Washington University in St. Louis

Washington University Open Scholarship

Arts & Sciences Electronic Theses and Dissertations Arts & Sciences

Winter 12-15-2018

Grammar and Variation: Understanding How cis-
Regulatory Information is Encoded in Mammalian
Genomes

Dana Michele King
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

b Part of the Biodiversity Commons, Biostatistics Commons, Evolution Commons, and the
Genetics Commons

Recommended Citation

King, Dana Michele, "Grammar and Variation: Understanding How cis-Regulatory Information is Encoded in Mammalian Genomes"
(2018). Arts & Sciences Electronic Theses and Dissertations. 1701.
https://openscholarship.wustl.edu/art_sci_etds/1701

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted
for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For

more information, please contact digital@wumail.wustl.edu.


https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1127?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/18?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1701?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

Division of Biology and Biomedical Sciences
Molecular Genetics and Genomics

Dissertation Examination Committee:
Barak A. Cohen, Chair
Joseph Dougherty
Kristen M. Naegle
Tim Schedl
Cristina de Guzman Strong

Grammar and Variation: Understanding How cis-Regulatory Information is Encoded in
Mammalian Genomes
by
Dana M. King

A dissertation presented to
The Graduate School
of Washington University in
partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

December 2018
St. Louis, Missouri



© 2018, Dana King



Table of Contents

List of Figures v
List of Tables v
Acknowledgments vi
Abstract X
Chapter 1: Introduction 3
Mechanisms of eukaryotic transcription 4
Transcription factors bind specific but degenerate DNA sequences 5
The problem of specificity 7
Three models for the requirements for TFBSs in regulatory elements 9
Interpreting noncoding variation in context of human disease and evolution 11
Focus of Dissertation 13
Determining the grammar of pluripotency factors in mouse embryonic stem cells 13

Prioritizing non-coding variants in the human genome that may have functional impact 14

Chapter 2: Synthetic and genomic regulatory elements reveal aspects of cis-regulatory

grammar in Mouse Embryonic Stem Cells 17
Introduction 18
Results 20
Discussion 30
Methods 32
Data Access 39
Disclosure Declaration 39
Acknowledgements 39
Author Contributions 40
Figures 41
Supplemental Materials 47

Chapter 3: Evaluating fitness predictions for identification of cis-regulatory variants using
massively parallel reporter assays 64

Introduction 66

il



Results

Discussion

Methods

Data Access
Disclosure Declaration
Acknowledgements

Figures

Chapter 4: Conclusion and Future Directions
Synthetic and Genomic grammar of pluripotency factors
Identifying regulatory variants using fitness predictions
Evidence for role of repression in mammalian cis-regulation

Conclusions

References

il

69
75
71
82
82
82
83

89
89
91
94
95

97



Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
sequences
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.

List of Figures

Activity of synthetic elements and genomic sequences 39
Non-additivity in synthetic elements 40
Positional grammar in synthetic elements 41
Sequence features separate active and inactive genomic sequences 42

Activity of genomic sequences scales with increased occupancy in the genome 43

Performance of iRF classification models that include features specific to genomic

44
Activity of reference sequences in GM 12878 81
Activity of reference sequences versus probability of selection 82
Allelic skew of 1000 genome variants in GM 12878 83
Allelic skew versus probability of selection and deleteriousness score 84
Allelic skew versus allele frequency 85

v



Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:

List of Tables

SYN library composition

gWT site composition
gWT/gMUT library composition
Primer sequences

iRF SYN feature matrix

iRF gWT Feature Matrix

53
53
53
54
56
57



Acknowledgments

My graduate work would not have been possible without the guidance and support of the
people around me. Growing and developing as a scientist in the Cohen Lab has been an
incredible experience. I am grateful to Barak for being a fearless captain as we’ve navigated the
unknown waters that is pursuing research. Although it took us both some time to figure out when
we were arguing in disagreement or agreement, his rigor and insights shaped my outlook on
science and the world.

I must also acknowledge the many members of the lab who have supported me and
challenged me in equal measure. Lab meetings and informal discussions were key to developing
my research questions, addressing pitfalls and celebrating the hard earned victories. I thank Mike
White for his insights on new ways to look at my data and for generously offering his time to
discuss how to work through coding or project challenges. I thank Chris Fiore for laying the
foundation of work that allowed me to develop my project on grammar and for leading by
example in his coding elegance, as well as Jamie Kwasnieski and Illaria Mogno for their careful
development of our MPRAs, and Marc Sherman, Kimberly Lorenz, and Priya Sudarsanam for
their scientific feedback and welcoming me into the lab at the very beginning. Hemangi
Chaudhari, my baymate and friend for the majority of my time in the lab, for her tirelessness in
pursuing her work and for her help troubleshooting my analyses and my experiment. Devjanee
Swain-Lenz for her evolutionary perspective and her laughter. Max Staller for his advice,

enthusiasm and empathy. Brett Maricque for his devil-may-care attitude while being ready to

vi



step in when I needed help. Linda for sharing her extensive experience and excitement. Nicole
Rockweller for her outside perspective, depth of knowledge of human genetics, and kindness.
Awvi for his patience explaining statistical concepts to me and for contributing to the fitness
project. Clarice Hong for letting me vent while she pushes the lab down new avenues of
research. Siqi Zhao, Ryan Friedman, Jeff Hansen, and Kai Lowell for their energy, insights, and
humor. I owe every member a debt for making the Cohen lab an open, equitable, and fearless
place to do science.

The Center for Genome Sciences (CGS) has been an incredible community to develop
my research. I am grateful to Jess Hoisington-Lopez for single-handedly assuring the quality and
speed of my sequencing. Sabrina Wagoner in the Gorden Lab for always answers my questions
and helped me navigate the bureaucracy of repairing equipment. Xuhua Chen in the Mitra Lab
for helping me solve cell culture crises as well as the many other members of the CGS family
that were always willing to chat about my data or science as a whole.

I would like to thank the members of my thesis committee - Tim Schedl, Kristen M.
Naegle, Cristina de Guzman Strong, Jim Havranek, and Joseph Dougherty - for their generosity
with their time and for the crucial advice and feedback on my projects. I am also grateful for the
scientists I worked with prior to coming to Washington University for starting me down of the
path of being an independent researcher, Sudhir Nayak at The College of New Jersey and
Christopher Hammell at Cold Spring Harbor Laboratories, as well as the amazing science
education I received in public school that fed my inquisitive mind and sparked my love of

biology.

vii



Through graduate school, I also met the wonderful Kevin McAlister, whom I thank for
his love, support, and patience in this process that has taken so many unexpected twists and
turns. Kevin’s warmth and intelligence has helped me grow personally and professionally, and I
am so grateful to have a partner that challenges me and pursues his passions in stride. Kevin’s
family has also been incredible supportive of my work and I’m grateful to have been so
completely welcomed by such a kind and insightful group of people. I am also thankful to those
in my family who have championed me from the beginning, especially Sandy, Debbie, and my
sisters Anita & Laurel.

My research was funded by NIH grant RO1 GM092910.

Dana M. King

Washington University in St. Louis

December 2018

viii



Dedicated to all the strong women who mentored and supported me, but most of all, you
‘Grandma Dottie’.



ABSTRACT OF THE DISSERTATION

Grammar and variation, understanding how cis-regulatory information is encoded in mammalian
genomes

by
Dana Michele King
Doctor of Philosophy in Biology and Biomedical Sciences
Molecular Genetics and Genomics
Washington University in St. Louis, 2018
Barak A. Cohen, Chair

Understanding how genotype leads to phenotype is key to understand both the
development and dysfunction of complex organisms. In the context of regulating the gene
expression patterns that contribute to cell identity and function, the goal of my thesis research is
to how changes in genome sequence may impact impact gene expression by determining how
sequence features contribute to regulatory potential. To accomplish this goal, I first leveraged the
key regulatory role of pluripotency transcription factors (TFs) in mouse embryonic stem cells
(mESCs) and tested synthetically generated and genomic identified combinations of binding site
for four TFs, OCT4, SOX2, KLF4, and ESRRB. I found that although the position of binding
sites explained 87% of the variation in expression observed for synthetic elements, the position
of binding sites did not explain the expression of tested genomic sequences despite roughly
similar binding site composure. Instead, for genomic sequences I found that the quality and
spacing of the binding sites contribute more to distinguishing active sequences, suggesting that
the arrangements of binding sites are less important for controlling expression in mESCs.

In a separate set of experiments, I tested regions of the human genome assigned a
regulatory function based on chromatin features and predicted to have high to low probabilities

of being under selection in a commonly used human immune progenitor cell culture model,



GM12878. Although only a quarter of the library was assigned as ‘Repressive’ according to
chromatin marks, 45% of tested sequences showed repressive activity. Sequences predicted to
have high probabilities of being under selection have a small but significant higher average level
of activation, but not a higher likelihood of either repression or activation. By making single
substitutions found at those loci in human populations for a subset of sequences, I tested the
predictive power of two independent programs that aim to integrate both functional annotations
and evolutionary signals. I found that neither sets of predictions enriched for variants that
impacted regulatory activity. This suggests that although we can survey human genotypes for
impacts on regulation, it may be difficult to separate organismal level selection from other
processes that contribute to the proper control of gene expression.

These results demonstrate that in mESC, the fixed affinity and fixed spacing found in
synthetic combinations of binding sites are unlikely to predict the activity of genomic sequences.
Furthermore, testing sequences from the human genome in GM 12878 shows that repression may
be more prevalent than estimated by chromatin features alone and that predictions of selection do
not enrich for human variants that impact regulatory activity. Together, these experiments
demonstrate that the relationship between genotype and proper regulatory function is complex
and that understanding this relationship is important to understand both subtle and severe

impacts to phenotype.

xi



Chapter 1: Introduction

Understanding the mechanisms that govern transcriptional regulation is critical to our
understanding of biology. Protein coding sequences compose only 2.94% of the human genome
and are largely conserved over evolutionary time, while up to a third of the genome is estimated
to be involved in a range of regulatory processes (Mathelier, Shi, and Wasserman 2015;
ENCODE Project Consortium 2012; Y. Pan et al. 2010; Levine and Tjian 2003; Castillo-Davis
2005; Rubinstein and de Souza 2013). Genome Wide Association Studies (GWAS) studies
indicate that the vast majority of disease associated polymorphisms lie within non-coding
regions, with some fraction likely impacting cis-regulatory sequences (ENCODE Project
Consortium 2012; Parker et al. 2013; Tak and Farnham 2015). To understand the evolution of
complex multicellular organisms and to untangle the mechanisms of common diseases, it is
critical to develop a detailed understanding of how regulatory sequences integrate multiple
cellular inputs to generate the correct transcriptional output. Below, I outline both our current
understanding of transcriptional regulation and how we can utilize the relationship between
sequence and function to better predict cis-regulatory impact. My thesis work aims to understand
the combinatorial control of expression levels through the rearrangement of binding sites for key
regulatory factors in a given cell type (Chapter 2), as well as how single nucleotide substitutions
may impact the functional consequence of putative regulatory sequences from the human
genome (Chapter 3). In Chapter 2, I hypothesized that the activity of sequences is controlled by a
grammar of interactions between regulatory proteins. In Chapter 3, I hypothesized that
computational predictions of fitness consequences will help prioritize sequences in the human
genome with regulatory activity and help predict the regulatory consequence of variation.
Together, my thesis works aims to connect our understanding of how changes to DNA
sequences, either on the context of TFBSs arrangements or single nucleotide substitutions

change cis-regulatory output.



Mechanisms of eukaryotic transcription

Eukaryotic transcription requires the coordination of several layers of regulatory processes.
Modifications to histones or DNA itself act to modulate the accessibility of regions of the
genome, while factors that directly or indirectly bind DNA sequences stabilize or destabilize the
transcriptional machinery at specific loci to regulate mRNA production (Maston, Evans, and
Green 2006; Robert G. Roeder 2003; R. G. Roeder 1996; Sandelin et al. 2007). Transcriptional
regulation can be defined more specifically as the frans-action of proteins known as transcription
factors (TFs) bound to cis-regulatory sequences (CRSs) that modulate the expression of one or
more gene targets (Mathelier, Shi, and Wasserman 2015; Lelli, Slattery, and Mann 2012; Y. Pan
et al. 2010; Badis et al. 2009; Maston, Evans, and Green 2006). This definition highlights two

critical components of transcriptional regulation: DNA sequences and the TFs that bind them.

In the case of promoters, regulatory sequences function to modulate the assembly of
pre-initiation complexes at transcription start sites to fine-tune the rate of expression and
therefore transcript abundance. Enhancers are sequences that impact the likelihood of expression
but unlike promoters, act through long range interactions. Critical for defining the expression
patterns of distal genes across cell-types, enhancers are pointed to as drivers of many
developmental processes (Whyte et al. 2013; Parker et al. 2013; Evans, Swanson, and Barolo
2012; Lelli, Slattery, and Mann 2012; Frankel 2012; Nolis et al. 2009). Identified enhancers for
most genes are large, from approximately 400 basepairs (bp) to over 10 kilobases in length, with
only a handful studied in sufficient detail to determine what particular regions of the full length
sequence are necessary for regulatory activity (H. Y. Zhou et al. 2014; Segal et al. 2008; Shen et
al. 2012; Piens et al. 2010; Maston, Evans, and Green 2006; Kulkarni and Arnosti 2003). The
limited number of validated long range enhancers in both humans and mice makes it difficult to
connect differences in DNA features or biochemical features measured genome-wide, such as TF
binding or histone marks, to the expected expression output. Furthermore, the few positive
examples make it impossible to predict the expected regulatory impact of mutations or sequence

rearrangements for enhancers regulated by the same factors. These challenges mean that a



reductive approach, measuring the activity of potential CRSs and making manipulations to
determine the impacts on regulatory activity, can make important contributions to our
understanding of gene regulation. Reductive approaches has been used successfully to
understand key developmental enhancers, by comparing regulatory activity and specificity across
evolutionary time, and as well as used to dissect the contribution of regulatory regions to disease
(Pennacchio et al. 2006; Evans, Swanson, and Barolo 2012). The ultimate goal of these efforts is
to be able to identify functional regulatory regions of the genome and predict the level of

activation or repression that will be driven by a given CRS.

Transcription factors bind specific but degenerate DNA sequences

To predict regulatory activity from sequence, we need to first identify DNA sequences that are
likely to be bound by a given TF. The strength of TF binding to embedded DNA signals, or
transcription factor binding sites (TFBSs), is dependent on the biochemical interaction between
protein residues and the DNA structure, which is in turn dependent on the concentration of the
factors and the affinity of a factor for a sequence of nucleotide residues (Segal et al. 2008).
TFBSs are usually short (5-15 bp) sequences where TFs preferentially bind. A motif represents
that preferential binding, representing a collection of positions with one or more possible
nucleotides that fall within all TFBS experimentally discovered for a particular TF (D’ haeseleer
2006; Bulyk 2003). While restriction enzymes tend to have very precise motifs, ie: EcoRI only
binds to a single 6-bp sequence, even the most conserved TF motifs like the TATA box are
degenerate (D’haeseleer 2006). Quantification of the binding preferences of a given TF can be
measured by in vitro experimental methods, primarily gel-shift assays, systematic evolution of
ligands by exponential evolution (SELEX), and protein binding microarrays (PBMs) (Levy and
Hannenhalli 2002; Ponomarenko et al. 2002; Kadonaga and Tjian 1986). Quantitative
representations of the binding preferences of TFs is an important tool for understanding

predicting cis-regulation.



One representation of TFBSs, a positional weight matrix (PWM), is generated by aligning sets of
sequences produced by experimental methods and comparing the sequence preferences of a TF
to the background nucleotide frequency in the genome of interest to generate a statistical
representation of binding preference. The PWM for a TF relates the information content of the
motif, or how different is the motif compared to the nucleotide frequency in the genome of
interest, to the binding energy of the protein-DNA interaction (Robasky and Bulyk 2011). A
PWM provides a convenient method for scanning genomes for potential transcription factor
binding sites (TFBSs) without relying on a single consensus sequence that fails to capture the
full range of binding preferences for a given TF (Stormo and Fields 1998; Robasky and Bulyk
2011). A PWM or the complementary energy weight matrix, can be used to determine the
affinity, or probability that a DNA sequence will be bound given a measured or assumed
concentration of a TF of interest (Zhao, Granas, and Stormo 2009; White et al. 2013). Although
PWMs are powerful in representing large amount of information, a limitation is in the difficulty
in representing gaps or accounting for TFs with multiple DNA-binding interfaces due to the
assumption that all positions are independent (Ghandi et al. 2014; Weirauch et al. 2013). An
alternative method is to examine all possible k-mers for DNA sequences,which is possible due to
the development of high throughput methods such as PBMs that can explicitly test in vitro all
possible sequences of length k. These sequences can then be scored to characterize the full DNA
binding specificity of a TF of interest (Weirauch et al. 2013; Alleyne et al. 2008). Either
approach results in the ability to determine the likelihood and/or strength of TF binding to a
potential CRS, with the goal that an understanding of where TFs are expected to bind will help

predict cis-regulatory activity.

However, predicting the regulatory activity of a CRS is still difficult even with possible binding
sites for relevant TFs for a given cell type in hand. A microarray-based assay of a hundred mouse
TFs, selected from various structural classes, found that while each TF bound distinct sets of
sequences, only half bound distinguishable DNA motifs (Badis et al. 2009). Interestingly, the

authors also found that closely related factors could have similar high-affinity site binding



preferences but different low-affinity site preferences. This indicates that not only do TFs
frequently recognize degenerate sequences, but that high-affinity sites could be bound by
multiple factors within a family, a finding consistent with the high degree of DNA binding
domain similarity between TF family members even over evolutionary time (Badis et al. 2009;
Weirauch et al. 2013; Jauch et al. 2012). Since many proteins bind similar sequences, but not all
sequences that match consensus TFBSs are bound, a more dynamic picture of how TFs compete

and synergize is necessary for a detailed understanding of transcriptional regulation.

