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Recently discovered, graphene and graphene oxide materials have drawn considerable 

research attention due to outstanding and novel properties, which underpin wide material 

potential for a number of advanced applications including supercapacitors, solar cells, 

sensors, catalysts, semiconductors, sorbents, and membranes, among others. Graphene 

oxides (GO), which are considered as a family of oxidized graphene materials (derivatives), 

is a key precursor to the synthesis of free-standing graphene via oxidation-exfoliation-

reduction pathways. GO properties depend on the synthesis routes/conditions (i.e. 

derivatization), including partially maintaining graphene (i.e. sp2) properties. Further, 

oxygen-containing functionalities (epoxy, hydroxyl, carbonyl, and carboxyl groups) render 

GO hydrophilic – and correspondingly stability in water, thus underpinning (aqueous-

based) transport and even reactivity. Juxtaposed with aforementioned application 

potential, the inadvertent implications of GO, and corresponding daughter products, in 

environmental systems remain largely unknown. For successful aqueous applications, it is 

necessary to overcome two fundamental challenges: 1) control of the functional group 
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quantity/type via synthesis process, and 2) understand the behavior (e.g. fate and transport, 

application) of the material(s) as a function of surface chemistry and reactivity.  

In this work, classic graphene oxide synthesis is systematically explored and evaluated, 

including synthesis temperature, reaction time, oxidant ratios, and sonication time, with resulting 

material properties described, For this matrix, materials are characterized with regard to aqueous 

stability and spectral analyses including transmission electron microscopy (TEM), UV-vis 

spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, thermogravimetric 

analysis (TGA), total organic carbon analysis (TOC), and Fourier transform infrared 

spectroscopy (FTIR). Additionally, the reactivity and transformation of these materials in the 

presence of free chlorine, a common oxidant, under light irradiation is also described.  

Specifically, reaction kinetics and mechanism(s) are systematically evaluated as a function of 

pH, dissolved oxygen, and initial size of graphene oxide (coupons). For these reactions, partially 

mineralization is confirmed via direct CO2 detection and carbon mass balance. Final product(s) 

are described via TEM, FTIR, XPS, Raman spectroscopy, and mass spectrometry (MS).  Further, 

we evaluated and describe graphene oxide applications, including as a platform sorbent for rare 

earth metals, focusing on cerium(III) and lanthanum(III). For these, graphene oxide functionality 

(both function group type and quantity), solution pH, and ionic strength are systematically 

evaluated and described towards sorption optimization.  Lastly, graphene oxide membranes are 

explored with regard to surface reactivity (i.e. exposure to free chlorine), under both dark and 

light irradiation conditions, as it relates membrane stability and (separation) performance for 

related water treatment processes.  



1 

 

Chapter 1: Introduction 

1.1 Dissertation Organization 
The dissertation begins with identifying key scientific and engineering issues to be addressed, 

followed by a review of the current research body with respect to the aforementioned issues. 

Chapter 2 focuses on the synthesis of graphene oxide – specifically evaluating key factors, such 

as temperature, reaction time, oxidant ratio and sonication conditions. This also includes 

extensive characterization, including method development, using transmission electron 

microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, 

thermogravimetric analysis, and Fourier transform infrared spectroscopy, among other 

techniques.  In Chapter 3 the transformation of graphene oxide by free chlorine, a common 

oxidant and disinfectant, under light irradiation is described. For this, reaction kinetics were 

modeled and the effect of pH, dissolved oxygen, size of initial coupon were explored. Products 

were characterized by UV-vis spectroscopy, TEM, FTIR, TOC, Raman spectroscopy, mass 

spectrometry, and XPS. Partial mineralization was confirmed and carbon mass balance between 

the gas phase and aqueous was well established. This work served as a guide for Chapter 4, 

which details the effect of free chlorine dose, pH, and exposure time on GO membrane chemical 

stability, carbon oxidation state, water flux, and surface roughness.  In Chapter 5, graphene oxide 

materials with different quantities/types of functional groups (taken material libraries established 

in Chapter 2) were applied towards aqueous-based cerium and lanthanum adsorption. Adsorption 

isotherms were established for all conditions tested. The effects of functional group quantity, 

type, pH, and ionic strength on the adsorption capacity are described. Finally, Chapter 6 

summarizes the key findings and contributions in this dissertation. The implications of the 
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findings are discussed. Based on the discussions, recommendations for future research are 

proposed. 

1.2 Background 

1.2.1 Graphene and Derivatives 

Graphene is an allotrope of carbon that takes the form of a two-dimensional, hexagonal lattice 

with sp2-hybridyzed carbon atoms at each vertex. Graphene can also been considered as a parent 

material of other graphitic-like carbon forms including fullerene, carbon nanotubes and graphite 

as shown in Fig. 1.1.1 Since 2004, when Novoselov and co-researchers identified isolated 

graphene2, it has gained considerable research interest. Graphene exhibits a number of interesting 

material properties, including some approaching theoretical material limits3, including room-

temperature electron mobility4, Young’s modulus5, thermal conductivity6, optical absorption7, 

impermeability to gases8, and the ability to sustain extremely high electron current densities9. 

Based on these and other properties, graphene is poised to be applied in a number of advanced 

applications such as supercapacitors10-12, solar cells13-15, sensors16-18, catalysts19-21, 

semiconductors22-24, and other functional nanocomposites25-27. Via chemical vapor deposition 

(CVD), high quality graphene could be synthesized but in very limited quantity.28 Although the 

development of large(er) scale graphene is still largely at the R&D stage, the global graphene 

market hit USD 23.7 USD in 2015, and is projected to grow at a CAGR of 36.7% until 202529, 

with most demand in semiconductor electronics, energy (mainly to batteries) and composite 

material industries30. However, the wide application potential requires large scale production of 

graphene material at low cost31. 
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Figure 1.1 Graphene as parent of all graphitic forms: fullerene, carbon nanotube and graphite1 

1.2.2 Graphene oxide  

Graphene oxide (GO) is a key precursor to large scale synthesis of free-standing graphene32. GO 

has oxygen functionality on both the basal plane (typically as epoxy and hydroxyl groups) and 

coupon edges (as carbonyl and carboxyl groups)33, which are several layers to single-layer thin 

and stable in water34. Also it serves as a starting material for large scale production of reduced 

graphene oxide (rGO), which is suitable for many application as it retains a number of graphene 

properties35. Currently, graphene oxide(s) (GO) materials account for >30% of the global 

graphene market share29, 36 as advances in GO processing allow for a number of potentially 
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scalable routes to achieve mass production of chemically modified graphene – while also having 

broad applications in polymer composites, supercapacitors37-39, sensors40-42, catalysts43-45, 

membranes46-48, and biomedical materials, among others49. The process of oxidizing graphite and 

exfoliating it in an aqueous solution, typically done via the modified Hummers method, yields 

graphene oxide as several, or even single layers, in relatively large (gram - kilogram scales) 

quantities34. Oxygen-containing groups on the graphene plane (e.g. epoxy, hydroxyl, carbonyl) 

are more hydrophilic than the sp2 carbon clusters, and also increase the space between graphene 

layers, thus allowing for facile solvent-exfoliation33. Adding reducing agents, such as 

hydrazine50-52, into the system or thermally reducing oxygen-containing groups33, 53, 54, GO can 

then be reduced (back to sp2 carbons), (re)gaining properties of 2-D graphene, which makes GO 

an important precursor for potential scaled production of graphene itself31. By controlling the 

level of reduction, the field requirements for material applications can be achieved – i.e. the 

materials can be specifically tailored for functionality. Additionally, GO itself has interesting 

properties other than large surface area and outstanding electron properties. The hydrophilic 

oxygen-containing groups facilitate enhanced water stability water, allowing for potential 

(suspended) aqueous applications. Also the oxygen groups enable graphene oxide to be 

functionalized via covalent bonding or physical interactions, making it a building block for 

versatile functional materials55. This also allows for further modification(s), such as solution-

based conjugation with polymers or metal/metal oxides49, 56. Recently, there have been 

interesting reports regarding graphene oxide itself or modified with other materials acting as 

novel sorbents57-59 and catalysts60-63.  
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1.2.3 Carbon Atom Hybridization  

In chemistry, orbital hybridization is the concept of mixing atomic orbitals into new hybrid 

orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the 

paring of electrons to form chemical bonds in valence bond theory64. Carbon atoms could form 

four covalent bonds, like methane which has four bonds with hydrogen atoms. The four 

equivalent orbitals come from the carbon 2s and 2p orbitals, with each bond composed of ¼ of 

2s orbital and ¾ of one of the p orbitals and the new orbital is called sp3 orbital, as shown in 

Figure 1.265. This process of orbital mixing is called hybridization this carbon atom would be sp3 

hybridized65. As electrons repel each other, the four orbitals will distribute as tetrahedron to 

minimize the total energy. This is applied when carbon atoms are bonded with oxygen atoms in 

C-O groups or with hydrogen atoms in C-H.  

 

Figure 1.2 Carbon atom with sp3 hybridized orbital65 

Then for double bonds, another set of hybridized orbitals are described. Like in ethylene, besides 

the two orbitals taken by the C-H bond, there are 2s orbital and two 2p orbitals for hybridization, 

which is called sp2 hybridized. These orbitals have 1/3 of the 2s orbital and 2/3 of the 2p orbitals, 

as shown in Figure 1.365. The overlap of the 2 sp2 orbitals form the π bond above and below the 

plane. This is applied when carbon atoms are bonded with carbon atoms in C=C or oxygen atoms 

in C=O.  
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Figure 1.3 Carbon atom with sp2 hybridization65 

Also for the acetylene with triple bond, i.e., C≡C, the sp hybridization is formed with one 2s 

orbital and one 2p orbital to form two new orbitals, each with ½ 2s orbital and ½ 2p orbital65. 

Then the two sp hybrid orbitals overlap and form two mutually perpendicular π bonds, as shown 

in Figure 1.465.  

 

Figure 1.4 Carbon atom with sp hybridization65 

In graphene, the conjugation of sp2 orbital would merge between the aromatic rings and form the 

π system, as shown in Figure 1.566. The electron delocalization would give graphene 

extraordinary electron mobility and conductivity67.  
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Figure 1.5 Graphene oxide electron delocalization of sp2 hybridized orbitals66  

1.2.4 Graphene Oxide Environmental Behavior and Potential Risk 

Given the promising application potential, a significant amount of research has been conducted 

focused on graphene and derivative materials in various fields, as mentioned above. However, 

environmental based reactions of graphene / graphene derivatives with ubiquitous reactants / 

system (UV irradiation, common oxidants, reductants microorganisms, etc.) have only recently 

been explored and described. While the exceeding low stability of graphene leads to rapid 

aggregation/precipitation in aqueous solutions, graphene oxide, due to hydrophilic functionality, 

has the potential to disperse into water volumes, and thus interacting with a number of systems. 

It should be noted that, GO has been found to be relatively toxic compared to other, different 

graphene materials68-70. Thus the environmental fate and transport of graphene oxide 

nanoparticles should be clearly understood to better facilitate the application of graphene oxide, 

for the regulation, treatment, and/or recycle of the material. 

1.2.4 Graphene Oxide Membranes 

Even though water is considered as renewable resource, it was predicted that one-third of the 

global population will suffer from chronic water shortage issues71. Membrane-based water 
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treatment and purification technology has attracted great attention due to its advantages of easy-

operation, energy efficiency and environmental friendliness72. Graphene oxide has shown 

notable potential in membrane-based applications, due to its mechanical strength, hydrophilicity 

and functional groups readily for chemical or physical modification73. Theoretical calculations 

indicated that graphene oxide physiochemical properties could increase the water permeability in 

desalination an order of magnitude higher than the conventional reverse osmosis74. In addition, 

graphene oxide was incorporated into the membrane to enhance the antimicrobial and anti-

fouling properties of the membrane, as well as roughness, mechanical strength, electronegativity, 

hydrophilicity, due to its uniform dispersion, accelerated charge transfer and cytotoxic effect to 

the microbials75-78. Zhao et al prepared microfiltration membrane by blending PVDF and 

graphene oxide and showed sustained permeability, low cleaning frequency and anti-fouling 

property78. Saraswathi et al. explored graphene oxide incorporation in the poly(amide imide) 

(PAI) membrane and showed the improved water flux and protein rejection79. Bernstein et al. 

used zwitterion polymer and graphene oxide together for the modification of PES membrane and 

demonstrated the anti-fouling property80. Wang et al applied interfacial polymerization to 

incorporate graphene oxide into the polyamide active layer of thin-film composite membranes 

for organic compounds removal with improved anti-fouling property81. Liu et al reported 

fabrication of polyelectrolyte assembled functionalized graphene oxide membrane and 

demonstrated the high performance in dye/salt separation with water flux of 52.1 L/(m*h*bar)82. 

Zhang et al incorporated oxidized carbon nanotubes and graphene oxide into the PVDF casting 

solution and the synthesized membrane showed higher porosity and water flux, with anti-fouling 

property83. Lv et al synthesized graphene oxide-cellulose composite to blend into PVDF micro-

filtration membrane, which exhibited high wettability, low protein and polysaccharides 
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adsorption, high permeability and anti-fouling property in long-term operation84. By 

modification of graphene oxide, the hydrophilicity of membrane could be tuned to fit different 

application requirements. Mahmoudian et al. chemically modified graphene oxide with 

hydrophobic polymethylmethacrylate and deposited on poly(ether sulfone) (PES) membrane for 

separation of salts, dyes and heavy metals85. Karim et al blended graphene oxide with PES in the 

casting solution and the synthesized membrane showed increased water flux and rejection of 

bovine serum albumin (BSA) of 97% compared to the PES membranes75. Kang et al. used 

sulfonated graphene oxide to functionalize polysulfone membrane and achieved high water flux 

and BSA rejection (over 98%)86. Wu et al blended graphene oxide with TiO2 for membrane 

fabrication and showed high water flux (531 L/(m2 h bar)) and application on oil/water 

separation87. Chen et al. synthesized sandwich-structured polyamide-graphene oxide-polyamide 

membrane intercalated with TiO2 nanoparticles and showed water flux of 13.77 L/(m*h*bar) and 

92% rejection for methylene blue88. Dai et al. synthesized poly(lactic acid) (PLA) electrospun 

membrane immobilized with zeolitic imidazole framework/graphene oxide hybrid and 

demonstrated the increased hydrophilicity, mechanical strength and photocatalytic degradation of 

methylene blue89. The previous work in our lab also showed great performance of graphene 

oxide membrane in water purification90. 

1.2.5 Rare Earth Metals 

Lanthanides, commonly referred to as rare earth elements, are crucial and extensively used in 

applications such as health care, electronics, metallurgy, catalyst, magnets, and phosphors91. The 

rare earth metal market rises dramatically in the past years, increasing by a factor of 17 from 

1964 to 1997 and by a factor of 20.5 from 1997 to 200791. Rare earth metals are not particularly 

‘rare’ in terms of abundance. Their average abundance in the earth crust is 60 – 68 ppm for Ce 
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and 32 – 39 ppm for La, about the same level as zinc and copper92. However, their similar 

chemical properties kept them rarely separated for many years93. Among all the rare earth metals, 

cerium makes up 45% of the market and lanthanum makes up for 39%, while the rest of the rare 

earth metals make up for the remaining 15%94. Specifically,  the catalysis application consisted 

of 66% lanthanum oxide and 32% cerium oxide, being 72% for fluid cracking and 28% for 

automobile catalytic converters91. Cerium and lanthanum are crucial components in the catalyst 

for petroleum cracking and refining95, 96. Cerium oxide is used in catalytic converters in cars, 

enabling them to run at high temperatures, for oxidation of CO and NOx emissions in the exhaust 

gases, and is required by Federal law to be installed in nearly all gasoline and diesel fueled 

vehicles in the United States97.  

1.3 Objectives 
Overall, research described in this thesis is organized as an ordered matrix of material synthesis 

and environmentally relevant reactions, followed by GO applications in water treatment 

membranes and rare earth metal adsorption.  There are four overarching research objectives, as 

follows:  

Objective 1: Systematically explore key variables in GO synthesis processing such as 

temperature, reaction time, oxidant ratios, and sonication time as they relate to material 

properties.    

Objective 2: Describe the reaction kinetics and mechanisms of graphene oxide reactivity with 

free chlorine under UVA irradiation. Quantify the effects of pH, dissolved oxygen, and initial 

coupon size for these reactions. Identify and characterization the key products, such as CO2 and 

other small fragment molecules.  
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Objective 3: Explore chemical stability of the graphene oxide membrane in the presence of free 

chlorine and light irradiation. Study the effects of pH, free chlorine dosem and exposure time on 

the water flux, surface roughness, and surface carbon oxidation state.  

Objective 4: Investigate the application of graphene oxide towards rare earth metal (cerium and 

lanthanum) adsorption and separation. Describe sorption isotherms over a range of system 

considerations and variables including graphene oxide functional groups, system pH, and ionic 

strength. Propose an adsorption mechanism based on the results.  

To meet these objectives, graphene oxide synthesis process was first studied and the set of 

characterization methods was established. By controlling the parameters during the synthesis, 

graphene oxide with different quantities of functional groups were synthesized for later studies. 

The reaction with free chlorine under light irradiation was then investigated which also provided 

the guiding hypotheses for our experiments evaluating the graphene oxide membrane stability 

and performance upon chlorine exposure. Lastly, graphene oxide materials with different surface 

chemistries were explored in detail for rare earth metal adsorption and separation.   
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Chapter 2 Graphene Oxide Synthesis and 

Characterization 

Abstract 
In this chapter, we describe synthesis processing of graphene oxide under different conditions, 

exploring the effects of temperature, reaction time, oxidant ratio, and sonication time. Average 

oxidation state of carbon and carbon yield were chosen as the two criteria to evaluate produced 

(product) graphene oxide materials. It was observed that as temperature increased, the oxidation 

state and yield of GO also increased. Reaction time and oxidant ratio not only increases the 

oxidation state of GO, but also has a pronounced effect on material yields.  As a function of 

reaction conditions, graphene oxide materials were characterized and described via a suite of 

techniques, including transmission electron microscopy, UV-vis spectroscopy, X-ray 

photoelectron spectroscopy, Raman spectroscopy, thermogravimetric analysis, and Fourier 

transform infrared spectroscopy. 

