 (BRCA) (Figure 3c). 

KEAP1/NFE2L2 showed mutual exclusivity, with KEAP1 mutations in adenocarcinomas LUAD 

and STAD and NFE2L2 mutations in multiple other cancer types (Figure 3d). Two of the residues, 

Arg415 and Arg483 from KEAP1, have been experimentally validated and shown both to be in 

the KEAP1 binding pocket and to play a major role in the stability of the KEAP1/NFE2L2 

complex22. We also identified 4 TCEB1 residues, Arg82, Ser67, Ser86, and Tyr79 in UCEC, 

BRCA, UCEC, and KIRC, respectively, clustering with 7 VHL residues, Cys162, Leu153, Leu158, 

Leu169, Ser168, Gly114, and Val165 in KIRC; Tyr79 has been experimentally validated to disrupt 

the TCEB1/VHL complex16 (Figure 3d and Supplementary Note).  

2.3.3 Rare and medium recurrence functional mutation discovery 
Rare and medium recurrent drivers are often missed by frequency-based approaches1,2. We 

define hotspot residues as those mutated in at least 5 different patient samples, regardless of the 

amino acid change. Mutations that fall in the same cluster as the hotspot residues are considered 

potential novel functional mutations (Figure 4).  

We found 100 hotspot residues and 249 potentially novel functional mutations (Figure 4a) 

clustered with hotspot residues from intra-molecular analysis. TP53, PTEN, VHL, EGFR, and 

FBXW7 contain the top 5 clusters contributing the most novel functional mutations. A KRAS 

cluster had the second highest cluster closeness across all clusters, which is a consequence of the 
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high frequency of mutations at the centroid and nearby hotspots. The centroid is at Gly12 (found 

in 198 patient samples) and has multiple amino acid changes (Gly12Cys/Asp/Ser/Val/Ala/Phe). 

For this particular cluster, we have 3 hotspot residues Gly12, Gly13, and Gln61 (Figure 5a). 

Additional possible functional mutations outside of hotspot residues are Ile36M, 

Ala59Glu/Gly/Thr (each in one sample), and Glu62Lys. Importantly, mutations Ala59Glu/Gly/Thr 

have a geodesic length of only 3Å from the highly mutated centroid Gly12 in 3D space, even 

though they are 47 amino acids away in the linear sequence. Ala59 has a higher closeness centrality 

than expected due to its close proximity to highly mutated residues (Gln61, Gly12, and Gly13). 

Likewise, Ile36Met is more than 20 amino acids away from all other hotspot residues in the cluster, 

but has a geodesic distance of only 5.8Å from Gly12. These 5 potential novel functional mutations 

could be good candidates for subsequent functional validation. Another interesting observation is 

a MAP2K1 cluster with centroid at Pro124, which is recurrently mutated in 7 patient samples. 

Additionally, it contained another hotspot at Glu203, mutated 5 times (Figure 5b). Other potential 

functional candidates in this cluster are Arg47Gln (mutated only once, but having geodesic length 

of 5.9 Å from the centroid) and Asn122Asp and Glu333Ala (likewise mutated once, but geodesics 

within 10 Å of centroid). Experimental evidence exists for our prediction that rare mutation 

Arg47Gln is functional in cancer. Arg47Gln led to increased phosphorylation of downstream 

kinases ERK1/2, supporting the activating potential of the mutation17.  

Similarly, we can uncover potentially novel, functional variants from inter-molecular 

clusters. We found 33 hotspot residues and 120 potentially novel functional variants, 4 of which 

were already observed in intra-molecular clusters (Figure 4b). Notable examples are the SMAD2, 

SMAD3, and SMAD4 complexes. Two separate inter-molecular clusters (Figure 5c) account for 

28.6% of the SMAD2/SMAD3/SMAD4 missense mutations and in-frame indels. For one of the 
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complexes (purple cluster, Figure 5c), we were able to identify 7 rare variants, each mutated only 

once from SMAD2 (Leu442Val, Leu446Val, Ser276Leu), SMAD3 (Gln405Leu), and SMAD4 

(Asp355Gly, Pro356Leu, Ser357Pro) and all in close spatial proximity with the SMAD4 Arg361 

hotspot (Arg361Cys/His/Pro/Ser). In addition, Asp450Asn in SMAD2 is mutated only once and 

is the closest spatially (2.6Å) to the SMAD4 hotspot residue, making it another functional 

candidate. Recent work confirms our prediction that mutations (Asp450 and Ser276 from SMAD2) 

in close proximity to the Arg361 hotspot on SMAD4 destabilize the SMAD2/4 and SMAD3/4 

complexes18.   

Our analysis also identified five such intra-molecular cases above the cluster closeness 

threshold involving RUNX1, MTOR, CA3, PI3, and PTPN11. None have hotspot residues, but all 

contain mutations having medium recurrence or rare variants that are spatially dense. All of the 

mutations in each of the five clusters collectively contribute to the high cluster closeness and could 

all be novel functional mutations. For example, the cluster in RUNX1 contains Arg162 recurrently 

mutated 4 times, Pro113 mutated twice, and four other singleton mutations (Leu161Pro, 

Val118Ala, Asp160Gly, and Ala134Pro). In terms of inter-molecular cases, there are 9 clusters 

with significant cluster closeness, but no hotspot residues. The other SMAD2/3/4 cluster (orange 

cluster, Figure 5c) contains Asp537 (SMAD4) mutated 4 times, Arg268 (SMAD3) mutated 3 

times, Pro305 (SMAD2) mutated twice, and four singletons (Arg531 and Leu533 from SMAD4, 

Asp304 and Asp300 from SMAD2).  Additionally, RBX1, CUL1 and GLMN form a cluster, but 

none are on the cancer gene list. This cluster contains Arg506, Gly543, and Glu758 from CUL1 

and Met50 from RBX1, which are all mutated twice, and 6 remaining mutations that are singletons.  

2.3.4 Validation by protein array and functional experiment 
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In cancer, mutations within extracellular and kinase domains of Receptor Tyrosine Kinases 

(RTKs) can cause ligand-independent activation, leading to autophosphorylation. We keyed on 

this phenomenon to validate the performance of HotSpot3D for identifying functional variants. 

Specifically, we first conducted validation using Reverse Phase Protein Array (RPPA) expression 

data to assess whether predicted clusters in EGFR actually have higher levels of protein 

expression/autophosphorylation than either the wild type or mutations outside clusters. EGFR is 

an excellent test case because of the high number of mutations found across multiple patient 

samples and the two most significant clusters being highly cancer specific. The latter is important 

because RPPA varies by cancer type. We used the RPPA values to examine EGFR protein 

expression and site-specific phosphorylation at major autophosphorylation sites pTyr1173 and 

pTyr1068.  
We validated the two clusters in EGFR that exceeded the Cc threshold, one specific to 

GBM with centroid at Ala289 from the extracellular domain and the other specific to LUAD with 

centroid at Leu858 from the kinase domain. The mean protein and phosphoprotein (pTyr1173 and 

pTyr1068) levels were significantly higher in GBM samples with mutations from the Ala289 

cluster as compared to wild type EGFR, P=2.3e-8, P=1.9e-5, P=1.5e-6, respectively (Figure 6a) 

Means were also higher than for samples with EGFR mutations outside of any cluster, but there 

were insufficient data to establish this observation as statistically significant. Almost all of the 

mutations for LUAD in the kinase domain are from the L858 cluster, so here we focus on 

comparing it to the wild type. Mean protein and phosphoprotein (pTyr1173 and pTyr1068) levels 

were again significantly higher for samples containing a mutation in the Leu858 cluster, P=0.01, 

P=0.04, P=4.6e-5, respectively (Figure 6a). We also conducted validation on one ERBB2 cluster 

in the kinase domain having its centroid at Val842Ile using RPPA data for ERBB2 protein 
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expression and autophosphorylation site pTyr1248. This cluster exhibited the same trend as the 

two EGFR clusters; the mean protein and phosphoprotein (pTyr1248) levels were the highest for 

samples having mutations in the Val842Ile cluster (Methods).  

  We also performed EGFR phosphorylation experiments on mutations from the EGFR 

Leu858Arg cluster in cultured NIH3T3 cells to more conclusively assess functional predictions 

from HotSpot3D. This cluster included well-known mutations such as Leu858Arg, Gly719Ala, 

and Thr790Met. Additional rare mutations, having no available direct evidence of 

autophosphorylation consequence, include Asp761Asn, Ile789Met, Arg831His, and Leu833Phe, 

although a few reports suggested weak/partial response to tyrosine kinase inhibitors in samples 

with other known druggable mutations23-25. Our phosphorylation experiment targeting 

autophosphorylation site pTyr1068 showed a low level of pTyr1068 phosphorylated EGFR 

(pEGFR, 0.21, normalized by the total EGFR) in the wild type without EGF treatment (Figure 

6b). Leu858Arg, Gly719Ala, and Thr790Met have higher levels of normalized pEGFR (0.79, 0.89, 

and 1.08, respectively), indicating ligand-independent activation. Asp761Asn, Ile789Met, 

Arg831His, and Leu833Phe also yielded higher levels of normalized pEGFR (0.78, 0.38, 0.32, and 

0.55, respectively), suggesting potential ligand-independent activation as well (Figure 6b). In 

addition, similar to Thr790Met and Gly719Ala, Asp761Asn shows a much higher normalized 

pEGFR level (1.76) when compared to the wild type (1.08) under EGF stimulation. These 

observations demonstrate that some of the variants do not just have ligand-independent activation; 

their levels of autophosphorylation upon EGF stimulation can be higher than that of the wild type 

(Figure 6b). Furthermore, we performed an experiment examining sensitivity of the EGFR 

variants to gefitinib. We found that Thr790Met is resistant to gefitinib, consistent with previous 
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reports26. The other 6 variants are all sensitive to gefitinib (Figure 6c). In aggregate, these results 

furnish convincing evidence of the HotSpot3D approach. 

2.3.5 Mutation-drug networks and clinical implications  
The HotSpot3D drug module targets mutations in spatial proximity to actionable sites for 

pharmaceuticals and nutraceuticals derived from DrugPort (Methods). We identified 394 

significant drug-mutation clusters involving 153 drugs and 359 genes. Top HGNC gene families 

and drug classes are in Supplementary Note (Figure 7a). While we have obtained drug-mutation 

relationships from multiple databases (Methods), only 14 unique mutations (with different amino 

acid position and/or change) in the clusters have been reported in these sources, implying the 

remaining 844 unique mutations are potentially novel drug interacting candidates.  

Of particular interest, we have detected 48 protein kinases, interacting with 21 drugs 

(Figure 7b) with strong mutation-drug clusters found in EGFR, BRAF, KSR2, ERBB3, CDK7/8, 

and ABL1. Our analysis also showed that 24 out of the 394 mutation-drug clusters have cluster 

closeness scores greater than 2.5 (Table 1), including several protein kinases (BRAF, ERBB3, 

EGFR, PDK3, and NTRK1), nuclear hormone receptors (ESR1 and PPARD), CD molecules 

(ACE, CD40LG, and ITGAX), as well as tumor suppressors (TP53 and VHL).  Among the kinase-

drug clusters, BRAF (a serine/threonine kinase) with sorafenib (a tyrosine kinase inhibitor) tops 

the list due to hotspots at Val600 and Lys601. Interestingly, there are 8 unique BRAF mutations 

in this cluster: Arg462Lys, Gly469Ala/Arg, Asp594Gly/His/Asn, Gly596Asp, and Val600Arg that 

are each observed in one or two samples.  Three of these mutations (Arg462Lys, Gly469Arg, 

Gly596Asp) are not in the current releases of MyCancerGenome (MCG), CancerDR (CDR), 

Personalized Cancer Therapy (PCT), or Gene-Drug Knowledge Database (GDKD), and eight 

(Gly469Ala, Asp594Gly/His/Asn, Val600Glu/Lys/Arg, and Lys601Glu) are present in at least one 



24 
 

or more of these databases, but have unknown effects on drug binding affinity. Our analysis lends 

weight to the potential druggability of the 3 functionally unknown, unique BRAF mutations 

(Figure 7c). We also found two drug-mutation clusters of ERBB3 in which 8 of the 9 unique 

mutations were not catalogued in these databases (from the extracellular domain cluster: 

Val104Leu/Met, Ala245Val, Gly284Arg in GDKD, Lys329Glu/Thr, R103H, and R388Q and from 

the kinase cluster: L792V) and V104 is the centroid mutated in 11 samples. The larger ERBB3 

cluster evidently interacts with 4 n-acetyl-d-glucosamine (NAG) molecules throughout the 

extracellular domain spanning both receptor L domains and the Furin-like cysteine rich region. 

The second ERBB3 cluster involves bosutinib, a tyrosine kinase inhibitor. Two EGFR drug-

mutation clusters were found in which 11 out of 16 unique mutations are novel (Figure 7d). None 

of the three mutations of the PDK3 drug-mutation cluster have been reported in the four druggable 

mutation databases (Arg299Cys/Ser and Phe324Leu). The three mutations of NTRK1 were 

likewise not found in these databases (Arg649Leu/Trp and Arg702Cys) and are observed with an 

acetic ion binding in the C-terminal lobe adjacent to the binding pocket and DFG motif (within 

10Å). 

ESR1, PPARD, and PPARG top the nuclear hormone receptor family of mutation-drug 

clusters. The ESR1 cluster with Cc = 4.6, has 4 unique mutations interacting with 5 different 

compounds: raloxifene, estradiol, estrone, estriol, and diethylstilbestrol (Figure 7e). Raloxifene is 

a FDA-approved estrogen receptor modulator for reducing the risk of invasive breast cancer27, 

while estradiol, estrone, and estriol are estrogenic hormones functioning through ESR1. 

Arg394His/Leu mutations in ESR1 form significant pairs with all 5 compounds and could 

potentially affect their responses (Figure 7e). HotSpot3D analysis suggests multiple putative 

therapeutic options for one mutation, but functional validation will still be required for 



25 
 

confirmation and to determine which drug is most appropriate. Peroxisome proliferator-activated 

receptor delta (PPARD) is found with 2 unique mutations, His287Arg and His287Tyr, adjacent to 

icosapent, a micronutrient which has been used to treat a variety of symptoms and diseases and 

most notably has been suggested to improve chemotherapy response28. Another PPAR drug-

mutation cluster involves 6 unique PPARG mutations that are associated with 4 drugs 

(indomethacin, pioglitazone, rosiglitazone, and telmisartan). The action site for indomethacin, a 

non-steroidal anti-inflammatory drug (NSAID), neighbors all 6 mutations of the cluster, while the 

sites for pioglitazone and rosiglitazone (anti-diabetic drugs) and telmisartan (an angiotensin II 

receptor antagonist (ARB)) neighbor two (Ile277Asn and Ile290Met), three (Ile290Met, 

Arg316Cys, and His494Tyr), and two (Arg316Cys and E352K) mutations, respectively. It is 

significant that, although none of these drugs has any previously known use in treating cancer, 

their action sites have all been found near a frequently mutated binding pocket in cancer.  Both 

clusters of ESR1 and PPARG exist in the hormone receptor domain, suggesting that drug binding 

in this region may be affected by cancer mutations.  

The drug-module in HotSpot3D allows users to identify mutation-drug clusters involving 

multiple drugs, as well as drugs interacting with mutations from multiple genes. For example, 

ABL1, from the 8th ranked kinase cluster, interacts with four tyrosine kinase inhibitors (TKIs): 

bosutinib, dasatinib, imatinib, and nilotinib; each has been used for treating chronic myelogenous 

leukemia (CML) patients with the BCR-ABL fusion29,30. Although there are only three unique 

mutations (Val390Leu, Asp400Tyr, and Phe401Leu) observed in the ABL1 drug cluster, the 

cluster closeness measure is significantly increased due to the four drugs involved. Each of the 

Asp400 and Phe401 residues, from the DFG motif, controls blocking of the binding pocket by 

conformational changes and therefore modulates the binding of imatinib and nilotinib. The 
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gatekeeper in ABL1, Thr315, which controls ATP access to the binding pocket, was not found to 

be mutated in the TCGA dataset studied, but the gatekeeper in EGFR, Thr790, is found in its own 

TKI drug-mutation cluster with erlotinib, gefitinib, and lapatinib. Both Thr315 in ABL1 and 

Thr790 in EGFR are shown to confer drug resistance to TKI therapy, indicating similarly 

positioned mutations in drug families have the same effects within a drug class31. Further, we found 

that the DFG motif is also mutated in BTK (PheGly540LeuCys), another tyrosine kinase. Notably, 

mutations in three genes, ABL1, BTK (including Leu528Phe), and BMX (Gly424Glu), are within 

the spatial interaction range of dasatinib. Overall, HotSpot3D provides the means to identify 

complex, multi-dimensional interactions among drugs and mutations and consequently to find 

alternative therapeutics that may provide greater flexibility in treating a wide range of genetic 

diseases. 

2.4 Discussion 

The enormous numbers of available variants and protein structures offer an unprecedented 

resource for investigating the direct impact these variants have upon protein structures, which is 

fundamentally important to the design of targeted cancer drugs. Here, we developed HotSpot3D 

to provide novel capabilities not found in existing tools: 1) It handles any mutation and variation 

data, has no limitation on the number of clusters per protein, and considers all available structures, 

thus maximizing the potential for novel cluster/interaction discovery for studies not limited to 

cancer. 2) It unifies discovery of many different entities under a single algorithm: significant 

clusters within a single protein, at the interface of protein-protein complexes, and near drugs. It is 

the first tool to effectively handle drug-mutation clusters. 3) It provides comprehensive 

downstream analyses in prioritizing clusters that are significantly enriched in mutations from 

multiple patient samples and supports rare/medium recurrent functional mutation discovery. 
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We used HotSpot3D to analyze TCGA Pan-Cancer data, discovering a large set of 

mutations and revealed their relationships with known drivers. This is a rich resource for future 

functional explorations. Our HotSpot3D drug analysis also indicated that only 14 unique mutations 

in the significant mutation-drug clusters have been reported in the four standard databases we 

searched, implying discovery of over 800 novel drug interacting candidate mutations. The larger 

implications of this work are threefold: 1) using non-cancer drugs for treating cancers, 2) applying 

cancer-type specific drugs for treating patients with other types of cancers, and 3) employing 

targeted drugs for treating patients with non-canonical cancer mutations that cluster with known 

druggable mutations.  

Although we have experimentally validated a small subset of predictions using high 

throughput phosphorylation data and in vitro cell-based assay, additional experimental testing of 

all putative novel drivers and drug interacting mutations discovered in our study is required to 

confirm their biological functions. We envision that structure-based analyses using HotSpot3D 

will lead to discoveries of many types of relationships among variants undetectable by 

conventional approaches, for example, in human variations identified from population-based 

studies, as well as germline variations and de novo mutations that play roles in many common 

diseases. 

URLs 

HotSpot3D code, https://github.com/ding-lab/hotspot3d; HUGO, http://www.genenames.org; 

PDB, http://www.rcsb.org; DrugPort, http://www.ebi.ac.uk/thornton-srv/databases/drugport/; 

ClinVar, http://www.clinvar.com 

2.5 Methods 



28 
 

2.5.1 HotSpot3D and code comparison  
HotSpot3D (see URLs) has three parts: data preprocessing, structural analyses, and 

visualization (Figure 1a). For SpacePAC comparison, we used the “SimMax” option, cluster radii 

2-10 angstroms, up to 3 clusters, and 1000 simulated configurations. We restricted HotSpot3D to 

the single molecule information available to SpacePAC and configured its parameters for an 

unbiased comparison: no linear separation, links formed with distance p-values, and 10 angstrom 

maximum cluster radius. We retained only the most significant clusters for SpacePAC and used 

the average inner cluster distance between constituent residues as a test statistic. Permutation 

testing was performed for each cluster residue mass (number of residues in a cluster) for each 

structure. For cluster k of mass m, there are n = m(m-1)/2 residue pairs among all residues, which 

have an average of 𝑑$. For each m, we sampled 106 sets of n random pairs, and for the lth set we 

obtained the average inner cluster distance, 𝑑%. The p-value for the kth cluster of mass m is the 

proportion of sets with average inner distance less than 𝑑$. 

2.5.2 Data preprocessing  
Genes and their transcripts and proteins are procured from public sources, including the 

Human Genome Organization (HUGO). Preprocessing extracts four features from the HUGO 

Gene Nomenclature Committee (HGNC) (see URLs): HGNC gene name, Universal Protein 

Resource (UniProt32) ID, gene synonyms, and description.  

UniProt is a comprehensive database for protein sequence and annotation data. For each 

HUGO gene, UniProt ID was used to retrieve PDB IDs from the Protein Data Bank (PDB) (see 

URLs), transcript and protein IDs from Ensembl, sequence from UniProt, and region of interest 

(ROI) information. For each ROI, corresponding information contains initial and destination 

coordinates of UniProt sequence and specific function description. By comparing each UniProt 
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sequence with all known and novel peptide sequences of human build GRCh37 (Ensembl release 

74), we identified and kept only those transcripts having the same translated length and sequence 

identity ³98%. We only allowed one top Ensembl transcript match based on alignments with 

UniProt sequences. 

This process culminates in an association table containing each HUGO gene, its UniProt, 

PDB, and transcript IDs, and sequence identity with UniProt sequence.  This table was used for 

PDB-related 3D distance calculations and conversion between PDB and UniProt coordinates. This 

information is stored in a MySQL database and a flat file. 

2.5.3 3D proximal pairs analysis  

3D distance calculation  
UniProt ID enables protein structure data to be extracted from PDB33. For each of the 

25,627 PDB structures, one or more chains could correspond to the UniProt sequence. Here, we 

used the longest chain containing the amino acid of interest to calculate 3D distances between 

amino acids. In case of multiple identical MODELs, one is picked randomly. We take intra-

molecular interactions as any pair from the same UniProt ID, regardless of chain in homomer 

complexes. Inter-molecular pairs are between amino acid pairs from different UniProt ID’s within 

the same PDB structure. 

Distance is calculated as follows. Given a pair, 𝐴𝐴0 and 𝐴𝐴1, and their respective sets of 

atomic coordinates in space, AA0 and AA1, the distance between them, 𝐷(𝐴𝐴0, 𝐴𝐴1), is the 

minimum 3D distance between all atoms of AA0 and of AA1:  

 

𝐷 𝐴𝐴0, 𝐴𝐴1 = min
1∈𝑨𝑨𝟎
5∈𝑨𝑨𝟏

𝑑(𝑖, 𝑗)     (1) 
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where d is the distance between atoms 𝑖 and 𝑗 from AA0 and AA1, respectively, and the amino 

acids range either over a single chain or over two chains, depending on context. 

Significance determination and prioritization 
 

To calculate significance of distance between mutations, we statistically analyzed all 

possible 3D distances within each PDB structure. Permutation-based P-value for each pair of 

amino acids is the proportion of all pairwise 3D distances less than or equal to D(AA0,AA1). To 

reduce false-positives due to proximal residues in primary sequence, amino acid pairs must be 

separated by at least ΔN residues along the protein sequence. Here, we use the following 

empirically derived criteria: P < 0.05, D ≤ 10Å, and ΔN > 20 for intra-molecular clusters, while D 

≤ 20Å was allowed for inter-molecular and drug-mutation clusters. This procedure generates a data 

set consisting of the residue pairs and their 3D distance, linear distance, and p-value for each PDB 

structure. 

