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Professor Pratim Biswas, Chair 

 

Drinking water supply systems belong to the group of critical infrastructure systems that support 

the socioeconomic development of our modern societies. In addition, drinking water infrastructure 

plays a key role in the protection of public health by providing a common access to clean and safe 

water for all our municipal, industrial, and firefighting purposes. Yet, in the United States, much 

of our national water infrastructure is now approaching the end of its useful life while investments 

in its replacement and rehabilitation have been consistently inadequate. Furthermore, the aging 

water infrastructure has often been operated empirically, and the embracement of modern 

technologies in infrastructure monitoring and management has been limited. Deterioration of the 

water infrastructure and poor water quality management practices both have serious impacts on 

public health due to the increased likelihood of contamination events and waterborne disease 

outbreaks. 

Water quality reaching the consumers’ taps is largely dependent on a group of physical, 

chemical, and biological interactions that take place as the water transports through the pipes of 



 

 

xix 

   

the distribution system and inside premise plumbing. These interactions include the decay of 

disinfectant residuals, the formation of disinfection by-products (DBPs), the corrosion of pipe 

materials, and the growth and accumulation of microbial species. In addition, the highly dynamic 

nature of the system’s hydraulics adds another layer of complexity as they control the fate and 

transport of the various constituents. On the other hand, the huge scale of water distribution 

systems contributes dramatically to this deterioration mainly due to the long transport times 

between treatment and consumption points. Hence, utilities face a considerable challenge to 

efficiently manage the water quality in their aging distribution systems, and to stay in compliance 

with all regulatory standards.  

By integrating on-line monitoring with real-time simulation and control, smart water 

networks offer a promising paradigm shift to the way utilities manage water quality in their 

systems. Yet, multiple scientific gaps and engineering challenges still stand in the way towards the 

successful implementation of such advanced systems. In general, a fundamental understanding of 

the different physical, chemical, and biological processes that control the water quality is a crucial 

first step towards developing useful modeling tools. Furthermore, water quality models need to be 

accurate; to properly simulate the concentrations of the different constituents at the points of 

consumption, and fast; to allow their implementation in real-time optimization algorithms that 

sample different operational scenarios in real-time. On-line water quality monitoring tools need be 

both reliable and inexpensive to enable the ubiquitous surveillance of the system at all times. 

The main objective of this dissertation is to create advanced computational tools for water 

quality management in water distribution systems through the development and application of a 

multi-scale modeling framework. Since the above-mentioned interactions take place at different 

length and time scales, this work aims at developing computational models that are capable of 
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providing the best description of each of the processes of interest by properly simulating each of 

its underlying phenomena at its appropriate scale of resolution. Molecular scale modeling using 

tools of ab-initio quantum chemical calculations and molecular dynamics simulations is employed 

to provide detailed descriptions of the chemical reactions happening at the atomistic level with the 

aim of investigating reaction mechanisms and developing novel materials for environmental 

sensing. Continuum scale reactive-transport models are developed for simulating the spatial and 

temporal distributions of the different compounds at the pipe level considering the effects of the 

dynamic hydraulics in the system driven by the spatiotemporal variability in water demands. 

System scale models are designed to optimize the operation of the different elements of the system 

by performing large-scale simulations coupled with optimization algorithms to identify the optimal 

operational strategies as a basis for accurate decision-making and superior water quality 

management. 

In conclusion, the computational models developed in this study can either be implemented 

as stand-alone tools for simulating the fundamental processes dictating the water quality at 

different scales of resolution, or be integrated into a unified framework in which information from 

the small scale models are propagated into the larger scale models to render a high fidelity 

representation of these processes. 
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Chapter 1  

Introduction 
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1.1 Background and Motivation 

Water supply systems belong to the group of critical infrastructure systems that play a key role in 

the socioeconomic development of our modern societies and the protection of public health. Their 

main mission is to provide access to clean and safe water for all our municipal, industrial, and fire-

fighting demands. Nevertheless, substantial future challenges face our societies to maintain and 

upgrade the water infrastructure to cope with the increasing demands under rapid population 

growth and increased urbanization. 

