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ABSTRACT OF THE DISSERTATION

Dualities, Topological Properties, and Degeneracies of Classical and

Quantum Lattice Models

by

Seyyed Mohammad Sadegh Vaezi

Doctor of Philosophy in Physics

Washington University in St. Louis, 2018

Zohar Nussinov, Chair

We study various nontrivial facets of “degeneracy”- a concept of paramount importance in

numerous physical systems.

In the first part of this thesis, we challenge the folklore that if the ground state degen-

eracy of a physical system depends on topology then this system must necessarily realize

an unconventional, so-called “topological quantum”, order. To this end, we introduce a

classical rendition of the Toric Code model that displays such a topological degeneracy yet

exhibits conventional Landau order. As the ground states of this classical system may be

distinguished by local measurements, this example illustrates that, on its own, topological

degeneracy is not a sufficient condition for topological quantum order. This conclusion is

generic and applies to many other models.

In the second part of this thesis, we prove that under fairly modest conditions, all “dualities”

are conformal. This general result has enormous practical consequences. For example, one

xii



can establish that weak- and strong-coupling series expansions of arbitrarily large finite size

systems are trivially related. As we explain, this relation partially solves or, equivalently,

localizes the computational complexity of evaluating the series expansions to only a subset

of those coefficients. The coefficients in the strong-coupling series expansions are related

to the degeneracy of the system. Thus, our results may facilitate the computation of the

degeneracies of the various levels.

We end this thesis by establishing a unified framework for studying general disordered sys-

tems with either discrete or continuous coupling distributions. We introduce a “binomial”

spin glass wherein the couplings are the sum of “m” identically distributed Bernoulli random

variables. In the continuum limit m→∞, this system reduces to a model with Gaussian cou-

plings, while m = 1 corresponds to the ±J spin glass. We demonstrate that for short-range

Ising spin glass models on d-dimensional hypercubic lattices, the ground-state entropy den-

sity for N spins is bounded from above by (
√
d/2m+ 1/N) ln 2. This confirms the longheld

suspicion that the degeneracy of real (finite dimensional) spin glasses with Gaussian couplings

is not extensive. Exact calculations reveal the presence of a crossover length scale L∗(m)

below which the binomial spin glass is indistinguishable from the Gaussian system. Our

analytical and numerical results underscore the non-commutativity of the thermodynamic

and continuous coupling limits.

xiii



Chapter 1

Introduction

Condensed matter physics explores microscopic and macroscopic properties of “condensed”

materials (including, principally, solids and fluids of various types). One of the most im-

portant and fundamental issues in condensed matter (and other branches of) physics is to

understand the different phases of matter and what occurs during transitions between these

phases. The tools of statistical mechanics are crucial to the understanding of phase transi-

tions in various systems. A fundamental concept in the study of phase transitions and other

general physical questions is that of “degeneracy” which is the cornerstone of this thesis. The

concept of degeneracy threads all of the chapters of this thesis. In what follows, I will first

briefly review the subject of phase transitions and then discuss the importance of degeneracy.

1.1 Phase transitions

Throughout the decades, there has been a flurry of activity in studying phase transitions

and critical phenomena. This quest has been driven both by fundamental questions as

1



well as possible applications. It is very important to develop a good understanding of this

phenomena [1–5].

Different states of matter are associated with different internal structures which in many

case can be related to “order parameters”. Phase transitions occur upon a variation of an

external control parameter (e.g., temperature or pressure). To understand this better, we

may compare three states of matter, i.e., gas, liquid, and solid. At low enough temperatures

that most materials become solid, atoms form a very regular pattern and develop crystalline

order. Solids have a very ordered internal structure. As the temperature is raised, atoms

start moving with increasing energies. Ultimately, the solid melts into a fluid. At even higher

temperatures the system transforms into a gas. Gases and fluids lack clear structured orders.

In this example, the external parameter is temperature and thermal fluctuation is respon-

sible for the phase transition. The above discussed transitions, where temperature is the

control variable, are examples of “classical phase transitions”. Phase transitions can also oc-

cur at zero temperature where quantum fluctuations (arising from Heisenberg’s uncertainty

principle) play an important role. In this case, a physical and non-thermal parameter such

as magnetic field or pressure is varied to access the phase transition. These types of transi-

tions are inherently quantum in nature. In “quantum phase transitions”, the ground states

change in response to a variation of an external parameter of the Hamiltonian. For example,

in the superconductor-insulator transition, the control parameter could be the parallel or

perpendicular magnetic field, disorder, or charge density.

According to the conventional taxonomy, phase transitions can be grossly divided into dis-

continuous or continuous. Discontinuous transitions generally feature an entropy jump and a

phase coexistence. The change in entropy corresponds to latent heat. During this process, the

temperature of a system remains unchanged despite absorbing (or releasing) a fixed amount

2



of energy per unit volume. In such a transition, an appropriately defined order parameter

may change abruptly from zero to a non-vanishing finite value. Examples are afforded by

solid-liquid (e.g., melting of ice, where ice and water coexist at 273.15 K) and fluid-superfluid

transitions. By contrast, in continuous phase transitions the entropy changes continuously

(no latent heat is present) and no phase coexistence is seen. A continuous phase transition

is characterized by a divergent susceptibility, divergent correlation length, and power-law

decay of correlations at the (“critical”) transition point. In continuous transitions, the order

parameter changes continuously from zero to a finite value.

1.2 Novel aspects of degeneracies: A synopsis of this

thesis

We briefly summarize various nontrivial facets of degeneracy that will be elaborated on in

the following chapters.

1.2.1 Degeneracy and Topological Order (Chapter 2)

For many decades, it was believed that the Landau symmetry-breaking paradigm can explain

all different phases of matter [1,6]. As we explained earlier, in different materials, atoms can

organize to display various orders. When a system undergoes a phase transition, the order

of its constituent atoms changes. Each order typically breaks one or more symmetries. The

“order parameter” measures the degrees of symmetry breaking in the ordered phase. The

order parameter is non-zero in the ordered phase (lower-symmetry state) and vanishes in

the disordered phase (symmetric phase). For example, a liquid is invariant under continuous
3



symmetries such as global rotations and translations while the crystalline phase typically

exhibits only discrete symmetries such as specific rotations, translations, or reflections. Such

systems are known as Landau ordered. Their main characteristic is that the state of the

system can be determined by performing finite number of local measurements.

However, in 1982, Horst Störmer and Daniel Tsui found a new quantum state, by cooling

down a two-dimensional electron gas to very low temperatures and subjecting it to strong

magnetic fields. It was named the Fractional Quantum Hall (FQH) state [6–9]. FQH states

cannot not be described using conventional symmetries and order parameters; a new ap-

proach rather than Landau symmetry-breaking theory is needed. To explain the new states

of matter, the concept of “Topological Quantum Order” (TQO) [6,10] was introduced. Most

textbook examples of such systems exhibit topological degeneracy- i.e., the ground state

degeneracy depends on the topology of the manifold on which the system is embedded. For

instance, on a genus g manifold, the FQH system at filling fraction ν = 1/3 has a degeneracy

equal to 3g. For such systems, we cannot define Landau order (local order) parameter and

the state of the system cannot be determined by performing finite number of local measure-

ments. Common lore asserted that a topological ground state degeneracy implied topological

order.

In chapter 2, we challenge this hypothesis by introducing some classical models which are

Landau ordered despite having topological degeneracy. We further discuss the definition of

the topological order as follows. Consider a set of ng.s. orthonormal ground states {|gα〉}(α =

1, ...,ng,s,) with a spectral gap to all other (excited) states. Topological order exists at T = 0,

if and only if for any quasi-local operator V [11, 12],

〈gα|V|gβ〉 = vδα,β + c, (1.1)

4



where v is a constant, independent of α and β, and c is a correction that is zero in the

thermodynamic limit. For different classical models that we have studied, in spite of finding

a topological ground state degeneracy, Eq. (1.1) is violated. These models are Landau

ordered in spite of having topological degeneracy.

1.2.2 Degeneracy and duality transformations (Chapter 3)

Consider a system with states l, energy El, and associated degeneracy Dl. By definition,

the partition function is the Laplace transformation of the density of states. The partition

function

Z =
∑
l

Dle
−El/kBT , (1.2)

where kB and T are the Boltzmann’s constant and temperature, respectively, and the sum-

mation is over all allowed states l of the system. The free energy A is given by

A = −kBT lnZ. (1.3)

One should note that since Z is a sum of exponentials of e−E/kBT , the non-analytic behavior

of the free energy may become apparent only in the “thermodynamic limit” [5].

The thermodynamic properties of the system can be obtained by differentiation of A or Z.

For example the internal energy U = 〈E〉 is defined as,

U =

∑
l ElDle

−El/kBT

Z
. (1.4)

5



It is trivial to show (as is well known) that

U = kBT
2∂ lnZ
∂T

= −T 2∂(A/T )
∂T

. (1.5)

Similarly, the entropy S is given by

S = −∂A
∂T

. (1.6)

Unfortunately, especially in more than one spatial dimension, the number of models for

which the free energy may be calculated exactly is very small [13]. There are numerous

models (e.g., Ising model) for which the energy levels (El’s) can be determined yet the

associated degeneracies (Dl) are not known in general. Thus, any method that can help

with the computation of the individual level degeneracies is very welcome. In chapter 3, we

demonstrate that the implementation of “duality” transformations can indeed facilitate the

computation of Dl’s and consequently Z (and general observables).

Duality (as it appears in physics) was first introduced in 1886 by the British autodidact en-

gineer Oliver Heaviside [14]. The basic realization of Heaviside was that Maxwell’s equations

of electromagnetism in vacuum are invariant under a duality transformation that exchange

the electric field with the magnetic field (and vice versa). In statistical mechanics and field

theory, notable duality transformations relate physical systems at very high temperatures

(weak coupling) to those of low temperatures (strong coupling). The basic virtue of nearly

all dualities is that they often connect hard to examine problems with strong interactions

(or low temperatures) to nearly free particle systems (or high temperature systems).

6



The key idea of chapter 3 is that if two dual or complementary points of view exist of a given

physical problem, then this implies an equality between functions computed in the two dual

representations. These equalities give rise to the linear equations.

In the first part of this chapter, we demonstrate that under fairly general mild constraints,

all dualities are “conformal”. In mathematics, conformal maps in the complex plane preserve

angles locally. For example, if F (i.e., acting on parameter w in the complex plane) represents

a duality transformation, then it can be written as

F (w) =
a1w+ a2
a3w+ a4

, (1.7)

with a1, a2, a3, and a4 complex coefficients, and determinant

∆ = det

 a1 a2

a3 a4

 = a1a4 − a2a3 6= 0. (1.8)

In the remaining of this chapter, we use duality as a tool to relate the high temperature

(H−T) and low temperature (L−T) series expansions of the partition function in different

systems such as Ising models, Potts model, Ising spin glass models, and Wegner models. By

studying these models, we realize that duality leads to partial solvability and facilitates the

computation of the coefficients (Dl, i.e., the degeneracies) in Eq. (1.2).

Here, I briefly explain the essentials of our method for the Ising model. Consider a general

bipartite lattice (in any finite number of dimensions d) of size N , endowed with periodic

7



boundaries, with an Ising spin sx at each lattice site x. The Hamiltonian is given by

H = −J
∑
〈xy〉

sxsy ≡ −J
dN∑
α=1

zα. (1.9)

The summation in Eq. (1.14) is over nearest-neighbor spins at sites x and y sharing the link

α = 〈xy〉, zα = ±1. The H−T and L−T series expansions [15] of the partition function are

given by

ZH−T = 2N (coshK)dN
dN/2∑
l=0

C2l(tanh(K))2l,

ZL−T = 2eKdN
dN/2∑
l=0

C
′
2l(e

−2K)2l, (1.10)

where K = βJ , with β = 1
kBT

the inverse temperature. The coefficients C ′2l provide the

degeneracy (i.e., Dl) of the l-th level (l = 0, 1, ..., dN/2) with energy El = −J(dN − 4l).

Defining w = tanh(K) and w′ = e−2K , it is trivial to check the identities

w = F (w′) =
1−w′
1 +w′

,

w′ = F (w) =
1−w
1 +w

. (1.11)

Invoking Eqs. (1.10) and (1.11), we can rewrite ZH−T and ZH−T as,

ZH−T = 2eKdN
[ dN∑
m=0

(∑dN/2
l=0 C2lA

d
m
2 ,l

2(d−1)N+1

)
(e−2K)m

]
,

ZL−T = 2N (coshK)dN
[ dN∑
m=0

(∑dN/2
l=0 C

′
2l A

d
m
2 ,l

2N−1

)
(tanh(K))m

]
, (1.12)

where Adk,l =
∑2l
i=0 (−1)i(2l

i )(
dN−2l
2k−i ).
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Since partition functions of finite size systems are analytic (i.e., all expansions are conver-

gent), equating the ZH−T (ZL−T) in Eq. (1.10) with the ZL−T (ZH−T) in Eq. (1.12) leads

to a linear relation among expansion coefficients,

dN/2∑
l=1

Adk,lC2l +

(
dN

2k

)
= 2(d−1)N+1C

′
2k,

dN/2∑
l=1

Adk,lC
′
2l +

(
dN

2k

)
= 2N−1C2k. (1.13)

Eq. (1.13) is a “duality” relation connecting the weak and strong coupling coefficients (or

degeneracies Dl) {C2l} and {C ′2l}. Our analysis in chapter 3 reveals that one needs to

compute only 1/4 of the combined coefficients {C2l} and {C ′2l} and the rest are given by

Eq. (1.13). These results are correct for any arbitrary large finite size system.

1.2.3 Degeneracy and the spin glass model (Chapter 4)

One of the outstanding problems in physics is understanding the nature and complexity

of spin glasses [5, 16–18]. These systems are extremely rich and relate to deep questions

in computational complexity theory. Although this problem is decades old by now, our

understanding of short-range spin glass models remains poor. In chapter 3 we briefly study

the spin glass model, but because of its importance, the entirety of chapter 4 is devoted to

this model.

Sherrington, Kirkpatrick, Parisi, Nishimori, and many others have significantly increased

our understanding of infinite dimensional and infinite range spin glasses [18–20]. However,

what occurs in physical finite dimensional short-range spin glasses is not clear. While the

Parisi solution and various related (effective infinite dimension or infinite range) mean-field
9



treatments raise the possibility of an exponentially large number of ground states, other

considerations [16, 21–25] suggest that in typical short-range spin glasses, there are (similar

to ferromagnets) only two symmetry related ground states. Understanding of this question

is not merely of academic importance; the behavior of real finite dimensional magnetic spin

glass systems has long been of direct experimental pertinence, e.g., [17, 26].

The quintessential short-range Ising spin glass system is the Edwards-Anderson(EA) model

[27]. The EA spin glass Hamiltonian is similar to that of Eq. (1.9) but with varying couplings.

That is,

H = −
∑
〈xy〉

Jxysxsy ≡ −
dN∑
α=1

Jαzα. (1.14)

In various standard Ising spin glass models, the spin couplings {Jα} in Eq. (1.14) are

customarily drawn from one of several well studied distributions. For instance, in the “binary

Ising spin glass model” [28], the couplings {Jα} are random variables that assume the two

values ±1 with probabilities P (Jα = 1) = p, P (Jα = −1) = 1 − p (i.e., a Bernoulli

distribution). In the continuous EA model, the couplings {Jα} are drawn from a Gaussian

distribution of vanishing mean and variance equals to unity.

Unfortunately, the nature of real spin glasses with continuous couplings remains ill-understood.

While the extensive ground state degeneracy is well established for various binary dis-

tributions [29, 30], the situation for the continuous EA model has been mired by contro-

versy [31–33].

In chapter 4, we introduce a new class of (“Binomial”) spin glass models, which enables us to

interpolate between the well understood discrete spin glasses and the enigmatic continuous

spin glasses in arbitrary space dimensionality. In this model the binomial coupling for each

10



link α, Jmα ≡ 1√
m

∑m
k=1 J

(k)
α , is a sum of m copies (or “layers”) of binary couplings J (k)α = ±1,

each with probability p of being +1 and 1− p of being −1. The probability distribution of

Jmα ,

P̃ (Jmα ) =
m∑
j=0

(
m

j

)
pm−j(1− p)jδ

(
Jmα −

m− 2j√
m

)
, (1.15)

is a binomial. In the large-m limit, for general p, the distribution (1.15) approaches a

Gaussian of mean
√
m(2p− 1) and variance σ2 = 4p(1− p). In particular, for p = 1/2, the

distribution P̃ (Jmα ) approaches the standard normal distribution usually considered for the

EA model.

We further demonstrate that the ground-state entropy density is bounded from above by

(
√
d/2m+ 1/N) ln 2. This confirms the long hand suspicion that the degeneracy of real

(finite dimensional) spin glasses with Gaussian couplings is not extensive. Exact calculations

reveal the presence of a crossover length scale L∗(m) below which the binomial spin glass is

indistinguishable from the Gaussian system. These results confirm that depending on how

the continuous spin glass models are approached (i.e., how the continuum limit is taken),

both an exponentially large number of low energy states or systems with rigorously provable

two-fold degenerate ground states are possible. That is, taking the thermodynamic and

continuum limits in different orders leads to different results. Therefore, this model reveals

to us the root of disagreement between two different camps of the spin glass divide. In the

end, it’s worth mentioning that this model enables us to control the precision of computations

by a tunable parameter m.
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Chapter 2

Robust Topological Degeneracy of

Classical Theories

This chapter contains the materials published in a paper 1.

2.1 Introduction

The primary purpose of this chapter is to show that, as a matter of principle, contrary to

discerning lore that is realized in many fascinating systems, e.g., [1–3], the appearance of a

topological ground state degeneracy does not imply that these degenerate states are “topolog-

ically ordered”, in the sense that local perturbations can be detected without destroying the

encoded quantum information [4]. Towards this end, we introduce various models, including

a classical version of Kitaev’s Toric Code [3], that exhibit robust genus dependent degenera-

cies but are nonetheless Landau ordered. Those models do not harbor long-range entangled

ground states that cannot be told apart from one another by local measurements. Rather,
1M.-S. Vaezi, G. Ortiz, and Z. Nussinov, Phys. Rev. B 93, 205112 (2016).
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they (as well as all other eigenstates) are trivial classical states. Along the way we will dis-

cover that these two-dimensional classical models (including rather mundane clock and U(1)

gauge like theories with four spin interactions (specifically, Toric Clock and U(1) theories

that we will define) may not only have genus dependent symmetries and degeneracies but,

for various lattice types, may also exhibit holographic degeneracies that scale exponentially

in the system perimeter. Similar degeneracies also appear in classical systems having two

spin interactions. Thus, the classical degeneracies that we find may be viewed as analogs of

those in quantum models such as the Haah Code model on the simple cubic lattice [5–7],

a nontrivial theory with eight spin interactions that is topologically quantum ordered, and

other quantum systems. To put our results in a broader context, we first succinctly review

current basic notions concerning the different possible types of order.

The celebrated symmetry-breaking paradigm [8, 9] has seen monumental success across dis-

parate arenas of physics. Its traditional textbook applications include liquid to solid tran-

sitions, magnetism, and superconductivity to name only a few examples out of a very vast

array. Within this paradigm, distinct thermodynamic phases are associated with local ob-

servables known as order parameter(s). In the symmetric phase(s), these order parameters

must vanish. However, when symmetries are lifted, the order parameter may become non-

zero. Phase transitions occur at these symmetry breaking points at which the order parame-

ter becomes non-zero (either continuously or discontinuously). Landau [9] turned these ideas

into a potent phenomenological prescription. Indeed, long before the microscopic theory of

superconductivity [10], Ginzburg and Landau [11] wrote down a phenomenological free en-

ergy form in the hitherto unknown complex order parameter with the aid of which predictions

may be made. Albeit its numerous triumphs, the symmetry-breaking paradigm might not

directly account for transitions in which symmetry breaking cannot occur. Pivotal examples
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are afforded by gauge theories of the fundamental forces and very insightful abstracted sim-

plified renditions capturing their quintessential character, e.g., [12]. Elitzur’s theorem [13]

prohibits symmetry breaking in gauge theories. Another notable example where the sym-

metry breaking paradigm cannot be directly applied is that of the Berezinskii-Kosterlitz-

Thouless transition [14] in two-dimensional systems with a global U(1) symmetry. By the

Mermin-Wagner-Hohenberg-Coleman theorem and its extensions [15–18], such continuous

symmetries cannot be spontaneously broken in very general two-dimensional systems.

Augmenting these examples, penetrating work illustrated that something intriguing may

happen when the quantum nature of the theory is of a defining nature [1]. In particular,

strikingly rich behavior was found in Fractional Quantum Hall (FQH) systems [1, 19–21],

chiral spin liquids [1,21,22], a plethora of exactly solvable models, e.g., [3,23–25], and other

systems. One curious characteristic highlighted in [1] concerns the number of degenerate

ground states in FQH fluids [26], chiral spin liquids [27, 28], and other systems. Namely, in

these theories, the ground state (g.s.) degeneracy is set by the topology alone. For instance,

regardless of general perturbations (including impurities that may break all the symmetries of

the Hamiltonian), when placed on a manifold of genus number g (the determining topological

characteristic), the FQH liquid at a Laughlin type filling of ν = 1/q (with q ≥ 3 an odd

integer) universally has

nLaughlin
g.s. = qg (2.1)

orthogonal ground states [26]. Equation (2.1) constitutes one of the best known realization

of topological degeneracy. Exact similarity transformations connect the second quantized

FQH systems of equal filling when these are placed on different surfaces sharing the same
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genus [29]. Making use of the archetypal topological quantum phenomenon, the Aharonov-

Bohm effect [30], it was argued that, when charge is quantized in units of (1/q) (as it

is for Laughlin states), the minimal ground state degeneracy is given by the righthand

side of Eq. (2.1) [31]. This may appear esoteric since realizing FQH states on Riemann

surfaces is seemingly not feasible in the lab. Recent work [32] proposed the use of an annular

superconductor-insulator-superconductor Josephson junction in which the insulator is (an

electron-hole double layer) in a FQH state (of an identical filling) for which this degeneracy

is not mathematical fiction but might be experimentally addressed. Associated fractional

Josephson effects of this type in parafermionic systems were advanced in [33].

Historically, the robust topological degeneracy of Eq. (2.1) for FQH systems and its coun-

terparts in chiral spin liquids suggested that such a degeneracy may imply the existence of a

novel sort of order — “topological quantum order” present in Kitaev’s Toric Code model [3],

Haah’s code [5,6], and numerous other quantum systems [26–28,34] — a quantum order for

which no local Landau order parameter exists. As we will later review and make precise

(see Eq. (2.3)), in topologically ordered systems, no local measurement may provide useful

information.

As it is of greater pertinence to a model analyzed in this chapter, we note that similar to Eq.

(2.1), on a surface of genus g the ground state degeneracy of Kitaev’s Toric Code model [3],

an example of an Abelian quantum double model representing quantum error correcting

codes (solvable both in the ground state sector [3] as well as at all temperatures [35–37]), is

nToric−Code
g.s. = 4g. (2.2)
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Thus, for instance, on a torus (g = 1), the model exhibits 4 ground states while the system

has a unique ground state on a topologically trivial (g = 0) surface with boundaries. By

virtue of a simple mapping [35–37], it may be readily established that an identical degeneracy

appears for all excited states; that is the degeneracy of each energy level is an integer multiple

of 4g. Thus, the minimal degeneracy amongst all energy levels is given by 4g. Same ground

state degeneracy [38] appears in Kitaev’s honeycomb model [23,24]. As is widely known, an

identical situation occurs in the quantum dimer model [35, 36,39]. Invoking the well-known

“n−ality” considerations of SU(n), leading to a basic spin of 1/2 in SU(2) and a minimal

quark charge of 1/3 in SU(3), it was suggested [35, 36] that in many systems, fractional

charges (quantized in units of 1/n) are a trivial consequence of the Zn phase group center

structure of a system endowed with an SU(n) symmetry, which is associated with the n

states comprising the ground state manifold. This n-ality type phase factors and other

considerations, prompted Sato [40] to suggest the use of topological degeneracy (akin to

that of Eqs. (2.1) and (2.2)) as a theoretical diagnosis delineating the boundary between the

confined and the topological deconfined phases of QCD in the presence of dynamical quarks.

Other notable examples include, e.g., the BF action for superconductors (carefully argued

to not support a local order parameter [41]).

References [35,36] examined the links between various concepts surrounding topological or-

der with a focus on the absence of local order parameters. In particular, building on a

generalization of Elitzur’s theorem [42, 43] it was shown how to construct and classify the-

ories for which no local order parameter exists both at zero and at positive temperatures;

this extension of Elitzur’s theorem unifies the treatment of classical systems, such as gauge

and Berezinskii-Kosterlitz-Thouless type theories in arbitrary number of space (or space-

time) dimensions, to topologically ordered systems. Moreover, it was demonstrated that a

sufficient condition for the existence of topological quantum order is the explicit presence,
19



or emergence, of symmetries of dimension d lower than the system’s dimension D, dubbed

d-dimensional gauge-like symmetries, and which lead to the phenomenon of dimensional re-

duction. The topologically ordered ground states are connected by these low-dimensional

operator symmetries [35, 36]. All known examples of systems displaying topological quan-

tum order host these low dimensional symmetries, thus providing a unifying framework and

organizing principle for such an order.

As underscored by numerous pioneers, features such as fractionalization and quasiparti-

cle statistics, e.g., [1, 3, 20, 23, 44–54], edge states [3, 23, 53, 55, 56], nontrivial entangle-

ment [35, 36, 57], and other fascinating properties seem to relate with the absence of local

order parameters and permeate topological quantum order. While all of the above features

appear and complement the topological degeneracies found in, e.g., the FQH (Eq. (2.1)),

the Toric Code (Eq. (2.2)), and numerous other systems, it is not at all obvious that one

property (say, a topological degeneracy such as those of Eqs. (2.1) and (2.2)) implies an-

other attribute (for instance, the absence of meaningful local observables). This chapter will

indeed precisely establish the absence of such a rigid connection between these two concepts

(viz., topological degeneracy is not at odds with the existence of a local order parameter).

We will employ the lack of local order parameters (or, equivalently, an associated robustness

to local perturbations) as the defining feature of topological quantum order [35–37]. This

robustness condition implies that local errors can be detected, and thus corrected, without

spoiling the potentially encoded quantum information. To set the stage, in what follows, we

consider a set of ng.s. orthonormal ground states{|gα〉}ng.s.
α=1 with a spectral gap to all other

(excited) states. Specifically [35, 36], a system will be said to exhibit topological order at
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zero temperature if and only if for any quasi-local operator V ,

〈gα|V|gβ〉 = v δα,β + c, (2.3)

where v is a constant, independent of α and β, and c is a correction that is either zero

or vanishes (typically exponentially in the system size) in the thermodynamic limit. The

physical content of Eq. (2.3) is clear: no possible quantity V may serve as an order parameter

to differentiate between the different ground states in the “algebraic language” [58] where V is

local [35,36,59]. That is, all ground states look identical locally. Similarly, no local operator V

may link different orthogonal states – the ground states are immune to all local perturbations.

Notice the importance of the physical, and consequently mathematical, language to establish

topological order: A physical system may be topologically ordered in a given language but

its dual (that is isospectral) is not [35,36,59].

Couched in terms of the simple equations that we discussed thus far, the goal of this chapter

is to introduce systems for which the ground state sector has a genus dependent degen-

eracy (as in Eqs. (2.1) and (2.2)) while, nevertheless, certain local observables (or order

parameters) V will be able to distinguish between different ground states (thus violating Eq.

(2.3)). Moreover, they will be connected by global symmetry operators as opposed to low-

dimensional ones. Our conclusions are generic and, as shown, they apply to many classical

models. The paradigmatic counterexample that we will introduce is a new classical version

of Kitaev’s Toric Code model [3].

We now turn to the outline of this chapter. In Section 2.2, we generalize the standard

(quantum) Toric Code model. After a brief review and analysis of the ground states of

Kitaev’s Toric Code model (Section 2.3), we exclusively study our classical systems. In
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Section 2.4, we extensively study the ground states of the classical variant of the model for

different square lattices on Riemann surfaces of varying genus numbers g ≥ 1. A principal

result will be that this and many other classical systems exhibit a topological degeneracy.

We will demonstrate that an intriguing holographic degeneracy may appear on lattices of

a certain type. As will be explained, topological as well as exponentially large in system

linear size (“holographic”) degeneracies can appear in numerous systems, not only in this

new classical version of Kitaev’s Toric Code model [60]. We further study the effect of lattice

defects. The partition function of the classical Toric Code model is revealed in Section 2.5

and Section 2.11.