2.1 Introduction  
Currently, most graphene oxide and reduced graphene oxide applications use a version of the 

Hummers method for graphene oxide synthesis as it is relatively simple, scalable, and fairly 

green, compared to other GO synthesis methods34. The modification on Hummers method differs 

from one report to another and the effect of the modifications on the properties of graphene oxide 

remain outstanding98, 99. Even though the Hummers method is widely used in GO synthesis, the 

difference in reaction temperature, reaction time, oxidant ratio, and sonication time likely results 

in products with different properties, which has not been absolutely quantified and directly 
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compared in the literature. For example, the reaction temperature of graphene oxide synthesis 

reported range from 30 °C to 50 °C, with reaction time ranging from 1 hour to 3 hours28, 31, 98, 100, 

101. Even for a sonication step(s), the time range vary from 15 min to 2 hours, and most reports 

fail to provide information about the time and power of the sonication, which could lead to 

varied redox reaction(s) of the product98, 101-104. This, among other variables, underscores 

difficulties when comparing the GO materials among different research groups and reports. Also, 

from an engineering perspective, it would be beneficial if we could control the quantity of 

functional group on the GO surface. Based on the most common method of graphene oxide 

synthesis, here we studied the factors during the synthesis process, including reaction 

temperature, reaction time, oxidant ratio, and sonication time.  Research presented in this chapter 

aims to directly addressing these issues.  

2.2 Materials and Methods 

2.2.1 Materials 

Graphite powder, sulfuric acid, potassium permanganate, and hydrogen peroxide solution were 

purchased from Sigma-Aldrich. All chemicals were reagent grade or higher and used without 

further purification, unless otherwise noted.  

2.2.2 Graphene Oxide Synthesis  

According to the standard Hummers method, there are two reaction stages for graphite oxidation 

with KMnO4.
34 In stage 1, graphite powder and concentrated sulfuric acid (95 – 98%) is added 

into a beaker and cooled down to 0 °C with an ice bath. Potassium permanganate is then slowly 

added into the beaker while the temperature is adjusted to 30 °C. The oxidant ratio of KMnO4 / 

graphite ratio of 3:1 w/w is standard. Next, the mixture is magnetically stirred for 2 hours and 

then diluted with milli-Q (>18 MΩ) water. The solution is then stirred for another 60 min while 
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the temperature is maintained at 60 °C. At the end of stage 2, hydrogen peroxide (H2O2, 30%) 

solution is slowly added into the beaker to terminate the reaction, until gas evolution ceased, also 

to reduce the residual permanganate to soluble manganese ions. The solution/suspension is then 

passed through 220 nm filter and washed with milli-Q water until solution pH reached 5 – 6, 

removing any excess salt. After drying in a vacuum chamber for 24 h, ca. 150 mg recovered 

solid was suspended in 200 mL milli-Q water (750 mg/L) and sonicated for 2 hours, 

respectively. The sonication energy input rate was 4,355 J/h. After centrifuge, the supernatant 

containing graphene oxide was collected as a stock solution and samples were then used for 

characterizations.  

To evaluate reaction temperature, the following temperature matrix was designed: 10, 30, 

or 50 °C for stage 1 and 30, 60 or 90 °C for stage 2. All the other conditions were kept standard 

as described above. In some reports, the second stage is omitted101, hence besides the 

temperature matrix, we also studied the reaction time effect with the stage 1 being 1, 2, 3 and 4 

hours and stage 2 being 0, 30, 60, 90 and 120 min, with other conditions kept standard. For the 

oxidant ratio experiment, the ratio of 1:1, 3:1 and 5:1 were evaluated, with 3 types of reaction 

temperature set: 1) 10 °C in stage 1 and 30 °C in stage 2 (GO-1), 2) 30 °C in stage 1 and 60 °C in 

stage 2 (GO-2), and 3) 50 °C in stage 1 and 90 °C in stage 2 (GO-3). The other conditions were 

kept standard. The same set of three graphene oxide and sample names were also used in the 

characterization section.  

The graphitic oxide synthesized at the standard conditions except for the sonication 

process was used to study the effect of sonication effect, including sonication time (1 – 6 hours) 

and sonication ratio (100 – 1500 mg/L). After centrifuge, the precipitate was usually disposed. 

However, it would be beneficial if we could gain some insight of the properties of the precipitate, 
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which could help to better understand the sonication process. Thus we took samples from both 

supernatant and precipitate for XPS characterization.  

2.2.3 Characterization  

For characterization section, three types of graphene oxide were chosen as described above. 

Transmission electron microscopy was performed on Tecnai G2 Spirit from FEI Company, 

operating at 120 kV. Sample solution was diluted and bath-sonicated before being dropped on to 

the copper grid and dried before measuring. X-ray photoelectron spectroscopy (XPS) could 

quantitatively describe the percentage of carbon atoms in GO with different oxidation states. The 

amount of function groups (oxygen groups) is critical in determining the properties of GO 

product. Three measurements at different positions were performed for each sample and the 

average value was calculated. The instrument was PHI 5000 Versa Probe II. The peaks were fit 

using a mixed fit of 80% Gaussian and 20% Lorentzian characters in the PHI Multipak software. 

Peak position calibration was carried out by aligning the C 1s peak (C-C/C=C) with its reference 

position at 284.8 eV, and a Shirley background subtraction was performed. Total organic carbon 

analysis (TOC) was used to measure the concentration of graphene oxide suspension, as carbon. 

All samples were diluted to the concentration of 5 – 50 ppm before measurement. It was 

performed by TOC-L TOC analyzer from Shimadzu, with ASI-L auto sampler, using potassium 

hydrogen phthalate as a carbon standard. 0.1 M HCl was applied to the sample to facilitate 

removal inorganic carbon from the system (as CO2).  

As the concern of production, yield of the GO is important to estimate the concentration 

of the stock solution and the production cost. Here we investigated the effects of sonication time 

and initial graphitic oxide concentration on the yield of the product graphene oxide. The yield 
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was calculated based on the Total organic carbon analysis (TOC) and XPS data of the 

supernatant after centrifuge as followed:  

 

where graphitic oxide concentration was calculated by the mass added into water divided by the 

volume (200 mL throughout this work). Note that the mass of graphitic oxide was converted to 

the mass of carbon by the coefficient of C/O ratio of the graphitic oxide from XPS data. So the 

yield here was actually carbon yield, not the mass yield. 

UV-vis spectroscopy was performed on Varian Cary 50 Bio UV-Visible 

Spectrophotometer from Varian, Inc. at wavelength range of 200 – 800 nm with 0.5 nm step size. 

Raman spectrum was collected with a 514.5 nm laser excitation at 10% power focused on the 

sample using a 50x objective. The spectrum was collected from 1000 cm-1 to 2000 cm-1. The 

solution was dropped onto silicon wafer substrates and dried in a vacuum for 24 h before 

measuring. The instrument was InVia Confocal Raman microscope from Renishaw.  

Dynamic light scattering (DLS) was used to measure GO hydrodynamic diameter (173° 

backscatter, refractive index: 1.333)105 and zeta potential (Smoluchowski model)55. All samples 

were measured at 25 °C for 5 cycles and each cycle consists of 5 measurements. For critical 

coagulation concentration measurement, NaCl or MgCl2 of calculated concentration was added 

into the graphene oxide solution (10 mg/L, pH 7) and the diameter (D) changing was measured 

at 15 seconds interval for a 30 min period. The initial aggregation period was defined as the 

period from t0 to the time when the D exceeded 1.5D106. The initial aggregation rate constant (ka) 

is proportional to the initial rate of change for D107: 
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where N0 is the initial particle concentration. The attachment efficiency α was used to 

evaluate the aggregation kinetics and defined as the initial aggregation rate constant (ka) 

normalized by the rate constant under diffusion-limited conditions (ka,fast)107:  

 

So the attachment efficiency could be calculated based on the above equation and would 

be plotted with the Na+ or Mg2+ concentration as the x axis. Finally the critical coagulation 

concentration was determined by the intersection of extrapolated lines from diffusion-limited 

regime and reaction limited regime106. 

Thermogravimetric analysis (TGA) was used to investigate the overall thermal stability 

and could give information on the quantity of the functional groups. The data was collected from 

room temperature to 1000 °C with 10 °C per minute rate under nitrogen atmosphere. The 

instrument was TGA Q5000 IR from TA Instruments. Fourier transform infrared spectroscopy 

was used to identify the functional groups on the graphene oxide. The sample was dried in 

vacuum chamber and mixed with KBr for pressing into plates. The spectrum was collected from 

500 cm-1 to 4000 cm-1 with 1 cm-1 interval. The instrument was Thermo Nicolet NEXUS 470 

FTIR from Thermo Scientific. 
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2.3 Results and Discussion 

2.3.1 Reaction Temperature  

For XPS spectra in Figure 2.1, the 284.8 eV peak was assigned to the sp2 hybridized carbon 

atoms, the 286.6 eV peak was assigned to the mono-oxidized carbon (e.g. C-O, C-OH) and the 

288.3 eV peak was assigned to the deoxidized carbon atoms (e.g. C=O)108. XPS results for 

synthesis done at different temperatures (Figure 2.1 with T1 for temperature in the first stage and 

T2 for temperature in second stage), we clearly observe that higher temperature leads to more 

oxidized graphene oxide in both stages, with lower C-C/C=C percentage, as well as lower C/O 

ratio and higher C-O, C=O percentage (shown in Supporting Information). At temperature of 10 

°C and 30 °C, the least oxidized graphene oxide we synthesized had C-C/C=C percentage of 

56.33%, while at temperature of 50 °C and 90 °C, products have a C-C/C=C percentage of 

45.21%. As the oxidation reaction is endothermic process, an increase in temperature leads to 

higher extent of graphite oxidation. One thing to note here is that the temperature of the first 

stage cannot technically be higher than 60 °C, as there is an explosion danger due to the fast 

initial reaction rate. This is also the reason for cooling down the graphite-sulfuric acid mixture to 

0 °C with an ice bath before slowly adding in potassium permanganate. The yield change with 

the synthesis temperature is summarized in Figure 2.2 and shows that temperature increase also 

led to enhanced yield, which is due to the higher quantity of functional groups to facilitate the 

exfoliation process. At temperature of 10 °C and 30 °C, the yield was 33.9% and after the 

temperature increased to 50 °C and 90 °C, the yield increased to 65.4%.  

Interestingly, during the second stage of the reaction (after diluting with water), if the 

temperature was 90 °C, there would is no gas generated by the addition of H2O2, indicating that 

all the permanganate was consumed. This is also observed when the temperature of the first stage 
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was 10 °C. We suspect this has to do with the viscosity in the reaction mixture was being 

relatively high, becoming even higher as reaction progressed. Mass transport could also be a 

limiting factor –higher temperature applied did not solve the problem as water is also 

evaporating, thus leading to higher viscosities. By observation, the mixture solidified at the end 

of 3 hours when the temperature was 30 °C or higher. However, after diluting with water, the 

mass transport limits appear to be overcome and higher temperature yields faster reaction rates, 

resulting in all the permanganate to be reacted. This underscores the necessity of the second 

stage of reaction for consistent material synthesis.  
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Figure 2.1. Oxidation state change (from XPS C 1s scan) with reaction temperature, with T1 (10, 30, 50 °C) for 

stage 1 and T2 (30, 60, 90 °C) for stage 2. Reaction time is 2 hours for stage 1 and 60 min for stage 2, with oxidant 

ratio of 3:1. The sonication time is 2 hours.  
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Figure 2.2 Yield change with reaction temperature, with T1 (10, 30, 50 °C) for stage 1 and T2 (30, 60, 90 °C) for 

stage 2. Reaction time is 2 hours for stage 1 and 60 min for stage 2, with oxidant ratio of 3:1. The sonication time is 

2 hours. 

2.3.2 Reaction Time 

Figure 2.3 shows the oxidation state change, represented by the C-C/C=C percentage and the 

corresponding yield, as the function of reaction time. The C/O ratio, C-O and C=O percentage 

are summarized in Table S2.1 in the Supporting Information. Data in Figure 2.3 suggests that 

longer reaction times in stage 1 yields more oxidized graphene oxide (within 2 hours) and further 

increase in reaction times marginally increase in the oxidation state. The increase in reaction 

time of stage 2 did not have much effect on the oxidation state (less than 5% difference). 

However, in terms of the yield, longer reaction time does make a difference as shown in Figure 

2.4, increasing the yield from 26.4% to 51.1%, 35.4% to 52.9%, 41.9% to 55.6%, and 43.2% to 

55.3% for first stage reaction time of 1, 2, 3, 4 hours, respectively. Longer reaction times likely 
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reach a point whereby the major oxidant (KMnO4) is completely consumed. Data shows that at 

temperature of 30 °C in the stage 1, the oxidation of graphite reached a limit after 2 hours, which 

could be due to aforementioned transport limitations caused by high viscosity of the reaction 

mixture. Again, as viscosity was decreased (by diluting the mixture), the oxidation faster towards 

the inner layers of the graphitic oxide particles, which was the main reason for the yield 

increases, as more functional groups inside could exist to facilitate the exfoliation. Note that with 

longer t1, the effect of t2 on yield increase would drop because of the limited amount of KMnO4. 

With t1 being 1 hour, the yield kept increasing with t2 increased from 0 min to 120 min. 

However, with t1 being 3 or 4 hours, the yield would only increase till t2 reached 60 min.  
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Figure 2.3 Reaction time effect on the carbon oxidation state (from XPS C 1s scan) of graphene oxide, with t1 (1, 2, 

3, 4 hours) for stage 1 and t2 (0, 30, 60 90 120 min) for stage 2. Reaction temperature is 30 °C for stage 1 and 60 °C 

for stage 2, with oxidant ratio of 3:1. The sonication time is 2 hours.  
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Figure 2.4 Reaction time effect on the yield of graphene oxide, with t1 (1, 2, 3, 4 hours) for stage 1 and t2 (0, 30, 60 

90 120 min) for stage 2. Reaction temperature is 30 °C for stage 1 and 60 °C for stage 2, with oxidant ratio of 3:1. 

The sonication time is 2 hours. 

2.3.3 Oxidant Ratio  

Another key variable in GO syntheses reactions is the oxidant ratio. Figure 2.5 shows the 

oxidation state, represented by C-C/C=C percentage, and yield of the product graphene oxide 

with oxidant ratio of 1:1, 3:1 and 5:1. Note that in the case of 1:1 ratio, the C-C/C=C ratio of the 

graphene oxide was below 55%, indicating oxidation occurred; however, yields were below 10% 

even with the highest temperature set (GO-3), as shown in Figure 2.6.  This is due to insufficient 

functional group inside the graphitic oxide particles for exfoliation, even though the surface of 

the particles is well oxidized. This result indicates that the oxidant ratio has to be above a certain 

level to achieve enough oxidation of graphite/graphitic oxide to facilitate exfoliation of graphene 

oxide from the bulk into solution.  
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Figure 2.5 Oxidation state change (from XPS C1s scan) with oxidant ratio (1:1, 3:1, 5:1). The other reaction 

conditions are: 30 °C in stage 1 for 2 hours, 60 °C in stage 2 for 60 min and sonication for 2 hours.  
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Figure 2.6 Yield change with oxidant ratio (1:1, 3:1, 5:1). The other reaction conditions are: 30 °C in stage 1 for 2 

hours, 60 °C in stage 2 for 60 min and sonication for 2 hours. 
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2.3.4 Sonication 

As a last step in the GO synthesis procedure, probe sonication is employed to enhance 

exfoliation and GO separation109. As a process with relatively large amount of energy input, 

sonication likely changes the oxidation state of the graphitic oxide and GO products. Here, the 

effects of sonication time and ratio (concentration of the initial graphitic oxide) on the oxidation 

state and yield are explored and described. 

Figure 2.7 shows the oxidation state of carbon before and after 2 hours sonication 

followed by centrifuge process (described above), for both the supernatant and the precipitate. 

The first thing to notice is that after sonication, the graphitic oxide was slightly reduced, i.e. the 

C-C/C=C ratio increased. During the oxidation reaction, the outer layers were oxidized first and 

the functional groups form on the surface of the graphite particles. The functional groups 

effectively open or ‘crack’ graphite layers, increasing the distance between layers, thus allowing 

the oxidant to react with more carbon atoms oxidation propagated into the solid, the oxidant 

(KMnO4) transport would then limit the reaction rate.110, 111 XPS penetration depth is usually less 

than 100 nm, which is much smaller than the dimension of the graphitic oxide particles, thus 

XPS data collected (from the precipitate) is mainly from the surface layers of the graphitic oxide 

particle, instead of an average of the entire particle. During the sonication process, the inner 

layers, which were less oxidized, started to be exposed and exfoliated. Based on these reasons, 

after the sonication, the less oxidized graphene oxide was exposed to the surface and the 

measured overall oxidation state of the graphitic oxide and product graphene oxide effectively 

decreases. The difference of oxidation state between the supernatant and precipitate also supports 

this hypothesis, whereby the materials in the supernatant are more oxidized than the precipitate, 
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suggesting that the exfoliated (outer) layers have higher overall oxidation state (carbon) than the 

layers remaining in the bulk. 
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Figure 2.7 GO solution before and after 2 h sonication, supernatant vs. precipitate. The reaction conditions are: 30 

°C in stage 1 for 2 hours, 60 °C in stage 2 for 60 min, oxidant ratio of 3:1 and sonication for 2 hours. 

We further increased the sonication time to 6 hours and monitored the oxidation state 

change of the graphitic oxide and the corresponding graphene oxide product after centrifuge at 

each time interval. The oxidation state change of graphitic oxide and produced graphene oxide is 

shown in Figure 2.8. It was found that the oxidation state of graphitic oxide in the suspension 

showed little change within 4 hours with regard to C-C/C=C ratio (from 53% to 56%), which 

was consistent with the data in Figure 2.7 and discussion above. The oxidation state of the 

product graphene oxide after centrifuge also showed the same trend, with C-C/C=C percentage 

increased from 47% to 52%. Liscio et al and Pan et al independently reported the hypothesis that 

during sonication process, C-C bond breakage could occur, leading to decreased ratio of C-
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C/C=C in the XPS spectrum110, 112. Further, due to the high energy input from the sonication, 

localized environments could be of high temperature and pressure, which could lead to both 

formation of oxygen groups (similar to oxidation of graphite) and deformation of oxygen group 

(similar to thermal reduction), according to the research of Qi et al113. Thus there are likely 

several mechanisms working together to change the average oxidation state of the graphene 

oxide product: 1) inner layers with lower oxidation state are exfoliated, leading to lower average 

oxidation state; 2) oxygen functional group formation and deformation due to the energy input, 

and with undetermined effect on the oxidation state; and 3) C-C bond breakage led to lower ratio 

of C-C/C=C and higher oxidation state. This could explain the platform after 4 hours since it 

could reach steady state in terms of average oxidation state.  