Additionally, it is unclear how relevant in vitro derived binding motifs are when tested in vivo.
The presence of different cofactors could possibly skew binding site preferences and would be
detectable by using more biologically relevant assays. Data from ChIP-seq experiments suggest
that only approximately 10% of the possible binding sites for a TF of interest are occupied in the
genome (Cusanovich et al. 2013; Kheradpour et al. 2013; ENCODE Project Consortium 2012;
Levy and Hannenhalli 2002; Kadonaga and Tjian 1986). Our lab has also shown, in mouse retina
as well as two human cell lines, not only that many genomic regions with TFBS underlying
ChIP-seq peaks are unable to drive expression, but also that many active regulatory elements
lack a motif for the TF of interest, even if considered occupied in the genome (White et al. 2013;
Maricque, Dougherty, and Cohen 2017; Chaudhari and Cohen 2018; White et al. 2016). These
results are corroborated by efforts by the ENCODE consortium, with only 55% of reported
ChIP-seq peaks enriched for a detectable motif matching the target factor (ENCODE Project
Consortium 2012). However, despite the lack of a recognizable motif for the factor of interest,
sequence based models perform well to classify active and inactive sequences (Maricque,
Dougherty, and Cohen 2017; Chaudhari and Cohen 2018; White et al. 2013). Together these
results suggest that while TF binding is an important step, the use of binding information is
insufficient to explain patterns of expression and additional sequence features, such as the
spacing, arrangement, and quality of TFBSs, likely contribute to the activity of putative

regulatory sequences.



The problem of specificity

An explanation for how the specificity of TF binding is determined lies in the physical
architecture of the genome. In vitro binding affinity assays for TFs ignore the highly compacted,
histone-bound structure of the eukaryotic genome as well as modifications to the local chromatin
that could influence binding. Histone positioning must have an effect on the ability of a TF to
bind to a particular regulatory site, as bulky histones could easily sequester regulatory sequences
or hinder motif recognition and binding (Thurman et al. 2012; Zentner and Scacheri 2012;
Natarajan et al. 2012; Y. Pan et al. 2010). Additionally, well-positioned nucleosomes might
facilitate some TF binding, with factors such as FOXA1 showing reduced DNA binding in the
absence of proximal methylated histones (Lupien et al. 2008). Several studies have examined
how chromatin states correlate with the activity of cell-specific regulatory elements as well as
how chromatin states change between cell types and how the dynamics of histone modifications
influence gene expression (Parker et al. 2013; Ernst et al. 2011; Xi et al. 2007). However, it is
difficult to determine in most instances if chromatin changes are instructive or merely
consequences of TF binding, with support of the latter growing in recent years (Guertin and Lis
2010, 2013; Dorighi et al. 2017; Wijchers et al. 2016). Causal changes in nucleosome identities
or modifications are difficult to demonstrate with current techniques, especially for particular
histone marks (Vifiuelas et al. 2012; Kouzarides 2007), and histone marks alone have poor
predictive power for identifying genomic sequences with regulatory potential (Kwasnieski et al.
2014). Therefore, taking putative CRSs out of their genomic context is a means to focus on how

DNA sequence contributes to regulatory activity in a tractable and reproducible manner.

As the size of the average CRS is in the 1-2 kb range, eight to twenty-four TFs could directly be
bound to a given sequence, or more if protein-protein interactions are taken into account (Y. Pan
et al. 2010). Since a nucleosome core particle covers 147 bp, these regions could also be fully or
partially occluded by a well placed nucleosome, reducing the number of TFs able to access a
regulatory sequence. The number of possible TF and nucleosome configurations of any given

enhancer is therefore very large, making it difficult to determine what sequence features are



necessary to drive expression. We are far from understanding how the presence or absence of a
TFBS relates to the activity expected from an enhancer. Fortunately, shorter sequences can
represent the possible regulatory potential of genomic sequences, as work from our lab
demonstrates that control over expression can be localized within very short genomic regions, 84
bp in length, when isolated placed into an high throughput assay for regulatory activity (White et
al. 2013). Even though well characterized enhancers usually require large genomic fragments to
recapitulate proper transgene expression, short sequences are a better starting point for
understanding patterns of TFBS and other sequence features like nucleosome positioning signals
or dinucleotide content (Parker et al. 2013; Evans, Swanson, and Barolo 2012; Frankel 2012;
Johnson et al. 2008; Bonifer 2000). Understanding how smaller functional units of regulatory
regions control expression could lead to a better understanding of how information is encoded

into the DNA sequence of full length enhancers.

Three models for the requirements for TFBSs in regulatory elements

A central question for predicting function from DNA sequence is understanding how grammar,
the number, order, spacing, and orientation of TFBSs, relate to cis-regulatory activity driven by
key TFs (Weingarten-Gabbay and Segal 2014). A possible explanation for the discrepancy
between bound and active genomic sequences is that particular combinations of TF binding
trigger a particular level of transcriptional activity, a model best described as “enhanceosomes”
(Panne 2008; Yie, Senger, and Thanos 1999). Enhanceosomes require combinatorial binding,
where specific TFs bind independently in a particular order, or cooperative binding, where
physical interactions with other TFs stabilize TF-DNA interactions and are necessary for better
binding and modulation of expression, and are considered to follow a strict grammar (Lelli,
Slattery, and Mann 2012; Evans, Swanson, and Barolo 2012; Maston, Evans, and Green 2006).
The enhanceosome model predicts that any change in the arrangement of TFBS in a CRS will
disrupt the activity of the sequence. Two examples of a well-defined enhanceosome are the 55 bp

human interferon-B enhancer, where loss of a single TF binding site will abolish IFN-B activity,



and the tumor necrosis factor-a enhancers (Lelli, Slattery, and Mann 2012; Kulkarni and Arnosti

2003).

Alternatively, the “billboard” model, describes a CRS with flexible grammar acting as a general
landing pad for TFs and specificity is determined due to a threshold for the number of bound TFs
before activation (Lelli, Slattery, and Mann 2012; Evans, Swanson, and Barolo 2012; Kulkarni
and Arnosti 2003). The billboard model predicts that most configurations of TFBSs will
similarly drive expression. The flexibility of the billboard model is used to explain observations
from comparative genetics, where a specific expression pattern can be achieved with many
different TFBS configurations, such as in the case of binding site turnover in the sparkling and
even-skipped enhancers from different Drosophila species and conservation in enhancer activity
between humans and mice despite sequence divergence (Lelli, Slattery, and Mann 2012; Evans,

Swanson, and Barolo 2012; Ludwig et al. 2000; Hare et al. 2008; Visel et al. 2009).

A third alternative hypothesis is the TF “collective” model. In the collective model, specific TFs
must be recruited to enhancers but can be recruited either by direct contact with DNA or
indirectly through other TFs (Spitz and Furlong 2012; Junion et al. 2012; Uhl, Zandvakili, and
Gebelein 2016). In the collective model no specific TFBS is required for activity even though
individual TFs are required. So the TF collective model predicts that while different TFBS
configurations or even identities would be tolerated, all the factors required must be recruited to
the locus for activity to be observed. An example of regulatory elements that follow the
collective model is in Drosophila where the assembly of five transcription factors cooperatively

regulates heart-specific enhancer activity (Junion et al. 2012).

These three cis-regulatory models differ in the importance that they give to TF-TF interactions
and TF-DNA interactions in setting the activity of enhancers and predict different means of
generating specificity for transcriptional regulation through DNA sequence. The billboard model

emphasizes the additive contribution of each TF bound to a CRS, the enhanceosome model



postulates geometrically constrained interactions between TFs, and the TF collective model
highlights the joint action of TFs acting on a CRS without requiring any particular TF-TF or
TF-DNA interactions. Measuring the activity of different arrangements of binding sites would be
a powerful tool for distinguish between the different models. Determining the possible
combinations of TFBSs in functional CRSs and the grammar could help point to possible
mechanisms of regulation by a particular suite of TFs and possibly help make predictions for the

expected impact of mutations in noncoding sequences more broadly.

Interpreting noncoding variation in context of human disease and evolution

There are instances in which is it impractical to identify the specific TFs or binding sites that act
on noncoding sequences of interest. Following the sequencing of the human genome, decades of
studies have described and analyzed the genetic basis of human phenotypic variation, ranging
from whole-organism diseases or disorders to molecular-level phenotypes, with technological
advances making sequencing based genome-wide association studies of human variation more
affordable to study complex phenotypes (Stranger, Stahl, and Raj 2011; Mansur et al. 2018; F.
Zhang and Lupski 2015; Mardis 2011; 1000 Genomes Project Consortium et al. 2015). However,
number of loci and variants associated with different phenotypes without a clear understanding
of which variants are causal means that relying solely a reductive approach looking at specific

TFBSs or other sequence based features is intractable.

One approach to identify functional variants, including cis-regulatory variants, is to use
evolutionary signals. Whole genome comparisons between species show that protein-coding
sequences generally vary little between related organisms, with some notable exceptions such as
immune function (Mouse Genome Sequencing Consortium et al. 2002; Chimpanzee Sequencing
and Analysis Consortium 2005). Because noncoding cis-regulatory regions encode critical
spatio-temporal and quantitative information, these sequences are thought to be under strong
purifying selection and indeed mutate at a slower rate than flanking neutrally evolving regions

(Rubinstein and de Souza 2013). Although cis-regulatory regions can be evolutionarily



conserved, they generally evolve faster than coding regions, suggesting that changes in
regulation may contribute to fitness and evolution (S. L. Clarke et al. 2012; Konopka et al. 2009;
John Wiley & Sons, Ltd 2001). Additionally, Pennacchio and colleagues showed that 45% of
tested conserved human noncoding sequences showed tissue specific enhancer activity in mouse
embryos (Pennacchio et al. 2006). Therefore measures of conservation, while neither exhaustive
or perfect predictors for regulatory activity, are often used prioritize variants that may be
contributing to differences in gene regulation or other traits (Kheradpour et al. 2013; 1000

Genomes Project Consortium et al. 2012; Asthana et al. 2007).

More detailed work has identified likely causal variants that impact regulatory functions for
genes related to the relevant phenotype. At a locus associated with type two diabetes, a single
nucleotide substitution was shown to modify the TF binding of two key regulators, PAX6 and
PAX4 and increase the expression of ARAP1 in pancreatic beta cells, linking binding and
expression to a possible risk marker for disease (Kulzer et al. 2014). For pulmonary diseases,
association studies combined with reporter assays identified three variants that impact the
transcriptional response to oxygen deprivation, with one variant shown to causally impact EGFR
expression through genome editing, linking a possible molecular mechanism to variability in
disease susceptibility and severity (Roche et al. 2016). In addition, over 600 common variants
associated with pulmonary disease were screened with high-throughput reporter assays, resulting
in the identification of several variants that impact regulatory activity, including one that was
shown using genome editing to affect cell proliferation (Castaldi et al. 2018). These efforts have
provided a window into how cis-regulatory changes may lead to disease phenotypes. However,
these studies have been single loci due to the large number of variants that are associated with a
locus due to spurious factors like linkage disequilibrium or the lack of sufficient locus coverage
in phenotyping arrays (Majumder and Ghosh 2005; Roukos 2009; Mansur et al. 2018). Broadly
identifying possible regulatory variants for a given cell-type or parsing down the relevant regions
of the genome, through either conservation or functional annotations will aid in the discovery

process necessary to untangle the genetics basis of phenotypic variation.
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Focus of Dissertation

My thesis work utilizes technological advances to examine how TFBS grammar contributes to
regulatory activity in mESCs and how single substitutions may impact the functional
consequence of CRSs in the human genome. Our lab has pioneered the use of massively parallel
reporter assays (MPRAs), a high-throughput assay that links short putative CRSs directly to the
expression of a minimal promoter and reporter gene in a tractable manner by linking each CRS
with unique barcode sequences in the 3’UTR (Mogno, Kwasnieski, and Cohen 2013; Kwasnieski
et al. 2012). This technology allows for the construction of large plasmid based libraries on the
order of thousands of unique CRSs, which can then be measured by next-generation sequencing
to compare the number of RNAs generated by each construct compared to its representation in
the DNA plasmid pool, resulting in highly reproducible, quantitative measures of regulatory
activity (Fiore and Cohen 2016; Kwasnieski et al. 2014; Chaudhari and Cohen 2018). The use of
MPRAs provides the statistical power and sensitivity necessary to determine what DNA
sequences features or other annotations are common to active versus inactive regulatory elements
(White et al. 2013; Kheradpour et al. 2013). While a plasmid-based assay is unlikely to
recapitulate the possible looping mechanism of an enhancer, placing a regulatory element
adjacent to a promoter should capture most of the complexity of TF- TF and TF-DNA
interactions that control changes in expression attributable to a particular element since looping
appears to be a means of bringing regulatory factors in close proximity (Noonan and Mccallion
2010; Nolis et al. 2009). Additionally, testing variants of the same sequence of interest allows us
to directly measure the possible impact of a given substitution, instead of being limited to
correlations with the expression of nearby genes (Tewhey et al. 2016; Ulirsch et al. 2016;
Mohammadi et al. 2017).

Determining the grammar of pluripotency factors in mouse embryonic stem cells
In Chapter 2, I examine the cis-regulatory grammar of pluripotency TFBSs in mouse embryonic

stem cells (mESCs) by testing hundreds of synthetic and genome putative CRS. The guiding
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hypothesis of this project is that most of the information necessary to guide individual TFs to the
correct targets and activate regulatory elements through combinations of TF binding is contained
in the DNA sequence and that a quantitative analysis of expression driven by regulatory elements
will help uncover how cell-type expression is encoded into the genome. Previous work in the lab
used synthetic combinations of TFBSs for the core pluripotency factors POUSF1 (OCT4),
SOX2, ESRRB, and KLF4 in mESCs (Fiore and Cohen 2016). These pluripotency factors
contribute to the maintenance of pluripotency in mESC and are sufficient to induce pluripotency
in terminally differentiated cells (Masui et al. 2005; Feng et al. 2009; X. Zhang et al. 2008; Liu et
al. 2008).

Based on known physical and genetic interactions, multiple interacting TFs specify target gene
expression in mESCs (Reményi et al. 2003; Williams, Cai, and Clore 2004; Reményi, Schéler,
and Wilmanns 2004; Huang et al. 2009), so only specific patterns of TFBSs that facilitate the
necessary interactions would be expected to drive regulatory activity. However, the MPRA
library used in Fiore and Cohen was underpowered to distinguish between the three primary
models of regulatory grammar summarized above and did not test sequences from the genome
for regulatory activity. Therefore, it is unclear what role, if any, is played by TFBS grammar in
determining target specificity in the genome or driving specific patterns of gene expression in
mESCs. Understanding the grammar model followed by these factors is central to identifying
sequences that are part of the regulatory network in mESCs to better understand the

establishment and maintenance of the pluripotent state.

Prioritizing non-coding variants in the human genome that may have functional impact

In Chapter 3, I evaluate the utility of two computational predictions of fitness for prioritizing
cis-regulatory variants by testing almost two thousand putative CRSs from the human genome
and an additional several hundred reference-alternative variants pairs that span the range of
predictions for non-coding regions. The guiding hypothesis for this project is that selection acts

on functional noncoding regions, so predictions of fitness will help identify functional CRS in
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the human genome as well as help predict the consequence of variation. Although benchmarks
exist for evaluating algorithms for coding sequences, such as predicting protein truncations,
comparing to known pathogenic examples, and evaluating sequences for in vivo function or
phenotype (Ng and Henikoff 2003; Miosge et al. 2015; Walters-Sen et al. 2015), similar

benchmarks for functional roles of non-coding sequences have not been standardized.

One way of parsing down the genome into the regions that are necessary for at least some
function is to focus on the areas of the genome that are under selection and therefore contribute
to some function that impacts fitness (Pollard et al. 2006; Ludwig et al. 2000; Castillo-Davis
2005). Several groups have published computational approaches to predict the expected impact
of human genetic variation (Lindblad-Toh et al. 2011; Spielman and Kosakovsky Pond 2018).
Two such predictions, fitCons and CADD scores, integrate diverse annotations into a single
measure (Gulko et al. 2015; Kircher et al. 2014), characterizing the fitness consequence and
deleteriousness of variants, respectively, with a shared goal of characterizing the functional
consequences of substitutions genome-wide. The authors of fitCons used functional data from
the ENCODE project in several cell types to group sequences and assigned scores to grouped
regions based on divergence and polymorphism frequencies (Gulko et al. 2015). The authors of
CADD contrasted observed variants that are fixed or nearly fixed in human populations to
simulated substitutions used as proxies for rare mutations that are more likely to impact
organismal fitness to assign scores of likely deleteriousness (Kircher et al. 2014). Understanding
how fitCons and CADD perform for identifying regions with regulatory activity and/or variants
that impact cis-regulatory activity is key to determining if predictions of fitness are viable

options for the prioritization of possible causal disease variants for follow-up study.

This overall body of work contributes to the field of transcriptional regulation by examining
fundamental questions regarding cis-regulatory grammar and cis-regulatory variants. First, this
study provides the first direct comparison between synthetic and genomic putative regulatory

sequences in mESCs. This comparison informs future design of synthetic MPRA libraries as one
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of the goals of the field is to identify sequences in the genome that are likely to drive
cis-regulatory activity and adds to our knowledge of how patterns of TFBSs regulate expression.
Second, the detailed testing of fitness predictions adds to the efforts of many for interpreting
variation in the human genome. Specifically, it is important to determine the value of
computational approaches before broader applications such as for identifying possible diagnostic

markers or for applications like patient stratification for the growing field of precision medicine.
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Chapter 2: Synthetic and genomic regulatory elements
reveal aspects of cis-regulatory grammar in Mouse

Embrvonic Stem Cells

In embryonic stem cells (ESCs), a core transcription factor (TFs) network establishes the gene
expression program necessary for pluripotency. To understand how interactions between four key
TFs contribute to cis-regulation in mouse ESCs, we assayed two massively parallel reporter
assay (MPRA) libraries composed of binding sites for SOX2, POUSF1 (OCT4), KLF4, and
ESRRB. Comparisons between synthetic cis-regulatory elements and genomic sequences with
comparable binding sites configurations revealed regulatory grammar requirements. While
binding site quality is important for activity in both contexts, the expression of synthetic
elements is driven by both binding site number and a grammar that includes position effect. This
grammar plays a small role for genomic sequences, as their relative activity is best explained by
the predicted affinity of binding sites, regardless of identity, and spacing between sites. Our
findings highlight the need for detailed examinations of complex sequence space to understand

cis-regulatory grammar in the genome.