In Section 2.6, we introduce related classical clock models. Generalizing the considerations

of Section 2.4, we will demonstrate that these clock models may exhibit topological or holo-

graphic degeneracies. The ensuing analysis is richer by comparison to that of the classical

Toric Code model. Towards this end, we will construct a new framework for broadly exam-

ining degeneracies. We then derive lower bounds on the degeneracy that are in agreement

with our numerical analysis. These bounds are not confined to the ground state sector. That

is, all levels may exhibit topological degeneracies (as they do in the classical Toric Code

model (Section 2.5)).

In Section 2.7, we will relate our results to U(1) models and to U(1) lattice gauge theories in

particular. The fact that simple lattice gauge systems, that constitute a limiting case of our

more general studied models, such as the conventional classical Clock and U(1) lattice gauge

theories on general Riemann surfaces (and their Toric Code extensions), exhibit topological

(or, in some cases, holographic) degeneracies seems to have been overlooked until now. In

Section 2.8, we will study honeycomb and triangular lattice systems embedded on surfaces of

different genus. In Section 2.9, we will discuss yet three more regular lattice classical systems
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that exhibit holographic degeneracies. We summarize our main message and findings in

Section 2.10.

Before embarking on the specifics of these various models, we briefly highlight the orga-

nizing principle behind the existence of degeneracies in our theories. Irrespective of the

magnitude and precise form of the interactions in these theories, the number of independent

constraints between the individual interaction terms sets the system degeneracy. As such,

the degeneracies that we find are, generally, not a consequence of any particular fine-tuning.

2.2 The general Toric Code Model

We start with a general description of a class of two-dimensional stabilizer models defined

on lattices embedded on closed manifolds with arbitrary genus number g (the number of

handles or, equivalently, the number of holes). The genus of a closed orientable surface is

related to a topological invariant known as Euler characteristic

χ = 2− 2g, (2.4)

which, for a general tessellation of that surface, satisfies the (Euler) relation

χ = V −E + F . (2.5)

In Eq. (2.5), V is the number of vertices in the closed tessellating polyhedron, or graph, E

is the number of edges, and F the number of polygonal faces. Assume that on each of the

E edges of the graph there is a spin S degree of freedom, defining a local Hilbert space of
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size dimH = dQ, and that on each of the V vertices and F faces we will have a number of

conditions to be satisfied by the ground states of a model that we define next.

We now explicitly define, on a general lattice or graph Λ, the “General Toric Code model”.

Towards this end, we consider the Hamiltonian

Hµ,ν = −J
∑
s
Aµs − J ′

∑
p
Bν
p , (2.6)

where J and J ′ are coupling constants (although it is immaterial, in the remainder of this

chapter we will assume these to be positive). The interaction terms of edges in Eq. (2.6)

are so-called “star” (“s”) terms (Aµs ) associated with the V vertices (labelled by the letter

i) and the F “plaquette” (“p”) terms (Bν
p ). In the S = 1/2 case, these are given by the

following products of Pauli operators σµij , µ, ν = x, y, z,

Aµs =
∏

i∈ vertex(s)
σµis,

Bν
p =

∏
(ij)∈ face(p)

σνij . (2.7)

The product defining Aµs spans the spins on all edges (is) that have vertex s as an endpoint,

and the plaquette product Bν
p is over all spins lying on the edges (ij) that form the plaquette

p (see Fig. 2.1 for an illustration). A key feature of this system (both the well known [3]

quantum variant (µ = x 6= ν = z) as well as, even more trivially, the classical version that

we introduce in this chapter (µ = ν = z)) is that each of the bonds Aµs and Bν
p can assume

dQ = 2S + 1 = 2 independent values. Apart from global topological constraints [35, 36]

that we will expand on below, the bonds {Aµs} and {Bν
p} are completely independent of one

another. Not only, trivially, in the classical but also in the quantum (q) rendition of the
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model [3] all of these operators commute with one another. That is ∀s, p ∈ Λ,

[Aµs ,Bν
p ] = 0. (2.8)

x x x

Aµs

Bνp

~σij

C ′
1 C2

C ′
2

C1

Figure 2.1: General Toric Code lattice model with spins S = 1/2 placed on the edges
(bonds). The red cross-shape object corresponds to the star operator Aµs . The plaquette
operator Bν

p is depicted in the top-left corner in blue color. Dark solid and dashed lines
represent the loops C1, C2 and C ′1, C ′2, defining the symmetry operators Z1, Z2, and X1,
X2, respectively.

In the quantum version of the model, these terms commute as the products defining the

star and plaquette operators must share an even number of spins. As the individual Pauli

operators σx and σz appearing in the product of Eq. (2.7) anticommute, an even number

of such anticommutations trivially gives rise to the commutativity in Eq. (2.8). Even more

simply, one observes that

[Aµs ,Aµs′ ] = [Bν
p ,Bν

p′ ] = 0. (2.9)
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Lastly, from Eq. (2.7), it is trivially seen that

(Aµs )
2 = (Bν

p )
2 = 1. (2.10)

Apart from a number (CΛ
g ) of constraints, Eqs. (2.8), (2.9), and (2.10) completely specify

all the relations amongst the operators of Eq. (2.7). As we will illustrate, Hµ,ν is a minimal

model that embodies all of the elements in Eq. (2.5) such that its minimum degeneracy will

only depend on the genus number g. As all terms in the Hamiltonian Hµ,ν commute with

one another, the general Toric Code model can be related quite trivially to a classical model.

Intriguingly, as may be readily established by a unitarity transformation (a particular case of

the bond-algebraic dualities [66]), the quantum version, which includes Kitaev’s Toric Code

model as a particular example, on a graph having E edges spanning the surface of genus

g ≥ 1 is identical [35–37], i.e. is isomorphic, to two decoupled classical Ising chains (with

one of these chains having V classical Ising spins and the other chain composed of F Ising

spins) augmented by 2(g − 1) decoupled single Ising spins. Perusing Eq. (2.6), it is clear

that, if globally attainable, within the ground state(s), |gα〉,

Aµs |gα〉 = (+1)|gα〉 , Bν
s |gα〉 = (+1)|gα〉, (2.11)

on all vertices s and faces p and, thus, the ground state energy is E0 = −JV − J ′F . The

algebraic relations above enable the realization of Eq. (2.11) for all s and p.

We now turn to the constraints that augment Eqs. (2.8), (2.9), and (2.10). For any lattice

Λ on any closed surface of genus g ≥ 1, there are Cuniversal
g≥1 = 2 universal constraints given
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by the equalities

∏
s
Aµs =

∏
p
Bν
p = 1. (2.12)

For the quantum variant [3] no further constraints appear beyond those of Eq. (2.12) (that

is, CΛ
g = 2 irrespective of the lattice Λ). By contrast, for the classical variant of the

theory realized on the relatively uncommon “commensurate” lattices, additional constraints

will augment those of Eq. (2.12) (i.e., for classical systems, CΛ
g ≥ 2). Invoking the CΛ

g

constraints as well as the trivial algebra of Eqs. (2.8) and (2.9), we may transform from the

original variables – the spins on each of the E edges – {σµij} to new basic degrees of freedom

– all Nind. bonds independent “bonds” {Aµs6=s′}, {Bν
p 6=p′} that appear in the Hamiltonian and

Nredundant = (E −Nind. bonds) remaining redundant spins of the original form {σµij} on which

the energy does not depend (and thus relate to symmetries). If the bonds Aµs and Bν
p do

not adhere to any constraint apart from that in Eq. (2.12) then Nind. bonds = (V + F − 2)

of the (V + F ) bonds in the Hamiltonian of Eq. (2.6) will be independent of one another.

Correspondingly, Nredundant = [E − (V + F − 2)] = 2g. As all bonds must satisfy the

constraint of Eq. (2.12) and thus Nind. bonds ≤ (V + F − 2), the number of redundant spin

degrees of freedom Nredundant ≥ 2g. In the general case, if there are (CΛ
g − 2) constraints

that augment the two restrictions already present in Eq. (2.12), then we may map the

original system of E spins to Nind. bonds = (V + F − CΛ
g ) independent bonds in Eq. (2.6)

and Nredundant = (E−Nind. bonds) = 2(g− 1) +CΛ
g spins that have no impact on the energy.

Thus, for genus g ≥ 1 surfaces, the degeneracy of each energy level is an integer multiple of

the minimal degeneracy possible,

min(ng.s.) = 2Nredundant = nmin
g.s. × 2C

Λ
g −2, (2.13)
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with nmin
g.s. = 4g. Equation (2.13) will lead to a global redundancy factor in the partition

function Z = Tr exp(−βHµ,ν) with β the inverse temperature.

We now focus on the ground state sector. If there are no constraints apart from Eq. (2.12),

then to obtain the ground states it suffices to make certain that Nind. bonds of the bonds are

unity in a given state. Once that occurs, we are guaranteed a ground state in which each

bond in the Hamiltonian of Eq. (2.6) is maximized (i.e., Eqs. (2.11) are satisfied). A smaller

number of bonds fixed to one will not ensure that only ground states may be obtained.

Thus the values of all Nind. bonds independent bonds need to be fixed in order to secure a

minimal value of the energy. The lower bound of the degeneracy on each level (Eq. (2.13)) is

saturated for the ground state sector where it becomes an equality. That is, very explicitly,

the ground state degeneracy is given by

nGeneral Toric−Code
g.s. = 4g × 2C

Λ
g −2. (2.14)

The equalities of Eqs. (2.13) and (2.14) are basic facts that will be exploited in the present

chapter. The degeneracy of Eq. (2.14) is in accord with the general result

ng≥1
g.s. = d−χ+(CΛ

g −CΛ
1 )

Q ng=1
g.s. , (2.15)

and differs from that of Kitaev’s Toric Code model [3] (Eq. (2.2)) by a factor of 2CΛ
g −2.

As each of the CΛ
g constraints as well as increase in genus number leads to a degeneracy of

the spectrum, a simple “correspondence maxim” follows: it must be that we may associate

a corresponding independent set of symmetries with any individual constraint. Similarly, as

Eqs. (2.13, 2.14) attest, elevating the genus number g must introduce further symmetries.

Thus, the global degeneracy of Eq. (2.13) is a consequence of all of these symmetries.
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Given Eq. (2.6) it is readily seen that the system has a gap of magnitude ∆ = 4(J + J ′)

between the ground state E0 and the lowest lying excited state E1. All energy levels E`,

defining the spectrum of Hµ,ν , are quantized in integer multiples of J and J ′.

2.3 Ground states of the quantum Toric Code model

In Kitaev’s Toric Code model [3] the symmetries associated with the constraints of Eq. (2.12)

are rather straightforward, and cogently relate to the topology of the surface on which the

lattice is embedded. An illustration for the square lattice is depicted in Fig. 2.1. For such a

model on a simple torus (i.e., one with genus g = 1), the four canonical symmetry operators

are

Zq1,2 =
∏

(ij)∈C1,2

σzij , Xq
1,2 =

∏
(ij)∈C′1,2

σxij . (2.16)

These two sets of non-commuting operators [3]

{Xq
1 ,Zq1} = 0 = {Xq

2 ,Zq2},

[Xq
1 ,Xq

2 ] = 0 = [Zq1 ,Zq2 ] ,

[Xq
1 ,Zq2 ] = 0 = [Xq

2 ,Zq1 ] , (2.17)

realize a Z(2) ×Z(2) symmetry and ensure a four-fold degeneracy (or, more generally a

degeneracy that is an integer multiple of four) of the whole spectrum.

To see this, we may, for instance, seek mutual eigenstates of the Hamiltonian Hx,z along

with the two symmetries Zq1 and Zq2 with which it commutes. Noting the algebraic relations
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amongst the above operators, a moment’s reflection reveals that a possible candidate for a

normalized ground state is given by

|g1〉 =
1√
2
∏
s

(
1 +Axs√

2

)
|F〉, (2.18)

where σzij |F〉 = |F〉, for all E edges, and 〈F|F〉 = 1. This corresponds to Zq1,2|g1〉 =

|g1〉. Now, because Xq
1,2 are symmetries, by the algebraic relations of Eq. (2.17), the three

additional orthogonal states

|g2〉 = Xq
1 |g1〉 , |g3〉 = Xq

2 |g1〉 , |g4〉 = Xq
1X

q
2 |g1〉, (2.19)

are the remaining ground states. That is, the Cg=1 = 2 lattice (Λ) independent constraints

of the quantum model (Eq. (2.12)) correspond to the 2 sets of symmetry operators asso-

ciated with the γ = 1, 2 toric cycles ({Zqγ ,Xq
γ}) of Eq. (2.16). This correspondence is in

agreement with the simple maxim highlighted above. The symmetry operators Xq
1 and Zq1

are independent (and trivially commute) with the symmetry operators Xq
2 and Zq2 . Notice

that in the spin (σµij) language the ground states above are entangled, and they are connected

by d = 1 symmetry operators [35, 36]. Moreover, the anyonic statistics of its excitations is

linked to the entanglement properties of those ground states [35, 36]. As mentioned above,

the model can be trivially related, by duality, to two decoupled classical Ising chains so that

in the dual language the mapped ground states are unentangled [35,36].

For a Riemann surface of genus g, we may write down trivial extensions of Eqs. (2.16)

for the (2g) cycles circumnavigating the g handles of that surface. That is, instead of the

four operators of Eq. (2.16), we may construct 2g operators pairs with each of these pairs

associated with a particular handle h (where 1 ≤ h ≤ g), containing the four operators {Zqγ,h}
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and {Xq
γ,h} with γ = 1, 2. A generalization of Eqs. (2.17) leads to an algebra amongst the 2g

independent pairs of symmetry operators. The multiplicity of independent symmetries leads

to the first factor in Eq. (2.14). The number of constraints is, in the quantum case, lattice

independent and given by Cg≥1 = 2 (there are no constraints beyond those in Eq. (2.12)). It

is rather straightforward to establish that when g = 0 (i.e., for topologically trivial surfaces),

the ground state of the quantum model is unique. Putting all of these pieces together, the

well known degeneracy of Eq. (2.2) follows.

2.4 Ground states of the classical Toric Code model

We now finally turn to the examination of the ground states of the classical rendering of

Eq. (2.6) in which only a single component µ = ν = z of all spins appears. We will explain

how the degeneracy of Eqs. (2.13) and (2.14) emerges. The upshot of our analysis, already

implicitly alluded to above, consists of two main results:

• In the most frequent lattice realization of this classical model, its degeneracy will still be

given by Eq. (2.2), i.e., 4g. That is, in the most common of geometries, the number of

ground states will depend on topology alone (i.e., the genus number g of the embedding

manifold). For arbitrary square lattice or graph, as our considerations universally mandate,

the minimal possible ground state degeneracy will be given by the topological figure of merit

of Eq. (2.2).

• In the remaining lattice realizations, the degeneracy of the system will typically be holo-

graphic. That is, in these slightly rarer lattices, the ground state degeneracy will scale as

O(2L) where L is the length of one of the sides of the two-dimensional lattice.
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As will be seen, for the square lattice, depending on the parity of the length of the lattice

sides, the number of constraints CΛ
g may exceed its typical value of two. This will then

lead to an enhanced degeneracy vis a vis the minimal possible value of 4g. In the next

subsection we first broadly sketch the constraints and symmetries of the classical system.

As it will be convenient to formulate our main result via the “correspondence maxim”, we

will then proceed to explicitly relate the constraints and symmetries to one another. The

symmetry ↔ constraint consonance, along with Eqs. (2.13) and (2.14), will then rationalize

all of the degeneracies found for general square lattices embedded on Riemann surfaces of

arbitrary genus number. Exhaustive calculations for these degeneracies will then be reported

in the subsections that follow.

2.4.1 Symmetries and constraints

We next list the general symmetries and constraints of the classical Toric Code model in

square lattices of varying sizes. Consider first a lattice Λ of size Lx × Ly on a torus (i.e.,

having V = LxLy vertices and E = 2LxLy edges). We will then examine more general

lattices of arbitrary genus g. The square lattice on the torus will be categorized as being one

of two types:



Type I, Lx 6= Ly where at least

one of Lx or Ly is odd

Type II, otherwise.

(2.20)

Type I lattices, as defined for the g = 1 case above and their generalizations for higher genus

numbers g > 1, only admit two constraints CΛ
g and thus by the correspondence maxim only
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two symmetries. For these lattices, we will show that the ground state degeneracy is 4g. By

contrast, Type II lattices have a larger wealth of constraints, CΛ
g > 2, and therefore a larger

number of symmetries and a degeneracy higher than 4g.

x x x

WP

WP ′

~σı+

~σı−

∈ Λ+ ∈ Λ−

Figure 2.2: Dotted lines represent the rotated lattice Λ′. The spin degrees of freedom ~σ
reside on the vertices of the rotated bipartite lattice Λ′, formed out of two sublattices Λ+

and Λ−.

The centers of all nearest neighbor edges on the square lattice (of lattice constant a) form

yet another square lattice Λ
′ (of lattice constant a/

√
2) at an angle of 45◦ relative to the

original lattice (Fig. 2.2). The spins are located at the vertices of the rotated square lattice

Λ
′ . In order to describe the symmetries and constraints of this system, let us denote the

two (standard) sublattices of the square lattice Λ
′ by Λ±. That is, both Λ+ and Λ− are,

on their own, square lattices with Λ
′
= Λ+ ∪Λ− and Λ+ ∩Λ− = ∅. Let us furthermore

denote the sites of Λ± by ı±, respectively.
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With these preliminaries, it is trivial to verify that

T x+ =
∏

ı+∈Λ+

σxı+ ,

T x− =
∏

ı−∈Λ−

σxı− , (2.21)

are, universally, both symmetries of the classical (µ = ν = z) version of the Hamiltonian

of Eq. (2.6). Most square lattices (those of Type I in Eq. (2.20)) will only exhibit the two

symmetries of Eq. (2.21). The more commensurate Type II lattices admit diagonal contours

(connecting nearest neighbors of sites ı of Λ
′) that close on themselves before threading all

of the lattice sites of Λ
′ . That is, in Type II lattices, it is possible to find diagonal loops Γm

at a constant 45◦ angle (or a more non-trivial alternating contour) that contain only a subset

of all sites of Λ
′ (or, equivalently, a subset of all edges (ij) of the original square lattice Λ).

Associated with each such independent contour Γm, there is a symmetry operator,

T xm =
∏
ı∈Γm

σxı , (2.22)

augmenting the symmetries of Eq. (2.21).

The form of the symmetries suggests the distinction between Type I and Type II lattices on

general surfaces. On Type II lattices, it is possible to find, at least, one diagonal contour

Γm that contains a subset of all edges (ij) of the lattice Λ. Conversely, due to the lack of

the requisite lattice commensurability, on Type I lattices, it is impossible to find any such

contour.

We now turn to the constraints associated with Type I and II lattices. These are in one-

to-one correspondence with the symmetries of Eqs. (2.21) and (2.22). Specifically for Type
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I lattices, the only universal constraints present are those of Eq. (2.12) which we rewrite

again for clarity,

C+ :
∏
s
Azs = 1,

C− :
∏
p
Bz
p = 1. (2.23)

These two constraints match the two symmetries of Eq. (2.21). In the case of the more com-

mensurate lattices Λ, additional constraints appear. In order to underscore the similarities

to the symmetries of Eq. (2.22), we will now aim to briefly use the same notation concerning

the lattice Λ
′ . Within the framework highlighted in earlier sections, the spin products {Azs}

and {Bz
p} of Eq. (2.7) are associated with geometrical objects that look quite different (i.e.,

“stars” and “plaquettes”), see Fig. 2.1. If we now label the plaquettes of Λ
′ by P then, we

may, of course, trivially express Eq. (2.6) as a sum of local terms,

H = −J
∑
P
WP − J ′

∑
P ′
WP ′ , (2.24)

where WP =
∏
ı∈P σ

z
ı are the products of all Ising spins at sites ı belonging to plaquette P .

This trivial description renders the original star and plaquette terms of Eq. (2.6) on a more

symmetric footing, see Fig. 2.2.

Associated with each of the symmetries of Eq. (2.22) there is a corresponding constraint,

Cm :
∏
ı∈Γm

Wm = 1. (2.25)
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In accordance with our earlier maxim, insofar as counting is concerned, we have the following

correspondence between the symmetries and the associated constraints,



T x+ ↔ C+,

T x− ↔ C−,

T xm ↔ Cm.

(2.26)

In Type I systems, wherein only the CΛ
g = 2 universal constraints appear, the degeneracy

of the spectrum is exactly 4g. In Type II lattices, CΛ
g > 2 (with the difference of (CΛ

g − 2)

equal to the number of additional independent contours Γm that do not contain all edges of

the original lattice Λ) and, as Eq. (2.14) dictates, the ground state degeneracy exceeds the

minimal value of 4g multiplied by two raised to the power of the number of the additional

independent loops.

1 2

3 4 3

5 6
7 8

1 2

7

1

3 45

6 8

2

7

𝐴* 𝐴+ 𝐴*

𝐴* 𝐴+ 𝐴*

𝐴, 𝐴,𝐴-
𝐵*

𝐵, 𝐵-

𝐵*
𝐵+

𝐵+

𝐴* 𝐴+𝐴, 𝐴-

Figure 2.3: A square lattice with 8 spins along with its embedding on a torus. Because
of periodic boundary conditions, spins on boundary edges (dashed-blue) display numbers
identical to those in the bulk. In this figure As = Azs and Bp = Bz

p . In the right panel, each
edge has been labeled according to the left panel, and the solid red squares represent the
vertices labeled by As. Since B3 and B4 are respectively behind B1 and B2, we cannot see
them here.
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2.4.2 Ground state degeneracy on g = 1 surfaces

Thus far, our discussion has been quite general and, admittedly, somewhat abstract. We

now turn to simple concrete examples. We first consider the classical Toric Code model on

a simple torus (i.e., a surface with genus g = 1), and examine small specific square lattices

of dimension Lx×Ly. We find that for general lattices Λ (with reference to Eq. (2.20)), the

total number of independent constraints is

CΛ
g=1 =



2, Λ is a Type I lattice

2 min{Lx,Ly}, Λ is a Type II lattice.

(2.27)

Thus, from Eq. (2.14), our two earlier stated main results follow: while for the more “incom-

mensurate” Type I lattices, the degeneracy will be “topological” (i.e., given by 4g), for Type

II lattices, the degeneracy will be “holographic” (viz., the degeneracy will be exponential in

the smallest of the edges along the system boundaries). As discussed in Subsection 2.4.1, the

additional constraints in Type II lattices are of the form of Eq. (2.25). Expressed in terms

of the four spin interaction terms Azs and Bz
p of Eq. (2.6), a constraint of the form of Eq.

(2.25) states that there is a subset Γm ⊂ Λ for which ∏
s,p∈Γm A

z
sB

z
p = 1. An illustration

of a constraint of such a type is provided, e.g. in Fig. 2.3. Here, by virtue of the defining

relations of Eq. (2.7), the product,

Az1B
z
1A

z
4B

z
4 = 1. (2.28)
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Similarly, in panel a) of Fig. 2.4, colored arrows are drawn along the diagonals. These colors

code the constraints on the specific Azs and Bz
p interaction terms. For example, along the

green arrows,

Az1B
z
1A

z
4B

z
4 = 1 green (dashed), (2.29)

and the constraints associated with the other diagonals

Az2B
z
2A

z
3B

z
3 = 1 brown (dashed-dotted),

Az2B
z
1A

z
3B

z
4 = 1 red (dashed-doubled-dotted),

Az1B
z
2A

z
4B

z
3 = 1 black (dotted). (2.30)

We provide another example in panel b) of Fig. 2.4. The simplest visually appealing

realization of Eq. (2.25) is that of the subset Γm being a trivial closed diagonal loop.

Composites (i.e., products) of independent constraints of the form of Eq. (2.25) are, of

course, also constraints. We aim to find the largest number (CΛ
g − 2) of such independent

constraints. Non-trivial constraints formed by the product of bonds along real-space diagonal

lines may appear. For example, in Fig. 2.3, the product Az1Bz
1A

z
3B

z
2 = 1 is precisely such a

constraint. These constraints are more difficult to determine due to the periodic boundary

conditions. Generally, not all constraints are independent of each other (e.g., multiplying

any two constraints yield a new constraint). The number of independent constraints, CΛ
g

may be generally found by calculating the “modular rank” of the linear equations formed by

taking the logarithm of all constraints found. The qualified “modular” appears here as the

Azs and Bz
p eigenvalues may only be (±1) and thus, correspondingly, their phase is either 0

or π. Many, yet generally, not all, of the CΛ
g independent constrains are naturally associated

with products along the 45◦ lattice diagonals (as it appears on the torus). Table 2.1 lists the
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Figure 2.4: a) Lattice of size Lx = 2, Ly = 2, E = 8 and b) Lx = 2, Ly = 3, E = 12.
Diagonal lines with arrows represent possible paths realizing constraints on As = Azs and
Bp = Bz

p .

numerically computed ground state degeneracies for numerous lattices of genus g = 1. All

of these are concomitant with Eq. (2.27).

2.4.3 Construction of ground states

Given the symmetry operators of Eqs. (2.21) and (2.22), we may rather readily write down

all ground states of the system. Denote the ferromagnetic ground state (i.e., one with all
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Table 2.1: Computed ground state degeneracy (ng.s.) for the classical Toric Code for different
lattice sizes with genus one. Type I corresponds to the case Lx 6= Ly where at least one of
them is odd. We put any other possibility under Type II which in general covers the case
Lx 6= Ly where both Lx and Ly are even plus all cases with Lx = Ly. In this table, CΛ

g=1
denotes the number of independent constraints (see text).

Type Lx Ly E CΛ
g=1 ng.s.

I
3 2 12 2 4
5 2 20 2 4
4 3 24 2 4
5 3 30 2 4

II

2 2 8 4 4× 22

4 2 16 4 4× 22

6 2 24 4 4× 22

3 3 18 6 4× 24

4 4 32 8 4× 26

spins up (|↑〉(ij)) on all edges (ij)) by

|F〉 ≡
∏
(ij)

| ↑〉(ij); (2.31)

then, the four ground states of Type I lattices are

|Gn+,n−〉 = (T x+)
n+(T x−)

n−|F〉, (2.32)

where n± = 0, 1. Clearly, since (T x±)
2 = 1, only the parity of the integers n± is important.

As (i) [T x±,H ] = 0 and (ii) the ferromagnetic state |F〉 minimizes the energy in Eq. (2.6),

it follows that all four binary strings (n+,n−) = (0, 0), (0, 1), (1, 0), (1, 1) in Eq. (2.32)

lead to ng.s. = 22 = 4 ground states. The situation for Type II lattices is a trivial ex-

tension of the above. That is, if there are (CΛ
g=1 − 2) additional independent symmetries

T xm=1,T xm=2, · · · ,T x
m=(CΛ

g=1−2) of the form of Eq. (2.22) then, with the convention of Eq.
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(2.31), the ground states will be of the form

|Gn+,n−,n1,n2,··· ,n
CΛ
g=1−2

〉 = (T x+)
n+(T x−)

n−(T x1 )
n1

×(T x2 )n2 · · · (T x
CΛ
g=1−2)

n
CΛ
g=1−2 |F〉, (2.33)

with 2C
Λ
g=1 binary strings (n+,n−,n1,n2, · · · ,nCΛ

g=1−2), where nm = 0, 1. These strings span

all possible ng.s. = 2C
Λ
g=1 orthogonal ground states.

Given the set of all orthonormal ground states {|gα〉}ng.s.
α=1, it is possible to find quasi-local

operators V composed of σzij “operators” on a small number of edges such that

〈gα|V|gα〉 = vα (2.34)

assumes different values vα in, at least, two different ground states. Equation (2.34) high-

lights that the expectation value of V is not state independent. In other words, Eq. (2.3)

[35–37] is violated. Thus, our classical system is, rather trivially, not topologically ordered .

2.4.4 Ground state degeneracy on g > 1 surfaces

Having understood the case of the simple torus (g = 1), we will now study lattices on surfaces

Σ of genus g ≥ 2. We first explain how to construct a finite size lattice of genus g [67]. Such

lattices on genus g (g ≥ 2) surfaces may be formed by “stitching together” g simple parts

aj , j = 1, · · · , g, each of which largely looks like that of a simple torus (i.e., each region aj

represents a set of vertices, edges and faces of Type I or II in the notation of Eq. (2.20)), via

(g− 1) “bridges” {bj}g−1
j=1. In Figs. 2.5, and 2.6, the integer number bj denotes the number

of edges that regions aj and aj+1 share.
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Figure 2.5: A genus two (g = 2) lattice. Identical bonds are labeled by the same number (as
a result of periodic boundary conditions). Thick solid (blue) lines represent the boundary.
The two plaquettes with 8 bonds are shown by dashed (red) and dashed-dotted (green) lines.

