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A Robust Statistical Estimation (RoSE) algorithm jointly recovers the 

3D location and intensity of single molecules accurately and precisely 
Hesam Mazidia, Arye Nehoraia, Matthew D. Lew*a 

aDepartment of Electrical and Systems Engineering, Washington University in St. Louis,  

1 Brookings Drive, St. Louis, MO, USA 63130 

ABSTRACT  

In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, 

and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. 

Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We 

develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon 

counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR. 

Keywords: single-molecule localization microscopy, multi-dimensional reconstruction algorithm, joint sparsity, joint 

location and brightness estimation, 3D super-resolution fluorescence microscopy 

 

1. INTRODUCTION  

Fluorescence imaging and spectroscopy have been workhorse technologies in biological laboratories since their inception1. 

Labeling a specific biomolecule with a small organic dye or fluorescent protein enables single copies of these biomolecules 

to be detected as bright objects against a dark background within living cells2,3. The recent development of super-resolved 

fluorescence microscopy4–6 magnifies the power and utility of these tools, enabling images of biological structures to be 

created with resolution beyond the diffraction limit of light (~250 nm for visible light). Single-molecule localization 

microscopy (SMLM) achieves this resolution by repeatedly localizing individual blinking fluorophores over time. The 

capabilities of SMLM are further augmented by its three-dimensional (3D) variants7, where the point spread function 

(PSF), or optical response to a point emitter, is specifically designed to give 3D information from a 2D image captured by 

a camera. Indeed, SMLM is part of a modern trend in optics8,9 that integrates computational algorithms with physical 

hardware in order to improve imaging performance. 

The attainable resolution of SMLM is limited by the precision of localizing an individual molecule, termed localization 

precision10–12, from Poissonian shot noise due to the finite number of photons detected from each molecule. Modern SM 

localization algorithms are capable of achieving the theoretical limit of localization precision13–15. Localization precision 

can be improved by utilizing brighter fluorophores16–18, reducing photobleaching19,20, and reducing background 

fluorescence within a sample. Further, the number and spatial distribution of molecular blinking events on the target 

structure can also limit the quality of reconstructed SMLM images21,22. SMLM imaging performance is also limited by the 

accuracy of localizing an individual molecule. Localization bias can result from model PSF mismatch23 (e.g., arising from 

anisotropic molecular emission14,24,25), optical aberrations26, and the image-processing algorithm27 utilized to localize each 

molecule. 

Recently, algorithms capable of localizing multiple overlapping molecules28–31 have been utilized to decrease the time 

needed to acquire an SMLM dataset. However, they are optimized for specific optical PSFs and are not readily adaptable 

to analyze others. Here, we develop RoSE to accurately and precisely estimate the 3D location and brightness of SMs from 

microscopes utilizing a variety of 3D PSFs. 

2. ROBUST STATISTICAL ESTIMATION 

2.1 Forward model 

We assume that within each imaging frame, no two molecules emit within a certain neighborhood. Therefore, the 

continuous position of a single molecule can be mapped to a distinct grid point in object space, where each point is 

associated with a brightness and a set of position gradients. Importantly, our signal model explicitly handles sub-pixel 
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shifts in the position of a molecule, whereas conventional brightness-only signal models cannot. This joint signal model 

together with a first-order approximation result in a linear forward imaging model with a convex set of constraints on the 

molecular parameters to be estimated, denoted as 𝓞 ∈ ℝ𝑁×4, given by: 

 𝒈 = 𝑨𝜸 (1) 

 𝑨 = [Φ, 𝑮𝑥, 𝑮𝑦 , 𝑮𝑧] (2) 

 𝜸 = [𝒔𝑇 , 𝒔𝑇 ⊙ Δ𝒙𝑇 , 𝒔𝑇 ⊙ Δ𝒚𝑇 , 𝒔𝑇 ⊙ Δ𝒛𝑇] = [𝒔𝑇 , 𝒑𝑥
𝑇 , 𝒑𝑦

𝑇 , 𝒑𝑧
𝑇] (3) 

 𝑶 = [

𝑠1 Δ𝑥1 Δ𝑦1 Δ𝑧1

𝑠2 Δ𝑥2 Δ𝑦2 Δ𝑧2

⋮ ⋮ ⋮ ⋮
𝑠𝑁 Δ𝑥𝑁 Δ𝑦𝑁 Δ𝑧𝑁

] (4) 