This chapter was written as a paper, Synthetic and genomic regulatory elements reveal aspects of
cis-regulatory grammar in Mouse Embryonic Stem Cells, with Brett Maricque and Barak Cohen
that is currently under review at eLife and is available as a preprint on the bioRxiv server (doi:
https://doi.org/10.1101/398107). I am the first author and contributed to the writing of the paper
along with Barak Cohen. Brett Maricque and I performed the experiments and analyzed the
initial sequencing data. I performed all additional analyses.
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Introduction

Combinations of transcription factors (TFs) act at enhancers to specify cell states. Three models
describe how TFs collaborate at enhancers, the billboard model, the enhanceosome model, and
the TF collective model (Kulkarni and Arnosti 2003; Spitz and Furlong 2012). These models
differ in the importance they ascribe to cis-regulatory grammar, defined as the extent to which
the order, orientation, and affinity of transcription factor binding sites (TFBSs) impact the
activity of enhancers. The enhanceosome model posits a strict grammar in which only precise
arrangements of TFBSs activate target genes. The enhanceosome model is supported by
structural studies of the IFN-f enhancer, where a specific order and spacing of TFBSs is required
to activate expression (Yie, Senger, and Thanos 1999; Panne 2008). In contrast, the billboard
model posits a more flexible grammar. In the billboard model enhancers can tolerate changes to
the order, spacing, or orientations of TFBS with little change to target gene expression (Kulkarni
and Arnosti 2003; Giorgetti et al. 2010) This model was proposed to explain binding site
turnover in developmental enhancers and conservation in enhancer activity between species
despite sequence divergence (Ludwig et al. 2000; Hare et al. 2008; Hare, Peterson, and Eisen
2008; Visel et al. 2009). In the TF collective model, specific TFs must be recruited to enhancers
but can be recruited either by direct contact with DNA or indirectly through other TFs (Spitz and
Furlong 2012; Junion et al. 2012; Uhl, Zandvakili, and Gebelein 2016). In the collective model
no specific TFBS is required for activity even though individual TFs might be. These three
cis-regulatory models differ in the importance that they give to TF-TF interactions and TF-DNA
interactions in setting the activity of enhancers. The billboard model emphasizes the additive
contribution of each TF bound to an enhancer, the enhanceosome model postulates geometrically
constrained interactions between specific TFs, and the TF collective model highlights the joint

action of TFs without requiring any particular TF-TF or TF-DNA interactions.

We and others have used mouse Embryonic Stem Cells (mESCs) as a system for studying

cis-regulatory grammar and cooperative interactions between the pluripotency factors POUSF1
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(OCT4), SOX2, ESRRB, and KLF4 (Fiore and Cohen 2016; Dunn et al. 2014; Williams, Cai,
and Clore 2004). The pluripotency factors are a core set of TFs that maintain pluripotency in
mESCs and are sufficient to induce pluripotency in terminally differentiated cells (Niwa 2014;
Feng et al. 2009; Liu et al. 2008; X. Zhang et al. 2008; Takahashi and Yamanaka 2006).The
pluripotency TFs activate self-renewal genes and repress genes that promote differentiation
(Chambers and Tomlinson 2009). Based on known physical and genetic interactions, as well as
genome-wide binding assays, multiple interacting TFs specify target gene expression in mESCs
(Niwa 2014; Huang et al. 2009; Reményi, Scholer, and Wilmanns 2004; Williams, Cai, and
Clore 2004; Reményi et al. 2003). However, it remains unclear how pluripotency TFs collaborate
to drive specific patterns of gene expression in ESCs, and what role, if any, is played by TFBS
grammar in determining target specificity in the genome (Chambers and Tomlinson 2009; X.
Chen, Vega, and Ng 2008). Understanding how these factors combine to regulate their target

genes is central to understanding the establishment and maintenance of the pluripotent state.

We previously addressed these questions by assaying a set of synthetic cis-regulatory elements
that represent a small fraction of the possible arrangements of pluripotency TFBS. We identified
some evidence for a grammar that is constrained by TFBS arrangement, including OCT4-SOX2
interactions. However our previous study lacked sufficient power to detect other interactions
(Fiore and Cohen 2016). Here, we explore the role of grammar for pluripotency TFBSs by
assaying an exhaustive set of synthetic cis-regulatory elements, composed of TFBS for SOX2,
OCT4, KLF4 and ESRRB. The pattern of expression of synthetic regulatory elements is well
predicted by a grammar that incorporates aspects of both the billboard and the enhanceosome
models. However, this grammar seems to only play a small role in setting the activity of genomic
regulatory elements with comparable configurations of binding sites. Genomic sequences appear
to conform to a model where predicted TFBS affinity and favorable spacing between TFBSs
contribute to activity levels, along with signals that recruit additional TFs, either directly through

TF-DNA interactions or possibly indirectly through TF-TF interactions.
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Results

Rationale and description of enhancer libraries

We designed two reporter gene libraries to explore the role of grammar in regulatory elements
controlled by the pluripotency TFs. The first library, synthetic (SYN), is an exhaustive set of
synthetic combinations of consensus TFBSs for OCT4 (0O), SOX2 (S), KLF4 (K), and ESRRB
(E). We did not include sites for NANOG in our libraries as its PWM has low information
content and is not amenable to a synthetic binding site approach, in addition to being dispensable
for reprogramming terminal cells to a pluripotent state (Jie Wang et al. 2013, 2012; Jauch et al.
2008; G. Pan and Thomson 2007; Takahashi and Yamanaka 2006). We also did not incorporate
MY C binding sites in our libraries because MYC often acts independently of the core
pluripotency TFs (C.-Y. Chen, Morris, and Mitchell 2012; Xi Chen et al. 2008; Liu et al. 2008).
For each TF we used a binding site based on its Position Weight Matrix (PWM) in the JASPAR
database (Sandelin et al. 2004; Fiore and Cohen 2016). We embedded each TFBS in a constant
20 bp sequence to ensure all the sites sit on the same side of the DNA helix (Fiore and Cohen
2016). We designed the SYN library to include all possible strings of two, three, and four TFBS
building blocks (2-mers, 3-mers, and 4-mers, respectively), with each TFBS in either the forward
or reverse direction, and each TFBS occuring no more than once per sequence, totaling 624
unique synthetic elements (Supplemental Table 1). The highly controlled nature of the SYN
library provides maximum power to detect interactions mediated by the arrangement of binding

sites.

The second library includes sequences from the mouse genome picked to match, as best as
possible, members of the SYN library. Using the same PWMs used to design the SYN library, we
scanned the mouse genome for combinations of the TFBSs for O, S, K, & E within 100 bp of
regions bound by any of the four pluripotency TFs in E14 mESCs as measured by ChIP-seq
(Fiore and Cohen 2016; Bailey et al. 2009; Xi Chen et al. 2008). We chose genomic sequences

that contain one and only one binding site that scores above the PWM threshold for each factor
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to mimic the composition of the SYN library. We identified few clusters that included all four
binding sites (< 70). We therefore selected 407 genomic sequences with three pluripotency
TFBSs that could be compared to the exhaustive set of synthetic 3-mer elements. The resulting
genomic wild-type library (gWT) is composed of the 407 unique genomic sequences with
combinations of any three of the four TFBSs, with each site represented no more than once per
sequence (Methods, Supplemental Table 3). Although these sequences differ from SYN elements
in the individual site affinities, distances between TFBSs, as well as intervening sequence
composition, our expectation was that the gWT sequences would directly test how well
interactions learned from the SYN library apply to genomic sequences. To confirm that the
activity of the gWT sequences depends on the presence of pluripotency TFBSs, we generated
matched genomic mutant sequences (gMUT) in which all three of the identified pluripotency
TFBSs were mutated by changing two positions in each TFBS from the highest information
content base to the lowest information base according to the PWM (Supplemental Figure S7).
The final gMUT sequences lack detectable TFBSs for O, S, K, or E when rescanned with the
threshold used to select the gWT sequences. The combined gWT/gMUT library allows us to
quantify the contributions of the pluripotency sites to regulatory activity, as well as sample
configurations of pluripotency TFBS from the genome that may provide insight into grammar for

these sequences.

MPRA of reporter gene libraries

We assayed the cis-regulatory activity of the SYN and gWT/gMUT libraries in mESCs using a
plasmid-based Massively Parallel Reporter Assay (MPRA) (Kheradpour et al. 2013; Mogno,
Kwasnieski, and Cohen 2013; White et al. 2013; Patwardhan et al. 2012; Kwasnieski et al.
2012). Each unique library member described above is present eight times with a different
unique sequence barcode (BC) in its 3° UTR (Fiore and Cohen 2016; Mogno, Kwasnieski, and
Cohen 2013; Kwasnieski et al. 2012). To determine the relative activation of each sequence
compared to the minimal promoter included in each reporter construct, we included copies of

plasmids with only the minimal promoter paired with over a hundred unique BCs in each library
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(See Methods) (White 2015; Fiore and Cohen 2016; Mogno, Kwasnieski, and Cohen 2013;
White et al. 2013; Kwasnieski et al. 2012). Our measurements were highly reproducible between
biological replicates, with R? between 0.98-0.99 for replicates of the SYN library and 0.96-0.98
for the gWT/gMUT library (Figure S1A-B). After thresholding on DNA and RNA counts, we
recovered reads for 100% (624/624) of our SYN elements and 99% (403/407) of paired
gWT/gMUT sequences. The high concordance between replicates and simultaneous sequencing
of the two libraries allowed us to make quantitative comparisons, both within and between

libraries.

Synthetic and genomic libraries support different grammar models

Synthetic regulatory elements have some characteristics of the billboard model. Most synthetic
elements drive expression over basal activity regardless of the number, order, or orientation of
sites within the element (Figure 1A). 77% of all SYN elements (6% of 2-mers, 66% of 3-mers,
92% of 4-mers) were statistically different from basal levels in all three replicates after
correcting for multiple hypothesis testing (Wilcoxon rank-sum test; Bonferroni correction, n =
637, p-values reported in Supplemental File 3). In most cases, three or four consensus binding
sites at fixed spacing are sufficient to increase expression above basal levels, which suggests
strong independent contributions by binding sites in synthetic elements, as reported previously
(Fiore and Cohen 2016). Elements with more binding sites generally drive higher expression
than elements with fewer binding sites, which supports a billboard model of regulation, as the
TFBSs can contribute to expression in an independent, additive manner. However, the wide
range of expression observed for 4-mer elements (2.5-12.5, normalized expression) rules out a
pure billboard model as differences between these elements must be due to the arrangement of
the TFBSs, as site number and identity are fixed. The strong positive effect of adding sites
supports a billboard model, while the diversity of expression of elements with the same number

of sites reveals that grammar can quantitatively modulate activity.
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In contrast to the synthetic elements, most genomic sequences do not exhibit regulatory activity
above basal levels. Only 28% (113/403) of wild type genomic sequences were statistically
different from basal levels in all three replicates (p < 0.05, Wilcoxon rank-sum test; Bonferroni
correction, n = 403; p-values reported in Supplemental File 4). The low fraction of active gWT
sequences demonstrates that three binding sites for the pluripotency TFs are often insufficient to
increase expression above basal levels, a result that differs from the additive, billboard-like
behavior observed for the SYN elements, but is consistent with observations from functional
testing of genomic sequences bound by key TFs in other cell types (Fisher et al. 2012; Grossman
et al. 2017; White et al. 2013). For genomic sequences that were statistically different from basal,
99% (112/113) have a significant difference between matched gWT and gMUT sequences
(Figure 1B; p < 0.05, Wilcoxon rank-sum test; Bonferroni correction, n = 403; p-values reported
in Supplemental File 4), indicating that the activity of these sequences depends on one or more
of the pluripotency TFBSs. Our observation that the presence of high-quality pluripotency
TFBSs is generally insufficient to drive expression above basal levels does not support a strict

billboard model for genomic sequences, at least when tested in a functional assay.

Synthetic elements support a positional grammar

While the overall pattern of expression of SYN elements supports the billboard model, direct
comparisons of different TFBS configurations also support a role for interactions between
factors. Pairwise comparisons between a particular 3-mer and matched 4-mers that include one
additional site at either the 5° or 3° end, reveal that the position of the extra site can strongly
influence expression. For example, the O-K-E 3-mer and the matched O-K-E-S 4-mer drive
indistinguishable expression, while the matched S-O-K-E 4-mer drives one of the highest
expression levels in the SYN library (Figure 2A). Other examples are consistent with either
strong position dependence or both position and orientation dependence (Figure S2A and S2B).
Taken together these results show that when an additional TFBS is added to an existing synthetic

element, the position and orientation of the new site can have large effects on activity.
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Synthetic elements appear to follow a grammar that includes position specific interactions
between TFBSs. The ten highest expressing elements in the SYN library have a strong bias for S
and O sites to be next to each other and in the first two positions (Figure 2B), while the ten
lowest expressing 4-mers all have O and S in the last two positions (Figure 2C). The ten highest
expressing 4-mers all have K followed by E in the last two positions, while the lowest expressing
4-mers tend to have K and E in the first two positions. We also found that the fourth position can
have an especially large effect on expression. In the highest 25% of 4-mers (n=96) S is depleted
(0/96) in the fourth position (Figure 2D), while in the lowest 25% E is virtually depleted (1/96)
in the fourth position (Figure 2E). Conversely, in the fourth position, E is overrepresented in the
top 25% (64/96) while S is overrepresented in the bottom 25% (48/96). These patterns also hold
for comparisons of the strongest and weakest 3-mer and 2-mer elements (Supplemental Figures
S2C-F). These patterns indicate a grammar that includes a positional bias to have adjacent SOX2
and OCTH4 sites positioned upstream of KLF4 and ESRRB sites, which may favor interactions
between these factors and the basal transcriptional machinery or TFs recruited by the minimal
promoter. As specifying a site at a given position restricts possible sites in neighboring positions,
these patterns could also represent favorable interactions between factors. The data suggest that
synthetic elements have some properties consistent with the enhanceosome model, such as

positional bias, with possible contributions by specific interactions between factors.

Modeling supports role for TFBS positions in setting expression level for synthetic elements
but not for genomic sequences

While the grammar of O, S, K, and E sites likely has an effect on the relative activities of the
SYN elements, the grammar of these sites does not appear to contribute to the activity genomic
sequences. We compared the SYN and gWT libraries for elements with configurations of OKE,
OSE, OSK, and SKE TFBSs. Unlike SYN 3-mer elements, all four classes of gWT sequences
span the range of expression observed for the entire library (0.56 to 33.2, normalized
expression), with only OSK sequences having a higher average expression (Figure S3A). Thus,

in genomic sequences, the same arrangement of sites embedded in different genomic contexts
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can either fail to drive detectable activity or drive expression higher than the highest SYN library
member. To quantify the divergence in activities between genomic and synthetic elements
directly, we matched gWT sequences with pluripotency TFBS dependent activity to SYN
elements with the corresponding order of TFBSs. We observed no correlation in regulatory
activity between matched site configurations, (R*= 0.001; Figure S3B). These data indicate that
other variables contribute to the cis-regulatory activity of gWT sequences, such as the spacing
and affinities of the sites, or the presence of TFBSs for additional factors in flanking sequences

that are held constant in the SYN library.

To identify additional sequence features that might be contributing to activity we used a variation
of the Random Forest (RF) model, an unsupervised machine learning technique. RF models can
be applied for either simple classification, assigning observations to group predictions, or
classifying individual observations into semi-continuous bins to make quantitative,
regression-case predictions. The accuracy of predictions are assessed over a large number of
decision trees trained on random subsets of the data, which allows the contribution or “variable
importance” of specific features to be measured. As RFs are prone to biases from early random
splits in the decision trees for unbalanced data, we used iterative Random Forests (iRF) as a tool

for feature selection as well as prediction (Basu et al. 2018).

We first trained a regression-case iRF model initialized with four features (Supplemental Table
4), representing only the presence or absence of each of the four pluripotency TFBSs to predict
the expression of SYN elements. This “billboard” iRF model performed similarly to
billboard-like thermodynamic based models trained on synthetic elements in mESCs (Fiore and
Cohen 2016), with a R*of 0.56 on a held-out test set for the final iRF iteration (2-fold
cross-validation; Supplemental Figure S4). However, the billboard iRF model cannot account for
the differences in activities between 4-mers, because all 4-mers have identical TFBS present
(4-mers R? = 0.00 (blue); Figure S4). To identify features that might distinguish between the

activities of 4-mers, we trained an additional regression-case iRF model initialized with 20
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features, representing both the presence and position of the four TFBS in each SYN element
(Supplemental Table 4). The 20-term positional model performs well in predicting SYN
expression, with an overall R? of 0.87 for the last model iteration on a held-out test set (4-mers R?
=0.52 (blue); Figure 3A). The positional iRF model highly weighs the presence/absence of the
sites, as expected from the performance of the billboard iRF model, but also has contributions
from the presence of ESRRB in the 4th position and SOX2 in the 1st and 2nd positions (Figure
3B). These results reinforce the conclusion that the activity of synthetic sequences depends both

on the composition and positioning of TFBS.

Models trained on the SYN library failed to predict or classify the expression of genomic
sequences. While synthetic elements drove continuous expression across a range of activities,
elements in the gWT library are predominantly inactive, and the small number of active gWT
sequences drive expression across an order of magnitude of activity levels (dark green; Figure
S3A). This presents a challenge for predicting gWT sequence activity with the features used to
predict SYN elements. Retraining iRF regression models to predict gWT expression fails during
the training step and has no correlation with the observed expression data (Billboard: R? = 0.03;
Billboard + Position: R* = 0.001). However, training a classification model to distinguish
between active and inactive gWT sequences (top 25%, n = 102; bottom 75%, n = 305) using
either only billboard or billboard plus positional features also fails to perform better than chance
(Billboard: AUROC = 0.52, AUPRC = 0.22; Positional: AUROC = 0.47, AUPRC = 0.25;
Supplemental Table 5). When we directly compare the expression of gWT sequences to SYN
elements with matching patterns of sites, we observe that not only do genomic sequences have a
very different expression distribution from SYN elements, gWT sequences with the same pattern
of TFBSs, as determined by motif matching, can drive drastically different expression levels
(Supplemental Figure S3B). Other sequence features present in the genomic sequences and
absent from the synthetic elements must therefore play a larger role in setting activity levels than

the identity and position of the individual pluripotency TFBSs.
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Site affinity contributes to the activity of genomic sequences

We sought to identify features that differentiate active and inactive gWT sequences.
Sequence-based support vector machines (kmer-SVMs) are powerful tools to predict the activity
of putative regulatory elements independent of motif calling for specific factors that might be
acting on the sequences (Fletez-Brant et al. 2013; Chaudhari and Cohen 2018). To identify
sequence features that explain the differences between genomic elements, we trained a gapped
kmer SVM (gkm-SVM) (Ghandi et al. 2016, 2014). The best performing gkm-SVM classified
our positive and negative sets with AUROC of 0.75 and AUPRC of 0.77 (k = 8, gap = 2; Figure
4A). Although all sequences in the gWT library were selected to contain TFBSs for the four
pluripotency factors, many of the discriminative 8-mers (29/50) have possible motif matches that
include at least one pluripotency family member (Fletez-Brant et al. 2013; Bailey et al. 2009)
(Supplemental File 6). This suggests that the differences between high and low activity genomic
sites could be due to properties of either the primary pluripotency sites, defined here as TFBSs
originally identified in the gWT library design, or due to secondary pluripotency sites, defined
here as low PWM matches that scored below the scanning threshold, but could be present in the

intervening sequences.