In the United States, much of our national water infrastructure is now approaching the end 

of its useful life while investments in its replacement and rehabilitation have been consistently 

inadequate [1]. Treated drinking water is delivered to American households via nearly one million 

miles of pipes, many of which have been placed in the early to mid-20th century with a lifespan of 

less than 100 years, and have often been poorly maintained since then. More importantly, the aging 

water infrastructure has often been operated empirically, and the embracement of the modern 

technological advances in infrastructure monitoring and management has been limited. The 

American Society of Civil Engineers (ASCE) estimates that every year nearly 240,000 water main 

breaks occur. As a result, an estimated 14-18% of the treated drinking water is lost on daily basis 

due to water leakage. This is around six billion gallons of treated drinking water, equivalent to the 

consumption of 15 million households [2].  

The impacts of the deteriorating drinking water infrastructure, and the lackluster water 

quality management practices, are not only limited to the environmental and economic aspects, 

but also extend to pose serious public health concerns. In 2015 alone, almost one-quarter of the 

U.S. population was served by water systems that had at least one or more reported violations of 

the Safe Drinking Water Act (SDWA) rules [3]. Approximately 15% of these violations were 
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reported for breaching health-based standards, such as exceeding the permissible levels or not 

applying necessary treatment, while the rest included either failing to monitor water for one or 

more of the regulated contaminants, or failing to report contamination to state authorities or to 

notify the public. Although health-based violations do not typically constitute the majority of the 

reported violations [4], they still pose a grave public health hazard, especially when combined with 

the implications of the weakness in, and the poor enforcement of, the regulatory standards for 

water contaminants. Indeed, the Centers for Disease Control (CDC) estimates that nearly 19.5 

million Americans fall ill every year only from consuming drinking water contaminated by 

microbiological pathogens, including cryptosporidiosis and Legionnaires’ [3,5,6]. This is in 

addition to the diseases caused by, or directly linked to, other ubiquitous drinking water 

contaminants. For instance, disinfection byproducts (DBPs), such as trihalomethanes (THMs) and 

haloacetic acids (HAAs), are known to have carcinogenic, teratogenic, and mutagenic effects [7,8], 

while exposure to heavy metal contaminants, such as lead and copper, was shown to adversely 

affect children’s cognitive functions [9,10]. 

1.1.1 Water quality deterioration in the distribution system 

Although the quality of the finished drinking water leaving treatment facilities is normally high, 

water quality deteriorates gradually as it transports through the pipes of the distribution system 

and inside premise plumbing. The quality of water reaching the consumer’s tap is hence largely 

dependent on a group of physical, chemical, and biological interactions that take place after the 

water leaves the treatment facility, i.e. where the water utility has the least control over the water 

quality. For instance, water utilities in the U.S. are required to maintain a sufficient disinfectant 

residual throughout the distribution system to prevent microbial recontamination. Yet, 

disinfectants, especially chlorine-based ones, react with the remaining natural organic matter 
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(NOM) that is left over from water treatment [11], which results in the formation of disinfection 

byproducts (DBPs). Moreover, the biodegradable fraction of NOM supports the growth of biofilms 

on the internal walls of the distribution pipes, which can harbor pathogenic species and increase 

their resistance to disinfectant residuals leading to waterborne disease outbreaks. Furthermore, the 

consumption of the disinfectant residuals by side reactions with NOM, biofilm, pipe materials, and 

corrosion products leaves the water with little protection against microbial species that may seep 

through the cracks of the old pipes and junctions. Corrosion of pipe materials may also result in 

increasing the frequency of outbreaks, the discoloration of the drinking water [12], or the release 

of toxic heavy metals [13]. The large scale of water distribution systems contributes dramatically 

to this deterioration mainly due to the long transport times between treatment and consumption 

points, which is commonly known as the “water age”, since more time is available for the 

abovementioned interactions to occur [14].  

Operating under limited budgets, water utilities face a considerable challenge to preserve 

water quality in their aging distribution systems and to stay in compliance with all regulatory 

standards. Operational failures and poor water quality management are the key factors permitting 

regulatory violations, chemical contamination events, and disease outbreaks, to take place. For 

instance, in the wake of switching to a more corrosive water source in April 2014, and the 

discontinuation of mandated corrosion control treatment, a cascade of water quality issues was 

triggered in the drinking water of the City of Flint, MI. This included widespread lead 

contamination [15], rapid disappearance of chlorine disinfectant residuals, high levels of THMs, 

and elevated levels of fecal coliform bacteria and Legionella [16]. Another example of operational 

failure is the lead contamination crisis that took place in Washington, D.C., 2001-2004, following 
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the switch of the disinfectant residual from chlorine to chloramine to reduce DBP formation 

[17,18].  

