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The ability to create distinct cell types is fundamental for the development of multicellular 

organisms. Since all cells in an organism contain the same genes, cellular diversity is achieved 

through the transcriptional network where transcription factors (TFs) interacts with cis-

regulatory elements, leading to the selective transcription of different sets of genes. To better 

understand the functions of TFs and regulatory elements underlying cell fate decisions, we 

developed methods that are able to record their activities throughout cellular differentiation. In 

Chapter 2, we developed a degradation domain based induction system for “Calling Cards” 

method which maps the binding sites of TFs using piggybac transposons. The induction “Calling 

Cards” method offers an alternative to chromatin immunoprecipitation (ChIP) methods and 

furthermore has the ability to record TF binding at different time periods of the development. In 

Chapter 3, we applied the “Calling Card” method to study the role of master regulatory Brd4-

bound enhancers for sex differences in glioblastoma. We revealed a set of sex-specific regulatory 

genes and networks, which are indicative of sex-specific transcriptional programs regulated by 
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Brd4-bound enhancers. Finally, to record the activity of regulatory elements or enhancers, in 

Chapter 4, we developed a CRE recombinase-mediated method for high-throughput functional 

identification of active enhancers at different time periods of the development, named as 

Developmental Enhancer Sequencing (DevEn-seq). We demonstrated that DevEn-seq is able to 

detect enhancers more efficiently than regular reporter methods and trace enhancer activities 

throughout cellular differentiation without being disturbed by the gene silencing effect caused by 

lentiviral sequences. With an in vitro neural differentiation protocol, we identified two neural 

progenitor-specific enhancers near HB9 and Olig2 genes respectively. In summary, this 

dissertation contributes to the field of developmental biology by providing useful methods for 

recording TF binding events and enhancer activities throughout development. 
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Chapter 1 
Introduction 

1.1 Development of an inducible transposon “Calling Card” method 

1.1.1 The transposon “Calling Card” method can record transcription factor binding. 

Vertebrate development is transcriptionally regulated, thus considerable effort has been 

expended on understanding the gene expression networks that control this process1. However, 

mapping these transcriptional networks has proven difficult. Methods like ChIP-Chip or ChIP-

Seq can analyze transcription factor binding in homogenous populations of cells but are unable 

to record transcription factor binding events along different cellular lineages. This make it 

impossible to correlate transcription factor binding events in progenitor cells to the final fates of 

their progeny, complicating efforts to understand the mechanisms by which cell fates are 

determined.  

We have developed transposon “Calling Cards”, a method designed to record transcription 

factor binding during development2. The central idea behind the Calling Card method is to attach 

the transposase of a transposon to a transcription factor (TF), thereby bestowing on the TF the 

ability to direct insertion of the transposon into the genome near to where it binds.  The 

transposon is a “Calling Card” that permanently marks the transcription factor’s visit to a 

particular genomic location. By harvesting the transposon Calling Cards along with their 

flanking genomic DNA, it is possible to obtain a genome-wide map of transcription factor 

binding.  
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1.1.2 An “inducible” Calling Card method is useful in studying TF bindings underlying cell 

fate decisions. 

In developmental biology, the decision of into what terminal cell fate a progenitor cell 

differentiates is a critical step in creating the architecture of multicellular organisms. These 

choices are often directed by some key TFs known as master regulators of gene regulation3, 4. 

These TFs may display disparate functions at different times during neural development5, 6. To 

use transposon “Calling Card” method to understand these key TFs’ bindings underlying cell fate 

decisions in development, it is important to control the timing of TF-directed transposition events 

to those early in the differentiation process rather than the mature states. To achieve this goal, we 

need to create an inducible piggybac (PB) transposon system on which the CC method is built so 

that we are able to turn on and off the transposition events for TF recording. An inducible PB 

transposon system can be made at two molecular levels: transcriptional and post-translational 

levels. Because we want the transposon system to react promptly to an inducer, the molecular 

control at post-translational level is more favored.  

 

1.1.3 Degradation domains allow a rapid post-translational induction system.  

Molecular tools that regulate protein stability at a post-translational level in live cells 

include protein degron systems induced by auxin, light, or destabilizing domains (DDs)7-10. Here, 

we focus on the DD-based degron system, which involves genetically fusing the protein of 

interest to a small unstable protein domain. This DD fusion protein is recognized by the cellular 

protein quality control machinery, which then degrades the entire fusion protein. However, in the 

presence of a DD-specific small molecule, the DD assumes a folded state and becomes stable, 

allowing the target protein to perform its regular biochemical function11. 
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Two versions of DD induction systems were developed that control target protein levels in 

a rapid, reversible and tunable fashion9, 10. The first engineered DD is based on a human FK506-

rapamycin-binding protein (FKBP) with 107 amino acid residues. Point mutations in FKBP 

(F36V and L106P) confer instability to fusion partners, which can be rescued by the cell-

permeable high-affinity small molecule, Shield-19. The second DD is engineered from an 

Escherichia coli dihydrofolate reductase (DHFR) protein with 159 amino acid residues. 

Similarly, a few key mutations confer instability to DHFR, which can be rescued by a highly 

permeable small molecule, Trimethoprim (TMP)10. These two induction systems have been 

demonstrated to function in a variety of contexts, including mammalian cell cultures, live mice, 

viral infections, and in pathogens like Plasmodium and Toxoplasma9, 10 12-15. However, both 

FKBP and DHFR DDs display high levels of background in the absence of any molecule 

indcuer15. This basal level of expression is sometimes sufficient for the target fusion protein to 

perform its regular biochemical function and thereby precludes the observation of any loss-of-

function phenotype15. The double architecture for DDs has recently been shown to minimize the 

background expression levels15, but a systematic exploration should further expand the uses of 

these powerful induction systems. 

 

1.1.4 Degradation domains are utilized to develop an inducible transposon “Calling Card” 

method. 

We sought to develop a PB transposon induction system for “Calling Card” method that 

provides a tightly regulated transposase enzyme that displays a large difference in activity 

between the induced and un-induced state, that, when induced, deposits transposons with an 

efficiency equal to that of the native protein, that is highly active across a wide variety of cell 
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types, and that is induced with a small molecule that has minimal effects on general cellular 

functions. To do so, we tagged PB transposase with two different destabilized domain (DD) 

proteins, FK506- and rapamycin binding protein (FKBP)9 and dihydrofolate reductase (DHFR)10, 

and compared these to the ERT2 based induction system16 in four different cell lines. To identify 

the optimal transposon induction system for “Calling Card” method, we systematically 

characterized, in four cell lines, 15 different PB transposase fusion proteins representing three 

different induction systems. We found that the FKBP-based system achieved the broadest 

dynamic range of induction across four cell lines. Remarkably, in the presence of chemical 

inducer, this system had transposition efficiencies that were almost as high (~95%) as the “wild-

type” PB transposon. We also investigated the effects of the inducer molecules on differentiation 

and found that Shld1 does not affect ESC development. Taken together, the FKBP-based PB 

transposon induction system is selected for “Calling Cards” method. This work was described in 

chapter 2.  

 

1.2 Application of the “Calling Card” method to study the role of Brd4-bound 

enhancers for sex differences in glioblastoma  

1.2.1 Sex-dimorphism in glioblastoma is a cell-intrinsic property.  

The sexual dimorphism observed in glioblastoma (GBM) is thought to be driven largely by 

cell-intrinsic factors. This conclusion is supported by two lines of evidence. First, pediatric brain 

cancers display the same sexual dimorphism in incidence as is observed in adult brain cancers. In 

these instances, the patients are pre-pubescent, so males and females have similar hormonal 

profiles17, 18. Second, the Rubin lab has recapitulated the observed sex-disparity in a cell culture 

model of GBM.  In this system, male NF1 null astrocytes expressing a dominant negative form 
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of p53 (NF1-/-;DNp53) exhibit increased tumorigenesis and cell proliferation relative to female 

NF1-/-;DNp53 astrocytes, independent of hormonal exposure19. In other words, when the male 

transgenic astrocytes are implanted into female hosts, the increase in tumor size and growth is 

still greater than female transgenic astrocytes implanted into male hosts. These two lines of 

evidence support the hypothesis that the sexual dimorphism in GBM occurrence is a cell intrinsic 

property. 

 

1.2.2 Epigenetic regulatory mechanism may play a key role in establishing sex differences 

in GBM. 

Since sex differences in GBM are cell intrinsic, epigenetic regulatory mechanisms may be 

a key mediator of these differences20, 21. Evidence of sex specific epigenetic effects in the brain 

can be found in the bed nucleus of the stria terminalis (BNST), which is known to have sex-

dependent differences in structure22. Histone deacetylase (HDAC) inhibitors applied to the 

BNST of male mice result in female-like volume and cell number, and suggests that histone 

marks play a role in sexually dimorphic cell growth and apoptosis23. Though epigenetic 

regulation of cancer states have been studied24, 25, their role in GBM sex-disparity is unknown.  

 

1.2.3 Epigenetic reader Brd4 establishes cell identity and regulates oncogenes.   

One mediator of cell identity and disease state is the epigenetic reader BRD4, a protein 

from the BET family of chromatin regulators that bind acetylated histones via its 

bromodomains26. BRD4 activity is abolished when these domains are blocked by drugs such as 

JQ127. BRD4 binding to acetylated histones mediates recruitment of transcriptional activators 

and promotes gene expression independent of common transcriptional recruiters such as 
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pTEFb26, making it a key regular in gene transcription28. BRD4 is also known to be one of the 

few chromatin regulators that are present during cell division29, which is consistent with its 

established role in promoting cellular proliferation. Interestingly, BRD4 has also been shown to 

acetylate H3K122, a mark which destabilizes the nucleosome and is correlated with active 

transcription of surrounding genes30. This correlates with BRD4’s known role in maintaining cell 

proliferation in rapidly differentiating cells31, and may be a key mechanism for maintaining the 

proliferative “stem-like” cancer cells.  

BRD4 also has been shown to promote tumorigenesis in multiple myeloma (MM) cell line 

where BRD4 regulates the expression of specific oncogenes such as c-MYC. JQ1 treatment of 

MM cell lines results in a global decrease in BRD4 enhancer binding32, and a subsequent 

decrease in gene expression. Global decrease in BRD4 binding results in a decrease in oncogene 

expression in human GBM cell lines as well, and demonstrates BRD4’s role as a regulator of 

oncogenic potential32.  

 

1.2.4 The “Calling Card” method is used to decipher the Brd4-bound enhancers.   

BRD4s regulation of oncogenic potential gives insight into the role of BRD4 in GBM. In 

addition, we have experimentally demonstrated that JQ1 has sex-specific effects on 

clonogenicity and tumorigenesis, in which males exhibit a decrease in these traits while females 

exhibit no effect or an increase in these traits. RVX208, a drug with a higher BRD2 affinity than 

a BRD4 affinity, does not exhibit such drastic effects. Therefore, we hypothesized that BRD4 is 

a mediator of the increased clonogenicity in males and used transposon “Calling Cards” method 

to identify the BRD4-bound enhancers in both male and female GMB cells.  
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Integration of Brd4 Calling Cards, H3K27ac ChIP-seq and RNA-seq data in GBM cells 

revealed a set of sex-specific regulatory genes and networks. Male-specific JQ1-sensitive 

targetable genes demonstrated functional enrichment for neoplasm metastasis, tumor 

angiogenesis, integrin signaling pathway, and DNA-repair-deficiency disorders. Female-specific 

JQ1-sensitive targetable genes showed an enrichment in pathways involved in semaphorin 

signaling, chromosome aberrations, glioblastoma, regulation of transcription, and glucose 

metabolism disorders. These results are indicative of sex-specific transcriptional programs 

regulated by Brd4-bound enhancers. This work is described in chapter 3. 

 

1.3 Development of a high-throughput functional identification of enhancers 

using a CRE recombinase mediated reporter assay 

1.3.1 Enhancer and super enhancer play a fundamental role in cellular differentiation.  

Enhancers are a class of noncoding regulatory DNA sequences that can activate 

transcription independently of their location, distance or orientation with respect to the promoters 

of the genes they control33, 34. Their activity is frequently tissue-specific or cell type-specific35-37. 

Hundreds of thousands of candidate enhancers have been annotated in the human genome so far, 

compromising at least 12% of the total DNA sequences38, 39. A majority of these sequences 

display chromatin accessibility or characteristic patterns of histone modifications in a cell type-

specific fashion, supporting their roles in mediating cell type-specific gene expression programs. 

Variations at enhancer sites, either single-nucleotide variants or copy-number variants, are 

known to be directly associated with a variety of human diseases40, 41. In mice, individual 

deletions of enhancers have been shown to considerably alter development42-45. Further, the 
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enhancer sequences are enriched in transcription factor-binding motifs, providing clues to the 

lineage-specific transcription factors that work at these sequences46. 

Among the large number of candidate enhancers predicted in the human and mouse 

genomes, a small fraction of them drew special attention. These sequences, referred to as super-

enhancers, are dense clusters of enhancers and are found in virtually every mammalian cell and 

tissue type examined47. They are bound by an extraordinary amount of transcription factors and 

cofactors and are typically associated with high levels of transcription activities in specific cell 

types. Found particularly enriched at cell identity genes, super-enhancers are regarded as the key 

control elements of lineage specification. 

 

1.3.2 Current methods have challenges for high-throughput identification of cell-specific 

enhancers in development. 

DNase I hypersensitivity assay led to the discovery of numerous mammalian enhancers, 

such as the beta-globin locus control region (LCR)48 critical for the developmental control of 

beta-globin genes in mammals34, 49. This approach has undergone several iterations from the 

laborious Southern blot analysis49 to the high-throughput microarray 50 and the ultrahigh-

throughput DNA-sequencing analysis that has been now broadly applied to hundreds of cell 

types46, 51. The latest iteration of this assay is the use of a genetically engineered TN5 transpose, 

instead of DNase I, in a highly streamlined experimental protocol called ATAC-seq (assay for 

transposase-accessible chromatin with high-throughput sequencing)52. ATAC-seq is especially 

amendable to very small cell numbers and even single cells53, 54. However, DNase I 

hypersensitivity is not unique to enhancers. Other cis regulatory elements such as promoters and 
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insulators also show this property55. Therefore, just the presence of DNase I hypersensitivity 

signal alone is not sufficient to distinguish these different classes of cis regulatory elements. 

With the development of ChIP-seq to map transcription factor’s binding sites and 

chromatin modification patterns in the genome56, 57, it was possible to show that promoters, 

enhancers, and insulators are differentially occupied by transcription factors and are associated 

with distinct chromatin modification patterns58, 59. This allowed genome-wide determination of 

candidate enhancers. For instance, binding sites of p300, a coactivator protein and histone 

acetyltransferase that acts at enhancers, led to annotation of several thousand enhancers in 

embryonic brain and limbs in the mouse60. Mapping of DNA occupancy of transcription factors 

such as Sox2, Oct4, and Nanog also provided the first enhancer map in the human embryonic 

stem cells61, 62.With the increased understanding of the role of histone modification processes in 

nucleosome dynamics and chromatin organization, it was natural to examine the chromatin 

modification patterns in the genome since different classes of cis regulatory elements may recruit 

different chromatin remodeling proteins that generate distinct patterns of histone modifications. 

This hypothesis was supported by the observation that enhancers are associated with high levels 

of H3K4me1 and low levels of H3K4me3, while the opposite is true for promoters63. The finding 

led to the development of chromatin signature-based strategy for mapping enhancers, and 

identification of such DNA in both mouse and human genomes64, 65. 

Despite these major advances in identifying enhancers, a number of important questions 

remain. What are the biological functions of the annotated enhancers? How do they contribute to 

cell type-specific gene expression programs? The lack of comprehensive, functionally validated 

enhancer data sets for most tissues and cell types has prohibited the systematic exploration of 

these questions. 
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1.3.3 The CRE-mediated reporter assay allows a high-throughput functional identification 

of cell specific enhancers in development. 

To overcome the challenges mentioned above, we developed a CRE recombinase-mediated 

method for the functional identification of active enhancers at different time periods of the 

development, named as Developmental Enhancer Sequencing (DevEn-seq). DNA test fragments 

containing putative enhancers are linked to an inducible CRE recombinase and then are 

integrated into genome by lentiviruses. If the enhancer is active in a cell, CRE recombinase will 

be expressed and activate RFP reporter and permanently generate red cells in itself and its 

progeny. ES cell libraries can be differentiated in vitro before sorting and sequencing. We 

demonstrated that DevEn-seq is able to detect enhancers more efficiently than regular reporter 

methods and record enhancer activities throughout cellular differentiation without being 

disturbed by gene silencing effect caused by lentiviral sequences. Coupled with high-throughput 

sequencing, DevEn-seq enables a high throughput method for functional identification and 

tracking of enhancer activities. This work is described in chapter 4.  
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Chapter 2 
An optimized, broadly applicable piggyBac 
transposon induction system 
 

Published in Nucleic Acids Research. (2017) 

2.1 Abstract 

The piggyBac (PB) transposon has been used in a number of biological applications. The 

insertion of PB transposons into the genome can disrupt genes or regulatory regions, impacting 

cellular function, so for many experiments it is important that PB transposition is tightly 

controlled. Here, we systematically characterize three methods for the post-translational control 

of the PB transposon in four cell lines. We investigated fusions of the PB transposase with ERT2 

and two degradation domains (FKBP-DD, DHFR-DD), in multiple orientations, and determined 

(i) the fold-induction achieved, (ii) the absolute transposition efficiency of the activated construct 

and (iii) the effects of two inducer molecules on cellular transcription and function. We found 

that the FKBP-DD confers the PB transposase with a higher transposition activity and better 

dynamic range than can be achieved with the other systems. In addition, we found that the 

FKBP-DD regulates transposon activity in a reversible and dose-dependent manner. Finally, we 

showed that Shld1, the chemical inducer of FKBP-DD, does not interfere with stem cell 

differentiation, whereas tamoxifen has significant effects. We believe the FKBP-based PB 

transposon induction will be useful for transposon-mediated genome engineering, insertional 

mutagenesis and the genome-wide mapping of transcription factor binding. 
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2.2 Introduction 

Transposons are genetic elements that are able to mobilize throughout a host genome 

autonomously. Due to their mobility, DNA transposons and retrotransposons have been widely 

used as tools for generating mutation libraries and for delivering non-viral gene constructs into 

the genomes of a variety of organisms 66. The use of DNA transposons in mammalian genomes, 

however, was initially impeded by a lack of active transposable elements. The synthetic 

resurrection of Sleeping Beauty (SB), a Tc1/mariner-like transposable element of the salmanoid 

fish genome, initiated the development of transposon technologies for use in mammalian cells 67. 

