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ABSTRACT OF THE DISSERTATION 

Sequence analysis methods for the design of cancer vaccines that target tumor-specific 

mutant antigens (neoantigens) 

by 

Jasreet Hundal 

Doctor of Philosophy in Biology and Biomedical Sciences 

Human & Statistical Genetics 

Washington University in St. Louis, 2018 

Professor Elaine R Mardis, Chair 

Professor Malachi Griffith, Co-Chair 
 
 

The human adaptive immune system is programmed to distinguish between self and non-self 

proteins and if trained to recognize markers unique to a cancer, it may be possible to 

stimulate the selective destruction of cancer cells. Therapeutic cancer vaccines aim to boost 

the immune system by selectively increasing the population of T cells specifically targeted to 

the tumor-unique antigens, thereby initiating cancer cell death.. In the past, this approach  has 

primarily focused on targeted  selection of ‘shared’ tumor antigens, found across many 

patients. The advent of massively parallel  sequencing and specialized analytical approaches 

has enabled more efficient characterization of tumor-specific mutant antigens, or neoantigens. 

Specifically, methods to predict which tumor-specific mutant peptides (neoantigens) can 

elicit anti-tumor T cell recognition  improve predictions of immune checkpoint therapy 

response and identify one or more neoantigens as targets for personalized vaccines. Selecting 

the best/most immunogenic neoantigens from a large number of mutations is an important 

challenge, in particular in cancers with a high mutational load, such as melanomas and 
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smoker-associated lung cancers. To address such a challenging task, Chapter 1 of this thesis 

describes a genome-guided in silico approach to identifying tumor neoantigens that integrates 

tumor mutation and expression data (DNA- and RNA-Seq). The cancer vaccine design 

process, from read alignment to variant calling and neoantigen prediction, typically assumes 

that the genotype of the Human Reference Genome sequence surrounding each somatic 

variant is representative of the patient’s genome sequence, and does not account for the effect 

of nearby variants (somatic or germline) in the neoantigenic peptide sequence. Because the 

accuracy of neoantigen identification has important implications for many clinical trials and 

studies of basic cancer immunology, Chapter 2 describes and supports the need for patient-

specific inclusion of proximal variants to address this previously oversimplified assumption 

in the identification of neoantigens. The method of neoantigen identification described in 

Chapter 1 was subsequently extended (Chapter 3) and improved by the addition of a modular 

workflow that aids in each component of the neoantigen prediction process from neoantigen 

identification, prioritization, data visualization, and DNA vaccine design.  These chapters 

describe massively parallel sequence analysis methods that will help in the identification and 

subsequent refinement of patient-specific antigens for use in personalized immunotherapy.
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Chapter 1: Introduction & Background 
 

1.1 Introduction 

After the landmark discovery of the double helix structure of deoxyribonucleic acid (DNA) in 

1953 by Watson and Crick, coupled with several advances in molecular biology techniques, 

specifically the dideoxynucleotide sequencing techniques of  Sanger, the completion of the 

human reference sequence in 2004, and the development of basic computational DNA 

analysis and annotation software, heralded a new era for disease research1. ‘Finishing’ the 

first human reference genome sequence provided a new roadmap to understanding where 

genes in the genome were located and organized on chromosomes. A few years after the 

Human Genome Reference sequence was announced, a new paradigm shift occurred in the 

process of DNA sequencing data production. The new DNA sequencing instruments and 

methods, known collectively as massively parallel sequencing (MPS), could process millions 

of sequence reads in parallel in a single instrument run compared to previous Sanger 

methods, and thereby significantly reduced the time, resources and costs to generate genome 

sequencing data. These techniques were also called ‘next generation’ sequencing 

technologies as they truly spurred a new direction to producing genomic data.2 

 

1.2 Massively Parallel Sequencing (MPS) technologies and 

analysis  

Several different technologies and companies emerged around the same timeframe, with 

different approaches to next generation sequencing3. Some of the early commercial 

contributors were Roche/454, Applied Biosystems SOLiD and Illumina, that differed based 
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on the sequencing chemistry used- pyrosequencing for Roche/454, ligation-based sequencing 

for SOLiD and polymerase-based sequencing-by-synthesis for Illumina. Amongst these, 

Illumina emerged as a market leader in terms of maintaining a reasonable cost of sequencing 

per Gb of data as well as the accuracy and applicability of the data generated. Currently, 

Illumina’s platform is the most widely used in the field. 

 

1.2.1 Steps to generate MPS data  

There are three main steps that are involved in generating MPS data. The first and foremost 

step is library production. This involves shearing and fragmenting genomic DNA, 

enzymatically polishing the fragment ends, and ligating known sequence adapters onto the 

fragment ends. These adapters may also carry bar coded DNA identifiers or indexes to permit 

downstream pooling of samples. The next step involves attaching these adapter-ligated 

library sequences onto a solid surface with complementary adapter sequences, and 

enzymatically amplifying the fragments. Fragment amplification is needed to provide 

sufficient signal during the sequencing reaction for on-instrument detection. Similarly, 

libraries for generating RNA-Seq data also can be prepared for MPS, first by conversion of 

the RNA to DNA using reverse transcriptase, followed by adapter ligation and surface 

amplification. The data resulting from RNA-Seq can be analyzed to determine digital 

expression values for genes in a given tissue or tumor. The last step is sequence data 

generation by reading the signals produced from the stepwise sequencing process that occurs 

at each amplified fragment population. This process involves detecting the identity of each 

nucleotide base that is added by DNA polymerase onto the fragments in each amplified 

library fragment cluster, obtained from differential label detection in certain instruments or 

by the sequential addition of each nucleotide reagent being coupled with a subsequent 

detection step that follows each nucleotide addition. Because this sequencing process takes 
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place on the solid support, for hundreds of millions to billions of fragment clusters being 

sequenced in parallel, the technology is called ‘massively parallel’ sequencing. The read 

length for most commonly used MPS technologies is relatively shorter (100-300bp) than 

traditional Sanger sequencing read lengths (800bp). This fact, coupled with the high 

throughput approach to sequencing enabled by MPS, requires analysis of the resulting reads 

by in silico alignment  to a fixed reference genome, followed by variant detection. In turn, the 

requisite sampling level or “coverage” needed to sequence genomes and obtain high 

confidence variant calling is nearly triple that of Sanger sequencing coverage levels (30-fold 

or higher coverage by MPS versus 8-10 fold coverage by Sanger). Additionally, the more 

compute-intensive nature of analyzing MPS data sets for genomes as large as the human 

(3Bbp), means that these large data sets require carefully constructed and validated analytical 

pipelines.   

 

MPS can be used to either sequence the entire genome (whole genome sequencing or WGS), 

or there are methods to select out genomic content from a whole genome library, such as the 

exons of known protein-coding genes (“exome”) or  a smaller number of selected genes or 

regions (“panel”). This is typically accomplished by an approach called “hybridization 

capture” sequencing or “exome” sequencing (in case of all protein coding genes), whereby 

synthetic probes designed to hybridize the exon sequences of protein coding genes are 

designed with covalently attached biotin molecules. By mixing such probes with the library 

fragments from a whole genome library under appropriate conditions, hybrids form between 

the synthetic probes and their cognate sequences in the library. These hybrids are 

subsequently captured by mixture with streptavidin-labeled magnetic beads, due to the 

binding of biotin by streptavidin, and subsequently the hybrids are isolated by applying a 

magnetic pull-down to isolate them from the remaining mixture. After isolation, the captured 
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library fragments are denatured from the synthetic probes and sequenced by MPS. Since 

human exome sequencing targets only the exons, which make up about 1.5% of the genome, 

the attendant data production is less expensive, the reads are more readily interpreted for 

variants, and the depth of coverage obtained can be higher and therefore more sensitive than 

compared to whole genome sequencing. 

 

1.2.2 Analysis of MPS data  

The sequence read alignment step is most often preceded by quality control of raw 

sequencing data and data preprocessing steps such as trimming of adapter sequence data from 

the reads. The quality control procedure can inform about any GC bias in the sequencing 

experiment by analyzing the GC content distribution, as well as any inconsistencies in the 

experiment by determining the read length distribution.  

 

While smaller, less complex genomes (viral or bacterial) can be assembled from the resulting 

short read MPS data using specific assembly algorithms, larger complex genomes like the 

human require alignment of short sequencing reads to the reference genome as a first step 

toward data analysis. In genomes such as human, mapping the reads to the reference genome 

is further complicated by not-yet-completed gaps in the reference genome or by differences 

between the reference and the genome being studied, including structural variants 

(chromosomal inversions, deletions, and translocations). Additionally, 48% of the human 

genome consists of repetitive elements that complicate accurate mapping of short reads due 

to multiple mapping likelihood at many regions in the genome.  

 

The post alignment processing involves data recalibration to mark and/or remove duplicates, 

and recalculation of quality scores after adjusting for local misalignments. Duplicate 
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sequencing reads may arise due to preferential enzymatic amplification of DNA fragments by 

the polymerase, especially when there are differences in the length of library fragments 

(shorter fragments are amplified preferentially) or differences in G-C content (more skewed 

A-T/G-C ratios amplify poorly). Such duplicates are reduced to a single read representative 

by de-duplicating software to avoid misrepresentation of copy number altered regions or to 

propagate PCR errors. To identify focal structural variants i.e. small insertions or deletions, 

the read data require a realignment and base quality score recalibration (BQSR) process to 

enhance their detection by variant calling software programs. 

 

After mapping and post-processing of the aligned reads to the reference genome, variant 

calling algorithms identify mutations in the sequenced DNA compared to the reference. This 

includes detection of several different types of variants such as single nucleotide variants 

(SNVs), focal insertions and deletions (indels), and copy number variants.  

 

One of the major prerequisites for successful detection of high quality variants is adequate 

sequence read data coverage of the genome or exome, which ensures sufficient depth on a 

given region of interest has been achieved to give statistical confidence of any variant 

identified therein. Also, filtering of discordant reads, such as those with multiple mismatches 

above a set threshold avoids sequencing errors being called as variants. Finally, variants 

called in aligned reads due to known false positivity contributors are often removed using 

statistical filters, such as variants found at the ends of reads where data quality is generally 

lower or variants called with reads only originating from single read orientation. 

 

The variant list is then annotated to determine the protein level effect of the peptide changes 

and to assess the functional significance of the predicted variants. The pathogenicity of 
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variants are then evaluated. Some commonly used tools to annotate and predict functional 

impact include Variant Effect Predictor (VEP)4,5, SIFT6,7, CHASM8, PolyPhen-29, 

MutationAssessor10, and ParsSNP4911. The mutation calls can be classified into different 

types depending on their effect on the resulting protein sequence such as - a) Missense 

(nonsynonymous) mutation, where a single amino acid  changes to another amino acid b) 

Nonsense mutation: where the point mutation changes an amino acid to a STOP codon 

resulting in premature termination of translation c)  Silent (synonymous) mutation: where the 

resulting mutation does not change an amino acid d) Frameshift mutation: these include 

insertion or deletion of a number of bases such that the frame of translation changes, leading 

to a completely new amino acid sequence and/or introducing a premature STOP codon, e) 

stopgain mutation, which eliminates the wildtype stop codon, resulting in a longer protein 

sequence. Furthermore, these mutations could either lead to “loss of function” of the protein 

or “gain of function”, either of which may be equally important. 

 

1.3 Cancer genome sequencing 

1.3.1  Large scale tumor genome sequencing projects 

As MPS technologies have attained widespread use and expanding application to multiple 

experimental aspects of biomedical research, their application to cancer genome 

characterization and discovery of new cancer genes in the research setting has been profound.   

 

The first MPS-based cancer genome was sequenced and reported by Ley et al12 in 2008. 

Single patient cancer genome sequencing studies such as this study also highlighted the 

importance of sequencing the patient’s normal genome in addition to the tumor genome13, as 

a means of distinguishing inherited (“germline”) alterations from those acquired in and 
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thereby specific to, the cancer genome (“somatic”). These initial small studies were 

accomplished by WGS and were quite expensive at the time, but as the cost of generating 

MPS data decreased, large-scale projects to discover and catalogue cancers were initiated and 

resulted in data generation and analysis from thousands of adult and pediatric cancers. For 

example, large scale sequencing efforts have been completed by several international 

consortia, such as The Cancer Genome Atlas (TCGA)14, International Cancer Genome 

Consortium (ICGC)15, Pediatric Cancer Genome Project (PCGP) and Pan Cancer Analysis of 

Whole Genomes (PCAWG). Due to the advances in MPS technologies and analytical 

approaches, it was possible to sequence  and identify the full range of somatic alterations in 

the genome, including single nucleotide variations, insertions and deletions, copy number 

variations, and large genomic rearrangements such as translocations, inversions, and other 

complex structural rearrangements16. 

 

In addition to defining the genomic landscape of thousands of cancer genomes across many 

disease types, these projects revealed the heterogeneity of mutational burden across cancer 

types (Figure 1.1). A broad spectrum of mutational frequencies is observed between, for 

example, carcinogen driven tumors such as tobacco smoking-associated lung cancers and  

UV radiation-driven melanomas which show the highest mutational burden, versus 

hematological tumors that have the lowest  mutational load.  
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Figure 1.1 Mutational heterogeneity of cancer. Figure originally published in Lawrence et. 
al.17 "Each dot corresponds to a tumor–normal pair, with vertical position indicating the 
total frequency of somatic mutations in the exome. Tumor types are ordered by their median 
somatic mutation frequency, with the lowest frequencies (left) found in hematological and 
pediatric tumors, and the highest (right) in tumors induced by carcinogens such as tobacco 
smoke and ultraviolet light. Mutation frequencies vary more than 1,000-fold between lowest 
and highest across different cancers and also within several tumor types. The bottom panel 
shows the relative proportions of the six different possible base-pair substitutions, as 
indicated in the legend on the left." 17  
 

Also, the large scale detailed analysis of the patient cohorts has led to findings about driver 

genes, driver mutations and passenger mutations, including the identification of significantly 

mutated genes (SMGs) occurring within specific tissue sites, as well as across multiple cancer 

types. These characterizations of genetic alterations have helped in substantially advancing 

our understanding of cancer genomes, especially as the data are integrated with RNAseq, 

methylation and other omics data types produced concurrently.  

 

By capturing even low abundance aberrations in clonal populations using MPS, these studies 

have also highlighted that even individual tumor types can have substantial genomic 

heterogeneity. It was found that even though there were SMGs seen across patient cohorts, at 

an individual patient level, the patterns and combinations of mutations that led to 
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development of cancer were different. This complexity further underscored the need to 

sequence each patient’s genome, due to the level of detail needed to discern and characterize 

the individual disease.   

 

1.3.2  Cancer genomics based treatments      

Coincident with our ability to sequence cancer DNA has been the development of new 

classes of cancer therapies that are developed to address specific cancer driver gene 

alterations. Initially, these were therapies such as Imatinib that targeted the protein fusion 

product of the BCR-ABL gene fusion, or Herceptin that targeted HER2 amplified breast 

cancers, both of which are interpretable without the need for DNA sequencing. Over time due 

to enhanced discovery offered by MPS-based analysis, we have now ascertained that cancer 

genes can be mutated in different tissue sites, such as BRAF mutations in melanomas, lung 

cancers, and brain cancers. This new realization has shifted diagnostic applications of MPS18 

from single gene mutation testing (often accomplished by PCR and Sanger sequencing) to 

multi-gene panel assays capable of surveying the many possible genes that may be mutated 

and may offer treatment decision-supporting evidence to physicians. Gene panel testing is 

also favored because it is cost effective and less time consuming to analyze the resulting data. 

It also offers a high rate of sensitivity to detect mutations in tumor DNA, which often has 

different amounts of normal cells interspersed that can decrease sensitivity, since it is 

possible to achieve fairly high coverage (300-500x) at the regions of interest.  

 

Due to unprecedented leaps in our understanding of cancer development powered by large 

scale sequencing of cancer samples, genomics based treatments have allowed the field of 

therapeutics move away from a ‘one size fits all’ approach to one that is more personalized to 
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the patient’s genome. Concurrently, advances in molecular drug development and targeted 

therapies have enabled the transition of genomic assays into clinical use in patients with 

cancer19. 

 

Cancer genomics based assays have introduced a new era of molecular pathology and 

personalized, or “precision” medicine. By interpreting genomic information in light of  

targeted therapies, it is possible to identify additional cancer patients who might benefit.   

 

An emerging use of cancer genomics data is in predicting responses from new classes of 

cancer drugs known broadly as immunotherapy or immune checkpoint blockade therapy. In 

particular, cancer patients who have responses to immune checkpoint blockade therapies have 

been characterized by MPS as having an elevated mutational load or tumor mutation burden 

(TMB). By coupling our understanding of the impact of high TMB, namely the encoding of 

new protein sequences, that are unique to the cancer cells, with the potential impact on the 

adaptive immune system that would identify these novel proteins/peptides as ‘non-self’, one 

can predict that the response to immune checkpoint therapy is due to high numbers of tumor-

specific mutant antigens (neoantigens) being presented to the immune system on these cancer 

cells. 

 

1.4  Cancer Immunotherapy 

1.4.1 Tumor antigens 

In the late twentieth century, the immune-focused therapies for cancer that were postulated 

and tested did not deliver much clinical benefit, resulting in a diminution of enthusiasm for 

such therapeutic approaches. These studies were based on the hypothesis that due to the 
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aberrations in the cancer genomes, unique  peptides are presented on the cancer cells by the 

major histocompatibility complex (MHC) molecules which are then recognized by the 

Cytotoxic T lymphocytes (CTL)20,21. The altered peptides either could be normal 

differentiation antigens or aberrantly expressed normal proteins that are overexpressed in 

tumor cells versus the normal cells (tumor-associated antigens; TAAs), or those resulting 

from either oncogenic viral proteins or mutations unique to the tumor (tumor-specific 

antigens/neoantigens; TSAs).  