While these events drew substantial public attention, the vast spread of violations across 

the U.S. necessitates nationwide action. Foremost, voices calling for increasing investments in 

rehabilitating the drinking water infrastructure have increased. The American Water Works 

Association (AWWA) estimates the needed investment at more than $1 trillion over the next 25 

years [1]. Investments, however, should not be limited to the replacement of old pipes and the 

upgrading of treatment facilities, but should also extend to include the implementation of modern 

technologies for water quality monitoring and management to reduce the likelihood of similar 

operational failures in the future and to promote water quality management.  

1.1.2 Smart water systems and real-time water quality management 

Many water utilities in the U.S. are starting to show a strong interest in adopting smart technologies 

in their drinking water distribution systems with the aim of improving their overall performance, 

efficiency, and reliability. In a recent survey of 340 water utilities across all 50 states, more than 

80% of respondents were either already investing, or looking to invest, in some form of smart 

water technologies to improve their operations [19]. For example, Greater Cincinnati Water Works 

(GCWW) have been relying on a large-scale real-time water metering system (H2O Radio) in 

which readings are automatically transmitted via radio signal. Similarly, the DC water and sewer 

authority (DCWater) is currently in the process of replacing old water meters with smart, 

automated meter reading (AMR) systems. Over the next ten years, U.S. water utilities are projected 

to invest $8.3 billion in smart infrastructure technologies. These investments are expected to grow 

as cities look to integrate water infrastructure with the broader initiatives of smart cities and 

Internet of Things (IoT).  
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Smart water distribution networks belong to the group of modern cyber-physical 

infrastructure systems, in which on-line monitoring, data collection and transmission, real-time 

computation, and remote control of the functional processes are tightly integrated [20]. Smart 

water grids commonly rely on a coordinated network of distributed sensors and remote actuators 

linked to a supervisory control and data acquisition (SCADA) system, which is a centralized 

computer that analyzes the data, performs simulations and/or optimization computations, and 

coordinates the operation of the infrastructure in real-time (Figure 1-1)  [21]. The increased interest 

in embracing smart network technologies over the past decade has been complemented with a 

consistent growth in the development of related industrial tools and solutions, such as advanced 

metering technologies [22], sensor networks, data analytics tools, and automation systems. 

 

Figure 1-1. Schematic of a smart water infrastructure system integrating on-line monitoring, 

real-time modeling, and remote-control of the functional processes. 
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By integrating on-line monitoring with real-time simulation and control, smart water networks 

offer a paradigm shift to the way utilities manage water quality in their systems. Such framework 

can enhance the system’s performance by ensuring the delivery of drinking water to all users at 

all times with adequate quantity (pressure) and at optimal quality, and enhances the system’s 

efficiency by doing so in an economical manner.  

Under normal operating conditions, the system’s hydraulics are highly dynamic because 

they are dependent on water use patterns. Smart meters collect water demand data in real-time, 

which are then propagated into network hydraulic and water quality simulation models, and 

optimization algorithms. The latter can sample multiple operational scenarios, and identify the 

optimal scenario that would achieve the best water quality at the lowest expense. This can be done 

by controlling pumping patterns in real-time to simultaneously minimize both the pumping energy 

costs as well as the average water age in the system. A similar framework can also be employed 

for the optimization of disinfectant dosing schedules to minimize the overall mass doses fed to the 

system, which reduces disinfection costs as well as DBP levels, while maintaining a sufficient 

residual throughout the system.  

Furthermore, the benefits of implementing smart water systems are not limited to 

enhancing water quality during regular operations, but also extend to improving the system’s 

resilience to extreme events such as deliberate or accidental contamination. By imposing 

continuous and ubiquitous surveillance over the system via the on-line sensor network, 

contamination episodes can be ideally detected as soon as they take place. Simulation models 

running in real-time can then be used to examine different response strategies, and hence can allow 

the system to absorb, and rapidly recover from, disturbing events with minimal service 

interruptions and public health consequences. This can be done by the remote control of certain 
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valves to curb the spread of contaminants by rapidly isolating the infected zones, or by remotely 

activating booster chlorination stations in case a microbiological contamination takes place. 

Despite the substantial potential offered by smart water infrastructure frameworks, their 

widespread implementation is relatively limited by several fundamental and practical challenges, 

which is discussed in the following section. 