Since then, several other transposon systems have been developed 68-70, including the piggyBac 

(PB) system, derived from the cabbage looper moth Trichoplusia ni 71.  This system is widely 

used because the PB transposon consistently exhibits high transposition efficiencies in different 

cell lines and organisms 72, can transpose cargos of up to 100 kb without a significant reduction 

in efficiency 73, mobilizes without leaving footprint mutations at the excision site, and is 

amenable to molecular engineering 16. In addition, the PB system is highly efficient for germ line 

insertional mutagenesis in mice and lacks overproduction inhibition 74. These unique 

characteristics make the piggyBac transposon an invaluable tool for a wide range of applications, 

including stable gene delivery 75, transgene excision 76, insertional mutagenesis 77, and the 

mapping of transcription factor (TF) binding in eukaryotic genomes 2, 78, 79. For many of these 

applications, the PB transposon is engineered to act as a gene trap that will disrupt genes when 

inserted into the genome 77, so it is useful to be able to tightly control PB transposition so that 

insertion only occurs during the proper experimental window, and not, for example, during the 

propagation of cell lines or mice. For other applications, such as the mapping of TF binding to 

genomic DNA by PB transposition 2, 78, 79, the constitutive activity of the PBase prevents the 
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determination of the precise timing of the binding events, a feature that is particularly useful 

when studying developmental processes. Therefore, a method for induction that can tightly 

regulate the temporal activity of the PB transposon system is desirable. Furthermore, post-

translational control is appealing because protein activity can be switched on or off considerably 

faster than is possible with transcriptional control schemes 9, 10. 

Prior to the work presented here, the only existing inducible PB transposon system that 

operated post-translationally utilized the mutated ligand-binding domain of the estrogen receptor 

(ERT2) 16.  The PBase-ERT2 fusion is constitutively expressed but is sequestered outside of the 

nucleus by the cytoplasmic heat shock protein 90 (HSP90), which binds the ERT2 domain (Fig 

2.1A). In the presence of a small molecule inducer (4-Hydroxy tamoxifen; 4OHT), HSP90 

binding is abolished and the PBase-ERT2 fusion rapidly relocates to the nucleus where it directs 

transposition. The PBase-ERT2 fusion works well in several contexts [14], but our early 

experiences with this system revealed that dynamic range of induction varies widely between 

different cell types, possibly due to differences in HSP90 levels, which is not constant across cell 

types 80-83. We further found that ERT2-PBase fusions are not highly active when induced 

(relative to the unfused transposase, see results). Finally, we found that the chemical inducer 

4OHT inhibited the in vitro differentiation of mouse embryonic stem cells, an observation 

consistent with similar reports that 4OHT adversely affects neurogenesis 84, myelinogenesis 84, 

myometrial differentiation 85, and sexual maturation 86. 

In light of these observations, we sought to develop a PB transposon induction system that 

provides a tightly regulated transposase enzyme that displays a large difference in activity 

between the induced and un-induced state, that, when induced, deposits transposons with an 

efficiency equal to that of the native protein, that is highly active across a wide variety of cell 
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types, and that is induced with a small molecule that has minimal effects on general cellular 

functions. To do so, we characterized and optimized fusions of the PB transposase with two 

different destabilized domain (DD) proteins, FK506- and rapamycin binding protein (FKBP) 9 

and dihydrofolate reductase (DHFR) 10, and compared these to the ERT2 based induction system 

16 in four different cell lines. Destabilized domains are small, inherently unstable proteins that 

bind small molecules and have been destabilized by mutation. When fused to PBase, the mutated 

domain unfolds and the fusion protein is degraded by the proteosome (Fig 2.1B).  However, if 

the cognate small molecule ligand is provided, the DD is stabilized and the PBase fusion protein 

is rescued from degradation and transposase activity is restored in a rapid, dose-dependent, and 

reversible manner. Unlike the ERT2-based system where induction is mediated by a specific 

cytoplasmic protein HSP90, DD degradation is mediated by the ubiquitin-proteasome pathway, a 

common protein degradation mechanism that is active in all mammalian cells 11, 87.   

To identify the optimal configuration for each of the three induction systems, we 

investigated 15 different fusions of the PB transposase with FKBP, DHFR or ERT2, and 

measured the fold-induction of activity between the uninduced and induced states, the maximum 

transposition rate of the activated constructs as compared to the unfused piggyBac transposase, 

and the effects of two of the inducer molecules on cellular transcription and differentiation. 
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Figure 2.1 Schematic illustration of the ERT2 and DD based PB transposon induction 

systems. (A) For the ERT2-based PB transposon induction system, the PBase-ERT2 fusion is 

constitutively expressed but sequestered outside of the nucleus by HSP90, which binds the ERT2 

domain. In the presence of ER antagonist 4-OHT, HSP90 dissociates and the PBase-ERT2 fusion 

rapidly relocates to the nucleus where it directs transposition. (B) For the DD-based PB 

transposon induction system, a DD (either FKBP or DHFR) was fused to the PBase. The DD 

confers the instability to the fused protein such that the PBase fusion protein was constitutively 

degraded. However, binding of a small molecule ligand (Shld1 for FKBP; TMP for DHFR) to 

the DD prevents PBase from degradation and stabilizes it. 

 

2.3 Results 

2.3.1 Overview 

We evaluated and optimized three induction systems for their abilities to provide tight 

post-translation control over the PB transposon. We used one degradation domain (DD) derived 

from human FKBP12 (FKBP) 9 and another from Escherichia coli dihydrofolate reductase 
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(DHFR) 10 and compared these against the ERT2-based system in four different cell lines: human 

embryonic kidney cells (HEK293 and HEK293T), human colorectal cancer cells (HCT116), and 

RW4 mouse embryonic stem cells (ESCs). To obtain the most efficient induction possible, a 

number of different fusions constructs were investigated for each system (Fig 2.2). We fused DD 

or ERT2 induction domains in-frame at the N terminus, C terminus, or at both termini of the 

PBase.  For N terminal fusion proteins, an 18 amino acid linker sequence was included between 

the PBase and the induction domain 88. For the C terminal fusion protein, a 24 amino acid linker 

was added between the PBase and induction domain 16.  

In order to evaluate these different fusion proteins, we needed a simple, robust way to 

measure PB transposition. We adopted the commonly used method of co-transfecting cells with 

two plasmids: a ‘helper’ plasmid expressing the PBase and a ‘donor’ plasmid carrying the PB 

transposon with a drug-resistance marker 2. Once transfected into the host cells, the PBase 

mobilizes the transposon from the donor plasmid and integrates it into the host genome, 

conferring the cell with drug resistance. The number of drug-resistant colonies is closely 

correlated with the number of transposon integration events and is a key indicator of the 

efficiency of the PB transposon system 2, 16, 89.  We used this system to measure, for each post-

translational control system, the absolute transposition efficiency of the activated construct 

relative to the unfused piggyBac transposase, and the fold-induction achieved by each method in 

four different cell lines. We then went on to optimize the most promising system, characterize 

the dynamics of the temporal control achieved by the optimal system and evaluate the effects of 

two of the inducer molecules on cellular transcription and function. 
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Figure 2.2 Schematic illustration of the constructs used in this study. For the helper 

constructs: PBase, PiggyBac transposase; CMV, cytomegalovirus promoter; pA, bovine growth 

hormone polyA signal. FKBP, a destabilizing domain derived from FK506 and rapamycin 

binding protein. DHFR, a destabilizing domain derived from Escherichia coli dihydrofolate 

reductase; YFP, yellow fluorescent protein; ERT2, mutated ligand-binding domain of the 

estrogen receptor; Cumate, cumate operator (mutated cmv promoter). For the donor construct: 

5’TR-puro-3’TR contains the minimal PB terminal repeats (5’LR and 3’TR) flanking a PGK 

promoter driven puromycin resistance cassette; EF1, elongation factor 1 promoter; GFP, green 

fluorescent protein. 

 

Construct ID and name Construct structure 

1. FKBP-PBase 

2. PBase-FKBP 

3. FKBP-PBase-FKBP 

4. NLS-FKBP-PBase 

5. FKBP(2)-PBase 

6. FKBP(2)-PBase-FKBP 

10. DHFR-PBase 

11. PBase-DHFR 

12. DHFR-PBase-DHFR 

13. ERT2-PBase 

14. PBase-ERT2 

15. ERT2-PBase-ERT2 

7. FKBP-YFP-PBase 

16. 5’LTR-puro-3’LTR 

Category 

FKBP(DD)-based 
helper constructs 

DHFR(DD)-based 
helper constructs 

Donor constructs 

ERT2-based 
helper constructs 

17. PBSplitGFP 

8. YFP-PBase 

CMV� pA�DHFR                   PBase�

CMV� pA�DHFR                   PBase�

CMV� pA�DHFR                   PBase� DHFR 

                  PBase�          ERT2�CMV� pA�

          ERT2�CMV� pA�                  PBase�

          ERT2�CMV� pA�                  PBase�          ERT2�

   �5’ TR 3’ TR PGK$ puro)resistance$gene$

 EF1�  G  F� 5’ TR 3’ TR  P�

9. Cumate>iPBase 

CMV� pA�FKBP                   PBase�

CMV� pA�FKBP                   PBase�

CMV� pA�FKBP                   PBase� FKBP 

CMV� pA�FKBP                   PBase�FKBP 

CMV� pA�FKBP                   PBase�FKBP FKBP 

CMV� pA�FKBP                   PBase�YFP 

CMV� pA�FKBP                   PBase�NLS 

Cumate� FKBP                   PBase� FKBP 

CMV� pA�                  PBase�YFP 

RFP IRES�
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2.3.2 Evaluating the transposition efficiencies of inducible PBase 

We first measured the transposition activity of the induced PBase fusion proteins relative to that 

of unfused PBase. The transposition activity for each variant of helper constructs was obtained 

by transfecting the above-mentioned four cell lines with an equimolar ratio of donor and helper 

plasmids in the presence of chemical inducers (Shld1 for FKBP fusions; TMP for DHFR fusions; 

4OHT for ERT2 fusions). Typical images of stained colonies from negative control, inducer-

treated and non-treated co-transfected experiments, and positive control with unfused PBase are 

shown in Fig 2.3A. In our assays, the DD-based induction systems had significantly higher 

activities than the ERT2-based induction system in all cell lines. The highest PBase activity was 

observed for the constructs of FKBP-PBase and DHFR-PBase, both of which had activities that 

were ~95% of “wild-type” levels. In contrast, all of the ERT2 fusion proteins displayed activities 

less than 25% that of the unfused PBase. Thus, we conclude that, under inducing conditions, the 

FKBP and DHRF DDs have little effect on PBase transposition activity while ERT2 appears to 

significantly interfere with the PBase activity. For the two DD-based induction systems, the 

transposition activities between N and C terminally tagged PBase fusions are not significantly 

different (p>0.05). However, we observed a significant decrease of PBase activity when both 

termini were attached to either DD, suggesting that at least one terminus should be exposed for 

near-optimal PBase transposition activity.  



 19  
   

 

Figure 2.3 The performance of different helper constructs in DD and ERT2 based PB 

transposon induction systems. (A) Typical images of colony forming and staining assays to 

evaluate the transposition efficiency. The scale bar in the enlarged image equals 0.1mM. The 
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construct used is FKBP-PBase. a) Cells transfected with donor and helper backbone plasmids 

(yeast shuttle vector pRS314) were used to estimate the background or random insertions. b)  and 

c) Cells transfected with FKBP-PBase and donor plasmids either in the absence or presence of 

Shld1 were used to evaluate the transposition efficiency. d) Cells transfected with unfused PBase 

and donor plasmid were used to estimate the maximum transposition efficiency. (B) Induced 

PBase activity of different PBase fusions relative to wild-type PBase across four cell lines. The 

number of puromycin-resistant colonies formed from the cells transfected with both donor and 

helper plasmids was normalized to that with donor and helper backbone plasmids prior to any 

further calculations (background deduction). The induced transposition activity of an inducible 

domain (i.e. FKBP, DHFR or ERT2) fused PBase was calculated as the normalized number of 

colonies from the PBase fusion divided by that from “wild type” unfused PBase. Experiments 

were done in triplicates. (C) Non-induced PBase activity of different PBase fusions across four 

cell lines. Experimental conditions were the same as in B except that no drug was added for non-

induced samples. (D) Fold induction of different PBase fusions across four cell lines. The 

induction fold was calculated as the normalized number of colonies from chemical inducer 

treated samples in B divided by that from untreated samples in C. 

 

2.3.3 The FKBP DD system achieved the highest fold-change between induced and 

uninduced states 

We next sought to quantify how tightly the different induction systems regulated the PBase 

protein.  To do so, we again transfected the four cell lines with donor and helper plasmids; 

however, in this assay, we omitted the small-molecule inducers. We found that the DHFR-based 

PB induction system had a much higher background than did the FKBP and ERT2-based ones 
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(Fig 2.3C). To determine which PBase fusion protein provided the largest dynamic range, we 

used the corresponding induced and non-induced transposition rates to calculate the fold-

induction for each protein (Fig 2.3D). This analysis revealed that the FKBP-based induction 

system displayed a significantly higher fold-induction than both the DHFR and ERT2-based 

systems in all cell lines (p<0.05). The FKBP-PBase-FKBP fusion protein showed the highest 

fold-induction while the ERT2-PBase-ERT2 fusion protein showed the lowest. Taking fold-

induction and the absolute activity of induced PBase into consideration, the FKBP-based 

inducible PB transposon system outperformed its DHFR and ERT2-based counterparts.  

 

2.3.4 HSP90 levels correlate with the dynamic range of the ERT2 system 

The dynamic ranges of the ERT2 controlled PBase fusion proteins were highly variable 

across the different cell lines (Fig 2.3D).  For example, the PBase-ERT2 fusion displayed a 12-

fold change in transposase activity between induced and uninduced conditions in mouse RW4 

embryonic stem cell, but a significantly lower fold-induction in the other cell lines (p<0.05). One 

possible explanation for this observation is that the HSP90 protein is typically highly expressed 

in mouse ES cells.  HSP90 is the molecule that sequesters the fusion protein in the absence of 

inducer, and it has been previously reported the HSP90 RNA 90 and protein 91 levels are 

significantly higher in mouse ES cells than in differentiated cell lines or embryoid bodies. To 

confirm HSP90 is indeed highly expressed in our mESCs, we performed RNA sequencing on the 

RW4 and HCT116 lines. We found that the beta-actin normalized HSP90 expression level in the 

RW4 mouse ES cell line was 4-fold higher than that in HCT116 cell line, which is consistent 

with the theory that HSP90 levels explain the differences observed between RW4 mouse ESCs 

and HCT116 cells. 
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2.3.5 There is a trade-off between maximal PBase activity and fold-induction 

In the FKBP-based induction system, the PBase fusion protein shuttles between the 

cytoplasm where FKBP-directed degradation occurs and nucleus where PB transposition occurs. 

Therefore, we hypothesized that this nucleo-cytoplasmic transport could be fine-tuned to create 

an induction system with both efficient transposition and rapid degradation. To try to further 

improve transposition efficiency, we fused the nuclear localization sequence (NLS) from the 

SV40 large T-antigen upstream of, and in-frame with, the FKBP-PBase fusion, which had the 

highest transposition activity in our previous tests (Fig 2.3B). We reasoned that the NLS should 

direct more fusion protein to the nucleus, increasing the transposition rate upon administration of 

Shld1. We used transient transfection to introduce an equimolar ratio of NLS-FKBP-PBase 

fusion-carrying plasmid and donor plasmid across four different cell lines, and compared the 

results to that of FKBP-PBase plasmid without the NLS. After induction, the engineered fusion 

protein (NLS-FKBP-PBase) displayed an increase in transposition activity relative to the FKBP-

PBase fusion protein (Fig 2.4A, p<0.05). However, we also observed higher background 

transposition in the uninduced sample for this construct. As a result, the fold-induction for the 

NLS-FKBP-PBase fusion was lower than that of FKBP-PBase (Fig 2.4B, p<0.05). This suggests 

that the NLS sequence sequesters some protein in the nucleus and prevents efficient degradation 

in the absence of Shld1. Based on this observation, we concluded that adding NLS to PBase 

fusion protein is not optimal for an inducible PB transposon system. 