 

Tumor Associated antigens arise from non-mutated self proteins and are aberrantly expressed 

in tumor cells. One such type of self-differentiation antigens are the cancer–testis antigens 

(CTAs) that are present in immune-privileged normal cells but also are selectively presented 

to the immune system by tumor cells. These are not expressed in normal tissues except for 

testis, fetal ovaries, and trophoblasts but are also expressed in varying tumor types22. 

Melanoma Associated Antigen-1 (MAGE-1) was the first identified CTA which was 

discovered in 199123 using autologous cytotoxic T lymphocytes and autologous tumor 

mRNA. Another type of self-antigen is derived from non-mutated melanocyte lineage-

specific antigens, which include Melan-A/MART-1, gp100, and tyrosinase. These antigens 

usually have tissue specific expression and have been found to exhibit some level of enriched 

expression in various cancers. Since TAAs are also present in the normal cells, there is a risk 

of autoimmunity and the use of tumor-associated antigens as therapeutic targets can lead to 

normal tissue destruction and toxicity. 

   

TSAs are antigens arising from somatic changes in the tumor acquired during cancer 

initiation and progression, resulting in unique peptide sequences and are not seen in the 

normal cells.  Since these peptides are specifically presented in the tumor cells, they are likely 
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to be less susceptible to mechanisms of immunological tolerance. Early works on mouse 

models from the lab of Thierry Boon24 identified the first neoantigen resulting from a point 

mutation in the P91A gene in a mutagenized mouse tumor. A few years later, Hans Schreiber 

and colleagues25,26 demonstrated that tumor-specific mutations could result in immunogenic 

tumor-specific neoantigens, and demonstrated in vivo tumor rejection based on T cells 

targeting highly immunogenic, primary UV–induced mouse tumors. Another group 

demonstrated an autologous antibody-based method to clone and identify different human 

TSAs27.  All of these efforts paved the way for harnessing the power of antigens - TAAs or 

TSAs and showed an increasing evidence that the tumor antigenome was associated with a 

combination of these antigens. However, historically targeting TSAs was more laborious and 

challenging as the therapeutic strategies are specific to individual patients. As a result, the 

focus was primarily on targeting the TAAs or shared antigens that are not tumor-specific but 

expressed on large groups of cancers. 

 

1.4.2 Pre-MPS identification of tumor antigens 

Several approaches were developed to detect potential antigens that could be used for cancer 

immunotherapy28,29. Traditionally, reverse-transcription-polymerase chain reaction (RT-PCR) 

and real-time PCR (RQ-PCR) were used to detect expression of TAAs for a range of solid 

and haematological malignancies but these assays were used to limited to tumor antigens 

which had already been discovered. Another approach called Representational Difference 

Analysis (RDA) was developed to identify the CTAs such as the MAGE family of antigens30. 

Briefly, this technology uses subtractive hybridization to PCR-mediated kinetic enrichment to 

detect the differences between RNA sequences from the normal tissue (driver) and a tumor 

sample (tester). 
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In 1995, Sahin et al27 developed a method of Serological analysis of tumor antigens by 

Recombinant cDNA Expression cloning (SEREX). This method provided a base for high 

throughput screening of several TAAs, and was used widely to screen for plethora of antigens 

(> 2000) (http://www.licr.org/D_programs/d4a1i_SEREX.php) across different types of solid 

tumors as well as haematological malignancies. One example is NY-ESO-1, which is 

probably one of the most immunogenic CTAs discovered to date. It elicits specific CD4+ as 

well as CD8+ T-cell mediated immune responses in patients with solid tumors. SEREX starts 

with the construction of a cDNA library from freshly isolated tumor cells, which is expressed 

recombinantly. Thereafter, recombinant proteins are transferred onto membranes and 

screened with diluted serum of the same patient. TAAs are identified by their reactivity with 

IgG antibodies present in the patient's serum. Though several antigens can be screened 

together, one of the most laborious step in the SEREX approach is the construction 

expression libraries. This approach also does not detect post-translational modifications. 

 

Another approach known as serological proteome analysis (SERPA)31 combined proteomics 

approaches for the purpose of separating proteins and the serological screening with human 

serum antibodies. It involves using the proteomics workflow for an effective separation on 2-

DE gels for proteins that were extracted from primary tumors or cell lines, followed by an 

identification by Mass Spectrometry (MS). Unlike SEREX, this does not depend on 

recombinant expression of proteins, and thus can also screen for tumor specific post-

translational modifications of proteins. 

 

Besides using the Mass Spectrometry (MS) based approaches, cDNA microarrays also have 

been used to compare the differential expression of tumor antigens from normal tissues and 

cancer tissues. Most of these approaches focused on the identification and validation of 
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TAAs. Although there were attempts in the mid 1980’s to identify tumor-specific mutant 

antigens (TSMAs) from cancers, these efforts were painstaking and not scalable using Sanger 

sequencing approaches.   

 

 

1.4.3 Neoantigens  

Many early studies demonstrated the importance of TSMAs or neoantigens as significant 

targets of antitumor immune responses32,33,34. However, screening for neoantigens before the 

sequencing of the human genome and the advent of MPS, was a daunting task with very little 

gain since it required the identification of mutations and HLA typing to be done for each 

patient. Thus, much of the focus for cancer immunotherapy based treatments in the early 

2000s was on targeting and evaluation of TAAs and CTAs, as described. 

 

With the completion of the first sequence of the human reference genome in 2004, early 

efforts to design PCR primers and amplify and Sanger sequence DNA from cancers to 

identify somatic mutations emerged, making it clear that cancer cells, especially in some 

tissue sites, carry multiple mutations in their genes. From these studies, a visionary 

suggestion emerged35. In 2008, Allison and Vogelstein36 proposed that all cancers have 

mutations that could form neoantigens by conducting an in silico analyses of exome-

sequencing data from breast and colorectal cancers. While the study lacked any experimental 

validation of the predicted neoantigens, they profiled several mutations that were predicted to 

form tumor-specific mutant antigens for CD8+ T cells, exhibiting the ability of the cancer 

genome to form epitopes recognizable by the immune system due to accumulated genetic 

changes. 
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In 2012, two independent groups demonstrated neoantigen prediction approaches based on 

MPS somatic variant identification, including how the identified variants, when considered in 

the context of MHC binding affinity, could predict tumor specific neoantigens in murine 

sarcoma models37,38. By using the resulting set of potential neoantigens to query T cell 

reactivity, the predictions were validated. It was further demonstrated that these validated 

neoantigens were the same epitopes recognized by anti-PD1 and anti-CTLA439 immune 

checkpoint blockade therapies and that peptide vaccines comprised of the peptide 

neoantigens provided either prophylactic or therapeutic efficacy. Several other studies have 

also characterized neoantigens as being derived from somatically mutated genes40–43, and 

have shown that they can be recognized by T-cells. 
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Figure 1.2: An overview of self vs non-self paradigm for neoantigen vaccines: Figure 
originally published in Houghton and Guevara-Patiño44 - “Initial studies demonstrated that 
host CD8+ T cells respond to a self peptide presented by MHC-I molecules on tumor cells. 
The wild-type self peptide ITDQVPFSV is unable to trigger an immune response against the 
tumor cells either due to being a weak binder or being eliminated due to the process of self-
tolerance. The mutated peptide ITDQVPFSV results in a neoantigen which is highly stable 
and activates the host T cells. Once the CD8+ T cells are activated, they are competent to 
recognize and kill host tumor cells presenting the non-mutated self peptide.”    
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These landmark studies by Matsushita et al37 and Castle et al38  introduced  “reverse 

immunology approaches”  for identification of neoantigens and opened new avenues to tailor 

personalized treatments using TSMAs by exploiting the full mutanome of a patient. Briefly, 

in these studies the analysis pipelines combined genomic, bioinformatic and immunological 

methods45 to determine the set of most immunogenic neoantigens (Figure 1.2). Starting with 

the set of somatic variants identified using MPS, the amino acid changes are translated, and 

representative short peptides are generated that window through the variant amino acid, to 

place it at locations from beginning to end in the peptide, and its ability to bind to the MHC is 

determined using epitope prediction algorithms. The normal exome data are analyzed through 

a specific algorithm to identify the HLA haplotypes used for this evaluation. The two most 

critical components of this approach are the identification of high quality somatic mutations 

using MPS data as well as accurate prediction of the peptide binding to the MHC alleles. As 

mentioned in previous sections, depth of coverage by MPS sequencing reads from the tumor 

is an important factor for detection of high confidence somatic variants. The coverage is also 

needed to correctly infer clonality of the mutation, based on the reads that identify the variant 

and their representation at the variant site of germline vs. mutant. This type of analysis is 

needed to partition variants in the founder clone (those present in every cell) from those in 

subclonal populations (not present in every cell, by inference). From an immunotherapy 

perspective, targeting neoantigens that associate with the  founder clone produces an immune 

response that targets all cancer cells rather than only selected cells (i.e. those carrying  

subclonal mutations/neoantigens). Another aspect that determines the immunogenicity of the 

selected neoantigen is its ability to bind to the MHC molecule. Typical, peptides of lengths 

8–11 amino acids bind to MHC Class I molecules that present them to cytotoxic CD8+ T 

cells and peptides of longer lengths, typically between 11–30 amino acids, bind to MHC 

Class II molecules and are presented to CD4+ T cells. Predicting the binding affinity of a 
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large number of peptides arising from somatic mutations to the MHC alleles is onerous, and 

therefore has now been streamlined by various computational pipelines.  

 

1.4.4 Computational methods for peptide binding prediction to MHC 

alleles 

One critical component for the correct prediction of antigen binding to MHC alleles is 

obtaining the high-resolution HLA allelotype of the patient. Traditionally, PCR and Sanger 

sequencing-based clinical assays have been used to derive patient-specific HLA haplotypes. 

More recently, several in silico based tools have been developed that can predict the correct 

HLA haplotypes at up to a 99% accuracy for four-digit resolution46. These tools either use an 

alignment-based approach or an assembly-based approach from MPS read data. Alignment-

based HLA typing softwares such as PolySolver47 and Optitype48 align the read to the 

reference HLA sequences (genomic, exomic or transcriptomic) and use probabilistic 

modeling to infer correct HLA types. Assembly-based approaches such as ATHLATES49 and 

HLAminer50 involve de novo assembly of MPS read data  into contigs which are then aligned 

to the reference sequences of known HLA alleles to resolve the haplotypes. 

 

Experimental screening of large numbers of predicted neoantigen  candidates is an expensive 

and time-consuming endeavor. As MPS technologies have become more widely used for 

cancer immunogenomics evaluations51, computational methods to determine accurate binding 

prediction of the peptides to the MHC molecules (Class I or Class II)  have also evolved52. 

 
Several computational tools of this type, including BIMAS53, SYFPEITHI54, and 

RANKPEP55, rely on position-specific scoring matrices (PSSMs). These softwares make 

predictions of MHC-peptide binding based on the position of amino acids in the putative neo-
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peptide as it sits in the binding cleft of the protein, such as at the anchor position, unusual 

anchor position, and auxiliary anchor position. The binding potential of different peptides is 

based on identification of allele-specific motifs and by taking into account the positions of the 

amino acids - optimally preferred positions of amino acids scored higher over the undesirably 

placed amino acids in calculating the binding affinity.  

 
After the widespread adoption of MPS, the number of MHC alleles (specifically HLA alleles) 

that were identified also increased exponentially, and it became necessary to improve MHC 

binding prediction methods. One major shortcoming of the PSSM based approaches was the 

inability to correctly account for the interrelationships between different MHC cleft binding 

positions. This was overcome by using more complex, machine learning-based approaches to 

establish models for the different types of binding site interactions, and thereby determine 

patterns of binding based on existing datasets. These machine learning-based methods are 

broadly divided as follows:  

a) Artificial neural networks (ANN): These methods are trained using a set of 

experimentally derived binding affinity measurements for different class I and II  

HLA haplotypes. One of the first software programs developed using ANN-based 

modeling was NetMHC56,57. The accuracy of this method largely depends on the 

quality and size of the training set, and hence it is more accurate for predicting MHC-

peptide binding potential for the more common MHC alleles due to the relative 

abundance of binding data for common haplotypes. Since rare HLA alleles are not as 

well supported by experimental binding data, more accurate algorithms were 

developed to calculate the peptide binding affinity potential to such alleles. 

NetMHCpan57,58 and Pickpocket59 are two such pan-specific algorithms that were 

trained by expanding the original training set to include data from other species, as 
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well as extrapolating the affinities for rare alleles from known binding affinities. 

Incorporating these additional parameters subsequently led to improved accuracy for 

rare MHC alleles. Another ANN-based approach, applied in NetMHCCons60, 

combines multiple tools to obtain more reliable binding affinity predictions and uses 

consensus to compensate for the strengths and weaknesses of different algorithms.  

Further improvements to neural network-based methods have resulted in tools such as 

MHCflurry61 and MHCnuggets62. 

 

b) Stabilized Matrix Method (SMM): These methods use protein position-weight 

matrices to model the binding process. Examples include SMM63 and SMMPMBEC64 

that use quantitative matrices  not only for predicting binding of peptide to MHC class 

I molecules, but also for predicting both the transport of the peptide by transporter 

associated with antigen processing (TAP), and proteasomal cleavage of protein 

sequence.  

 
Though most of the efforts have been focused on developing methods for binding predictions 

to MHC Class I molecules, some of these softwares such as NetMHCIIpan65 and 

MHCnuggets62 , extend support for Class II predictions as well. 

 

Once a list of strong binding peptide candidates is determined using the aforementioned  

methods, the peptides are validated in vitro to determine their binding potential and/or their T 

cell based immune response using different assays. These include MHC Peptide binding 

assays that assess peptides based on their competitive binding to the MHC molecules,  

ELISPOT/ELISA that measures IFNγ production, flow cytometry-based Peptide–MHC 

tetramer/dextramer assays, or combinations of any of these. 
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The selected neoantigen peptides could be further employed to study different aspects of 

cancer immunology and immunotherapy. One type of cancer immunotherapy, called 

‘immune checkpoint blockade’ acts by removing immune suppression by binding to cell 

surface markers that induce T cell exhaustion. Several groups have studied the correlation 

between  tumor mutation burden (TMB) or neoantigen load as a predictor of immune 

checkpoint blockade response likelihood66,67, and have shown a strong association between 

somatic mutation burden and  clinical response in patients treated with anti-CTLA4 or anti-

PD1. While checkpoint blockade therapies predominately provide a tumor-specific immune 

response, there could be often adverse reactions because these therapies target native immune 

molecules such as CTLA-4, PD-1 and PD-L1. Another type of immunotherapy-based 

approach called ‘personalized vaccines’ is more tumor specific since these therapies target 

neoantigens or TSMAs, that result from somatic alterations. As these therapies are tissue 

specific, they yield fewer off-target effects and hence, lowered likelihood of severe adverse 

events. To administer such vaccines, different types of vaccine platforms have been tested 

and employed in different settings, as explained in the next section. 

 
1.4.5 Vaccine platforms for neoantigen-based therapy 

Once a list of strong binding neoantigens has been identified and validated in vitro,  a vaccine 

platform is required for therapeutic administration into the patient. Multiple vaccine 

platforms are being explored for personalized cancer vaccines, some of which are elucidated 

below68: 

a) DNA vaccines: This vaccine platform involves constructing a circularized DNA insert  

carrying one or more encoded neoantigenic peptide sequences and inserting the 

construct into a DNA vector. One important consideration in the design of these 
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vaccines is the order of neoantigenic sequences along with spacer sequences such that 

no new strong binding junctional epitope is encoded by the resulting sequence. The 

DNA vaccine platform is relatively inexpensive to produce as a GMP-grade construct 

because DNA synthesis is rapid, automated and inexpensive, and DNA sequencing 

can be used to verify the final sequence of the construct prior to administration. These 

attributes also would enable rapid scalability of DNA vaccines for precision medicine 

applications in cancer therapy, if warranted.  

 

b) Peptide-based vaccines: This vaccine platform involves the direct administration (by 

intramuscular injection) of synthetic neoantigenic peptide cocktails suspended in 

administrative adjuvant solution. A recent publication described the use of this 

vaccine platform using synthetic long 15–30-mer peptides suspended in poly-ICLC 

(Hiltonol)69 wherein six melanoma patients were immunized with up to 20 distinct 

neoantigenic peptides  predicted to bind to MHC class I molecules. Peptide vaccines 

are relatively more expensive to generate due to the requirement of synthesizing the 

peptides under GMP conditions, and don't always solubilize well with one another, so 

often several cocktails must be made in the adjuvant and administered separately. 

However, peptide based vaccines are easy to characterize, and straightforward to 

synthesize, making the platform relatively scalable.  

 

c) RNA-based vaccines: These vaccines are conceptually similar to DNA and peptide 

vaccines wherein synthetic RNAs encode the various predicted neoantigenic peptides 

evaluated from the patient’s tumor. One of the main advantages of using this approach 

is that by using mRNA as the vaccine, it can be readily translated once in the cell in 

order to induce antigen-specific T cell immune responses. However, stability of RNA 
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molecules and appropriate processing and presentation by antigen presenting cells 

remains one of the major challenges of this vaccination strategy. Sahin et al70 used 

this vaccine platform to immunize 13 patients with advanced cutaneous melanoma. 