0 1 2 3 4 5 6
40

42

44

46

48

50

52

54

56

58

60

 

 

C
-C

/C
=

C
%

Time (h)

 Graphitic oxide

 Graphene oxide

 

Figure 2.8 Oxidation state change of the graphitic oxide and corresponding graphene oxide with sonication time 

ranging from 0 to 6 hours. The other reaction conditions are: 30 °C in stage 1 for 2 hours, 60 °C in stage 2 for 60 min 

and oxidant ratio of 3:1. 
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Figure 2.9 shows the effect of sonication time on the yield, which increased rapidly in the 

first 2 – 3 hours then slows, which was consistent with the report from Botas et al, even though 

they did not try to characterize the oxidation state of the product graphene oxide114. After 4 

hours, the yield could reach over 60% then reaches plateau. Also note that without sonication, 

the centrifuge of graphitic oxide still yields around 5% of graphene oxide in the supernatant.  
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Figure 2.9 Sonication yield change with sonication time ranging from 0 to 6 hours. The other reaction conditions 

are: 30 °C in stage 1 for 2 hours, 60 °C in stage 2 for 60 min and oxidant ratio of 3:1.  

The concentration of graphitic oxide in the sonication suspension will affect the average 

energy put onto each particle. Figure 2.10 shows yield and oxidation state change with different 

initial graphitic oxide concentration (total mass mg/L), after 2 hours sonication. As the initial 

concentration increased, the yield of the GO product decreased, due to reduced energy input per 

graphitic oxide particle. At lower concentrations (e.g. 100 mg/L), yields reached as high as 90% 
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while yields decreased to below 50% when sonicating at higher concentration (e.g. 1500 mg/L). 

Figure 2.10 also shows that as a higher percentage of the graphitic oxide was exfoliated, the 

overall oxidation state of the product decreased. Based on these results, it is important to find the 

balance between improving yield and achieving high-oxidized graphene oxide. Another aspect to 

consider is that even though high yields can be achieved at low concentration of graphitic oxide, 

the corresponding concentration of graphene oxide is low, which could be a concern for some 

synthesis routes and related applications. 
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Figure 2.10 Initial graphitic oxide concentration (total mass) effect on yield and oxidation state. The graphitic oxide 

is synthesized with reaction conditions as: 30 °C in stage 1 for 2 hours, 60 °C in stage 2 for 60 min, oxidant ratio of 

3:1 and sonication for 2 hours.  
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2.3.5 TEM Imaging 

Figure 2.11 showed the TEM images of synthesized graphene oxide (GO-2 via standard 

Hummers method). We did not observe significant difference via electron microscopy between 

graphene oxide samples synthesized under different conditions.  

  

Figure 2.11 TEM images of graphene oxide synthesized with conditions as: 30 °C in stage 1 for 2 hours, 60 °C in 

stage 2 for 60 min, oxidant ratio 3:1 and sonication for 2 hours. 

2.3.6 UV-visible Spectroscopy and Band Gap 

UV-vis spectroscopy is a relatively fast and efficient way to evaluate graphene oxide structural 

information as well as relative concentration. Figure 2.12 shows the UV-vis spectra of three 

types of GO synthesized at different temperatures (as GO-1, GO-2 and GO-3 as detailed in the 

Experimental section). The characteristic peak at ~230 nm corresponds to π-π conjugation, which 

represents the sp2 carbon domains in the graphene oxide structure115. The shoulder peak at ~ 310 

nm is assigned to n-π excitation, which represents the C-O and C=O groups on the graphene 

oxide structure116. For these materials, a blue shift is also observed as the synthesis temperature 

increased, with 240 nm for GO-1, 234 nm for GO-2 and 230 nm for GO-3, indicating that 
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graphene oxide is more oxidized, with a higher band gap115. Based on the UV-vis spectra, we 

were able to calculate the band gap of synthesized graphene oxide materials via Tauc’s 

expression117, 118, 119: 

 

where ω is the angular frequency which is taken as 2πc/λ and ε is the adsorption intensity. E is 

the optical band gap. By plotting ε1/2/λ vs. h/λ, the extrapolated intercept with the h/ λ axis would 

give band gap energy value (E/2πc). The calculated band gap values are summarized in Table 

2.1. As temperature increased, the band gap also increased with the higher oxidation state and 

quantity of functional groups, from 0.36 eV for GO-1 to 1.92 eV for GO-3. This tunable property 

could also contribute to electronic and photo-based applications of graphene oxide115, 119, 120. 
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Figure 2.13 UV-vis spectra of graphene oxide. The GO is synthesized at temperature of 10 °C and 30 °C (GO-1), 30 

°C and 60 °C (GO-2) and 50 °C and 90 °C (GO-3). Other reaction conditions are: reaction time of 2 hours for stage 

1 and 60 min for stage 2, oxidant ratio of 3:1 and sonication for 2 hours.  
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Table 2.1 Optical band gap of graphene oxide with different oxidation state 

 Optical band gap / eV 

GO-1 0.36 

GO-2 1.04 

GO-3 1.92 

 

2.3.7 Raman Spectroscopy 
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Figure 2.14 Raman spectra of GO. The GO is synthesized at temperature of 10 °C and 30 °C (GO-1), 30 °C and 60 

°C (GO-2) and 50 °C and 90 °C (GO-3). Other reaction conditions are: reaction time of 2 hours for stage 1 and 60 

min for stage 2, oxidant ratio of 3:1 and sonication for 2 hours. 
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Raman spectroscopy is widely used to quantify the defects and average size of the sp2 domain for 

carbon materials which provide insight into the structure and fundamental properties, as well as 

providing reference for applications31. Figure 2.14 shows Raman spectra for three types of 

graphene oxide synthesized at different temperatures as GO-1, GO-2 and GO-3 stated in 

Experimental section, in which the D band at 1355 cm-1 is due to the breathing modes of 

hexagon rings and requires defect for the activation, thus representing a defect structure (sp3 

carbon)121-124, while The G band at 1603 cm-1 represents the graphene base structure (sp2 

carbon), which arises from the first order scattering of E2g phonons of the graphitic carbon 

atoms31. The ratio of D band over G band is a relative measurement of the average size of the sp2 

network31, This method has been widely used according to Tuinstra and Koenig, in which they 

found the ratio of D band intensity over G band intensity increased with more defects (smaller 

average size of the sp2 domain)121. However, this relationship can fail for high defect densities122. 

In a certain regime, higher D/G ratio stands for smaller sp2 network but according to research by 

Cancado et al., higher D/G ratio could represent larger sp2 network in the GO structure itself125. 

By analyzing the G peak width (measured by the full width at half-maximum, FWHM), we can 

distinguish between the two stages, as it would be significantly larger in stage 2 where the D/G 

ratio is decreasing while more defects exist125. According to their research, ID/IG is also affected 

by the laser energy , thus we used same laser wavelength (514 nm) and intensity for all 

experiment, thus the change in ID/IG should be only affected by the relative quantity of the 

disordered structure and graphene structure125. Also note that this analysis only applies to defects 

which could activate the D peak. It has been reported that a perfect zigzag GO edge is not 

included as defect measured by Raman spectroscopy126, 127. The Raman spectra of the 3 types of 

graphene oxide were shown in Figure 2.17 with the G peak normalized to the same level. It 
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shows that the oxidized GO has lower D peak intensity, which suggest that higher disordered 

structure. Also the D/G ratio and FWHM for G and D peaks were summarized in Table 2.2. The 

data confirmed that more oxidized GO with broader peaks (both D peak and G peak), which had 

more disordered structure, would have lower D/G ratio, being 0.983 for GO-1, 0.843 for GO-2 

and 0.687 for GO-3.  

Table 2.2 Raman spectra data for 3 types of GO 

 G FWHM / cm-1 D FWHM / cm-1 ID/IG 

GO-1 68.84 78.49 0.983 

GO-2 71.35 91.85 0.843 

GO-3 76.18 104.94 0.687 

 

2.3.8 Thermogravimetric Analysis (TGA) 

TGA quantitatively measures total mass loss of a material as a function of temperature. For GO 

materials evaluated, TGA curves of the three types of graphene oxide synthesized at different 

temperatures (as GO-1, GO-2 and GO-3 stated in Experimental section) were shown in Figure 

2.15. As temperature increases, associated water first evaporates at around 150 °C. Around 220 

°C, we observe another major mass loss which was caused by the pyrolysis of the oxygen 

functional groups, generating CO and CO2 as observed by others128, 129. The drop (loss) in more 

oxidized graphene oxide was more significant due to the higher quantity of functional groups. 

The weight continues to decrease and at the end of thermal degradation, there was 43.6% weight 

remaining in GO-1, 35.8% in GO-2 and 31.4% in GO-3. This also suggested more oxidized 



34 

 

graphene oxide would be more vulnerable to thermal degradation, due to lower chemical stability 

of the functional groups compared to graphene structures130.   

0 200 400 600 800 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 
w

e
ig

h
t%

T (C)

 10 30

 30 60

 50 90

 

Figure 2.15 TGA result of GO. The GO is synthesized at temperature of 10 °C and 30 °C (GO-1), 30 °C and 60 °C 

(GO-2) and 50 °C and 90 °C (GO-3). Other reaction conditions are: reaction time of 2 hours for stage 1 and 60 min 

for stage 2, oxidant ratio of 3:1 and sonication for 2 hours. 

2.3.9 Fourier Transform Infrared Spectroscopy 

Figure 2.16 showed the FTIR spectra of the three types of graphene oxide synthesized at 

different temperatures (as GO-1, GO-2 and GO-3 stated in Experimental section). The broad 

peak at 3200 cm-1 indicated the existence of –OH group131. The peak at 1740 cm-1 is assigned to 

the C=O stretching vibration and its intensity increased with the synthesis temperature, which is 

consistent with the XPS data31, 132, 133. The peak at 1620 cm-1 is attributed to the aromatic C=C 

vibrations in the skeleton of the graphene structure31, 131. The peak at 1420 cm-1 corresponds to 
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the O-H deformation vibration31. The C-O stretching vibration peak found at 1220 cm-1 for 

epoxy group and 1050 cm-1 for alkoxy group and both of their intensities increased with the 

synthesis temperature31, 131. The peak at 850 cm-1 represents the C-H vibration and this was 

contributed to a portion of the disordered structure characterized by Raman spectroscopy31. The 

result was consistent with our other characterization, showing that GO-3 had the most functional 

groups while GO-1 had the least, but they all have the same set of functional groups.  
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Figure 2.16 FTIR spectra of three types of graphene oxide. The GO is synthesized at temperature of 10 °C and 30 °C 

(GO-1), 30 °C and 60 °C (GO-2) and 50 °C and 90 °C (GO-3). Other reaction conditions are: reaction time of 2 

hours for stage 1 and 60 min for stage 2, oxidant ratio of 3:1 and sonication for 2 hours. 

2.3.10 Hydrodynamic Size Distribution, Zeta Potential, and Colloidal Stability 

For aqueous applications, such as adsorption and catalysis, the interaction between graphene 

oxide particles and other components in the environment is critical. The hydrodynamic size and 
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zeta potential are key properties regarding aqueous stability, transport, and reactivity of the 

material. Due to oxygen functionality, including –COOH groups, on the surface and edges, 

graphene oxide is net negatively charged and the dissociation of –COOH would be affected by 

pH. Table 2.3 showed the hydrodynamic diameter and zeta potential at pH 7 for three types of 

GO synthesized at different temperatures (as GO-1, GO-2 and GO-3 stated in Experimental 

section) and Figure 2.17 showed the pH effect on the zeta potential. As pH is increased from 2 to 

9, the zeta potential changed from -19.7 mV to -41.04 mV for GO-1, -24.43 mV to -47.97 mV 

for GO-2, and -28.45 mV to -55.13 mV for GO-3, respectively. Also, at same pH, relatively 

more oxidized (higher degree) graphene oxide has a more negative zeta potential, due to higher 

quantity of functional groups per coupon.  

Table 2.3 Hydrodynamic diameter and zeta potential of GO at pH 7 

 Hydrodynamic diameter / nm Zeta potential / mV 

GO-1 184.70 ± 8.17 -38.50 ± 0.81 

GO-2 176.87 ± 7.80 -44.73 ± 0.97 

GO-3 156.07 ± 6.10 -52.80 ± 1.13 
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Figure 2.17 Zeta potential of GO under different pH levels. The GO is synthesized at temperature of 10 °C and 30 

°C (GO-1), 30 °C and 60 °C (GO-2) and 50 °C and 90 °C (GO-3). Other reaction conditions are: reaction time of 2 

hours for stage 1 and 60 min for stage 2, oxidant ratio of 3:1 and sonication for 2 hours. 

As a promising material with a wide range of potential applications in water, the aqueous 

stability regimes of GO is crucial to understand. There have been studies regarding the colloidal 

stability of GO over the past years106, 134-138. However, this critical property has not been 

correlated with the surface chemistry of the material. Here we chose three types of GO 

synthesized at different temperatures (as GO-1, GO-2 and GO-3 stated in Experimental section) 

to explore the colloidal stability, as evaluated by critical coagulation concentration (CCC) values 

as a function of Na+ and Mg2+ catiosn, which are commonly used in evaluating the stability and 

coagulation behavior of nano-materials. Figure 2.18 and Figure 2.19 shows the attachment 

efficiency of graphene oxide with Na+ and Mg2+ and the extrapolation lines from the diffusion 
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limited regime and reaction limited regimes. The CCC values for three types of graphene oxide 

were summarized in Table 2.4; as the quantity of functional group increased, the CCC value for 

both Na+ and Mg2+ increased, being 195.0 mM and 10.58 mM for GO-1, 237.4 mM and 13.33 

mM for GO-2, and 306.3 mM and 18.64 mM for GO-3.   
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Figure 2.18 Critical coagulation of GO with Na+. The GO is synthesized at temperature of 10 °C and 30 °C (GO-1), 

30 °C and 60 °C (GO-2) and 50 °C and 90 °C (GO-3). Other reaction conditions are: reaction time of 2 hours for 

stage 1 and 60 min for stage 2, oxidant ratio of 3:1 and sonication for 2 hours. 
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Figure 2.19 Critical coagulation of GO with Mg2+. The GO is synthesized at temperature of 10 °C and 30 °C (GO-

1), 30 °C and 60 °C (GO-2) and 50 °C and 90 °C (GO-3). Other reaction conditions are: reaction time of 2 hours for 

stage 1 and 60 min for stage 2, oxidant ratio of 3:1 and sonication for 2 hours. 

Table 2.4 Critical coagulation concentration of GO with Na+ and Mg2+ 

 Na+ / mM Mg2+ / mM 

GO-1 202.9 10.6 

GO-2 237.4 13.6 

GO-3 306.3 19.0 
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2.4 Conclusion  
In this chapter, key factors in graphene oxide synthesis process were explored and described, 

including temperature in two stages, reaction time, oxidant ratio, sonication ratio, and sonication 

time. It was found that as temperature increased, the relative oxidation state and yield also 

increased. Reaction time and oxidant ratio increases the oxidation state but overall they have 

more impact on the total (final) yield of graphene oxide. The oxidant ratio also has significant 

impact on the yield. Sonication can also change the oxidation rate and yield as the last step in the 

synthesis process. Longer sonication time led to less oxidized graphene oxide but higher yields. 

Characterization methods were established and describe different properties of graphene oxides, 

including hydrodynamic size, zeta potential, colloidal stability, structural disorder, and functional 

groups types and relative amounts. 
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Chapter 2: Supporting Information 
Table S2.1 XPS result for temperature effect on synthesized graphene oxide, other conditions are: reaction 

time of 2 hours in stage 1 and 60 min in stage 2, oxidant ratio of 3:1 and sonication for 2 hours.  

 T1 / °C 

T2 / °C 

 

30 60 90 

C-C 

10 56.33 54.56 49.02 

30 55.87 50.11 46.55 

50 52.66 47.32 45.21 

C-O 

10 36.26 36.88 40.95 

30 35.79 40.33 42.56 

50 38.57 41.98 43.66 

C=O 

10 7.41 8.56 10.03 

30 8.34 9.56 10.89 

50 8.77 10.7 11.13 

C/O 

10 3.01 2.75 2.64 

30 2.86 2.68 2.59 

50 2.73 2.62 2.34 
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Table S2.2. XPS result for reaction time effect on synthesized graphene oxide, other conditions are: 30 °C 

in stage 1 and 60 °C in stage 2, oxidant ratio of 3:1 and sonication for 2 hours.  

 t2 / min 

t1 / h 

 

1 2 3 4 

C-C 

0 53.82 51.63 50.84 50.4 

30 53.38 50.55 49.98 49.85 

60 52.87 50.11 49.43 49.33 

90 52.46 49.88 49.53 49.03 

120 51.8 49.74 49.42 49.05 

C-O 

0 36.43 39.02 40.4 40.98 

30 37.5 39.98 40.8 41.38 

60 38.12 40.33 41.25 41.36 

90 38.65 40.69 41.47 41.53 

120 38.96 40.8 41.35 41.37 

C=O 

0 9.75 9.35 8.76 8.62 

30 9.12 9.47 9.22 8.77 

60 9.01 9.56 9.32 9.31 

90 8.89 9.43 9 9.44 

120 9.24 9.46 9.23 9.58 

C/O 

0 2.9 2.74 2.68 2.6 

30 2.83 2.65 2.58 2.55 

60 2.75 2.68 2.46 2.49 

90 2.68 2.63 2.48 2.38 

120 2.72 2.53 2.45 2.43 
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Table S2.3. XPS result for oxidant ratio effect on synthesized graphene oxide, other conditions are: 30 °C 

in stage 1 for 2 hours, 60 °C in stage 2 for 60 min, and sonication for 2 hours.  

 

Ratio GO-1 GO-2 GO-3 

C-C 

1 57.38 53.35 47.45 

3 56.33 50.11 45.21 

5 55.42 48.33 42.99 

C-O 

1 35.24 38.62 41.42 

3 36.26 40.33 43.66 

5 37.5 41.5 45.87 

C=O 

1 7.38 8.03 11.13 

3 7.41 9.56 11.13 

5 7.08 10.17 11.14 

C/O 

1 3.26 2.93 2.71 

3 3.01 2.68 2.34 

5 2.79 2.49 2.25 
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Chapter 3: Photoenhanced Transformation 

of Graphene Oxide by Free Chlorine: 

Reaction Kinetics and Product 

Characterization 

Abstract  
Herein, reactions of graphene oxide (GO) with free chlorine are described under both dark and 

ultraviolet (UV) irradiated conditions. For all cases investigated, GO reacts with free chlorine 

and reaction rates are considerably enhanced under UV irradiation. Relative reaction kinetics are 

observed to be second order overall, while being first order to graphene oxide and pseudo first 

order to the initial chlorine concentration. In addition to light, rate constants are affected by pH, 

dissolved oxygen, and the size of initial graphene oxide coupon. Product characterization using 

UV-vis spectroscopy, TEM, FTIR, TOC, Raman spectroscopy, mass spectrometry, and XPS 

indicate graphene oxide is significantly transformed, being further oxidized - including partial 

mineralization.  Further, fractions of the product(s) are identified to eventually stop reacting with 

free chlorine, suggesting a final, (relatively) recalcitrant reaction product. For all reactions, 

carbon mass conservation between the gas (as CO2) and liquid (as GO products) phases is 

confirmed.  Observed reactivity has direct implications for water treatment technologies, such as 

membrane separation processes, which utilize graphene oxide-based materials and free chlorine 

and/or UV, in addition to other aqueous graphene oxide based technologies. 

