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Experimental studies of plant development have yielded many insights into gene regulation, reveal-

ing interactions between core transcriptional and post-transcriptional regulatory pathways present

in all land plants. This work describes a direct connection between the three main small RNA-

transcription factor circuits controlling leaf shape dynamics in the reference plant Arabidopsis

thaliana. We used a high-throughput yeast 1-hybrid platform to identify factors directly binding

the promoter of the highly specialized ARGONAUTE7 silencing factor. Two groups of devel-

opmentally significant microRNA-targeted transcription factors were the clearest hits from these

screens, but transgenic complementation analysis indicated that their binding sites make only a

small contribution to ARGONAUTE7 function, possibly indicating a role in fine tuning. Timelapse

imaging methodology developed to quantify these small differences may have broad utility for plant

biologists. Our analysis also clarified requirements for polar transcription of ARGONAUTE7. This

work has implications for our understanding of patterning in land plants.
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Chapter 1

Introduction

Biological form and function require spatial and temporal control of gene expression. This control

is achieved using combinatorial regulation at several different steps, including transcription, RNA

maturation, translation, post-translational modification, and turnover. Some of these elaborated

mechanisms may have facilitated the emergence of multicellularity.

RNA silencing processes operate along a continuum from transcriptional to post-transcriptional

regulation in nearly all eukaryotes. In plants and animals, one important function of RNA silencing

is post-transcriptional regulation of sequence-specific transcription factors (TFs). Diversification

of TF molecular complexes and chromatin remodeling factors appears correlated with organismal

complexity [1]. The DNA and RNA binding sites of sequence-specific regulators often control the

expression of nearby genes, that is, they act in cis. Changes in cis-regulatory elements such as

the binding sites of TFs and microRNAs (miRNAs, described below) provide one mechanism for

morphological evolution [2, 3], via changes in the timing and location of gene expression.

This chapter introduces key RNA-guided regulatory pathways and describes the developmental

context in which they operate. I describe several conserved small RNA-TF modules that act near

the top of regulatory hierarchies controlling several aspects of plant growth (Figure 1.1). These
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examples show the importance of understanding the transcriptional basis for specialization among

the ARGONAUTES (AGOs) that effect small RNA function, and also highlight the importance and

the utility of studying vegetative growth using the model plant Arabidopsis thaliana. Building on

several recent reviews [4–6], I make the case that densely connected sets of conserved miRNA-TF

pairs define core networks controlling the development of leaves and other organs. I highlight the

involvement of the AGO7 gene in both timing and patterning, and outline why AGO7 was chosen

for study in this work described here.

Figure 1.1: Many AGO-small RNA complexes control cellular and morphological processes by
repressing master regulator TFs.

1.1 Silencing mechanisms in eukaryotes

Small RNA molecules guide a number of sequence-specific responses; the core molecular mecha-

nisms common to silencing pathways are schematically illustrated in Figure 1.2. At the highest

level, small RNAs can be classified based on the type of structured RNA from which they are

processed: short interfering RNAs (siRNA) are produced from double-stranded RNA, whereas

microRNAs (miRNA) are excised from imperfect hairpin foldbacks [7, 8]. miRNA were initially

identified as regulators of developmental timing in the nematode Caenorhabditis elegans [9, 10],

and subsequently shown to regulate a very broad array of processes. Chemically similar siRNA

molecules were identified during analyses of transgenic and virus-infected plants [11], which was

an important indication that these RNAs function in diverse eukaryotes.1

1 There are several good historical reviews of this subject, including references 12–15.

2



Figure 1.2: Core steps of RNA silencing: DICER proteins cleave double-stranded (ds)RNA and
self-complementary RNA foldbacks into small RNA duplexes. These small RNAs are loaded into
ARGONAUTE (AGO) proteins and guide targeting of other RNAmolecules via base-pairing. AGO
targeting can lead to endonucleolytic cleavage and/or other molecular outcomes. RNA-dependent
RNA polymerase (RDR/RdRP) proteins convert some small RNA targets into dsRNA, yielding
new substrates for DICER proteins.
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1.1.1 Diverse small RNAs are processed from structured RNA

Distinct biogenesis pathways generate small RNAs that guide specific AGO molecular functions

(Figure 1.3). Plants have several specializedDICER-like (DCL) proteins that produced small RNAs

from structured RNA [16] whereas many animal lineages have only a single DICER [17]. siRNAs

often function in sequence-specific defense against nucleic acid parasites (via RNA cleavage or

repressive DNA methylation), whereas miRNA generally regulate endogenous genes.2 NoMIRNA

gene families are conserved between eukaryote kingdoms, and there are a number of differences

between miRNA biogenesis in plants and animals [18]. This pattern suggests that antivirus or

antitransposon silencing pathways were co-opted for endogenous gene regulation independently in

both animal and plant lineages.3 Silencing can be conceptualized as having three main functions.

1. Transposon control: RDR2 and DCL3 act with the AGO4 clade to control de novo DNA

methylation, which generally represses transcription [21].4 Specialized plant-specific polymerases

(Pol IV and Pol V) act in a large multisubunit complex to synthesize transcripts, for both targeting

and dsRNA synthesis [24]. Plants lack proteins from the PIWI subfamily of AGOs, but 24-nt

siRNAs function somewhat similarly to PIWI-interacting (pi)RNAs to control transposons in plant

reproductive cells [25–27]. Transcriptional silencing can act on transgenes and sequence-similar

endogenous loci, possibly because of their resemblance to highly-transcribed transposons or virus

2 The term “RNA interference” is often used to explicitly refer to siRNA but not miRNA pathways; usage is not
consistent. I use the broader term “RNA silencing” [14] to emphasize the commonality and connections between
transcriptional and post-transcriptional silencing (Figure 4.2). Plant phased siRNAs often have regulatory functions
that are not defensive per se, as described in sections 1.1.2 and 1.2.2.

3 Another possibility is that miRNA regulation was functional in a common ancestor of plants, animals, and
possibly other eukaryotes, and that any ancestral MIRNA gene families have either been lost or obscured by by
sequence divergence over time [18]. Some fungi and oömycetes have small-RNA-producing loci that can be reasonably
classified as MIRNA [19, 20], but little is known about the function of these genes.

4 A single report has indicated that A. thaliana AGO3 also binds 24-nt heterochromatic siRNAs and functions in
DNA methylation [22]. A. thaliana AGO2 and AGO3 are products of a recent tandem duplication, and independent
duplications of AGO2 occurred in other plant clades [23], so it remains to be seen if this function is conserved.
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RNA.5 RNA-directed DNA methylation may also contribute to control of chromatin structure at

loci other than transposons, with possible functions in development, intercellular communication,

and large-scale chromatin packing [21].

Figure 1.3: Specialized silencing pathways in A. thaliana. Specific DICER-like (DCL) proteins
produce small RNAs, either from imperfect foldbacks (miRNA pathway) or from double-stranded
RNA (siRNA pathways). The resulting small RNAs are loaded into different AGO proteins
depending on their length, 5′ nucleotide, foldback structure, and possibly other unknown factors;
see also Figure 1.4. Viral substrates for small RNA production are thought to include dsRNA
replication intermediates, self-complementary folded regions of genomic RNA, and/or dsRNA
synthesized by host RNA-dependent RNA polymerases (RDRs) during the silencing amplification
phase.

2. Antiviral defense: Direct cleavage of viral RNA by DCL2 and DCL4 makes a large contribu-

tions to defense [16, 31, 32]. The small RNA duplexes produced by such “dicing” are loaded into

5 A few early examples were particularly important in the recognition of silencing phenomena. One dramatic
example was photobleached flowers in transgene-overexpressing petunia plants, due to silencing of endogenous pigment
biosynthesis genes [28, 29]. Similar silencing of selectable markers and reporters provided important tools for genetic
analysis of these pathways [13, 30].
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AGO proteins which cleave virus RNA and can likely trigger amplification of silencing and immu-

nization of distal tissues [33]. Nearly all plant viruses encode at least one protein that can suppress

silencing responses at any number of steps [32], indicating that RNA silencing is a natural defense

mechanism. Viral suppressors interfere with miRNA function [34, 35], providing one overarching

explanation for the variety of developmental defects induced by virus infection, including total loss

of polarity in “shoestring” leaves [36].

3. Endogenous gene regulation: Plant miRNA act by repressing endogenous transcripts, in-

cluding many TF mRNAs. Almost all plant miRNA are produced by DCL1, together with a group

of other biogenesis factors [37], and are loaded into AGO1. ago1 and dcl1 mutants were identified

based on their pleiotropic developmental defects [38, 39], caused by perturbation of the regulatory

circuits described below. Many plant miRNA repress their targets by endonucleolytic cleavage

(“slicing”), but other outcomes are possible, as discussed below and in section 4.4.

1.1.2 AGO-small RNA complexes have specialized molecular functions

PlantAGO genes can be grouped into threemain clades, named after theirA. thaliana representatives

(Figure 1.4). Similar AGO proteins generally have similar molecular functions: AGO4/6/9 proteins

function in RNA-directed DNA methylation [40], while AGO1/10/5 and AGO2/3/7 clade AGOs

function primarily in post-transcriptional regulation [23, 41]. Several different AGOs function in

defense against RNA and DNA viruses [33].6

6 AGO2 has the most prominent antiviral role, for mechanistically unclear reasons—see Appendix A. AGO2 also
functions in antibacterial defense signaling with the complementary “star” strand of miR393 (miR393∗; reference 42)
and in DNA double-strand break repair [43, 44].
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Figure 1.4: Cladogram illustrating the relation of the ten AGO genes of A. thaliana, with 5′
nucleotide loading determinants and biological functions indicated. For AGO10 and AGO7, no 5′
determinant is listed, because each binds essentially just one miRNA species. (Sections 1.2.1 and
1.2.2 describe the functions of AGO10-miR166 and AGO7-miR390 complexes, and Appendix A
provides additional references and information on antiviral roles). Tree was inferred with the
Molecular Evolutionary Genetic Analysis software tool; bootstrap values from 1,000 replicates are
indicated. See reference 23 for a phylogenetic tree of AGO genes across the plant kingdom.

AGO-small RNA complex binding can trigger production of additional small RNAs from target

transcripts. The resulting siRNAs are trans-acting (tasiRNA), but can also act in cis on other RNA

from the same locus [45–47]. The most deeply conserved example is the action of the AGO7-

miR390 complex at two sites on TAS3 transcripts [48–50], as illustrated in Figure 1.5. AGO7

cleaves one site, setting the register for “phased” dicing at precisely spaced positions by DCL4 after

dsRNA synthesis by RDR6. AGO7 may recruit the SGS3 protein7 to stabilize the initial cleavage

product and/or recruit RDR6 (Figure 1.5). The function of the second noncleaved miR390 binding

site is unclear, and other single-site targeting events can also trigger phased siRNA production,

including by a small subset of AGO1-small RNA complexes [47]. TAS3 tasiRNA are bound by

AGO1 and function in timing and patterning, as described below.

7 The SGS3 gene was identified (together with RDR6) based on suppressor of gene silencing mutants [51, 52].
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Figure 1.5: AGO7-triggered biogenesis of TAS3 tasiRNAs via RNA-directed RNA synthesis and
processive dicing. AGO7 specifically binds miR390 and acts at two sites on noncoding TAS3
transcripts, as described in the text. TAS3 tasiRNAs are loaded into AGO1 and cleave ARF target
RNAs. Recent progress in understanding these molecular events is discussed further in section 4.4.8

1.1.3 Many plant miRNA cleave conserved TF mRNA targets

Nine MIRNA gene families are conserved in essentially all land plants [54–56]. The products of

seven of these gene families regulate TFs that direct developmental programs (Table 1.1).9 The

corresponding mature miRNA are produced at relatively high levels, and were therefore among

the first small RNAs identified by initial cloning and sequencing efforts [59–61]. Corresponding

8 As noted in the acknowledgements above, this diagram and the last three were adapted from related figures made
by others. See also summary figures in references 48, 50, and 53.

9 The other two conserved families (MIR408 and MIR395) function in responses to abiotic stress [57, 58].
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Table 1.1: Deeply conserved families of plantMIRNA, their conserved transcription factor targets,
and the developmental processes they regulate. The upper section of the table lists seven of the nine
MIRNA families likely present in the last common ancestor of all land plants. The lower section
lists four additional families conserved in angiosperms. Mature miR390 does not directly target
transcription factor mRNA, but is listed because it indirectly regulates ARF genes, as discussed in
the text.

MIRNA gene family TF target family Developmental roles in A. thaliana
miR156/miR529 SBP/SPL Leaf initiation and shape, flowering, lateral root growth
miR159/miR319 MYB and TCP Leaf margin and flower patterning, senescence
miR160 ARF Seed, leaf, root, and flower patterning
miR166 HD-ZIP Embryo, leaf, and root patterning
miR171 GRAS Shoot branching, light response
miR390 (ARF) Leaf and flower/fruit shape, lateral root growth
miR396 GRF Control of cell proliferation in leaves
miR164 NAC Leaf and flower margin development
miR167 ARF Root architecture and flower patterning
miR169 NF-YA Root architecture, stress-induced flowering
miR172 AP2 Timing and patterning of flower development

loci and binding sites were quickly shown to be present in rice, suggesting an ancient origin [62],

which has been confirmed by analysis of older plant lineages such as mosses [63–65]. All of these

miRNA-target pairs were likely present in the last common ancestor of all land plants.

Ten additional MIRNA families are present in flowering plants (angiosperms), but not in mosses,

spike mosses, or conifers. Four of these families have important roles in regulating development

(Table 1.1, bottom half). Additionally, miR393 and miR394 target transcripts encoding auxin

signaling F-box proteins (AFB1, AFB2, AFB3, and TRANSPORT INHIBITOR RESPONSE1)

and the LEAF CURLING RESPONSIVENESS F-box protein [66–69]. miRNA produced from

two other families conserved in flowering plants (MIR168 and MIR162) target AGO1 and DCL1,

providing homeostatic feedback to the core miRNA machinery [70–73].
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In addition to these conserved MIRNA families, many MIRNA loci are limited to specific plant

lineages, indicating frequent appearance and disappearance [74–78]. TheseMIRNA genes can drift

rapidly, in part because they are not subject to reading frame constraints. New miRNA are often

products of inverted duplications and retain complementarity to their parent loci [54, 79]. Other

miRNA appear spontaneously [80], and may not have any function or targets at all [81].

SeveralMIRNA families are conserved across animal lineages [82, 83]. The first described miRNA

is nematode-lineage-specific, but the second (let-7, also a regulator of timing) is broadly conserved

[84, 85]. Preferential conservation analysis suggests the possibility thatmost transcripts inmammals

are miRNA targets [86]. As noted above, no MIRNA gene families show clear conservation across

kingdoms. Many of the miRNA-targeted TF families listed Table 1.1 are plant-kingdom-specific.10

Other notable groups such as homeodomain TFs are present in both plants and animals but have

rather different developmental roles in each [87]. These differences provide an opportunity for

comparative analysis.

1.2 AGO-small RNA-TF modules control plant form

As noted above, sets of miRNA targets fit the definition of cis-regulatory modules: an individual

miRNA binding site acts in cis and is subject to different constraints than other regions of a given

transcript. The small size of these binding sites can allow rapid change, though the the miRNA-TF

pairs listed in Table 1.1 are highly conserved. Coordinate changes in sets of miRNA-regulated TFs

trigger changes in the downstream targets of those TFs (Figure 1.1), and miRNA-TF target pairs can

therefore be considered together as subcircuits [4]. Because of the hierarchy of control, changes

10 The set of plant-kingdom-specific TF families includes the SPL, TCP, and ARF groups—see below for acronym
definitions and discussion.
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in an upstream regulator can have large phenotypic consequences. A single module can function

in multiple contexts, as exemplified by the network shown in Figure 1.6B, which specifies abaxial-

adaxial polarity in leaves, flowers, and fruits. Modules are also deployed differently in different

groups, as can be seen from the leaf-shape outputs of several miRNA-TF pairs: leaf architecture

changes (heteroblasty) are manifested differently in different plant groups [88, 89]. Studying

this process (often referred to as “vegetative phase change” or the “juvenile-to-adult transition”11)

has been a very productive approach to dissecting silencing functions; studies of abaxial-adaxial

polarity have been equally productive.

1.2.1 The miR166-HD-ZIP module controls shoot identity and polarity

HD-ZIPs (homeodomain leucine-zipper TFs) have multiple functions in patterning, beginning

in embryogenesis [94, 95]. Misexpression of HD-ZIP genes in embryos can yield homeotic

transformation of the root pole into a second shoot [96]. Class IIIHD-ZIP transcripts have miR166

binding sites; mutations in these sites act dominantly, causing develomental defects, including

upward-curling leaves [62, 97–99].12 Severely affected leaves lose polarity, yielding needle-like or

trumpet structures.

It appears that the main molecular function of AGO10 is to sequester miR166 away from AGO1,

and thus increase HD-ZIP levels [100]. This process may involve AGO10-enhanced degradation

of miR166 by specific nucleases [101]. At least one HD-ZIP protein directly binds the AGO10

promoter and activates its transcription [102], creating a positive feedback loop that may explain

11 Some authors discourage the use of these terms, because of potential confusion with the reproductive transition
[90, 91]. In this document I simply refer to “early leaves” and “later leaves”, where possible—see Figure 1.7.

12 MIR165 genes also regulate HD-ZIPs in A. thaliana [62] because they derived from the MIR166 family. The
mature miRNA of these families differ at only a few nucleotide positions, so for simplicity I refer only to “miR166”
throughout. The relation between the miR156/157 and miR170/171 families is similar [62].
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Figure 1.6: Schematics of leaf primordia illustrating abaxial-adaxial (dorsal-ventral) polarity.
A. Top-view schematic showing leaf primordia (transverse cross-sections) emerging in a spiral
pattern from the flanks of the vegetative shoot apical meristem. Primordia are (pre)patterned
relative the central-peripheral axis of the shoot: the side closer to the meristem center becomes the
upward-facing surface of the leaf (specialized for photosynthesis), and the side opposite becomes
the downward-facing surface (specialized for gas exchange).
B. Schematic of longitudinal cross-section through an expanding leaf primordium, with repressive
genetic interactions controlling polarity indicated. Polarized expression of AGO10 and AGO7 is
thought to modulate the activity of their highly specific miRNA binding partners, as described in
the text. See references 92 and 93 for details on mutually antagonistic TF families.
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the adaxial and vascular expression pattern of AGO10 [103]. AGO10 contributes to maintenance of

stem cell identity in embryos [104], possibly by restricting the spread of miR166, which is known

to move between root cells [105].13

Mobile signals have been suggested to similarly contribute to leaf axis establishment, based on

experiments in which primordium-adjacent incisions disrupt leaf polarity, indicating that such

patterning is specified relative to the center of the shoot apicalmeristem [92, 110, 111].14 Candidates

for the relevant signaling molecules have included small RNAs (particularly some form of miR166

and/or TAS3 tasiRNAs) and the hypothesized lipophilic ligand(s) of Class III HD-ZIPs, but their is

no convincing evidence for either type of molecule [92]. The miR166-HD-ZIP circuit genetically

interacts with the TAS3 tasiRNA pathway, reflecting their shared involvement in control of polarity

[112].

1.2.2 The AGO7-miR390-TAS3-ARF module controls polarity and timing

AGO7 was uncovered in screens for mutants prematurely showing adult leaf traits: ago7 mutants

have elongated downward-curled leaves with increased serration and early appearance of abaxial

trichomes [113]. Additional screening uncovered several biogenesis factors [45, 114, 115] that

define the molecular pathway shown in Figure 1.5. Downward-curling of leaves often indicates

abaxialization, but ago7 mutants do not have overt polarity defects [113]. However, both ARF3 and

ARF4 specify polarity, and ARF4 mRNA accumulates adaxially [116]. The adaxial localization

13 I discuss the genetic and molecular function of AGO10 (including an apparent antiviral function) further in
Appendix A. Members of the monocot-specific AGO18 subclade also appear to compete with AGO1 for small RNA
binding: AGO18 can promote virus resistance in rice [106, 107] andmay also have specialized developmental functions
[27, 108, 109].

14 An alternative hypothesis is that these incision and ablation studies disrupted primordium prepatterning. Genetic
studies increasing favor this interpretation and point to prepatterning via depletion of auxin, as discussed briefly in
section 4.2.
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of AGO7 and other biogenesis factors suggests that TAS3 tasiRNA biogenesis is spatially limited

[117, 118], and that the gradient generated by movement of tasiRNAs may have a role in patterning,

as depicted in Figure 1.6.15 Recent evidence indicates that ARF3, also known as ETTIN, directly

responds to auxin, which modulates its physical interaction with other TFs [119, 120]. ARF

repressors also control patterning in fruits [121–123] and lateral root emergence [124, 125]. TAS3

tasiRNAs have been suggested to contribute to robustness of patterning in moss [126], and current

evidence suggests that the ARF domain and the TAS3 tasiRNA biogenesis pathway appeared

coincident with the emergence of land plants [127]. ARF3 and ARF4 mRNA levels remain

relatively constant as A. thaliana plants age [128], suggesting that their expression is not used

directly for timekeeping.

1.2.3 The miR156-SPL module controls heteroblasty and flowering

SPB/SPL TFs are a plant-specific family of master regulators named after SQUAMOSA PRO-

MOTER BINDING PROTEIN, a direct upstream regulator of the SQUAMOSA flower identity gene

[129]. SPL levels go up as plants age [130], as depicted in Figure 1.7. This timekeeping mechanism

seems to involve movement of carbohydrates to the shoot apical meristem as total photosynthetic

leaf area increases: increasing sugar levels trigger gradual repression of MIR156 transcription in

the shoot apical meristem, leading to a gradual increase in SPL levels and thus leaf shape changes

[131–133].

miR156 controls the transition from gametophytic to sporophytic growth in mosses [135, 136],

consistent with an ancient timing role. The structure of the TAS3 noncoding RNA differs in basal

plants: both miR390 (as described above) and miR156 directly target TAS3, and the resulting

15 In section 4.1, I resummarize our understanding of this pathway and critically evaluate models for patterning by
TAS3 tasiRNAs based on new results presented here and elsewhere.
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Early leaf Later leaf

Figure 1.7: Schematic illustrating temporal steps in control of leaf shape by miR156 and SPL
transcription factors. As leaf number increases, increased movement of photosynthate to the shoot
apical meristem triggers repression of MIR156 transcription, leading to an increase in SPL target
mRNA. A hypothetical threshold for SPL activity controls transitions in leaf characteristics [128,
134]. In A. thaliana this transition is manifested as a shift from round early leaves to elongated
downward-curled later leaves. See also Figure 4.1.

tasiRNAs target not only ARFs but also APETLA2 (AP2) TF mRNAs, [127, 136]. In flowering

plants TAS3 tasiRNA target ARF mRNA exclusively and the appearance of the MIR172 family

provided another mechanism for regulating AP2 family mRNAs [127]. SPLs activate MIR172

genes and thus repress their AP2 targets [137]. AP2 TFs function primarily in flower development

[138], but also affect maize leaf epidermal development [139–141]. SPL action interacts with

gibberelic acid signaling and other pathways to control flowering [142–145], and multiple SPLs

also inhibit lateral root production [146, 147].

Overexpression, miR156-resistant, and target mimic transgenic approaches all indicate that SPLs

control leaf initiation [130, 148, 149]. Overexpression of MIR156 in the maize CORNGRASS1

mutant similarly has increased leaf initiation rate and prolonged juvenility [150]. In addition to

leaf shape, SPLs control the two other main heteroblastic shoot traits of A. thaliana. They control
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trichome production via transcriptional activation of MYB TFs16 and via physical interaction with

other TFs, including miR171-target LOST MERISTEM proteins [153, 154]. SPLs were recently

shown to control timing of leaf serration by directly sequestering the TFs described in the next

section [155].

1.2.4 The miR319-TCP module controls organ margins and maturation

TCPs are a plant-specific family of basic-Helix-Loop-Helix TFs named after the maize teosinte

branched 1 locus [156], the snapdragon CYCLOIDEA flower symmetry gene [157], and two

Proliferating Cell Factors [158, 159]. This third group (PCFs) was identified in rice based on their

affinity for the promoters of proliferating cell nuclear antigen genes, reflecting the role of TCPs in

arrest of cell division during patterning of leaves and flowers [160].

There are two main classes of TCPs and the second class includes many miR319 targets [161, 162].

The importance of this targeting was revealed by activation tagging ofMIR319; downregulation of

a set of functionally redundant TCPs produces dramatic wavy leaf phenotypes [163]. Activation of

TCPs by abaxial factors is essential for proper control of margin growth to yield flat leaves [164,

165]. TCPs also control leaf senescence, in part by inducing jasmonic acid synthesis [166].

MIR319 and MIR159 genes are very close in sequence, due to their common origin, and the

combined family interacts with at least five other conserved miRNA-TF circuits. TCPs antagonize

CUP-SHAPED COTYLEDON (CUC) proteins, both through induction of MIR164 genes [167,

168], and through physically inhibiting their function as transcriptional activators [155]. As SPL

protein levels increase, they compete for TCP interaction surfaces, titrating TCP molecules away

16 MYBs have helix-turn-helix DNA-binding domains and were discovered during studies of myeloblastoma onco-
genes [151, 152]. The important miR159 target MYB33 is discussed below.
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from CUC proteins, and thus allowing the CUC regulatory program that triggers appearance of

leaf serrations to proceed [155]. An additional conserved miR159 target, MYB33, activates both

MIR156 and SPL genes [169], thought this interaction plays only a minor role in leaf shape changes.

MYB33 and TCPs activate miR167 to repress a set of ARF targets in flowers [170]. Finally, as

part of their role in controlling cell proliferation, TCPs directly activate MIR396 genes, and thus

downregulate their Grown Response Factor targets [171]. The miR396-Grown Response Factor

pair genetically interacts with TAS3 pathwaymember RDR6 [172], as do the TCP target and polarity

factor ASYMMETRIC LEAVES1 [168, 173–177].

A large number of TCPs contribute to function of the plant circadian clock [178], which interacts

with light signaling many aspects of plant development, movement, and metabolism. This type

of interaction was discovered based on a “promoter hiking” strategy [179] described below and in

Chapter 2.

1.3 Gaps in our knowledge of gene regulation in plants

Plant development is worth studying for its fundamental importance and also for its practical utility.

Master regulator TFs have long been considered attractive biotechnology targets, and the roles

of TFs in crop domestication is well established, with notable examples from the SPL and TCP

families [180–182]. Artificial miRNA and tasiRNA are useful for highly specific and predictable

knock-down [183], and manipulation of a single miRNA or TF can have large beneficial effects

[184, 185]. Mechanistic understanding can help us anticipate and quantify tradeoffs (between

plasticity and robustness, growth and defense), bypass these tradeoffs in some cases [186], and

optimize sensitivity in others, via both breeding and transgenic approaches. Plant architecture is

a major determinant of yield, and therefore central to these efforts. Overexpression of AGO7 has
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been suggested as one useful method for modulating plant architecture, with promising results in

rice and tomato [187, 188]. More broadly, altering core timing pathways identified in A. thaliana

can be used to improve characteristics of diverse crops, including trees and other biofuel feedstocks

[184, 189–193].

1.3.1 AGO genes as key control points for polarity and other processes

Thorough understanding of plant development requires understanding gene regulation at all levels.

The research outlined above has uncovered suggestive examples indicating that plant AGO proteins

act as regulatory hubs. Great progress has been made toward understanding AGO-small RNA com-

plex formation and action, but further progress will likely depend on understanding transcriptional

specialization of both AGO and small RNA genes [4]. Quantitative understanding of tissue- and

stage-specific levels of AGOs, their guide small RNAs, their targets, and their presumed interacting

proteins would enable holistic understanding of their developmental functions (Figure 1.1). We

know very little overall about how different signals activate and repress AGOs; a near-total lack

of information on the direct upstream regulators of AGO genes prevents us from reasoning about

their function and evolution. For example, we can only speculate about the mechanistic basis for

the tissue-specific defense roles of different AGOs, inferred from genetic analysis of Turnip mosaic

virus infection [194].17 A related gap, particularly relevant to the highly specialized functions of

AGO10 and AGO7, is that we do not know the order of events in polarity establishment, nor how

many of the repressive interactions involved (shown in Figure 1.6) are caused by direct TF-promoter

interactions. These antagonistic interactions have been difficult to dissect in mutants, due to all-

or-nothing transformations, pleiotropic effects, and genetic redundancy. New strategies are being

applied to assay direct action and thus sidestep issues such as redundancy.

17 See Appendix A for discussion of likely tissue-specific AGO defense roles.
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1.3.2 New resources for promoter analysis

Large collections of A. thaliana TF clones have recently been applied to identification of direct

TF-promoter interactions in two main ways. First, long regulatory sequences can be screened for

TF binding directly using yeast 1-hybrid (Y1H) systems. Use of defined clone collections has

dramatically increased the ease and throughput of this method beyond cDNA library screening; this

improved approachwas initially applied to define “gene-centered” regulatory networks inC. elegans

[195]. One notable effort in A. thaliana successfully used Y1H to circumvent genetic redundancy

in the robust core circadian transcription network [179]. Indeed, Y1H systems capitalize on the

overlapping functions between TFs: detection of multiple hits from the same family can provide

confidence, because such TF paralogs often have similar DNA-binding specificities.

A second way in which TF collections are enabling systematic investigations is by facilitating

large-scale determination of in vitro DNA binding specificities with protein-binding microarrays

[196, 197], “DNA affinity purification sequencing” [198], and a variety of other methods [199].

The resulting specificity models, now available for essentially all families of plant TFs, allow

genome-wide prediction of direct binding. Y1H and specificity-model-based prediction tools are

complementary to each other, and also to other methods such as chromatin immunoprecipitation.

These methods are particularly useful when combined with information on function, co-expression,

and/or DNA accessibility [200].

1.3.3 New tools for automated measurement of growth and development

Another bottleneck to studies of development is simple measurement of growth at the organ and

whole-organism level. Many have suggested that this gap can be addressed using improvements

19



in optics, automation, and computation [201], paralleling the recent renaissance in microscopy

methods. Most discussion of automated imaging methods have focused on their potential for

accelerating crop breeding, but studies of model systems can benefit as well. Relative ease of

imaging has been essential for studies of fly embryos, whole worms, and other systems. The

A. thaliana rosette is larger than these small model animals, but has other features that make it

well-suited to imaging and interesting to computer vision experts [202]. New automated imaging

methods remain inaccessible to many laboratories because of their high cost, an issue I discuss at

length below.

1.3.4 Overview of contributions

This dissertation has two main messages, which are evident in the framework outlined above

(particularly references 50, 113, 117, and 202) and were reinforced by the results I obtained.

• AGO7 is a key regulator of plant growth that integrates temporal and spatial signals.

• Low-cost timelapse imaging methodology is rapidly improving and likely to become a stan-

dard tool, which will be particularly beneficial for A. thaliana geneticists.

Our main goal, described in the next chapter, was to identify direct upstream regulators of the three

AGO genes central to post-transcriptional control of development (AGO7, AGO10, and AGO1),

and then characterize related functional linkages. Based on initial results (subsection 2.3.1), efforts

focused on AGO7. Surprisingly, screening did not identify factors known to control polarity, but

rather suggested a role for miRNA-targeted TFs involved in different aspects of timing, i.e. leaf

heteroblasty. Functional analysis defined requirements for two short proximal promoter regions

(Figure 2.17). In the course of this functional characterization (described in section 2.3.3), I
20



refined a simple low-cost method for timelapse photography of rosette growth. A technical report

describing this methodology (chapter 3) should be useful to many labs, given the widespread

interest in this subject. A series of appendices (B to D) further substantiate the argument that

imaging of vegetative growth is becoming a powerful tool. Collectively, this work advances our

knowledge of leaf development in an important model system.
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Direct regulation of ARGONAUTE7 by

miRNA-targeted transcription factors
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2.1 Abstract

ARGONAUTES are the central effector proteins of RNA silencing which bind target transcripts in

a small RNA-guided manner. Arabidopsis thaliana has ten ARGONAUTE (AGO) genes, with spe-

cialized roles in RNA-directed DNA methylation, post-transcriptional gene silencing, and antiviral

defense. To better understand specialization amongAGO genes at the level of transcriptional regula-

tion we tested a library of 1541 transcription factors for binding to the promoters of AGO1, AGO10,

and AGO7 using yeast 1-hybrid assays. A ranked list of candidate DNA-binding TFs revealed

binding of the AGO7 promoter by a number of proteins in two families: the miR156-regulated SPL

family and the miR319-regulated TCP family, both of which have roles in developmental timing

and leaf morphology. Possible functions for SPL and TCP binding are unclear: we showed that

these binding sites are not required for the polar expression pattern of AGO7, nor for the function of

AGO7 in leaf shape. Normal AGO7 transcription levels and function appear to depend instead on

an adjacent 124-bp region. Progress in understanding the structure of this promoter may aid efforts

to understand how the conserved AGO7-triggered TAS3 pathway functions in timing and polarity.

2.2 Introduction

Small RNAs regulate developmental timing and morphogenesis in a wide range of eukaryotes.

Heterochronic (abnormal timing) mutants of the model nematode Caenorhabditis elegans led to

the discovery of the first microRNA (miRNA)-target pair [9, 10]. Similar screens for A. thaliana

heterochronic mutants led to elucidation of a specialized pathway in which trans-acting small

interfering (tasi)RNA are produced from noncoding TAS3 transcripts [45, 113, 114, 203]. Genetic

analysis of leaf morphology has also led to the discovery of several other aspects of RNA silencing,
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including the cloning of the first ARGONAUTE (AGO) gene [38]. AGO proteins bind small RNAs

and effect small-RNA-guided regulatory changes. Several families ofMIRNA genes are conserved

in all land plants [54], and miRNA from the majority of these families repress TFs controlling

developmental programs, suggesting that AGO-miRNA-TF circuits became embedded in the core

regulatory networks for the plant body plant early in land plant evolution [5].

The A. thaliana genome contains ten AGO genes, which function in development, stress resistance,

and defense against viruses and transposons [23]. AGO7 and AGO10 are highly specialized: each

has limited adaxial and vascular expression [103, 117] and a single main binding partner: miR390

and miR166, respectively [50, 100]. AGO7 triggers production of phased siRNAs from TAS3

noncoding transcripts [48–50, 204]. Effects on ARF3, ARF4, and possibly ARF2 are the main

downstream output of the AGO7/TAS3/SGS3/RDR6/DCL4 pathway [128, 175, 205, 206]. AGO7

action is thought to limit production of TAS3 tasiRNAs such that tasiRNA movement creates a

graded accumulation pattern in developing leaf primordia [117, 118; see Figure 1.6]. This gradient

contributes to patterning of ARF target mRNA, establishing either an opposing gradient or a sharp

boundary, which may contribute to robust maintenance of polarity [207]. The TAS3 pathway has

important roles in leaf development in all plants examined thus far, including moss [126], maize

[112, 208, 209], tomato [36], lotus [210] and alfalfa [211].

Understanding the functions of miRNA such as miR390 and miR166 will require information on

the signals controlling tissue-specificity of their AGO partners. Our objective in this work was

to identify upstream regulators of AGO genes and link them to existing genetic knowledge. We

capitalized on new yeast-based tools that provide a fast way to identify upstream regulators. We

identified unexpected connections to two other conserved miRNA-TF circuits that control leaf

morphogenesis and defined two other functional regions of the AGO7 promoter.
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2.3 Results

2.3.1 Multiple SPLs and TCPs bind the AGO7 promoter

We sought to identify TFs controlling the expression of the three main AGO genes involved in

post-transcriptional control of development (AGO1, AGO10, and AGO7) using high-throughput

yeast 1-hybrid assays. Our automated strategy, described previously [178, 179], uses a large

collection of arrayed A. thaliana TFs (details below) and also short promoter bait sequences, for

high resolution and sensitivity. We considered four fragments for each promoter, with ~50 bp of

overlap between fragments, to ensure that fragment-edge binding sites were assayed. For AGO7

these fragments spanned a 1934 bp region (Figure 2.1A). Transgenes driven by the collective

sequences represented by these fragments are sufficient to complement corresponding agomutants

[50, 104, 212], suggesting that they contain the most important upstream regulatory elements.

Promoter fragments were screened against a TF-activation domain fusion library in 384-well

format with one prey TF per well [178], using β-galactosidase reporter activity from fusion to

promoterless uidA coding sequence as a quantitative readout (Figure 2.1).

A total of 1497 TFs were tested for AGO promoter binding (Table 2.1). This collection consists

mainly of sequence-specific TFs, but also includes transcriptional co-factors and empty vector

control wells [178]. Each TF was tested against each promoter fragment a single time. We ranked

TF candidates based on normalizing promoter-fragment-driven β-gal activity by the median value

for each plate (as illustrated in Figure 2.1B), to account for systematic differences between plates.

We separately plotted signal distributions across all twelve screens (Figures 2.2, 2.3, and 2.4) to

assess which TFs “hits” act as nonspecific activators in this system, as described below.
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Figure 2.1: SPL and TCP TFs bind the AGO7 promoter in yeast.
A. Schematic of AGO7 promoter illustrating four fragments screened with Y1H assays. Subsequent
panels show results for the fragment indicated in red, which spans the region from 990 bp to 446
bp upstream of the transcription start site.
B. Scatterplot of β-gal activities for each prey TF constructs screened. Wells are shown in row-first
order for each of the five plates. Median activity for each plate is indicated with solid lines. Dashed
lines indicate a cutoff of 6 median absolute deviations above the median for each plate. Hits from
SPL and TCP families are highlighted.
C. Diagnostic plot incorporating data from 12 screens. Y-dimension reflects the same values as
panel B, normalized by plate median. X-dimension results from taking the median of plate-wise-
median activities from all twelve AGO promoter fragment screens. Vertical dashed line demarcates
TFs for whichmedian reporter activity is two-fold higher than themedian for their plate (nonspecific
activators, light gray).
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Table 2.1: Transcription factors included in Y1H prey library for AGO promoter screens: counts by
family. Thirty-five families are represented by ten or more TFs. thirteen families are represented
by two TFs, and ninety-eight TFs are single representatives or unassigned. Cf. reference 178.