Synthetic RNAs encoding five linker-connected 27-mer peptides were formulated 

based on neoantigen predictions of both MHC Class I and Class II binders. In this 

study, 60% of the candidate neoepitopes elicited some sort of immune response, and 

the majority of T cell responses were CD4+, directed against MHC class II-restricted 

antigens. 

 

d) Dendritic cell (DC) based vaccines: These vaccines involve collection of circulating 

blood, from which isolated dendritic cells are matured ex vivo in the presence of 

neoantigenic peptides. The matured dendritic cells are infused into the same patient. A 

recent melanoma trial by Carreno et al71 used this strategy in three melanoma patients, 

who had been pretreated with ipilimumab. These patients were vaccinated with DC 

loaded with about 7 neoantigenic derived from each patient’s tumor. Only a subset of 

the candidates showed existing or de novo immune responses, thus underscoring the 

difficulties of predicting peptides that will be processed and presented. 

 

Using tumor specific neoantigens, these vaccine platforms and the associated trials have 

shown that there are few, if any, severe adverse events and little cross-reactivity to the wild 

type (normal) peptide. These initial clinical trials69,70,71 show promising results about the 

safety and tolerance of vaccines that employ neoantigens for cancer therapy. Two of these 

studies further treated patients that had a recurrent/progressive disease with checkpoint 

blockade therapy (anti-PD1)72 and clinically significant disease regression was reported, 
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showing value in the use of combinations such as neoantigen-based vaccines with immune 

checkpoint blockade. 

 

Another type of therapy that employs the use of neoantigens, though not directly in the form 

of vaccines, is adoptive T cell transfer therapy (ACT). This type of therapy pioneered by 

Rosenberg et al. involves removing tumor-specific T cells, either from peripheral blood or the 

resected tumor, and expanding them ex vivo which allows them to regain their cytotoxic 

function, such that when they are transferred back into the patient, they can drive tumor 

elimination. ACT, when used on patients with solid tumors41,73 showed measurable T-cell 

specific immune responses against neoantigens. Following treatment with ACT in pilot trials, 

it has been shown74 that 40% of treated patients experienced complete regressions of all 

measurable lesions for at least five years. While ACT provides another tumor-specific 

approach for treatment with fewer side effects, these therapies are costly due to the need for 

ex vivo expansion of patient-specific T cells for each patient. 
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Figure 1.3:  Overview of personalized vaccine design process: Figure originally published 
in Liu and Mardis45. Tumor tissue and blood normal samples are extracted from the patient 
and  exome and RNA sequencing is performed, followed by read alignment and variant 
calling algorithms to identify and confirm expression of somatic mutations. This input is used 
to determine strong binding neoantigens by using MHC class I & class II epitope prediction 
algorithms. The selected set of high quality neoantigens are further prioritized by ELISPOT 
and peptide binding assays, before being incorporated in a vaccine.     
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1.5  Development and improvement of sequencing 

methods for neoantigen characterization       

Methods to more accurately identify which tumor-specific mutant peptides (neoantigens) can 

elicit anti-tumor T cell immunity are needed if the pursuit of personalized vaccine therapy 

and adoptive T cell therapy continues to advance in medical care of cancer patients.  

Although the cost-related barriers to producing somatic mutations from MPS data sets have 

fallen away with new instrumentation and analytical improvements, barriers to facile use of 

computational analyses that yield neoantigen predictions still remain and, if not addressed, 

diminish the widespread adoption of this approach to cancer treatment. Since the mutational 

repertoire of a typical cancer genome can vary anywhere from 50 to 500+ mutations, there 

was a need for a strategy that integrates somatic mutation calls from MPS data, identifies the 

neoantigens in the context of the patient’s HLA alleles, and parses out a list of optimal 

peptides for downstream testing, as illustrated in Figure 1.3. Chapter 2 describes such a 

genome-guided in silico approach to identifying tumor neoantigens that starts with a simple 

list of somatic nonsynonymous point mutations from which it predicts high affinity 

neoantigens  refined by sequencing coverage and gene expression data. Such a pipeline has 

been utilized in several first-in-human clinical trials of patient-specific vaccines using 

different vaccine platforms, including DNA-based and dendritic cell-based vaccines. We 

have further refined the approach to neoantigen prediction from that presented in Chapter 2 

by testing the impact of regional-specific adjustments to peptide sequences entering 

consideration for MHC binding affinity predictions. Namely, this approach accounts for the 

individual-specific variants in the germline, as well as the adjacent somatic alterations that 

occur most frequently in high mutation load tumors, proximal to the variant being evaluated 

for neoantigen binding. This correction in germline proximal variants is often not done 
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because there is an assumption that the human reference genome is representative of the 

patient’s inherited variants, some of which may change amino acid sequence in the resulting 

peptide. All of these assumptions can  lead to incorrect determination of neoantigenic peptide 

sequences and to incorrect binding affinities as a consequence. Chapter 3 describes our 

results from studying the effect of proximal sequence correction on the calculated binding 

affinities and suggests a corrective approach that, in some cases, dramatically impacts the 

calculated binding affinity. 

   

We also recognized that neoantigen vaccine therapies may be applied in cancers without high 

mutational loads, and that the challenges of identifying a sufficient number of neoantigens to 

construct a vaccine might be challenging in this circumstance.  Hence, we sought to increase 

the numbers of variants that could be evaluated for MHC binding by including rarer types of 

variants, including frameshift indel and gene fusions, into neoantigen prediction.  In addition, 

since there is evidence that MHC Class II binding neoantigens are appropriate to include in 

vaccines70, we also wanted to include these predictions into our established pipeline 

described in Chapter 2.  Chapter 4 describes a modular computational framework to facilitate 

each of the critical stages of neoantigen characterization. It integrates the information from 

Chapters 2 and 3 into a toolkit that enables neoantigen prediction from the breadth of somatic 

alterations including point mutations, insertions, deletions, and gene fusions. Furthermore, 

prioritization and selection of these neoantigens for non-informatics savvy users is provided 

through a graphical web-based interface. Lastly, this revised approach provides a 

functionality to determine the optimal order of selected neoantigen candidates in a DNA 

vector-based vaccine. 
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Chapter 2: pVAC-Seq: A genome-guided in 
silico approach to identifying tumor 

neoantigens 
 

 

Hundal, Jasreet et al. pVAC-Seq: A genome-guided in silico approach to identifying tumor 

neoantigens Genome Med. 8, 11 doi:10.1186/s13073-016-0264-5 (2016). 
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2.1 Introduction 

Cancer immunotherapy has gained significant momentum from recent clinical successes of 

checkpoint blockade inhibition. Massively parallel sequence analysis suggests a connection 

between mutational load and response to this class of therapy. Methods to identify which 

tumor-specific mutant peptides (neoantigens) can elicit anti-tumor T cell immunity are 

needed to improve predictions of checkpoint therapy response and to identify targets for 

vaccines and adoptive T cell therapies. Here, we present a flexible, streamlined 

computational workflow for identification of personalized Variant Antigens by Cancer 

Sequencing (pVAC-Seq) that integrates tumor mutation and expression data (DNA- and 

RNA-Seq). pVAC-Seq is available at https://github.com/griffithlab/pVAC-Seq. 

 

2.2 Background 

Boon et al. were the first to demonstrate that cancer-specific peptide/MHC class 1 complexes 

could be recognized by CD8+ T cells present in cancer patients75. Substantial evidence now 

suggests that anti-tumor T cells recognize tumor somatic mutations, translated as single 

amino acid substitutions, as ‘neoantigens’. These unique antigenic markers arise from 

numerous genetic changes, acquired somatically that are present exclusively in tumor 

(mutant) and not in normal (wild-type (WT)) cells76. Recent preclinical data indicate that 

these mutated proteins, upon processing and presentation in the context of MHC molecules 

expressed by antigen-presenting cells, can be recognized as ‘non-self’ by the immune system. 

Our previous work in murine sarcoma models was one of the first demonstrations of how 

somatic cancer mutations could be identified from massively parallel sequencing, and when 

considered in the context of MHC binding affinity, can predict tumor specific neoantigens38. 

A subsequent study further demonstrated that these neoantigens were the same epitopes 
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recognized by anti-PD1 and anti-CTLA4 checkpoint blockade therapies and that peptide 

vaccines comprising neoantigens could provide prophylactic effects. Several other studies 

have also characterized these neoantigens as being derived from somatically mutated genes in 

mouse 39 as well as in humans40–43, and have shown that they can be recognized by T cells. 

 

While checkpoint blockade therapies have achieved tremendous success in the clinic, patient-

specific vaccines still meet a clinical need in those patients that either do not respond, 

develop resistance, or cannot tolerate the associated side effects of checkpoint blockade 

drugs. The main paradigm behind the development of cancer vaccines rests on the 

assumption that if the immune system is stimulated to recognize neoantigens, it may be 

possible to elicit the selective destruction of tumor cells. Vaccines incorporate these 

neoantigen peptides with the aim of enhancing the immune system’s anti-tumor activity by 

selectively increasing the frequency of specific CD8+ T cells, and hence expanding the 

immune system’s ability to recognize and destroy cancerous cells. This process is dependent 

on the ability of these peptides to bind and be presented by HLA class I molecules, a critical 

step to inducing an immune response and activating CD8+ T cells77. 

 

As we move from vaccines targeting ‘shared’ tumor antigens to a more ‘personalized’ 

medicine approach, in silico strategies are needed to first identify, then determine which 

somatic alterations provide the optimal neoantigens for the vaccine design. Ideally, an 

optimal strategy would intake mutation calls from massively parallel sequencing data 

comparisons of tumor to normal DNA, identify the neoantigens in the context of the patient’s 

HLA alleles, and parse out a list of optimal peptides for downstream testing. At present, 

elements of this ideal strategy exist, but are not available as open source code to permit others 
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to adopt these methods into cancer care strategies. This manuscript describes one such 

approach, and provides a link to open source code for end users. 

 

For example, to optimize identification and selection of vaccine neoantigens, several in silico 

epitope binding prediction methods have been developed57,78–81. These methods employ 

various computational approaches such as Artificial Neural Networks (ANN) and Support 

Vector Machines (SVM) and are trained on binding to different HLA class I alleles to 

effectively identify putative T cell epitopes. 

 

There are also existing software tools (IEDB82, EpiBot83, EpiToolKit84 ) that compile the 

results generated from individual epitope prediction algorithms to improve the prediction 

accuracy with consensus methods or a unified final ranking. The current implementation of 

EpiToolKit (v2.0) also has the added functionality of incorporating sequencing variants in its 

Galaxy-like epitope prediction workflow (via its Polymorphic Epitope Prediction plugin). 

However, it does not incorporate sequence read coverage or gene expression information 

available from massively parallel sequencing datasets, nor can it compare the binding affinity 

of the peptide in the normal sample (WT) versus the tumor (mutant). Another multi-step 

workflow Epi-Seq85 uses only raw RNA-Seq tumor sample reads for variant calling and 

predicting tumor-specific expressed epitopes. 

 

We report herein an open source method called pVAC-Seq that we developed to address the 

critical need for a workflow that assimilates and leverages massively parallel DNA and RNA 

sequencing data to systematically identify and shortlist candidate neoantigen peptides from a 

tumor’s mutational repertoire that could potentially be used in a personalized vaccine after 

immunological screening. This automated analysis offers the functionality to compare and 
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differentiate the epitopes found in normal cells against the neoepitopes specifically present in 

tumor cells for use in personalized cancer vaccines, and the flexibility to work with any user-

specified list of somatic variants. Preliminary versions of this pipeline were applied in mouse 

models of cancer to identify expressed mutations in cancer cells and characterize tumor-

specific mutant peptides that drive T cell-mediated tumor rejection in mice with MCA-

induced sarcomas38,39 . More recently, we used this pipeline in a proof-of-concept trial in 

melanoma patients, to identify the neoantigen peptides for use in dendritic cell-based 

personalized vaccines71. 

 

2.3 Methods 

Our in silico automated pipeline for neoantigen prediction (pVAC-Seq) requires several types 

of data input from next-generation sequencing assays. First, the pVAC-Seq pipeline requires 

a list of non-synonymous mutations, identified by a somatic variant-calling pipeline. Second, 

this variant list must be annotated with amino acid changes and transcript sequences. Third, 

the pipeline requires the HLA haplotypes of the patient, which can be derived through 

clinical genotyping assays or in silico approaches. Having the above-mentioned required 

input data in-hand, pVAC-Seq implements three steps: performing epitope prediction, 

integrating sequencing-based information, and, lastly, filtering neoantigen candidates. The 

following paragraphs describe the analysis methodology from preparation of inputs to the 

selection of neoantigen vaccine candidates via pVAC-Seq (Figure 2.1). 
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Figure 2.1. Overview of the pipeline pVAC-Seq: This figure illustrates the methodological 
framework behind the pVAC-Seq pipeline. Starting with preparation of inputs, it consists of 
three main steps - epitope prediction, integration of sequencing information, and filtered 
candidate selection. 
 
 

 

2.3.1 Prepare input data: HLA typing, alignment, variant detection, and 

annotation 

As described above, pVAC-Seq relies on input generated from the analysis of massively 

parallel sequencing data that includes annotated nonsynonymous somatic variants that have 
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been ‘translated’ into mutant amino acid changes, as well as patient-specific HLA alleles. 

Importantly, these data can be obtained from any appropriate variant calling, and annotation 

pipeline and HLA typing approach. Here, we outline our preparatory steps to generate these 

input data71. Somatic variant analysis of exome sequencing datasets was performed using the 

Genome Modeling System (GMS)86 for alignment and variant calling. In brief, BWA 

(version 0.5.9)87 was used for alignment with default parameters, except that the number of 

threads was set to 4 (-t 4) for faster processing, and the quality threshold for read trimming to 

5 (-q 5). The resulting alignments were de-duplicated via Picard MarkDuplicates (version 

1.46) 88. 

 

In cases where clinically genotyped HLA haplotyping calls were not available, we used in 

silico HLA typing by HLAminer (version 1)50 or by Athlates49 . HLA typing was performed 

on the normal (peripheral blood mononuclear cells), rather than the tumor sample. Though 

the two software tools were >85% concordant in our test data (unpublished data), it is helpful 

to use both algorithms in order to break ties reported by HLAminer (see below). 

I. HLAminer for in silico HLA-typing using Whole Genome Sequencing (WGS) data: 

When predicting HLA class I alleles from WGS data, we used HLAminer in de novo 

sequence alignment mode89 by running the script HPTASRwgs_classI.sh, provided in 

the HLAminer download, with default parameters. (The download includes detailed 

instructions for customizing this script, and the scripts on which it depends, for the 

user’s computing environment.) For each of the three HLA loci, HLAminer reports 

predictions ranked in decreasing order by score, where ‘Prediction #1’ and ‘Prediction 

#2’ are the most likely alleles for a given locus. When ties were present for Prediction 

1 or Prediction 2, we used all tied predictions for downstream neoepitope prediction. 

However, it should be noted that most epitope prediction algorithms, including 
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NetMHC57,80 only work with an algorithm-specific subset of HLA alleles, so we are 

constrained to the set of NetMHC-compatible alleles. The current version NetMHC 

v3.4 supports 78 human alleles. 

 

II. Athlates for in silico HLA-typing using exome sequence data: We diverged from the 

recommended Athlates protocol at two points: (1) We performed the alignment step, 

in which exome sequence data from the normal tissue sample are aligned against 

reference HLA allele sequences present in the IMGT/HLA database90, using BWA 

with zero mismatches (params : bwa aln -e 0 -o 0 -n 0) instead of NovoAlign91 with 

one mismatch. (2) In the subsequent step, sequence reads that matched, for example, 

any HLA-A sequence from the database were extracted from the alignment using 

bedtools92 instead of Picard. This procedure is resource-intensive, and may require 

careful resource management. Athlates reports alleles that have a Hamming distance 

of at most 2 and meet several coverage requirements. Additionally, it reports ‘inferred 

allelic pairs’, which are identified by comparing each possible allelic pair to a longer 

list of candidate alleles using a Hamming distance-based score. We typically used the 

inferred allelic pair as input to subsequent steps in the neoepitope prediction pipeline. 