Sequences with higher predicted affinity pluripotency TFBSs may drive higher expression. To
determine if differences in the primary pluripotency sites are part of the signal identified by the
SVM, we annotated gWT sequences with PWM-based scores for each TFBS present (Grant,
Bailey, and Noble 2011). For SOX2, we found no difference in scores between high and low
sequences (Figure 4B, panel 2; p = 0.07, Welch’s t-test). For OCT4, we found a modest
difference between the average scores for high and low sequences and a broader but also a
significant difference for KLF4 and ESRRB PWM scores (Figure 4B; KLF4: p = 0.001, ESRRB:
p =0.006, Welch’s t-test). The ‘OSKE_TotalAffinity’, the summed PWM scores for all four
TFBS in each sequence, further separates high and low sequences (p = 4e-8, Welch’s t-test).
These patterns suggest that the quality of the primary sites contributes to the activity differences

observed among gWT sequences.
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We then asked if secondary sites for the pluripotency TFs might contribute to cis-regulatory
activity by calculating predicted occupancy for both gWT sequences and gMUT sequences that
lack the primary binding sites (See Methods). Predicted occupancy is a metric that includes
contributions from any primary, well-scoring TFBSs plus contributions from weaker sites that
might be missed with traditional motif scanning (White et al. 2016, Guertin, Michael J., and John
T. Lis 2013; Evans, Swanson, and Barolo 2012; Segal et al. 2008; Zhao, Granas, and Stormo
2009). We found evidence for additional low predicted affinity sites for SOX2 and OCT4 in both
high and low sequences, making it unlikely that low affinity sites strongly contribute to
expression differences (Figure S5). Together, these results suggest that the affinities of the
primary sites in genomic sequences, which are fixed in synthetic elements, contribute to the
regulatory activity of genomic sequences more than the presence of additional sites with low

predicted affinity.

Contributions from sites for other transcription factors

A major difference between the synthetic and genomic elements is the presence of sites for TFs
besides the pluripotency factors. While the synthetic elements were designed to keep the
sequences between pluripotency sites constant, genomic sequences differ in both the length and
composition of sequences between the pluripotency sites. The presence of binding sites for
additional transcription factors may contribute to the activity of genomic sequences. To identify
sites for other factors that could contribute to differences between high and low activity gWT
sequences, we examined the top discriminative 8-mers from the gkm-SVM, looking at possible
PWM matches for additional TFs (Supplemental File 6). We then used PWMs for these
additional TFs to identify instances of sites for other factors in the genomic sequences (See
Methods) (Grant, Bailey, and Noble 2011; Sandelin et al. 2004). We found significant enrichment
for FOXAL1 sites (Figure 4C; 1-sided Fisher’s exact test; 29 vs. 17 sites, p = 0.03, OR = 1.97).
We also found that FOXA1 and NANOG had higher total PWM scores in the high activity
sequences (Figure S6; 1-sided Welch’s t-test; FOXAT1: p = 0.04; NANOG: p = 0.03). While
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FOXAL1 is likely not present in mESCs, other family members (FOXA2, FOXD1, FOXP1) are
expressed in ESCs and have been shown to contribute to the pluripotent regulatory network (G.
Pan and Thomson 2007; Mulas et al. 2018; Gabut et al. 2011), and therefore could be acting on

the gWT sequences through these binding sites.

Genomic sequences with higher occupancy by TFs in the genome, as measured by ChIP-seq,
have higher average expression in our assay. We annotated the gWT intervals with publicly
available ChIP-seq data for additional TFs and with ATAC-seq data from E14 mESCs to
determine differences in accessibility (Supplemental Table 4). We found that accessibility was
generally high for both high and low activity gWT sequences, and therefore not enriched. High
activity sequences were significantly enriched for overlap with NANOG peaks (Supplemental
Figure S7; 1-sided Fisher’s exact test, NANOG: p = 0.03, OR = 2.17). However, for the 328
genomic sequences with a NANOG ChlIP-seq signal, only 16% had an underlying TFBS as
determined by motif scanning. Therefore, NANOG might be recruited by other pluripotency TFs
to these sequences independent of high quality TFBS for this factor. If we compare expression
levels to the number of overlapping ChIP-seq peaks, including O,S,K,E and these additional TFs,
we see that gWT sequences with higher occupancy in the genome have higher average
expression in our assay (Figure 5), which has been previously observed in HepG2 cells (Ulirsch

et al. 2016).

To understand the relative contributions of the features that had some predictive power on their
own, we trained iRF models with subsets of these features and compared the performance of
these models on a held-out test set (Supplemental Table 4). Including parameters only related to
spacing between TFBSs, which is held constant in SYN elements but variable in gWT
sequences, resulted in a model with an AUROC of 0.52 (Figure 6A) and AUPRC of 0.31 (Figure
6B) (model ‘Spacing’) . A model that includes parameters describing the attributes of the
primary pluripotency sites, such as the scores for the sites, yields an AUROC of 0.64 and
AUPRC of 0.34 (model ‘PrimarySites’). We then limited our model to only parameters that
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relate occupancy of these regions by TFs in the genome, as measured by ChIP-seq, which
resulted in a model with an AUROC of 0.59 and AUPRC of 0.31 (model ‘ChIPSignals’). We
trained a final iRF model initialized with 58 features that capture key differences between gWT
sequences and SYN elements. These features include predicted affinity and spacing between the
pluripotency TFBSs, predicted occupancy for the pluripotency TFs, binding sites for additional
TFs, plus chromatin accessibility (ATAC-seq) and ChIP-seq peaks for both TFs and histone
marks, as well as summary features such as the total primary site affinities (as in Figure 4B) for
each sequence (See Supplemental Table 6 for full list of features). This gWT iRF model
performed fairly well on a held out test set (AUROC = 0.67, AUPRC = 0.46; model ‘All’). The
features that best separate active sequences were related to attributes of the pluripotency sites
with the top feature being the summed pluripotency factor predicted affinity per sequence
(‘OSKE_TotalAffinity’, Figure 6C). Taken together our data suggests that genomic sequences
are able to drive higher expression when they contain stronger predicted affinity binding sites for
pluripotency TFs with optimal spacing and are embedded in sequences that can mediate the

recruitment of other TFs or cofactors.

Discussion

In this study we sought to understand how pluripotency factors collaborate to drive specific
levels of expression by testing both an exhaustive set of synthetic arrangements of TFBSs for
OCT4, SOX2, KLF4, AND ESRRB and comparable genomic sequences. Our experimental
design allowed for direct comparisons between the regulatory potential and regulatory grammar
of synthetic elements and genomic sequences. Using a massively parallel reporter assay
(MPRA), we found that the regulatory potential synthetic elements and genomic sequences are
both impacted by the quality of the TFBS. The majority of synthetic elements, with consensus
binding sites, drive expression above basal promoter levels, while genomic sequences with high
scoring sites, ie: closer to the consensus sequence, are more likely to be active. The relationship

between activity and TFBS scores is consistent with recent observations, specifically for the
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recruitment of ESRRB to areas enriched for OCT4, SOX2, and NANOG motifs (Adachi et al.
2018).

As for the grammar of combinations of TFBSs for these four pluripotency factors, in the
controlled context of synthetic elements, we found clear evidence for a dependency on the
position and number of the binding sites. While each site has a strong additive contribution to
expression, consistent with the billboard model, we also uncovered evidence for some
position-specific effects, best aligned with the enhanceosome model. The spacing and affinities
of sites in synthetic elements were fixed, and the constant spacer sequences between sites
reduced the likelihood of the presence of additional high quality TFBSs for other factors,
constraints that are not representative of combinations of these sites in the genome. Indeed, when
variable predicted affinity and distances between TFBSs is allowed, even with similar patterns of
binding sites and evidence for activity dependent on one or more of those sites, the grammar
learned from synthetic elements appears to have less of an impact on driving relative activity for
genomic sequences. We found that many different arrangements of pluripotency sites can result
in a high activity for genomic sequences, a prediction of the billboard model. However, because
most genomic sequences were inactive, additional features, excluding identity and position, are
also required to produce a sequence that can drive high activity. Surprisingly, active genomic
sequences do not appear to have TFBSs for one or few additional factors that might point to a
simple billboard model explanation for the patterns of expression observed. Instead, our
modeling suggests that outside of the quality of the binding sites present, favorable distances
between TFBSs and the ability to recruit TFs in their genomic context might contribute to the

levels of expression observed for genomic sequences.

The literature demonstrates the utility of using synthetic elements to probe cis-regulatory
grammar, understand interactions between factors, and predict true targets in the genome (Gertz,
Siggia, and Cohen 2009; Cox, Surette, and Elowitz 2007). This work highlights the need for

designing more nuanced synthetic elements, even when examining well-studied mammalian TFs,
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if we hope to predict the expected activity of patterns of TFBSs we observe in the genome.
Additionally, we speculate that repression by some members of the pluripotency network might
account for some of the seeming disparate behavior observed for similar combinations of OCT4,
SOX2, KLF4 and ESRRB TFBSs from the genome. In particular, OCT4 has evidence of
interactions with Polycomb and NuRD complex subunits in addition to physical interactions with
Nanog (Jianlong Wang et al. 2006; Liang et al. 2008). The recruitment of repressive complexes
and subsequent active repression would be difficult to distinguish from inactivity in current
MPRA approaches. In the future, synthetic libraries of equally complex combinations of TFBS
but where the predicted affinity and spacing are varied may better capture trends that allow us to
understand the quantitative impact of these features in the genome and innovations in MPRA
design to specifically detect active repression may allow for a more comprehensive

understanding of the cis-regulatory landscape.

Methods

Library design:

To generate a library that contained both synthetic and genomic elements we ordered a custom
pool of 13,000 unique 150 bp oligonucleotides (oligos) from Agilent Technologies (Santa Clara,
CA) through a limited licensing agreement. Each oligo in the SYN pool was 150 bp in length

with the following sequence:

CTTCTACTACTAGGGCCCA[SEQJAAGCTT[FILL]GAATTCTCTAGAC[BC]TGAGCTCTA
CATGCTAGTTCATG

where [SEQ] is a 40-80 bp synthetic element comprised of concatenated 20 bp building blocks of
pluripotency sites, as described previously, with the fifth position of the KLF4 site changed to

“T” to facilitate cloning (Fiore and Cohen 2016). [FILL] is a random filler sequence of variable
length to bring the total length of each sequence to 150 bp, and [BC] is a random 9 bp barcode.
Synthetic elements were generated using a custom python script, generating all possible
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combinations of the pluripotency binding sites in both orientations, with no more than one of
each site per sequence in lengths of two, three, and four building blocks (Supplemental Table 1).
The sequence of each of the element is listed in Supplemental File 1. In total the SYN library has
624 unique synthetic elements. Each synthetic element is present in the pool eight times, each
time with a different unique BC. There are also 112 oligos in the pool for cloning the basal

promoter without any upstream element, each with a unique BC.

Genomic sequences were represented in the pool by 150 bp oligos with the following sequences:

GACTTACATTAGGGCCCGT[SEQJAAGCTT[FILL]GAATTCTCTAGAC[BC]TGAGCTCG
GACTACGATACTG

Where [SEQ)] is either a reference (gWT) or mutated (gMUT) genomic sequence of 81-82 bps.
Reference gWT sequences were selected by choosing regions of the genome within 100 bps of
previously identified ChIP-seq peaks for these four pluripotency factors (Chen et al. 2008). After
excluding poorly sequenced and repetitive regions (ENCODE Project Consortium 2012; Mouse
Genome Sequencing Consortium et al. 2002), we scanned the remaining regions using FIMO
with the four PWMs used previously to design the synthetic building blocks, with a p-value
threshold of 1x10~ (Grant, Bailey, and Noble 2011; Bailey et al. 2009; Fiore and Cohen 2016).
Regions that contained more than one overlapping site identified by FIMO were excluded.
Binding sites that were located less than 20bp from each other were then merged into a single
genomic element using Bedtools (Quinlan and Hall 2010). Elements with no more than one of
each site per element were then selected and expanded to 81-82 bp centered on the motifs.
Expanded sequences were rescanned to confirm the presence of only three binding sites with the
same threshold as used to originally scan the sequences. Sequences that contained restriction
sites for were then removed from the library, leaving 407 genomic sequences with combinations

of the OCT4, SOX2, KLF4, and/or ESSRB TFBSs (Supplemental Table 2).
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We generated matched mutated sequences (gMUT) for each of the 407 gWT sequences by
changing two positions in each motif from the highest information content base to the lowest
information base for that position (Supplemental Figure S8). The reverse complement position
and substitution was made for the reverse orientation of each motif. The mutated sequences were
rescanned with all four original PWMs to confirm that no detectable pluripotency TFBSs

remained, using FIMO with the same p-value threshold (1x107) as above.

In total the pool of oligos representing genomic sequences contained 407 wild type sequences
(gWT) and the corresponding 407 gMUT sequences. The sequence of each of the element is
listed in Supplemental File 2. Each of these 814 sequences were associated with eight unique
BCs. The primers for gWT and gMUT sequences were identical so all subsequent steps for this
library was performed in a single pool. There are also 112 oligos in the pool for cloning the basal
promoter without any upstream element, each with a unique BC (Supplemental Table 3). The rest

of the array contained sequences not used in this study.

Cloning of plasmid libraries:

The synthesized oligos were prepared as previously described (Kwasnieski et al. 2012; Fiore and
Cohen 2016), except using primers Synthetic FW-1 and Synthetic Rev-2 with an annealing
temperature of 55°C for the SYN library and primers Genomic_ FW-1 and Genomic_Rev-1 with
an annealing temperature of 53°C for the gWT/gMUT libraries (Supplemental Table 6). PCR
products were purified from a polyacrylamide gel as described previously (White et al. 2013).
Each library was cloned as described previously (Fiore and Cohen 2016), with a SYN element
(SYN library) or either a gWT or gMUT sequence (gWT/gMUT library) cloned into the Apal
and Sacl sites of plasmid pCF10. The pou5f1 basal promoter and dsRed reporter gene were
amplified from pCF10 using primers CF121 and CF122, and inserted into the plasmid library
pools from the previous step at the Xbal and HindlII sites. Digestion of the libraries with Spel
and subsequent size selection was omitted as the SYN library had less than 2% background and

the combined gWT/gMUT library had less than 1% background in the final cloning step.
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Cell culture and transfection:

RW4 mESCs were cultured as described previously (Xian, Werth, and Gottlieb 2005; C. T. L.
Chen, Gottlieb, and Cohen 2008) on 2% gelatin coated plates in standard media (DMEM, 10%
fetal bovine serum, 10% newborn calf serum, nucleoside supplement, 1000 U/ml leukemia
inhibitory factor (LIF), and 0.1 uM B-mercaptoethanol). Approximately 1 millions cells at 100%
estimated viability were seeded into 6-well plates 24 hours prior to transfection. The SYN library
and combined gWT/gMUT were transfected in parallel using 10 uL Lipofectamine 2000 (Life
Technologies, Carlsbad, CA), 3 ug of plasmid library, and 0.3 ug CF128 (a GFP control plasmid)
per well, as described previously (Fiore and Cohen 2016). Four biological replicates of each
library pool, the SYN plasmid pool or combined gWT/gMUT plasmid pool, were transfected and
the plates were passaged 6 hours post-transfection. For three replicates of each library pool, RNA
was extracted 24 hours post-transfection from approximately 9 million cells per replicate, using
the PureLink RNA mini kit (Life Technologies, Carlsbad, CA) with the fourth transfection
replicate reserved for estimating transfection efficiency via fluorescent microscopy and staining

for alkaline phosphatase (AP) activity, a universal pluripotency marker (Singh et al. 2012).

Massively Parallel Reporter Assay:

Massively parallel reporter gene assays were used to measure the activity of each CRE as
described previously (Fiore and Cohen 2016; Mogno, Kwasnieski, and Cohen 2013). Briefly, we
used Illumina NextSeq™ (San Deigo, CA) sequencing of both the RNA and original plasmid
DNA pool, removing excess DNA from the RNA pool using TURBO DNA-free kit (Life
Technologies, Carlsbad, CA). cDNA was then prepared using SuperScript RT III (Life
Technologies, Carlsbad, CA) with oligo dT primers. Both the cDNA and the plasmid DNA pool
were amplified using primers CF150 and CF151b (Supplemental Table 6), for 13 cycles. The
PCR amplification products were digested using Xbal and Xhol (New England Biolabs, Ipswich,
MA), ligating the resulting digestion products to custom Illumina adapter sequences, P1 Xbal X

(where X is 1 through 8, with in-line multiplexing BC sequences) to the 5’ overhang and
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PE2 SIC69 Sall on the 3° Xhol overhang, each of which is comprised of annealed forward (F)
and reverse (R) strands (Supplemental Table 6). An enrichment PCR with primers CF52 and
CF53 was then used (Supplemental Table 6), and the resulting products were mixed at equal

concentration and sequenced on one NextSeq lane.

Sequencing reads were filtered to ensure that the BC sequence perfectly matched the expected
sequence. For the SYN library, this resulted in 40 million reads combined for the three
demultiplexed RNA samples (P1_Xbal 1,P1 Xbal 2, P1 Xbal 3;12.7-13.5 million each), and
19.7 million reads for the DNA library sample (P1_Xbal 7). For the combined gWT/gMUT
libraries, this resulted in approximately 37 million reads combined for the three demultiplexed
RNA samples (P1_Xbal 4,P1 Xbal 5,P1 Xbal 6;9.4-16 million each), and 19.6 million reads
for the DNA library sample (P1_Xbal 8). For each library, BCs that had less than 3 raw counts
in any RNA replicate or less than 10 raw counts in the DNA sample were removed before

proceeding with downstream analyses.