1.2 Scientific Gaps and Engineering Challenges 

The successful implementation of a smart water network framework for efficient water quality 

management relies on three main pillars, computational models for real-time water quality 

simulation, on-line water quality monitors, and data acquisition and analytics tools. Real-time 

water quality models should be accurate, to properly simulate the concentrations of the different 

constituents at the points of consumption, and fast, to allow the implementation in optimization 

algorithms that sample different scenarios in real-time. On-line water quality monitoring tools 

should be both reliable and inexpensive. Data analytics tools should be able to handle large 

quantities of data, while communication routes should be secure to any external breaches or cyber-

attacks. 

In this section, some of the research gaps and engineering challenges that currently stand 

in the way of successfully implementing such framework for efficient water quality management 

are highlighted. The focus of this dissertation is on the key water constituents discussed in the 

previous sections, namely, disinfectants, disinfection byproducts (DBPs), and lead. Indeed, the 

highest fractions of the reported SDWA violations in 2015 (by population served) were attributed 

to the combined disinfectants/disinfection byproducts rule (32%), lead and copper rule (24%), and 
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total coliform rule (23%)  [3]. Hence, improving the control of these key constituents is crucial for 

making a positive impact on enhancing water quality in the distribution system. 

1- The levels of disinfectant residuals in the distribution network are routinely employed 

by water utilities as a quick and synoptic indicator of the water quality in their distribution systems. 

Although extensive research efforts have been devoted for modeling the transport and decay of 

disinfectants in the pipes of DWDSs, the accuracy of most of these models still require significant 

improvements [23]. This is especially true for the low-flow dead-end zones at the perimeters of 

the distribution system, where the flow is intermittent and the interplay between the complex 

hydraulics and the transport of the disinfectant is most pronounced [24–29] 

2- While significant modeling efforts have been dedicated over the past three decades to 

simulate the formation of DBPs during water treatment [30–33], their formation and transport in 

the distribution system are still not very well understood. Specifically, the role of biofilms in the 

formation and fate of DBPs has been generally overlooked in previous modeling studies despite 

their ubiquitous existence in drinking water distribution systems with considerable surface biomass 

concentrations [34].  

3- Since lead release from lead service lines (LSLs) is dictated by multiple parameters, 

such as pipe age and dimensions, water-use patterns, water chemistry, and previous disturbances 

to the LSL, computational modeling can offer useful tools for predicting lead release under a 

diverse range of scenarios. Several studies have pursued modeling the leaching of dissolved lead 

from LSLs [35–38].  Nevertheless, no previous work has so far addressed the issue of particulate 

lead mobilization and release into drinking water from a modeling perspective, especially from 

disturbed or partially replaced LSLs. Moreover, the realistic variation in flow demands under 

different household consumption patterns was generally overlooked in previous models, yet it is 
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crucial for accurately simulating both the leaching of soluble lead and the mobilization of lead 

particulates from LSLs [39]. 

4- Many water utilities implement booster chlorination as a means to maintaining a uniform 

residual concentration by injecting the disinfectant at multiple locations in the network with 

smaller, more distributed, doses [40]. Such practice enables preserving a sufficient residual at all 

points in the network, while simultaneously reducing the formation of DBPs. Finding the optimal 

layout and operation of booster chlorination stations has been extensively addressed by several 

previous studies [41–47], all of which relied on a generic water quality modeling software 

(EPANET  [48]) for the simulation of the decay and transport of the disinfectant.  Yet, EPANET’s 

accuracy in simulating chlorine decay and transport in low-flow zones is limited, which can 

potentially yield flawed results if used to conduct the water quality simulations required to solve 

network optimization problems, such as the placement and scheduling of booster chlorine stations 

and real-time boost-response schemes. 

5- Due to the complexity and uncertainty of the reactions between chlorine-based 

disinfectants and the organic matrix, the majority of the kinetic models developed to describe 

DBPs formation are based on empirical or semi-empirical equations derived by regression analysis 

[30]. These relationships often include empirical parameters that require fitting to experimental 

data. Hence, none of these models can be classified as a purely “predictive” model that can be 

applied to new systems without requiring extensive calibration. In general, a fundamental, 

molecular-level, understanding of the complex interactions between the disinfectants and organic 

precursors is missing. 