 

After alignments (and optional HLA typing) were completed, somatic mutation detection was 

performed using the following series of steps (1) Samtools 93,94 mpileup v0.1.16 was run with 

parameters ‘-A -B’ with default setting for the other parameters. These calls were filtered 

based on GMS ‘snp-filter v1’ and were retained if they met all of the following rules: (a) Site 

is greater than 10 bp from a predicted indel of quality 50 or greater; (b) The maximum 

mapping quality at the site is ≥40; (c) Fewer than three single-nucleotide variants (SNV) calls 

are present in a 10 bp window around the site; (d) The site is covered by at least three reads 
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and less than 1 × 109 reads; and (e) Consensus and SNP quality is ≥20. The filtered Samtools 

variant calls were intersected with those from Somatic Sniper95 version 1.0.2 (params: -F vcf 

q 1 -Q 15), and were further processed through the GMS ‘false-positive filter v1’ (params: --

bam-readcount-version 0.4 --bamreadcount-min-base-quality 15 --min-mapping-quality 40 --

min-somatic-score 40). This filter used the following criteria for retaining variants: (a) ≥1% 

of variant allele support must come from reads sequenced on each strand; (b) variants must 

have ≥5% Variant Allele Fraction (VAF); (c) more than four reads must support the variant; 

(d) the average relative distance of the variant from the start/end of reads must be greater than 

0.1; (e) the difference in mismatch quality sum between variant and reference reads must be 

less than 50; (f) the difference in mapping quality between variant and reference reads must 

be less than 30; (g) the difference in average supporting read length between variant and 

reference reads must be less than 25; (h) the average relative distance to the effective 3’ end 

of variant supporting reads must be at least 0.2; and (i) the variant must not be adjacent to 

five or more bases of the same nucleotide identity (for example, a homopolymer run of the 

same base). (2) VarScan Somatic version 2.2.696,97 was run with default parameters and the 

variant calls were filtered by GMS filter ‘varscan-high-confidence filter version v1’. The 

‘varscan-high-confidence v1’ filter employed the following rules to filter out variants: (a) P 

value (reported by Varscan) is greater than 0.07; (b) Normal VAF is greater than 5%; (c) 

Tumor VAF is less than 10%; or (d) less than two reads support the variant. The remaining 

variant calls were then processed through false-positive filter v1 (params: --bam-readcount-

version 0.4 --bamreadcount-min-base-quality 15) as described above. (3) Strelka version 

1.0.10 98(params: isSkipDepthFilters = 1). 
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Our GMS pipeline expects a matched normal sample for filtering out potentially rare 

germline variants. However, in the absence of a matched normal tissue, the dbSNP and 1000 

Genome databases could be used for filtering these variants. 

 

The consolidated list of somatic mutations identified from these different variant-callers was 

then annotated using our internal annotator as part of the GMS pipeline. This annotator 

leverages the functionality of the Ensembl database99 and Variant Effect Predictor (VEP)5. 

 

We wish to emphasize that any properly formatted list of annotated variants can be used as 

input to subsequent steps in the pipeline. From the annotated variants, there are two critical 

components that are needed for pVAC-Seq: amino acid change and transcript sequence. Even 

a single amino acid change in the transcript arising from missense mutations can alter the 

binding affinity of the resulting peptide with the HLA class I molecule and/or recognition by 

the T cell receptor. Larger insertions and deletions like those arising from frameshift and 

truncating mutations, splicing aberrations, gene fusions, and so on may also result in potential 

neoantigens. However, for this initial version of pVAC-Seq, we chose to focus our analysis 

on only missense mutations. 

 

One of the key features of our pipeline is the ability to compare the differences between the 

tumor and the normal peptides in terms of the peptide binding affinity. Additionally, it 

leverages RNA-Seq data to incorporate isoform-level expression information and to quickly 

cull variants that are not expressed in the tumor. To easily integrate RNA-Seq data, both 

transcript ID as well as the entire WT transcript amino acid sequence is needed as part of the 

annotated variant file. 
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2.3.2 Perform epitope prediction 

One of the key components of pVAC-Seq is predicting epitopes that result from mutations by 

calculating their binding affinity against the HLA class I molecule. This process involves the 

following steps for effectively preparing the input data as well as parsing the output (Figure 

2.2). 

 

Figure 2.2 Generation of peptide sequences and filtering predicted epitope candidates. a 
Amino acid FASTA sequence is built using 10 flanking amino acids on each side of the 
mutated amino acid. The preceding or succeeding 20 amino acids are taken if the mutation 
lies near the end or beginning of the transcript, respectively. b All predicted candidate 
peptides from epitope prediction software based on selected k-mer window size. c Only 
localized peptides (those containing the mutant amino acid) are considered to compare to 
WT counterpart. d The ‘best candidate’ (lowest MT binding score) per mutation is chosen 
across all specified k-mers and between all independent HLA allele types that were used as 
input 
 

Generate FASTA file of peptide sequences 
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Peptide sequences are a key input to the MHC binding prediction tool, and the existing 

process to efficiently compare the germline normal with the tumor is very onerous. To 

streamline the comparison, we first build a FASTA file that consists of two amino acid 

sequences per variant site: WT (normal) and mutant (tumor). The FASTA sequence is built 

using approximately eight to 10 flanking amino acids on each side of the mutated amino acid. 

However, if the mutation is towards the end or beginning of the transcript, then the preceding 

or succeeding 16 to 20 amino acids are taken, respectively, as needed, to build the FASTA 

sequence. Subsequently, a key file is created with the header (name and type of variant) and 

order of each FASTA sequence in the file. This is done to correlate the output with the name 

of the variant protein, as subsequent epitope prediction software strips off each FASTA 

header. 

 

Run epitope prediction software 

Previous studies100,101 have shown that allele-specific epitope prediction software, such as 

NetMHC, perform slightly better when compared to pan-specific methods such as 

NetMHCpan58,65,102 in case of well-characterized alleles due to availability of large amounts 

of training data. However, pan-specific methods could be beneficial in cases where there is 

limited peptide binding data for training, for arbitrary HLA molecules, or when predicting 

epitopes for non-human species. We do anticipate adding this support for additional 

softwares in upcoming versions of pVAC-Seq. To predict high affinity peptides that bind to 

the HLA class I molecule, currently only the standalone version of NetMHC v3.4 is 

supported. The input to this software is the HLA class I haplotype of the patient, determined 

via genotyping or using in silico methods, as well as the FASTA file generated in the 

previous step comprising mutated and WT 17-21-mer sequences. Typically, antigenic 

epitopes presented by HLA class I molecules can vary in length and are in the range of eight 
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to 11 amino acids (aa). Hence, we recommend specifying the same range when running 

epitope prediction software. 

 

Parse and filter the output 

Starting with the output list of all possible epitopes from the epitope prediction software, we 

apply specific filters to choose the best candidate mutant peptides. First, we restrict further 

consideration to strong- to intermediate-binding peptides by focusing on candidates with a 

mutant (MT) binding score of less than 500 nM. Second, epitope binding calls are evaluated 

only for those peptides that contain the mutant amino acid (localized peptides). This filter 

eliminates any WT peptides that may overlap between the two FASTA sequences. Our 

workflow enables screening across multiple lengths and multiple alleles very efficiently. If 

predictions are run to assess multiple epitope lengths (for example, 9-mer, 10-mer, and so 

on), and/or to evaluate all patient’s HLA-A, -B, and -C alleles, we review all localized 

peptides and choose the single best binding value representative across lengths (9 aa, 10 aa, 

and so on) based on lowest binding score for MT sequence. Furthermore, we choose the ‘best 

candidate’ (lowest MT binding score) per mutation between all independent HLA alleles that 

were used as input. Additionally, in the output file, the WT peptide binding score is provided. 

Although this score may not directly affect candidate choice or immunogenicity, end users 

may find this comparative information useful. 

 

2.3.3 Integrate expression and coverage information 

We subsequently apply several filters to ensure we are predicting neoantigens that are 

expressed as RNA variants, and that have been predicted correctly based on coverage depth 

in the normal and tumor tissue datasets. We have found that gene expression levels from 

RNA-Seq data, measured as fragments per kilobase of exon per million reads mapped 
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(FPKM), provide a good method to filter only the expressed transcripts. We used the tuxedo 

suite - Tophat103,104 and Cufflinks105 - as part of the GMS to align RNA-Seq data and 

subsequently infer gene expression for our in-house sequencing data. Depending on the type 

of RNA prep kit, Ovation® RNA-Seq System V2 (NuGEN Technologies, Inc., San Carlos, 

CA, USA) or TruSeq Stranded Total RNA Sample Prep kit (Illumina, Inc., San Diego, CA, 

USA) used, Tophat was run with the following parameters: Tophat v2.0.8 ‘--bowtie-

version = 2.1.0’ for Ovation, and ‘--library-type fr-firststrand --bowtie-version = 2.1.0’ for 

Truseq. For Ovation data, prior to alignment, paired 2 × 100bp sequence reads were trimmed 

with Flexbar version 2.21106 (params: --adapter CTTTGTGTTTGA --adapter-trim-end LEFT 

--nono-length-dist --threads 4 --adapter-min-overlap 7 --maxuncalled 150 --min-readlength 

25) to remove single primer isothermal amplification adapter sequences. Expression levels 

(FPKM) were calculated with Cufflinks v2.0.2 (params: --max-bundle-length = 10000000 --

num-threads 4). 

 

For selecting unique vaccine candidates, targeting the best ‘quality’ mutations is an important 

factor for prioritizing peptides. Sequencing depth as well as the fraction of reads containing 

the variant allele (VAF) are used as criteria to filter or prioritize mutations. This information 

was added in our pipeline via bam-readcount107. Both tumor (from DNA as well as RNA) and 

normal coverage are calculated along with the VAF from corresponding DNA and RNA-Seq 

alignments. 

 

2.3.4 Filter neoepitope candidates 

Since manufacturing antigenic peptides is one of the most expensive steps in vaccine 

development and efficacy depends on selection of the best neoantigens, we filter the list of 

predicted high binding peptides to the most highly confident set, primarily with expression 
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and coverage based filters. The pVAC-Seq pipeline permits user-specified filters, and we 

encourage new users to experiment with these cutoffs in order to tailor the pipeline to their 

input data and analysis needs. We employ the following filters: (a) Depth based filters: We 

filter out any variants with normal coverage <=5× and normal VAF of >=2%. The normal 

coverage cutoff can be increased up to 20× to eliminate occasional misclassification of 

germline variants as somatic. Similarly, the normal VAF cutoff can be increased based on 

suspected level of contamination by tumor cells in the normal sample. 

 

For tumor coverage from DNA and/or RNA, a cutoff is placed at >=10× with a VAF 

of >=40%. This ensures that neoantigens from the founder clone in the tumor are included, 

but the tumor VAF can be lowered to capture more variants, which are less likely to be 

present in all tumor cells. Alternatively, if the patients are selected based on a pre-existing 

disease-associated mutation such as BRAF V600E in the case of melanoma, the VAF of the 

specific presumed driver mutation can be used as a guide for assessing clonality of other 

mutations. Also, other known driver mutations such as KRAS G12/G13 or NRAS Q61 may 

be used to determine purity, and to subsequently adjust the VAF filters to target founder 

clone mutations. (b) Expression based filters: As a standard, genes with FPKM values greater 

than zero are considered to be expressed. We slightly increase this threshold to 1, to eliminate 

noise. Alternatively, we analyze the FPKM distribution (and the corresponding standard 

deviation) over the entire sample, to determine the sample-specific cutoffs for gene 

expression. Spike-in controls may also be added to the RNA-Seq experiment to assess quality 

of the sequencing library and to normalize gene expression data. Since alternative splicing 

can give rise to multiple transcripts that encompass the variant residue, optionally, all these 

transcripts could be included in analysis during the annotation step. However, one should be 

careful as this could potentially give rise to transcripts that do not include the variant. Also, 
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long transcripts or transcripts with high G/C content might show some bias if RNA-CapSeq is 

used but in our experience are generally well represented. The primary goal of using RNA-

(Cap)Seq data in our method is to address to questions of primary importance: (1) is the gene 

expressed at a reasonably high level (for example, FPKM >1); and (2) is the variant allele 

expressed in the RNA-seq fragment population. 

 

This filtered list of mutations is manually reviewed via visual inspection of aligned reads in a 

genome viewer like IGV108,109  to reduce the retention of obvious false positive mutations. 

 

2.3.5 Dataset 

To demonstrate the workings of our in silico pVAC-Seq pipeline, we applied it to four 

metastatic melanoma patients, the clinical results for three of whom were described 

previously71. In brief, there were three patients (MEL21, MEL38, MEL218) with stage III 

resected cutaneous melanoma, all of whom had received prior treatment with ipilimumab, 

and one patient (MEL69) with stage IV cutaneous melanoma. All four patients were enrolled 

in a phase 1 vaccine clinical trial (NCT00683670, BB-IND 13590) employing autologous, 

functionally mature, interleukin (IL)-12p70-producing dendritic cells (DC). Informed consent 

for genome sequencing and data sharing was obtained for all patients on a protocol approved 

by the Institutional Review Board of Washington University. We performed genomic 

analysis of their surgically excised tumors to select candidates for the personalized DC 

vaccine. Three of these patients (MEL21, MEL38, MEL69) had multiple metachronous 

tumors. Exome sequencing as well as RNA-CapSeq was performed for each of these tumors, 

and their corresponding matched normal tissue. The raw exome and transcriptome sequence 

data are available on the Sequence Read Archive database: Bioproject PRJNA278450, and 

corresponding dbGaP accession: phs001005. 
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2.4 Results and Discussion 

Since melanoma patients harbor hundreds of mutations, it can be challenging to filter down 

and target the best set of potentially immunogenic neoantigens for vaccine design. For each 

of the four metastatic melanoma patients, we used the annotated list of SNVs generated using 

the GMS strategy described above, and analyzed them via our pVAC-Seq pipeline. As 

mentioned earlier, for the demonstration of this workflow, amino acid changes resulting from 

only missense mutations were considered for analysis. Table 2.1 shows the breakdown of 

these SNVs described previously71 and the data generated in subsequent steps through our 

workflow, leading to a high-confidence list of neoepitopes. As part of our local workflow, 

NetMHC v3.4 was used as the epitope prediction software to generate HLA class I restricted 

epitopes. 

 

 MEL21 MEL38 MEL218 MEL69 

 LN 
(2011) 

Skin 
(2012) 

Skin 
(2013) 

Axilla      
(2012) 

Breast 
(2013) 

AbW
all 

(2013) 

LN 
(2005) 

Skin / 
Limb 
(2013) 

Skin / 
Scalp 
(2013) 

Total SNVs 702 838 1099 359 402 385 695 256 282 

Missense 
SNVs 

443 515 598 219 247 238 437 141 162 

21-mer 
FASTA 
entries (WT 
& MT) 

856 1004 1002 424 482 462 850 272 314 
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Raw 
NETMHC 
output (9-
mers) 

11152 
*2 

(HLA-
A02:01, 
HLA-

A01:01) 

13072 
*2 

(HLA-
A02:01, 
HLA-

A01:01) 

13044 
*2 (HLA-

A02:01, 
HLA-

A01:01) 

5512*3       
 (

HLA-
A02:01, 
HLA-

A31:01, 
HLA-

B07:02) 

6270*3       
(HLA-

A02:01, 
HLA-

A31:01, 
HLA-

B07:02) 

6010 
*3      

 
(HLA-

A02:01, 
HLA-

A31:01, 
HLA-

B07:02) 

11050*3      
 (

HLA-
A02:01, 
HLA-

A03:01, 
HLA-B44:02 

3542 *2       
(HLA-

A02:01, 
HLA-

A11:01) 

4088 *2       
 

(HLA-
A02:01, 
HLA-

A11:01) 

Parsed 
NetMHC 
output 
(comparing 
WT with MT) 

3796 *2        
 

(HLA-
A02:01, 
HLA-

A01:01) 

4465 *2    
(HLA-

A02:01, 
HLA-

A01:01) 

4458 * 2  
(HLA-

A02:01, 
HLA-

A01:01) 

1871*3        
(HLA-

A02:01, 
HLA-

A31:01, 
HLA-

B07:02) 

2131*3       
(HLA-

A02:01, 
HLA-

A31:01, 
HLA-

B07:02) 

2042 
*3       

 
(HLA-

A02:01, 
HLA-

A31:01, 
HLA-

B07:02) 

3770 *3        
(HLA-

A02:01, 
HLA-

A03:01,   
HLA-B44:02 

1217 *2       
(HLA-

A02:01, 
HLA-

A11:01) 

1395 *2       
(HLA-

A02:01, 
HLA-

A11:01) 

Filter 1: 
Binding 
based 

110 121 144 103 112 111 161 50 65 

HLA-A02:01 
candidates 
only 

79 96 111 52 48 46 93 25 34 

Filter 2: 
Manually 
reviewed 
HLA-A02:01 
candidates  
(Exome plus 
RNA-Seq) 

11 11 12 14 16 16 24 6 12 

Filter 3: 
Experimental
ly tested 

16 14 18 12 

Filter 4: 
Vaccine 
tested 

7 7 7 7 

Immunogenic
ity 

3 3 3 3 

Table 2.1 Summary of predicted epitope candidates through pVAC-Seq pipeline 
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The table illustrates the number of raw candidates predicted by NetMHC, and the parsing and 

filtering strategies applied thereafter to the final list of neoantigen candidates. These 

candidates were then communicated to our vaccine design collaborators who evaluated this 

list by patient-specific immunological assays (Filters 3 & 4)71  

 

As is evident from Table 2.1, there were multitudes of epitopes reported by NetMHC v3.4 in 

its raw format. This number increased even further with the addition of each HLA class I 

allele. Using pVAC-Seq, and its recommended thresholds for filtering (binding and coverage-

based), we were able to produce a more reasonable list of high affinity HLA class I binding 

neoantigen candidates for experimental validation. 

 

These candidate neoantigens were experimentally tested in binding assays and those with 

confirmed binding to HLA class I restricting molecules were incorporated in the vaccine 

formulation71. Since all of these patients harbor the BRAF V600E mutation, we used its VAF 

in each sample as a comparative control of tumor purity and clonality. Integration of variant 

coverage information from Exome and RNA-Seq (VAF), as well as mutant expression 

information (FPKM), provided additional information needed to make an informed decision 

on the number and identity of peptides to include in each patient-specific vaccine (Figure 

2.3, Figure 2.4, Figure 2.5, and Figure 2.6). 