 𝓒 = {𝑠𝑖 ≥ 0, −𝑠𝑖𝑟𝑗 ≤ 𝑝𝑗,𝑖 < 𝑠𝑖𝑟𝑗 , 𝑖 ∈ {1, … , 𝑁}, 𝑗 ∈ {𝑥, 𝑦, 𝑧}} (5) 

where 𝒈 ∈ ℝ𝑚 represents the vectorized noiseless image relayed by the microscope; Φ ∈ ℝ𝑚×𝑁 demotes the PSF matrix 

sampled at grid points; 𝑮𝑥 ∈ ℝ𝑚×𝑁, 𝑮𝑦 ∈ ℝ𝑚×𝑁, and 𝑮𝑧 ∈ ℝ𝑚×𝑁 represent corresponding gradient matrices along 𝑥, 𝑦, 

and 𝑧, respectively; 𝑁 is the number of object grid points; and 𝑚 is the number of image pixels. Further, 𝒔 ∈ ℝ𝑁 is the 

vectorized brightness and Δ𝒙 ∈ ℝ𝑁, Δ𝒚 ∈ ℝ𝑁, and Δ𝒛 ∈ ℝ𝑁 are the corresponding gradient vectors (⊙ represents 

component-wise multiplication of two vectors). Additionally, 𝓒 represents the convex set of constraints for a box centered 

at each grid point 𝑖 with side lengths 2𝑟𝑥, 2𝑟𝑦 , and 2𝑟𝑧  (Figure 1(a)). 

2.2 Structured deconvolution 

We first apply a structured deconvolution program to identify single molecules from their overlapping images. Our key 

insight is that the brightnesses 𝒔 and position gradients (𝑮𝑥 , 𝑮𝑦 , 𝑮𝑧) corresponding to single molecules are jointly sparse. 

That is, if the brightness of a molecule associated with a grid point is zero, then the corresponding position gradients should 

also be zero. The structured deconvolution is then cast as an optimization problem: 

 min
𝜸∈𝒞

ℒ(𝜸, 𝑨; 𝒈, 𝒃) + 𝜆‖𝛾‖1,2  (6) 

where ℒ(∙) is the Poisson negative log likelihood function, ‖∙‖1,2 denotes the mixed ℓ1,2 norm to enforce joint sparsity, 

𝒃 ∈ ℝ𝑚 is the vectorized background, and 𝜆 is a penalty parameter. 

Figure 1(b) illustrates a 2D example of two closely-spaced molecules with significantly overlapping images. The molecular 

parameters 𝓞 recovered by Eqn. (6) cannot resolve the brightness and position of the two molecules. However, examining 

the joint structure of 𝓞 reveals that the brightness-weighted position gradients converge to the positions of each molecule. 

To make this mapping precise, we define a tensor 𝓖, called GradMap, in which each pixel, termed the source coefficient, 

takes on a value in [−1,1] that signifies the local degree of convergence to that pixel (Figure 1(c)). Notably, GradMap 

leverages the convergent symmetry of the position gradients and does not require a symmetric PSF profile. Thus, the 

number of molecules and their initial parameters 𝓞 are estimated from the local maxima of GradMap (Figure 1(d)). 

2.3 Adaptive maximum likelihood 

After identifying the correct number of molecules via structured deconvolution, the errors in the initial estimates of their 

parameters need to be refined, as conventional sparse deconvolution programs exhibit systematic bias30. Interestingly, the 

distance between the true molecular position and the sparse recovery solution could be larger than a few grid points (Figure 

1(e)). To restore accuracy, RoSE adaptively updates the grid point closest to the current estimate of the molecule’s position 

by maximizing adaptively a constrained maximum likelihood. This strategy enhances the accuracy of both molecular 

position and brightness and attains the limits of precision indicated by the Cramér-Rao bound (CRB)32. 
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Figure 1. Joint recovery of molecular position and brightness by RoSE. (a) Joint signal model for molecular parameters in 

2D, where 𝑠𝑖 represents molecular brightness and (Δ𝑥𝑖 , Δ𝑦𝑖) represents the molecule’s location relative to the nearest grid 

point. (b) Left: Simulated image of two overlapping molecules, located at (0,0) and (120,120) nm using the standard PSF. 

Right: Slices of recovered parameters 𝓞 by Eqns. (1)-(5). (c) Joint processing of brightness and position gradients of 𝓞 

reveals two molecules unambiguously separated in 2D (green points). (d) Slice of estimated GradMap 𝒢 at 𝑧 = 0 for the 

recovered signal in (b). (e) Initial position estimates (black triangle) obtained via the GradMap in (c) and the recovered 

molecular positions (purple diamond) after applying adaptive constrained maximum likelihood compared to the ground-

truth location of the two molecules (green points). Scale bars: 100 nm. 