6- Traditional methods used for the analysis of THMs in the aqueous phase include direct 

aqueous injection, liquid-liquid extraction, and solid-phase extraction. In addition, headspace (HS) 
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sampling techniques, including static HS, dynamic HS (purge and trap) [49], and solid phase 

microextraction (SPME) [50] methods, have gained notable popularity because they capitalize on 

the inherent volatility of THMs enabling direct sampling in the vapor phase to reduce interference 

[51]. However, most of these techniques still rely on traditional methods, such as gas 

chromatography (GC) coupled with either mass spectrometry (MS) or electron capture detection 

(ECD) [52], which makes them costly, bulky, and mostly off-line. Alternative methods for online 

monitoring are generally expensive, which prohibits ubiquitous and real-time monitoring of DBPs 

in the system, especially for small systems with limited resources. Recent advances in applied 

nanoscience offer promising alternatives for developing cheap and highly sensitive sensors that 

are based on nanostructured materials. Yet, the design and fabrication of such materials have 

generally been done empirically with a limited understanding of the fundamental interactions 

between the analytes and the nano-based sensors, which may limit the selectivity and sensitivity 

of such novel sensors. 

 Furthermore, despite the numerous merits of implementing modern networking 

technologies in the sector of critical infrastructure systems, linking the physical components of the 

infrastructure with cyber-space can expose these systems to the vast realm of cyber-based threats. 

These attacks can target the SCADA module, the sensors that monitor the system’s processes, the 

PLCs that locally operate the physical components of the infrastructure or the wireless 

communication routes between the different elements of the CPS. Such cyber-based attacks are 

capable of remotely perturbing the performance of the system, providing unauthorized parties with 

access to critical and confidential information, and -if sophisticated enough- can result in physical 

damage to the assets of the infrastructure. Additionally, such attacks can compromise the water 



 

 

12 

   

quality by altering automated treatment schemes or by targeting water quality sensors to suppress 

contamination warnings, which can pose a significant threat to public safety. 

This dissertation addresses some of the abovementioned challenges by developing 

computational models at different length and time scales as explained in the following section.  

1.3 Multi-Scale Modeling Approach 

As can be inferred from the research gaps outlined in the previous section, the water supply system 

is a gigantic reactor in which water quality is controlled by numerous processes that take place at 

a vast range of length and time scales. Chemical interactions dictate the formation and degradation 

of the various compounds at the molecular scale, while transport phenomena control the fate and 

transport of these compounds at the continuum scale. This highlights the need for conducting 

fundamental studies that consider all the underlying phenomena controlling each of the targeted 

processes. For instance, accurate description of the fundamental mass-transfer phenomena, such 

as convection and diffusion, under the dynamic hydraulic conditions of the system is crucial for 

accurately describing constituent transport in the pipes of the distribution system.   

In this dissertation, a multi-scale modeling framework that is capable of providing a fine 

description of each of the processes of interest at its appropriate scale of resolution is employed to 

render a high fidelity representation of all the underlying phenomena. Although multi-scale 

modeling techniques have been frequently applied to chemical reaction engineering problems 

[53,54], they have seen limited application in environmental systems, particularly engineered 

aquatic systems. They have been recently introduced to the field of groundwater hydrogeology by 

integrating models describing phenomena at the microscopic pore scale up to the aquifer scale 

[55]. In this study, computational models are created and integrated at three interdependent scales 
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of resolution, namely continuum scale, system scale, and molecular scale as outlined in the coming 

sub-sections (Figure 1-2).  

 

 

 

 Figure 1-2. Multi-scale modeling and simulation of water quality in environmental systems 
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Continuum Scale Modeling 

The reactive transport of the different water constituents can be modeled by constructing and 

solving continuum-scale mass-balance equations, which typically take the form of partial 

differential equations (PDEs) formulated from the fundamental physical principles of mass transfer 

phenomena, such as convection, diffusion, and dispersion, as well as mass transformation by 

chemical and biochemical reactions. Numerical schemes are typically employed to solve the 

resulting system of PDEs since analytical solutions seldom exist for such complex systems of 

differential equations. Continuum-scale reactive-transport models can simulate the transport and 

interactions of multiple species, and hence are capable of tracking the chemical and 

microbiological deterioration of drinking water quality as it travels through the distribution 

network and inside premise plumbing.  