 



 
 

 48 

 

Figure 2.3 Landscape of filtered neoantigen candidates in MEL21. This figure illustrates 
the landscape of neoantigen vaccine candidates in patient MEL21 after being prioritized 
using the pVAC-Seq pipeline. The points represent the overall sequencing information: 
exome and RNA VAFs, gene expression in terms of log2 FPKM value, as well log2 fold 
change, calculated as the ratio of WT binding affinity over mutant binding affinity. 
Recommended exome and RNA VAF cutoffs are also indicated. Candidates that were 
incorporated in the vaccine are labeled based on the genes containing these somatic 
mutations. Red boxes depict naturally occurring (that is, pre-existing T cell response) and 
blue boxes denote vaccine-induced neoantigens that were recognized by T cells. Since BRAF 
was used as a guide for assessing clonality of other mutations, it is also shown in each of 
three metachronous tumors (from the same patient) 
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Figure 2.4 Landscape of filtered neoantigen candidates in MEL38 This figure illustrates 
the landscape of neoantigen vaccine candidates in patient MEL38 after being prioritized 
using the pVAC-Seq pipeline. The points represent the overall sequencing information: 
exome and RNA VAFs, gene expression in terms of log2 FPKM value, as well log2 fold 
change, calculated as the ratio of WT binding affinity over mutant binding affinity. 
Recommended exome and RNA VAF cutoffs are also indicated. Candidates that were 
incorporated in the vaccine are labeled based on the genes containing these somatic 
mutations. Red boxes depict naturally occurring (that is, pre-existing T cell response) and 
blue boxes denote vaccine-induced neoantigens that were recognized by T cells. Since BRAF 
was used as a guide for assessing clonality of other mutations, it is also shown in each of 
three metachronous tumors (from the same patient).  
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Figure 2.5 Landscape of filtered neoantigen candidates in MEL218 This figure illustrates 
the landscape of neoantigen vaccine candidates in patient MEL218 after being prioritized 
using the pVAC-Seq pipeline. The points represent the overall sequencing information: 
exome and RNA VAFs, gene expression in terms of log2 FPKM value, as well log2 fold 
change, calculated as the ratio of WT binding affinity over mutant binding affinity. 
Recommended exome and RNA VAF cutoffs are also indicated. Candidates that were 
incorporated in the vaccine are labeled based on the genes containing these somatic 
mutations. Red boxes depict naturally occurring (that is, pre-existing T cell response) and 
blue boxes denote vaccine-induced neoantigens that were recognized by T cells. Since BRAF 
was used as a guide for assessing clonality of other mutations, it is also shown.  
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Figure 2.6 Landscape of filtered neoantigen candidates in MEL69. This figure illustrates 
the landscape of neoantigen vaccine candidates in patient MEL69 after being prioritized 
using the pVAC-Seq pipeline. The points represent the overall sequencing information: 
exome and RNA VAF cutoffs, gene expression in terms of log2 FPKM value, as well log2 fold 
change, calculated as the ratio of WT binding affinity over mutant binding affinity. 
Recommended exome and RNA VAFs are also indicated. Candidates that were incorporated 
in the vaccine are labeled based on the genes containing these somatic mutations. Red boxes 
depict naturally occurring (that is, pre-existing T cell response) and blue boxes denote 
vaccine-induced neoantigens that were recognized by T cells. Since BRAF was used as a 
guide for assessing clonality of other mutations, it is also shown in both the metachronous 
tumors 
 
 
As shown, if existing epitope prediction software tools were solely used to generate 

neoantigen predictions in these patients, it would have been challenging to integrate the filters 

as well as the important digital sequencing metrics that ultimately determined the ‘quality’ of 

these candidates. By implementing the novel methods reported in this manuscript, we were 

able to rapidly streamline the screening and identification of a smaller number of potentially 

immunogenic neoepitopes within the landscape of all neoepitopes. This method can be 

further extended to include other genomic alterations such as frame-shift insertions and 

deletions, splicing aberrations, and gene fusions, which may in some cases cause larger 
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changes in epitope binding affinities. We are currently testing approaches to include binding 

predictions from frame-shift insertions and deletions by incorporating VEP annotation, and 

once tested, will be adding this functionality to the github repository for pVAC-Seq. By 

expanding the focus from just somatic point mutations to the entire neoantigen landscape, it 

may also be possible to better assess whether neoantigen load itself can serve as a biomarker 

for prediction of checkpoint blockade response. 

 

2.5 Conclusions 

The current regimen for predicting and screening neoantigens from sequencing data is 

laborious and involves a large number of intermediate steps such as creating FASTA files, 

running the prediction algorithms (most of the time online), and filtering output for high 

binding affinity candidates. Our flexible, automated in silico workflow, pVAC-Seq, provides 

higher efficiency and faster turnaround by automating many of these steps. This approach 

should help to evaluate tumor-specific neoepitopes in a much-reduced time, thereby 

increasing its applicability for clinical use. As we learn from ongoing early mouse and human 

trials, the methods developed will help optimize the composition of personalized cancer 

vaccines with high precision and will expedite vaccine design to address growing clinical 

demand. 
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3.1 Introduction 

Over the past two decades, approaches to identify and screen for antigens, both self and non-

self, have evolved rapidly32,110. This is due in part to advances in sequencing technologies, in 

the accuracy of algorithmic identification of somatic variants, and in computational modeling 

to predict the binding affinity of the resulting novel, tumor-specific peptides to major 

histocompatibility complex (MHC) molecules45. Thus, current immunogenomic approaches 

can identify somatic variants that give rise to tumor-specific mutant antigens or ‘neo’-

antigens and evaluate their ability to bind to MHC Class I and Class II molecules45. 

 

Typically, to evaluate strong-binding neoantigens from genomic sequencing data, the raw 

sequencing reads from tumor and normal DNA libraries are aligned to the human reference 

genome, and somatic variants are identified by comparison of tumor to normal read 

alignments. The resulting somatic variants of interest (SVOI) are then annotated to predict 

protein sequence changes and to infer possible neoantigenic peptides. Individual neoantigenic 

peptides are selected by sliding an amino acid window (usually 8-11-mers) across the variant 

position to consider each possible ‘register’. These peptides are assessed using various 

algorithms to predict binding affinity to MHC and determine the strongest binding epitopes. 

These predicted neoantigenic peptides are prioritized as we have previously described111. The 

cancer vaccine design process, from read alignment to variant calling and neoantigen 

prediction typically assumes the reference genome sequence surrounding each somatic 

variant is representative of the patient’s genome sequence.  

 

However, any sequence variant proximal to an SVOI in the patient’s genome that differs 

from the human reference may alter the amino acid sequence of the resulting peptide (note, 
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proximal is defined here as ‘situated close to’ or ‘nearby’, not the classic genetics meaning of 

‘closer to the centromere’). Existing pipelines that are used for computational prediction of 

neoantigens from sequencing data, such as MuPeXI112 and pVAC-Seq111, do not explicitly 

incorporate patient-specific nearby germline or somatic variants (collectively referred to as 

‘proximal variants’ hereafter) into the peptide sequence considered in neoantigen prediction. 

Some pipelines such as Vaxrank113 infer the coding sequence from assembly of tumor RNA 

reads, thus accounting for both somatic and germline variants implicitly, but this is largely 

dependent on the availability of RNA-Seq data. Failing to account for patient-specific nearby 

germline or somatic variants (i.e. proximal variants) could impact the efficacy of a vaccine, 

possibly resulting in immunization with incorrect peptides or failure to identify highly 

neoantigenic peptides. 

 

To investigate these possibilities, we identified somatic and germline variants proximal to 

SVOIs in a data set of tumor sequencing studies representing different tissue sites and 

mutational loads.  For this analysis, given that the upper-bound for the length of MHC-

binding peptides (accounting for both Class I and Class II) is typically considered to be 30 

amino acids114,115  we chose a nucleotide window of 89 bp upstream and downstream of each 

SVOI in which to identify relevant proximal variants (Methods). We limited our analysis to 

only include missense proximal variants and SVOIs. We then incorporated these proximal 

variants in the final peptide sequences (proximal variant correction; PVC) and re-evaluated 

the resulting peptide set using our neoantigen prediction pipeline (pVAC-Seq)111. Our results 

suggest that taking individual proximal variation into account can have a significant effect on 

the accuracy of neoantigen selection, resulting in a more personalized vaccine design.  



 
 

 58 

 

Figure 3.1: Overview of the pipeline for proximal variant correction The steps required for 
incorporating and assessing the impact of proximal variants on neoantigen binding 
prediction are depicted as a flow diagram. There are three main steps. (A) Alignment and 
variant calling of matched tumor (pink) and normal (green) sequencing data. (B) Phasing of 
proximal somatic and germline variants: The pink bars represent the tumor sequence reads, 
with mismatches/sequencing errors shown in small gray rectangles. For a somatic variant of 
interest (SVOI; labeled with a red flag), we scan 89 bp on either side to assess for proximal 
germline or somatic SNVs (labeled with blue and orange boxes). These proximal variants are 
then phased together to determine linkage. Only proximal variants that are in phase (orange 
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box) with the SVOI (red box) are considered for downstream neoantigen analysis. Other (out-
of-phase) proximal variants (blue box) are ignored. (C) Neoantigen binding predictions are 
then assessed after performing proximal variant correction (PVC). The left panel shows the 
‘uncorrected’ wildtype and mutant peptides along with their respective binding scores for a 
single SVOI example. The right panel shows PVC (‘corrected’) peptides and scores for this 
SVOI. 
 
 

3.2 Methods 

3.2.1 Sequence data alignment and variant calling 

To investigate the prevalence of proximal variants (germline SNPs or somatic variants), we 

analyzed publicly available sequencing data from the TCGA as well as datasets generated in-

house, altogether representing seven different tissue sites. These data sets were chosen to 

adequately represent low, medium and high mutational burden tumors.  

 

Analysis of in-house whole genome/exome sequencing datasets was performed as previously 

described111,86,116. Briefly, raw sequencing reads from both the tumor and normal were 

aligned to the human reference genome sequence (either GRCh37 or GRCh38) using 

BWA117, then merged and deduplicated using Picard (see URLs). A combination of three or 

four different variant callers was used to identify somatic variants by comparison of tumor 

and normal variant calls: Samtools93, Sniper95, Strelka98, and VarScan96,97. These variants 

were filtered as previously described118,119 and then manually reviewed using IGV per the 

standard operating procedures120 to obtain a list of high confidence variant calls.  On average, 

80% of the filtered variants passed manual review. Germline variant analysis of the normal 

samples was performed using Samtools. 
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For the TCGA data, aligned tumor and normal BAMs from BWA (version 0.7.12-r1039) as 

well as somatic variant calls from VarScan2 (in VCF format) were downloaded from the 

Genomic Data Commons (GDC). We restricted our analysis to only consider ‘PASS’ variants 

in these VCFs that are higher confidence than the raw set. Since TCGA does not provide 

germline variants, we used GATK’s HaplotypeCaller to perform germline variant calling 

using default parameters. These calls were refined using VariantRecalibrator in accordance 

with GATK Best Practices121. 

 

For this study, we restricted the variant calls to only include missense SNVs, in both- TCGA 

as well as in-house datasets. 

 

3.2.2 Phasing of variants to assess linkage 

Somatic and germline missense variant calls from each sample were combined using 

GATK’s CombineVariants, and the variants were subsequently phased using GATK’s 

ReadBackedPhasing algorithm.  

In silico HLA-typing  

OptiType48 was used to perform in silico HLA typing for the in-house samples. For the 

datasets downloaded from TCGA, existing in silico HLA typing information was obtained 

from The Cancer Immunome Atlas (TCIA122) database. 

 

3.2.3 Choosing an appropriate window for neoantigen analysis 

Due to the absence of patient-specific HLA Class II typing information, we limited our 

neoantigen binding prediction analysis to MHC Class I, though we believe that the Class II 

peptides are also important in contributing to immunogenicity. Hence, our nucleotide window 
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was chosen such that it encompasses both Class I and Class II MHC peptide lengths, to 

demonstrate the prevalence of proximal variants within that genomic region. Most strong-

binding Class I MHC peptides are around 8-11 amino acids in length. There is no length 

restriction on Class II MHC peptides due to an open binding groove, and longer peptide 

lengths are much more common, typically 13-25-mers123 but peptides as long as 30-mer have 

been reported114,115. The majority (99.2%) of human linear T-cell epitopes with MHC class II 

restriction currently reported in IEDB 82are 8-30-mers. To  identify the best binding 30-mer 

around a missense variant of interest, one would ideally scan 29 amino acids upstream and 

downstream of the mutant (MT) amino acid, hence a window of 59 amino acids. At the 

nucleotide level, this corresponds to 87 nucleotides. Given that the frame of the missense 

mutation is not always known, we allow for 2 extra bases leading to a window size of 89 

nucleotides on each side of the SVOI. 

 

The appropriate nucleotide window for any peptide length can be calculated using this 

formula: ((peptide length -1)*3)+2. 

 

3.2.4 Corrected neoantigen binding prediction using pVACtools 

For each sample, the phased variant calls as well as the somatic variant calls were annotated 

using Variant Effect Predictor (VEP4), specifically using the Downstream plugin as well as 

the custom Wildtype plugin, available via pVACtools (see URLs) . To evaluate the effect of 

relevant nearby variants on neoantigen identification, we re-assessed the binding affinities of 

the neoantigens with the corrected mutant peptide sequence (Figure 3.1C), using 

NetMHCv4.056,57 via an updated version of the pVACtools software. This version takes as 

input the VEP-annotated phased VCF file of somatic and germline variants, in addition to the 

existing VEP-annotated somatic VCF.  
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3.2.5 Calculating False Discovery and False Negative Rates 

To calculate FNR and FDR, we first determined the number of weak binders before PVC that 

were falsely omitted (false negatives (FN)), as well as the number of peptides that were 

identified as strong binders before PVC, but whose sequence (MTpeptide) was altered due to 

a proximal variant and which were thus incorrectly considered during neoantigen selection 

(false positives (FP)). We also calculated the number of peptides that were identified strong 

binders before correction and remained unaltered by proximal variants (true positives (TP)). 

 

𝐹𝑁 ∶  𝑀𝑇𝑠𝑐𝑜𝑟𝑒!"#$%%&#'&( >  500 𝑛𝑀  Λ 𝑀𝑇𝑠𝑐𝑜𝑟𝑒!"##$!%$& < 500 𝑛𝑀  

𝐹𝑃 ∶  𝑀𝑇𝑠𝑐𝑜𝑟𝑒!"#$%%&#'&( <  500 𝑛𝑀  Λ  (𝑀𝑇𝑝𝑒𝑝𝑡𝑖𝑑𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  ≠  𝑀𝑇𝑝𝑒𝑝𝑡𝑖𝑑𝑒_𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) 

𝑇𝑃 ∶   (𝑀𝑇𝑠𝑐𝑜𝑟𝑒!"#$%%&#'&( < 500𝑛𝑀)  Λ  (𝑀𝑇𝑝𝑒𝑝𝑡𝑖𝑑𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ≡   𝑀𝑇𝑝𝑒𝑝𝑡𝑖𝑑𝑒_𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃 

 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃 

 

The FNR is then defined as the number of false negatives divided by the number of false 

negatives plus the number of true positives. The FDR is defined as the number of false 

positives divided by the number of all positive calls, including both true positives and false 

positives. 

 

3.3 Results 

To determine how frequently proximal variants occur within the vicinity of an SVOI, we 

assessed 430 tumors with varying mutational loads identified from whole genome/exome 

sequence data of matched normal and tumor tissue (Figure 3.1, Methods). Specifically, data 

from 100 cases each of melanoma, hepatocellular carcinoma and lung squamous cell 
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carcinoma were obtained from TCGA. We also evaluated data from 48 cases of HER2+ 

breast cancer, 34 cases of small cell lung cancer, 30 cases of hepatocellular carcinoma, 15 

cases of oral squamous cell carcinoma, and one hypermutated glioblastoma (one primary and 

two metastatic samples) from in-house studies. After performing alignment and variant 

calling, we confirmed the linkage of SVOIs and proximal (somatic or germline) variants by 

phasing the variants using GATK124 [Figure 3.1B] (Methods). Then, the list of SVOIs from 

each of the samples was intersected with the respective lists of in-phase amino acid-altering 

proximal variants to assess their presence within the chosen nucleotide window. 

  

3.3.1 Missense variants overlap with missense proximal variants 

Out of 430 tumor samples analyzed, 380 samples (88.3%) had at least one (range: 1 to 377) 

missense SVOI in phase with a proximal missense variant. Of a total of 103,673 missense 

variants identified in these tumors, there were 7,783 SVOIs (7.5%) with a proximal missense 

variant (somatic or germline) within 89 nucleotides on either side. 5,344 of these missense 

SVOIs (5.1%) were also in phase with their respective proximal variants. In most cases 

(93.8%), SVOIs had a single proximal germline or somatic variant in phase, but occasionally 

multiple (range: two to six) variants were proximal to the SVOI. An average of 241 missense 

somatic variants were analyzed per sample. Per patient, an average of 6.5% of SVOIs had a 

proximal missense variant, and 5% had one or more proximal missense variants in phase with 

the SVOI. On average, 62.2% of these proximal variants were germline missense variants and 

37.7% were somatic missense variants. The majority (68.0%) of proximal somatic variants 

were contributed by Dinucleotide Polymorphisms (DNPs). Most variant callers (including 

those used for the harmonized analysis of TCGA data in the Genomic Data Commons) report 

DNPs as two separate SNVs. Excluding the DNPs, on average, 88.4% of the proximal 

variants were germline missense SNPs, and 11.6% were somatic missense SNVs.  
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3.3.2 Predicted binding affinity changes with PVC 

To identify neoantigens capable of eliciting an effective anti-tumor T-cell response, it is 

critical to both determine the correct tumor specific peptide sequence and assess its ability to 

bind MHC125. First, we sought to assess how accounting for proximal variants in the 

neoantigen peptide sequence may influence binding affinity to MHC. In order to evaluate 

this, we quantified the impact of missing or incorrectly selecting strong-binding neoantigens 

when ignoring proximal variants. We compared binding affinity scores before and after PVC 

for each patient’s peptides against their respective MHC Class I alleles.  