3.1 Introduction  
Chlorination is commonly applied technology for water treatment due to low cost, wide 

availability, and high efficacy.139, 140 In particular, chlorine is a globally applied disinfectant in its 
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molecular (Cl2) form or as hypochlorite salts (NaClO).141 In water, hypochlorite salts undergo 

hydrolysis to generate free chlorine, which consists of aqueous molecular chlorine (Cl2), 

hypochlorite ion (ClO-) and hypochlorous acid (HOCl), depending on solution pH.142 Also after 

GO is released into the environment, sunlight irradiation may also cause GO to transform. With 

the presence of free chlorine and sunlight irradiation, ∙Cl and ∙OH are the primary radical 

products, which can subsequently lead to the formation of other oxygen and/or chlorine based 

radicals, including ∙O- and ClO∙, among others.143 As demonstrated by Kim et al., such radicals 

have been hypothesized to attack and transform the graphene basal plane, resulting in sp3 carbon 

with varying functionality.144 Additionally, there have been reports regarding radical reactions 

with graphene and graphene oxide under UV irradiation. Zhao et al reported more defect on the 

GO plane after UV irradiation, indicated by higher D/G ratio in Raman spectra.145 Ma et al. 

applied UV irradiation/H2O2 to GO and found that the characteristic peak of GO in UV-vis 

spectra decreased and the peak (absorbance) position was blue shifted by 5 nm (230 nm to 225 

nm), indicating that GO was partially oxidized.146 Under relatively harsher conditions (0.065 

W/cm2 for over 180 h), graphene oxide has been observed to undergo mineralization (i.e. CO2 

product), as reported by Hou.147, 148 Further, Li et al. demonstrated a reaction of GO with free 

chlorine and chloramine (at 10 mg/L free chlorine), under dark conditions, resulting in a partial 

reaction.149 Wu et al has demonstrated that fullerene, another carbonaceous material, could be 

transformed in the presence of free chlorine, both in the dark and under UV irradiation.150-152 It is 

reasonable to assume GO could be transformed by free chlorine under light irradiation and Du et 

al have studied the GO transformation in the presence of low concentration of free chlorine 

under light irradiation and characterized the product.153 However, the reaction kinetics and 

factors affecting the reaction were not fully explored, such as pH, radicals, coupon size, 
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dissolved oxygen. Also CO2, as the possible product, was not identified. In this work, graphene 

oxide reactivity with free chlorine under both dark and UV irradiation is quantitatively described. 

High free chlorine concentration was used to better clarify the reaction kinetics and mechanism 

between GO and free chlorine under light irradiation. Reaction kinetics are described as a 

function of pH and initial GO coupon size, with involvement of radicals, in addition to the 

presence of UV light with resulting products characterized via a suite of complimentary spectral 

analyses and carbon mass balance(s). In the presence of high free chlorine under simulated 

sunlight irradiation we also observe GO to be partially mineralized to CO2 with good mass 

balance. Smaller molecules are detected as reaction product by mass spectrometry and filtration 

method. 

3.2 Materials and Methods 

3.2.1 Materials  

Graphite powder, sulfuric acid, potassium permanganate, and hydrogen peroxide solution were 

purchased from Sigma-Aldrich. Sodium hypochlorite solution (15% in Cl) was also purchased 

from Sigma-Aldrich as stock solution. All chemicals were reagent grade or higher and used 

without further purification, unless otherwise noted.  

3.2.2 Synthesis of Graphene Oxide 

A modified Hummers method was used to produce graphene oxide. First 2 g graphite flakes and 

50 mL concentrated sulfuric acid were added into a beaker and kept at 0 °C using an ice bath. 

Then 6 g potassium permanganate were slowly added into the beaker and the temperature was 

increased to room temperature. After stirring for 2 h, the mixture was diluted with 350 mL water 

and the temperature was increased to 60 °C, and the mixture was stirred for 30 min. Then the 

mixture was cooled down to room temperature. Hydrogen peroxide (30%) was slowly added 
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until the gas evolution ceased to reduce the residual permanganate to soluble manganese ions. 

The mixture was filtered and washed with milli-Q water. After drying in a vacuum chamber at 

room temperature for 24 h, recovered solid of 300 mg was dissolved into 300 mL milli-Q water 

and sonicated for 2 h. After centrifuge, the supernatant containing the graphene oxide was 

collected as a stock solution. The concentration of the stock solution was about 500 mg/L, 

determined by UV-vis spectrometer at 230 nm and Total Organic Carbon analysis (TOC).  

3.2.3 Graphene Oxide Reaction with Free Chlorine under Light Irradiation 

Graphene oxide (reported here as 50 mg/L as total organic carbon; the concentration of GO 

throughout this work is all referred to via total organic carbon) with different concentrations of 

free chlorine (as NaClO) for varied pH levels was added into a 100 mL customized quartz 

reactors (Technical Glass Products) and placed in a custom-built, bench-scale photo-reactor with 

UVA lamps (centered at 351 nm, 2000 µW/cm-2, similar to sunlight irradiation intensity). A 

phosphate buffer solution (HNO3/NaH2PO4/ Na2HPO4/NaOH 10 mM) was used to control the 

pH. Sample aliquots of 2 mL were withdrawn at appropriate time intervals for further 

characterization.  

3.2.4 Product Characterization 

During the reaction, samples were withdrawn for UV-visible spectroscopy measurement for 

kinetic study. Upon reaction termination, the reaction solution was washed in a stir cell using a 

membrane with MWCO of 1,000 Da for 5 times, each time with 200 mL of MilliQ water, to 

remove any complicating salts, reactants, buffer and possible small products. Samples with high 

molecular weight (remaining as particles) were characterized by Fourier transform infrared 

spectroscopy (FTIR), Transmission electron microscopy (TEM), Raman spectroscopy and X-ray 

photoelectron spectroscopy (XPS). For the product with small molecular weight, Matrix-Assisted 
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Laser Desorption/Ionization (MALDI) Time-of-Flight Mass Spectrometry was used to detect 

them using the samples right after reaction is completed and without washing. The CO2 product 

was detected and measured by Gas Chromatography after sampling from the gas phase during 

the reaction in closed system. Gas samples for GC and liquid sample for TOC analysis were 

taken at certain time interval with airtight syringes and needles. For coupon size dependence 

experiments, GO stock solutions were filtered using polyethersulfone membrane syringe filters 

(450 nm and 220 nm) to obtain GO with smaller sizes (than the parent stock solution). To 

explore potential ∙OH radical involvement, tert-butanol (200 mM) was used as the scavenger.154 

In the anaerobic reactions, sealed quartz reactor with GO solution (50 mg/L) and phosphate 

buffer (10 mM) was purged using N2 for 1 hour. Then hypochlorite solution as source of free 

chlorine was injected with airtight syringe and needle.  

3.2.5 Chlorine Concentration Measurement 

Based on the reported method water treatment, we used DPD colorimetric method to determine 

the free chlorine concentration.155 The detail of the method is described in the Supporting 

Information.  

3.2.6 Carbon Dioxide Quantification  

For gas phase CO2 quantification, we also took the dissolved CO2 in the solution into 

consideration. It was assumed that the pressure in the bottle remained 1 atm over the 

course of the reaction, which results in ±3% error due to dissolved CO2 generation. In the 

solution, the dissolved CO2 exists in the following chemical equilibriums92: 

 

 



49 

 

As it was considered that, the Henry’s law constant for CO2 at room temperature is 0.034 

mol/(L*atm)92 for an open system with a constant pressure. By assuming the CO2 in gas 

phase and liquid phase reached equilibrium, the dissolved CO2 was calculated based on 

the gas phase CO2 concentration as following: 

 
The total CO2 generated from the reaction of GO with free chlorine under UV irradiation 

was calculated as the summation of dissolved CO2 in the aqueous phase and the gas phase 

data, with units of mg carbon/L. 

3.2.7 Instrumentation  

Graphene oxide and products after reaction with free chlorine under light irradiation were 

characterized with UV-vis spectroscopy, transmission electron microscope (TEM), total organic 

carbon analysis (TOC), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, 

X-ray Photoelectron Spectroscopy (XPS) and Matrix-Assisted Laser Desorption/Ionization 

(MALDI) Time-of-Flight Mass Spectrometry. The CO2 concentration in the gas phase was 

measured by gas chromatography (GC). The detailed methods and instrument types were 

described in Supporting Information.  
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3.3 Results and Discussion  

3.3.1 Reaction Kinetics 

 

Figure 3.1 UV-vis spectra and photo of graphene oxide in UV/free chlorine system. 1A(1), 1B: GO (50 mg/L) with 

200 mg/L free chlorine at pH 5 under UV irradiation (2000 µW/cm2) for 2 h. 1A(2), 1C: GO (50 mg/L) with 200 

mg/L free chlorine in dark. 1A(3), 1D: GO (50 mg/L) under UV irradiation (2000 µW/cm2). 

A graphene oxide suspension reacting with free chorine under UV irradiation (351 nm, 2000 

µW/cm-2) can be simply observed via solution color change (Figure 3.1A, samples 1), consistent 

with Du’s report. 153 Corresponding UV-vis spectra change over time is shown in Figure 3.1B. 

According to Huang et al.,116 the 230 nm peak in graphene oxide UV-vis spectrum corresponds 

to π-π* transitions, which is also observed for other nano-scale sp2 carbon clusters.154 In contrast 
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to the report by Li et al149, where the UV-vis spectra did not significantly change, the loss of the 

230 nm peak indicates sp2 π carbon environment(s) are significantly altered, which is consistent 

with our previous research demonstrating fullerene oxidation in water154 and others describing 

graphene oxide photo-transformation.145 For control experiments without UV light (dark), 

absorbance response did not significantly change over time (Figure 3.1C), even with elevated 

concentrations of free chlorine (100 – 200 mg/L). We hypothesize that chlorine radicals 

generated by UV irradiation143 and/or photo-excited GO148 facilitate observed reactivity, 

whereby photoexcited GO is more vulnerable to the radical attack.  Similar enhanced reactivity 

was observed for fullerene clusters under in the presence of free chlorine and UV irradiation.143 

In other control experiments, using the same intensity of UV light without free chlorine, the 

absorbance curve actually increases (Figure 3.1D), turning relatively darker, which is consistent 

with other researchers, suggesting graphene oxide (photo)reduction.145, 148, 156 For these reactions, 

peak shifts were also observed (Figure 3.2) - a blue-shift was observed in GO-UV-free chlorine 

system while a red shift was observed in the control GO-UV system, consistent with the results 

of Yang et al157 and Chen et al,158 indicating that GO was oxidized in light-free chlorine system, 

as the material’s band gap increased.  
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Figure 3.2 Peak position change in UV-vis spectra of GO with reaction time for 50 mg/L GO under UV irradiation 

(2000 µW/cm2) for 2 hours at pH 5, with/without 200 mg/L free chlorine. 

Peak UV-vis absorbance spectra around 230 nm was employed to monitor bulk, relative 

kinetics under varied concentrations of free chlorine (Figure 3.3A)149, 159. At given free chlorine 

concentrations, reactions are 1st order and can be described by the reaction rate (i.e. relative loss 

of sp2 carbon) as: 

 
The k’ for each free chlorine concentration was determined to be proportional to the 

initial free chlorine concentration (Figure 3.3B), and thus k’ can be expressed as:  

 
The overall relative reaction rate is expressed as:  
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This expression is 1st order with respect to GO and pseudo 1st order with respect to free chlorine 

(initial concentration). Note that in Figure 3A, at a given chlorine concentration, the reaction 

followed the stated kinetics until the free chlorine was consumed, whereby the absorbance 

stopped decreasing.  
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Figure 3.3 Kinetics of GO in UV/free chlorine system. 3.3A: GO ratio remained in the solution, which was taken 

from the absorbance of 230 nm in UV-vis spectra, under different free chlorine concentrations (mg/L) at pH 6 with 

UV irradiation (2000 µW/cm2). 3.3B: pseudo first order rate constants of GO with different free chlorine 

concentrations at different pH levels under UV irradiation (2000 µW/cm2).  

Rate constants (k) are observed to be sensitive to solution pH, with faster reactions 

occurring at lower pH (Figure 3.4).  This trend is likely due (at least partially) to the different 

reaction mechanisms of radical generation from HOCl under different pH conditions, as:143  
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To explore the role of potential radicals, tert-butanol was employed as a scavenger to 

quench ∙OH radicals.160 Reaction rate constants in the presence of tert-butanol are shown in 

Figure 3.4, which decrease by over 60%, suggesting significant radical involvement. The 

difference of reaction rate constants between low pH and high pH after quenching with tert-

butanol was not much, which is as expected since the reaction after quenching should only be the 

result of chlorine radical and other oxygen containing radicals. Note that the at higher pH, the 

HOCl produced negatively charged oxygen radical, which might be more difficult to react with 

negatively charged graphene oxide, and this contributed to the lower reaction rate under higher 

pH. In the control experiment with just tert-butanol and GO under light irradiation, GO was not 

significantly transformed based on the result of UV-vis spectra and XPS, suggesting that tert-

butanol did not play a role in the transformation of GO other than quenching the radicals. 

Since the reaction is between carbon species and chlorine, it is also important to include 

the scavenging effect of carbonate and chloride ions on the hydroxyl radical, as reported by Liao 

et al. 161 According to their research, at higher pH, chloride ions would have less scavenging 

effect but carbonate would have higher scavenging effect on hydroxyl radical. Since the chloride 

concentration used in this study was much lower than need to have effect on the hydroxyl 

radical, carbonate ion scavenging could be one of the reasons to lead to lower reaction rate at 

higher pH.  

For gas-purged systems (i.e. low oxygen), rate constants were calculated and shown in 

Figure 3.4. Here rate constants decreased by ca. 30%, which indicated oxygen also plays a key 

role in the observed conversion of graphene oxide. 
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Figure 3.4 Reaction rate constants of GO reaction in UV/free chlorine system under different pH and the effect of 

dissolved oxygen and quenching agent t-BuOH (200 mM) 

In addition to the aforementioned reaction variables, reaction kinetics are also 

significantly affected by the initial GO coupon size. According to dynamic light scattering (DLS) 

data, the average hydrodynamic diameter of parent GO was 352.6 nm and after filtering with 450 

nm and 220 nm syringe filters, the diameters decreased to 327.3 nm and 147.5 nm, respectively. 

The reaction rate constants as a function of (initial) GO coupon size are summarized in Table 

3.1. The reactions were conducted under same condition as discussed above. For these, smaller 

GO coupons were observed to be (relatively) more reactive. The rate constant increased from 

6.54 to 14.30 × 10-5 L/(mg*min) when the average size decreased from 352.6 nm to 147.5 nm (at 

pH 5, 50 mg/L GO, 10 mM PBS and 50, 100, 150 and 200 mg/L free chlorine under light 

irradiation (2000 µW/cm-2) for 2 hours).  Similar increases in reaction rate (>100%) were 
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observed for all pH values. Note that before and after filtering with a 450 nm filter, rate constants 

did not significantly change as the average coupon size of GO after filtration (450 nm). As 

discussed by Li et al. for smaller coupon sizes, a relatively larger fraction of available edge-

based carbon atoms, which are relatively more reactive, are available as active reaction site. 149 

Table 3.1 Reaction rate constants under different pH with GO in different size 

pH 5 6 8 11 

Parent GO 

(352.6 nm)* 

6.54 5.36 3.91 2.84 

450 nm filtered 

(327.3 nm) 

6.57 5.88 4.29 3.13 

220 nm filtered 

(147.5 nm) 

14.30 11.68 8.56 6.34 

  Unit: 10-5 * L/(mg*min) 

* Hydrodynamic diameter was measured by DLS.  

** All kinetics study experiments were carried out with 50 mg/L GO (both before and after filtration), 10 

mM PBS and 50, 100, 150 and 200 mg/L free chlorine under UV irradiation (2000 µW/cm-2) for 2 hours. 

 

In the reaction rate equation, the initial chlorine concentration was used. We also 

measured the actual chlorine decay during the photoreaction. The reaction kinetics is shown in 

Figure 3.5 with the squares representing chlorine concentration in GO/free chlorine system under 

light irradiation, while the circles representing chlorine concentration in water under light 

irradiation as control. In all conditions tested, after the chlorine was consumed i.e., concentration 

dropped to almost zero, another dose of free chlorine was added to perform another cycle of 
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reaction. First observation was the chlorine decay reaction was first order, which is consistent 

with the report by Feng et al.162 With more cycles of reaction performed, the reaction rate 

constant in the GO/UV/free chlorine system increased, as shown in Figure 3.6. In the control 

experiment of chlorine decay without GO but under light irradiation, the reaction rate constant 

decreased as more cycles of reaction performed. One of the reasons could be that as the ionic 

strength became higher, the activity coefficients of the related species decreased, thus leading to 

lower observed reaction rate. Also this the observed net effect, even with more chloride ions in 

the system to scavenging the radicals, as reported by Liao et al, 161 which means the actual 

increase of the reaction rate due to more light penetration could be higher. But in all cases, the 

rate constant is always lower with the presence of GO, as summarized in Figure 3.6. One of the 

reasons could be that GO also absorbs energy from light irradiation and the quantum yield of free 

chlorine producing radicals would be lower compared to the control experiment without GO. 

That also explains why the chlorine decay rate increased in the GO/free chlorine system under 

light with more cycles of reaction since as GO was transformed and became transparent, it no 

longer competed with free chlorine in absorbing light energy, making the observed chlorine 

decay rate faster. In the control experiments with GO/free chlorine system and water/free 

chlorine system both in dark, the free chlorine concentration did not change much over 24 hours, 

indicating the importance of light irradiation in this reaction.  
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Figure 3.5 Free chlorine concentration during the GO/UV/free chlorine reaction. 100 ppm free chlorine was added at 

time 0, 120 and 210 min.  
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Figure 3.6 First order reaction rate constant of free chlorine decay under UV irradiation with and without GO in the 

system, for 3 cycles. 
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3.3.2 Product Characterization  

 

Figure 3.7 TEM images of GO and product with free chlorine under UV irradiation (2000 µW/cm2) for 2 hours. (a) 

GO, (b) with 100 mg/L free chlorine at pH 5, (c) with 150 mg/L free chlorine at pH 5, (d) with 200 mg/L free 

chlorine at pH 5. All scale bars are 200 nm. 