Variant List Input  
 

For a given MAF or VCF input, transcript ID and amino acid change information from 

Ensembl annotation must be provided for each variant. Based on the association table, variants 

map to specific UniProt IDs. From the 3D proximity results, the amino acid change information 

was then used to map the variant to a specific location within the UniProt sequence. Using 3D 

proximity results, COSMIC annotation information, and ROI information, we conducted 3D 

proximal pairs analysis for a given variant list. Ultimately, our method reports 5 kinds of proximity 

information: mutations in ROI, close to ROI, close to each other, at COSMIC locations, and close 

to COSMIC mutations. Users can extract pairs of mutations that are in close proximity to each 

other within a single protein, as well as on protein-protein complexes.  
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2.5.4 Drug interaction module 
HotSpot3D includes a drug-protein interaction module based on data from DrugPort (see 

URLs), which contains structures of drugs and their target proteins in PDB, the latter derived from 

DrugBank34. The version of DrugPort used here contains 1,492 approved drugs and 1,664 unique 

protein targets, in which there are 480 molecules in all (425 drugs and 55 nutraceuticals) contained 

within 21,603 PDB structures. Each drug, has four attributes: number of different targets, number 

of targets with known structure in PDB, number of drug-bound target structures, and total number 

of drug-bound structures. There is an important preprocessing step to establish the relationship 

between mutations and PDB structures containing each pharmaceutical. Using the DrugPort API, 

we parsed the raw DrugPort data file, obtaining DrugPort ID, PDB Het Group, drug molecule 

position in the PDB structure, and flag information. Het records describe non-standard residues, 

such as prosthetic groups, inhibitors, solvent molecules, and ions for which coordinates are 

supplied. Flag information identifies whether the structure is a target protein or not a target protein 

but which nevertheless contains this drug molecule. Using these pre-processing results as input for 

each drug, the HotSpot3D drug-protein interaction module can search mutations to determine 

whether any are within the three-dimensional distance cutoff of each drug.  

2.5.5 Cancer mutation data set and cancer types  
We analyzed 4,405 TCGA tumor samples from 19 cancer types: bladder urothelial 

carcinoma (BLCA), breast adenocarcinoma (BRCA), cervical squamous cell carcinoma and 

endocervical adenocarcinoma (CESC), colon and rectal carcinoma (COAD, READ), glioblastoma 

multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell 

carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid leukaemia 

(LAML; conventionally called AML), low-grade glioma (LGG), lung adenocarcinoma (LUAD), 
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lung squamous cell carcinoma (LUSC), ovarian serous carcinoma (OV), pancreatic 

adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), 

stomach adenocarcinoma (STAD),  thyroid carcinoma (THCA),  and uterine corpus endometrial 

carcinoma (UCEC).  

2.5.6 Identifying mutation and drug-mutation clusters 
Mutations in proximal pairs are assigned to different clusters. To seed initial clusters, we 

start from significant proximal pairs, iteratively adding new mutations if they are significantly 

paired with a mutation already in that cluster. Because this procedure can form large clusters by 

the “chaining effect”, as each addition lacks knowledge of the overall cluster size, we require a 

“stopping rule” to limit growth. Specifically, we identify the centroid of the cluster as the mutation 

having the highest closeness centrality and discard mutations outside its threshold radius (see 

below).   

Formally, a cluster is an undirected graph G = (V,E), where V is a subset of the 

nonsynonymous mutations from the input and E is the set of proximal pairs from V identified by 

HotSpot3D. Two options are available for selecting V: 1) the set of all non-truncational mutations, 

𝑉 = 𝑉; 2) the set of unique mutations affected by the mutation cohort without recurrence, 𝑉 = 𝑉< 

(a proximity only approach). Let 𝑣1, 𝑣5 ∈ 𝑉	for	𝑖, 𝑗 ∈ 1,2, … , 𝑁 , where N is the number of vertices 

in V. Edges 𝑒1,5 ∈ 𝐸 are distances, where |𝑒1,5| = 𝑑1,5 for paired elements vi and vj, and |𝑒1,5| = ∞ 

for vertices that are not paired. For 𝑉 = 𝑉;, |𝑒1,5| = 𝑑1,5 = 0 if vi and vj are recurrent mutations as 

well as different amino acid changes at the same residue, and for 𝑉 = 𝑉<, |𝑒1,5| = 𝑑1,5 = 0 if vi and 

vj are different amino acid changes at the same residue. Clusters are built-up by the Floyd-Warshall 

shortest paths algorithm, initialized by the distance matrix of the edges, to obtain the geodesics, gi,j 

between each vi and vj. Unique clusters emerge as disjoint subsets in V having infinite geodesics 
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between any two elements from different clusters. For each 𝑣1 ∈ 𝑉, we then calculate the closeness 

centrality35, c(vi), 

 

c 𝑣1 = ;
<EF,G

H
5I;
1J5

 ,    (2) 

where N is the number of vertices in the cluster. For each cluster, the centroid is the vertex whose 

closeness centrality is the maximum. Finally, clusters can be focused according to user input for 

the cluster radius limit. The cluster radius limit is the maximum geodesic measured from the cluster 

centroid; any vertices outside this bound are pruned. For intra-molecular clusters, we used a radius 

limit of 10Å to keep clusters small and dense spatially. For inter-molecular, we used a larger limit 

of 20Å, since we are spanning across multiple proteins.  

Clustering for drug-mutation pairs follows the same approach. Multiple instances of the 

same drug in a single protein are considered a single entity, despite the possibility of binding in 

several places. All mutations significantly paired with the drug, regardless of binding location, are 

included in the initial cluster, even if the mutations themselves are not close to one another. 

Conversely, one drug binding within a protein is treated separately from the same drug bound to 

other proteins, forming disjoint clusters; each cluster only includes mutations from a single protein. 

The cluster radius is again 20Å.  

2.5.7 Prioritizing clusters with high cluster closeness 
We focused on top clusters for downstream analyses using cluster closeness (Cc) as a 

measure to establish thresholds. Cc is simply the sum of the closeness centralities over each 

mutation in a cluster. High Cc indicates spatially dense clusters enriched in mutations from 

multiple patient samples. Here, we distinguished between clusters with cancer genes and non-

cancer genes. We generated Cc distributions for both groups, using Wilcoxon testing to verify that 
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they were significantly different and that Cc was in fact a good metric to determine functionality 

of clusters.  We observed that clusters with cancer genes had significantly higher Cc than clusters 

without (P≈5.3e-13).	We could use the Cc threshold to identify novel cancer genes that exhibit 

similar tightness and enrichment of mutations in clusters as cancer genes. We wanted a stringent 

Cc threshold focusing on a small, conservative subset of intra-molecular clusters, so we defined 

the threshold as the top 5% cutoff of the cancer gene group (Cc = 10.283) (Figure 2a). To get an 

idea of the spatial “tightness” this threshold implies, an idealized equilateral tetrahedron having all 

equal geodesic distances, g, would indicate threshold of N2/2g ³ 10.283 from Eq. (2), whereby g £ 

ln(N2/10.283)/ln(2). Substituting N=4 for the tetrahedron, each vertex would be a distance of 0.64Å 

at most from all the others. For inter-molecular analysis, we distinguished clusters with all cancer 

genes, at least one cancer gene, and no cancer genes. We created Cc distributions for all three 

groups. Here, clusters with cancer genes also had significantly higher Cc than clusters having none. 

Due to significantly fewer inter-molecular clusters, we defined the threshold as the top 20% cutoff 

for the all cancer gene group (Cc = 4.118) (Figure 2b), which equates to a maximum geodesic 

distance of 1.96 Å in the idealized tetrahedron model.  

2.5.8 Cluster conservation score  
The phastCons score36 quantifies conservation of mutated and deleted bases. Each cluster 

is scored by the weighted average of its variants’ phastCons scores, with variants weighted by 

recurrence. For each intra-molecular cluster, we compared Cc to cluster conservation score to 

evaluate whether clusters occur in functionally important regions: 70% (4,083 out of 5,822 intra-

molecular clusters) have a high score (above 0.95). T-testing on mutations within clusters versus 

mutations not in clusters showed clustered mutations’ preference for conserved regions (P < 2.2e-

16).  Clusters with high Cc tend to have a high conservation score, and we found 547 clusters from 
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542 cancer genes, including all 38 of the top intra-molecular clusters, among the high cluster 

conservation score group. Clusters of cancer genes segregate as oncogene, TSG, or unclassified 

(general) cancer genes, and cluster conservation between groups is compared for clusters 

exhibiting high Cc. T-tests on clusters with top Cc failed to show significant difference between 

oncogenes and TSGs in terms of cluster conservation, both for the top 38 intra-molecular clusters 

and the top 100 clusters (p-values of 0.1036 and 0.7733, respectively). 

2.5.9 Cluster validation  

Reverse Phase Protein Array (RPPA) data 
 

Using the subset of the TCGA cohort having available RPPA data, we examined EGFR 

protein expression and site-specific phosphorylation at major autophosphorylation sites pTyr1173 

and pTyr1068. Here, we discarded the linear limit on clustering because proximal mutations in the 

linear sequence may be functionally significant. We examined GBM samples, dividing them into 

3 categories: having mutations from the EGFR Ala289 cluster, having mutations outside of any 

cluster, and having no EGFR mutation. The same method was applied to LUAD samples, the 

cluster of interest being Leu858Arg. Protein and phosphoprotein levels were retrieved for the 3 

categories. Welch’s t-test was used to determine if the mean protein and phosphoprotein levels 

were significantly higher in samples from the first category, as compared to samples from the other 

two categories. Similar methodology was used for ERBB2.  

Phosphorylation functional experiments  
 

NIH3T3 (clone2.2) cells were kindly provided by Dr. Robert Friesel (Maine Medical 

Center Research Institute). These cells have typical fibroblast morphology, undetectable levels of 

endogenous EGF receptor, characteristic of this subclone37, and were negative for mycoplasma, 
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based on the absence of extranuclear signals by DAPI (4',6-diamidino-2-phenylindole) staining. 

Cells were cultured in DMEM (Corning) supplemented with 10% calf serum (ThermoFisher) and 

penicillin/streptomycin (Life Technologies). All plasmids for the expression of EGFR variants 

were generated from the wild-type EGFR plasmid (Sino Biological) using Q5 site–directed 

mutagenesis (New England Biolabs). All constructs were confirmed by sequencing. Cells were 

transiently transfected with wild-type or mutant EGFR constructs using Lipofectamine 2000 

reagent (Life Technologies) in 6-well plates. 24 hours after transfection, cells were switched to 

medium containing 0.5% calf serum for 24h before stimulation with 50ng/ml recombinant human 

EGF (R&D Systems) for 10 minutes. Cells were lysed in buffer containing 20mM Tris-HCl 

(pH7.5), 150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 

mM sodium pyrophosphate, 1mM c-glycerophosphate, 1%, 1mM Na3VO4, 1ug/ml leupeptin (Cell 

Signaling). Protease and phosphatase inhibitors (Roche) were added immediately before use. 

Samples were boiled in buffer and subjected to SDS-PAGE on 10% polyarcrylamide gels and 

Western blotting was done on Immobilon-P PVDF membranes (Millipore). The following 

antibodies were used for immunoblotting: anti-phospho-EGFR Tyr1068 (Abcam, Tyr1092 in the 

unprocessed EGFR), anti-EGFR (Abcam) and anti-b-Tubulin (DSHB). Appropriate secondary 

antibodies with infrared dyes (LI-COR) were used. Protein bands were visualized using the 

Odyssey Infrared Imaging System (LI-COR). 

2.5.10 Mutation and drug annotations 
ClinVar contains clinical variant annotation for 19,801 genes and 129,758 variants (see 

URLs). The Pancan19 MAF was annotated with available ClinVar clinical variant information. Of 

the 549,295 unique mutations observed in the TCGA dataset, 805 had pathogenic information from 

ClinVar. 
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We curated mutations from 4 databases: MyCancerGenome, PCT, GDKD, and CancerDR. 

MyCancerGenome catalogs cancer mutations, therapeutic options, available clinical trials, and 

druggability information for 43 genes (including receptor tyrosine kinases like EGFR, KIT, and 

PDGFRA) and 289 relevant variants. PCT, or the Personalized Cancer Therapy, contains 

druggability information for variants of 24 cancer-related genes and over 140 gene variant-drug 

interactions supported by clinical evidence. GDKD, or the Gene-Drug Knowledge Database, 

provides information on predictive genomic markers for over 40 malignancies and tumor-type 

sensitivity/resistance for specific gene variants to approved or experimental drugs. More than 700 

variant-specific gene–drug interactions with therapeutic relevance were curated for this effort. 

CancerDR lists 148 anticancer drugs and their effectiveness against 1000 cancer cell lines. 

Pharmacological profiles of these drugs were collected from the CCLE and COSMIC databases as 

IC50 values. CancerDR contains information for 116 drug targets, including their corresponding 

gene sequences in cancer cell lines. Drug/sequence interactions that resulted in an IC50 value ±2 

S.D. of the mean were used. 

2.5.11 Prioritized variant list for functional validation 
We prioritized putative drivers that would be good candidates for experimental validation, 

based on rare and medium recurrent variants appearing in clusters above the intra-molecular and 

inter-molecular Cc thresholds. The variants were ranked according to closeness centralities and 

only the top 10 variants were included per gene.  

2.5.12 Software engineering aspects 
We developed an interactive browser-based visualization portal to help assess whether a 

mutation interaction is likely to have functional importance.  It maps individual mutations onto a 

PDB structure, displays potentially interacting mutation pairs or clusters, and provides for graphic 
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annotation. Users can load individual mutations, multiple mutations, or HotSpot3D results and 

review all protein structures that contain the residues of the mutations. As an example, 

Supplementary Fig. 4 shows two mutations from TCGA kidney cancer data, one from TCEB1 

and the other from VHL. The client side of the portal runs within any native browser 

implementation, depending only on the Java plug-in to run the open-source Jmol Java applet for 

displaying protein structures. The webserver is Apache Tomcat 7 running JSP programs and a Java 

servlet as an interface to access the underlying MySQL database of pre-processed biological 

information. The entire server runs on a Dell PowerEdge M620 blade server, with one 8-core Intel 

Xeon E-2603 1.8 GHz CPUs, and 128 GB of RAM.  

We analyzed clustering algorithm performance using robustness trials (Supplementary 

Note), where random mutations were chosen and run through the HotSpot3D clustering module. 

We observed O(n3) time where n represents the number of input mutations, which is consistent 

with the characteristic time complexity of the Floyd-Warshall algorithm. Other algorithms that 

might provide performance gains would do so only under special constraints on the graph that are 

not guaranteed to exist for problems of this type.  
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2.6 Supplementary Note 

2.6.1 Performance assessment and comparison to existing tools 
We evaluated HotSpot3D clustering performance on 50 replicated trials of mutation datasets at 

20%, 40%, 60%, and 80% of the full Pan-Cancer mutation set, with mutations for each sample 

chosen randomly. We observed close to linear reductions in the numbers of clusters relative to the 

percentage of variants removed (Figure 1b). Mutation-drug clusters decline more slowly than 

inter- and intra-mutation clusters because the drugs themselves were not down-sampled like the 

mutations. Linearity suggests that connectivity is relatively evenly distributed and that the 

algorithm does not experience any catastrophic failures related to data abundance. Incidentally, 

extrapolation of these curves suggests additional clusters remain to be discovered as additional 

data accumulate. We also examined the cluster mass (number of mutations or drugs within a 

cluster) distributions for each dataset size (Figure 1c), where we again observed a general decline, 

as expected. Smaller cluster masses show faster decline due to the relatively greater importance of 

each individual member residue. These tests suggest that HotSpot3D is stable and robust. 

We also sought to evaluate differences with other algorithms in clustering and discovery power 

for novel mutations. We chose 33 random structures involving cancer genes from a list of 624 

cancer genes (Supplementary Table 1) and, using the TCGA 19 cancer mutation data set, ran 

SpacePAC and HotSpot3D for each structure. We configured HotSpot3D to give as impartial of a 

comparison to SpacePAC as possible (Methods), with results summarized in Figure 1d for 

significant clusters (P <0.05). Of the 33 structures, 32 had significant HotSpot3D clusters (TP53 

had two insignificant clusters in HotSpot3D, and only single residue clusters in SpacePAC). 

HotSpot3D identified 263 unique residues among 85 clusters versus 105 unique residues in 53 

clusters found by SpacePAC. Over half of the SpacePAC clusters (32 clusters) are composed of a 
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single residue, which could likely have been found by primary sequence clustering methods, 

independent of protein structure. There are 9 structures on which SpacePAC found clusters with 

at least two residues and, of the 5 structures that had no HotSpot3D cluster, just one had non-

singleton residue clusters. There are 10 structures on which HotSpot3D found clusters, but 

SpacePAC did not. Finally, while SpacePAC has a hard limit of 3 clusters, HotSpot3D identified 

more than 3 clusters on 8 structures, demonstrating that larger cluster censuses can occur within 

tertiary protein structures. Importantly, the clustering objective in HotSpot3D frees the discovery 

space of pre-defined limitations, for example in numbers of clusters or spherical cluster shapes. 

SpacePAC is not readily automated, nor is it designed for analyzing large numbers of protein 

structures or interfaces among quaternary structures. The comparison suggests HotSpot3D is a 

useful advancement for mutation cluster analysis. 

2.6.2 Intra- and inter-mutation clusters across 19 cancer types 
We also computed cluster conservation scores (Methods) to evaluate whether clusters occur in 

functionally important/conserved regions. Most clusters (4,083 out of 5,822 intra-molecular 

clusters) show high conservation (above 0.95), with a significant difference in conservation from 

mutations not found in clusters (P < 2.2e-16). The difference in cluster conservation between 

oncogene and TSGs in the clusters with highest cluster closeness (38 clusters) is not significant (P 

» 0.10), suggesting that recurrently mutated clusters are in functionally relevant and conserved 

regions without regard to gene’s specific roles (TSG vs oncogene). 

2.6.3 Significant mutation clusters with cancer type specificity  
 

We identified residues Leu62, Gly63, Glu84, Val85, Arg108, Arg222, Arg252, Phe254, Asp256, 

Cys264, Ala289, His304 in the extracellular region of EGFR (specific to LGG/GBM) that likely 
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play a role in ligand-independent activation of its extracellular region, as well as residues Phe712, 

Gly721, LysArgGlu747, Val769, Ile789, Thr790, Arg831, Arg832, Leu833, Ala839, Leu858, 

Leu861 (specific to LUAD/LUSC) that play a role in activation of its kinase domain. Importantly, 

all mutations in these two EGFR clusters collectively contribute to the cancer specificity not just 

one hotspot residue. 

We also performed comparative structural analysis of mutations from intra-molecular MTOR and 

inter-molecular PIK3CA/PIK3R1 clusters. MTOR is significantly mutated in renal cell 

carcinoma1,2. Three intra-molecular clusters with centroids at Cys1483, Phe1888, and Thr1977 

exhibited cluster closeness scores within the top 10%. One contains 4 unique mutations 

(Ala1459Pro, Leu1460Pro, Cys1483Phe, and Cys1483Tyr) that are highly specific to KIRC. All 

3 MTOR clusters collectively represent 50% of all KIRC mutations in the protein.  Also, we find 

enrichment of UCEC mutations in the clusters (19%) that center around Phe1888 

(Phe1888Val/Ile/Leu, Glu1799Lys) and Thr1977 (Val2006Leu, Thr1977Arg/Lys, Tyr1974Cys, 

Ser2013Gly, Ile1973Phe, Val2006Ile, Leu2230Val). The Thr1977 cluster does not reside in one 

functional domain; rather, spatial mutations reside between and across protein domains (FRB and 

Kinase domains).  

2.6.4 Mutation-drug networks and clinical implications  
Of the 359 relevant genes, the top HGNC gene families (genenames.org/cgi-bin/genefamilies/), 

ranked by number of mutations in drug clusters, are clusters of differentiation (CD) molecules, 

receptor tyrosine kinases, nuclear hormone receptors, fibronectin type III domain containing, and 

immunoglobulin-like domain containing genes, at 8.8%, 7.8%, 4.7%, 2.9%, and 2.8%, respectively 

(Figure 6a). According to NIH drug name stems, the top five drug classes observed in the 394 

clusters are anti-inflammatory agents (acetic acid derivatives; 33.2% of paired mutations), iodine-
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containing contrast media (11.1%), tyrosine kinase inhibitors (TKI, 5.2%), calcium metabolism 

regulators (1.9%), and antiasthmatics/antiallergics (1.7%) (Figure 6a). By DrugBank 

classifications, the top five classes are antineoplastic agents, dietary supplements, supplements, 

micronutrients, and vasodilator agents, respectively.  

2.6.5 SUPPLEMENTARY REFERENCES 
1 Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 

43-49, doi:10.1038/nature12222 (2013). 
2 Grabiner, B. C. et al. A diverse array of cancer-associated MTOR mutations are 

hyperactivating and can predict rapamycin sensitivity. Cancer Discov 4, 554-563, 
doi:10.1158/2159-8290.CD-13-0929 (2014). 

3 Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. 
Science 304, 554, doi:10.1126/science.1096502 (2004). 

4 Weber, G. L., Parat, M. O., Binder, Z. A., Gallia, G. L. & Riggins, G. J. Abrogation of 
PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma 
multiforme cells. Oncotarget 2, 833-849 (2011). 

5 Comprehensive genomic characterization defines human glioblastoma genes and core 
pathways. Nature 455, 1061-1068, doi:10.1038/nature07385 (2008). 
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2.7 Figures 
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Figure 1. HotSpot3D workflow, robustness simulations, and comparison to SpacePAC. a) 

HotSpot3D work-flow can be grouped to three processing steps, (from left to right), Data 

Preprocessing, Structural Analysis, and Post Processing. First, annotation resources from several 

databases are used to contextualize input datasets, including user-defined DNA variants. Variants 

are then annotated and mapped onto appropriate PDB structures. DrugPort annotations are used to 

map pharmaceutical/nutraceuticals onto PDB molecules as a part of the drug module. Mutation 

pairwise calculations are performed and users can perform clustering of the paired mutations. 

