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ABSTRACT OF THE THESIS 

Exercise Engagement and Longitudinal Change in Alzheimer’s Disease Biomarkers, Regional 

Brain Structure and Cognitive Functioning 

by 

Marta Stojanovic 

Master of Arts in Psychological and Brain Sciences 

Washington University in St. Louis, 2018 

Professor Denise Head, Chair 

Past research suggests that exercise engagement may play a protective role against cognitive and 

brain decline with aging. In addition, a previous study in humans that examined the association 

of exercise engagement with biomarkers of Alzheimer’s disease (AD) neuropathology reported 

that individuals who engaged in more exercise evidenced lower amyloid deposition estimated 

with positron emission tomography (PET) and levels of cerebrospinal fluid (CSF) Aβ42. 

Although the effect of exercise engagement on Alzheimer’s disease (AD) biomarkers, regional 

brain structure and cognitive functioning in older adults has been studied cross-sectionally, the 

longer-term effect of exercise engagement has been less examined. The current study examined 

whether individuals with higher baseline exercise engagement exhibit less longitudinal change in 

AD biomarkers, regional brain structure and cognitive functioning than individuals with lower 

baseline exercise engagement. Another goal was to examine whether APOE, genetic risk factor 

for AD, and/or BDNF genotype, gene encoding a protein linked to exercise, moderate the effect 

of exercise on longitudinal changes. Individuals who were clinically normal at baseline were 

administered a questionnaire on their physical exercise engagement over the prior 10-year 

period. Ninety-five individuals had serial  CSF samples collected to examine A42 and tau, 181 
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individuals underwent multiple assessments of amyloid PET imaging with Pittsburgh Compound 

B (PIB), 238 individuals had serial MRI collected to examine regional brain structure, and 327 

individuals underwent multiple neuropsychological assessments of cognitive functioning. We 

observed significant change in AD biomarkers over time, with CSF tau and PET-PIB levels 

increasing and CSF Aβ42 levels decreasing, consistent with the AD pattern. Regional brain 

structure deteriorated over time, with both volume and thickness decreasing. Longitudinal 

decline was also observed for cognitive functioning, including for semantic memory, episodic 

memory, processing speed, and working memory. However, the level of baseline exercise 

engagement did not affect longitudinal change in AD biomarkers, regional brain volume and 

thickness, or cognitive performance, with the exception of processing speed. APOE or BDNF 

genotype did not moderate the longitudinal effect of exercise on structural changes or cognitive 

decline, again with the exception of processing speed. For APOE ε4-positive individuals, there 

was not a significant effect of exercise engagement on processing speed declines. In contrast, for 

the APOE ε4-negative group, higher exercise individuals evidenced less longitudinal decline 

than those with lower exercise engagement. These results suggest that physical exercise 

engagement may be limited as a moderator of changes in regional brain structure and cognitive 

functioning over time. 
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Chapter 1: Introduction 
With the elderly population growing at a faster rate compared to younger populations, the 

increasing number of people affected by Alzheimer’s disease (AD) could lead to a public health 

crisis. Even though AD is the most common form of dementia among older adults, its causes are 

still not well understood. Furthermore, there is a lack of treatments that are able to stop or slow 

the disease progression pointing to a need to also focus on preventative measures.  Since AD 

pathology appears well in advance of clinical symptoms (Jack et al., 2010), recent targets for 

research have been lifestyle factors that can potentially influence or slow down the appearance of 

symptoms. Physical exercise has increasingly been associated with greater cardiovascular health 

in older adults, as well as with brain and cognitive health (Hillman, Erickson, & Kramer, 2008). 

In addition, several studies showed that physical exercise is associated with decreased risk of 

developing clinical dementia (Podewils et al., 2005; Rockwood & Middleton, 2007). The initial 

observations of beneficial associations between physical exercise and both healthy and 

pathological aging led to a proliferation of studies examining the effects of exercising on 

development of not only dementia, but also AD pathology. Studies conducted in the last couple 

of decades have observed mixed results regarding the beneficial effects of exercising (e.g., 

Colcombe et al., 2006; Smith et al., 2014; Vemuri et al., 2012; Voss et al., 2013; for review see 

e.g., Kramer et al., 2006; Etnier, Nowell, Landers, & Sibley, 2006), highlighting the importance 

of further investigating the association between physical activity and pathological aging. 

Several methods that estimate AD pathology have originated in the past several decades, 

including neuroimaging and biochemical measures. Biomarkers that quantify the degree of 

amyloid plaques and neurofibrillary tangles accumulation were established. Using lumbar 

puncture to measure analytes in cerebrospinal fluid (CSF) allows estimation of levels of amyloid 
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plaques and neurofibrillary tangles. Smaller quantities of amyloid-beta aggregates in CSF signify 

greater accumulation of the plaques in the brain (Sunderland et al., 2003). The opposite trend is 

observed for phosphorylated tau (ptau) protein, the main element of neurofibrillary tangles, with 

greater levels of ptau present in CSF indicating greater AD pathology (Sunderland et al., 2003). 

In addition, positron emission tomography (PET) is used to measure directly the accumulation of 

amyloid-beta (A) aggregates using different radiotracers, e.g. Pittsburgh compound-B (PIB) 

and Florbetapir (AV-1451) (e.g., Klunk et al., 2004). Amyloid deposition in the brain has been 

associated with higher PIB uptake. Finally, disease progression is linked to axonal and neuronal 

death and degeneration that results in brain atrophy (Jack et al., 2010). Increased levels of tau 

protein in CSF and smaller volume and thickness of brain regions, evidenced on magnetic 

resonance imaging (MRI), are suggestive of brain atrophy. All of the aforementioned biomarkers 

can be used as indicators of AD pathology.  

Research on the relationship of physical activity with CSF and PET biomarkers produced 

discrepant results. Examining physical activity via questionnaires, active individuals had lower 

levels of amyloid deposition (Okonkwo et al., 2014). However, other studies failed to show an 

association between physical activity and levels of tau, ptau, and amyloid (Landau et al., 2012; 

Vemuri et al., 2012). When using accelerometry, a more objective measure of physical activity, 

Law and colleagues (2018) found that moderate physical activity was beneficial for AD 

pathology. Looking at only engagement in aerobic exercise, several studies observed that 

individuals who exercise less exhibit greater levels of tau and ptau, as well as greater amyloid 

deposition as evidenced by PET-PIB and CSF A42 (Liang et al., 2010; Head et al., 2012). In 

addition, exercise engagement has also been shown to moderate the relationship between APOE 

genotype and PIB levels (Head et al., 2012). Individuals with an APOE ε4 allele who had greater 
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levels of exercise engagement were found to have lower PIB than carriers of the allele that 

engaged less in exercise, while this difference was not observed for people without an APOE ε4 

allele. Finally, there is a lack of studies examining the relationship between aerobic 

(cardiorespiratory) fitness and AD biomarkers. 

Compared to the number of studies that looked into the relationship between exercising and 

amyloid and tau deposition in humans, animal studies have been more numerous. Despite the 

increased number and greater experimental control in animal research, the results still seem to be 

inconsistent. Several studies reported the beneficial effect of exercising on amyloid deposition in 

transgenic AD mice, but at the same time a few were not able to find this association (e.g., 

Adlard, Perreau, Pop, & Cotman, 2005; Leem et al., 2009; Pietropaolo, 2008; Wolf et al., 2006; 

Moore et al., 2016; Yuede et al., 2009; Liu, Zhao, Zhang, & Shi, 2013). The discrepant results in 

animal studies might be due to the use of different genetic lines, differing definitions and timing 

of exercise engagement, etc. However, both human and animal research seems to find 

inconsistent results about the association between physical exercise and deposition of amyloid 

and tau, as signs of AD pathology. 