Family Count
MYB 118
bHLH 98
MADS 87
C2H2 85
HB 71
AP2-EREBP 64
ERF 58
NAC 58
bZIP 55
MYB-related 55
WRKY 53
C3H 41
GRAS 31
AUX-IAA 27
LOB 21
TCP 20
G2-like 19
ABI3VP1 16
C2C2-Dof 16
HSF 16
RING-REGIA 16
CCAAT 15
Trihelix 15
SET 14
C2C2-GATA 13
DOF (C2C2) 12
GARP-G2-like 12
GATA (C2C2) 12
GeBP 12
PHD 12
SPL 12
TIFY 12
ARF 10
HMG 10
REM (B3) 10

Family Count
NF-YB 9
SRS 9
C2C2-CO-like 8
ARID 7
AS2/LOB 7
BES1/BZR 7
COL (C2C2) 7
ZF-HD 7
CPP 6
FHA 6
Alfin 5
ARR-B 5
EIL 5
JUMONJI 5
LIM 5
NF-YC 5
RWP-RK 5
SNF2 5
TLP 5
E2F-DP 4
Histone 2A 4
NF-YA 4
PLATZ 4
TUB 4
YABBY (C2C2) 4
AP2 (Single domain) 3
ARR-A 3
BBX 3
BT 3
DBP 3
GIF 3
MBF1 3
PBF-2-like 3
Pseudo ARR-B 3
Sigma70-like 3
TAF 3
Other (one or two TFs) 122
Total 149727



Of theTFs families assayed, only twowere represented bymultiple hits 6 absolute deviations ormore

above the median for their plate (Figure 2.1B). The first group, Teosinte Branched/Cycloidea/PCF

family factors (TCPs),18had previously been suggested to directly regulate AGO7 [168]. The three

TCP hits identified are miR319 targets [163] and redundantly control leaf margin development and

senescence [166]. The second group, SQUAMOSA-PROMOTER-BINDING PROTEIN-LIKE

(SPL) factors,19are master regulators of heteroblasty in A. thaliana and other plants [88], the same

context in which AGO7 was discovered [113].

We examined the distribution of reporter activity for other promoter fragments screened, confirming

that these SPL and TCPs specifically hit the second proximal region of the AGO7 promoter. Plate-

wise median β-gal activities for the SPL and TCP hits were close to the median (across all twelve

screens) for their plate (Figure 2.1C), indicating that they do not fall in the group of TFs that are

nonspecific reporter gene activators.

We further tested a group of SPL and TCP factors with a second Y1H system, based on a secreted

luciferase reporter with an improved dynamic range [213]; repeated testing reduces statistical false

positives and use of alternative reporters can reveal reporter-gene-specific technical false positives

[214]. This secondary screening confirmed that multiple SPL and TCP TFs bind the second

proximal AGO7 promoter fragment tested, despite considerable experimental noise (Figure 2.5).

Some TFs yielded a small degree of activation relative to two different empty vector controls; it is

not clear whether these small differences reflect lack of binding (i.e. nonspecific binding only) or

indicate binding that is weak but specific.

18 Recall that the TCP family was described in subsection 1.2.4.
19 Recall that the SPL family was described in subsection 1.2.3.
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Figure 2.2: Scatterplots of β-gal activities with likely nonspecific activatiors indicated for AGO7
promoter fragment screens. Panel B is equivalent to Figure 2.1C.
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Figure 2.3: Scatterplots of β-gal activities with likely nonspecific activatiors indicated as in
Figure 2.1C for AGO1 promoter fragment screens.
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Figure 2.4: Scatterplots of β-gal activities with likely nonspecific activatiors indicated as in
Figure 2.1C for AGO1 promoter fragment screens.
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Figure 2.5: Targeted Y1H assay using Gaussia luciferase reporter, quantified in terms of relative
luminescence units per absorbance unit at 600 nm. TFs were tested against the AGO7 -990/-446
region and are displayed in order by mean reporter activity.
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We assessed possible SPLs and TCPs binding sites using DNA-binding specificity models deter-

mined based on in vitro sequence affinity with protein-binding microarrays [196]. These position-

weight matrices (PWM, downloaded from the CisBP database) match consensus binding sequences

previously determinedwith in vitro selection for SPLs [215] and TCP4 [166]. An example sequence

logo for one of these models, for SPL11, is shown in Figure 2.6A. Because the Y1H bait of interest

extends to position -990 (Figure 2.1A), we considered the 1 kb region adjacent to the annotated

AGO7 transcription start site. For SPL11, the highest-scoring positions (on both strands) were

centered on the only two ‘GTAC’ motifs (SPL core binding sites) in that region, at -500/-497 and

-486/-483 (Figure 2.6, panels B and C).

We tested the significance of these core ‘GTAC’ sequences using the luciferase reporter gene in

yeast. Truncated Y1H bait sequences (-531/-446 and -750/-476) containing core binding sequences

yielded activation of the reporter when tested against SPL11, but not with the corresponding empty

prey vector (Figure 2.6D). By contrast, activation was not observed for a 3′-truncated bait lacking

‘GTAC’ sites (-750/-501), nor for modified -531/-446 bait sequences with one or both 4-mers

deleted or scrambled (Figure 2.6D). Deletion of an unrelated 6-bp region reduced reporter activation

(compared to empty vector) but not to the same extent. These results are consistent with direct

SPL binding, possibly with some degree of cooperativity, at one or both ‘GTAC’ sites in the yeast

system.

We similarly scanned the promoter sequence with empirically determined PWM for five of eight

CINCINNATA-like TCPs, a set that includes four of the five miR319 targets in A. thaliana [160,

163]. The highest scoring positions for four TCPswere centered on a ‘TGGTCC’motif at -459/-454

(Figure 2.7, panels E to I). This 6-mer was the most highly enriched sequence in the promoters of

a set of experimentally defined TCP targets [166], and is present in the “most preferred” sequences

for TCP3, TCP4, and TCP5 PWMs. A second ‘TGGTCC’ site at -428/-423 was among the four
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Figure 2.6: Identification of SPL11 binding sites.
A. Sequence logo for SPL11 PWM, as downloaded from CisBP. Individual position weights can
be interpreted as binding specificity contributions (changes in free energy, arbitrary units).
B and C. Scores for SPL11 PWM at each position of the 1 kb region upstream of the annotated
AGO7 transcription start site.
D. Reporter activity (relative luminescence units normalized by A600) for SPL11 and pDEST22
(empty vector) tested in yeast against AGO7 promoter baits including several derivatives of the -
531/-446 region. Modifications included one or two 4-bp deletions, 8 substitutions (TCCG/AAGG),
and an unrelated 6-bp deletion; see Table 2.4, below.
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highest-scoring sequences for all five TCPs considered (Figure 2.7), but was absent the -990/-446

region that yielded TCP hits in the initial Y1H screen. High-scoring positions for the TCP2 PWM

included a related ‘GGGACC’ sequence at -764/-770 followed by the -459/-454 ‘TGGTCC’ motif

(Figure 2.7, panels A and F). The second highest scoring position for TCP24 was centered on a

nearby ‘GTTCCC’ sequence (Figure 2.7J).

We tested requirements for candidate TCP binding sites with the luciferase Y1H system. Truncated

bait sequences (-750/-501 and -750/-476) lacking all four sites described above did not drive reporter

activation (relative to the empty prey vector control) when testedwith TCP2 (Figure 2.8). The -990/-

446 region used in the initial screen yielded reporter induction, as did a 5′-truncated 86 bp bait region

(-531/-446) containing the higher-scoring ‘TGGTCC’ motif (Figure 2.8). The same truncated bait

sequence with the ‘TGGTCC’ 6-mer deleted did not yield reporter activation (Figure 2.8). We

conclude that the -459/-454 ‘TGGTCC’ is a high-affinity TCP binding site that functions in the

yeast system and possibly in planta.

2.3.2 SPL binding sites are not required for polar AGO7 transcription

To test the possibility that SPL and/or TCP binding sites contribute to polar AGO7 transcription,

we fused a series of truncated versions of the AGO7 promoter to GUS for comparison to previously

described transcriptional reporter lines [50, 117]. Consistent with previous results [117], the 1934

bp region upstream of the annotated AGO7 transcription start site yielded clear adaxial signal in

transverse sections of leaf primordia (Figure 2.9A). A 482 bp version of the promoter yielded

the same pattern in almost all plants tested (Figure 2.9B), indicating that SPL core binding sites

(-500/-496 and -486/-483) are not required for this pattern. Assaying a single transgenic family

for a 422 bp promoter construct provided tentative evidence that core TCP binding sites are not
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Figure 2.7: Identification of TCP binding sites.
A to J. PWM scores at each position of the 1 kb region upstream of the annotated AGO7
transcription start site for the TCPs indicated. Dashed blue lines indicate the two highest
scoring positions for TCP2: a ‘GGGACC’ sequence at -764/-770 and a ‘TGGTCC’ sequence at -
459/-454. Panels A and F are identical, because the CisBPmodel for TCP2 is perfectly symmetrical.
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Figure 2.8: Testing of TCP binding sites in yeast. Reporter activity for TCP2 and pDEST22
(empty vector) tested against Y1H bait from initial screens (-990/-446), two truncated versions
lacking candidate TCP binding sites, and the -531/-446 region, with candidate TCP binding site
(‘TGGTCC’) deleted or intact.

required for this pattern either (Figure 2.9A). By contrast, the TSS-proximal 298 bp region rarely

yielded visible blue reporter signal (Figure 2.9C). Weak adaxial signal was visible for a small

proportion of plants (Figure 2.10B), including 2 of 7 plants for one of two transgenic families for

the experiment illustrated. Surprisingly, one of two 150 bp construct transgenic families yielded

stronger polar signal (Figure 2.10C). It is possible this pattern may have been enhanced by elements

adjacent to T-DNA insertion (position effects) or some other technical factor caused higher staining

intensity. Further experiments with additional independent transformants would be required to

distinguish these possibilities. A promoterless 5′ UTR construct appeared to yield faint blue signal

(Figure 2.10D), but promoterless-GUS transformants did not yield visible blue signal (Figure 2.9D)

in any of our experiments.

Staining of whole seedlings yielded qualitatively similar results (Figure 2.11), notably in the clear

difference in staining intensity for 495 bp vs. 298 bp promoter:GUS transgenes. An additional

high-signal control (35S:GUS) was included in the experiment shown. Signal from this transgene

was surprisingly uneven and difficult to detect in all histological experiments done with moderate
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Figure 2.9: Histological analysis of GUS reporter gene activity driven by truncated AGO7 promoter
constructs. Core SPL binding sites are indicated in red; the 482 bp promoter construct illustrated
in panel B ends immediately adjacent to the second site. Blue tick mark indicates TCP binding
motif at -459/-454. For each construct, results are shown for two independent transgenic families
(groups of T3 siblings, each descended from a different transformant; each group was stained in a
separate scintillation vial). The predominant class for each family is illustrated with a representative
transverse section through young leaf primordia, and the number of plants in the predominant class
is indicated as a fraction. Two primordia are outlined for both of the transgenes for which signal
is not visible (panels C and D). Two and one plants yielded a weaker and/or less strongly adaxial
pattern than shown here for 1934 bp and 482 bp promoter constructs, respectively. The less-
frequent pattern for 298 bp promoter constructs (panel C) is shown in Figure 2.10B. Between three
and nineteen independent lines were tested for all of the constructs shown here, with broadly similar
results across multiple experiments.
The schematic shown in Figure 1.6A may help with interpretation of the transverse perspective
shown.
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Figure 2.10: Transverse sections through leaf primordia, showing GUS reporter gene activity
driven by shorter truncated AGO7 promoter constructs. Sections are from the same experiment as
Figure 2.9. Core SPL and TCP binding sites are absent from all promoter fragments illustrated.
A. Predominant staining pattern (5/7 plants) observed for a single transgenic family with 422 bp
truncated promoter.
B. Lower-frequency pattern (faint adaxial signal) observed for 2/7 plants for one of the transgenic
families shown in Figure 2.9C (left side).
C and D. Predominant staining patterns for two transgenic families each for transgenes including
150 bp and 0 bp of sequence upstream of the AGO7 5′ UTR.
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or high stringency staining (not shown). This weak staining in histological sections from multiple

lines is difficult to explain and may have involved transgene silencing.

Figure 2.11: GUS reporter gene activity driven by truncated AGO7 promoter in whole seedlings
12 days post-stratification. Two representative plants are shown for each transgene. Patterns were
consistent among siblings, except for the 298 bp promoter construct, for which weak blue signal
was visible for 3 of 9 plants but not the others.

Overall these results raise the possibility that cis elements in a short proximal promoter region or 5′

UTR can confer adaxial polarity to AGO7 transcription. The -482/-299 region, however, is a larger

determinant of AGO7 transcription level, as discussed further below.

2.3.3 SPL and TCP binding sites are not strictly required for AGO7 function

We similarly tested cis requirements for transgenic complementation of ago7 mutants. We inserted

a series of truncated versions of the AGO7 promoter upstream of the AGO7 coding sequence
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(including an N-terminal 3x-hemagglutinin (HA) tag). Previous results [50] indicated that the

1934 bp promoter version of this transgene is functional for complementation of transformed ago7

mutants. For the experiment illustrated in Figure 2.13, blinded classification of downward leaf

curling assigned 100% of empty-vector-transformed reference genotype plants (ago7 mutant and

wild-type Col-0, n = 21 and 20 plants, respectively) to the expected phenotype class. Groups of

mutant plants transformed with 3xHA-AGO7 constructs were predominantly assigned to one or the

other class: primary transformants for 422 bp to 1934 bp promoter constructs were mostly scored

as complemented, whereas most transformants for 298 bp and 0 bp promoter construct displayed

the downward-curled-leaf mutant defect (Figure 2.12).

We extended this result by quantifying leaf shape for a smaller number of transformants, by

dissecting, scanning, and measuring leaves in order [216]. For the reference genotypes, leaf blade

length-to-width ratios were higher for wild-type relative to mutant plants, due to increased curling

and/or elongation (Figure 2.13, panels A and H). Promoterless and 298 bp promoter construct

transformants were not distinguishable from empty vector mutant controls (Figure 2.13, panels F

and G). Longer promoter constructs shifted blade length-to-width ratios down towards wild-type

levels (Figure 2.13, panels B to E), which we interpret as partial complementation, consistent with

the rosette-level results in Figure 2.12. Independently measuring these leaf dimensions at one

position (true leaf 6)20with calipers yielded similar results (Figure 2.14).

Results were similar for a related metric that quantifies leaf elongation, the ratio of leaf blade length

to petiole length (Figures 2.15 and 2.14). The difference between wild-type and mutant background

control plants was smaller for this metric (Figure 2.15, panels A andH), as was the difference, if any,

between means for the 1934 bp promoter construct lines and wild-type empty vector control lines

20 True leaf 6 was selected for measurement for consistency with other studies, including references 206 and 49.
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Figure 2.12: Complementation of ago7 mutant leaf shape phenotype (top right) with 3xHA-AGO7
transgenes driven by truncated versions of the AGO7 promoter. One representative (major class)
primary transformant is shown for each genotype. Upper-left corner labels for middle and bottom
rows indicate the length of upstream AGO7 regulatory sequence used to drive the 3xHA-AGO7
coding sequence in each construct. Upper-right corner numbers indicate the fraction of plants
blindly assigned to the normal morphology category.
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Figure 2.13: Transgenic complementation of ago7 leaf shape defects, quantified based on leaf
blade length to width ratio for true leaves 1 to 10. (Caption continues on next page.)
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Figure 2.13: (continued) Values for each individual plant are connected with lines on the right-hand
graphs, and the average of these values is plotted on the left. Averages for empty vector control
genotypes (panels A and H) are repeated in each left-hand panel to facilitate comparison.

Figure 2.14: Complementation of ago7 leaf shape defects, quantified based on leaf blade length-
to-width ratio (left) and leaf-blade-length to petiole-length ratio (right) measured for true leaf 6
with calipers on days 28 to 30 days post-stratification. Each datapoint shows the ratio for a distinct
primary transformant. Red lines indicate the mean for each genotype.

(Figure 2.15B). Means were longer at most leaf positions (i.e. closer to wild-type) for intermediate-

length promoter constructs (Figure 2.15, panels C, D, and E) than for short promoter constructs

(Figure 2.15, panels F and G). Exceptions at one position (true leaf 10) were caused by recently

emerged leaf “outliers”, the petioles of which were very short and thus disproportionately affected

by technical variation (Figure 2.15C).
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Figure 2.15: Complementation of ago7 leaf shape defects, quantified based on leaf blade length to
petiole length ratio. Panel layout is as in Figure 2.13.
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The promoter lengths tested end immediately adjacent to core SPL and TCP binding sites (two

‘TGGTCC’ sites and one of two ‘GTAC’ motifs discussed above; see Figure 2.16). The 422 bp

promoter transgene lacks all of these sites, but is sufficient for partial complementation (Figure 2.12,

Figure 2.13E, Figure 2.15E). We therefore tentatively conclude that SPL and TCP binding is not

required for AGO7 transcription at levels that are sufficient for normal leaf morphology. The

morphological data described allow us to estimate possible small differences between leaf shape in

the complemented lines, but further experimentation would be necessary to relate such differences

to cellular parameters or promoter structure.21

Finally, we scored appearance on trichomes on abaxial leaf surfaces to assess complementation of

the forward shift in ago7 mutants [113]. Consistent with results from previous transgenic exper-

iments [50, 217], abaxial trichomes were visible on an earlier leaf for empty-vector-transformed

mutant plants relative to corresponding wild-type plants (Figure 2.16); abaxial trichomes appeared

1.7 leaf positions earlier on average (95% confidence interval 0.5 to 2.9, p = 4 × 10−4, Tukey’s

honest significant difference method). However, there was considerable variability, possibly due to

effects from hygromycin selection. No 3xHA-AGO7 transgenic line showed a detectable increase

in earliest abaxial trichome position (relative to empty-vector-transformed mutant plants; p > 0.3),

indicating that none of the promoter lengths tested were able to drive full complementation of this

defect. Alternative strategies may be required to assess ARF-mediated effects of AGO7 levels on

trichome production.

21 As noted briefly in the introduction, chapter 3 describes additional time-resolved morphological analyses of these
transgenic lines. None of the measurements presented in this chapter used Raspberry Pi camera photos (as described
in the next chapter), except indirectly, as an aid for identification of leaf phyllotactic order. To reiterate, figures 2.13
and 2.15 are based on a different type of image processing, using a flatbed scanner and LeafJ [216].
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Figure 2.16: Assay for complementation of ago7 early abaxial trichome appearance phenotype
with 3xHA-AGO7 transgenes driven by truncated versions of the AGO7 promoter. Dashed lines
indicate the mean for each genotype. Core SPL (red) and TCP (blue) binding sites are indicated as
in Figure 2.9.

47



2.4 Discussion

We characterized the structure of the AGO7 promoter with transgenic analyses and a large-scale

screen for upstream regulators. The most notable result from our Y1H analysis was a direct

connection to multiple miR156-targeted SPL andmiR319-targeted TCP factors. This result appears

to reinforce the idea that gradual repression of MIR156 transcription is the key regulatory step

controlling heteroblasty in plants [88], and provides an additional example of functional linkage

between SPL and TCP TFs [155, 218]. However, we were not able to assign a clear function to the

candidate SPL and TCP binding sites in the AGO7 promoter, particularly because a 422 bp proximal

promoter region lacking all these sites is sufficient for substantial transgenic complementation of

leaf morphology defects in ago7 mutants (Figures 2.12 to 2.15).

Our truncation analysis provided preliminary evidence for two other functional regions of the AGO7

promoter (Figure 2.17). We obtained different outcomes for mutant plants tested with 422 bp pro-

moter constructs (largely complemented) versus 298 bp promoter constructs (not complemented).

This difference suggests that one or more functionally important binding sites is present in the

-422/-299 region. In general agreement with this idea, signal was qualitatively weaker for a 298

bp promoter:GUS reporter than for the next-longest promoter fragment tested (Figure 2.9). Mul-

tiple experiments suggest that the minimal core promoter and possibly one or more polarizing cis

elements are intact in the 298 bp proximal region, but dissecting this further has been technically

challenging because of the faintness of the signal. Despite progress, we did not succeed in our

goal of identifying TF binding events necessary and/or sufficient for polar expression of AGO7 and

AGO10. It will be useful to integrate our results with other datasets, including for the a priori

candidates shown in Figure 1.6. The YABBY1 gene is one promising candidate (Table 2.2), but

did not emerge as a hit from the Y1H screens. Surprisingly, we also did not recover the polarity

factor REVOLUTA for the AGO10 promoter [102]; this likely represents a biological false negative.
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AGO1 is ubiquitously expressed [103], and therefore expected to be under very robust transcrip-

tional control which may be difficult to dissect. We believe the Y1H results presented here will be

a useful resource, especially when combined with computational predictions such as the example

shown in Table 2.2.

AGO7
?

SPLs
TCPs Activator

Polar TF

-422/-1 region sufficient
for normal transcription

and function

-298/-1 region sufficient
for weak adaxial transcription

Figure 2.17: Schematic of the AGO7 proximal promoter region with hypothesized TF binding sites
and summary results from transgenic analyses indicated.

The truncation strategy used for our transgenic assays preserves the distance between cis elements,

but also has inherent limitations. We did not test the possibility SPL and TCP core binding sites

are sufficient for specific genetic functions. The apparent enhancer(s) in the -422/-299 region may

be functionally redundant with these binding sites, and therefore largely masked any contributions

to morphology through AGO7. Redundant clusters of activator binding sites appear common, as

discussed below (section 4.3). Effects may be larger in other tissues, given the important functions

of ARF repressors in fruits and roots [121, 123, 124]. Alternatively, the sites may simply be

nonfunctional, at least in A. thaliana. Testing SPL and TCP binding in different tissues would help

in assessing these possibilities, as discussed in the next section.
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Table 2.2: Highest-scoring PWM scan match positions for AGO7, within first 425 bp for motif
collection described in reference 197. PWM models were scanned across the 425 bp upstream
region proximal to the annotatedAGO7 transcription start site using the ‘Find IndividualOccurences
of Motifs’ tool (FIMO) [219] via the online MEME Suite [220] version 4.12.0, with default settings
(p < 10−4 cutoff). Complete scan results for the promoters of AGO1, AGO7, and AGO10 with the
PWM collections described in references 196, 197, and 198 will be provided in a supplemental
Excel file.

TF start stop strand score p-value q-value
WRKY45 35 42 - 11.32 4.14e-05 0.13
WRKY12 35 42 - 10.99 9.01e-05 0.28
AHL20_2 61 68 - 10.52 9.69e-05 0.11
YAB1 134 141 + 10.93 5.88e-05 0.12
GLK1_2 299 306 + 11.71 3.96e-05 0.41

2.5 Follow-up experiments

Four types of experimentswould be particularly useful to extend thiswork in the near-term future, for

more direct inferences. Several of these are related to improved quantification or to well-understood

limitations of Y1H validation approaches [214].

Test binding in planta with ChIP: We inferred direct DNA binding by SPLs and TCPs based

on the combination of Y1H assays and PWM scans. DNase sensitivity data [200] suggests that

these binding sites are accessible under a variety of conditions in at least some tissues of whole

seedlings (not shown). These combined results, however, are no guarantee that SPL-promoter and

TCP-promoter intractions occur in plant cells, let alone cause transcriptional changes. Two other

factors that could reduce binding are competition with other TFs for for sites and the possibility that

protein-protein interactions interfere with SPL and/or TCP binding. Given the unclear function

of the candidate sites described, it would be useful to biochemically test binding with chromatin

immunoprecipitation. Timecourse analysis of differential binding would be valuable, as discussed

further below in section 4.2.
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Genetic sufficiency tests: As noted directly above, we demonstrated that core SPL and TCP

binding sites are not required for adaxial transcription or transgenic complementation. We did

not, however, test whether SPL and TCP binding sites are sufficient for normal expression and

function, so it remains possible that the function of these sites overlaps with other TF binding

sites. If this is the case, we would predict that fusing the core-binding-site-containing region to a

heterologous minimal promoter would yield high-level GUS reporter signal and complementation

of ago7 mutants. The minimal 35S promoter [221] is the most common core sequence used for

this purpose.

Quantitative GUS assays: We qualitatively assessed requirements for normal AGO7 transcrip-

tion using histochemical staining in transgenic reporter lines, but a more mechanistic understand-

ing of developmental thresholds for AGO7 mRNA levels will require quantification. Given the

truncated-promoter lines in hand, quantitative assays based on 4-MU fluorescence are an obvious

priority. It would be particularly interesting to test a possible role for the sites of interest in the

(small) increase in AGO7 levels as plants age [113]. Testing a larger number of independent

transformants would also strengthen the results shown in Figures 2.11 and 2.10.

Molecular phenotypes: It seems likely that complemented transgenic lines have near-normal

levels of AGO7 protein and TAS3 tasiRNAs, and thus low ARF mRNA levels. Unfortunately, we

did not formally test these predictions, via immunoblotting, small RNA blotting, or qRT-PCR (per

reference 217). Samples were collected with this end in mind but were never processed.

These four lines of work represent short-term experimental priorities, but many of other routes are

available for approaching a holistic understanding of AGO7 function. In chapter 4, I revisit the

51



key uncertainties about the action of TAS3 tasiRNAs and related pathways throughout the plant life

cycle.

2.6 Methods

2.6.1 Plasmid construction

Promoter fragments were PCR-amplified from previously described plasmids [50], with the primers

listed in Table 2.3. Gel-purified PCR products were cloned with the pENTR D-TOPO kit (Invit-

rogen), and LR-recombined into several destination vectors: pGLacZi for Y1H screens [222],

pMDC162 for GUS transcriptional reporters, and pMDC99 for transgenic complementation assays

[223]. The destination vector pY1-gLUC59(GW) used for the secreted Gaussia luciferase Y1H

reporter system has been described [213].

2.6.2 Y1H screens

Automated lacZ screens were done as previously described [178, 179] using a collection of 1541

TFs and an Agilent BioCel 1200 robotic platform. The TF-activation domain fusion yeast strain

collection (arrayed in 384-well plates) was mated to bait strains. Diploid cells were selected in

media lacking uracil and tryptophan, lysed by freeze-thaw, and assayed for β-galactosidase activity.

Targeted Y1H assays were done similarly, with the lysis and assay steps replaced, essentially as

described [213]. Briefly, diploid cells were resuspended in phosphate-buffer saline, 50 µL of cells

were transferred to a clear-bottom plate, and a Synergy H1 plate reader (Biotek) was used to inject
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Table 2.3: Oligonucleotide sequences used for AGO promoter TOPO cloning. Primer names
indicate position of 5′-most genomic base relative to the annotated transcription start site. Names
also list the nucleotides added to create ’CACC’ sequences for directional TOPO cloning.

Oligo name Sequence
AGO1_-2308_FWD_cac CACCCGCTTGTTAAAACTCATAATC
AGO1_-1706_REV TTAGGTGAAAGAATATCTAGAC
AGO1_-1755_FWD_cacc CACCATCTAGACAATCTTTTGTTAG
AGO1_-1121_REV GTTGCTCGTGCGTGAAGA
AGO1_-1170_FWD_cacc CACCTACTCGTGACATATTCTCTA
AGO1_-536_REV TATAAAGGATGTTATACAGTTAAG
AGO1_-585_FWD_cacc CACCACAAGTACCAATTTTAAACTG
AGO1_-1_REV TGCTACACTTTAAATTCAAGG
AGO7_-1934_FWD_c CACCTGTCTCTTCTTCTGTACATGC
AGO7_-1436_REV TAAGTATATTAAAAAATATCAGATGAC
AGO7_-1485_FWD_cacc CACCTTATAGGTAAATGGATATGACT
AGO7_-941_REV TGCTAAAACAAAAGATGCTCAA
AGO7_-991_FWD_cac CACCCAAAGACATACATCTATAATATA
AGO7_-446_REV AATTATGGGGACCATTCTGT
AGO7_-495_FWD_cacc CACCAAGAAAATAGTACAAAGAATAAAT
AGO7_-1_REV AGAAAGGGATTGTCTGAGTTT
AGO10_-2033_FWD_cacc CACCGATTTCTATAAAAAATACATTCC
AGO10_-1511_REV AGACCCCATTTCGTGACT
AGO10_-1560_FWD_cacc CACCGGAAGAAAACAAAATTAATGAG
AGO10_-991_REV TAGTCTAGGTTAGTTTCCG
AGO10_-1040_FWD_cacc CACCTATCACAAACTAGACAATCC
AGO10_-471_REV ACATCATTGTTACAAGATGG
AGO10_-520_FWD_cacc CACCTTTTTATAATAAGATTAGAGAATTAT
AGO10_-1_REV ATAGCTTTCCTCTCAATGTG
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Table 2.4: Oligonucleotide sequences directly cloned forAGO7 promotermutation analysis in yeast.
Forward sequences (5′ to 3′ in the direction of AGO7 transcription) are followed by corresponding
reverse sequences. Dashes indicate bases “deleted” relative to the genomic reference sequence.
The last sequence for each set is a degenerate oligo; a single clone resulting from these oligos was
used, as indicated in the caption for Figure 2.6.
CACCGAAAGAGTCCAAAGTGTGTATTATTAATGAGGTACGAAGAAAATAGTACAAAGAATAAATAATTAAACAGAATGGTCCCCATAATT
CACCGAAAGAGTCCAAAGTGTGTATTATTAATGAGGTACGAAGAAAATAGTACAAAGAATAAATAATTAAACAGAA------CCATAATT
CACCGAAAGAGTCCAAAGTGTGTATTATTAATGAGGTACGAAGAAAATA----AAAGAATAAATAATTAAACAGAATGGTCCCCATAATT
CACCGAAAGAGTCCAAAGTGTGTATTATTAATGAG----GAAGAAAATAGTACAAAGAATAAATAATTAAACAGAATGGTCCCCATAATT
CACCGAAAGAGTCCAAAGTGTGTATTATTAATGAG----GAAGAAAATA----AAAGAATAAATAATTAAACAGAATGGTCCCCATAATT
CACCGAAAGAGTCCAAAGTGTGTATTATTAATGAGHVBDGAAGAAAATAHVBDAAAGAATAAATAATTAAACAGAATGGTCCCCATAATT

AATTATGGGGACCATTCTGTTTAATTATTTATTCTTTGTACTATTTTCTTCGTACCTCATTAATAATACACACTTTGGACTCTTTCGGTG
AATTATGGTTCTGTTT------AATTATTTATTCTTTGTACTATTTTCTTCGTACCTCATTAATAATACACACTTTGGACTCTTTCGGTG
AATTATGGGGACCATTCTGTTTAATTATTTATTCTTT----TATTTTCTTCGTACCTCATTAATAATACACACTTTGGACTCTTTCGGTG
AATTATGGGGACCATTCTGTTTAATTATTTATTCTTTGTACTATTTTCTTC----CTCATTAATAATACACACTTTGGACTCTTTCGGTG
AATTATGGGGACCATTCTGTTTAATTATTTATTCTTT----TATTTTCTTC----CTCATTAATAATACACACTTTGGACTCTTTCGGTG
AATTATGGGGACCATTCTGTTTAATTATTTATTCTTTHVBDTATTTTCTTCHVBDCTCATTAATAATACACACTTTGGACTCTTTCGGTG

Table 2.5: Forward primer sequences used for TOPO cloning of truncated versions of the AGO7
promoter. Names follow Table 2.3. Bases -298/-295 are a natural ‘CACC’ sequence suitable for
directional TOPO cloning.

Oligo name Sequence
AGO7_-482_FWD_cacc CACCAAAGAATAAATAATTAAACAGAATGGTCC
AGO7_-453_FWD_cacc CACCCCATAATTCGATTTAATGAGTGTATTG
AGO7_-422_FWD_cacc CACCATTTTATAAAACATGTGTAACAACAACAA
AGO7_-298_FWD CACCAAACATTATCGGTAATCACTA
AGO7_-150_FWD_cacc CACCTATTTTCTTTTATTATTGCCAACAATT
AGO7_+1_FWD_cacc CACCGCCTCTTTTATCTCTCTCTCTCATAAA
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10 µL of 20 µMcoelenterazine substrate solution into each well and read luminescence immediately

afterward (0.1 s integration time).

2.6.3 Plant materials and growth conditions

All A. thaliana plants descended from the reference Col-0 accession. The zippy-1mutant allele was

isolated by Hunter et al. [113], and is referred to throughout as “ago7”. Plants were transformed

by floral dip using Agrobacterium strain GV3101 [224, 225].

Plants were grown under short day conditions (8 hours light, 16 hours dark) in a Conviron MTR25

reach-in chamber with PolyLux fluorescent bulbs (200 µmol photons per second per square meter)

at 22 °C with 50% humidity.

2.6.4 ago7 mutant complementation tests

Measurement of leaf phenotypes followed previous work [205]: we scored the index of the earliest

leaf with at least one abaxial trichome using a stereomicroscope at 28 to 30 days post-stratification,

and concurrently measured the blade length, blade length, and petiole length for the sixth true leaf

with digital calipers (Mitutoyo, Japan). At a later timepoint (33 and 35 days post-stratification), we

dissected and scanned the first ten true leaves from each plant with a Canon Pixma MP190 flatbed

scanner. Leaf shape parameters were measured with the LeafJ plug-in for ImageJ [216].
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2.6.5 GUS assays

Histological GUS assays were essentially as described [117, 226, 227]. Seedlings were collected

into ice-cold 90% acetone, incubated at -20 °C for 20 minutes and then room temperature for

another 20 minutes. Seedlings were washed twice (5 minutes each) with staining buffer (100 mM

sodium phosphate [pH 7], 20% methanol, 0.1% Triton X-100, 1.5 mM ferri- and ferrocyanide).

Staining buffer with 0.5 mg/mL 5-bromo-4-chloro-3-indolyl-β-d-glucuronic acid (X-Gluc) was

vacuum-infiltrated into seedlings on ice for two rounds of 15 minutes each. Samples were then

incubated at 37 °C for 20 hours, taken through an ethanol/histoclear series, and infiltrated with

Paraplast Plus at 60 °C, before embedding [226]. Tissue sections (10 µm thickness) were mounted

on Probe-On Plus slides (Thermo Fisher), deparaffinized with histoclear, coverslipped, and pho-

tographed.
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Chapter 3

Improved methods for time-lapse imaging of

vegetative growth

Time-course analysis is essential for measurement of dynamic traits and for developmental context.

The AGO7 gene plays a major role in developmental timing, but the analysis of cis requirements for

its function described in the last chapter focused on single time-point measurements (section 2.3.3).

Here I extend this analysis and document new methodology for time-lapse imaging of rosette

development.

3.1 Abstract

Top-down imaging is a simple method for measuring the dynamics of A. thaliana rosette growth;

several approaches have been described. We describe an effective fixed-position top-down Rasp-

berry Pi camera setup for imaging sets of 180 plants in a two-level controlled-environment growth

chamber, with photo captures every five minutes. Segmenting plant rosette foreground from soil

background is straightforward; no special modifications of growth conditions are required. We
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applied this method to transgenic complementation analysis of a mutant with downward-curled

leaves.

3.2 Introduction

Improvements in automated image-basedmeasurement have the potential to dramatically accelerate

progress in many areas of plant biology [201]. Improved methodology has become increasingly

important as genotyping and molecular profiling costs have dropped precipitously. A variety of

tools will need to be optimized for different systems and scales of investigation [228].

Arabidopsis thaliana is the premier model plant species for molecular genetics and is thus an

important target system for image-based phenotyping. Experimenters using A. thaliana benefit

from its small size and ease of transformation, and can also draw on the exceptional genetic and

genomic resources available, such as large collections of indexed mutants and fully-sequenced

naturally inbred strains. These advantages have enabled many seminal discoveries [229].

A. thaliana leaves initially emerge in a relatively flat spiral rosette, so top-down imaging is sufficient

to capture a great deal of information about growth. Accordingly, a body of work has emerged

describing time-lapse imaging of rosettes and analysis of the resulting images. Several groups

have recently begun time-lapse photography experiments using the microcomputers and cameras

developed by the Raspberry Pi Foundation. The low cost of these rigs allows one to image

many plants in parallel; this approach complements lower-throughput methods, which achieve high

resolution depth information but rely on sophisticated instrumentation and typically incur high

costs [230].
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3.2.1 Biological context and approach

Analysis of leaf shape changes (heteroblasty) has been a powerful tool for understanding funda-

mental processes [231], including microRNA and trans-acting short interfering RNA biogenesis

[232]. We have used transgenic mutant complementation analysis to identify promoter element

requirements for the function of A. thaliana ARGONAUTE7. We sought to extend single-timepoint

analysis to quantify the dynamics of rosette changes.

Our primary goal in developing our photography approach was to enable visual identification of

leaves in their spiral phyllotactic order; accurate determination of order is essential for comparison

of shape changes across genotypes. A secondary goal, anticipating that analysis algorithms will

continue to improve, was to generate time series information for quantitative analysis. Our approach

has been to:

• Use standard growth conditions that promote plant health;

• Begin imaging plants at the earliest possible point in their development, i.e. directly after

recovery from transplanting; and

• Err on the side of photographing at higher frequency than needed, until the effect of image

capture frequency on leaf tracking analysis can be assessed.
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3.3 Methods

3.3.1 Growth conditions

As described in subsection 2.6.3, plants were grown in a Conviron MTR25 reach-in chamber

with PolyLux fluorescent bulbs (200 µmol photons per second per square meter) at 22 °C with

50% humidity. Short day conditions (8 hours light, 16 hours dark) were used to delay shoot

elongation and flowering. Fifteen 3-inch pots containing ProMix FPX growth mix were used per

flat. Genotype positions were randomized within each flat, and plants were given serially increasing

numbers, indicated with printed white labels (Midsci DTCR-4000, 3/8 inch diameter) affixed to

the corner of each pot (Figure 3.1). Six flats were arranged on each of the two growth shelves

(Figure 3.2), allowing imaging of 180 plants simultaneously. Plants were generally watered and

fertilized twice per week; watering times were recorded.