3. LOCALIZATION PRECISION AND ACCURACY 

3.1 Localizing isolated molecules 

To test the precision and accuracy of RoSE, we generated Poisson-distributed realizations of images 𝒈 of single molecules 

located at various positions in 3D space using the tetrapod PSF33. The object grid (𝑟𝑥 = 𝑟𝑦 = 14.6  nm, 𝑟𝑧 = 50 nm) was 

sampled at twice the resolution of the camera (pixel size: 59.8 nm). For detected photon counts ranging from 722 to 10320, 

RoSE achieves CRB-limited localization precision (Figure 2) throughout a 3D depth range spanning 𝑧 ∈ [−1,1] μm. 

We further tested the accuracy of RoSE specifically as a function of distance from the nearest grid point in object space. 

Since we use a first-order approximation of the PSF for our forward imaging model (Eqns. (1)-(3)), estimating the position 

and brightness of molecules near the boundary between grid points could incur significant bias. For 3D position 

measurements, we noticed no significant bias (the measured bias was much smaller than the CRB-limited precision) as a 

function of molecule position (Figure 3(a-c)). The photon-counting bias varied between undercounting and overcounting 

depending on the molecule’s position from the grid (Figure 3(d)). However, this bias was well within the CRB-limited 

precision. 

Proc. of SPIE Vol. 10500  105000E-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/30/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



50

3

20

10

5

1

0.7
722 825 1032 2070 3100 4128 6190 8252 10320

Photon count

. *.......

x estimates
0 CRLB(x)

y estimates
z estimates

Q CRLB(z)

.,©

i

 

 
 

 

 

Figure 2. Localization precision of RoSE compared to CRB using the tetrapod PSF. The precision at each photon level was 

calculated from 200 measurements spread across a depth range spanning 𝑧 ∈ [−1,1] μm. A background level of 40 

photons/pixel was used. 

To ensure that ensemble measurements do not simply average competing biases to zero across the object domain, we 

examined the accuracy and covariance of position measurements at specific molecular positions (𝑥, 𝑦, 𝑧) =
{(0,0,0), (5,5,15), (10,10,30), (15,15,50)} nm  near the grid point (𝑥, 𝑦, 𝑧) = (0,0,0) nm and (𝑥, 𝑦, 𝑧) =
{(0,0,600), (5,5,615), (10,10,630), (15,15,650)} nm near the grid point (𝑥, 𝑦, 𝑧) = (0,0,600) (Figure 4). At each 

molecular position, 200 noisy images were simulated at a signal level of 1032 photons and a background level of 40 

photons/pixel. We compared RoSE’s measurement statistics to √CRB for precision and the ground-truth molecular location 

for accuracy. 

Notably, the localization precision exhibited by RoSE closely matched the theoretical limit for all the tested positions, and 

the measured covariance matrices were essentially diagonal as expected. The accuracy of position estimates does become 

worse as the molecule’s position moves away from the grid point, due to errors in the first-order approximation of our 

forward model, but the bias is well below the CRB-limited precision. 
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Figure 3. Bias of RoSE as a function of the molecule’s lateral distance from the nearest grid point using the tetrapod PSF. 

Localization bias along (a) x, (b) y, and (c) z. (d) Photon-counting bias. Molecules were placed at 𝑧 =
{0 (orange), 300 (red), 600 (purple), 800 (green)} nm. The bias was calculated from 200 measurements at each position. 

A signal of 3100 photons and background level of 40 photons/pixel was used. 
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Figure 4. Localization bias and precision of RoSE as a function of molecular position using the tetrapod PSF. 

(a) Localization accuracy of RoSE (magenta diamond) compared to the ground truth molecular position (green diamond) 

within the 𝑥𝑦 plane (𝑧 = 0). The localization precision of RoSE (magenta ellipse) and √CRB (green ellipse) are also shown. 

The object grid point is located at (0,0,0) nm. (b) Same as (a) but plotted in the 𝑥𝑧 plane. (c) Same as (a) but plotted for the 

𝑥𝑦 plane at 𝑧 = 600 nm. (d) Same as (c) but plotted in the 𝑥𝑧 plane. These data were calculated from 200 measurements at 

each position. A signal of 1032 photons and background level of 40 photons/pixel was used. 