The association between physical activity and exercise engagement and brain volume has been 

more thoroughly examined. Higher levels of self-reported physical activity, exercising, and 

aerobic fitness were found to be related to greater volume of different brain regions, including 

hippocampus, superior frontal, parietal, and medial temporal lobe (Bugg & Head, 2011; Erickson 

et al., 2009; Boyle et al., 2015; Gordon et al., 2008). Furthermore, age-related declines in medial 

temporal lobe and hippocampus, and prefrontal and superior parietal cortices were found to be 

attenuated by physical activity and fitness (Bugg & Head, 2011; Okinkwo, 2014; Colcombe et 

al., 2003). In addition, a beneficial effect of physical activity was observed in people with 
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genetic risk for AD, such that higher physical activity was associated with greater hippocampal 

volume at follow-up (Smith et al., 2014). While the results of these studies seem to be more 

consistent, especially for the hippocampus and medial temporal lobe, several studies found the 

effect in people with early AD, but have failed to observe the association between aerobic fitness 

and brain volume in clinically normal older adults (Burns et al., 2008; Honea et al., 2009). 

The influence of physical activity, exercising and aerobic fitness on cognitive functioning has 

been a focus of research for a number of decades because of its potential clinical utility. Hence, 

there are not only cross-sectional studies in this domain, but also research that has looked at 

these relationships longitudinally. Age-related cognitive decline and risk for developing AD or 

dementia were found to be moderated by physical activity, exercise engagement, and aerobic 

fitness (Laurin, Verreault, Lindsay, MacPherson, & Rockwood,, 2001; Kramer et al., 2006; 

Barnes, Yaffe, Satariano, & Tager, 2003; Smith et al., 2014; for review see Bherer, Erickson, & 

Liu-Ambrose, 2013; Erickson et al., 2009; Hillman et al., 2008). Clinically normal older adults 

that engage in more physical activity and exercise and have greater aerobic fitness show better 

cognitive functioning compared to more sedentary older adults across a variety of cognitive 

domains (e.g., working memory, executive functioning, processing speed, and attention) and are 

less likely to develop AD or dementia. In addition, individuals with an APOE ε4 allele, 

especially, benefited from engaging in greater levels of physical exercise, suggesting that there 

might be a differential effect of physical activity on people with and without the genetic risk for 

developing AD (Schuit, Feskens, Launer, & Kromhout, 2001; Smith et al., 2001; Pizzie et al., 

2014; but also Podewils et al., 2005; Rockwood & Middleton, 2007). Observational longitudinal 

studies seem to relatively consistently indicate beneficial influence of greater physical activity 

and aerobic fitness on cognitive functioning over time.  
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A more powerful and controlled approach to examining the effect of physical exercise is via 

aerobic exercise intervention studies. Recent evidence suggests that an aerobic exercise 

intervention is associated with greater gray matter volume at follow-up, including for the 

hippocampus, frontal and superior temporal lobes (e.g., Colcombe et al., 2006; Erickson et al., 

2011). Likewise, there seems to be substantial evidence suggesting that engaging in an aerobic 

exercise intervention is linked to enhanced performance on various cognitive domains, including 

overall cognitive functioning, memory, executive functioning (Lautenschlager et al., 2008; 

Kramer et al., 2006; Bherer et al., 2013; Erickson & Kramer, 2009). However, comparable to the 

physical activity and exercise literature which utilizes other measures, several cross-sectional 

studies failed to observe the beneficial effect of physical activity and aerobic exercise 

intervention on cognitive functioning (Vemuri et al., 2012; Voss et al., 2013; Hill, Storandt, & 

Malley, 1993, for meta-analysis see Etnier et al., 1997; Etnier et al., 2006). Finally, the number 

of studies looking at the effect of an aerobic exercise intervention on AD biomarkers is limited. 

Another gap in the literature that is gaining interest, concerns the involvement of brain-derived 

neurotrophic factor (BDNF) in the effects of physical activity and exercising. BDNF is thought 

to contribute to synaptic plasticity and neurogenesis (Erickson et al., 2010). Animal experiments 

indicate that BDNF levels in the brain, most robustly in hippocampus, increase after exercising 

(Kramer et al., 2006). Human studies observed that exercise elevates serum BDNF concentration 

(Hillman et al., 2008). Given the potential role of BDNF in the beneficial effects of exercising, 

looking at the gene that encodes this protein has been another line of interest. Furthermore, 

genetic differences among people might explain some of the individual variability that is seen in 

the effects of physical exercise on cognitive and brain health (Erickson et al., 2013). Presence of 

the Met allele in the BDNF gene, compared to the Val allele, was linked to reduced BDNF 
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secretion and production (Egan et al., 2003). This finding sparked interest in examining whether 

the BDNF polymorphism moderates the relationship between physical activity and cognitive and 

brain health. A study by Brown and colleagues, (2014) showed that increased engagement in 

physical activity was linked to larger volumes of temporal lobe, medial temporal lobe, and 

hippocampus. This association was only present in participants with the Val/Val genotype and 

not in Met allele carriers. In addition, the differential beneficial effect of physical activity for Val 

homozygotes was detected for episodic memory performance (Canivet et al., 2015). In another 

study, regular physical activity engagement boosted the working memory performance of Met 

carriers compared to Val homozygotes (Erickson et al., 2013). These results suggest uncertainty 

around which BDNF genotype benefits from physical activity and exercising. Furthermore, 

several studies failed to detect a moderating influence of BDNF genotype on brain volume 

(Richter-Schmidinger et al., 2011; Kim et al., 2015) or cognitive functions (Kim et al., 2015; 

Erickson et al., 2013; Mandelman & Grigorenko, 2012). 

Most of the research examining the relationship between physical activity, exercising, and 

aerobic fitness and AD pathology and neurodegeneration has been done cross-sectionally. While 

there is some suggestion that exercising might have beneficial short-term effects, there is still a 

need to investigate whether long-term benefits are also present. In terms of cognitive 

functioning, several studies looked at the effect of aerobic fitness or self-reported physical 

activity, but not aerobic exercise engagement more specifically. Furthermore, these studies vary 

in the number and duration of longitudinal follow-ups. The equivocal results mentioned so far 

and the relative dearth of longitudinal studies highlight the need to further comprehensively 

investigate the effect of exercising on AD biomarkers and brain structure in particular, as well as 

cognitive functioning. 
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The primary goal of this study was to examine whether level of exercise engagement at baseline 

is associated with longitudinal change in biomarkers, regional brain structure, and cognitive 

functioning in older adults who are clinically normal. Another goal was to investigate whether 

the relationship between exercise engagement at baseline and the longitudinal trajectories of 

these outcomes differ by APOE status. The primary hypothesis was that individuals with higher 

baseline exercise engagement will exhibit less change in AD biomarkers, brain structure, and 

cognitive functioning than individuals with lower exercise engagement. Another prediction was 

that APOE genotype will moderate the effect of exercise engagement on long-term changes in 