3.3.2 Hardware and software configuration

Five of the components of each imaging rig were purchased from Newark element14 (Table 3.1)

Three of these components have since been superseded, as discussed below.
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Figure 3.1: Assembly and mounting of Pi/Camera imaging rigs. Incandescent bulb socket adapters
were attached to cases with silicone adhesive and then screwed into sockets. Third photograph
shows three Pi/Camera rigs above plant flats and color standard cards in upper level of the controlled
environment growth chamber. USB power supplies (black) and surge protector (yellow) are in view.
See Figure 1 in Appendix B for additional photos.
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Table 3.1: Components for a single Pi/Camera rig.

Component Newark part

Raspberry Pi 2 Model B board 38Y6467

Raspberry Pi camera module v1 (5 megapixel) 69W0689

MicroSD card (8 GB, Sandisk) 38Y6470

Wifi module (“WiPi dongle”) 07W8938

USB to microUSB power cable 06W1049

SmartiPi case kit #2 (Smarticase LLC)

Camera module lenses were manually focused with pliers for a lens-plant distance of 55.2 cm.To

suspend Pi/Camera rigs, we first attached AC power socket adapters to the the back of SmartiPi

cases with silicone adhesive (Figure 3.1). We then encased Pi boards and cameras and screwed the

attached socket adapters into incandescent bulb sockets above each level of the growth chamber.

We set up a total of twelve Pi/Camera rigs, one directly above each flat. Pi/Camera rigs were

powered through two USB power supplies drawing power (via extension cord and surge protector)

from an auxiliary power outlet built into the growth chamber.

Image acquisition Time-lapse imaging essentially followed the tutorial at RaspberryPi.org: im-

age captures (raspistill command) were scheduled at five-minute intervals using a cron table.

Images were pulled from each Pi to a remote server twice per hour (using rsync) by a server-

side cron process. The concrete details are online22 and are documented further in Appendix C.

Additional notes and instructions are in Appendix B.

22 See https://github.com/jshoyer/raspi-topdown-plant-imaging-12x

62

http://smarticase.com/collections/all/products/smartipi-kit-2
https://www.raspberrypi.org/documentation/usage/camera/raspicam/timelapse.md
https://github.com/jshoyer/raspi-topdown-plant-imaging-12x


501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

Flat 1

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Flat 2

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

Flat 3

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

Flat 4

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

Flat 5

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

Flat 6
A

B Field of view 1 C Field of view 4

501 502 503 504 505

506 507 508 509 510

511 512 513 514 515

516 517 518 519 520

546 547 548 549 550

551 552 553 554 555

556 557 558 559 560

541 542 543 544 545

Figure 3.2: Schematic of plant arrangement and camera fields of view for each chamber level.
A. Plants were given unique numbers, in column-first order as one looks into the chamber. For the
experiment emphasized in this chapter, plants were numbered 501 to 590 in the upper level of the
chamber (as shown here) and 601 to 690 in the lower level. Black and gray lines at the bottom of
the panel indicate the extent of each camera field of view; numbers of plants included in fields of
view 1 and 4 are in black.
B. Camera fields of view are oriented 90° relative to the perspective in panel A, and plant numbering
within photographs is therefore in row-first order, starting from the bottom (south side) of the image.
Because each field of view covers more than one flat, each photo contains a “secondary” row of
pots; for fields of view 1 to 3 this secondary row is in the top (north) side of the image.
C. Fields of view 4, 5, and 6 (as well as 10, 11, and 12) contain the secondary row of pots in the
bottom (south) side of the image.
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3.4 Results and Discussion

3.4.1 Reliable acquisition and transfer of images

We began to use Raspberry Pi cameras because their low cost makes it practical to leave multiple

stationary cameras above a large number of plants. We tested 1) whether the failure rates of such

low-cost hardware would affect image capture, and 2) how efficiently we could transfer images to

a remote server.

Wifi signal was a concern because of the thickness of growth chamber walls, but our local wireless

network sufficed for efficient “headless” operation (via Secure Shell [SSH] connection to each

RasPi), and also for transfer of large number of images in preliminary tests. We could therefore

use cron tables to schedule image capture at a high rate (5, 10, 15, . . . minutes past the hour).

Higher frequency imaging is generally undesirable, because it would increase the difficulty of

avoiding capture times when opening the chamber doors for watering or other manipulations. We

scheduled image transfer from each RasPi twice per hour using rsync, a standard Linux utility

designed for high-latency low-bandwidth connections [233]. Transfers were staggered, to reduce

wifi interference. Because of the predictable file naming scheme employed, it was straightforward

to programmatically confirm that all photo timepoints were captured and transferred as scheduled.

In several months of operation, image capture has only been interrupted by a single crash of

one computer. This crash was detected within half an hour (via cron error emails and Ganglia

Monitoring System dashboard) and corrected by restarting the affected machine. Several image

transfers per day initially failed, do to transient wifi interference from passerbys carrying phones

and the like, but the affected files were always transferred in subsequent rounds, after wireless

signal improved.
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More recent Raspberry Pi boards, including the lower-cost Zero W model, include a built-in wifi

module. Transfer of images over a wireless network will therefore continue to be a useful option

for small-to-moderate-sized imaging installations.23

3.4.2 Image processing

We have begun developing tools for extraction of quantitative plant trait information from the

photographs described using the PlantCV and OpenCV software packages. The rationale for us-

ing and enhancing PlantCV is outlined in reference 234 and Appendix D. Simple thresholding

based on the green-magenta a* component of L*a*b* color space is largely sufficient for dis-

tinguishing plant foreground pixels from background (Figure 3.3). Use of this transformation is

reasonably common—see for example reference 235. Plants can be identified by finding contours

(cv2.findContours function) within binary thresholded images. Contours for many plants are

not connected, often because bits of soil occlude thin leaf petioles (Figure 3.4). Single plant objects

are defined by joining all contours that partially overlap with a circular region of interest around

the center of each plant (Figure 3.3B). We manually identified plant center coordinates with the

ImageJ point tool, which is a quick process for an experiment with this number of plants. At least

one other group has found it expedient to use essentially the same method [236] and the plant center

landmark position data will be useful for future work.

Once individual plants have been adequately segmented, one can use the shape analysis functions in

PlantCV to measure rosette shape descriptors (Figure 3.3C, Figure 3.4). Multiple metrics depend

on calculating shapes that surround each plant, particularly the minimum bounding ellipse and min-

imum convex polygon (convex hull) required to surround the plant. The current analyze_object

23 One wifi-networked Raspberry Pi imaging system ten-fold larger than the one described here is documented at
https://github.com/calizarr/PhenoPiSight
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Figure 3.3: Flow diagram illustrating steps in image processing. A. The a* channel from each
image is extracted and used for binary thresholding. The top right plant is shown in inset. (Caption
continues on next page.) 66



Figure 3.3: (Continued) B. Thresholding yields a “masked” image (background masked here with
97.5% transparency), and circular regions of interest are used to group disconnected contours into
rosette objects.
C. The minimum bounding ellipse (not shown) and convex hull for each plant object are identified,
allowing calculation of size and shape parameters. The longest dimension and convex hull outline
are represented on the original image with magenta lines.

function returns sixteen measurements, of which nine are relevant for top-down views of a plant.

The “simple” metrics are either integer counts (number of convex hull vertices) or are provided as

pixel counts reflecting areas (projected plant area, convex hull area) or lengths (perimeter length,

longest axis length, and minimum bounding ellipse major and minor axis lengths). Two composite

metrics are ratios, namely solidity and object bounding ellipse eccentricity (0 to 1 scale). For

the preliminary analysis presented here we use pixel counts rather than converting to physical

distances. Because of the overlap between fields of view (Figure 3.2), one third of the plants were

photographed continuously with two different cameras. For the comparison below we consider

only the “primary” view, for each plant (field of view 1 for plants in flat #1, field of view 2 for

plants in flat #2, etc.) but correcting for optical distortion would likely improve spatial accuracy, as

discussed further in subsection 3.5.2. Shape descriptor measurements for primary and secondary

views (for the sixty plants photographed twice) are well correlated (not shown).

The method for plant segmentation described above suffers from two main deficits. First, growth

of algae periodically causes missegmentation of individual small pieces of the whitish perlite in

the growth medium (Figure 3.3B, far right). Classification of perlite pixels as “plant” can in some

cases dramatically alter the shape of the convex hull and related shape measurements for small

plants (Figure 3.5). Adding a step to “fill” small objects will likely resolve this issue. Second,

disconnected leaf contours occasionally fall outside of the circular ROI, resulting in erroneously

low projected leaf area and shape descriptor measurements. Directly drawing shape descriptors

on output images facilitates visual detection of such errors (Figure 3.5). For timecourses subsets
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Figure 3.4: Top-down view of the course of vegetative development for plants showing wild-type
rosette morphology (upper panels) and the downward-curled-leaf ago7mutant phenotype. Cropped
images from 12, 17, 22, 27, and 32 days post-stratification are shown. Four timepoint panels show
pixels above the a* threshold applied, by applying semitransparency to background pixels. The last
timepoint panels outline the identified object in blue and indicate convex hull, centroid position, x-
and y-extent, and maximum dimension in red; these are the default colors used in PlantCV output,
rather than the magenta, as used in Figures 3.3 and 3.5. Our computational pipeline writes both
types of cropped image into subdirectories by plant and by timepoint, to facilitate assessment of
plant segmentation.
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(e.g. one photo per day) it is feasible to inspect output images for all plants and exclude timepoints

with segmentation errors. Alternatively, for experiments with reasonable sample sizes, simply

averaging can smooth out the noise introduced by occasional segmentation errors. Methodology

for segmenting rosettes (a multi-instance segmentation problem) was not the main interest here;

comparison to two other methods is provided below, in subsection 3.5.1.

Figure 3.5: Examples of two types of rosette missegmentation and effect on calculated shape
descriptors.
Left: Perlite pixels incorrectly included in a plant object, because they exceed the a* threshold and
are present in the circular region of interest for the given plant. This results in an incorrectly large
convex hull, longest dimension, etc. (magenta lines).
Right: Leaf pixels incorrectly omitted from a plant object, because the relevant leaf blade contour
is disconnected from the rest of the plant and entirely outside of the defined circular region of
interest.

The fluorescent growth lights in our growth chamber have yielded very bright and even illumi-

nation. We have relied on automatically determined camera exposure and color-balance settings,

for simplicity. Our thresholding results indicate that this approach works well for morphological

analysis of healthy plants. Comparison of color traits measured with multiple camera sensors
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over the course of an experiment will clearly benefit from optimization of both acquisition and

post-processing settings, as discussed further below.

3.4.3 Rosette size and shape dynamics in ago7 mutants

We hypothesized that the shape metrics described above could capture aspects of the ago7 mutant

phenotype over the course of the experiment described in the last chapter (section 2.3.3), and might

provide information on when the different between mutant and wild-type plants (transformed with

empty vector) was greatest. As expected, the downward curling of leaves of ago7 mutants resulted

in lower area in two dimensional view from above (projected area; Figure 3.6A). Several metrics

indicated that wild-type plants were larger on average in this experiment (Figure 3.6, panels A,

B, D, E, G, and H). Dividing projected leaf area by convex hull area (to calculate solidity) has

the effect of normalizing some differences in size (Figure 3.6C); solidity was initially comparable

for the two reference genotypes but lower for the mutant plants at later timepoints, reflecting the

thinness of mutant leaves as viewed from above.

The number of vectices in the convex hull for wild-type plants likely because the “pointy” leaves of

ago7 mutants often only defined a single vertex whereas the rounder wild-type leaves often defined

several (Figure 3.4). Rosettes were perhaps slightly more oblong for mutant plants relative to wild-

type, as assessed by the unstable metric of minimum bounding ellipse eccentricity (Figure 3.6I).

Average values for the six mutant lines transformed with 3xHA-AGO7 constructs were closer to

the average for wild-type group than to mutant plants for all nine metrics (not shown).

Many caveats apply to this analysis, as to any timecourse analysis of shoot growth [237]. Most

of these relate to improved normalization and statistical modeling. One concern is that mutant

plants were simply smaller than wild-type plants due to slightly later germination or the like,
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Figure 3.6: Shape and size of wild-type and ago7 mutant rosettes over time.
Left panels show averages for rosette shape descriptors by genotype from days 12 to 32 days
post-stratification. Right panels show values for individual plants, colored by genotype. Graphs
continue on the next page.
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owing to factors other than their genetic difference. Comparing two staggered time series can

result in systematic errors [237], and we have not analyzed relative growth rates or other rates of

change. Many possibilities exist to improve effect size estimates using on improved modeling, (to

account for the effect of plant positition, light intensity, etc.) and combination of multiple metrics

into higher-dimensional summaries (e.g. through principal component analysis). Integration of

information from different experiments will allow estimation of how much of the plant-to-plant

variation within genotype groupsmight be due to technical variability. I have a considerable amount

of image data from highly replicated experiments is in hand for this purpose. There are of course

also many opportunities for improvement of the image processing methods used, as described in the

next section. Values for some size-related metrics did not monotonically increase as they logically

should, due to the rare but significant types of segmentation error described above. Fortunately,

the fine-grained information in hand will allow continual extension of the analysis presented here,

both visually and statistically, as algorithms improve.

To explore the use of the top-down photos for leaf-level measurements, I assessessed correlation

with flatbed-scanner-based measurements described in the last chapter (Figures 2.15 and 2.13)

by identifying leaf blade tip and base coordinates for upper-level plants at the appropriate photo

time-point for each. The distance between these points (in pixels) represents leaf blade length. As

expected, leaf blade lengths measured with these two complementary methods were well correlated

(Figure 3.7). The correlation was not quite as good for petioles, presumably because they are

short and the relative measurement variabity is proportionally larger. In addition to such variation,

differences in leaf angle and leaf curvature are well-known to cause deviations from linearity [238].

Collecting the landmark data required for this type of analysis is time-consuming, but valuable

for benchmarking automated methods. Collecting landmark data from relevant time-points would

enable similar correlation analysis for unflattened leaves using the manual caliper measurements in

hand (Figure 2.14).
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Figure 3.7: Correlation between leaf-level measurements in flatbed scans and top-down photos:
leaf blade length (left) and petiole length (right). Flatbed scanner measurements (Y axes) were
described in the last chapter. For each of the 24 plants, coordinates for approximate position of the
plant center and the tip and base of each leaf blade were identified with the ImageJ point tool in the
top-down photo taken immediately before each plant was removed from the growth chamber.
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3.5 Possible improvements and related work

High-throughput phenotyping is in its infancy; the next few years will see dramatic improve-

ments. Low-cost custom-built systems currently lack many features and conveniences present in

commercial systems. Adding such features will require significant effort, but should also create

opportunities for increased transparency, flexibility, and innovation.

3.5.1 Phenotiki resources: comparison and priorities for benchmarking

Minervini et al. [239] summarized the principal advantages of fixed-camera Raspberry Pi systems:

low cost and lack of moving parts. Our work differs from their proof-of-concept experiment in

that we use twelve Pi/Camera rigs, higher image capture frequency, and the shorter camera-plant

distance necessitated by our growth chamber. The shorter camera-plant distance used yields higher

spatial resolution, but requires manual focusing of lenses and reduces the size of the field of view.

Some advice related to these considerations and others is provided in Appendix B.

Several methods for segmenting individual plants have been described, including methods with a

higher degree of automation than the circular-region-of-interest approach described above. The k-

means clustering localization method described in reference 240 works with arbitrary arrangements

of plants, but requires the user to specify how many plants are present in the image.24 In practice,

the majority of experiments use plants grown in grids, with a constant number of plants in each field

of view; this geometric information can be exploited. An initial grid-based method for grouping

contours was recently added to PlantCV—see Appendix D and the online documentation. I prefer

24 Reference 240 describes how segmentation of individual leaves can be used to iteratively refine plant masks
via updating of appearance models. The developers of the Phenotiki App authored that work, but have not yet been
integrated leaf-level analysis into their application, which emphasizes rosette-level measurements and leaf counting
[239].
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to use circular regions of interest, which better fit the profile of the A. thaliana rosette. Using

closer-fitting regions of interest delays “intrusion” of plants into their neighbor’s areas, and thus

helps with segmentation of groups of larger plants, making this method flexible for long-running

experiments. We could in principle continue to follow plants and individual leaves after they start

to touch each other; methods for modeling object occlusion are a major area of video analysis

research.

Segmentation of individual A. thaliana leaves is a challenging problem [241] but should eventually

allow dynamic measurement of leaf size and shape, as discussed further below. Suchmeasurements

will require a significant amount of validation and calibration, as in Figure 3.7. Researchers are

often interested in shoot biomass (fresh and/or dry weight) which is well-correlated with projected

rosette area [238]. Explicitly modeling leaf occlusion and growth over time can improve the

accuracy of such projected-area-based estimates forA. thaliana [242]. Simultaneously scanning and

collecting dryweightmeasurements for individual leaves should allow further improvedmodeling.25

Therefore leaf-level calibration of top-down photography setups should focus on measuring 1)

correlation between projected area and flattened (scanned) area and 2) flattened area and biomass,

in that order.

Minervini et al. did three useful analyses not considered here [239]. First, their side-by-side

comparison indicated that the Raspberry Pi camera module (v1) performed about as well as a

single-lens reflex camera for top-down imaging. Secondly, they calibrated a subset of their rosette-

level shape metrics with caliper measurements. Thirdly, Minervini et al. demonstrated that they

could detect an extreme coloration mutant phenotype based on average hue.

25 Combining fresh weight measurements (for single leaves) with flat-bed scanning is more difficult, because the
leaves begin drying out so rapidly after dissection. I thank V. Coneva for insightful discussions of this subject.
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3.5.2 Stereo photography, distortion correction, and color accuracy

Color analysis, size calibration, and distortion correction all present major possibilities for improve-

ment. A certain amount of white balance correction and size calibration can be achieved using

objects (such as the white pot labels) in each field of view. We have photographed color standard

cards at the start and end of experiments (Figure 3.1), but did not leave these in place (for more

thorough correction over time), because of the expense and field-of-view space required. Concern

about camera sensor drift was one reason for the use of automatic capture settings. Manually

setting shutter speed and gains (analog, digital, red, and blue) is preferrable for color-based appli-

cations,26 including quantifying disease phenotypes such as water-soaking or chlorosis [243, 244].

Use of a large color-grid poster allows more sophisticated correction of color and both optical and

perspective distortion [245, 246], beyond what can be done by joining and orthorectifying photos

from overlapping fields of view into a single stitched image. Stereoscopic measurement using over-

lapping fields of view from multiple nearby cameras can also be used to gain depth information, to

improve segmentation or for applications such as measuring circadian movements of leaves [246].

3.5.3 Metadata standards, monitoring, and experimental design

As noted above, management of metadata from these experiments has been based on folder and

filename structure together with the Exif metadata embedded in each JPEG image file.27 Automatic

capture of additional information in machine-readable form would further improve the reusability

of these data. The recent “minimal information about a plant phenotyping experiment” (MIAPPE)

standard [247] is so far the most detailed schema developed for this purpose. The “e!DAL” software

26 Unfortunately, as Dave Jones has noted, “It can be difficult to know what appropriate values might be for these
attributes.” See https://picamera.readthedocs.io/en/latest/recipes1.html

27 I captured photos in JPEG format (instead of PNG, which uses lossless compression) specifically to take advantage
of this method for preserving metadata.
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underlying the Plant Genomics and Phenomics Research Data Repository [248, 249] supports this

scheme and has several other nice features, but it remains to be seen whether it will be deployed at

other institutions.

Tracking metadata at the plant and individual leaf level could also be automated further to increase

reliability and allow alternative designs. Automatic detection and readout of Quick Response

(QR) codes is one option, and can facilitate repeated shuffling of plant positions throughout each

experiment [245]. Such plant rearrangement can be desireable to reduce systematic effects from

microclimate (differences in light intensity, temperature, airflow, etc.) but was avoided here for

simplicity and to facilitate computational object tracking. Brien et al. [250] have argued that

statistical control for the effects of such variation is preferrable to plant rearrangement, even for

systems that include conveyor belts for this purpose. Conveyor belt systems have a clear advantage

for controlled watering during experiments, as for example in reference 234; carefully controlled

watering is certainly possible in top-down imaging experiment, but is laborious, error-prone, and

often unnecessary.

Whilemy experience has been that Pi/Camera systems have been very reliable, more refined alerting

methods will be advantageous when the inevitable hardware failures start. As image analysis

methods mature, one can imagine setting standard analyses to be run automatically, for daily or

real-time generation of results. Monitoring such results can help with identifying unexpected

growth problems and may become convenient enough to be worthwhile for routine quality control

of growth. The formal planning required for this type of experiment and the detailed records

produced facilitate blinding and randomization and may provide an opportunity for improving

statistical design of experiments.
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3.5.4 Similar datasets, video analysis, and leaf phyllotactic order

Most work on leaf segmentation has focused on single timepoint snapshots [241], but integration

of methods that use temporal information and appearance models should greatly improve the

utility of analysis tools such as PlantCV. A small number of publicly available datasets (described

below) include top-down photos from multiple experimental timepoints, which are a prerequisite

for building and testing such tools. Data generated by the International Plant Phenotyping Network

[239, 251] has been particularly useful;28 this well-annotated data has stimulated great progress

in methods for segmenting individual leaves [241]. The main difficulty in segmenting rosette

leaves is that later leaves occlude early ones, resulting in “overlap” within images (Figure 3.8).

Minervini et al. [252] have developed, shared, and used semiautomated interactive tools to efficiently

generate “ground truth” color-label images for testing and validating leaf-level tools (Figure 3.8).

Despite progress, the automatedmethods described thus far are not flexible enough formeasurement

of leaf heteroblasty, because they do not attempt to use or record the phyllotactic order of the leaves,

resulting in loss of geometric information and developmental context.

At least two other publicly available datasets include top-down photos with multiple A. thaliana

plants in each field of view.The first of these, the ‘MSU-PID’ dataset [254] includes four types

of images, including depth sensor data. Yin et al. have also produced excellent work framing

semiparametric leaf-level video analysis as a set of related segmentation, shape alignment, and

tracking problems [255–257]. Cruz, Yin et al. [254] developed a semiautomated tool that allows

tracking individual leaves, but loses all information about phyllotactic order; leaves are instead

colored and numbered by tip angle relative to an arbitrary reference point.

28 See http://www.plant-phenotyping.org/datasets
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Figure 3.8: Example illustrating leaf-level segmentation and misannotation.
A. Cropped 250 by 250 pixel view of wild-type Col-0 plant #1 from the Leaf Segmentation Chal-
lenge dataset A1 [251]. Numbers indicate the order in which leaves emerged (phyllotactic order).
Dots indicate approximate leaf tip positions and arrows indicate the direction in which leaves
emerged (clockwise). Note occlusion of true leaf 3 by leaf 11. Cotyledons (embryonic leaves) are
partly visible, adjacent to the tips of leaves 13 and 12.
B. Reference leaf annotation provided with dataset. This image represents the best human-curated
segmentation currently available, and was used as an example in references 252, 253, and 241. Col-
ors are unordered, as discussed in the text. True leaves 1 and 6 are missegmented in the annotation
shown: an extra leaf object has been added (dark blue). The boundary between true leaf 1 and true
leaf 6 is ambiguous in this timepoint, but can be clearly seen by comparison of other timepoints
(not shown). This image represents the second timepoint in this series; geometric information from
simpler rosette growth stages is not available for algorithmic processing. (Cf. Figure 3.4.)
C and D. Further-cropped view of leaves #1 and 6 in original image (75 by 75 pixels) and corre-
sponding leaf annotations. Note brown pixels at the tip and near the base of the leaf blade.
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By contrast, Bell and Dee [258] have appreciated the importance of leaf position and order. For

their ‘Aberystwyth’ timecourse dataset, they annotated segmented leaves in phyllotactic order, using

a red-to-yellow coloration method. Their method is somewhat complicated in that it incorporates

uncertainty about order; independent annotation and estimates of error rates would increase the

utility of this dataset further. Bell and Dee additionally used a flatbed scanner to measure area of

dissected rosette leaves, similar to the method used here.

The ‘Aberystwyth’ dataset was collected with a conveyor belt system, and other A. thaliana datasets

from conveyor belt systems (with one plant per field of view) are available [259, 260].We suggest

that fixed-camera systems will be most cost-effective for simple visible-light imaging. Mobile

camera, conveyor belt and manually-loaded systems will remain useful for systems with more

sophisticated sensors or optical systems. Tools that can combine information from both A) high-

throughput measurement of large numbers of plants and B) higher-resolution and/or better isolated

measurements of fewer plants will likely yield the most useful models of A. thaliana growth.

Dissecting and scanning of leaves will remain an important isolationmethod, to simplify processing

and generate leaf area validation data. We anticipate that the availability of this type of data

will dramatically increase in the near future, and be creatively combined with other types of

measurements to address diverse biological questions.

The A. thaliana community seems well-positioned to benefit from statistical machine learning

methods once sufficient high-quality training and test data are amassed [202]. Plant biologists

have an important role to play in this work, both in optimizing data collection and applying expert

knowledge to annotation of images [261, 262]. Using human perception of leaf phyllotactic order

(Figure 3.8) is one example of how biological knowledge can be used to guide annotation.29 It is

29 My description of the missegmentation in Figure 3.8 is not intended as a criticism of any of the relevant papers
cited. As emphasized above, I think release of this annotated dataset has driven great progress. I have alerted S. Tsaftaris
and H. Scharr of the issue illustrated in the figure.
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difficult to know just how much test data will be needed for different types of inference, and how

robust different methods will be to errors in labeling of data for training and testing. Carefully

coordinated experiments suggest that inter-laboratory variation will be substantial [263]. Out-of-

sample error will always be a large and difficult-to-assess concern, and thus there will always be a

need for “a human in the loop”. Multiple groups have convincingly argued that statistical approaches

(based, for example, on neural network models) will eventually be the dominant approach to rosette

image analysis, as they have in the field of computer vision more broadly [202, 262]. However,

uncritical application of these methods can lead to misinterpretation, adding unnecessary high-

dimensional complexity and compounding errors over the long term, and thus creating substantial

technical debt [264]. Semiautomated hueristic methods such as the ones emphasized above will

remain important [262], not least because their interpretability aids experimenters in optimizing

image capture conditions.

3.5.5 Historical note and personal reflections (part 1)

Despite widespread enthusiasm for automated plant phenotyping, I was initially reluctant to start

the experimentation described here. I expected that multiple descriptions of Raspberry Pi imaging

would be published in short order, and I did not want to reinvent the wheel. Publications describing

this approach (notably reference 239) have indeed started to appear, and at least one company

has started to offer commercial support.30 It may be that camera systems will become a standard

component of controlled-environment growth chambers. Alternatively, the technological trends

emphasized here may drive increased customization of hardware for environmental control and

monitoring; researchers and hobbyists may increasingly construct their own growth chambers

[265–267]; particularly if light-emitting diode grow light costs continue to drop. The needs

30See https://cropscore.com
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of different experimenters vary quite a bit, so diverse approaches will always be required and

independent implementations that enable comparison will likely have great value. Concrete details

and hands-on experience are both extremely valuable.

Video systems have been used for analysis of A. thaliana growth for at least twenty-five years [268].

Why has this type of analysis not become more common? Cost of cameras is likely one factor.

Relatively low-cost digital cameras have been used since at least 2009 [269], but Raspberry Pi

camera modules represent a substantial improvement in this regard. The effort required to program

specialized cameras may be another factor, and here the fact that the Raspberry Pi is a general

purpose computer may help with usability. My preferred data acquisition method (Appendix C)

requires developing familiarity with a command-line interface, but other methods for configuration

(including via web browser; reference 239) are available. Data processing is clearly another

bottleneck, and involves similar tradeoffs in terms of degree of automation, interactivity, and user-

friendliness. ImageJ is an obvious framework to build on for graphical user interfaces, including

for rosette analysis [270–273]. Interactive systems take advantage of the powerful human visual

system and I have found ImageJ extremely useful, as described above, but interactive operation is

not an unalloyed good—see Appendix D.

This work represents incremental progress, not a definitive standardized methodology that will

find immediate widespread use. It should be frankly admitted that most important recent work on

leaf heteroblasty (e.g. references 132, 133, and 155) have been based on careful observation and

manual measurements rather than time-lapse imaging; related image analysis has mostly been based

on scans of flat leaves [89], including one recent exceptional topdown-photo-augmented study of

A. thaliana [274]. Nevertheless, I find it plausible that before too long many groups will find it

more convenient than not to capture photos, particularly because they enable “rewinding of time”

for exploratory measurement of traits that were not of a priori interest.
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In describing computational work it is difficult to find a balance between focusing on high-level

concepts and including sufficient low-level detail for the work to be useful. This tension is

very relevant to plant image analysis, and has been described well by Pridmore et al. [275]. The

interdisciplinary nature of this project has created both challenges and opportunities. My persective

on plant image analysismay seemunusual becausemy interest in time-lapse imagingwas so strongly

motivated by a desire to quickly and easily figure out the phyllotactic order of rosette leaves. Effort

may have been better invested in rosette-level analysis and measurement rather that at the much

more challenging leaf level; hopefully some of the choices I made about analysis software will

yield long-term benefits (Appendix D). I have tried to show here how applying expert knowledge

of rosette morphology may prove useful for future image processing algorithms. I reflect further

on some of these issues in section 4.5, as part of describing the broader scientific context in which

this project fits.
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Chapter 4

Prospects and conclusion

The work described here leveraged recent improvements to two automated methods for understand-

ing development at the levels of 1) protein-DNA interaction and 2) whole-plant growth. These

efforts yielded a model for control of the key conserved regulator AGO7 (Figure 2.17) and prac-

tical improvements to low-cost imaging methodology. This work represents progress in linking

molecular events to the development of whole organisms, and I have explored how improvements

in automated measurement might drive further progress. Vegetative growth of A. thaliana will

continue to be be an important experimental system.

As described in the introduction, forward genetic studies of heterochronic mutants, particularly

in C. elegans and A. thaliana, have been enormously productive. The initial curiosity-driven

studies were designed to clarify the logic of development and evolution [134, 276–279], and

yielded insights about post-transcriptional regulation that could not have been directly anticipated.

MIRNA genes may have long eluded discovery because of redundancy, small genetic footprint,

subtle phenotypic effects, and/or absence from models such as budding yeast [12]. Identification

of small RNA functions is a case in which complementary studies of plant and animal systems

accelerated discovery of a broad principle. In terms of our understanding of fundamental molecular

mechanisms, these studies drove a paradigm shift at least as large as the celebrated screens for
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disrupted patterning in Drosophila larvae [280, 281] and studies of homeotic mutants in flies and

plants [282–284]. Analysis of heterochronic and homeotic transformations uncovered analagous

control of gene expression in time and in space, respectively [285]. Overall, studies of small

RNAs and TFs reveal commonality, in which master regulators drive progressive elaboration of

patterning. Conservation of regulators and their binding sites preserves some of the history of how

developmental mechanisms evolved [2, 286].

Chapter 2 presented evidence for a new direct connection between three deeply conserved small

RNA-TF circuits. Possible functions of this direct connection are still largely unclear, but fit

the theme of dense interconnection between AGO-small RNA-TF circuits. The next three section

provide broader context by outlining other recent progress and outstanding questions.

4.1 How do TAS3 tasiRNAs function in patterning?

As emphasized in the introduction, special aspects of TAS3 tasiRNA biogenesis may be important

for their patterning function. This proposed function was a major reason we sought to understand

upstream control of polar AGO7 transcription. The predominant model in the literature can be

summarized as follows:

1. Cell-layer-limited AGO7-miR390 action sets up localized production of TAS3 tasiRNAs.

2. tasiRNAs move between cells, establishing an adaxial-abaxial gradient in developing leaf

primordia.

3. tasiRNA targeting creates a sharp boundary of ARF protein accumulation, which contributes

to robust maintenance of polarity.
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This model fits the steps of the morphogen concept: 1) local chemical signal production, 2) gradient

formation, and 3) direct gradient interpretation. Definitions of the word “morphogen” vary: most

involve movement or graded distribution, and some require readout of at least two thresholds (per

the “French flag model” described in reference 287), as is common in animal development [288,

289]. The word itself was introduced by Alan Turing [290], but is used broadly—it does not only

refer to the specific two-component chemical model introduced and mathematically modeled in

his paper.31 Most discussions of the possible relevance of morphogen gradient concept in plants

have focused on auxin signaling [292, 293], but similarities between TAS3 tasiRNA function and

morphogen action in animal systems have been noted [207].

Chapter 2 focused on the first step in the model outlined above (polarization via restricted tran-

scription), but all three must be considered. Unfortunately, our understanding is built mostly on

indirect evidence.

1. AGO7-miR390 complexes have not been physically localized across leaves; patterns of action

have been inferred based on transcriptional reporters [50, 117].

2. TAS3 tasiRNAmovement has not been measured directly; movement has been inferred based

on qualitative discordance between patterns of RNA accumulation and reporter gene signal

[117, 118].

3. The hypothesized sharp boundary of ARF protein levels has not been measured directly;

this concept was postulated based on a mathematical model that depends on the unproven

assumption that AGO1-tasiRNA complexes function primarily in noncatalytic modes [294].

As discussed below, the evidence for noncatalytic (“translational repression”) functions for

31 Turing was concerned with the spontaneous stochastic generation of initial patterns. Despite suggestive examples,
the direct relevance of Turing patterns per se to living systems remains to be demonstrated [289]. The ideas of
position-dependent cell differentiation and mobile signals have an older history—see reference 291.
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plant AGOs is mixed. Additionally, cleavage of ARF transcripts is readily detected [48, 204],

indicating some degree of catalytic turnover.

Overall, it is unclear how fast and how far TAS3 tasiRNAs move, and how they affect ARF mRNA

and protein levels, largely because of technical challenges associated with measuring localization of

protein-RNA complexes. Nomechanism for active transport of small RNAs has been demonstrated

and the extent of passive diffusion is also unknown. Consequently, short-distance movement of

small RNAs has beenmore difficult to demonstrate than long-distancemovement. It may be possible

to formally prove small RNAmovementwithin leaves usingmosaic plants with periclinal chimerism

or local sectoring [295]. Alternatively, direct imaging of tasiRNA movement between cells may

become possible, and would be very useful for modeling and mechanistic studies. Ultimately,

methods for precise manipulation of tasiRNA gradients will be necessary if we are to truly test their

proposed functions.

An intermediate area in which the juxtaposition of abaxial and adaxial domains leads to expres-

sion WUSCHEL-related homeobox genes was recently discovered [296]. The presence of this

intermediate zone, which appears critical for outgrowth from “marginal meristems” [165], can be

considered evidence against the idea of a sharp dorsoventral boundary in expanding leaves. Recent

data suggest that ARF repressors directly contribute to establishment of this middle domain, to-

gether with the ARF activator MONOPTEROS [297]. Furthermore, the question of whether TAS3

tasiRNAs create a sharp ARF protein boundary is less important than the downstream question of

howARF levels control transcriptional changes. A continuous gradient of ARF protein levels could

certainly contribute to precise definition of two or more transcriptional states, possibly through a

mechanism similar to readout of the nuclear Dorsal gradient in early Drosophila embryos [288].

Understanding ARF repressor function will require considering both timing and patterning.
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4.2 Inputs and outputs of SPL and ARF circuits

As noted above, our knowledge of plant TF DNA binding specificity has expanded dramatically

in the past few years. Nevertheless, measurements of genome-wide binding and transcriptional

effects should provide several types of insight into ARF and SPL function.

Understanding how ARF3 and ARF4 targets act at the cellular level should clarify how polarity

establishment and shape changes are connected, and thus clarify the function of AGO7. ARF3

action in flowers andfloralmeristemswas recently analyzedwithRNA-seq andChIP-seq [120]. This

analysis did not consider regulation via the TAS3 pathway, but nevertheless revealed considerable

complexity, including feedback into all levels of auxin signaling and related interactions with TFs

such as INDEHISCENT and REPLUMLESS. However, global expression analysis of ago7mutants

has thus far identified very few misexpressed genes [45, 175]. It is not possible, with our current

level of understanding, to say whether downward leaf-curling in ago7 mutants is a consequence

of subtle polarity defects (abaxialization), premature shape changes, or some combination of the

two. The heterochronic shift interpretation was initially favored because of related changes in

trichome and leaf serration phenotypes [113]. Interpretation in terms of polarity came later, once

the genetic connection to ARF3 and ARF4 was clearer [128, 175, 205, 206] and polar expression

patterns were identified [117, 118, 175]. The idea that limited spatial action of AGO7-miR390

complexes is functionally important for leaf curling phenotypes (Point 1 in the model described

above) has been an inference rather than a directly tested hypothesis. Tentative evidence from the

work described here suggests that AGO7 spatial transcription pattern and genetic function in leaf

curling are separable in A. thaliana (Figure 2.17), and thus raises questions about the relevance

the mobile TAS3 tasiRNA model. Differences in phenotype interpretation have also arisen in the

intensive studies ofAGO7 inmaize [208, 209, 298], perhaps due to effects from genetic background.
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It is plausible that polarity specification and heteroblasty are inextricably linked. If this is the case,

it should be useful to define this link in cellular terms in plants with diverse leaf morphologies.

A related issue is that we have little information about how SPL and ARF activities converge to

affect cellular processes. Identifying SPL targets is essential, because studies of in diverse plants

have shown that they are the primary TFs that drive heteroblasty [88]; other groups of TFs such as

TCPs and ARFs appear to function mainly as modulators of the developmental outputs resulting

from increasing SPL levels. Identifying direct targets should help us evaluate the abstract threshold

model for heteroblastic changes [128, 134; see Figure 4.1] and could reveal regulatory logic for

activation of AGO7 by SPLs.