Figure 3.7 shows TEM micrographs before (a) and after (b, c and d) reactions with 100, 

150 or 200 mg/L free chlorine under UVA irradiation (2000 µW/cm2) for 2 hours at pH 5. After 

the reaction, GO (partial) products were observed as smaller coupons (not seen in the original 

GO samples, shown in Figure 3.7(a)), which is consistent with our UV-vis spectra (kinetic) 
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observations (Figure 3.2) whereby GO was transformed. Figure 3.8a shows Raman spectra of 

GO before and after the UV/chlorination reactions (200 mg/L free chlorine at pH 5). For 

graphene and graphene oxide materials, the D band at 1355.22 cm-1 indicates sp3 carbon 

(defects) and the G band at 1602.86 cm-1 represents sp2 regions (base graphene structure).156 

From Chapter 2, it was proved that the defect density of synthesized graphene oxide was in the 

region where ID/IG would decrease with more defect in the structure, thus the FWHM of G peak 

was used here to relative quantify the defect density.51, 121, 163 As shown in Figure 3.8B, FWHM 

of original GO is 71.35 cm-1, while after a UV/chlorination reaction the FWHM increased 

significantly for all conditions (up to 98.74 cm-1 with 200 mg/L free chlorine at pH 5 after 2 

hours), indicating relatively more defects or smaller sp2 domains in terms of average size, further 

confirming sp2 network disruption and/or destruction. This is consistent with the result by Zhao 

et al. 145 
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Figure 3.8 Raman spectra of GO and product. A: GO before and after reaction with 200 mg/L free chlorine at pH 5 

under UV irradiation (2000 µW/cm2). B: D/G ratio of GO after reaction with free chlorine at different pH levels 

under UV irradiation (2000 µW/cm2) for 2 hours.  
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Figure 3.9 FTIR spectra of GO reactions at pH 5 with 100 mg/L and 200 mg/L free chlorine under UV irradiation 

(2000 µW/cm2) for 2 hours.  

Figure 3.9 shows FTIR spectra of GO before and after reactions (with 100 and 200 mg/L 

free chlorine under UV irradiation), using a DRIFTS technique (described above), from 500 – 

4000 cm-1. For parent material, characteristic C-O (1060 cm-1), C-OH (1365 cm-1), C=C (1600 

cm-1), C=O in carboxyl group (1720 cm-1) and O-H (3400 cm-1) were clearly observed.164 Upon 

reactions with UV/free chlorine, peaks representing C-O, C-OH, C=O and O-H group all 

relatively increased compared to C=C abs. peak. Also observed absorbance at 500 – 800 cm-1 

can be attributed to C-Cl stretching.143, 165, 166 Higher chlorine concentration (200mg/L) resulted 

in relatively more oxygen functionality (i.e. larger abs. peaks). XPS was employed to (relatively) 
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quantify the carbon oxidation state (Figure 3.10).  For these measurements, the 284.8 eV peak 

was assigned to the sp2 hybridized carbon atoms, the 286.6 eV peak was assigned to the 

monooxidized carbon (e.g. C-O, C-OH) and the 288.3 eV peak was assigned to the deoxidized 

carbon atoms (e.g. C=O).108 Upon reacting with 200 mg/L free chlorine under UVA, the total 

(relative) oxidized carbon (C-O and C=O) increased from 24.24% to 60.15%, in contrast to Li et 

al.149 While there was still ca. 40% of the C=C/C-C environments remained (decreased from 

75.76% to 39.85%), and carbon in C=C vs. C-C were not distinguished here in the XPS spectra, 

as the difference between the two peaks is very small and is reported differently by 

researchers167. We also note that while monooxidized carbon increased, dioxidized carbon 

relatively decreased, which may be due to the fact that the carbon in a C=O bond is more 

electrophilic (compared to monooxided carbon), thus more readily attacked by radical species. 

Also note that in the spectrum, we did not find strong chlorine signal, indicating the final product 

is not chlorinated.  

 

Figure 3.10 XPS spectra of (a) GO and (b) GO after reaction with 200 mg/L free chlorine at pH 5 under UV 

irradiation (2000 µW/cm2) for 2 hours. 
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3.3.3 Carbon Mass Balance Analysis 
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Figure 3.11 Total organic carbon after reaction with free chlorine under UV irradiation in open system. A: TOC 

after reaction with free chlorine under UV irradiation (2000 µW/cm2) for 2 hours at different pH levels. B: Long-

term study of TOC change for the reaction of GO with free chlorine at pH 5 under UV irradiation (2000 µW/cm2). 

Additional 200 mg/L free chlorine was applied to the solution every 2 hours.  

To confirm the assumption of GO mineralization during this reaction, Total Organic 

Carbon (TOC) analysis over the course of a typical reaction is shown in Figure 3.11. After 2 h 

reaction, with varied concentrations of free chlorine under light irradiation and different pH 

levels, TOC decreased from 50 mg/L (C0) to as low as 30 mg/L (200 mg/L free chlorine at pH 5) 

suggesting partial mineralization (GO  CO2). This is in line with Hou’s research, whereby GO 

was also partially mineralized upon UV irradiation.148 It should be noted that their light intensity 

(0.065 W/cm2) was much higher than the intensity used in this study (2000 µW/cm2). After 10 h, 

there is a ca. 25% carbon loss in their study; here, we observe nearly 40% carbon loss after 2 h in 

the UV/free chlorine system at pH 5 with 200 mg/L free chlorine. Interestingly, for a 20-hour 

reaction, the total organic carbon decreased to 20 mg/L after 10 h and remained steady, even 

though 200 mg/L free chlorine was added every 2 hours during the 20-hour reactions (total of 

2000 mg/L free chlorine was added over the course of the reaction) shown in Figure 3.11B, 
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indicating that the product of GO transformation is resistant to radical transformation under such 

condition. Another possible reason that could prevent the further transformation is that as the 

chloride ions was accumulated in the system, the scavenging effect on hydroxyl radicals became 

more significant, according to Liao et al. 161  

Since GO could be treated as the derivative of poly-aromatic hydrocarbon (PAH) with 

molecular size of hundreds of nanometers, and based on the TEM we assume that GO could be 

transformed to smaller molecules in the presence of free chlorine and light irradiation, this 

transformation may lead to the production of PAHs, PAH oxides or chlorinated PAHs. To 

determine the product molecular weight distribution, we used stir cell and nano-filtration 

membranes to filter the solution after reaction and measured the TOC of the filtrate. The results 

are summarized in Figure 3.12. We can see that initially there was very little organic carbon with 

molecular weight less than 100 kDa. In the 6 hours reaction period, the total organic carbon 

decreased as confirmed in the previous content, the portion of small molecules (less than 100 

kDa) was increasing, indicating that the graphene oxide was transformed into product with 

smaller molecular weight. After 6 hours reaction, product with molecular weight less than 1 kDa 

consisted 37.1% of the organic carbon remaining in the solution, indicating the production of 

small molecules.  
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Figure 3.12 Product molecular weight distribution from filtration. GO (50 ppm) with 200 ppm free chlorine under 

light irradiation at pH 5.  

To further explore GO transformation with regard to molecular weight analysis MALDI-

TOF-MS was employed (Figure 3.13). For parent material, GO is beyond the detection range 

thus not shown on the spectrum. Further, during typical GO synthesis (modified Hummers 

method), smaller coupons are removed and thus we see no response in the 400 – 1500 m/z range. 

And in the control experiment without GO, i.e., only free chlorine in water under light 

irradiation, all peaks in the mass spectrum were below 90 m/z and no response in the 400 – 1500 

m/z range, either. After the reaction, new mass (m/z) peaks in the range of 200 – 1000 m/z were 

observed, indicating small(er) molecular weight products were generated during the 

transformation of GO by UV/free chlorine. Also we included some possible molecular structures 

corresponding to each molecular weight peaks detected. Due to the lack of additional structural 
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information, we are unable to identify these exact products. Nevertheless, the results support the 

conclusion that GO is transformed into relatively smaller products under the stated conditions. 

One thing to notice is that we did not find any peaks with possible chlorinated molecules, to 

address the concern of possible production of toxic hazards.  

 

 

Figure 3.13 MALDI-TOF-MS results of GO after reaction with 200 ppm free chlorine at pH 6 under light irradiation 

(2000 µW/cm2) for 2 hours, with possible product chemical structures based on the m/z value.  

To close the carbon balance and confirm the CO2 generation, CO2 generation in gas 

phase for a closed reactor was monitored. Figure 3.14 shows increasing CO2 concentration in the 

gas phase with correspondingly decrease in TOC (liquid phase) for 100 mg/L, 200 mg/L and 400 
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mg/L free chlorine with UV irradiation (2000 µW/cm2). Detailed data is shown in supporting 

information (Table S3.1). The total carbon in the system remained constant throughout the 4 h 

reaction time with 400, 200, and 100 mg/L free chlorine. Two sets of control experiments were 

conducted. One was GO with chlorine under dark condition and the other was GO without 

chlorine under UV irradiation. For both, no significant CO2 generation in the gas phase was 

observed (Figure 3.14D).  Data for these control experiments are also summarized in supporting 

information in Table S3.1. 

 

Figure 3.14 Carbon mass balance between the gas phase and liquid phase in closed system. Reaction were carried 

with 50 mg/L GO at pH 5 with 400 (10A), 200 (10B) and 100 (10C) mg/L free chlorine under UV irradiation (2000 

µW/cm2). The solid symbols represent the carbon remaining in the liquid phase (TOC and liquid CO2) and the 

empty symbols represent the carbon in gas phase (CO2) for each free chlorine concentration.  10D: control 

experiments (1) in dark with 400 mg/L free chlorine and (2) without free chlorine under UV irradiation (2000 

µW/cm2).  
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3.3.4 Reaction Mechanism  

Given the above result and discussion, we proposed the following reaction mechanisms, as 

shown in Figure 3.15. The hydroxyl radical played an important role in the transformation of 

GO, while chlorine radical also contributed to the overall reaction. Being different from the 

reaction reported by Ma et al., 146 where hydroxyl radical was the only cause of the 

transformation, GO was significantly transformed and produced small molecules with the 

presence of free chlorine, even though the major product was not chlorinated, according to XPS 

and MS results. So we assume that GO was first activated by the chlorine radicals, forming 

chlorinated GO. The chlorinated carbon atoms would be more reactive than the carbon atoms in 

the original GO, especially on the basal plane，  since it would be more electrophilic and 

vulnerable to radical reaction. Then under the attack of ∙OH radical, the chlorinated GO was 

further transformed into CO2 and smaller GO, even PAH oxides, with the dissociation of 

chlorine atoms as chloride ions. This mechanism could explain the importance of the chlorine 

radical as well as hydroxyl radical in transforming GO into smaller molecules.  

 

Figure 3.15 Proposed reaction mechanism for GO in the presence of free chlorine and light irradiation.  
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3.4 Conclusions  
To date, the vast majority of reports regarding graphene materials are focused on the 

development of new technologies and the fate and transport in natural systems. In contrast, 

underwhelming attention has been paid to the potential chemical and physical transformations 

that graphene and graphene oxides will undergo when exposed to (environmentally) relevant 

conditions, including typical water treatment processes. In this work, data sets clearly 

demonstrated that graphene oxide is susceptible to extensive transformation when exposed to 

free chlorine and light irradiation. Under conditions described, partial mineralization was also 

observed with remaining products resistant to further oxidation (i.e. stable daughter product). 

Further, it is proved that upon such oxidation, graphene oxide will produce PAH oxides. Also it 

is hypothesized that GO will become more hydrophilic, thus its partitioning behaviour and 

reactivity will change accordingly (and likely significantly). Considering these results, aqueous-

based technologies utilizing graphene oxide materials/composites should consider potential 

material transformation processes as stability and performance may be affected. 
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Chapter 3: Supporting Information  

S3.1 Instrumentation.  

The original GO and product were analyzed using transmission electron microscope (TEM). 

Instrument Tecnai G2 Spirit from FEI Company, operating at 120 kV. Total organic carbon 

analysis (TOC) was performed by TOC-L TOC analyzer from Shimadzu, with ASI-L auto 

sampler, using potassium hydrogen phthalate as a carbon standard. 0.1 M HCl was applied to the 

sample to facilitate removal inorganic carbon from the system (as CO2). Fourier transform 

infrared spectroscopy (FTIR) was used for the oxygen containing functional groups on the GO 

molecules. After washing and drying under vacuum for 24 h, the powder was mixed with KBr to 

perform DRIFTS in the range of 4000 – 500 cm-1 at a resolution of 0.5 cm-1 for 4000 cycles. The 

instrument was Thermo Nicolet NEXUS 470 FTIR from Thermo Scientific. To quantitatively 

describe the reaction kinetics, UV-vis spectra was measured at each time interval during the 

reaction. Samples of 750 μL were put into a cuvette and measured for the absorbance over the 

wavelength range of 200 – 800 nm. The instrument was Varian Cary 50 Bio UV-Visible 

Spectrophotometer from Varian, Inc. Raman spectra were performed over a range of 3200 – 100 

cm-1 with resolution of 1.2 cm-1. The solution was dropped onto silicon wafer substrates and 

dried in a vacuum for 24 h before measuring. The instrument was InVia Confocal Raman 

microscope from Renishaw. X-ray Photoelectron Spectroscopy (XPS) was used to determine the 

relative quantity of each oxidation state of C atoms. The solution was dropped onto silica wafer 

and dried for 24 h before measuring. The instrument was PHI 5000 Versa Probe II from 

ULVAC-PHI, Inc. Three measurements at different positions were performed for each sample 

and the average value was calculated. The instrument was PHI 5000 Versa Probe II. The peaks 

were fit using a mixed fit of 80% Gaussian and 20% Lorentzian characters in the PHI Multipak 
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software. Peak position calibration was carried out by aligning the C 1s peak (C-C/C=C) with its 

reference position at 284.8 eV, and a Shirley background subtraction was performed. Gas phase 

CO2 concentration was measured by gas chromatography. The instrument was Agilent 7890B 

GC System from Agilent Technologies. Matrix-Assisted Laser Desorption/Ionization (MALDI) 

Time-of-Flight Mass Spectrometry was used to examine products with smaller molecular weight. 

The instrument was Voyager-DE STR Biospectrometry Workstation from Applied Biosystems.  

S3.2 DPD colorimetric method for free chlorine concentration measurement.  

PBS: dissolve 24 g anhydrous Na2HPO4 and 46 g anhydrous KH2PO4 in distilled water. Combine 

with 100 mL distilled water in which 800 mg disodium EDTA is dissolved. Dilute to 1 L. DPD 

(N,N-Diethyl-p-phenylenediamine) solution: dissolve 1.1 g anhydrous DPD sulfate in distilled 

water containing 8 mL 1+3 H2SO4 and 200 mg disodium EDTA. Dilute to 1 L. 1 mL sample was 

added to the solution containing 8 mL water, 0.5 mL PBS and 0.5 mL PDP solution. After 5 min, 

the absorbance at 515 nm on UV-vis spectrum was measured and it is linearly related to the free 

chlorine concentration. Noted that the higher limit of this method is 3 ppm so the samples were 

diluted to make the chlorine concentration below 3 ppm, before adding it to the DPD solution. 

The calibration curve is shown in Figure S3.1.  
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Figure S3.1 Calibration curve of free chlorine concentration measurement by DPD colorimetric method.  
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S3.3 Carbon mass balance result from gas phase and aqueous phase.  

Table S3.1 Carbon mass conservation for 400 mg/L free chlorine reaction (sealed system) 

Time/h Gas phase TOC Dissolved CO2 Total 

0 0.12 55.66 0.11 55.89 

1 5.88 44.76 5.17 55.81 

2 13.30 30.29 11.71 55.30 

3 17.67 22.72 15.55 55.94 

4 18.76 19.81 16.52 55.09 

Unit: mg/L as carbon 

 

Table S3.2 Carbon mass conservation for 200 mg/L free chlorine reaction (sealed system) 

Time/h Gas phase TOC Dissolved CO2 Total 

0 0.10 54.68 0.08 54.86 

1 4.15 46.26 3.66 54.07 

2 9.73 35.97 8.57 54.27 

3 13.95 28.27 12.28 54.50 

4 15.52 25.28 13.67 54.47 

Unit: mg/L as carbon 
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Table S3.3 Carbon mass conservation for 100 mg/L free chlorine reaction (sealed system) 

Time/h Gas phase TOC Dissolved CO2 Total 

0 0.14 55.16 0.13 55.43 

1 2.35 50.18 2.06 54.59 

2 5.52 44.54 4.85 54.91 

3 9.51 36.81 8.37 54.69 

4 10.88 34.15 9.58 54.61 

Unit: mg/L as carbon 
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Chapter 4: The Effect of Free Chlorine and 

Light Irradiation on Graphene Oxide 

Membrane: Stability and Water Flux 

Abstract 
In the previous chapter, free chlorine was demonstrated to readily and significantly transform 

aqueous-based graphene oxide, which has potential to impact graphene oxide membrane 

performance. In this chapter, simple graphene oxide membranes are synthesized via wet vacuum 

method and chlorination under light irradiation was subsequently applied and evaluated with 

regard to membrane integrity and performance. When exposed to free chlorine under UVA light 

irradiation membrane oxidation is observed while for the dark conditions no change in the 

carbon oxidation state occured. TOC showed 15.44% of the carbon was dissolved (separated 

from the membrane) after 2 hours reaction with 100 mg/L free chlorine under UVA irradiation. 

The transformation was more significant at lower pH. Water flux and surface roughness 

increased after reaction with free chlorine for 2 hours but decreased after 4 hours reaction due to 

the photo-reduction of graphene oxide upon the depletion of free chlorine.  

4.1 Introduction  
Given the potential of graphene oxide application in water treatment membranes, understanding 

GO chemical stability under cleaning/reactive conditions is critical. Fouling is the major obstacle 

for membrane application(s), which we describe as the accumulation of rejected components and 

even biofilm formation – which lead to decrease in water flux or increase in required pressure.168 

As a common strategy to control membrane fouling, adding free chlorine to the feed solution is 

widely used.169, 170 However, for graphene/graphene oxide membranes, free chlorine will likely 
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react with available aromatic and nitrogen groups potentially degrading membrane integrity and 

performance.171 Chae et al. synthesized graphene oxide embedded polyamide membrane and 

showed improved chlorine resistance, whereby the water flux increased from 14 L/(m*h*bar) to 

21 L/(m*h*bar) after chlorination while it increased from 5 L/(m*h*bar) to 33 L/(m*h*bar) in 

the case of the membrane without graphene oxide.172 Safarpour et al. applied interfacial 

polymerization of monomers with reduced graphene oxide and TiO2 nanoparticles to synthesize 

thin-film membranes and found the rejection of salt decreased after chlorination.173 However, the 

research was only done under dark conditions and the effect of possible sunlight irradiation or 

UV application has not been taken into consideration to date. In Chapter 3, the free chlorine 

under light irradiation was demonstrated to react with graphene oxide in aqueous solution, which 

was enhanced under light. We have extended that framework here to a simple GO membrane 

system.  