To test the possibility of further reducing the background transposition that occurs in the 

absence of chemical inducer, we made two more fusion constructs. One contains two tandem 

FKBP domains at the N terminus of PBase (Fig 2.2, construct 5) since our previous results 

showed that an N-terminally tagged PBase was more tightly regulated than the corresponding C-
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terminally tagged PBase. The second construct utilized three FKBP domains: two in tandem on 

the N-terminus and one on the C-terminus (Fig 2.2, construct 6). We tested the transposition 

efficiency and dynamic range of these constructs as before, and found that the triple FKBPs 

fusion protein (FKBP-FKBP-PBase-FKBP) showed the highest fold-induction in all cell lines 

(Fig 2.4A, right panel), followed by the double FKBPs fusion proteins (FKBP-PBase-FKBP and 

FKBP-FKBP-PBase). All three constructs achieved a significantly higher fold induction than did 

FKBP-PBase (p <0.05). 

We next examined the maximal induced transposition efficiency of these constructs 

relative to the unfused PBase (Fig 2.4B, right panel). We found that the transposition efficiencies 

of FKBP-FKBP-PBase-FKBP, FKBP-FKBP-PBase, and FKBP-PBase-FKBP were 60%, 79% 

and 80% of the unfused PBase, which is significantly lower than the 95% relative activity we 

observed for FKBP-PBase (p<0.05), indicating that transposition activity gradually decreased 

when more FKBP domains were added to PBase. Taken together, these results suggest that there 

is a trade-off between the efficient degradation of the PBase fusions under non-inducing 

conditions and the enzymatic activity of these fusions under fully inducing conditions (Fig 2.4C). 

Specifically, if high activity upon induction is the objective, then the FKBP-PBase fusion is 

optimal, while if a high fold-change in induction is required, the FKBP-FKBP-PBase-FKBP 

fusion is the best choice.  
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Figure 2.4 Optimization of the induced transposition activity and fold induction for FKBP-

based PB transposon induction system. (A) Induced transposition activity of different PBase 

fusion proteins relative to wild-type PBase across four cell lines. Experiments were done in 

triplicates. The induced transposition activity of a PBase fusion protein was calculated as the 
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normalized number of colonies from the PBase fusion in the presence of corresponding chemical 

inducer divided by that from “wild type” unfused PBase. (B) Fold induction of different PBase 

fusion proteins across four cell lines. The induction fold was calculated as the normalized 

number of colonies from chemical inducer treated samples divided by that from untreated 

samples. (C) Comparison of the induced transposition activity with the fold induction for 

different PBase fusion proteins across four cell lines. 

 

2.3.6 Fusion protein levels can be tuned to achieve low background transposition and high 

inducibility 

For some application, it is not important to obtain the maximum possible PBase activity, 

but it is instead preferable to have an assay with low background levels and to achieve a large 

fold-change in activity upon induction. We reasoned that the high background levels observed in 

Figs. 2.3 and 2.4 might be due to the fact that the PBase-DD fusion proteins were all highly 

expressed and could be overloading the proteasome. To test this hypothesis, we created lentivirus 

containing an FKBP-PBase-FKBP-IRES-RFP fusion gene under the control of a cumate 

inducible promoter 92 (Fig 2.2, construct 9), which allows gene expression to be tuned by varying 

the cumate concentration in the culture media. Next, we infected cymR expressing HEK 293 

cells, and isolated transduced cells by performing FACS to purify RFP positive cells. We 

transfected these cells with donor plasmid (Fig 2.2, construct 16), titrated FKBP-PBase-FKBP 

protein levels by culturing the cell with varying amounts of cumate, in the presence or absence of 

Shld1, and determined PBase activity by counting puromycin resistant colonies as previously 

described.  The results are shown in Fig 2.5.  As lower concentrations of cumate were added to 

the media, much lower background and larger fold-changes in induction were achieved.  For 
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example, when 10 ug/ml cumate was added to the media, no background transposition was 

observed; therefore, we observed a more than 100-fold change in PBase activity is achieved after 

induction with Shld1. These results demonstrate that, when the FKBP-PBase-FKBP protein is 

expressed at moderate levels, this system has essentially no background transposition yet is still 

robustly inducible. This level of control comes at some cost, however, as the maximum level of 

PBase activity is roughly one-fourth the maximum rate we observed (i.e. compare the 10 ug/ml 

cumate and Shld1 culture condition to the PBase activity of cells grown with 70 ug/ml cumate 

and Shld1). For experiments that do not require rapid, post-transcriptional induction, it is 

possible to have the best of both worlds, namely zero background and high absolute activity, by 

growing cells in the absence of cumate and Shld1 and then adding both chemicals to induce 

transposition.  

 

Figure 2.5 The performance of cumate-regulated FKBP-based PB transposon induction 

system. The cumate chemical ranging from 70 µg/ml to 0 µg/ml was added respectively to 

regulate the strength of cumate promoter. For each cumate concentration, Shld1 or vehicle (70% 
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ethanol) was added to the medium to activate the PB transposon induction system. The 

normalized number of puromycin-resistant colonies was calculated by deducting the background 

colonies from the transfection with donor and empty vector. The induction fold was calculated as 

the normalized number of colonies from inducer treated samples divided by that from untreated 

samples. 

 

2.3.7 The FKBP-PBase-FKBP protein levels can be tuned post-transcriptionally 

We next sought to determine if PB activity could be post-transcriptionally tuned by 

adjusting Shld1 concentration. To do so, we transfected four cell lines with donor and helper 

plasmids (Fig2.2, construct 3 and 16) and subjected these transfected cells to various 

concentrations of Shld1: 0nM, 8nM, 40nM, 200nM and 1µM. We calculated the normalized 

number of puromycin resistant cell colonies for each Shld1 concentration. We found that the 

colony number increased almost linearly with the increase of the concentration across all cell 

lines (r=0.81, Fig 2.6A), indicating the FKBP-based PB transposon induction is tunable and 

dose-dependent. 

Counting puromycin-resistant colonies reveals the number of cells with at least one 

integrated transposon; however, it does not provide information about the average number of 

transposition events that have occurred per cell. To address this, we also measured PBase activity 

at various concentrations of Shld1 using an alternative readout for transposition. We created a 

donor vector (Fig 2.2, construct 17) in which a GFP gene is split by a PB transposon, rendering it 

inactive (Supplementary Fig. 2.S1A). Nuclear PBase will excise the transposon creating a 

functional GFP gene that is then expressed, and so the average fluorescence of the cell 

population is proportional to the number of transposon excision events.  The results of these 



 28  
   

experiments are shown in Supplementary Figs. 2.S1B and 2.S1C. The mean cellular fluorescence 

increases monotonically with Shld1 in a near-linear fashion, validating the results obtained with 

the puromycin donor, and supporting the thesis that PB induction is tunable and dose-dependent. 

 

2.3.8 The FKBP based PBase system is reversible 

To determine if the degradation of FKBP-PBase is reversible, we fused a yellow 

fluorescent protein (YFP) in-frame between FKBP and PBase by an 18 amino acid linker at N 

terminus of PBase 88 (Fig 2.2, construct 7), allowing the visualization and semi-quantitative 

analysis of the expression of the PBase fusion by monitoring fluorescence intensity. The four cell 

lines mentioned above were transfected with the helper plasmid (FKBP-YFP-PBase) and 

separately, a control plasmid (YFP-PBase). Shld1 was added to the culture medium immediately 

upon transfection and incubated for one day. Next, the cells were passaged and cultured in drug-

free medium for three days. Finally, Shld1 was added back again to re-stabilize the FKBP-YFP-

PBase fusion for another three days. The typical images from fluorescence microscopy at three 

turning points were shown in Fig 2.6B: 1) one day after treatment with Shld1, 2) three days after 

removing Shld1, and 3) three days after retreatment with Shld1. We also measured the 

percentage of YFP positive cells every day by flow cytometry. To control for plasmid dilution 

during the experiment, the percentages of YFP positive cells from the FKBP-YFP-PBase fusions 

were normalized by the percentage of YFP positive cells in the corresponding control YFP-

PBase samples. The results are plotted in Fig 2.6C. Taking Fig 2.6B and 2.6C together, we 

observed a sharp drop in the YFP positive cell population at the second measurement time point, 

indicating that without the inducer Shld1, the fusion proteins were quickly degraded. The 

normalized percentage of YFP positive cells was nearly completely restored to the original value 
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three days after Shld1 was reapplied, indicating the system is reversible. By fitting the curves in 

Fig 2.6C to an exponential decay functions, we estimated the half-life of the FKBP-PB fusion 

protein to be 30h. Our results suggested FKBP-based inducible PB transposon system is tunable 

and reversible. These levels of regulation could prove invaluable when a certain number of 

transposition events is required in the induction system.  
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Figure 2.6 Tunability and inducibility of the FKBP-based PB transposon induction system. 

(A) Normalized puromycin-resistant colonies under different concentrations of Shld1 across four 

cell lines. Cells were transfected with donor and helper plasmids (FKBP-PBase-FKBP) and 

subjected to various concentrations of Shld1: 0nM, 8nM, 40nM, 200nM and 1µM. For each 

condition, the number of puromycin resistant cell colonies was normalized to that from cells 
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transfected with the donor plasmid and helper vector (pRS314). (B) Fluorescent images taken 

prior to FACS analysis at day1, day4 and day 7 of Shld1 treatment for transfected HEK293T 

cells. The white scale bar equals 50µm. The red arrows indicate the time points of measurement. 

Bright field and fluorescent images were shown at top and bottom panel respectively. (C) 

Normalized percentage of YFP positive cells along Shld1 treatment across four cell lines. A 

minimum of 10000 YFP positive cells were analyzed from each FACS and post-sort analysis 

was performed with FloJo software to obtain the percentage of YFP positive cells.  

 

2.3.9 Unlike 4OHT, Shld1 does not interfere with general cellular functions  

It has previously been reported that 4OHT adversely affects developmental processes such 

as neurogenesis 84, myelinogenesis 84, myometrial differentiation 85, and sexual maturity 86. 

Therefore, we next sought to test if cells treated with Shld1 or 4OHT display any developmental 

phenotypes. We added these chemicals to embryoid bodies (EBs) generated from mouse ESCs, 

and differentiated them into ventral spinal neural cells with retinoic acid and smoothened agonist 

93. We found that in the presence of 2µM 4OHT, EB differentiation was inhibited and neuron-

like cells were not generated. In contrast, EBs that were mock-treated or treated with 2µM Shld1 

differentiated normally (Fig 2.7A). These results suggest that 4OHT inhibits EB differentiation, 

while Shld1 does not.  

To further explore the effects of the inducer molecules on differentiation, we sought to 

quantify the extent to which these Shld1 and 4OHT perturb the transcriptional network of EBs. 

EBs were treated with Shld1 and 4OHT respectively for 2 days, induced with retinoic acid and 

smoothened agonist for 2 more days, and then subjected to gene expression profiling by RNA-

Seq. Cells mock-treated with 95% ethanol as vehicle were used as controls. For each condition, 
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two biological replicates were performed and correlation co-efficiencies between them are above 

0.96, demonstrating reproducibility. The mean of the normalized counts from drug-treated 

samples was plotted against log2 fold change of drug-treated samples to mock-treated ones under 

the category of Shld1 vs Mock and 4OHT vs Mock (Fig 2.7B and 2.7C). A significant change of 

gene expression profile was observed for 4OHT-treated samples but not in Shld1-treated ones. 

After Benjamini-Hochberg correction for multiple hypotheses (see methods), we identified 260 

differentially expressed genes in the 4OHT-treated samples. We performed gene ontology (GO) 

analysis on these genes using the DAVID Bioinformatics package 94, 95 and functional annotation 

clustering revealed that “heat shock” and “stress response” were the most over-represented terms 

(adjusted p < 0.01), a result that supports our experimental observation that 4OHT is toxic to 

EBs.  In contrast, only one gene (FOS, NM_005252) was differentially expressed in the Shld1 

treated samples, suggesting that this chemical has little to no effect on the transcriptional 

network that controls development of EBs. 
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Figure 2.7 The effects of chemical inducer on RW4 mouse ES cells.  (A) Images of embryoid 

bodies (EBs) and differentiated EBs treated with (a) 95% ethanol as vehicle, (b) 2µM Shld1 and 

(c) 2µM 4-hydroxytamoxifen during EB formation and neural differentiation from mouse ESCs 

to neural lineages. (B and C) The comparison of gene expression profile of drug-treated samples 

with that of mock-treated ones. Experiments were done in duplicate. Mean of the normalized 

counts from drug-treated samples was plotted against log2 fold change of drug-treated samples 

to mock-treated ones under the category of (B) Shld1 vs Mock and (C) 4OHT vs Mock. Red dots 

indicate the differentially expressed genes.  
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2.4 Discussion 

We systematically characterized, in four cell lines, 15 different PB transposase fusion 

proteins representing 3 different induction systems. We found that the FKBP-based system 

achieved the broadest dynamic range of induction across four cell lines. Remarkably, in the 

presence of chemical inducer, this system had transposition efficiencies that were almost as high 

(~95%) as the “wild-type” PB transposon. These results, coupled with the fact that Shld1 does 

not affect ESC development, suggest that this will be the preferred induction system for many 

types of experiments, especially those involving cellular differentiation or organismal 

development. 

In our plasmid-based experiments (Fig 2.3), we observed a lower dynamic range for the 

ERT2-based PB transposon induction system that was previously observed by Cadinanos et al. 

(~20 fold vs ~270 fold) 16.  This discrepancy is explained by the fact that, in our donor plasmid, 

the puromycin resistance gene is driven by a PGK promoter whereas in Cadinanos et al., the 

puromycin resistance gene is promoterless and downstream of a splicing acceptor site. In that 

system, only insertions in active genes will produced colonies, but in our system, all insertions 

will produce resistant clones. This would explain why we observed more background 

puromycin-resistant clones when the transposase was not induced since both studies normalized 

to background and small absolute changes in the denominator can lead to large changes in the 

calculated fold change.   

The moderate background transposition of the DD induction system observed in our 

plasmid experiments (Fig 2.3) was largely the result of the over-expressed fusion protein 

overloading the cells’ proteasome system, since when the FKBP-fused PBase was placed under 

the control of a cumate-titratable promoter and delivered at lower copy number, we observed no 
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background transposition while still achieving robust transposition after induction.  Since no 

background hops were observed at several cumate concentrations, the fold-induction of the 

system is not defined; we conservatively estimate it as > 100-fold.  

An interesting difference between DD-based systems and the ERT2 based system is that 

the performance of the DD systems was more uniform across the difference cell lines.  We 

hypothesize that this difference is due to the fact that the DD system uses the ubiquitin-

proteasome system (UPS) to constantly degrade FKBP-fused PBase. The UPS is a general 

degradation machinery and uniformly expressed and works efficiently in all mammalian cell 

types. In contrast, the ERT2-based induction system is dependent on a specific cytoplasmic 

protein HSP90, a gene whose expression varies widely between cells. Our RNA sequencing data 

showed that the HSP90 expression level in the RW4 mouse ES cell line is about 4-fold higher 

than in the HCT116 cell line, suggesting that a low amount of HSP90 levels may lead to either a 

high basal activity without induction or a low induced activation. 

In the FKBP-based PB transposon induction system, we observed that N-terminally tagged 

PBase (FKBP-PBase) has a higher fold induction than the C-terminally tagged counterpart 

(PBase-FKBP), which may suggest that FKBP fused at the N terminus is more likely to be 

exposed and thereby recognized by the proteasome than when fused to the C terminus. This 

terminal specific higher activity may relate to the distribution of functional components of 

PBase. It was reported that the PBase has a functional nuclear targeting signal in the 94 C-

terminal residues 96. C-terminal fused PBase, therefore, is more likely to negatively affect the 

nuclear translocation of the PBase protein, which in turn increases the likelihood of being 

recognized and degraded by the proteasome in the cytoplasm. We also observed that fusing 

additional DDs to the PB transposase increases the fold-change in activation between the 
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induced and uninduced conditions.  However, the addition of multiple DDs causes the absolute 

activity of the induced protein to be significantly reduced, suggesting a trade off between how 

tightly a protein can be regulated, and its maximum activity in the induced state. Our results 

suggest that the FKBP-DD is optimal when a high level of PB transposition is preferred, while 

FKBP-FKBP-PBase-FKBP is the choice when tight regulation is the priority.  

The FKBP system will be likely prove considerably more useful than the ERT2 system for 

the study of developmental processes, since we found that the ERT2 inducer tamoxifen is a 

strong inhibitor of embryoid body differentiation. Our results are consistent with previous reports 

that tamoxifen has deleterious effects on a number of developmental systems 84-86.  In contrast, 

we found that Shld1, the FKBP inducer, has no such phenotype, and furthermore, few 

transcriptional changes were observed in our RNA-Seq analysis of embryoid bodies treated with 

Shld1. Together, these results suggest that the FKBP DD system is preferable to the ERT2 

system for experiments involving cellular differentiation.   