Figure 4.1: Revised model for control of heteroblasty in A. thaliana, incorporating the likely
activation of AGO7 by SPLs. SPL levels gradually increase until they reach a hypothetical activity
threshold, controlled in part by ARFs, and trigger changes in leaf characteristics. When the AGO7
pathway is disrupted, ARF levels go up, lowering the threshold for transition such that it is reached
earlier. This perturbation results in leaves that are thinner, longer, and more curled in ago7 mutants.
Indirect repression of ARFs via AGO7 and TAS3 tasiRNAs may have significance for feedback
control of SPL activity.
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ARFs and SPLs presumably share downstream targets, perhaps separated by one or two layers

of regulation (Figure 4.1). While SPLs and ARFs both promote phase change, they may have

opposing transcriptional effects, given that SPLs generally function as activators and ARF3 and

ARF4 as repressors [299]. Understanding how miR156-SPL and auxin pathways intersect in

control of leaf primordium initiation is a related and important goal. The role of auxin depletion

in primordium initiation is well established; emergence of leaves at auxin maxima providing a

convincing model for spiral phyllotaxy [300, 301]. Evidence from live-cell imaging increasingly

suggests that local auxin depletion also prepatterns the abaxial-adaxial axis prior to leaf primordium

emergence [297, 302–305], counter to the mobile signal model described in section 1.2.1.

4.3 Methods for dissecting enhancer regions in plants

It is fair to say that our knowledge of transcription in plants lags behind our understanding of

yeast and animal systems, and that is not yet clear which concepts translate well across kingdoms.

Comparison to patterning of the Drosophila embryo, in which gradients of maternally-derived

factors are translated into precise expression boundaries and repeated metameric segments may be

instructive. Studies of anterior-posterior specification revealed how a cluster of genes encoding

homeodomain proteins have analogous patterning functions in all bilaterians [286].

A central concept in transcriptional control of animal body patterning is that clusters of TF binding

sites are organized in modular enhancer units [306]. Application of this concept is surprisingly

difficult in plants. Enhancers are clearly relevant at a broad conceptual level [307], but major

uncertainties remain about action at a distance, which seems to be rare in plants32 but is very

32 I am aware of only one well-studied plant example: enhancement of teosinte branched 1 transcription by a distantly
inserted transposon [308].
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common in animals [309]. It is possible that this reflects fundamental differences in “promoter

architecture” between plants and animals33, possibly associated with differences in insulator gene

family content [310]. Yeast promoters certainly seem compact [311], a fact explicitly considered

by our collaborators during development of their initial Y1H strategy [179]. Genome-wide studies

of chromatin packing may shed light on this issue [310, 312], including possible peculiarities

associated with the recently reduced size of the A. thaliana genome [313, 314].

It will be methodologically useful to assess the extent to which Y1H methods can identify binding

sites that are weak but functionally significant, overcoming an important type of ascertainment

bias. It increasingly recognized that such low-affinity sites, particularly in clusters, can both

reinforce requirements for cooperativity and promote tissue-specificity [315]. As noted in several

places, the Y1H assay is a powerful method for circumventing genetic redundancy, both between

structurally relatedTFs and among physically linked binding sites of unrelatedTFs. Identifying such

redundancy remains challenging, but should eventually becomepredictable, whichwill be important

because redundant sets of enhancers are increasingly thought to contribute to developmental and/or

evolutionary robustness [306, 316–318]. Similar to animal miRNA with presumed fine-tuning

roles, such enhancers can be difficult to identify because they are individually dispensable under

favorable growth conditions [319–321]. It remains possible that the SPL and TCP binding sites

described above have roles in fine tuning or canalization. Testing function under temperature

stress may be particularly interesting because of the influence of the plant “thermal clock” on

heteroblasty [322]. Thorough time-course measurement in sensitized genetic backgrounds and in

diverse conditions will remain important.

CRISPR mutagenesis should enable much more thorough dissection of elements upstream of

AGO7 and other genes in their natural genomic context. Saturating mutagenesis is feasible

33 Animal molecular geneticists generally use the word “promoter” to refer specifically to the proximal region bound
by core transcriptional machinery.
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[323] and targeted mutagenesis (based, for example, on Y1H and/or PWM scan results) avoids

variability introduced by position effects associated with random insertion of transgenes.34 Care-

ful use of sensitized backgrounds and crossing designs can increase the power of this approach

further, including in crops [324]. Homologous-recombination-based replacement of genes and

promoter elements will reduce technical challenges that have long plagued studies of TF binding

and transcriptional silencing [325]. CRISPR mutagenesis can be productively combined with both

chromatin immunoprecipitation (to biochemically verify altered binding by specific factors) and

Y1H screening (for prioritizing specific cis-element-dependent hits).35 Successful application of a

related transgene-based approach by Li et al. [326] serves as an instructive model.

MIR156 promoters will be particularly interesting targets for this type of analysis because of their

central role in control of timing. The molecular events necessary for repression of MIR156 genes

are starting to become clear [6, 327–331]. However, this gradual repression but have not yet been

directly linked to transduction of signals such as or temperature stress [332] or sugars (per the model

illustrated in Figure 4.1; references 132, 133, and 333). Improved understanding ofMIR156 should

help connect models of developmental control to physiology, circadian regulation, and metabolism

[334], including likely connections to trehalose-6-phosphate signaling [335, 336].

The general approaches described above could also be productively applied to other AGO genes,

including dissection of highly localized expression in reproductive tissues [26, 40, 108, 337]. Most

of these AGOs are presumed to function in germline defense via RNA-directed DNA methylation

directed by mobile small RNAs, but mechanistic differences among them are largely obscure; these

AGOs have similar structures and siRNA binding preferences (Figure 1.4).

34 I suspect that hygromycin selection was a much larger source of developmental variability than postion effects in
my experiments. Avoiding antibiotic selection by characterizing a sufficiently large number of stable homogozygous
lines (generated with CRISPR-based strategies or otherwise) is clearly preferrable, when feasible.

35 Large-scale Y1H assays also allow initial assessment of secondary effects: demonstration that mutation of a bait
sequence affects only a small number of TF hits can provide preliminary evidence that the effect of a corresponding in
vivo mutation is relatively specific. See for example reference 326.
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4.4 Molecular functions of AGOs in development

AGO function depends on cis elements and physical protein structure. This dissertation has focused

on upstream regulators of AGOs, but there are also many open questions regarding molecular

mechanisms of AGO action [6, 338, 339]. Particularly relevant to work described here are questions

about possible noncatalytic action of plant AGO complexes and the related issue of how specific

complexes trigger phased siRNA production.

Initial studies suggested that plant miRNA function by cleaving their targets and that animal

miRNA inhibit translation. Further work has indicated that animal miRNA can promote transcript

turnover by deadenylation and decapping but may not significantly inhibit translation initiation

or elongation per se [340–344]. Simultaneously, reports of apparent translational repression have

complicated our understanding of targeting in plants. The most notable examples are copper-related

miR398 targets [345–348] and miR156-targeted SPLs [147, 349, 350].36 Initial observations were

puzzling, because both miRNA are highly complementary to their targets, and cleavage products

can be detected for both. The “seed”-type matches predominant in animal miRNA targeting do not

appear to function for either cleavage or translational repression in plants [351]. However, discovery

that the Glycine-Tryptophan motif (GW) protein SUO is required for translation inhibition appears

to have revealed a mechanistic similarity to target repression in animal systems [350]. SUO and

other plant GW proteins may have eluded biochemical detection because of differences in structure

and affinity [352]. Further study of SUO may help clarify noncatalytic action of AGOs, with

important implications for two hypothetical properties: sharpening of boundaries by mobile small

RNAs [294] and rapid reversal of repression [353, 354].

36AP2 targets ofmiR172were suggested to be translationally repressed, but this effect seems to have been confounded
by feedback regulation [148].
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Figure 4.2: Schematic illustrating possible small RNA targeting outcomes. As discussed in
section 1.1.1, the predominant targeting modes of plant and animal miRNA were initially thought
to differ. More recent models described in the text indicate greater similarity, particularly in terms
of endonucleolytic cleavage vs. noncatalytic action. Genome-wide studies of diverse tissues,
timepoints, and conditions will be required to understand the prevalence of these modes. Recent
work has also clarified determinants of amplification (AGO-triggered secondary siRNAbiogenesis),
apparent threshold-based connections between amplification and transcriptional silencing, and
competition between routing pathways. See also Figure 1.3 and Figure 1.5 for schematic molecular
representations.

Determinants of slicing vs. nonslicing action are also relevent to phased siRNA production, in-

cluding from TAS3 transcripts. Understanding this biogenesis mechanism is essential because

it appears to be an important determinant of small RNA mobility [355]. Recent work has shown

that slicing is not required for tasiRNA biogenesis [356], consistent with the possibility that AGO-

miRNA complexes may recruit the stabilizing factor SGS3 [357]. SGS3 and/or AGO complexes
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may also recruit RDR6, either through protein-protein interactions or by passively enabling it to

recognize transcript features such as the lack of a poly(A) tail [358, 359]. In both scenarios,

subcellular localization could be an important determinant. AGO7, SGS3, and RDR6 appear to be

present in specific cytoplasmic membrane-associated bodies [360, 361], which may be associated

with ribosomes [362, 363].

In spite of this progress, it remains unclearwhy a few complexes trigger biogenesis and others do not.

One clear point, learned mostly from studies of the AGO7-miR390 complex, is that dual targeting is

often sufficient [49, 356]. A second point is that small RNA duplex structure can affect competence

of AGO1, possibly because complexes are “programmed” during loading or because specific long

mature miRNA strands sterically alter AGO1 conformation [364–366].37 AGO-intrinsic features

must also be important, given that programming AGO2 with 5′-nucleotide-swapped variants of the

same miRNA does not suffice to trigger siRNA production [217].Further structural, biochemical,

and high-resolution microscopy work will be necessary to clarify mechanisms [338, 339]. Grass

anthers could be a useful system for such work, because they contain a vast array of cell-type and

stage-specific phased siRNAs [27].

Similar studies may also clarify triggers for amplification of antiviral silencing, which has similar

genetic requirements, as illustrated in Figure 1.3. Sensingmolecular signatures of invasionmay use

a threshold mechanism, in which one Dicer becomes saturated, allowing a second to produce 22-nt

siRNAs that confer amplification-triggering properties to AGO complexes. Recent data suggest that

a similar mechanism contributes to initiation of de novo DNA methylation via AGO6 after ectopic

or endogenous RNA levels reach a certain threshold [370, 371]. Similarly, miRNA targeting can

trigger secondary siRNA biogenesis and silencing when derepressed transposon transcripts reach

37 Little is known about plant AGO loading complexes beyond a requirement for cyclophilin 40 and heat-shock
protein 90 [367]. As emphasized in Figure 1.4, 5′ nucleotide is a small RNA loading determinant, controlled through
interaction with AGO MID domains [368]. Loading of AGO7 also depends on other parts of the miR390/miR390*
duplex; the mechanism for this selectivity is unclear [369].

96



high levels [372], and there is some evidence that miRNA can trigger methylation directly [54, 373].

These data suggest a continuous spectrum from post-transcriptional to transcriptional silencing.

Understanding routing and threshold mechanisms may help researchers evaluate of the possibility

that large networks of phased siRNAs “buffer” the rapid expansion and divergence of gene families

such as immune receptors [47, 374].

Overall, questions remain about several fundamental aspects of AGO action, including the in-

terrelated issues of small RNA loading, protein-protein interactions, RNA target spectrum, and

subcellular localization. Understanding transcriptional specialization of AGO genes is a prereq-

uisite for deep understanding of all of these processes, and will therefore remain an important

research priority.

4.5 Personal reflections (part 2) and coda

The purpose of this dissertation is to document my accomplishments in the fields of computa-

tional and systems biology, so it seems appropriate to record some thoughts on those subjects.

Computation has become so pervasive that the phrase “computational biology” feels redundant,

though drops in costs that have made computer sensors effectively disposable are a new develop-

ment. Systems biology is a bit more specialized, because of the direct analogy to the discipline

of systems engineering [375]. One description that I like [376] emphasizes comprehensiveness

of component identification and measurement.38 Our “parts lists” are far from sufficient for most

modeling purposes, especially for approaches that seek to consider multiple scales. Identifying

38 The interview cited provides an accessible overview of the problem of understanding genome-wide enhancer
function (described above), with an emphasis on research in fruit flies and sea squirts.
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targets of conserved plant MIRNA families (Table 1.1) is one bright spot where our catalog of (ab-

stract) miRNA-target pairs seems near-complete, providing a framework for analyzing divergence

of the relevant genes throughout the plant kingdom. I hope it has been clear how the two main

methodologies used in this thesis advance us toward comprehensive profiling of vegetative growth

and identification of direct upstream regulators.

Functional dissection of promoter regions has been a powerful method for learning fundamental

facts about biology, including inA. thaliana. Some ofmy favorite examples from the plant literature

include references 377, 378, and 326. I found it challenging to abstract principles for effective

“promoter bashing” from these papers, probably because of some combination ofmisallocated effort

and fundamental limitations in our current understanding of transcription. Molecular cloning was

a major bottleneck throughout this project, unfortunately. DNA synthesis technology is improving

rapidly, but is still rather expensive for regions such as the AGO7 promoter that are repetitive

and contain long homopolymer stretches. I am optimistic that massively-parallel reporter gene

assays will find frequent use in plant cell research, as they have in the community working in

animal systems [379]. Other logistical challenges have included recovering the large number of

independent transformants required for conclusive transgenic experiments and limitations of tools

for management and integration of image data.

A central idea driving much work described here and elsewhere is that small RNAs have nontrivial

unique properties, possibly related to movement, speed, or reversible action. The nature of

these properties makes it difficult to directly test this concept: we cannot falsify the alternative

possibility that gene regulation by small RNAs emerged by chance and later become “locked in” as a

constraint on further evolution. Researchers have amassedmany examples of small RNA regulatory

interactions in diverse lineages and contexts. Deriving coherent theory from this body of knowledge

will require mathematical approaches at appropriate levels of abstraction. This dissertation has
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illustrated that uncertainty about how dynamic TF complexes interact with DNA elements in the

context of chromatin is a limiting factor for our understanding of silencing factor specialization, as

it is for many other areas of biology.
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Appendix A

Roles and programming of Arabidopsis

ARGONAUTE proteins during Turnip

mosaic virus infection

A.1 Preface

The body of this appendix is published work, cited above as reference 194. This preface describes

my contributions to the work described (lead by Hernan Garcia-Ruiz), and its relation to the rest

of this thesis. As schematically illustrated in Figure 7, this paper focuses primarily on AGO2,

AGO10, and AGO1, including differing requirements for A) restriction of infection in inoculated

rosette leaves and B) systemic movement to noninoculated cauline leaves and flowers.

I contributed to the drafting and revision of the manuscript, and also made two contributions to the

experimental work. First, I assisted with the genetic analysis (Figures 1 and 2), both in generating

and genotyping ago multimutant strains and in characterizing their susceptibility phenotypes.

Secondly, I made tagged 3xHA-AGO10 constructs (mutant and catalytically normal forms of a
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large genomic fragment; see Materials and Methods section), transformed plants, and propagated

the resulting lines. These lines were used for co-immunoprecipitation experiments (Figure 5),

which confirmed that AGO10 preferentially binds miR166 [100] and also showed that AGO10 can

bind virus-derived small RNAs.

We included ago10 mutants in our genetic analysis, but the manuscript does not emphasize their

developmental defects. Shoot apical meristem “pinhead/zwille” defects are pronounced in a Lands-

berg erecta genetic background [380, 381], but are mild in Col-0 [382–384], which was used

for this study.39 Col-0 T-DNA lines have petal number defects and occasional stem fasciation,

and HA-AGO constructs complement these phenotypes. Catalytic mutant construct lines showed

upward-curled leaves at high frequency in both wild-type and mutant backgrounds (11 of 54 and

7 of 11 primary transformants, respectively). A similar phenotype is observed when AGO10 mi-

sexpression is driven by the abaxial FIL promoter [387], and presumably reflects adaxialization

caused by increased HD-ZIP mRNA levels (Figure A.1).40

Use of suppressor-deficient viruses have been key for uncovering normal roles of host silencing

factors, including in this work and the previous study it built on [389]. Challenging ago7 mutants

with suppressor deficient turnip mosaic virus (TuMV AS9) indicates that AGO7 makes little or

no direct contribution to normal TuMV resistance.41 By contrast, AGO7 appears to make a larger

39 The basis for the effect of genetic background on ago10 mutant phenotype penetrance is largely unclear. The
cyclophilin 40 gene SQUINT emerged as a candidate modifier of AGO10 action based on QTL mapping [384] and
affects development via its important role in AGO loading [367, 385]. However, SQUINT accounts for only a small
proportion of the variability in frequency (penetrance) of pinhead-type mutant meristem defects between a Landsberg
(or Fe-1) background vs. Col-0 [384]. The mutant erecta allele (retained in the reference Ler background to promote
compact growth) was an obvious candidate because of its large pleiotropic effects on vegetative development [386],
but does not appear to directly modify AGO10 genetic function [384].

40 AGO10 promotes HD-ZIP transcript accumulation, by sequestering miR166 away from AGO1 [100]. This
molecular observation, however, does not imply that AGO10 cannot cleave HD-ZIP transcripts at some rate. It is
therefore possible that substitution of AGO10 catalytic residues may slightly increase HD-ZIP mRNA accumulation.
As alluded to above, it seems plausible that AGO10 enhances small RNA turnover through recruitment of endonucleases
[101, 388].

41 See Figure 1 and Table 1. Mutant ago7 alleles do not enhance the susceptibility phenotype of ago2 mutants
(Figure 2A, panel I).
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AGO10 miR166 HD-ZIP Leaf curling
++ - ++ Adaxialized Upward
- ++ - Abaxialized Downward

Figure A.1: Summary of polarity phenotypes resulting from altered AGO10 levels. Increased
AGO10 levels in transgenic lines increase sequestration of miR166, and thus have a net positive
effect on HD-ZIP levels. In the absence of AGO10 protein, miR166 activity (in complex with
AGO1) increases, resulting in decreased HD-ZIP levels and abaxialization.

contribution to resistance against suppressor-deficient turnip crinkle virus [390]. The mechanistic

basis for this role is unknown, and could depend on specialized expression or structural features.

As noted in section 4.4, it is not known which AGO proteins may trigger amplification of viral

RNA silencing responses, nor if the resulting secondary siRNAs are loaded into specific AGOs.42

Both domain swap transgenes (as in reference 383) and promoter swap transgenes may be useful

for comparative analysis.

Our genetic analysis only identified a small role for AGO5, which can bind small RNAs derived

from cucumber mosaic virus [382] and also functions in defense against potato virus X [392].

AGO5 promotes megagametogenesis through largely unclear mechanisms that may be related to

its tissue-specific expression patterns [337, 393]. AGO5 genes are most closely related to AGO1

and AGO10 (Figure 1.4). As with AGO10, it is not clear if antiviral action is a primary molecular

function of AGO5 (under long-term postive selection) or a side effect from more important roles

in endogenous gene regulation.

As outlined in the Discussion section of this paper, understanding the relative contributions of

different AGOs is complicated by the potential for indirect effects on endogenous gene regulation.

Indirect effects via perturbation of non-silencing defense pathways and/or homeostatic silencing

cross-regulation seem particularly likely. Reducing AGO1 activity can increase AGO2 levels,

42 An unusual class of endogenous “virus-activated siRNAs” appear to be specifically loaded into AGO2 [391].
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due to relief of repression by miR403. The resulting upregulation of AGO2 been proposed as a

mechanism for sensing inhibition of silencing [394]. Similarly, reductions in the activity of AGO10

and/or other AGOs may lead to disrupted miR168 targeting of AGO1 transcripts [383]. Activities

of AGO1 and AGO10 appear synergistic in some contexts [103, 387] and antagonistic in others

[100, 383]. Disentangling possible indirect effects from cross-regulation and competition for small

RNA loading is an important goal for future work [33].
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Abstract
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short
interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or tar-
get loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing
response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has
ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antivi-
ral defense. A genetic analysis was used to identify and characterize the roles of AGO pro-
teins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2
and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2
providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects
in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues
after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted
for only a minor amount of the overall antiviral activity. By combining AGO protein immuno-
precipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10,
and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing
suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type
TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs
broadly associated with wild-type HC-Pro during TuMV infection. These results support the
hypothesis that suppression of antiviral silencing during TuMV infection, at least in part,
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occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by
HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules,
and provide a molecular explanation for the silencing suppressor activity of HC-Pro.

Author Summary
RNA silencing is a primary, adaptive defense system against viruses in plants. Viruses
have evolved counter-defensive mechanisms that inhibit RNA silencing through the activi-
ty of silencing suppressor proteins. Understanding how antiviral silencing is controlled,
and how suppressor proteins function, is essential for understanding how plants normally
resist viruses, why some viruses are highly virulent in different hosts, and how sustainable
antiviral resistance strategies can be deployed in agricultural settings. We used a mutant
version of Turnip mosaic virus lacking a functional silencing suppressor (HC-Pro) to un-
derstand the genetic requirements for resistance in the model plant Arabidopsis thaliana.
We focused on ARGONAUTE proteins, which have long been hypothesized to bind short
interfering RNAs (siRNAs) derived from virus genomes for use as sequence-specific
guides to recognize and target viral RNA for degradation or repression. We demonstrated
specialized antiviral roles for specific ARGONAUTES and showed that several can bind
viral siRNAs from across the entire viral genome. However, ARGONAUTE proteins are
only loaded with virus-derived siRNAs in the absence of HC-Pro, which we showed binds
siRNAs from the viral genome. This indicates that several AGO proteins, which collective-
ly are necessary for full anti-TuMV defense, need to properly load virus-derived siRNAs to
execute their antiviral roles.

Introduction
In plants, RNA silencing is a highly specific and adaptive defense mechanism against viruses
[1, 2]. Factors involved in antiviral silencing overlap with those of endogenous small RNA
pathways, and include i) small RNA biogenesis components such as Dicer-like ribonucleases
(DCLs), RNA-dependent RNA polymerases (RDRs), and double-stranded RNA (dsRNA)
binding proteins, and ii) ARGONAUTE (AGO) proteins, which function as small RNA-
binding effectors [3–6].

RNA-based silencing is triggered by dsRNA that is processed by DCLs into 21- to 24-nt
short interfering RNAs (siRNAs), which subsequently associated with AGO proteins to form
the RNA-induced silencing complex (RISC) [7, 8]. Inhibition of target RNA can occur by en-
donucleolytic cleavage (“slicing”), translational repression, or delivery of chromatin-modifying
complexes to a locus [9–11, 12]. In some cases, amplification of the silencing response occurs
by triggering dsRNA synthesis and secondary siRNA accumulation [13].

Viruses are inducers of RNA silencing; infected plants accumulate large amounts of siRNAs
derived from viral RNAs [1]. Most plant viruses encode one or more silencing suppressor pro-
teins that interfere with antiviral RNA silencing [13, 14]. One mechanism of silencing suppres-
sion by viral suppressors is through sequestration of siRNA duplexes [1], preventing assembly
of the RISC effector complex. Other viral silencing suppressors promote AGO degradation
[15–19], prevent slicing or degradation of target RNAs by associating with AGOs [20, 21], or
use other mechanisms (for a recent review see Nakahara and Masuta 2014 [22]). In effect, viral
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suppressors mask the effects of antiviral silencing, making genetic analysis of antiviral silencing
factors in host plants dependent on the use of suppressor-deficient viruses [3, 4, 6, 23].

A. thaliana has ten AGO genes [24], of which AGO1, AGO2 and AGO7 have been implicat-
ed in antiviral defense against various viruses by genetic and biochemical criteria [6, 25–31].
Antiviral roles for AGO3 and AGO5 have also been suggested based on virus-derived siRNA
association and/or in vitro analyses [8, 32]. One model for AGO antiviral activity states that
AGO proteins bind virus-derived siRNAs and directly repress viral RNA through slicing, trans-
lational repression, or other mechanisms [2, 8, 33]. Given that AGO-dependent regulation of
gene expression affects numerous biological processes, including DNA repair [34], AGO pro-
teins might also affect virus replication indirectly through regulation of genes with roles in de-
fense. For example, AGO2-miR393! complexes regulate the expression ofMEMBRIN 12
(MEMB12), which is required for resistance to Pseudomonas syringae in A. thaliana [35].
Moreover, some AGO proteins are known to modulate the activity of other AGO proteins
[36, 37], which could affect AGOs with roles in antiviral defense.

Potyviral HC-Pro is a suppressor of RNA silencing. As shown using potyviruses like Turnip
mosaic virus (TuMV) [23, 38], the counter-defensive function of HC-Pro is necessary for estab-
lishment of infection or systemic spread. HC-Pro has been proposed to function through se-
questration of virus-derived siRNAs [39–44]. HC-Pro may also function through physical
interaction with factors like the transcription factor RAV2 [45], translation initiation factors
eIF(iso)4E and eIF4E [46], calmodulin-related protein (CaM) [47], auxiliary proteins like Heat
Shock Protein 90 (HSP90) [48], and/or through effects on downstream defense or silencing fac-
tors [49, 50]. Here, the role of several A. thaliana AGOs in antiviral defense against TuMV was
analyzed in various organs of systemically infected plants. The impact of HC-Pro on the load-
ing of antiviral AGOs with virus-derived siRNAs was also studied.

Results
AGO2 has a strong antiviral effect in leaves
Three of the ten A. thaliana AGO genes have been implicated in antiviral defense: AGO1 against
Cucumber mosaic virus (CMV) [25], Turnip crinkle virus (TCV) [6, 33], and Brome mosaic virus
(BMV) [30]; AGO2 against TCV [26], Potato virus X (PVX) [27], CMV [26, 28, 29], and TuMV
[31]; and AGO7 against TCV [6]. To identify the complete set of AGOs required for antiviral de-
fense against TuMV in A. thaliana, single, double, and triple agomutants were inoculated with a
GFP-expressing form of parental TuMV (TuMV-GFP) and HC-Pro-deficient TuMV-AS9-GFP
[23]. The GFP sequence was inserted between P1 and HC-Pro sequences (Fig. 1A). Both TuMV
and TuMV-GFP require translation factor eIF(iso)4E [51], and lead to similar virus-derived
siRNA profiles in wild-type and dicer-likemutant A. thaliana [23]. To determine if AGOs have
spatially distinct functions, TuMV-GFP and TuMV-AS9-GFP accumulation was analyzed in in-
oculated rosette leaves, and in noninoculated cauline leaves and inflorescences. Establishment of
local and systemic infection was monitored using GFP fluorescence, and virus accumulation in
inoculated and noninoculated tissues was measured by immunoblotting assays (coat protein) as
described [23].

Parental TuMV-GFP was detected in inoculated leaves and noninoculated inflorescences of
all single agomutants analyzed (Table 1 and Fig. 1B). Local infection of single ago1mutants
was significantly lower than that of wild-type Col-0 (Fig. 1B), but this was likely due to the dif-
ficulty of inoculating the smaller leaves of hypomorphic mutants containing ago1 alleles.

As described for A. thaliana rdr and dclmutants [23], suppressor-deficient TuMV-AS9-GFP
was expected to infect only those plants lacking one or more AGOs with a role in antiviral de-
fense. No infection foci were detected in wild-type Col-0 plants (Fig. 1B and Table 1). Local
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Fig 1. Local and systemic infection of A. thaliana single agomutants by TuMV-GFP and
TuMV-AS9-GFP. (A) Schematic representation of the TuMV and TuMV-GFP genomes showing insertion of
GFP between P1 and HC-Pro, and the AS9 mutation on HC-Pro. (B) Visualization of local infection of
inoculated rosette leaves. Pictures were taken at 7 days post inoculation (dpi). Col-0 infected by TuMV-GFP
is shown for comparison. The histogram shows average (+ SE) infection efficiency of 14 plants, each with
four inoculated leaves. Infection efficiency by TuMV-GFP or TuMV-AS9-GFP is expressed relative to Col-0
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infection foci of suppressor-deficient TuMV-AS9-GFP were readily visible at 7 days post inocu-
lation (dpi) in ago2–1mutant plants (Fig. 1B and Table 1), and infection efficiency was not sig-
nificantly different than that of the dcl2–1 dcl3–1 dcl4–2 triple mutant, which served as the
hypersusceptible, silencing-deficient control (Fig. 1B) [23]. Low numbers of infection foci were
also detected in single ago5–2, zip-1 (ago7), and ago10–5mutant plants (Fig. 1B and Table 1).
Systemic movement of TuMV-AS9-GFP into cauline leaves was detected at 15 dpi in ago2–1
plants, and also in ago5–2, zip-1, and ago10–5 plants though at significantly lower levels (Fig. 1C

(9.8 ± 2 foci per leaf) or to dcl2–1 dcl3–1 dcl4–2 (3.5 ± 1.4 foci per leaf), respectively. For each virus, bars with
the same letter are not statistically different (Tukey’s test with α = 0.05). (C) TuMV-AS9-GFP coat protein
(CP) accumulation in noninoculated cauline leaves and in inflorescence at 15 dpi is determined by
immunoblotting and expressed relative to dcl2–1 dcl3–1 dcl4–2. The histogram shows average (+ SE) of four
biological replicates. Bars with the same letter are not statistically different (Tukey’s test with α = 0.05). The
experiment was repeated twice with similar results.

doi:10.1371/journal.ppat.1004755.g001

Table 1. TuMV-GFP and TuMV-AS9-GFP infection in single ago mutants a.

Virus Arabidopsis genotype Plants inoculated Local infection Cauline leaves Inflorescence

TuMV-GFP

Col-0 14 14 14 14

ago1–25 14 14 14 14

ago1–27 14 14 14 14

ago2–1 14 14 14 14

ago3–2 14 14 14 14

ago4–2 14 14 14 14

ago5–2 14 14 14 14

ago6–3 14 14 14 14

zip-1 14 14 14 14

ago8–1 14 14 14 14

ago9–5 14 14 14 14

ago10–5 14 14 14 14

dcl2–1 dcl3–1 dcl4–2 14 14 14 14

TuMV-AS9-GFP

Col-0 14 0 0 0

ago1–25 14 0 0 0

ago1–27 14 0 0 0

ago2–1 14 14 14 0

ago3–2 14 0 0 0

ago4–2 14 0 0 0

ago5–2 14 6 6 0

ago6–3 14 0 0 0

zip-1 14 5 5 0

ago8–1 14 0 0 0

ago9–5 14 0 0 0

ago10–5 14 7 7 0

dcl2–1 dcl3–1 dcl4–2 14 14 14 14

a Number of plants showing local and systemic infections were scored by GFP fluorescence under UV illumination. Local infection foci were counted at 7
days post-inoculation (dpi). All other data is from plants at 15 dpi.

doi:10.1371/journal.ppat.1004755.t001
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and Table 1). In cauline leaves from single ago2–1mutant plants, TuMV-AS9-GFP accumulated
to approximately 60% of the level measured in dcl2–1 dcl3–1 dcl4–2 plants, while ago5–2, zip-1,
and ago10–5 plants accumulated TuMV-AS9-GFP to approximately 10% of the levels measured
in the hypersusceptible control (Fig. 1C). In contrast to dcl2–1 dcl3–1 dcl4–2 plants, systemic in-
fection by TuMV-AS9-GFP did not reach inflorescence tissues in any of the single agomutant
or Col-0 plants (Fig. 1C and Table 1). Systemic infection did not reach cauline leaves in any of
the other single agomutants or Col-0 plants (Fig. 1C and Table 1).

AGO1 and AGO10 have modest antiviral effects in inflorescences
To determine if the major effect of AGO2 was additive with the minor effects of AGO5, AGO7
and AGO10, and to examine if AGO1 possessed redundant or masked activities, double and
triple agomutant plants were inoculated with TuMV-GFP or TuMV-AS9-GFP, and virus ac-
cumulation was measured in inoculated and noninoculated organs as described above. To re-
duce the effect of differences in leaf size, we planted mutant lines with the ago1–27 allele one
week earlier than the other mutant lines inoculated at the same time. Parental TuMV-GFP in-
fected locally (Fig. 2A panels I and II) and moved systemically into the inflorescence of all dou-
ble and triple agomutants analyzed (Tables 2 and 3), with no significant differences in
infection efficiency.

In double mutants harboring the ago2–1 allele and one of ago5–2, zip-1, or ago10–5 alleles,
no significant differences in number of infection foci were detected at 7 dpi in rosette leaves in-
oculated with TuMV-AS9-GFP (Fig. 2A panel I and Table 2). Similarly, no significant differ-
ences were detected in TuMV-AS9-GFP coat protein accumulation in cauline leaves at 15 dpi
(Fig. 2B panel I). As observed for the ago single mutants, TuMV-AS9-GFP was not detected in
inflorescences from double mutant plants containing the ago2–1 allele (Fig. 2B panel I). These
results indicate that the minor activities of AGO5, AGO7 and AGO10 are not additive with the
major antiviral activity of AGO2. Double and triple mutants harboring the ago1–27 allele were
generated and inoculated with parental TuMV-GFP or suppressor-deficient TuMV-AS9-GFP.
Col-0 plants and ago1–27, ago2–1 and ago10–5 single mutant lines were included as controls.
Local TuMV-AS9-GFP infection foci were observed in inoculated rosette leaves, and virus was
detected in noninoculated cauline leaves, from ago1–27 ago2–1 double mutant plants, but
ago1–27 had no enhancing or suppressing effects when combined with ago2–1 (panel II in
Fig. 2A and 2B, Table 3). Combining ago1–27 with ago10–5, or with ago2–1 and ago10–5 in a
triple mutant, had no effects on local TuMV-AS9-GFP infection foci (Fig. 2A panel II) or accu-
mulation in cauline leaves beyond those measured in the single ago2 or double ago2 ago10mu-
tants (Fig. 2B panels I and II, and Table 3). However, combining ago1–27 with ago10–5
resulted in an increase in TuMV-AS9-GFP CP accumulation in cauline leaves relative to single
ago10–5mutants (Fig. 2B panel II). Infection efficiency of ago1 single, double or triple mutants
by TuMV-GFP was similar to that of wild type plants (Fig. 2A panels II and III), and infection
efficiency of ago1–27 ago2–1 double and ago1–27 ago2–1 ago10–5 triple mutants by TuM-
V-AS9-GFP was similar to that of dcl2–1 dcl3–1 dcl4–2 plants used as susceptible control
(Fig. 2A panel II). Thus, both the lack of TuMV-AS9-GFP infection in single ago1mutants and
the lack of systemic infection of inflorescence in ago1–27 ago2–1 double mutants were not due
to pleiotropic effects.

Surprisingly, systemic infection of inflorescence tissue was detected in the ago1–27 ago10–5
double mutant and ago1–27 ago2–1 ago10–5 triple mutant plants (Fig. 2B panel III and
Table 3). Among all single and combination agomutants tested, only those containing both
ago1 and ago10 defects exhibited movement to, and accumulation in, inflorescences. However,
while TuMV-AS9-GFP was detected in all inflorescence clusters of the dcl2–1 dcl3–1 dcl4–2
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triple mutant reference, in ago1–27 ago10–5 and in ago1–27 ago2–1 ago10–5 TuMV-AS9-GFP
was detected only in 4% and 14% of the inflorescence clusters, respectively (Table 3). In inflo-
rescences of ago1–27 ago10–5 and ago1–27 ago2–1 ago10–5 plants with visible GFP fluores-
cence, TuMV-AS9-GFP CP accumulated to 5% and 10% relative to the dcl2–1 dcl3–1 dcl4–2
triple mutant (Fig. 2B panel III).

Collectively, the genetic analysis of local and systemic infection using TuMV-AS9-GFP re-
vealed two sets of AGOs that limit infection. In inoculated rosette and noninoculated cauline
leaves, AGO2 plays a major antiviral role, while AGO5, AGO7 and AGO10 play minor roles
that are non-additive with AGO2. In noninoculated inflorescence tissues, AGO1 and AGO10
play overlapping or redundant antiviral roles, but these functions likely account for only a frac-
tion of the RNA-mediated antiviral activity. It is possible that other factors, including AGO

Fig 2. Local and systemic infection of a selected group of double and triple agomutants by TuMV-GFP and TuMV-AS9-GFP. (A) Local infection
efficiency. Panel I: infection efficiency of TuMV-GFP or TuMV-AS9-GFP is expressed relative to Col-0 (19.6 ± 3.3 foci per leaf) or to dcl2–1 dcl3–1 dcl4–2
(2.2 ± 0.7 foci per leaf), respectively. The histogram shows the average (+ SE) of 10 plants, each with four inoculated leaves. Panel II: local infection of
inoculated rosette leaves for a selected group of mutants harboring ago1–27. The histogram shows average (+ SE) infection efficiency of 14 plants, each with
four inoculated leaves. Infection efficiency of TuMV-GFP or TuMV-AS9-GFP is expressed relative to Col-0 (4.1 ± 1.2 foci per leaf) or to dcl2–1 dcl3–1 dcl4–2
(2.8 ± 1.1 foci per leaf), respectively. Panel III: Representative leaves of ago1–27 single and ago1–27 ago2–1 double mutants showing TuMV-GFP local
infection foci. ago1–27 ago2–1, but not ago1–27, was infected by TuMV-AS9-GFP. Col-0 is shown for comparison. Pictures were taken at 7 dpi under UV
light. (B) Systemic infection. TuMV-AS9-GFP coat protein accumulation in noninoculated cauline leaves and in inflorescence at 15 dpi. Panel I: double
mutants harboring ago2–1. Panel II: double and triple mutants harboring ago1–27 and ago10–5. The histograms show average (+ SE) of four biological
replicates, expressed relative to dcl2–1 dcl3–1 dcl4–2. Bars with the same letter are not statistically different (Tukey’s test with α = 0.05). Panel III: in double
and triple mutants harboring ago1–27, inflorescence samples were collected only from clusters showing systemic GFP.

doi:10.1371/journal.ppat.1004755.g002

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 7 / 27



Table 2. TuMV-GFP and TuMV-AS9-GFP infection in selected ago2–1 based double mutantsa.