In this chapter, graphene oxide was deposited onto substrate to form a laminate type 

membrane, and then free chlorine and light irradiation were applied. The effects of pH and 

reaction time are also explored and described. The oxidation state of graphene oxide, chemical 

stability, and surface roughness of the membrane and water flux before and after the reaction 

were evaluated and reported.  

4.2 Materials and Methods 

4.2.1 Materials 

Graphite powder, sulfuric acid, potassium permanganate and hydrogen peroxide solution were 

purchased from Sigma-Aldrich and used for graphene oxide synthesis. Polyallylamine solution 

(PAA, average Mw ~ 17,000 Da, 20 wt. % in H2O, ρ = 1.02 g/mL) was also purchased from 
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Sigma Aldrich. All chemicals were reagent grade or higher and used without further purification, 

unless otherwise noted. 

4.2.2 Graphene Oxide Membrane Synthesis 

Graphene oxide was synthesized with temperature of 30 °C in stage 1 and 60 °C in stage 2, 

reaction time of 2 hours in stage 1 and 60 min in stage 2, oxidant ratio of 3:1, followed by 

washing, drying, sonication (2 hours) and centrifuge, as described in the previous chapter.  

Graphene oxide was deposited on the poly(ether sulfone) (PES) support membrane 

(Sterlitech, nominal pore size 0.03 μm as provided by the manufacture) using wet vacuum 

filtration. As previously reported in our lab, polyallylamine (PAA, Sigma Aldrich, Mw ~ 17000, 

20 wt. % in H2O) was used as a cross-linker to enhance graphene oxide assembly stability 

during the membrane synthesis.90 PAA is a long alkyl polymer with reactive amine groups on the 

carbon chain which could readily react with the oxygen groups on the graphene oxide. The 

amine groups of PAA readily reacted with the oxygen-containing functional groups on graphene 

oxide materials. GO (1 mg) and PAA (10 μL) mixture was sonicated for 2.5 h in a bath sonicator 

(Branson 2510MT, Bransonic®), and then vacuum filtered onto a PES support membrane. The 

PES membrane was also soaked in a 2 wt. % PAA aqueous solution for 3 h before the deposition 

to enhance the interaction between the top layer (graphene oxide) and the support (PES). The 

final membrane assembly was then air-dried and used in subsequent characterization and 

performance evaluations.  

4.2.3. Chlorination experiments 

The graphene oxide membrane was attached onto the wall of quartz beaker, then the solution 

containing free chlorine and adjusted to target pH level was added into the beaker to ensure the 

membrane was immersed into the solution. The free chlorine concentration used in this study 
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included 10 mg/L, which was similar to the dose used in disinfection process in water treatment, 

and, 50 mg/L and 100 mg/L to accelerate the reaction to better illustrate the possible effect of 

free chlorine on the graphene oxide membrane. The pH level included 5, 7 and 9. For dark 

reaction, the beaker was wrapped with aluminum foil and kept in the dark. For the photo-

reaction, the beaker was placed in a photo-reactor with UV lamp in it. The light irradiation 

wavelength was centered at 351 nm and the intensity was 2000 µW/cm2, which intended to 

simulate the sunlight irradiation. The beaker was magnetically stirred for 2 hours and 4 hours, 

respectively.  

4.2.4. Membrane Permeability 

To evaluate the performance of graphene oxide membrane before and after reaction with free 

chlorine, the permeability was tested according to established procedures.90 The water flux was 

measured under a direct flow dead-end filtration mode. MilliQ water was placed in the storage 

tank (Millipore Amicon 8050) and pressurized by N2 and connected to the filter holder (47 mm, 

Pall Life Science) where the membrane was placed. The permeate was measured directly using 

an integrated electronic balance (Mettler Toledo ML1502E) with the weight data automatically 

logged at 60 second interval. The constant pressure of 1.5 bar was maintained throughout the 

measurement and kept the same for all conditions. Then water flux (L/(m2 h bar)) was calculated 

as followed:  
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where wt is the weight of accumulated permeate with unit of g, dt is the time interval (60 s), ρ is 

the density of water with unit of g/L, A is the effective membrane surface area with unit of m2 

and p is the pressure across the membrane, which is 1.5 bar here in this study.  

4.2.5. Characterization 

The oxidation state of the carbon on the membrane was characterized by X-ray photoelectron 

spectroscopy (XPS). The membrane sample was dried in vacuum chamber before measuring. 

After reaction, the solution was analyzed by total organic carbon analysis (TOC) to evaluate the 

chemical stability of the membrane. Atomic force microscopy (AFM) was used to characterize 

the surface roughness of the membrane before and after the reaction. The arithmetic average 

roughness (Ra) and geometric average roughness (Rq) were used to evaluate the effect on the 

surface.  

4.3. Results and Discussion 

4.3.1 Chemical Stability 

As shown in Chapter 3, graphene oxide is transformed into smaller coupons and becomes more 

hydrophilic when exposed to chlorine under UVA. For studied graphene oxide membranes in 

contact with free chlorine under light irradiation, we also evaluated potential transformation and 

dissociation from the membrane surface into the aqueous phase. Total organic carbon (TOC) 

analysis was conducted on the solution after reactions under different conditions. TOC data and 

solution volume, the percentage of carbon dissolved in the aqueous phase is summarized in 

Figure 4.1. Under dark conditions, less than 2% of the carbon was dissolved after 2 hours in 

water. With the addition of the free chlorine, the carbon loss increased to 4.5% with 10 mg/L free 

chlorine. Given that the free chlorine concentration would likely be less than 10 mg/L in a 

typical disinfection process, less than 5% of the graphene oxide loss would may be expected per 
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dose, depending on the contact time. In contrast with the free graphene oxide in aqueous 

solution, which was not detected to be transformed in dark condition with 200 mg/L free 

chlorine, the carbon loss increased to 7.82% with 50 mg/L free chlorine and 9.11% with 100 

mg/L free chlorine. The reason could be attributed to that the interaction between graphene 

oxide, the cross-linker polymer and the PES membrane was disrupted by the addition of free 

chlorine. The specific reason though was not explicitly determined.  
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Figure 4.1 Carbon dissolved in the aqueous solution after 2 hours reaction of GO membrane with different 

concentration (0, 10, 50, 100 mg/L) of free chlorine at pH 7, both in dark and under light irradiation (2000 µW/cm2) 
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4.3.2. Carbon Oxidation State Change 

     

 

Figure 4.2 XPS survey scan (A) and fine scan of C 1s (B) of original graphene oxide membrane  

To investigate the change of carbon oxidation state, XPS spectra were collected before and after 

chlorine reactions. Figure 4.2A showed the XPS survey scan of the original membrane with 

peaks for C 1s, O 1s and N 1s from the graphene oxide and the cross-linker polymer PAA. The 

elemental composition was determined to be carbon 76.8%, oxygen 15.2% and nitrogen 8.0%. 

Figure 4.2B showed the fine scan for C 1s of the original membrane and the relative ratio of 
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carbon in different oxidation state was 71.99% for C-C/C=C, 20.40% for C-O and 7.62% for 

C=O. The higher C-C/C=C percentage than the free-standing graphene oxide in aqueous 

(50.11%), as well as lower C-O and C=O percentage, were possibly due to the addition of PAA 

polymer and the reaction between –NH2 and the C-O, C=O groups, according to research by 

Park et al.174  

After 2 hours reaction with 100 mg/L free chlorine at pH 7 under UV light irradiation, the 

elemental composition changed to carbon 70.2%, oxygen 19.8% and nitrogen 10.0%, as shown 

in Figure 4.3A. The increased nitrogen content was possibly due to the dissociation of graphene 

oxide into the aqueous phase, as shown in the above section from the TOC data. Figure 4.3B 

shows the carbon oxidation state (C 1s spectrum) after 2 hours reaction with 100 mg/L free 

chlorine under light irradiation at pH 7. The C-C/C=C percentage decreases from 71.99% to 

50.84%, while the C-O percentage increased from 20.40% to 41.88%. This indicates that the 

carbon in graphene oxide is further oxidized by free chlorine under UV light irradiation, which 

was consistent with the result discussed in Chapter 3. However, in Chapter 3, it was found that 

the C=O percentage decreased after reaction with free chlorine under light irradiation, due to the 

electron-deficiency of the carbon atom in C=O and vulnerable to radical attacking. However, the 

C=O percentage for membrane associate GO after the reaction did not show significant decrease 

(from 7.62% to 7.27%, as shown in Table S4.1 in Supporting Information). According to 

research by Hureiki et al, the –CO–NH– bond is relatively stable with the presence of free 

chlorine, and the result here seem consistent with their report.175 Even though free chlorine can 

replace (via substitution) the hydrogen atom in N-H group, it did not affect the C-N bond and left 

the cross-linker relatively stable.176, 177  
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Figure 4.3 XPS survey scan (A) and C 1s scan (B) of the graphene oxide membrane after 2 hours reaction with free 

chlorine (100 mg/L) at pH 7 under light irradiation (2000 µW/cm2).  

The average carbon oxidation state change as a function of free chlorine concentration, in 

dark and under light irradiation, is shown in Figure 4.4 and the detailed data is summarized in 

Table S4.1 and Table S4.2. Under dark conditions, the carbon oxidation state of membrane 

associated graphene oxide largely remains unchanged, which was also consistent with the result 

in Chapter 3. Note that without the presence of free chlorine (0 mg/L), the C-C/C=C percentage 
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increased and C-O percentage decreased after 2 hours light irradiation, which suggested photo-

reduction of graphene oxide occurred, consistent with our previous observation and by others.148 

For these, the C=O percentage still stayed relatively stable, as shown in Table S, indicating that 

the –CO – NH– was also resistant to the photo-transformation, as stated before. As the free 

chlorine concentration increased, the resulting graphene oxide oxidation state also increased, 

with lower C-C/C=C percentage and higher C-O percentage.  
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Figure 4.4 Average carbon oxidation state change (from XPS C1s scan) of the graphene oxide membrane after 

reaction with different concentration of free chlorine (0, 10, 50, 100 mg/L) in dark and under light irradiation (2000 

µW/cm2) for 2 hours at pH 7.  

4.3.3. Effect of pH 

To investigate the effect of pH on the reaction, experiments at pH 5, pH 7 and pH 9 were 

conducted with oxidation state change reported, represented by the C-C/C=C percentage, in 

Figure 4.5 and summarized in Table S4.3. As pH is increased, the resulting carbon oxidation 

state of graphene oxide was relatively lower, which was consistent with findings in Chapter 3 

whereby higher pH leads to lower reaction rates. With 100 mg/L free chlorine, the C-C/C=C 

percentage decreased to 44.76% after 2 hours reaction at pH 5, while at pH 9, the C-C/C=C 
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percentage was 56.65% after the same reaction period. For all pH values, higher free chlorine 

dose concentration led to more oxidized graphene oxide.  
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Figure 4.5 Carbon oxidation state change (from XPS C 1s scan) of graphene oxide transformation by free chlorine 

(10, 50 100 mg/L) under light irradiation (2000 µW/cm2) for 2 hours under different pH conditions (5, 7, 9).  

4.3.4. Reaction Time 

Figure 4.6 shows the carbon oxidation state changing after reaction with free chlorine (10 mg/L 

and 100 mg/L) at pH 7 under light irradiation for 2 hours and 4 hours, respectively. Detailed 

XPS data was summarized in Table S4.4. Based on the above discussion, it was clear that 

graphene oxide membrane would be oxidized by free chlorine under light irradiation. However, 

after 4 hours reaction, the C-C/C=C percentage increased and the C-O percentage decreased, 

indicating that the free chlorine was completely consumed and photo-reduction of graphene 

oxide likely occurred.148   
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Figure 4.6 Carbon oxidation state change (from XPS C1s scan) of graphene oxide membrane after reaction with free 

chlorine (10 mg/L and 100 mg/L) at pH 7 under light irradiation (2000 µW/cm2) for 2 hours and 4 hours 

4.3.3 Surface Roughness 

 

Figure 4.7 AFM image of the original graphene oxide membrane 

Figure 4.7 shows an atomic force micrograph of a typical graphene oxide membrane and Figure 

4.8 compares the surface roughness after reaction(s) with free chlorine (10 mg/L and 100 mg/L) 

under light irradiation for 2 hours and 4 hours, respectively. After 2 hours reaction, the surface 

roughness increased for both 10 mg/L and 100 mg/L free chlorine, from 101 nm to 104 nm with 



86 

 

10 mg/L and 132 nm with 100 mg/L. This is due to the oxidation and thus degradation of 

graphene oxide membrane.178 After 4 hours of reaction, the surface roughness was observed to 

decrease, which is the result of photo-reduction after the free chlorine was depleted, which is 

also consistent with the XPS results.  
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Figure 4.8 Surface roughness of graphene oxide membrane after reaction with free chlorine (10 mg/L and 100 mg/L) 

at pH 7 under light irradiation (2000 µW/cm2) for 2 hours and 4 hours. 

4.3.6. Water Flux 

Figure 4.9 shows water flux before and after reactions with free chlorine (10 mg/L and 100 

mg/L) at pH 7 under light irradiation for 2 hours and 4 hours, respectively. For both free chlorine 

concentrations tested, the flux increased after 2 hours of reaction, from 28.38 L/(m2 h bar) to 

30.93 L/(m2 h bar) with 10 mg/L free chlorine and 36.22 L/(m2 h bar) with 100 mg/L free 

chlorine. This was due to the oxidation of graphene oxide and the membrane became more 

hydrophilic, which would enhance water flux.75, 84 However, after 4 hours reaction, the water 

flux decreased to 21.73 L/(m2 h bar) with 10 mg/L free chlorine and 25.99 L/(m2 h bar) with 100 

mg/L free chlorine. This behavior is inline with XPS and AFM data, as the graphene oxide 
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membrane was photo-reduced after 4 hours due to the complete consumption of free chlorine and 

is thus less hydrophilic.  
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Figure 4.9 Water flux of the graphene oxide membrane before and after the reaction with free chlorine (10 mg/L and 

100 mg/L) at pH 7 under light irradiation (2000 µW/cm2) for 2 hours and 4 hours 

4.4. Conclusion  
The above data collectively clearly shows that graphene oxide membranes can be transformed by 

free chlorine under light irradiation. For a 2 hours reaction, graphene oxide membranes were 

oxidized and degraded, which increased surface roughness and water flux. However, after the 

free chlorine was depleted, the photo-reduction of graphene oxide membrane partially restored 

graphene (sp2) regions (i.e. loss of functional groups) which corresponds to lower water flux. 

While only being an initial report, this data provides an important proof of concept that GO-

based membranes are likely to be susceptible to oxidation/degradation which must be 

incorporated into the design of related technologies.  
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Chapter 4: Supporting Information 
Table S4.1 XPS result of graphene oxide membrane after 2 hours reaction with free chlorine at pH 7 under 

light irradiation (2000 µW/cm2) 

[Cl] (mg/L) C/O C-C/C=C C-O C=O 

original 6.14 71.99 20.4 7.62 

0 6.52 76.13 17.35 6.51 

10 4.56 65.79 26.62 7.59 

50 3.20 57.28 34.69 8.03 

100 2.59 50.84 41.88 7.27 

 

Table S4.2 XPS result of graphene oxide membrane after 2 hours reaction with free chlorine at pH 7 in 

dark condition  

[Cl] (mg/L) C/O C-C C-O C=O 

original 6.14 71.99 20.40 7.62 

0 5.98 72.04 21.50 6.47 

10 6.21 71.04 21.61 7.35 

50 6.30 72.71 20.29 6.99 

100 6.11 72.07 21.72 6.21 
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Table S4.3 XPS result of graphene oxide membrane after reaction with free chlorine (10 mg/L, 50 mg/L 

and 100 mg/L) under light irradiation for 2 hours under different pH conditions.  

pH [Cl] (mg/L) C/O C-C C-O C=O 

5 

10 3.62 63.72 27.33 8.95 

50 2.70 52.16 39.08 8.76 

100 2.01 44.76 46.26 8.98 

7 

10 4.56 65.79 26.62 7.59 

50 3.20 57.28 34.69 8.03 

100 2.59 50.84 41.88 7.27 

9 

10 5.48 69.24 23.55 7.21 

50 3.96 61.44 30.90 7.66 

100 3.22 56.65 35.67 7.68 

 

Table S4.4 XPS result of graphene oxide membrane after reaction with free chlorine (10 mg/L and 100 

mg/L) at pH 7 under light irradiation for 2 hours and 4 hours 

time [Cl] (mg/L) C/O C-C C-O C=O 

0 n/a 6.14 71.99 20.4 7.62 

2 

10 4.56 65.79 26.62 7.59 

100 3.59 50.84 41.88 7.27 

4 

10 6.87 76.13 16.35 8.72 

100 5.24 66.22 26.13 8.46 
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Chapter 5: High Efficiency Aqueous 

Cerium(III) and Lanthanum(III) Adsorption 

on Graphene Oxide 

Abstract 
Herein, we systematically explore the adsorption behavior of graphene oxide (GO) towards 

aqueous cerium(III) and lanthanum(III), as Ce3+ and La3+, respectively. Adsorption was modeled 

via a Langmuir isotherm approach with performance parameters (qm and KL) calculated for each 

condition explored.  Adsorption was demonstrated to be affected by the surface chemistry of GO 

with higher quantity of oxygen-based functional groups correlating to higher adsorption 

capacities. The effect of pH and ionic strength were also explored; for all the sorption capacity 

decreased at lower pH and higher ionic strengths. Kinetic data shows that the equilibrium was 

established within 4 hours for all cases. Adsorption mechanisms are likely underpinned by ion 

exchange and outer sphere complexation processes. The adsorption capacities for both ions were 

superior to most synthesized absorbents or bio-sorbents to date, which reached maximum values 

of 451 mg/g for Ce and 436 mg/g for La.  

5.1 Introduction  
Rare earth metals are critical for many applications and have even been termed as the ‘seeds of 

technology’ or ‘industrial vitamins’.179 For example, in metallurgy, rare earth metals are added to 

aluminum, iron, and other host metals in order to improve the selected physical and chemical 

properties of the alloys. Among all the rare earth metals used in metallurgy, cerium (52%) and 

lanthanum (26%) are the two most commonly applied elements.180 Cerium addition in aluminum 

alloy increases the castability and high temperature strength.181 Rare earth metals are also applied 
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by the glass industry for absorbing UV light, altering the refractive index and coloring or 

decoloring, as well as other specialty glasses and optics, among which cerium accounting for 

67% and lanthanum accounted for 29% of rare earth metal usage. Cerium oxide is also used for 

glass polishing applications and accounts for 40 – 99% in polishing powders.182 Lanthanum 

oxide as additive in optical materials is used to improve the density, micro-hardness, refractive 

index, chemical durability (resistance to alkali), and mechanical strength.183-185 Also negative 

electrode of nickel-metal-hydride (NiMH) rechargeable batteries consist of rare earth metals 

(lanthanum accounts for 50% and cerium contributed 33% total rare earth metals used in NiMH 

batteries).180 American’s best-selling hybrid car Toyota Prius requires 10 – 15 kg of lanthanum 

per vehicle for the NiMH batteries and this value is expected to double as the engineers further 

boost the fuel efficiency.186 Cerium is also an important component of the NiMH battery.187 

Taken together, it is clear that rare earth metal are crucial to many industries, and cerium and 

lanthanum are amongst the most important.  