To lucidly illustrate the basic construct, we start first with a g = 2 lattice. In Fig. 2.5,

identical edges are labeled by the same number as a consequence of the periodic boundary

conditions. Here, there are E = 96 edges, V = 48 vertices, and F = 46 plaquettes. As in the

case of the simple torus (g = 1), the typical vertices are endpoints of four edges. Similarly,

in Fig. 2.5, all plaquettes (with the exception of two) are comprised of four edges as in the

situation of the simple torus. The exceptional cases are colored green (dashed-dotted) and

red (dashed). As seen in the figure, the lattice may be splintered into two regions (labeled

by a1 and a2) where one end of some of the bonds belonging to a1 are connected to a2 as

shown and labeled in the picture under b1. Each of the regions a1 and a2 looks, by itself, like

a square lattice on a genus g = 1 surface. Generally, the regions a1 and a2 may be composed
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Figure 2.6: A genus three (g = 3) lattice. Identical bonds are labeled by the same number (as
a result of periodic boundary conditions). Thick solid (blue) lines represent the boundary.
The two plaquettes with 12 bonds are shown by dashed (red) and dashed-dotted (green)
lines.

of a different number of edges. Employing the taxonomy of Eq. (2.20), we may classify these

regions {aj}gj=1 to be of either Type I or II. We remark that the number of edges b1 must

be always at least one less than the minimum of the number of bonds of a1 and a2 along

the horizontal (x) axis. This algorithm trivially generalizes to higher genus number. The

cartoon of Fig. 2.6 represents a lattice with g = 3.
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A synopsis of our numerical results for the ground state degeneracy for surfaces of genus

2 ≤ g ≤ 5 appears in Table 2.3. The ground state degeneracy depends on the type of

each aj and the number of bonds of each bj . When all fragments {aj} are of Type I and

are inter-connected by only single common edges, the degeneracy attains will its minimal

possible value (Eq. (2.14)) of 4g .

If, in Eq. (2.6), we set J to zero, we will obtain the Hamiltonian of the Ising gauge model.

As this theory does not have a star term, this Hamiltonian involves more symmetries and,

therefore, one expects the ground state subspace to have a larger degeneracy. We numerically

verified it to be ngauge
g.s. = 4g × 2Nsite−1-fold degenerate (Nsite = E/2) [68].

2.4.5 Lattice Defects

When dislocations and/or any other lattice defects are present in the classical Toric Code

model, the degeneracy is, of course, still bounded by the geometry independent result of 4g.

On Type I lattice (and their composites), the degeneracy is typically equal to this bound

yet it may go up upon the introduction of defects. Similarly, in most cases introducing such

lattice defects lowers the degeneracy of the more commensurate Type II lattices (and their

composites).

Table 2.4 provides the numerical results for such defective lattices. For example, in Fig. 2.7

we see the original lattice, panel a), along with two types of defects as in panel b) and c).

These are obtained by replacing 3 squares by 2 adjacent or separated pentagons as in panel

b) and c), respectively. To avoid confusion, we will use “?” sign for the first case and “??”

for the second case. By putting a “?” (“??”) sign beside a 3× 2 lattice, we mean it exhibits

a defect of type one (two). That is, represented as “3× 2 ?” (“3× 2 ? ?”).
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2.5 Thermodynamics of the Classical Toric Code Model

Previous sections largely focused on the ground states of the classical Toric Code model. As

our earlier considerations make clear, however, a minimal topology (and general constraint)

dependent degeneracy Nglobal ≡ min(ng.s.) appears for all levels (see, e.g., Eq. (2.13)). This

“global” degeneracy must manifest itself as a prefactor in the computation of the partition

function. That is, if the whole spectrum has a global degeneracy Nglobal then the canonical

partition function may be expressed as

Z = Nglobal
∑
`=0

n`e
−βE` , (2.35)

where Nglobal n` ≥ Nglobal is the number of states having total energy E`. In “incommensu-

rate” lattices, when no constraints {Cm} augment those of Eq. (2.12), we find that, similar

to the partition function of the quantum Toric Code model [35–37], the partition of the

a) b) c)

Figure 2.7: Sketch of a part of a square lattice a) with two types of defects b) and c). The
defective lattices in b) and c) have one bond less than in a).
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classical Toric Code model is given by

Zinc. = 4g−1[(2 cosh βJ)V + (2 sinh βJ)V ]

×[(2 cosh βJ ′)F + (2 sinh βJ ′)F ]. (2.36)

The prefactor of 4g−1 embodies the increase in degeneracy by a factor of four as g is elevated

in increments g → (g + 1) beyond a value of g = 1. On the simple torus (i.e., when

g = 1), this partition function (similar to the partition function of the quantum Toric Code

model [35–37]) is that of two decoupled Ising chains with one of these chains having V spins

and the other composed of F spins. As each such Ising chain has a two-fold degeneracy,

it thus follows that the degeneracy of the (more “incommensurate”) Type I g = 1 system

is four-fold and that the degeneracy of the classical Toric Code model on incommensurate

lattices on Riemann surfaces of genus g is 4g for all g ≥ 1. The latter value saturates the

lower bound on the degeneracy of Eq. (2.13). In Section 2.11, we list the partition function

for several other more commensurate finite size lattice realizations.

2.6 Classical Toric Clock Models and their Clock gauge

theory limits

In this section, we introduce and study a clock model (ZdQ) extension of the classical Toric

Code model. To that end, we consider what occurs when each spin S may assume dQ > 2

values. Specifically, on every oriented (i→ j) edge (that we will hereafter label as (ij)), we
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set

σij = exp
[
i 2π
dQ
αij

]
, (αij = 0, 1, · · · , dQ − 1), (2.37)

σji = σ∗ij . (2.38)

The last equality reflects that a change in the orientation (i.e., a link in the direction from

j → i as opposed to i→ j) is associated with complex conjugation. At each vertex “s”, we

define As as

As =
1
2(σsiσsjσskσsl + H.c.)

= cos
(2π

dQ
(αsi + αsj + αsk + αsl)

)
, (2.39)

and for each plaquette p

Bp = cos
(2π

dQ
(αij + αjk + αkl + αli)

)
, (2.40)

composed of edges (ij), (jk), (kl), (li), such that the loop i→ j → k → l is oriented counter-

clockwise around about the plaquette center. Table 2.5 provides our numerical results for

ground state degeneracy (D0
dQ) for different size lattices of varying genus numbers g. The

dQ = 2 case is that investigated in the earlier sections (i.e., that of the classical Toric Code

model with Ising variables σij = ±1).
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It is readily observed that the minimal ground state degeneracy is set by the genus number,

nmin
g.s. = min{D0

dQ} =



d2g−1
Q , odd dQ,

2d2g−1
Q , even dQ.

(2.41)

We next introduce a simple framework that rationalizes Eq. (2.41) and enables us to fur-

thermore derive the results of the previous sections (i.e., the Ising case of dQ = 2) in a

unified way. Furthermore, this approach will allow us to better understand not only the

degeneracies in the ground sector but also those of all higher energy states. In the up and

coming, we will study the Hamiltonian

HdQ = −
∑
s
As −

∑
p
Bp (2.42)

= −
∑
s

cos
( 2πms,dQ

dQ

)
−
∑
p

cos
(2πmp,dQ

dQ

)
.

Here,


ms,dQ = αsi + αsj + αsk + αsl,

mp,dQ = αij + αjk + αkl + αli,
(2.43)

constitute a system of linear equations. A pair of fixed integers m`
s,dQ and m`

p,dQ defines an

energy E`. There are n`dQ such pairs.

For each fixed pair r, r = 1, · · · ,n`dQ , we may express these linear equations as

WXr = Y r, (2.44)
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where W is a rectangular ((V + F )×E) matrix. The matrix elements of W are either 0 or

±1. Generally, the form of the matrix W depends on both the size and type of lattice. The

dimension of the vector Xr is equal to the number (E) of edges; Y r is a (V +F )−component

vector. Specifically, following Eq. (2.43), these two vectors are defined as: Xr = ~α, with

components αij , and Y r = m`
s,dQ , for its first V components and Y r = m`

p,dQ , for the

remaining F components.

The number of linearly independent equations (rdQ) is equal to the rank of the matrix

W . Typically, the rank rdQ is less than the number of unknown αij . Therefore, we cannot

determine all αij from Eq. (2.44). We should note that the rank of the matrix W is computed

modularly, “mod dQ”. This latter modular rank is of pertinence as the edge variables αij

may only take on particular modular values (αij = 0, 1, · · · , dQ − 1).

Our objective is to calculate the degeneracy D`
dQ of each energy level ` (or sector of states

that share the same energy of Eq. (2.42)). Equation (2.44) imposes rdQ constraints on the

dQ possible values of αij . Thus, for each set of integers m`
s,dQ and m`

p,dQ , the degeneracy is

equal to d
E−rdQ
Q . As there are n`dQ such sets of integers (see Eq. (2.44)), the degeneracy of

each level ` is

D`
dQ = n`dQd

E−rdQ
Q . (2.45)

We may recast Eq. (2.45) to highlight the effect of topology and invoke the Euler relation

(Eqs. (2.4) and (2.5)) to write the degeneracy as

D`
dQ = n`dQd2(g−1)+CΛ

g

Q , (2.46)

49



where we define

CΛ
g ≡ V + F − rdQ . (2.47)

The modular rank of the matrix W lies in the interval 1 ≤ rdQ < V + F . It thus follows

that

1 ≤ CΛ
g ≤ V + F − 1. (2.48)

From Eqs. (2.46) and (2.48), it is readily seen that

D`
dQ ≥ d2g−1

Q . (2.49)

The degeneracy of Eq. (2.49) (stemming from the spectral redundancy of each level ` seen

in Eq. (2.46)) is consistent with an effective composite symmetry

G = ZdQ ⊗ZdQ ⊗ · · · ⊗ZdQ , (2.50)

i.e., the product of (2g− 1) symmetries of the ZdQ type. That is, if each element of such a

ZdQ symmetry gave rise to a dQ-fold degeneracy then the result of Eq. (2.46) will naturally

follow.

The non-local symmetry of Eq. (2.50) compound the standard local symmetries that appear

in the gauge theory limit of Eq. (2.42) in which the As terms are absent, i.e., HdQ = −∑pBp.

The latter gauge theory enjoys the local symmetries

θij → θij + φi − φj , (2.51)
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with, at any lattice vertex (site) i, the angle φi being an arbitrary integer multiple of 2π/dQ.

In this case, we find that the ground state degeneracy (Dgauge,0
dQ

) is purely topological (i.e.,

not holographic),

Dgauge,0
dQ

= ngauge,0
dQ d2(g−1)+E

2
Q , (2.52)

where,



1 ≤ ngauge,0
dQ ≤ dQ, odd dQ,

2 ≤ ngauge,0
dQ ≤ dQ, even dQ.

(2.53)

These equations extend the degeneracy ngauge
g.s. found in Subsection 2.4.4 for the Ising (dQ = 2)

lattice gauge theory [68].

2.7 U(1) Classical Toric Code Model and its gauge the-

ory limit

We next turn to a simple U(1) theory

H = −J
∑
s

cos(Φs)− J ′
∑
p

cos(Φp), (2.54)
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where the “fluxes”

Φs =
∑
i

θsi, Φp =
∑
ij∈p

θij , (2.55)

are, respectively, the sums of the angles on all edges emanating from site s and the sum of

all angles θij on edges that belong to a plaquette p. In the continuum limit (in which the

lattice constant a tends to zero), the cos Φp term may be Taylor expanded as the flux is

small, cos Φp ≈ (1− 1
2Φ2

p + · · · ) in the usual way. Then, omitting an irrelevant constant

additive term, the Hamiltonian becomes in the standard manner

H =
1
2

∫
Φ2
p(x)d

2x ≈ a2
∫
B2

3d
2x, (2.56)

where B3 = ∂1A2 − ∂2A1 (with ~A a vector potential) is the conventional magnetic field

along the direction transverse to the plane where the lattice resides. In the dQ → ∞ limit,

the U(1) Hamiltonian of Eq. (2.54) follows from Eqs. (2.37), (2.39), and (2.40) where

σij = eiθij , and θij = 2παij/dQ with αij = 0, 1, · · · , dQ − 1. In the dQ → ∞ limit, the

discrete clock symmetry becomes a continuous rotational symmetry, ZdQ → U(1). Rather

trivially, yet notably, in this limit, the system becomes gapless. Repeating mutatis mutandis

the considerations of Eqs. (2.46) and (2.49), in the continuous large dQ limit, a genus

dependent symmetry is naturally associated with the system degeneracy. Peculiarly, in this

limit, similar to Eq. (2.50), a genus dependent

G = U(1)⊗U(1) · · · ⊗U(1) (2.57)

symmetry may appear for the Toric U(1) theory of Eq. (2.54). In the limiting case in which

the star term does not appear in Eq. (2.54), i.e., that of J = 0, a symmetry of the type of
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Eq. (2.57) compounds the known local U(1) symmetry,

θij → θij + φi − φj , (2.58)

similar to Eq. (2.51) but with an arbitrary real phase φi at each lattice vertex (site) i.

These local symmetries are lifted once the cos Φs term is introduced, as in Eq. (2.54). Thus,

similar to the Clock gauge theory (whose degeneracy was given by Eqs. (2.52), and (2.53)),

this U(1) lattice gauge theory exhibits a genus dependent degeneracy.

a)

𝜎⃗#$

𝐴&' 𝐵)'

b)

𝜎⃗#$ 𝐴&*
'𝐵)*

'

Figure 2.8: a) Hexagonal lattice and b) Triangular lattice. In panel a) the star terms Azs and
plaquette terms Bz

p involve three and six spins S (circles) interactions, respectively, while
the opposite happens in panel b).

2.8 Honeycomb and Triangular lattices

Thus far, we focused on square lattice realizations of the Ising, clock, and U(1) theories. For

completeness, we now examine other lattice geometries. Specifically, we study the honeycomb

lattice (H) and triangular lattice (T) incarnations of our classical theory and determine
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their ground state degeneracies. In Fig. 2.8, Azs and Bz
p are defined for each lattice. The

Hamiltonians are given by

HH = −Jh
∑
s
Azs − J ′h

∑
p
Bz
p ,

HT = −Jt
∑
s′
Azs′ − J ′t

∑
p′
Bz
p′ . (2.59)

Our numerical results are summarized in Table 2.2. These results are consistent with Eqs.

(2.46) and (2.49).

1

Figure 2.9: By connecting the centers of hexagons in an hexagonal lattice (thick solid lines),
we obtain the corresponding dual lattice which is a triangular lattice (solid lines).
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Table 2.2: Computed ground state degeneracy D0
M for dQ = M, for a hexagonal lattice (=

triangular lattice).

g E D0
2 D0

3 D0
4 D0

5 D0
6 D0

7 D0
8 D0

9

1

6 8 27 64 125 216 343 512 729

12 16 27

18 8

24 128

2
24 128

30 64

As is well known, the H and T lattices are dual lattices (Fig. 2.9). This duality implies that

the classical Toric Code models of Eq. (2.59) yield the same results. From Figs. 2.8 and 2.9,

as a consequence of duality, what is defined as Azs (Bz
p) in H corresponds to some Bz

p′ (Azs′)

in T, and vice versa. This indicates that

Azs
Duality←→ Bz

p′ ,

Azs′
Duality←→ Bz

p . (2.60)

After this transformation we can rewrite Eqs. (2.59) as,

HH = −Jh
∑
p′
Bz
p′ − J ′h

∑
s′
Azs′ ,

HT = −Jt
∑
p
Bz
p − J ′t

∑
s
Azs, (2.61)
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and assuming Jh = J ′t, J ′h = Jt, it is seen that HH = HT. This simple analysis does not take

into account potential boundary terms that may appear in finite lattices, as a result of the

duality transformation.

2.9 Other classical models with holographic degener-

acy

In this section, we dwell on a few more Ising type spin systems, similar to Type II com-

mensurate lattice realizations of the classical Toric Code model (Eq. (2.27)), in which the

degeneracy is holographic, i.e., exponential in the system’s boundary.

2.9.1 Potts Compass Model

We now discuss a discretized version of the compass model [69], the “4-state Potts compass

model” on an Lx × Ly square lattice with periodic boundary conditions. The Hamiltonian

is given by,

HPC = −
∑
i,σ,τ

(
niσni+x̂,σσiσi+x̂ + niτni+ŷ,τ τiτi+ŷ

)
,

(2.62)

where at each site (vertex) i there are two Ising type spins σi = ±1, τi = ±1, while the

occupation numbers niσ = 0, 1 and niτ = 1−niσ. Then, at each site, there is either a σ or a

τ degree of freedom. The Cartesian unit vectors x̂ and ŷ link neighboring sites of the square

lattice. Spins of the σ type interact along the x-direction (horizontally) while those of the
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τ variety interact along the y-direction (vertically). Minimizing the energy is equivalent to

maximizing the number of products in the summand of Eq. (2.62) that are equal to +1.

In a configuration in which at all sites there is a σ (and no τ) spin, the system effectively

reduces to that of Ly independent Ising chains parallel to the x direction. For each such

chain, there are two ground states: σi = +1 or σi = −1 for all lattice sites. As these chains

are independent, there are 2Ly ground states. Replacing some sites with τ spins some bonds

turn into 0 and energy increases as a result. Repeating the same procedure where all sites

are occupied by τ spins, we find out that there are Lx independent vertical Ising chains and

so 2Lx states giving the same minimum energy. The ground state degeneracy of Eq. (2.62)

is 2Lx + 2Ly . For a more general case with genus g (composed of regions {aj} connected by

bridges {bj} (shared by regions aj and aj+1)), the degeneracy again depends on the number

of independent horizontal (Ly) and vertical (Lx) Ising chains. If each region aj is of size

Ljx × Ljy (j = 1, · · · , g) and bj (j = 1, · · · , g − 1) is the number of edges connecting aj and

aj+1, then, the ground state degeneracy will be

nPotts−compass
g.s = 2Lx + 2Ly , (2.63)

where

Lx =
g∑
j=1

Ljx −
g−1∑
j=1

bj , Ly =
g∑
j=1

Ljy. (2.64)

This degeneracy depends on both the geometry and the topology of the lattice. We briefly

highlight the effects of topology in the degeneracy of Eqs. (2.63) and (2.64). Panel a) of

Fig. 2.10 depicts a genus one lattice for which Lx = 5,Ly = 12 and N = V = 60. By

redefining the way spins are connected and boundary conditions, as we explained before, we

may transform it into, e.g., g = 2, 3 lattices as in Fig. 2.10 (panels b) and c), respectively).
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Here, one may readily verify that although Ly = 12 and the total number of spins do not

change, Lx varies (increases) as a result of increasing the genus number.

a) b) c)

Figure 2.10: Three lattices with different genus numbers and their corresponding tori below.
All have the same total number of spins, N = 60. Thick solid (blue) lines represent the
boundary and spins are located at the vertices. We have, a) g = 1 and Lx = 5,Ly = 12. b)
g = 2 and Lx = 7,Ly = 12. c) g = 3 and Lx = 9,Ly = 12.

2.9.2 Classical Xu-Moore Model

As discussed earlier, our classical Toric Code model of Eq. (2.6) is identical to the spin

(defined on vertices) plaquette model of Eq. (2.24). This latter Hamiltonian is, as it turns
58



out, a particular limiting case of the so-called “Xu-Moore model” [70, 71], one in which its

transverse field is set to zero and the model becomes classical. In its original rendition, this

classical limit of the Xu-Moore model has a degeneracy exponential in the system’s boundary.

This degeneracy appears regardless of the parity of the system sides. We now discuss how

to relate the degeneracy in our system to that of the classical Xu-Moore model. To achieve

this, instead of applying periodic boundary conditions along the Cartesian directions as in

the classical Toric Code model (i.e. along the solid lines of Fig. 2.2), we endow the system

with different boundary conditions. Specifically, we examine instances in which periodic

boundary conditions are associated with the diagonal x′ and y′ axis (45◦ angle rotation of

the original square lattice) of Fig. 2.2. A simple calculation then illustrates that the ground

state sector as well as all other energies have a global degeneracy factor,

Nglobal = 2Lx′+Ly′ . (2.65)

where Lx′ and Ly′ are defined as in Eq. (2.64) but along the diagonal directions (dotted

lines in Fig. 2.2). A similar (global) degeneracy appears in the classical 90◦ orbital compass

model [24] (having only nearest neighbor two-spin interactions) to which the Xu-Moore

model is dual.

2.9.3 Second and Third nearest neighbor Ising models

We conclude our discussion of holographic degeneracy in spin models with a brief review of

an Ising system even simpler than the ones discussed above. Specifically, we may consider

an Ising spin system on a square lattice with its lattice constant a set to unity when it is

embedded on a torus (g = 1) with periodic boundary conditions along the x′ and y′ diagonals
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with the Hamiltonian

H =
∑
i,j
(2δ|i−j|,√2 + δ|i−j|,2)σiσj . (2.66)

Here interactions are anti-ferromagnetic between next-nearest neighbors (|i− j| =
√

2) and

next-next-nearest neighbors (|i− j| = 2). It is straightforward to demonstrate that this

system has a ground state degeneracy scales as 2Lx′ + 2Ly′ where Lx′,y′ are the lattice sizes

along the x′ and y′ directions [18].

2.10 Summary

In this chapter, we demonstrated that a topological ground state degeneracy (one depending

on the genus number of the Riemann surface on which the lattice is embedded) does not

imply concurrent topological order (i.e., Eq. (2.3) is violated and distinct ground states

may be told apart by local measurements). We illustrated this by introducing the classical

Toric Code model (Eq. (2.6) with µ = ν = z). As we showed in some detail, under rather

mild conditions (those pertaining to “Type I” lattices in the classification of Eq. (2.27)), the

ground state degeneracy solely depends on topology. In these classical systems, however,

the ground states (given by, e.g., Eqs. (2.32) and (2.33) on the torus) are distinguishable by

measuring the pattern of σzij on a finite number of nearest neighbor edges; thus, the ground

states do not satisfy Eq. (2.3) and are, rather trivially, not topologically ordered. They are

Landau ordered instead and, most importantly, illustrate that the ground states are related

by d = 2 (global) Gauge-like symmetries contrary to the d = 1 symmetries of Kitaev’s Toric

Code model [35–37].
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In the more commensurate Type II lattice realizations of the classical Toric Code model

as well as in a host of other systems, the ground state degeneracy is “holographic”- i.e.,

exponential in the linear size of the lattice [18,43]. This classical holographic effect is different

from more subtle deeper quantum relations, for entanglement entropies, e.g., [72–74]. In

all lattices and topologies, the minimal ground state degeneracy (and that of all levels in

the system) of the classical model is robust and bounded from below by 4g with g the

genus number. We find similar genus dependent minimal degeneracies in clock and U(1)

theories (including lattice gauge theories). For completeness, we remark that a degeneracy

of the form 2η(L) with η a quantity bounded from above by the linear system size (viz., a

holographic entropy) also appears in bona fide topologically ordered systems such as the

“Haah code” [5–7].

Beyond demonstrating that such degeneracies may arise in classical theories, we illustrated

that these behaviors may arise in rather canonical clock and U(1) type theories. We provided

a simple framework for studying and understanding the origin of these ubiquitous topological

and holographic degeneracies.

We conclude with one last remark. Our results for classical systems enable the construction

of simple quantum models with ground states that may be told apart locally (i.e., violating

Eq. (2.3) for topological quantum order) yet, nevertheless, exhibit a topological ground

state degeneracy). We present one, out of a large number of possible, routes to write such

models exactly. Consider any one of the different theories studied in this chapter. Let

us denote the classical Hamiltonian associated with any of these theories by HClassical and

corresponding local observables that may differentiate ground states apart by V . One may

then apply any product U of local unitary transformations to both the Hamiltonian and

the corresponding “order parameter” local observable V . That is, we may consider the
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“quantum” Hamiltonian HQuantum ≡ U †HClassicalU and the corresponding local operator

VQuantum ≡ U †VU . By virtue of the unitary transformation, both in the ground state sector

(as well as at any finite temperature), the expectation value of the local observable V in

the classical system given by HClassical is identical to the expectation value of the VQuantum

in the quantum system governed by HQuantum. To be concrete, one may consider, e.g., the

Classical Toric Code (CTC) model. That is, e.g., one may set HClassical = HCTC that contains

only classical Ising (σxj ) spins. Next, consider the unitary operator U =
∏
j∈Λ+

exp[iπ4σ
z
j ]

that effects a π/2 rotation of all spins at sites j that belong to the sublattice Λ+ about the

internal σz axis. (That is, indeed, 1√
2(1− iσ

z
j )σ

x
j

1√
2(1 + iσzj ) = σyj .) Thus, trivially, the

resulting Hamiltonian HQuantum contains non-commuting σx and σy and is “quantum” (just

as the Kitaev Toric Code model of Section 2.3 [3] that may be mapped to two decoupled

classical Ising spin chains [35–37]) contains exactly these two quantum spin components

and is “quantum”). By virtue of the local product nature of the mapping operator U ,

the classical local observables V that we discussed in this chapter become now new local

observables VQuantum in the quantum model. Thus, putting all of the pieces together, we

may indeed generate quantum models with a topological degeneracy in which the ground

state may be told apart by local measurements.
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2.11 Supplementary information

In Type I lattices (and their simplest composites), the canonical partition function of the

classical Toric Code model is given by Eq. (2.36). The situation is somewhat richer for

other lattices. Below, we briefly write the partition functions for several such finite size

lattices. For simplicity we set J = J ′ = 1 and dQ = 2 in the classical rendition of Eq. (2.6)

and perform a high temperature (H-T) and low temperature (L-T) series expansion which is

everywhere convergent for these finite size systems. One can follow a similar procedure and

find the partition functions for dQ > 2. We start with H-T series expansion,

ZH−T =
∑
{σ}

e−βH
z,z

=
∑
{σ}

eβ
∑
sA

z
s+β

∑
pB

z
p (2.67)

=
∑
{σ}

∏
s
eβA

z
s
∏
p
eβB

z
p

= (cosh β)V+F
∑
{σ}

∏
s
(1 + T Azs)

∏
p
(1 + T Bz

p),

where T = tanh β and β = 1/(kBT ).

In Eq. (2.67) after expanding the products, and summing over all configurations, the only

surviving terms are those for which the product of a subset of Azs’s and Bz
p ’s is equal to 1

and this corresponds to one constraint or a product of two or more of them sharing no star

or plaquette operators. Thus,

ZH−T = 2E(cosh β)V+F (2.68)

×
(

1 + terms from constraints on Azs’s and Bz
p ’s
)

,
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where F is the number of faces and V is the number of vertices. The factor of 2E (with E = N

the number of spins or lattice edges) originates from the summation ∑{σ} 1 (each σzij has two

values (±1), with (ij) = 1, · · · ,E). The sole non-vanishing traces in Eq. (2.67) originate

from the constraints of Eqs. (2.23) and (2.25) and their higher genus counterparts. While

this procedure trivially gives rise to the partition function of Eq. (2.36) for simple lattices,

the additional constraints in other lattices spawn new terms in the partition functions.

In the following we develop the L-T series expansion for dQ = 2. From Eq. (2.36),

ZL−T = Nglobal
∑
`=0

n`e
−βE`

= Nglobale
−βE0

(
1 +

∑
`=1

n`e
−β(E`−E0)

)
, (2.69)

where E0 is the ground state energy and Nglobal is the ground state degeneracy. Numerical

results illustrate that the integers n` are larger than or equal to 1. One can generalize this

form for dQ > 2

ZL−T =
∑
`=0

D`
dQe
−βE` , (2.70)

where E` and D`
dQ indicate energy and degeneracy of energy level ` for a given dQ, respec-

tively.

Below is a sample of our numerical results for ZH−T and ZL−T of lattices with different sizes,

dQ’s and genus numbers (g = 1, 2, 3). From ZL−T, we can easily see that exited states have

a degeneracy “higher than or equal to” the ground state degeneracy (J = J ′ and βJ = K).

(I) g = 1:
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(a) 3 × 1, E = 6:

(i) dQ = 2:

ZH−T = (2 cosh β)6
(

1 + T 6 + 2T 3
)

,

ZL−T = 4(e6K)
(

1 + 9e−8K + 6e−4K
)

.