Virus Arabidopsis Plants Local Cauline Inflorescence
genotype inoculated infection leaves

TuMV-GFP

Col-0 10 10 10 10

ago2–1 10 10 10 10

ago2–1 ago5–2 10 10 10 10

ago2–1 zip-1 10 10 10 10

ago2–1 ago10–5 10 10 10 10

dcl2–1 dcl3–1 dcl4–2 10 10 10 10

TuMV-AS9-GFP

Col-0 10 0 0 0

ago2–1 10 10 10 0

ago2–1 ago5–2 10 10 10 0

ago2–1 zip-1 10 10 10 0

ago2–1 ago10–5 10 10 10 0

dcl2–1 dcl3–1 dcl4–2 10 10 10 10

a Number of plants showing local and systemic infections were scored by GFP fluorescence under UV illumination. Local infection foci were counted at 7
days post-inoculation (dpi). All other data is from plants at 15 dpi.

doi:10.1371/journal.ppat.1004755.t002

Table 3. TuMV-GFP and TuMV-AS9-GFP infection in selected ago1–27 based combination mutants a.

Virus Arabidopsis Plants Local Cauline Inflorescence Percent b

genotype inoculated infection leaves

TuMV-GFP

Col-0 14 14 14 14 100

ago1–27 14 14 14 14 100

ago2–1 14 14 14 14 100

ago10–5 14 14 14 14 100

ago1–27 ago2–1 14 14 14 14 100

ago1–27 ago10–5 14 14 14 14 100

ago1–27 ago2–1 ago10–5 14 14 14 14 100

dcl2–1 dcl3–1 dcl4–2 14 14 14 14 100

TuMV-AS9-GFP

Col-0 14 0 0 0 0

ago1–27 14 0 0 0 0

ago2–1 14 14 14 0 0

ago10–5 14 8 6 0 0

ago1–27 ago2–1 14 14 14 0 0

ago1–27 ago10–5 14 14 14 3 4 ±1

ago1–27 ago2–1 ago10–5 14 14 14 8 14 ±2

dcl2–1 dcl3–1 dcl4–2 14 14 14 14 100

a Number of plants showing local and systemic infections were scored by GFP fluorescence under UV illumination. Local infection foci were counted at 7
days post-inoculation. All other data is from plants at 15 dpi.
b Proportion (%) of inflorescence clusters showing GFP with respect to the total number of clusters on each plant with inflorescence GFP fluorescence.

doi:10.1371/journal.ppat.1004755.t003
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proteins not analyzed here, have a role in protecting inflorescence tissue from virus infection.
The scope of subsequent AGO analyses was restricted to the functions of AGO1, AGO2 and
AGO10 in the presence and absence of functional HC-Pro.

Differential association of AGO2 with viral siRNAs in the presence and
absence of functional HC-Pro
We hypothesized that AGO proteins with anti-TuMV activity associate with TuMV-derived
siRNAs. This idea was tested first with epitope-tagged AGO2 in plants inoculated with parental
TuMV or HC-Pro-defective TuMV-AS9 (lacking GFP) [23]. AGO2 immunoprecipitation and
small RNA sequence analyses were done using transgenic A. thaliana expressing a triple-hem-
agglutinin (HA) epitope-tagged, catalytically inactive form of AGO2 (HA-AGO2DAD). The sec-
ond of three aspartic acid residues of AGO2 was substituted with alanine; this substitution
eliminates antiviral activity of AGO2, but preserves both the siRNA-binding and target RNA-
binding functions [31]. These experiments require the use of plants lacking AGO2-mediated
antiviral functions, as infection by TuMV-AS9 would otherwise be blocked (Figs. 1 and 2) [31].

Small RNAs from the input (pre-immunoprecipitated) and HA-AGO2DAD co-immunopre-
cipitated fractions from inoculated rosette leaves and noninoculated inflorescences of TuMV-
infected plants were analyzed from duplicate biological samples. Only reads that matched to ei-
ther the A. thaliana or TuMV genomes without mismatches were analyzed (S1 Table). For
each individual sample, read counts were scaled with respect to the total number of adaptor-
parsed reads (reads per million) for the corresponding flow cell (eight individual samples). In
mock-inoculated plants, a small number of reads from the input fractions mapped to TuMV
(S1–S4 Tables, and S1 Fig). The source of these reads could be contamination, sequencing
error, or portions of the A. thaliana genome. Based on the number of reads from mock-inocu-
lated plants mapping to the TuMV genome, the false positive rate (proportion of parsed reads
artifactually mapping to TuMV) was estimated to be between 9.8X10-6 and 1.0X10-4, which
should not have affected subsequent analyses.

In input fractions from TuMV-infected plants expressing HA-AGO2DAD, the proportion of
reads mapping to the A. thaliana genome, as opposed to TuMV, varied from 77% (averaged
across replicates) to 84% for different tissues (S1A Fig). Sequences mapping to TuMVwere main-
ly 21-nt and 22-nt (S1A Fig). Accordingly, the detailed analyses for HA-AGO2DAD and other
proteins (discussed below) were focused on 21-nt (Figs 3–6) and 22-nt sequences (S3–S7) Figs.

Endogenous A. thaliana 21-nt small RNAs were enriched in HA-AGO2DAD immunoprecipi-
tates from leaves or inflorescence of mock-inoculated (4.5 to 10 fold) or TuMV-infected samples
(2.7 to 6.3 fold) (S2A Fig). Enriched sequences in HA-AGO2DAD immunoprecipitates had pre-
dominantly a 5’A nucleotide, as previously reported for AGO2-associated small RNAs [52, 53],
or a 5’U nucleotide (S2A Fig). Specific miRNA, miRNA! and trans-acting siRNA (tasiRNA) pop-
ulations were enriched in HA-AGO2DAD immunoprecipitates from both mock-inoculated (2.3
to 31 fold), and to a lesser extent, TuMV-infected (1.8 to 16 fold) rosette leaves (S8A Fig). Micro-
RNA read counts for input and immunoprecipitates from this and subsequent analyses are pro-
vided in S1 Dataset. MiR390 and miR393! were shown previously to co-immunoprecipitate with
AGO2 [35, 52]. In mock-inoculated and TuMV-infected rosette leaves, the number of miR390
reads in HA-AGO2DAD immunoprecipitates was 260 and 65 fold higher, respectively, than in
the corresponding input samples. Similarly, miR393! reads were enriched 125 and 60 fold in
HA-AGO2DAD immunoprecipitates frommock-inoculated and TuMV-infected rosette leaves,
respectively. Therefore, enrichment of A. thaliana small RNA populations that are known to be
associated with AGO2 occurred as expected.
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Fig 3. Profile of endogenous and TuMV-derived siRNAs in plants expressing HA-AGO2DAD in an ago2–1 background. Values are average and SE
from two biological replicates normalized to reads per million. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and
15 dpi, respectively. Inflorescence samples were collected at 10 dpi. (A) Panel I: number of reads by size, class, and polarity, for TuMV-derived siRNAs in
input and HA-AGO2DAD IP. Panel II: for 21 and 22 nt TuMV-derived siRNAs, enrichment in HA-AGO2DAD IP. Enrichment is defined as immunoprecipitate (IP)
reads/ input reads, expressed on a log2 scale. Panel III: proportion (in percentage) of 5’ nt in 21 nt and 22 nt TuMV-derived siRNAs by fraction. Numbers were
rounded to the nearest integer. (B) and (C) TuMV genome-wide distribution of 21 nt TuMV-derived siRNAs in input (B) and HA-AGO2DAD IP (C). Panel I:
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In TuMV-inoculated rosette leaves, and systemically infected inflorescence, virus-derived
siRNAs were abundant, representing 17% and 23%, respectively, of mapped reads in input
samples (S1A Fig). Reads mapped to both sense (genomic strand) and antisense strands across
the entire TuMV genome. However, both 21- and 22-nt TuMV-derived siRNAs were depleted
in HA-AGO2DAD immunoprecipitates (Fig. 3A panels I and II, Fig. 3B and 3C panels I and II,

TuMV-infected inflorescence. Panel II: TuMV-inoculated rosette leaves. Panel III: rosette leaves inoculated with TuMV-AS9. Panel IV: cauline leaves
systemically infected with TuMV-AS9. Reads were plotted for each 1 nt position. The scale was capped at 150 reads.

doi:10.1371/journal.ppat.1004755.g003

Fig 4. Profile of endogenous and TuMV-derived siRNAs in plants expressing HA-AGO1DAH in an ago2–1 background. Labels are as in Fig. 3.
Inflorescence samples were collected at 10 dpi. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15
dpi, respectively.

doi:10.1371/journal.ppat.1004755.g004
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and S3 Fig); only a small number of individual TuMV-derived siRNAs were
marginally enriched.

In leaves of TuMV-AS9-infected plants, endogenous A. thaliana small RNAs were again en-
riched (2.7 to 4.6 fold) in HA-AGO2DAD immunoprecipitates, with patterns expected of
AGO2-associated small RNAs (S2A Fig). Virus-derived siRNAs represented 7% or 16% of
mapped reads in input samples from inoculated rosette leaves or systemically infected cauline
leaves, respectively (S1A Fig). However, in striking contrast to TuMV-infected samples, both
21- and 22-nt TuMV-AS9-derived siRNAs were highly enriched relative to TuMV-derived

Fig 5. Profile of endogenous and TuMV-derived siRNAs in plants expressing HA-AGO10. Labels are as in Fig. 3. Catalytically active HA-AGO10DDH
and catalytic mutant HA-AGO10DAH were expressed in a wild-type Col-0 (AGO2) or ago2–1 background, respectively. Inflorescence samples were collected
at 10 dpi. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15 dpi, respectively.

doi:10.1371/journal.ppat.1004755.g005
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Fig 6. Profile of TuMV-derived siRNAs in plants infected with TuMV-HIS or TuMV-HIS-AS9. (A) Panel I: schematic representation of the TuMV genome
and modified clones with an AS9 mutation and a 6xHIS tag (TuMV-HIS). Coordinates correspond to wild-type TuMV. The 6xHIS tag fused in frame to HC-Pro
is underlined. Panel II: representative blot CP and HC-Pro accumulation in inflorescence of Col-0 at 10 dpi. (B) CP and HC-Pro accumulation in input and
HC-Pro (wild-type and AS9) immunoprecipitation from cauline leaves of ago2–1 plants. Samples from plants infected with TuMV-HIS or TuMV-HIS-AS9 were
collected at 10 and 15 dpi, respectively. 6.25 μg of total protein or 10 μl of immunoprecipitate (IP) were loaded for TuMV-HIS input and IP samples,

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 13 / 27



siRNAs in HA-AGO2DAD immunoprecipitates from both inoculated rosette leaves and system-
ically infected cauline leaves (Fig. 3A panels I and II, Fig. 3B and 3C panels III and IV, and
S3 Fig). Among co-immunoprecipitated siRNAs, those containing a 5’A were overrepresented
(Fig. 3A panel III). Association of AGO2 with siRNAs derived from TuMV-AS9, but not from
TuMV, was verified by small RNA northern blot assays (S9 Fig). These results indicate that
programming of AGO2 with TuMV-derived siRNAs is inhibited in the presence of active
HC-Pro.

Differential association of AGO1 and AGO10 with viral siRNAs in the
presence and absence of functional HC-Pro
A similar experimental design was used to test the association of tagged AGO1 and AGO10
with TuMV and TuMV-AS9-derived siRNAs. To enable infection by suppressor-deficient
TuMV-AS9, transgenic A. thaliana plants expressing catalytically defective HA-AGO1DAH
[31] or HA-AGO10DAH were produced in the TuMV-AS9-permissive ago2–1 background.
Phenotypic defects associated to catalytic mutant HA-AGO1DAH were more severe in an ago1–
25mutant that in a wild-type (AGO1) background [31]. Effects of catalytically defective
HA-AGO10DAH on plant phenotype were not known, so transgenic A. thaliana plants express-
ing catalytically active HA-AGO10DDH in a wild-type Col-0 background were also generated.
Transgenic lines were inoculated with TuMV or TuMV-AS9 and samples from inoculated ro-
sette leaves and systemically infected cauline leaves or inflorescences were collected from bio-
logical replicates. Small RNAs from input samples and immunoprecipitated fractions were
sequenced, and reads were mapped and counts were scaled as described above. Tagged versions
of AGO1 and AGO10 associated with small RNAs with a 5’U, as expected (S2B and S2C Fig
panel II) [36, 52–54], and the proportion of A. thaliana and TuMV-derived siRNAs (S1B and
S1C Fig) was similar to the observed in plants expressing HA-AGO2 (S1A Fig).

In mock-inoculated samples, endogenous A. thaliana 21-nt small RNAs were enriched 5 to
15 fold, and 5 to 7 fold, in HA-AGO1DAH and HA-AGO10DAH immunoprecipitates, respec-
tively. In TuMV- and TuMV-AS9-infected samples, A. thaliana 21-nt small RNAs were en-
riched 5 and 15 fold, respectively, in HA-AGO1DAH immunoprecipitates (S2B Fig panel I). In
TuMV-infected samples, A. thaliana 21-nt small RNAs were enriched 1.5 and 2.5 fold in
HA-AGO10DDH immunoprecipitates from inflorescences and rosette leaves, respectively
(S2C Fig panel I). In TuMV-AS9-infected samples, A. thaliana 21-nt small RNAs were en-
riched 7 fold in HA-AGO10DAH immunoprecipitates from cauline leaves (S2C Fig panel I). Se-
quences with a 5’U were enriched with both AGOs (panel II in S2B and S2C Fig), as expected
[36, 52–54]. MiRNAs were enriched in HA-AGO1DAH and HA-AGO10DAH immunoprecipi-
tates from both mock-inoculated (7 to 50 fold) and TuMV-infected (3 to 25 fold) samples,
while miRNA! and tasiRNA populations were variable (S8B and S8C Fig). For example,
miR166 reads were enriched 30 and 45 fold in HA-AGO1DAH immunoprecipitates from inflo-
rescences of mock-inoculated and TuMV-infected plants, respectively. MiR168 reads were like-
wise enriched 20 and 12 fold. MiR166 reads were enriched 900 and 60 fold in HA-AGO10DAH
immunoprecipitates from mock-inoculated and TuMV-infected plants, respectively, in agree-
ment with previous observations [36].

respectively. Amounts were doubled for TuMV-HIS-AS9 input and IP. (C) Panel I: number of reads by size, class, and polarity, for TuMV-derived siRNAs in
input and wild-type or AS9 HC-Pro IP. Panel II: enrichment in HC-Pro IP as in Fig. 3. Panel III: proportion (in percentage) of 5’ nt in 21 nt and 22 nt TuMV-
derived siRNAs by fraction. Panel IV: bars show the enrichment of TuMV-derived siRNAs by 5’ nt and polarity. (D) and (E) TuMV genome-wide distribution of
21 nt TuMV-derived siRNAs in input (D) and HC-Pro IP (E). Reads were plotted for each 1 nt position. The scale was capped at 150 reads.

doi:10.1371/journal.ppat.1004755.g006
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In rosette and inflorescence tissues from each of the transgenic lines, TuMV infection trig-
gered abundant 21- and 22-nt siRNAs that originated from sense and antisense strands across
the entire viral genome (Figs. 4B and 5B). However, as with HA-AGO2DAD immunoprecipi-
tates, TuMV-derived siRNAs were depleted in both HA-AGO1DAH (Fig. 4A-4C panels I and
II, and S4 Fig) and HA-AGO10DDH (Fig. 5A-5C panels I and II, and S5 Fig) immunoprecipi-
tates. By contrast, in plants infected with suppressor-deficient TuMV-AS9, virus-derived siR-
NAs were enriched in HA-AGO10DAH immunoprecipitates (Fig. 5A panels I and II, Fig. 5B
and 5C panels III, and S5 Fig), and had predominantly a 5’U nucleotide (Fig. 5A panel III). In-
dividual highly enriched sequences were distributed across the TuMV-AS9 genome (Fig. 5C
panel III and S5 Fig), suggesting that AGO10 may target all regions of TuMV-AS9 genome.
TuMV-AS9-derived siRNAs were present in HA-AGO1DAH immunoprecipitates at a higher
level than in immunoprecipitates from plants infected with parental TuMV, although the over-
all population of TuMV-AS9-derived siRNAs was depleted relative to the input fraction
(Fig. 4A panels I and II, Fig. 4B and 4C panel III, and S4 Fig). Only a few individual sequences
were enriched; these sequences had predominantly a 5’U nucleotide (Fig. 4A panel III). Be-
cause depletion of TuMV-AS9-derived siRNAs in HA-AGO1DAH immunoprecipitates was 60
to 1,200 fold lower than in TuMV-infected samples, we reasoned that AGO1 does interact with
virus-derived siRNAs, but to a lesser extent than both AGO2 and AGO10.

HC-Pro associates with siRNAs derived from the entire TuMV genome
Results described above show that AGO1, AGO2 and AGO10 associate at low levels with pa-
rental TuMV-derived siRNAs. In contrast, AGO2 and AGO10, and to a much lesser extent
AGO1, associate with siRNAs derived from the suppressor-deficient TuMV-AS9 genome.
Only two residues (R238A and V240A) in HC-Pro differ between TuMV and TuMV-AS9
(Fig. 6A panel I) [23, 38]. We hypothesized that i) HC-Pro associates with siRNAs-derived
from the entire TuMV genome and sequesters them from AGO proteins, and ii) the AS9 muta-
tion in HC-Pro reduces siRNA-binding activity. HC-Pro is known to have small RNA-binding
activity [39, 43, 44, 55], but the extent to which it binds siRNAs in the context of TuMV infec-
tion has not been described. To measure the extent to which HC-Pro binds small RNA using
the immunoprecipitation assay, we introduced an N-terminal 6xHistidine tag (HIS6) in the
context of the TuMV (TuMV-HIS) and TuMV-AS9 (TuMV-HIS-AS9) genomes (Fig. 6A
panel I). The addition of HIS6 to HC-Pro did not affect viral coat protein accumulation
(Fig. 6A panel II), but enabled specific immunoprecipitation of HC-Pro from plants infected
with TuMV-HIS and TuMV-HIS-AS9 (Fig. 6B).

Small RNAs from input and immunoprecipitated fractions obtained from plants inoculated
with TuMV-HIS and TuMV-HIS-AS9 were sequenced. Because TuMV-HIS-AS9 accumulated
more slowly than TuMV-HIS, TuMV-HIS samples were collected earlier than TuMV-HIS-AS9
samples (10 and 15 dpi, respectively), and twice as much input and immunoprecipitate materi-
als for TuMV-HIS-AS9 samples were analyzed. The longer infection time and doubling of ma-
terials for TuMV-HIS-AS9 resulted in similar protein levels for HIS-HC-Pro and
HIS-HC-Pro-AS9 input and immunoprecipitate fractions (Fig. 6B).

Endogenous A. thaliana small RNAs were depleted in suppressor-deficient HC-Pro-AS9
immunoprecipitates. Similarly, 22-, 23- and 24-nt A. thaliana endogenous small RNAs were
depleted in wild-type HC-Pro immunoprecipitates (S6A Fig). In samples from systemically in-
fected inflorescence or cauline leaves, A. thaliana endogenous 21-nt small RNAs were margin-
ally enriched (2 fold) or depleted, respectively, in wild-type HC-Pro immunoprecipitates
(S6A Fig). While miRNAs were depleted, miRNA! and tasiRNAs were enriched in HC-Pro im-
munoprecipitates (S6B–S6C Fig). Specifically, reads corresponding to miR390 and miR390!
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were enriched 8 and 64 fold, respectively, in wild-type HC-Pro immunoprecipitates. MiR166
reads were depleted 5 fold, whereas miR166! reads were enriched 16 fold in wild-type
HC-Pro immunoprecipitates.

In contrast with results obtained for HA-AGO1DAH, HA-AGO2DAD and HA-AGO10DDH
from TuMV-infected plants (compare panel I in Fig. 3C-5C to Fig. 6E), TuMV-derived siRNAs
were highly enriched in HIS-HC-Pro immunoprecipitates from cauline leaves and inflores-
cence (Fig. 6C panels I and II, and Fig. 6D and 6E panels I and II). No 5’ nt preference was evi-
dent (Fig. 6C panels III and IV). HIS-HC-Pro associated preferentially with 21-nt over 22-nt
siRNAs in samples from both cauline leaves and inflorescences (Fig. 6C, 6D-E panels I and II,
and S7 Fig). In contrast, TuMV-HIS-AS9-derived siRNAs from across the genome were deplet-
ed in the HIS-HC-Pro-AS9 immunoprecipitates from systemically infected cauline leaves; only
a few individual sequences were enriched (Fig. 6C panels I and II, 6D and 6E panel III, and
S7 Fig). These results indicate that wild-type HC-Pro associates with TuMV-derived siRNAs,
and that the AS9 mutation disrupts this association. We concluded that HC-Pro interferes with
antiviral silencing, at least in part, by sequestering TuMV-derived siRNAs and preventing their
association with antiviral AGO proteins. Suppression activity of HC-Pro is not tissue specific
and affects AGO1, AGO2, AGO10 and possibly other AGO proteins.

Discussion
Genetic and co-immunoprecipitation analyses were combined to reveal that i) several AGOs
function as anti-TuMV defense modules in A. thaliana, ii) viral siRNAs generally fail to load
into AGO proteins with antiviral functions during wild-type TuMV infection, and iii) HC-Pro
sequesters viral siRNA away from AGOs with antiviral functions.

Functions of AGO-small RNA complexes in anti-TuMV defense
AGO proteins target endogenous transcripts to regulate plant development and innate immu-
nity [2, 56], which may indirectly affect susceptibility to viruses. It is likely, however, that at
least some AGO proteins with an antiviral role are programmed with virus-derived siRNA to
directly target viral RNA [8, 10, 57, 58]. The genetic analysis described here revealed several
AGO proteins that participate in modular fashion during anti-TuMV defense (Fig. 7). AGO2
has the most influential role in protecting inoculated rosette and cauline leaves (Fig. 1), while
AGO1 and AGO10 have genetically redundant roles in protecting inflorescence tissues. A larg-
er proportion of ago1 ago2 ago10 triple mutants than ago1 ago10 double mutants were systemi-
cally infected (Table 3), perhaps suggesting that AGO2 also contributes to restricting virus
spread to inflorescences.

The antiviral effects of different AGO proteins in different tissues may depend on a number
of factors, including expression patterns, AGO-interacting partners, small RNA binding prefer-
ences, or subcellular localization. Microarray data suggest that AGO10 and AGO1 are expressed
more strongly than AGO2 in flowers and meristems [59]. However, AGO1 and AGO10 tran-
script levels are also higher than AGO2 transcript levels in rosette leaves. Therefore, expression
levels alone do not explain the effectiveness of individual AGOs in different organs. It is con-
ceivable that modular, tissue-specific functionality is controlled by AGO-interacting or AGO-
promoting factors that are tissue-specific. In ago1 ago10 double mutants, systemic infection of
inflorescences could be partially restricted because AGO2 limits virus accumulation in leaves,
acts directly in inflorescences, or functions in both of these tissues.

Direct down-regulation of viral RNA requires that AGOs bind virus-derived siRNAs (or en-
dogenous small RNAs complementary to a given viral genome) and then viral RNA, followed
by slicing of the viral RNA, repression of translation, and/or recruitment of factors for silencing
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amplification. Results described here show that AGO2, AGO10 and at much lower levels
AGO1 associate with TuMV-AS9-derived siRNA in the absence of HC-Pro (Fig. 3C panels III
and IV, and Figs. 4C and 5C panel III). AGO2-mediated slicing of viral RNAs could be a signif-
icant anti-viral mechanism, as catalytically defective forms of AGO2 lack anti-TuMV activity
[31]. Evidence of direct targeting of TuMV RNA by AGO1 and AGO10 is lacking. In other
studies, AGO1 was reported to bind small RNAs derived from Turnip yellow mosaic virus and
CMV strains Fny and NT9 [20], but not CMV strain I17F or Crucifer-infecting tobamovirus
[60]. The basis for differential interaction of TuMV-derived siRNAs and AGO1, AGO2 and
AGO10 is not clear. It is possible that different AGOs have privileged access to viral siRNAs. In
this context, AGO1 pools may have limited access to viral siRNAs during TuMV infection.

In inoculated rosette leaves of ago2mutant and dcl2 dcl3 dcl4 triple mutant plants, TuM-
V-AS9 accumulated to comparable levels (Figs. 1 and 2). In contrast, accumulation of TuM-
V-AS9 was consistently lower in cauline leaves and inflorescences of all agomutants tested,

Fig 7. A model for direct action of A. thaliana AGO proteins in anti-TuMV defense. AGO-mediated antiviral silencing is suppressed through
sequestration of TuMV-derived siRNAs by silencing suppressor HC-Pro (left panels), in both inoculated leaves and inflorescences. In the absence of active
HC-Pro (right panels), AGO2, AGO10 and, to a lesser extent AGO1, associate with TuMV-AS9-derived siRNAs to potentially repress TuMV RNAs through
slicing or translational repression. AGO2 protects leaves from TuMV infection and movement, with non-additive contributions by AGO10, AGO5 and AGO7.
Redundant activities of AGO10 and AGO1 protect inflorescence from TuMV infection, with an additive contribution by AGO2.

doi:10.1371/journal.ppat.1004755.g007
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including the ago1 ago2 ago10 triple mutant, compared to the respective tissues in dcl2 dcl3 dcl4
mutant plants. If it is assumed that all small RNA-mediated antiviral activity is lost in the dcl tri-
ple mutant, then it is reasonable to conclude that all antiviral silencing in inoculated rosette
leaves is mediated by AGO2. The far greater effect of the dclmutations, relative to the agomuta-
tions, in systemic tissues, especially inflorescences, argues that the combined effects of AGO1,
AGO2 and AGO10 account for only a small proportion of overall anti-TuMV silencing activity.
This could indicate that other AGO proteins that were not tested here, or that were not tested in
the right genetic combinations, play specific roles in systemic tissues. It could also mean that
DCL proteins play a more dominant, direct antiviral role in systemic tissues, as suggested by ge-
netic analyses with CMV [4, 29], BMV [30], PVX [27], Tobacco rattle virus [61], TCV [3, 6, 33,
62], Cauliflower mosaic virus, Cabbage leaf curl virus, and Oil rape mosaic virus [63].

Different antiviral AGO proteins may also have distinct effects on amplification of second-
ary, virus-derived siRNAs, which may be important for production of systemic signals [2, 7, 13,
64]. Full anti-TuMV silencing requires both RDR1 and RDR6 [23], presumably for production
of dsRNA from viral RNA. If this occurs like dsRNA formation during tasiRNA biogenesis,
then RDR proteins may be recruited to viral RNA after targeting by AGO-small RNA com-
plexes [52, 65–68]. Given the role of AGO1-small RNA complexes in triggering formation of
several families of tasiRNA, AGO1 could conceivably play a trigger role for secondary viral
siRNA.

The interpretation of ago1mutant susceptibility experiments is challenging because of the
pleiotropic developmental phenotypes of ago1 hypomorphic mutants and the large number of
genes that are dysregulated when AGO1 is disrupted. In particular, disruption of AGO1-miR403
activity increases AGO2mRNA and protein levels [26, 69], which could result in a net increase
in virus resistance, even if AGO1 directly targets viral RNA.

Other AGOs might also have indirect roles in anti-TuMV defense, perhaps by affecting ex-
pression of defense-related genes [35, 56, 70]. Expression of potyviral HC-Pro [45], infection
with TCV [26], and infection with Pseudomonas syringae [35] result in increased AGO2 ex-
pression; AGO2 regulates expression ofMEMB12 [35] and possibly other genes. AGO2 also as-
sociates with virus-activated endogenous siRNAs [56]. The significance of AGO2-dependent
gene regulation for virus infection, if any, is not yet clear.

Suppression of antiviral silencing by HC-Pro
Multiple virus-encoded suppressors of RNA silencing target AGO1 [16, 17, 20, 21, 33, 60], and
P25 from PVX interact with AGO2, AGO3 and AGO4 [17] although the biological significance
of this interaction remains to be elucidated. During TuMV infection, no evidence was obtained
to indicate that AGO1, AGO2 or AGO10 were destabilized or otherwise down-regulated. Each
AGO accumulated to normal levels.

TuMV-infected plants accumulate large amounts of virus-derived siRNAs that map across
the entire genome (Figs. 3B, 4B, 5B, 6B, and S3–S5 Figs) [23], and co-immunoprecipitation
and high-throughput sequencing showed that HC-Pro associates with viral siRNAs in leaf and
inflorescence tissue (Fig. 6E panels I and II). Viral siRNAs associate with HC-Pro without a 5’
nt preference (Fig. 6C panels III and IV). Importantly, HC-Pro was shown to sequester viral
siRNAs away from AGO1, AGO2 and AGO10 (Figs. 3C, 4C and 5C panels I and II), leading to
the obvious proposal that HC-Pro interferes with antiviral silencing by preventing AGOs from
loading with virus-derived siRNAs (Fig. 7). Mutant HC-Pro-AS9 is deficient in associating
with viral siRNAs (Fig. 6C-E panels III, and S6 Fig), and concomitantly loses silencing
suppression activity.
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The basis for sequestration of siRNAs by HC-Pro is not yet clear. HC-Pro may outcompete
AGOs for siRNAs. Alternatively, HC-Pro may intercept viral siRNAs prior to AGO loading,
perhaps due to subcellular localization properties. Further analyses will be necessary to resolve
this issue.

Materials and Methods
DNA plasmids
Recombinant plasmids were made as follows.

pCB-TuMV-HIS and pCB-TuMV-HIS-AS9. To introduce a 6xHIS (HIS6) tag on HC-Pro,
two PCR fragments were amplified from pCB-TUMV [16] using two sets of primers:
TuMV764 d(AGGACGGTGCACAGAATATGC) and E101-B2Rev d(CCAGAAGTTGG
CTCCTGCTGCGTGATGGTGATGGTGATGACCTGCCTGGTGATAGACACAGCTAGC
ACTAAAGTGCAC); and E101-B2For d(GTGCACTTTAGTGCTAGCTGTGTCTATCACC
AGGCAGGTCATCACCATCACCATCACGCAGCAGGAGCCAACTTCTGG) and
TuMV-GFP-2873 d(CGCCTGATTCTGTTGTGACAC). The two PCR fragments were
stitched into a final PCR product using primers TuMV764 and TuMV-GFP-2873. The final
PCR product was digested with StuI-AgeI and used to replace the StuI-AgeI fragment in
pCB-TuMV, creating pCB-TuMV-HIS. The same insert was used to replace the StuI-AgeI frag-
ment in pCB-TuMV-AS9 [16], to generate pCB-TuMV-HIS-AS9. Both HIS6-tagged clones
have a NIa cleavage site between P1 and the HIS6-tag on HC-Pro.

pMDC99-pAGO10:3xHA-AGO10DDH and pMDC99-pAGO10:3xHA-AGO10DAH. For
in-frame N-terminal 3xHA-tagging of wild-type AGO10DDH in its natural genomic context, a
9072 bp genomic region was TOPO cloned into pENTR (Invitrogen) in two pieces: an up-
stream region (with primers caccGATTTCTATAAAAAATAcattcc and CTCGAGGCG
GCCGCCCATGGTTTTTGTTGTTTGGATTTTC) and the coding and downstream regions
(with HA-containing forward primer caccATGGCCTATCCTTATGATGTACCTGATTATG
CCTACCCATACGACGTTCCAGACTACGCTTACCCATACGACGTTCCAGACTACG
CTCCGATTAGGCAAATGAAAGATAG and reverse primer cctagaattgacgggtttagatcg). The
first piece was ligated upstream of the second using a NotI site in pENTR and a NcoI site creat-
ed by the cloning primers, producing pENTR-pAGO10–3xHA-AGO10DDH. To disrupt the
AGO10 PIWI domain catalytic triad, A2384 in the coding sequence of pENTR-pAGO10:3x-
HA-AGO10DDH was mutated to G by GENEWIZ Inc., causing amino acid substitution D795A
to generate pENTR-pAGO10–3xHA-AGO10DAH. Transgenes from pENTR-pAGO10–
3xHA-AGO10DDH and pENTR-pAGO10–3xHA-AGO10DAH were LR recombined into binary
vector pMDC99 [71], producing pMDC99-pAGO10:3xHA-AGO10DDH and
pMDC99-pAGO10:3xHA-AGO10DAH, respectively.

Plant materials
All Arabidopsis thaliana plants used in this study (including mutant lines and transgenic lines)
descended from the Columbia-0 (Col-0) accession, and were grown under long day (16 h light/
8 h dark) at 22°C. The following single mutant lines were described before: ago1–25 and ago1–
27 [25], ago2–1 [72], ago3–2 [32], ago4–2 [73], ago5–2 [32], ago6–3 [32], zip-1 [74], ago8–1
[32], and ago9–5 (SALK_126176). T-DNA insertion mutant GABI_818H06 (ago10–5) was ob-
tained from The GABI KAT project [75]. Homozygous mutants were confirmed by PCR-based
genotyping using a three-primer reaction: one on the left border, one in the flanking DNA, and
one in the T-DNA insertion site [76]. Lack of AGO10 expression in homozygous plants was
confirmed by RT-PCR using oligos AGO10_qF (GGTATTCAGGGAACAAGCAG) and
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AGO10_qR (GCTGGAGGAACTATAGAGACCG). Double and triple agomutants were gen-
erated by crossing. dcl2–1 dcl3–1 dcl4–2 triple mutants have been described [3].

Transgenic A. thaliana plants expressing HA-tagged AGO1 or AGO2 catalytic mutants
from their native promoters have been described [31]. Transgenic A. thaliana plants expressing
HA-tagged wild-type or catalytic mutant AGO10 from its native promoter were made by dip-
ping Col-0 plants in Agrobacterium tumefaciens GV3101 carrying the pMDC99-pAGO10:3x-
HA-AGO10DDH or pMDC99-pAGO10:3xHA-AGO10DAH constructs as described [77].
Transgenic plants were grown on MS medium containing hygromycin (50 mg/ml) for 7 days,
transferred to soil, and maintained in greenhouse conditions. Catalytic mutant HA-AGO1DAH,
HA-AGO2DAD and HA-AGO10DAH and wild-type HA-AGO10DDH transgenes were intro-
duced into ago2–1 by crossing.

Virus infection assays
A. thaliana plants were inoculated with TuMV-GFP, TuMV-AS9-GFP, wild-type TuMV,
TuMV-AS9, TuMV-HIS, or TuMV-HIS-AS9 as described previously [23]. Local and systemic
infection by TuMV-GFP or TuMV-AS9-GFP was determined by GFP fluorescence under UV
illumination. To measure coat protein (CP) or HIS6-tagged HC-Pro (HIS-HC-Pro) accumula-
tion, at 15 days post inoculation (dpi), four noninoculated cauline leaves or five inflorescence
clusters per plant were randomly collected and pooled into a single sample. Four biological rep-
licates were randomly collected per virus-plant genotype combination. Samples were ground in
glycine buffer [78] at a ratio of 0.5 mL per 1g of leaf, or 0.25 mL per five inflorescence clusters.
Protein extracts were normalized to 0.5 mg/mL. For western blot assays, 6.25 μg or 1.5 μg of
total protein were used for leaf or inflorescence samples, respectively. Immunoblotting and
chemiluminescence detection were done as described [23]. TuMV CP was detected using anti-
body PVAS-134 (1:40,000) and HIS-HC-Pro was detected using anti-HIS antibody 27E8-HRP
(Cell Signaling) at a 1:5,000 dilution. Ponceau staining of the large subunit of rubisco was used
as a loading control. Unless otherwise indicated, CP and HIS-HC-Pro were detected simulta-
neously on the same blot. In experiments involving HA-tagged AGOs, HA-AGO, CP and
HIS-HC-Pro were detected on the same blot. The top part of the blot, containing proteins larg-
er than 70 kDA was incubated with anti-HA antibodies, to detect HA-AGOs. The part of the
blot containing proteins between 70 and 27 kDa was probed for CP and HIS-HC-Pro.

Immunoprecipitation of HA-tagged ARGONAUTES and HIS-tagged
HC-Pro
Immunoprecipitation of epitope tagged proteins was performed as described [31] with minor
adjustments. Briefly, one gram of leaf or inflorescence tissue was ground in 6 ml of lysis buffer.
Lysates were pre-cleared by incubating with protein A agarose (Roche) beads (0.8 mL per 1g of
tissue) for 30 min at 4°C, and beads were not treated with P1 nuclease. For immunoblot detec-
tion of proteins (CP, HA-AGOs or HIS-HC-Pro), 6.25 μg or 1.5 μg of total protein from leaf or
inflorescence samples were used, respective. From the immunoprecipitated beads 5% of the
samples was diluted with 38 μl of 2x protein dissociation buffer, and 5 to 15 μL used for immu-
noblotting. For small RNA northern blotting, 15 μg were used from the input fractions and
25% of the RNA immunoprecipitate fraction (HA or HIS).

Small RNA library construction for high-throughput sequencing
Small RNA libraries from mock-inoculated or TuMV-infected plants, input or immunoprecip-
itate (HA or HIS) fractions were generated using sequencing-by synthesis technology (Illumina
High Seq 2000) as described [31, 79]. For input fractions, 50 μg of total RNA were fractionated
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by electrophoresis. The area from 16 to 26 nt was sliced and used for small RNA purification.
30 ng of small RNAs were used to make the libraries from total fraction. 50% of the immuno-
precipitated RNA was used without fractionation to make libraries from immunoprecipitate
fractions. For each treatment, small RNA libraries were made independently from two biologi-
cal replicates. Bar-coded PCR amplification primers were used for multiplexing purposes.
Eight individual samples were multiplexed and run in a single flow cell.