 

2.5 Method 

2.5.1 Plasmid construction 

The plasmids that contain mutated destabilized domains, FKBP and DHFR, were 

purchased from Addgene with ID 31763 and 29326 respectively. The PBase-ERT2 plasmid 

(mPBase-L3-ERT2) was a kind gift from Dr. Bradley 16. The coding sequence of mPBase-L3-

ERT2 was sub-cloned into a yeast shuttle vector pRS314 containing CEN6, ARS, and TRP1 to 

use “gap repair” cloning technique in yeast cells (Strathern and Higgins 1991). This engineered 

yeast shuttle vector was used as a “parental” plasmid (pRM1056) to derive other variants of 

PBase constructs by gap repair method 2. Briefly, PCR-generated sequences were cloned into 



 37  
   

linearized vectors by recognizing a 40 bp overlap at their ends. This 40 bp overlap can be 

engineered by designing primers for amplification of the desired sequences. For example, to 

replace the ERT2 sequence with the FKBP sequence, the pRM1056 plasmid was linearized by 

restriction digestion that cut the plasmid within the ERT2 sequence. The FKBP sequence was 

amplified with a pair of primers that have a 40bp sequence that is homologous to pRM1056. The 

FKBP PCR products and linearized pBM1056 were co-transformed into yeast cells and the yeast 

cells were selected for Trp+ colonies. DNA extracted from Trp+ yeast colonies was introduced 

into E. coli. Finally, the plasmid was isolated by QIAprep Spin Miniprep Kit (QIAGEN) and was 

confirmed by Sanger sequencing. The engineered constructs used in this study are depicted in 

Fig 2.  

 

2.5.2 Cell culture and neural differentiation 

Human embryonic kidneys cell lines (HEK293 and HEK293T) and human colon 

adenocarcinoma cell line HCT116 were maintained in Dubecco's Modified Eagle Media 

(DMEM; Gibco) supplemented with 10% FBS. RW4 mouse embryonic stem cells (ESCs) were 

cultured in complete media consisting of DMEM supplemented with 10% new born calf serum, 

10% fetal bovine serum (FBS; Gibco), and 0.3 mM of each of the following nucleosides: 

adenosine, guanosine, cytosine, thymidine, and uridine (Sigma-Aldrich). To maintain their 

undifferentiated state, cells were also cultured in the presence of 1000 U/mL leukemia inhibitory 

factor (LIF; Chemicon) and 20 mM β-mercaptoethanol (BME; Invitrogen) in flasks coated with a 

0.1% gelatin solution (Sigma-Aldrich). Mouse ESCs were differentiated into ventral spinal 

neural cells using a retinoic acid (RA) and smoothened agonist (SAG) induction protocol as 

described 93.  
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2.5.3 Cell transduction and transgenic cell line generation 

All lentiviruses used for cell transduction were produced by the Hope Center Viral Vectors 

Core at Washington University School of Medicine. A CymR-expressing HEK293 cell line was 

made by transducing the cell with lentivirus containing the cumate operator repressor driven by 

an EF1a promoter at a multiplicity of infectivity (MOI) of 20 to ensure that CymR is 

overexpressed. Two days after transduction, neomycin was added to the culture medium 

(500ng/ml) and maintained for 7 days. Then, the CymR-expressing HEK293 cell line was further 

transduced with lentivirus containing an FKBP-PBase-FKBP-IRES-RFP fusion gene driven by a 

cumate inducible promoter at MOI of 0.5 to favor single-copy integration. To obtain a pure 

population, transduced cells were then sorted for red fluorescent protein (RFP) positive cells.  

 

2.5.4 Cell transfection and drug administration 

All plasmids used for the transfection of cells were prepared using EndoFree Plasmid Maxi 

Kit (Qiagen) following the manufacturer’s protocol. About 105 cells were electroporated with a 

total of 0.6 µg of DNA (0.1 µg helper plasmid and 0.5 µg donor plasmid) by the Neon 

transfection system (Invitrogen) and plated to one well of a 6-well plate. Immediately upon 

transfection, cells were treated with 1 µM 4-hydroxy tamoxifen (4OHT, Sigma) for the ERT2 

based induction system, 1 µM Shld1 (Clontech) for FKBP based induction system, 10 µM 

trimethoprim (TMP, Sigma) for the DHFR based induction system. Negative controls were 

mock-treated with 95% ethanol as vehicle. For the transgenic cell line expressing inducible 

PBase driven by a cumate promoter, only donor plasmid was used in transfection. Cumate 

inducer (System Biosciences) was added at concentrations ranging from 70 µg/ml to 0 µg/ml to 

regulate the strength of cumate promoter. For the purpose of reproducibility, experiments were 
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done in triplicates. To select cells in which the PB transposon transposed, cells were trypsinized 

2 days after transfection and cultured on 10cm dish (Corning) with 10 ml fresh media containing 

puromycin (1 µg/ml). The puromycin selection normally takes 7 days before visible cell colonies 

are formed. 

For experiments testing the reversibility of the FKBP-based PB transposon system, Shld1 

(1 µM) was added to the culture medium immediately after transfection. One day after 

transfection, a small aliquot of cells were used for imaging and flow cytometry analyses and the 

rest of the cells were passaged to a 12-well plate and provided fresh Shld1-free medium. The 

passaged cells were grown to about 100% confluence before another passage to a 12-well plate. 

One well of cells were used for imaging and flow cytometry analyses every day. After 3 days of 

destabilization, the cells were treated with fresh medium containing 1 µM Shld1 to re-stabilize 

the FKBP-YFP-PBase fusion protein. The re-stabilization lasted for another 3 days during which 

the cells were analyzed by flow cytometry every day.  

 

2.5.5 Cell colony staining and counting 

The visible drug-resistant cell colonies were fixed with PBS containing 4% 

paraformaldehyde for 1 hour and then stained with 1% methylene blue in 70% EtOH for 30 min, 

washed in distilled water and air-dried overnight. Colonies with diameters more than 0.3 mm 

were counted by ImageJ software (National Institutes of Health). The number of puromycin-

resistant colonies formed from the cells transfected with both donor and helper plasmids was 

normalized to that with donor and helper backbone plasmids (yeast shuttle vector pRS314) prior 

to any further calculations. The transposition activity of a PBase fusion protein was calculated as 

the normalized number of colonies from the inducible domain (i.e. FKBP, DHFR or ERT2) 
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fused PBase divided by that from “wild type” unfused PBase. For experiments that used the 

transgenic cell line expressing FKBP-PBase-FKBP driven by a cumate promoter, we used 

normalized number of puromycin-resistant colonies to estimate the transposition activity due to 

the unavailability of the cell line expressing “wild-type” unfused PBase. Fold-induction was 

calculated as the normalized number of colonies from the induced samples divided by that from 

untreated samples. 

 

2.5.6 Imaging and flow cytometry 

Fluorescent images were taken on Zeiss Axioskop fluorescence microscope equipped with 

a QICAM FAST 1394 digital CCD camera. Cells were grown to 90% confluence, trypsinized 

from the plate, and suspended in phosphate-buffered saline (PBS), washed once with PBS, and 

resuspended in Hank’s balanced salt solution supplemented with 2 mM EDTA. Cellular 

fluorescence was analyzed on an iCyt Reflection HAPS2 cell sorter at the Washington 

University Siteman Flow Cytometry Core. The gate was set relative to the cells transfected with 

non-fluorescent control plasmids to eliminate background. Cells transfected with a positive 

control fluorescent reporter plasmid were also used to eliminate false positive singles. About 

10000 cells were analyzed from each FACS and post-sort analysis was performed with FloJo 

software to obtain the percentage of fluorescent positive cells. 

 

2.5.7 RNA extraction and sequencing  

Total RNA was isolated from the RW4 mouse ESCs using the PureLink RNA Mini kit 

(Ambion) according to the manufacturer's instructions. The quantity of RNA was measured 

using a spectrophotometer (NanoDrop 2000c; Thermo Scientific). Samples with a RNA 
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concentration (A260/A280 ≥1.8 ng/µl) and purity (A230/A260 ≥2.0 ng/µl) were selected. The 

Agilent 2100 Bioanalyser was used to determine the RNA integrity number (RIN). The 

degradation level was identified using the RNA 6000 Nano LabChip kit (Agilent). Samples with 

RIN >9.8 were further processed using TruSeq mRNA Library Preparation Kit (Illumina) and 

then sequenced by Illumina MiSeq platform at the Genome Technology Access Center (GTAC) 

at Washington University in St. Louis. The gene expression data generated for this study can be 

found under the NCBI Gene Expression Omnibus (GEO) accession number GSE78857. The 

expression data is also publically available at the Center for Genome Sciences by request. 

 

2.5.8 Reads mapping and statistical analysis 

Trimmomatic (v0.32) 97 was employed on RNA-Seq FASTQ files to clip the illumina 

adaptors and remove the reads of low quality. The cleaned reads were mapped back to mm10 

genome reference from UCSC database using STAR (v2) 98. We used the HTSeq package99 to 

estimate the count of uniquely mapped reads for each of the annotated genes in the mm10 gene 

transfer format (.GTF) file. Differential expressed genes were analyzed with R (v 2.13.0) using 

DESeq (v1.4.1) 100 available in Bioconductor (v 2.8). The resulting p-values were adjusted using 

the Benjamini-Hochberg correction and only genes that were significant at a false discovery rate 

(FDR) of 0.05 were considered as expressed. For other comparisons between different 

experimental conditions, the statistical significance was assessed by paired Student t test and a p 

value less than 0.05 was considered significant. 
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Chapter 3 
Brd4-bound enhancers drive critical sex 
differences in glioblastoma 
 

Published in BioRxiv. (2018) 

3.1 Abstract 

The incidence and severity of many diseases is strongly dependent on sex. New approaches 

to treatment could be revealed by dissecting the molecular pathways that control sexually 

dimorphic phenotypes. In an established model of glioblastoma, we discovered that 

pharmacological inhibition or genetic depletion of Brd4 decreased clonogenicity and 

tumorigenicity in male cells while increasing clonogenicity and tumorigenicity in female cells, 

thus abrogating the sex differences in phenotype. The sex differences in tumorigenic phenotype 

correlated with transcriptome-wide sexual dimorphism in gene-expression, H3K27ac marks and 

large Brd4-bound enhancers. Finally, sexual dimorphism in Brd4 function was also suggested by 

the differential effect of low Brd4 expression on survival in glioblastoma patients.  Thus, for the 

first time, sex is established as an intrinsic element of cellular identity that is driven by Brd4 

activity, which renders male and female cells differentially sensitive to BET inhibitors treatment. 

This has important implications for the clinical use of BET inhibitors and provides new molecular 

targets for glioblastoma treatment. 
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3.2 Introduction 

Until recently, most basic and clinical research has focused on investigating factors that 

influence disease susceptibility and progression without regard to sex. However, a mounting 

body of evidence has revealed significant sex-specific differences in incidence, age of onset, 

and outcome of numerous human diseases. These include cardiovascular diseases, asthma, 

autoimmune diseases, birth defects, neurological diseases, psychiatric disorders and cancers 101. 

This preponderance of sex differences in disease incidence and outcome led to the 

implementation of new guidelines by the NIH regarding inclusion of sex as a biological 

variable in all research.  

Glioblastoma (GBM), the most common and aggressive form of brain cancer 102, 103, is 

more common in males regardless of race or region of the world (male to female incidence of 

1.6:1) 104-107. In addition to the sex difference in GBM incidence, a recent study by Ostrom et al. 

also revealed a sex difference in prognosis between male and female GBM patients wherein 

females have a significant survival advantage 108. The reasons for sex differences in GBM 

incidence and outcome are largely unknown. While sex differences in disease are often 

mediated through acute sex hormone actions, sex differences in malignant brain tumor rates are 

evident at all ages, suggesting that factors other than circulating sex hormones underlie this 

discrepancy 109. These can include organizational or epigenetic effects of transient in utero sex 

hormones and extra-gonadal effects of sex chromosome encoded genes. Recently, our lab 

discovered that an established model of GBM involving combined loss of neurofibromin (NF1) 

and p53 function in murine neocortical astrocytes exhibits sex differences in in vivo 

tumorigenicity mimicking those observed in patients with GBM 19. Importantly, these male and 

female GBM astrocytes display sex differences in response to serum deprivation, CDKi 
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treatment and chemotherapy 110. Together, the human and mouse data suggest that male and 

female cells may be differentially sensitive to the transforming effects of specific oncogenic 

events.  

Sexual differentiation is in large part an epigenetic phenomenon 111. A preponderance of 

studies have shown that inhibiting epigenetic modifiers can block normal sexual dimorphism in 

the brain. Understanding whether sex differences in GBM are mediated by epigenetic 

mechanisms involving epigenetic readers and/or writers will be imperative to understanding the 

key processes that impart females with relative resistance and males with relative susceptibility 

to cancer. Here we show that the previously observed phenotypic differences between male and 

female GBM cells are abolished by targeting the Bromodomain and extra-terminal (BET) 

family proteins using a panel of BET inhibitors currently in clinical trials 112. Genetic depletion 

of the BET family members indicated that the effects are mediated by the epigenetic reader 

Brd4. Mapping of Brd4 genomic localization revealed that sex differences in tumor phenotype 

arise through differential Brd4-bound enhancer usage in male and female GBM cells. 

Consistent with these data, we observe sex differences in the effects of low Brd4 expression on 

survival in male and female GBM patients. This is the first demonstration that differential Brd4 

activity mediates cell intrinsic sex identity and sex differences in a cancer phenotype. Together 

with sex differences in BET inhibitors effects, these results strongly indicate that sex 

differences in disease biology translate into sex differences in therapeutic responses. This has 

broad implications for medicine. 
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3.3 Results and discussion 

3.3.1 BET family protein (Brd4) inhibition has opposing effects on the tumorigenic 

phenotype in male and female GBM astrocytes 

Based on our previous observation of sex-specific differences in the tumorigenic 

phenotype and response to chemotherapy between male and female GBM cells 19, we first 

sought to investigate whether these GBM astrocytes also exhibit sex-specific treatment 

responses to BET inhibitors currently in clinical trials. We treated male and female GBM 

astrocytes with a panel of BET inhibitors that are presently being tested in clinical trials and 

then performed extreme limiting dilution assay to measure clonogenic cell (stem-like cell) 

frequency (ELDA). These BET inhibitors are either selective for Brd4 or target all members of 

the Brd family. Treatment with BET inhibitors reproducibly decreased clonogenic frequency in 

male GBM cells while increasing the functional clonogenic cell fraction in female cells (Figure 

3.1A). Next, and to determine which BET family protein was mediating these effects, we 

performed genetic depletion of Brd2, 3 and Brd4 family members. We used shRNAs specific to 

either Brd2, Brd3 or Brd4 then evaluated the effect on the tumorigenic phenotype of male and 

female GBM cells. As shown in Figure 3.1C, mRNA expression levels of Brd2, Brd3 and Brd4 

were partially silenced in male and female GBM cells after infection with lentiviral shRNAs. Of 

note, Brd4 mRNA4 levels were equivalent between male and female GBM cells under basal 

conditions. Knockdown of Brd2 with shRNAs did not affect clonogenic frequency in either 

male or female cells, which is consistent with our earlier RVX-208 (a Brd2/3 selective 

inhibitor) results (Figure 3.1B). Interestingly, male GBM cells with knockdown of Brd4 

exhibited a decrease in clonogenic frequency whereas female cells displayed an increase in 

clonogenic frequency. This opposing sex-specific response to the inhibition of Brd4 is 
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consistent with published data in breast and prostate cancer, wherein ectopic expression of Brd4 

in breast cancer cells decreased invasiveness and tumor growth, while Brd4 inhibition 

decreased viability of prostate cancer cells 113-115. A similar effect on clonogenic frequency was 

observed following knock down of Brd3 in male but not female cells.  

To investigate the effect of Brd2, 3 and 4 expression on sex-specific survival outcomes in 

human GBM, we obtained gene expression data from 151 (98 males and 53 females) TCGA 

glioblastoma samples, converted the expression value of Brd into a z-score specific to the sex of 

the patient and stratified the patients into a high-expression group (z-score > 1.0) and low-

expression group (z-score < -1.0). We analyzed the effects of Brd expression on patient overall 

survival (OS) using the  Kaplan-Meier method 116. No difference in survival was detected in 

low Brd2 or Brd3 expression groups (data not shown). While high Brd4 expression group had 

no effect on survival, low Brd4 expression was associated with shortened survival in females 

(OS median - 5.39 months) compared to males (OS median - 16.59 months, p = 0.05) (Figure 

3.1D). This is consistent with our findings in our mouse GBM model, in which treatment with 

the BET inhibitor abrogated the tumorigenic phenotype in male cells, but enhanced it in female 

cells. Additionally, this data is consistent with previously published breast, endometrial and 

prostate cancer studies revealing that in women with estrogen receptor positive breast cancer 113 

or endometrial cancer 115 low Brd4 expression is correlated with worsened survival. This is in 

contrast to men with prostate cancer in whom low levels of Brd4 are associated with improved 

survival 114, 115. Altogether, and with the multitude of evidence for the deregulation of Brd4 in 

numerous cancers, these data affirm a role of Brd4 as a mediator of sex differences in GBM 

tumorigenic phenotype. 
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Figure 3.1 Brd4 inhibition has opposing effects on the tumorigenic phenotype in male and 

female GBM astrocytes. (A) Clonogenic cell frequency (ELDA) assays were performed in 

GBM cells treated with DMSO or BET inhibitors. BET inhibitors significantly reduced 

clonogenic cell frequency in male cells while female cells exhibited a significant increase in 

their stem-like cell frequency. Clonogenic cell frequency were unaffected by RVX-208, a 

Brd2/3 selective antagonist. (B) Clonogenic cell frequency assays were performed in shRNA 

knockdown and control GBM cells. Knockdown of Brd4 and Brd3, but not Brd2, suppresses 

clonogenic frequency in male GBM cells while female cells showed an increase in clonogenic 

frequency following Brd4 knockdown only. Brd2 depletion was without effect. All treatment 

groups were normalized to male control clonogenic frequency levels (*=p <0.05, **=p <0.01, 
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***=p <0.001, ****=p <0.0001 as determined by two-tailed t-test and one-way ANOVA). (C) 

Low expression of Brd4 has sex-specific effects on GBM patient survival. Female GBM 

patients with low Brd4 expression (z-score < -1.0) have decreased survival, (median OS - 5.39 

months), compared to male GBM patients with low Brd4 expression (z-score < -1.0, median OS 

- 16.59 months; p=0.05). 