 

A typical Class I neoantigen binding evaluation and screening is carried out by sliding over 

shorter sub-peptide registers111. To evaluate strong-binding Class I neoantigens of lengths 8-

11-mers, we ideally scan 7-10 amino acids on each side of the mutated amino acid resulting 

from the SVOI. Even if a proximal variant alters an amino acid in the full peptide window, it 

may not be included in every register we consider as a candidate neoantigen (Figure 3.2). 

 

 

Figure 3.2 Example of candidate neoantigen evaluation This figure shows the possible sub-
peptide registers for selection of a candidate neoantigen of length 9. The 17-mer peptide 
window for a 9-mer candidate is selected by scanning 8 amino acids on each side of the 
mutated amino acid resulting from the SVOI (red box). Only those registers that contain 
amino acid changes resulting from both - the proximal variant (PV; orange box), as well as 
the SVOI (red box) were considered for this analysis (five peptides shown in yellow for this 
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example). The remaining registers shown (grey boxes) contain the SVOI but are not affected 
by the proximal variant. 
 
 

In some rare cases, a proximal variant may translate to the same amino acid sequence as the 

SVOI, or the SVOI and proximal variant both lead to amino acid changes if considered in 

isolation, but if they are in phase and considered together, they result in no change to the 

amino acid sequence. To take into account these cases and accurately assess the effect of 

amino-acid changes due to proximal variants on binding predictions, we only considered 

those registers that contained both the proximal variant and the SVOI amino acid changes, 

when translated together. Across 8-11-mers, on average 45.95% of all neoantigen peptide 

registers contained both. Figure 3.3 summarizes the effect of proximal variants on 

neoantigen binding affinity. Although the effect is less pronounced for 8-mers, the smallest 

length we examined, we see drastic changes in binding affinity due to PVC across all four 

peptide lengths (represented as log10 of mutant (MT) epitope fold change 

(MTuncorrected/MTcorrected), with ranges spanning from -3.0 to 3.1 for 8-11-mers (Figure 3.3A). 

Figures 3.3C-D show the distribution of log(MT fold change) scores for 9-mer and 10-mer 

peptides, respectively. For both peptide lengths, most weak binders stay within the same 

range before and after PVC but very few strong binders remain unchanged, after PVC. We 

chose 500 nM as the binding affinity cutoff for a potential binder, as most known T-cell 

epitopes have an affinity value of less than 500 nM126. For the binding prediction changes, we 

only considered a call as erroneous if PVC yielded at least a 10% change in predicted binding 

affinity.  
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Figure 3.3 Mischaracterization of neoantigens before proximal variant correction  
The effect of accounting for proximal variants in neoantigen selection is summarized in 
several ways (n=380 biologically independent samples with at least one proximal variant). 
(A) Violin plot (distribution of all data in blue and whiskers indicating max/min values) 
showing the change in uncorrected neoantigen binding using the existing approach 
(MTuncorrected) versus PVC (MTcorrected), represented as log10 MT fold change (MTuncorrected / 
MTcorrected) across 8-11-mers for all variants in phase with the somatic variant of interest. (B) 
For 8-11-mer peptides, the False Negative Rate (FNR) (shown as orange bars) represents the 
number of instances when a truly strong-binding peptide was mistaken as a weak-binding 
peptide (MTuncorrected > 500 nM, and MT fold-change < 1.1 ). The False Discovery Rate 
(FDR) (shown in blue bars) represents the number of instances where a strong-binder before 
PVC (MTuncorrected < 500nM) is determined to have an incorrect peptide sequence as a result 
of a proximal variant. (C) Log10 scaled comparison of corrected versus uncorrected binding 
scores for 9-mer peptides considering patient-specific MHC Class I alleles. Dotted lines 
demarcate the binding affinity threshold of 500 nM. (D) Log10 scaled comparison of 
corrected versus uncorrected binding scores for 10-mer peptides considering patient-specific 
MHC Class I alleles. 
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3.3.3 Impact of PVC on False Discovery and False Negative Rates 

In addition to the effect a proximal amino acid substitution may have on a neoantigen’s 

binding potential, it is also important to consider whether the peptide sequence of the selected 

neoantigen is correct and representative of the sequence in the tumor. Failure to do so may 

affect the immunogenic potential of the neoantigen being selected, as the uncorrected 

neoantigen will not produce tumor-specific T-cells, even if it binds well and is presented by 

the MHC. 

 

To determine how many neoantigens were being erroneously predicted, and the effect that 

mischaracterization of neoantigens due to proximal variants would have on candidate 

selection, we calculated the False Negative Rate (FNR) and False Discovery Rate (FDR) after 

applying PVC. The FNR and FDR represent probabilities of potential MHC binders (binding 

affinity < 500 nM) being discarded (false negatives) and of erroneous peptides being 

mistaken for potential binders (false positives), respectively.  

 

An average of 9 SVOI and 10 neoantigenic peptides were mischaracterized per case. As a 

consequence, 1,165 potential binders (MTcorrected < 500 nM) were erroneously rejected, and 

3,305 peptides which were strong binders before PVC were misidentified across all 430 

patients investigated here. Overall, FNR and FDR across lengths 8-11 were 0.026 and 0.069, 

respectively (Figure 3.3B). 

 

As a representative example, Figure 3.4 illustrates data from one of the TCGA melanoma 

samples with a heterozygous missense SNV in the reverse strand gene MARCH10 that 

overlaps an in-phase heterozygous germline single nucleotide polymorphism (SNP), 21 
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nucleotides upstream. When translated, this germline SNP results in S357F 

(NP_001275708.1:p.Phe357Ser) alteration that is 7 amino acids downstream to the missense 

somatic variant F350S (NP_001275708.1:p.Ser350Phe). This variant directly affects the final 

neoantigen sequence for a peptide of any length (> 8-mer). To evaluate the effect of this 

germline SNP on the binding affinity of the neoantigen peptide, we calculated the binding 

affinity of the uncorrected versus the PVC neoantigenic peptides. The binding affinity of the 

best register for a 10-mer peptide using the uncorrected approach (MTuncorrected = 55.44 nM) is 

within the range for a good binder (< 500 nM). However, after including this patient’s 

proximal germline variant, the binding affinity for the same register decreases almost 70-fold 

(MTcorrected = 3766.72 nM), thus predicting a very weak binder. Using the uncorrected 

analysis approach, one might have selected this neoantigenic peptide for a vaccine but after 

PVC, the candidate peptide is unsuitable. This result illustrates the importance of using the 

individual variation of the germline genome while selecting and designing neoantigens for 

personalized immunotherapy. 

 

Figure 3.4 Example of a germline SNP within the proximity of a somatic SNV An example 
from one of the TCGA melanoma samples with a missense SNV that overlaps a germline SNP 
(dbSNP ID: rs9891498), 21 nucleotides upstream. When translated, the germline SNP results 
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in S357F (NP_001275708.1:p.Phe357Ser) alteration and is 7 amino acids downstream of the 
missense somatic variant F350S (NP_001275708.1:p.Ser350Phe)  in MARCH10. 
 
 

3.4 Discussion 

There are some caveats/limitations of our approach. Firstly, the analysis was restricted only 

to single nucleotide changes (i.e. missense somatic SNVs that are near another germline or 

somatic SNV), and did not seek to evaluate whether other, potentially relevant types of 

variants were found nearby. These include insertions and deletions (both somatic and 

germline)127 and different types of structural variants that often have a more significant 

impact on peptide sequences but also are rarer than SNVs. Phasing of indels and structural 

variants is also not currently handled by software such as GATK’s ReadBackedPhasing. 

Secondly, our analysis ‘window’ (89 bp) was defined in genomic coordinates. It is 

substantially more complicated to consider this window size in the context of transcriptome 

coordinates, since intronic coordinates must be ignored when scanning upstream and 

downstream. This is further complicated in genes with alternative transcripts and hence 

multiple introns and exons to consider. Our ability to determine phase for variants separated 

by an intron would be limited in WGS or exome data (although could be evaluated in RNA-

seq data with sufficient read lengths). Lastly, for this study, we only considered neoantigen 

binding predictions to MHC Class I molecules. MHC Class II peptides are much longer due 

to an open binding groove and hence, the subsequent impact of proximal variants on the 

peptide sequence would be even more pronounced. Due to these limitations, our results are 

likely an underestimation of the impact of PVC. 

 

Moreover, even with seemingly small false discovery and false negative rates, the importance 

of accounting for the effect of proximal variants is clear when we consider clinical vaccine 
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design scenarios. For example, 10 or fewer peptides are usually selected for the final vaccine 

from a larger number of initial candidates. Given this scenario, we calculated the probability 

of choosing at least 1 weak binder or of omitting 1 strong binder in the final vaccine, without 

PVC. For the first probability, we calculated 1 - (1-FDR)10 = 0.513 and for the second, we 

calculated 1 - (1-FNR)10 = 0.228. The probability that at least one of these errors occurs for 

each patient evaluated, is 1 - (1-FDR)10*(1-FNR)10 = 0.624. Thus, for neoantigen 

identification in 100 patients, we can expect that approximately 51 patients would receive a 

suboptimal vaccine specifically due to receiving a neoantigen with an incorrect peptide 

sequence, 23 would receive a suboptimal vaccine specifically due to missing a strong-binding 

neoantigen, and 62 would receive a suboptimal vaccine due to at least one of these causes. 

 

Design of personalized cancer vaccines is complex, time consuming, and expensive. Previous 

work has shown that only about 16-43% of the predicted neoantigenic peptides included in a 

vaccine formulation yield CD8+ T-cell response69–72. Our study demonstrates the importance 

of ensuring the selected neoantigens correctly represent the individual’s genome and 

therefore maximize the likelihood of eliciting an immune response. PVC based on the 

patient’s genome can eliminate errors during neoantigen candidate selection, potentially 

increasing the efficacy of personalized vaccines. Further studies may also demonstrate the 

importance of considering proximal variants when using neoantigen load to predict response 

to checkpoint blockade inhibition therapies. 

 

3.5 Code availability 

The proximal variant analysis code has now been added to the proximal_variants branch of 

the pVACtools GitHub repository (see URLs). We have also packaged this branch and 
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uploaded the package as an alpha release to TestPyPi. The alpha release can be installed by 

running `pip install -f https://test.pypi.org/project/pvactools/1.0.8/ pvactools==1.0.8` on the 

command line. The feature will be released with the main pVACtools package as part of the 

next software release cycle (version 1.1.0).  

3.5.1 URLs 

Picard: https://broadinstitute.github.io/picard/ 

pVACtools: http://pvactools.org/ 

Github repository for proximal variant analysis code: 

https://github.com/griffithlab/pVACtools/tree/proximal_variants 

 

3.6 Data availability 

Several of the in-house sequencing datasets used in the study have been previously published 

and deposited in various databases. All sequence data for the HER2+ breast cancer samples 

can be accessed via the Database of Genotypes and Phenotypes (dbGAP; study accession: 

phs001291)128. Data for oral squamous cell carcinoma project and hepatocellular carcinoma 

samples are part of other manuscripts currently in preparation, and can be accessed under 

dbGAP study accession phs001623 and phs001106, respectively. Results for the glioblastoma 

case129 and small cell lung cancer119 have been published and can be accessed under dbGAP 

study accessions phs001663 and phs001049, respectively. TCGA data can be accessed under 

dbGaP study accession phs000178. 
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4.1 Introduction 

Increasing interest in identifying the numbers and types of predicted neoantigens encoded by 

a cancer genome has placed an emphasis on the facility and precision of related 

computational prediction tools45.  Several such efforts have been published112,113,130. 

Typically, these tools start with a list of somatic variants (in VCF or other formats), with 

annotated protein changes, and predict the strongest MHC binding peptides (8-11-mer for 

class I MHC and 13-25-mer for class II) using one or more prediction algorithms56,57,131. The 

predicted neoantigens are then filtered or ranked based on quality metrics including 

sequencing read coverage, variant allele fraction, gene expression, and differential binding 

compared to the wild type peptide (agretopicity index score 85). However, of the small 

number of such prediction tools (Table 4.1), most lack some key functionality, including 

predicting neoantigens from gene fusions, aiding optimized vaccine design for DNA cassette 

vaccines, and including nearby germline or somatic alterations into the candidate 

neoantigens132. An intuitive graphical user interface to visualize and efficiently select the 

most promising candidates is also critical to facilitate involvement of clinicians and other 

researchers in the process of neoantigen evaluation.  

 
To address these limitations and to add facility for all end-users, we created a comprehensive 

and extensible framework for computational identification, selection, prioritization and 

visualization of neoantigens - ‘pVACtools’, that facilitates each of the major components of 

neoantigen identification. This computational framework can be used to identify neoantigens 

from a variety of somatic alterations, including gene fusions and insertion/deletion frameshift 

mutations, both of which potentially create very immunogenic neoantigens133. Further, 

pVACtools can facilitate both MHC class I and II predictions, and provides an interactive 

display of predicted neoantigens for review by the end user. 
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   pVACtools Vaxrank113 MuPeXI1

12 
CloudNeo13

0 
FRED2134 Epi-Seq85 ProTect 

(https://gi
thub.com/
BD2KGe
nomics/pr
otect) 

Variant 
calling (within 
the pipeline) 

N N N N N Y Y 

Variant types 
supported 

SNVs, Inframe 
Indels, 
Frameshifts, 
Gene fusions 
(pVACfuse) 

SNVs, Indels,  SNVs, 
Inframe 
Indels, 
Frameshif
ts 

SNVs SNVs, Inframe 
Indels, 
Frameshifts,  

SNVs SNVs 

HLA typing 
(within the 
pipeline) 

N N N Y ( 
PolySolver, 
HLAMiner) 

Y (via separate 
installation of 
OptiType, 
Polysolver, 
Seq2HLA, & 
ATHLATES) 

N Y (Phlat) 

RNA-Seq 
expression 
data filter 

Y (pVACseq) Y Y N N Y Y 

Sequence 
coverage & 
VAF filter 

Y (pVACseq) Y Y (only 
compatibl
e with 
MuTect2 
variant 
calls) 

N N Y N 

Algorithms 
used for 
epitope 
binding 
affinity  
prediction 

IEDB (web and 
local) 
 
(MHC Class I: 
NetMHCpan, 
NetMHC, 
NetMHCcons, 
PickPocket,, 
SMM, 
SMMPMBEC)  
 
MHCflurry 
MHCnuggets 
 
(MHC Class II: 
NetMHCIIpan, 
SMMalign, 
NNalign 
MHCnuggets) 

IEDB (web and 
local) 
 
MHCflurry, 
NetMHC, 
NetMHCpan, 
NetMHCIIpan, 
NetMHCcons,  
 

netMHCp
an (local 
only) 

netMHC, 
netMHCpan 
(local only) 

Local: NetMHC, 
NetMHCPan, 
NetMHCII, 
NetMHCIIpan, 
NetCTLpan, 
PickPocket 
 
Included: 
Select from, 
SMMPMBEC, 
syfpeithi, SMM, 
Tepitopepan, 
ARB,epidemix,  
comblibsidney, 
Unitope, 
HAMMER, 
SVMHC, 
BIMAS, 

NetMHC 
(local 
only) 

IEDB 
(local 
only) 

Stability 
prediction 

Y 
(NetMHCstabpa
n) 

N N N Y 
(NetMHCstabpa
n) 

N N 

Cleavage site 
prediction 

Y (NetChop) Y (NetChop) N N Y (ProteaSMM, 
PCM, Ginodi, 
NetChop) 

N N 

Support for 
vector 
design/epitope 
assembly 

Y (pVACvector) N N N Y (OptiVac) N N 

Incorporation Y Y (RNA only) N N N Y N 
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of proximal 
variants 

(RefHap) 

Unique 
epitope 
ranking 
method 

Y Y (“Total Binding 
Score”) 

Y 
(“Priority 
Score”) 

N Y (OptiTope 
immunogenicity 
score) 

N Y 
(Rankboo
st score) 

Graphical 
User Interface 

Y (pVACviz) N Y 
(http://ww
w.cbs.dtu.
dk/service
s/MuPeXI
/) 

Y (via  NCI 
Cancer 
Genomics 
Cloud 
version) 

Y (EpiToolKit 
2.0) 

N N 

Results 
visualization  

Y (pVACviz) N N N N  N N 

HTTP REST 
API 

Y (pVACapi) N N N Y N N 

License NPOSL-3.0 Apache 2.0 Unknown Apache 2.0 3-clause BSD Unknown Apache 
2.0 

Table 4.1: Comparison of existing software and tools for cancer immunotherapy analysis 

 

4.2 pVACtools workflow 

The pVACtools workflow (Figure 4.1) is divided into flexible components that can be run 

independently. The main tools in the workflow are: (a) pVACseq: a significantly enhanced 

and reengineered version of our previous pipeline111 for identifying and prioritizing 

neoantigens from a variety of tumor-specific alterations (b) pVACfuse: a tool for detecting 

neoantigens resulting from gene fusions (c) pVACviz: a graphical user interface web client 

for process management, visualization and selection of results from pVACseq (d) 

pVACvector: a tool for optimizing design of neoantigens and nucleotide spacers in a DNA 

vector that prevents high-affinity junctional epitopes, and (e) pVACapi: an OpenAPI HTTP 

REST interface to the pVACtools suite. 
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Figure 4.1: Overview of pVACtools workflow: The pVACtools workflow is highly 
modularized and is divided into flexible components that can be run independently. The main 
tools under the workflow include pVACseq111 for identifying and prioritizing neoantigens 
from a variety of somatic alterations (red inset box), pVACfuse (green) for detecting 
neoantigens resulting from gene fusions, pVACviz (blue) for process management, 
visualization and selection of results and pVACvector (orange) for optimizing design of 
neoantigens and nucleotide spacers in a DNA vector. All of these tools interact via the 
pVACapi (purple), an OpenAPI HTTP REST interface to the pVACtools suite. 
 
pVACseq111 has been completely implemented in Python3 and extended to include many new 

features since our initial report of its use. pVACseq no longer requires a custom input format 

for variants, and now uses a standard VCF file annotated with VEP4. In our own neoantigen 

identification pipeline, this VCF is the result of merging results from multiple somatic variant 

callers and RNA expression tools. Information that is not natively available in the VCF 

output from somatic variant callers (such as coverage and variant allele fractions for RNA 

and DNA, as well as gene and transcript expression values) now can be added to the VCF 

using vcf-annotation-tools (vatools.org), a suite of accessory scripts that we created to 

accompany pVACtools. pVACtools queries these features directly from the VCF, enabling 
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prioritization and filtering of neoantigen candidates based on sequence coverage and 

expression information. In addition, pVACtools now makes use of phasing information 

provided in the VCF, taking into account all variants proximal to somatic variants of interest 

that alter neoantigen peptide sequences. Since proximal variants can change the neoantigenic 

peptide sequence and also affect neoantigen binding predictions, this is an important 

confounding factor to ensure that the selected neoantigens correctly represent the individual’s 

genome132. We have also expanded the supported mutation types for neoantigen predictions 

to include in-frame indels and frameshift mutations. These capabilities expand the potential 

number of targetable neoantigens several-fold in many tumors.  