Bioinformatic analysis of small RNA libraries
Bioinformatic analysis of endogenous and TuMV-derived siRNAs was as described [23, 31, 80].
After removing 5’ and 3’ adaptors, sequences were aligned to the A. thaliana genome and to the
TuMV genome. Only sequences with a perfect match were used for downstream analysis. For
each sample, reads were normalized per 1,000,000 total reads (RPM), including all size classes.
Enrichment with respect to the immunoprecipitate was calculated as the ratio of reads in the im-
munoprecipitate to reads in the input, and expressed on a log2 scale.

Accession numbers
Sequence data from this article can be found in Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo) accession number GSE64911.

Supporting Information
S1 Fig. Proportion of A. thaliana endogenous and TuMV-derived small RNAs in mock-
inoculated and in TuMV-infected plants. Samples for immunoprecipitation were collected
from inflorescence 10 (dpi), rosette leaves (7 dpi), or cauline leaves (15 dpi). Numbers are the
relative abundance, in percentage, of reads mapping to A. thaliana or to TuMV with respect to
the total number of reads with a perfect match to either genome. Proportion of TuMV-derived
siRNAs by size class is indicated by numbers (percentage) in color pie charts. Numbers were
rounded to the nearest integer. Plants expressing (A) HA-AGO2DAD, (B) HA-AGO1DAH
from an ago2–1 background and were inoculated with wild-type TuMV or TuMV-AS9.
(C) HA-AGO10DDH or HA-AGO10DAD were expressed from a AGO2 or ago2–1 background,
respectively. (D) Wild-type Col-0 or single ago2–1mutant plants were inoculated with
TuMV-HIS or TuMV-HIS-AS9. Color codes are as in (A).
(TIF)

S2 Fig. Association of endogenous siRNAs with HA-tagged AGO1, AGO2 and AGO10.
Values are average and SE from two biological replicates normalized to reads per million. Inoc-
ulated rosette leaf, systemically infected cauline leaves or inflorescence samples were collected
at 7, 15 or 10 dpi, respectively. (A) HA-AGO2DAD in an ago2–1 background. Panel I: enrich-
ment [immunoprecipitate (IP) reads/ input reads, expressed in a log2 scale] of endogenous
(21 to 24 nt) small RNAs in mock-inoculated plants and in plants infected with wild-type
TuMV or TuMV-AS9. In the scale was capped at 4 and at-4. Panel II: proportion (in percent-
age) of 5’ nt in 21 nt and 22 nt small RNAs in input and in HA-AGO2DAD immunoprecipitated
(IP) fractions. Numbers were rounded to the nearest integer. (B) HA-AGO1DAH in an ago2–1
background. Labels for panels I and II are as in (A). (C) Catalytically active HA-AGO10DDH
and catalytic mutant HA-AGO10DAH were expressed in a wild-type Col-0 (AGO2) or ago2–1
background, respectively. Labels for panels I and II are as in (A).
(TIF)

S3 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in plants expressing HA-AGO2DAD in an ago2–1 background. Values are average and SE
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from two biological replicates normalized to reads per million. Scale was capped at 150. Inocu-
lated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15 dpi,
respectively. Inflorescence samples were collected at 10 dpi. (A) and (B) TuMV genome-wide
distribution of 22 nt TuMV-derived siRNAs in input (A) and in HA-AGO2DAD immunopre-
cipitated (IP) fractions (B). Scale was capped at 150.
(TIF)

S4 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in plants expressing HA-AGO1DAH in an ago2–1 background. Values are average and SE
from two replicates normalized to reads per million. Inflorescence samples were collected at 10
dpi. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7
and 15 dpi, respectively. (A) and (B) TuMV genome-wide distribution of 22 nt TuMV-derived
siRNAs in input (A) and in HA-AGO1DAH immunoprecipitated fractions (IP) (B). Scale was
capped at 150.
(TIF)

S5 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in plants expressing HA-AGO10DDH or HA-AGO10DAH. Values are average and SE from
two replicates normalized to reads per million. Inflorescence samples were collected at 10 dpi. In-
oculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15 dpi,
respectively. (A) and (B) TuMV genome-wide distribution of 22 nt TuMV-derived siRNAs in
input (A) and in HA-AGO10 immunoprecipitated (IP) fractions (B). Scale was capped at 150.
(TIF)

S6 Fig. Association of endogenous siRNAs (21–24-nt) with HC-Pro in plants infected with
TuMV-HIS or TuMV-HIS-AS9. Values are average and SE from two biological replicates
normalized to reads per million. Inflorescence and cauline leaf samples from plants infected
with TuMV-HIS were collected at 10 dpi. Cauline leaf samples from plants infected with
TuMV-HIS-AS9 were collected at 15 dpi. (A) Number of reads of endogenous A. thaliana siR-
NAs by size class in input and HC-Pro immunoprecipitated (IP) fractions from inflorescence
and cauline leaves. (B) Number of reads for miRNAs, miRNA! and tasiRNAs in input and
mock or HC-Pro IP. (C) Enrichment (IP reads/ Input reads, expressed in a log2 scale) of miR-
NAs, miRNA! and tasiRNAs (TAS) in mock or HC-Pro IP. Scales was capped at 3 and -3.
(TIF)

S7 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in Col-0 or ago2–1 plants infected with TuMV-HIS or TuMV-HIS-AS9. Values are average
and SE from two biological replicates normalized to reads per million. Scale was capped at 500.
Inflorescence samples were from Col-0 plants at 10 dpi. Cauline leaf samples were from single
ago2–1mutant plants infected with TuMV-HIS or TuMV-HIS-AS9 at 10 or 15 dpi, respective-
ly. (A) and (B) TuMV genome-wide distribution of 22 nt TuMV-derived siRNAs in input
(A) or immunoprecipitated (IP) fractions of wild-type or AS9 HC-Pro.
(TIF)

S8 Fig. Association of A. thalianamiRNAs, miRNA! and tasiRNAs with HA-tagged
AGO2DAD, AGO1DAH, AGO10DDH or AGO10DAH. Transgenic HA-AGO1DAH and
HA-AGO2 DAD were expressed from an ago2–1 background. Transgenic HA-AGO10DDH and
HA-AGO10DAH were expressed from a wild-type Col-0 (AGO2) or an ago2–1 background, re-
spectively. Plants were mock-inoculated or infected with TuMV or with TuMV-AS9. Rosette
leaf and samples were collected at 7 dpi. Cauline leaf and inflorescence samples were collected
at 15 and 10 dpi, respectively. Values are average and SE from two biological replicates. The
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histograms show average fold enrichment in AGO IP (IP reads/ input reads, expressed in log2
scale) of miRNAs, miRNA! and tasiRNAs. A) HA-AGO2DAD IP. B) HA-AGO1DAH IP, and C)
HA-AGO10DDH or HA-AGO10DAH IP.
(TIF)

S9 Fig. Association of HA-AGO1DAH and HA-AGO2DAD with endogenous and virus-de-
rived siRNAs. Blots show accumulation of CP, HA-AGO, and virus-derived small RNAs in
immunoprecipitation (IP) fractions of HA-AGO1DAH and HA-AGO2DAD from cauline leaves
(1g) at 15 dpi. HA-AGO1DAH and HA-AGO2DAD were expressed from transgenic ago2–1
plants. Mock-inoculated plants and non-trangenic single ago2–1mutants were used as con-
trols. Representative blots showing accumulation of HA-AGOs, CP, TuMV-derived siRNAs
(CI) and selected miRNAs in input and HA-AGO immunoprecipitation fractions (IPs). TuMV
CP and HA-AGO were detected by immunoblotting in input and IP fractions. TuMV-derived
siRNAs were detected with a DIG-labeled probe made by random priming of cDNA corre-
sponding to CI. miR390 and miR168 were used as IP controls, and U6 as loading control. En-
dogenous siRNAs were detected with DIG-labeled oligonucleotides. Duplicated blots were
stripped and re-probed. A) IP of HA-AGO1DAH and HA-AGO2DAD from cauline leaves of
plants infected with wt TuMV. Panel I: protein accumulation in input samples. Panel II: pro-
tein accumulation in IP fractions. B) IP of HA-AGO1DAH and HA-AGO2DAD from cauline
leaves of plants infected with suppressor-deficient TuMV-AS9. Panels I and II are as in (A).
(TIF)

S1 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and HA-AGO2 immunoprecipitation fractions.
(DOCX)

S2 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and AGO1 immunoprecipitation fractions.
(DOCX)

S3 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and AGO10 immunoprecipitation fractions.
(DOCX)

S4 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and HC-Pro immunoprecipitation fractions.
(DOCX)

S1 Dataset. MicroRNA read counts for input and immunoprecipitates of HA-AGO2,
AGO1, AGO10 and HC-Pro.
(XLSX)
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Appendix B

Raspberry Pi powered imaging for plant

phenotyping

B.1 Preface

This appendix is a manuscript in “Protocol Note” format that has been tentatively accepted for

publication in Applications in Plant Sciences, pending acceptance of minor revisions. The initially

submitted version is available at http://www.biorxiv.org/content/early/2017/09/01/

183822

This paper provides step-by-step instructions for constructing and using three imaging system, along

with a protocol for software configuration steps common to all three methods. I developed the first

system for the work described in chapter 3. The second and third system were developed by the

Gehan lab, and Malia Gehan made both main-text figures. Several of the scripts and configuration

files that accompany the paper were adapted from my online documentation, which is described

in further detail in Appendix C. As co-first author, I made major contributions to the drafting and

revision of the manuscript.
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ABSTRACT 

 

● Premise of the study: Image-based phenomics is a powerful approach to capture and 

quantify plant diversity. However, commercial platforms that make consistent image 

acquisition easy are often cost-prohibitive. To make high-throughput phenotyping 

methods more accessible, low-cost microcomputers and cameras can be used to acquire 

plant image data.  

● Methods and Results: We used low-cost Raspberry Pi computers and cameras to manage 

and capture plant image data. Detailed here are three different applications of Raspberry 

Pi controlled imaging platforms for seed and shoot imaging. Images obtained from each 

platform were suitable for extracting quantifiable plant traits (shape, area, height, color) 

en masse using open-source image processing software such as PlantCV. 

● Conclusion: This protocol describes three low-cost platforms for image acquisition that 

are useful for quantifying plant diversity. When coupled with open-source image 

processing tools, these imaging platforms provide viable low-cost solutions for 

incorporating high-throughput phenomics into a wide range of research programs. 

 

Key words: imaging; low-cost phenotyping; morphology; Raspberry Pi 
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INTRODUCTION 

 

Image-based high-throughput phenotyping has been heralded as a solution for measuring diverse 

traits across the tree of plant life (Araus and Cairns, 2014; Goggin et al., 2015). In general, there 

are five steps in image-based plant phenotyping: 1) image and metadata acquisition; 2) data 

transfer; 3) image segmentation (separation of target object and background); 4) trait extraction 

(object description); and 5) group-level data analysis. Image segmentation, trait extraction, and 

data analysis are the most time-consuming steps of the phenotyping process, but protocols that 

increase the speed and consistency of image and metadata acquisition greatly speed up 

downstream analysis steps. Commercial high-throughput phenotyping platforms are powerful 

tools to collect consistent image data and metadata and are even more effective when designed 

for targeted biological questions (Topp et al., 2013; Chen et al., 2014; Honsdorf et al., 2014; 

Yang et al., 2014; Al-Tamimi et al., 2016; Pauli et al., 2016; Feldman et al., 2017; Zhang et al., 

2017). However, commercial phenotyping platforms are cost-prohibitive to many laboratories 

and institutions. There is also no such thing as a ‘one-size fits all’ phenotyping system; different 

biological questions often require different hardware configurations. Therefore, low-cost 

technologies that can be used and repurposed for a variety of phenotyping applications are of 

great value to the plant community. 

 

Raspberry Pi computers are small (credit card sized or smaller), low-cost, and were originally 

designed for educational purposes (Upton and Halfacree, 2014). Several generations of 

Raspberry Pi single-board computers have been released, and most models now feature built-in 
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modules for wireless and bluetooth connectivity (Monk, 2016). The Raspberry Pi Foundation 

also releases open source software and accessories such as camera modules (5 and 8 megapixel). 

Additional sensors or controllers can be connected via USB ports and general-purpose 

input/output pins. A strong online community of educators and hobbyists provide support 

(including project ideas and documentation), and a growing population of researchers use 

Raspberry Pi computers for a wide range of applications including phenotyping. We and others 

(e.g. Huang et al., 2016; Mutka et al., 2016; Minervini et al., 2017) have utilized Raspberry Pi 

computers in a number of configurations to streamline collection of image data and metadata. 

Here, we document three different methods for using Raspberry Pi computers for plant 

phenotyping (Figure 1). These protocols are a valuable resource because while there are many 

phenotyping papers that outline phenotyping systems in detail (Granier et al., 2006; 

Iyer-Pascuzzi et al., 2010; Jahnke et al., 2016; Shafiekhani et al., 2017), there are few protocols 

that provide step-by-step instructions for building them (Bodner et al., 2017; Minervini et al., 

2017). We provide examples illustrating automation of photo capture with open source tools 

(based on the Python programming language and standard Linux utilities). Further, to 

demonstrate that these data are of high quality and suitable for quantitative trait extraction, we 

segmented example image data (plant isolated from background) using the open-source 

open-development phenotyping software PlantCV (Fahlgren et al., 2015).  
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METHODS AND RESULTS 

 

Raspberry Pi Initialization: This work describes three protocols (Appendices 2-4) that utilize 

Raspberry Pi computers for low-cost image-based phenotyping and gives examples of the data 

they produce. Raspberry Pi computers can be reconfigured for different phenotyping projects and 

can be easily purchased from online retailers. The first application is time-lapse plant imaging 

(Appendix 2); the second protocol describes setup and use of an adjustable camera stand for 

top-view photography (Appendix 3); and the third project describes construction and use of an 

octagonal box for acquiring plant images from several angles simultaneously (Appendix 4). For 

all three phenotyping protocols, the same protocol to initialize Raspberry Pi computers is used 

and is provided in Appendix 1. The initialization protocol in Appendix 1 parallels the Raspberry 

Pi Foundation’s online documentation and provides additional information on setting up 

passwordless secure shell (SSH) login to a remote host for data transfer and/or to control 

multiple Raspberry Pis. Passwordless SSH allows one to pull data from the data collection 

computer to a remote server without having to manually enter login information each time. 

Reliable data transfer is an important consideration in plant phenotyping projects because, while 

it is possible to process image data directly on a Raspberry Pi computer, most users will prefer to 

process large image datasets on a bioinformatics cluster. Remote data transfer is especially 

important for time-lapse imaging setups, such as the configuration described in Appendix 2, 

because data can be generated at high frequency over the course of long experiments, and thus 

can easily exceed available disk space on the micro secure digital (SD) cards that serve as local 

hard-drives. Once one Raspberry Pi has been properly configured and tested, the fully configured 
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operating system can be backed up, yielding a disk image that can be copied (“cloned”) onto as 

many additional SD cards as are needed for a given phenotyping project (Appendix 1). 

 

Raspberry Pi Time-lapse Imaging: Time-lapse imaging is a valuable tool for documenting plant 

development and can reveal differences that would not be apparent from endpoint analysis. 

Raspberry Pi computers and camera modules work effectively as phenotyping systems in 

controlled-environment growth chambers; and low cost of Raspberry Pi computers allows this 

approach to scale well. Growth chambers differ from (agro)ecological settings but are an 

essential tool for precise control and reproducible experimentation (Poorter et al., 2016). 

Time-lapse imaging with multiple cameras allows for simultaneous imaging of many plants and 

can capture higher temporal resolution than conveyor belt and mobile-camera systems. Appendix 

2 provides an example protocol for setting up the hardware and software necessary to capture 

plant images in a growth chamber. The main top-view imaging setup described is aimed at 

imaging flats or pots of plants in a growth chamber. We include instructions for adjusting the 

camera-plant focal distance (yielding higher plant spatial resolution) and describe how to adjust 

the temporal resolution of imaging. The focal distance can be optimized to the target plant, trait, 

and degree of precision required; large plant-camera distances allow a larger field of view, at the 

cost of lower resolution. For traits like plant area, where segmentation of individual plant organs 

is not critical, adjusting the focal length might not be necessary. Projected leaf area in top-down 

photos correlates well with fresh and dry weight, especially for relatively flat plants such as 

Arabidopsis thaliana (Leister et al., 1999). A stable and level imaging configuration is important 

for consistent imaging across long experiments and to compare data from multiple Raspberry 
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Pi/Camera rigs. Although there is more than one way to suspend Raspberry Pi/Camera rigs in a 

flat and stable top-view configuration, AC power socket adapters were attached to the the back 

of cases with silicone adhesive (Appendix 2). Raspberry Pi boards and cameras were then 

encased and screwed into the incandescent bulb sockets built into the growth chamber (Figure 1). 

Users with access to a 3D printer may prefer to print cases, so we have provided a link to 

instructions for printing a suitable case (with adjustable ball-joint Raspberry Pi camera module 

mount) in Appendix 2. This type of 3D printed case also works well for side-view imaging of 

plants grown on plates (Huang et al., 2016; Mutka et al., 2016). For this top-down imaging 

example, twelve Raspberry Pi/Camera rigs were powered through two USB power supplies 

drawing power (via extension cord and surge protector) from an auxiliary power outlet built into 

the growth chamber. Although we use twelve Raspberry Pi/Camera rigs in this example, the 

setup can be scaled up or down, with a per-unit cost of approximately $100. A single Pi/Camera 

rig is enough for a new user to get started, and laboratories can efficiently scale up imaging as 

they develop experience and refine their goals. Time-lapse imaging was scheduled at five-minute 

intervals using the software utility cron. A predictable file naming scheme that includes image 

metadata (field of view number, timestamp, and a common identifier) was employed to confirm 

that all photo timepoints were captured and transferred as scheduled. Images were pulled from 

each Raspberry Pi to a remote server twice per hour (using a standard utility called rsync) by a 

server-side cron process using the configuration files described in Appendix 2.  

 

Optimizing imaging conditions for maximum consistency can simplify downstream image 

processing.  To aid in image normalization during processing, color standards and size markers 
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can be included in images. Placing rubberized blue mesh (e.g. Con-Tact Brand, Pomona, 

California, USA) around the base of plants can sometimes simplify segmentation (i.e. 

distinguishing plant foreground pixels from soil background pixels), though this was not 

necessary for the A. thaliana example described here. Care should be taken to ensure that large 

changes in the scene (including gradual occlusion of blue mesh by leaves) do not dramatically 

alter automatic exposure and color balance settings over the course of an experiment. If 

automatic exposure becomes an issue, camera settings can be manually set (see Appendix 4). In 

this example, cameras and flats were set up to yield a similar vantage point (a 4 x 5 grid of pots) 

in each field of view, such that very similar computational pipelines can be used to process 

images from all twelve cameras. An example image has been processed with PlantCV (Fahlgren 

et al., 2015) in Figure 2, and a script showing and describing each step in the analysis is provided 

at https://github.com/danforthcenter/apps-phenotyping. Further image processing tutorials and 

tips can be found at http://plantcv.readthedocs.io/en/latest/.  

 

Raspberry Pi Camera Stand: An adjustable camera stand is a versatile piece of laboratory 

equipment for consistent imaging. Appendix 3 is a protocol for pairing a low-cost home-built 

camera stand with a Raspberry Pi computer for data capture and management. Altogether, the 

camera stand system costs approximately $750. The camera stand (79 cm width x 82.5 cm 

height) was built from aluminum framing (80/20, Columbia City, Indiana, USA) to hold a Nikon 

Coolpix L830 camera via a standard mount (Figure 1). For this application, we prefer to use a 

single-lens reflex (SLR) digital camera (rather than a Raspberry Pi camera module) for 

adjustable focus and to improve resolution. The camera was affixed to a movable bar, so the 
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distance between camera and object can be adjusted up to 63 cm. A Python script that utilizes 

gphoto2 (Figuière and Niedermann, 2017) for data capture and rsync for data transfer to a remote 

host is included in the protocol (Appendix 3). When the ‘camerastand.py’ script is run, the user 

is prompted to enter the filename for the image. The script verifies that the camera is connected 

to the Raspberry Pi, acquires the image with the SLR camera, retrieves the image from the 

camera, renames the image file to the user-provided filename, saves a copy in a local Raspberry 

Pi directory, and transfers this copy to the desired directory on a remote host. As image 

filenames are commonly used as the primary identifier for downstream image processing, it is 

advised to use a filename that identifies the species, accession, treatment, and replicate, as 

appropriate. The Python script provided appends a timestamp to the filename automatically. We 

regularly use this Raspberry Pi Camera Stand to image seeds, plant organs (e.g. inflorescences), 

and short-statured plants. For seed images, a white background with a demarcated black 

rectangular area ensures that separated seeds are in frame, which speeds up the imaging process. 

Color cards (white, black, and gray; DGK Color Tools, New York, New York, USA) and a size 

marker to normalize area are also included in images to aid in downstream processing and 

analysis steps. It is advised to use the same background, and, if possible, the same distance 

between object and camera for all images in an experimental set. However, including a size 

marker in images can be used to normalize data extracted from images if the vantage point does 

change. Chenopodium quinoa (quinoa) seed images are shown as example data from the camera 

stand (Figure 2). To show that images collected from the camera stand are suitable for image 

analysis, seed images acquired with the camera stand were processed using PlantCV (Fahlgren et 

al., 2015) to quantify individual seed size, shape, color, and count; these types of measurements 
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are valuable for quantifying variation within a population. The step-by-step image processing 

instructions are provided at https://github.com/danforthcenter/apps-phenotyping. This overall 

process (Appendix 3) provides a considerable cost savings relative to paying for seed imaging 

services or buying a commercial seed imaging station. 

 

Raspberry Pi Multi-Image Octagon: Different plant architecture types require different imaging 

configurations for capture. For example, top-down photographs can capture most of the 

information about the architecture of rosette plants (as described above), but plants with 

orthotropic growth such as rice or quinoa are better captured with a combination of both 

side-view and top-view images. Therefore, platforms for simultaneously imaging plants from 

multiple angles are valuable. In Appendix 4, a protocol is described to set up an octagon-shaped 

chamber for imaging at different angles. The complete octagon-shaped imaging system costs 

approximately $1500. A ‘master’ Raspberry Pi computer with a Raspberry Pi camera module is 

used to collect image data and also to trigger three other Raspberry Pi computers and cameras. 

Data is transferred from the four Raspberry Pi computers to a remote host using rsync. The 

octagon chamber (122 cm height and 53.5 cm of each octagonal side) was constructed from 

aluminum framing and 3mm white polvinyl chloride (PVC) panels (80/20, Columbia City, 

Indiana, USA; Figure 1). The top of this structure is left open but is covered with a translucent 

white plastic tarp to diffuse light when acquiring images. A latched door was built into the 

octagon chamber to facilitate loading of plants. Four wheels were attached at the bottom of the 

chamber for mobility. The four Raspberry Pis with Raspberry Pi camera modules (one top-view 

and three side-views approximately 45° angle apart) in cases were affixed to the octagon 

 



  
 

Tovar et al., p. 11 

chamber using heavy-duty velcro. To maintain a consistent distance between the Raspberry Pi 

cameras and a plant within the Raspberry Pi multi-image octagon, a pot was affixed to the center 

of the octagon chamber, with color cards affixed to the outside of the stationary pot (white, 

black, and gray; DGK Color Tools, New York, New York, USA) so that a potted plant could be 

quickly placed in the pot during imaging.  

 

To facilitate data acquisition and transfer on all four Raspberry Pis, scripts are written so the user 

only needs to interact with a single ‘master’ Raspberry Pi (here the master Raspberry Pi is named 

‘octagon’). From a laptop computer one would connect to the ‘master’ pi via SSH, then run the 

‘sshScript.sh’ on that Pi. The ‘sshScript.sh’ script triggers the image capture and data transfer 

sequence in all four Raspberry Pis and appends the date to a user-input barcode. When the 

‘sshScript.sh’ script is run, a prompt asks the user for a barcode sequence. The barcode can be 

inputted manually, or, if a barcode scanner (e.g. Socket 7Qi) is available, a barcode can be used 

to input the filename information. Again, it is advised to use a plant barcode that identifies the 

species, accession, treatment, and replicate, as appropriate. Once a barcode name has been 

inputted, another prompt asks if the user would like to continue with image capture. This pause 

in the ‘sshScript.sh’ script gives the user the opportunity to place the plant in the octagon before 

image capture is triggered. The sshScript.sh runs the script piPicture.py on all four Raspberry 

Pis. The ‘piPicture.py’ script captures an image and appends the user inputted filename with the 

Raspberry Pi camera id and the date. The image is then saved to a local directory on the 

Raspberry Pi. The ‘syncPi.sh’ script is then run by ‘sshScript.sh’ to transfer the images from the 

four Raspberry Pis to a remote host. The final script (shutdown_all_pi) is optionally run when 
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image acquisition is over, allowing the user to shut down all four Raspberry Pis simultaneously. 

Examples of quinoa plant images captured with the Raspberry Pi multi-image octagon are 

analyzed with PlantCV (Fahlgren et al., 2015) to show that the data  can be  area and shape can 

be extracted (Figure 2). Step-by-step analysis scripts are provided at 

https://github.com/danforthcenter/apps-phenotyping.  

 

Protocol Feasibility: The protocols provided in the appendices that follow provide step-by-step 

instructions for using Raspberry Pi computers for plant phenotyping in three different 

configurations. The majority of components for all three protocols are readily available for 

purchase online. Low-cost computers and components are especially important since some 

experiments might test harsh environmental conditions and need to be replaced long-term. Each 

of the platforms were built and programmed in large part by high-school students, 

undergraduates, or graduate students and do not require a large investment of time to build or 

set-up.Since Raspberry Pi computers are widely used by educators, hobbyists, and researchers 

there is a strong online community that can be called upon for troubleshooting or to extend the 

functionality of a project. The best way to start troubleshooting is to use an online search engine 

to see if others have solved similar issues. If an error message has been triggered, start by using 

the error message as search terms.  If a satisfactory answer is not found through an online search, 

posting on a community support forum like Stack Overflow is a good next step 

(https://raspberrypi.stackexchange.com/; 

https://stackoverflow.com/questions/tagged/raspberry-pi). When posting on online community 

forums is helpful to be specific. For example, if an error message is triggered it is vital to include 

 



  
 

Tovar et al., p. 13 

the exact text of the error message, to describe the events that triggered that error message, and 

what the target end goal is.  Automation increases the consistency of image and metadata 

capture, which streamlines image segmentation (Figure 2) and is thus preferable to manual image 

capture. Furthermore, the low cost of each system and the flexibility to reconfigure Raspberry Pi 

computers for multiple purposes makes automated plant phenotyping accessible to most 

researchers.  

 

CONCLUSION 

 

The low-cost imaging platforms presented here provide an opportunity for labs to introduce 

phenotyping equipment into their research toolkit, and thus increase the efficiency, 

reproducibility, and thoroughness of their measurements. These protocols make high-throughput 

phenotyping accessible to researchers unable to make a large investment in commercial 

phenotyping equipment. Paired with open-source open-development high-throughput plant 

phenotyping software like PlantCV (Fahlgren et al., 2015), image data collected from these 

phenotyping systems can be used to quantify plant traits for populations of plants that are 

amenable to genetic mapping. These Raspberry Pi powered tools are also useful for education 

and training. In particular, we have used time-lapse imaging to introduce students and teachers to 

the Linux environment, image processing, and data analysis in a classroom setting 

(http://github.com/danforthcenter/outreach/). As costs continue to drop and hardware continues 

to improve, there is enormous potential for the plant science community to capitalize on creative 

applications, well-documented designs, and shared datasets and code. 
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APPENDICES 

Appendix 1. Initializing a Raspberry Pi for phenotyping projects. The camera stand, 

growth-chamber imaging stations, and multi-image octagon phenotyping platforms that are 

described in detail in Appendices 2-4 use Raspberry Pis to trigger image acquisition, append 

metadata to filenames, and move data to remote host machines. The following are the required 

parts and steps to initialize a single Raspberry Pi. The initialization protocol is based on the 

installation guidelines from the Raspberry Pi Foundation, which are under a Creative Commons 

license (https://www.raspberrypi.org/documentation/). 

Parts List: 

Item 

Raspberry Pi single-board microcomputer 

Micro USB power supply 

Mini Secure Digital (SD) card, we recommend 16GB 

HDMI Monitor, HDMI cable, keyboard, and mouse  

 

General Raspberry Pi Initialization Protocol: 

1. Install ‘Raspbian Stretch with Desktop’ (here version 4.9 is used, but the latest 

version is recommended) onto the SD card by following the installation guide at 

https://www.raspberrypi.org/downloads/raspbian/ 
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2. Insert mini SD card into Raspberry Pi and plug in monitor, keyboard, and mouse 

to Raspberry Pi. 

3. Plug in Micro USB power supply and connect to power. The Raspberry Pi will 

boot to the desktop interface, which is also known as the graphical user interface 

(GUI). If the Raspberry Pi does not boot to the desktop interface, you can type 

sudo raspi-config and go to the third option ‘Enable Boot to Desktop/Scratch’ to 

change this. Alternately, if the Raspberry Pi boots to the command line you can 

get to the GUI by typing ‘startx’ and hitting the Enter key. 

4. Once at the desktop, open Raspberry Pi Configuration under Applications Menu > 

Preferences. Alternatively, you can get to the configurations menu by typing 

“sudo raspi-config” in the Terminal program.  

a. In the System tab, set hostname (see Appendices 2, 3, or 4 for specific 

hostnames to use; alternatively, a static IP address can be set up for the 

Raspberry PI).  

b. In the Interfaces tab, set SSH and Camera to enabled.  

c. In the Localization tab: 

i. Set Locale to appropriate Language and Country, and leave 

Character Set as UTF-8 (default option).  

ii. Set Timezone to an appropriate Area and Location. Universal 

Coordinated Time (UTC) can be advantageous for long-running 

time-lapse experiments.  

iii. Set Keyboard to appropriate Country and Variant.  
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iv. Set WiFi Country. 

5. Configure WiFi using the network icon on the top right of the desktop. 

Alternatively, use an Ethernet cable connection. 

6. Optionally, make a local copy of the scripts that accompany this paper. In 

Terminal, change directory to the Desktop by typing “cd Desktop”. Then type “git 

clone https://github.com/danforthcenter/apps-phenotyping.git”. If prompted with 

“The authenticity of host 'remote-host' can't be established (...) Are you sure you 

want to continue connecting?” enter “yes”. This will download the project scripts 

and examples for all three phenotyping platforms (Appendices 2-4). Some of 

these scripts may need be adjusted after they have been copied on the Raspberry 

Pi, as described below. The Git version control system can be used to track the 

history of changes of these files.  

 

Raspberry Pi SD card cloning protocol: 

Once you have gone through the initialization protocol for one Raspberry Pi, the disk 

image of the SD card from that Raspberry Pi can be cloned if you need additional 

Raspberry Pis for your project. Any project specific scripts that need further adjustments 

on individual Raspberry Pis can then be completed (see Appendices 2 to 4). Cloning an 

SD card will generate a file of the exact size of the SD card (e.g. 16 GB), and it is 

therefore essential ensure that new SD cards to be “flashed” with the original disk image 

are at least as large as the initialized SD card (e.g. 16 GB or larger). 
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To clone an SD card on a Windows computer: 

1. Download and install Win32 Disk Imager from 

https://sourceforge.net/projects/win32diskimager/ 

2. Before opening the Win32 Disk Imager, insert the SD card (in an SD card reader 

if needed) from the initialized Raspberry Pi into your computer. 

3. Open Win32 Disk Imager. 

4. Click on the blue folder icon. A file explorer window will appear. 

5. Select the directory to store the SD card image, and provide a filename for the 

image. 

6. Click Open to confirm your selection. The file explorer window will close. 

7. Under Device, select the appropriate drive letter for the SD card. 

8. Click the Read button. 

9. Once the image is created, a ‘Read Successful’ message will appear. Click OK. 

10. Eject the SD card, and close Win32 Disk Imager. 

11. Insert the new SD card where the image will be cloned. Make sure this SD card 

has as much or more storage capacity as the SD card from the initialized 

Raspberry Pi that was imaged. 

12. Reopen Win32 Disk Imager. 

13. Click on the blue folder icon, and select the image that was just created. 

14. Under Device, select the appropriate drive letter for the SD card where the image 

will be cloned. 

15. Click the Write button.  
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16. Click Yes. 

17. Once the image is created, a ‘Write Successful’ message will appear. Click OK. 

18. Eject the SD card, and insert it into the Raspberry Pi. The Raspberry Pi is now 

initialized. 

 

To clone an SD card on a Mac computer: 

1. Download and install ApplePi-Baker from 

https://www.tweaking4all.com/software/macosx-software/macosx-apple-pi-baker/ 

2. Insert the SD card (in an SD card reader if needed) from the initialized Raspberry 

Pi into your computer. 

3. Under Pi-Crust: Select SD-Card or USB drive, select the initialized Raspberry Pi 

SD card. 

4. Click on Create Backup.  

5. Click OK. 

6. Under Save As, provide a filename for the SD card image. 

7. Under Where, select directory to store the SD card image, and click Save. 

8. Once the image is created, a ‘Your ApplePi is Frozen!’ message will appear. 

Click OK. 

9. Eject the SD card. 

10. Insert the new SD card where the image will be cloned. Make sure this SD card 

has as much or more storage capacity as the SD card from the initialized 

Raspberry Pi that was imaged. 
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11. Under Pi-Crust: Select SD-Card or USB drive, select the SD card where the 

image will be cloned. 

12. Click on Restore Backup.  

13. Browse and select the image that was just created. 

14. Click OK. 

15. Once the SD card is cloned, a ‘Your ApplePi is ready!’ message will appear. 

Click OK. 

16. Eject the SD card, and insert it into the Raspberry Pi. The Raspberry Pi is now 

initialized. 

 

To clone an SD card on a Linux computer: 

This protocol is adapted from The PiHut 

(https://thepihut.com/blogs/raspberry-pi-tutorials/17789160-backing-up-and-restoring-yo

ur-raspberry-pis-sd-card) and Raspberry Pi Stack Exchange 

(https://raspberrypi.stackexchange.com/questions/311/how-do-i-backup-my-raspberry-pi)

.  

1. First, use the command ‘df -h’ to see a list of existing devices. 

2. Insert the SD card (in an SD card reader if needed) from the initialized Raspberry 

Pi into your computer. 

3. Use the command ‘df -h’ again. The SD card will be the new item on the list (e.g. 

/dev/sdbp1 or /dev/sdb1). The last part of the name (e.g. p1 or 1) is the partition 

number. 
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4. Use the command ‘sudo dd if=/dev/SDCardName of=/path/to/SDCardImage.img’ 

to create the SD card image (e.g. sudo dd if=/dev/sdb of=~/InitializedPi.img). 

Make sure to remove the partition name to image the entire SD card (e.g. use 

/dev/sdb instead of /dev/sdb1). 

5. There is no progress indicator, so wait until the command prompt reappears. 

6. Unmount the SD card by typing: sudo umount /dev/SDCardName. 

7. Remove the SD card. 

8. Insert the new SD card where the image will be cloned. Make sure this SD card 

has as much or more storage capacity as the SD card from the initialized 

Raspberry Pi that was imaged. 

9. Use the command ‘df -h’ again to discover the new SD card name, or names if 

there is more than 1 partition. 

10. Unmount every partition using the command ‘sudo umount /dev/SDCardName’ 

(e.g. sudo umount /dev/sdb1). 

11. Copy the initialized Raspberry Pi SD card image using the command ‘sudo dd 

if=/path/to/SDCardImage.img of=/dev/SDCardName’. 

12. There is no progress indicator, so wait until the command prompt reappears. 

13. Unmount the SD card, and insert it into the Raspberry Pi. The Raspberry Pi is 

now initialized. 

 

General instructions for installing and testing a Raspberry Pi Camera:  

1. Make sure the Raspberry Pi is not connected to power.  
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2. Pull up the top part of the connector located between the HDMI and ethernet 

ports, until loose. 

3. Insert the Raspberry Pi camera flex cable into the connector, with the silver 

rectangular plates at the end of the cable facing the HDMI port. 

4. While holding the cable in place, push down the top part of the connector to 

prevent the flex cable from moving. 

5. Remove the small piece of blue plastic covering the camera lens, if present.  

6. Turn the Raspberry Pi on, and test the camera by opening a Terminal window, 

then entering “raspistill -o image-name-here.jpg” to take a picture. 

 

General instructions for using a SSH keys for passwordless connection to a remote 

host: These instructions are to allow a Raspberry Pi computer to access a remote host 

(e.g. another Raspberry Pi computer, bioinformatics cluster, or other computer), without 

having to enter login information. If a user would like to pull data from Raspberry Pi to a 

remote host, rather than pushing data from a Raspberry Pi to a remote host, similar 

instructions would be followed on the remote computer.  

1. In the Terminal window, enter “ssh-keygen” to create a public SSH key for 

passwordless access to a remote host.  

2. Press the Enter key to use the default location when asked to “Enter file in which 

to save the key”. 

3. Press Enter two more times, to use the default passphrase setting (no passphrase), 

if desired. 

 



  
 

Tovar et al., p. 26 

4. Optionally, enter “ls ~/.ssh” to verify the SSH key was generated. The files 

“id_rsa” and “id_rsa.pub” should be listed. 

5. Use the command “ssh-copy-id -i ~/.ssh/id_rsa.pub user@remote-host” in the 

Terminal window to copy the public SSH key to the remote host, where 

“user@remote-host” should be replaced by the name of the remote host where the 

images will be stored (e.g. ssh-copy-id -i ~/.ssh/id_rsa.pub jdoe@serverx). 

6. If prompted with “The authenticity of host 'remote-host' can't be established (...) 

Are you sure you want to continue connecting?” enter “yes”. 

7. Enter the user’s password for the remote server, if prompted. 

8. Verify the SSH key was successfully copied to the remote host. SSH to the 

remote host from the Raspberry Pi, using the command “ssh user@remote-host” 

in the Terminal window (e.g. ssh jdoe@serverx). No password should be required 

if the key was copied successfully. 