Expression normalization was performed by first calculating reads per million (RPM) per BC for
each replicate for both the SYN library (R* = 0.982-0.987; Figure S1A) and the combined
gWT/gMUT library (R* = 0.96-0.98; Figure S1B). For each BC, expression was calculated by
dividing the RPMs in each RNA replicate by the DNA pool RPMs for that BC. Normalizing by
DNA RPMs successfully removed the impact of the representation of the construct in the
original pool as the calculated expression has no correlation with the DNA counts for both the
SYN library (R* = 0.02-0.02; Figure S1C) and the combined gWT/gMUT (R* = 0.0005-0.008;
Figure S1D). Within each biological replicate the BCs corresponding to each synthetic element
(SYN) or genomic sequence (gWT/gMUT) were averaged and then normalized by basal mean
expression in that replicate. These normalized expression values were then averaged across
biological replicates. All downstream analyses were performed in R version 3.3.3 and plotted
with ggplot2 version 2.2.1. Expression summaries per replicate are reported in Supplemental File

3 for the SYN library and Supplemental File 4 for the gWT/gMUT library.
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Predicted Occupancy:

Custom code, based on Zhao & Stormo’s BEEML algorithm (Zhao, Granas, and Stormo 2009),
was used to compare sequences of interest to a provided Energy Weight Matrix (EWM) at a set
protein concentration (mu) and output a predicted occupancy for that TF as in White et al. 2013.
Briefly, an energy landscape (EWM score) is calculated by comparing all n-mers of each
sequence, where n = length of provided motif, to the matrix to generate an array of individual
base scores for the forward and reverse orientation of the sequence. Occupancy is then predicted
using equation 3 for binding probability at equilibrium, (1/ (1 + ¢ ~W)), Position Frequency
Matrices equivalent to the PWMs used for both SYN building block design and for scanning the
mouse genome were used to generate EWMs, using the formula

RT = In( F req(BaseAconsensus)/F req(BaseAi)) to convert the frequency of each base at each
position i to a pseudo AAG values for each factor (White et al. 2013). Predicted occupancy
(P(Occ)) for the 3-mer SYN elements was calculated for different assumed protein
concentrations (mu = 0.5, 1, 2,4, 5, 8, 10, 12) to determine at what point the SYN elements are
predicted to be saturated, where P(Occ) = 3 for each SYN element, i.e.: approaching 1 for each
TFBS in the sequence. SYN elements were saturated by each of the four pluripotency factors at
mu=8 with the exception of the shorter Oct4 motif, which reached saturation at mu=10.
Occupancy of gWT and gMUT sequences was predicted for gWT and gMUT at an assumed high
protein concentration of mu==8 for Sox2, Klf4, Esrrb, and mu =10 for Oct4, consistent with the
role of these factors in mESCs. The predicted occupancy of each factor for matched gMUT

sequences are reported in Supplemental File 8 as a feature of gWT sequences.

iRF models:
We built iterative Random Forest (iRF) models to classify our data using the R package iRF
(version 2.0.0) from (Basu et al. 2018). To run the software a model is initialized with 1/p

weights for each of p features to be included in fitting the model. In each iteration, p features are
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reweighted by their Gini Importance (w"), a measure that is calculated by how purely a node,
split by feature, separates the classes (Menze et al. 2009; Louppe et al. 2013). Default settings
were used for model training, with four iterations of reweighting p features specified for each

model as indicated in Supplemental Tables 5 & 6.

Synthetic data was split into training and test sets by randomly subsetting 50% of the total SYN
elements (total n=407). Mean normalized expression was the response variable for model fitting
for the synthetic models (see Supplemental File 7 for feature annotations for SYN elements).

Four iterations of model fitting on training data was used.

Genomic data was split into training and test sets by randomly subsetting 50% of the total
gWT/gMUT intervals (total n= 624). Classification as ‘active’, 1, if mean normalized gWT
expression was greater than or equal to the 3rd quartile and ‘inactive’, 0, if mean normalized
gWT expression was less than the 3rd quartile (cutoff value = 1.983), was the response variable
for model fitting (see Supplemental File 8 for feature annotations and response values for gWT

sequences). Four iterations of model fitting on training data was used.

gkm-SVM:

We used a gapped k-mer Support Vector Machine (gkm-SVM) to search for gapped k-mers that
distinguish between highly active and inactive genomic sequences (Ghandi et al. 2016). We
subset sequences from the gWT library into top 25% (high) and bottom 25% (low) based on
expression data for a total of 101 positive and 101 negative intervals for the training set. FASTA
sequences were then generated from the mm10 reference genome (Bioconductor, BioMart) for
each region (Supplemental File 11). We then used the gkm-SVM R package to classify high vs.
low sequences (Ghandi et al. 2016). Word length (L) values of 6 (gap=2), 8 (gap=2), & 12
(gap=6), were tested with cross validation. Default settings were used for other function options.
Three-fold cross validation was chosen due to the the amount of structure in the data, with

combinations of OSK binding sites overrepresented in positive training sequences (See Figure
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S3). The best average performance on training data as evaluated by AUCs was the model trained
with parameters of L= 8 and gap= 2 (See Supplemental File 12 for output scores). The final
gkmer-SVM model includes approximately 1 million unique A-mers (See Supplemental File 5 for

full kmer list and weights).

Other analysis and data sources:

All genome coordinates from previous mouse genome builds were converted to mm10 using the
UCSC liftover tool (Kuhn, Haussler, and Kent 2013). Binding matrices for SOX2, OCT4, KLF4,
ESRRB were as previously reported (Fiore and Cohen 2016). The Bedtools suite (version 2.20)
was used for manipulations and analysis of bed files (Quinlan and Hall 2010). Statistical tests
were chosen based on expectations of normalcy, with Wilcoxon rank-sum test used for
comparisons of BC expression as these distributions were observed to be skewed for some
library members, Welch’s t-test used where sample sizes were equal and roughly normal, and

Fisher’s 1-sided tests used for testing for enrichment in small sample sizes.

Data Access

Raw sequencing data for SYN library and gWT/gMUT library can be found under SRA
accession number SRR7515851. Processed sequencing data, specifically demultiplexed barcode
counts per replicate, can be found under GEO accession number GSE120240. Additionally, a
table of normalized reads per million (RPMs) across replicates for all barcodes are included as

Supplemental File 9 for the SYN library and Supplemental File 10 for the gWT/gMUT library.
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Figure 2.1. Activity of synthetic elements and genomic sequences. (A) The activity of
synthetic elements with different numbers of binding sites. Expression is the average log of
the ratio of cDNA barcode counts/DNA barcode counts for each synthetic element
normalized to basal expression (dotted line). (B) The activity of genomic sequences is
largely dependent on the presence of pluripotency binding sites. Normalized expression of
wild type (gWT) sequences is plotted against expression of matched sequences with all
three pluripotency TFBSs mutated (gMUT sequences). Red indicates sequences with
significantly different expression between matched gWT and gMUT sequences. Diagonal
solid line is expectation if mutation of TFBSs had no impact on expression level.
Expression of both gWT and gMUT sequences are normalized to basal controls, but basal
expression is only plotted for gWT sequences on the y-axis (dotted line).
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Figure 2.2. Non-additivity in synthetic elements. (A) Comparison of synthetic 3-mer
elements with matched 4-mer elements containing one additional site in the first or fourth
position. Mean expression of elements across barcodes (black dot) is plotted +/- SEM
(black whiskers). Green line for comparison to expression of 3-mer; Green transparency
highlights SEM of 3-mer shown. Activity of the ten highest (B) and ten lowest (C)
expressing 4-mers. Red line represents average expression of all synthetic 4-mer elements.
Capital letter represents binding site in forward orientation and lower-case letter represents
binding site in reverse orientation. Mean expression of each element across barcodes (black
dot) +/- SEM (black whiskers). Activity logos for the top 25% (n=96) (D) and bottom 25%
(E) of 4-mer synthetic elements. Height of letter is proportional to frequency of site in
indicated position. Positions organized from 5’ end (Position 1) to 3’ end (Position 4) of
elements.
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Figure 2.3. Positional grammar in synthetic elements. (A) Iterative random forest
(1RF) regression model that includes features for presence and position of pluripotency
TFBSs predicts relative expression of synthetic elements. Number of binding site per

element is indicated in pink (2-mers), green (3-mers), and blue (4-mers). Observed and

predicted expression are both plotted in log, space. (B) Ranking of variables in
synthetic iRF model. Variable importance is estimated by Increased Node Purity
(IncNodePurity), the decrease in node impurities from splitting on that variable,

averaged over all trees during training.
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Figure 2.5. Activity of genomic sequences scales with increased occupancy in the
genome. Expression of elements binned by number of intersected ChIP-seq peak signals
for different factors. Number of sequences in each bin indicated in center of boxplot. All
gWT sequences overlapped at least one ChIP-seq peak as per library design.
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Figure 2.6. Performance of iRF classification models that include features specific to
genomic sequences. (A) ROC Curve and (B) Precision-Recall (PR) Curve comparing
genomic iRF models. Color indicates set of features used to train model. (C) Variable
importance as evaluated for the feature by the average reduction in the Gini index, which is
based on node impurity during training (Xi Chen and Ishwaran 2012).
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Figure 2.S1. MPRA data quality. Reproducibility of barcode (BC) counts between biological
replicates, normalized as reads per million per RNA replicate for (A) Synthetic library and (B)
Genomic, gWT and gMUT, library. Comparison of normalized BC expression (BCyy,/BCpy4)
versus DNA counts for (C) Synthetic library and (D) Genomic, gWT and gMUT, library.
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synthetic 3-mer elements with matched 4-mer elements containing one additional site in the first
or fourth position with (A) three of four matched 4-mers with overlapping expression despite an
additional binding site and (B) one of four matched 4-mers with overlapping expression. Activity
logos for the top 25% (C), bottom 25% (D) of 3-mer synthetic elements (n= 48 each), and top
25% (E), bottom 25% of 2-mer synthetic elements (n= 12 each). Height of letter is proportional
to frequency of site in indicated position. Positions organized as in Figure 2.
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(bottom 25% and top 25% of sequences, ranked by gWT expression, n = 101).
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Figure 2.S6. Genomic sequences show signatures for other factors. (A) Summed motif scores
for indicated motif across genomic sequences, excluding primary pluripotency sites. Site scores
output during motif scanning of high (top 25% as ranked by gWT expression, n = 101) and low
(bottom 25% as ranked by gWT expression, n = 101) gMUT sequences to prevent scoring of O,
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accessibility, as measured by ATAC-seq, for high (top 25% as ranked by gWT expression, n =
101) and low (bottom 25% as ranked by gWT expression, n = 101) genomic sequence intervals.
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Figure 2.S7. Pluripotency motif substitutions for gMUT sequences. Highest information
content positions in each motif were substituted with least frequent nucleotide for that position.
(A) For mutating Sox2 motifs, the reference nucleotides were substituted for ‘A’ in position 4
and 5. (B) For mutating Oct4 motifs, the reference nucleotide was substituted for ‘C’ in position
2 and for ‘A’ in position 3. (C) For mutating Esrrb motifs, the reference nucleotide was
substituted for ‘C’ in position 5 and ‘A’ for position 7. (D) For mutating KIf4 motifs, the
reference nucleotide was substituted for ‘A’ in position 3 and ‘C’ in position 5.
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Table 2.1: SYN library composition

Element class Unique Elements Unique Element-Barcode
Pairs

2-mers 48 384

3-mers 192 1,536

4-mers 384 3,072

Basal 1 112

Total library size 625 5,104

Table 2.2: gWT site composition

Sequence composition (Primary sites) Unique Sequences

OKE 117

OSE 65

OSK 68

SKE 157

Table 2.3: gWT/gMUT library composition

Sequence class Unique Sequences Unique Sequence-Barcode
Pairs

gWT 407 3,256

eMUT 407 3,256

Basal 1 112

Total library size 815 6,624
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Table 2.4: Primer sequences

Name Sequence Demultiplex
ing BC

Synthetic FW-1 CTTCTACTACTAGGGCCCA -

Synthetic Rev-2 | CATGAACTAGCATGTAGAGCTC -

Genomic FW-1 GACTTACATTAGGGCCCGT -

Genomic_Rev-1 CAGTATCGTAGTCCGAGCTC -

CF121 TAGCGTCGAGGACATCAAGA -

CF122 TGGTTTGTCCAAACTCATCAA -

CF150 TACACCGTGGTGGAGCAGTA -

CF151b AGCGTACTCGAGTTGTTAACTTGTTTATTGCAGCTT | -

CF52 AATGATACGGCGACCACCGAG -

CF53 CAAGCAGAAGACGGCATACGA -

Pl Xbal 1 F AATGATACGGCGACCACCGAGATCTACACTCTTTC | AACCTCA
CCTACACGACGCTCTTCCGATCTAACCTCA

P1 Xbal 1 R /5Phos/C*TAGTGAGGTTAGATCGGAAGAGCGTCGT | AACCTCA
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

P1 Xbal 2 F AATGATACGGCGACCACCGAGATCTACACTCTTTC | TCTAAGC
CCTACACGACGCTCTTCCGATCTTCTAAGC

Pl Xbal 2 R /5Phos/C*TAGGCTTAGAAGATCGGAAGAGCGTCGT | TCTAAGC
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

Pl Xbal 3 F AATGATACGGCGACCACCGAGATCTACACTCTTTC | CTGTCAT
CCTACACGACGCTCTTCCGATCTCTGTCAT

P1 Xbal 3 R /5Phos/C*TAGATGACAGAGATCGGAAGAGCGTCGT | CTGTCAT
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

P1 Xbal 4 F AATGATACGGCGACCACCGAGATCTACACTCTTTC | GGAGGTG
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CCTACACGACGCTCTTCCGATCTGGAGGTG

Pl Xbal 4 R

/5Phos/C*TAGCACCTCCAGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

GGAGGTG

Pl Xbal 5 F

AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTACACGACGCTCTTCCGATCTGCTCGAT

GCTCGAT

Pl Xbal 5 R

/5Phos/C*TAGATCGAGCAGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

GCTCGAT

P1 Xbal 6 F

AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTACACGACGCTCTTCCGATCTTAGAGTA

TAGAGTA

P1 Xbal 6 R

/5Phos/C*TAGTACTCTAAGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

TAGAGTA

P1 Xbal 7 F

AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTACACGACGCTCTTCCGATCTTCAGTCT

TCAGTCT

P1 Xbal 7 R

/5Phos/C*TAGAGACTGAAGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

TCAGTCT

P1 Xbal 8 F

AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTACACGACGCTCTTCCGATCTTTCCAAG

TTCCAAG

Pl Xbal 8 R

/5Phos/C*TAGCTTGGAAAGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT
ATCATT

TTCCAAG

PE2_SIC69 Sall

_F

/5Phos/T*CGAAGATCGGAAGAGCACACGTCTGAAC
TCCAGTCACAGCGTGCCCATCTCGTATGCCGTCTT
CTGCTTG

PE2_SIC69 Sall

R

CAAGCAGAAGACGGCATACGAGATGGGCACGCTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
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Table 2.5: iRF SYN feature matrix

Model comparison Billboard model |Positional model
Test Set, R*2 (overall) 0.56 0.87
Test Set, R*2 (4mers) 0.00 0.52
Features included Source
O Y Yo
_Presenee ° ° Same terms used for SYN iRF

S_presence Yes Yes Billboard Model. Identity of
K_presence Yes Yes TFBSs present in the sequence
E_presence Yes Yes are determined via FIMO.
Position.4 O -) Yes
Position.4 S -) Yes
Position.4 K (-) Yes
Position.4 E ) Yes
Position.3 O (-) Yes

— Same terms used for SYN
Position.3_S, () Yes Billboard + Position iRF
Position.3 K (-) Yes Model. Relative position of
Position.3 E ) Yes pluripotency TFBSs as

— — determined via FIMO; as
Position.2_O (-) Yes sequences contain only three
Position.2_S (-) Yes primary sites Position.1 is
Position.? K ) Yes FALSE for all factors and

— omitted from table.

Position.2 E ) Yes
Position.1_O (-) Yes
Position.1 S ) Yes
Position.1 K ) Yes
Position.1 E (-) Yes
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Table 2.6: iRF gWT Feature Matrix

Model Billboa | Positio [Spacin | Primar
Comparison rd nal g y sites | ChIP | All
AUROC 0.52 | 047 | 0.52 0.64 | 0.56 | 0.67
AUPRC 022 | 0.25 | 0.31 0.34 | 0.29 | 0.46
Features Sour
included ouree
O presence Yes Yes ) ) ) (-) [Same terms used for SYN
Identity of TFBSs present
K_presence Yes Yes ) ) ) ) in the sequence are
E presence Yes Yes (-) () () (-) |determined via FIMO.
Position.4 O (-) Yes (-) (-) (-) (-)
Position.4 S ) Yes ) ) ) )
Position.4 K -) Yes (-) (-) (-) (-) |Same terms used for SYN
Position.4 E ) Yes ) ) ) ) Positional iRF Model.
Position3 O - Relative position of
ostHon->_ © © ) ) ) ) pluripotency TFBSs as
Position.3_S, (-) Yes ) ) ) (-)  |determined via FIMO; as
Position.3 K ) Yes ) ) ) (-) [sequences contain only
. three primary sites
Position.3 E - Y - - - -
osTon-- O © © © © © Position.1 is FALSE for all
Position.2 O -) Yes ) ) ) (-)  |factors and omitted from
Position.2_S ) Yes (-) -) -) (-) |[table.
Position.2 K (-) Yes (-) () () (-)
Position.2 E (-) Yes (-) (-) (-) (-)
Distance O.S ) ) Yes ) ) Yes
Dist <E > > Distance between FIMO
1stance_B- O 10O s 1 O 10 > lidentified sites (OCT4,
Distance K.O | (-) ) Yes ) (-) | Yes [SOX2, KLF4, & ESRRB);
Distance K.S ) -) Yes -) -) Yes [|if a site is absent from the
) sequence distance between
Dist E.S - - Yo - - Yo
sanee_ © © © © © © the two factors is sent to
Distance E.O (-) ) Yes ) ) Yes




total length of sequence (81
or 82 bps).