(ii) dQ = 3:

ZH−T = (3 cosh β)6
(

1 + T 6

32 +
3T 4

8

)
,

ZL−T = 9(e6K)
(

1 + 10e−9K + 12e−
15K

2 + 36e−6K

+ 16e−
9K
2 + 6e−3K

)
.

(iii) dQ = 4:

ZH−T = (4 cosh β)6
(

1 + T 6

16

)
,

ZL−T = 8(e6K)
(

1 + e−12K + 12e−10K + 135e−8K

+ 216e−6K + 135e−4K + 12e−2K
)

.
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(iv) dQ = 5:

ZH−T = (5 cosh β)6
(

1 + T 6

32

)
,

ZL−T = 5(e6K)
(

1 + 90e(−
√

5−5)K + 90e(
√

5−5)K

+ 240e(
1
4(−
√

5−1)+
√

5−6)K + 30e(
1
2(−
√

5−1)−2)K

+ 210e(
1
2(−
√

5−1)+
√

5−7)K + 12e(
5
4(−
√

5−1)−5)K

+ 20e(
3
2(−
√

5−1)−6)K + 240e(
1
4(
√

5−1)−
√

5−6)K

+ 120e(
1
2(−
√

5−1)+ 1
4(
√

5−1)−3)K

+ 120e(
3
4(−
√

5−1)+ 1
4(
√

5−1)−4)K

+ 60e(
5
4(−
√

5−1)+ 1
4(
√

5−1)−6)K

+ 30e(
1
2(
√

5−1)−2)K

+ 210e(
1
2(
√

5−1)−
√

5−7)K

+ 120e(
1
4(−
√

5−1)+ 1
2(
√

5−1)−3)K

+ 360e(
1
2(−
√

5−1)+ 1
2(
√

5−1)−4)K

+ 360e(
3
4(−
√

5−1)+ 1
2(
√

5−1)−5)K

+ 120e(
1
4(−
√

5−1)+ 3
4(
√

5−1)−4)K

+ 360e(
1
2(−
√

5−1)+ 3
4(
√

5−1)−5)K

+ 240e(
3
4(−
√

5−1)+ 3
4(
√

5−1)−6)K

+ 12e(
5
4(
√

5−1)−5)K

+ 60e(
1
4(−
√

5−1)+ 5
4(
√

5−1)−6)K

+ 20e(
3
2(
√

5−1)−6)K
)

.
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(v) dQ = 6:

ZH−T = (6 cosh β)6
(

1 + T 6

32

)
,

ZL−T = 36(e6K)
(

1 + 6e−11K + 12e−10K + 24e−
19K

2

+ 10e−9K + 48e−
17K

2 + 165e−8K + 12e−
15K

2

+ 192e−7K + 168e−
13K

2 + 36e−6K + 96e−
11K

2

+ 282e−5K + 16e−
9K
2 + 114e−4K + 60e−

7K
2

+ 6e−3K + 24e−
5K
2 + 24e−2K

)
.

(b) 2 × 2, E = 8:

(i) dQ = 2:

ZH−T = (2 cosh β)8
(

1 + 14T 4 + T 8
)

,

ZL−T = 16(e8K)
(

1 + e−16K + 14e−8K
)

.

(ii) dQ = 3:

ZH−T = (3 cosh β)8
(

1 + 3T 8

128 +
T 6

8 +
3T 4

4

)
,

ZL−T = 27(e8K)
(

1 + 18e−12K + 16e−21K/2

+ 80e−9K + 64e−15K/2 + 56e−6K + 8e−3K
)

.
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(iii) dQ = 4:

ZH−T = (4 cosh β)8
(

1 + T 8

16 +
3T 4

4

)
,

ZL−T = 128(e8K)
(

1 + e−16K + 44e−12K + 64e−10K

+ 294e−8K + 64e−6K + 44e−4K
)

.

(c) 4 × 1, E = 8:

(i) dQ = 2:

ZH−T = (2 cosh β)8
(

1 + 2T 4 + T 8
)

,

ZL−T = 4(e8K)
(

1 + e−16K + 12e−12K + 38e−8K

+ 12e−4K
)

.

(ii) dQ = 3:

ZH−T = (3 cosh β)8
(

1 + T 8

128

)
,

ZL−T = 3(e8K)
(

1 + 86e−12K + 336e−
21K

2

+ 616e−9K + 560e−
15K

2 420e−6K + 112e−
9K
2

+ 56e−3K
)

.
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(iii) dQ = 4:

ZH−T = (4 cosh β)8
(

1 + T 8

64

)
,

ZL−T = 16(e8K)
(

1 + e−16K + 8e−14K + 252e−12K

+ 952e−10K + 1670e−8K + 952e−6K

+ 252e−4K + 8e−2K
)

.

(d) 3 × 2, E = 12:

(i) dQ = 2:

ZH−T = (2 cosh β)12
(

1 + 2T 6 + T 12
)

,

ZL−T = 4(e12K)
(

1 + e−24K + 30e−20K

+ 255e−16K + 452e−12K + 255e−8K + 30e−4K
)

.

(ii) dQ = 3:

ZH−T = (3 cosh β)12
(

1 + T 12

2048 +
3T 8

128

)
,

ZL−T = 9(e12K)
(

1 + 466e−18K + 2664e−
33K

2

+ 7668e−15K + 12344e−
27K

2 + 14148e−12K

+ 11232e−
21K

2 + 6720e−9K + 2592e−
15K

2

+ 1026e−6K + 152e−
9K
2 + 36e−3K

)
.

(e) 4 × 2, E = 16:

(i) dQ = 2:
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ZH−T = (2 cosh β)16
(

1 + T 16 + 14T 8
)

,

ZL−T = 16(e16K)
(

1 + e−32K + 8e−28K + 252e−24K

+ 952e−20K + 1670e−16K + 952e−12K

+ 252e−8K + 8e−4K
)

.

(f) 3 × 3, E = 18:

(i) dQ = 2:

ZH−T = (2 cosh β)18
(

1 + T 18 + 6T 12 + 9T 10

+ 32T 9 + 9T 8 + 6T 6
)

,

ZL−T = 64(e18K)
(

1 + 9e−32K + 72e−28K + 636e−24K

+ 1296e−20K + 1422e−16K + 552e−12K

+ 108e−8K
)

.

(II) g = 2

(a) 2 × 1 + 2 × 1, E = 8:

(i) dQ = 2:

ZH−T = 28(cosh β)6
(

1 + T 6 + T 4 + T 2
)

,

ZL−T = 16(e6K)
(

1 + e−12K + 7e−8K + 7e−4K
)

.
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(ii) dQ = 3:

ZH−T = 38(cosh β)6
(

1 + T 6

32

)
,

ZL−T = 27(e6K)
(

1 + 22e−9K + 60e−
15K

2

+ 90e−6K + 40e−
9K
2 + 30e−3K

)
.

(iii) dQ = 4:

ZH−T = 48(cosh β)6
(

1 + T 6

16

)
,

ZL−T = 256(e6K)
(

1 + e−12K + 4e−10K + 71e−8K

+ 104e−6K + 71e−4K + 4e−2K
)

.

(b) 3 × 1 + 3 × 1(b1 = 1), E = 12:

(i) dQ = 2:

ZH−T = 212(cosh β)10
(

1 + T 10 + T 6 + T 4
)

,

ZL−T = 16(e10K)
(

1 + e−20K + 21e−16K

+ 106e−12K + 106e−8K + 21e−4K
)

.

(ii) dQ = 3:
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ZH−T = 312(cosh β)10
(

1 + T 10

512 +
T 7

32 +
T 6

32

)
,

ZL−T = 81(e10K)
(

1 + 114e−15K + 572e−
27K

2 + 1266e−12K

+ 1716e−
21K

2 + 1530e−9K + 816e−
15K

2

+ 438e−6K + 84e−
9K
2 + 24e−3K

)
.

(c) 3 × 1 + 3 × 1(b1 = 2), E = 12:

(i) dQ = 2:

ZH−T = 212(cosh β)10
(

1 + T 10 + T 6 + 4T 5 + T 4
)

,

ZL−T = 32(e10K)
(

1 + 13e−16K + 48e−12K + 58e−8K

+ 8e−4K
)

.

(ii) dQ = 3:

ZH−T = 312(cosh β)10
(

1 + T 10

512 +
T 7

32 +
T 6

32

)
,

ZL−T = 81(e10K)
(

1 + 114e−15K + 572e−
27K

2 + 1266e−12K

+ 1716e−
21K

2 + 1530e−9K + 816e−
15K

2 + 438e−6K

+ 84e−
9K
2 + 24e−3K

)
.

(d) 2 × 2 + 2 × 1, E = 12:

(i) dQ = 2:
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ZH−T = 212(cosh β)10
(

1 + T 10 + 3T 6 + 3T 4
)

,

ZL−T = 32(e10K)
(

1 + e−20K + 9e−16K + 54e−12K

+ 54e−8K + 9e−4K
)

.

(ii) dQ = 3:

ZH−T = 312(cosh β)10
(

1 + T 10

512

)
,

ZL−T = 27(e10K)
(

1 + 342e−15K + 1700e−
27K

2

+ 3870e−12K + 5040e−
21K

2 + 4620e−9K

+ 2520e−
15K

2 + 1260e−6K + 240e−
9K
2 + 90e−3K

)
.

(III) g = 3:

(a) 2 × 1 + 2 × 1 + 2 × 1, E = 12:

(i) dQ = 2:

ZH−T = 212(cosh β)8
(

1 + T 8 + T 6 + T 2
)

,

ZL−T = 64(e8K)
(

1 + e−16K + 16e−12K

+ 30e−8K + 16e−4K
)

.
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(ii) dQ = 3:

ZH−T = 312(cosh β)8
(

1 + T 8

128

)
,

ZL−T = 243(e8K)
(

1 + 86e−12K + 336e−
21K

2 + 616e−9K

+ 560e−
15K

2 + 420e−6K + 112e−
9K
2 + 56e−3K

)
.
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Table 2.3: Computed ground state degeneracy (ng.s.) for square lattices with g > 1. The g
denotes “genus” (see text).

g E ng.s. Type a1 b1 a2 b2 a3 b3 a4 b4 a5

2

8 4g 2 I 2×1 1 2×1
10 4g 2 I 3×1 1 2×1
12 4g 2 I 3×1 1 3×1
16 4g 2 I 3×2 1 2×1
18 4g 2 I 3×2 1 3×1
24 4g 2 I 3×2 1 3×2
24 4g 2 I 5×2 1 2×1
12 4g × 2 2 I 3×1 2 3×1
12 4g × 2 II+I 2×2 1 2×1
14 4g × 2 II+I 2×2 1 3×1
20 4g × 2 I+II 3×2 1 2×2
20 4g × 2 II+I 4×2 1 2×1
22 4g × 2 II+I 4×2 1 3×1
24 4g × 2 2 I 3×2 2 3×2
24 4g × 2 II+I 3×3 2 3×1
16 4g × 23 2 II 2×2 1 2×2
24 4g × 23 II+I 3×3 1 3×1
24 4g × 23 2 II 4×2 1 2×2

3

12 4g 3 I 2×1 1 2×1 1 2×1
14 4g 3 I 3×1 1 2×1 1 2×1
16 4g 3 I 3×1 1 3×1 1 2×1
16 4g 3 I 3×1 2 3×1 1 2×1
18 4g 3 I 3×1 1 3×1 1 3×1
18 4g 3 I 3×1 2 3×1 1 3×1
18 4g 3 I 3×1 1 3×1 2 3×1
18 4g 3 I 3×1 2 3×1 2 3×1
20 4g 3 I 3×2 1 2×1 1 2×1
24 4g 3 I 3×2 1 3×1 1 3×1
24 4g 3 I 3×2 2 3×1 2 3×1
16 4g × 2 2 I+II 2×1 1 2×1 1 2×2
18 4g × 2 2 I+II 3×1 1 2×1 1 2×2
20 4g × 2 2 I+II 3×1 1 3×1 1 2×2
20 4g × 22 2 II+I 2×2 1 2×2 1 2×1
22 4g × 22 2 II+I 2×2 1 2×2 1 3×1
24 4g × 24 3 II 2×2 1 2×2 1 2×2

4

16 4g 4 I 2×1 1 2×1 1 2×1 1 2×1
18 4g 4 I 2×1 1 2×1 1 2×1 1 3×1
24 4g 4 I 3×2 1 2×1 1 2×1 1 2×1
20 4g × 2 II+3 I 2×2 1 2×1 1 2×1 1 2×1

5 20 4g 5 I 2×1 1 2×1 1 2×1 1 2×1 1 2×1
24 4g × 2 II + 4 I 2×2 1 2×1 1 2×1 1 2×1 1 2×1
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Table 2.4: Computed ground state degeneracy (ng.s.) of defective square lattices. The g
denotes “genus”. By “2?” we mean there are 2 defects of type “?” (see text).

g E ng.s. Type a1 b1 a2 b2 a3 b3 a4

1

11 4g I 3×2 ?
15 4g II 4×2 ?
19 4g I 5×2 ?
23 4g I 6×2 ?
23 4g I 4×3 ?
16 4g × 2 II 3×3 2?
17 4g × 2 II 3×3 ?
19 4g × 2 I 5×2 ??
22 4g × 2 I 6×2 2?

2

15 4g 2 I 3×2 ? 1 2×1
17 4g 2 I 3×2 ? 1 3×1
21 4g 2 I 4×2 ? 1 3×1
22 4g 2 I 3×2 ? 1 3×2 ?
23 4g 2 I 3×2 ? 1 3×2
23 4g 2 II 4×2 ? 1 2×2
23 4g II+I 3×3 ? 2 3×1
23 4g 2 I 5×2 ? 1 2×1
23 4g × 2 II+I 3×3 ? 1 3×1

3
19 4g 3 I 3×2 ? 1 2×1 1 2×1
23 4g 3 I 3×2 ? 1 3×1 1 3×1
23 4g 3 I 3×2 ? 2 3×1 2 3×1

4 23 4g 4 I 3×2 ? 1 2×1 1 2×1 1 2×1
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Table 2.5: Computed departure from the minimal ground state degeneracy, N0
M = D0

M/nmin
g.s. ,

where D0
M denotes the ground state degeneracy for dQ = M, and nmin

g.s. is equal to d2g−1
Q

(2d2g−1
Q ) for odd (even) dQ.

g E Type a1 b1 a2 b2 a3 b3 a4 N0
3 N0

4 N0
5 N0

6 N0
7 N0

8 N0
9 N0

10 N0
11 N0

12 N0
13 N0

14

1

4 I 2×1 1 2 1 1 1 2 1 1 1 2 1 1
6 I 3×1 3 1 1 3 1 1 3 1 1 3 1 1
8 I 4×1 1 2 1 1 1 4 1 1 1 2 1 1
8 II 2×2 32 42 52 62 72 82 92 102 112 122 132 142

12 I 3×2 3 2 1
16 II 4×2 32 2× 42

18 II 3×3 34

2

8 2 I 2×1 1 2×1 1 2 1 1 1 2 1 1 1 2 1 1
12 2 I 3×1 1 3×1 3 1 1
12 2 I 3×1 2 3×1 3 2 1
12 II+I 2×2 1 2×1 1 4 1
16 2 II 2×2 1 2×2 32 2× 42

18 2 I 3×2 1 3×1 3

3
12 3 I 2×1 1 2×1 1 2×1 1 2 1
16 3 I 3×1 1 3×1 1 2×1 1 1
16 2 I+II 2×1 1 2×1 1 2×2 1 4
18 2 I+II 3×1 1 2×1 1 2×2 1

4 16 4 I 2×1 1 2×1 1 2×1 1 2×1 1 2
18 4 I 2×1 1 2×1 1 2×1 1 3×1 1
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Chapter 3

Why Are All Dualities Conformal?

Theory and Practical Consequences

This chapter contains the materials published in a paper 2.

3.1 Introduction

The utility of weak- and strong-coupling expansions and of dualities in nearly all branches

of physics can hardly be overestimated. This chapter is devoted to several inter-related fun-

damental questions. Mainly:

(1) What information does the existence of finite order complementary weak- and strong-

coupling series expansion of given physical quantities (e.g., partition functions, matrix ele-

ments, etc.) provide?

(2) To what extent can dualities be employed to partially solve those various problems? By

partial solvability, we mean the ability to compute a specific physical quantity with com-

plexity polynomial in the size of the system, given partial information that is determined by
2Z. Nussinov, G. Ortiz, and M-S. Vaezi, Nuclear Physics B 892, 132 (2015).
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other means.

As we will demonstrate in this chapter, a universal problem deeply binds to the above two

inquiries, and raises the critical question

(3) Why do numerous dualities in very different fields always turn out to be conformal

transformations?

To set the stage, we briefly recall general notions concerning dualities. Consider a the-

ory of (dimensionless) coupling strength g for which weak- and strong-coupling expansions

may, respectively, be performed in powers of g and 1/g or in other monotonically increas-

ing/decreasing functions f+(g)/f−(g). Common wisdom asserts that as ordinary expansion

parameters (e.g., g and 1/g) behave very differently, weak- and strong-coupling series can-

not, generally, be simply compared. On a deeper level, if these expansions describe different

phases (as they generally do) then the series must become non-analytic (in the thermody-

namic limit) at finite values of g (where transitions occur) and thus render any equality

between them void. A duality may offer insightful information on a strong coupling theory

by relating it to a system at weak coupling that may be perturbatively examined. As is well

known, when they are present, self-dualities are manifest as an equivalence of the coefficients

in the two different series; this leads to an invariance under an inversion that is qualitatively

(and in standard field theories, e.g., QED/Electroweak/QCD is exactly) of the canonical

form “g ↔ 1/g” (or, more generally, f+(g) ↔ f−(g)). For example, in vacuum QED with

Lagrangian density L = [ε0 ~E2/2− ~B2/(2µ0)], the ratio g = ε0µ0 of the couplings in front

of the ~E2 and ~B2 terms relates to a g ↔ 1/g reciprocity. This reciprocity is evident from the

invariance of Maxwell’s equations in vacuum under the exchange of electric and magnetic

fields [1], ~E → ~B; ~B → − ~E and the Lagrangian density that results. In Yang-Mills (YM)

theories, such an exchange between dual fields has led to profound insights from analogies

between the Meissner effect and the behavior of vortices in superconductors to confinement
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and flux tubes – a hallmark of QCD [2–5]. Abstractions of dualities in electromagnetism and

in YM theories produced powerful tools such as those in Hodge and Donaldson theories [6].

In both classical and quantum models, dualities (and the f+(g) ↔ f−(g) inversion) are

generated by linear transformations (appearing, e.g., as unitary transformations or more

general isometries relating one local theory to another in fundamental “bond-algebraic”

[7–13] incarnations or, in the standard case, Fourier transformations [14–18]). Such linear

transformations lead to an effective inversion of the coupling constant g. Dual models share,

for instance, their partition functions (and thus the same series expansion). As realized by

Kramers and Wannier (KW) [19–25], self-dualities provide structure that enables additional

information allowing, for instance, the exact computation of phase transition points. This

does not imply that the full partition function is determined with complexity polynomial

in the size of the system, that is, it is solvable via self-dualities alone (and indeed as we

illustrate in this chapter, self-dualities do not suffice).

Now here is a main point – that concerning question (3) – which we wish to highlight in this

chapter. In diverse arenas, the weak- and strong-coupling expansion parameters f+(g) and

f−(g) are related to one another via conformal transformations that are of the fractional

linear type. Amongst many others, prevalent examples are afforded by SL(2, Z) dualities

in YM theories as well as those in Ising models and Ising lattice gauge theories. In all of

these examples, the transformations linking z ≡ f+(g) to w ≡ f−(g) ≡ F (z) are particular

special cases of conformal (or fractional linear (Möbius)) transformations. That is, in these,

z → F (z) = w =
az + b

cz + d
, (3.1)

87



with a, b, c, and d complex coefficients, and determinant

∆ = det

 a b

c d

 = ad− bc 6= 0. (3.2)

A well known mathematical property of fractional linear maps is their composition property:

Given any two fractional linear functions Fk = (akz+ bk)/(ckz+ dk) (with k = 1, 2), direct

substitution demonstrates that F1(F2(z)) = (a′z+ b′)/(c′z+ d′) (i.e., yet another fractional

linear transformation) where

 a′ b′

c′ d′

 =

 a1 b1

c1 d1

 ·
 a2 b2

c2 d2

 . (3.3)

This group multiplication property will be of great utility in our analysis of dualities. Frac-

tional linear maps, as is commonly known by virtue of the trivial equality (valid when c 6= 0)

F (z) =
az + b

cz + d
=
a

c
− ∆
c(cz + d)

, (3.4)

which may be expressed as compositions of transformations of the (formal) forms: translation

(z → z+ b), scaling/rotation (z → az), and inversion (z → 1/z). As each of these individual

operations generally map circles and lines onto themselves so do the general transformations

of Eq. (3.4). This may be understood as a consequence of a projective transformation from

the Riemann sphere onto the complex plane. Relating Lorentz transformations to Möbius

transformations is one of the principal ideas underlying twistor theory [26]. Envisioning

standard dualities [27] as particular induced maps on the Euclidean S2 sphere will be an

outcome of the current work.
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The set of all conformal self-mappings of the upper half complex plane forms a group,

with SL(2, Z) a subgroup (“full modular group”) that consists of all the fractional linear

transformations with a, b, c, and d integers, and determinant ∆ = 1. In the aforementioned

YM theories, e.g., [1, 28], an SL(2, Z) structure follows from a canonical invariance of the

form z → (z + 1) (stemming from charge quantization). As we will detail in the current

chapter, in Ising models and Ising gauge theories, a canonical form of the duality is given by

 a b

c d

 =

 −1 1

1 1

 , ∆ = −2. (3.5)

The transformation of Eq. (3.5) may trivially be associated to one with ∆ = 1 [29] by a

uniform scaling (a, b, c, d) = (−1, 1, 1, 1) → 2−1/2i(−1, 1, 1, 1) which does not change the

ratio in Eq. (3.1). More widely, any fractional linear transformation of the form of Eq. (3.1)

with a finite determinant may similarly be related to one with ∆ = 1 by a uniform scaling of

all four elements of the matrix. In general, we are interested in duality mappings as applied

to matrix elements, partition functions or path integrals, while the typical scenario in YM

theories focuses on mappings of the action (or Hamiltonian).

In what will follow, we will first address question (3) and illustrate that disparate duality

transformations must be of the form of Eq. (3.1). When applied to the expansion parameters,

we will then demonstrate that these fractional linear maps lead to linear constraints between

the strong- and weak-coupling series coefficients. A main message of this chapter is that these

conformal transformations of Eq. (3.1), leading to linear relations among series coefficients,

will allow a broad investigation of questions (1) and (2) above. Specifically, we will examine

arbitrarily large yet finite size systems for which no phase transitions appear. As is well

known, analyticity enables a full determination of functions over entire domains given their
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values in only a far more restricted regime (even if only of vanishing measure). For a

finite size system, the weak-coupling (W-C) and strong-coupling (S-C) expansions describe

the same analytic function and are everywhere convergent and may thus be equated to one

another. Thus, a trivial yet practical consequence is, contrary to some lore, that the naturally

perturbative W-C and the seemingly more involved S-C expansions are equally hard. We will

apply this approach to the largest Ising model systems for which the exact expansions are

known to data on both finite size cubic and square lattices. We further test other aspects of

our methods on Ising and generalized Wegner models. The substitution of Eq. (3.1) relates

the W-C and S-C expansion parameters in general dual models. We will more generally: (1’)

Equate the W-C and S-C expansions to find linear constraints on the expansion coefficients,

and (2’) When possible, invoke self-duality to obtain yet further linear equations that those

coefficients need to satisfy. This analysis will lead to the concept of partial solvability: The

linear equations that we will obtain will enable us to localize NP hardness of finding the exact

partition function coefficients (or other quantities) to that of evaluating only a fraction of

these coefficients. The remainder of these coefficients can be then trivially found by the

linear relations that are derived from the duality of Eq. (3.1).

A highly non-trivial consequence of our work is that of relating mathematical identities to

dualities such as those broadly generated by Eq. (3.1). Specifically, as a concrete example

in this chapter, we will illustrate how the relations that we obtain connecting the W-C and

S-C expansions lead to new combinatorial geometry equalities in general dimensions. As a

particular example we will do this by noting that, in Ising and generalized Wegner models,

the expansion coefficients are equal to the number of geometrical shapes of a given magnitude

of the d-dimensional surface areas. The equality between the W-C and S-C expansions then

lead to identities connecting these numbers.
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3.2 General constraints on duality transformations

For the Ising, Ising gauge, and several other theories that we study in this chapter, the map-

ping between the W-C and S-C coupling expansion parameters is afforded by the particular

Möbius transformation

F (z) =
1− z
1 + z

(3.6)

associated with Eq. (3.5). This transformation trivially satisfies Babbage’s equation

F (F (z)) = z (3.7)

for all z. For self-dual models, such as the D = 2 Ising model or D = 4 Ising gauge theories,

we can easily find the critical (self-dual) point, z∗, by solving the equation F (z∗) = z∗. We

will term theories obeying Eq. (3.7) as those that exhibit a “one-” duality. In general, one

may find such transformations, represented by a function F (z), in terms of some parameter z

(a coupling constant which can be complex-valued). Richer transformations appear in diverse

arenas including Renormalization Group (RG) calculations. Based on these considerations

we may have



F (z∗) = z∗, Self-dual fixed point

F (F (z)) = z, Self-duality/duality

F (· · ·F (F (z∗)) · · · ) = z∗, RG fixed points.

(3.8)
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More general transformations F1(F2(· · ·Fn(z) · · · )) may yield linear equations in a manner

identical to those appearing for the Ising theories studied in the current chapter. Expansion

parameters z in self-dual theories satisfy F (F (z)) = z; this yields a constraint on all possible

self-dualities. Solutions are afforded by fractional linear (conformal) maps

F (z) =
az + b

cz − a
, (3.9)

with the determinant of Eq. (3.2) being non-zero, a2 + bc 6= 0. As we will further expand

on elsewhere, another related duality appearing in Ising and all Potts models is given by

F1(z) =
az + b

cz + d
, F2(z) =

−dz + b

cz − a
, (3.10)

with determinant ad− bc 6= 0 such that

F1(F2(z)) = z (3.11)

is satisfied. In fact, as we will next establish in Section 3.3, all “two-” dualities satisfying

Eq. (3.11) must be of the form of Eqs. (3.10). Specifically, all duality mappings that can

be made meromorphic by a change of variables, can only be of the fractional linear type.

This uniqueness may rationalize the appearance of fractional linear (dual) maps in disparate

arenas ranging from statistical mechanics models, such as the ones that we study here, to

S-dualities in, e.g., YM theories.

Thus far, we focused on “one-” and “two-dualities” for which the coupling constants satisfy

either Eq. (3.7) or Eq. (3.11), respectively. Our calculations may be extended to “n-duality”
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transformations for which

F1(F2(· · ·Fn(z) · · · )) = z. (3.12)

As the reader may verify, replicating the considerations invoked in the next section leads to

the conclusion that if they are meromorphic each of the functions Fk (with 1 ≤ k ≤ n) in

Eq. (3.12) must be of the fractional linear (conformal) form

Fk(z) =
akz + bk
ckz + dk

, (3.13)

with ak, bk, ck and dk being constants.

In general, whether a function F solving Eq. (3.7) for all z is meromorphic in appropriate

coordinates or not, it is impossible that any such function F (z) obeying Eq. (3.7) will map

the entire complex plane (or Riemann sphere) onto a subset M of the complex plane (or

Riemann sphere). This subsetM could be a disk or strip or any other subset of the complex

plane. That is, it is impossible that a solution to Eq. (3.7) will be afforded by a function

F which for all complex z, will map z → F (z) ∈ M. The proof of this latter assertion

is trivial and will be performed by contradiction: Consider a point z′ 6∈ M, then a single

application of F on z′ leads to an image F (z′) ∈ M. As for all points z (including those

that lie in M) the image F (z) is in M, we have F (F (z′)) ∈ M. However, as stated in the

beginning of our proof, z′ 6∈ M. This thus shows that F (F (z′)) 6= z′. In other words, Eq.