 

3.3.2 Male and female GBM cells utilize different sets of Brd4-bound enhancers 

In order to understand the role played by Brd4 in mediating sex differences in GBM, we 

sought to map Brd4 genomic localization in male and female GBM astrocytes (highly active 

Brd4-bound enhancers and typical Brd4 bound enhancers). Highly active Brd4-bound 

enhancers have been shown to play key roles in establishing cell-identity and thus may be 

important in establishing sex differences.  Furthermore, these enhancers bind up to 90% of Brd4 

protein in the cell 47, 117-121.  Brd4 is an epigenetic reader that binds acetylated histones H3 and 

H4 throughout the entire cell cycle and is known to be deregulated in numerous cancers 122. 

Brd4 is thought to play a central role in cancer by promoting epithelial-to-mesenchymal 

transition, stem cell-like conversion, and pluripotency 31, 123, 124, and the pharmacological 

inhibition of this protein has shown therapeutic activity in a number of different cancer models 

32, 112, 114, 125, 126.  To investigate whether these highly active Brd4-bound enhancers might play a 

role in establishing cell-intrinsic sex differences, we used transposon Calling Cards 2, 78 to 

identify enhancers differentially bound by Brd4.  To do so, we fused a piggyBac (PB) 

transposase to the C terminus of the Brd4 protein, endowing it with the ability to direct the 

insertion of the PB transposon into the genome close to Brd4 binding sites. Three biological 

replicates were carried out and the correlation between replicates was r > 0.9 for all pairwise 
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comparisons (Figure 3.S1). Using this protocol, we mapped ~700,000 unique insertions 

directed by the Brd4-PBase fusion for male and female samples and identified 3014 enhancers 

that bound significantly more Brd4 protein in males and 3122 enhancers that bound 

significantly more Brd4 protein in females (Figure 3.2A).  

To determine whether the enhancers that bound Brd4 in a sex specific manner also 

displayed differential H3K27ac, we performed Chromatin Immunoprecipitation Sequencing 

(ChIP-seq) in male and female GBM cells to identify genomic regions enriched for H3K27 

acetylation, a well-known marker of active enhancers. Three biological replicates were carried 

out and the correlation between replicates was r > 0.9 for all pairwise comparisons (Figure 

3.S1). Using established methods 127, we identified a total of 48881 and 51232 H3K27ac-

enriched peaks  in male and female GBM cells respectively. Of these, 10861 (22%) were male-

specific and 13212 (26%) were female-specific (Figure 3.2B).  We then performed differential 

analysis between male and female cells and identified an additional 15976 differentially 

H3K27ac-enriched regions, as depicted in the heat map clustered by male and female (Figure 

3.2D).  

Next, we analyzed the distances of sex-specific Brd4 binding sites to the nearest sex-

specific H3K27ac-enriched enhancer regions. As shown in Figure 3.2E and F, sex-specific 

Brd4 binding sites are significantly enriched at sex-specific H3K27ac enhancer regions (p < 

0.01). Representative examples of two biologically relevant loci, Nkx2.1 and Zic1/4, which 

correspond to male-specific and female-specific Brd4-marked enhancer regions respectively, 

are depicted in Figure 3.2G and H. This is the first demonstration of differential Brd4-bound 

enhancer usage by male and female cells of any kind and is consistent with earlier observations 

that these enhancers are key regulators of cell identity and fate 47, 117, 118, 121, 128. 
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Using sex-specific Brd4 binding sites that correlated with sex-specific H3K27ac-enriched 

enhancer regions within 1kb distance, we identified the closest upstream and downstream genes 

from the center of the Brd4 binding sites. This analysis revealed 351 male-specific genes and 

384 female-specific genes. Pathway enrichment analysis on male-specific genes regulated by 

these sex-specific Brd4-marked enhancers revealed functional enrichment for glioma, neoplasm 

metastasis, metabolism, cell proliferation, chromosome aberrations and integrin signaling. 

Similar analysis on female-specific genes showed an enrichment in pathways involved in 

regulation of metabolic process, DNA repair-deficiency disorders, and semaphorin signaling 

(Table 3.S1).   

Based on our observation of sex-specific enhancers usage between male and female GBM 

cells 19, we sought to characterize the male and female transcriptome. We profiled male and 

female GBM cells with RNA sequencing (RNA-seq). For each condition, three biological 

replicates were performed; the data were highly reproducible (Pearson r ³ 0.96 for all pairwise 

comparisons) (Figure 3.S1) and indicated differential expression of 3846 transcripts (FDR < 

0.05) (Figure 3.2I). Pathway enrichment analysis for the top 400 differentially regulated genes 

was performed using a combination of KEGG pathway and Genomatix Pathway System 

(GePS). Classification of these genes according to function revealed a significant number of 

relevant and important pathways including cell differentiation, cell proliferation, glioblastoma, 

tumor angiogenesis, metabolism, and DNA binding-transcription factors (Table 3.S2).  Thus, 

there are global differences in male and female GBM cell transcriptomes in cancer relevant 

pathways, which are due to differences in sex-specific enhancer activity. 
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Figure 3.2 Male and female GBM cells have sexually dimorphic Brd4-bound enhancers. (A) 

3014 male-specific and 3122 female-specific Brd4-enriched peaks were identified. (B) 10861 

male-specific and 13212 female-specific H3K27ac-enriched peaks were identified. (C) Heatmap 

of Brd4 binding affinity (number of insertions) for sex-specific Brd4 binding sites in male and 

female GBM cells (D) Heatmap of H3K27ac signal intensity (read depth) for sex-specific 

H3K27ac-enriched regions in male and female GBM cells. Samples are clustered first by sex, 
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then by replicate. Heatmap and intensity plot of the H3K27ac signal among sex-specific Brd4 

binding sites (+/- 10kb from the center) in male (E) and female (F). The expression values of the 

nearest gene(s) from the corresponding Brd4 binding sites was also plotted side by side.  (G) 

Nkx2.1 and (H) Zic1/4 illustrate male and female-specific genes, respectively, associated with 

differential Brd4 binding affinity and H3K27ac enrichment. The x-axis (blue arrows) of all tracks 

corresponds to genomic location of the gene. The y-axis of Calling Card tracks represents the 

log10 scale of sequencing reads for each insertion as indicated by circles. The y-axis of ChIP-seq 

tracks represents the number of uniquely mapped reads). (I) RNA abundance (RNA sequencing) 

in male and female GBM cells (top 200 upregulated and 200 downregulated male/female genes 

(n=3)).  

 

3.3.3 Brd4-bound enhancers regulate sex differences in GBM 

To further validate the transcriptional activation of sex-specific regulatory genes and 

networks by Brd4-bound enhancers, we treated male and female GBM cells with the Brd4 

antagonist JQ1. JQ1 is a thieno-triazolo-1,4-diazepine that displaces Brd4 from chromatin by 

competitively binding to the acetyl-lysine recognition pocket 112, 125. Treatment of acute 

myeloid leukemia cells with JQ1 caused a rapid release of Mediator 1 (Med1) from a subset of 

enhancer regions that were co-occupied by Brd4, leading to a decrease in the expression of 

neighboring genes 129. To investigate the functional activity of Brd4 at sexually dimorphic 

enhancer sites regulating expression of cancer-relevant genes, we treated male and female GBM 

cells with either vehicle (0.05% DMSO) or 500 nM JQ1 for 24 hours, and then isolated 

genomic material for RNA-seq. Gene expression analysis on JQ1 treated cells revealed that 

Brd4 proximal genes are significantly downregulated compared to genes that are distal to Brd4 
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binding sites (p <0.01) indicating that JQ1 has a specific and directed effect on genes whose 

expression is driven by Brd4-bound enhancers (Figure 3.3 and 3.4). Pathway analysis for sex-

specific Brd4-bound enhancers’ genes downregulated following JQ1 treatment in male and 

female GBM cells revealed functionally important pathways such as cancer stem cell pathway 

regulated by sex-specific Brd4-bound enhancers (Table 3.S1 and Figure 3.5). 

 

Figure 3.3 Male and female GBM cells have sexually dimorphic Brd4-bound enhancers and 

concordant gene expression. Sex specific and shared Brd4-bound enhancers are analyzed under 

the data category of 1) number of insertions from Calling Card method, 2) H3K27ac signal from 

ChIP-seq, 3) expression value from nearest gene(s) from RNA-seq and 4) expression changes 

(log2) upon JQ1 treatment. 
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Figure 3.4 JQ1 effect on gene expression in Male and female GBM cells. (A)Heatmap of gene 

expression changes (log2) upon JQ1 treatment in male and female GBM cells (B) Boxplot of 

gene expression changes (log2) of Brd4 proximal and distal genes following JQ1 treatment of 

male and female mouse GBM cells. The gene expression profile of genes in close proximity to 

Brd4 binding sites is compared to distal genes by a Mann-Whitney-Wilcoxon test. Brd4 proximal 

genes are significantly downregulated compared to Brd4 distal genes in both male and female 

GBM cells following JQ1 treatment.  
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Figure 3.5 Stem cell pathways regulated by sex-specific Brd4-bound enhancers. Blue-

labeled genes are male-specific Brd4 bound enhancer regulated genes and red-labeled genes are 

female-specific Brd4 bound enhancer regulated genes. As depicted, male-specific genes include 

oncogenes such as Met, Myc and Sox2 while female-specific genes consist of tumor 

suppressors such as Six 2 and Six 3. 

 

We next integrated our Brd4 Calling Cards, H3K27ac ChIP-seq and RNA-seq data to 

identify a set of sex-specific, Brd4 enhancer regulated genes. Candidate genes were identified 

by proximity to both a sex-specific Brd4 binding site and a sexually dimorphic H3K27ac 

enhancer region, and sensitivity to JQ1 (downregulation). These analyses identified 34 male-

specific genes and 30 female-specific genes, which we refer to as sex-specific JQ1-sensitive 

genes. Similar to our previous pathway analyses, male-specific JQ1-sensitive genes 
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demonstrated functional enrichment for neoplasm metastasis, tumor angiogenesis, integrin 

signaling pathway, and metabolic process, in addition to DNA-repair-deficiency disorders. 

Female-specific JQ1-sensitive genes showed an enrichment in pathways involved in 

semaphorin signaling, chromosome aberrations, glioblastoma, regulation of transcription, and 

glucose metabolism disorders (Table 3.1). These results are indicative of sex-specific 

transcriptional programs regulated by Brd4-bound enhancers. Identifying which specific 

pathways are critical to sex differences in GBM will require further functional studies. 

To address the sex-specific effects of BET inhibitors treatment on in vivo tumorigenesis, 

we performed in vivo flank implantation studies. Based on our in vitro ELDA studies, we chose 

to use JQ1 and CPI0610, the two BET inhibitors with the most dramatic effect in male and 

female GBM astrocytes respectively. Each mouse received DMSO, JQ1 or CPI treated male 

(5000 cells) or female cells (1.5 million cells) injected in the flanks and tumor growth was 

monitored blindly for 7-12 weeks with thrice weekly micrometer measurements in 3 

dimensions. Flank implantation of JQ1-treated transformed male cells produced smaller and 

less number of tumors than control DMSO male implants (Figure 3.6). This effect was not 

observed with CPI0610-treated transformed male cells.  Importantly, CPI0610-treated 

transformed female cells produced larger and more tumors than control DMSO female implants 

(Figure 3.6). This effect was seen following only one dose of BET inhibitors prior to 

implantation, indicating that this robust response is maintained and manifested at the epigenetic 

level. Taken together, these results demonstrate for the first time that the sex differences in the 

tumorigenic phenotype we observe in GBM cells are mediated by differential Brd4-marked 

enhancers, and that the response to BET inhibition is sex-dependent.  



 57  
   

 

Table 3.1 Pathway analysis for sex-specific highly Brd4-bound genes downregulated 

following JQ1 treatment male and female GBM cells. 
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Figure 3.6 BET inhibitors have opposing effects on in vivo tumorigenicity in male and 

female GBM astrocytes. (A) Representative flank tumors from DMSO or CPI0610 treated 

transformed female GBM astrocyte-initiated tumors. (B) Male tumors were significantly 

inhibited in their in vivo growth following JQ1 treatment compared to DMSO treatment (Chi-

Square Fisher’s exact test p <0.0055). CPI0610-treated transformed female cells significantly 

produced larger and more tumors than control DMSO female implants (Chi-Square Fisher’s 

exact test p <0.0476). 

 

In conclusion, these data demonstrate for the first time that cell intrinsic sex identity is 

mediated by sex differences in Brd4-marked enhancer usage. In the model utilized here, the 

differential usage of Brd4-bound enhancers mediated important sex differences in a GBM 

tumorigenic phenotype. Additionally, the response to BET inhibitors treatment was shown to be 

sex-dependent. Altogether, the consistency between our mouse data, the GBM TCGA data, and 

published breast and prostate cancer studies, provides strong evidence for the context-
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dependent, sex-specific dual role of Brd4 in regulating gene expression programs in 

oncogenesis. Since bromodomain inhibitors are currently being evaluated in a number of 

clinical trials, understanding this phenomenon is of critical importance, both for the 

interpretation of existing trials and to guide better application of these drugs. Increasing our 

knowledge of these sex-specific genetic and epigenetic mechanisms will lead to a greater 

understanding of cancer biology and its relationship to normal development, as well as identify 

novel therapeutic targets to improve outcome for all patients with GBM and potentially other 

cancers that exhibit substantial sex differences in incidence or outcome.  

 

3.5 Methods 

3.3.1 RNA-sequencing 

Male and female GBM cells (Nf-/-;DNp53 astrocytes) were generated as previously 

reported (Sun et al., 2015) and grown in DMEM/F12 media supplemented with 10% FBS and 

1% penicillin-streptomycin. Total RNA was isolated from male and female GBM cells that 

were treated with DMSO (0.05%) or JQ1 (500 nM for 24 hours) using the RNeasy Mini Kit 

from Qiagen, following the kit protocol (Hilden, Germany). PolyA Selection was performed to 

create RNA Seq libraries. Cell mRNA was extracted from total RNA using a Dynal mRNA 

Direct kit. The quantity of RNA was measured using a spectrophotometer (NanoDrop 2000c; 

Thermo Scientific). Samples with an RNA concentration A260/A280 ≥1.8 ng/µl, and purity 

A230/A260 ≥ 2.0 ng/µl were selected. The Agilent 2100 Bioanalyzer was used to determine the 

RNA integrity number. The degradation level was identified using the RNA 6000 Nano 

LabChip kit (Agilent). Samples with RNA integrity number > 9.8 were further processed using 
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TruSeq mRNA Library Preparation Kit (Illumina) and then sequenced on a HiSeq 25000 

(Illumina).   

 

3.3.2 Chromatin immunoprecipitation sequencing (ChIP-seq) for H3K27ac 

Male and female GBM cells were grown to 50% confluence (200K cells/T25 flask). On 

the day of transfection and 30 minutes before applying complexes, media was replaced with 

DMEM without FBS and antibiotics. Transfection complexes containing 3 µg of PB helper 

DNA with a PB-Brd4 fusion and/or 3 µg of PB donor DNA with a puromycin selection marker 

and Lipofectamine LTX/Plus Reagent (Invitrogen) were applied to cells for 12-18 hours at a 

culturing condition of 37 °C and 5% CO2. Cells were then allowed to recover in fresh medium 

containing DMEM/F12 with 10% FBS and 1% penicillin-streptomycin for another 24-48 hours. 

Cells were then expanded into T75 flasks and selected using puromycin at a concentration of 

2.5 µg/ml for 3 days. DNA was extracted from puromycin resistant cells and processed by 

transposon calling card protocol as previously described 2. Briefly, DNA sample was divided 

into three 2-mg aliquots, each digested by MspI, Csp6I, or TaqI individually. Digested DNA 

was ligated overnight at 15°C in dilute solution to encourage self-ligation. After ethanol 

precipitation, self-ligated DNA was resuspended in 30 ml ddH2O and used as template in an 

inverse PCR. Primers that anneal to PB donor sequences were used to amplify the genomic 

regions flanking PB, and adapter sequences that allow the PCR products to be sequenced on the 

Illumina genome analyzer were added. The PCR products were purified using the QIAquick 

PCR purification kit (Qiagen) and diluted into 10 nM concentration. For each sample, the same 

amount of PCR product from digestion with each restriction endonuclease was pooled and 

submitted for Illumina sequencing (HiSeq 2500). 
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3.3.3 Sequencing data alignment and analysis 

RNA-seq data sets were aligned to the transcriptome and the whole-genome with STAR 

98. Genes or exons were filtered for just those that were expressed. A gene count table for all the 

genes in each sample was generated using HTSeq 99. Differential gene expression between pairs 

of samples was computed using DESeq2 and was filtered by FDR < 0.05 for differentially 

expressed genes 130. 