In the context of water distribution systems, continuum-scale models are the most 

advantageous since they enable the prediction of the spatiotemporal concentration profiles of the 

different water constituents at the tap. Furthermore, continuum-scale models incorporate the 

influence of the dynamic hydraulics in the system, which govern the fate and transport of the 

different constituents. Inputs to such models are usually water quality conditions at the treatment 

point, and a detailed hydraulic model of the system, while the outputs are the profiles of water 

quality at the tap. Given their significant utility, most of the work presented in this dissertation is 

focused on developing and applying continuum scale reactive transport models to simulate the 

transport and interactions of disinfectants, disinfection byproducts, biomass, and heavy metals 

(Figure 1-3).  
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Figure 1-3. Continuum scale reactive transport modeling of multiple interacting chemical and 

biological species. 
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Molecular Scale Modeling 

Chemical interactions and material properties result from quantum mechanical interactions 

between atoms or molecules, which can be described by Schrödinger equation. Of the various ab-

initio simulation techniques, Kohn-Sham Density Functional Theory (KS-DFT) has become one 

of the most implemented methods for calculating properties such as electronic structures, 

adsorption energies, and activation barriers, among many others [56–60]. In this study, a 

framework for employing first-principles calculations to investigate the mechanisms of chemical 

reactions is demonstrated by detailing the pathways and kinetics of the reactions leading to the 

formation of disinfection byproducts. In addition, ab-initio calculations are used to understand the 

sensing mechanism of novel nano-based sensors for potential applications in the on-line detection 

of disinfection byproducts.     

System Scale Modeling 

Systems modeling techniques can be used to sample various possible operational scenarios under 

both normal operating conditions and extreme events, such as deliberate or accidental 

contamination. They are capable of identifying the best strategies for running the system, while 

satisfying multiple economic and environmental objectives and constraints. Thus, systems models 

can create robust decision-making platforms to promote water quality management and enhance 

the resilience of the system. In this work, large-scale simulations of the system are coupled with 

mathematical optimization routines to optimize the water quality reaching all the network users. 

Over the last decade, genetic algorithms have become one of the most applied optimization 

techniques in water resources and environmental engineering management [61]. Hence, it has been 

selected as the optimization routine of choice for the different parts of this dissertation. 
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Demonstration of a hierarchical multi-scale modeling framework 

It is imperative that developing computational models for each of the studied processes at its 

suitable scale of resolution is expected to give the best results for each process individually and 

hence enhance the performance of the system as a whole. Yet, multi-scale modeling frameworks 

work best when models developed at the different scales are connected and the information from 

one model is propagated into upper-level models in a bottom-up hierarchy. This information can 

be propagated either directly as the inputs of the upper-level model, or indirectly by providing 

insights into the formulation and parameterization of the upper-level models.  

To give a simple example on how an integrated multi-scale modeling framework can be 

implemented in the context of water systems modeling, assume that a utility has a certain 

operational objective, which is to minimize the concentrations of disinfection byproducts at the 

tap, while maintaining a sufficient residual throughout the system. This can be achieved by 

optimizing disinfectant dosing patterns at the treatment or booster locations. To find such optimal 

solution, a system-scale mathematical optimization model is required, which for example, can be 

a metaheuristic evolutionary optimization routine (e.g. a genetic algorithm). Such system scale 

model would examine different alternatives for scheduling the disinfectant dosing patterns, and 

identify the optimal solution that satisfies the DBPs objective and the residual constraint. Yet, this 

model requires to be connected to a different underlying model that is capable of describing the 

relationship between the disinfectant doses at the source point(s), and the concentrations at the tap.  

Empirical formulae can be used to describe this relationship based on historic water 

samples collected from the same system. Nevertheless, the accuracy of such empirical formulae in 

describing the system under operational scenarios outside the range of scenarios that were involved 

in their derivation will be markedly low, which will affect the accuracy of the overlying 
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optimization routine. More importantly, such empirical formulae cannot be used to describe any 

system other than the one they were calibrated to, which limits the usability of such models. A 

more fundamental approach can be developed instead by employing a continuum-scale reactive-

transport model to simulate the formation and transport of DBPs and the decay of the disinfectants 

in the system. While such a model may still require calibration with field samples when introduced 

to new systems, it is guaranteed to provide descriptions that are more precise compared to 

empirical formulae since they are not bound to the specific conditions they were calibrated to.  