AD biomarkers, brain structure and cognitive functioning, with APOE ε4-positive individuals 

with greater baseline engagement showing less change than APOE ε4-positive individuals with 

lower baseline engagement. Finally, a secondary goal was to examine whether BDNF genotype 

moderates exercise effects longitudinally. The hypothesis was that participants with a Met allele 

will benefit less from exercise engagement and show greater change over time. 
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Chapter 2: Method 

2.1 Participants 
Older adults, 55 to 88 years-old, were recruited from the Washington University Alzheimer 

Disease Research Center. All participants were clinically normal at baseline (CDR=0) and 

screened for presence or history of neurological and health illnesses or injuries. Cerebrospinal 

fluid was obtained from 95 individuals at baseline. At baseline, amyloid imaging with PIB was 

obtained from 181 individuals, while an MRI scan was acquired for 238 individuals. 327 

participants were administered cognitive measures at baseline. Table 1 presents demographic 

characteristics of each sample. All participants in each of the samples went through APOE 

genotyping, however, a subset of participants did not have their BDNF genotype determined, see 

Table 1.  Cross-sectional analyses of exercise and structural data (n=52), as well as exercise and 

amyloid and tau data (n=56), from a number of these participants have been published previously 

(Head et al., 2012; Liang et al., 2010). 

Table 1 Demographic Characteristics of Participants across Samples 

 CSF PET-PIB Structural MRI Cognitive tests 

N 95 181 238 327 

Age (mean, SD, range) 63, 8, 46-79 68, 10, 46-89 69, 9, 46-95 72, 8, 44-94 

Gender (F/M) 61/34 118/63 153/85 200/127 

Education (mean, SD, range) 16, 3, 6-20 16, 3, 6-29 16, 3, 6-24 16, 3, 6-19 

APOE e4 (-/+) 61/34 125/56 159/79 207/110 

BDNF met (-/+) 61/34 107/62 147/76 203/100 
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2.2 Measurement of Physical Exercise Engagement 

2.2.1  Validity 

In order to estimate exercise engagement, history of walking, running, and jogging activity for 

the past 10 years was assessed with a validated questionnaire (Bowles, 2004). The measure was 

significantly correlated with cardiorespiratory fitness measured via treadmill test in a sample of 

5063 individuals aged 18 to 80 years. Retrospective self-report of activity for a particular year 

and the aerobic fitness for that year, across 10 1-year assessment periods, evidence stable 

correlations, indicating that participants across the examined age range were capable of relatively 

accurate self-report over this extended time span.  

2.2.2  Procedure 

The questionnaire was administered by telephone. Participants were asked to describe their 

exercise engagement for the preceding 10 years. They reported the number of months per year, 

the number of workouts per week, the average number of miles per workout, and average time 

per mile for each year they engaged in walking, running, or jogging. As described previously, 

metabolic equivalent (MET) values were estimated using the compendium of physical activities 

to derive the physical engagement score for each participant (Bowles, 2004; Ainsworth et al., 

2000). The average MET hours per week over the past years was used as the index of exercise 

engagement. 

The distribution of exercise engagement scores was heavily skewed, resulting in the decision to 

treat the variable as dichotomous. The participants were divided into low and high exercise 

engagement groups based on a median split, in order to ensure equal number of participants in 

each of the two groups.  
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2.3 Cerebrospinal Fluid Collection, Processing and 

Measurement 
Cerebrospinal fluid (20-30mL) was acquired by lumbar puncture at 8am after an overnight 

fasting period, as described previously (Fagan et al., 2000). Samples were gently inverted to 

avoid possible gradient effects, centrifuged at low speed, and aliquoted (0.5mL) into propylene 

tubes before freezing at -84C. Levels of total tau, phosphorylated tau181 (ptau181), and A42 

were analyzed after a single thaw following initial freezing by enzyme-linked immunosorbent 

assay (Innotest; Fujirebio [formerly Innogenetics], Ghent, Belgium]. All of the individuals who 

underwent CSF collection were from the Adult and Children Study cohort to ensure that the 

samples were analyzed on the same type of assay, in order to avoid a confounding variable in the 

longitudinal analyses. Cross-sectional results of exercise and structural, CSF, and amyloid data 

from some of these participants have been reported previously (Liang et al., 2010; Bugg & Head, 

2011). 

2.4 In Vivo Amyloid Imaging with PIB 
In vivo amyloid imaging with positron emission tomography (PET) with [11C]PiB was 

performed as described previously (Mintun et al., 2006). Simultaneously with the initiation of a 

60-minute dynamic PET scan in 3-dimensional mode, approximately 12mCi of  [11C]PiB was 

administered intravenously. Measured attenuation factors and a ramp filter were used to 

reconstruct dynamic PET images. For each participant, three-dimensional regions of interest 

were created based on their individual magnetic resonance imaging scans (T1-weighted 1 X 1 X 

2.5-mm magnetization-prepared rapid acquisition gradient-echo sequences). To account for the 

number of binding sites in expressing regional binding values, a binding potential for each region 

of interest was calculated. Mean Cortical Binding Potential (MCBP) value was obtained by 
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averaging the binding potential values from the prefrontal cortex, gyrus rectus, lateral temporal, 

and precuneus regions of interest. The binding values of the aforementioned four regions of 

interest were chosen based on previous research indicating that these brain areas demonstrate 

high value of [11C]PiB uptake among individuals with AD (Mintun et al., 2006).  

2.5 MRI Acquisition and Image Processing 
Imaging was performed using a Siemens TIM Trio 3T scanner or Siemens BioGraph mMRPET-

MR 3Tscanner (Erlangen, Germany). Up to two T1-weighted sagittal MP-RAGE scans 

(TR=2400ms, TE=3.16ms, flip angle=8º, TI=1000ms, 1×1×1mm resolution) were acquired in 

each subject. Cortical reconstruction and volumetric segmentation were performed with the 

Freesurferv5.3-HCP-Patch image analysis suite. Technical details of this procedure have been 

described previously (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; Fischl & Dale, 2000; 

Fischl, Liu, & Dale, 2001; Fischl et al., 2002; Fischl, Sereno, & Dale, 1999a; Fischl, Sereno, 

Tootell, & Dale, 1999b; Fischl et al., 2004b). Briefly, the image processing includes motion 

correction and averaging of multiple volumetric T1 weighted images, removal of non-brain 

tissue using a hybrid watershed/surface deformation procedure, automated Talairach 

transformation, segmentation of the subcortical white matter and deep gray matter volumetric 

structures intensity normalization, tessellation of the gray matter white matter boundary, 

automated topology correction, and surface deformation following intensity gradients to 

optimally place the gray/white and gray/cerebrospinal fluid borders at the location where the 

greatest shift in intensity defines the transition to the other tissue class. Once the cortical models 

are complete, the cerebral cortex is parcellated into units based on gyral and sulcal structure 

(Desikan et al., 2006; Fischl et al., 2004b). Neuroanatomical labels are applied to each voxel 

based on a probabilistic atlas derived from a manually labeled training set that included older 
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adults (Desikan, et al. 2006). The cortical gray matter parcellations are then used to label the 

associated underlying white matter (Fischl, et al. 2004b). Regions-of-interest (ROIs) included 

total gray matter, total white matter, dorsal/ventral lateral prefrontal (combined caudal middle 

frontal and inferior frontal gyri), superior frontal gyrus (medial and lateral portions), medial 

temporal (combined hippocampus, amygdala, parahippocampus and entorhinal cortex), 

hippocampus, and primary visual cortex. All volumes of the ROIs were adjusted for intracranial 

volume (Buckner et al., 2004).  