ChIP-seq data sets for H3K27ac were aligned to the murine genome build mm10 using 

Bowtie2 and only uniquely aligning reads were used 131. Regions of enrichment of H3K27ac 

over background were calculated using the MACS version (2.1.0) peak finding algorithm 127. 

An adjusted p-value threshold of enrichment of 0.01 was used for all data sets. The resulting 

peak files were used as inputs for DiffBind (version 3.5) to derive consensus peak sets 132, 133. 

The differential enrichment of H3K7Ac signals between male and female analysis was carried 

out with Diffbind using DESeq2 (method = DBA_DESEQ2) with libraries normalized to total 

library size. 

Transposon calling cards data sets were aligned to the murine genome build mm10 using 

Bowtie2 131. The Brd4 binding site was identified by using an established algorithm 2. Briefly, 

the Brd4-directed PB insertions were clustered using a hierarchical clustering algorithm to 

identify insertions within 2500 bp and then modeled as a Poisson distribution, with the number 

of independent insertions in the “transposase-alone” experiment in the same genomic window 

setting the expectation. The p-value is then calculated from cumulative distribution function 

given the observed number of independent insertions in the Brd4-directed experiment.  
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To identify the sites with an excess of Brd4 insertions in male GBM cells relative to 

female cells, we used the algorithm from ChIP-Seq peaks caller MACS 127 but modified for the 

analysis of calling card data. First, the transposon insertions were grouped by hierarchical 

clustering. Then, peaks with an excess of insertions in the male sample were identified by 

computing lambda, the number of insertions per TTAA expected from the female sample by 

taking the maximum lambda calculated from the number of insertions in the female peak, or in 

a 1kb, 5kb or 10kb window centered at that peak. We computed a p-value based on the 

expected number of insertions (lamda × number of TTAAs in peak × number of insertions in 

peak). To identify the sites with an excess of Brd4 insertions in female GBM cells relative to 

male cells, we performed the same analysis, substituting the male and female data sets.  

 

3.3.4 Pathway analysis 

Pathway enrichment analysis for differentially regulated genes was performed using a 

combination of KEGG pathway and Genomatix Pathway System (GePS). GePS uses 

information extracted from public and proprietary databases to display canonical pathways and 

or to create and extend networks based on literature data.  These sources include NCI-Nature 

Pathway Interaction Database, Biocarta, Reactome, Cancer Cell Map, and the ENCODE 

Transcription Factor project data. All data for pathway analyses are presented with adjusted 

corrected p-values. 

 

3.3.5 Growth assays 

Growth kinetics of male and female GBM cells (Nf-/-;DNp53 astrocytes) treated with 

DMSO (0.05%), JQ1 (500 nM), or RVX-208 (5µM) for 24 hours or shRNAs were examined by 
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counting live cell number using an automated T4 cell counter as previously described with 

minor modifications (Sun et al., 2015). Briefly, cells were harvested and plated in a 6-well plate 

at a density of 2 x 104 cells/well (2 technical replicates per treatment/genotype/time point). 4 

hours post plating, cells were harvested by trypsinization and counted in the presence of trypan 

blue. This time point was designated as the starting point (T0) of the time course. Cells were 

then harvested and counted every 24 hours for a total of 4 days (24, 48, 72 and 96 hours). This 

experiment was repeated three times. 

 

3.3.5 Clonogenic cell frequency assay: Extreme Limiting Dilution Assays (ELDA analysis) 

Clonogenic capacity of male and female GBM cells (Nf-/-;DNp53 astrocytes) treated with 

DMSO (0.05%), JQ1 (500 nM), or RVX-208 (5µM) for 24 hours or shRNAs was assayed by 

the Extreme Limiting Dilution Assay (ELDA). The frequency of clonogenic stem cells was 

evaluated by the cells’ ability to form tumor-sphere in low-adherent conditions as previously 

reported (Sun et al., 2015). Briefly, cells were harvested into a single cell suspension and plated 

in neurosphere media containing EGF and FGF on 96-well ultra-low attachment plates in a 

serial dilution ranging from 3000 cells/well to 1 cell/well (3000, 600, 120, 24, 5 and 1 cells; 

n=14/cell density). Sphere formation was measured 7 days after plating. Clonogenic stem-like 

cell frequency was analyzed using the Extreme Limiting Dilution Analysis 

(http://bioinf.wehi.edu.au/software/elda/). 

 

3.3.6 In vivo tumorigenesis: flank implantation  

Flank tumors were generated by implanting GBM astrocytes at various cell numbers 

subcutaneously into left and right side flanks (top and bottom). These cells were treated with 
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EGF for one week (50ng/ml) followed with a 0.05% DMSO or 500 nM JQ1 treatment for 24 

hours. 1 million, 500,000, 100,000 or 5000 cells were then harvested and resuspended in 100 µl 

of 1:1 media to matrigel (BD Biosciences) and injected into the four flanks of mice. Mice were 

monitored weekly and tumor growth was monitored blindly for 7-8 weeks with thrice weekly 

micrometer measurements in 3 dimensions. Animals were used in accordance with an animal 

studies protocol (no. 20150177) approved by the Animal Studies Committee of the Washington 

University School of Medicine per the recommendations of the Guide for the Care and Use of 

Laboratory Animals (NIH).  

 

3.3.7 shRNAs lentiviral infection and knockdown of Brd2 and Brd4 

Brd2 and Brd4 knockdown lines were generated by infecting male and female GBM cells 

(Nf-/-;DNp53 astrocytes) with lentiviral shRNAs against Brd2 or Brd4. We used a pool of 5 

shRNAs for Brd4 as well as Brd2.  Both Brd2 and Brd4 Knockdown lines were selected with 

puromycin (2.5 µg/ml) in media for 1-2 weeks and the survivors were expanded for 

downstream target knockout analysis.  

 

3.3.7 Quantitative Real-Time PCR 

Total RNA was isolated using Trizol RNA extraction method (Invitrogen, CA) from male 

and female GBM cells (Nf-/-;DNp53 astrocytes) infected with shRNAs lentivirus against Brd2 

or Brd4. cDNA was generated using the QuantiTect Reverse Transcription Kit (Qiagen). 

Quantitative RT-PCR was performed using gene-specific primers and iTaq SYBR Green PCR 

master mix (Biorad, CA). Data was analyzed by standard ΔCq method (2-ΔΔCq) where ΔCq is 

the difference between the gene of interest and GAPDH control Cq value.  
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3.3.7 Statistical analysis 

All experiments in this study were carried out at least three times. ANOVA and two-tailed 

Student’s t-test were used to compare the differences in all functional measurements between 

JQ1, RVX-208 and control group (DMSO), and a p-value < 0.05 was considered statistically 

significant. 

To test if upregulated genes in male cells compared to female cells and vice versa are 

significantly enriched for H3K27ac binding, the normalized H3K27ac signal intensities (reads) 

from 1kb upstream of the gene start site to 1kb downstream of the end of the gene were used for 

the correlation analysis. A paired Mann-Whitney-Wilcoxon test was used to compare 

normalized H3K27ac signal intensities between male and females cells and a p-value less than 

0.01 was considered statistically significant.  

To investigate if Brd4-proximal genes are significantly downregulated upon JQ1 

treatment compared to Brd4-distal genes, we first defined Brd4 proximal genes as the closest 

genes to Brd4 binding sites and Brd4 distal genes as genes located near sites that are not 

enriched for Brd4 binding sites(353 male genes and 292 female genes). The expression profiles 

before and after JQ1 treatment of Brd4 proximal and distal genes were used for a Mann-

Whitney-Wilcoxon test for male and female respectively and a p-value less than 0.01 was 

considered statistically significant. 

 

3.3.7 TCGA human GBM data analysis 

Level 3 RNA-seq gene expression data for TCGA GBM samples were obtained from the 

Broad GDAC Firehose data portal. Clinicopathologic data for the GBM samples were obtained 
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from the cBioPortal for cancer genomics. Only tumor samples that represented primary tumors 

were used and recurrent tumor samples were excluded from the analysis. In total, gene 

expression and clinicopathologic data of 98 males and 53 females were used in this analysis. 

To identify sex differences in overall survival (OS) outcomes for Brd4 in GBM patients, 

male and female patients were stratified into different expression groups and differences in 

survival outcomes among groups were then assessed 116. The Brd4 gene expression value was 

first transformed into a z-score that was specific to the sex of the patient, and the patients were 

grouped into high expression group (Z > 1.0) and low expression group (Z < -1.0). The patient 

groups of each sex were associated with survival endpoints by the Kaplan-Meier method, and 

log-rank test was used to compare survival difference among groups. High expression and low 

expression groups were analyzed separately. 

 

3.3.7 Data availability 

All Illumina sequencing reads and processed file have been deposited in the Short Read 

Archive/GEO database (http://www.ncbi.nlm.nih.gov/geo/). 
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Chapter 4  
High-throughput functional identification of 
enhancers using a CRE recombinase-
mediated reporter assay 
 

4.1 Abstract 

Enhancers are DNA sequences that regulate the timing, tissue-specificity, and level of gene 

expression. Developmental enhancers are critical determinants of normal organismal 

development and cellular differentiation 134, and changes in their functions likely underlie 

biological processes ranging from cell fate decisions to disease susceptibility 37, 46, 135. Despite 

their importance, genome-wide discovery of developmental enhancers remained challenging 136. 

Here, we developed a CRE recombinase-mediated method for the functional identification of 

active enhancers at different time periods of development, named as Developmental Enhancer 

Sequencing (DevEn-seq). Genomic integration of a single copy enhancer and a CRE reporter 

assay are coupled with high-throughput sequencing to enable parallel screening and tracking of 

large numbers of enhancer candidates. We demonstrated that DevEn-seq is able to detect 

enhancers more efficiently than regular reporter methods and trace enhancer activities without 

being disturbed by the gene silencing effect caused by lentiviral sequences. By functionally 

interrogating >500 kilobases (kb) of mouse sequence in mouse embryonic stem cells for 

enhancer activity, we identified 38 enhancers at pluripotency loci with a positive predictive value 

of 80%. With an in vitro neural differentiation protocol, we identified two neural progenitor-
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specific enhancers around HB9 and Olig2 genes. DevEn-seq is a high throughput method for 

functional identification and tracking of enhancer activities throughout cellular differentiation. 

 

4.2 Introduction 

The ability to create distinct cell types is fundamental for the development of multicellular 

organisms. Since all cells in an organism contain the same genes, cellular diversity is achieved 

through the distinct regulatory DNA elements or enhancers throughout the genome that control 

the spatial and temporal expression patterns of specific sets of genes, leading to a cell’s 

specialized role134. Developmental enhancers are frequently tissue-specific or cell type-specific35-

37 and provide the genomic landscapes required for the binding of key TFs that drive cell-specific 

gene expression programs135. Despite their importance, developmental enhancer discovery has 

remained challenging and their regulatory role has not been characterized in detail because 

understanding these regulatory mechanisms requires the global functional identification of 

differentially active enhancers in development137.  

Genome-wide approaches for enhancer identification are mostly based on the indirect 

assessment of enhancer-associated markers such as histone modifications and binding of 

transcription factor p300 by ChIP-seq or DNase digestion followed by sequencing (DNase-

seq)138. Currently, there are two general strategies for the genome-wide prediction of enhancers: 

1) Deep sequencing of DNase I-hypersensitive sites (DNaseI-HS seq) 139 or formaldehyde-

assisted isolation of regulatory elements sequencing 140 (FAIRE-seq), which allow for the 

mapping of open chromatin; 2) Chromatin immunoprecipitation followed by deep sequencing 141 

(ChIP-seq) enables the detection of regulatory (e.g., TF or cofactor) binding sites and enhancer 

associated histone modifications [e.g., histone 3 (H3) Lys4 monomethylation (H3K4me1) or H3 
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Lys27 acetylation (H3K27ac)]. These methods have provided an expanded view of chromatin 

landscapes as well as insights into the relationship between active enhancers and the dynamics of 

chromatin modification and remodeling. However, one limitation of these approaches is that they 

are associated with false positive and false negative errors because they lack a direct functional 

or quantitative readout of enhancer activity and putative enhancers predicted this way requires 

further functional validation by reporter assays142, 143. In addition, the genomic loci defined by 

these marks typically span several kilobases (kb) and are generally too broad to define the 

specific DNA sequences mediating enhancer function.  

Functional approaches for identifying active enhancers rely on functional assays of 

individually transfected reporter plasmids harboring putative regulatory regions144, but most of 

these assays do not scale to the millions of tests required for global identification of enhancers. 

Recently, several groups have developed massively parallel reporter assays (MPRAs) that permit 

the simultaneous analysis of hundreds of thousands of reporter plasmids and, thereby, a 

functional assessment of the transcriptional-activation properties of large numbers of genomic 

regions 142, 143, 145. However, MPRAs have primarily been used as a way to dissect the functional 

components of previously identified transcriptional regulatory DNA elements rather than as a 

tool for the discovery or screening of enhancer in mammalian cells. Even with these advances, 

the enormous size and complexity of mammalian genomes, and the concomitant number of 

required reporter plasmids, remain among the primary challenges to using functional approaches 

for the de novo discovery of enhancers.  

More recently, two high-throughput functional approaches for enhancer identification have 

been developed: self-transcribing active regulatory region sequencing (STARR-seq) and 

enhancer-FACS-seq (eFS) 146, 147. In STARR-seq, sheared DNA fragments are inserted within a 
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noncoding portion of the reporter plasmid transcription unit, and enhancer activity is detected in 

transfected cells by the ability to self-transcribe, permitting identification of 5,499 elements 146. 

eFS instead is a highly parallel functional screen for identifying developmentally relevant, 

mesodermal-specific enhancers within developing Drosophila embryos 147. Although both 

STARR-seq and eFS are elegant systems for enhancer discovery in Drosophila, their successful 

application to the analysis of large mammalian genomes is uncertain. Either human or mouse 

genome is roughly 23 times larger than that of D. melanogaster, suggesting that initial STARR-

seq libraries would require over 200 million unique plasmids, and a preliminary study using 

STARR-seq analysis of human DNAs identified only six enhancers from a plasmid library 

consisting of 1.3-million unique genomic regions derived from 1 Mb of human DNA. In 

addition, STARR-seq relies on transient delivery of enhancer-reporter plasmids, limiting the use 

of these methods to a small number of easily transfected cell types. Furthermore, the relevance of 

STARR-seq identified enhancers to endogenous gene expression is less clear, as many 

correspond to closed chromatin regions. eFS focuses on potentially relevant portions of the 

genome, but an eFS-like approach using transgenic mouse embryos for screening genomic 

segments would be prohibitively expensive for most researchers.  

Here, we developed a high-throughput functional method to identify enhancers and track 

their activity changes at different stages of cellular development. We first utilized a CRE-

reporter embryonic stem cell (ESC) line that has a single copy transgene integrated at the Rosa26 

locus of the mouse genome148. The transgene contains a strong and ubiquitously expressed CAG 

promoter followed by a loxP-flanked (‘floxed’) stop cassette-controlled red fluorescent gene 

(RFP) (Fig. 4.1). We position the enhancer fragments upstream of a CRE recombinase gene in a 

lentiviral transfer vector to produce lentivirus, which permits the individual assessment of 
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enhancer activity of millions of fragments at the lentiviral integrated genomic loci. If the 

integrated lentiviral transgene harbors an active enhancer that is able to drive the CRE 

expression, CRE will flip out the stop cassette and in turn activate the expression of RFP within 

the CRE-reporter ESC (Fig. 4.2). The ubiquitously expressed RFP at Rosa26 locus then becomes 

a permanent marker for that enhancer element activity in the lentiviral transgene and survives the 

cellular division and differentiation. After in vitro differentiation of the transduced CRE-reporter 

ESCs, the RFP positive and negative cells along each cell lineage are collected by fluorescence-

activated cell sorting (FACS). The enhancer elements within the RFP positive cells and the 

corresponding non-enhancer elements in RFP negative cells are recovered by PCR and 

sequenced by Illumina HiSeq, which produces a genome-wide map of lineage-specific enhancers 

in development. 

To control the tracing time window, we created a chimeric protein consisting of CRE fused 

to the ligand binding domain of the estrogen receptor (ERT2, Fig. 4.2). The fusion protein is 

constitutively expressed but sequestered outside of the nucleus by binding to the cytoplasm-

anchored protein HSP90. The treatment of ER antagonists (4-hydroxy tamoxifen; 4OHT) causes 

the fusion protein to translocate into the nucleus and recombine the loxP sites16. To obtain a high 

temporal resolution of the enhancer activity along development, we used a degradation domain 

of ERT2 that confers short protein half-life and attached it to both N and C terminus of the CRE 

(dERT2:CRE:dERT2). The lentiviral transgenes carrying candidate enhancers corresponding to 

each time window were recovered and sequenced.  

 



 72  
   

 

Figure 4.1 Schematic diagram of the gene targeting strategy to generate CRE-reporter cell 

line. The CRE-reporter cassette was inserted into the Rosa26 locus, in the intron between 

endogenous exons 1 and 2. 