(3.7) cannot be satisfied by such a function. Thus, if we regard the map z → F (z) as a finite

“time evolution” (or “flow” in the parlance of RG), the function F (z) must “evolve” z as

an “incompressible fluid” with area preserving dynamics in the complex plane (or Riemann

sphere). This flow must be of period two in order to satisfy Eq. (3.7).
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3.3 Meromorphic duality transformations must be con-

formal

Charles Babbage, “the father of the computer”, [30] and others since, e.g, [31,32], have shown

that the functional equation problem of Eq. (3.7) enjoys an infinite number of solutions.

This observation can be summarized as follows: Given a particular solution f to Babbage’s

equation, f(f(x)) = x, a very general class of solutions can be written as

F (x) = φ−1(f(φ(x))), (3.14)

where φ is an arbitrary (or in a physics type nomenclature,“gauge like”) function with a

well defined inverse φ−1. In other words, if we have a particular solution we can find other

solutions using a function φ with and inverse defined in a specific domain. That is,

F (F (x)) = φ−1(f(φ(φ−1(f(φ(x)))))) = φ−1(f(f(φ(x)))) = φ−1(φ(x))

= x. (3.15)

To make Babbage’s observation clear, we note that if, as an example, we examine the Möbius

transformation (Figure 3.1) of Eq. (3.6), f(x) = (1− x)/(1 + x), and consider φ(x) = x2

and a particular branch φ−1(x) =
√
x for complex x (or the standard

√
x function for

real x ≥ 0) then it is clearly seen that F =
√
(1− x2)/(1 + x2) is also a solution to

the equation F (F (x)) = x. Similarly, if we choose φ(x) = e−2x then φ−1(f(φ(x))) =

−1
2 ln((1− e−2x)/(1 + e−2x)) which the astute reader will recognize as the transformation

of Eq. (3.49).
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Figure 3.1: The Möbius transformation of Eq. (3.6) embodying the duality of the Ising
model, with |z| ≤ 1, as a conformal map in the complex plane that maps circles onto new
shifted circles with a different radius (see Eq. (3.4)). Let us consider a circle of radius r with
its center at the origin. Using the transformation above, it would be mapped to a new circle
of radius 2r/(1− r2) with its center shifted to the point (1+ r2)/(1− r2) (on the real axis).
Three of such circles with different colors are shown in the figure above on the lefthand side.
On the righthand side we see these three circles (with the same color as on the lefthand side)
after transformation. The green dot represents the self-dual point (z∗ =

√
2− 1).

We now turn to a rather trivial yet as far as we are aware new result concerning this old

equation that we establish here. We assert that if there exists a transformation φ that maps

complex numbers z on the Riemann sphere, z → φ(z), such that the resulting function F

is meromorphic then any such function F solving Eq. (3.7) must be of the fractional linear

form (a particular conformal map) of Eq. (3.9). Of course, a broad class of functions of the

form of Eq. (3.14) may be generated by choosing arbitrary φ that have an inverse yet all

possible rational functions will be of the fractional linear form. For instance, the function

F =
√
(1− x2)/(1 + x2) discussed in the example above is, obviously, not of a fractional

linear form.
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Proof: The proof below is done by contradiction. A general meromorphic function on the

Riemann sphere is a rational function, i.e.,

F (z) =
P (z)

Q(z)
, (3.16)

with P (z) and Q(z) relatively prime polynomials. (If the polynomials P and Q are not

relatively prime then we can obviously divide both by any common factors that they share

to make them relatively prime in the ratio appearing in Eq. (3.16)). As a first step, we may

find the solution(s) w to the equation

F (w) = z. (3.17)

Unless both P (w) and Q(w) are linear in w, there generally will be (by the fundamental

theorem of algebra) more than one solution to this equation (or, alternatively, a single

solution may be multiply degenerate). That is, unless P and Q are both linear in w, the

polynomial

Wz(w) = P (w)− zQ(w) (3.18)

will be of order higher than one (m > 1) in w and will, for general z, have more than

one different (non-degenerate) zero. When varying z over all possible complex values, it

is impossible that the polynomial Wz(w) will always have only degenerate zero(s) for the

relatively prime P (w) and Q(w) (we prove this in the rather simple (Multiplicity) Lemma

below).
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We denote the general zeros of the polynomial Wz(w) by w1,w2, · · · ,wm. That is,

Wz(w1) = Wz(w2) = · · · = Wz(wm) = 0. (3.19)

Now if F (F (z)) = z, then all solutions {zji} to the equations F (zji) = wi (for which the

polynomial (in z), Wwi(z) ≡ P (z)−wiQ(z) vanishes) will, for all i, solve the equation

F (F (zji)) = z. (3.20)

In the last equation above, on the righthand side there is a single (arbitrary) complex number

z whereas on the lefthand side there are multiple (see, again, the (Multiplicity) Lemma) viable

different solutions zji. Thus, at least one of the solutions in this set zji 6= z. We denote one

such solution by Z. Putting all of the pieces together, the equation F (F (z)) = z cannot

be satisfied for all complex z (in particular, it is not satisfied for z = Z). Thus, both P (z)

and Q(z) must be linear in z, and the fractional linear form of Eq. (3.9) follows once it is

restricted to this class.

Replicating the above steps mutatis mutandis for “two-dualities” satisfying Eq. (3.11) simi-

larly leads to the conclusion that if the transformations are meromorphic they must be given

by ratios of linear functions (and thus conformal). In this case, F1 can be a general fractional

linear transformation with a finite determinant and further constraints on F2 are afforded by

the requirement that Eq. (3.11) is indeed obeyed. The calculation then leads to the result

of Eq. (3.10). We will elaborate on this restriction in Section 3.4.

(Multiplicity) Lemma:
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We prove (by contradiction) that it is impossible for Wz(w) (Eq. (3.18)) to have an m-th

order (m > 1) degenerate root for all z. Assume, on the contrary, that

Wz(w) = A(z)(w−B(z))m = P (w)− zQ(w), (3.21)

with A(z) and B(z) functions of z, m > 1, and P (w), Q(w), relatively prime polynomials

of w. At z + δz (with infinitesimal δz), the degenerate root is given by

w = B(z + δz) ≡ B(z) + δB. (3.22)

That is, by definition,

0 = Wz+δz(B(z) + δB). (3.23)

We next use the Taylor expansion

0 = Wz(B(z)) + δB
∂Wz(w)

∂w

∣∣∣∣
w=B(z),z

+ δz
∂Wz(w)

∂z

∣∣∣∣
w=B(z),z

. (3.24)

Given the above form of Wz(w), its partial derivative ∂Wz/∂w = 0 at w = B(z), for m > 1.

Similarly, Wz(w = B(z)) = 0. Lastly, from Eq. (3.18)

∂Wz(w)

∂z

∣∣∣∣
w=B(z),z

= −Q(B(z)). (3.25)

Putting all of the pieces together,

0 = −δz Q(B(z)). (3.26)
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Therefore, w = B(z) is a root of Q(w). As the root of Q(w) is independent of z, this implies

that the assumed multiply degenerate root (i.e., B(z)) of Wz(w) is independent of z, i.e.

B(z) = B. Recall (Eq. (3.18)) that Wz(w) = P (w)− zQ(w). As w = B is (for all z) a

root of both Wz(w) and Q(w), it follows that w = B is also a root of P (w). It follows that

both P (w) and Q(w) share a root (and a factor of (w−B) when factorized to their zeros),

e.g., when written as

P (w) = C
∏
a
(w− pa), Q(w) = D

∏
b

(w− qb), (3.27)

with C and D constants and with {pa} and {qb} the roots of P (w) and Q(w) respectively,

at least one of the zeros ({pa}) of P (w) must be equal to one of the zeros ({qb}) of Q(w).

Thus, P (w) and Q(w) are not relatively prime if m > 1. This, however, is a contradiction

and therefore establishes our assertion and proves this Lemma.

3.4 Most general meromorphic n-dualities

Thus far, we largely focused on “two-”dualities satisfying Eq. (3.7). The ideas underlying

our proof in Section 3.3 illustrated that all meromorphic dualities must be of the fractional

linear form, Eq. (3.1). As elaborated, when applied to “two-”dualities satisfying Eq. (3.7),

the most general meromorphic solution is that of Eq. (3.9). Similarly, more general dualities

for which Eq. (3.11) is obeyed enjoy more solutions (such as those afforded by Eq. (3.10)).

We now explicitly solve the general case of Eq. (3.12). As proven, the fractional linear

transformations, Eq. (3.13), are the only possible meromorphic solutions. We thus confine

our attention to these. In what follows, we will invoke the composition property of Eq. (3.3).
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On the right hand side of Eq. (3.12), the function z may be expressed in matrix form as

 γ 0

0 γ

 , (3.28)

with γ an arbitrary complex number. This is so as the matrix elements (a = γ, b = 0 =

c, d = γ) are such that, rather trivially, the associated fractional linear function of Eq. (3.1)

is (γ · z + 0 · 1)/(0 · z + γ · 1) = z. If all functions Fk, in Eq. (3.12) are of the same form of

Eq. (3.1), then when the representation of Eq. (3.28) is inserted we will trivially have

 a b

c d


n

≡Mn =

 γ 0

0 γ

 , (3.29)

whose solutions are straightforward. When diagonalized by a unitary transformation, the

matrix M must only have n-th roots of γ. Thus,

M = γ1/nU†

 e2πik1/n 0

0 e2πik2/n

U ≡ γ1/nM̃, (3.30)

with k1,2 arbitrary integers and U any 2× 2 unitary matrix. The latter may, of course, most

generally be written as U = exp[−iθ~σ · n̂/2] with ~σ = (σ1,σ2,σ3), the triad of Pauli matrices,

θ an arbitrary real number and n̂ = ((n̂)1, (n̂)2, (n̂)3) a unit vector. The factorization of γ1/n

was performed in Eq. (3.30) because, as we briefly remarked earlier, a uniform scaling of all

four elements of the general 2× 2 matrix does not alter the fractional linear transformation

of Eq. (3.1). All possible dualities are exhausted by the space spanned by all of the matrices

M̃ of the form of Eq. (3.30), and a duality with real n̂ can then be interpreted as an induced
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map on the Euclidean S2 sphere (or, more precisely, one of its hemispheres as we will explain

shortly).

In the case of n = 2 (i.e., that of Eq. (3.7)), the only non-trivial solution (i.e., non-identity

matrix) solution of the form of Eq. (3.30) is formed by having (k2− k1) ≡ 1 (mod 2). When

this occurs, Eq. (3.30) becomes

M̃ = U†σ3U = ~σ · n̂. (3.31)

The solution of Eq. (3.31) is, of course, identical to that of Eq. (3.9) once we set γ1/n n̂ =

((b+ c)/2, i(b− c)/2, a). For example, the Ising model duality of Eq. (3.6) is associated

with the unit vector n̂ = 2−1/2(1, 0,−1). We thus see how the particular solutions that we

obtained earlier are a particular case of this more general approach. For “two-”dualities with

real n̂, any point on the southern hemisphere (i.e., one with (n̂)3 < 0) is associated with

a different transformation. This is so as scaling the global multiplication of the matrix by

(−1) (associated with n̂ → −n̂) does not alter the fractional linear transformation of Eq.

(3.1). This space spanned by the hemisphere is, of course, identical to that of the RP 2 group

associated with nematic liquid crystals having a two-fold homotopy group, Π1(RP 2) = Z2

and two associated possible defect charges. Geometrically, we may thus understand dualities

by thinking of the space spanned by the group elements.

In a similar vein, in the n-duality solution of Eq. (3.30), the eigenvalues of M are any two

roots of the identity (or stated equivalently, any two elements of the cyclic group Zn (which,

on its own, form the center of the group SU(n)) multiplying γ1/n . We now return to the

general problem posed by Eq. (3.12). Repeating our arguments thus far, it is readily seen

that the most general meromorphic solution is afforded by the fractional linear maps of Eq.
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(3.13) with the n-th 2× 2 matrix (associated with the fractional linear map Fn) set by the

inverse of all others. That is, rather explicitly,

 an bn

cn dn

 =
[ a1 b1

c1 d1

 ·
 a2 b2

c2 d2

 · · ·
 an−1 bn−1

cn−1 dn−1

]−1
. (3.32)

3.5 Multiple coupling constants

The considerations of Sections 3.3 and 3.4 can be extended to not only two but also to

many coupling constants ~z = (z1, z2, · · · , zq), q ≥ 1 ∈ N. In the particular case of

two coupling constants, the duality mapping will be of the form ~z = (z1, z2) → ~w ≡

(F1(z1, z2),F2(z1, z2)) ≡ ~F (~z), where the functions F1(z1, z2) and F2(z1, z2) must be frac-

tional linear maps of two complex variables [33].

To obtain the proper fractional linear map in several variables, one has to remember that

it is important to preserve the composition property of these maps, that is, the application

of two of these maps should generate another fractional linear map. Consider a fractional

linear map ~F (1)(~z) involving two complex variables

w1 = F
(1)
1 (z1, z2) =

a
(1)
1 z1 + a

(1)
2 z2 + a

(1)
3

c
(1)
1 z1 + c

(1)
2 z2 + c

(1)
3

, (3.33)

w2 = F
(1)
2 (z1, z2) =

b
(1)
1 z1 + b

(1)
2 z2 + b

(1)
3

c
(1)
1 z1 + c

(1)
2 z2 + c

(1)
3

, (3.34)

where all the coefficients a
(1)
j , b(1)j , c(1)j (j = 1, 2, 3) are complex numbers. Then, it is

straightforward to verify that the composition of these generalized fractional linear maps,
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~F (2)( ~F (1)(~z)), generates another fractional linear map and induces a, non-Abelian in gen-

eral, group structure. That is, we may associate with each fractional linear map a 3× 3

matrix M (1) given by

M (1) =


a
(1)
1 a

(1)
2 a

(1)
3

b
(1)
1 b

(1)
2 b

(1)
3

c
(1)
1 c

(1)
2 c

(1)
3

 , (3.35)

with a determinant ∆ 6= 0. As can be explicitly verified, the composition of maps corre-

sponds to matrix multiplication. Moreover, we can re-scale all coefficients by the (in general,

complex) factor 1/ 3√∆ without affecting the map, so that the re-scaled (associated) matrix

has a determinant equal to unity. The subset of 3× 3 complex matrices with determinant 1

forms a group denoted SL(3, C).

The fixed points of the transformation, ~z∗ = (z∗1 , z∗2), solve the equations

z∗1 =
a
(1)
1 z∗1 + a

(1)
2 z∗2 + a

(1)
3

c
(1)
1 z∗1 + c

(1)
2 z∗2 + c

(1)
3

, (3.36)

z∗2 =
b
(1)
1 z∗1 + b

(1)
2 z∗2 + b

(1)
3

c
(1)
1 z∗1 + c

(1)
2 z∗2 + c

(1)
3

. (3.37)

When these are satisfied

z∗2 =
c
(1)
1 (z∗1)

2 + (c
(1)
3 − a

(1)
1 )z∗1 − a

(1)
3

a
(1)
2 − c

(1)
2 z∗1

, (3.38)

and z∗1 is the solution of a cubic equation (there are obviously three such cubic equation

solutions). Armed with the above, we now investigate the extension Babbage’s equation of
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Eq. (3.7) with two variables z1,2. That is, we now explicitly solve the equation

~z = ~F (1)( ~F (1)(~z)). (3.39)

There are several solutions to this equation. An important class, characterized by non-zero

values of b(1)1 and c
(1)
1 is given by

M (1) =



a
(1)
1

(1+a(1)1 )(1+b(1)2 )

b
(1)
1

− (1+a(1)1 )(a
(1)
1 +b

(1)
2 )

c
(1)
1

b
(1)
1 b

(1)
2 − b

(1)
1 (a

(1)
1 +b

(1)
2 )

c
(1)
1

c
(1)
1

c
(1)
1 (1+b(1)2 )

b
(1)
1

−1− a(1)1 − b
(1)
2


. (3.40)

This solution constitutes a generalization of Eq. (3.9) to the case of q = 2 complex variables

for “two-”dualities.

The generalization of these ideas to q > 2 is formally straightforward leading to the SL(q+

1, C) group structure. The geometry of these mappings is a very interesting mathematical

problem beyond the scope of the current chapter.

3.6 “Partial solvability”- a non-trivial practical out-

come of dualities

We will now examine constraints that stem from the fractional linear maps that we found,

i.e., a particular set of conformal transformations. A highlight of the remainder of this

chapter is that the results of Eqs. (3.9, 3.10, 3.13, 3.30, 3.32) allow for the partial solvability

of many different theories. How this is done in practice will be best illustrated by detailed
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calculations. To make the concepts concrete and relatively simple to follow, we will employ, in

Sections 3.7 and thereafter, as lucid examples some of the best studied statistical mechanics

models, Ising models and generalized Ising-type lattice gauge theories and focus on n = 2

dualities with a single coupling constant (q = 1). In this section, we wish to sketch the

central idea behind this technique.

Let us consider an arbitrarily large yet finite size system for which no phase transition

occurs and thus the partition function Z (or any other function) is an analytic function of

all couplings and/or temperature. For such a finite size system, the W-C and S-C expansions

(or, correspondingly, high- and low-temperature expansions) of Z, can often be written as

finite order series (i.e., polynomials) in the respective expansion parameters z ≡ f+(g) and

w ≡ f−(g). That is, we consider the general finite order W-C and S-C series for the partition

function Z (or any other analytic function)

ZW−C = Y+(z)
∑
n
Cn z

n, ZS−C = Y−(w)
∑
n′
C ′n′ w

n′ , (3.41)

where Y± are analytic functions and w = F2(z) (for which, according to Eq. (3.11), z =

F1(w)). As in Eq. (3.41), the two expansions converge to the very same function Z, we

trivially have, by the transitive axiom of algebra, two equivalent relations,

Y+(z)
∑
n
Cn z

n = Y−(F2(z))
∑
n′
C ′n′

(
F2(z)

)n′
,

Y−(z)
∑
n′
C ′n′ z

n′ = Y+(F1(z))
∑
n
Cn

(
F1(z)

)n
, (3.42)

for the finite number of series coefficients {Cn} and {C ′n′}. According to the simple results

of Section 3.3, the functions F1,2 appearing in the arguments of Y± and in the expansion

itself are of the fractional linear type, i.e., functions of the form of Eq. (3.10). Now, here is
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the crux of our argument: When the functions of Eq. (3.10) are inserted, Eqs. (3.42) may

give rise to constraints amongst the coefficients {Cn} and {C ′n′} and thus partially solve for

the function Z with no additional input.

Similarly to the “n-duality” mappings of Section 3.2, the general methods of partial solvabil-

ity introduced above may be trivially extended to this more general case. This, in particular,

may also enable the examination of not only W-C and S-C series but also the matching of

partition functions on finite size systems which in the thermodynamic limit will have mul-

tiple phases (and associated series for thermodynamic quantities and partition functions).

If Eq. (3.12) applies in systems having a certain number of such regimes in each of which

the partition function may be expressed as a different finite order series of the form of Eq.

(3.41), i.e.,

Zh = Yh(z)
∑
n
Cn z

n, (3.43)

with 1 ≤ h ≤ m, where m is the number of finite order representations of the partition

function Z, then we will be able to find analogs of Eqs. (3.42). These, as before, will lead

to partial solvability.

As the discussion above is admittedly abstract, we will now turn to concrete examples in

the next few sections. One of the most pragmatic consequences of our approach, detailed

in Section 3.10 and 3.14 is that the complexity of determining the W-C and S-C series

expansions may be trivially identical. This lies diametrically opposite to the maxim that

S-C series expansions are in many instances far harder to determine than perturbative W-C

expansions [34].
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3.7 Series expansions of Ising models

To demonstrate our concept, we will first use standard expansions [22–24,35,36] of the Ising

models of Eq. (3.44) and their generalizations. The Hamiltonian

H = −
∑
〈ab〉

Jabsasb, (3.44)

sa = ±1. In the remainder of this chapter, we will consider this and various other models

on hypercubic lattices Λ of N = LD sites in D dimensions (with even length L), endowed

with periodic boundary conditions. Unless stated otherwise, we will focus on uniform ferro-

magnetic systems (Jab = J > 0 for all lattice links 〈ab〉). In Subsection 3.14.4 we consider

other boundary conditions, system sizes and lattice aspect ratios, and show that our results

are essentially unchanged for large systems with random Jab = ±J .

In the notation of earlier sections, the coupling constant is (g ≡)K ≡ βJ with β the inverse

temperature. Defining T̃ ≡ tanhK(≡ f+(K)), the identity exp[Ksasb] = coshK[1 +

(sasb)T̃ ] leads to a high-temperature (H-T), or W-C, expansion for the partition function

ZH−T = (coshK)DN
∑
{s}

∏
〈ab〉

[
1 +

(
sasb

)
T̃
]
. (3.45)

The sum ∑
{s}(sasb) · · · (smsn) = 2N if sk at each site k appears an even number of times

and vanishes otherwise. Thus,

ZH−T = 2N (coshK)DN
DN/2∑
l=0

C2lT̃
2l, (3.46)
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where Cl′ is the number of (not necessarily connected) loops of total perimeter l′ = 2l

(l = 1, 2, · · · ) that can be drawn on the lattice and C0 = 1. For each such loop, i.e., Γ =

(ab) · · · (mn) formed by the bonds (nearest neighbor pair products {(sasb)}) appearing in

Eq. (3.46), there is a complementary loop Γ = Λ−Γ for which the sum of Eq. (3.46) remains

unchanged. Consequently, the H-T series coefficients are trivially symmetric, CDN−l′ = Cl′ .

We next briefly review the low-temperature (L-T), or S-C, expansion. There are two degen-

erate ground states (with sa = +1 for all sites a or sa = −1) of energy E0 = −JDN . All

excited states can be obtained by drawing closed surfaces marking domain wall boundaries.

The domain walls have a total (D − 1) dimensional surface area s′, the energy of which

is E = E0 + 2s′J . Taking into account the two-fold degeneracy, the L-T expansion of the

partition function in powers of (f−(K) ≡)e−2K is

ZL−T = 2eKDN
DN/2∑
l=0

C
′
2le
−4Kl, (3.47)

with C
′
s′ the number of (not necessarily connected) closed surfaces of total area s′ = 2l

(C ′0 = 1). That is, the L-T expansion is in terms of (D − 1)-dimensional “surface areas”

enclosing D-dimensional droplets. Geometrically, there are no closed surfaces of too low

areas s′. Thus, in the L-T expansion of Ising ferromagnets,

C
′
s′ = 0, s′ = 2i, (3.48)

where 1 ≤ i ≤ D− 1. The L-T coefficients exhibit a trivial complementarity symmetry akin

to that in the H-T series. Given any spin configuration {sa}, there is a unique correspon-

dence with a staggered spin configuration s′a = (−1)
∑D
α=1 aαsa where aα are the (integer)

Cartesian components of the hypercubic lattice site a (i.e., a = (a1, a2, · · · , aD)). Domain
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walls associated with such staggered configuration are inverted relative to those in the orig-

inal spin configuration sa. That is, if a particular domain wall appears in sa then it will not

appear in s′a and vice versa. As a result, C ′DN−s′ = C
′
s′ (for the even L hypercubic lattices

that we consider).

3.8 Equating weak (H-T) and strong (L-T) coupling se-

ries

We will now follow the program outlined in Section 3.6. Our approach is to compare H-T

and L-T series expansions of the Ising (and other arbitrary) models by means of a duality

mapping. In the Ising model, the Möbius transformation (that satisfies the “one-” duality

condition of Eq. (3.7))

T̃ =
1− e−2K

1 + e−2K , e−2K =
1− T̃
1 + T̃

, (3.49)

relates expansions in T̃ to those in e−2K . In either of the expansion parameters f±(K)

(i.e., T̃ or e−2K), Eqs. (3.49) are examples of the fractional linear transformations discussed

above. T̃ is the magnetization of a single Ising spin immersed in an external magnetic

field of strength h = K/β when there is a minimal coupling (a Zeeman coupling) between

the dual fields: the Ising spin and the external field. This transformation may be applied

to Ising models in all dimensions D – not only to the D = 2 model for which the KW

correspondence holds. These transformations emulate, yet are importantly different from, a

g ↔ 1/g correspondence (the latter never enables an equality of two finite order polynomials
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in the respective expansion parameters). Employing the second of Eqs. (3.49),

ZL−T = 2
(1 + T̃

1− T̃

)DN/2[
1 +

DN/2∑
l=1

C
′
2l

(1− T̃
1 + T̃

)2l]
. (3.50)

By virtue of Eq. (3.46), this can be cast as a finite order series in T̃ multiplying (coshK)DN .

Indeed, by invoking 1− T̃ 2 = 1
(coshK)2 and the binomial theorem,

ZL−T = 2(coshK)DN
DN∑
m=0

T̃m
[(
DN

m

)

+
DN/2∑
l=1

C
′
2l A

D
m
2 ,l

]
(3.51)

where

ADk,l =
2l∑
i=0

(−1)i
(

2l
i

)(
DN − 2l

2k− i

)
. (3.52)

Analogously,

ZH−T =
eKDN

2(D−1)N

DN∑
m=0

e−2Km
[(
DN

m

)

+
DN/2∑
l=1

C2l A
D
m
2 ,l

]
(3.53)

Equating Eqs. (3.46) and (3.51) and Eqs.(3.47) and (3.53) and invoking Eq. (3.48) leads to

a linear relation among expansion coefficients,

WDV + P = 0, (3.54)
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where V and P are, respectively, DN−component and (DN +D− 1)−component vectors

defined by

Vi =


C2i when i ≤ DN

2 ,

C
′

2(i−DN2 )
when i > DN

2 ,

Pi =


(DN2i ) when i ≤ DN

2 ,

( DN
2(i−DN2 )) when DN

2 < i ≤ DN ,

0 when i > DN .

(3.55)

In Eq. (3.54), the rectangular matrix

WD =

 MD
DN×DN

TD(D−1)×DN

 , (3.56)

where the DN ×DN matrix MD is equal to

MD=

 −2N−11DN
2 ×

DN
2

ADDN
2 ×

DN
2

ADDN
2 ×

DN
2

−2(D−1)N+11DN
2 ×

DN
2

 , (3.57)

with a square matrix ADDN
2 ×

DN
2

whose elements ADk,l (1 ≤ k, l ≤ DN/2) are given by Eq.

(3.52). Constraints (3.48) are captured by TD in Eq. (3.56), TD =
(
O(D−1)×DN2

BD
(D−1)×DN2

)
,

where the matrix elements BD
k,l = 1, if k = l, and BD

k,l = 0 otherwise; O is a (D− 1)× DN
2

null matrix. Apart from the direct relations captured by Eq. (3.54) that relate the H-T

and L-T series coefficients to each other, there are additional constraints including those

(i) originating from equating coefficients of odd powers of T̃ and e−2K to zero and (ii) of

trivial symmetry related to complimentary loops/surfaces in the H-T and L-T expansion

that we discussed earlier, Ci = CDN−i and C ′i = C ′DN−i. It may be verified that these
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restrictions are already implicit in Eq. (3.54). Notably, as the substitutions i ↔ (2k − i),

(2l) ↔ (DN − 2l) in Eq. (3.52) show, Eqs. (3.51) and (3.53) are, respectively, invariant

under the two independent symmetries C ′2l ↔ C
′
DN−2l and C2l ↔ CDN−2l and thus the

linear relations of Eq. (3.54) adhere to these symmetries. Thus, the equalities between the

lowest (small 2l) and highest (i.e., (DN − 2l)) order coefficients are a consequence of the

duality given by Eq. (3.49) that relates expansions in the W-C and S-C parameters.

The total number of unknowns (series coefficients) in Eq. (3.54) is U = DN with 1/2 of these

unknowns being the H-T expansion coefficients and the other 1/2 being the L-T coefficients

(the components Vi). In Subsection 3.14.1 (in particular, Table 3.2 therein), we list the

rank (R) of the matrix WD appearing in Eq. (3.54) for different dimensions D and number

of sites N . As seen therein, for the largest systems examined the ratio R/U tends to 3/4

suggesting that in all D only ∼ 1/4 of the combined L-T and H-T coupling series coefficients

need to be computed by combinatorial means. The remaining ∼ 3/4 are determined by

Eq. (3.54). This fraction might seem trivial at first sight. If, for instance, the first 1/2

of the H-T coefficients C2l are known (i.e., those with l ≤ DN/4) then the remaining H-T

coefficients C2l (with l > DN/4) can be determined by the symmetry relation CDN−2l = C2l

and once all of the H-T series coefficients are known (and thus the partition function fully

determined), the partition function may be written in the form of Eq. (3.47) and the L-T

coefficients {C ′2l} extracted. Thus by the symmetry relations alone knowing a 1/4 of the

coefficients alone suffices. The symmetry relations are a rigorous consequence of the duality

relations for any value of N . As the duality relations may include additional information

apart from symmetries, it is clear that R/U ≥ 3/4 for finite N (i.e., knowing more than

a 1/4 of the coefficients is not necessary in order to evaluate all of the remaining H-T and

L-T coefficients with the use of duality). For a given aspect ratio, the smaller N is (and

the smaller the number of unknowns U), the additional relations of Eqs. (3.48) carry larger
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relative weight and the ratio R/U may become larger. Thus, 3/4 is its lower bound. Indeed,

this is what we found numerically for all (non self-dual) systems that we examined (see

Subsection 3.14.1). As D increases, the lowest non-vanishing orders in the L-T expansion

become more separated and Eqs. (3.54) become more restrictive for small N systems [37].