 

Additional Notes: 

● For official distributions of the Raspbian Raspberry Pi operating system, the 

default username is “pi”, and default password is “raspberry”. The following 

protocols assume these default settings are unchanged. To change passwords, 

open Raspberry Pi Configuration under Applications Menu > Preferences. In the 

System tab, click on ‘Change Password...’. Enter current password, new 

password, and confirm new password. If using the command line type passwd, 

then follow the command prompts to change password. 
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● If an Ethernet cable connection is used, a Power over Ethernet adapter (such as 

UCTronics LS-POE-B0525) and a Power over Ethernet-capable Ethernet switch 

(such as Ubiquiti ES-48-750W) can be used, eliminating the need for Raspberry 

Pi power cables. If connecting multiple computers to a single power supply, 

ensure that all computers can draw adequate power. For details see 

https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/READ

ME.md  

● There can be a learning curve associated with command-line tools and 

Linux-based operating systems. As noted above, material on Linux and Raspberry 

Pi configuration is available online, including many technical mailing lists and 

user forums. Learning to use the Linux “man” utility to read manual page 

documentation can be helpful for quickly looking up command-line flag options 

and occasionally for understanding differences between the precise versions of 

software available on different host machines.  
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Appendix 2. Raspberry Pi Top-View or Side-View Time-Lapse Imaging.  

The protocol that follows describes how to set up one or more Raspberry Pi/Camera rigs for 

time-lapse photography, and is based on the tutorial at 

https://www.raspberrypi.org/documentation/usage/camera/raspicam/timelapse.md  

Here, we focus on a 12-camera configuration that has worked well in a reach-in growth chamber. 

We describe one low-cost method for stably fixing Raspberry Pi/Camera rigs to the top of the 

chamber. Zip ties may work well for attaching Pi/Camera rigs in some growth chambers 

(Minervini et al., 2017), and we have also used heavy-duty velcro, so that Pi/Camera rigs can be 

removed and used for other purposes, such as side-view imaging of seedlings on petri plates. We 

have separately provided a protocol for imaging plants grown on vertical petri plates with a 

NoIR camera module and an IR light-emitting diode (LED) panel for backlighting (as in Huang 

et al. 2016). This method was used for quantifying hypocotyl growth, and can be used with other 

tissues such as roots. See 

http://maker.danforthcenter.org/tutorial/raspberry%20pi/led/raspberry%20pi%20camera/RPi-LE

D-Illumination-and-Imaging 

Parts list: 

Item 

Initialized Raspberry Pi (Appendix 1) 

Raspberry Pi case, such as SmartiPi LEGO-compatible case for Raspberry 

Pi model B and camera module (Smarticase LLC, Philadelphia PA, USA) 
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Raspberry Pi camera (either RGB or NoIR camera depending on 

application; see additional notes below) 

AC light bulb socket adapters and silicone adhesive sealant, e.g. IS-808 

HDMI Monitor, HDMI cable, keyboard, and mouse (for optional lens 

focus process) 

 

Optional/Alternative Parts: 

Item 

Heavy-duty velcro, as an alternative method of mounting Pi/Camera rigs. 

We recommend against using small pieces of low-cost consumer-grade 

velcro. 

3D printed petri plate stand, for imaging plates vertically. STL file for 3D 

printing is available here: 

https://www.thingiverse.com/thing:418614/#files 

 

Adjustment of Raspberry Pi Camera Focus (Optional):  

As noted above, the Raspberry Pi camera is fixed focus, with a focal length such that 

objects 1 m away or further will be in focus. Therefore, if you want to alter the focus you 

have to alter the Raspberry Pi camera module itself with pliers. We recommend watching 

the excellent youtube tutorial by George Wang: 
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https://www.youtube.com/watch?v=u6VhRVH3Z6Y. For the main configuration 

described here, the lens-plant distance was 55.2 cm. 

1. Install the Raspberry Pi camera on a Raspberry Pi computer that is plugged into a 

Monitor, Mouse and Keyboard as described above. Plug the power in last. 

2. To change the focus, use a sharp object and carefully remove the glue around the 

lens. Every few incisions, carefully grip the side of the lens-ring with pliers and 

check if it will turn counter-clockwise. (Removing the glue is optional, as noted in 

the video linked above.) 

3. When the camera lens-ring does turn, use the following command in the Terminal 

of the Raspberry Pi to check whether a target is adequately focused at your 

desired imaging distance: “raspistill -o image.jpg” We suggest using a ruler and 

white business card as targets. Continue adjusting the camera at the desired focal 

distance.  

Mounting of Raspberry Pi/Camera rigs for top-view time-lapse imaging: 

1. Connect a camera module to each Raspberry Pi, as described in Appendix 1. 

2. Attach the AC light bulb socket adapters to the Raspberry Pi cases with silicone 

adhesive, and install an initialized Raspberry Pi computer (see Appendix 1) and 

camera in each case. 

3. Plug each of the Raspberry Pis into the monitor, keyboard, mouse, and USB 

power. Following Appendix 1, change the hostnames of the Raspberry Pis. For 

example, the sample configuration files we provide assume that the twelve 
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Raspberry Pi have hostnames ‘timepi01’, ‘timepi02, ... ‘timepi12’. Recall that 

protocol 1 describes how to copy these configuration files, e.g. to 

/home/pi/Desktop. 

4. Make a folder for images on each of the Raspberry Pis. In our example we made a 

folder ‘/home/pi/images’. To do this on the Terminal type: ‘mkdir 

/home/pi/images’. If you wish to use a different path image folder, change line 14 

in the example file ‘pull-images-from-raspi.crontab’ (within the 

appendix.2.time-lapse subdirectory). You will also need to change the 

‘photograph-all-5min.crontab’ and ‘photograph-all-5min-vhflipped.crontab’ lines 

12, 15, 18 ,21, and 24 so that the images are saved to the correct location during 

acquisition (both of these scripts are located in 

Desktop/apps-phenotyping/appendix.2.time-lapse) 

5. Physically position each Pi/Camera rig within an experimental growth space (e.g. 

by screwing adapters into sockets or joining velcro strips together). Take photos 

(with the raspistill command) to confirm that each camera covers a suitable field 

of view. See additional notes below on taking photos remotely and optionally 

flipping photo orientation. 

Starting and ending a single imaging experiment: 

6. The ‘photograph-all-5min.crontab’ and ‘photograph-all-5min-vhflipped.crontab’ 

files are cron tables and contain the commands that trigger regular image capture. 

Both scripts are currently written to capture data every 5 minutes between the 

hours of 8:30 and 17:30 (8:30am to 5:30pm standard time). If that frequency is 
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too high, the first number or comma separated list of numbers on lines 12, 15, 18, 

21, and 24 have to be altered to reflect that change. If the hours of imaging are 

different, then the second number or range of numbers on lines 12, 15, 18, 21, and 

24 has to be altered. 

7. The ‘photograph-all-5min.crontab’ and ‘photograph-all-5min-vhflipped.crontab’ 

files also control wifi, turning off outside of the imaging window/photoperiod (see 

comments in files). Wifi is set to turn on ten minutes before the start of imaging 

and turn off 10 minutes after imaging ends. If the minute or hour of imaging is 

different from our experimental setup then the first two numbers on both lines 37 

and 43 have to be altered. 

8. Once both ‘photograph-all-5min.crontab’ and 

‘photograph-all-5min-vhflipped.crontab’ scripts are satisfactory, install the cron 

jobs on each Raspberry Pi. The ‘install-twelve-crontabs.sh’ script (run from a 

remote machine, and depending on reasonable wifi connectivity) does this for all 

twelve Raspberry Pis, but first the user has to determine if the images need to be 

flipped or not. The difference between the ‘photograph-all-5min.crontab’ and 

‘photograph-all-5min-vhflipped.crontab’ scripts is that the 

‘photograph-all-5min-vhflipped.crontab’ imaging command flips the images in 

both the vertical and horizontal directions. Flipping the images might be 

necessary if there are differences in the orientation of the cameras, and thus 

images, between the Raspberry Pis. If a Raspberry Pi’s images are in ‘wrong’ 
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orientation, open the ‘install-twelve-crontabs.sh’ file and follow the directions for 

commenting and uncommenting. 

9. To pull data from the Raspberry Pi computers to a remote host, line 15 of the 

‘pull-images-from-raspi.crontab’ must be changed to the path that you would like 

the images to go to on the remote host. The remote host must have passwordless 

SSH set up so that it can connect to each Raspberry Pi without a password. This is 

very much like the ‘general instructions to generate a SSH key for passwordless 

SSH to a remote host’ in Appendix 1, but in reverse. Briefly, on the remote host 

you would generate an ssh key (command “ssh-keygen” ), then copy that to the 

Raspberry Pi (e.g. “ssh-copy-id -i ~/.ssh/id_rsa.pub pi@timepi01”).  

10. Once the RASPIDIR and SERVERDIR paths are changed in 

‘pull-images-from-raspi.crontab’, put the ‘‘pull-images-from-raspi.crontab’ file 

on the remote host, then install it on the remote host on the command line by 

typing: ‘crontab pull-images-from-raspi.crontab’. Warning: this will overwrite 

any preexisting user-specific cron tables. 

11. Upon conclusion of an experiment, suspend photography on each Raspberry Pi by 

“removing” the active crontab (crontab -r). Once the experiment is done, you can 

safely shutdown the Raspberry Pis using the ‘shut-down-all.sh’ script, if desired. 

12. If a cron table job is set up on the Raspberry Pi it will take images as long as the 

Raspberry Pi has power, disk space, and a functioning camera module. 

Additional Notes:  
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● Here we set up twelve Raspberry Pis for time-lapse imaging, but you may want to 

set up more or fewer. If fewer than twelve Raspberry Pis are used then simply 

comment out the excessive commands with a ‘#’ in each of the Appendix 2 

scripts. If more than twelve Raspberry Pis are used, then follow the commented 

code to add more Raspberry Pis with unique hostnames. 

● Because of the low cost of the hardware, this approach scales well. If you intend 

to use a large number of Raspberry Pis (tens, hundreds) you will likely want to 

investigate management and monitoring tools such as Ansible, Ganglia, and/or 

Puppet. 

● Consider including at least one size marker in each field of view. For example, a 

white Tough-Spot (Research Products International, Mount Prospect, Illinois, 

USA) will remain affixed if wet. 

● Also consider including color standards or white balance cards (white, gray and 

black; DGK Color Tools Optek Premium Reference White Balance Cards) 

● As noted above, third generation Raspberry Pis have built in wifi and bluetooth 

modules. Older Raspberry Pi models can be used with USB wifi modules (e.g. 

Newark 07W8938). Connectivity to our local wireless network from within 

reach-in growth chambers is generally good, and has been more than sufficient for 

our monitoring and image transfer purposes. Testing wireless connectivity before 

setting up Pi/Camera rigs is strongly recommended. Wireless transfer is unlikely 

to work within a walk-in growth room therefore transferring of data by ethernet is 

preferable.  With a large number of Pi/Camera rigs it is also preferable to transfer 
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data via ethernet to avoid wireless signal interference. Alternatively, if real-time 

monitoring is not required and SD card disk space is not a constraint, one or more 

Raspberry Pis can be left to run autonomously until the conclusion of an 

experiment, at which point either SD cards can be removed or computers can be 

moved to another location with better connectivity.  

● If wireless connectivity is good, one can run test photo capture commands via a 

remote connection (and then copy the resulting image files for viewing, e.g. with 

rsync). This removes the need to physically connect a monitor and keyboard to 

check orientation when mounting each Pi/Camera rig. Minervini et al. (Minervini 

et al., 2017) have provided instructions for installing and configuring an interface 

for taking and viewing photos through a web browser. 

● The Raspberry Pi NoIR camera can be paired with an infrared (IR) light source to 

image under low visible light or no visible light conditions. We use a 730 nm 

cutoff filter (Lee #87) over the NoIR camera lens to block visible light when 

using an 880 nm LED array to backlight (see link above). The cutoff filter helps 

prevent changes in contrast during imaging, which makes image processing 

easier. 
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Appendix 3. Raspberry Pi Camera Stand. The following are the hardware and software 

needed to set-up a Raspberry Pi camera stand.  

Parts list: 

Quantity Description 

1 Initialized Raspberry Pi Computer (see Appendix 1) 

1 Raspberry Pi case 

1 HDMI cable, mouse, keyboard, and monitor. 

1 Nikon Coolpix L830 or other gphoto2 (Figuière and Niedermann, 2017) 

supported camera 

1 Nikon Coolpix power cord 

1 Nikon Coolpix L830 USB cable 

 

Aluminum 80/20 Inc. frame parts:  

ID Quantity 80/20 Part Number Description 

A 1 1515-UL 75 cm width x 3.81 cm height x 3.81 cm 

length T-slotted bar, with 7040 counterbore 

in A left and A right 

B 2 1515-UL 75 cm width x 3.81 cm height x 3.81 cm 
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length T-slotted bar, with 7040 counterbore 

in D left 

C 1 1515-UL 88.9 cm width x 3.81 cm height x 3.81 cm 

length T-slotted bar  

D 2 1515-UL 36 cm x 3.81 cm height x 3.81 cm length 

T-slotted bar  

E 2 6525 Double flange short standard linear bearing 

with brake holes 

F 2 6800 15 S gray “L” handle linear bearing brake 

kit 

G 4 3360 15 S 5/16-18 standard anchor fastener 

assembly 

H 1 65-2453 10.16 cm width x 10.16 cm height x 0.3175 

cm thick aluminum plate. Three holes will 

be needed, two to bolt the plate to the 

crossbar and one hole below the bar to 

mount the camera with a nut. 

I 2 3203 15 series 5/16-18 standard slide in T-nut 
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J 2 3117 15/16-18 x 0.875” button head socket cap 

screw 

 

 

 

Additional set-up of Raspberry Pi for camera stand: 

1. In the Applications Menu > Preferences, set hostname to camerastand. 
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2. Install gphoto2 and libgphoto2 (here stable version 2.5.14 is used, (Figuière and 

Niedermann, 2017)) by following the installation guide at 

https://github.com/gonzalo/gphoto2-updater. 

3. Connect the camera to the Raspberry Pi with the Nikon Coolpix L830 USB cable. 

4. Plug in and turn the camera on. 

5. Open a Terminal window, enter “gphoto2 --auto-detect” to detect the camera. 

6. Optionally, in the Terminal window, enter “gphoto2 --summary” to verify 

gphoto2 has correctly identified the Nikon Coolpix L830. 

7. In the Terminal window, enter “cd Desktop” to change directory to the desktop. 

8. Create a folder to store images on the Raspberry Pi desktop, and change the 

picPath directory in line 25 of camerastand.py to this folder (i.e. 

/home/pi/Desktop/folder1/) 

9. Replace user@remote-host:remote-directory in line 32 of camerastand.py to the 

camera stand operator’s username, the remote host name, and the directory in the 

remote host where the images will be stored (e.g. 

jdoe@serverx:/home/jdoe/camerastand_images). Make sure that an SSH keygen 

has been generated (see Appendix 1) that will allow the Raspberry Pi to push data 

to the remote host. 

 

Raspberry Pi camera stand operation protocol: 

1. Turn the Raspberry Pi and camera on. 

2. Open a Terminal window.  
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3. Change directory to Desktop (type “cd Desktop”). 

4. In the Terminal, use the command “python 

/home/pi/Desktop/apps-phenotyping/appendix.3.camerastand/camerastand.py 

filename” then press enter to acquire and transfer an image, where “filename” 

should be replaced by an appropriate filename for the current picture (e.g. python 

/home/pi/Desktop/apps-phenotyping/appendix.3.camerastand/camerastand.py 

speciesx_plant1_treatment1_rep1). 

Additional Notes: 

● The camera stand allows camera height to be adjusted. We recommend including 

a size marker in the images to normalize object area during image analysis. We 

often use a 1.27 cm diameter Tough-Spot (Research Products International, 

Mount Prospect, Illinois, USA).  

● For seed image background, we draw the corners of a box on a white piece of 

paper or cardboard. We then place color cards (white, gray and black; DGK Color 

Tools Optek Premium Reference White Balance Card), and the size marker 

(Tough-Spot; Research Products International, Mount Prospect, Illinois, USA) 

just outside the box. This ensures that objects to be imaged (e.g. seeds) are within 

the field of view. 

● Images are saved on the Raspberry Pi SD card, as well as in the remote host, in 

the directories indicated in lines 25 and 32 of camerastand.py, respectively. 

Alternatively, the rsync command can be changed so that data is deleted from the 

Raspberry Pi once data transfer has been confirmed. To change the rsync 
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command so that the image is deleted from the Raspberry Pi once it has been 

transferred to the remote host, change line 32 in the ‘camerastand.py’ script to 

“sp.call(["rsync", "-uhrtP", picPath, "user@remote-host:remote-directory", 

"--remove-source-files"])” 
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Appendix 4. Raspberry Pi Multi-Image Octagon. 

Parts list: 

Quantity Description 

1 Laptop or another computer, such as a Raspberry Pi with a monitor, 

keyboard, and mouse 

4 Initialized Raspberry Pi computers (see Appendix 1) 

4 Raspberry Pi cases (e.g. SmartiPi brand LEGO-compatible cases for 

Raspberry Pi model B case and camera module; SmartiCase LLC, 

Philadelphia PA, USA) 

4 Raspberry Pi cameras (RGB) 

4 Heavy-duty velcro 

1 Power strip 

1 White translucent tarp for light diffusion 

1 HDMI Monitor, HDMI cable, keyboard, and mouse (for initialization 

process) 

 

Aluminum 80/20 Inc. frame parts and paneling for Octagon: 

ID Quantity 80/20 Part Number Description 
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A 2 40-4002 113.919 cm width x 4 cm height x 4 cm 

length T-slotted bar, with 7040 

counterbore in B left and 7040 counterbore 

in B right. 

B 2 40-4002 113.284 cm width x 4 cm height x 4 cm 

length T-slotted bar. Bi-slot adjacent 

T-slotted extrusion. 

C 8 40-4003 47.1856 cm width x 4 cm height x 4 cm 

length T-slotted bar, with 7044 

counterbore in A left and 7044 counterbore 

in A right. 

D 2 40-4003 30.3911 cm width x 4 cm height x 4 cm 

length T-slotted bar, with 7044 

counterbore in C left; and 7044 

counterbore in C right.  

E 8 40-4004 47.1856 cm width x 4 cm height x 4 cm 

length T-slotted bar, with 7044 

counterbore in C left and 7044 counterbore 

in C right. 

F 1 40-4080-UL 121.92 cm width x 4 cm height x 8 cm 
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length T-slotted bar, with 7044 

counterbore in E left, 7044 counterbore in 

R left, 7044 counterbore in R right and 

7044 counterbore in E right. 

G 8 40-4094 121.92 cm width x 4 cm height, 40 series 

T-slotted bar with 45 ° outside radius 

H 1 40-2061 Medium plastic door handle, black 

I 2 40-2085 40 S aluminum hinge 

J 1 65-2053 Deadbolt latch with top latch 

K 44 40-3897 Anchor fastener assembly with M8 bolt 

and standard T-nut 

L 8 75-3525 M8 x 1.2 cm black button head socket cap 

screw (BHSCS) with slide-in economy 

T-nut 

M 2 75-3634 M8 x 1.8 cm black socket head cap screw 

(SHCS) with slide-in economy T-nut 

N 4 40-2426 40 S flange mount caster base plate 

O 12 13-8520 M8 x 2 cm SHCS blue 
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P 8 40-3915 15 S M8 roll-in T-nut with ball spring 

Q 4 65-2323 12.7 cm flange mount swivel caster with 

brake 

R 2 2616 129.921 cm width x 64.9605 cm height x 

0.3 cm length white PVC panel 

S 7 65-2616 116.119 cm width x 49.3856 cm height x 

0.3 cm length white PVC panel 

T 1 65-2616 107.483 cm width x 32.5911 cm height x 

0.3 cm length white PVC panel 
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Optional parts: 

Quantity Description 

1 Barcode scanner (e.g. Socket Mobile 7Qi) 

 

Additional set-up for 4 Raspberry Pis for multi-image octagon: 

1. Install Raspberry Pi camera on Raspberry Pi (see Appendix 1). 
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2. Plug each of the Raspberry Pis into the monitor, keyboard, mouse, and USB 

power. Following Appendix 1, set hostnames of the four Raspberry Pis to: 1) 

octagon; 2) sideview1; 3) sideview2; and 4) topviewpi 

3. For the Raspberry Pi with the hostname ‘octagon’, set up passwordless SSH 

(Appendix 1) so that the ‘octagon’ Raspberry Pi can trigger scripts on other 

Raspberry Pis commands. Briefly: 

a. open a Terminal window, and use the command “ssh-copy-id -i 

~/.ssh/id_rsa.pub user@remote-host” for the three other Raspberry Pis (e.g 

ssh-copy-id -i ~/.ssh/id_rsa.pub pi@sideview1; ssh-copy-id -i 

~/.ssh/id_rsa.pub pi@sideview2; ssh-copy-id -i ~/.ssh/id_rsa.pub 

pi@topviewpi) 

b. If asked “The authenticity of host 'remote-host' can't be established. Are 

you sure you want to continue connecting?” enter “yes”. 

c. Enter the Raspberry Pi password when prompted (the password is 

“raspberry” if not altered from default). 

4. Open a Terminal window, and enter “cd Desktop” to change directory to the 

desktop. Create folders on each of the Raspberry Pis to temporarily store images 

on the Raspberry Pi desktop. To facilitate identification of image source, each 

folder can be given the respective Raspberry Pi’s hostname (octagon, sideview1, 

sideview2, topviewpi).  

5. For each of the Raspberry Pis, open the piPicture.py script located at 

Desktop>apps-phenotyping>appendix.4.octagon.multi-image>piPicture.py. 
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Change the picPath directory in line 37 of piPicture.py to the folder created in 

step 4 (e.g. /home/pi/Desktop/octagon). 

6. Similarly, for each of the Raspberry Pis, open the syncScript.sh script located at 

Desktop>apps-phenotyping>appendix.4.octagon.multi-image>syncScript.sh. 

Change the rsync local directory in line 1 of syncScript.sh to the folder created in 

step 4 (e.g. /home/pi/Desktop/octagon). 

7. Change the rsync remote directory in line 1 of syncScript.sh to the directory in the 

remote host where the images will be stored (e.g. 

jdoe@serverx:/home/jdoe/octagon_images). Make sure that the specified 

directory exists on the remote host. Remember that passwordless SSH (Appendix 

1) must be set up to allow the Raspberry Pi to push data to the remote host. 

8. Change ‘<hostname>’ in line 7 of syncScript.sh to the respective Raspberry Pi 

hostname. 

9. Lines 44 to 58 of piPicture.py script set camera parameters using the Picamera 

package (Jones, 2017). These may need to be adjusted depending on the lighting 

in the octagon chamber, please refer to the Picamera documentation 

(http://picamera.readthedocs.io/en/release-1.10/recipes1.html) for tips on 

adjusting parameters. It is important to keep in mind that the Picamera package 

allows the user to change the camera resolution. If the resolution is set 

inappropriately for the camera module that is being used (too small, for example) 

image quality can be reduced.  
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10. Mount the four Raspberry Pis to the octagon using heavy duty velcro and plug 

them into a power strip. 

 

Raspberry Pi multi-image octagon operation protocol: 

1. Turn all Raspberry Pis on. If desired, put the tarp over the top of the octagon for 

light diffusion. 

2. From your computer (laptop is most convenient), SSH into the octagon Raspberry 

Pi. Type “ssh pi@octagon” in a Terminal window, and enter the password 

“raspberry”. 

3. To begin imaging, in the Terminal type “bash 

/home/pi/Desktop/apps-phenotyping/appendix.4.octagon.multi-image/sshScript.sh

”. 

4. When prompted “Please scan barcode or type quit to quit”, type plant id (e.g. 

speciesx_plant1_treatment1_rep1), or scan a plant id in with a barcode scanner. 

5. Place the potted plant into a mounted pot within the octagon (see additional notes) 

6. Press enter to acquire images, then wait until prompt “Please scan barcode or type 

quit to quit” appears again. 

7. Repeat steps 6 and 7 to acquire another image, or enter “quit” to quit acquiring 

images. 

8. To shut down sideview1, sideview2, and topviewpi Raspberry Pis, in the 

Terminal type “bash 

/home/pi/Desktop/apps-phenotyping/appendix.4.octagon.multi-image/shutdown_a
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ll_pi.sh”. To shut down the octagon Raspberry Pi, in the terminal window type 

“sudo halt”. 

Additional Notes: 

● Affixing a pot to the center of the octagon chamber, with color cards affixed to 

the outside of the stationary pot (white, black and gray; DGK Color Tools, New 

York, New York, USA) allows a potted plant to be quickly placed in the same 

relative position to other images.  
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FIGURE LEGENDS 

Figure 1. Low-cost Raspberry Pi phenotyping platforms. A) Raspberry Pi time-lapse imaging in 

a growth chamber. B) Raspberry Pi camera stand. C) Raspberry Pi multi-image octagon. 

 

Figure 2. Examples of data collected from Raspberry Pi phenotyping platforms that have 

plant/seed tissue segmented using open-source open-development software PlantCV (Fahlgren et 

al., 2015). A) PlantCV-segmented image of a flat of Arabidopsis acquired from Raspberry Pi 

time-lapse imaging protocol in a growth chamber. B) PlantCV-segmented image of quinoa seeds 

acquired from Raspberry Pi camera stand. C) Example side- and top-view images of quinoa 

plants acquired from Raspberry Pi multi-image octagon. Plant convex hull, width, and length, 

have been identified with PlantCV and are denoted in red.  
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FIGURES  AND  LEGENDS 

Figure 1. Low-cost Raspberry  Pi phenotyping  platforms.  A) Raspberry  Pi time-lapse  imaging  in 

a growth  chamber.  B) Raspberry  Pi camera  stand.  C) Raspberry  Pi multi-image  octagon. 
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Figure 2. Examples  of  data collected  from Raspberry  Pi phenotyping  platforms  that have 

plant/seed  tissue segmented  using open-source open-development  software PlantCV  (Fahlgren  et 

al.,  2015) . A) PlantCV-segmented  image of  a flat of  Arabidopsis  acquired  from Raspberry  Pi 

time-lapse  imaging  protocol in  a growth  chamber.  B) PlantCV-segmented  image of  quinoa seeds 

acquired  from Raspberry  Pi camera  stand.  C) Example side-  and  top-view  images  of  quinoa 

plants  acquired  from Raspberry  Pi multi-image  octagon.  Plant convex  hull,  width,  and  length, 

have been  identified  with PlantCV  and  are denoted  in  red.  

 

 

 



Appendix C

Online documentation: Configuration for

imaging plants with RaspiCams using

raspistill, cron, and rsync

The following text accompanies the configuration files I used for time-lapse imaging, as described

in chapter 3. They provide additional details beyond the preceding appendix. The files have

been archived at Zenodo.org (DOI 10.5281/zenodo.594707) and are also available at https:

//github.com/jshoyer/raspi-topdown-plant-imaging-12x

C.1 Purpose

The scripts and cron tables here are presented as an example of a minimal imaging configuration

and as research documentation. It is very unlikely that you will be able to use them directly without

substantial modification. In particular, the hostnames for the twelve RasPis (e.g. ch129-pos01)

are hardcoded into the files. We suggest reading the cron table files and shell scripts. If they seem
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useful, modify them to serve your purpose (adjust hardcoded hostnames etc.) and then use them

to initiate photo capture with some moderate number of Pi/Camera rigs and (optionally) automate

transfer of the files to a remove server.

We use standard GNU/Linux utilities to keep things simple and easy to modify, in keeping with

the Raspberry Pi spirit. We encourage plant biologists to experiment with cron and rsync—they

are useful in a wide variety of situations! RaspiCam imaging is a great setting for developing and

practicing command line skills.

Copyright © 2017 Donald Danforth Plant Science Center. See LICENSE-MIT.

C.1.1 Links

Useful pages under RaspberryPi.org/documentation/:

• configuration/camera.md

• usage/camera/raspicam/time-lapse.md

• hardware/camera/README.md

• raspbian/applications/camera.md

We recommend examining examples of similar approaches:

• http://phenotiki.com – includes tools for configuration via a web browser.

• Ansible-based configuration for ~10-fold larger imaging setups:

1. https://github.com/calizarr/PhenoPiSight
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2. Simplified version for topdownRasPiCam imaging: https://github.com/maliagehan/

gehan-bramble

• Gigavision (code, docs) – works with both RasPiCams and DSLRs. Requires ansible,

OpenCV 3, and several python packages, including Flask.

These files here are used for acquiring data. For processing and analysis of the resulting image

files you may want to use PlantCV or one of the many other available software packages listed at

plant-image-analysis.org

See TAIR page for some information on A. thaliana, including a time-lapse video of rosette growth.

C.2 cron tables

C.2.1 Image capture schedule

We install a cron table on eachRasPi. There are twovariants of this cron table: photograph-every-5min.

crontab and photograph-with-flips-every-5min.crontab. These are nearly identical but

the second one does horizontal and vertical flips (-vf -hf flags) because five of our Pi/Camera rigs

are oriented 180° opposite the others. Files get names like ‘2017-02-10_0300_ch129-pos01.jpg’.

where ‘0300’ is the photo capture time, 0300 UTC, which is 10 PM local time, the last capture of

the day. ‘ch129-pos01’ is the hostname (chamber 129 position #1, above field-of-view #1). We

generally image plants under short-day conditions (8 hours of light, from 8:30 AM to 4:30 PM),

with capture throughout the light phase. We also include configuration files (cron tables) long

days (16-hour, with light from 6 AM to 10 PM local time) and and medium (12-hour) days in

subdirectories. See also notes below.
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C.2.2 Lights and wifi

Both cron table variants turn off wireless connectivity (ifdown wlan0) for most of the night, to

avoid exposing plants to blue LED light from the USB WiPi dongles we use. (This will not be an

issue if you use the built-in wifi module on a model 3 Raspberry Pi board.) We additionally turn

off the green and red indicator LEDs on each RasPi board by editing the /boot/config.txt file on

each RasPi:

dtparam=act_led_trigger=none

dtparam=act_led_activelow=off

dtparam=pwr_led_trigger=none

dtparam=pwr_led_activelow=off

With these parameters set, light from the red LED effectively becomes an indicator that a RasPi

has crashed (but is still drawing sufficient power to function), as opposed to simply suffering from

network connectivity problems.

We similarly use a pair of minimal cron tables to similarly avoid exposing plants to blue light in

between imaging experiments (1, 2).

C.2.3 Image transfer

File transfer is scheduledwith a separate cron table installed on a server: pull-images-from-raspis.

crontab. Syncing photos to a cluster makes them easier to process/monitor, and lets us collect

more photos than will fit on a single SD card.
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C.2.4 Helper scripts

Two shell scripts are provided to streamline starting and ending image capture on all twelve RasPis

at once.

• The first script is used at the start of an experiment (or after adjusting a cron table). This

file copies the appropriate cron table onto each of the twelve RasPis (if necessary) and then

installs it. The script is run without arguments: ./install-twelve-crontabs

• A second script (install-twelve-mini-crontabs) is used at the end of an experiment

(see below) to install the minimal cron tables described above and thereby suspend image

capture.

The next section describes use of a third helper script for taking and viewing a single snapshot.

C.3 Procedures

C.3.1 Starting imaging

1. Take snapshots to convince yourself that plants are positioned appropriately. This is an

excellent time to photograph color standard cards, to enable later assessment of sensor drift.

To take a snapshot with the RasPi in position #1, run the script like so:

./take-one-picture-and-pull-it-with-rsync /path/on/cluster/ 1

• You could run this command (and the next one) from your local computer, but things

will be easier if you run them on a remote server.
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2. Install the correct cron table on each RasPi (as mentioned above) to start regular image

capture: ./install-twelve-crontabs

3. Double check the server cron table. Is the correct (hardcoded) destination path on the server

specified?

4. Install the server cron table to pull photos: crontab pull-images-from-raspis.crontab

C.3.2 Ending imaging

1. Stop image capture; reinstall cron tables that just monitor lights and cycle wifi on and off:

./install-twelve-mini-crontabs

2. If desired, photograph color standard cards, as you remove plants or shortly thereafter, as

above: ./take-one-picture-and-pull-it-with-rsync /path/on/cluster/ 1

C.3.3 Pitfalls

1. Watch out for color drift and consider including standards in your field of view. By default,

raspistill automatically picks exposure and color balance settings based on a five second

video preview. This has been sufficient for our purposes and provides a starting point for

testing other settings, but it means that the white balance and capture conditions can vary

over the course of an experiment. In particular, the blue rubber mesh often placed over soil

for image-based phenotyping experiments (see e.g. Junker et al. 2014, Figures 3 and 4) can

cause color balance "overcompensation", resulting in an orange tinge. This tinge steadily

recedes over the course of an experiment (as plant leaves cover the mesh), which further

complicates image processing.
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• We embed raw Bayer data into JPEG file exif metadata (raspistill -r flag) to enable

post-processing, but only for the first and last capture of the day.

• Lots of room for improvement here!

2. The clock built into our growth chamber control board does not automatically recalibrate

itself by synchronizing with a server, and so the clock steadily drifts forward, at a rate of ~3

seconds per day (~1 minute every three weeks). Unless the clock is manually corrected, the

light schedule will eventually shift far enough that the first photo of the day will be captured

before "sunrise".

• The most reliable way to deal with this issue is to manually calibrate the chamber clock

shortly before the start of every new experiment. Adjusting the clock in our growth

chamber requires shutting it down, which in turn necessitates turning off each RasPi.

(Our twelve RasPis use a GFCI-protected auxiliary power outlet built into the growth

chamber, via an extension cord threaded through a port built into the exterior of the

chamber.) We use a shell script to shut down our twelve RasPis, and they turn back on

automatically after power is restored.

3. We have used our local timezone in the past, but now recommend using Universal Coordi-

nated Time (UTC) to avoid potential for confusion and/or loss of data caused by the start and

end of daylight saving time. If you are not using UTC (controlled via raspi-config inter-

nationalization settings), the start and end of daylight saving time may trigger an automatic

clock shift on each RasPi, which can result in the photo capture schedule being offset by one

hour relative to the light cycle.

• We generally image from 9:30 AM to 5:30 PM local time during DST (CDT is UTC

-0500) and 8:30 PM to 4:30 PM for the rest of the year (CST is UTC -0600), These are

both equivalent to 1430 to 2230 UTC.
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• Some growth chamber controllers automatically shift the light cycle at the start and

end of daylight saving time. This shift is arguably bad, because re-entrainment of

plant circadian clocks to the new light schedule can alter growth. Shifting the start of

zeitgeber (ZT) time also makes the experiment more difficult to describe.

• Switching the timezone on a RasPi takes effect without requiring a reboot, but this will

not alter cron scheduling until you sudo service cron restart

4. Make sure your RasPis are drawing sufficient power! The camera boards draw extra power

during photo capture, which can cause one ormoreRasPis sharing an inadequate power supply

to crash. Seehttps://www.raspberrypi.org/documentation/hardware/raspberrypi/

power/README.md

C.3.4 Transfer schedule

Edge cases (especially the start and end of the day) create some potential for error when editing

cron tables The server cron table is perhaps the most complicated, because of the way I manually

staggered file transfers (to try to reduce wifi signal interference across the collection of RasPis).

Fortunately, most errors in the server cron table will merely cause error messages/overnight sync

delays—errors should not cause loss of data.

The following table of UTC times may help you interpret the server cron table for 16-hour days.

First photo capture each day is at 1105 UTC, and the last photo capture each day is at 0300 UTC.
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pull-images-from-raspis.crontab


First pull Last pull

1 11:06 03:06

2 11:08 03:08

3 11:11 03:11

4 11:13 03:13

5 11:16 03:16

8 11:18 03:16

9 11:21 03:21

10 11:23 03:23

11 11:26 03:26

12 11:28 03:28

6 11:31 03:01

7 11:33 03:03

C.3.5 Monitoring

If desired, one can add an email address (MAILTO variable) at the top of the server cron table.

This contact address will then receive an email every time an rsync transfer fails. This measure is

noisy: a failed transfer is usually caused by transient wifi interference, and merely delays transfer

of the relevant files until the next cycle. Multiple failed transfers can indicate that a RasPi has

crashed, especially when initial connection was the step that failed. (Interrupted transfers are a

lagging indicator, because rsync processes persist for quite a while before they "give up.")

We additionally use a Ganglia dashboard for monitoring. See http://ganglia.info
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C.4 Plans

Researchers at the Danforth Center will likely continue using these scripts for imaging experiments.

We plan to share any improvements we make, but it is also possible that we will supplant this code

with something else entirely. To reiterate: we make these files public primarily as a learning aid

and as documentation for related research papers.

Questions, feedback, and contributions are welcome via GitHub, Bitbucket, or GitLab.com.
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Appendix D

PlantCV v2: Image analysis software for

high-throughput plant phenotyping

D.1 Preface

In the course of the work described in chapter 3, I used and contributed to the PlantCV software

package developed at the Danforth Center. The manuscript that follows describes the second major

release of this package; the preprint version is available at https://peerj.com/preprints/

3225. The initial submission received a “minor revisions required” editorial decision at PeerJ and

has been resubmitted. The first version of PlantCV was described by Fahlgren, Feldman, Gehan et

al. [234], and one section from that paper is particularly relevant:

We developed the open-source and open-development PlantCV image analysis plat-
form to emphasize the following features: flexible user-defined analysis workflows;
parallelizable image processing for fast throughput; and a scripting language imple-
mentation that lowers the barrier to community contributions that extend functionality.
It was important to move away from commercial software for greater control and un-
derstanding of the image processing and trait extraction algorithms used to process
the data, as well as the freedom to expand analyses at will. While some users may
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prefer graphical user interfaces for software, script-based programs are easier to de-
velop and the precise workflows are detailed directly in the scripts themselves, enabling
reproducible research.