Users can then visualize mutation clusters along with annotated information. Analyses by users 

can then lead to in silico discoveries for functional validation hypotheses. b) Robustness 

simulations show a steady reduction in the percentage of clusters found relative to the percentage 

of the variant set used. Error bars represent one standard deviation from the mean over 50 random 

trials. c) Cluster mass distributions show steady decline in clusters of all sizes. Each variant 

percentage curve (below 100%) is an average over the random trials represented in panel b.  d) 

Significant mutation clusters (P £ 0.05) are shown as circles found by HotSpot3D (red) and 

SpacePAC (blue). The number of residues in each cluster is shown for each structure, labeled by 

HUGO Symbol and PDB ID. Centers are slightly offset from each residue number, with SpacePAC 

on the left and HotSpot3D on the right. For all structures, molecule chain A was used. The size of 

each circle indicates the average inner cluster distance. 
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Figure 2 Significant spatial clusters. Panels are divided into intra-molecular (a) and inter-

molecular (b) results and purple and green shading denoting gene type, i.e. cancer and non-cancer 

genes, respectively. a) List of intra-molecular clusters having the highest cluster closeness as 

defined by the same type of threshold procedure on cluster closeness distribution (inset). b) List 

of inter-molecular clusters having the highest cluster closeness, with threshold set at top 20% 

(inset). Here, inter-molecular clusters are divided into 3 groups: clusters of strictly cancer genes 

(purple), clusters with at least one cancer gene (blue), and cluster composed solely of non-cancer 

genes (green) and axis labels only include the top two genes contributing the most number of 

mutations. Multiple clusters within a single protein or protein complex are differentiated with a 

numerical suffix in parentheses. 
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Figure 3 Cancer type specificity of intra-molecular and inter-molecular clusters. a) Cancer 

specificity heat map of intra-molecular clusters exceeding the threshold defined in Figure 1b. Each 

row represents a cluster, with intensity of shading indicating the proportion of mutations across all 

samples in a cluster observed in a particular cancer type. b) Distribution of cancer type specificities 

of 6 PIK3CA (purple, green, blue, red, orange, and pink) and 2 EGFR (brown and gray) clusters 

at the residue level. Bubble sizes indicate the fraction of mutations in the cluster that occur at 

specific residues (labeled on y-axis) for each of the 19 cancer types (x-axis).  Bubble color indicates 

corresponding clusters on the heat map in panel (a), with a trailing suffix in parenthesis to 

distinguish multiple clusters within same gene. c) Cancer specificity heat map of the inter-

molecular clusters exceeding the threshold defined in Figure 1d.  d) Distribution of cancer type 

specificities of the KEAP1/NFE2L2 (red and blue, respectively) and VHL/TCEB1 (green and 

purple, respectively) clusters at a residue level. Here, colors correspond to the specific genes that 

make up the cluster.  
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Figure 4. Intra-molecular and inter-molecular clusters with unique hotspot mutations and 

novel mutations. Numbers of unique hotspot and novel mutations are indicated by bubble area 

and y-axis position, respectively. a) Intra-molecular clusters: Proteins are labeled on the x-axis and 

each bubble denotes a cluster from each protein. b) Inter-molecular clusters: Clusters are labeled 

on the x-axis and bubble colors correspond to member proteins (multiple clusters involving the 

same proteins are designated in parenthesis). Hollow bubbles indicate that a protein has novel 

unique mutations but does not have a hotspot.  
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Figure 5. Polar plots showing rare/medium recurrent functional mutation discovery in intra-

molecular and inter-molecular clusters. Centroids (black) and mutations are represented by 

bubbles.  The latter are ordered clockwise according to primary sequence position, with the radial 

extent proportional to centroid-mutation spatial distance (rather than geodesics used for 

clustering).  Bubble area indicates number of samples in which the mutations are found.  Outer and 

inner rings represent, respectively, the entire protein linear sequence and a subsection within which 

the mutations are found. Corresponding clusters on the 3D protein structure are shown below each 

polar plot. a) KRAS Gly12 cluster, with colors indicating mutation distance from the centroid, and 

corresponding 3D protein structure. b) MAP2K1 Pro124 cluster with same scaling as panel (a) and 

corresponding 3D structure. c) SMAD2/3/4 clusters with centroid located at SMAD4 Arg361 (top 

left) and SMAD4 Asp537 (top right). The three proteins are distinguished on the polar plots by 

differing colors of the outer and inner rings (which correspond to protein backbone color on 3D 

structure) and slight variation in hue for the bubbles. SMAD3/SMAD4 complex 3D structure on 

bottom left shows SMAD4 Arg361 (purple) and SMAD4 Asp537 (orange).  SMAD2/SMAD4 

complex 3D structure is on bottom right with same color key. 
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Figure 6. Functional assessment using phosphorylation data and experimental validation. a) 

Protein and phosphoprotein (pTyr1068 and pTyr1173) levels in GBM and LUAD samples with 

mutations in EGFR from the Ala289 cluster (red), the Leu858 cluster (green), non-clustered (blue), 

and wild type (purple). b) Ligand-independent activity of the mutant EGFR. Bar plot shows 

normalized relative intensities of pEGFR/EGFR from the western blots below. NIH3T3 clone2.2 

cells were transiently transfected with wild type (WT) or mutant EGFR constructs were cultured 

in 0.5% calf serum for 24h before stimulating with EGF (50ng/ml) for 10 minutes. EGFR 

autophosphorylation was analyzed by quantifying phosphorylated EGFR (pEGFR, phospho 

Tyr1068). Tyrosine 1068 of mature EGFR is equivalent to Tyrosine 1092 of uncleaved EGFR. c) 

NIH3T3 clone2.2 cells were transiently transfected with wild type or mutant EGFR constructs 

were cultured in 0.5% calf serum for 21h. A 3h gefitinib (1uM) treatment was started at this time 

and it was followed by a 10-minute EGF stimulation. 
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Figure 7. Drug-mutation interaction heat maps and structures. a) Number of clusters across 

gene families and drug classes. Gene families and protein kinases are determined by the HUGO 

Gene Nomenclature Committee (HGNC) and the Gene Ontology (GO) databases, respectively. 

Protein kinase family is a superset of the receptor tyrosine kinase family. b) Number of unique 

mutations involving specific protein kinases and drugs. c) 3D structures displaying drug-mutation 

clusters for BRAF, EGFR, and ESR1 wxith sorafenib, lapatinib, and raloxifene, respectively. 

Mutations are depicted as spheres while drugs are represented as green stick models. Black 

residues represent the centroids; however, for the ESR1 cluster, the drug is the centroid.  Two 

views are shown at different rotations.  

 

 

 

 

 

 

 

 

 

 

 



56 
 

Table 1. Top (cluster closeness > 2.5) drug-mutation clusters 

with HGNC gene families and drug classifications from NIH 

and DrugBank. 

Cluster 
Closeness 

Mutations     
(in 
databases) 

Unique 
Mutations 

Genes and Drugs / 
Compounds 

HGNC Families 
and GO Protein 
Kinases 

DrugBank Classifications NIH Classifications 

1007.764 337 (324) 11 BRAF; sorafenib Protein Kinase Antineoplastic Agents Unclassified 

110.854 38 4 TP53; acetic Unclassified Unclassified Anti-inflammatory agents (acetic 
acid derivatives) 

24.591 19 (1) 8 ERBB3; n-acetyl-d-
glucosamine 

Protein Kinase; 
Receptor Tyrosine 
Kinases 

Dietary Supplements; 
Micronutrients; 
Supplements 

Anti-inflammatory agents (acetic 
acid derivatives) 

20.353 23 (14) 14 EGFR; erlotinib; 
gefitinib; lapatinib 

Protein Kinase; 
Receptor Tyrosine 
Kinases 

Unclassified Tyrosine kinase inhibitors; 
Unclassified 

15.109 12 8 KEAP1; acetic 
BTB (POZ) domain 
containing; Kelch-
like 

Unclassified Anti-inflammatory agents (acetic 
acid derivatives) 

8.189 15 14 ACE; acetic CD molecules Unclassified Anti-inflammatory agents (acetic 
acid derivatives) 

5.049 10 9 PLG; acetic; 
aminocaproic Unclassified Unclassified Anti-inflammatory agents (acetic 

acid derivatives); Unclassified 

4.612 5 5 

ESR1; 
diethylstilbestrol; 
estradiol; estriol; 
estrone; raloxifene 

Nuclear hormone 
receptors 

Anti-menopausal Agents; 
Antihypocalcemic Agents; 
Bone Density Conservation 
Agents; Carcinogens; 
Contraceptive Agents; 
Estrogen Antagonists; 
Estrogens; Estrogens, Non-
Steroidal; Selective 
Estrogen Receptor 
Modulators; Unclassified 

Iodine-containing contrast 
media; Unclassified 

4.49 4 (3) 3 VHL; acetic Unclassified Unclassified Anti-inflammatory agents (acetic 
acid derivatives) 

4.257 4 3 PDK3; adenosine Protein Kinase 

Analgesics; Anti-
Arrhythmia Agents; 
Cardiovascular Agents; 
Vasodilator Agents 

Unclassified 

4.106 4 3 NTRK1; acetic 

Immunoglobulin-
like domain 
containing; Protein 
Kinase; Receptor 
Tyrosine Kinases 

Unclassified Anti-inflammatory agents (acetic 
acid derivatives) 
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4.092 3 3 

FDPS; alendronate; 
ibandronate; 
pamidronate; 
risedronate; 
zoledronate 

Unclassified 

Antihypocalcemic Agents; 
Antiresorptives; 
Bisphosphonates; Bone 
Density Conservation 
Agents; Calcium Channel 
Blockers 

Androgens; Calcium metabolism 
regulators 

3.935 7 7 CD40LG; n-acetyl-d-
glucosamine 

CD molecules; 
Endogenous 
ligands; Tumor 
necrosis factor 
(ligand) superfamily 

Dietary Supplements; 
Micronutrients; 
Supplements 

Anti-inflammatory agents (acetic 
acid derivatives) 

3.174 7 4 LRP6; n-acetyl-d-
glucosamine 

Low density 
lipoprotein 
receptors 

Dietary Supplements; 
Micronutrients; 
Supplements 

Anti-inflammatory agents (acetic 
acid derivatives) 

2.954 6 6 REN; acetic; 
remikiren Unclassified Unclassified Anti-inflammatory agents (acetic 

acid derivatives); Unclassified 

2.954 5 (1) 3 ALB; diazepam; 
diflunisal Unclassified Unclassified Unclassified 

2.937 3 3 

CA2; acetazolamide; 
brinzolamide; 
dichlorphenamide; 
dorzolamide; 
ethoxzolamide; 
furosemide; 
topiramate 

Carbonic 
anhydrases 

Anticonvulsants; Carbonic 
Anhydrase Inhibitors; 
Diuretics; Sodium 
Potassium Chloride 
Symporter Inhibitors; 
Unclassified 

Anti-inflammatory agents (acetic 
acid derivatives); Carbonic 
anhydrase inhibitors; Diuretics 
(furosemide type); Unclassified 

2.811 3 3 ITGAX; n-acetyl-d-
glucosamine 

CD molecules; 
Complement 
system; Integrins 

Dietary Supplements; 
Micronutrients; 
Supplements 

Anti-inflammatory agents (acetic 
acid derivatives) 

2.8 5 5 GSTA1; ethacrynic; 
glutathione 

Glutathione S-
transferases 

Dietary Supplements; 
Micronutrients; 
Supplements; Unclassified 

Anti-inflammatory agents (acetic 
acid derivatives); Iodine-
containing contrast media 

2.787 6 6 

HMGCR; 
atorvastatin; 
fluvastatin; 
rosuvastatin 

Unclassified 
Anticholesteremic Agents; 
Hydroxymethylglutaryl-
CoA Reductase Inhibitors 

Antiasthmatics/antiallergics (not 
acting primarily as 
antihistamines, leukotriene 
biosynthesis inhibitors) 

2.649 5 5 NCAM2; n-acetyl-d-
glucosamine 

Fibronectin type III 
domain containing; 
I-set domain 
containing 

Dietary Supplements; 
Micronutrients; 
Supplements 

Anti-inflammatory agents (acetic 
acid derivatives) 

2.608 9 7 ADH7; acetic Alcohol 
dehydrogenases Unclassified Anti-inflammatory agents (acetic 

acid derivatives) 

2.608 2 2 PPARD; icosapent Nuclear hormone 
receptors 

Dietary Supplements; 
Micronutrients; 
Supplements 

Receptor molecules, native or 
modified; complement receptors 

2.572 6 4 BCAT1; gabapentin Unclassified 

Analgesics; Anti-Anxiety 
Agents; Anticonvulsants; 
Antimanic Agents; 
Antiparkinson Agents; 
Calcium Channel Blockers; 
Excitatory Amino Acid 
Antagonists 

Gabamimetics 
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3.2 Abstract 

Although large-scale, next-generation sequencing (NGS) studies of cancers hold promise 

for enabling precision oncology, challenges remain in integrating NGS with clinically validated 

biomarkers. To overcome such challenges, we utilized the Database of Evidence for Precision 

Oncology (DEPO) to link druggability to genomic, transcriptomic, and proteomic biomarkers. 

Using a pan-cancer cohort of 6,570 tumors, we identified tumors with potentially druggable 

biomarkers consisting of drug-associated mutations, mRNA expression outliers, and 

protein/phosphoprotein expression outliers identified by DEPO. Within the pan-cancer cohort of 

6,570 tumors, we found that 3% are druggable based on FDA approved drug-mutation interactions 

in specific cancer types. However, mRNA/phosphoprotein/protein expression outliers and drug 

repurposing across cancer types suggest potential druggability in up to 16% of tumors. The 

percentage of potential drug-associated tumors can increase to 48% if we consider preclinical 

evidence. Further, our analyses showed co-occurring potentially druggable multi-omics alterations 

in 32% of tumors, indicating a role for individualized combinational therapy, with evidence 

supporting mTOR/PI3K/ESR1 co-inhibition and BRAF/AKT co-inhibition in 1.6% and 0.8% of 

tumors, respectively. We experimentally validated a subset of putative druggable mutations in 

BRAF identified by a protein structure-based computational tool. Finally, analysis of a large-scale 

drug screening dataset lent further evidence supporting repurposing of drugs across cancer types 

and the use of expression outliers for inferring druggability. Our results suggest that an integrated 

analysis platform can nominate multi-omics alterations as biomarkers of druggability and aid 

ongoing efforts to bring precision oncology to patients.  
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3.3 Background 

With the development of novel therapeutics and next-generation sequencing (NGS), 

medicine is entering an era in which cancer treatment can be tailored to the tumor molecular profile 

of the individual patient. While an increasing number of FDA approved cancer drugs are paired 

with a companion diagnostic for mutational1-3 or protein expression abnormalities4, a given drug 

is often only considered for the cancer type (breast carcinoma, etc.) for which it was approved.  

Pan-cancer analyses have identified significantly mutated genes shared across cancer type subsets5-

7, suggesting the potential for treating patients based on the genetic profile of their tumor, 

regardless of cancer type.  Efforts are underway to implement NGS in the clinical setting8-11 and 

several studies have examined practical aspects of NGS implementation, such as use of FFPE 

tumor samples12-14, concordance between NGS and other diagnostic platforms15, 16, and quality 

assurance of variant calls12-16. However, using tumor molecular profiles from NGS and other 

platforms to infer druggability is an ongoing challenge12, 17, 18.  In particular, no systematic pan-

cancer analysis has yet been conducted to explore the potential impact of comprehensive multi-

omics for informing cancer therapy. 

The Cancer Genome Atlas (TCGA), the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC)19, and other large-scale sequencing data sets represent an opportunity to identify 

“druggable” variants, i.e. variants that render a cancer type susceptible to a drug. A recent study 

quantified the percentages and types of cancers that may benefit from therapies traditionally used 

for other indications17. Although the general approach is promising and has important implications 

for clinical practice20, 21, these efforts primarily use gene/drug interactions or driver mutations as 

a proxy rather than mutation/drug interactions to infer druggability12, 15, 17, 22. None leverage 

transcriptomic and proteomic data in tandem with genomic profiles generated through TCGA. 
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Moreover, none leverage the compendium of known mutation/drug interactions to either discover 

or validate putative mutation/drug interactions.   

Here we present an analysis of the full spectrum of putatively druggable alterations in 6,570 

TCGA tumors based on integrative omics approaches. We utilized known variant/drug interactions 

from several data sources with each variant associated with sensitivity or resistance to a drug in 

preclinical or clinical studies20, 23-25 (Sun et al, in revision, http://dinglab.wustl.edu/depo). We 

identified tumors with drug-associated mutations and found considerable opportunity for 

repurposing of drugs across cancer types. We used a structure-based computational tool26-28 to 

identify putative druggable mutations based on proximity to known druggable mutations and 

experimentally validated a subset of putative druggable mutations in BRAF. We then analyzed 

druggability based on mRNA, protein, and phosphosite expression levels. To identify 

opportunities for combinational therapy, we examined co-occurring potentially druggable 

alterations across multiple data types in tumors. Finally, we used a large-scale drug screen to 

validate our approach for inferring druggability across human cancers.  By applying and validating 

novel approaches for inferring druggability, this report shows that more tumors than previously 

thought may be susceptible to targeted therapy and provides a concrete path for using integrative 

omics analyses to guide precision cancer therapy. 

 

 

 

 

 

 



66 
 

3.4 Methods 

3.4.1 Construction of Database of Evidence for Precision Oncology (DEPO) 

 
  DEPO (Sun et al, in revision, http://dinglab.wustl.edu/depo) was created as an information 

knowledgebase to facilitate downstream analyses in our study.  Druggable variants in DEPO was 

filtered such that each variant corresponded to one of several categories: single nucleotide 

polymorphisms or SNPs (missense, frameshift, and nonsense mutations), in-frame insertions and 

deletions (indels), copy number variations (CNVs) or expression changes. The vast majority of 

SNPs and in-frame indels in DEPO are unambiguous, e.g. BRAF V600E.  To accommodate looser 

categories of genomic events, DEPO allows missense mutations for which the substituted base is 

not specified (e.g. BRAF V600).  Similarly, for SNPs and in-frame indels in a given exon (e.g. 

EGFR exon 19 in-frame deletion), we used Ensembl to convert to a codon-mapped nomenclature 

(e.g. EGFR p.729-761 in-frame deletion) 29.  

Each variant/drug entry in DEPO was paired with several annotations of potential interest 

to oncologists. These annotations were generally derived from DEPO’s source databases, then 

standardized to the nomenclature discussed here. Tumor type is included for each variant/drug 

entry because, with infrequent exception, a variant’s effect on a tumor’s response to a given drug 

has only been rigorously studied in one or only a few cancer type(s).  For a variant/drug entry 

based on preclinical data, Tumor Type was either inferred from the xenograft or cell line, or left 

unspecified.  As indicated previously, Variant can be annotated in several ways for SNPs and 

indels. It could either be a specific mutation, a specific amino acid position with no specified amino 

acid change, or a range of amino acid/genomic positions. Copy number amplifications (CNA) and 

losses (CNL), high expression outliers in oncogenes, low expression outliers in tumor suppressors, 
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and fusions that may lead to druggability are also included. Effect describes whether a variant 

correlates with increased sensitivity of a tumor to a drug or increased resistance of a tumor to a 

drug. Level of evidence describes the quality of data supporting a given variant/drug entry: 

preclinical, case reports, clinical trials, and FDA-approved. Some of this information was mined 

from clinicaltrials.gov. Drug class was determined using a look-up table that was generated 

manually from DrugBank/NIHClasses. A given drug entry in DEPO could be associated with 

multiple drug families to allow for the possibility of combining therapies (e.g. dabrafenib [B-Raf 

inhibitor] and trametinib [MEK inhibitor] for BRAF V600E/K mutant melanoma) and multi-

targeted tyrosine kinase inhibitors (e.g. afatinib as a dual HER2 and EGFR inhibitor). Finally, each 

entry in DEPO is linked to a PubMed ID, which was used to manually curate any missing 

annotations.   

If two variant/drug entries had identical annotations for Tumor type and Effect, the entry 

with the highest Level of evidence was used in DEPO.  Otherwise, if two variant/drug entries had 

non-identical annotations, both were included. DEPO is available as a web portal 

(http://dinglab.wustl.edu/depo), through which users can search for variant entries to obtain 

therapeutic information. The version used for this analysis was from February 2017.  

3.4.2 Pan-Cancer Cohort and Cancer Types 
We conducted analyses of druggability across a pan-cancer cohort of 6,570 TCGA tumor 

samples from 22 cancer types30. These cancer types consisted of adrenocortical carcinoma (ACC), 

bladder urothelial carcinoma (BLCA), breast adenocarcinoma (BRCA), cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC), colon and rectal carcinoma (COADREAD), 

glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney 

chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell 
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carcinoma (KIRP), acute myeloid leukaemia (AML/LAML), low-grade glioma (LGG), liver 

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma 

(LUSC), ovarian serous carcinoma (OV), prostate adenocarcinoma (PRAD), skin cutaneous 

melanoma (SKCM), stomach adenocarcinoma (STAD),  thyroid carcinoma (THCA),  uterine 

corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS). 

3.4.3 Collection of Mutations in Pan-Cancer Cohort  
Variant calls were obtained from the TCGA Genome Data Analysis Centers (GDAC), Data 

Coordinating Center (DCC), and previously published TCGA marker papers until the end of 2014 

(https://cancergenome.nih.gov/publications). Variant calls were excluded if metastases or 

recurrent samples were present for samples that already had a primary tumour in the mutation 

annotation file (MAF). When necessary, we used UCSC’s liftOver with an Ensemble chain file to 

convert variants from NCBI36 to GRCh37. Annotation was done by VEP v77 on Gencode Basic 

v19 transcripts, using vcf2maf (https://github.com/mskcc/vcf2maf) to a single canonical isoform 

per gene.  We followed strict quality control processes and excluded variants without both 

nucleotide changes and genomic positions and variants whose MAF genotypes did not match VCF 

genotypes after accounting for matched strand. We filtered large indels (>100 bp) and complex 

indels, which are not supported by the MAF specification. To remove duplicate samples, we 

excluded samples with >60% variant concordance with another sample, unless both samples had 

5 or fewer total variants. Furthermore, we filtered common variants, defined as minor allele 

frequency >0.05% in the Exome Variant Server or 1000G31, 32 cohort that were not pathogenic or 

deleterious/damaging according to Clinvar33 and SIFT/Polyphen34, 35.  

3.4.4 Drug-associated Mutations in Pan-Cancer Cohort 
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We identified tumors in our pan-cancer cohort that harbored one or more drug-associated 

SNP or indel.  Iterating through a mutation annotation format (MAF) file containing all variants 

in our pan-cancer cohort, we performed two actions for each entry in the MAF.  First, we queried 

a hash table containing all druggable, unambiguous mutations in DEPO (e.g. BRAF V600E) and 

a separate hash table containing all druggable, ambiguous, single-residue mutations in DEPO (e.g. 

BRAF V600).  Second, we queried several classes of mutations that occur in a specific exon or 

segment of a gene (EGFR exon 19 in-frame deletion).  All mutation entries in the MAF (Synapse 

ID: syn12618789) that map onto an entry in DEPO are stored, along with the corresponding TCGA 

Tumor ID and Tumor type.  

In some cases, DEPO contains multiple entries per gene/mutation pair to reflect possible 

druggability of a gene/mutation pair in more than 1 Tumor type, or that it may confer an Effect 

(e.g. sensitivity or resistance) that depends on tumor type or other therapeutic context.  Multiple 

DEPO entries per variant were used to generate visualizations of druggability. For example, when 

visualizing “drug repurposing” across tumor types, a given mutation could be associated with >1 

“cancer type specific” tumor type, if a given gene/mutation pair had druggability information in 

DEPO in multiple tumor types at the same level of evidence. For each unique gene/mutation pair, 

the cancer types that had the highest levels of evidence for a drug were considered ‘cancer type 

specific’. All other cancer types are considered non-specific for a gene/mutation pair. For example, 

DEPO indicates that BRAF V600E-mutated THCA is sensitive to BRAF inhibitor; however, 

because a higher level of evidence exists for BRAF V600E druggability in SKCM, THCA is “off-

label” or “cancer type non-specific”.  When considering potential druggable events in the cancer-

type non-specific setting, the drug with the highest level of evidence found across all tumor types 

was used for a specific variant. For downstream analyses (i.e. protein structure-based clustering, 
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co-occurring mutation analysis, and integration analysis), variant/drug interactions were 

considered in this cancer-type non-specific setting. If any sensitive interaction for a variant was 

found regardless of the tumor type and level, it was considered a “druggable” event for these 

analyses. Additionally, if there was evidence for both resistant and sensitive drug interactions for 

a specific variant, the sensitive interaction was utilized. 