Distance 1.2 (-) (-) Yes (-) (-) Yes |Distance between sites,
regardless of identity,
-) -) Yes -) -) Yes |present in sequences (1st to
Distance 2.3 2nd, 2nd to 3rd site).
S f ‘Dist 1.2’ and
Total spacing | ) | ) | ) | ) | () | Yes [SoinoOr istance Lo an
‘Distance 2.3’
Oct4.site_aftin
: - ) ) ) Yes () | Yes
ity
Sox2.site_affin Scores assigned by FIMO,
ity ) ) ) Yes ©) Yes |alog-likelihood score ratio
: : based on the PWM
Kli4.site_atfini ) ) ) Yes Yes |provided (Grant et al.
ty () 2011).
Esrrb.site_affi
) - ) () () Yes Yes
nity )
Sum of OCT4, SOX2,
OSKE TotalA KLF4, & ESRRB site
— _ _ _ _ _ Yo >
ffinity © ©) ©) ©) ©) ©s affinities for each sequence
(above terms)
Oct4.0cc 10 (-) (-) (-) (-) (-) Yes |Total predicted occupancy
Sox2.0cc_8 ) ©) ©) ©) ©) Ves |across the sequence for
each pluripotency factor,
Klf4.Occ_8 ) ) ) ) ) Yes |annotated with custom code
Essrb.Occ 8 ) (-) ) () ) Yes [(See Methods)
Sum of predicted
occupancies for
OSKE_P(Occ) | (-) ) ) ) (-) | Yes :
pluripotency factors (above
terms)
KIfl_Mut.cou O ) ) ) ) Ves |Number of identified sites
nt for gMUT sequences
REST Mut.co scanned using FIMO with
unt ) ) Q) ) ) Yes | pwMs of SVM supported
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FOXA1 Mut.c factors. gMUT sequences
- ) ) ) ) () | Yes
ount were scored to prevent
FOXM1 Mut. assigning a score for
count B ) ) ) ) ) Yes  |another factor to any of the
primary pluripotency sites.
TCF7_ Mut.co
- ) ) ) ) () | Yes
unt
NANOG_Mut.
- () ) ) ) (-) | Yes
count
KLF1 Mut.To
aamny | O | O] O[O | o]
REST Mut.To Sum of scores assigned for
tal Affinity ©) ©) ©) ©) ©) Yes FIMO scanning with
FOXAI Mut. o 0 o 0 0 N PWMs of SVM supported
- - - - - es
Total A ffinity factors for gMUT
sequences. gMUT
FOXMl_Mut. ) (-) ) ) ) Yes |sequences were scored to
Total Affinity prevent assigning a score
TCF7_Mut.Tot for another factor to
. () ) ) ) () | Yes | . ] .
al Affinity primary pluripotency sites.
NANOG_Mut.
- - - - - - Y
Total Affinity © ©) ©) ©) ©) ©
Sum of KLF1, REST,
SVM_TotalAff FOXA1, FOXMI1, TCF7, &
T ) ) ) ) () | Yes : -
inity Nanog site affinities
(above).
Sum of
Total site affi
n; I GO 1 ol ol o | o | Yes [SVM TotalAffinity’ and
Y ‘OSKE_TotalAffinity’.
Oct4 ChIP (-) (-) (-) (-) Yes Yes |Chen et al. ChIP-seq
Sox2_ChIP ) ) ) ) Yes Yes |overlaps. GEO dataset:
GSE11431; GEO IDs:
KIf4 ChIP ) ) () ) Yes Yes GSM288346 (O),
GSM288347 (S),
Ol o o] oY Y ®)
Essrb_ChIP GSM288354 (K),
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GSM288355 (E); E14
mESCs.

Nanog

Yes

Yes

Tefep2ll

Yes

Yes

CTCF

Yes

Yes

p300

Yes

Yes

Additional ChIP-seq peaks
from Chen et al. GEO
dataset: GSE11431; GEO
IDs: GSM288345 (Nanog),
GSM288350 (Tcfep2ll),
GSM288351 (CTCF),
GSM288359 (p300); E14
mESCs.

Peak count

Yes

Total overlapping
pluripotency ChIP seq
signals for all peaks from
Chen et al. (above),
including O,S,K,E, Nanog,
Tefep2l1, CTCEF, & p300.

REST

Yes

Yes

ChIP-seq from Yu et al.
PMID: 21632747; GEO
dataset: GSE28233; GEO
ID: GSM698696; E14
mESCs.

Mtf2

)

Q)

Q)

Q)

Yes

Yes

Ezh2

)

)

)

)

Yes

Yes

H3K27me3

Q)

Q)

Q)

Q)

Yes

Yes

H3K4me3

Q)

Q)

Q)

Q)

Yes

Yes

ChIP-seq from Perino et al.
PMID: 29808031; GEO
dataset: GSE94300;
MAnorm bed files from
dataset used for respective
factors; E14 mESCs.

ATAC

)

)

)

)

Yes

Yes

ATAC-seq from Wu et al.
PMID: 27309802; GEO ID:
GSM2156965; 50k cell
stage of mESC:s.

H3K27ac

Yes

Yes

H3K36me3

Yes

Yes

H3K4melRen

Yes

Yes

All files downloaded from
www.encodeproject.org.
Note: all data sets from Yue
et al. (PMID: 25409824)




BN Lo O |0 | Yes | es

er

H3K4me3Ren | (-) (-) (-) (-) Yes Yes

YO Lo L O |0 | Yes | ves
er

H3K9ac (-) ) ) () Yes Yes

H3K9me3 -) ) ) ) Yes Yes

are under review due to
library complexity and/or
read depth issues. E14
mESCs.
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Chapter 3: Evaluating fitness predictions for identification
of cis-regulatory variants using massively parallel reporter

assays

Identifying regions of the human genome that drive regulatory activity is still a major challenge
and prioritization of variants that may impact that key processes the thousands catalogued is even
more difficult. Massively Parallel Reporter Assays (MPRASs) can be used to assess the regulatory
potential of genomic sequences by providing the means to test hundreds or thousands of
sequences at once and allows for direct comparisons between the activity of reference and
alternate alleles without possible confounding variables such as chromatin state or the presence
of other variants in the loci. Efforts have been made to integrate functional annotations and
evolutionary and/or polymorphism metrics to predict regions or variants that contribute to
fitness, or the quantitative representation of natural selection. To assess the predictive power of
the genome classifications and any additional information that may be provided by fitness
predictions such as those generated by programs like fitCons or CADD (Kircher et al. 2014;
Gulko et al. 2015), we tested reference sequences from genome-wide regulatory segmentations
and found that sequences with higher fitCons scores have higher regulatory activity. To assess
the utility of fitness predictions for prioritizing variants that may impact cis-regulation, we tested
reference and alternate alleles from the 1000 genome database and found that neither high
fitCons or high CADD predictions were enriched for variants that drove significant allelic skew.
Our findings highlight the need for critical evaluation of computational tools for and the
challenge of predicting the regulatory impact of variants in noncoding regions of the human

genome.

This chapter is a manuscript currently being prepared for submission, Evaluating fitness
predictions for identification of cis-regulatory variants using massively parallel reporter assays,
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with Avinash Ramu and Barak Cohen. I am the first author and contributed to the writing of the
manuscript along with Barak Cohen. I performed the experiments and analyzed the initial
sequencing data. Avinash Ramu performed CADD annotations and analyses. I performed all
additional analyses.
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Introduction

A major challenge for interpreting growing collections of noncoding human variation,
particularly variants associated with disease, is the prioritization of the sometimes thousands of
associated variants for follow-up. Estimates for the proportion of functional DNA in the human
genome have ranged from as little as 2.5-12%, based on sequence constraints and comparative
genomics, to over 80% based on experimentally measured biochemical signals (Castillo-Davis
2005; Ponting and Hardison 2011; ENCODE Project Consortium 2012; Eddy 2013). With the
majority of genome-wide association study (GWAS) hits mapping to noncoding regions,
determining which regions of the genome are functional in relevant cells types is critical for
identifying the causal variants underlying these associations (Hrdlickova et al. 2014; Stranger,
Stahl, and Raj 2011). However, identifying functional regions of the genome and predicting the
impact of individual noncoding variants remains difficult. In this study, we sought to determine
the value of fitness predictions for identifying genomic sequences with regulatory potential in the
lymphoblastoid cell line GM 12878 and prioritizing variants that might impact cis-regulatory

activity.

Evidence suggests that a large fraction of noncoding variants under selection may contribute to
cis-regulatory activity but it remains difficult to identify variants that contribute to disease or
organismal level traits in humans (Asthana et al. 2007). For example, lactase persistence into
adulthood is a trait strongly associated with two noncoding variants, C/T-13910 and G/A-22018,
that are at high allele frequencies in European populations and are thus likely under positive
selection (Poulter et al. 2003; Ridefelt and Hékansson 2005). One possible causal noncoding
variant likely modulates the expression of the enzyme lactase-phlorizin hydrolase, which breaks
down lactose into glucose and galactose (Ranciaro et al. 2014; Tishkoft et al. 2007). Additional
distal putative regulatory variants for the same enzyme have been found in pastoral African
populations that consumed milk, supporting selective pressure on the expression of this gene

(Ranciaro et al. 2014; Tishkoff et al. 2007; Swallow 2003). In contrast, a common noncoding
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variant in a locus associated with levels of plasma low-density lipoprotein cholesterol (LDL-C),
heart attack, and coronary artery disease, impacts the expression of a key liver enzyme, SORTI,
when tested in hepatic cell lines (Musunuru et al. 2010; Linsel-Nitschke et al. 2010). Functional
assays indicate that the modulation of SORT1 transcript abundance alters the associated
phenotype of plasma LDL-C, potentially explaining the observed disease risks (Musunuru et al.
2010). Additional regulatory variants have been found with links to phenotypes such as diabetes
(Kulzer et al. 2014), hepatitis C clearance (Lu et al. 2015), transcriptional response to hypoxia
(Roche et al. 2016) and hypertension (Rana et al. 2017). These examples suggest a complex link
between the impact of a genetic variant on cis-regulatory activity and expected fitness
contributions, i.e. the quantitative representation of natural selection, but highlight the need for
higher throughput approaches to prioritize variants beyond single loci for detailed, high effort

follow up experiments.

Higher throughput approaches to identify variants of interest from human populations have
traditionally included identifying variants associating expression quantitative trait loci (eQTLs)
with quantitative expression differences between individuals. Studies that aim to identify eQTLs,
including large scale studies in GM 12878 cell lines, assume that susceptibility to common
disease, a possible contributor to fitness, is at least in part mediated by variation in gene
expression (Cookson et al. 2009; Lappalainen et al. 2013). This assumption is supported by
evidence that variants associated with complex human phenotypes are more likely to be
associated with differences in transcript abundance than variants with matched allele frequencies
(Nicolae et al. 2010). However, a eQTL for a single gene can include hundreds of significantly
associated variants (Lappalainen et al. 2013; Mohammadi et al. 2017). Even intersecting
significantly associated variants with additional data, such as biochemical signals or functional
annotations the ENCODE project can leave several dozen variants with equal likelihood of being

causal, limiting follow up experiments from testing multiple loci (Oldoni et al. 2016).
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Functional annotations, evolutionary evidence, and even associations with expression changes
alone have been insufficient to prioritize variants on a genome-wide scale. Therefore, integrative
computational tools that predict what regions of the genome are sensitive to substitutions or
which noncoding variants could impact key genomic functions, including cis-regulation, are an
attractive approach for the prioritization of variants necessary for follow-up experiments. Several
groups have published computational approaches to make predictions of the expected impact of
human genetic variation. Two such programs, fitCons and CADD, integrate diverse annotations
into a single metric (Gulko et al. 2015; Kircher et al. 2014), to characterize the fitness
consequence and deleteriousness of variants, respectively, with a shared goal of characterizing
the functional consequences of substitutions genome-wide. While fitCons uses functional data
from the ENCODE project in several cell types to group sequences and assign scores based on
divergence and polymorphism frequencies (Gulko et al. 2015), CADD contrasts observed
variants that are fixed or nearly fixed in human populations to simulated substitutions as proxies
for rare mutations, which are hypothesized to be more likely to impact organismal fitness, to

assign scores of likely deleteriousness (Kircher et al. 2014).

Although there are accepted benchmarks for evaluating algorithms that predict the impact of
variants on coding sequences, such as predicting protein truncations and evaluating in vivo
function or phenotypes, similar benchmarks have not been standardized for evaluating
predictions in noncoding sequences (Ng and Henikoff 2003; Miosge et al. 2015; Walters-Sen et
al. 2015). For fitCons, performance was assessed by relying on correlations with measurements
such as ChIP-seq (Gulko et al. 2015), although only a fraction of bound regions are likely to
have biochemical activity (White et al. 2013, 2016; Chaudhari and Cohen 2018). For CADD,
performance was assessed by generalizing correlations of activity from saturation mutagenesis of
three validated cis-regulatory sequences to the genome-wide predictions (Kircher et al. 2014).
Because many propose using cis-regulatory activity as a possible read out of fitness or
deleteriousness, including the authors that developed fitCons and CADD, a more rigorous

approach is to directly test these predictions. Although it remains unclear if the ability of a
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sequence to modulate expression in the context of a reporter assay corresponds to in vivo
regulatory activity, transient plasmid-based assays such as MPRAs have the advantage of
determining the cis-regulatory potential of a sequence in isolation and allow us to measure the
exact impact of variants on expression (Castillo-Davis 2005; Ulirsch et al. 2016; Chaudhari and
Cohen 2018). Tewhey and colleagues used MPRAs to identify significant allelic skew, the ratio
of alternative allele and reference allele activity, for 2.6% of tested eQTL-associated and control
variants in two lymphoblastoid cell lines and identify a causal variant for one locus using
genome engineering, showing that MPRAs have value in identifying putative regulatory variants

(Tewhey et al. 2016).

Here we use MPRAS to evaluate the predictive power of two conservation & population
genetics-based algorithms for the cis-regulatory activity of sequences from the human genome in
the lymphoblastoid cell line GM 12878, an ENCODE tier one cell line that was generated as part
of the International HapMap project and has extensive annotation data available as well as being
used as a model cell line for B-cell related diseases (International HapMap Consortium 2005;
Arvey et al. 2012; Sanyal et al. 2012; H. Zhou et al. 2015; Oakes et al. 2016). We tested putative
regulatory sequences and variants to understand how predictions of fitness relate to both level
and allelic differences for cis-regulatory activity. We find that 60% of regions annotated as
regulatory by chromatin-based models are active in our assay, with a surprising fraction acting as
silencers or repressors. We also find that approximately half of tested variants have a detectable
impaction on expression but that neither CADD or fitCons scores help prioritize variants with
allelic effects. These results suggest that caution should be exercised if CADD and fitCons are
used to prioritize variants that may have cis-regulatory impacts and that alternative
computational and experimental approaches for prioritizing noncoding variants may need to be

developed.

Results
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Rationale and description of cis-regulatory libraries

If natural selection acts on the cis-regulatory activity of genomic sequences, we would expect
that noncoding sequences predicted to contribute to fitness to be enriched for cis-regulatory
activity, either as activating or repressing sequences. To test this prediction, we designed a library
of reporter genes (REF) composed of noncoding sequences from the reference human genome
(genome build hg19). We chose sequences from four annotation classes for the GM 12878 cell
line, Weak Enhancers (WE), Enhancers (E), Predicated Promoter Flank (PF), and Repressed (R),
based on chromatin data from the ENCODE project (Flicek et al. 2013; ENCODE Project
Consortium 2012). For each annotation class, we chose sequences that span the range of possible
scores from fitCons. For every nucleotide in the genome, fitCons assigns a rho score, which
represents the probability that the nucleotide contributes to fitness. The resulting library of
~1,400 sequences allow us to assess the predictive power of the genome classifications compared
to any additional information fitCons may provide for selecting genomic regions with

cis-regulatory activity.

If natural selection acts on regulatory elements, then we might expect that noncoding variants to
impact cis-regulatory activity. As fitCons predicts the probability of a sequence being under
selection, a high probability of selection would suggest that the sequence may also be sensitive to
substitutions (Gulko et al. 2015). Therefore, we designed a variant (VAR) library to test this
prediction. We selected reference sequences from the WE annotation, as we previously found
this annotation to be enriched for sequences with regulatory activity (Kwasnieski et al. 2014) and
to control for confounding effects that could result from comparing sequences with different
annotations. As in the REF library, we chose sequences across the range of fitCons scores for
noncoding sequences. The coordinates for these sequences were then used to identify alternative
alleles reported in the 1000 Genome Project database (Lappalainen et al. 2013). The resulting
VAR library is composed of 403 reference sequences and their matching alternative allele

sequences. By assaying the activities of these pairs of sequences, we tested the relationship
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between predicted fitness and the impact of naturally occurring variation on cis-regulatory

activity.

Together these libraries test two complementary hypotheses: 1) that regions with higher fitCons
scores will be enriched for active regulatory DNA elements and 2) that variants in regions with
higher fitCons or CADD scores will be enriched for having an impact on regulatory DNA

activity.

MPRA of reporter gene libraries

We assayed the cis-regulatory activity of the REF and VAR libraries in immortalized human
primary B-lymphoblastoid cells (cell line GM12878; Coriell) using a plasmid-based MPRA
(Patwardhan et al. 2012; Tewhey et al. 2016; Kwasnieski et al. 2014). Each unique library
member described above was designed to be present in the library pools six times, paired with a
unique barcode (BC) sequence (Kwasnieski et al. 2014; Chaudhari and Cohen 2018; Fiore and
Cohen 2016). To determine the relative activity of each sequence, we included plasmids designed
to include only the minimal promoter paired (See Methods) (White 2015; Mogno, Kwasnieski,
and Cohen 2013; White et al. 2013; Kwasnieski et al. 2012; Fiore and Cohen 2016). Our BC
counts were highly reproducible between biological replicates, with R? between 0.994-0.996 for
replicates of the REF library and 0.972-0.988 for the VAR library (Figure S1A-B). After
thresholding on read counts for RNA and DNA samples, we recovered reads for 99.7%
(1759/1763) of REF library sequences and 99.4% (691/697) of VAR library sequences,
demonstrating the quality of these data. Expression was then calculated by computing the
average of the ratio of BC;, counts to BC,,, counts for each for each unique sequence tested.
These data are of extremely high quality, particularly when compared to previous efforts to use
MPRAS to identify allele-specific expression, which should, in principle, increase our power to

detect potential predictive power of CADD and fitCons (Ulirsch et al. 2016).
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Predicted Fitness identifies activity of genomic sequences better than functional
annotations alone

Activity of ENCODE segmentation predictions consistent with functional testing in other cell
types. For the REF library, we detect significant activity for 60% (1051/1763) of tested
sequences, of which 24% (251/1051) drive expression above basal controls and 76% (800/1051)
drive expression below basal controls (p < 0.05, Wilcoxon-rank sum test with Bonferroni
correction, n = 1764). Activity effect sizes (Figure 1A) are consistent with previous MPRAs in
GM12878, with a notable enrichment for sequences that drive expression below basal controls,
which has been observed previously in MPRASs in other cell types (Kwasnieski et al. 2014;
Tewhey et al. 2016; White et al. 2013). For the segmentation predictions, regions annotated as
WE and E have the highest average activity compared to Repressed and Promoter Flanking
annotated regions (Figure 1B; Tukey ANOVA analysis). This result is consistent with the higher
activity previously observed for sequences annotated as Weak Enhancers tested in K562 cells
(Kwasnieski et al. 2014). We observed no significant difference in the average expression levels
between tested REF library sequences annotated as R and PF (Figure 1B; Tukey ANOVA
analysis). However, within each annotation group there are sequences that drive expression
across the whole range of observed activity, including sequences predicted to be repressive that
drive expression more than 4-fold over and 4-fold under basal levels. Therefore, chromatin-based
functional annotations alone only explains a small portion of the differences in regulatory

activities of genomic sequences.