While the demand for rare earth metal keeps increasing, the supply is decreasing.188 Over 

the past decade, removal and recovery of the rare earth metal from aqueous solution has drawn 

considerable attention and different types of absorbents have been studied, such as commercial 

and hybrid materials, nanoparticles, nanocomposites, and bio-sorbents.179  Sepehrian et al. 

studied the adsorption behavior of Ce on modified mesoporous aluminosilicate and calculated 

the Langmuir monolayer capacity of 0.032 mmol/g (4.48 mg/g).189 Kecili et al. prepared ion 

imprinted cryogel which has the Ce(III) adsorption capacity of 36.58 mg/g.190 Nishihama et al. 

used a solvent-impregnated resin for La adsorption and the capacity reached 0.345 mmol/g (48.3 

mg/g).191 Borai et al. synthesized emulsion polymer of carboxy methyl cellulose grafted with 

methyl acrylate, acrylic acid, and nitrilio tri-acetic acid and applied it in rare earth metal 
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adsorption, which achieved the capacity of 110 mg/g for La(III) and 121 mg/g for Ce(III).192 

Chen et al. synthesized nanoscale palygorskite grafted polymethacrylic acid with Ce adsorption 

capacity of 160.2 mg/g.193 Cheng et al. synthesized chrysotile nanotubes for Ce adsorption and 

the Langmuir adsorption capacity was 1.21 mmol/g (173.6 mg/g).194 Lahiji et al. reported 

chitosan modified with poly(vinyl alcohol) and 3-mercaptopropyltrimethoxysilane for Ce(III) 

and La(III) adsorption and achieved the capacity of 251.41 mg/g and 263.16 mg/g, 

respectively.195 Khalil et al. applied zirconium titanate and polyacrylonitrile zirconium to 

evaluate the adsorption on Ce3+ and La3+.196 They also reported the application of chitosan 

acryloylthiourea derivative for La adsorption with a capacity of 2.1 mmol/g (294 mg/g).197 Li et 

al. applied poly(acrylic acid) brushes-decorated attapulgite for the adsorption of Ce3+ and the 

capacity reached 295.4 mg/g, while the equilibrium was achieved within 20 min.198 Besides the 

synthesized absorbents, bio-adsorption also drew attention for its natural availability. Sert et al. 

explored two bio-sorbents: leaf powder from Pinus brutia and Platanus orientalis. The adsorption 

capacity was reported as Ce 17.24 mg/g and La 22.94 mg/g for Pinus brutia, and Ce 32.05 mg/g 

and La 28.65 mg/g for Platanus orientalis.199, 200 Further they modified the Pinus brutia leaf 

powder with citric acid and the capacity for Ce was increased to 62.1 mg/g.201 Birungi and 

Chirwa reported adsorption of La with micro algal cells of D. multivariabilis and the capacity 

reached 100 mg/g.202 Khosravi et al. conducted research on the bio-adsorption of Ce and La on 

grapefruit peel and the capacity reached 159.30 mg/g for Ce and 171.20 mg/g for La.203 Das et 

al. also used bio-sorbents for La adsorption and they found the capacity to be 200.0 mg/g for fish 

scales and 160.2 mg/g for neem sawdust.204 Meisam reported the adsorption of Ce and La on 

tangerine peel with the capacity of 162.79 mg/g for Ce and 154.86 for La.205   
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Carbon materials, such as carbon nanotubes (CNT) and graphene oxide (GO), have 

properties suitable for adsorption because of their abundant and favorable surface functional 

groups, which are tunable, and large specific surface area. Zhao et al. applied graphene oxide on 

aqueous Cd(II) and Co(II) adsorption and achieved the adsorption capacity of 106.3 mg/g and 

68.2 mg/g, respectively.206 Chen et al. reported Gd(III) adsorption on colloid graphene oxide and 

the capacity was 286.86 mg/g.207 Amirov et al. also applied graphene oxide for aqueous Gd(III) 

adsorption and achieved the capacity of 1.45 mmol/g (228.01 mg/g) at pH 7.208 Sun et al. also 

used graphene oxide for Eu(III) adsorption and achieved a capacity of 115.9 mg/g.209, 210 Behdani 

et al. used oxidized multiwalled carbon nanotubes for Ce adsorption and achieved capacity of 

92.59 mg/g.211 Rakov and Lyu reported Ce(III) and La(III) adsorption on oxidized carbon 

nanotubes and achieved the sorption capacity of 950 mg/g for Ce and 840 mg/g for La.212 

However, they used particularly low sorbent concentration (6 ppm) and thus very low sorbent to 

sorbate ratio, leading to reduced accuracy of measurement. The authors admitted this concern in 

their report yet did not report the variance of their measurements. The adsorption mechanism 

was assigned to the functional groups on the oxidized CNT and they expected more oxidized 

CNT would have higher adsorption capacity, yet they did not give information about the 

functional group quantity of the CNT they used. In fact, most of the studies mentioned above 

failed to provide information on the properties of the adsorbent, especially the oxidation state 

(functional groups quantity) and zeta potential, which are important in optimizing adsorption 

process of trivalent cations. Graphene oxide application in aqueous Ce(III) and La(III) 

adsorption has not yet been systematically explored; however, it possesses significant potential 

based on the previous research. As GO can vary significantly with regard to oxidation state 

(oxygen density) and zeta potential, it’s important to evaluate adsorption capacities as they relate 
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to key GO properties, such as the quantity of functional groups and zeta potential. In this chapter, 

GO was synthesized with degrees of oxidation, as described in chapter 2, and applied as sorbents 

for Ce3+ and La3+. The effects of GO oxidation state, contact time, solution pH, and ionic 

strength were systematically explored and described. Different isotherm models were compared 

and the maximum adsorption capacity under each condition was calculated based on the 

isotherm model which best fit the experimental data.  

5.2 Materials and Methods 

5.2.1 Material.  

Graphite powder, sulfuric acid, potassium permanganate, and hydrogen peroxide solution were 

purchased from Sigma-Aldrich and used for graphene oxide synthesis. Cerium(III) nitrate 

hexahydrate and lanthanum(III) nitrate hexahydrate were also purchased from Sigma-Aldrich 

and dissolved in Milli-Q water to make 10 mM stock solution. All chemicals were reagent grade 

or higher and used without further purification, unless otherwise noted. 

5.2.2 Graphene oxide synthesis.  

The graphene oxide synthesis process was modified based on the widely used Hummers 

method.34 Graphite powder was oxidized by KMnO4 with the presence of concentrated H2SO4 to 

achieve graphitic oxide. The solid was washed and dried in vacuum, and then dissolved in water 

for probe sonication (2 hours). The suspension was then centrifuged at 10,000 rpm for 2 hours 

and the supernatant was collected as GO stock solution. We changed the temperature to control 

the oxidation state of GO as discussed in Chapter 2. Here, we used 3 types of GO: less oxidized 

GO as GO-1 which was synthesized with the reaction temperature of 10 °C and 30 °C, medium 

oxidized GO as GO-2 which was synthesized with the reaction temperature of 30 °C and 60 °C, 

and more oxidized GO as GO-3 which was synthesized with the reaction temperature of 50 °C 
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and 90 °C. The oxidant ratio was 3:1 w/w of KMnO4/graphite and sonication time was 2 hours 

for all the 3 types of GO, which followed standard Hummers method. 34 The concentration of the 

GO stock solution was measured by filtering with the 10 nm membrane. The (dried) weight 

difference of the membrane before and after the filtration was taken as the weight of GO, which 

was divided by the filtered volume to calculate the concentration (mg/L) of the GO stock 

solution.  

5.2.3 Graphene oxide characterization.  

The carbon oxidation state is characterized by X-ray Photoelectron Spectroscopy (XPS). The 

sample solution was drop cast onto silica wafer and dried in vacuum chamber. Three 

measurements at different positions were performed for each sample and the average value was 

calculated. The instrument was PHI 5000 Versa Probe II. The peaks were fit using a mixed fit of 

80% Gaussian and 20% Lorentzian characters in the PHI Multipak software. Peak position 

calibration was carried out by aligning the C 1s peak (C-C/C=C) with its reference position at 

284.8 eV, and a Shirley background subtraction was performed. The zeta potential of GO 

nanoparticles is critical in adsorption process since GO is negatively charged and they will have 

electrostatic interaction with the target ions (Ce3+ and La3+). Dynamic Light Scattering (DLS) is 

used to measure GO hydrodynamic radius (173° backscatter, refractive index: 1.333) 105 and zeta 

potential (Smoluchowski model)55. All samples were measured at 25 °C for 5 cycles and each 

cycle consists of 5 measurements. The instrument was Malvern Zetasizer Nano ZS.  

5.2.4 Adsorption experiments.  

GO stock solution (500 mg/L as total mass) of 1 mL was added into the 15 mL centrifuge tube 

containing solution with target ion (Ce3+ or La3+ from 0.7 to 168 mg/L) and NaCl (1, 10, 100,  

600 mM) for controlling the ionic strength. The pH of the solution was then adjusted to the target 
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level (± 0.1) with HNO3 (1%) and NaOH (100 mM). The tube was then sealed, wrapped with 

aluminum foil to prevent photo-reaction with light and put on the rotator for adsorption test. All 

adsorption tests were performed at 25 °C and allowed 24 hours to reach equilibrium. The pH 

level is re-adjusted to the target level after 8 hours, except for the kinetic experiment where the 

change in pH was recorded. After the test, the sorbent was separated using an ultra-centrifuge at 

40,000 rpm for 2 hours. The supernatant was collected and the ion concentration was measured 

by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) with Scandium as 

internal standard. The instrument was Perkin Elmer Optima 7300 DV Optical Emission 

Spectrometer. All samples were diluted to below 100 ppm with respect to the target ions. The 

absorbed amount of target ion was calculated with the following equation:  

 

where qe is the amount of target ion absorbed on the absorbent at equilibrium with the unit of 

mg/g. C0 is the initial concentration of the target ion and Cq is the aqueous concentration at 

equilibrium, with the unit of mg/L. V is the volume of the solution with the unit of L and m is the 

mass of GO in the solution with the unit g. For each condition, we also have control experiment 

where GO was absent, to eliminate the effect of precipitation.  
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5.3 Results and Discussion 

5.3.1 Graphene oxide characterization before and after the adsorption.  

 

Figure 5.1. XPS (C 1s) of the 3 types of GO before adsorption. (a) low oxidized GO-1 (b) medium oxidized GO2 (c) 

high oxidized GO-3 
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Figure 5.1 shows the XPS data (C 1s spectra) describing the relative oxidation state of carbon in 

GO materials used. For these measurements, the 284.8 eV peak was assigned to the sp2 

hybridized carbon atoms, the 286.6 eV peak was assigned to the monooxidized carbon (e.g. C-O, 

C-OH), and the 288.8 eV peak was assigned to the deoxidized carbon atoms (e.g. C=O).108 The 

relative quantity of the 3 peaks in the 3 types of GO is summarized in Table 5.1. Higher oxidized 

GO with is hypothesized to have higher adsorption capacity towards the target ions.  

Table 5.1. XPS result (C 1s scan) of the GO before and after adsorption with Ce and La 

  C-C/C=C C-O C=O 

GO-1 

Before 55.33 ± 1.24 36.26 ± 2.07 8.41 ± 0.91 

After 54.83 ± 1.93 37.50 ± 1.87 7.67 ± 0.24 

GO-2 

Before 50.11 ± 1.46 40.33 ± 0.94 9.56 ± 0.70 

After 50.41 ± 2.54 40.08 ± 1.32 9.51 ± 1.49 

GO-3 

Before 45.96 ± 2.14 42.33 ± 2.05 11.71 ± 0.41 

After 46.29 ± 1.26 42.93 ± 0.82 10.77 ± 1.20 

 

After adsorption, the average oxidation state did not change much, as the XPS data also 

shown in Table 5.1. We conducted t-test to confirm this statement and with 99% confidence 

interval, it failed to reject the hypothesis that there was no difference between the oxidation state 

of GO before and after adsorption.  This supports a non-redox based sorption mechanism(s). The 

hydrodynamic diameter and zeta potential data at pH 7 was summarized in Table 5.2. It showed 
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that the average hydrodynamic diameter decreased and zeta potential became more negative as 

the average oxidation state of GO decreased, i.e., had higher quantity of functional groups. 

Table 5.2. Hydrodynamic diameter and zeta potential of GO at pH 7 

 Hydrodynamic diameter / nm Zeta potential / mV 

GO-1 184.70 ± 8.17 -38.50 ± 0.81 

GO-2 176.87 ± 7.80 -44.73 ± 0.97 

GO-3 156.07 ± 6.10 -52.80 ± 1.13 

 

5.3.2 Isotherm Modeling.  

The adsorption results for the three types of GO at pH 7 was shown in Figure 5.2 for Ce and 

Figure 5.3 for La. The plateau at high Ce/La concentration indicated that the maximum 

adsorption capacity has been reached. We used both Langmuir model and Freundlich model to 

fit the adsorption isotherm for Ce and La. The Langmuir isotherm is fitted using the following 

equation:  

 

 

where qm is the maximum adsorption capacity of the absorbent and KL is the binding constant for 

Langmuir model, with unit of L/mg. We plot 1/qe vs 1/Ce and fit it with linear regression. The 

slope would be 1/(qmKL) while the intercept in the y axis being 1/qm.  
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The Freundlich isotherm is fitted using the following equation:  

 

 

where KF (mg1-1/nL1/ng-1) and n are Freundlich constant, representing adsorption capacity and 

adsorption intensity, respectively.198 We plot lnqe vs lnCe and fit the data with linear regression. 

The slop would be 1/n while the intercept in y axis being lnKF.  

The Langmuir model was plotted with solid line in Figure 5.2 for Ce and Figure 5.3 for 

La. The Freundlich model was plotted with dash line in Supporting Information Figure S5.1 for 

Ce and Figure S5.2 for La. The fitting parameters for both models and all 3 types of GO are 

summarized in Table 5.3 for Ce and Table 5.4 for La. It was clear that Langmuir model fits the 

data better than Freundlich model for both Ce and La with higher R2 values. This is consistent 

with the other research.212 So for the latter part of this chapter and discussion, we use and discuss 

only Langmuir model to fit the isotherms, and thus the adsorption capacity under each condition 

was given based on the qm in Langmuir model.  
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Figure 5.2 Adsorption isotherm for Ce3+ on three types of GO at pH 7, with isotherm fitted by Langmuir model.  

0 20 40 60 80 100 120 140 160

0

50

100

150

200

250

300

350

400

450

 GO-1

 GO-2

 GO-3

q
e
 (

m
g

/g
)

Cq (mg/L)
 

Figure 5.3 Adsorption isotherm for La3+ on three types of GO at pH 7, fitted with Langmuir model.  
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Table 5.3. Isotherm model fit result of Ce adsorption on GO at pH 7 

Isotherm Parameters GO-1 GO-2 GO-3 

Langmuir 

qm (mg/g) 301.39 ± 5.82 390.33 ± 9.56 451.07 ± 20.28 

KL (L/mg) 0.109 ± 0.009 0.052 ± 0.002 0.078 ± 0.011 

R2 0.9939 0.9947 0.9840 

Freundlich 

1/n 0.344 ± 0.45 0.800 ± 0.035 0.507 ± 0.073 

KF (mg1-1/nL1/ng-1) 68.87 ± 12.07 11.15 ± 1.19 51.05 ± 14.26 

R2 0.8943 0.7799 0.8144 

 

Table 5.4. Isotherm model fit result of La adsorption on GO at pH 7 

Isotherm Parameters GO-1 GO-2 GO-3 

Langmuir 

qm (mg/g) 318.89 ± 13.43 386.30 ± 22.45 435.77 ± 29.90 

KL (L/mg) 0.067 ± 0.010 0.156 ± 0.030 0.067 ± 0.010 

R2 0.9835 0.9705 0.9682 

Freundlich 

1/n 0.510 ± 0.069 0.402 ± 0.046 0.646 ± 0.085 

KF (mg1-1/nL1/ng-1) 34.62 ± 9.49 73.39 ± 12.47 27.81 ± 8.79 

R2 0.8211 0.8845 0.6887 
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Based on the XPS result of the GO in Table 5.1, we obtained the information about the 

quantity of the functional groups (–OH and –COOH). The more oxidized GO-3 has the most 

oxygen functional groups and GO-1 has the least functional groups. The adsorption capacity for 

Ce could reach 451.07 mg/g with GO-3 at pH 7 and 435.77 mg/g for La under same condition. 

Note that even the less oxidize GO-1 could achieve 301.39 mg/g for Ce and 318.89 mg/g for La, 

which is still higher than most of the synthetic absorbents and bio-sorbents. This was because of 

the large surface area, low density and the large amount of functional groups in the GO structure 

overall.  

5.3.3 Sorption Kinetics.  

Adsorption kinetics provides key information about the mechanism and is key for potential 

applications.213 In this work, the adsorption kinetic experiments were conducted at pH 7 for Ce3+ 

and La3+ with GO-3, which had the highest adsorption capacity for both cations. The adsorption 

capacity at each time interval q (mg/g) is shown in Figure 5.4 with solid squares and solid 

circles. It showed that after 4 hours the system reached equilibrium. Due to the long centrifuge 

time needed (2 hours) in the separation step after adsorption, we were not able to investigate the 

kinetics with time interval shorter than 2 hours.  

Figure 5.4 also showed the pH change during the 48 hours adsorption process with empty 

squares and empty circles. We can see that the pH initially decreased then reached steady state 

after 4 hours, consistent with the time needed for equilibrium in the kinetics shown in Figure 5.5. 