3.4.5 Proximity-Based Clustering of Drug-associated Mutations with Pan-

Cancer Cohort 

 
HotSpot3D26 was used to spatially cluster “known” drug-associated mutations in DEPO 

with putative druggable mutations in our pan-cancer cohort.  In brief, pairwise distances between 

all amino acids are calculated to give a background distribution. We assigned a p-value to the 

pairwise distance and defined it as the proportion of all pairwise amino acid 3D distances that are 

less than or equal to the distance between the pair of amino acids in question. After this, we only 

performed clustering on significant pairs having P < 0.05 and distance less than 5 ångströms.   

Single-link agglomerative clustering forms initial clusters from the significant proximal 

pairs by iteratively adding new mutations to a cluster if they are significantly paired with a 

mutation already in the cluster. To prevent a cluster with unbounded size, we applied a limit to the 

physical extent of the clusters. If the initial cluster is modeled as an undirected graph G=(V, E), 

where V is the set of all mutations in the initial cluster and E is the set of 3D distances of all 

proximal pairs in V, we can calculate the shortest path from each vertex to all other vertices. We 

identify a centroid of the cluster to be the mutation that is found more frequently in patient samples 

as well as the one found in close proximity to highly recurrent mutations. The clusters are then 

focused according to a specified graph radius limit from the centroid.  
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The original clustering approach for HotSpot3D was improved upon in this analysis by 

using recursive clustering. Briefly, setting a maximum radius limit could lead to potentially 

functional regions being ignored. To bypass this problem, instead of discarding mutations outside 

of the radius limit, we performed clustering on the remaining mutations in the initial cluster. We 

continued to do this until no more clusters could be found. For this analysis, a radius limit of 5 

ångströms was used in order to limit clusters to a relatively conservative size. We did not use a 

linear distance limit in order to detect all mutations that cluster closely to drug-associated 

mutations, regardless of position on amino acid sequence. 

3.4.6 Druggable Expression Outliers in Pan-Cancer Cohort 
RNA expression data (TCGA level 3, normalized) were downloaded from firehose (10-17-

2014). We log2-transformed the RNA-seq by expectation-maximization (RSEM) values of RNA 

expression data for outlier analysis. RPPA data (level 4, normalized) were downloaded from The 

Cancer Protein Atlas (TCPA) and were normalized across batches using replicates-based 

normalization (RBN) as previously described 36.  

To discover expression outliers, we utilized a strategy incorporating multiple steps.  First, 

we limited our search to genes in DEPO whose over-expression or copy-number amplification is 

associated with drug sensitivity; these tended to be proto-oncogenes.  We then narrowed down the 

list to genes that are observed in at least 10 tumor samples in the dataset under investigation. 

Additionally, we did not include AML in our expression analysis. Outlier expressions were defined 

as values that are greater than 1.5 interquartile ranges (IQRs) above the third quartile (Q3), or 

below the first quartile (Q1) across the pan-cancer cohort. To rank order outlier expression for 

each gene, we calculated an outlier score defined as:  
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Outlier score = (x – Q3) / IQR 

or 

Outlier score = (Q1 – x) / IQR 

 

By definition, genes with outlier score greater than 1.5 are considered as expression 

outliers. Outlier score for each gene were ranked within each tumor sample to select the most 

promising “druggable” targets.   

Only RNA-seq and RPPA data was utilized for all subsequent analysis and calculating 

potential druggable targets for transcriptomic and proteomic expression outliers.  

3.4.7 Fusion Analysis 
Fusions were obtained from a prior publication30 that identified fusion transcripts in 4,366 

tumors.  We restricted our analysis to the intersection between the 4,366 tumors in Yoshihara et 

al. and the 6,570 tumors assessed in the present study.  Only fusion transcripts corresponding to a 

druggable fusion gene in DEPO were considered in constructing Fig. S1.  To correlate fusion 

transcripts and expression, we identified RNA and phosphoprotein expression levels (outlier 

scores) for druggable fusion genes (Fig. S1).  

3.4.8 Proteomic Analysis with CPTAC Mass-Spectrometry Data 
 

The 251 Clinical Proteome Tumor Analysis Consortium (CPTAC) tumors used in our 

analysis included 77 breast cancer tumors37, 90 colorectal cancer tumors38, and 84 ovarian cancer 

tumors (from PNNL only)39. Proteomic data were processed using the Common Data Analysis 

Pipeline40. Analysis was conducted with this data to reveal potential druggable proteomic outliers 
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in the 3 cancer types (Fig. S2); however, these numbers were not included in our subsequent 

analyses or our summative assessment of pan-cancer druggability.   

 

3.4.9 Cell Line Based Validation 
Cell Line data was downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) 

database (http://www.cancerrxgene.org/downloads). Specifically, the data of interest were the 

Screened Compounds, log(IC50) and AUC values, the Expression array data for Cell lines, and 

the WES data for Cell lines. The first step was to convert DEPO drug names into the Drug IDs 

provided in the Screened Compounds. We were inclusive in terms of matching drugs from the Cell 

Line data to DEPO, so that we would have enough statistical power and data points to study trends. 

The drug ID for the screened compound was included for a DEPO drug if one of the following 

were satisfied: 1) drug name in DEPO matched exactly the drug name or synonym in Screened 

Compounds from the Cell Line data 2) the gene target of the drug class/drug in DEPO matches the 

gene target of the drug in Screened Compounds. Additionally, the list was refined through manual 

manipulation. 

For mutation analysis, cell lines that contained mutations in DEPO were analyzed for their 

LN(IC50) values. These mutations were separated into cancer type specific and non-specific if the 

cancer type of the cell line did not have the highest level of evidence in DEPO for a specific 

mutation. Similar to our mutation analysis of TCGA data, the drug with the highest level of 

evidence for a particular mutation was used. The distribution of LN(IC50) values of cell lines with 

DEPO mutations (both sensitive and resistant) for both the cancer type specific and non-specific 

settings were compared to a background distribution using the Mann-Whitney U test. The 

background distribution consists of all LN(IC50) values from every drug-cell line combination 



74 
 

whether they have a DEPO mutation or not. In addition to comparing overall distributions, we also 

compared distributions of LN(IC50) for cell lines with a specific sensitive mutation to the 

distribution of LN(IC50) values across all cell lines for the particular drug in question. This was 

done in both the cancer type specific and non-specific settings. We required that there be at least 

5 cell lines that contain the specific sensitive mutation A tested against drug B in order to deem 

significance of the drug-mutation combination.  

For expression analysis, Affymetrix Human Genome U219 array data from ArrayExpress 

(E-MTAB-3610) were used. The expression data were in the form of an Affymetrix CEL Data 

File, which required conversion to a gene expression matrix in order to run through the expression 

outlier analysis pipeline. This was done using Bioconductor in R and the ‘affy’ Library. The file 

was then annotated with genes using an annotation package (hgu219.db) through Bioconductor. 

The resulting matrix was run through the outlier expression pipeline detailed above. Genes that 

were known to confer drug sensitivity through expression based on DEPO were analyzed. Each 

gene could have multiple probes, and all probes were included in downstream analysis. To test 

whether gene expression is correlated with drug sensitivity, we conducted linear regressions on all 

probe-drug combinations in the form of: 𝑦1 = 𝐵𝑥1 + 𝑎, where 𝑥1 is the gene expression outlier 

score for a specific gene probe in cell line i and 𝑦1 is the LN(IC50) value for a drug associated with 

the gene in cell line i. There were 496 probe-drug combinations with sufficient sample size, at least 

5 samples, to conduct regression analysis. Probe-drug combinations that had P<0.05 and 𝐵 < 0 

were considered to have a significant correlation between gene expression and drug sensitivity.  

In reporting potential druggability across the TCGA cohort, we considered all tumors with 

mutational evidence; however, we only considered tumors with mRNA and 

protein/phosphoprotein outliers for genes that could be validated against GDSC data regardless of 
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level of approval. A gene was considered to be “validated” if at least one of its probes had a 

significant p-value for the regression between gene outlier score and LN(IC50) and these two 

variables were negatively correlated.  

3.4.10 Experimental Validation 
HEK293T cells were authenticated by DNA finger printing targeting short tandem repeat 

(STR) profiles through Genetica Cell Line Testing. They are negative for mycoplasma as 

determined by the absence of extranuclear signals in DAPI staining. Cells were cultured in DMEM 

(Corning) supplemented with 5% fetal bovine serum (FBS) (Thermo Fisher). Constructions 

expressing BRAF variants were generated from a plasmid expressing a wild-type BRAF 

(Addgene, #40775) with an N-terminal Flag tag using Q5 site-directed mutagenesis (New England 

BioLabs). All constructs were confirmed by sequencing. Cells were transiently transfected with 

wild-type or mutant BRAF constructs using Lipofectamine 2000 reagent (Life Technologies) in 

six-well plates. Twenty-four hours after transfection, cells were switched to medium containing 

0.5% FBS for 24 h before the initiation of 6 hours of treatment with Dabrafenib (0 - 1uM). Cells 

were lysed in buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 

mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM β-

glycerophosphate, 1 mM sodium orthovanadate, and 1 µg/ml leupeptin (Cell Signaling 

Technology). Protease and phosphatase inhibitors (Roche) were added immediately before use. 

Samples (15 ug/lane) were boiled in standard commercial SDS-gel loading buffer and run on SDS 

10% polyacrylamide gels. Immunoblotting was performed on Immobilon-P PVDF membrane 

(Millipore). The following antibodies were used for immunoblotting: rabbit polyclonal anti-

phosphor-MEK1/2 (Ser217/221) antibodies (Cell Signaling #9121, at 1:1000 dilution), mouse 

monoclonal anti-MEK1/2 antibodies (Santa Cruz, sc-81504, at 1:500 dilution), mouse monoclonal 
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anti-Flag antibodies (Sigma-Aldrich F1804, 1:1000), rabbit polyclonal anti-GAPDH antibodies 

(Cell Signaling, #5174, at 1:1000 dilution), Appropriate secondary antibodies with infrared dyes 

(LI-COR) were used. Protein bands were visualized using the Odyssey Infrared Imaging System 

(LI-COR) and further quantified by ImageJ. 

3.4.11 Integrative Omics Analysis of Druggability 
To analyze and visualize druggability based on multi-omics information, we first identified 

tumors whose druggability is implicated by two or more variant types (genomic, transcriptomic, 

proteomic).  Drug-associated genomic variants include both known mutations in DEPO and 

putative mutations identified using protein structure-based clustering. Transcriptomic and 

proteomic variants include mRNAs and phosphoproteins/proteins with expression outliers based 

on RNA-seq and RPPA data, respectively.  For each tumor, we mapped its “druggable” variants 

against one or more drugs, which were then mapped to one or more drug classes. For each variant, 

we used the drug that had the highest level of evidence in DEPO regardless of cancer type. For the 

purposes of visualization, we only considered ten FDA-approved drug classes mapping to the 

largest number of variants across our pan-cancer cohort.  

3.4.12 Druggability and Demographics   
We assessed differences in druggability as a function of demographics (sex, race) (Fig. 

S4).  We limited our analyses to cancer types for which at least 20 tumors are represented for each 

demographic category (e.g. >20 Caucasians with BRCA, >20 Asians with BRCA).  For the sex 

analysis, this excluded certain cancer types (BRCA, CESC, PRAD, OV, UCEC, and UCS).  Next, 

we determined the most commonly druggable genes at the mutational, RNA, and phosphoprotein 

levels; to merit inclusion, a druggable gene must be observed in >40 tumors and >150 tumors for 
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the race and sex analyses, respectively.  A matrix was then generated of cancer types and druggable 

genes, with each matrix value corresponding to the log-odds ratio between druggability and traits: 

𝑙𝑜𝑔<
𝑑𝑟𝑢𝑔𝑔𝑎𝑏𝑙𝑒	𝑡𝑟𝑎𝑖𝑡	𝐴	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑡𝑟𝑎𝑖𝑡	𝐴	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠
𝑑𝑟𝑢𝑔𝑔𝑎𝑏𝑙𝑒	𝑡𝑟𝑎𝑖𝑡	𝐵	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑡𝑟𝑎𝑖𝑡	𝐵	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠  

for a specific cancer type (e.g. BRCA) and a specific druggable gene (e.g. elevated ERBB2 

phosphoprotein expression).  If fewer than 10 tumors contain a specific druggable gene in a 

specific cancer type, no matrix value was calculated.  For the purposes of graphical visualization, 

matrix values of +∞ and –∞ are set to +3 and –3, respectively. 

To determine whether a specific druggable gene is statistically more prevalent in a given 

demographic group, Fisher Exact tests were performed.  FDR correction to P-values was applied 

with a cutoff of 0.05.   

 

3.5 Results  

3.5.1 Database of Evidence for Precision Oncology  
We utilized a repository of known variant/drug interactions, which we refer to as “Database 

of Evidence for Precision Oncology” or DEPO (Sun et al, in revision), containing data from 

publically available datasets and papers 20, 23-25 (Fig. 1a).  

In aggregate, 609 unique variants with known drug interactions currently reside in DEPO, 

and account for a total of ~800 unique variant/drug interactions (Fig. 1b). ~70% of known 

variant/drug interactions result in increased sensitivity to therapy.  Further, a substantial number 

(~25%) of sensitive variant/drug interactions are approved by the FDA for a particular cancer type, 

or are based on late-stage clinical studies.  Several genes account for a large proportion of 

variant/drug interactions (e.g. EGFR, KIT, ERBB2, BRCA1, PDGFRA), reflecting interest in 
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therapeutically exploiting a relatively limited number of cancer driver genes5 (Fig. 1c). Altogether, 

168 genes are represented in the current version of DEPO. 

3.5.2 Drug-associated Mutations in Pan-Cancer Cohort 
We leveraged the genomic sequence data of 6,570 tumor samples from TCGA representing 

22 adult cancer types (Synapse ID: syn12618789). Mutations associated with drug sensitivity in 

DEPO were matched against the TCGA cohort. Our analysis reveals 2,364 mutations across 2,114 

tumors that are associated with sensitivity to one or more drugs (mean=1.12/tumor). 362 distinct 

mutations are represented across 40 genes.  The low fraction of drug-associated mutations likely 

reflects the large number of passengers in cancer41, 42.  32% of tumors had at least one drug-

associated mutation, a percentage that is consistent with the 28% of screened patients that could 

be matched with a targeted therapy or trial43.  

Initially, we analyzed the percentage of potentially druggable tumors in a cancer type 

specific setting (Fig. 2), that is, tumors with mutations associated with a known drug response in 

the cancer type with the highest level of evidence. Only 3.3% of the samples contain a druggable 

mutation known to be FDA-approved; however, if we consider less mature evidence: clinical trials, 

preclinical, and case reports, we could potentially increase the percentage of tumors with drug-

associated mutations to 8.2%, 8.5%, and 10.5%, respectively. Here, skin cutaneous melanoma 

(SKCM) is the cancer type with the largest fraction of drug-associated mutations (78%). SKCM 

with a BRAF V600E/K mutation (40% of patients) can be treated with BRAF and MEK inhibitors 

based on FDA-approval. The NRAS Q61 mutations found in 12% of SKCM patients are more 

challenging to treat, as is any RAS-mutant cancer due to activation of multiple signaling pathways. 

Early generation MEK-exclusive inhibition proved to be ineffective, with multiple failed clinical 

trials prompting exploration of newer generation MEK inhibitors and MEK inhibitor combinations 
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with downstream targets of NRAS44. In colon and rectal carcinoma (COADREAD), glioblastoma 

multiforme (GBM), and lung adenocarcinoma (LUAD), 21%, 14%, and 40% of their respective 

tumors contain a drug-associated mutation in a cancer type specific setting.  In COADREAD, 

drug-associated variants PIK3CA E542K, E545K, and H1047R are present in 2.1%, 5.2%, and 

1.8% of tumors, respectively, and are associated with sensitivity to PI3K/AKT/mTOR pathway 

inhibitors in early-stage trials45 and aspirin in observational studies46, 47. PIK3CA- mutant cancers 

are also an ongoing challenge to treat clinically; Co-occurring drugs targeting the PI3K pathway 

have been more effective than single agent PI3K inhibition in treating PIK3CA-mutant cancers, 

but efficacy varies with mutation profile45. In GBM, the EGFR extracellular mutations (A289V, 

G598V, and R108K) and IDH1 mutation R132H are present in 10% and 4.5% of tumors, 

respectively, and are associated with drug response based on preclinical data48. In non-small cell 

lung cancer, EGFR inhibitors (e.g. erlotinib) are FDA-approved for tumors with activating EGFR 

mutations, which are present at 10% and 1% in our LUAD and lung squamous cell carcinoma 

(LUSC) cohorts, respectively. 

Despite the promise of targeted therapy, only 10.5% of this pan-cancer cohort contains 

potential drug-associated mutations in a cancer type specific setting. With drug repurposing across 

cancer types, in which a drug used primarily in cancer type A with mutation X is repurposed for 

cancer type B with mutation X, we find that an additional 5.4% of patients may be treated with a 

FDA-approved drug-variant interaction (Fig. 2,3). This number can be increased to 22.8% if we 

consider repurposing of lower tier drug-variant pairs to other cancer types; however, these 

interactions will require clinical validation to be considered truly druggable. In this cancer type 

non-specific setting, cancer types in which at least 40% of tumors have drug-associated mutations 

include low-grade glioma (LGG, 76%), thyroid carcinoma (THCA, 70%), and colorectal 
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adenocarcinoma (COADREAD, 42%).  A small number of drug-associated mutations occur at 

high frequency in these cancer types. For example, in THCA, the BRAF V600E variant is found 

in 60% of tumors. Clinical trials have investigated the use of BRAF inhibitors combined with 

MEK inhibitors in THCA. However, BRAF V600E also occurs at a lower frequency in HNSC, 

KIRP, LGG, and GBM indicating significant repurposing potential for BRAF inhibitors49, 50 (Fig. 

3).  

  COADREAD may also have potential for therapeutic intervention via repurposing (Fig. 

2a). However, COADREAD has been difficult to treat due to a large presence of KRAS and BRAF 

mutations; EGFR inhibition as monotherapy is used for COADREAD, but only in tumors with 

wild-type KRAS51, 52.  Repurposing drugs that inhibit downstream effectors of KRAS (e.g. MEK) 

is an alternative therapeutic strategy for KRAS-mutant COADREAD (23.8% of patients). The 

efficacy of MEK inhibition in combination with sorafenib has been tested in clinical trials for 

KRAS- or NRAS-mutant liver hepatocellular carcinoma (LIHC)53 and has shown positive results. 

Co-targeting of MEK and AKT signaling showed some durable response in a Phase I study 54 and 

most recently, a small trial showed some success combining an investigational MEK inhibitor with 

a CDK4/6 inhibitor in Non-small Cell Lung Cancer (NSCLC) (Trial NCT number NCT02022982). 

COADREAD or other cancer types having RAS mutations, such as cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC), acute myeloid leukemia (AML), stomach 

adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC) could benefit from 

further exploration of combinatorial therapies targeting downstream targets of KRAS (Fig. 2b). 

BRAF-mutant COADREAD (7.6% of patients) presents a similar problem in that BRAF inhibitor 

monotherapy is ineffective unlike in BRAF mutant melanoma and that triple drug combination 

targeting the EGFR, MAPK, and PI3K pathway has shown more positive results. Numerous 
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clinical trials are underway to find the best combination therapies with BRAF inhibitors, including 

new drugs that are Wnt pathway and cylin-dependent kinase inhibitors55. Together, cancer type 

specific and non-specific mutational analyses identified potential therapeutic targets in 2114 

tumors (32%), some of which will be considered druggable only with further clinical development 

and FDA approval.  

3.5.3 Protein Structure-Based Clustering of Drug-Associated Mutations  
 

We applied a structure-based clustering tool, HotSpot3D,26 to the Pan-Cancer dataset to 

reveal putative functional mutations. HotSpot3D’s utility in predicting functional mutations is 

supported by experimental evidence using cell lines expressing one of several EGFR-mutant 

proteins (35). HotSpot3D identifies mutations that, by clustering in protein space with mutations 

from DEPO associated with drug sensitivity or resistance, may themselves affect drug binding 

affinity and response.  Out of 160 “sensitive” mutations from DEPO that mapped onto protein 

structures, we identified 134 “sensitive” mutations in HotSpot3D clusters, which in turn were 

clustered with 214 putative sensitive mutations that were not catalogued in DEPO. These 

mutations were found in 55 clusters from 24 genes (Fig. 4a). Among all genes in our analysis, 

EGFR contains the highest number of putative sensitive mutations, with 36 mutations that 

clustered with 19 mutations in DEPO from seven different clusters (Fig. 4a). This clustering 

analysis helps winnow down the mutation list to candidates likely to affect drug response and 

provides context for further experimental testing, but does not necessarily indicate the direction of 

drug response; in total, HotSpot3D analysis identified potential therapeutic targets in 458 tumors 

(7%).  
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We identified putative resistant mutations as those that clustered with “resistant” mutations 

from DEPO; further, to prevent contradictory annotation of putative mutations as both “sensitive” 

and “resistant”, we limited our analysis of clusters containing “resistant” mutations to those that 

did not overlap with clusters containing sensitive mutations. This procedure yielded 4 different 

clusters with a “resistant” mutation in AKT1, MAP2K1, and RAC1; these 4 clusters contained 14 

putative resistant mutations clustering with 4 known resistant mutations. RAC1 yielded the largest 

cluster, with RAC1 P29S mediating resistance to BRAF inhibitors in BRAF-mutant SKCM56. 

Other mutations in this cluster that may affect binding affinity of BRAF inhibitors (or that may 

mediate resistance to BRAF inhibitors) are C18Y, E31D, A159V, P29L/T, and P34S.  

To provided evidence in support of mutation clustering as a method for identifying putative 

druggable mutations, we first show that known drug-associated mutations in DEPO that affect 

binding affinity of drugs in the same drug class cluster spatially.  Most clusters contain more than 

one known drug-associated mutation.  For example, KIT has multiple clusters with known 

mutations; one of which has 3 known mutations (E490D, Y494C, S476G) in the same cluster, 

which are FDA approved as sensitive to combined therapy of imatinib, sunitinib, and regorafenib 

(KIT and Angiogenesis inhibitor). In addition, this cluster contains 2 other unique mutations 

(D439H, I438L) not in DEPO that, based on our analysis using HotSpot3D, could also affect 

binding affinity and potentially tumor sensitivity to KIT combined with angiogenesis inhibitors. 