We next asked whether sequences predicted to contribute to fitness add value to the functional
annotations. We did not observe a quantitative correlation between fitCons scores and the
activities of genomic sequences measured in our REF library (Figure 2A; R*=0.01). However,
the rho scores from fitCons represent the probability that a sequence contributes to fitness and
are not quantitative measures of how much sequences might contribute to fitness. After binning
sequence with low (rho < 0.162) and high scores (rho > 0.162), we did find a significant

difference between average sequence activity (Figure 2B; Student’s t-test, p = 7.68e-05), but high
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scoring sequences were not any more enriched for sequences with significant activity than low
scoring sequences (low rho: 522 significant out of 879, high rho: 529 significant out of 880;
Chi-square test, y* (1, N = 1759) = 0.0639; p = 0.8003). Our results suggest that sequences
predicted to be under selection are not necessarily more likely to have regulatory potential, but

do show greater levels of cis-regulatory activity.

Fitness or deleteriousness predictions do not identify variants that drive allelic skew

We next asked whether genomic sequences with signatures of selection are more likely to
contain genetic variants that affect cis-regulation by testing sequences that were all annotated as
WE and overlapped a variant in the 1000 genome project database. Our expectation for the VAR
library was that regardless of the activity level of the sequences, genetic variants in sequences
under selection would be more likely to cause a detectable difference in cis-regulatory activity
compared to the reference allele. Overall, we detect significant activity for 65.6% (454/692) of
the entire VAR library, regardless of allele status, of which 32.6% (148/454) drive expression
above basal controls and 67.4% (306/454) drive expression below basal controls (p < 0.05,
Wilcoxon-rank sum test with Bonferroni correction, n = 691). We detected significant allelic
skew, the log ratio of alternative variant to reference allele expression, for 45% of
alternative-reference pairs tested in the VAR library (Figure 3A; p < 0.05, Student’s t-test with
FDR < 0.05 correction; n = 346). The majority of allelic differences are of modest effect sizes
(Figure 3B). The large fraction of tested alternative-reference pairs with detectable allelic skew
shows that variation in human populations can frequently impact the relative activity of a

putative cis-regulatory sequence, but rarely cause large changes.

All regions tested in the VAR library are annotated as WE and although alternative alleles could
be enhance or reduce the activity of a putative CRS, since fitCons and CADD claim to integrate
regulatory annotations and variation metrics, we expected that the impact of tested variants might
be similarly predicted by the two fitness predictions. For fitCons, we found that the magnitude of

observed allelic skew does not correlate with the fitCons score for each parent sequence, again
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unsurprising as fitCons scores are probabilities (R* = 0.001; Figure 4A). We then binned
sequences into ‘low’ and ‘high’ groups based on fitCons scores, with low (740 < 0.158) and high
scores (rho > 0.158), and to determine if regions with higher predicted probabilities of
contributing to fitness enriched for variants that show allelic skew. However, we found no
significant difference between average allelic effect sizes for low and high scored sequences
(Figure 4B; Wilcoxon rank-sum test, p = 0.1028), or in the number of sequences with significant
allelic skew (Pearson’s Chi-square test; ¥* (1, N =346) = 0.15179; p = 0.6968). The
independently generated CADD scores, which according to the authors provide a score of
deleteriousness, or negative fitness impacts were less evenly distributed for the tested
substitutions. (Kircher et al. 2014). When we compared the precompiled CADD C-scores for
each tested variant, we also found poor correlation with the observed magnitude of allelic skew
(R*=0.005; Figure 4C). When we binned CADD scores into high (C-score > 4.6) and low
(C-scores < 4.6) based on the average CADD score tested in the VAR library, we did not find
that there was a significant difference between average allelic effect sizes (Figure 4D; Wilcoxon
rank-sum test; p = 0.1028). Binned CADD scored sequences are also not enriched for significant
allelic skew (high C-score: 97 with significant allelic skew of 219, low C-score: 61 with
significant allelic skew of 127; Pearson’s Chi-square test, x* (1, N = 346) = 0.45298; p = 0.5027).
Together, these data show that signatures of natural selection, as measured by two independent
predictors, do not help predict the expected regulatory impact of variants observed in human

populations.

Population genetics predicts that rare variants may have larger impacts on phenotypes than
common variants. If there is a cis-regulatory contribution to the rare variant-common disease
model (Saint Pierre and Génin 2014; Gibson 2012; Schork et al. 2009), then rare variants, even
those observed in human populations, might be more likely to drive allelic skew. In our data,
there is not a quantitative correlation between allelic effect size and minor allele frequency
(MAF). Although we observe what appears to be a trend towards larger effect sizes for rarer

variants (Figure 3D) this trend does not pass the threshold for significance testing. We found no
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significant difference between rare alleles (MAF < 0.01) and common alleles (MAF > 0.05) for
either the average allelic effect size (Wilcoxon rank-sum test; p = 0.4865) or the number of
sequences with significant allelic skew (Chi-square test; x> (1, N = 288) = 0.81923, p = 0.365).

This result suggests that allele frequency alone is not a robust predictor of cis-regulatory impact.

Discussion

In this study, we sought to determine the value of fitness predictions for identifying genomic
sequences with regulatory potential in the lymphoblastoid cell line GM 12878 and prioritizing
variants that might impact cis-regulatory activity. By testing sequences classified as potentially
regulatory in GM 12878, we found that sequences with high probabilities of contributing to
fitness as predicted by fitCons had higher average activity in our assay. The predictive power of
fitCons scores for genomic sequences indicates that short noncoding sequences might be selected
for high or low cis-regulatory activity. When we tested variants in regions annotated as WE, our
method was sensitive enough to detect differences in expression for matched reference-
alternative alleles, although these differences were relatively modest. The percentage of tested
regions with significant allelic skew is slightly higher than similar studies, likely due to
differences in normalization processes, sequencing depth, and minimal promoter choice, but the
modest effect sizes measured for single nucleotide substitutions are consistent (Ulirsch et al.
2016; Tewhey et al. 2016). However, we did not find a significant difference in allelic skews
between sequences with low and high probabilities of contributing to fitness as predicted by
fitCons nor did we find a significant difference for variants with high and low scores of
deleteriousness as predicted by CADD. These results are in contrast to our prediction that
sensitivity to substitutions may have a greater impact on organismal level fitness than activity
level, but are consistent with recent work that concluded that CADD has poor diagnostic value

for identifying pathogenic variants for clinical noncoding cancer variants (Mather et al. 2016).

73



A shared goal for developing fitCons and CADD was to predict the impact of substitutions
genome-wide. While we observed a small but significant difference between high and low
fitCons scores for general activity, neither CADD nor fitCons scores align with the frequency or
magnitude of measured allelic expression differences. This suggests that these algorithms are
predicting something besides fitness and deleteriousness, respectively. Alternatively this suggests
that that potential regulatory sequences tolerate substitutions observed in human populations just
as well as sequences that are unlikely to contribute to fitness. A major assumption in the field is
that differences in regulatory activity contribute to phenotypic differences (Cookson et al. 2009;
Raghavan et al. 2014; Mohammadi et al. 2017; Myint et al. 2018). If most cell types or most
gene networks are robust to minor expression changes, then it is possible that only variants that
impact a particularly sensitive gene or network will have any impact on fitness or disease risk.
This prediction is consistent with recent work to determine if GWAS risk and eQTL association
are driven by the same underlying variant, which found that although the noncoding loci overlap,
only 21% of disease associations show a statistical shared effect with a local eQTL (Chun et al.
2017). As both the study by Chun and colleagues and our study used immune-related cell types,

the smaller impact of regulatory variants could also be a feature of this lineage.

An unexpected result was the proportion of sequences that appear to act repressively. While
repression should be equally well modeled in predictions of fitness and deleteriousness, MPRAs
are strongly skewed for measuring activation if very weak minimal promoters, such as
TATA-box only promoters are used (White et al. 2016; Tewhey et al. 2016). The fraction of
sequences measured as repressive in our study, thanks to a stronger minimal promoter and deep
sequencing of the libraries and replicates (See Methods), is consistent with the fraction of the
genome expected to be repressive by segmentation predictions (Supplemental Figure S5), histone
marks alone as supported by ENCODE data, and observations from development, including
lymphoblastoid differentiation (ENCODE Project Consortium 2012; Thiel, Lietz, and Hohl
2004; Reynolds, O’Shaughnessy, and Hendrich 2013; van Keimpema et al. 2015). If

cis-regulatory activity does contribute to fitness and disease risk, our ability to identify key
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regions and variants of interest may be hampered without more sensitive approaches to enrich for
and identify repressive elements from the genome, as many of the sequences that showed
repressive activity in the VAR and REF libraries may have been missed without sufficiently deep

sequencing.

These results suggest that the link between fitness and how we test for expression changes may
need to be re-evaluated as two independent algorithms that aim to predict fitness consequences
fail to predict the allelic skew as measured using plasmid reporters, despite MPRAs being used
as a widespread tool to evaluate the impact of variation from the human genome (Ulirsch et al.
2016; Tewhey et al. 2016; Y. Li et al., n.d.). Additionally, the large fraction of sequences that
drive expression below basal activity suggests that our understanding of the function of the
genome could be enhanced by developing methods with better sensitivity to detect sequences
that repress expression. Moving forward, testing a sufficient number of de novo mutations or
very rare mutations associated with a disease or phenotype would help determine if the pattern of
small effect sizes we observe for 1000 Genomes variants generalize to most substitutions or not.
In addition, more examples of causal noncoding alleles in enhancers and repressors will need to
be identified if we are to reliably predict the impacts of noncoding variants on cis-regulatory

activity.

Methods

Library design

First, genomic regions with uniform fitCons scores across the entire lengths (approximately 14
million regions) were filtered to exclude blacklisted and poorly mapped regions (approximately
13.5 million remaining regions) (See Supplemental Table 4) (Derrien et al. 2012). Regions were
then intersected with putative regulatory regions (Combined ChromHMM/Segway models,

Supplemental Table 4), such that the entire genome region has a consistent fitCons score and

75



single Combined annotation. Regions were then subsetted to only blocks of length 80-130 bp
(approximately 8.8 million regions) due to limitations in library size oligo synthesis. The regions
were subsetted further to be restricted to likely regulatory regions, Combined annotations of
Weak Enhancers, Enhancers, Repressors, and Proximal Promoters (approximately 530,000
regions). These were then assessed to determine relative distributions of fitCons scores
(Supplementary Figure S5). Each annotation group was then randomly sampled between 740
scores of 0.00 and 0.35, with all regions with scores between 0.40 and 0.50, the maximum values
observed for 80-130 bp sequences, were retained (n= 28), to better capture the entire distribution
of fitCons scores for noncoding regions. After filtering for restriction sites, the remaining

sequences were used to design oligos for the REF library.

Regions annotated as Weak Enhancers (WE) were then used as query regions for the Tabix tool
(H. L1 2011) to retrieve variants from the The International Genome Sample Resource (IGSR)
1000 Genome Project database (L. Clarke et al. 2017; 1000 Genomes Project Consortium et al.
2015). As not all regions selected for the REF library overlapped variants, additional WE
annotated regions were randomly selected with scores between 4o scores of 0.00 and 0.30 and
then used as query regions to retrieve additional variants from the database. After filtering for
restriction sites, the remaining 346 variant and alternative allele pairs were used to design oligos

for the VAR library.

Library cloning

To generate libraries for our regions of interest, we ordered a custom pool of 15,000 unique 200
bp oligonucleotides (oligos) from Agilent Technologies (Santa Clara, CA) through a limited
licensing agreement. Each oligo in the REF library pool was 200 bp in length with the following

sequence:

GATACATGGTCAGCTAGCGT[SEQJAAGCTT[FILLER]CTCGAGGCATGCC[BC]TGAGC
TCTACATTCGCATACTG
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Where [SEQ] is a 80-130 bp reference sequence (Reference assembly GRCh37 (hgl9))
annotated as a putative regulatory region, [FILLER] is is a random filler sequence of variable
length to bring the total length of each sequence to 200 bp, and [BC] is a unique 9 bp barcode
sequence. Each unique [SEQ] in the REF library was assigned six different [BC] sequences.

Each oligo in the VARS library pool was 200 bp in length with the following sequence:

GACTTGACATGTCTGCTAGCA[SEQJAAGCTT[FILLER]CTCGAGGCATGCC[BC]TGAG
CTCTGAACAGTACGATC

Where [SEQ)] is either a 80-130 bp ‘Weak Enhancer’-annotated reference sequence (Reference
assembly GRCh37 (hgl19)) or a matched sequence with a single nucleotide substitution from the
IGSR 1000 Genome Project database, [FILLER] is is a random filler sequence of variable length
to bring the total length of each sequence to 200 bp, and [BC] is a unique 9 bp barcode sequence.
Each unique [SEQ] in the VARS library was assigned six different [BC] sequences.

The plasmid library was prepared as described previously (Kwasnieski et al. 2014, [a] 2012),
except using primers RefLib FW and RefLib Rev for the REF library with an annealing
temperature of 53°C and VarLib FW and VarLib_Rev for the VAR library with an annealing
temperature of 56°C (Supplemental Table 1). Amplified sequences were cloned into the Nhel
and Sacl sites of pGL-hsp68 and inserted into pGL-hsp68 (Kwasnieski et al. 2014) digested with
the same enzymes. These plasmid pools were then isolated and digested with with HindIII and
Sphl (New England Biolabs, Ipswich, MA). A minimal Asp68 promoter and dsRed reporter gene
was then amplified from pGL-hsp68 using primers FW_hsp68 dsRed and Rev_hsp68 dsRed
(Supplemental Table 1), and inserted into the plasmid library pools from the previous step at the

HindIII and Sphl sites. The final libraries then each have putative regulatory elements upstream
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of the 4sp68 minimal promoter and dsRed reporter gene, with a 9 bp barcode sequence in the 3’

UTR of the reporter gene.

Cell culture and transfection

GM12878 cell line was maintained in standard conditions (Roswell Park Memorial Institute
(RPMI) 1640 media plus 15% fetal bovine serum and 10 U/mL Penicillin-Streptomycin), as
described by ENCODE protocols (ENCODE Project Consortium 2012). The plasmid library was
purified by phenol-chloroform extraction followed by ethanol precipitation prior to transfections.
The NEON transfection system (Life Technologies, Carlsbad, CA) was used to transfect
approximately 5 x 10° cells per replicate using two 30-msec pulses at 1100V with 18 ug of each
library plasmid pool plus 2 ug of pMAX-GFP as a positive control. Transfected cells were
seeded into T-25 flasks with 5 mLs of pre-warmed media lacking antibiotics, as directed by the
manufacturer. Three replicates were transfected with the REF library and four replicates were
transfected with the VAR library. Transfection efficiencies were estimated at 30% based on GFP

signal from control plasmid in transfected cells (data not shown).

MPRA

After 24 hours, approximately 3-4 x 10° cells were harvested for RNA using the PureLink RNA
mini kit (Life Technologies, Carlsbad, CA), removing excess DNA from the RNA pool using
TURBO DNA-free kit (Life Technologies, Carlsbad, CA). cDNA was then prepared using
SuperScript RT III (Life Technologies, Carlsbad, CA) with oligo dT primers. Both the cDNA and
the plasmid DNA pools were amplified using primers CF150 and BCenrichment Rev with a
60°C annealing temperature for 12 cycles. Barcode enrichment PCR products were then digested
with Xbal and Sphl and then ligated with adaptors PE2 Ind71 Xbal and P1_Sphl X (where X is
1-4) for the REF library and adaptor PE2 Ind72 Xbal and P1_Sphl X (where X is 1-5) for the
VAR library. An enrichment PCR with primers CF150 and BCenrichment Rev was then used
(Supplemental Table 1), and the resulting products were mixed at equal concentration and

sequenced on one Illumina (San Diego, CA) NextSeq lane.
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Sequencing reads were filtered to ensure that the BC sequence perfectly matched the expected
sequence. For the REF library, this resulted in 54.3 million total reads combined for the three
demultiplexed RNA samples (PE_Ind71 Xbal/P1 Sphl 1-3 adaptors; 16.6-19.2 million each),
and 18.3 million reads for the DNA library sample (PE Ind71 Xbal/P1_Sphl 4 adaptors). For
the VAR library, this resulted in approximately 65.9 million reads combined for the four
demultiplexed RNA samples (PE Ind72 Xbal/P1 Sphl 1-4 adaptors; 15.6-16.8 million each),
and 23.2 million reads for the DNA library sample (PE_Ind72 Xbal/P1 Sphl 5 adaptors). For
each library, BCs that had less than 10 raw counts in any RNA replicate or less than 10 raw
counts in the DNA sample for the REF library and less than 30 raw counts in any RNA or less
than 30 raw counts in the DNA sample for the VAR library were removed before proceeding

with downstream analyses.