 

 

Figure 4.2 Overview of CRE-mediated enhancer screen. DNA test fragments containing 

putative enhancers are linked to an inducible CRE and then are integrated into genome by 

lentiviruses. After drug selection, each cell in the library contains no more than one candidate 

fragment. If the enhancer is active in a cell, CRE recombinase will be expressed and remove a 

stop codon in an RFP reporter and permanently generate red cells in itself and its progeny. RFP-
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expressing cells are isolated by flow cytometry, and presumptive enhancer sequences from these 

cells are amplified and sequenced. ES cell libraries can be differentiated in vitro before sorting. 

 

4.3 Results 

4.3.1 Active enhancers can be efficiently detected using a CRE reporter assay. 

Current methods for functional identification of enhancers use a basal vector in which a 

minimal promoter is positioned in front of a reporter. The enhancer fragments are cloned 

upstream of this minimal promoter to test their transcriptional activity. To develop our CRE-

mediated enhancer identification methodology, we first sought to engineer a minimal promoter 

from which the basal expression of the CRE protein in the absence of an enhancer should be 

below the level of recombination required to trigger reporter (RFP) expression. A total of five 

minimal promoters that have been successfully applied for fluorescence or LacZ-based enhancer 

detection were evalutated: heat shock protein 68 (HSP68)149, β-globin (HBB)150, oncogene c-fos 

(cFOS)151, fibroblast growth factor 4 (FGF4)152, and super core promoter (SCP)146. These 

minimal promoters were cloned upstream of CRE with and without CMV enhancer (CMVE). 

The CRE-reporter ESCs were transfected with these constructs and the percentage of RFP 

positive cells were measured by FACS. As shown in Fig 4.1, the basal transcriptional activity of 

all five minimal promoters is different: SCP, HBB, and FGF4 are all below 0.5% while cFOS 

and HSP68 are 2% and 5%, respectively. The addition of CMV enhancer increases the RFP 

positive cells significantly for all five minimal promoters and the percentage ranges from 30% to 

45% (p>0.05). For an enhancer identification assay, a lower basal activity and higher signal are 

optimal. Therefore, we calculated the induction fold change as the ratio of RFP positive cells 

observed in the CMV enhancer-driven construct to those in the corresponding non-enhancer-
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driven construct and chose FGF4 minimal promoter for the CRE-mediated assay because its ratio 

is the highest among all five. 

 

Figure 4.3 Optimization of minimal promoters for the CRE-mediated enhancer 

identification. Five minimal promoters were cloned upstream of CRE gene with (red) and 

without (grey) a CMV enhancer (CMVE). 

 

4.3.2 CRE activity can be induced by a degradation domain of ERT2 

To assess the enhancer activity in a specific time window during a differentiation process, 

we created a chemically inducible CRE by fusion to a regular or degradable ERT2 (dERT2) 

domain. The ERT2 fusion protein is sequestered outside of the nucleus by binding to the 

cytoplasm-anchored protein HSP90 and is released from the inactive complex in the presence of 

4-OHT153. To have an optimal inducible CRE, three CRE variants were created. Single and 

double copies of the ERT2 domain were fused to CRE (ERT2:CRE and ERT2:CRE:ERT2), and 

double copies of degradation domain of ERT2 (dERT2) were fused to CRE 

(dERT2:CRE:dERT2). These CRE variants were evaluated on two parameters: 1) the enzymatic 

activity of the fusion protein relative to that of the unfused one and 2) the fold induction between 

induced and non-induced states. As shown in Fig 4.2, three CRE variants have similar activities 
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to unfused CRE (p>0.05), suggesting that the attached ERT2 domain does not significantly affect 

the CRE activity, regardless of the N and C-terminal fusions. In terms of inducibility, 

ERT2:CRE:ERT2 and dERT2:CRE:dERT2 fusion proteins showed similar induction fold and a 

much higher than the CRE:ERT2 variant (p<0.05), indicating that two copies of the ERT2 

domains increase the inducibility significantly than single copy. Taken together, 

ERT2:CRE:ERT2 and dERT2:CRE:dERT2 fusion proteins both have good enzymatic activity 

and inducibility and are therefore optimal candidates for CRE-mediated reporter assay. 

We next evaluated the half-life of the fusion protein dERT2:CRE:dERT2 and 

ERT2:CRE:ERT2 because the rate at which the inducible CRE degrades defines the temporal 

resolution of the CRE-mediated reporter assay. To have a high temporal resolution, the inducible 

CRE synthesized earlier should degrade quickly to an extent that CRE “carryovers” would not 

interfere with newly synthesized CRE upon induction. To compare the half-life of the fusion 

protein of ERT2:CRE:ERT2 and dERT2:CRE:dERT2, mRNAs from both CRE variants were 

synthesized by in vitro transcription and transfected into the CRE reporter ESCs treated with cell 

cycle inhibitor (abl kinase inhibitor). Chemical inducer 4OHT was added into the culture 

medium to activate the CRE-mediated system at different time points ranging from 0h to 72h 

posttransfection and the percentage of RFP positive cells was measured. As shown in Fig 4.2 B, 

the percentage of RFP positive cells transfected with dERT2:CRE:dERT2 mRNA drops 

significantly compared to those transfected with ERT2:CRE:ERT2 mRNA, suggesting that the 

half-life of dERT2:CRE:dERT2 is shorter than ERT2:CRE:ERT2. This result is expected 

considering that degradation domain is unstable154 and demonstrates that dERT2:CRE:dERT2 is 

able to offer a higher temporal resolution for the CRE induction system.  
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Figure 4.4 Development of an inducible CRE system a degradation domain of ERT2. (A) 

Evaluation of the inducible CRE systems made from different CRE-ERT2 fusion variants. (B) 

Estimation of the degradation time of inducible CRE variants. 

 

4.3.3 CRE-mediated enhancer identification has a higher sensitivity than a regular 

fluorescence-based assay 

We next investigated whether enhancers placed upstream of the FGF4 minimal promoter 

and CRE variants could be efficiently identified compared to a regular reporter assay which 

places enhancer fragments upstream of fluorescent protein. We selected three active enhancers: 

SP1 enhancer (SP1E), CMV enhancer (CMVE), SV40 enhancer (SV40E) and one non-enhancer 

(NE) marked by intensely dense chromatin in a gene desert region. CRE reporter ESCs were 

transiently transfected with the enhancer-driven and non-enhancer-driven constructs and the 

percentage of RFP positive cells were measured. As shown in Fig 4.3, non-enhancers showed no 

signal using either method, while active enhancers showed a significantly higher percentage of 

positive cells in all variants of CRE-mediated enhancer identification than a regular RFP based 
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assay (p<0.05), indicating that CRE-mediated enhancer identification has a higher sensitivity 

than a regular fluorescent-based assay.  

 

Figure 4.5 Comparison of the regular fluorescent based enhancer identification with CRE-

mediated enhancer assay. One non-enhancer sequence (NE) and three enhancer sequences 

(SP1E, CMVE and SV40E) were cloned upstream of RFP reporter gene to measure their 

transcriptional activity. In the meanwhile, these sequences were positioned upstream of three 

CRE variants individually to tested enhancer activity. The readout is the percentage RFP positive 

cells for both methods. 

 

4.3.4 Neural differentiation of CRE-reporter ESCs generates motoneurons, astrocytes, and 

oligodendrocytes 

To develop an in vitro cell culture differentiation system, we adapted a protocol from the 

Sakiyama-Elbert lab to differentiate the ESCs to neural lineages: motorneurons, 

oligodendrocytes, and astrocytes155, 156. This in vitro cell differentiation protocol consists of 

culturing whole embryoid body (EB) aggregates on gelatinized plates in DFK5 media containing 

retinoic acid (RA) and sonic hedgehog agonist (SAG), dissociating induced EBs (day 6), and 
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plating the single cells on poly-ornithine plates for 7-10 days (Fig 4.4 A). The fully differentiated 

cells were stained with cell-type specific antibodies against beta-tubulin class II to mark neurons, 

Olig2 to mark oligodendrocytes, or GFAP to mark astrocytes. We observed all three neural 

lineages in roughly in equal amounts (Fig4.4 B), suggesting we are able to obtain an unbiased 

representation for each cell type in a single differentiated culture.  

 

Figure 4.6 Neural differentiation of CRE-reporter ESCs. (A) Timeline of the neural 

differentiation protocol. (B) Antibody staining of neurons, astrocytes, and oligodendrocytes. 

Differentiated ESCs were stained with antibodies against beta-tubulin class II to mark neurons 

(a), GFAP to mark astrocytes (b), or Olig2 to mark oligodendrocytes (c). Nuclei were stained 

with DAPI. Phase contrast and fluorescent images were positioned at the top and bottom, 

respectively.  
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4.3.5 Enhancer activity can be tracked during neural differentiation of ESCs 

To test if CRE-mediated enhancer identification can track a given enhancer’s activity 

through neural development, we selected three genes that are transcriptionally active at three 

different stages of neural differentiation: Nanog, Nestin, and ChAT(choline acetyltransferase), 

corresponding to the ESC, embryoid body (EB), and mature neuron stages, respectively90, 157-159. 

The enhancer element of each candidate gene was previously identified160-162. We then PCR-

amplified these enhancers and individually positioned them upstream of dERT2:CRE:dERT2 in 

a basal lentiviral screen vector. We also included EF1 promoter and non-enhancer sequence as 

positive and negative controls. CRE reporter ESCs were transduced with these lentiviruses 

individually and selected under blasticidin S deaminase (BSD) for 5 days to obtain polyclonal 

cell populations for each transduction. The polyclonal cell populations were further induced with 

4-OHT at three developmental stages: ESC, EB, and mature neuron respectively as shown in Fig 

4.5. The cells transduced with positive and negative enhancer sequences showed consistently 

high and low percentages of RFP positive cells in all three developmental stages, respectively, 

indicating validity of the assay (Fig 4.5). At the ESC stage, sequence from Nanog showed a 

significantly higher RFP positive percentage than any other enhancers (p<0.05). At EB and 

mature neuron stages, cells with Nestin and CHAT enhancer sequences demonstrated the highest 

percentages of RFP positive cells, respectively (p<0.05). These results are consistent with 

previous findings160-162 and suggest that enhancers active at different stages or time periods can 

be efficiently detected by the CRE-mediated assay.  
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Figure 4.7 Enhancer strength assayed at three stages of the neural differentiation. Positive, 

negative and three enhancer sequences (Nanog, Nestin, and ChAT) were tested by CRE-

mediated enhancer assay at the three stages of neural differentiation: (A) ESC, (B) EB and (C) 

MN. The RFP positive cells were measured at each stage. “**” indicates a p value less than 0.01. 
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4.3.6 DevEn-Seq accurately identifies mouse ES cell enhancers 

To identify mouse ESC enhancers, we constructed an enhancer library by shearing a pool 

of 6 bacterial artificial chromosomes (BACs) containing genes of interest into ~500bp fragments 

(Fig 4.2). The BACs contain the pluripotency genes Sox2, Oct4, and Nanog that all have a high 

density of sites marked with H3K27ac or the histone acetyltransferase p300 at the ESC stage, 

both strong predictors of enhancer activity160. The BACs also cover HB9 and Olig2 genes. The 

HB9 gene is active at the neural progenitor cell (NPC) stage and promotes motoneuron cell155, 

163. The Olig2 gene is expressed in motoneuron progenitor cells in two waves. The first wave of 

expression acts to produce motoneurons, the second, oligodendrocytes164-166. We cloned the 

sheared BAC fragments upstream of dERT2:CRE:dERT2 under the control of FGF4 minimal 

promoter in a basal lentiviral vector and produced the lentiviruses from the lentiviral plasmid 

library. CRE reporter ESCs were transduced with the lentiviral library and selected under BDS 

for 3 days to remove cells that do not have lentiviral integration, while maintaining leukemia 

inhibitory factor (LIF) in the medium to maintain pluripotency. To identify the active enhancers 

present at the ESC stage, the chemical inducer 4OHT was applied immediately after BSD 

selection to activate the CRE-mediated enhancer detection system and RFP positive and negative 

cells were sorted. To calibrate the sorting process, we used cell populations transduced with 

lentiviruses that have non-enhancer and EF1 promoter driving inducible CRE as negative and 

positive controls, respectively. Fig. 4.6 showed that cells from the negative control showed 

universally low reporter expression, in contrast to the positive control, in which the majority of 

cells showed strong RFP expression. The BAC enhancer library from randomly sheared BACs 

contained a small population of cells with robust reporter expression and a large population with 

negligible reporter expression, which is expected considering that any given genomic locus is 
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likely to harbor only a few enhancers active in any given cell type137. We collected the RFP 

positive cells which are expected to contain an enhancer activating the CRE-reporter system and 

RFP negative cells that are expected to have a transcriptionally inactive non-enhancer. We then 

amplified the enhancer candidate sequences in these harvested cells by PCR using universal 

primers that recognize the sequences flanking the enhancer site, sequenced enhancer amplicons 

using high-throughput sequencing technology, and mapped the reads to the BAC reference 

sequence. To check the coverage or distribution of the enhancer fragments, we also amplified 

and sequenced fragments present in the plasmid library and mapped it back to the BAC 

sequences. We found that the enhancer fragments from the plasmid library cover ~90% of all 

BAC sequences and the locus shown specifically in Fig. 4.7 showed 100% coverage of the 

selected region. Functionally active enhancers (Fig. 4.7 row4) were defined as those sequences 

that showed a significant enrichment in the fluorescent cell population (Fig. 4.7 row2) relative to 

the negative population (Fig. 4.7 row3). For DNA regions around pluripotent genes, a total of 48 

enhancer regions were identified (Fig. 4.8 A). 

 

Figure 4.8 Graphs of FACS for cell soring.  The plots show fluorescent intensity of RFP 

reporter gene for negative control (no RFP expression) and positive control (strong RFP 
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expression), and ES cells transduced by lentiviral library. Points represent unique cells. Red dots 

in P4 delineate the gate for cells considered positive for reporter gene expression.  

 

 

Figure 4.7 Genome browser view of enhancer peaks. Sequencing reads from input plasmid 

library, RFP negative cells, RFP positive cells were uniquely mapped. To identify enhancer 

peaks, the ratio of reads from positive over negative cells is calculated. 

 

To confirm the accuracy of the method, we examined the enhancer activities of 20 

candidate enhancer sites out of a total of 32 identified by DevEn-seq and an additional 19 sites 

with no enhancer activity (referred to as ‘non-enhancer’). Each site was amplified from the 

genome and then cloned upstream of unfused CRE under control of the FGF4 minimal promoter 

for validation. The CRE-reporter ESCs were transfected with these constructs and the percentage 

of RFP positive cells was measured. We observed robust enhancer activity for 16 of the 20 

(80%) DevEn-seq predicted enhancers (Fig. 4.8 B). This is in contrast to the sequences predicted 

to have no enhancer activity by DevEn-seq, 16 of 19 (84%) had negligible reporter expression. 

Collectively, the enhancers predicted by DevEn-seq drove significantly higher reporter 

positive2
negative

input

negative

positive



 84  
   

expression than those that were predicted by DevEn-seq to have no enhancer activity (p<0.05). 

The high validation rate in these complementary assays demonstrates the accuracy of 

identification of enhancers by DevEn-seq. To further estimate the positive predictive value, we 

overlapped the active enhancer peak regions with evidence of DNaseI hyper-sensitivity (HS) and 

histone modifications H3K27ac. Almost ~85% of the active enhancer peaks harbored at least one 

of these two enhancer markers. Taken together, these results showed that DevEn-seq is able to 

identify active enhancers at the ES cell stage with a high positive predictive value of ~85%. 

 

Figure 4.9 Mouse ESC enhancers identified by DevEn-Seq. (A) Mouse ESC enhancers 

(purple peaks) from pluripotent genes Sox2, Nanog and Oct4 loci. Enhancer peak represents 

(normalized RFP positive read depth)2 /normalized RFP negative read depth. Peak signals >1 

represent sequences enriched in the RFP positive population relative to the negative ones. For 

simplicity, only DevEn-seq signal is shown. (B) Validation of mouse ESC enhancers and non-

enhancers identified by DevEn-seq. Candidate enhancer and non-enhancer regions were marked 

by red and blue rectangles in A. A total of 20 enhancers (red dots in B and red rectangles in A) 

and 19 non-enhancers (blue dots and blue rectangles in A) regions were tested by CRE-mediated 

reporter assay individually. The dash line indicates the cutoff for positive and negative results. 
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Validated and non-validated sequences were marked by solid and dash rectangles respectively in 

(A). 

 

4.3.7 DevEn-Seq can identify developmental enhancers during neural differentiation 

To identify enhancers that are active at neural progenitor cell (NPC) stage during neural 

differentiation, we used the polyclonal ESCs obtained from previous experiment and initiated the 

CRE-mediated enhancer assay by 4OHT when EBs were induced to generate motoneurons from 

Day4 to Day6 (Fig4.9 A NPC-MN). As for control and comparison, we included two additional 

time windows for induction and harvest: 1) induction from ESC Day -1 to ESC Day -3 and 

harvest at ESC Day -3 (Fig 4.9 A ES-ES) and 2) induction from ESC Day -1 to MN  Day 10 and 

harvest at MN Day 10 (Fig 4.9 A ES-MN). For each experiments, both RFP positive and 

negative cells were collected by FACS for PCR amplification and sequencing. The sequencing 

reads were mapped back to BAC reference and peaks for each condition were called. To identify 

NPC specific enhancers, we compared peaks in condition of NPC-MN to the other two 

conditions and found that a cluster of peaks around HB9 gene were enriched for the read depths 

(Fig. 4.9 B, red rectangle), suggesting that this enhancer element may play a role in specifying 

NPC fate. Previous studies155, 163 on HB9 gene indicate that this NPC specific enhancer region 

matches the highly conserved enhancers of HB9 and is used for purifying NPC-derived 

motoneurons from a mixture of other neural cell types including oligodendrocytes and 

astrocytes. In addition, we found two peaks enriched around Olig2 gene (Fig. 4.9 C, red 

rectangle), which are consistent with what previously found to be NPC-specific regulatory 

sequences167, 168. These results suggest that DevEn-seq can identify cell type specific enhancers 

during neural differentiation throughout development.  
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Figure 4.10 NPC-specific enhancers identified by DevEn-seq. (A) Timeline of neural 

differentiation. Red line indicates the induction time window and the black arrow denotes the 

starting and ending points for each experiment. (B and C) Genome browser view of the enhancer 

peaks from three conditions. The peaks in the red rectangle at condition of NPC-MN indicates 

the NPC specific enhancers around HB9 gene (B) and Olig2 gene (C).  