3.2 Localizing two closely-spaced molecules 

We next tested the ability of RoSE to identify and localize pairs of molecules whose images overlap on the camera. In our 

simulations, the two molecules are separated laterally by 142 nm, and the axial position of the first molecule is held at 

𝑧 = 0, while the axial position of the second molecule is moved systematically. True positive, false positive, and false 

negative localizations were measured for 200 simulated images at each 𝑧 position using the tetrapod PSF. An estimated 

location is assigned to the ground truth molecule if the following conditions hold: 

 √(�̂� − 𝑥true)2 + (�̂� − 𝑦true)2 < 6√𝜎𝑥,CRB
2 + 𝜎𝑦,CRB

2  (7) 

 �̂� − 𝑧true < 6𝜎𝑧,CRB (8) 

Otherwise, the localized molecule is categorized as a false positive. We measured the precision and recall of RoSE (Figure 

5) using the following definitions: 

 Precision =
𝑇𝑃1+𝑇𝑃2

𝑇𝑃1+𝑇𝑃2+𝐹𝑃
 (9) 
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 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

where 𝑇𝑃𝑖 is the number of true positives for molecule 𝑖, 𝐹𝑃 is the number of false positives, and 𝐹𝑁 is the number of 

false negatives. 

 

Figure 5. (a) Precision and (b) recall of localizing two closely-spaced molecules with a lateral separation of 142 nm using 

the tetrapod PSF. The axial position of molecule 1 was held fixed at 𝑧 = 0, while the axial position of molecule 2 was 

varied systematically. SBR=1 (magenta curves) represents two molecules with 1032 photons detected and a background of 

40 photons/pixel, while SBR=3 (black curves) represents 3100 photons detected and a background of 40 photons/pixel. 

The measured precision is above 0.87 for all molecular separations for a signal-to-background (SBR) ratio of one, and the 

precision improves to above 0.98 for an SBR of three. In addition, the precision is unity for all 𝑧 separations greater than 

300 nm for both SBRs. The recall rate for each molecule is lower than the precision for both molecules, suggesting that 

RoSE tends to ignore overlapping molecules rather than mislocalize a molecule, thereby skewing toward false-negative 

errors rather than false-positive errors. 

We next measured the lateral precision and bias of RoSE (Figure 6) in localizing two overlapping molecules. One molecule 

was placed at the origin, while the other molecule was placed at (𝑥2, 𝑦2) = (0,142) nm and a varying 𝑧 position. RoSE 

achieves near CRB-limited localization precision for all tested 𝑧 positions. Furthermore, biases of the estimates are within 

the CRB-limited localization precision, suggesting that the adaptive maximum likelihood is robust against systematic bias 

in the deconvolution step at various axial separations (Figure 6(b)).  

Along the axial dimension, RoSE also achieves near CRB-limited localization precision for two closely-spaced molecules 

(Figure 7).  We note the axial biases are larger compared to the lateral ones in Figure 6. This result can be attributed to the 

lower localization precision along 𝑧 (Figure 7(a)) compared to the localization precision along 𝑦 (Figure 6(a)) for the 

tetrapod PSF. 
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Figure 6. Lateral localization (a) precision and (b) bias of localizing two closely-spaced molecules located at (𝑥1, 𝑦1) =
(0,0) nm and (𝑥2, 𝑦2) = (0,142) nm at an SBR of 3 corresponding to 3100 photons detected from each molecule with a 

background of 40 photons/pixel. Triangles (dotted curve) represent the precision and bias of localizing molecule 1, while 

squares (dashed curve) represent the precision and bias of localizing molecule 2. The ideal limits of localization precision 

and bias are plotted in black. A positive bias for molecule 1 indicates a bias toward the second molecule, while a negative 

bias for molecule 2 indicates a bias toward the first molecule.  
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(0,0) nm and (𝑥2, 𝑦2) = (0,142) nm at an SBR of 3 corresponding to 3100 photons detected from each molecule with a

background of 40 photons/pixel. Triangles (dotted curve) represent the precision and bias of localizing molecule 1, while 

squares (dashed curve) represent the precision and bias of localizing molecule 2. The ideal limits of localization precision 

and bias are plotted in black. 

4. CONCLUSION

We have demonstrated RoSE, a Robust Statistical Estimation algorithm, for localizing single molecules in high-density 

SMLM datasets using an arbitrary 3D PSF. A key feature of RoSE is its joint signal model, which allows blinking events 

to be localized with sub-pixel accuracy. RoSE achieves CRB-limited localization precision when localizing individual 

molecules and localizing pairs of overlapping molecules. In addition, the bias in RoSE measurements is insignificant 

compared to localization precision. In the future, RoSE will enable a single localization algorithm to be used across a 

variety of 3D microscopes and PSFs with minimal tuning or adaptation.  
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