Second, we experimentally validated HotSpot3D as a tool for identifying functional mutations 

associated with drug response.  To do this, we assessed the activity and drug sensitivity of a set of 

six BRAF mutations (F635I, G596D, K601E, W604L, L613F, G596R) in close spatial proximity 

to the well-studied V600E pathogenic mutation (Fig. 4b). A key function of BRAF is 

phosphorylating MEK1/2. Therefore, we transfected BRAF mutations, along with wild-type 
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BRAF and BRAF V600E, into HEK293T cells in the presence or absence of BRAF inhibitor 

dabrafenib, and used phosphorylation changes in MEK1/2 as an indicator of BRAF activity. The 

undetectable level of endogenous BRAF in HEK293T cells eliminates potential ambiguity in 

interpreting the effects of transfected BRAF mutations. As expected, BRAF V600E caused 

drastically increased phosphorylation in MEK1/2 that is reduced by dabrafenib (Fig. 4c). Three 

(G596D, K601E, and W604L) out of six other transfected BRAF mutations also showed higher 

levels of MEK1/2 phosphorylation and sensitivity to dabrafenib than wild-type BRAF, suggesting 

that a high percentage of mutations identified by Hotspot3D in close spatial proximity to V600E 

are activated and similarly sensitive to dabrafenib. Notably, BRAF G596R-transfected cells 

appeared to have a much lower level of MEK1/2 phosphorylation when compared to those 

transfected with wild-type BRAF, supporting prior findings that G596R results in BRAF loss-of-

function57. Our ongoing development of comprehensive computational tools combining spatial 

proximity with considerations of specific amino acid substitutions and other structural features 

will further improve the accuracy of identifying functional mutations. Overall, HotSpot3D, 

combined with experimental assays, can help identify functional mutations that are candidates for 

inclusion in DEPO and worth further clinical exploration. 

3.5.4 Druggable Gene and Protein Expression Outliers in Pan-Cancer Cohort 
 

In addition to driver mutations in oncogenes, elevated expression of genes or gene products 

can also be used to select tumors for targeted therapy58-60. For example, in the case of breast cancer, 

elevated mRNA expression and copy-number amplification of ESR1 correlate with elevated 

protein expression of ER61, 62, as well as with sensitivity to hormonal therapy with tamoxifen61, 63.  

In general, tumors with elevated protein expression may respond to drugs that activate antibody-
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dependent cell-mediated cytotoxicity64, suppress signaling pathways essential for tumor survival65, 

or deliver cytotoxic agents via tumor-specific antigens66.   

Therefore, to further expand the set of tumors with potential drug-associated biomarkers, 

we sought transcriptomic and proteomic evidence of elevated gene/protein expression. For each 

gene in DEPO whose expression is associated with drug response, tumors with outliers were 

identified using the pan-cancer cohort as a reference.  We defined outliers as expression values 

exceeding 1.5 interquartile ranges (IQR) above the third quartile of the cohort67.  We applied this 

outlier detection strategy across mRNA, protein, and protein phosphorylation levels. RNA-seq and 

protein RPPA data are available for 5,286 and 3,877 tumors out of 6,570 tumors in the TCGA 

cohort, respectively. DEPO has 50 genes whose expression is associated with drug response, 39 

of which are associated with drug sensitivity.  We identified elevated expression of druggable 

genes with drug sensitivity in 16% and 30% of the pan-cancer cohort of 6,570 TCGA tumors at 

the mRNA and protein/phosphoprotein levels, respectively (Fig. 5). Interestingly, tumors with 

“druggable” gene fusions tend to express elevated levels of the corresponding druggable gene (Fig. 

S1),68 suggesting that fusions may be one of several drivers of gene and protein expression. 

To determine mRNA expression outliers in tumor samples, we used RNA-seq data from 

TCGA (Fig. 5a). Elevated DLL3 expression was identified in 161 tumors, including LGG, GBM, 

and SKCM tumors.  DLL3 contributes to neuroendocrine tumorigenesis by inhibiting the Notch 

signaling pathway, whose role is to suppress tumor growth. A DLL3-targeted antibody-drug 

conjugate in phase II clinical trials effectively targets DLL3-expressing cells in high-grade 

pulmonary neuroendocrine tumors69, 70. This same therapy could potentially benefit GBM, LGG, 

and SKCM via repurposing due to shared levels of high DLL3 expression.  17% of BRCA and 

UCEC express PGR and 9.4% of BRCA express ERBB2 in our cohort, reflecting the FDA-
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approved use of anti-estrogen hormone therapy and HER-2 inhibitors, respectively, in these cancer 

types. ERBB2 is expressed in other cancer types, such as BLCA and CESC, which could benefit 

from repurposing and further exploration of HER2-inhibition; HER-2 inhibitors for COADREAD 

are currently being explored in late stage clinical trials.  

To examine tumors with potential drug-associated biomarkers based on protein expression and 

phosphosite levels, we used TCGA reverse phase protein array (RPPA) data (Fig. 5b). Compared 

to the pan-cancer cohort, 83% of prostate adenocarcinoma (PRAD) express elevated AR, reflecting 

their tissue of origin. Elevated AR is also present in 9% of breast adenocarcinoma (BRCA).  These 

9% of BRCA express higher levels of AR than 17% of PRAD, suggesting that androgen-

deprivation therapy can potentially be repurposed for AR-positive BRCA71. Similarly, 26% and 

52% of BRCA and UCEC, respectively, show elevated activity at ESR1’s p.S118 phosphosite. 

These only represent a fraction of druggable BRCA, as 77% of tumors in a large breast cancer 

registry are ER positive72. Elevated expression and activity of EGFR protein and its phosphosites 

across cancer types suggest that phosphoproteome analysis may inform treatment response.  EGFR 

phosphosites p.Y1068 and p.Y1173 are active in GBM, head and neck squamous cell carcinoma 

(HNSC), KIRC, LUAD, and LUSC.  Some evidence has shown that HNSC, LUAD, and LUSC 

are responsive to EGFR tyrosine kinase inhibitors (TKIs)73, 74, perhaps because EGFR TKIs inhibit 

autophosphorylation rather than elevated protein expression75.  In KIRC, EGFR inhibitors have 

negligible activity76-78 despite active phosphosites in our analysis, possibly because EGFR is one 

of many growth factors expressed in KIRC or because EGFR inhibition is ineffective in the 

absence of functioning VHL79. 

 Altogether, our results suggest that protein outlier analysis may require 

integration with mutational and/or mRNA expression analyses to better predict response to 
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therapy. Additionally, mass spectrometry for protein expression can be valuable in validating 

RNA-seq and RPPA data as well as capturing new putative druggable events ( Fig. S2). mRNA 

and phosphoprotein expression outlier analysis, identified potential therapeutic targets in 2559 

tumors (39%). 

3.5.5 Integrative Omics Analysis of Druggability 
Assessing alterations in multiple levels of data across genes may improve predictions of 

druggability.  For example, with trastuzumab, a single testing method or biomarker (CNV, mRNA 

expression, protein expression, etc.) can be insufficient for stratifying patients into responders and 

non-responders58. Therefore, we assessed druggability using comprehensive mutational, RNA-seq, 

and RPPA data in 3,121 tumors.  Of these, 1,003 tumors (32%) are potentially druggable based on 

two or more data types (genomic, transcriptomic, proteomic) (Fig. 6a), affording an opportunity 

for clinical or mechanistic analyses connecting drug-associated mutations with 

transcriptomic/proteomic expression events. Fig. 6b depicts tumors with multiple levels of 

alterations associated with sensitivity to one of ten categories of FDA-approved cancer drugs. 72 

tumors had elevated mRNA and protein expression of HER2; these may be expected to have 

greater or more uniform sensitivity to HER2 inhibition than tumors with elevated mRNA or protein 

expression alone.  Identifying mutations associated with drug resistance may further improve 

predictions of druggability.  RAC1 P29S co-occurs with mutations in BRAF and MEK1 in four 

SKCM tumors (Fig. S3). RAC1 P29S renders SKCM resistant to BRAF/MEK inhibition56; testing 

for RAC1 P29S may identify patients with BRAF V600E SKCM unlikely to benefit from 

BRAF/MEK inhibitor.  In this case, the single-gene paradigm of existing companion diagnostics 

may be insufficient to determine best treatment options; rather, comprehensive mutational 

profiling should be considered. 
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Multi-omics profiling also reveals opportunities for combinatorial therapy.  AKT1 E17K 

co-occurs with BRAF V600E in five tumors (Fig. S3).  Combining an AKT inhibitor with the 

current standard of treatment for BRAF V600E-positive SKCM (BRAF/MEK co-inhibition) may 

delay drug resistance80. Transcriptomic and proteomic expression profiling reveals 48 additional 

tumors with BRAF V600E/K and elevated AKT (AKT1/2/3) expression at the mRNA or 

protein/phosphoprotein levels; these may also benefit from BRAF/AKT inhibition (Fig. 6b).  

Similarly, Fig. 6b shows that 38 tumors contain biomarkers of response (i.e. mutational or 

expression-based) for both EGFR and CDK inhibitors.  Though both therapies are FDA-approved, 

no clinical trials to date have examined combinatorial therapy with EGFR and CDK dual 

inhibition.  Additionally, 105 tumors contain activating PIK3CA mutations co-occurring with 

elevated mRNA or protein expression of ESR1 or PGR.  Given the success of mTOR and anti-

estrogen therapy in ER-positive breast cancer81, this combination may be useful in other cancer 

types that are dependent on hormonal or PI3K/mTOR signaling. By identifying tumors with 

biomarkers of response to multiple drugs, and by identifying variations in biomarkers across 

gender and ethnicity (Figure S4), multi-omics profiling can facilitate the rational design of clinical 

trials for combinatorial therapy. 

3.5.6 Validation of Druggability Analyses with Large-Scale Drug Screening 
We sought to provide support for our two hypotheses that our approaches relied upon: 1) a 

drug with evidence supporting use in a given cancer type can be repurposed to other cancer types 

that contain a shared genetic alteration; 2) gene/protein expression outlier score is a predictor of 

drug sensitivity. To test these hypotheses, we utilized the Genomics of Drug Sensitivity in Cancer 

(GDSC) database, which contains drug sensitivity data for around 75,000 experiments of 138 

anticancer drugs across 700 cancer cell lines 82.  We extracted tissue type, the mutational landscape 
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(missense mutations and in-frame indels), gene expression, and drug sensitivity information for 

each cell line. 

26 sensitive mutations from DEPO are found in GDSC cell lines paired with 44 drugs. 

BRAF V600E, PIK3CA H1047R, and KRAS G12D occur most frequently in GDSC cell lines. 

Overall, the mean LN(IC50) for cell lines that contain a sensitive mutation from DEPO was 

significantly lower than background LN(IC50 ) in both the cancer type specific and non-specific 

setting (Mann Whitney U-test, P=1.1e-96 and P=1.3e-109, respectively) (Fig. 7a). Individual 

variant/drug combinations from DEPO also performed well; 39 variant/drug combinations in the 

cell line data occurred in sufficient samples in both the cancer type specific and non-specific 

settings for statistical analysis. This represented 6 of 26 sensitive mutations. In both the cancer 

type specific and non-specific settings, 19 variant/drug combinations had significantly lower mean 

LN(IC50) than background LN(IC50) for the corresponding drug. Based on these 19 drug-variant 

combinations, 4 out of 6 sensitive mutations in DEPO (KRAS G12V, BRAF V600E, NRAS Q61K, 

and KRAS G12D) were significantly associated with sensitivity to at least one of their paired drugs 

in both the cancer type specific and non-specific settings.   For example, cell lines with BRAF 

V600E were associated with sensitivity to BRAF inhibitors PLX4720 (1), PLX4720 (2), and 

dabrafenib in both the cancer type specific (SKCM) and non-specific settings (BRCA, 

COADREAD, GBM, LGG, LIHC, and THCA) (Fig. 7b). 2 out of 6 mutations (PIK3CA H1047R 

and KRAS G12C) was associated with sensitivity in either the cancer type specific or non-specific 

setting. Cell lines with PIK3CA H1047R had a significantly lower mean LN(IC50) in the cancer 

type non-specific setting; however, this category encompassed several cancer types, including 

BRCA, HNSC, and ovarian serous carcinoma (OV).  Similarly, cell lines with KRAS G12C had a 

significant lower mean LN(IC50) in the cancer type specific setting, encompassing LIHC, LUAD, 
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LUSC, and pancreatic adenocarcinoma (PAAD).  Overall, our analyses provide some evidence to 

support our hypothesis that drugs can potentially be repurposed across several cancer types using 

shared mutational biomarkers of druggability. It must be noted, however, that sensitivity to drug 

response in cell lines does not necessarily translate over to clinical efficacy, and RAS and PIK3CA-

mutant cancers continue to be controversial.  

To verify that gene expression outlier score was correlated with drug response, we 

conducted linear regression analysis for gene probe/drug combinations using 116 different probes 

for 22 genes in DEPO. 42 probe/drug combinations corresponding to 10 genes had significant 

negative correlation (P<0.05) between LN(IC50) and gene expression outlier score (Fig. 7c). For 

example, MDM2 expression correlates with sensitivity to nutlin-3a and EGFR expression 

correlates with sensitivity to erlotinib, lapatinib, and gefitinib (Fig. 7d,e).  Similar trends are 

observed in CDK6 with palbociclib (PD-0332991: CDK4/6 inhibitor) and ERBB2 with lapatinib. 

Though cell line based validation does not guarantee 100% drug response in patients, our analysis 

demonstrates that expression in 10 of 22 genes correlates with drug sensitivity in GDSC. 

Expression in other genes such as AKT2 and KIT did not correlate with drug sensitivity. However, 

this does not rule out the clinical utility of expression assays for these genes given that, for instance, 

KIT protein expression is an FDA-approved companion diagnostic for imatinib use.  Overall, our 

analysis suggests that using gene expression outliers is a reasonable approach for predicting 

druggability in human cancers; however, some of these interactions still need to be validated in a 

clinical setting. 
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3.6 Discussion 

This study presents a pan-cancer analysis of multi-omics driven prescription of targeted 

therapy across 6,570 TCGA patients. Using DEPO, a curated database of variant/drug interactions 

with clinically relevant annotations, we investigated the frequency of potential druggable multi-

omics alterations based on various levels of evidence to help guide future clinical trials. After 

adjusting the percentages of potentially druggable tumors based on our validation strategy, we 

found that mutational, mRNA expression outliers, and phosphoprotein/protein expression outliers 

implicate druggability of 5% of tumors, respectively based on FDA-approved interactions only. 

However, up to 15.6% of the cohort could benefit if repurposing of these FDA-approved 

interactions to other cancer types are further explored; this percentage could increase to 33.9%, 

34.4%, 44.6%, and 48.4% of tumor samples based on clinical trials, case reports, preclinical 

evidence, and HotSpot3D evidence, respectively should these drug-variant interactions be 

approved clinically in their respective cancer types (Fig. 8, Fig. S5).  

 Our analysis illustrates the potential of a “precision oncology” approach to prescribe 

targeted therapy to a pan-cancer cohort of patients.  Compared to prior work 17, our study offers 

four novel advancements.  First, with DEPO, our analysis of druggability in a given tumor is 

exclusively based on mutation/drug interactions rather than gene/drug interactions, with variants 

including both predefined mutations (e.g. BRAF V600E) and categories of mutations (e.g. EGFR 

exon 19 deletions).  The most comprehensive prior study assessing prescription of anticancer drugs 

included fewer than 10 mutations associated with drug sensitivity17 

(http://www.intogen.org/downloads); in comparison, the present study includes 362 mutations 

associated with drug sensitivity. Second, while prior studies exclusively used genomic data to infer 

druggability 12, 17, ours is comprehensive in its use of genomic, transcriptomic, and proteomic data 
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types, specifically leveraging mRNA expression and phosphoproteomic expression data to further 

define tumors with potential drug-associated biomarkers. It further demonstrates that integrating 

data types can allow novel, personalized combinatorial therapy. Third, it uses an analytic tool to 

create a set of putative druggable mutations; of which a subset occurring in BRAF were tested and 

validated in vitro.  Finally, we used a large-scale drug screening dataset (GDSC) to support our 

predictions of druggability based on repurposing across cancer types and expression outlier 

analysis. GDSC and other drug screening datasets have been used to identify biomarkers of drug 

sensitivity in hypothesis-free analyses 18, 83, 84, but our study is unique in using GDSC as orthogonal 

validation of putative biomarkers from clinical trials, case reports, and preclinical studies.  

Though our study and prior studies 12, 15, 17 implicate large percentages of tumors as 

potentially druggable (48% and 94%/76%/73%, respectively), prior studies made several 

assumptions regarding off-variant and off-target drug activity that may not be clinically feasible. 

For example, using the more stringent prescription guidelines of the present study (variant/drug 

prescription with no off-variant or off-target effects), only 12.3% of tumors in Rubio-Perez et al. 

would be druggable.  Furthermore, ongoing clinical trials85, 86 argue that more accurate 

druggability annotations require specifying alterations at the variant level, as the present study 

does, but which Frampton et al.15 and Van Allen et al.12 do not. Realistically, only a fraction of the 

48% of tumors with potential drug-associated omics alterations will be clinically druggable 

because the mere presence of a shared genetic biomarker (mutation, mRNA/protein expression 

outlier) does not guarantee clinical efficacy across cancer types, nor does it guarantee acceptable 

clinical toxicity. Not all preclinical drug-biomarker pairs, including those predicted with 

HotSpot3D, will advance to clinical trials. Further, we recognize that our computational survey of 

the landscape of potential drug-associated omics alterations may include some controversial 
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drug/biomarker relationships (e.g. PI3K inhibitors in PIK3CA-mutant cancers), some of which 

have either failed clinical trials and/or are still being actively developed in clinical trials. 

Nonetheless, our study is important in identifying which drug-biomarker pairs, repurposing events, 

and combinatorial therapies are worth exploring and provides a robust platform for both design 

and analysis of clinical trials. 

Our analysis has several limitations. First, TCGA tumor samples are treatment naïve. Given 

that targeted therapy is often used once other therapeutic options (e.g. cytotoxic chemotherapy, 

radiotherapy) have been exhausted, tumors treated in the clinical setting may have different 

genomic profiles than those in this study. Second, our analysis does not account for clonal 

heterogeneity, which is not unreasonable given that therapies targeting genomic alterations with 

high variant allele frequencies can induce substantial tumor regression 87.  However, we 

acknowledge that for clonally heterogeneous cancer types such as GBM, even if the dominant 

clone is sensitive to therapy, one or more subclones lacking a druggable genomic event may escape 

88. Third, some potential expression outliers may be missed since we do not compute cancer-

specific expression outliers; therefore, outliers in cancer types with low overall expression may 

not be identified, and only high confidence outliers that are most likely targetable are reported. 

Additionally, some outliers may represent cancer lineage markers or non-cancer cells within 

tumors and not necessarily a somatically altered pathway, such as the 58% of KICH expressing 

KIT (Fig. 5a). Future studies can determine which kinase expression outliers are contributing to a 

somatically altered pathway by checking phosphorylation and/or expression of downstream 

substrates. Fourth, our analysis does not consider germline mutations that sensitize a tumor to 

targeted therapy, nor does it attempt to use integrative omics data to predict sensitivity to immune 

checkpoint inhibitors. Finally, our analysis ignores therapeutic toxicity. In particular, toxicity is 
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often a limiting factor for combination therapy 89, 90, though rationally designed combinations can 

reduce toxicity 91. 

3.7 Conclusions 

This study is the first to comprehensively profile the druggability of cancer types using 

integrative omics TCGA data. While multi-omics driven prescription of anticancer drugs is a 

powerful concept 17, the efficacy of each drug still requires testing within the context of clinical 

trials.  By describing the landscape of potentially druggable alterations across cancer types, our 

study serves as a roadmap for the interpretation and design of clinical trials in precision oncology. 
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3.8 Figures  

 
Fig. 1. DEPO database. a) The methodology supporting curation of the drug-variant depository, 

which we refer to as DEPO, or Database of Evidence for Precision Oncology, and its use in 

determining the “druggable” landscape of TCGA tumors.  b) The composition of sensitive variants 

in DEPO by variant type. For each variant type, only unique variants were counted even if a given 

variant is associated with multiple levels of evidence, multiple drugs, and/or multiple cancer types. 

“CNV” (copy number variation) corresponds to “CNA” (copy number amplification) and “CNL” 

(copy number loss) entries in DEPO; this includes genes for which CNA or CNL is associated 
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with drug response, respectively. “Expression” refers to genes whose elevated and reduced 

expression is associated with drug response. “Mutations” refers to missense, nonsense, in-frame 

indels, and frameshift mutations.  c) Number of uniquely drug-associated mutations in DEPO by 

gene, sorted by evidence level: FDA Approved, Clinical Trials, Case Reports, and Preclinical. 
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Fig. 2. Drug-associated mutations across cancer types. Both panels (a) and (b) can be broken 

down into “cancer type specific” and “cancer type non-specific” settings. a) Fraction of tumors (y-

axis) for a given cancer type (x-axis) that have at least one drug-associated mutation. Both bar 

graphs are sorted by evidence level. For the “cancer type specific” graph, only the cancer types 

with the highest level of evidence per mutation is shown. For the “cancer type non-specific” graph, 

the highest level of evidence available for each mutation independent of cancer type is used, which 

is derived from the “cancer type specific” setting. b) Fraction of tumors (intensity of shading) for 

a given cancer type containing a drug-associated mutation from a specific gene (y-axis).  Only the 

top 20 genes with drug-associated mutations present in the largest number of tumor samples across 

the TCGA cohort are displayed.  
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Fig. 3. Repurposing of drugs using common mutations associated with drug sensitivity. 

Cancer type specific mutations (blue) and cancer type non-specific mutations (red) are 

distinguished. Intensity of shading corresponds to the fraction of tumors for a given cancer type 

(x-axis) that contain a specific drug-associated mutation (y-axis). Drug classes associated with 
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each cancer type specific mutation from DEPO are shown in the right panel.  Only drug-associated 

mutations present in the largest number of tumor samples across the TCGA cohort are displayed.  