Cortical thickness measures are calculated as the closest distance from the gray/white boundary 

to the gray/CSF boundary at each vertex on the tessellated surface (Fischl & Dale, 2000). This 

method uses both intensity and continuity information from the entire three- dimensional MR 

volume in segmentation and deformation procedures to produce representations of cortical 

thickness. The maps are created using spatial intensity gradients across tissue classes and are 

therefore not simply reliant on absolute signal intensity. A neuroanatomical label is applied to 

each vertex, and average cortical thickness estimates were obtained for dorsal/ventral lateral 

prefrontal (combined caudal middle frontal and inferior frontal gyri), superior frontal gyrus 

(medial and lateral portions), medial temporal lobe (combined hippocampus, amygdala, 

parahippocampus and entorhinal cortex), and primary visual cortex. Procedures for the 

measurement of cortical thickness have been validated against histological analysis (Rosas et al., 

2002) and manual measurements (Kuperberg et al., 2003; Salat et al., 2004).  

2.6 Cognitive Assessment 
Neuropsychological tests were administered in order to examine cognitive functioning in 

different domains. Cognitive measures were categorized into semantic memory, episodic 

memory, processing speed, and working memory domains. The semantic memory composite was 
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created from Category Fluency (animals and vegetables) and Word Fluency tests. Episodic 

memory included WMS Logical Memory Delayed, Selective Reminding Test, and WMS 

Associate Learning/Verbal Paired Associates test. The processing speed composite was produced 

from Trail Making A and WAIS Digit Symbol test. Two participants from the cognitive sample 

did not have processing speed measures administered. The working memory composite was 

generated from WAIS Digit Span Forward and Backward, the difference between Trail B and 

Trail A scores, and WAIS Letter-Number Sequencing test. All of the cognitive composites 

represent the average of the standardized scores from each of the tests comprising the composite. 

Each of the tasks that was part of the composites was standardized across all participants for each 

time point independently. WMS Logical Memory Delayed and WMS Associate Learning/Verbal 

Paired Associates tasks had two different versions from two different WMS editions across time 

and participants. The raw scores of each task were standardized based on the mean and standard 

deviation from the first time the group completed the task. Since each participant had a score 

from only one of the test versions, the standardized scores were combined into one Logical 

Memory and one Associate Learning/Verbal Paired Associated variable. 

2.6 APOE and BDNF genotyping 
Previous reports outline the detailed procedures for genotyping in this sample (Cruchaga, 2012; 

Cruchaga, 2013). Briefly, these DNA samples were genotyped with the Illumina 610 or the 

Omniexpress chip. All of the samples and genotypes underwent quality control before the 

analysis (Cruchaga et al., 2012). BDNF genotyping from the data was done for BDNF Val66Met 

SNP (rs 6265). APOE genotyping for both rs429358 (ABI#C_3084793_20) and rs7412 

(ABI#C_904973_10) has been done with TaqMan assays as described previously (Cruchaga et 

al., 2010).  
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2.8 Timing of Assessments 

Table 2 shows the number of assessments for each of the outcomes. Furthermore, the average 

duration of the follow-up is depicted for each of the samples. In addition, the average timing 

between clinical assessment and the baseline measure of each of the outcome, as well the timing 

between clinical assessment and exercise assessment, is shown. Finally, average time elapsed 

between exercise and the baseline outcome measures is reported. Exercise assessment always 

preceded the baseline measure of all outcomes. 

Table 2 Number of Assessments and Timing (in years) between the following assessments  

 CSF  PET-PIB Structural MRI Cognitive tests 

Clinical and exercise assessment 

(mean, SD, range) 

0.51, 0.58, 

0.01-2.70 

0.45, 0.5,    

0.01-2.70 

0.42, 0.47,  

0.01-2.70 

0.40, 0.43,  

0.01-2.70 

Clinical and baseline outcome 

assessment (mean, SD, range) 

1.25, 1.30, 

0.06-4.47 

1.70, 1.80,  

0.03-7.78 

1.59, 1.70,  

0.03-8.95 

1.17, 1.21,       

0-7.96 

Exercise and baseline outcome 

assessment (mean, SD, range) 

1.36, 1.22, 

0.01-5.33 

1.73, 1.81,  

0.01-7.25 

1.64, 1.71,  

0.01-8.26 

1.22, 1.00,   

0.03-7.87 

Follow-up period               

(mean, SD, range) 

2.42, 1.72, 

0.01-6.47 

3.04, 2.43,  

0.01-8.52 

3.23, 2.51,  

0.01-9.35 

3.98, 2.36,  

0.01-10.38 

Number of assessments of 

outcome (mean, SD, range) 

1.43, 0.53,    

1-3 

1.48, 0.68,        

1-4 

1.66, 0.81, 

1-5 

3.59, 2.13, 

1-10 

2.9 Statistical Analyses 
All analyses were conducted using R statistical software (RStudio Team, 2005). R package nlme 

was used for the analyses (Pinheiro et al., 2018). A series of linear mixed-effects models was 

performed. A full model included time, exercise group, and APOE (or BDNF) genotype, as well 

as all possible interaction terms. Time and intercept were random effects. Separate models were 

constructed to include APOE vs BDNF genotype. Variables included as covariates in each of the 

models were baseline age, education, gender, clinical dementia rating, and health composite. 
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Since all participants had CDR of 0 at baseline, the clinical dementia rating variable coded for 

change in CDR over time versus no change in CDR over time. Health composite represented 

accumulated count of the current or past instances of the following conditions: stroke, diabetes, 

seizures, traumatic brain injury, hypertension, Huntington’s disease, Parkinson’s disease, 

cardiovascular disease, and depression. In the next step of the analysis, the highest order 

interaction term, (i.e., the three-way interaction between time, exercise group, and APOE (or 

BDNF) genotype) was excluded from the model. A likelihood ratio test was conducted testing 

whether the two models, with and without the three-way interaction, were significantly different. 

If the models were not significantly different based on the Chi-square test (p<0.05), the term was 

dropped, otherwise, it was retained in the model. This likelihood ratio test was done for all three 

two-way interactions as well. Nonsignificant terms were excluded in a stepwise manner until a 

final model included significant higher-order terms and/or lowest-order terms. This analytical 

procedure was done for the following outcome measures: CSF A42, CSF tau, CSF ptau, PET-

PIB, structural outcomes, and cognitive outcomes. Outliers were examined for each of the 

outcome and defined as values of the dependent variable above or below three standard 

deviations from the mean. If outliers were present, separate models were conducted with and 

without them. 
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Chapter 3: Results 

3.1 General Results 
Time was found to be a significant predictor of outcome trajectories in all of the models. The 

linear trends were consistent with disease progression. Levels of CSF amyloid decreased over 

time, while levels of MCBP, CSF tau and ptau increased. Volume and thickness of all ROIs 

decreased over time. Lastly, decline in performance was observed for all cognitive outcomes. 

The three-way interaction between exercise engagement, APOE (or BDNF genotype), and time 

was not significant in any of the models, except for processing speed, see below for details. The 

following results for each of the outcomes relate to other interactions and main effects. The 

effects that differed in the models that excluded outliers are noted. 