The H-T and L-T series are of the form of Eqs. (3.46) and (3.47) for all geometries that share

the same minimal D dimensional hypercube (i.e., of minimal size L = 2) of 2D sites. Thus,

equating the series gives rise to linear relations of the same form for both a hypercube of

size N = LD (with general even L) as well as a tube of N/2D−1 hypercubes stacked along

one Cartesian direction. However, although the derived linear equations are the same, the

partition functions for systems of different global lattice geometries are generally dissimilar

(indicating that the linear equations can never fully specify the series). Thus, the set of

coefficients not fixed by the linear relations depends on the global geometry.

Parity and boundary effects may influence the rank R of the matrix WD in Eq. (3.54). As

demonstrated in Subsection 3.14.4 for D = 2 lattices in which (at least) one of the Cartesian

dimensions L is odd, as well as systems with non-periodic boundary conditions, R/U ∼ 2/3.

That is, in such cases ∼ 1/3 of the coefficients need to be known before Eq. (3.54) can

be used to compute the rest. As explained in Subsection 3.14.4, symmetry and duality

arguments can be enacted to show that in these cases, R/U ≥ 2/3 for finite N , i.e., its lower

bound is 2/3. A further restriction is that of discreteness – the coefficients C2l,C ′2l (counting

the number of loops/surfaces of given perimeter/surface area) must be non-negative integers

for the ferromagnetic Ising model.
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Let us illustrate the concepts above with a minimal periodic 2× 2 ferromagnetic (J > 0)

system with Hamiltonian H = −2J [s1s2 + s1s3 + s2s4 + s3s4]. From Eqs. (3.46, 3.47)

ZH−T = 16 cosh8K[1 +C2T̃
2 +C4T̃

4 +C6T̃
6 +C8T̃

8],

ZL−T = 2e8K [1 +C ′2e
−4K +C ′4e

−8K

+C ′6e
−12K +C ′8e

−16K ]. (3.58)

Invoking Eqs. (3.55,3.56), V † = (C2,C4,C6,C8,C ′2,C ′4,C ′6,C ′8),

P † = (28, 70, 28, 1, 28, 70, 28, 1, 0), and

W =



−8 0 0 0 4 −4 4 28

0 −8 0 0 −10 6 −10 70

0 0 −8 0 4 −4 4 28

0 0 0 −8 1 1 1 1

4 −4 4 28 −32 0 0 0

−10 6 −10 70 0 −32 0 0

4 −4 4 28 0 0 −32 0

1 1 1 1 0 0 0 −32

0 0 0 0 1 0 0 0



.

There are U = 8 unknown coefficients in Eq. (3.54); the rank (R) of the matrix W is eight.

Thus, in this minimal finite system, the Eqs. (3.54) are linearly independent (R/U = 1)

and all coefficients may be determined (C2 = C6 = 4,C4 = 22,C8 = 1,C ′2 = C ′6 = 0,C ′4 =

6,C ′8 = 1).
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Generally, not all coefficients may be determined by duality alone. As we discussed, in the

large system limit, R/U → 3/4. A 4× 4 example appears in Subsection 3.14.5.

3.9 Partial solvability and binary spin glasses

If Jab = ±J independently on each lattice link 〈ab〉, then Eqs. (3.48) need not hold. Instead

of Eq. (3.54), we have (see Subsection 3.14.2)

SDV +Q = 0. (3.59)

This less restrictive equation (by comparison to Eq. (3.54)), valid for all Jab = ±J , is of

course still satisfied by the ferromagnetic system. For the matrix SD, a large system value of

R/U ∼ 3/4 is still obtained (see Table 3.3, Subsection 3.14.2). The partition functions for

different Jab = ±J realizations will be obviously different. Nevertheless, all of these systems

will share these linear relations [38]. Unlike the ferromagnetic system, the integers Cl′ ,C ′s′

may be negative. Computing the partition function of general binary spin glass D = 2 Ising

models is a problem of polynomial complexity in the system size. When D ≥ 3, the complexity

becomes that of an NP complete problem [39, 40]. Therefore, our equations partially solve

and “localize” NP-hardness to only a fraction of these coefficients; the remaining coefficients

are determined by linear equations. The complexity of computing (nm), required for each

element of SD, is O(n2). Our equations enable a polynomial (in N) consistency checks of

partition functions. In performing the expansions of Eqs. (3.46) and (3.47), the complexity

of determining the number of loops (or surfaces) of given size l′ (or s′) (i.e., the coefficients

Cl′ or C ′s′) increases rapidly with l′ (or s′).
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Our relations may be applied to systematically simplify the calculation of these coeffi-

cients. As we now explain, the situation becomes exceedingly transparent in the Ising mod-

els discussed thus far. For these theories, the coefficients are symmetric: Cl′ = CDN−l′ ,

C ′s′ = C ′DN−s′ . By virtue of these symmetries that are embodied in the duality relations of

Eq. (3.59), it is clear that if the lower 1/2 of the H-T coefficients {Cl′≤DN/2} (or, similarly,

the lower 1/2 of L-T coefficients. i.e., {C ′s′≤DN/2}), i.e., a 1/4 of the combined H-T and

L-T series coefficients, were known then the remaining H-T (or L-T) coefficients are triv-

ially determined. Then, armed with either the full H-T (or L-T) series, the exact partition

functions can be equated ZH−T = ZL−T and written in the form of Eqs. (3.46) and (3.47)

to determine the remaining unknown L-T (or H-T) coefficients. That is, once the partition

functions are known, the series expansions (and thus coefficients) are uniquely determined.

By construction, Eq. (3.59) incorporates, of course, the relation

ZH−T = ZL−T (3.60)

which forms the core of our analysis. Thus, as the symmetry is a consequence of the duality

relations, it is clear that knowing a 1/4 of the combined H-T and L-T coefficients suffices to

determine all of them via Eq. (3.59), i.e., that the required fraction of coefficients to find

all of the others via duality satisfies the inequalty (1−R/U) ≤ 1/4. As the asymptotic

ratio of R/U ∼ 3/4 suggests, and as we have verified, knowing the first 1/4 of both the

H-T and L-T coefficients (i.e., those with l′ ≤ DN/4 and s′ ≤ DN/4) instead of 1/2 of

the H-T (or L-T) coefficients discussed above, suffices to completely determine all other

coefficients. As the difficulty of evaluating coefficients increases rapidly with their order,

systematically computing this 1/4 lowest order coefficients ({Cl′≤DN/4}, {C ′s′≤DN/4}) is less
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numerically demanding than computing the first 1/2 of all the H-T coefficients ({Cl′≤DN/2}),

or calculating the first 1/2 all of the L-T coefficients ({C ′s′≤DN/2}).

3.10 Generating “hard”’ series expansions from their

“easier” counterparts

The central idea underlying our approach is that, for finite size systems, the H-T and L-T

series expansions are different representations of the very same partition function, Eq. (3.60).

This equality followed from the analyticity of the partition function on any (arbitrary size

yet) finite size system. As the astute reader noted throughout all earlier sections, this relation

forms the nub of the current study. It is worthwhile to step back and ask what the practical

implications of our results are for disparate H-T and L-T series expansions (or other W-C

and S-C series). First and foremost, Eq. (3.60) implies, of course, that the generation of

the H-T and L-T series on finite size lattice are equally hard, as obtaining one immediately

yields the other.

As stated by certain insightful textbooks, e.g., [34, 41–43], the H-T and L-T expansions

differ in their conceptual premise. For instance, as [34] notes, “the derivation of a high-

temperature expansion is, in principle, straightforward”, since it just amounts to counting

the number of closed loops, while, as befits the more meticulous examination of the ground

states and myriad possible excitations about them, it may seem that “the generation of

lengthy low-temperature series is a highly specialized art”. Much work has been devoted

to a finite lattice method that improves the bare H-T and L-T series (as in, e.g., the H-T

loop tallying briefly reviewed in Section 3.7) [43–46]. Many specialized texts [41, 42] laud
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the simplifying features of general H-T expansions vis a vis their L-T counterparts, including

commending their features such as “smoothness” [41], the uniform sign of the H-T coefficients

in disparate theories, and their applicability to gapless systems [41, 42]. In a more recent

detailed exposition [43], it was noted that “while the high-temperature series are well-behaved

the situation at low temperatures is less satisfactory, in particular above two dimensions”.

In a related vein, we remark that the H-T series are well known to naturally relate to one

of the oldest and simplest expansions — that of the virial coefficients [47] as well as large-n

expansions [48]. Thus, with all of the above, it would generally seem that H-T and L-T

qualitatively differ. However, as seen by Eq. (3.60) and the linear equations that we derived

in earlier sections connecting the H-T and L-T expansions, the complexity of deriving either

expansion on all general finite size lattices is the same. Thus for finite size lattices with

finite order H-T and L-T series related by a transformation of their expansion parameter, the

general maxim concerning the different intrinsic complexity of the H-T and L-T expansions

does not hold.

Concretely, we may derive H-T coefficients from L-T coefficients and vice versa from the

simple relation of Eq. (3.60). In the case of the Ising model that formed much of the focus

of the current study, from Eq. (3.54) we have that

C2k = 1
2N−1

[∑DN/2
l=1 ADk,lC

′
2l + (DN2k )

]
. (3.61)

In [49], we apply our method to derive the H-T expansions from their L-T counterparts on

finite size periodic two- and three-dimensional lattices [50].

It is notable that our method applies to non-trivial systems such as the three-dimensional

Ising model. Our relations enable a consistency check of proposed series solutions and the
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derivation of the entire series from a knowledge of only a fraction of coefficients. Indeed, we

verified that the L-T series provided in [50] satisfy the linear equations of Eq. (3.54) (and our

derived H-T series adhere to the same relations). As we explained in Section 3.8 for regular

uniform coupling systems, and in Section 3.9 for less constrained non-uniform systems, a

partial knowledge of both the L-T and/or H-T series may enable a construction of the full

partition function.

As we have reiterated earlier and do so once again here, our approach applies to arbitrarily

large yet finite size lattices.

3.11 New combinatorial geometry relations from dual-

ities

Mathematical identities are system independent and enable the general transformation of

one set of objects into another. As such, they are reminiscent of dualities. Symbolically,

let us consider particular partition functions (or “generating functions”) {Z1} that encode

all quantities that we wish to determine in a particular set of systems. If certain identities

universally apply, we may invoke these relations to transform each function into an equivalent

dual, and formally rewrite

{Z1} = {Z2} (3.62)

for the two sets of functions. In Eq. (3.62), {Z2} can be interpreted as the set of generating

functions of very different problems or physical systems. As such, dualities and, in particular,
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the universal relations that we obtained from conformal transformations linking dual systems

may encode very general mathematical relations.

In what follows, we concretely demonstrate that dualities may lead to an extensive number of

(new) mathematical relations such as those connecting the number of surfaces and volumes of

a particular size. These relations are already contained in our previously derived Eqs. (3.59).

The key conceptual point is that dualities between different types of partition functions

(irrespective of the general coupling constants associated with a large set of such functions)

can hold generally by virtue of mathematical identities.

Wegner’s duality [51] relates interactions between {sa} on the boundaries of “d dimensional

cells” to generalized Ising gauge type models with interactions between {sa} on the bound-

aries of “(D− d) dimensional cells”. These generalized Ising lattice gauge theories are given

by the Hamiltonian

H = −
∑
�d

Kd

∏
a∈∂�d

sa, (3.63)

with sa = ±1 and Kd general coupling constants. Here, a “d = 1 dimensional cell” cor-

responds to a (one-dimensional) nearest neighbor edge (i.e., one whose boundary is 〈ab〉)

associated with standard sasb interactions that we largely focused on thus far (i.e., the Ising

model Hamiltonian of Eq. (3.44). The case of d = 2 corresponds to a product of four sa’s at

the centers of the four edges which form the boundary of a two-dimensional plaquette (as in

standard hypercubic lattice gauge theories). That is, d = 2 corresponds to the lattice gauge

Hamiltonian

H = −
∑
�2

Kd=2 (UabUbcUcdUda), (3.64)
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where the link variables Uab = ±1, and with �2 being the standard “d = 2 dimensional” cells

(i.e., square plaquettes) whose one-dimensional boundary ∂�2 is the formed by the nearest

neighbor one-dimensional links (ab), (bc), (cd), and (da). The case of d = 3 corresponds

to the product of six sa’s at the center of the six two-dimensional faces which form the

boundary of a three-dimensional cube, etc. The Hamiltonian is the sum of products of (2d)

sa’s on the boundaries of all of the d dimensional hypercubes in the lattice (in a lattice of

Ñ sites there are Nc = Ñ(Dd ) such hypercubes and Ns = Ñ( D
d−1) Ising variables sa at the

centers of their faces). If the dimensionless interaction strength for a d dimensional cell is

Kd then the couplings in the two dual models will be related by Eqs. (3.49) or, equivalently,

sinh 2Kd sinh 2KD−d = 1. The D = 3, d = 1 duality corresponds to the duality between the

D = 3 Ising model and the D = 3 Ising gauge theory. The D = 2, d = 1 case is that of the

KW self-duality. For general d, Wenger derived his duality from an equivalence between the

H-T and L-T coefficients.

We now turn to new, and rather universal, geometrical results obtained by our approach

that hold in general dimensions. If the ground state degeneracy is 2Ng (e.g., Ng = 1 for the

standard (d = 1) Ising models, Ng = Ñ + 2 in D = d = 2 Ising gauge theories with periodic

boundary conditions), then we find [52] that, irrespective of the coupling constants, the H-

T and L-T series for these models are given by Eqs. (3.46) and (3.47) with the following

substitutions

N =
Nc
D

, C2l = 2Ns−NC(d)
2l , C ′2l = 2Ng−1C

′(d)
2l . (3.65)

Thus, Eq. (3.59) obtained for standard (d = 1) Ising models also holds for general d following

this substitution. In systems with d dimensional cells, C(d)
2l and C

′(d)
2l denote, respectively,

the number of closed surfaces of total d and (D− d) dimensional surface areas equal to 2l.
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By building on our earlier results, we observe that, when the hypercubic lattice length L is

even, Eq. (3.59) universally relates, in any dimension D (and for any d), these numbers

to each other leaving only ∼ 1/4 of these undetermined. By comparison to Eq. (3.59),

additional geometrical conditions that hold for d = 1 (Eqs. (3.48)) produce the slightly

more restrictive Eq. (3.54). Similar additional constraints appear for d > 1. A KW type

self-duality present for D = 2d leads to linear equations that relate {C(d)
2l } (the number

of surfaces of total D/2-dimensional surface area (2l)) to themselves. We next explicitly

discuss the D = 2, d = 1 case (i.e, the standard D = 2 Ising model). Similar considerations

hold for any D = 2d system.

3.12 Dualities versus self-dualities

More information can be gleaned for self-dual systems, e.g., the KW self-duality of the D = 2

Ising model. In this model, C2l ∼ C ′2l (as C2l and C ′2l are both the number of closed d = 1

dimensional loops of length 2l) when Eqs. (3.54) are applied to large systems (L � l),

see Subsection 3.14.3. Consequently, the number of coefficients that need to be explicitly

evaluated is nearly 1/2 of those obtained by matching the H-T and L-T expansions without

invoking self-duality (see Subsection 3.14.1): R/U ∼ 7/8 of the coefficients are determined

by self-duality once ∼ 1/8 of the coefficients are provided. We caution that the relation

C2l ∼ C ′2l is only asymptotically correct in the limit of large system sizes. Consequently,

we find in Subsection 3.14.3 that R/U asymptotically approaches 7/8 from below (and not

from above as it would have if this relation were exact for finite size systems [53]) as N

becomes larger.
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3.13 Summary

We demonstrated that all meromorphic duality transformations on the Riemann sphere (sat-

isfying a generalized form of Babbage’s equation) must be a conformal map of the fractional

linear type (and simple generalizations in the case of multiple coupling constants), in the

appropriate coupling constants. The bulk of our analysis was focused on investigating the

consequences of such general duality maps. As we demonstrated in this chapter, these maps

may lead to linear constraints relating finite order series expansions of two dual models.

We speculate that in models with numerous isometries (e.g., N = 4 supersymmetric YM

theories [54]), much of the theory might become encoded in relations analogous to the lin-

ear equations studied here. Employing Cramer’s rule and noting that the determinants of

the matrices appearing therein are volumes of polytopes spanned by vectors comprising the

columns of these matrices, relates series amplitudes to polyhedral volumes (see Subsection

3.14.6). In N = 4 supersymmetric YM theories, polyhedral volume correspondences for

scattering amplitudes led to a flurry of recent activity [55].

A main theme of our approach is that the analyticity of any quantity ensures that its dif-

ferent series expansions must match for all values of the coupling constants. Consequently,

a main outcome of our study is that the mere existence of two or more such finite order

series expansions of a theory, related by dualities (of the form of Eq. (3.1)), may “partially

solve” that theory. By partial solvability we allude to the ability to compute, with complex-

ity polynomial in the system size, the full partition function Z, for instance, given partial

information (e.g., a finite fraction (1−R/U) of all series coefficients in the examples dis-

cussed in this chapter). Stated equivalently, we saw how to systematically exhaust all of the
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information that duality relations between disparate systems provides. This yields restric-

tive linear equations on the combined set of series coefficients of the dual systems. These

equations allow for more than the computation of one set of (e.g., low-temperature (L-T) or

strong-coupling (S-C)) coefficients in terms of the other half (e.g., high-temperature (H-T)

or weak-coupling (W-C)). In Ising models and generalized Ising gauge (i.e., Wegner type)

theories on even length hypercubic lattices in general dimensions D, only ∼ 1/4 of the co-

efficients were needed as an input to fully determine the partition functions; in the self-dual

planar Ising model only ∼ 1/8 of the coefficients were needed as an input – the self-duality

determined all of the remaining coefficients by linear relations. For an Ising chain, the H-T

series expansion contains only one (two) term(s) for open (periodic) boundary conditions,

i.e., Z = 2(2 coshK)L−1(Z = [(2 coshK)L+ (2 sinhK)L]), thus trivially all coefficients are

determined. As Ising models on varied D > 1 lattices and random Ising spin glass systems

all solve a common set of linear equations, our analysis demonstrates that properties such

as critical exponents cannot be determined by dualities alone. To avoid confusion, we briefly

elaborate on this point. Although all of the properties may, of course, be determined by

the series coefficients (especially when investigated via powerful tools such as Padé approxi-

mants [56] and numerous others), the information supplied by the duality relations on their

own does not suffice to establish the exact critical exponents — some direct calculations

of the coefficients must be invoked. Our linear relations might nevertheless prove useful in

evaluating critical exponents more efficiently as they allow for a double pincer approach in

which the H-T and L-T series inform about each other.

For the even size hypercubic lattices with periodic boundary conditions studied in this chap-

ter there are no closed loops (surfaces) of an odd length. Consequently, Cl′ = C
′
s′ = 0

for odd l′ or odd s′ as we have invoked. If we were to formally allow for additional odd l′

or s′ coefficients then the ratio R/U = 1/2 instead of the values of R/U that we derived
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(see Table 3.1). However, when the conditions Cl′ = 0 for odd l′ are imposed for the H-T

coefficients these lead (via duality) to non-trivial constraints on the L-T series coefficients

Cl′ = fl′({C
′
s′}) = 0 with fl′ linear functions. (Similarly, a vanishing of the L-T series coeffi-

cients leads to non-trivial relations amongst the H-T coefficients.) These constraints lead to

R/U > 1/2 and to the universal geometric equalities discussed earlier. We earlier obtained

lower bounds on R/U using a complementarity symmetry; the linear constraints may relate

to the complementarity of the coefficients. From a practical point of view, we explained and

showed how S-C series expansions may be generated from their W-C counterparts (and vice

versa). Thus, we saw that seemingly easily perturbative W-C (or H-T) and more nontrivial

S-C (or L-T) expansions are actually identically equally hard to generate. We applied these

ideas [49] to concrete test cases for some of the largest exactly known series for both two-

and three-dimensional Ising models on finite size lattices [50]. It is worth reiterating this

and underscoring that this construct may be thus applied to general non-integrable systems

(such as the three-dimensional Ising model, the general D > 2 models in Table 3.1), and

numerous other theories.

Table 3.1: Partial solvability of various models. A fraction R/U of the coefficients are simple
functions of a fraction (1−R/U) of coefficients of the H-T(W-C)/L-T(S-C) series.

Model D R/U

Ising hypercubic > 2 3/4
Ising hypercubic spin-glass > 2 3/4

Wegner models > 2 3/4
spin-glass Wegner models > 2 3/4

self-dual Ising 2 7/8
honeycomb and triangular Ising 2 3/4

Potts hypercubic (q > 2) > 2 2/3
self-dual Ising gauge 4 7/8

Table 3.1 summarizes our findings for numerous models on even size lattices in D dimensions

endowed with periodic boundary conditions [57]. In Subection 3.14.4, we discuss other lattice
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sizes and boundary conditions. With the aid of our linear equations, the NP hardness of

models such as the Ising spin glass in finite dimensions D > 2 is confined to a fraction

(1−R/U) of determining all O(N) coefficients in these models. As we underscored, once

these are computed, the remaining fraction R/U of the coefficients are given by rather trivial

linear equations. A similar matching of series, performed in this chapter for the partition

function, may be replicated for any physical quantity, such as matrix elements of operators,

admitting a finite series expansion. Although the illustrative models shown in Table 3.1 are

all classical, all of our proofs concerning the conformal character of general dualities and the

restrictions that these imply are completely general and hold for both classical and quantum

systems.

A highly nontrivial consequence of our work is the systematic derivation of new mathe-

matical relations via dualities. In the test case of the Ising, Ising gauge, and generalized

Wegner models explored in detail in this chapter, we found an extensive set of previously un-

known equalities in combinatorial geometry given by substituting Eqs. (3.65) into Eq. (3.59).
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3.14 Supplementary information

In the below, we provide explicit details and examples of our method. We will first illustrate

how some of the entries in Table 3.1 were determined, study spin glass systems, examine

various boundary conditions and system sizes, and relate dualities derived from dualities to

polytope volume ratios.

3.14.1 Supplementary information 1: Rank of ferromagnetic Ising

models in general D dimensions

We start by explicitly examining the consequences of the conformal transformation of Eq.

(3.6) (see Fig. 3.1) in the main text, that implemented dualities in the Ising model. Towards

that end, below, in Table 3.2, we display the rank of the matrix WD of Eq. (3.56). As is

seen, for the larger systems examined, in all spatial dimensions D, the ratio (R/U) between

the rank of the matrix (R) formed by the linear relations implied by the dualities and the

total number of unknown (U) series coefficients (for the combined H-T and L-T expansions)

tends to ∼ 3/4. Specifically, for any finite system size N , the rank

R =
3
4DN +D, (3.66)

while the number of unknowns,

U = DN . (3.67)
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The additive contribution of D− 1 to the rank originates from the number of conditions of

Eqs. (3.48) of the main text. We note that although we tabulate here results for symmetric

hypercubes, similar values appear in L1 × L2 × · · · × LD lattices for which all sides Li are

even (and consequently all possible loop lengths l′ and surface areas s′ are even and lead to

Eqs. (3.46) and (3.47) in the main text).

Table 3.2: Determining series coefficients by relating expansion parameters – the rank (R)
of the matrix WD (Eq. (3.54) of the main text) for periodic hypercubic lattices of N = L×
L×L · · · ×L sites in D spatial dimensions. The total sum of the full number of coefficients
{C2l} and {C ′2l} in the expansions of Eqs. (3.46) and (3.51) in the main text is denoted by
U .

N U R R
U

3
4

D= 2

4 8 8 1.00000
16 32 26 0.81250
36 72 56 0.77778
64 128 98 0.76563
100 200 152 0.76000
144 288 218 0.75694
196 392 296 0.75510
256 512 386 0.75391
324 648 488 0.75309
400 800 602 0.75250
900 1800 1352 0.75111 0.75000

D= 3

8 24 21 0.87500
64 192 147 0.76563
216 648 489 0.75463
512 1536 1155 0.75195

D= 4 16 64 52 0.81250
256 1024 772 0.75391

D= 5 32 160 125 0.78125
D= 6 64 384 294 0.76563
D= 7 128 896 679 0.75781
D= 8 256 2048 1544 0.75391

As discussed in the main text, for small system size N , the conditions of Eqs. (3.48) therein

are more restrictive. This further leads to the monotonic decrease of R/U as N is increased.
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For the lowest terms, when D is large, these additional conditions play a more prominent

role and the problem becomes more solvable.

3.14.2 Supplementary information 2: Rank of binary spin-glass

Ising models in general D dimensions

In Table 3.2, we examined the uniform (ferromagnetic) Ising model. We now briefly turn to

Ising models with general (random) signs, Jab = ±J . In such a case, the restrictions of Eq.

(3.48) of the main text no longer apply. Furthermore, while C0 = 1, in the L-T expansion

C ′0 need not be unity (as, apart from global Z2 (i.e., sa → (−sa) at all lattice sites a), the

ground state may have additional degeneracies). Thus, the equation to be solved is

SDV +Q = 0. (3.68)

Here, V is a (DN + 1)−component vector, and Q is a (DN + 2)−component vector defined

by

Vi =


C2i when i ≤ DN

2 ,

C
′

2(i−1−DN2 )
when i > DN

2 ,

Qi =


0 when i ≤ DN

2 ,

( DN
2(i−1−DN2 )) when DN

2 < i ≤ DN + 1,

2N−1 when i = DN + 2.

(3.69)
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Table 3.3: The rank of the matrix SD in Eq. (3.70) for the ±J spin glass Ising model. Similar
to the more restrictive ferromagnetic Ising model (where the constraints of Eq. (3.48) in the
main text apply), R/U tends to ∼ 3/4 for large systems.

N U R R
U

3
4

D= 2

4 9 7 0.77778
16 33 25 0.75758
36 73 55 0.75342
64 129 97 0.75194
100 201 151 0.75124
144 289 217 0.75087
196 393 295 0.75064
256 513 385 0.75049
324 649 487 0.75039
400 801 601 0.75031
900 1801 1351 0.75014 0.75000

D= 3

8 25 19 0.76000
64 193 145 0.75130
216 649 487 0.75039
512 1537 1153 0.75016

D= 4 16 65 49 0.75385
256 1025 769 0.75024

D= 5 32 161 121 0.75155
D= 6 64 385 289 0.75065
D= 7 128 897 673 0.75028
D= 8 256 2049 1537 0.75012
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In Eq. (3.68), the matrix

SD =

 HD
(DN+1)×(DN+1)

GD1×(DN+1)

 , (3.70)

where the (DN + 1)× (DN + 1) matrix HD is equal to

 −2N−11DN
2 ×

DN
2

ÃDDN
2 ×(

DN
2 +1)

B̃D
(DN2 +1)×DN2

−2(D−1)N+11(DN2 +1)×(DN2 +1)

 ,

with matrices ÃD, B̃D, whose elements are given by ÃDk,l = ADk,l−1 for 1 ≤ k ≤ DN
2 , 1 ≤ l ≤

DN
2 + 1 and B̃k,l = ADk−1,l where 1 ≤ k ≤ DN

2 + 1, 1 ≤ l ≤ DN
2 . The vector G is given by

G1,l =


0 when l ≤ DN

2 ,

−1 when l > DN
2 .

(3.71)

The last row of the matrix G and the vector Q capture the constraint

DN/2∑
l=0

C
′
2l = 2N−1 (3.72)

As is seen in Table 3.3, the effect of the restrictions of Eqs. (3.48) of the main text diminishes

for large system sizes; the ratio (R/U) ∼ 3/4 for N � 1 also in this case when Eqs. (3.48)

of the main text can no longer be invoked. For any finite N , the rank

R =
3
4DN + 1, (3.73)
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(in this case Eq. (3.48) of the main text no longer holds) while (as stated above), the number

of unknowns or components of V is

U = DN + 1. (3.74)

We remark that although we tabulate above the results for symmetric hypercubes, i.e., those

in which along all Cartesian directions i, Li = L, similar values appear for general lattices

of size L1 ×L2 × · · · ×LD with even Li (for all 1 ≤ i ≤ D).