 

4.4 Discussion 

Regular methods for functional identification of enhancers place enhancer fragments 

upstream of a minimal promoter and a reporter to test its transcriptional activity. One major 
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concern is that the integrated lentiviral sequences become methylated and repressed during 

differentiation, regardless of the sequences driving the reporter, causing the initial positive 

signals to disappear from the differentiated cells 152. DevEn-seq positions the enhancer fragments 

upstream of a CRE gene that initiates the cascade reactions to activate the ‘real’ reporter. By 

adopting CRE/loxP system and a CRE-reporter cell line, the reporter gene is not in the lentiviral 

transgene but was transferred to the Rosa26 locus, a ubiquitously expressed locus that survives 

the methylation-driven gene silencing in development 148.  

DevEn-seq also has a higher sensitivity than regular methods that use fluorescent protein as 

reporter because the amount of CRE recombinase required to activate the CRE/loxP system is 

lower than that of fluorescent reporter protein to be detected by FACS. In addition, once the 

CRE/loxP system is activated, the reporter of DevEn-seq is under a strong CAG promoter at 

Rosa26 locus, which can provide a strong and ubiquitous expression of the reporter gene. 

By functionally interrogating >500 kilobases (kb) of mouse sequence in mouse embryonic 

stem cells for enhancer activity, we identified 38 enhancers at pluripotency loci with a positive 

predictive value of 80%. With an in vitro neural differentiation protocol, we identified two neural 

progenitor-specific enhancers around the HB9 and Olig2 genes. This demonstrated that DevEn-

seq can be used to trace enhancer activity without being disturbed by the gene silencing effect 

caused by lentiviral sequences and is limited only by currently available stem cell differentiation 

methods. 

The need for high-throughput assays to directly interrogate enhancer activity has led to the 

recent development of multiplex methods to functionally assess genetic regulatory elements 142, 

143, 146, 147, 169-171. However, most of these methods rely on transient delivery of enhancer-reporter 

plasmids, limiting the use of these methods to a small number of easily transfected cell types. 
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Furthermore, many enhancers have been shown to have negligible or different activity when 

tested in transient assays but robust activity when integrated into the genome 172-174. This 

suggests that transient delivery of enhancer-reporter constructs may not recapitulate the native 

chromatin environment found in chromosomes, which may be necessary for proper gene 

regulation. DevEn-seq improves substantially on these previous methods by assessing 

mammalian enhancer activity in a genomic context and in a potentially much wider variety of 

cell types. 

The number of putative enhancers assessed in a single DevEn-seq experiment is currently 

limited by the transduction efficiency in mouse ES cells. For the experiments described, 

lentiviral genome integration occurred in approximately one in 105 mouse ES cells at an MOI of 

0.3. Due to the enormous size of mammalian genomes, performing unbiased enhancer discovery 

across an entire genome may therefore prove too experimentally arduous for DevEn-seq. New 

technologies to improve stem cell permissiveness to HIV-derived lentiviral vectors and relieve 

host lentiviral restriction blocks may improve this integration efficiency and thereby increase the 

throughput of this approach175. Alternatively, limiting the library or search space to the 

accessible cellular chromatin that are most relevant for endogenous transcriptional regulation 

could potentially allow for a more efficient enhancer screening by DevEn-seq. It was previously 

shown that the efficiency of identifying biologically relevant transcriptional regulatory elements 

can be dramatically increased by focusing on DNA isolated from nucleosome-free regions 

(NFRs) 176, 177 (i.e., genomic regions in which nucleosomes are relatively depleted and/or highly 

destabilized). Notably, NFRs represent only 2% of chromatin. Thus, by focusing functional 

analysis on NFR-derived DNA reduces the search space to the most relevant portions of the 

genome and eliminates the need for a whole genome screen. 
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As mounting evidence for enhancer’s contributions to development and human disease, the 

identification of enhancer elements in different cell types and under different biological 

conditions is currently of high priority in biomedical research. DevEn-seq will help to overcome 

the limitations currently curbing the ability to functionally identify or validate large numbers of 

putative enhancers directly in many disease-relevant cell types throughout development. For 

example, DevEn-seq has the potential to decrease the need for transgenic mice to test enhancers 

active in specific cell types. Moreover, future development of DevEn-seq could allow for the 

more comprehensive study of the roles of enhancers in human disease and ultimately guide the 

reprogramming of embryonic or induced pluripotent stem cells to produce specific cell types for 

personalized transplants, such as pancreatic beta cells to treat diabetes. 

 

4.5 Method 

4.5.1 Constructing plasmid libraries 

BACs that contain the genes of interests were ordered from the BACPAC Resource Center 

at Children's Hospital Oakland Research Institute. BAC DNA was isolated by MACHEREY-

NAGEL NucleoBond® Xtra BAC kit and sheared with a Covaris S220/E220 Focused-

ultrasonicator using parameters of generating ∼1kb long DNA fragments. The fragmented DNA 

were further size-selected using 1% agarose gel. Illumina Multiplexing Adapters were ligated to 

1µg size-selected DNA fragments using Accel-NGS® 2S Plus DNA Library Kit (Swift 

Bioscience) following manufacturer’s instructions. The screening vector was linearized by a 16-

hour digestion with MreI (Thermo Fisher Scientific) and AscI (NEB), followed by agarose gel 

electrophoresis and QIAquick gel extraction.  
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The adapter-ligated fragments were recombined to the linearized screening vector by In-

Fusion HD kit (Clontech) in a total of 2 10ul reactions. The In-Fusion HD reactions were pooled, 

ethanol precipitated and eluted in 20µl EB [10mM Tris-HCL, pH 8]. Two aliquots (40 µl each) 

of MegaX DH10B Electrocompetent Bacteria (Invitrogen) were transformed with 10µl eluted 

DNA each, according to the manufacturer’s protocol. After one hour recovery at 37 °C, two 

transformation reactions were pooled and grown on six LB-AMP 245mm x 245mm plates 

(Corning). The plasmid libraries were extracted using Plasmid Maxi kit (Qiagen). 

 

4.5.2 Preparation of lentiviral libraries 

The lentiviral libraries were prepared by the Hope Center viral core at Washington 

University School of Medicine as previously described [Production of Lentiviral Vectors for 

Transducing Cells from the Central Nervous System]. Lentiviral titres will be determined in 

triplicate by transducing 1 × 105 HT1080 cells with serial dilutions of concentrated viruses 

(1:100 to 1:10000). After 72h incubation, the genomic DNAs of each transduced samples will be 

extracted. The six point standard curves from 106 to 102 copies will be generated by serial 

dilution of lentiviral gene and human gene (Albumin) fragments respectively. The number of 

lentiviral gene copies will be determined by quantitative PCR (qPCR) with primers recognizing 

the lentiviral LTRs while number of mouse genomes will be determined using primers 

recognizing a unique human gene (Albumin). Titres will be determined according to the 

following formula (Fig 4.11) and expressed as transducing units/mL (TU/mL). The titres will be 

used to balance the differences of infectious efficiency for each batch of viruses, ensuring the 

consistency of the experiment. 
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Figure 4.11 The formula for calculating the lentiviral titre. 

 

4.5.3 Transduction of lentiviral libraries and drug administration 

Mouse ESCs were transduced at a MOI of 0.2 to ensure that a majority of cells (~90% 

according to Poisson distribution) was transduced with a single-copy viral integration. To 

increase the likelihood that any given BAC-lentiviral fragments would be represented, the 

number of cells transduced was equivalent to more than 30 times each library’s complexity. 

Considering the MOI of 0.2, xxx × 106 ESCs were plated in complete ESC medium plus LIF in 

feeder-free conditions on a 10-cm gelatin-coated dish 1 d before transduction. The cells were 

then transduced overnight in 10 ml of complete ESC medium plus 10 µg/ml Polybrene. The 

following day, the medium was replaced with fresh ESC medium plus LIF. Blasticidin selection 

was initiated 4 d post transduction in ESC medium/LIF containing 5 µg/ml Blasticidin S. Cells 

were selected for Blasticidin resistance for 5 d, with medium changed daily. To activate the cre-

mediated enhancer identification, cells were treated with 1 µM 4-hydroxy tamoxifen (4OHT, 

Sigma) and maintained for at least one day for full activation. 

 

4.5.4 Neural differentiation 

Mouse ESCs were differentiated into neurons, oligodendrocytes and astrocytes using a 

retinoic acid (RA) and smoothened agonist (SAG) induction protocol as described 93. Briefly, 

ESCs were cultured in suspension on low attachment plates (Corning) in modified DFK5 media 

consisting of DMEM/F12 base media (Gibco) containing 5% knockout serum replacement, 1 × 
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insulin transferrin selenium, 50 µM of nonessential amino acids, 100 mM of BME, 5 mM of 

thymidine, and 15 mM of the following nucleosides: adenosine, cytosine, guanosine, and uridine. 

During this process, ESCs aggregate into multi-cellular embryoid bodies (EBs). After the first 2 

days, the EBs were moved to a 15 mL of conical and allowed to settle for 5 min. The media was 

aspirated and replaced with 10mL of fresh DFK5 containing 2 mM of RA and 600nM of SAG. 

EBs were then cultured on the adhesive plates (Corning) for an additional 4 days for further 

differentiation, and media was replaced every 2 days. 

 

4.5.5 Fluorescence-activated cell sorting (FACS)  

Before sorting, cells were washed with PBS and collected using trypsin. Cells were 

pelleted by centrifugation, the trypsin was removed and the cells were washed with PBS. Cells 

were resuspended in 1% w/v saline by repeated pipetting and passed through a 0.4-µm strainer to 

ensure single-cell suspension. Cells were sorted on an iCyt Reflection HAPS2 cell sorter at the 

Washington University Siteman Flow Cytometry Core. The gate was set relative to the cells 

transfected with non-fluorescent control plasmids to eliminate background. Cells transfected 

with a positive control fluorescent reporter plasmid were also used to eliminate false positive 

singles. Flow cytometry metrics were analyzed using FlowJo Version 7.6.3 (TreeStar). 

 

4.5.6 PCR amplification of inserts and sequencing 

Genomic DNA was isolated from both RFP positive and negative populations of cells 

using the QIAamp DNA Mini kit (Qiagen). The enhancer position sites were amplified from the 

genomic DNA by primers that contains both Illumina sequencing adaptors and indexes, 

permitting one-step amplification and sequencing library preparation. For each populations, two 



 93  
   

PCR reactions were performed with 100 ng gDNA and 23 cycles of amplification(10 µl Phusion 

polymerase buffer, 1 µl 10 mM dNTP, 2.5 µl 10 µM forward and reverse primer, 1.5 µl DMSO, 

0.5 µl (NEB) 50 ng DNA, 31 µl H2O; 16 cycles with 55 °C annealing temperature). The 2 

reactions were then pooled and purified, and sequenced on Illumina MiSeq platform at the 

Genome Technology Access Center (GTAC) at Washington University in St. Louis. 

 

4.5.7 Bioinformatic data analysis 

Paired-end sequences were aligned to the mouse reference genome (mm9) using bowtie2. 

Read pairs were filtered from the final data set if either read failed to map to the genome, if both 

reads did not map in the proper orientation, if the mapping quality score of both reads was less 

than 25, or if neither read had a unique map location on the genome. Target sites were identified 

as loci where paired reads both aligned entirely within a 1200-bp genomic region. To pinpoint 

the active enhancer regions enriched for reads from positive libraries, the fold enrichment was 

calculated as the normalized reads density from the RFP positive cells divided by that from RFP 

positive negative cells.  
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Chapter 5  
Conclusion 
 

For multicellular organisms to develop, stem cells must differentiate into a broad range of 

specialized cells, all containing the same DNA. This remarkable feat is made possible by the 

interaction of TFs and cis regulatory elements that control the spatial and temporal expression 

patterns of specific sets of genes134. Although progress has been made toward understanding of 

how transcription are regulated to generate distinct cell types, it could be greatly accelerated with 

better molecular tools.  

Chapter 2 describes a degradation domain based induction system for “Calling Cards” 

method which maps the binding sites of TFs using piggybac transposons. This induction system 

satisfies five important criteria: 1) The system has a low basal transposition activity when ‘off ’ 

and maintains high transposition activity when ‘on’; 2) The PBase fusion protein shows high 

transposition activity almost equal to that of the unfused “wild type” PBase; 3) The system can 

be applied across different cell lines with high performances; 4) The induction is reversible and 

responds in a dose-dependent manner; 5) The chemical inducer does not interfere with general 

cellular function. This induction system is successfully applied to PB transposon-mediated 

“Calling Cards” method, which offers an alternative to chromatin immunoprecipitation (ChIP) 

methods and furthermore the ability to record TF binding through cell division and at different 

time periods of the development.  

Chapter 3 describes the application of the “Calling Cards” method to study the role of 

master regulatory Brd4-bound enhancers for sex differences in glioblastoma. Integration of Brd4 

Calling Cards, H3K27ac ChIP-seq and RNA-seq data revealed a set of sex-specific regulatory 
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genes and networks. Male-specific JQ1-sensitive targetable genes demonstrated functional 

enrichment for glioblastoma, tumor angiogenesis, integrin signaling pathway, metabolic process 

in addition to DNA-repair-deficiency disorders and cell proliferation. Female-specific JQ1-

sensitive targetable genes showed an enrichment in pathways involved semaphorin signaling, 

chromosome aberrations, positive regulation of transcription, cell differentiation and tumor 

progression. These results are indicative of sex-specific transcriptional programs regulated by 

Brd4-bound enhancers. Identifying which specific pathways are critical to sex differences in 

GBM will require further functional studies. 

To record the activity of regulatory elements or enhancers, in Chapter 4, we developed a 

high-throughput method for functional identification of active enhancers at different time periods 

of development, named as Developmental Enhancer Sequencing (DevEn-seq). We demonstrated 

that DevEn-seq is able to: 1) identify active enhancers more efficiently than regular reporter 

methods; 2) trace enhancer activities along a cell lineage at a high temporal resolution without 

being disturbed by the gene silencing effect caused by lentiviral sequences; 3) discover potential 

makers that can be used to purify the progenitors of a given cell type. The knowledge obtained 

through the application of this method would greatly expand our understanding of neural cell fate 

specification and transcriptional network dynamics in development. 

In summary, this dissertation contributes to the field of developmental biology by 

providing useful methods for recording transcription factor binding and enhancer activity during 

development. Because of the mounting evidence for transcriptional network’s contributions to 

development and human disease, the identification of its two key elements TF and enhancers in 

different cell types and under different biological conditions is currently of high priority in 

biomedical research.  The “Calling Cards” method and DevEn-seq will help to overcome the 
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limitations currently to trace curbing the ability the activity of TFs and enhancers in many 

disease-relevant cell types throughout development. These methods could allow for the more 

comprehensive study of the roles of TFs and enhancers in human disease and ultimately guide 

the reprogramming of embryonic or induced pluripotent stem cells to produce specific cell types 

for personalized transplants, such as pancreatic beta cells to treat diabetes.  
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Appendix One 
 
Supplementary Figure for Chapter Two “An optimized, broadly applicable 
piggyBac transposon induction system”  
 

 

Figure 2.S1 Tunability of the FKBP-based PB transposon induction system measured by 
GFP-split donors in HEK293 cell lines. (A) Schematic illustration of GFP-split donor mediated 
transposition. The PB transposon disrupts the GFP gene. When the transposon is excised the 
GFP coding sequence is reconstituted and the cells fluoresce.  (B) The percentage of GFP 
positive cells from the FKBP-PBase-FKBP fusion at different concentrations of Shld1. 
Experiments were done in triplicates. (C) The mean fluorescence intensity from the FKBP-
PBase-FKBP fusion at different concentrations of Shld1. Experiments were done in triplicates.  
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Supplementary Figure for Chapter Three “Brd4-bound enhancers drive 
critical sex differences in glioblastoma” 

 

Figure 3.S1 Quality assessment of transposon Calling Card, H3K27ac ChIP-seq and RNA-
seq experiments. Correlation heat map was made from replicates in male and female GBM 
cells. Venn diagram depicts the shared H3K27ac-enriched peaks among replicates in male and 
female GBM cells. 
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Table 3.S1 Pathway analysis for sex-specific typical enhancers’ genes downregulated 
following JQ1 treatment male and female GBM cells. 
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Table 3.S2 Pathway enrichment analysis for differentially regulated genes in male and 
female GBM cells 
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