3.2 Cerebrospinal Fluid Outcomes 

3.2.1  CSF A42 

In the model with APOE genotype, there were no significant two-way interactions, see Table 3. 

A significant effect of APOE genotype (=-221.81, SE=68.97, CI = -349.92 - -75.69) was 

observed in the final model, such that people with positive APOE ε4 allele had smaller baseline 

level of A42 than people with the negative allele. There was not a significant effect of exercise 

engagement on baseline level for A42 (=-15.62, SE=68.46, CI = -151.72 – 120.47), see Figure 

1.  

Table 3 CSF A42 

Effect A42 APOE A42 BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

Time -3.16 -7.50 -3.40 -7.45 
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Exercise group 

APOE/BDNF genotype 

0.60 

-1.26 

-0.58 

-3.21 

-0.09 

-0.80 

-0.35 

-0.82 

CDR change 0.92 1.1 1.01 1.11 

Gender 0.67 0.51 0.94 1.05 

Age -1.11 -1.20 -1.07 -1.11 

Education 1.0 0.94 1.38 1.37 

Health Composite -1.28 -1.32 -0.88 -0.94 

Time x Exercise group -1.12  -1.35  

Exercise group x 

APOE/BDNF genotype 

-1.29  0.01  

Time x APOE/BDNF 

genotype 

-0.32  0.11  

Time x Exercise group x 

APOE/BDNF genotype  

0.29  0.91  

Note:  Data represent t-values ; bold = significant  at p<.05 
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Figure 1 Individual profiles of CSF A42 over time 

 
The two-way interactions between exercise engagement, BDNF genotype, and time were non-

significant. The final model did not evidence a significant effect of BDNF genotype (=-32.84, 

SE=72.03, CI = -176.04 – 110.36), or exercise engagement (=2.94, SE=72.28, CI = -140.76 – 

146.64), see Table 3. 

3.2.2  CSF Tau and Ptau 

The following results apply to both tau and ptau outcomes for models with APOE genotype.  A 

significant interaction between time and APOE genotype was observed, indicating that 

individuals with the APOE ε4 allele exhibited greater increase in tau and ptau over time 

compared to people without the ε4 risk allele (see Table 4). None of the other two-way 
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interactions were significant. Final models also included a significant main effect of APOE 

genotype (=94.85, SE=28.15, CI = 35.78 – 153.93; =11.59, SE=4.92, CI = 1.81 – 21.37), such 

that people with positive APOE ε4 allele had greater baseline level of tau and ptau than people 

without the positive allele. There was not a significant main effect of exercise engagement on 

baseline levels of tau or ptau (=13.79, SE=28.81, CI = -42.15 – 69.74; =4.04, SE=4.68, CI = -

5.26 – 13.33), see Figure 2.  

Table 4 CSF tau and ptau  

Effect tau APOE tau BDNF ptau APOE ptau BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

Time 1.79 3.03 3.02 5.62 1.91 3.22 3.59 5.65 

Exercise group 

APOE/BDNF genotype 

0.08 

1.85 

0.49 

3.19 

0.82 

0.93 

0.33 

0.67 

0.20 

1.28 

0.86 

2.36 

1.04 

1.29 

0.92 

1.18 

CDR change 1.64 1.55 1.50 1.31 1.31 1.20 1.22 1.01 

Gender 0.89 1.03 0.68 0.63 1.16 1.37 1.15 1.12 

Age 2.86 2.91 2.65 1.98 1.95 2.03 1.82 2.07 

Education -1.64 -1.60 -2.06 -1.93 -1.50 -1.48 -1.91 -1.78 

Health Composite 0.94   1.04 0.69 0.72 1.10 1.26 1.09 1.11 

Time x Exercise group 0.33  0.21  0.39  -0.61  

Exercise group x 

APOE/BDNF genotype 

0.61  -0.93  0.56  -0.93  

Time x APOE/BDNF 

genotype 

2.03 2.65 -0.18  2.57 2.34 -0.37  

Time x Exercise group x 

APOE/BDNF genotype  

-0.15  -0.35  -1.34  -0.02  

Note:  Data represent t-values ; bold = significant  at p<.05 
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Figure 2 Individual profiles of CSF tau over time 

 
In the final models with BDNF genotype, no significant main effects or interactions were 

observed (see Table 4).  

3.3 PET-PIB Outcome 
In the APOE genotype model, only the two-way interaction between time and APOE genotype 

was significant (=4.11x10-5.10, SE=1.02x10-5, CI = 2.09x10-5 – 6.13x10-5), see Table 5. 

Individuals with the genetic risk factor evidenced greater increase in MCBP over time than 

individuals without the APOE ε4 allele, see Figure 3. Besides this interaction, the final model 

included a significant main effect of APOE genotype (=0.10, SE=0.03, CI = 0.04 – 0.15). In 
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addition, a significant main effect of exercise group was observed (=-0.05, SE=0.02, CI = -0.10 

- -5.32), indicating that people in the high exercise group had smaller baseline level of MCBP 

compared to the people in low exercise group, see Figure 4. However, when outliers were 

excluded the model did not include a significant main effect of exercise (p=0.30). 

Figure 3 PET-PIB across APOE/BDNF genotypes and exercise groups 
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Figure 4 Individual profiles of PET-PIB over time 

 
In the final model with BDNF genotype, no significant main effects or interactions were 

observed, see Table 5 and Figure 4.  

Table 5 PET-PIB  

Effect PET-PIB APOE PET-PIB BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

Time 1.55 1.88 2.52 4.54 

Exercise group 

APOE/BDNF genotype 

-2.6 

1.58 

-2.19 

3.55 

-2.72 

-1.1 

-1.88 

0.15 
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CDR change 2.80 2.79 3.17 3.05 

Gender -1.87 -1.65 -1.59 -1.51 

Age 1.53 1.42 1.36 1.18 

Education 0.51 0.44 0.28 0.30 

Health Composite 0.23 0.16 0.24 0.15 

Time x Exercise group -0.52  -0.47  

Exercise group x 

APOE/BDNF 

1.36  1.75  

Time x APOE/BDNF 3.05 4.04 0.19  

Time x Exercise group x 

APOE/BDNF 

-0.40  -0.72  

Note: Data represent t-values; bold = significant at p<.05 

3.4 MRI Outcomes 
The following results are applicable to both regional volume and regional thickness outcomes in 

the models with APOE genotype. No significant two-way interactions or main effects were 

observed for any of the outcomes in the APOE models, see Tables 6-10 and Figures 5-6 for 

examples. 