Expression normalization was performed by first calculating reads per million (RPM) per BC for
each RNA replicate for both the REF library (R* = 0.994-0.996; Figure S1A) and the VAR
library (R* = 0.972-0.988; Figure S1B). For each BC, expression was calculated by dividing the
RPMs in each RNA replicate by the DNA pool RPMs for that BC. Normalizing by DNA RPMs
successfully removes the impact of the representation of the construct in the original pool as the
calculated expression has no correlation with the DNA counts for both the REF library (R* =
0.0003-0.0005; Figure S2A) and the VAR library (R* = 0.0001-0.0010; Figure S2B). Within each
biological replicate the BCs corresponding to each unique putative regulatory sequences were
averaged and then normalized by basal mean expression in that replicate. These normalized
expression values were then averaged across biological replicates. Expression summaries per
replicate are reported in Supplemental File 1 for the REF library and Supplemental File 2 for the
VARS library.

Other analysis and data sources
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The position of each alternative allele in the VAR library were annotated with CADD scores

(v1.3) using the CADD server (https://cadd.gs.washington.edu/score). Genome coordinate
intersections and merges were performed with the bedtools suite version 2.27. All downstream

analyses were performed in R version 3.3.3 and plotted with ggplot2 version 2.2.1.

Data Access
Raw data will be uploaded to SRA and processed data will be available through the GEO

database prior to submission for publication.

Disclosure Declaration

The authors declare that they have no competing interests to disclose.

Acknowledgements

We thank members of the Cohen Lab for critical reading and feedback, Jessica Hoisington-Lopez
from the DNA Sequencing Innovation Lab for assistance with high-throughput sequencing, as
well as Brad Gulko and Adam Siepel for their assistance with interpreting fitCons scores. This

work is supported by a grant from the National Institutes of Health, RO1 GM092910 to B.A.C.

80



Figures

A
MPRA actlvity vs. basal
200- n.s. (p > 0.05)
Actlve (p < 0.05)
[22]
=
3
Q
o
100-
U_
-2 0 2
log2(Expression)
B
. ' E
2- i : !
s : I z
S : :
2 : T :
¢ |
o
G o b FRF L Pl
R e Al e EF T
§ P ey dEbe Ko
<2 ; . '
PF WE E ;

Figure 3.1. Activity of reference sequences in GM12878. (A) Distribution of activity for REF
library sequences that are significantly different from basal controls (blue) and that failed to
reach significance (grey); p < 0.05, Wilcoxon-rank sum test with Bonferroni correction, n =
1764. (B) Distribution of normalized expression of REF library sequences for Predicted Flanking
Promoter (PF), Weak Enhancer (WE), Enhancer (E), and Repressed (R) Combined
segmentations. Boxplots overlaid with mean (red dot) and SEM (red lines) for tested sequences,
with expression average across barcodes per sequence shown with blue (+) symbol.
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Figure 3.2. Activity of reference sequences versus probability of selection. (A) Normalized
expression of REF library sequences versus fitCons score of probability of selection. Sequences
with expression significantly different from basal controls shown in blue (Wilcoxon rank sum
test, p < 0.05; Bonferroni correction, n = 1763). (B) Expression of REF sequences for low (740 <
0.162) or high (rho > 0.162) fitCons scores. Boxplots overlaid with mean and SEM (red) plus
data points (blue) as in Figure 1.
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Figure 3.3. Allelic skew of 1000 genome variants in GM12878. (A) Normalized expression of
reference and single substitution alternate alleles. Blue indicates sequences with significantly
different expression between matched alleles (Student’s t-test, p < 0.05; B.H. correction, FDR <
5%). Each point is the average of multiple barcodes across replicates, so larger average changes
that fail to meet significance can be observed if there is large variance in measurements.
Diagonal red line is expectation if substitution had no impact on expression level. Both alleles
have been normalized to basal controls (Basal expression = 1; not shown). (B) Distribution of
allelic skew, log2(Alternative/Reference expression), for VAR library alleles. Pairs with
significant skew are plotted in blue and sequences that failed to reach significance shown in
grey; p < 0.05, Wilcoxon-rank sum test with B.H. correction, FDR < 5%, n = 346.
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Figure 3.4. Allelic skew versus probability of selection and deleteriousness score. (A) Allelic
skew, absolute value of log2(Alternative/Reference expression) versus fitCons score of
probability of selection. Blue indicates sequences with significantly different expression between
matched alleles (Student’s t-test, p < 0.05; B.H. correction, FDR < 5%). (B) Allelic skew of VAR
sequences for low (770 < 0.158) or high (rho > 0.158) fitCons scores. Boxplots overlaid with
mean and SEM (red) plus data points (blue) as in Figure 1. (C) Allelic skew versus CADD score
of deleteriousness. Blue indicates significance as in A. (D) Allelic skew of VAR sequences for
low (C-score < 4.6) or high (C-score > 4.6) CADD scores. Boxplots overlaid with mean and
SEM plus data points as in (B).
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Figure 3.5. Allelic skew versus allele frequency. (A) Allelic skew of VAR sequences versus
minor allele frequency of alternative allele as reported by the 1000 Genome database. Blue
indicates sequences with significantly different expression between matched alleles (Student’s
t-test, p < 0.05; B.H. correction, FDR < 5%). (B) Allelic skew of VAR sequences with rare
(MAF < 1%) or common (MAF > 5%) alternative alleles. Boxplots overlaid with mean and SEM
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Chapter 4: Conclusion and Future Directions

My thesis work has focused on understanding DNA sequence contributions to cis-regulatory
activity in two species, human and mouse. The first part of my thesis, Chapter 2, was primarily
focused at the resolution of transcription factor binding sites (TFBS), to understand the grammar
of interactions between pluripotency TFs for synthetic and genomically occuring configurations
of TFBS in mouse embryonic stem cells (mESCs). Using expression driven in massively parallel
reporter assays (MPRAs), I found that the grammar learned from synthetic combinations of
pluripotency TFBSs was not a strong driver of expression measured for genomic configurations
of TFBSs for the same transcription factors (TFs). The second part of my thesis, Chapter 3, was
primarily focused at the resolution of single nucleotide variation observed in human populations,
to understand if predictions of fitness contributions can help prioritize noncoding variation that
impacts cis-regulatory activity. Using MPRAs to test putative regulatory regions and variants
from the human genome, I found that predicted fitness better distinguished the activity of
putative cis-regulatory sequences (CRSs) than the impact of substitutions. These findings have
broad implications for the study of cis-regulation in mammals, both in the context of synergistic

regulation by TFs and for understanding the impacts of variation on regulatory activity.

Synthetic and Genomic grammar of pluripotency factors

I have extended our usage of MPRAs to directly compare the expression of combinations of
TFBSs in a controlled, synthetic context and more a complex genomic context. Previous work
has been generally limited to either genomic or synthetic CRSs, resulting in either limited power
to detect higher order interactions between transcription factors in the case of genomic only
studies or uncertainty in how much higher order interactions learned from synthetic sequences

contribute to expression when spacing, affinity, and other variables are no longer fixed
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(Chaudhari and Cohen 2018; Kwasnieski et al. 2014; Fiore and Cohen 2016; Gertz, Siggia, and
Cohen 2009; White et al. 2013). In Chapter 2, I designed synthetic elements to specifically test
grammar that were complimented by genomic sequences selected to have comparable
configurations of TFBSs and also mutated to demonstrate that activity is dependent on one or
more of the pluripotency TFBSs. This design study plus quantitative modeling allowed me to
definitively show that, at least in the context of mouse pluripotency factors, the features that are
fixed in synthetic contexts, such as TFBS affinity and spacing, play a larger role in the activity of
genomic sequences than the synthetic-learned grammar. The comparison between synthetic
elements and genomic sequences in mESCs represents a significant contribution to identifying

active CRSs in mESCs and informing the future design of synthetic CRSs.

The contributions of TFBS affinity and spacing to classifying active tested genomic sequences in
Chapter 2 could help researchers determine what intergenic regions of mammalian genomes are
functional, as my work suggests that clusters of high affinity TFBSs are more likely to drive
regulatory activity than other sequences with ChIP-seq signals. This is particularly important as
we and others have shown that occupancy by a given TF as measured by ChIP-seq does not
mean that a given sequence will have regulatory activity, with only 20% to 30% of sequences
with TF occupancy in the genome driving significant activity in MPRAs (Maricque, Dougherty,
and Cohen 2017; White et al. 2013; Chaudhari and Cohen 2018). A higher rate of validation for
potential CRSs falling under ChIP-seq peaks could lead to a better understanding of how to
distinguish between spurious binding events and true targets for TFs of interest. To build on the
patterns of expression for the small sample of genomic sequences tested that best matched the
combinations of no more than one of each TFBS, additional sequence space should be explored
by testing additional genomic sequences that include no more of one of each pluripotency TFBS
underlying Nanog and p300 ChIP-seq peaks to better resolve the sequence determinants of
activity for regions regulated by pluripotency factors in mESCs (C.-Y. Chen, Morris, and
Mitchell 2012; Bailey and Machanick 2012). For the sequences previous tested plus any

additional genomic sequences should be more extensively mutated, with each pluripotency TFBS
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mutated individually, as well as pairs, to compliment the complete mutation design used in
Chapter 2. Additionally, more extensive manipulations of genomic sequences could test the
grammar rules learned through modeling, including shuffling the sequences to determine if other
sites could be contributing to activity, modifying the affinities of and spacing between identified
TFBSs. This approach would extensively tease apart the sequence features necessary to drive
expression in mESCs, adding to the body of work examining TFs networks that are necessary for

the pluripotent state (Ferraris et al. 2011; Niwa 2014; Loh et al. 2006).

The lack of evidence for shared grammar between synthetic and genomic CRSs also suggests
that future synthetic CRSs for multiple TFs should include variable spacing and affinity to better
represent the complexity of genomic sequences, while maintaining statistical power by prioritize
the sequence features that I found to contribute to genomic activity. Previous studies have used
high affinity TFBSs with fixed spacing for multiple factors (Fiore and Cohen 2016; Mogno,
Kwasnieski, and Cohen 2013) or two to three different affinity binding sites for no more than
two factors (White et al. 2016). My work in Chapter 2 tested high affinity sites for four different
factors, exhausting all possible combinations of no more than one of each TFBS per synthetic
element, which was successfully modeled by a grammar that included position. However, the
grammar model for the synthetic library failed to predict the activity of genomic sequences. To
address this, improvements to synthetic library design could be made. For the pluripotency
factors I tested, the possible sequence space could be further explored while maintaining the
advantage that synthetic elements provide for exhausting design. Future synthetic libraries
should at minimum modify site affinities and include multiple spacings between TFBSs to better

represent the observed patterns of TFBSs in mammalian genomes.

Identifying regulatory variants using fitness predictions
I have extended the use of MPRAS to test genome-wide segmentation and fitness predictions in a

lymphoblastoid cell line. By testing putative CRS from the human genome in Chapter 3, I show
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that in GM 12878, as in the K562 cell line, specific chromatin-based functional segmentations
have variable levels of activity when tested in the same cell type as the segmentations were
generated, with ‘weak enhancers’ driving the highest average activity in the MPRA (Kwasnieski
et al. 2014). Segmentation predictions aim to classify the human genome into specific functional
units based on histone modification measurements, but appear to fail to predict the likelihood of
regulatory activity despite assignments of regulatory function (Kwasnieski et al. 2014; Ernst and
Kellis 2012; Hoffman et al. 2011, 2013). This was especially surprising when I compared
sequences labeled by ‘Repressed’ segmentations to ‘Flanking Promoters’ segmentations, as the
average activity was not significantly different. The lack of evidence of regulatory potential for
sequences with more ‘active’ histone modifications (Lelli, Slattery, and Mann 2012; Jenuwein
and Allis 2001), suggests that these functional classifications would need to be refined to

effectively identify regions of the human genome that are likely regulatory regions.

In Chapter 3, I show that there is a modest difference in expression between low and high
fitCons scores that were specifically generated for the GM 12878 cell line. This difference in
regulatory activity could be due to actual selection on activating regulatory sequences in the
human genome, or could be a result the fitCons scoring process which includes using functional
information to bin sequences with similar biochemical markers prior to sequence conservation
across species and diversity within populations (Gulko et al. 2015). To further develop the
manuscript presented in Chapter 3, comparing the activity of the tested reference sequence CRSs
to conservation scores alone and the individual biochemical markers used to classify sequences
would help untangle if this signal is due to the end fitness predictions or the underlying data that
is incorporated into those predictions. Further testing to control for possible confounding factors
such as conservation and signals for regulatory activity such as ChIP-seq, would also help inform

our expectations in regards to the relationship evolution and cis-regulatory activity.

By testing a relatively unbiased set of variants observed in human populations, I also showed that

neither allelic expression frequency or effect sizes are correlated with predictions of regional
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fitness consequence or individual variant deleteriousness. Recent work tested genome sequences
with multiple variants using MPRAs in GM 12878, but was restricted only to variants associated
with expression differences between individuals making these data difficult to extend to more
general questions about the expected impact of observed variation on regulatory activity
(Tewhey et al. 2016). Testing variants from the 1000 Genomes Project database for regulatory
impacts without filtering on any potential expression or disease associations allows us to
generate a baseline expectation for the expected frequency and effect size for variation observed
in noncoding regions. Although our sample size of tested reference and alternative alleles (n =
346) is too small to be called a null distribution, the observation that 45% of variants observed in
human populations impact cis-regulatory activity suggests that a large proportion of noncoding
variants could potentially have impacts but the relatively small effect sizes observed suggest that
most variation would have small impacts on nearby gene expression. Larger allelic skews might
be observed for more recent or de novo variation that we would expect to potentially have more
extreme cis-regulatory impacts. Drawing from disease linked variants, de novo variants such as
from cancer panels, as well as additional 1000 Genomes Project variants would provide a
broader representation, especially if we can better prioritize regions of interest using the activity
patterns and annotations of the larger reference only library tested in Chapter 3. Testing a larger
and more diverse sample of variants could lead to a better understanding of the landscape of

potential cis-regulatory impacts of variation in human genomes.

Although fitness predictions do not appear to help identify variants that will drive allelic skew,
there could be several possible explanations for this observation. Minor expression changes
likely propagate through gene networks, and thus, small changes may be dissipated. The
discrepancy between fitness predictions and measured allelic impacts could perhaps be explained
if fitness is only impacted when the affected genes are hubs within a gene regulatory network.
This is consistent with network theory claims that complex networks demonstrate a surprising
degree of error tolerance due to redundancy (Albert, Jeong, and Barabasi 2000). If this is true,

fitness predictions for noncoding regions must account for these network sensitivities. Although
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fitCons does attempt to account for differences between genomic region using annotation data to
group similar regions prior to determining conservation over evolutionary time and diversity
within human populations, and CADD uses ENCODE and UCSC genome browser data to
annotate observed and simulated variants (Kircher et al. 2014; Gulko et al. 2015), it is unclear if
network sensitivity should be better taken into account. Although network sensitivity is a
difficult area of research, tools such as CRISPR allow genome manipulations that could address
this question by swapping variants in the regulatory regions of central regulators for a cell type
versus peripheral gene network member. Additionally, the discrepancy between fitness
predictions and measured allelic impacts could be explained by the possibility that many variants
that have an impact but low expected fitness impact could affect processes that would be
consequential later in life, such as heart disease or type-2 diabetes, such that reproduction would
likely not be impacted. In cases where variants impact processes later in life, GWAS studies and
MPRAs might be more useful than predictions of fitness. An alternative approach to addressing
the question of fitness in relation to expected allelic impacts would be to test the libraries
generated in Chapter 3 in cell lines of other species, such as one or more chimp lymphoblastoid
cell line, as developed by Romero and colleagues (Gallego Romero et al. 2015), or test the
libraries in mouse lines that share the B-cell progenitor lineage of GM 12878, as can be generated
by differentiations of mESCs down the hematopoietic lineage (Cho et al. 1999). Overall, more

detailed exploration of the relationship is warranted.

Evidence for role of repression in mammalian cis-regulation

Another tantalizing result that is shared between the parts of my thesis work is observations of
repression for CRSs from the human and mouse genomes that were expected to be activating. In
Chapter 2, over 60% of tested ChIP-seq peaks failed to drive expression overall minimal
promoter controls, despite these sequences including three high quality pluripotency TFBSs. The
high activity levels of some genomic sequences tested in mESCs made it difficult to sequence
deeply enough to determine if some of the inactive sequences were actively repressing

expression and from sequence analysis, I did not detect an enrichment of REST TFBS, a

91



canonical repressor of neuronal cell fates expressed in mESCs, for the lowest expressing
sequences (McGann et al. 2014). However, OCT4 has been shown to interact with subunits of
the repressive NuRD complex in mESCs, suggesting that some of the sequences that do not show
activity in the assay may show evidence of repression if tested independently (Pietersen and van
Lohuizen 2008; Rajasekhar and Begemann 2007; Liang et al. 2008). In Chapter 3, approximately
45% of all sequences tested in the GM 12878 cell line and 76% of sequences with significant
activity, drove expression levels below that of basal controls. Although the fraction of sequences
that drove expression below controls was surprising considering only a quarter of regions
selected were annotated as ‘Repressive’ in function by the Combined segmentations, but
consistent with estimations that the majority of noncoding regions of the human genome is likely
to be repressive (Thiel, Lietz, and Hohl 2004; Pennacchio et al. 2013; Reynolds, O’Shaughnessy,
and Hendrich 2013). Repression is an important part of determining cell fate and proper cellular
function, and both gain and loss of repression of key driver genes can contribute to cancer (Thiel,
Lietz, and Hohl 2004; S. Zhou, Treloar, and Lupien 2016). Together, these results suggest that
developing an MPRA that enriches for repressive sequences, perhaps by using a stronger
minimal promoter and replacing mCherry with a reporter that can be weakly selected against to
avoid the majority of sequencing reads going to highly activating sequences, would be a valuable

tool for better understanding the cis-regulatory landscape of the human genome.

Conclusions

Overall, my dissertation work has shown that it is possible to connect genotype to quantitative,
cis-regulatory function but that a more detailed understanding of how changes in regulatory
activity in the genome may impact an organism. Although positive results appear to be generally
beyond the scope of this thesis, important hypotheses about cis-regulation have been ruled out
and my work has highlighted the complex regulatory landscape of mammalian genomes. I have
shown that modeling can uncover grammar from diverse genomic sequences and that testing the

regulatory impact of human variants alone may not be sufficient to identify alleles that contribute
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to disease. I hope that this work will help guide future efforts to avoid pitfalls in experimental

design and assumptions and I am excited to see what the collect efforts of the field will uncover.
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