 

  

Fig. 4. Protein structure-based analysis of drug-associated mutations. a) The number of known 

drug-associated mutations that can be mapped onto PDB structures, the number of known drug-

associated mutations that are found in HotSpot3D clusters, and the number of putative druggable 

mutations are shown, both in aggregate and for specific genes (x-axis). b) Protein structure views 

of one HotSpot3D cluster in BRAF (PDB: 4MBJ). Known and putative druggable mutations are 

distinguished by different colors in mutation labels. A drug molecule in the binding pocket is 

indicated in blue. c) Western blot for BRAF mutation cluster found in b). HEK293T cells were 
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transiently transfected with wild type (WT) or mutant BRAF constructs and were cultured in 0.5% 

calf serum for 24h before treatment with Dabrafenib (0-1uM) for 6 hrs. BRAF activity was 

analyzed by quantifying phosphorylation changes in MEK1/2. To normalize for transfection and 

loading variations, pMEK levels were divided by BRAF levels and then by GAPDH levels to 

produce the normalized relative intensities of pMEK/BRAF/GAPDH. This was then normalized 

to the WT sample without drug treatment that was set as 1. The error bars represent biological 

replicates.   
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Fig. 5. Druggable gene and protein expression outliers. Outlier expression analysis for mRNA 

(panel a) and protein and phosphoproteins (panel b) in TCGA tumors. Intensity of shading 

corresponds to percentage of tumor samples in a specific cancer type (x-axis) that has outlier 

expression in a specific gene (y-axis). The scale is limited to 30%; any percentage higher than this 

will be displayed as the same color. The bar graphs show how many tumors have outlier expression 
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in each specific gene. Blue refers to potential druggable ‘cancer type specific’ tumors and maroon 

refers to potential druggable ‘cancer type non-specific’ tumors. In panel b, protein and 

phosphoproteins are represented, with phosphoproteins distinguished by a ‘:’ followed by the 

phosphorylation site.  
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Fig. 6. Integrative omics analysis of druggability. a) TCGA tumor samples are sorted by 

completeness of DNA/RNA/protein profiling, number of variant types supporting druggability, 

number of drug classes, and number of druggable genes. Of the 3121 tumor samples with complete 

profiling, 1,003 are potentially druggable based on >1 variant types (mutational, RNA expression, 

protein expression) and are represented in panel b. b) Multi-drug and multi-omic relationships 

within tumor samples. Ten outer sectors separate samples according to biomarkers associated with 
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sensitivity to one of ten FDA-approved drug classes.  Each outer sector consists of three tracks: 

DNA mutation (inner), RNA expression (middle), and protein expression (outer).  Different 

colored bands within these tracks represent different genes whose variants implicate druggability 

in a single tumor sample. The genes represented in each sector vary according to drug class; 

adjacent to each sector is a legend indicating represented genes. The total number of unique 

samples is labeled under each sector.  A grey link (between wedges) represents a single tumor with 

biomarkers associated with sensitivity to multiple drug classes. A green link (within a wedge) 

represents a single tumor with multiple biomarkers of the same variant type associated with 

sensitivity to a single drug class (e.g. a single tumor with RNA expression in ESR1 and PGR). 
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Fig. 7. Cell line based validation. a) Violin plots show the distribution of drug response (y-axis) 

of cell lines with drug-associated mutations compared to the background distribution (dark 

yellow). The type of distribution is indicated in the top gray bar of the panel with distributions of 

the background, cell lines with mutations in DEPO (Mutational Evidence), and cell lines with 
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putative functional mutations as predicted by HotSpot3D (HotSpot3D).  Sensitive and resistant 

mutations in DEPO are indicated by a green and pink fill color, respectively. Violin plots outlined 

in a bold black color indicate the cancer type specific distribution. The bottom gray bar indicates 

sample size and p-value (Mann-Whitney U test) for the distribution when compared to the 

background. b) The distribution of drug response (y-axis) for three BRAF inhibitors (PLX4720 

(1), PLX4720 (2), and dabrafenib) are shown. For each drug, the background distribution and drug 

response for cell lines with the BRAF V600E mutation in the cancer type specific setting and non-

specific setting are shown. c) Expression outlier scores for genes (y-axis) with significant negative 

correlation with a paired drug (x-axis) are shown. The intensity of shading corresponds to the 

number of probes that registered as significant for a gene-drug pair. d) Scatter plots of the drug 

response (y-axis) of Nutlin-3a and expression outlier scores (x-axis) are shown for 3 different 

probes of MDM2. The best fit line and p-values for the linear regression are also shown. e) Scatter 

plots of the drug response (y-axis) to three different drugs (erlotinib, lapatinib, and afatinib) and 

expression outlier scores (x-axis) are shown for 1 probe of EGFR. The best fit line and p-values 

for the linear regression are also shown. 
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Fig. 8. Summary of multi-omics based druggability. a) Bar graphs show the percentages of 

tumor samples with a drug-associated variant type (mutation, mRNA expression, protein 

expression) in the cancer type specific and cancer type non-specific settings. The circular display 

shows cumulative percentages of tumor samples with drug-associated biomarkers of successively 

decreasing levels of evidence.  
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3.9 Supplementary Figures 
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Fig. S1. Fusions in the TCGA cohort. a) Fraction of tumors (intensity of shading) for a given cancer 
type (x-axis) containing a druggable fusion from a specific gene (y-axis) in both the cancer type spe-
cific (blue) and cancer type non-specific settings (red). b) Violin plots show the distribution of expres-
sion outlier scores for samples containing fusions compared to the background distribution for both 
EGFR and MET. The dataset, whether RNA-seq or RPPA data, and cancer types are indicated in the 
gray bars above the violin plots.
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Fig. S2. Druggable protein expression outliers using mass spectrometry. Outlier expression 
analysis for proteins and its phosphorylation sites. Intensity of shading corresponds to percentage of 
tumor samples in a specific cancer type (x-axis) that has outlier expression in a specific gene (y-ax-
is). The scale is limited to 30%; any percentage higher than this will be displayed as the same color. 
‘Phosphorylation’ refers to expression outliers at phosphorylation sites and ‘Protein’ refers to protein 
expression outliers. 
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Fig. S3. Co-occurring druggable mutations represent opportunities for combinational and 
alternative therapy. a) Co-occurring mutations in TCGA tumor samples associated with drug sen-
sitivity, with intensity of shading corresponding to the number of tumors in which a combination of 
co-occurring mutations occurs. Each combination is broken down into all possible gene pairs for 
visualization. b) Co-occurring mutations in TCGA tumors associated with drug sensitivity (green), 
resistance (purple), or both. Genes are represented on the y-axis. Each column represents a distinct 
TCGA tumor containing co-occurring mutations with cancer type labeled on the x-axis. 
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Fig. S4.  Druggability and demographics. Sex and ethnicity variations in prevalence of biomark-
ers for druggability at the mutational, mRNA and protein overexpression levels (y-axis) are displayed 
across cancer types (x-axis). The colors in each heatmap correspond to the log2 of the prevalence of 
a druggable biomarker in population A divided by the prevalence of a druggable biomarker in popula-
tion B.  Male to female prevalence, Caucasian to Asian prevalence, and Caucasian to African-Ameri-
can prevalence is compared in the leftmost, middle, and rightmost heat maps, respectively. 
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Fig S5. Potential Druggability by Cancer Type. The size of the bubbles indicates the fraction of 
samples in each cancer type (x-axis) that may be druggable based on each of the four genomic and 
proteomic variant types implicating druggability (y-axis). The bar graph indicates the total percentage 
of potentially druggable samples by cancer type based on all four genomic and proteomic variant 
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Chapter 4: Structure-Guided Supervised 
Learning Approach for Defining Cancer 

Drivers 
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4.1 Introduction 

Distinguishing between driver and passenger somatic mutations to pinpoint genetic alterations 

leading to tumor initiation and/or progression still presents significant challenges. To meet these 

challenges, computational approaches have been developed as effective filters, pruning most of 

the somatic mutations to a shortlist of high-priority, functional candidates for experimental 

validation. Most of these approaches are sequence-based, which include searching for genes 

having mutation rates higher than expected by chance, mutations in evolutionarily conserved 

regions, or genes with localization of mutations on the linear DNA or protein sequence. Recently, 

there has been a shift to utilizing tertiary/quaternary protein structures to identify mutations 

clustering in close proximity to each other in 3D space. Such enrichment of mutations on structures 

can indicate specific regions critical to normal protein function and when mutated, can drive tumor 

initiation and progression. 

Various protein-structure based tools such as HotSpot3D1 identify clusters enriched with proximal 

mutations from cancer patients within proteins. Though HotSpot3D and other structure-based tools 

have been valuable in identifying clusters of residues that could be important to cancer, they do 

not distinguish the driving potential or structural impact of different mutations within a cluster nor 

do they consider the physical impact of different amino acid substitutions at the same site. 

Additionally, the functional effects and structural impact of isolated mutations not found in hotspot 

clusters cannot be predicted.  The prediction power of structure-based tools in distinguishing driver 

mutations from passenger mutations can be improved upon if spatial clustering is combined with 

physical/biological features proximal to mutations as well as the specific amino acid substitutions 

of these mutations.  
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In this study, we present PoSAIDON, a novel structure-based supervised learning algorithm, that 

prioritizes putative driver mutations in protein kinases by incorporating structural/biological 

features such as proximity of mutations to functional sites on protein structure, physiochemical 

property changes of mutations, conservation of residue sites, secondary structure state of residue 

sites, other structural context features, and enrichment scores from HotSpot3D. We utilize a 

curated set of experimentally validated mutations identified as neutral or oncogenic from various 

databases to train our model. We assess performance of our algorithm by applying the model to a 

subset of our curated mutations, which are held out during the training process. We, then, compare 

the performance of our novel approach to other sequence-based approaches developed to 

distinguish driver and passenger mutations as well as HotSpot3D. Structural feature signatures are 

then identified that are unique to activating driver and neutral mutations and their implications in 

oncogenesis is discussed. Finally, PoSAIDON is then applied to ~10,000 TCGA samples to 

identify novel driver mutations in kinases that share similar structural feature signatures to well-

known driver mutations.   

 

4.2 Results 

4.2.1 Overview of datasets and associated structural features  
PoSAIDON (PrOtein Structure-Associated Identification of Driver Or Neutral mutations) is a 

supervised learning approach, which classifies protein kinase mutations as activating driver 

mutations or neutral mutations based primarily on structural features and properties. PoSAIDON 

builds upon HotSpot3D, previously developed by the lab, by providing a prioritization score for 

mutations within clusters; however, it can also identify potential driver mutations outside of 

HotSpot3D clusters. We utilize a set of high confident experimentally validated kinase somatic 
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missense mutations (oncogenic/neutral) from various databases and literature to serve as our 

training, validation, and test sets (Methods). We then use our trained model to make predictions 

on TCGA exome sequencing data consolidated by the Multi-Center Mutation-Calling in Multiple 

Cancers (MC3) network2, consisting of ~10,000 tumors over 33 cancer types. Our training data 

comprises of 1,053 mutations from kinases (EGFR, PIK3CA, BRAF, ERBB2, etc.) from 74 genes, 

68% of which are activating (Figure 1). 

 

We selected from 127 biological features in PoSAIDON, which are shown by category in Table 

1 and described in more detail in Methods. Previous supervised learning algorithms with a similar 

purpose of identifying driver and passenger mutations in cancer fall into two major categories: 

sequence based or structure based. The main sequence-based tools include CHASM3, CanDrA4, 

FATHMM5, and TransFIC6. CHASM is supervised learning approach that utilizes Random Forest 

trained to distinguish driver missense mutations from synthetically generated passenger mutations. 

CanDrA is also a supervised learning approach that utilizes support vector machine and defines 

driver and passenger mutations based on their recurrence in large-scale cancer mutation datasets. 

FATHMM combines sequence conservation within Hidden Markov Models with “pathogenicity 

weights”, which dictates how tolerant the model is to mutations. FATHMM utilizes cancer somatic 

and germline mutations from the CanProVar database as its set of driver mutations. TransFIC 

transforms functional impact scores from SIFT7, PolyPhen8, and mutation assessor by comparing 

the score of somatic mutations to the distribution of germline SNVs in functionally related genes.  

 

While all of these sequence-based algorithms performed relatively well, some caveats include the 

quality of the training data. The training mutations were either synthetically generated or recurrent 
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mutations were used as a proxy for driver mutations. Potential driver mutations that are not as 

recurrent in cancer patients can be missed by utilizing these training sets. Additionally, an 

onslaught of large-scale validation experiments such as in FASMIC, individual case reports of 

experimentally validated mutations, and a growing trend to create databases to consolidate all 

existing knowledge have provided us with a comprehensive set of high quality oncogenic 

mutations that can be used for training. Moreover, these tools do not use features that takes into 

account the structural context of mutations and its neighboring residues/environment. Some 

features included properties of residues within a certain window length on the primary sequence 

but the context in terms of 3D structure was not considered.  

4.2.2 Computational Framework and Performance of PoSAIDON 

 
We divided our set of curated mutations into 80% training and 20% testing and ran 10-fold cross 

validation on the training set to optimize hyper-parameters and feature selection. The held-out test 

set was not utilized during the training process and was used to evaluate the final model (Figure 

2). We trained our model using 3 different classifiers: Random Forest (RF), AdaBoost (AB), and 

Deep Neural Network (DNN) and utilized an ensemble approach to yield the final model (Figure 

3, Methods). The final ensemble model produces a score in between 0 and 1, with mutations with 

scores greater than .5 being classified as an activating driver mutation and scores less than .5 being 

classified as functionally neutral.  

We achieved a train accuracy of 98% and test accuracy of 95% using the ensemble model. We 

found that neural network performed the best achieving an accuracy of 93%, followed by 

AdaBoost with 81%, and Random Forest with 80% (Figure 3a).  The AUROC value for the 

ensemble model was .98, and the model achieved sensitivity and specificity values of .97 and .92 
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at a threshold of .5. The difference in distributions between prediction scores for activating and 

neutral mutations are statistically significant for both the training and test sets. The training set had 

a mean score of .72 and .31 and the test set had a mean score of .71 and .34 for activating and 

neutral mutations, respectively (Figure 3b). The test set comprised mostly of EGFR, PIK3CA, 

and BRAF mutations, and when assessing accuracy by individual gene, we found that PIK3CA 

and ERBB2 had more than one miss-classified mutation with 3 each (Figure 3c). Classification of 

PIK3CA mutations are more difficult due to missing features from UniProt; distances to functional 

sites such as ATP binding pocket or active sites cannot be calculated. These features are vital in 

determining function of mutations in kinases. In total, there were only 10 miss-classified 

mutations; however, when assessing the distribution of these scores, they were mostly in the 

intermediate range from .35 to .65 (Figure 3c inset). We can more confidently report activating 

driver and neutral mutations by defining cutoffs that fall closer to the extremes of the distributions 

for the two classes.  

When comparing PoSAIDON’s performance on the test set to already existing sequence-based 

tools, PoSAIDON outperformed all of them with maTransFic, CanDra, FATHMM, CHASM, 

siftTransFic, and pph2TransFic having AUROC values of .59, .65, .68, .69, .68, and .68, 

respectively (Figure 3d, Methods). Additionally, we wanted to compare the performance of 

HotSpot3D to PoSAIDON, since PoSAIDON hoped to increase resolution by assigning 

prioritizations at a mutation level rather than a cluster level. HotSpot3D performed better than the 

sequence-based tools with an AUROC of .8 (Figure 3d), but addition of structural features in 

PoSAIDON helped boost the discrimination power even further over traditional sequence-based 

methods.  
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4.2.3 Feature signatures associated with driver and neutral mutations and 

implication in oncogenesis 
Though DNN performed the best out of our models, we utilized an ensemble approach because 

AdaBoost and Random Forest results are more interpretable. AdaBoost and Random Forest both 

output feature importance, so we can see which features were the most important in stratifying the 

mutations in two classes (Figure 4). The most relevant categories of features in distinguishing the 

two classes are closeness centrality, which is a measure computed by the HotSpot3D algorithm, 

distance to various functional sites (binding, PTM, active, catalytic), conservation of the residue 

site, change in hydrophobicity/polarity of a residue itself/compared to its surrounding, the 

difference in propensity to form reverse turn between mutant and wild-type as well as surrounding, 

change in residue volume, change in isoelectric point,  domain, and gene family.  

We performed unsupervised hierarchical clustering of the highly predicted activating and neutral 

mutations from the training and test sets utilizing a subset of the most relevant features outputted 

from AdaBoost and Random Forest. We wanted to assess the combinatorial contributions of 

various features and identify structural feature signatures distinct to activating and neutral 

mutations in kinases.  We found different clusters of activating and neutral mutations each with a 

different structural signature (Figure 5). For instance, in one cluster, we found EGFR G719S and 

BRAF S467A with a score of ~.83 and .9, respectively (Figure 5a: Group 1, Figure 6a). All of 

these mutations are characterized by being located in the ATP binding pocket as well as close 

proximity to active/binding/PTM sites (5-20 angstroms). These mutations are also located at 

intermediate solvent accessible regions (15-70) and have a large increase in volume from the wild 

type to mutant amino acid as well as the mutant amino acid being much larger in volume than 
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neighboring residues (Figure 7). Generally, in highly predicted activating mutations, it seems that 

the change in volume is higher the closer the mutations are to binding and/or nucleotide phosphate 

binding sites. The EGFR and BRAF mutation are both located in the phosphate-binding P-loop of 

the N-terminal lobe within a glycine-rich motif (Figure 6a). In EGFR, mutations at G719 are 

favored in the active state, since the main chain does not accommodate glycine residues9. 

Therefore, any mutation at this site can push the equilibrium in favor of the active state. Similarly, 

in BRAF, the inactive state is maintained through contacts between the active loop and P-loop, 

and any mutation in the A/P-loops will favor the active state10.    

In another cluster, EGFR L858R and PIK3CA H1047R have similar structural signatures (Figure 

5a: Group 2, Figure 6a). When looking at the distributions of activating and neutral mutations in 

terms of isoelectric point, there is an overrepresentation of mutations that have a high change in 

isoelectric point meaning mutating to a residue that is more positively charged. This concentration 

of mutations with a high isoelectric point is not found in the distributions of neutral mutations. 

This cluster of mutations contains these mutations with extreme changes in isoelectric point. 

Additionally, these mutations mutate to a residue that is higher in volume, more polar and/or 

hydrophilic. The surrounding residues are also more negatively charged, smaller in volume, 

hydrophobic, and located in a solvent inaccessible region. Therefore, these mutations are 

introducing a positively charged residue in an area where residues are mostly smaller in volume 

and more negatively charged (Figure 7). Known activating mutation EGFR L858R is solvent-

exposed on the protein surface when in its active state and otherwise located in the core in a 

hydrophobic pocket when inactive11. It also forms hydrophobic interactions with residues in the 

N-lobe, which keeps the protein in its inactive conformation (Figure 6a). Therefore, mutating to 

a residue that is more polar/hydrophilic destabilizes the inactive state/disrupts the hydrophobic 
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interactions and shifts the equilibrium towards the active state. 

We found EGFR L747S (Figure 6a), ALK I1171S (Figure 6b), and MAP2K1 I204T in another 

major cluster (Figure 5a: Group 3). A good portion of the activating mutations tend to exhibit 

feature signatures encompassing this group. All of these mutations tend to be enclosed by various 

functional sites, being in close proximity to several. For instance, ALK1171S is within 15, 10, 

15,7, and 15 angstroms to active, binding, ATP binding, phosphorylation, and catalytic sites, 

respectively (Figure 7). This is coupled with almost no change in isoelectric point/charge, with 

values that fall around the mean of the distributions for activating and neutral mutations (Figure 

7). This could be due to the fact that the mutation is found close to multiple key critical sites, and 

that a drastic change in physiochemical properties could disrupt protein function and not contribute 

to ligand independent auto-phosphorylation and subsequent constitutive activation. Additionally, 

these group of mutations have a decrease in “propensity to be buried inside” and normalized 

frequency of beta turns, which is a measure of the residue’s propensity to form beta-turns. These 

values fall in the upper distribution for this property when looking at the distributions for the 

activating and neutral mutations (Figure 7). It has been shown that mutating to residues that have 

a high propensity to form beta-turns can facilitate stabilization of the protein as well as binding 

affinity of ligands12,13 given that other physiochemical properties are unchanged such as 

electrostatic potential13. This is consistent with the low change in isoelectric point for most 

mutations in this group.  Proline and Glycine are the two residues that are found the most frequently 

in beta-turns and 8 mutations in this group have mutations with changes to these amino acids such 

as KIT V560G and EGFR L861P (Figure 6a).  

In addition to the trends mentioned above, in general, activating driver mutations tend to have 

higher phastCons scores, which means they are in more conserved regions (Figure 5). They also 
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have higher closeness centrality, which means they tend to cluster in 3D space with other mutations 

from cancer patients/are found in hotspot regions on protein structure. They are found in more 

solvent inaccessible regions and have higher changes in amino acid physiochemical properties 

overall. Neutral mutations exhibit opposite trends in structural feature signatures than activating 

ones. Some examples are GRK5 R304S, CAMKK2 R363H, and FGFR3 A500T (Figure 5,7). The 

highly predicted neutral mutations were much further from key functional sites than activating 

ones (17-35 angstroms), were located in more solvent accessible regions, had lower phastCons 

scores (less conserved), lower HotSpot3D closeness centrality values, and lower changes in 

physiochemical properties. However, these general trends vary depending on the mutation context 

and combinatorial contributions from various features.  

4.2.4 Applying PoSAIDON to predict novel functional mutations in a TCGA 

pan-cancer set   
We applied the algorithm to the pan-cancer set of kinase somatic missense mutations from ~10,000 

TCGA patients. There were 8,404 total kinase mutations from 329 genes that did not overlap with 

either the training or test sets. We set thresholds based on the distribution of prediction scores in 

the training/test sets for the activating and neutral classes (Figure 3b). We report high confident 

activating mutations as mutations with a prediction score greater than .77 and high confident 

neutral mutations as those with prediction scores less than .3. The dataset contained 276 high 

confident activating driver mutations and 57 neutral mutations based on these defined thresholds.  

Unsupervised clustering of the raw features for the highly predicted activating and neutral 

mutations in the new TCGA set was performed similar to the training/test sets (Figure 5b). We 

wanted to identify novel putative driver mutations that fall in the same groups identified previously 

that have similar structural feature signatures as known driver and neutral mutations from the 
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training/test sets.  

Similar to EGFR and BRAF mutations in group 1, MAPK8 G38R, ABL2 G300R, and ABL2 

G297R are all also located in the glycine-rich motif of the P-loop in the ATP binding pocket 

(Figure 5b, 6c). They all have prediction scores of ~.8 and also exhibit increases in residue volume 

(Figure 7). They could have a similar mode of mechanism of shifting the protein’s conformation 

to the active state due to mutations in the P-loop as the known EGFR and BRAF mutations. 

Notably, MAPK8 G38R is not found in any HotSpot3D clusters nor was it recurrent in the TCGA 

dataset, but was still scored highly by PoSAIDON. Additionally, MAPK8 and ABL2 are not 

identified by previous TCGA marker papers or pan-cancer studies that identify significantly 

mutated functional genes in cancer14. PoSAIDON highlights genes that have low mutations rates 

in cancer patients and rare mutations that may be implicated in oncogenesis. Also, PoSAIDON 

can help identify mutations that are structurally homologous to already known driver mutations.  

Similar to the known activating driver mutations in group 2 mentioned previously, JAK2 G1041R 

in the TCGA dataset exhibits the same feature signature (Figure 5b,6d). It was scored highly by 

PoSAIDON with a score of .84. It is within 12.5, 27.5, 22, 18, and 10 angstroms to active, binding, 

nucleotide-phosphate binding (ATP), phosphorylation, and catalytic sites, respectively. This 

mutation is located in the activation loop of the kinase domain; however, it is not in extreme close 

proximity (<10 angstroms) to any of the key functional sites. It has a large increase in isoelectric 

point as well as residue volume and due to its location, it may not cause steric hindrance or prevent 

substrate-binding. It also mutates to a residue that is more polar/hydrophilic in a region that is 

hydrophobic and solvent inaccessible (Figure 5b,7). This mutation is not found in multiple patient 

samples and therefore would not be identified by traditional frequency-based methods. Another 

mutation in the A-loop JAK2 S1043I (Figure 6d) has been shown to cause constitutive 
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phosphorylation and subsequent tumorigenic transformation15. This mutation is located in close 

proximity to our predicted JAK2 mutation and also has a similar increase in residue volume and a 

slight increase in isoelectric point though it is not as drastic. We propose that the predicted 

mutation may function via a similar mechanism as the other JAK2 mutation or similarly to the 

mechanism of activation as EGFR L858R (Figure 6d) described previously. Other predicted 

mutations that may function through a similar mechanism due to a shared feature signature and 

high predictive score are ITK L433R (Figure 6e), AKT1 W80R, and MAP2K1 G128R; there has 

been some supporting evidence that AKT1 W80-altering mutations can promote growth factor-

independent proliferation compared to wild-type16,17.  