Table 6 MRI outcomes (volume): Grey matter  and White matter 

Effect Grey matter 

APOE 

Grey matter 

BDNF 

White matter 

APOE 

White matter 

BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

Time -7.87 -11.47 -6.03 -11.21 -4.69 -7.61 -5.07 -7.56 

Exercise group 

APOE/BDNF genotype 

0.83 

-0.58 

1.22 

-0.94 

2.39 

3.73 

2.83 

3.85 

-0.59 

0.71 

-0.36 

0.84 

-0.25 

1.45 

0.33 

1.91 

CDR change -4.07 -4.19 -4.15 -4.17 -2.17 -2.19 -2.28 -2.34 

Gender -3.22 -3.39 -3.37 -3.49 -1.55 -1.58 -1.94 -2.0 
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Age -12.3 -12.18 -12.5 -12.5 -9.91 -9.95 -10.3 -10.3 

Education -0.75 -0.76 -0.72 -0.74 -0.72 -0.73 -0.55 -0.63 

Health Composite -2.24   -2.25 -2.23 -2.24 0.20 0.19 -0.12 -0.12 

Time x Exercise group 1.47  0.58  0.80  1.14  

Exercise group x 

APOE/BDNF 

-0.52  -3.01 -3.13 -0.13  -1.99 -2.19  

Time x APOE/BDNF 1.33  -0.36  -0.29  0.57  

Time x Exercise group x 

APOE/BDNF 

-0.53  0.25  0.18  0.08  

Note: Data represent t-values; bold = significant at p<.05 

Table 7 MRI outcomes (volume): Dorsal/ventral lateral prefrontal and Medial temporal lobe 

Effect Dorsal/ventral 

lateral PFC APOE 

Dorsal/ventral 

lateral PFC BDNF 

Medial temporal 

APOE 

Medial temporal 

BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

Time -3.91 -5.31 -2.68 -12.57 -6.70 -12.71 -6.37 -12.57 

Exercise group 

APOE/BDNF 

genotype 

-0.40 

-1.65 

-0.17 

-1.58 

1.59 

3.30 

-0.11 

1.24 

0.58 

 

-0.01 

0.05 

 

-1.15 

1.06 

 

2.20 

-0.11 

 
1.24 

CDR change -0.66 -0.68 -0.81 -7.32 -6.71 -6.81 -7.33 -7.32 

Gender -1.89 -1.79 -2.14 -3.0 -2.79 -2.92 -2.93 -3.0 

Age -8.04 -8.06 -8.72 -8.1 -8.41 -8.39 -8.27 -8.1 

Education -0.21 -0.20 -0.02 -0.84 -0.60 -0.59 -0.76 -0.84 

Health 

Composite 

-1.27   -1.27 -1.35 0.78 0.32   0.29 0.67 0.78 

Time x Exercise 

group 

0.65  -0.35  -0.17  -0.33  

Exercise group x 

APOE/BDNF 

0.38  -3.21 - -0.95  -2.01 - 
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Note: Data represent t-values; bold = significant at p<.05 

Table 8 MRI outcomes (volume): Superior frontal gyrus and Hippocampus 

Effect Hippocampus 

APOE 

Hippocampus 

BDNF 

Superior frontal 

gyrus APOE 

Superior frontal 

gyrus BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

Time -6.93 -13.13 -6.83 -13.08 -6.93 -10.10 -4.79 -9.90 

Exercise group 

APOE/BDNF genotype 

0.37 

0.04 

0.44 

-0.56 

0.92 

2.14 

0.17 

1.52 

0.85 

-0.59 

1.11 

-0.34 

1.22 

1.59 

0.63 

1.06 

CDR change -6.59 -6.62 -7.38 -7.38 -2.03 -2.11 -1.89 -1.91 

Gender -2.65 -2.67 -2.8 -2.88 -2.26 -2.39 -2.37 -2.44 

Age -10.2 -10.2 -10.3 -10.1 -8.76 -8.71 -8.81 -8.75 

Education -0.46 -0.46 -0.68 -0.75 -1.48 -1.48 -1.16 -1.21 

Health Composite 0.36 0.36 0.26 0.84 -1.63 -1.65 -1.82 -1.76 

Time x Exercise group -0.02  0.27  0.81  -0.33  

Exercise group x 

APOE/BDNF 

-0.19  -1.58  -0.17  -1.26   

Time x APOE/BDNF -1.04  -0.16  1.99  -0.41  

Time x Exercise group 

x APOE/BDNF 

0.33  0.15  -0.88  0.51  

Note: Data represent t-values; bold = significant at p<.05 

Table 9 MRI outcomes (thickness): Medial temporal lobe and Dorsal/ventral lateral prefrontal 

Effect Medial temporal 

APOE 

Medial temporal 

BDNF 

Dorsal/ventral 

lateral PFC APOE 

Dorsal/ventral 

lateral PFC BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

Time x 

APOE/BDNF 

1.54  0.10  -0.82  -0.23  

Time x Exercise 

group x 

APOE/BDNF 

-0.80  0.49  0.44  0.83  
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Time -3.20 -7.37 -3.06 -6.94 -3.25 -4.81 -3.21 -4.87 

Exercise group 

APOE/BDNF 

genotype 

0.01 

-0.28 

-0.51 

-1.34 

0.29 

1.39 

-0.37 

1.01 

-0.52 

-2.22 

0.75 

-1.44 

1.12 

1.58 

1.18 

2.28 

CDR change -4.90 -4.94 -5.09 -5.09 -3.35 -3.23 -2.87 -2.93 

Gender 1.26 1.25 1.31 1.29 2.72 2.89 2.69 2.66 

Age -5.49 -5.50 -5.27 -5.23 -4.79 -4.83 -4.56 -4.51 

Education 0.51 0.55 0.38 0.37 0.60 0.61 0.75 0.70 

Health Composite -1.22 -1.25 -0.91 -0.86 -0.50 -0.47 -0.43 -0.39 

Time x Exercise 

group 

-0.49  -0.30  0.75  0.26  

Exercise group x 

APOE/BDNF 

 -0.41  -0.78  1.79  -0.54   

Time x 

APOE/BDNF 

  -1.22  -0.48  0.81  1.04  

Time x Exercise 

group x 

APOE/BDNF 

 0.02  0.01  -1.10  -0.24  

Note: Data represent t-values; bold = significant at p<.05 

Table 10 MRI outcomes (thickness): Superior frontal gyrus 

Effect Superior frontal 

gyrus APOE 

Superior frontal 

gyrus BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

Time -5.48 -8.41 -5.20 -8.58 

Exercise group 

APOE/BDNF genotype 

-0.67 

-1.41 

-0.31 

-1.56 

-0.17 

1.12 

0.29 

2.10 

CDR change -3.24 -3.27 -2.86 -2.9 

Gender 2.36 2.37 2.45 2.43 

Age -5.53 -5.55 -5.22 -5.25 
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Education 0.92 0.92 0.81 0.77 

Health Composite -0.72 -0.72 -0.71 -0.72 

Time x Exercise group 0.89  0.89  

Exercise group x 

APOE/BDNF 

0.25  0.13   

Time x APOE/BDNF 0.79  0.65  

Time x Exercise group x 

APOE/BDNF 

-0.25  -0.30  

Note: Data represent t-values; bold = significant at p<.05 
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Figure 3 Individual profiles of Dorsal/ventral lateral prefrontal cortex volume over time 
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Figure 4 Individual profiles of Medial temporal lobe volume over time 

 
 
In terms of volume, there was a significant interaction between BDNF genotype and exercise 

group observed for total gray matter, total white matter, and the dorsal/ventral lateral prefrontal 

region (see Table 6-7). Individuals with a Met allele who were in the high exercise group showed  

smaller volume of these regions at baseline compared to low exercise engagement Met carriers. 

There was also a significant main effect of BDNF genotype on total grey matter and 

dorsal/ventral lateral prefrontal volumes, as well as a trend for total white matter volume. 

Individuals with a Met allele had greater volume of these regions at baseline than individuals 

without this allele. These effects were not observed for thickness, except for a main effect of 
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BDNF genotype on thickness of dorsal/ventral lateral prefrontal and superior frontal gyrus. 