While PlantCV does not have a graphical user interface per se, it has extensive facilities for

inspecting output (i.e. image files written to disk), both for building geometric intuition and for

testing whether image analysis pipelines are working as desired. (“debugging”). As described in

the paper that follows, the second release enables integration with the Jupyter Notebook framework

[395], both for accelerated prototyping (via rapid feedback for the user) and for in-line integration

of prose, code, and output “chunks”.

Surprisingly, many papers on plant image analysis are not accompanied by any source code; this

includes papers that purport to describe a general-purpose extensible tool [396]. Personally, I have

found that this has made these papers much more difficult to understand than necessary. Including

a license that fits the Open Source Definition with such code would seem to be a simple thing, but is

neglected surprisingly often [396], which can create serious intellectual property issues, particulary

for companies seeking to use public code.

My main contributions to the computational work described here were in testing, writing docu-

mentation, and sharing data. Some of the new functions I have written or adapted have not yet been

integrated into the “main line” of PlantCV development. Full details can be seen in the history

of the source tree (maintained at https://github.com/danforthcenter/plantcv) and on

relevant Issue and Pull Request discussion pages. I provided the photo used for Figures 2 and 3, but

did not directly make any of the figures. I also participated in outlining and revising the manuscript.
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ABSTRACT 

Systems for collecting image data in conjunction with computer vision techniques are a powerful 

tool for increasing the temporal resolution at which plant phenotypes can be measured non-

destructively. Computational tools that are flexible and extendable are needed to address the 

diversity of plant phenotyping problems. We previously described the Plant Computer Vision 

(PlantCV) software package, which is an image processing toolkit for plant phenotyping 

analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and 

repurposable tools for plant image analysis that are open-source and community-developed. Here 

we present the details and rationale for major developments in the second major release of 

PlantCV. In addition to overall improvements in the organization of the PlantCV project, new 

functionality includes a set of new image processing and normalization tools, support for 

analyzing images that include multiple plants, leaf segmentation, landmark identification tools 

for morphometrics, and modules for machine learning.  



INTRODUCTION 

All approaches for improving crops eventually require measurement of traits (phenotyping) 

(Fahlgren, Gehan & Baxter, 2015). However, manual plant measurements are time-consuming 

and often require destruction of plant materials in the process, which prevents measurement of 

traits for a single plant through time. Consequently, plant phenotyping is widely recognized as a 

major bottleneck in crop improvement (Furbank & Tester, 2011). Targeted plant phenotypes can 

range from measurement of gene expression, to flowering time, to grain yield; therefore, the 

software and hardware tools used are often diverse. Here, we focus on the software tools 

required to nondestructively measure plant traits through images. This is a challenging area of 

research because the visual definition of phenotypes vary depending on the target species. For 

example, identification of petals can be used to measure flowering time, but petal color can vary 

by species. Therefore, software tools needed to process high-throughput image data need to be 

flexible and amenable to community input. 

 

The term ‘high-throughput’ is relative to the difficulty to collect the measurement. The scale that 

might be considered high-throughput for root phenotyping might not be the same for shoot 

phenotyping, which can be technically easier to collect depending on the trait and species. Here 

we define high-throughput as thousands or hundreds of thousands of images per dataset. PlantCV 

is an open-source, open-development suite of analysis tools capable of analyzing high-

throughput image-based phenotyping data (Fahlgren et al., 2015). Version 1.0 of PlantCV 

(PlantCV v1.0) was released in 2015 alongside the introduction of the Bellwether Phenotyping 

Facility at the Donald Danforth Plant Science Center (Fahlgren et al., 2015). PlantCV v1.0 was 

envisioned as a base suite of tools that the community could build upon, which lead to several 



design decisions aimed at encouraging participation. First, GitHub was used as a platform to 

organize the community by integrating version control, code distribution, documentation, issue 

tracking, and communication between users and contributors (Perez-Riverol et al., 2016). 

Second, PlantCV was written in Python, a high-level language widely used for both teaching and 

bioinformatics (Mangalam, 2002; Dudley & Butte, 2009), to facilitate contribution from both 

biologists and computer scientists. Additionally, the use of Python allows extension of PlantCV 

with the many tools available from the Python scientific computing community (Oliphant, 2007; 

Millman & Aivazis, 2011). Third, a focus on modular development fosters code reuse and makes 

it easier to integrate PlantCV with new or existing systems. Finally, the use of a permissive, 

open-source license (MIT) allows PlantCV to be used, reused, or repurposed with limited 

restrictions, for both academic and proprietary applications. The focus of the paper associated 

with the original release of PlantCV v1.0 (Fahlgren et al., 2015) was not the structure and 

function of PlantCV for image analysis, but rather an example of the type of biological question 

that can be answered with high-throughput phenotyping hardware and software platforms. Since 

the release of PlantCV v1.0 major improvements have been made to increase the flexibility, 

usability, and functionality of PlantCV, while maintaining all of the functionality in v1.0. Here 

we document the structure of PlantCV v2 along with examples that demonstrate new 

functionality.  

 

MATERIALS & METHODS 

The latest version or a specific release of PlantCV can be cloned from GitHub. The release for 

this paper is v2.1. Scripts, notebooks, SQL schema, and simple input data associated with the 

figures and results presented in this paper are available on GitHub at 



https://github.com/danforthcenter/plantcv-v2-paper. Project-specific GitHub repositories are kept 

separate from the PlantCV software repository because their purpose is to make project-specific 

analyses available for reproducibility, while the main PlantCV software repository contains 

general purpose image analysis modules, utilities, and documentation.  

 

Images of Arabidopsis thaliana were captured with a Raspberry Pi computer and camera in a 

Conviron growth chamber. Additional details about the imaging set-up are provided in a 

companion paper (Tovar et al., 2017). Images of Setaria viridis (A10) and Setaria italica (B100) 

are from publicly available datasets that are available at 

http://plantcv.danforthcenter.org/pages/data.html (Fahlgren et al., 2015; Feldman et al., 2017). 

Images of wheat (Triticum aestivum L.) infected with wheat stem rust (Puccinia graminis f. sp. 

tritici) were acquired with a flatbed scanner.  

 

Image analysis was done in PlantCV using Python v2.7.5, OpenCV v2.4.5 (Bradski, 2000), 

NumPy v1.12.1 (van der Walt, Colbert & Varoquaux, 2011), Matplotlib v2.0.2 (Hunter, 2007), 

SciPy v0.19.0 (Jones, Oliphant & Peterson), Pandas v0.20.1 (McKinney & Others, 2010), scikit-

image v0.13.0 (van der Walt et al., 2014), and Jupyter Notebook v4.2.1 (Kluyver et al., 2016). 

Statistical analysis and data visualization was done using R v3.3 (R Core Team, 2017) and 

RStudio v1.0 (RStudio Team, 2016). Graphs were produced using Matplotlib v2.0.2 (Hunter, 

2007) and ggplot2 v2.2.1 (Wickham, 2009). 

 



RESULTS AND DISCUSSION 

The following are details on improvements to the structure, usability, and functionality of 

PlantCV since the v1.0 release. Further documentation for using PlantCV can be found at the 

project website (http://plantcv.danforthcenter.org/).  

 

Organization of the PlantCV project 

PlantCV is a collection of modular Python functions, which are reusable units of Python code 

with defined inputs and outputs (Fig. 1A). PlantCV functions can be assembled into simple 

sequential or branching/merging pipelines. A pipeline can be as long or as short as it needs to be, 

allowing for maximum flexibility for users using different imaging systems and analyzing 

features of seed, shoot, root, or other plant systems. Suggestions on how to approach image 

analysis with PlantCV, in addition to specific tutorials, are available through online 

documentation (http://plantcv.readthedocs.io/en/latest/analysis_approach/). Each function has a 

debugging option to allow users to view and evaluate the output of a single step and adjust 

parameters as necessary. A PlantCV pipeline is written by the user as a Python script. Once a 

satisfactory pipeline script is developed, the PlantCV parallelization script (‘plantcv-

pipeline.py’) can be used to deploy the pipeline across a large set of image data (Fig. 1A). The 

parallelization script also functions to manage data by consolidating measurements and metadata 

into an SQLite database (Fig. 1B). In terms of speed, the user is only limited by the complexity 

of the pipeline and the number of available processors. 

 

The modular structure of the PlantCV package makes it easier for members of the community to 

become contributors. Contributors to PlantCV submit bug reports, develop new functions and 



unit tests, or extend existing functionality or documentation. Core PlantCV developers do not 

filter additions of new functions in terms of perceived impact or number of users but do check 

that new functions follow the PlantCV contribution guide (see the sections on contributing in the 

online documentation). PlantCV contributors are asked to follow the PEP8 Python style guide 

(https://www.python.org/dev/peps/pep-0008/). Additions or revisions to the PlantCV code or 

documentation are submitted for review using pull requests via GitHub. The pull request 

mechanism is essential to protect against merge conflicts, which are sections of code that have 

been edited by multiple users in potentially incompatible ways.  

 

In PlantCV v2, several service integrations were added to automate common tasks during pull 

requests and updates to the code repository. A continuous integration framework using the Travis 

CI service (https://travis-ci.org/) was added so that software builds and unit tests can be run 

automatically upon pull requests and other software updates. Continuous integration provides a 

safeguard against code updates that break existing functionality by providing a report that shows 

which tests passed or failed for each build (Wilson et al., 2014). The effectiveness of continuous 

integration depends on having thorough unit test coverage of the PlantCV code base. Unit test 

coverage of the PlantCV Python package is monitored through the Coveralls service 

(https://coveralls.io/), which provides a report on which parts of the code are covered by existing 

unit tests. In addition to the code, the PlantCV documentation was enhanced to use a continuous 

documentation framework using the Read the Docs service (https://readthedocs.org/), which 

allows documentation to be updated automatically and versioned in parallel with updates to 

PlantCV. The documentation was updated to cover all functions in the PlantCV library, tutorials 

on building pipelines and using specialized tools (e.g. multi-plant analysis and machine learning 



tools), a frequently asked questions section, and several guides such as installation, Jupyter 

notebooks, and instructions for contributors. 

 

Improved usability 

PlantCV v1.0 required pipeline development to be done using the command line, where debug 

mode is used to write intermediate image files to disk for each step. In command-line mode, an 

entire pipeline script must be executed, even if only a single step is being evaluated. To improve 

the pipeline and function development process in PlantCV v2, the debugging system was 

updated to allow for seamless integration with the Juptyer Notebook system (http://jupyter.org/) 

(Kluyver et al., 2016). Jupyter compatibility allows users to immediately visualize output and to 

iteratively rerun single steps in a multi-step PlantCV pipeline, which makes parameters like 

thresholds or regions of interest much easier to adjust. Once a pipeline is developed in Jupyter, it 

can then be converted into a Python script that is compatible with PlantCV parallelization (see 

online documentation for detailed instructions on conversion; 

http://plantcv.readthedocs.io/en/latest/jupyter/). Because of the web-based interface and useful 

export options, Jupyter notebooks are also a convenient method of sharing pipelines with 

collaborators, or in publications, and teaching others to use PlantCV.  

 

PlantCV was initially created to analyze data generated by the Bellwether Phenotyping Facility 

at the Donald Danforth Plant Science Center. Several updates to PlantCV v2 addressed the need 

to increase the flexibility of PlantCV to analyze data from other plant phenotyping systems. The 

PlantCV SQLite database schema was simplified so that new tables do not need to be added for 

every new camera system (Fig. 1B). The full database schema is available on GitHub (see 



Materials and Methods) and in PlantCV documentation. New utilities were added to PlantCV v2 

that allow data to be quickly and efficiently exported from the SQLite database into text files that 

are compatible with R (R Core Team, 2017) for further statistical analysis and data visualization. 

 

Because standards for data collection and management for plant phenotyping data are still being 

developed (Pauli et al., 2016), image metadata is often stored in a variety of formats on different 

systems. A common approach is to include metadata within image filenames, but because there 

is a lack of file naming standards, it can be difficult to robustly capture this data automatically. In 

PlantCV v2, a new metadata processing system was added to allow for flexibility in file naming 

both within and between experiments and systems. The PlantCV metadata processing system is 

part of the parallelization tool and works by using a user-provided template to process filenames. 

User-provided templates are built using a restricted vocabulary so that metadata can be collected 

in a standardized way. The vocabulary used can be easily updated to accommodate future 

community standards. 

 

Performance 

In PlantCV v1.0, image analysis parallelization was achieved using a Perl-based multi-threading 

system that was not thread-safe, which occasionally resulted in issues with data output that had 

to be manually corrected. Additionally, the use of the Python package Matplotlib (Hunter, 2007) 

in PlantCV v1.0 limited the number of usable processors to 10-12. For PlantCV v2, the 

parallelization framework was completely rewritten in Python using a multiprocessing 

framework, and the use of Matplotlib was updated to mitigate the issues and processor 

constraints in v1.0. The output of image files mainly used to assess image segmentation quality 



is now optional, which should generally increase computing performance. Furthermore, to 

decentralize the computational resources needed for parallel processing and prepare for future 

integration with high-throughput computing resources that use file-in-file-out operations, results 

from PlantCV pipeline scripts (one per image) are now written out to temporary files that are 

aggregated by the parallelization tool after all image processing is complete. 

 

New Functionality 

PlantCV v2 has added new functions for image white balancing, auto-thresholding, size marker 

normalization, multi-plant detection, combined image processing, watershed segmentation, 

landmarking, and a trainable naive Bayes classifier for image segmentation (machine learning). 

The following are short descriptions and sample applications of new PlantCV functions. 

 

White balancing 

If images are captured in a greenhouse, growth chamber, or other situation where light intensity 

is variable, image segmentation based on global thresholding of image intensity values can 

become variable. To help mitigate image inconsistencies that might impair the ability to use a 

single global threshold and thus a single pipeline over a set of images, a white balance function 

was developed. If a white color standard is visible within the image, the user can specify a region 

of interest. If a specific area is not selected then the whole image is used. Each channel of the 

image is scaled relative to the reference maximum.  

 



Auto-thresholding functions 

An alternative approach to using a fixed, global threshold for image segmentation is to use an 

auto-thresholding technique that either automatically selects an optimal global threshold value or 

introduces a variable threshold for different regions in an image. Triangle, Otsu, mean, and 

Gaussian auto-thresholding functions were added to PlantCV to further improve object detection 

when image light sources are variable. The ‘triangle_auto_threshold’ function implements the 

method developed by Zack et al. 1977 (Zack, Rogers & Latp, 1977). The triangle threshold 

method uses the histogram of pixel intensities to differentiate the target object (plant) from 

background by generating a line from the peak pixel intensity (Duarte, 2015) to the last pixel 

value and then finding the point (i.e., the threshold value) on the histogram that maximizes 

distance to that line. In addition to producing the thresholded image in debug mode, the 

‘triangle_auto_threshold’ function outputs the calculated threshold value and the histogram of 

pixel intensities that was used to calculate the threshold. In cases where the auto-threshold value 

does not adequately separate the target object from background, the threshold can be adjusted by 

modifying the stepwise input. Modifying the stepwise input shifts the distance calculation along 

the x-axis, which subsequently calculates a new threshold value to use.  

 

The Otsu, mean, and Gaussian threshold functions in PlantCV are implemented using the 

OpenCV library (Bradski, 2000). Otsu’s binarization [‘otsu_auto_threshold;’ (Otsu, 1979)] is 

best implemented when a grayscale image histogram has two peaks since the Otsu method 

selects a threshold value that minimizes the weighted within-class variance. In other words, the 

Otsu method identifies the value between two peaks where the variances of both classes are 

minimized. Mean and Gaussian thresholding are executed by indicating the desired threshold 



type in the function ‘adaptive_threshold.’ The mean and Gaussian methods will produce a 

variable local threshold where the threshold value of a pixel location depends on the intensities 

of neighboring pixels. For mean adaptive thresholding, the threshold of a pixel location is 

calculated by the mean of surrounding pixel values; for Gaussian adaptive thresholding, the 

threshold value of a pixel is the weighted sum of neighborhood values using a Gaussian window 

(Gonzalez & Woods, 2002; Kaehler & Bradski, 2016). 

 

Gaussian blur 

In addition to the ‘median_blur’ function included in PlantCV v1.0, we have added a Gaussian 

blur smoothing function to reduce image noise and detail. Both the median and Gaussian blur 

methods are implemented using the OpenCV library (Bradski, 2000) and are typically used to 

smooth a grayscale image or a binary image that has been previously thresholded. Image 

blurring, while reducing detail, can help remove or reduce signal from background noise (e.g. 

edges in imaging cabinets), generally with minimal impact on larger structures of interest. 

Utilizing a rectangular neighborhood around a center pixel, ‘median_blur’ replaces each pixel in 

the neighborhood with the median value. Alternatively, ‘gaussian_blur’ determines the value of 

the central pixel by multiplying its and neighboring pixel values by a normalized kernel and then 

averaging these weighted values (i.e., image convolution) (Kaehler & Bradski, 2016). The extent 

of image blurring can be modified by increasing (for greater blur) or decreasing the kernel size 

(which takes only odd numbers; commonly, 3x3) or by changing the standard deviation in the X 

and/or Y directions.  

 



Size marker normalization 

Images that are not collected from a consistent vantage point require one or more size markers as 

references for absolute or relative scale. The size marker function allows users to either detect a 

size marker within a user-defined region of interest or to select a specific region of interest to use 

as the size marker. The pixel area of the marker is returned as a value that can be used to 

normalize measurements to the same scale. For this module to function correctly we assume that 

the size marker stays in frame, is unobstructed, and is relatively consistent in position throughout 

a dataset, though some movement is allowed as long as the marker remains within the defined 

marker region of interest.  

 

Multi-plant detection 

There is growing interest among the PlantCV user community to process images with multiple 

plants grown in flats or trays, but PlantCV v1.0 was built to processes images containing single 

plants. The major challenge with analyzing multiple plants in an image is successfully 

identifying individual whole plants as distinct objects. Leaves or other plant parts can sometimes 

be detected as distinct contours from the rest of the plant and need to be grouped with other 

contours from the same plant to correctly form a single plant/target object. While creating 

multiple regions of interest (ROI) to demarcate each area containing an individual plant/target is 

an option, we developed two modules, ‘cluster_contours’ and ‘cluster_contours_split_img,’ that 

allow contours to be clustered and then parsed into multiple images without having to manually 

create multiple ROIs (Fig. 2).  

 



The ‘cluster_contours’ function takes as input: an image, the contours that need to be clustered, a 

number of rows, and a number of columns. Total image size is detected, and the rows and 

columns create a grid to serve as approximate ROIs to cluster the contours. The number of rows 

and columns approximate the desired size of the grid cells. There does not need to be an object in 

each of the grid cells. Several functions were also added to aid the clustering function. The 

‘rotate_img’ and ‘shift_img’ functions allow the image to be adjusted so objects are better 

aligned to a grid pattern.  

 

After objects are clustered, the ‘cluster_contour_split_img’ function splits images into the 

individual grid cells and outputs each as a new image so that there is a single clustered object per 

image. If there is no clustered object in a grid cell, no image is outputted. With the 

‘cluster_contour_split_img’ function, a text file with genotype names can be included to add 

them to image names. The ‘cluster_contour_split_img’ function also checks that there are the 

same number of names as objects. If there is a conflict in the number of names and objects, a 

warning is printed and a correction is attempted. Alternatively, if the file option is not used, all of 

the object groups are labeled by position. Once images are split, they can be processed like single 

plant images using additional PlantCV tools. See the online documentation for an example multi-

plant imaging pipeline (http://plantcv.readthedocs.io/en/latest/multi-plant_tutorial/).  

 

The current method for multi-plant identification in PlantCV is flexible but relies on a grid 

arrangement of plants, which is common for controlled-environment-grown plants. Future 

releases of PlantCV may incorporate additional strategies for detection and identification of 



plants, such as arrangement-independent K-means clustering approaches (Minervini, 

Abdelsamea & Tsaftaris, 2014).  

 

Combined image processing 

The Bellwether Phenotyping Facility has both RGB visible light (VIS) and near-infrared (NIR) 

cameras, and images are captured ~1 minute apart (Fahlgren et al., 2015). Compared to VIS 

images, NIR images are grayscale with much less contrast between object and background. It can 

be difficult to segment plant material from NIR images directly, even with edge detection steps. 

Therefore, several functions were added to allow the plant binary mask that results from VIS 

image processing pipelines to be resized and used as a mask for NIR images. Combining VIS 

and NIR camera pipelines also has the added benefit of decreasing the number of steps necessary 

to process images from both camera types, thus increasing image processing throughput. The 

‘get_nir’ function identifies the path of the NIR image that matches VIS image. The ‘get_nir’ 

function requires that the image naming scheme is consistent and that the matching image is in 

the same image directory. The ‘resize’ function then resizes the VIS plant mask in both the x and 

y directions to match the size of the NIR image. Resizing values are determined by measuring 

the same reference object in an example image taken from both VIS and NIR cameras (for 

example the width of the pot or pot carrier in each image). The ‘crop_position_mask’ function is 

then used to adjust the placement of the VIS mask over the NIR image and to crop/adjust the VIS 

mask so it is the same size as the NIR image. It is assumed that the pot position changes 

consistently between VIS and NIR image datasets. An example VIS/NIR dual pipeline to follow 

can be accessed online (http://plantcv.readthedocs.io/en/latest/vis_nir_tutorial/).  

 



Object count estimation with watershed segmentation 

While segmentation and analysis of whole plants in images provides useful information about 

plant size and growth, a more detailed understanding of plant growth and development can be 

obtained by measuring individual plant organs. However, fully automated segmentation of 

individual organs such as leaves remains a challenge, due to issues such as occlusion (Scharr et 

al., 2016). Multiple methods for leaf segmentation have been proposed (Scharr et al., 2016), and 

in PlantCV v2 we have implemented a watershed segmentation approach. The 

‘watershed_segmentation’ function can be used to estimate the number of leaves for plants 

where leaves are distinctly separate from other plant structures (e.g. A. thaliana leaves are 

separated by thin petioles; Fig. 3). The inputs required are an image, an object mask, and a 

minimum distance to separate object peaks. The function uses the input mask to calculate a 

Euclidean distance map (Liberti et al., 2014). Marker peaks calculated from the distance map 

that meet the minimum distance setting are used in a watershed segmentation algorithm (van der 

Walt et al., 2014) to segment and count the objects. Segmented objects are visualized in different 

colors, and the number of segmented objects is reported (Fig. 3). An example of how the 

watershed segmentation method was used to assess the effect of water deficit stress on the 

number of leaves of A. thaliana plants can be found in Acosta-Gamboa et al. 2017 (Acosta-

Gamboa et al., 2017).  

 

Landmarking functions for morphometrics 

To extend PlantCV beyond quantification of size-based morphometric features, we developed 

several landmarking functions. Landmarks are generally geometric points located along the 

contours of a shape that correspond to homologous biological features that can be compared 



between subjects (Bookstein, 1991). Typical examples of landmarks include eyes between 

human subjects or suture joins in a skull. For a growing plant, potential landmarks include the 

tips of leaves and pedicel and branch angles. When specified a priori, landmarks should be 

assigned to provide adequate coverage of the shape morphology across a single dimensional 

plane (Bookstein, 1991). Additionally, the identification of landmark points should be repeatable 

and reliable across subjects while not altering their topological positions relative to other 

landmark positions (Bookstein, 1991). Type I landmarks provide the strongest support for 

homology because they are defined by underlying biological features, but it is problematic to 

assign Type I landmarks a priori when analyzing high-throughput plant imagery. To address 

this, PlantCV v2 contains functions to identify anatomical landmarks based upon the 

mathematical properties of object contours (Type II) and non-anatomical pseudo-

landmarks/semilandmarks (Type III), as well as functions to rescale and analyze biologically 

relevant shape properties (Bookstein, 1991, 1997; Gunz, Mitteroecker & Bookstein, 2005; Gunz 

& Mitteroecker, 2013). 

  

The ‘acute’ function identifies Type II landmarks by implementing a pseudo-landmark 

identification algorithm that operates using a modified form of chain coding (Freeman, 1961). 

Unlike standard chain coding methods that attempt to capture the absolute shape of a contour, the 

acute method operates by measuring the angle between a pixel coordinate and two neighboring 

pixels on opposite sides of it that fall within a set distance, or window, along the length of the 

contour. The two neighboring points are used to calculate an angle score for the center pixel. 

When the angle score is calculated for each position along the length of a contour, clusters of 

acute points can be identified, which can be segmented out by applying an angle threshold. The 



middle position within each cluster of acute points is then identified for use as a pseudo-

landmark (Fig. 4A). The ability to subjectively adjust the window size used for generating angle 

scores also helps to tailor analyses for identifying points of interest that may differ in resolution. 

For example, an analysis of leaf data might utilize a larger window size to identify the tips of 

lobes whereas smaller window sizes would be able to capture more minute patterns such as 

individual leaf serrations. Further segmentation can also be done using the average pixel values 

output (pt_vals) for each pseudo-landmark, which estimates the mean pixel intensity within the 

convex hull of each acute region based on the binary mask used in the analysis. The average 

pixel value output allows for concave landmarks (e.g. leaf axils and grass ligules) and convex 

landmarks (e.g. leaf tips and apices) on a contour to be differentiated in downstream analyses. 

Additionally, PlantCV v2 includes the ‘acute_vertex’ function that uses the same chain code-

based pseudo-landmark identification algorithm used in the ‘acute’ function except that it uses an 

adjustable local search space criteria to reduce the number of angle calculations, which speeds up 

landmark identification. 

  

For Type III landmarks, the ‘x_axis_pseudolandmarks’ and ‘y_axis_pseudolandmarks’ functions 

identify homologous points along a single dimension of an object (x-axis or y-axis) based on 

equidistant point locations within an object contour. The plant object is divided up into twenty 

equidistant bins, and the minimum and maximum extent of the object along the axis and the 

centroid of the object within each bin is calculated. These sixty points located along each axis 

possess the properties of semi/pseudo-landmark points (an equal number of reference points that 

are approximately geometrically homologous between subjects to be compared) that approximate 

the contour and shape of the object (Fig. 4B). Such semi/pseudo-landmarking strategies have 



been utilized in cases where traditional homologous landmark points are difficult to assign or 

poorly represent the features of object shape (Bookstein, 1997; Gunz, Mitteroecker & Bookstein, 

2005; Gunz & Mitteroecker, 2013). 

  

Frequently, comparison of shape attributes requires rescaling of landmark points to eliminate the 

influence of size on the relative position of landmark points. The landmark functions in PlantCV 

output untransformed point values that can either be directly input into morphometric programs 

in R [shapes (Dryden & Mardia, 2016) or morpho (Schlager, Jefferis & Schlager, 2016)] or 

uniformly rescaled to a 0-1 coordinate system using the PlantCV ‘scale_features’ function. The 

location of landmark points can be used to examine multidimensional growth curves for a broad 

variety of study systems and tissue types and can be used to compare properties of plant shape 

throughout development or in response to differences in plant growth environment. An example 

of one such application is the ‘landmark_reference_pt_dist’ function. This function estimates the 

vertical, horizontal, Euclidean distance, and angle of landmark points from two landmarks 

(centroid of the plant object and centroid localized to the base of the plant). Preliminary evidence 

from a water limitation experiment performed using a Setaria recombinant inbred population 

indicates that vertical distance from rescaled leaf tip points identified by the ‘acute_vertex’ 

function to the centroid is decreased in response to water limitation and thus may provide a 

proximity measurement of plant turgor pressure (Fig. 4C and 4D). 

 

Two-class or multiclass naive Bayes classifier 

Pixel-level segmentation of images into two or more classes is not always straightforward using 

traditional image processing techniques. For example, two classes of features in an image may be 



visually distinct but similar enough in color that simple thresholding is not sufficient to separate 

the two groups. Furthermore, even with methods that adjust for inconsistencies between images 

(e.g. white balancing and auto-thresholding functions), inconsistent lighting conditions in a 

growth chamber, greenhouse, or field can still make bulk processing of images with a single 

workflow difficult. Methods that utilize machine learning techniques are a promising approach to 

tackle these and other phenotyping challenges (Minervini, Abdelsamea & Tsaftaris, 2014; Singh 

et al., 2016; Ubbens & Stavness, 2017; Atkinson et al., 2017; Pound et al., 2017). With PlantCV 

v2, we have started to integrate machine learning methods to detect features of interest (e.g. the 

plant), starting with a naive Bayes classifier (Abbasi & Fahlgren, 2016). The naive Bayes 

classifier can be trained using two different approaches for two-class or multiclass (two or more) 

segmentation problems. During the training phase using the ‘plantcv-train.py’ script, pixel RGB 

values for each input class are converted to the hue, saturation and value (HSV) color space. 

Kernel density estimation (KDE) is used to calculate a probability density function (PDF) from a 

vector of values for each HSV channel from each class. The output PDFs are used to 

parameterize the naive Bayes classifier function (‘naive_bayes_classifier’), which can be used to 

replace the thresholding steps in a PlantCV pipeline. The ‘naive_bayes_classifer’ function uses 

these PDFs to calculate the probability (using Bayes’ theorem) that a given pixel is in each class. 

The output of the ‘naive_bayes_classifier’ is a binary image for each class where the pixels are 

white if the probability the pixel was in the given class was highest of all classes and is black 

otherwise. A tutorial of how to implement naive Bayes plant detection into an image processing 

pipeline is online (http://plantcv.readthedocs.io/en/latest/machine_learning_tutorial/).  

 



For the two-class approach, the training dataset includes color images and corresponding binary 

masks where the background is black and the foreground (plant or other target object) is white. 

PlantCV can be used to generate binary masks for the training set using the standard image 

processing methods and the new ‘output_mask’ function. It is important for the training dataset 

to be representative of the larger dataset. For example, if there are large fluctuations in light 

intensity throughout the day or plant color throughout the experiment, the training dataset should 

try to cover the range of variation. A random sample of 10% of the foreground pixels and the 

same number background pixels are used to build the PDFs.  

 

To assess how well the two-class naive Bayes method identifies plant material in comparison to 

thresholding methods, we reanalyzed Setaria images (Fahlgren et al., 2015) using the naive 

Bayes classifier and compared the pixel area output to pipelines that utilize thresholding steps 

(Fig. 5). We used 99 training images (14 top view and 85 side view images) from a total of 6473 

images. We found that the plant pixel area calculated by naive Bayes was highly correlated with 

that calculated from pipelines that use thresholding for both side-view images (R2=0.99; Fig. 5A) 

and top-view images (R2=0.96; Fig. 5B). Naive Bayes segmentation enabled use of pipelines that 

were both simpler (fewer steps) and more flexible: five new scripts were sufficient for processing 

the dataset (five categories of photo data), whereas nine threshold-based pipeline scripts had 

previously been required. 

 

The multiclass naive Bayes approach requires a tab-delimited table for training where each 

column is a class (minimum two) and each cell is a comma-separated list of RGB pixel values 

from the column class. We currently use the Pixel Inspection Tool in ImageJ (Schneider, 



Rasband & Eliceiri, 2012) to collect samples of pixel RGB values used to generate the training 

text file. As noted above for the two-class approach, it is important to adequately capture the 

variation in the image dataset for each class when generating the training text file to improve 

pixel classification. If images are consistent, only one image needs to be sampled for generating 

the training table; however, if they vary, several images may be needed. For complex 

backgrounds (or non-targeted objects), several classes may be required to capture all of the 

variation. Once the training table is generated, it is input into the ‘plantcv-train.py’ script to 

generate PDFs for each class. As an example, we used images of wheat leaves infected with 

wheat rust to collect pixel samples from four classes: non-plant background, unaffected leaf 

tissue, rust pustule, and chlorotic leaf tissue, and then used the naive Bayes classifier to segment 

the images into each class simultaneously (Fig. 6). This method can likely be used for a variety 

of applications, such as identifying a plant under variable lighting conditions or quantifying 

specific areas of stress on a plant.  

 

In summary, the naive Bayes classifier offers several advantages over threshold-based 

segmentation: 1) two or more classes can be segmented simultaneously; 2) probabilistic 

segmentation can be more robust across images than fixed thresholds; and 3) classifier-based 

segmentation replaces multiple steps in threshold-based pipelines, reducing pipeline complexity. 

 

CONCLUSIONS 

The field of digital plant phenotyping is at an exciting stage of development where it is 

beginning to shift from a bottleneck to one that will have a positive impact on plant research, 

especially in agriculture. The Plant Image Analysis database currently lists over 150 tools that 



can be used for plant phenotyping [http://www.plant-image-analysis.org/; (Lobet, Draye & 

Périlleux, 2013)]. Despite the abundance of software packages, long-term sustainability of 

individual projects may become an issue due to the lack of incentives for maintaining 

bioinformatics software developed in academia (Lobet, 2017). In a survey of corresponding 

authors of plant image analysis tools by Lobet, 60% either said the tool was no longer being 

maintained or did not respond (Lobet, 2017). To develop PlantCV as a sustainable project we 

have adopted an open, community-based development framework using GitHub as a central 

service for the organization of developer activities and the dissemination of information to users. 

We encourage contribution to the project by posting bug reports and issues, developing or 

revising analysis methods, adding or updating unit tests, writing documentation, and posting 

ideas for new features. We aim to periodically publish updates, such as the work presented here, 

to highlight the work of contributors to the PlantCV project. 

 

There are several areas where we envision future PlantCV development. Standards and 

interoperability: Improved interoperability of PlantCV with data providers and downstream 

analysis tools will require adoption of community-based standards for data and metadata [e.g. 

Minimum Information About a Plant Phenotyping Experiment; (Ćwiek-Kupczyńska et al., 

2016)]. Improved interoperability will make it easier to develop standardized tools for statistical 

analysis of image processing results, both within the PlantCV project or with tools from other 

projects. New data sources: Handling and analysis of data from specialized cameras that 

measure three-dimensional structure or hyperspectral reflectance will require development or 

integration of additional methods into PlantCV. Machine learning: Our goal is to develop 

additional tools for machine learning and collection of training data. In some cases, where these 



methods can be implemented in a modular and reusable framework, they can be integrated 

directly into PlantCV. In other cases, PlantCV can be combined with new and existing tools. A 

recent example of this latter approach built on PlantCV, using its image preprocessing and 

segmentation functions alongside a modular framework for building convolutional neural 

networks (Ubbens & Stavness, 2017). As noted throughout, we see great potential for modular 

tools such as PlantCV and we welcome community feedback. 
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FIGURES 

 

Figure 1: Diagram of the components of PlantCV. 

A) PlantCV is an open-source, open-development suite of image analysis tools. PlantCV 

contains a library of modular Python functions that can be assembled into simple sequential or 

branching/merging processing pipelines. Image processing pipelines, which process single 

images (possibly containing multiple plants), can be deployed over large image sets using 

PlantCV parallelization, which outputs an SQLite database of both measurements and 

image/experimental metadata. B) Overview of the structure of the SQLite database. 

 





Figure 2: Analysis of images containing multiple plants. 

New functions have been added to PlantCV v2 that enable individual plants from images 

containing multiple plants to be analyzed. The ‘cluster_contours’ function clusters contour 

objects using a flexible grid arrangement (approximate rows and columns defined by a user). The 

top image, produced by ‘cluster_contours’ in debug mode, highlights plants by their cluster 

group with unique colors on a sequential scale. The ‘cluster_contours_split_img’ function creates 

a new image for each cluster group. The resulting images of individual plants can be processed 

by standard PlantCV methods. In the bottom image, the ‘cluster_contours_split_img’ function 

was used to split the full image into individual plants. The shape of each plant was then analyzed 

with ‘analyze_objects’ and printed on a common image background.  



 

Figure 3: Leaf segmentation by a distance-based watershed transformation. 

The watershed segmentation function can be used to segment and estimate the number of objects 

in an image. For the three example images, the watershed segmentation function was used to 

estimate the number of leaves for Arabidopsis thaliana (estimated leaf count for top: 13, middle: 

14, and bottom: 8). Images shown are the output from the ‘watershed_segmentation’ function 

(left) and the segmented plants (right).  



 

Figure 4: Landmark-based analysis of plant shape in PlantCV. 

A) Automatic identification of leaf tip landmarks using the ‘acute’ and ‘acute_vertex’ functions 

(blue dots). B) Geometrically homologous semi/pseudo-landmarks across both the x- and y-axes. 

Semi/pseudo-landmarks identified by scanning the x-axis are denoted by light blue (top side of 

the contour), brown (bottom side of the contour), and light orange (centroid location of 

horizontal bins) dots. Semi/pseudo-landmarks identified by scanning the y-axis are denoted by 

dark blue (left side of the contour), pink (right side of the contour), and dark orange (centroid 



location of vertical bins) dots. The plant centroid is plotted larger in red. C) A representation of 

the rescaled plant landmarks identified in panel (A). White points correspond to the leaf tips. The 

orange point is the location of the plant centroid. The blue point is the location of the plant 

centroid where the plant emerges from the soil. Red lines are the vertical distance from leaf tip 

points relative to the plant centroid. D) Analysis of the average scaled vertical distance from each 

leaf tip to the centroid diverges in response to water limitation.  

 

 

 

  



Figure 5: Plant segmentation using a naive Bayes classifier. 

Correlation between plant area (pixels) detected using thresholding pipelines (Fahlgren et al., 

2015) on the x-axis compared to plant area detected using a trained naive Bayes classifier on the 

y-axis. A) Side-view images. B) Top-view images. 

 



Figure 6: Simultaneous segmentation of four feature groups using the naive Bayes 

classifier. 

An example of the naive Bayes classifier used to assign pixels into 4 classes: background, 

unaffected plant tissue, chlorotic tissue, and wheat stem rust pustules. (Top) Probability density 

functions (PDFs) from the ‘plantcv-train.py’ script that show hue, saturation, and value color 

channel distributions of four classes estimated from training data. (Bottom) Example of a 

classified image with the original image (left) and merged pseudocolored image (right) with 

pixels classified by the ‘naive_bayes_classifier’ as background (black), unaffected leaf tissue 

(green), chlorotic leaf tissue (blue), and pustules (red). 
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