This also suggest that during the adsorption process, H+ was produced which could come from 

the ion exchange between the aqueous Ce3+/La3+ and the carboxyl groups on GO. This is 

consistent with other research on adsorption with GO, whereby carboxyl groups were 

responsible for the adsorption of cations via ion exchange.214, 215  
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Figure 5.4 Sorption kinetics of Ce and La on GO-3 at initial pH of 7 and pH change during the 48 hours adsorption 

period 

5.3.4 Effect of pH.  

We performed adsorption experiments over a pH range 3 – 9. For pH 8 and 9, even though we 

did not observe precipitation in either the blank (without GO) samples nor for the samples with 

GO, the Ce3+ or La3+ concentration in the aqueous solution dropped to nearly 0 ppm after ultra-

centrifuge for both samples. As pH increases, the trivalent ion undergoes complexation with OH- 

and changes from M3+ to M(OH)2+ to M(OH)2
+ to M(OH)3. Cerium (Ce3+) starts to precipitate at 

pH 7.6 as Ce(OH)3 
216 and lanthanum (La3+) starts to precipitate at around pH 8.5 as La(OH)3.

217 

The general hydrolysis reactions of Ce3+ and La3+ are as follows:  
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The M3+ represents Ce3+ or La3+. The individual species percentage could be calculated as 

followed:  

 

 

 

 

The complexation (hydrolysis) constants for Ce and La were summarized in Table 5.5 

and the species diagrams were shown in Figure 5.5, assuming all species remaining dissolved.  

Table 5.5 Hydrolysis constants of Ce3+ and La3+ with OH-.216, 217  

 Ce3+ La3+ 

logβ1 -8.41 -8.5 

logβ2 -17.6 -17.2 

logβ3 -27.23 -25.9 
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Figure 5.5 Species diagram of aqueous Ce(III) and La(III) at different pH without precipitation and redox reaction. 

Calculation based on the complexation of Ce3+ and La3+ with OH- only.  

Based on our observation and these calculations, we thus limited our focus on pH regions 

without the precipitation potential, i.e., pH 3 – 7. We used adsorption capacity to evaluate the 

effect of pH on the adsorption. The qm at different pH for the 3 type of GO is shown in Figure 

5.6A for Ce and Figure 5.7B for La, and the detailed isotherm of each condition (pH level, GO 

type) is provided in the Supporting Information. It is clear that as pH is increased, adsorption 

capacity also increased. Specifically, as pH level increased from 3 to 7, the adsorption capacity 

increased by 3.5 – 5.5 times for Ce and 3.2 – 4.3 times for La. This trend is consistent with the 

other reports.189, 194, 198 The reason for this increase in adsorption capacity is due to more 

deprotonated –COOH groups which have stronger electrostatic interaction with the trivalent 

cations (compared to the acidic form). This is also consistent with the zeta potential data in 

Chapter 2 that as pH increased, the zeta potential of GO became more negative. Another reason 

could be that at lower pH, GO became less negatively charged and the nanoparticles aggregate, 

thus lose available surface area.198 Even though Ce3+  and La3+ could undergo complexation with 
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OH-, the dominant species were still positive charged ions below pH 7, which kept the 

adsorption preferable under for an electrostatic-based interaction.216, 217   
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Figure 5.6 Ce3+ (A) and La3+ (B) adsorption capacity of three types of GO (as stated in the Experimental section) 

under different pH level (pH 3 – 7). Capacity was calculated based on the qe in Langmuir isotherm.  

5.3.5 Effect of Ionic Strength.  

For target cation adsorption with GO, coexisting cations will potentially have competing effects 

during adsorption processes. Here we used NaCl to control the ionic strength, mimicing different 

environmental scenarios: 1 mM NaCl for drinking water, 10 mM NaCl for surface water, 100 

mM NaCl for groundwater and 600 mM NaCl for seawater, at both pH 5 and pH 7.218, 219 We 

used maximum capacity to evaluate the effect of ionic strength on the adsorption. The qm value 

for each type of GO under different ionic strength level is tabulated in Table 5.6 for Ce and 

Table 5.7 for La, and the detailed isotherm for each condition is provided in the Supporting 

Information. It is clear that as ionic strength increases, the adsorption capacity decreases, since 

the addition of Na+ would compete the limited adsorption sites with the target ions. This trend is 

also consistent with other reports.212 Note that the decrease of the adsorption capacity was more 

severe at pH 7 than at pH 5. One reason could be that at higher pH, Ce3+ and La3+ formed 
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complex with OH- and the negative charge was neutralized to -2, -1 and 0, thus to be more 

vulnerable to the Na+ competing the adsorption sites, given that electrostatic forces play an 

important role in these adsorption process. This result also suggests that adsorption was due to 

outer sphere complexation and ion exchange, rather than more stable inner sphere 

complexation.215, 220 

Table 5.6 Adsorption capacity of Ce on GO under different ionic strength 

 pH 5 pH 7 

NaCl (mM) GO-1 GO-2 GO-3 GO-1 GO-2 GO-3 

0 185.01 220.55 304.01 301.39 392.42 448.82 

1 172.75 210.46 286.21 297.08 396.44 438.82 

10 132.44 169.64 257.12 237.15 314.59 360.49 

100 76.66 131.24 172.09 152.13 195.74 234.13 

600 49.81 84.85 105.60 83.80 144.06 161.47 

 

 

 

 

 

 



109 

 

Table 5.7 Adsorption capacity of La on GO under different ionic strength 

 pH 5 pH 7 

NaCl (mM) GO-1 GO-2 GO-3 GO-1 GO-2 GO-3 

0 221.48 238.28 302.23 318.89 386.30 435.77 

1 207.75 237.17 297.54 326.54 378.49 421.15 

10 181.69 227.36 256.23 271.57 308.57 358.47 

100 102.97 135.21 157.59 174.74 192.05 213.42 

600 50.38 78.19 102.68 91.93 96.44 125.35 

 

5.4 Conclusion 
Work in this chapter collectively show that graphene oxide has high potential for rare earth 

element sorption and separation, with adsorption capacities for aqueous Ce(III) and La(III), 

being as high as 451.07 mg/g for Ce and 435.77 mg/g for La. The adsorption equilibrium 

followed Langmuir isotherm for all types of GO explored. The more oxidized GO, with higher 

quantity of functional groups, possessed higher adsorption capacity for all cases. The adsorption 

capacity increased as solution pH increased from 3 to 7. We proposed that adsorption mechanism 

is likely due to ion exchange and outer sphere complexation since the capacity decreased 

significantly with increasing solution ionic strength.  
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Chapter 5: Supporting information.  
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Figure S5.1. Adsorption isotherm for Ce3+ on 3 types of GO at pH 7, fitted with Freundlich model. 
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Figure S5.2. Adsorption isotherm for La3+ on 3 types of GO at pH 7, fitted with Freundlich model. 
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Figure S5.3 GO-1 adsorption isotherm for Ce3+ at different pH level (3 – 7), fitted with Langmuir isotherm.  
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Figure S5.4 GO-1 adsorption isotherm for La3+ at different pH level (3 – 7), fitted with Langmuir isotherm 
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Figure S5.5 GO-2 adsorption isotherm for Ce3+ at different pH level (3 – 7), fitted with Langmuir isotherm 
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Figure S5.6 GO-2 adsorption isotherm for La3+ at different pH level (3 – 7), fitted with Langmuir isotherm 
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Figure S5.7 GO-3 adsorption isotherm for Ce3+ at different pH level (3 – 7), fitted with Langmuir isotherm 
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Figure S5.8 GO-3 adsorption isotherm for La3+ at different pH level (3 – 7), fitted with Langmuir isotherm 



114 

 

0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

 0 mM

 1 mM

 10 mM

 100 mM

 600 mM

q
e
 (

m
g

/g
)

Cq (mg/L)
 

Figure S5.9 Ce3+ adsorption on GO-1 at pH 5 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.10. La3+ adsorption on GO-1 at pH 5 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 



115 

 

0 20 40 60 80 100 120 140 160 180

0

100

200

300

 0 mM

 1 mM

 10 mM

 100 mM

 600 mM

q
e
 (

m
g

/g
)

Cq (mg/L)
 

Figure S5.11 Ce3+ adsorption on GO-1 at pH 7 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.12 La3+ adsorption on GO-1 at pH 7 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.13 Ce3+ adsorption on GO-2 at pH 5 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.14 La3+ adsorption on GO-2 at pH 5 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.15 Ce3+ adsorption on GO-2 at pH 7 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.16 La3+ adsorption on GO-2 at pH 7 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.17 Ce3+ adsorption on GO-3 at pH 5 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.18 La3+ adsorption on GO-3 at pH 5 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.19 Ce3+ adsorption on GO-3 at pH 7 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Figure S5.20 La3+ adsorption on GO-3 at pH 7 with increasing ionic strength (0, 1, 10, 100, 600 mM), fitted with 

Langmuir isotherm 
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Table S5.1 Langmuir model parameters for Ce3+ adsorption on GO 

 GO-1 GO-2 GO-3 

pH qm KL R2 qm KL R2 qm KL R2 

3 54.54 0.064 0.9795 97.91 0.028 0.9805 128.62 0.025 0.9875 

4 81.44 0.088 0.9896 153.56 0.032 0.9903 201.30 0.022 0.9941 

5 184.54 0.119 0.9826 222.64 0.037 0.9913 303.30 0.030 0.9929 

6 231.64 0.090 0.9898 317.99 0.035 0.9977 372.50 0.041 0.9860 

7 301.39 0.109 0.9939 390.33 0.052 0.9947 451.07 0.078 0.9840 

 

Table S5.2 Langmuir model parameters for La3+ adsorption on GO 

 GO-1 GO-2 GO-3 

pH qm KL R2 qm KL R2 qm KL R2 

3 74.23 0.024 0.8478 109.55 0.050 0.9915 138.22 0.030 0.9895 

4 136.18 0.024 0.9661 155.09 0.045 0.9775 192.69 0.053 0.9769 

5 221.48 0.114 0.9940 238.28 0.042 0.9831 302.23 0.057 0.9748 

6 279.62 0.099 0.9750 291.37 0.127 0.9598 362.54 0.065 0.9806 

7 318.89 0.067 0.9835 386.30 0.156 0.9705 435.77 0.067 0.9682 
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Table S5.3 Langmuir model parameters for Ce3+ adsorption on GO with presence of NaCl at pH 5 

 GO-1 GO-2 GO-3 

NaCl qm KL R2 qm KL R2 qm KL R2 

0 185.01 0.119 0.9849 220.55 0.039 0.9915 304.01 0.029 0.9938 

1 172.75 0.048 0.9782 210.46 0.032 0.9988 286.21 0.021 0.9904 

10 132.44 0.044 0.9616 169.64 0.022 0.9968 257.12 0.033 0.9948 

100 76.66 0.082 0.9756 131.24 0.020 0.9931 172.09 0.028 0.9954 

600 49.81 0.058 0.9892 84.85 0.031 0.9982 105.60 0.035 0.9880 

 

Table S5.4 Langmuir model parameters for Ce3+ adsorption on GO with presence of NaCl at pH 7 

 GO-1 GO-2 GO-3 

NaCl qm KL R2 qm KL R2 qm KL R2 

0 301.39 0.109 0.9939 392.42 0.059 0.9951 448.82 0.079 0.9854 

1 297.08 0.052 0.9945 396.44 0.047 0.9932 438.82 0.032 0.9912 

10 237.15 0.052 0.9896 314.59 0.025 0.9955 360.49 0.025 0.9918 

100 152.13 0.041 0.9940 195.74 0.028 0.9961 234.13 0.047 0.9910 

600 83.80 0.032 0.9939 144.06 0.023 0.9979 161.47 0.044 0.9919 
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Table S5.5 Langmuir model parameters for La3+ adsorption on GO with presence of NaCl at pH 5 

 GO-1 GO-2 GO-3 

NaCl qm KL R2 qm KL R2 qm KL R2 

0 221.48 0.114 0.9940 238.28 0.042 0.9831 302.23 0.057 0.9748 

1 207.75 0.059 0.9848 237.17 0.033 0.9818 297.54 0.037 0.9881 

10 181.69 0.052 0.9973 227.36 0.030 0.9979 256.23 0.022 0.9913 

100 102.97 0.057 0.9899 135.21 0.018 0.9926 157.59 0.031 0.9953 

600 50.38 0.071 0.9955 78.19 0.027 0.9979 102.68 0.029 0.9934 

 

Table S5.6 Langmuir model parameters for La3+ adsorption on GO with presence of NaCl at pH 7 

 GO-1 GO-2 GO-3 

NaCl qm KL R2 qm KL R2 qm KL R2 

0 318.89 0.067 0.9835 386.30 0.156 0.9705 435.77 0.067 0.9682 

1 326.54 0.105 0.9288 378.49 0.063 0.9741 421.15 0.046 0.9672 

10 271.57 0.077 0.9847 308.57 0.047 0.9859 358.47 0.025 0.9954 

100 174.74 0.183 0.9920 192.05 0.058 0.9913 213.42 0.026 0.9853 

600 91.93 0.053 0.9971 96.44 0.088 0.9782 125.35 0.023 0.9949 
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Chapter 6: Conclusions and 

Recommendations  

6.1 Conclusions  
Taken together, this research provided fundamental understanding that directly expanded the 

current state of art graphene oxide material synthesis, environmental reaction pathways and 

applications including water treatment membranes and heavy metal adsorption. The findings 

framed the basic chemical-physical guidelines and corresponding properties for graphene oxide 

synthesis and application in advanced water treatment process, among others.  

6.1.1 Graphene Oxide Synthesis and Characterization 

1) The temperature of the reaction of graphite oxidation by KMnO4 could lead to carbon 

oxidation state and yield change of the produced graphene oxide. The C-C/C=C percentage 

changed from 56.33% at low temperature to 45.21% at high temperature up to 50 °C in stage 1 

and 90 °C in stage 2, while the yield was from 33.9% to 65.4%.  

2) The increase of reaction time had less evident effect on carbon oxidation state of produced 

graphene oxide. However, longer reaction time improved the yield significantly, from 26.4% to 

55.3% at medium temperature as the reaction time increased from 1 h in stage 1 and 0 min in 

stage 2, to 4 h in stage 1 and 120 min in stage 2.  

3) The oxidation ratio did not change the carbon oxidation state much due to the sufficient 

surface oxidation of graphite, but changed the yield significantly due to the capacity of oxidizing 

the inner part of graphite particles, resulting the yield vary from less than 10% to 50% – 75% 

when the oxidant ratio changed from 1:1 to 5:1.  
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4) Longer sonication time achieved higher yield yet less oxidized graphene oxide, due to the 

exfoliation of the less oxidized inner layer of graphitic oxide.  

5) More oxidized graphene oxide more negative zeta potential, slightly smaller hydrodynamic 

size distribution, higher critical coagulation concentration against Na+ and Mg2+, broader Raman 

peaks, smaller ID/IG ratio and lower ratio of weight left in TGA after the temperature increased to 

1000 °C 

6.1.2 Graphene Oxide Photo-Transformation by Free Chlorine.  

1) Graphene oxide was readily transformed within 2 hours by free chlorine under light 

irradiation. The reaction was mainly due to radical attacking and graphene oxide was further 

oxidized.  

2) The reaction was first order to graphene oxide and pseudo-first order to initial free chlorine. 

The reaction rate constant increased with lower pH, higher dissolved oxygen concentration and 

smaller initial graphene oxide coupon size.  

3) Graphene oxide fragmentation was confirmed by TEM and product with smaller molecular 

weight was detected by mass spectrometry, with molecular weight of 200 Da to 1000 Da.  

4) Carbon dioxide was detected as product to confirm partial mineralization of graphene oxide. 

The carbon balance was well established between the gas phase and the aqueous phase.  

6.1.3 Chlorination Effect on Graphene Oxide Membrane under Light 

Irradiation 

1) Graphene oxide membrane was synthesized and after reaction with 100 mg/L free chlorine 

under light irradiation, ~15% carbon loss was detected in the aqueous solution, while less than 

10% carbon loss was detected in dark condition.  
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2) The graphene oxide membrane was further oxidized by free chlorine under light irradiation 

and lower pH led to more oxidized carbon. After the free chlorine was depleted, the photo-

reduction occurred and the functional groups on the membrane surface were partially removed.  

3) After oxidation by free chlorine under light irradiation, the surface roughness and water flux 

increased, while after photo-reduction, the surface roughness and water flux decreased, 

indicating a direct relationship between the functional group (hydrophilicity), surface roughness 

and the water flux.  

6.1.4 Graphene Oxide Application on Rare Earth Metal Adsorption 

1) The adsorption of cerium and lanthanum onto graphene oxide was described with Langmuir 

isotherm rather than Freundlich isotherm. The adsorption capacity reached 451.07 mg/g for 

cerium and 435.77 mg/g for lanthanum.  

2) More oxidized graphene oxide had higher adsorption capacity due to more functional groups 

providing adsorption site. As pH increased, the adsorption capacity increased, due to more 

negative zeta potential of graphene oxide.  

3) As ionic strength increased, the adsorption capacity decreased, suggesting that the adsorption 

was due to electrostatic interaction, ion exchange and outer-sphere complexation, rather than 

inner sphere complexation or chemical bonding.  

6.2 Recommended Future Work 

6.2.1 Graphene Oxide Synthesis and Characterization  

1) For graphene oxide with multiple functional groups, it would be beneficial to quantify the –

OH, -COOH, C-O-C group separately, among others, to better illustrate the mechanisms of 

reactions.  
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2) By tuning the synthesis parameters, design of graphene oxide nanoparticles would be 

achieved, with size control, desirable functional groups, mechanical properties and electronic 

properties, among others.  

6.2.2 Graphene Oxide Environmental Fate and Transport 

1) To better understand the reaction mechanisms, better product identification method should be 

established, to clarify the chemical structure of the product.  

2) Other environmental components could be taken into consideration, such as NOM, ionic 

strength and light intensity.  

3) The toxicity and transport properties of the product could be evaluated to better understand the 

environmental implication.  

6.2.3 Graphene Oxide Composite Membrane Modification and Stability 

1) The reaction in the presence of high concentration of salt, NOM and micro-organisms could 

be evaluated, to better simulate the actually operation environment.  

2) The rejection of salt, organic compound (methylene blue) and proteins (BSA) before and after 

reaction could be investigated for better evaluation of the performance change.  

3) The possible restoration by photo-reduction of graphene oxide membrane after oxidation of 

free chlorine could be explored to establish the pathway of membrane clean (with free chlorine) 

and regeneration. 

4) The reaction could be investigated with membrane with graphene oxide/reduced graphene 

oxide/modified graphene oxide composite with other polymer/metal oxide/ionic liquid to 

establish the library of membranes with possible chlorine-resistance.  
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6.2.4 Graphene Oxide Composite for Heavy Metal Adsorption  

1) Graphene oxide could be chemically modified to have other functional groups, such as –NH2 

or –SH, among others, or grafted with polymers/metal oxides/ionic liquids for better adsorption 

and separation performance, such as higher adsorption capacity, shorter equilibrium time and 

higher selectivity toward specific element.  

2) Desorption and regeneration of the graphene oxide would be another important aspect for 

research, as well as the recovery of the rare earth metal for recycling and reuse.  
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