Individuals with positive Met allele had greater thickness of these regions than individuals 

without the allele. With the exclusion of outliers, the interaction between BDNF genotype and 

exercise group for total white matter failed to reach significance (p=0.053).  

3.5 Cognitive Outcomes 

3.5.1  Semantic Memory 

There were no significant two-way interactions in either the models with APOE or BDNF 

genotypes (see Table 11).  The final models with APOE and BDNF genotypes showed that the 

high exercise group had significantly higher baseline performance on semantic memory tasks 

than the low exercise group (=0.19, SE=0.08, CI = 0.02-0.35; =0.18, SE=0.09, CI = 0.008-

0.35, respectively), see Figure 7. With the exclusion of outliers, main effect of exercise 

engagement in BDNF model failed to reach significance (p=0.056). 

Table 11 Cognitive Outcomes: Semantic memory and Episodic memory 

Effect Semantic 

memory APOE 

Semantic 

memory BDNF 

Episodic memory 

APOE 

Episodic 

memory BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

Time -3.83 -5.87 -3.0 -5.81 -2.50 -2.43 -3.24 -4.62 

Exercise group 

APOE/BDNF genotype 

1.34 

-0.71 

2.25 

-0.3 

1.10 

-0.42 

2.07 

-0.19 

0.20 

-0.90 

1.58 

-0.18 

0.20 

-0.36 

1.52 

0.25 

CDR change -8.72 -8.85 -8.92 -8.94 -13.8 -13.9 -14.1 -14.1 

Gender 3.0 3.01 2.73 2.77 4.01 4.07 4.33 4.38 

Age -1.65 -1.67 -1.18 -1.25 -0.15 -0.14 0.34 0.29 

Education 5.59 5.60 5.05 5.09 5.41 5.43 5.29 5.31 

Health Composite -0.72   -0.71 -0.5 -0.52 0.21 0.23 0.80 0.80 
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Time x Exercise group 0.61  0.19  1.13  1.09  

Exercise group x 

APOE/BDNF genotype 

0.69  0.99  1.11  0.95  

Time x APOE/BDNF 

genotype 

1.18  0.01  -0.76 -2.23 0.48  

Time x Exercise group x 

APOE/BDNF genotype  

-1.63  -1.06  -1.23  -1.04  

Note:  Data represent t-values ; bold = significant  at p<.05 

 
Figure 5 Individual profiles of semantic memory performance over time 

 

3.5.2  Episodic Memory 

A significant interaction between time and APOE genotype was observed (=-9.56x10-5, 

SE=4.07x10-5, CI = -1.57x10-4 - -1.01x10-5), see Table 11. APOE ε4 allele carriers showed 
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steeper decline in episodic memory performance compared to individuals without the genetic 

risk factor. None of the other two-way interactions were significant. There was not a significant 

main effect of exercise engagement (=0.12, SE=0.08, CI = -0.03 – 0.27) or APOE genotype 

(=-0.2, SE=0.10, CI = -0.21 – 0.17) on episodic memory performance, see Figure 8. 

Figure 6 Individual profiles of episodic memory performance over time 

 
In the final models with BDNF genotype, no significant main effects or interactions were 

observed, see Table 11. 
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3.5.3  Processing Speed 

As mentioned before, significant three-way interaction between exercise group, time, and APOE 

genotype (=-2.89x10-4, SE=1.05x10-4, CI = -4.97x10-4 - -8.32x10-5) was observed (see Table 

12). In individuals without the ε4 risk allele, those with greater exercise engagement showed less 

steep of a decline over time in the processing speed performance compared to people who 

exercised less, while the trajectories between exercise groups were not significantly different in 

APOE carriers, see Figure 9-10. 

Table 12 Cognitive Outcomes: Processing speed and Working memory 

Effect Processing 

speed APOE 

Processing 

speed BDNF 

Working 

memory APOE 

Working 

memory BDNF 

 First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

First 

model 

Final 

model 

Time -5.20 -5.20 -4.48 -6.66 -2.65 -3.29 -2.08 -3.41 

Exercise group 

APOE/BDNF genotype 

0.66 

-1.15 

0.66 

-1.15 

0.52 

-1.05 

1.61 

-0.17 

0.65 

-0.04 

1.35 

0.04 

0.88 

0.43 

1.35 

0.22 

CDR change -4.76 -4.76 -4.01 -4.04 -5.08 -6.15 -6.45 -6.48 

Gender 2.24 2.24 2.01 2.05 1.87 1.86 1.28 1.27 

Age 1.19 1.19 2.02 1.87 -1.34 -1.35 -1.07 -1.06 

Education 2.68 2.68 2.45 2.49 4.28 4.28 4.02 4.02 

Health Composite   -2.09   -2.09 -2.05 -2.07 -0.39 -0.38 -0.72 -0.72 

Time x Exercise group 2.64 2.64 1.15  0.87  0.54  

Exercise group x 

APOE/BDNF genotype 

1.39 1.39 1.36  0.28  -0.22  

Time x APOE/BDNF 

genotype 

0.74 0.74 -.001  0.79  -0.32  

Time x Exercise group x 

APOE/BDNF genotype  

-2.75 -2.75 -0.21  -0.73  -0.01  

Note:  Data represent t-values ; bold = significant  at p<.05 
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Figure 7 Individual profiles of processing speed performance over time 

 
Figure 8 Processing speed across APOE genotype and exercise groups 
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In the final model with BDNF genotype, no significant interactions or main effects were 

observed, see Table 12. However, in the BDNF model without outliers, main effect of exercise 

group was significant (p=0.02). 

3.5.4  Working Memory 

In the models with APOE or BDNF genotypes, no significant interactions or main effects were 

observed, see Table 12 and Figure 11.  

Figure 9 Individual profiles of working memory performance over time 
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Chapter 4: Discussion 
Researchers have focused on examining lifestyle factors as potential methods for preventing or 

slowing down the progression of clinical symptoms of dementia (Podewils et al., 2005; 

Rockwood and Middleton, 2007). Physical exercise has found to be associated with improved 

cognitive and brain health (Hillman, Erickson, & Kramer, 2009). In addition, several studies 

suggest a beneficial effect of physical activity and exercising on AD pathology, as well as a 

moderating effect of exercise on the relationship between APOE genotype and AD biomarkers 

(e.g., Liang et al., 2010; Okonkwo et al., 2014; Head et al., 2012). While studies have looked at 

the cross-sectional association between exercising and AD biomarkers, regional brain structure, 

and cognitive functioning, there is more limited research comprehensively investigating the 

longitudinal effect of exercising on these outcomes. Hence, the primary goal of this study was to 

examine whether the level of exercise engagement at baseline would influence the rate of change 

in CSF- and PET- estimates of amyloid and tau, brain volume and thickness, and cognitive 

performance. Another goal was to examine whether APOE and/or BDNF status moderate the 

effects of exercise on these longitudinal trajectories. 