As expected, for finite N , the ratio (R/U) in the more restricted ferromagnetic case (Table

3.2) is always larger than that in the corresponding random ±J system (Table 3.3).

3.14.3 Supplementary information 3: Rank of self-dual relations

for the ferromagnetic D = 2 Ising model

We now turn to finite size (vector) self-dualities of the D = 2 Ising model [58] with both

periodic (p)/anti-periodic (a) boundary conditions,

1
(sinh K̃)N/2



Z〈p;p〉(K̃)

Z〈p;a〉(K̃)

Z〈a;p〉(K̃)

Z〈a;a〉(K̃)


=

1
2(sinhK)N/2



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1





Z〈p;p〉(K)

Z〈p;a〉(K)

Z〈a;p〉(K)

Z〈a;a〉(K)


, (3.75)
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where K̃ is the coupling dual toK (as determined by f+(K) = f−(K̃), i.e., sinh 2K̃ sinh 2K =

1). Inserting Eqs. (3.46) and (3.47) of the main text into Eq. (3.75), allowing C〈γ;δ〉
0 ,C

′〈γ;δ〉
0

to be different from unity (〈γ = p, a; δ = p, a〉), and repeating our earlier steps we obtain

(with Yk,l =
1

2N−1A
D=2
k−1,l−1),

N+1∑
l=1

Yk,lC
〈γ;δ〉
2l−2 = 4C

′〈γ;δ〉
2k−2 ,

N+1∑
l=1

Yk,lC
′〈γ;δ〉
2l−2 = C

〈γ;δ〉
2k−2,

where 1 ≤ k, l ≤ N + 1. Furthermore,

C
〈p;p〉
2l = C

′〈p;p〉
2l + 2C

′〈p;a〉
2l +C

′〈a;a〉
2l , (3.76)

C
〈a;p〉
2l = C

〈p;a〉
2l = C

′〈p;p〉
2l −C

′〈a;a〉
2l , (3.77)

C
〈a;a〉
2l = C

′〈p;p〉
2l − 2C

′〈p;a〉
2l +C

′〈a;a〉
2l . (3.78)

Setting Z〈p;a〉 = Z〈a;p〉 in Eq. (3.75), we have M selfV = 0, with V a (6N + 6) dimensional

vector whose components are

V1≤i≤N+1 = C
〈p;p〉
2(i−1),VN+1<i≤2N+2 = C

′〈p;p〉
2(i−N−2),

V2N+2<i≤3N+3 = C
〈p;a〉
2(i−2N−3),V3N+3<i≤4N+4 = C

′〈p;a〉
2(i−3N−4),

V4N+4<i≤5N+5 = C
〈a;a〉
2(i−4N−5),V5N+5<i≤6N+6 = C

′〈a;a〉
2(i−5N−6),

(3.79)
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and where M self is



−2N−1 A O O O O

A −2N+1 O O O O

O O −2N−1 A O O

O O A −2N+1 O O

O O O O −2N−1 A

O O O O A −2N+1

−1 1 O 21 O 1

O 1 −1 O O −1

O 1 O −21 −1 1



.

Here, 2N±1 are multiples of the identity (1) matrix, O is the null matrix, the elements of A

are given by Ak,l = AD=2
k−1,l−1 (1 ≤ k, l ≤ N + 1) and 1,O and A are all (N + 1)× (N + 1)

matrices.

Table 3.4: The rank of the matrix M self wherein the self-duality of the planar Ising model
was invoked. The notation is identical to that in Table 3.2.

N U R R
U

7
8

D= 2

4 30 25 0.83333
16 102 88 0.86275
36 222 193 0.86937
64 390 340 0.87179
100 606 529 0.87294
144 870 760 0.87356 0.87500
196 1182 1033 0.87394
256 1542 1348 0.87419
324 1950 1705 0.87436
400 2406 2104 0.87448
576 3462 3028 0.87464
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The rank R of the matrix M self is provided in Table 3.4. In the D = 2 self-dual Ising model

the ratio R/U ∼ 7/8. In the large system (N) limit, C2l ∼ C ′2l. Thus, by comparison to the

non self-dual Ising models, there is indeed a reduction by a factor of two in the number of

coefficients needed before the rest are trivially determined by the linear relations M selfV = 0.

It is noteworthy that, contrary to the behavior for non-self dual systems, the values of (R/U)

are monotonically increasing in N , approaching their asymptotic value of 7/8 from below.

3.14.4 Supplementary information 4: Different system sizes, as-

pect ratios, and boundary conditions

We now examine the analog of Eq. (3.56) of the main text for planar systems of size L1×L2

in which the parity of L1,2 can be either even or odd. Systems with only even Li were

examined in the main text (and Table 3.2) to find a ratio of R/U ∼ 3/4. As seen below,

when either (or both) L1,L2 are odd, R/U ∼ 2/3 (i.e., 1/3 of the coefficients are needed as

an input to determine the full series by linear relations).

Table 3.5: The rank of the linear equations analogous to Eq. (3.56) of the main text when
both L1 and L2 are odd.

L1 L2 N U R R
U

2
3

3 3 9 24 19 0.79167
3 9 27 75 55 0.73333
5 5 25 70 51 0.72857 0.66667
5 9 45 128 91 0.71094
9 9 81 234 163 0.69658

In a system with periodic boundary conditions, when at least one of the Cartesian dimensions

Li of the lattice is odd, closed loops of odd length may appear: the H-T series is no longer

constrained to be of the form of Eq. (2) of the main text with even l′. By contrast, as

the total number of lattice links is even, the difference between low energy or “good”’ (i.e.,
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Table 3.6: Rank for L1 ×L2 lattices with even L1 and odd L2.

L1 L2 N U R R
U

2
3

2 3 6 18 13 0.72222
2 9 18 54 37 0.68519
4 9 36 108 73 0.67593 0.66667
4 25 100 300 201 0.67000
8 9 72 216 145 0.67130

sa = sb) and high energy “bad” (sa = −sb) bonds sasb is even and Eq. (3.47) of the main

text still holds.

In Tables 3.5 and 3.6 we provide the results for D = 2 periodic lattices. As seen, when

at least one of the lattice dimensions is odd, R/U ∼ 2/3. The reduction in the value

of R/U relative to the even size lattice with periodic boundary conditions originates from

the fact that the H−T expansion admits both even and odd powers of T̃ ; there are more

undetermined H-T coefficients. More potently, a lower bound ofR/U ≥ 2/3 can be proven by

invoking the symmetries captured by the duality relations. The H-T expansion is symmetric

(CDN−l′ = Cl′). In the H-T expansion both odd and even powers l′ appear. By contrast,

in the L-T expansion only even powers s′ arise. The number of non-vanishing H-T series

coefficients {Cl′} is DN ; the number of L-T expansion coefficients C ′s′ in the low temperature

form of the partition function, ZL−T is DN
2 . Given {C ′s′}, by invoking duality (i.e.,by equating

ZH−T = ZL−T) we may compute all {Cl′}. Thus if we compute these DN
2 L-T coefficients (a

1/3 of the combined H-T and L-T coefficients), the partition function and all remaining H-T

coefficients can be fully determined.

We next turn to systems with open boundary conditions. In these systems, no odd power

shows up in the H-T series expansion. By contrast, odd powers may appear in the L-T

expansion (as, e.g., when there is a single sa = −1 at the boundary on a D = 2 lattice

in which all other sites b have sb = +1 for which there are three “bad” bonds). In Table
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3.7 we list the matrix rank for open boundary conditions. Once again, we find that for

these R/U ∼ 2/3. The reduction in the value of R/U by comparison to the even size

lattice with periodic boundary conditions in this case has its origins in the fact that here the

L−T expansion admits both even and odd powers of (e−2K); there are, once again, more

undetermined coefficients. We remark that the symmetries l′ ↔ DN − l′ and s′ ↔ DN − s′

of the H-T and L-T expansions that were present for periodic boundary conditions no longer

appear when the system has open boundaries. In the H-T expansion, only even powers

appear. In the L-T expansion both odd and even orders s′ are present. Thus, the number

of H-T coefficients is essentially 1/2 of that of the L-T coefficients. Thus, if all of the H-T

coefficients Cl′ were known (i.e., a 1/3 of all of the combined coefficients), it is clear (even

without doing any calculations) that the remaining L-T coefficients C ′s′ can be determined by

duality by setting ZH−T = ZL−T and computing {C ′s′}. Thus, for any finite size system, the

fraction of coefficients required to compute the rest via the duality relations of Eqs. (3.54) is

bounded from above, i.e., (1−R/U) ≤ 1/3. Asymptotically, for large N , the fraction R/U

approaches 2/3 from below (that the approach is from below and not from above follows

from this inequality).

Defining the parity

P ≡


0 if both L1 and L2 are even

1 otherwise
, (3.80)

we find the ranks listed in Table 3.7.
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Table 3.7: The rank of the linear equations for various rectangular lattices with open bound-
ary conditions.

L1 L2 N U R R
U

2
3

P= 0

2 2 4 6 5 0.83333
2 8 16 30 23 0.76667
2 50 100 198 149 0.75253
4 4 16 34 25 0.73529
6 6 36 86 61 0.70930 0.66667
10 10 100 262 181 0.69084

P = 1

2 3 6 10 8 0.80000
3 3 9 16 13 0.81250
4 9 36 83 60 0.72289
4 25 100 243 172 0.70782
9 9 81 208 145 0.69712

3.14.5 Supplementary information 5: Explicit test cases

In what follows, we examine specific small lattice systems via our general method.

Random ±J Ising systems on a periodic 2× 2 plaquette

In the main text we examined a periodic 2× 2 ferromagnetic (J > 0) system with Hamil-

tonian H = −2J [s1s2 + s1s3 + s2s4 + s3s4]. If instead of the ferromagnetic Hamiltonian,

we have an Ising model with general (random) Jab = ±J on each of the links 〈ab〉 then

Eq. (3.48) of the main text will no longer hold. Instead of Eq. (3.54) of the main text,

the equation satisfied is given by Eq. (3.68) where the DN dimensional (or, in this case,

eight-dimensional) matrix M differs from W by the omission of the matrix T (the single last

column of W in this 2× 2 example). That is, rather explicitly, S is given by
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

−8 0 0 0 28 4 −4 4 28

0 −8 0 0 70 −10 6 −10 70

0 0 −8 0 28 4 −4 4 28

0 0 0 −8 1 1 1 1 1

1 1 1 1 −32 0 0 0 0

4 −4 4 28 0 −32 0 0 0

−10 6 −10 70 0 0 −32 0 0

4 −4 4 28 0 0 0 −32 0

1 1 1 1 0 0 0 0 −32

0 0 0 0 −1 −1 −1 −1 −1



.

As noted in the main text, the DN dimensional vector Q in the ±J Ising system differs from

P in the ferromagnetic case in that it does not have an additional D− 1 (which equals one

in this D = 2 example) last entries being equal to zero. It is clear that the ferromagnetic

system investigated above fulfills Eq. (3.68) (the ferromagnetic system satisfies one further

constraint related to the last row of W ). We wish to underscore that any 2× 2 Ising system

with general couplings Jab = ±J on each of the links 〈ab〉 will comply with Eq. (3.68).

A periodic 4× 4 ferromagnetic system

For a periodic 4× 4 ferromagnetic system, there are 32 coefficients and the rank of the matrix

W is 26. Thus, the coefficients are linear functions of a subset of six coefficients. Choosing
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these to be, e.g., C2,C4,C6,C ′4,C ′6,C ′8 the remaining coefficients are given by

C8 = 2(330− 5C6 − 27C4 − 105C2

+ C
′
8 + 10C

′
6 + 54C

′
4).

C10 = 45C6 + 2(160C4 + 693C2

− 8(−332 +C
′
8 + 8C

′
6 + 30C

′
4)).

C12 = −120C6 − 945C4 + 8(980− 539C2

+ 7C
′
8 + 46C

′
6 + 154C

′
4).

C14 = 210C6 + 1728C4 + 8085C2

− 16(−2580 + 7C
′
8 + 40C

′
6 + 146C

′
4).

C16 = 20886− 252C6 − 2100C4 − 9900C2

+ 140C
′
8 + 760C

′
6 + 2952C

′
4.

C18 = C14,

C20 = C12,

C22 = C10,

C24 = C8,

C26 = C6,

C28 = C4,

C30 = C2,

C32 = 1. (3.81)

140



and

C
′
10 = 2144 + 8C6 + 96C4 + 616C2

− 8C
′
8 − 35C

′
6 − 112C

′
4.

C
′
12 = 112− 48C6 − 448C4 − 1904C2

+ 28C
′
8 + 160C

′
6 + 567C

′
4.

C
′
14 = 120C6 + 928C4 + 4120C2 − 56C

′
8

− 350C
′
6 − 1296(−10 +C

′
4).

C
′
16 = 2(1167− 80C6 − 576C4 − 2832C2

+ 35C
′
8 + 224C

′
6 + 840C

′
4).

C
′
18 = C

′
14,

C
′
20 = C

′
12,

C
′
22 = C

′
10,

C
′
24 = C

′
8,

C
′
26 = C

′
6,

C
′
28 = C

′
4,

C
′
30 = C

′
2 = 0,

C
′
32 = 1. (3.82)
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In both of these D = 2 dimensional examples (and far more generally) the trivial reciprocity

relations

C2l = C2N−2l,

C
′
2l = C

′
2N−2l, (3.83)

must be (and indeed are) obeyed.

3.14.6 Supplementary information 6: Cramer’s rule and ampli-

tudes as polytope volume ratios – a 2× 2 test case illustra-

tion

In this Subsection, we explicitly illustrate how the computation of the remaining series

coefficients from the smaller number of requisite ones using our linear equations is, trivially,

related to a volume ratio of polytopes (high dimensional polyhedra). In the main text, we

remarked on the two key ingredients of this correspondence: (1) given known coefficients, we

may solve for the remaining ones via our linear equations by applying Cramer’s rule wherein

the coefficients are equal to the ratio of two determinants. (2) the determinants (appearing

in Cramer’s rule) as well as those of any other matrices are equal to volumes of polytopes

spanned by the vectors comprising the columns or rows of these matrices.

To make this lucid, we consider the periodic 2× 2 ferromagnetic system of the main text.

As it was mentioned earlier, the first six rows and last two rows of matrix W are linearly

independent. Thus, in this example. we may choose these rows to construct an 8 × 8

matrix W̄ . The corresponding vector P̄ that needs to be solved for satisfies the equation
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bR−1

det(Bi)

bR

b1

b2

b3

Figure 3.2: Pictorial representation of the volume spanned by the vectors forming the matrix
Bi. This volume is set by the determinant of Bi.

W̄V + P̄ = 0. Here,

P̄ =



28

70

28

1

28

70

1

0



, (3.84)
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and

W̄ =



−8 0 0 0 4 −4 4 28

0 −8 0 0 −10 6 −10 70

0 0 −8 0 4 −4 4 28

0 0 0 −8 1 1 1 1

4 −4 4 28 −32 0 0 0

−10 6 −10 70 0 −32 0 0

1 1 1 1 0 0 0 −32

0 0 0 0 1 0 0 0



.

Table 3.8: The value of the series coefficients as found by Cramer’s rule. det(W̄ ) = 9175040.

i det(Bi) det(Bi)
det(W̄ )

1 36700160 4
2 201850880 22
3 36700160 4
4 9175040 1
5 0 0
6 55050240 6
7 0 0
8 9175040 1

We may invoke Cramer’s rule and find all of the undetermined coefficients,

Vi =
det(Bi)
det(W̄ )

. (3.85)

As the denominator in Eq. (3.85) is common to all Vi, we see that Vi is essentially given by

the determinant detBi. The matrix Bi is obtained by replacing the i-th column of W̄ with

(−P̄ ). We summarize the results in Table 3.8. Putting all of the pieces together, we obtain
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(as we must) the exact partition function,

V1 = C2 = 4, (3.86)

V2 = C4 = 22,

V3 = C6 = 4,

V4 = C8 = 1,

V5 = C
′
2 = 0,

V6 = C
′
4 = 6,

V7 = C
′
6 = 0,

V8 = C
′
8 = 1.

It is hardly surprising that Cramer’s rule can be applied – that is obvious given the linear

equations. What we wish to highlight is that each of the determinants appearing in Cramer’s

rule (Eq. (3.85)) can be interpreted as the volume of a high-dimensional parallelepiped

spanned by the vectors comprising the matrix columns. In the case above, the dimension d′ of

each of the matrices Bi and W̄ is equal to their rank R = 8. The volume of the corresponding

high dimensional tetrahedron (or polytope) spanned by the vectors forming Bi is given by

(detBi)/d′!. In systems in which Cramer’s rule may be applied, the dimensionality d′ is

given by the rank of R of the system of linear equations, d′ = R.

In Figure 3.2, we schematically depict such a high dimensional volume.
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Chapter 4

The Binomial Spin Glass

This chapter contains the materials of a submitted paper 3.

4.1 Introduction

Spin glasses are extremely rich systems that have continued to surprise for many decades

[1–13]. They represent paradigmatic realizations of complexity that are abundant in na-

ture and numerous combinatorial optimization problems [14]. Abstractions of spin-glass

physics have led to new optimization algorithms and new insight into computational complex-

ity [15–18], shed light on protein folding [19], and provided models of neural networks [20].

Notwithstanding this success, several fundamental questions still linger. These include [21]

the character of the low-lying states and whether there are many incongruent [22] ground

states. It has long been known that spin-glass systems with discrete couplings may rigor-

ously exhibit an extensive degeneracy [23,24], but these results do not extend to continuous
3M-S. Vaezi, G. Ortiz, M. Weigel, and Z. Nussinov, “The Binomial Spin Glass”, Accepted by PRL;

arXiv:1712.08602.
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coupling distributions [25–29]. The possibility of vanishing spectral gaps mandates the dis-

tinction of localized and extended excitations, and only the latter can give rise to a multitude

of states.

In this chapter, we connect the ±J and the Gaussian spin glass models by interpolating them

via the binomial spin glass that has a tunable control parameter m. We establish bounds

of the spectral degeneracy of the Ising system on bipartite graphs, which includes the usual

Edwards-Anderson (EA) model with ±J (m = 1) and Gaussian (m → ∞) couplings [10]

(the EA model was discussed in Chapter 1, Subsection 1.2.3). We thus show that discrete

(finite m) spin-glass samples exhibit an extensive ground-state degeneracy, while continuous

ones (m → ∞) become two-fold degenerate, while more generally the degeneracy depends

on the precise way the non-commuting limits N →∞ and m→∞ are taken.

4.2 The binomial Ising spin glass model

We define the binomial Ising spin glass on a graph of N sites [30] by the Hamiltonian

Hm = −
∑
〈xy〉
Jmxy sxsy ≡ −

L∑
α=1
Jmα zα. (4.1)

Here, the sum is over sites x and y, defining a link α = 〈xy〉, L denotes the total number of

links, and sx = ±1. The binomial coupling for each link α, Jmα ≡ 1√
m

∑m
k=1 J

(k)
α , is a sum of

m copies (or “layers”) of binary couplings J (k)α = ±1, each with probability p of being +1.

The probability distribution of Jmα ,

P̃ (Jmα ) =
m∑
j=0

(
m

j

)
pm−j(1− p)jδ

(
Jmα −

m− 2j√
m

)
, (4.2)
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is a binomial. In the large-m limit, the distribution (4.2) approaches a Gaussian of mean
√
m(2p−1) and variance σ2 = 4p(1−p). In particular, for p = 1/2, the distribution P̃ (Jmα )

approaches the standard normal distribution usually considered for the EA model [10].

4.3 Entropy density

To understand the degeneracies in the spectrum, we study the entropy density of the `-th

energy level,

S` ≡

∑
{Jmα }

P ({Jmα }) lnD`({Jmα })

N
, (4.3)

where D` is the degeneracy of the `-th energy level [23]. P ({Jmα }) =
∏L
α=1 P̃ (Jmα ) is the

probability of the coupling configuration.

In what follows we embark on the derivation of an upper bound on the ground state entropy

density S0. We restrict ourselves to bipartite graphs, where any closed loop encompasses

an even number of links α. Consider two spin configurations |s〉 6= |s′〉 and evaluate their

energy difference ∆E = E(s)−E(s′). From Eq. (4.1),

∆E = −
L∑
α=1
Jmα

(
zα(s)− zα(s′)

)
= −2

L∑
α=1
Jmα nα, (4.4)

with integers nα = 0, ±1 defined by nα ≡ [zα(s)− zα(s′)]/2, where zα(s) = sxsy. If |s〉 and

|s′〉 are degenerate then ∆E = 0. A degeneracy only occurs for some realizations {Jmα } of

the couplings, and Eq. (4.4) can be understood as a set of conditions for the couplings to

ensure this.
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Consider an arbitrary reference configuration |s〉 of energy E(s) and examine its viable

degeneracy with the contending 2N − 1 other configurations |s′〉. Each of these leads to a

particular set of integers Cj = {nα}j , which form the set {Cj}|s〉j=1,2N−1. A subset of those,

Sat|s〉 = {Cj1 , Cj2 , · · · , CjN }, will satisfy the degeneracy condition ∆E = 0 in Eq. (4.4) for

some coupling realizations. There are two types of solutions to the equation ∆E = 0: (i)

nα = 0,∀α, or (ii) nα 6= 0, for at least one link α. It is straightforward to demonstrate that

there is a single configuration |s′〉( 6= |s〉) for which (i) nα = 0,∀α (Subsection 4.6.1). This is

the degenerate configuration |s′〉 obtained by inverting all of the spins in |s〉. To determine

whether the degeneracy may be larger than two, we need to compute the probability P that

constraints of type (ii) may be satisfied. While we cannot exactly calculate this probability

for general N and m, bounds that we will derive suggest that limN→∞ limm→∞ S` = 0. As

we will emphasize, different large m and N limits may yield incompatible results.

Constraints Cj ∈ Sat|s〉 are in a one-to-one correspondence with zero-energy interfaces (Sub-

section 4.6.2), whose size is equal to the number gj of non-zero integers in the set {nα}j .

That is, given a fixed reference configuration |s〉 and a degenerate one |s′〉, all type (ii) so-

lutions to Eq. (4.4) are associated with configurations where the product sxs
′
x is equal to

−1 in a non-empty set of sites x ∈ R. To avoid the trivial redundancy due to global spin

inversion, consider the states |s〉 and |s′〉 for which the spin at an arbitrarily chosen “origin”

of the lattice assumes the value +1. These states are related via |s′〉 = Us′s|s〉, where the

domain-wall operator Us′s is the product of Pauli matrices that flip the sign of the spins s′x at

the sites x where |s〉 and |s′〉 differ. Regions R are bounded by zero-energy domain walls that

are interfaces dual to the links with nα = ±1, i.e., surrounding the areas R where the spins

in |s〉 an |s′〉 have opposite orientation. Each satisfied constraint Cj ∈ Sat|s〉 is associated

with a state |s′〉 = Us′s|s〉 that is degenerate with |s〉 for some coupling realization(s).
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We next formalize the counting of independent domain walls or clusters of free spins to arrive

at an asymptotic bound on their number [Eq. (4.9)]. This will, in turn, provide a bound

on the degeneracy. We define a complete set of independent constraints Sat|s〉 ⊂ Sat|s〉, of

cardinalityM, to be composed of all constraints C̄ ∈ Sat|s〉 that lead to linearly independent

equations of the form of Eq. (4.4), ∆E = E(s)−E(s̄) = 0, on the coupling constants {Jmα }

(Subsection 4.6.2). All constraints in Sat|s〉 are a consequence of the linearly independent

subset of constraints Sat|s〉. Each constraint C̄ ∈ Sat|s〉 is associated with a domain wall op-

erator Us̄s that generates a degenerate state |s̄〉 = Us̄s|s〉. If for a given coupling realization

{Jmα } there are M({Jmα }) ≤M such independently satisfied constraints, then the states

|n̄1n̄2 · · · n̄M 〉 ≡ U n̄1
s1̄sU

n̄2
s2̄s · · ·U n̄MsM̄ s|s〉, (4.5)

(n̄i = 0, 1) will include all of the spin configurations degenerate with |s〉. Taking global spin

inversion into account, the degeneracy of |s〉 is

D`(|s〉,{Jmα }) ≤ 2M({Jmα })+1, (4.6)

where, for a system defined by the coupling constants {Jmα }, the index `(|s〉, {Jmα })) denotes

the level ` the state |s〉 belongs to. The set {|n̄1n̄2 · · · n̄M 〉} may contain additional states

not degenerate with |s〉 (Subsection 4.6.3).

After averaging over disorder, the expected number of the linearly independent satisfied

constraints Sat|s〉 is

〈M〉m ≡
∑
{Jmα }

∑
C̄∈Sat|s〉

P ({Jmα })δ{J
m
α }(C̄) ≡

∑
C̄∈Sat|s〉

P(C̄). (4.7)
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Here, P(C̄) is the probability that a linearly independent constraint C̄ is satisfied. The

Kronecker δ{Jmα }(C̄) equals 1 if C̄ is satisfied for the couplings {Jmα } and is zero otherwise.

Let us bound the probability P(C̄) by taking the form (4.2) of the coupling distribution into

account. From the definition of the couplings {Jmα }, the sum in Eq. (4.4) can effectively be

read as including a sum over layers k = 1, . . . ,m, which hence includes g̄m non-zero terms.

For general m ≥ 1, and even g̄m, the probability that half of the nonzero integers nαJ (k)α in

Eq. (4.4) are +1 and the remainder are −1 is

P(C̄) =

(
g̄m
g̄m

2

)
1

2g̄m
<

1
√
g̄m

. (4.8)

(Eq. (4.4) cannot be satisfied for odd g̄m.) From asymptotic analysis [31] and Eq. (4.8), the

probability P(C̄) scales (for large m) as (and, for any m, is bounded by) 1/√g̄m. Denoting

by gmin the smallest possible value of g̄ for the graph/lattice at hand,

〈M〉m ≤
M

√
gminm

. (4.9)

On a general graph, the number M of linearly independent constraints C̄ on the coupling

constants {Jmα } cannot be larger than their total number,M≤ L, i.e., the number of links

L on this graph. Putting all of the pieces together, Eqs. (4.6) and (4.9) imply

∑
{Jmα }

P ({Jmα }) lnD`(|s〉,{Jmα }) ≤ (1 + L
√
gminm

) ln 2. (4.10)

Trying to evaluate the l.h.s. of Eq. (4.10) we must take into account that whatever |s〉 we

pick might be a ground state for some coupling configurations, but will be an excited state

for others. Hence we cannot directly infer a bound to the average entropy S` from (4.10).

Since the inverse temperature 1/(kBT ) = ∂ lnD/∂E, however, the system’s ground-state
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degeneracy for couplings {Jmα } is typically lower than (or equal to) that of any other level

` (Subsection 4.6.4), i.e., D0 ≤ D`. This monotonicity of D(E) implies that, typically,

S0N =
∑
{Jmα } P ({J

m
α }) lnD0({Jmα }) ≤

∑
{Jmα } P ({J

m
α }) lnD`(|s〉,{Jmα }). Then, Eq. (4.10)

yields

S0 ≤ (
L

N
√
gminm

+
1
N
) ln 2. (4.11)

This is the promised rigorous bound. For p 6= 1/2 one has a lower entropy density than that

of p = 1/2. Thus, Eq. (4.11) constitutes a generous upper bound on S0 for general p. To

study higher energy levels, consider the average of Eq. (4.10) over all possible 2N reference

spin configurations |s〉. Performing this average and invoking the monotonicity of D(E)

suggests that the entropy density S` of Eq. (4.3) of low-lying excited levels ` > 0 is, typically,

also bounded by the r.h.s of Eq. (4.11). For d-dimensional hypercubic lattices with periodic

boundary conditions, the ratio L/N = d while gmin = 2d. Thus, S0 ≤ (
√
d/2m+ 1/N) ln 2.