 
To prioritize neoantigens, pVACseq now offers support for as many as eight different MHC 

Class I epitope prediction algorithms and four MHC Class II prediction algorithms. The tool 

does this by leveraging the Immune Epitope Database (IEDB)135 and their suite of six 

different MHC class I prediction algorithms, as well as three MHC Class II algorithms. 

pVACseq supports local installation of these tools for power-users, or provides 

straightforward access by default via the IEDB RESTful web interface. In addition, pVACseq 

now contains an extensible framework for supporting new neoantigen prediction algorithms 

that has been used to add support for two new non-IEDB algorithms - MHCflurry61 and 

MHCnuggets62. By creating a framework that integrates many tools we allow for (a) a 

broader ensemble approach than IEDB, and (b) a system that other users can leverage to 

develop improved ensemble ranking, or to integrate proprietary or not-yet-public prediction 

software. Importantly, this framework enables non-informatics-savvy users to predict 

neoantigens from sequence variant data sets. 
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Once neoantigens have been predicted, the pVACseq ranking score is used to prioritize them. 

This score takes into account gene expression, sequence read coverage, binding affinity 

predictions, and agretopicity. In addition to applying strict binding affinity cutoffs, the 

pipeline also offers support for MHC allele-specific cutoffs136. Taking a step further than 

most commonly used approaches, we also offer cleavage position predictions via optional 

processing through NetChop137 as well as stability predictions made by NetMHCstab138.  

 

Previous studies have shown that the novel protein sequences produced by gene fusions 

frequently produce neoantigen candidates139. pVACfuse provides support for predicting 

neoantigens from such gene fusions. Fusion variants may be imported in annotated BEDPE 

format from any fusion caller (we used INTEGRATE-Neo139). These variants are then 

assessed for presence of fusion neo-epitopes using predictions against any of the pVACseq-

supported binding prediction algorithms. 

 

Implementing cancer vaccines in a clinical setting requires multidisciplinary teams, many of 

whom may not be informatics savvy. To support this growing community of users, we 

developed pVACviz, which is a browser-based user interface that assists in launching, 

managing, reviewing, and visualizing the results of pVACtools processes. Instead of 

interacting with the tools via terminal/shell commands, the pVACviz client provides a 

modern web-based user experience. Users complete a pVACseq process setup form that 

provides helpful documentation and suggests valid values for inputs. The client also provides 

views showing ongoing processes, their logs, and interim data files to aid in managing and 

troubleshooting. After a process has completed, users may examine the results as a filtered 

data table, or as a scatterplot visualization - allowing them to curate results and save them as 

a CSV file for further analysis. 
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Figure 4.2: pVACviz GUI client: pVACtools provides a browser-based graphic user 
interface, called pVACviz, that provides an intuitive means to launch pipeline processes, 
monitor their execution, and analyze, export, or archive their results. To launch a process, 
users navigate to the Start Page (A), and complete a form containing all of the relevant 
inputs and settings for a pVACseq process. Each form field includes help text, and provides 
typeahead completion where applicable. For instance, the Alleles field provides a typeahead 
dropdown menu that match available alleles. Once a process is launched, a user may monitor 
its progress on the Manage Page (B), which lists all running, stopped, and completed 
processes. The Details Page (C) shows a process’ current log, attributes, and any results files 
as well as providing buttons for stopping, restarting, exporting and archiving the process. 
The results of pipeline processes may be analyzed on the Visualize Page (D), which displays 
a customizable scatterplot of a file's rows. The X and Y axis may be set to any column in the 
result set, and filters may be applied to values in any column. Additionally, points may be 
selected on the scatter plot or data grid (not visible in this figure) for further analysis or 
export as CSV files. 
  

Furthermore, to support informatics groups that want to incorporate or build upon the 

pVACtools features, we developed pVACapi, which provides a HTTP REST interface to the 

pVACtools suite. Currently, it provides the API that pVACviz uses to interact with the 

pVACtools suite. Advanced users could develop their own user interfaces, or use the API to 

control multiple pVACtools installations remotely over an HTTP network. 

 

Once a list of neoantigen candidates has been prioritized and selected, the pVACvector utility 

can be used to aid in the construction of DNA-based cancer vaccines. The input is either the 

output file from pVACseq or a fasta file containing peptide sequences, and pVACvector 
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returns a neoantigen sequence ordering that minimizes the effects of junctional epitopes 

(which may create novel antigens) between the sequences. This is accomplished by using the 

core pVACseq services to predict the binding scores for each junctional peptide and by 

testing junctions with spacer140 amino acid sequences that may help to reduce reactivity. The 

final vaccine ordering is achieved through a simulated annealing procedure that returns a 

near-optimal solution, when one exists. 

 

pVACtools has been used to predict and prioritize neoepitopes for several neoantigen 

studies141–143 and cancer vaccine clinical trials (e.g. NCT02348320 and NCT03122106). We 

also have a large external user community (the original ‘pvacseq’ package has been 

downloaded over 37,000 times from PyPi, and the ‘pvactools’ package has been downloaded 

over 9,000 times) that has been actively evaluating and using these packages for their 

neoantigen analysis, and has also helped in the subsequent refinement of pVACtools through 

feedback. 

4.3 Methods 

To demonstrate the utility and performance of the pVACtools package, we downloaded 

exome sequencing and RNA-Seq data from The Cancer Genome Atlas (TCGA)14 from 100 

cases each of melanoma, hepatocellular carcinoma and lung squamous cell carcinoma, and 

used patient-specific MHC Class I alleles (Figure 4.3) to determine neoantigen candidates 

for each cancer.  

 

4.3.1 TCGA data pre-processing 

Aligned tumor and normal BAMs from BWA87 (version 0.7.12-r1039) as well as somatic 

variant calls from VarScan2144,97 (in VCF format) were downloaded from the Genomic Data 
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Commons (GDC, https://gdc.cancer.gov/ ). Since the GDC does not provide germline variant 

calls for TCGA data, we used GATK’s145 HaplotypeCaller to perform germline variant 

calling using default parameters. These calls were refined using VariantRecalibrator in 

accordance with GATK Best Practices121. Somatic and germline missense variant calls from 

each sample were then combined using GATK’s CombineVariants, and the variants were 

subsequently phased using GATK’s ReadBackedPhasing algorithm. 

 

Phased Somatic VCF files were annotated with RNA depth and expression information using 

VCF annotation tools (vatools.org). We restricted our analysis to only consider ‘PASS’ 

variants in these VCFs as these are higher confidence than the raw set, and the variants were 

annotated using the “--pick” option in VEP. 

 

Existing in silico HLA typing information was obtained from The Cancer Immunome Atlas 

(TCIA) database122. 

 

4.3.2 Neoantigen prediction 

The VEP-annotated VCF files were then run through pVACseq using all eight Class I 

prediction algorithms and for epitope lengths 8-11. The current MHC Class I algorithms 

supported by pVACseq are NetMHCpan58, NetMHC57,58, NetMHCcons(Karosiene et al. 

2012), PickPocket59, SMM63, SMMPMBEC64, MHCflurry61 and MHCnuggets62. The four 

MHC Class II algorithms that are supported are NetMHCIIpan, SMMalign, NNalign, and 

MHCnuggets. For the demonstration analysis, we limited our prediction to only MHC Class I 

alleles due to availability of HLA typing information from TCIA, though predictions of Class 

II can be just as easily generated using pVACtools. 
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4.3.3 Ranking of Neoantigens 

To help prioritize neoantigens, a ranking score is assigned where each of the following four 

criteria are assigned a rank-ordered value (where the worst = 1): 

B = binding affinity 

F = Fold Change between MT and WT alleles 

M = mutant allele expression, calculated as (Gene expression * Mutant allele RNA Variant 

allele fraction) 

D = DNA Variant allele fraction 

 

A final ranking is based on a score obtained from combining these values:  

Priority Score = B+F+(M*2)+(D/2).  This score is not meant to be the final word on peptide 

suitability for vaccines, but was designed to be a useful metric. 

 

4.3.4 Pipeline for creation of pVACtools input files 

pVACtools is designed to support a standard VCF variant file format and thus, should be 

compatible with many existing variant calling pipelines. However, as a reference, we provide 

the following description of our current somatic and expression analysis pipeline (manuscript 

in preparation) which has been implemented using docker, CWL146, and Cromwell147. The 

pipeline consists of workflows for alignment of exome/DNA- and RNA-Seq data, somatic 

and germline variant detection, RNA-Seq expression estimation as well as optional HLA 

typing. 

 

This pipeline starts with raw patient tumor exome or cDNA capture148 and RNA-seq data and 

produces annotated VCFs for neoantigen identification and prioritization with pVACtools. 
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Our pipeline consists of three main components: DNA alignment, variant detection and 

annotation, as well as RNA-seq data processing. More specifically, we use BWA-MEM87 for 

aligning the patient’s tumor and normal exome data. The output BAM then undergoes 

merging (Samtools Merge), query name sort (Picard SortSam), duplicate marking (Picard 

MarkDuplicates), position sorting followed by base quality recalibration (GATK 

BaseRecalibrator). GATK’s HaplotypeCaller145 is used for germline variant calling and the 

output variants are annotated using VEP4 and filtered for coding sequence variants.  

 

For somatic variant calling, our pipeline combines the output of four variant detection 

algorithms- Mutect2149, Strelka98, Varscan144,97 and Pindel150. The combined variants are 

normalized using GATK’s LeftAlignAndTrimVariants where the indels are left-aligned and 

common bases are trimmed. Vt151 is used to split multi-allelic variants. Several filters such as 

gnomAD allele frequency, percentage of mapq0 reads, as well as pass-only variants are 

applied prior to annotation of the VCF using VEP. We use a combination of custom and 

standard plugins for VEP annotation (params: --format VCF --plugin Downstream --plugin 

Wildtype --symbol --term SO --transcript_version --tsl --coding_only --flag_pick --hgvs).  

Variant coverage is assessed using bam-readcount (https://github.com/genome/bam-

readcount) for both the tumor and normal DNA exome data and is also annotated into the 

VCF output using VCF-annotation-tools (vatools.org).  

 

Our pipeline also generates a phased-VCF file by combining both the somatic and germline 

variants and running the sorted combined variants through GATK ReadBackedPhasing.  

 

For RNA-seq data, the pipeline first trims the adapter sequence using flexbar152 and aligns the 

patient’s tumor RNA-seq data using HISAT2153. Two different methods, Stringtie154 and 
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Kallisto155, are employed for evaluating both the transcript and gene expression values. 

Additionally, coverage support for variants in RNA-seq data can also be assessed through 

bam-readcount. This information is added to the VCF using VCF-annotation-tools and serves 

as an input for neoantigen prioritization using pVACtools. 

 

Optionally, our pipeline can also run HLA-typing in silico using OptiType48 when clinical 

HLA typing is not available.  

 

4.3.5 Implementation of software 

pVACtools is written in Python3. The individual tools are implemented as separate command 

line entry points that can be run using the `pvacseq`, `pvacfuse`, `pvacvector`, `pvacapi`, and 

`pvacviz` commands to run the respective tool. pVACapi is required to run pVACviz so both 

the `pvacapi` and `pvacviz` command need to be executed in separate terminals. For 

pVACseq, the PyVCF package is used for parsing the input VCF files. The mhcflurry and 

mhcnuggets packages are used to run the MHCflurry and MHCnuggets prediction algorithms, 

respectively. The pandas package is used for data management while filtering and ranking the 

neoantigen candidates in pVACseq and pVACfuse. The simanneal package is used for the 

simulated annealing procedure when running pVACvector. pVACapi is implemented using 

Flask and Bokeh. The pVACviz client is written in TypeScript using the Angular web 

application framework, the Clarity UI component library, and the ngrx library for managing 

application state. The test suite is implemented using the Python unittest framework and 

GitHub integration tests are run using travis-ci (travis-ci.org). Code changes are integrated 

using GitHub pull requests (https://github.com/griffithlab/pVACtools/pulls). Feature 

additions, user requests, and bug reports are managed using the GitHub issue tracking 

(https://github.com/griffithlab/pVACtools/issues). User documentation is written using the 
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reStructuredText markup language and the Sphinx documentation framework (sphinx-

doc.org). Documentation is hosted on Read The Docs (readthedocs.org).  

 

4.4 Results and Discussion 

4.4.1 Analysis of TCGA data using pVACtools 

To demonstrate the utility and performance of the pVACtools package, we downloaded 

exome sequencing and RNA-Seq data from The Cancer Genome Atlas (TCGA)14 from 100 

cases each of melanoma, hepatocellular carcinoma and lung squamous cell carcinoma, and 

used patient-specific MHC Class I alleles  (Figure 4.3) to determine neoantigen candidates 

for each patient. There were a total of 64,422 VEP-annotated variants reported across 300 

samples, with an average of 214 variants per sample. Of these, 61,486 were single 

nucleotides variants (SNVs), 479 were inframe insertions and deletions and 2,465 were 

frameshift mutations (Figure 4.4). We used this annotated list of variants as input to the 

pVACseq component of pVACtools to predict neoantigenic peptides. pVACseq reported 

14,599,993 unfiltered peptide candidates. The original version of pVACseq111 reported 

10,284,467 peptides, and thus, by extending support for additional variant types as well as 

prediction algorithms (due to support for additional alleles), we produced 42% more raw 

candidate neoantigens.  
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(a) 

 
 
 
(b)  

 
 
 
 



 
 

 89 

 
 
(c)   

 
Figure 4.3: Patient counts per HLA allele subtype Distribution of HLA-alleles for the entire 
cohort of 300 TCGA patients analyzed in this study is shown in each of the three plots for (a) 
HLA-A allele subtypes (33 unique alleles); (b) HLA-B allele subtypes (67 unique alleles); (c) 
HLA-C allele subtypes (30 unique alleles). The total number of unique HLA alleles found in 
the patient cohort was 130. 
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Figure 4.4: Violin plots showing the distribution of observed variants per cancer type 
summarized for each variant type supported by pVACseq. (A) missense (total variant count: 
61,486), (B) inframe deletion (total variant count: 389), (C) inframe insertion (total variant 
count: 81), and (D) frameshift (total variant count: 2,465).  
 

By applying our default median binding affinity cutoff of 500 nM across all eight MHC Class 

I prediction algorithms, there were 96,235 predicted strong binding neoantigens, derived from 

34,552 somatic variants (32,788 missense SNVs, 1,603 frameshift variants and 131 in-frame 

indels). This set of strong binders was further reduced by filtering out mutant peptides with 
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median predicted binding affinities (across all prediction algorithms) greater than that of the 

corresponding wildtype peptide (i.e. mutant/wildtype binding affinity fold change > 1), 

resulting in 70,628 neoantigens from 28,588 variants (26,880 SNVs, 1,583 frameshift and 

125 in-frame indels).  