Based on our results, exercise engagement may be limited as a moderator of changes in AD 

biomarkers, regional brain structure, and cognitive functioning over time. We did not find a 

significant difference between low and high exercise groups in the longitudinal trajectories of the 

examined outcomes, with the exception of processing speed. Furthermore, APOE and BDNF 

genotype were not found to significantly influence the relationship between exercising and the 

rate of change over time. These findings are in contrast with the results of longitudinal studies 

that observed higher levels of aerobic fitness and physical activity to be associated with greater 

hippocampal volume and cognitive performance over time (e.g., Smith et al., 2014; Barnes et al., 
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2003; Aichberger et al., 2010; Erickson et al., 2011). Mixed results seem to be more prominent 

within cross-sectional designs, however, our study points to caution when thinking about 

longitudinal trajectories as well. The discrepant results could be attributed to studies focusing on 

aerobic fitness, exercising, versus physical activity. These differences in scope also imply 

significant variation in measurement methods, from use of aerobic exercise interventions, VO2 

measurements, to 2-item self-report questionnaires. Furthermore, this dissimilarity in 

measurement might potentially explain some of the mixed observations, since cross-sectional 

results seem to be more consistent when examining influence of aerobic fitness compared to self-

reported physical activity. Considering the lack of studies looking at exercising specifically, our 

findings suggest that exercise engagement might not exert a large influence on the longitudinal 

trajectories of AD biomarkers, regional brain structure, and cognitive functioning. 

In terms of CSF and PET-PIB outcomes, we observed an effect of exercise engagement on levels 

of PET-PIB in the final model. Participants who were in the high exercise engagement group 

exhibited significantly lower MCBP compared to participants in the low exercise engagement 

group. However, the association between exercising and MCBP did not differ by APOE or 

BDNF genotype, as previously observed (Head et al., 2012). Furthermore, we did not observe a 

significant difference between the exercise groups in the baseline levels of CSF A42, tau or ptau. 

These results are somewhat in line with the study by Liang and colleagues (2012) observing 

significant differences in PET-PIB and CSF A42, but not in tau or ptau. The discrepancy 

between amyloid and tau might be due to the fact that tauopathy increases closer to CDR 

conversions, which we controlled for (Jack et al., 2010). In addition, the lack of significant 

difference between exercise groups in levels of A42 is in contrast to previous work (Liang et al., 

2010). The observation by Law and colleagues (2018) that a beneficial effect of physical activity 
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existed for medium intensity levels only, points to the possibility that other factors, such as 

glucose metabolism, cerebral blood flow or other lifestyle factors, might moderate the 

relationship between exercising and AD biomarkers. It remains unclear how robustly exercise 

engagement benefits people with AD pathology.  

We found several significant cross-sectional interactions between exercise engagement and 

BDNF genotype in predicting brain volumes, in the opposite direction of our predictions. A study 

by Brown and colleagues (2014) also observed that Met carriers with high levels of physical 

activity had smaller brain volume, specifically in the hippocampus and temporal lobe. They pose 

a possibility that Val homozygotes experience greater age-related decline in brain volume and 

cognitive performance compared to Met carriers (Voineskos et al., 2011; Harris et al., 2006; 

Ventriglia et al., 2002), which is attenuated with increased physical activity. While we did 

observe that individuals with Met allele had smaller volumes of total grey and white matter and 

dorsal/ventral prefrontal cortex compared to Val homozygote, we did not find differential 

decrease in volume over time for Val homozygotes versus Met carriers. The discrepancies in 

findings across BDNF genotypes stand to be resolved.  

Looking at cognitive outcomes, we found that the high exercise group had less decline in 

performance over time on the processing speed composite. Interestingly, this was present in the 

individuals without the APOE e4 allele. However, considering the number of analyses conducted 

in our study, the robustness of this effect warrants further investigation. Focusing on other 

cognitive domains, there was a main effect of exercising on baseline semantic memory 

performance, but no effect on baseline working memory or episodic memory performance. These 

results are surprising considering the relative consistency in existing literature on the longitudinal 

effects of exercise on cognitive functioning. However, our study focused on exercise engagement 
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while others looked at physical activity, cardiorespiratory fitness, and aerobic exercise 

interventions (e.g., Laurin et al., 2001; Erickson et al., 2011; Barnes et al., 2003; Pizzie et al., 

2014). These studies also vary in the duration of their follow-up, ranging from 6 months to 6 

years, with most assessing the variable of interest only at baseline and follow-up. Our sample 

contains multiple assessments of the outcomes over an average of four years. A meta-analysis by 

Colcombe and Kramer (2003) showed that different methodological factors, including duration 

and type of intervention, can moderate the effect. A meta-analysis on studies of physical activity 

and exercise engagement might elucidate factors that contribute to equivocal findings on 

cognitive functioning. 

There are several limitations to this study that should be mentioned and considered. Firstly, CDR 

conversion was used as a covariate instead of a predictor of interest, in order to maximize the 

sample size. Another potential concern is that exercise engagement was assessed via a self-report 

measure. Even though we used a validated questionnaire, the measure is significantly but not 

perfectly correlated with cardiorespiratory fitness. Moreover, the questionnaire was administered 

via telephone instead of in-person as conducted in the validation study. Since it is a self-report 

measure, there is a possibility that older adults were not able to accurately report their exercise 

engagement habits over a 10-year span. In addition, although the exercise questionnaire is aimed 

at assessing the overall patterns of exercise engagement, there was only one measurement of 

exercise engagement. This precludes us from knowing whether exercise engagement changed 

over the time frame in which the outcome measurements were obtained. It is possible that 

participants changed their exercise behavior in the years following baseline measurements. 

Finally, the long-term beneficial effect of exercising might not be robust enough to be detected 

with our sample size. In addition, there is a concern of the generalizability of the results, since 
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our sample represents majority White, middle-class, educated older adults. Due to these 

limitations, presence of outliers, and a high number of conducted models in the study, even 

significant results might not be robust and should be interpreted with caution. 

To our knowledge, this is one of few longitudinal studies to comprehensively examine the effect 

of exercise engagement on AD biomarkers, regional brain structure, and cognitive functioning. 

Future studies should include direct measures of cardiorespiratory fitness, such as VO2 

measurements, or objective measures of physical activity, like using accelerometry. Furthermore, 

intervention studies with long follow-ups can further estimate causality and effectiveness of 

aerobic exercising as a prevention measure. Another future direction is to repeatedly measure 

exercise engagement while following people longitudinally, thus, obtaining information about 

both exercising and AD pathology and cognitive functioning over time. Additionally, extending 

the range of participants’ age to middle-aged adults could provide insight into the changes in 

exercise behavior over time and the most impactful age for later beneficial effects of exercising. 

Moreover, having a more diverse sample in terms of race, education, socioeconomic status, and 

other demographic variables, will provide better opportunity for the generalization of the results 

to different populations. Additionally, examining the effect of exercise engagement in 

conjunction with other life-style factors, such as nutrition, social engagement, and cognitive 

exercising, can provide knowledge about individual and additive contribution of these factors to 

protection against development of AD pathology and overall health. Finally, better 

understanding of how the results differ based on the measurement methods and the focus on 

aerobic fitness, exercise engagement versus physical activity, could provide insight into what 

type of exercise regimens and physical activities influence cognitive and brain health. 
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In summary, our results suggest that exercise engagement is not a robust moderator of 

longitudinal trajectories of AD biomarkers, regional brain structure, and cognitive functioning. 

Neither APOE nor BDNF genotypes had a significant influence on this main finding. Further 

research is needed to better understand the equivocal observations of the beneficial effect of 

exercising, aerobic fitness, and physical activity more broadly.  
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