Eq. (4.11) further suggests that, in the thermodynamic (N →∞) limit (Subsection 4.6.5),

S0(m
′) ∼

√
m

m′
S0(m) for finite m,m′ � 1. (4.12)

We now study the exact m dependence of the ground state entropies of the binomial model

on the square lattice with periodic boundaries and N = L2. To this end, we employed

an implementation of the Pfaffian technique of counting dimer coverings of the lattice as

discussed in Ref. [32], which is a generalization of earlier methods [33, 34] to fully periodic

lattices. In Fig. 4.1, we present the results for the ground-state entropy, averaged over 1000
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Figure 4.1: Ground-state entropy S0N of the binomial Ising spin glass with m layers, cf.
Eq. (4.1), on square lattices of N = L2 spins from exact ground-state calculations (from
the bottom: L = 8, 16, 20, 24, and 32). Lines are fits of the form of (4.13) to the data for
sufficiently large m. The inset shows the linear scaling of the amplitude A(N). The top line
indicates the constraint imposed by the upper bound (4.11).

coupling realizations for each lattice size. The data are well described by

S0N =

(
A(N)√
m

+ 1
)

ln 2. (4.13)

Linear fits in 1/
√
m for fixed N work well for sufficiently large m, as is illustrated by the

straight lines in Fig. 4.1. Thus, for any finite N , as m→∞ the ground-state entropy is equal

to ln 2, implying a single degenerate ground-state pair. The slope A(N) shown in the inset

follows a linear behavior, A(N) = aN + b, and we find a = 0.0858(4) and b = 1.09(12). For

not too small m, our data are hence fully consistent with

S0 =

(
a√
m

+
1
N

+
b

N
√
m

)
ln 2. (4.14)
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Figure 4.2: Effective spin stiffness exponents θ = θ(m) resulting from fits of the power law
〈|∆E|〉 = BLθ to the defect energies for the binomial model of m layers (inset, from the top:
m = 1, 5, 11, 51, 201, and 1001), averaged over 10 000 disorder samples. The solid line of
the inset corresponds to the Gaussian model.

When N �
√
m� 1, Eq. (4.14) is consistent with the physically inspired (Subsection 4.6.5)

scaling of Eq. (4.12). For large N , the bound of Eq. (4.11) would have been asymptotically

saturated if a ' 1, far larger than the actual value of a. The behavior in the double limit

m,N → ∞ is subtle: (1) for m → ∞, N finite, we have a single ground-state pair; (2)

for N → ∞, m finite, there is a finite ground-state entropy ∼ ln 2/
√
m; (3) for N → ∞,

m→∞, κ = N/
√
m fixed, there is a finite number 2aκ of ground-state pairs. Thus clearly

the continuum and thermodynamic limits are not commutative in general. Note further that

according to the bound S0 ≤ (
√
d/2m+ 1/N) ln 2 for hypercubic lattices additional rich

behavior is expected if the limit of high dimensions is correlated with that of large m.
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4.4 Energy excitations

Let us turn to the study of excitations. By construction, cf. Eq. (4.4), for finite m the

energy is “quantized” in multiples of 1/
√
m. It is therefore natural to expect a closing of

the spectral gap as m → ∞. That this is indeed the case can be shown rigorously for the

one-dimensional binomial spin glass in its thermodynamic limit, with different behaviors

for odd and even m, see the discussion in Subsection 4.6.6. The closing of the gap is a

consequence of the existence of (rare) local excitations, i.e., finite-size clusters of almost free

spins (Subsection 4.6.7). Whether gapless non-local excitations exist and which form they

take in the thermodynamic limit is a long-standing question [35]. One possible approach of

investigating such excitations consists of subjecting individual samples to a system spanning

perturbation by a change of boundary condition and studying how this affects the energy and

configuration of the ground state. Such defect energy calculations [36] enable us to extract

a scaling 〈|∆E|〉 ∼ Lθ of the defect energies with the spin stiffness exponent θ. Generalizing

Peierls’ argument [37–40] for the stability of the ordered phase, one should find θ > 0 for

cases where there is a finite-temperature spin-glass phase, and θ ≤ 0 otherwise. The latter

case is expected for dimensions d = 1 and d = 2, whereas θ is positive for d ≥ 3 [41, 42].

We employed techniques based on minimum-weight perfect matching [43, 44] to perform

such calculations for the binomial model on the square lattice. The resulting disorder-

averaged defect energies from exact ground-state calculations for samples with periodic and

antiperiodic boundaries are shown in the inset of Fig. 4.2. As m increases, the decay of

defect energies as a function of L becomes steeper and the data approach the behavior of

the Gaussian EA model. The effective spin stiffness exponents θ extracted from fits of the

type 〈|∆E|〉 = BLθ are shown in the main panel of Fig. 4.2. These exponents appear to

interpolate smoothly between the limiting cases of the Gaussian model with θ = −0.2793(3)
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Figure 4.3: Scaling collapse of the defect energies of the binomial model for system sizes
rescaled with the crossover length scale L∗(m) ∼ mκ with κ = 1.79.

and the ±J system with θ = 0 [41, 44]. Asymptotically, however, we expect that θ(m) = 0

for any finite value of m when L & L∗(m). The scaling of the crossover length L∗(m) ∼ mκ

follows by considering the model with the unscaled couplings
√
mJmα , for which the energy

gap ∆ is independent of m. The discreteness of the spectrum becomes apparent once the

corresponding defect energies
√
m〈|∆E|〉 ∼ Lθ have decayed below the size of the gap, i.e.,

for

L ≥ L∗(m) ∼ m−1/(2θ),

such that κ = −1/(2θ). For the d = 2 system we have θ = −0.2793(3) [44], such that

κ = 1.790(2), which is in excellent agreement with the actual defect energies for our system

shown in Fig. 4.3.

It is clear that if θ < 0, as is the case for the Gaussian spin glass in two dimensions, excitations

of a divergent length scale may entail a vanishing energy penalty. At zero temperature, the

discreteness of the spectrum is then always seen at large scales L & L∗(m). On the other

hand, for θ ≥ 0 (i.e., d ≥ 3), the above arguments imply that the discreteness does not
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matter at large scales. Also, in this case one should inspect the full probability distribution

of domain wall energies and the weight it carries in the limit ∆E → 0 (Subsection 4.6.7). In

how far such excitations correspond to incongruent states, however, one might only be able

to infer by inspecting the configurations themselves.

4.5 Summary

In summary, we introduced and discussed the binomial spin glass. This class of models affords

controlled access to the enigmatic continuous (m → ∞) finite dimensional EA model. Its

m = 1 realization is the quintessential discrete spin glass, the ±J model. We derived bounds

on the spectral degeneracy of the binomial Ising spin glass on general graphs and suggested

an asymptotic scaling that is fully supported by exact two-dimensional calculations. The be-

havior of defect energies suggests the existence of a crossover length L∗(m) ∼ L−1/2θ below

which the binomial model behaves like the Gaussian system. Our results show that the exis-

tence of degeneracies depends on the particular way of taking the thermodynamic (N →∞)

and continuous coupling (m→∞) limits, and limiting states with and without degeneracies

can be reached by corresponding correlated limiting processes, thus accommodating theo-

ries that postulate degeneracies as well as pictures stipulating a unique ground-state pair.

An intriguing prediction regards an effectively negative crossover scaling exponent in three

dimensions, where hence discreteness of the spectrum is expected not to matter at large

scales.

The physics of spin-glass models and, in particular, the role of degeneracies has also re-

cently attracted attention from another side. In the context of quantum annealing [45] as

implemented in the devices by D-Wave and similar machines that are being developed by
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competing consortia, degeneracies are not a desired feature as the quantum annealing process

does not sample such states uniformly [46]. On the other hand, continuous coupling distribu-

tions may also be undesired because of increased susceptibility to external noise implied by

chaos in spin glasses [47–50]. Our binomial glasses may allow for realizations that suffer the

least from these combined problems. While the present system is already a generalization

of the usually considered spin-glass models, we believe that the approach of decomposing

continuous couplings into discrete layers and the intriguing consequences it allowed us to

uncover in terms of the general non-commutativity of the thermodynamic and continuous

coupling limits is promising and we expect exciting applications to models in other fields.
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4.6 Supplementary information

4.6.1 Supplementary information 1: The trivial ground state pair

given an assignment of link variables

Given the definition of the link variable zα ≡ sxsy, a moment’s reflection reveals that

sy = sx
∏
α∈Γxy

zα, (4.15)

where Γxy is any path on the lattice, composed of nearest-neighbor links, joining site x to

site y. Thus, with sy||s〉 denoting the value of the spin at site y in configuration |s〉, we have

that

sy||s〉 = sx||s〉
∏
α∈Γxy

zα||s〉 , sy||s′〉 = sx||s′〉
∏
α∈Γxy

zα||s′〉. (4.16)

Now, if for all links α, the values of zα are the same in both configurations |s〉 and |s′〉 (i.e.,

if {zα}||s〉 = {zα}||s′〉) then, trivially,

∏
α∈Γxy

zα||s〉 =
∏
α∈Γxy

zα||s′〉. (4.17)

Taken together, Eqs. (4.16) and (4.17) imply that if, at a particular site x, the spin configu-

rations |s〉 and |s′〉 share the same value of the spin, sx||s′〉 = sx||s〉, then the spins must be

identical at all other lattices sites y, sy||s′〉 = sy||s〉. This, however, leads to a contradiction

as |s′〉 6= |s〉. Therefore, if two distinct spin configurations satisfy condition (i) it must be
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that the respective spin values at any lattice site x are different, sx||s′〉 = −sx||s〉. That is,

sy||s′〉 = −sy||s〉, ∀y. (4.18)

Hence, if nα = 0, ∀α in Eq. (4.4), then there are, trivially, only two degenerate configurations

(|s′〉 6= |s〉) related by a global spin inversion. The above simple proof applies for arbitrary

energy levels. Replicating, mutatis mutandis, the above argument to a general set of (non-

necessarily vanishing) integers {nα} over all lattice links α, illustrates that any set {nα} may

correspond to exactly two unique spin configurations.

4.6.2 Supplementary information 2: Graphical Representation of

the Constraints

In Section 4.3, we defined Sat|s〉 to be the set composed of all constraints Cj satisfying the

relation ∆E = E(s)−E(s′) = 0, in Eq. (4.4). We also defined the subset Sat|s〉 ⊂ Sat|s〉,

comprising all linearly independent constraints. Here, we further introduce a restricted subset

of constraints, that of geometrically disjoint and independent zero energy domain walls,

Satg|s〉 ⊂ Sat|s〉. The subset Satg|s〉 is defined by having no pair of different constraints on

the coupling constants that involve links associated with the same lattice sites x.

In what follows, we provide a few simple examples illuminating the above definitions. To

this end, we consider a 5× 5 square lattice with binomial couplings {Jmα } (Fig. 4.4). We

start with a random spin configuration |s〉 (panel (a)). Panels (b) through (e), represent spin

configurations |s′〉 for which one or more spins are being flipped with respect to panel (a).

166



The energy difference in each case can be easily calculated. For example,

∆Ea,b = Ea −Eb = −2(Jm19,14n19,14

+ Jm19,18n19,18 + Jm19,20n19,20 + Jm19,24n19,24),

(4.19)

gives the energy difference between spin configurations in panel (a) and (b). It is easy to see

that n19,18 = n19,20 = n19,24 = 1, and n19,14 = −1. Following the same procedure we end

up with,

∆Ea,b = −2(−Jm19,14 + Jm19,18 + Jm19,20 + Jm19,24),

∆Ea,c = −2(Jm8,3 + Jm8,7 + Jm8,9 + Jm8,13),

∆Ea,d = −2(−Jm7,2 + Jm7,6 + Jm8,3 + Jm8,9 + Jm8,13

−Jm12,11 −Jm12,13 −Jm12,17),

∆Ea,e = ∆Ea,b + ∆Ea,d

= −2(−Jm19,14 + Jm19,18 + Jm19,20 + Jm19,24

−Jm7,2 + Jm7,6 + Jm8,3 + Jm8,9 + Jm8,13

−Jm12,11 −Jm12,13 −Jm12,17).

(4.20)

Now, assume C1, C2, C3, and C4 are constraints associated with ∆Ea,b, ∆Ea,c, ∆Ea,d, ∆Ea,e,

respectively. If these constraints are satisfied, i.e., ∆Ea,,b = ∆Ea,c = ∆Ea,d = ∆Ea,e = 0,

for certain coupling realizations, then they belong to the set Sat|s〉. That is, C1, C2, C3, C4 ∈

Sat|s〉.
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To understand this better, consider the case m = 4. From Eq. (4.2), couplings J 4
α may

acquire the values −2,−1, 0, 1, 2. In Fig. 4.5, we provide three examples of random coupling

realizations. The spin configuration is the same as in panel (a) of Fig. 4.4. From Eq. (4.20)

and Fig. 4.5, we can see that, only C3 in panel (a), none in panel (b), and only C1 in panel

(c) are satisfied.

In order to create the subset Sat|s〉, we should note that it is not necessarily unique, since we

may have different linearly independent constraints that span the same set of conditions in

Sat|s〉. In addition to that, the satisfaction of constraints depends on the coupling realizations

as well. For instance, if for a given realization, C1, C2 and C3 are satisfied, trivially from

Eq. (4.20) (i.e., ∆Ea,e = ∆Ea,b + ∆Ea,d), C4 is automatically satisfied. Therefore, for such

cases, C4 is a linear combination of C1 and C3, and one may define the subset Sat(I)|s〉 for

which C1, C2, C3 ∈ Sat(I)|s〉 , but C4 /∈ Sat(I)|s〉 . On the other hand, there exist some realizations

for which ∆Ea,b = −∆Ea,d 6= 0, but ∆Ea,e = 0. Meaning, C4 is satisfied, however, C1 and

C3 are not.

The geometrically disjoint constraints may also give rise to different subsets. For instance,

from Fig. 4.4, one can trivially show that the pairs C1, C2 and C1, C3 are each geometrically

disjoint, however, C2 and C3 are not. Therefore, we could define two different subsets Satg(I)
|s〉

and Satg(II)
|s〉 so that C1, C2 ∈ Satg(I)

|s〉 and C1, C3 ∈ Satg(II)
|s〉 .

These examples further illustrate the difference between M and M({Jmα }) in Section 4.3,

where M is associated with the maximum number of linearly independent satisfied con-

straints, i.e., the cardinality of Sat|s〉, while M({Jmα }) denotes the number of constraints

satisfied for a particular realization of coupling constants. Trivially, M({Jmα }) ≤M.
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Figure 4.4: Graphical representations of the constraints. Panel (a) represents a random spin
configuration. Blue solid circles and red diamonds denote spin up and down, respectively.
Flipping one or more spins at different sites of panel (a) would result in new spin configura-
tions such as in panels (b) through (e) (e.g., the spin configuration of panel (b) is obtained
from flipping the spin at site 19 of panel (a)). The dashed yellow dotted lines represent the
links that contribute to the energy difference. The green dashed lines crossing such links
correspond to a domain wall.
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Figure 4.5: Three examples of coupling realizations for the binomial model with m = 4 (i.e.,
J 4
α = −2,−1, 0, 1, 2). The numbers in green (brown) color provide the values of horizontal

(vertical) coupling constants.

4.6.3 Supplementary information 3: Meaning of Equation (4.5)

In Eq. (4.5), we mentioned that the set {|n̄1n̄2 · · · n̄M 〉} includes all of the spin configurations

degenerate with |s〉. We also pointed out that it may contain additional states not degen-

erate with |s〉. The latter point is usually associated with the domain walls that are not

geometrically disjoint (see Subsection 4.6.2). To accentuate this consider, e.g., a 5× 5 lattice

with a given random spin configuration and coupling constants (see panel (a) of Fig. 4.6), in

which Uba,Uca, and Uda are spin flip operators leading, respectively, to zero energy domain

walls around the sites 7, 18 and 19 (corresponding to panels (b),(c) and (d)).

From Fig. 4.6, the domain walls in panel (c) and (d) are not geometrically disjoint, where Uca

and Uda act on the nearest neighbor sites 18 and 19 such that the sign of the link connecting

them, is altered by both operators. In such a case, even though the two states Uca|a〉 ≡ |c〉

and Uda|a〉 ≡ |d〉 are degenerate with |a〉, the state UdaUca|a〉 ≡ |e〉 (i.e., from panel (e),
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Uea = UdaUca) is not degenerate with |a〉. One should note that in general this might not be

true. That is, for some coupling realizations the state |e〉 can be degenerate with |a〉.

By contrast, the two spin flip operators Uba and Uda associated with the geometrically disjoint

domain walls in panel (b) and (d), respectively, do not alter the signs of any common links.

Therefore, the state UdaUba|a〉 ≡ |f〉 (i.e., from panel (f), Ufa = UdaUba) is degenerate with

|a〉.

4.6.4 Supplementary information 4: The ground state entropy is

bounded by the entropy of a random energy level

In deriving the bound of Eq. (4.11), we assumed that no information other than the proba-

bility distribution P ({Jmα }) is provided. The configuration |s〉 that we considered in Section

4.3 was an arbitrary random state. We next consider a more sophisticated problem. Suppose

that the coupling constants are drawn from a binomial distribution and that once chosen a

ground state configuration |s〉 is given (i.e., the values of the spins sx at all sites x in this

ground state are provided). We then calculate the average of Eq. (4.7) with the condition

that the (otherwise random binomial) coupling constants admit the particular configuration

|s〉 as a ground state. When applicable, the fact that |s〉 is a ground state may generally yield

nontrivial constraints on the coupling constants {J (k)α } (recall that Jmα ≡ 1√
m

∑m
k=1 J

(k)
α ).

In such a situation, given the configuration |s〉, we may not simply use the initial binomial

distribution for the coupling constants.
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Figure 4.6: Panel (a) represents a random spin configuration with some given coupling
constants. Blue solid circles and red diamonds denote spin up and down, respectively.
The numbers in green (brown) color provide the values of horizontal (vertical) coupling
constants. Flipping one or more spins at different sites of panel (a) would result in new spin
configurations such as in panels (b) through (f). The dashed yellow dotted lines represent
the links that contribute to the energy difference. The green dashed lines crossing such links
correspond to a domain wall. Please note that the values associate with different links in
each panel is the same as in panel (a).
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We now trivially demonstrate that if the energy density associated with the high temperature

limit is unique then Eq. (4.11) constitutes an upper bound on the average ground state

entropy density even if such information was provided for each realization of {J (k)α }. This

assertion follows as the entropy S`({J
(k)
α }) associated with any energy E = E` is typically

larger than the ground state entropy,

S0 ≤ S`. (4.21)

The proof of Eq. (4.21) is rather elementary and relies on a trivial symmetry of the spectrum.

Let us denote the two sublattices forming the large bipartite lattice by A and B. If we

flip all spins in sublattice A (i.e., sx∈A → −sx∈A) and do not alter those in sublattice B

(sy∈B → sy∈B), then all nearest-neighbor links (i.e., the products sxsy for nearest neighbor

sites x and y) on the original lattice change their sign, zα → −zα. This single sublattice spin

inversion constitutes a one-to-one mapping of the Ising spin states, that changes the sign

of the total energy (E → −E). We may thus conclude that as a function of the energy E,

the entropy density S = S({J (k)α })/N for a system with fixed couplings {J (k)α } satisfies the

simple relation S(E`) = S(−E`) where E` is the energy of the `-th level. It follows that the

energy E = 0 is an extremum of the entropy density S(E) ≡ S(E`). Consequently, for any

fixed couplings {J (k)α },

1
T

= N
∂S
∂E
≥ 0. (4.22)

(The factor of N appears in the above equation since S is the entropy density). Thus, E ≤ 0

for any positive temperature T . In what follows we discuss what occurs if there is a unique

high temperature limit for each set of coupling constants. In such a case, the entropy density

S(E) (averaged over all realization of the coupling constants) is maximal at E = 0. The
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semi-positive definite nature of the derivative in Eq. (4.22) implies (as in all common systems

satisfying the third law of thermodynamics) that the entropy is lowest at T = 0. Since the

state |s〉 for which we performed the analysis was arbitrary (and corresponds to an energy

E|s〉 for which the entropy density is greater than or equal to that of the ground state), we

see that Eq. (4.22) must hold even if information is provided as to the explicit ground state

configuration |s〉 for each particular realization of the couplings {J (k)α }. We thus observe

that even if given such additional information, the ground state entropy density must satisfy

the bound of Eq. (4.11).

4.6.5 Supplementary information 5: Asymptotic Scaling of the

Entropy Density

We now motivate a scaling that the rigorous bound of Eq. (4.11) suggests Eq. (4.12) as

an approximate asymptotic relation for large N and m. In Section 4.6.2 of this supple-

mental material, we defined the subset Satg|s〉 ⊂ Sat|s〉 composed of geometrically disjoint

constraints. If there are ng such constraints (or associated zero energy domain walls when

these constraints are satisfied) then the degeneracy will be trivially bounded from below by

2ng . This bound is established by noting that, since no spin is common to two domain walls,

all of the spins in each of these ng domain walls may be flipped independently of all others.

When applied to domain walls in Satg|s〉 then, in the notation of Eq. (4.5), each binary

string of length ng will correspond to a different configuration that is degenerate with the

reference state |s〉. This is to be contrasted with the set of zero energy domain walls Sat|s〉

for which various binary strings of the form of Eq. (4.5) may correspond to states that are

not degenerate with |s〉.As m grows, by Eq. (4.8), both the number of satisfied constraints

and the number of independent zero energy domain walls may diminish as 1/
√
m. When
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fewer walls appear in Sat|s〉, it may become increasingly rare for different walls in this subset

to share the same lattice sites. If this occurs then, for large m, we will have the asymptotic

relation Satg|s〉 ∼ Sat|s〉. In such a case, in the large N limit, S ∼ ng/N ln 2. The number

ng and the probability of these zero energy domain walls decay, for m � 1, as 1/
√
m (or

1/
√
m′ for m′ � 1). Similarly, if a finite fraction of the M domain walls in Sat|s〉 does not

remain geometrically disjoint such that, asymptotically, one may only generate qM (with

q < 2) degenerate states (Eq. (4.5)) given M independent domain walls, then S ∼ M
N ln q.

Either way, we anticipate that in the thermodynamic limit that Eq. (4.12) will hold.

4.6.6 Supplementary information 6: One-dimensional Binomial

Spin Glass

Let us start with the simplest one-dimensional binomial spin glass system (which by a

simple change of variables (sx → s′x ≡ sx
∏

u<x sign(Jmu,u+1)) may be transformed onto a

random Ising ferromagnet with couplings |Jmx′,x′+1|). Here, the ground state energy E0 =

−∑x |Jmx,x+1|. In an open chain of N sites, the lowest excitation consists of identifying the

weakest link, |Jmx′,x′+1| ≡ minx{|Jmx,x+1|} and flipping all spins sx → −sx for which x > x′ (or

consistently doing the same thing and only flipping all spins to the left of x′); this generates a

state that has an energy E0 +∆Emin with ∆Emin = 2|Jmx′,x′+1|. (On a periodic chain, we may

similarly identify the two weakest links and flip all spins lying between those two links leading

to an energy cost ∆Emin that is twice the sum of the moduli of these two weakest links.) Cal-

culations of the density of states and all ensuing thermodynamic properties are trivial [51].

For instance, the disorder averaged entropy in the low temperature, T � 1, limit of the

binary model is [Sm=1(T )] ∼ kB(ln 2 + (N − 1)(1 + 2β)e−2β), with β = 1/(kBT ). The

exponential suppression becomes e−2β/
√
m and e−4β/

√
m for odd and even m, respectively.
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Thus the excitation gap scales as m−1/2 (yet differently for odd and even m). By contrast,

the low-T entropy of the continuum model is [Sm→∞(T )] ∼ kB(ln 2+ N−1√
2π (kBT −

(kBT )
3

8 )),

indicating the vanishing of the spectral gap in the thermodynamic limit. In that limit, these

lowest excitations differ, relative to the ground state, by an extensive number of flipped

spins.

4.6.7 Supplementary information 7: Distribution of excitations

Given any ground state configuration on a hypercubic lattice in d dimensions, one may

compute the probability distribution for excitations of energy ∆Ex = |∆Ex| = 2∑y nxyJmα

generated by flipping a single spin x. Here, the sum is over all sites y that are nearest

neighbor of site x and nxy = −sign(sxsy) = ±1. Given the probability distribution for the

links {Jmα }, one may compute the probability distribution associated with a finite sum of

these links 2∑y nxyJmα in the ground state. The latter sum is that over a finite number of

links (with bounded mean and variance) and thus for any ε > 0 (no matter how small), the

probability that |∆Ex| < ε is strictly smaller than unity. In order for the system to have a

spectral gap that is greater than ε, it must be that for each of the N lattice sites x, the energy

penalty |∆Ex| > ε. Given that the condition |∆Ex| > ε must, in the thermodynamic limit, be

satisfied an infinite number of times, while for any single x the probability that this condition

is satisfied is strictly smaller than one, it is essentially impossible to have a gap larger than

any arbitrary positive number ε. From this, it follows that the gapless local excitations must

be appear. If the local energy penalties in the ground state were independent of one another

then the probability that all local flips result in an energy penalty larger than ε would the

product of the probabilities of having |∆Ex| > ε for all sites x. Although the local flip are

not independent of one another (since they all relate to flips relative to the same special
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Figure 4.7: Distribution of defect energies |∆E| for the 2D Gaussian system and a number
of different system sizes. The curves collapse if rescaled by L−θ with the value θ ≈ −0.28 of
the stiffness exponent.

state- the ground state), it seems highly unlikely |∆Ex| > ε for all x when the probability of

having a local energy penalty larger than ε for any single x is strictly smaller than one.

We now explicitly discuss a measure that, in general dimensions, may provide physical

insight – the distribution of such individual defect energies (i.e., the distribution of domain

wall energies in our binomial Ising spin system). In Fig. 4.7, we plot this distribution in the

continuous m = ∞ Gaussian limit. If f(ε, l̃) denotes the cumulative probability that the

energy penalty of a domain wall (of size l̃) is smaller than ε, then the probability that amongst

Nl̃ independent domain walls, no singe domain wall entails an energy cost lower than ε will be

bounded from above by e−f(ε,l̃)Nl̃ as we briefly elaborate on now. Since, by definition, f(ε, l̃)

is the cumulative probability that the energy cost of a random wall of size l̃ is smaller than ε

(i.e., Prob.(|∆E| ≤ ε) = f(ε, l)), the probability that amongst Nl̃ independent domain walls,

we explicitly have that the probability that no single domain wall has an energy cost larger

than ε is, trivially, [Prob.(|∆E| > ε)]Nl̃ = (1− f(ε, l̃))Nl̃ ≤ e−Nl̃f(ε,l̃) (where we invoked
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e−f ≥ (1− f) for all f ≥ 0). For small f → 0+ (associated with ε → 0+ in d ≥ 3), this

general inequality is replaced by an equality (i.e., [Prob.(|∆E| > ε)]Nl̃ = e−Nl̃f(ε,l̃)).

Thus, if the area (d = 2) or volume (d = 3) of the entire lattice is ||Λ||, then whenever the

sum

lim
ε→0+

lim
l̃0→∞

lim
N→∞

∑
||Λ||1/d−l̃0≥l̃≥l̃0

f(ε, l̃)Nl̃ =∞ (4.23)

then gapless (or degenerate) states of diverging l̃ may appear. This is so because flipping

all of the spins links one ground state to its conjugate. The inequality ||Λ||1/d − l̃0 ≥ l̃ ≥ l̃0

in Eq. (4.23) means that the an extensive number of spin flips is needed to connect a given

spin configuration to either of the two members of the degenerate ground state pair.

Since θd=2 < 0 then (as is further underscored in the full distribution of Fig. 4.7), in two

dimensions nearly all large domain walls entail a vanishing energy penalty. In d = 2,

limε→0+ liml̃→∞ f(ε, l̃) = 1 and the probability of obtaining, in the thermodynamic limit,

degenerate states that differ by an extensive number of flipped spins is unity. The existence

of gapless states in d = 2 is hardly surprising; such gapless states may be trivially constructed

by the insertion of random domain walls of divergent size into a ground state. Indeed, in

d = 2 (where the typical energy cost O(l̃θ) vanishes as l̃ → ∞), knowledge of the detailed

distribution of the energy cost as a function of the domain wall size l̃ is unnecessary for

establishing gapless states. However, in d ≥ 3 (where θd > 0), the lowest energy states

are related to the asymptotic low energy limit of the domain wall energy distribution (a

distribution that, in these higher dimensions, is associated with a divergent average energy

O(l̃θd) when l̃→∞). A gap (for states that differ from one another by an extensive number

of flipped spins) is potentially possible if the sum of Eq. (4.23) vanishes. Thus, we stress that
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in d ≥ 3, knowledge of the cumulative probability distribution f(ε, l̃) can be of paramount

importance. We reserve the analysis of the d = 3 domain wall energy distribution for future

work.
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