 

This set was subsequently filtered by evaluation of exome sequencing data coverage and our 

recommended defaults, as follows. By applying the default criteria of variant allele fraction 

(VAF) cutoff of > 25% in tumor and < 2% in normal sample, with coverage levels of at least 

10X tumor coverage and at least 5X normal coverage, 10,730 neoantigens from 4,891 

associated variants (4,826 SNVs, 56 frameshift and 9 in-frame indels) were obtained, with an 

average of 36 neoantigens predicted per case. Since RNA-seq data also were available, the 

filtering criteria included RNA-based coverage filters (tumor RNA VAF > 25% and tumor 

RNA coverage > 10X) as well as a gene expression filter (FPKM > 1). To condense the 

results even further, only the top ranked neoantigen was selected per variant across all alleles, 

lengths, and registers (position of amino acid mutation within peptide sequence), resulting in 

4,891 total neoantigens with an average of 16 neoantigens per case. This list was then 

processed with pVACvector to determine the optimum arrangement of the predicted high 

quality neoantigens for a DNA-vector based vaccine design (Figure 4.5). 
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Figure 4.5: An example from pVACvector output showing the the optimum arrangement of 
candidate neoantigens for a DNA-vector based vaccine design. The figure shows 
visualization of a circularized DNA insert carrying the encoded neoantigenic peptide 
sequences to be synthesized and encoded/cloned into a DNA plasmid.  DNA sequences 
encoding each peptide are ordered (with use of spacer sequences where needed) to ensure 
there are no strong-binding junctional epitopes. Each neoantigenic peptide candidate is 
shown in Blue,Green, Red, Orange, Purple, and Brown. Spacer sequences, where added for 
minimizing junctional epitope affinity, are depicted in Black, along with the binding affinity 
value of the strongest binding junctional epitope. Labels depict 
MutantIdentifier:GeneName:TranscriptName:TranscriptNumber:TypeofMutation:AminoAcid
Change.  
 
 
4.4.2 Comparison of epitope prediction software 

Since we offer support for as many as eight different epitope prediction tools, we assessed 

agreement between these algorithms from a random subset of 100,000 peptides (Figure 4.6). 

The highest correlation was observed between the two stabilization matrix method (SMM)-

based algorithms - SMM and SMMPMBEC. The next best correlation was observed between 

NetMHC and MHCflurry.  
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Figure 4.6: Spearman Correlation between prediction values This figure shows a heatmap 
of the Spearman correlation between binding affinity predictions from all eight algorithms 
generated from random subsample set of size 100,000 peptides 
 
 

keWe also evaluated if there were any biases within the algorithms to predict strong (i.e. 

binding affinity < = 500nM) or weak binding epitopes (Figures 4.7 and 4.8).  We found that 

MHCnuggets predicts the highest number of strong-binding candidates alone. Of the total 

number of strong binding candidates predicted, 64.7% of these candidates were predicted by 

a single algorithm, 35.2% were predicted as strong-binders by two to seven algorithms, and 

only 1.8% of the strong-binding candidates were predicted as strong binders by the 

combination of all eight algorithms. Infact, even if one (or more) algorithms predict a peptide 

to be a strong binder, often another algorithm not only doesn't agree but disagrees by a large 

margin, in some cases predicting that same peptide as a very weak binder. This remarkable 

lack of agreement underscores the potential value of considering multiple algorithms.   
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(a)

 
 
(b) 

 
Figure 4.7: Upset plot between number of peptides and prediction algorithms Intersection 
of peptide sequences predicted by different algorithms are shown using upset plots. The y-
axis shows the number of overlapping unique neoantigenic peptides predicted for each 
combination of algorithm depicted on the x-axis. Each filled black circle shows the sets 
contained in an exclusive intersection (i.e. the identity of each algorithm), while the light 
gray circles represent the algorithm(s) that do not participate in this exclusive intersection. 
(a) Upset plot for the top 20 algorithm combinations ranked by the number of peptides 
predicted to be a good binder (mutant IC50 score < 500 nM). The combination of all eight 
algorithms (highlighted orange) ranks the 8th highest; (b) Upset plot for algorithm 
combinations where at least six algorithms agree on predicting a peptide to be a good binder 
(MT IC50 score < 500 nM). The combination of all eight algorithms (highlighted orange) 
ranks the highest. 
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Figure 4.8: Number of peptides predicted to be good binders (MT IC50 Score < 500 nM) 
versus number of algorithms used. 
 
Next we determined if the number of human HLA alleles supported by these eight algorithms 

differed. As shown (Figure 4.9), MHCnuggets supports the highest number of human HLA 

alleles. 
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(a) 

 
(b) 

  
(c )  

 
Figure 4.9: Human HLA Allele subtype support distribution by eight algorithms (a) 
Number of allele subtypes supported versus number of algorithms; (b) Upset plot for 
algorithm combinations ranked by the number of allele subtypes supported by pVACseq. 
Total number of HLA allele subtypes supported by pVACseq: 9,851. The combination of all 
eight algorithms (highlighted orange) ranks the 3th highest; (C) Upset plot for algorithm 
combinations ranked by the number of allele subtypes supported for the 300 TCGA samples 
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analyzed in this study. Total number of HLA alleles across patient cohort: 130. The 
combination of all eight algorithms (highlighted orange) ranks the 2nd highest. 
 
4.4.3 Comparison of filtering criteria 

Since pVACtools offers a multitude of ways to filter the list of predicted neoantigens, we 

evaluated and compared the effect of each filter in narrowing down high quality neoantigen 

candidates.  

 

We first compared the effect of running pVACtools using the commonly used standard 

binding score cutoff of <= 500nM (parameters: -b 500) versus the newly added allele-specific 

score filter (parameters: -a). These cutoffs were, by default, applied to the “median” binding 

score of all prediction algorithms. 96,235 neoantigens (average 320.78 per patient) were 

predicted using the 500 nm binding score cutoff compared to 94,068 neoantigens (average 

313.56 per patient) using allele-specific filters. About 79% neoantigens were shared between 

the two sets. 

 

We also narrowed further to include only those predictions where the default “median” 

predicted binding affinities (< = 500 nm) are lower than each corresponding median wildtype 

peptide affinity (parameters: -b 500 -c 1) (i.e. a binding affinity mutant/wild type ratio or 

aggretopicity value indicating that the mutant version of the peptide is a stronger binder). 

Using the aggretopicity value filter, 70,628 neoantigens (average 235.43 per patient) were 

predicted versus the previously reported 96,235 neoantigens without this filter. 

 

We also evaluated the effect of the aggretopicity value filter when applied to the set of 

epitopes filtered on “lowest” binding score of < = 500 nm ( parameters: -b 500 -c 1 -m 

lowest). This filter reports peptides where at least one of the algorithms predicts a strong 
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binder, instead of calculating a median score and requiring that to meet the 500 nm threshold 

(Figure 4.10).  Using the lowest binding score filter resulted in an 11-fold increase in the 

number of candidates predicted (827,423 candidates, average 2,758.08 per patient). 

 
(a)  

 
 
 
(b) 

 
Figure 4.10: Overall of distribution of binding affinity scores (nM) for peptides where at 
least one of the algorithms predicts a strong binder. HLA allele subtype-specific thresholds 
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are applied when available, otherwise the default cutoff binding affinity of 500 nM is used. 
Peptides with predicted MT IC50 scores lower than their respective cutoff scores are 
highlighted in orange. The median MT IC50 scores of each algorithm’s prediction are 
marked for reference. (a) Original data on logarithmic scale; (b) A ceiling of 1000 nM is 
applied to the MT IC50 scores. 
 
 
Using the median (default) binding affinity filtering criteria, we next applied coverage and 

expression based filters. First, we filtered using the recommended defaults i.e. greater than 

5X normal DNA coverage, less than 2% normal VAF, greater than 10X tumor RNA and 

DNA coverage and greater than 25% tumor RNA and DNA VAF, along with FPKM > 1 for 

transcript level expression (parameters: --normal-cov 5 --tdna-cov 10 --trna-cov 10 --normal-

vaf 0.02 --tdna-vaf 0.25 --trna-vaf 0.25 --expn-val 1). A total of 10,730 neoantigens were 

shortlisted across all samples with an average of 35 neoantigens per case. We then compared 

this set with a slightly more stringent criteria using tumor DNA and RNA VAF of 40% 

(parameters: --tdna-vaf 0.40 --trna-vaf 0.40). This shortened our list of predicted neoantigens 

to 4,073 candidates averaging to 13 candidates per patient. 

 

Lastly, we applied our top binding score filter to select the best candidate neoantigen per 

variant across all alleles and all lengths (one result per variant) using the previously described 

default filters. This resulted in a final list of 4,891 neoantigens across 300 patients. 

 

4.4.4 Demonstration of neoantigen analysis using pVACfuse 

To demonstrate the potential of neoantigens resulting from gene fusions, we analyzed TCGA 

prostate cancer RNA-seq data from 302 patients. This dataset was used as a demonstration set 

for the neoantigen prediction supported by Integrate-Neo. We wanted to assess the difference 

(if any) in neoantigens candidates reported by INTEGRATE-Neo139 using the one MHC 
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Class I prediction algorithm it supports (NetMHC) versus an ensemble of eight Class I 

prediction algorithms supported in pVACfuse. 

 

Using 1,619 gene fusions across 302 samples as input, pVACfuse reported 2,104 strong 

binding neoantigens (binding affinity <= 500nM) resulting from 739 gene fusions. On 

average, there were about 7 neoantigens per sample resulting from an average of 2 fusions 

per case. This is an eight fold increase in the number of strong binding neoantigens predicted 

by pVACfuse versus the ones reported by INTEGRATE-Neo, which reported 261 

neoantigens across 210 fusions. 

 

4.5 Conclusion 

As reported from our demonstration analysis, a typical tumor has too many possible 

neoantigen candidates to be practical for a vaccine. There is therefore a critical need for a tool 

that takes in the input from a standard sequencing analysis pipeline and reports a filtered and 

prioritized list of neoantigens. pVACtools enables a streamlined, accurate and user-friendly 

analysis of neoantigenic peptides from NGS cancer datasets. This suite offers a complete and 

easily configurable end-to-end analysis, starting from somatic variants and gene fusions 

(pVACseq and pVACfuse respectively), through filtering, prioritization, and visualization of 

candidates (pVACviz), and determining the best arrangement of candidates for a DNA vector 

vaccine (pVACvector). Furthermore, by supporting additional classes of variants as well as 

gene fusions, we offer an increase in the number of predicted epitopes which is even more 

important in the case of low mutational burden tumors. Finally, by extending support for 

multiple binding prediction algorithms, we allow for a consensus approach. The need for this 
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integrated approach is made abundantly clear by the high disagreement between these 

algorithms observed in our demonstration analyses. 

 

The results from pVACtools analyses are already being used in cancer immunology studies, 

including studying the relationship between tumor mutation burden and neoantigen load to 

predict response in checkpoint blockade therapy trials and the  design of cancer vaccines in 

ongoing clinical trials. We anticipate that pVACtools will make such analyses more robust, 

reproducible, and facile as these efforts continue.  

 

4.6 Data availability 

Data from 100 cases each of melanoma, hepatocellular carcinoma and lung squamous cell 

carcinoma were obtained from TCGA and downloaded via the Genomics Data Commons 

(GDC). This data can be accessed under dbGaP study accession phs000178. Data for 

demonstration and analysis of fusion neoantigens was downloaded from the Github repo for 

Integrate (https://github.com/ChrisMaherLab/INTEGRATE-Vis/tree/master/example). 

 

4.7 Software availability 

The pVACtools codebase is hosted publicly on GitHub at 

https://github.com/griffithlab/pVACtools and https://github.com/griffithlab/BGA-interface-

projects (pVACviz). User documentation is available at pvactools.org. This project is 

licensed under the Non-Profit Open Software License version 3.0 (NPOSL-3.0, 

https://opensource.org/licenses/NPOSL-3.0). pVACtools has been packaged and uploaded to 

PyPi under the “pvactools” package name and can be installed on Linux systems by running 

the `pip install pvactools[API]` command. Installation requires a Python 3.5 environment 
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which can be emulated by using Conda. Versioned Docker images are available on 

DockerHub (https://hub.docker.com/r/griffithlab/pvactools/). 
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Chapter 5: Conclusion and future 

directions  
 
Neoantigen prediction accuracy  is a critical factor in the widespread adoption of cancer 

vaccine-based immunotherapy, as vaccine efficacy depends on selection of the best 

neoantigens.  The approaches developed in this work should help to identify, evaluate and 

characterize tumor-specific neoantigens in a much-reduced time, thereby increasing the  

applicability of cancer vaccines for clinical use.  

 

Preliminary studies in human patients have shown that only a subset of candidate antigens 

predicted by existing methods elicit an immune response when administered as a vaccine72. 

In fact, only about 16–43% of the predicted neoantigenic peptides included in a vaccine 

formulation for any reported clinical trial to-date yield a CD8+ T cell response. This lack of 

accuracy in prediction may emerge from several sources of uncertainty in neoantigen 

prediction, including the inability to identify which of the predicted neoantigenic peptides 

with high binding affinity will be processed and presented to the immune system by the 

MHC. This aspect is not readily predicted computationally, although there are several 

algorithms available to perform these predictions 137.  Hence, there is a critical need for an 

approach that learns from the response data obtained from clinical cancer vaccine  trials and 

uses the information to refine  neoantigen predictions for future trials. We have hypothesized 

that a machine learning approach might help in refining these predictions such that a higher 

percentage of the neoantigens are  able to induce T-cell immunity when administered in the 

cancer vaccine.  Hence, we have initiated an effort to curate these data from multiple clinical 

trials and to implement a machine learning-based approach. 
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Pursuit of machine learning will require several components, outlined below: 

Construct target variable(s) 

To assess ‘good’ vaccine candidates, we will first need to define appropriate criteria to 

construct a target variable(s) as an indicator of immunogenicity. Different immunology labs 

may use different metrics for such an analysis, and since not all labs actively use neoantigens 

for vaccination per se, some data mining will be required to determine which assays are used 

routinely. This will help in narrowing down a common endpoint across different projects to 

assess immunogenicity. Some examples of these assays include ELISPOT/ELISA that 

measures IFNγ production, Peptide–MHC tetramers/dextramer assays, or a combination of 

both. 

  

Obtain data from published and ongoing research 

There are several in-house vaccine clinical trials currently underway as collaborations 

between the McDonnell Genome Institute and the Siteman Cancer Center. For example, the 

Komen Promise Vaccine trial which aims to design and treat triple negative breast cancer 

patients during the window of opportunity following neoadjuvant chemotherapy, surgery and 

radiation therapy, is a  phase I clinical trial that compares synthetic polypeptide-    

(https://clinicaltrials.gov/ct2/show/NCT02427581) to DNA-based vaccines 

(https://clinicaltrials.gov/ct2/show/NCT02348320). Initial results were already  published for 

a first-in-human  vaccine trial in melanoma patients 

(https://clinicaltrials.gov/ct2/show/NCT00683670). There were five patients enrolled in this 

phase 1 vaccine clinical trial employing autologous, functionally mature, interleukin (IL)-

12p70-producing dendritic cells (DC) carrying neoantigens identified by our pipeline.   
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We  also are actively curating previously published research to inform our machine learning 

approach37,41,42,66,156,157. One caveat for these published datasets is the absence of 

transcriptome data in some cases, which will need to be imputed while building the predictive 

model.  

 

Engineer features based on dataset properties 

Since genomic and/or transcriptomic data are now used routinely for assessment of 

neoantigens, it is essential to use this information from such massively parallel sequencing 

studies to select appropriate features for building the machine learning classifier. We may use 

basic aggregators on the given data to engineer meaningful features for the model. Some of 

these features include: 

a) Tumor coverage from DNA and/or RNA 

b) Tumor variant allele fraction from DNA and/or RNA 

c) Gene expression: this may be in the form of FPKM values obtained from RNA-(Cap) 

Seq data or quantitative expression from qPCR. 

d) Binding affinity from epitope prediction algorithms 

e) Fold change in the predicted binding of the mutant epitope versus the wildtype  

  

Additional features such as HLA-type, type of amino acids in the peptide, properties of amino 

acids (hydrophobic, hydrophilic, polar), position of the mutation in the peptide sequence 

(anchor residues, TCR-facing residues) etc. could also be investigated. 

  

Select feature subset 

Since there are several different features associated with sequencing datasets, it may be 

possible that not all features are relevant when building a predictor. Popular feature selection 
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methods such as chi squared and analysis of variance (ANOVA) could be used to retrieve a 

subset of features that have a strong correlation with the target variable. This subset would be 

used by the predictive model to carry out the classification. 

  

Perform predictive modeling 

Once a set of features is finalized, a feature matrix is constructed based on the features 

selected for the study as well the target variable. A predictive model would then be developed 

which would use the feature matrix as input to predict the best set of neoantigens to be used 

for analysis and/or vaccination. There are several different machine learning approaches that 

can be evaluated including neural networks, random forest, support vector machine and deep 

learning approaches. Evaluation is generally done by cross validation techniques such as N-

-fold cross validation, leave one out cross validation, etc. Various metrics like area under the 

ROC curve (AUC), accuracy of the model, precision, recall, F1 score, etc. can be used to 

determine the appropriate classifier. 

  

As we learn from ongoing early human trials, the methods developed in this thesis will help 

in identification, selection and characterization of high quality neoantigens from different 

cancer sequencing datasets. Furthermore, these methods could be directly applied to assist in 

development of immunotherapy based clinical trials and basic immunology studies such as 

studying the relationship between tumor mutation burden and neoantigen load to predict 

response in checkpoint blockade therapy trials and the design of personalized cancer 

vaccines. The computational framework developed in this work (pVACtools) will help 

optimize the composition of personalized cancer vaccines with high precision that will hasten 

vaccine design to enable growing clinical demand. Additionally, as mentioned previously, 
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these methods could even be extended by incorporating the feedback from the growing 

number of trials to improve the prediction of neoantigens and their immunogenicity.  
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