LYN L277P (Figure 6f) and EGFR I759N (Figure 6a) share similar feature signature as the 

mutations in group 3 (Figure 5b). This is coupled with almost no change in isoelectric point, a 

large increase in polarity, and a high increase in propensity to form beta-turns (Figure 7). LYN is 

not a well-known cancer gene and not known to be significantly mutated; however, there has been 

some evidence that LYN plays a role in ER+ breast cancer18, various leukaemias, and other solid 

tumors19. LYN L277P is found in the kinase domain located 19, 6.5, 3.5, and 7.6 angstroms to the 

closest active, binding, ATP, and phosphorylation sites (Figure 7). Interestingly, it is located in 

the N-terminal lobe in a hydrophobic patch between the 5-stranded anti parallel Beta sheets and 

the alpha-C Helix (Figure 6f). In the inactive state for SRC family proteins, this hydrophobic patch 

of residues is either partially or completely buried; however, upon activation, it is exposed20,21. 

The LYN L277P mutation changes the amino acid from hydrophobic to hydrophilic/polar favoring 

the active state. Additionally, a mutation to a proline favors a beta-turn secondary structure, where 

the residue is located in a coil. There is some evidence that introducing prolines in coil regions can 

lead to an increase in protein stability, which could further favor the active state22. Similarly, 
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predicted mutation EGFR I759N is also located in the same hydrophobic patch23 (Figure 6a) and 

is known to form hydrophobic interactions with the L858 residue (same HotSpot3D cluster). This 

mutation similarly has no change in isoelectric point, high increase in polarity in a solvent 

inaccessible region, and mutation to a residue with higher propensity to form beta-turns. All of 

these novel mutations highly predicted by PoSAIDON would be excellent candidates for 

subsequent experimental validation to confirm their driver status and role in oncogenesis.  

4.2.5 Biological Assessment of PoSAIDON using Experimental Validation 
To provide additional support for PoSAIDON, we used our model to make predictions on the 

mutations validated in chapters 2 and 3, which were 7 EGFR and 7 BRAF mutations. The 

motivation behind creating PoSAIDON was to increase the resolution in predicting different 

effects of mutations in the same HotSpot3D cluster that were in close proximity to one another on 

protein structure. Previously, HotSpot3D was built under the assumption that all mutations in a 

cluster have the same functional effects and potentially the same levels of activation. PoSAIDON 

takes this assumption further by providing mutation resolution and probabilities for level of 

activation. 

 For the EGFR cluster validated in chapter 3, we saw all mutations (L858R, L833F, R831H, 

T790M, I789M, D761N, G719A) had some level of ligand-independent activation in comparison 

to wild-type. All of these mutations were not used for training or testing and the model was used 

to make predictions on these. We saw that all of these mutations were predicted to be activating 

by PoSAIDON though at various levels. Out of these mutations, L858R, T790M, and G719A had 

the highest probabilities of being activating at .79,.79, and, .8 as predicted by the model, which 
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corroborated the results of activation levels both with and without the EGF ligand; All three of 

these mutations showed the highest levels of activation on the western blot.  

. Figure 6b from chapter 2 

Similarly, in the BRAF experiment, V600E and K601E were predicted to have the highest 

probability of activation (.86 and .88), which was in line with both of these mutations showing 

highest levels of downstream phosphorylated MEK. Interestingly, F635I had the lowest probability 

of activation with a score of .55. As expected, this mutation had comparable levels of 

phosphorylated MEK as wild-type not showing any significant amounts of activation. Unlike 

V600E and K601E, this mutation is located further away than the ATP binding pocket in the C-

lobe, which means mutations may not directly affect the activation of this protein. Additionally, 

the change in physiochemical properties are not as drastic having almost no change in polarity and 

charge in comparison to its environment and itself. It seems reasonable that this mutation does not 

have drastic effects on the activation of the protein in comparison to wild-type.  The loss of 

function mutation G596R was not able to be captured through PoSAIDON, which was predicted 

to be activating (.77). Currently, PoSAIDON is not trained on inactivating mutations in kinases, 

so it was not able to distinguish the differing effects between G596D and G596R. Additionally, 

more training mutations are needed that occur at the same residue but have both different amino 

acid changes and different effects on protein structure. Since closeness centrality was the most 
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important feature in determining function, residues at the same position are more likely to be 

predicted with similar functional effects unless other features related to the exact amino acid 

change have strong signatures. Mutations at the same residue have the same closeness centrality 

measure. The closeness centrality measure could be weighted in a way to reduce its large effect on 

prediction. W604L had a probability of .76 for activation and was shown to have in increase in 

phosphorylation of MEK in comparison to wild-type.   

 

Figure 4b,c from chapter 3 
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4.3 Discussion 

This study presents a novel structure-based supervised learning tool, which is trained on the most 

comprehensive set of experimentally validated cancer mutations to date. Our approach provides 

novel aspects over traditional driver mutation discovery methods by utilizing a broad set of 

structural features to help predict the role of mutations in tumor initiation and progression based 

primarily on structural and functional impact. Additionally, our algorithm utilizes an ensemble of 

highly optimized classical machine learning methods as well as deep neural network, which has 

allowed the exploration of complex relationships and interactions between the features, helped 

boost the prediction accuracy, and provided a comprehensive set of predictions that adequately 

cover the feature space. Our algorithm outperforms all of the traditional sequence-based methods 

and achieves a remarkable test accuracy of 95% and further boosts the accuracy of HotSpot3D by 

providing mutation level prioritization beyond just spatial clustering. We also showed how 

PoSAIDON improves the resolution of predicting activation by comparing experimental validation 

of 14 mutations in EGFR and BRAF found in HotSpot3D clusters to the predictions from 

PoSAIDON.   

We additionally use our model to explore the potential structural mechanisms driving 

tumorigenesis and identify the major structural feature signatures associated with well-known 

kinase driver mutations that could play a role. This is the first tool of its kind to incorporate 

structural and physiochemical properties of the surrounding residues in the protein structure and 

considering the structural context and not just isolated changes in the mutation itself. Due to the 

importance of various key functional sites such as phosphorylation and ATP sites that play a role 

in driving activation of kinases, the context of mutations in relationship to these sites is critical in 

determining function. Additionally, previous tools when considering physiochemical property 
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changes of mutations use binary classifications (ie. polar and nonpolar); however, we use 

continuous values to capture subtleties in property change.  

We utilized PoSAIDON to discover 276 high confident putative novel driver mutations in kinases 

by applying it to a TCGA pan-cancer mutation set. We revealed several mutations that had similar 

features signatures as known driver mutations and could have a similar mechanism of driving auto-

phosphorylation. We found potential novel driver mutations in kinases not significantly mutated 

in cancer (MAPK8, LYN) and pinpointed mutations in already known cancer genes that could be 

driving cancer. Additionally, PoSAIDON highly scored mutations not found in HotSpot3D 

clusters and that were rare (found in 1 tumor). Interestingly, though alignment and homology were 

not used directly as features, PoSAIDON was able to uncover structurally homologous mutations 

in less well known kinases to the known driver mutations in a large-scale, automated fashion. 

These mutations identified by PoSAIDON are strong candidates for follow-up experimental 

validation to further investigate their function and potential roles in cancer.   

PoSAIDON can only predict driver mutations in those kinases that act as oncogenes. However, a 

few kinases are implicated in oncogenesis via functioning as tumor suppressors such as STK11. 

In this case, driver mutations are inactivating. The utility of PoSAIDON can be expanded to 

include prediction of such driver mutations that act through inactivation of the protein. The number 

of experimentally validated driver mutations in tumor suppressors are relatively low (less than 

100), and with the expansion of this set, prediction of this class can be feasible. Additionally, the 

ability of PoSAIDON to predict functional mutations are limited by the amount of protein 

structures that have been solved. Therefore, a homology-based approach to map mutations in 

proteins with no protein structure to evolutionarily similar proteins based on sequence alignment 

may need to be implemented.   
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The structural implications of mutations in other protein families other than kinases are still yet to 

be explored. We can generalize this algorithm to other protein families/classes such as oncogenes, 

tumor suppressors, nuclear hormone receptors, and GPCRs and create an analysis framework to 

extract distinct structural feature signatures specific to driver mutations (activating and 

inactivating) in each class. Beyond the utility of PoSAIDON in novel driver mutation discovery, 

we can expand this function to encompass novel druggable mutation discovery. With the advent 

of new databases such as DEPO, CiVIC, and Cancer genome interpreter24, we have been provided 

with a rich source of actionable mutations in cancer with varying levels of evidence (FDA 

approved, Clinical trials, etc.). A similar approach can be employed to further study the structural 

features important in determining druggability.  

4.4 Methods 

4.4.1 Curation and Processing of Training Mutations  
We curated experimentally validated mutations identified as neutral or oncogenic from various 

databases and papers such as the Cancer Biomarkers database within the Cancer Genome 

Interpreter24, OncoKB25, KinDriver26, and FASMIC27. The neutral set of mutations was further 

expanded to include common polymorphisms with a maf>5% from dbSNP; these were restricted 

to somatic missense coding mutations. After collecting the training mutations, we then performed 

some processing to get necessary inputs for PoSAIDoN. Some sources only provide HGVS for 

mutations; however, we additionally needed transcript, genomic positions, chromosome, reference 

and alternative alleles. The mutations were run through TransVar28 to get genomic annotation and 

only the primary transcript (found in UniProt) were selected for annotation.  The total kinase 
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mutations were further filtered if the gene lacked PDB structures, if the mutation was not covered 

by a PDB structure or if the mutations was not a missense mutation.  

 

4.4.2 Gathering Biological/Structure-based Features 

Distance to Functional Sites 
To obtain proximity of mutations to known functional sites, we gathered residue positions of sites 

from UniProt29, PhosphositePlus30, and Catalytic Site Atlas31. PTM sites were retrieved from 

UniProt Knowledge Base (UniProtKB) version 2018.01, PhosphoSitePlus (snapshot on the date 

2018-02-14), and CPTAC2 phosphoproteome mass spectrometry data. A PTM site from 

UniProtKB was included if it was reported in at least one publication or by sequence similarity. A 

PTM site from PhosphoSitePlus was included if it was reported in at least one publication or 

validated internally by Cell Signaling Technology. A PTM site from CPTAC2 experiments was 

included if it was detected in at least one of the samples.  

In addition, we gathered residue positions for the following functional sites: active sites, post 

translational modification sites, disulfide bonds, nucleotide-phosphate binding regions, calcium 

binding regions, DNA-binding regions, lipid-binding regions, metal ion-binding regions, catalytic 

sites, binding sites from Uniprot and Catalytic Site Atlas.  Distances (in angstroms) between 

mutations and all functional sites gathered from the databases listed previously were calculated. 

For functional sites in UniProt, the residue in the protein sequence is given. However, we must 

map residue position to PDB location. We utilized mapping provided at 

http://www.bioinf.org.uk/pdbsws/. For each mutation, we utilized the PDB structure that 1) 

overlapped with the mutation of question 2) had the highest coverage, and 3) had the highest 

resolution if multiple structures had the same coverage. For PDB structures that had multiple 
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chains, we utilized only the first chain provided it overlapped with the mutation of question. 

Additionally, we have to ensure the mutations that are inputted are located on the primary 

transcript, so that we can directly map the residue location to PDB location since residue location 

should be the same as in UniProt. We calculated distances between functional sites and mutations 

using the PDBParser package in BioPython.  

For each type of functional site, we included the closest distance as well as the average distance to 

the mutation of interest as features. We also included a network-based metric (closeness centrality) 

that incorporates distance to all functional sites of a specific site to a mutation of interest. For 

instance, if there were 4 active sites present in a protein, the closeness centrality would be 

computed as follows: 

𝑐𝑐\]^1_`	a1^` =
1
2bF

c

1I;

 

where 𝑑1 would be the distance from the mutation of interest to a single active site 𝑖. Additionally, 

we included the closeness centrality of a mutation of interest to all other functional sites regardless 

of type.  

Physiochemical properties  
To evaluate the physiochemical property change between the wild-type amino acid and the mutant, 

we considered seven physiochemical properties:  1) transfer of free energy from octanol to water, 

2) normalized van der Waals volume, 3) isoelectric point, 4) polarity, 5) normalized frequency of 

turn, 6) normalized frequency of alpha-helix, and 7) free energy of solution in water, which are 

selected from the AAindex database4 of protein indices. These seven properties were chosen due 

to the low pairwise correlation between the properties and their ability to distinguish each amino 
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acid uniquely. All seven of these properties fall under the broad categories of physiochemical 

properties: hydrophobicity, size, polarity, charge, and tendency to form secondary structure. 

Adapted from the PASE algorithm32, we assessed how different the mutant amino acid is from the 

wild-type. We gave a score for each amino acid change by utilizing the Euclidean distance formula 

across all seven properties: 𝑠𝑐𝑜𝑟𝑒 = 𝑊𝑇1 − 𝑀𝑢𝑡1 <1I;
h

i
, where i represents one of the seven 

properties and 𝑊𝑇1 and 𝑀𝑢𝑡1 represent the score constant for the i-th property in the wild-type 

and mutant amino acids, respectively. We further expanded these physiochemical properties 

utilizing a study by Nakai et al33, where they used hierarchical cluster analysis to assign the 

properties in the AAindex database into groups. They identified 5 major clusters that represent the 

following properties:  1) alpha and turn propensities (the tendency of residues to form helices or 

reverse turns), 2) Beta propensity, 3) hydrophobicity, and 4) other physiochemical properties. We 

picked a few properties from each of these major groups that highlighted different aspects of 

properties,  

We included the wild-type, mutant, and difference in scores from wild-type to mutant for all of the 

selected AAIndex properties as independent features. We also found the average score for each 

physiochemical property of neighboring residues (within 5 angstroms radius) to the one of interest 

and included the difference between the mutant and this average score. 

Other relevant features 
We added solvent accessibility information, so we can gain knowledge of whether driver mutations 

tend to localize in solvent inaccessible or accessible regions compared to passengers. We ran the 

Stride algorithm34 as part of the pipeline to calculate relative solvent accessibility (RSA). Stride 

also assigns secondary structure states to individual amino acid residues (alpha helix, beta sheets, 

etc.).  
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We added information about Hydrogen Bond location for each mutation from mdtraj, which is a 

python module. This module computes hydrogen bond locations based on Baker and Hubbard’s 

definition, which provides cutoffs for donor-acceptor distance (<2.5 A) and angle (>120). We 

annotated domain for mutations of interest with Pfam35. We additionally annotated each mutation 

with a gene family from HGNC gene family annotations36. We also included PhastCons37 scores 

from multiple alignments of 99 vertebrate genomes with the human genome downloaded from 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/). Lastly, we added the 

closeness centrality scores computed by HotSpot3D1, which is a measure of network-based 

proximity of mutations to highly recurrent mutations.  

4.4.3 Software Implementation 
This algorithm is entirely written in python and to implement various machine learning algorithms 

and packages we utilized the sklearn package within python.  

4.4.4 Preprocessing of Data for Classical Machine Learning Algorithms   
We conducted quality control of inputs for our model. First, we normalized and standardized 

values across features from a range of 0 to 1 prior to training. Next, some features contain missing 

data for particular input mutations; for example, proteins lacking functional sites (active sites, post 

translational modification sites, etc.) have an undefined distance from any mutation in these 

proteins. We imputed these missing values by calculating the mean value for these features across 

inputs in the training set. Features having ³80% missing values in the training and validation sets 

were filtered. Additionally, categorical variables had to be treated differently. Secondary Structure, 

Domain, and gene family were the three categories that contained categorical values. We used one 
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hot encoding to convert each entry of the categorical values into new feature columns and assigned 

values of 0 or 1. With one hot encoding implemented, the total number of features totaled to 127.  

4.4.5 Feature Selection and Hyper-Parameter Optimization 
For classic machine learning algorithms, we used logistic regression, support vector machine, 

AdaBoost, and Random Forest. We optimized the subset of features and hyper-parameter values 

by performing automated random searches of various combinations. Prior to model training, we 

conducted feature selection to reduce noise and dimensionality even further.  For both random 

forest and logistic regression, we utilized recursive feature elimination, and for support vector 

machine, we utilized univariate selection.  For three of the algorithms, we varied the features set 

size from 20 to the full set in increments of 5, with the exception of AdaBoost since this algorithm 

performs well without feature selection. The full set of features included 127 features.  

For random forest, we varied the following hyper-parameters: number of trees, number of features 

to consider at every split, maximum number of levels in tree, minimum number of samples 

required to split a node, minimum number of samples required at each leaf node, and method of 

selecting samples for training each tree. For Logistic regression, we tried different combinations 

of penalization and C values (inverse of regularization strength). For SVM, we tried various 

kernels, gamma values, and penalty parameter C values. Additionally, for the feature selection step 

we also tried various scoring functions for univariate selection (ANOVA, mutual information, and 

chi-squared). We then randomly selected 75 different combination of features/hyper-parameters 

per algorithm and performed 10-fold cross validation for each combination on the training set to 

pick the parameters and features that yielded the largest average accuracy on the held-out 

validation set. The best combination of parameters was used for subsequent model training and 

then testing.   
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4.4.6 Training and Testing of Classical ML Algorithms  
The step of feature selection and hyper-parameter optimization described above was repeated with 

the training set comprising of 70%, 75%, 80%, 85%, and 90% of the data and the test set consisting 

of the remaining data for 10 different splits yielding a total of 50 combinations. The ROC-AUC 

curves, train/cross validation accuracies, and learning curves were examined to pick the split that 

had high validation accuracies for the train set and no overfitting in all individual models. We saw 

that a specific split with 80% training and 20% testing data yielded the most optimal results. This 

split consisted of 842 training mutations and 211 testing mutations. Each of these sets of mutations 

consisted of 67% and 71% activating mutations, respectively. Additionally, during the training 

process, we had to account for the imbalance of the train set by specifying parameters to assign 

less weight to the larger class (activating mutations), making it harder for a mutation to be 

predicted as activating. 

4.4.7 Deep Neural Networks  
In addition to the classical machine learning algorithms described above, we utilized deep neural 

networks. Deep neural networks (DNNs) are classified as representation learning models because 

of their ability to go beyond the classical machine learning algorithms to learn a higher dimensional 

representation of the training data from a set of simple input features. This is possible due to the 

presence of multiple hidden layers in the NN which will learn abstract features from the training 

data. We used a deep neural network to classify the mutations into two classes- activating and 

neutral. The DNN was built on top of PyTorch, a python based tensor and dynamic neural network 

library. Details about preprocessing data, architecture of the DNN, and the optimization methods 

are given below. 

4.4.8 Data Preprocessing for Neural Networks 
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Similar to the classical ML algorithms, we needed to treat categorical features differently.  “Gene 

family” was one of these features. It contained a list of gene families. Instead of feeding these lists 

to the DNN, we created a column for each unique gene family found in the data set which contained 

information whether each mutation belonged to the corresponding gene family or not (True or 

False values).  

Next, we divided the data set into two data sets, for training and testing, following the exact criteria 

described previously. After that, the training data set was processed such that, each null value is 

replaced by the median if the feature is continuous, or by zero-class if the feature is categorical. 

Moreover, for each such feature, a different column was added to indicate whether the value was 

null or not. Each categorical feature was converted to numerals, and each continuous variable was 

scaled so that the mean was at zero and the standard deviation was one. This information was 

stored to process the test data set later. The training data set was randomly split into two parts into 

training and validation data sets (80% training, 20% validation). The test set was also processed 

following the criteria described above. 

4.4.9 Neural Network Architecture 
Our DNN contains an input layer which treats categorical and continuous data differently. 

Categorical data goes through an embedding layer with drop out and continuous data passes 

through a batch norm layer. More details about this will be discussed in the section below. There 

are three linear layers with batch normalization and dropout at each layer. The dimensions of these 

three linear layers are 238 to 100, 100 to 50 and 50 to 2. These layers are followed by an output 

log-softmax layer which gives probabilities for two classes. 

4.4.10 Optimization and Fine Tuning of Neural Network Model 
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We took several measures to achieve high classification accuracy from DNN. One important 

method is using embedding matrices for categorical features. While a common practice used in 

other classical machine learning approaches is to perform one-hot-encoding, DNNs often perform 

well when categorical data is represented as matrices. The intuition behind the utilization of 

embedding matrices is that the DNN could learn the patterns that exist between the classes of a 

given categorical data feature by updating the elements in the matrices during the learning process. 

We used Adam optimization in our DNN. This increases our model performance in saddle point 

areas and allows it to converge faster. In addition to that, we used a learning rate scheduler with 

restarts where we anneal the learning rate following a cosine curve until the model converges, 

then restart the learning rate. At each of the converging points, we save the model and take an 

ensemble average at the end (snapshot ensemble method). We also did a learning rate survey 

before we train the model so that we start with a learning rate which is optimal for our data. 

4.4.11 Ensemble Model Building  
Test prediction scores were outputted from each of the individual optimized classifiers, and an 

ensemble final prediction score was obtained by averaging the scores from each of the classifiers. 

We eliminated logistic regression and support vector machine from our ensemble method because 

these two performed the worst in terms of validation accuracy; only Random Forest, AdaBoost, 

and neural network were included in the ensemble model. For Random Forest, 52 features were 

the optimal number of features with the highest validation accuracy and capturing sufficient 

information. For AdaBoost, all features were implemented since this algorithm does well without 

feature selection. However, only 24 of the features were informative.  The final prediction scores 

from the ensemble method were compared to the true labels to develop various performance 

metrics (test accuracy, true positive rate, false positive rate, AUROC curves). Even though the 
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training set was imbalanced with the majority class being activating, we chose AUROC curves as 

the best metric to assess performance over precision-recall. Precision-recall curves would mostly 

reflect the ability of the classifier to predict the activating (positive) class, which would be easy to 

detect anyway because of the large fraction of them. The false positive rate in the AUROC curves 

is a good performance metric instead of precision in determining how well the neutral class is 

being predicted.   

4.4.12 TCGA Mutation Set  
After training our model, we used the ensemble model to make predictions on TCGA exome 

sequencing data, which was made publically available in the form of a MAF file by the MC3 

Working Group2. This consists of ~10,000 tumor samples encompassing 33 cancer types. This 

MAF file is annotated with flags that indicate potential discrepancies and was filtered if any 

mutation was assigned a flag or were only called by 1 variant caller. OV and LAML samples, 

however, were treated differently and mutations that were flagged as ‘wga’ were not filtered due 

to the majority of the mutations of these two cancer types being derived from whole genome 

amplified (WGA) DNA data. A more detailed description of the filtering strategy used to produce 

the mutation set in this study is described in Bailey et al14.   