Similarly, a hierarchical multi-scale modeling approach can be implemented in the 

description of the formation of disinfection byproducts. The formation of disinfection byproducts 

(DBPs) is influenced by a wide variety of factors, including the disinfectant type and dose, organic 

matrix, pH, temperature, bromide concentration, and contact time. Moreover, NOM consists of a 

heterogeneous and complex array of precursor compounds; each has different reaction kinetics, 

mechanisms, and pathways for DBPs formation. Hence, due to the complexity and uncertainty of 

the reactions between chlorine-based disinfectants and the organic matrix, the majority of the 

kinetic models developed to describe DBPs formation are based on empirical or semi-empirical 

equations and none of them can be classified as a purely “predictive” model that can be applied to 

new systems without requiring extensive calibration. As an alternative, fundamental quantum 

chemistry models, such as Density Functional Theory, can be employed to provide insights on the 

pathways and kinetics of the chemical reactions leading to DBPs formation. Such insights can be 

very helpful in developing accurate continuum-scale models describing the reactions between 

chlorine-based disinfectants and the different fractions of NOM, which would ultimately result in 

a more accurate model with true prediction abilities. 
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1.4 Outline of the dissertation 

Each chapter of the dissertation aims at addressing one of the gaps or challenges highlighted in 

section 1.2 by developing and applying computational models at the appropriate scale (Figure 1-

4).  

 

 

Figure 1-4. A graphical abstract of the work presented in the dissertation highlighting 

computational models developed at different scales 
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The remaining of the dissertation is outlined as follows: 

Chapter 2 aims at developing an advanced modeling technique for accurately simulating 

disinfectant transport and decay in dead-end pipes by considering both dispersive solute transport 

mechanisms and the spatiotemporal distribution of flow demands. Periphery zones of the 

distribution network, commonly known as the system’s dead-ends, are where most of the water 

quality deterioration takes place, mainly due to long stagnation periods and excessive water age. 

As a result, these zones are particularly more susceptible to water quality monitoring failures [62]. 

Chapter 3 targets developing a multi-species reactive transport model capable of simulating the 

disappearance of chlorine residuals, the accumulation of opportunistic pathogens in biofilms, and 

the formation of regulated DBPs, such as trihalomethanes. The model is used to examine the 

dynamic interplay between various water constituents to understand the role of biofilms in the 

formation of DBPs inside the distribution system. This includes the transformation of the 

biodegradable fraction of natural organic matter into biomass through biofilm growth, biomass 

release through biofilm detachment, and DBP formation from the parallel reactions of chlorine 

with precursors of both microbial and non-microbial origin.  

Chapter 4 aims to create a computational modeling tool for the simulation of the release and 

transport of particulate and dissolved lead from full and partially replaced LSLs. A mass transfer 

model is coupled with a stochastic residential water demand generator to investigate the influence 

of normal household usage (NHU) flow patterns on lead exposure. This computational tool can 

enable the estimation of total lead concentrations at the tap as a function of water use patterns.  

Chapter 5 aims at demonstrating the impact of implementing an advanced water quality model 

for simulating the dead-end sections of the distribution network on the outcomes of the 
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optimization of booster chlorination systems. To this end, an advection-dispersion-reaction (ADR) 

transport model that considers the spatial distribution of flow demands along the dead-end pipe is 

coupled with a genetic algorithm based optimization routine. 

Chapter 6 proposes a framework for employing first-principles calculations to investigate the 

mechanisms of the chemical reactions leading to the formation of disinfection byproducts. The 

proposed framework is demonstrated by investigating the pathways of chloroform formation from 

the halogenation of dihydroxy aromatic (resorcinol-like) precursor compounds, which have been 

previously identified as efficient model precursors for trihalomethane formation. Rate coefficients 

of rate-limiting elementary reactions are calculated from transition state theory (TST) and the 

minimum-energy path (MEP) is obtained using the intrinsic reaction coordinate (IRC) 

calculations.  

Chapter 7 proposes a framework for implementing ab-initio quantum chemical calculations to 

investigate and tune the surface chemistry of metal-oxide sensors to enable their on-line operation 

at ambient temperatures with high sensitivity and selectivity towards regulated DBPs. This 

framework is demonstrated by focusing on understanding the adsorption and surface interaction 

mechanisms of chloroform, a model trihalomethane compound, on tin dioxide (SnO2) 

nanostructured sensors using theoretical calculations supplemented by sensing experiments. 

Chapter 8 lists the conclusions of the present work and provides a number of future directions. 

Appendix I proposes an approach for the identification of cyber-physical attacks on WDSs in real-

time by detecting suspicious anomalies in the SCADA observations using machine-learning 

techniques, namely principal component analysis (PCA) and artificial neural networks (ANNs). 