4.4.13 Running pre-existing tools  
For the sequence-based tools, we ran CanDrA plus version with default parameters and used the 

“general” cancer type database. We obtained CHASM 3.1 results from 

http://www.cravat.us/CRAVAT/ and used “other” as the cancer type for background. We used 

TransFIC v1.0 from the web tool hosted at http://bbglab.irbbarcelona.org/transfic/home. We used 

the web tool hosted at http://fathmm.biocompute.org.uk for FATHMM.  
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4.5 Figures  
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Figure 1. Curated mutations from databases. Mutations were curated from the Cancer Biomarkers
Database within Cancer Genome Interpreter, OncoKB, FASMIC, KinDriver, and dbSNP. The category of
mutations available in each database are indicated by red (Activating), blue (Neutral), and green (Both).
The bar graph on the right indicates total mutation count (y-axis) for each gene (x-axis) that are included
in each data base by mutation class (red, blue). 
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Feature Description
1 HotSpotCC Closeness Centrality Score measure from HotSpot3D
2 BindingCC Closeness centrality of all binding sites to mutation
3 PropBurInsEnv Change in propensity to be buried inside in comparison to surrounding residues
4 ClosDisCS Distance to closest catalytic site 
5 NormFreqTurEnv Change in propensity to form turns compared to surrounding residues
6 PTMAvg Average Distance to all PTM sites
7 SolAcc Solvent Accessibility 
8 ClosDisBS Distance to closest binding site (Angstroms)
9 ClosDisPTM Distance to closest PTM Site (Angstroms)
10 CcAll Closeness centrality of all functional sites to mutation
11 AvgDistAS Average Distance to all active sites
12 ClosDisNPS Distance to closest nucleotide phosphate binding Site from UniProt 
13 AvgDistBS Average Distance to all binding sites
14 ClosDisAct Distance to closest Active Site from UniProt 
15 FamTK Protein Tyrosine Kinase Family
16 NormFreqAlp Change in propensity to form alpha-helices 
17 PreBStr Change in preference to form Beta strand
18 FreEnSln Change in free energy of solution in water 
19 ClosCentAS Closeness centrality of all active sites to mutation
20 FreEnSlnEnv Change in free energy of solution in water 
21 AvgDistCS Average Distance to all catalytic sites
22 FamJak Families encompassing: FERM domain containing, Jak family tyrosine kinases, SH2 domain containing
23 FamRTK Families encompassing: CD molecules,Immunoglobulin like domain containing,Receptor Tyrosine Kinases
24 IsoElec Change in isoelectric point (higher values indicate more positive charge)
25 FamRaf Families encompassing: Mitogen-activated protein kinase kinase kinases, RAF family
26 VDWVolEnv Difference of mutant amino acid’s vanderwaal volume to average volume of surrounding residues 
27 FamCD Families encompassing: CD molecules, Receptor Tyrosine Kinases
28 PhastCons PhastCons score based on multiple alignment of 99 vertebrate genomes to human 
29 UnkFam Unknown Family
30 CloseCentPTM Closeness centrality of all PTM sites 
31 AACha Difference in overall amino acid based on physiochemical properties as defined by Li, Kierczak et al 
32 AvgDistNP Average Distance to all nucleotide phosphate binding sites 
33 CloseCentNP Closeness centrality of all nucleotide phosphate binding sites 
34 ResVol Change in residue volume 
35 Pol Change in polarity 
36 PreBStrEnv Change in preference to form Beta strand compared to environment
37 NorFreBShe Change in normalized fréquency of amino acid in beta-sheet
38 HelCoilEnv Change in helix-coil constant compared to surrounding residues
40 NorFreExStrEnv Change in normalized frequency of extended structure compared to environment
41 AAComp Change in amino acid composition/refractivity
42 FreEnTra Change in free energy transfer from octane to water 
43 NormFreqAlpEnv Change in propensity to form alpha-helices compared to environment
44 NorFreBTurEnv Change in propensity to form beta-turns compared to environment 
45 NormFreqTur Change in propensity to form turns 
46 IsoElecEnv Change in isoelectric point compared to environment
47 NorFreExStr Change in normalized frequency of extended structure
48 ResVolEnv Change in residue volume compared to environment
49 FreEnTraEnv Change in free energy transfer from octane to water compared to environment 
50 PropBurIns Change in propensity to be buried inside
51 AACompEnv Change in amino acid composition/refractivity (related to bulkiness) in comparison to surrounding residues 
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Figure 4. Important structural features. The top structural features outputted from Random Forest and 
AdaBoost are shown. The associated feature importance is shown on the bar graph on the right from 
AdaBoost (red) and Random Forest (blue). 
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Figure 5. Structural feature signatures of driver and neutral mutations. Hiearchical clustering of
training/test set mutations with scores greater than .79 and less than .24 are shown in panel a. 
Structural features are shown on the y-axis and mutations are shown on the x-axis. 3 groups of mutations
with similar feature signatures are highlighted in green, red, and yellow boxes. The value for each 
mutation/feature pair is normalized from 0 to 1 to assist in visualization of patterns. Each mutation is also
annotated with their data type (test/train), mutation effect (Activating/Neutral), and source they come from. 
Panel b shows highly predicted mutations in the MC3 TCGA set (>.77 and <.3) in similar clusters as 
highlighted mutations in the 3 groups of panel a. Neutral mutations are highlighted with a blue box.  
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Figure 6. Highly predicted driver mutations and their structural implications. Highly predicted driver
mutations  are shown on EGFR structure (G719S, L858R, L861P, L747S) and ALK structure (I1171S) in panels 
a and b, respectively. EGFR L747S in panel a is a highly predicted driver mutation in the MC3 TCGA set.
Group 1 ,2, and 3 mutations are highlighted in green, red, and yellow, respectively. Additional highly predicted
driver mutations from the MC3 TCGA set are shown in panels c,d,e, and f. Panels b and f also indicate 
phosphorylation sites at Y1096 and Y316.    
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4.6 Tables  

 
 

 

 

 

 

Table 1. Features in Predictive Model (* = representative of larger class of features)

Category Feature Description

Functional Sites 1) ClosDisFS* Closest Distance to Functional Site in a specific category (Active Site, Binding Site, PTM site, etc.)

2) AvgDistFS* Average Distance to all functional sites in a specific category

3) ClosCentFS* Closeness centrality of a specific category of functional sites to mutation

4) ClosCentAll Closeness centrality of all functional sites to mutation

Physiochemical 
Properties

5) IsoElecCha Change in Isoelectric Point between wild type and mutant amino acid

6) VolCha* Change in Volume between wild type and mutant amino acid

7) AlphaCha* Change in tendency to form alpha helices/turns between wild type and mutant 

8) BetaCha* Change in tendency to form Beta sheets between wild type and mutant

9) HydroCha* Change in Hydrophobicity between wildtype and mutant

10) AACompCha Change in amino acid composition/refractivity 

11) AACha Difference in overall amino acid as defined by Li, Kierczak et al 

12) NeighDiff* Difference between mutant and average surrounding residues in physiochemical properties 
defined above 

Other 13) SolAcc Relative solvent accessibility of residue calculated by STRIDE

14) SecStru Secondary Structure Element at residue site (alpha helix, beta sheets, turn, etc.)

15) HBond Presence of Hydrogen Bonds as defined by Baker and Hubbard 

16) PhasCon PhastCons score based on multiple alignment of 99 vertebrate genomes to human 

17) CC Closeness centrality measure from HotSpot3D

18) Dom Domain information as defined by PFam

19) GenFam Gene Family notation as defined by HGNC Family annotation 

�1
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 Chapter 5: Conclusion and Future Directions 
 

5.1 Conclusion 

This dissertation presents significant advancements in the creation of cutting-edge bioinformatics 

tools to identify potential driver mutations. This is the first-time cancer mutations were analyzed 

in the context of tertiary/quaternary protein structures and not just the primary sequence. This 

enabled a more in-depth and realistic view of the structural and functional effects of mutations, 

since mutations impact protein function directly through its structure. The newly developed 

structure-based algorithms (HotSpot3D and PoSAIDON) were applied to the most comprehensive 

set of TCGA mutations at the time of the studies to help uncover novel driver mutations. 

Specifically, HotSpot3D helped uncover significantly enriched mutation clusters within a single 

protein structure and along protein-protein interfaces. It identified rare mutations co-clustering 

with hotspot driver mutations and mutations clustering around drug binding pockets, which could 

affect the binding of various drugs.   PoSAIDON helped uncover structural signatures associated 

with activating driver mutations in oncogenic Kinases by using a curated training set of known 

driver and neutral mutations. We were able to identify novel driver mutations that mimicked the 

structural signatures of known driver mutations both in well-known cancer genes and genes with 

low mutation rates in cancer. The biological significance of both tools was supported with 

expression data, in vitro experiments, and in-silico approaches. The predictions produced by both 

tools would be strong candidates for further experimental testing to verify driver function.  

In addition to studying the biological implications and reasons for what causes a mutation to 

initiate tumorigenesis, we also studied what constitutes a “druggable” tumor. Druggability and 

precision medicine is more complex than simply looking at the mutations present in a tumor at the 



160 
 

genomic level. Integration of expression data at the mRNA and protein levels can provide a more 

complete picture of what constitutes druggability and the most suitable treatment options.   For 

instance, when looking at mutations alone, a smaller fraction of tumors would be treatable with a 

BRAF and AKT inhibitor if the tumor contained just druggable BRAF and AKT mutations. 

However, there could be many more tumors with upregulated expression in one or both of those 

proteins without mutations that could also be treated with BRAF and AKT co-inhibition.  We 

provided a framework for analyzing tumors and how to integrate various datatypes to best 

prescribe therapy.  

5.2 Future Directions 

5.2.1 Incorporate evolutionary conservation and homology-based clustering of 

mutations. 
 A pitfall of using structure-based approaches to identify functional mutations/regions in proteins is that not 

all disease-related proteins have a solved or complete crystal structure. For instance, some well-known 

cancer genes such as BRCA1 only have partial structures available in PDB. HotSpot3D analyzes only 

proteins with known structures. To address the temporary lack of protein structures, a homology-based 

method to map mutations from a protein family onto a solved candidate protein structure could complement 

the HotSpot3D.  

Additionally, there are many conserved protein families that are highly mutated in cancer 

as a whole but when looking at individual proteins in the family, there may not be a large enough 

sample size to identify recurrent functional mutations or hotspot regions. However, this may not 

necessarily mean the protein or its family is not implicated in cancer. For these instances, analyzing 

somatic mutations across protein families as a single entity will help increase the statistical power 

required for discovering functional mutations with significantly higher mutation densities than the 
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background. This will speed up identifying functional mutations in proteins that harbor few 

recurrent mutations, but have a high number of mutations across the protein family at the same 

structural sites. When studying the mutational landscape across a protein family, we can also 

consider the conservation of various structural sites in the family. We hypothesize mutations in 

highly structurally conserved sites/regions will likely yield proteins with altered functions and 

these sites will coincide with a high somatic mutation density. The structural sites in protein 

families that are highly conserved and have high somatic mutation density could give us insight 

into functional drivers of cancer.  

We can create a complementary computational tool that will integrate cancer mutation data, 

protein structures, sequence conservation, and structure-guided alignments. The purpose of this 

tool will be two-fold: 1) to map and cluster mutations from proteins lacking protein structure onto 

a reference structure and 2) to aggregate and cluster mutations at common structural sites across a 

whole protein family and assess mutation density and conservation of the sites.   

The first step of this tool involves identifying groups of proteins that fall under the same 

family based on similarity in protein structure and sequence. Various tools/methods can be utilized 

to identify related proteins.  Various databases contain information of protein family annotation 

such as Pfam1, HGNC2, InterPro3, etc. However, each database differs in how many sub-families 

may be assigned and how each protein/domain may be annotated. We could also construct protein 

family annotations from scratch using BLAST4, HMMER5, or BLAT6, which can return closely 

related protein homologs given a query sequence. Some programs will also cluster proteins 

together based on homology and similarity. Subsequent to identifying groups of proteins in the 

same family, a reference protein will be selected for each family that has a well-characterized PDB 

structure and well-defined domain positions; it is important to pick structures that have high 
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coverage and high percentage of residues represented. A multiple sequence alignment will be made 

comprising all related proteins in the same family.  

Since this tool will be made to meet two purposes, we will treat mapping of mutations in 

two distinct ways. For the first purpose, only proteins without structures will be mapped and 

clustered based on the chosen reference protein. Proteins with known structures will utilize their 

own structure to cluster mutations. For the second purpose, all proteins in the family with 

mutations will be mapped and clustered on the reference protein regardless of whether they have 

a structure or not. Mapping of mutations consists of converting mutation positions in a protein to 

reference protein coordinates based on the alignment for the family. The mapped mutations will 

then be clustered using HotSpot3D. The second method will result in large super clusters 

containing mutations from various proteins in the family that would fall in similar structural 

regions.  

Conservation of residue sites in the family will be calculated using information entropy. 

The Shannon information entropy, which is negatively correlated with conservation, will be 

calculated for each position in each domain of the reference protein to see which positions are most 

conserved. Here, the kernel probability 𝐹1, for the i-th amino acid, is the ratio of the number of 

appearances to the total number of sequences in the protein family alignment. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =

− 𝐹1𝑙𝑛𝐹1<k
1I; .  

 The aggregated clustering in method 2 will reveal structural regions in protein families that 

have a concentration of mutations. The closeness centrality scores of each mutation using the new 

aggregated clustering approach along with entropy scores will be extracted from the output of this 

program and fed in as two additional features in PoSAIDON.  
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Potential pitfalls: Classifying proteins into distinct protein families is a hard biological problem 

itself; this will likely be the biggest hurdle of the proposed work. There may not be high levels of 

conservation across the family along the full length of the proteins, making categorization difficult. 

Creating large protein families results in less similarity amongst the proteins, and small protein 

families results in less statistical power. To address these problems, we may need to group and 

align by separate functional domains instead of considering the whole protein sequence; this will 

ensure relatively high conservation.   

5.2.2. Incorporate expression and phosphorylation data. 
Most computational tools for predicting function rely on structure and sequence. Integration of 

other data types such as expression can help improve predictions of function. We can utilize RNA-

Seq, reverse protein phase array (RPPA) data and mass spectrometry data from CPTAC, which 

measure mRNA and protein expression, respectively to assess how candidate mutations affect 

downstream protein expression as well as phosphorylation and expression of the protein itself. 

Driver mutations may cause aberrant expression in the specific protein itself via mechanisms such 

as auto-phosphorylation or affect the expression of downstream genes either over activating or 

inhibiting them. Samples lacking the candidate driver mutation can be compared to samples 

containing it. The expression of the protein itself, its phosphosites, and downstream proteins will 

be compared between the two groups. If there is a significant difference in change of expression 

in the samples with candidate driver mutations in comparison to the control group, then the 

candidate variants can be prioritized as putative functional variants. This information can be added 

as a feature. Not every sample will have associated expression data and not all driver mutations 

may clearly show this trend. Therefore, presence of a significant change in expression will help 

reinforce driver mutations but absence of a significant change will not down-prioritize them.  
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5.2.3. Apply suite of tools to understudied druggable protein families in cancer such as G-

Protein Coupled Receptors (GPCRs).  
We specifically studied protein kinases in chapter 4, which is a major drug target. However, 

PoSAIDON can also be applied to other classes of protein families such as G-Protein Coupled 

Receptors (GPCRs) or nuclear hormone receptors. Additionally, PoSAIDON can be trained on 

oncogenes and tumor suppressors in general. GPCRs are the target of about 25% of the drugs on 

market7,8. While protein kinases have been heavily implicated in cancer, the role of GPCRs in 

cancer has not been extensively studied. To gain more insight to the possible functional role of 

GPCRs in cancer, we would like to apply all the tools developed to this protein family.  

G-protein coupled receptors (GPCRs) account for about 4% of all encoded genes in the 

human genome with over 800 different types9,10. GPCRs can be categorized into five major classes 

and additional subfamilies based on sequence identities. Approximately 700 GPCRs fall under the 

Rhodopsin family (class A), comprising a majority of the GPCR family. The other major families 

include class B receptors comprised of the secretin and adhesion families, glutamate receptors 

(class C), and frizzled/taste receptors11.  GPCRs are known to be the largest and most diverse group 

of membrane receptors in eukaryotes that play a role in signal transduction. They sense external 

molecules outside the cell and activate signal transduction pathways inside the cell that regulate a 

wide variety of cellular responses and physiological processes such as cardiac function, immune 

responses, neurotransmission, and sensory functions10. Not all GPCRs are drug targets but it is 

estimated that about 290 to 401 of the 800 could be susceptible to drug intervention. Only 46 serve 

as current drug targets, leaving a significant gap in current knowledge about the relation of GPCRs 

to diseases.   



165 
 

The earliest link between GPCRs and tumorigenesis was established when the mas gene 

was studied in 1986. This gene is known to encode a protein that contains seven hydrophobic 

transmembrane domains, which is a primitive form of GPCRs. The expression of the mas gene 

was shown to induce foci of NIH 3T3 cells and contribute to tumorigenesis. The mas gene was 

labeled as an oncogene but interestingly had a much different structure than traditional oncogenes. 

Furthermore, this oncogene did not harbor any activating mutations12. The presence of mutations 

in GPCRs was initially restricted to mostly endocrine tumors, which is why GPCRs have received 

little attention as possible drug targets for cancer treatment. Recently, however, deep sequencing 

has shown that there is a high frequency of mutations in GPCRs in a variety of human cancers; 

around 20% of tumors are known to contain a GPCR mutation10. However, the oncogenic 

properties of these mutations are still debatable. Their somatic mutation rate is significantly higher 

than the background mutation rate of the cancer types in which the mutations were found providing 

a good foundation and rationale for further studying GPCRs role in cancer. Also, due to the fact 

that GPCRs are a major drug target for current drugs on the market, GPCRs could play a prominent 

role in cancer treatment.  

Preliminary Analysis and Methods  
Preliminary analysis regarding identification of functional structural sites in GPCRs that 

may contribute to cancer has already been conducted. Also, this was conducted as a proof of 

concept to see if we can identify structural sites in protein families that have high somatic mutation 

density coupled with low entropy (high conservation). Specifically, for the analysis, the 𝐴<l 

adenosine structure was used as a reference structure for all GPCRs.  

In this analysis, TCGA exome sequencing data of tumor and matched normal pairs from 

12 different cancer types was used. In this data set, there are 3021 GPCR mutations across all 
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cancer patients. We wanted to find residue positions in terms of the 𝐴<l adenosine receptor that 

exhibited high mutation density and low entropy. The methods outlined previously were used. We 

identified 3 residues located in helix 3, Helix 6, and helix 7 exhibiting these two properties. In 

helix 3, there is a high mutation density at R102 mapping to the conserved DRY motif13. In class 

A receptors, the arginine residue forms a double salt bridge with an adjacent glutamic acid and a 

glutamic acid located on helix 6 creating an “ionic lock”, keeping GPCRs in an inactive state. 

Mutations at this arginine residue disrupt the inactive conformation leading to a ligand-

independent active form and constitutive activation10. In helix 6, the hotspot residue occurs at 

L249, which is in close proximity to the conserved CWxP motif. In helix 7, the hotspot residue 

occurs at P285, which is part of the conserved NPxxY motif14. Both of these motifs in helix 6 and 

7 are known to control the equilibrium between the inactive and active states of GPCRs. 

Using a simplified approach, we were able to uncover structural sites that exhibited high 

somatic mutation density as well as high conservation indicating possible functionality in driving 

cancer. This same approach will be implemented on a much larger scale across all protein families 

(including GPCRs) as well as a larger mutation dataset with more cancer types. The mutational 

landscape in terms of 3D protein structure in the GPCR family will be more thoroughly examined 

using the structural methods and algorithms developed in this dissertation. Many GPCRs currently 

have no known structures, especially class B or C receptors. Therefore, all mutations in GPCRs 

will be translated in terms of positions of the 𝐴<l adenosine receptor and subsequently be clustered 

based on proximity as well as recurrence. The 𝐴<l residue positions of significant clusters can then 

be converted back to the original mutations of the GPCRs in the alignment (if they have known 

structures) to create large super clusters. These original mutations in high scoring clusters can 

further be studied using PoSAIDON to prioritize putative driver mutations.   
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5.2.4 Develop predictive model of druggability  
Much of this dissertation revolves around structure-based tools for predicting driver mutations. 

However, they are not used to directly predict druggability. The end goal of identifying driver 

mutations is for the purpose of personalized therapy and identifying which driver mutations are 

actually clinically actionable. Additionally, not all proteins have the necessary binding domains 

for them to be realistic drug targets. We could implement a similar approach for predicting 

druggability of proteins as a whole based on the structural properties of the binding pocket as well 

as individual mutations. These structural features can be integrated with multi-dimensional 

datasets such as expression to reveal proteins that are dynamic players in multiple pathways and 

therefore, would be good drug targets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168 
 

5.3 References  

1 Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res 30, 276-280 
(2002). 

2 Bruford, E. A. et al. The HGNC Database in 2008: a resource for the human genome. 
Nucleic Acids Res 36, D445-448, doi:10.1093/nar/gkm881 (2008). 

3 Mitchell, A. et al. The InterPro protein families database: the classification resource after 
15 years. Nucleic Acids Res 43, D213-221, doi:10.1093/nar/gku1243 (2015). 

4 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment 
search tool. J Mol Biol 215, 403-410, doi:10.1016/S0022-2836(05)80360-2 (1990). 

5 Finn, R. D. et al. HMMER web server: 2015 update. Nucleic Acids Res 43, W30-38, 
doi:10.1093/nar/gkv397 (2015). 

6 Kent, W. J. BLAT--the BLAST-like alignment tool. Genome Res 12, 656-664, 
doi:10.1101/gr.229202 (2002). 

7 Hopkins, A. L. & Groom, C. R. The druggable genome. Nat Rev Drug Discov 1, 727-730, 
doi:10.1038/nrd892 (2002). 

8 Russ, A. P. & Lampel, S. The druggable genome: an update. Drug Discov Today 10, 1607-
1610, doi:10.1016/S1359-6446(05)03666-4 (2005). 

9 Dorsam, R. T. & Gutkind, J. S. G-protein-coupled receptors and cancer. Nat Rev Cancer 
7, 79-94, doi:10.1038/nrc2069 (2007). 

10 O'Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein-coupled 
receptors in cancer. Nat Rev Cancer 13, 412-424, doi:10.1038/nrc3521 (2013). 

11 Stevens, R. C. et al. The GPCR Network: a large-scale collaboration to determine human 
GPCR structure and function. Nat Rev Drug Discov 12, 25-34, doi:10.1038/nrd3859 
(2013). 

12 Young, D., Waitches, G., Birchmeier, C., Fasano, O. & Wigler, M. Isolation and 
characterization of a new cellular oncogene encoding a protein with multiple potential 
transmembrane domains. Cell 45, 711-719 (1986). 

13 Rovati, G. E., Capra, V. & Neubig, R. R. The highly conserved DRY motif of class A G 
protein-coupled receptors: beyond the ground state. Mol Pharmacol 71, 959-964, 
doi:10.1124/mol.106.029470 (2007). 

14 Trzaskowski, B. et al. Action of molecular switches in GPCRs--theoretical and 
experimental studies. Curr Med Chem 19, 1090-1109 (2012). 

 

  
 


	Washington University in St. Louis
	Washington University Open Scholarship
	Winter 12-15-2018

	Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer
	Sohini Sengupta
	Recommended Citation


	Microsoft Word - Sengupta_Thesis.docx