Appendix II lists the set of computer codes/programs developed throughout this study. 
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Chapter 2  

Water Quality Modeling in the Dead End 

Sections of Drinking Water Distribution 
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2.1 Abstract 

Dead-end sections of drinking water distribution networks are known hot spots for water quality 

deterioration. Extended residence time due to water stagnation leads to the decay of disinfectant 

residuals allowing excessive microbial growth. Water quality models developed so far have 

employed the approximations of spatial aggregation and temporal averaging of the hydraulic 

parameters by assigning hourly averaged water demands to skeletonized nodes of the network. 

Although this practice has generally resulted in minimal loss of accuracy for the predicted 

disinfectant concentrations in main transmission lines, this has not been the case for the peripheries 

of the distribution network. This study proposes a new approach for simulating disinfectant 

residuals in the dead-end pipes by accounting for both spatial and temporal variability in the 

hydraulic and transport parameters. A stochastic water demand generator was developed to 

represent residential water use pulses based on a non-homogenous Poisson process. Dispersive 

solute transport was considered by using highly dynamic dispersion rates. A parametric sensitivity 

analysis was conducted to assess the model’s performance under variability in the transport and 

reaction parameters. The proposed model showed better agreement with field-measured 

concentrations of conservative fluoride tracer and free chlorine disinfectant compared to recent 

advection-dispersion-reaction models in the literature. Accuracy of the simulated concentration 

profiles showed significant dependence on the spatial distribution of water demands compared to 

temporal variation. Three correction factors were analytically derived to adjust the residence time, 

dispersion rate, and wall decay rate in order to overcome simulation errors caused by the spatial 

aggregation approximation. 
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2.2 Introduction 

Disinfection is routinely applied as the final treatment step in typical drinking water treatment 

plants. A sufficient residual concentration is typically maintained throughout the distribution 

system to prevent microbiological contamination of the treated water as it transports through the 

pipes of the distribution network. For instance, the U.S. Environmental Protection Agency 

(USEPA) requires water utilities to maintain a detectable chlorine residual throughout the 

distribution system under the Surface Water Treatment Rule (SWTR) [1,2]. Chlorine, which is the 

most commonly used disinfectant worldwide, is a highly reactive oxidant that reacts with a variety 

of materials in both the bulk flow and at the pipe wall.  

Over the last three decades, extensive research has been devoted to the development of 

water quality models that simulate chlorine transport and decay in water distribution systems [3]. 

In the early work done by Biswas et al. [4], a generalized model for steady state chlorine 

consumption that accounts for axial convection and radial diffusion was developed. It was the first 

model to account for chlorine decay at the pipe wall in addition to the bulk liquid phase. Rossman 

et al. [5] developed a film mass transfer approach to account for radial chlorine transport and its 

further reaction at the pipe wall. This 1-D advection-reaction model was later incorporated in the 

water-quality simulation module of the well-known software package EPANET, which is widely 

used by water utilities worldwide. Although EPANET was able to accurately predict the field 

observed disinfectant concentrations for the transmission mains, simulations of the secondary 

branch pipes, a.k.a. the “dead-ends” at the perimeters of the distribution system, were substantially 

less accurate.  

Dead-end zones are generally characterized by intermittent low-flow events and frequent 

stagnations. They are known to be responsible for most of the water quality deterioration in the 
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distribution system, and are particularly more susceptible to water quality monitoring failures [6]. 

The long residence time typically encountered in these zones results in the disappearance of 

chlorine residuals, excessive growth of biofilms, and high DBPs formation  [7–9]. Few researchers 

gave special attention to water quality modeling in dead-ends, although they typically comprise a 

non-trivial fraction (≥25%) of the total water infrastructure and tend to service an even larger 

percentage of the residential consumer base [10].  

Axworthy and Karney [11] were the first to shed light on the importance of considering 

dispersive transport in low flow velocity pipes where they showed that advective transport models 

would either under- or over-predict the actual concentrations. Following this earlier work, several 

studies developed numerical advection-dispersion-reaction (ADR) models to accurately simulate 

water quality under low flow conditions [10,12–16]. Nevertheless, spatial aggregation of water 

demands was typically employed in the hydraulic, and subsequently water quality, simulations of 

all the above-mentioned studies. Under this approximation, multiple water uses are lumped into a 

single demand point assigned to a specific junction on the network grid, a practice commonly 

known as network “skeletonization”.  

For main water arteries, spatial aggregation of flow demands is a reasonable approximation 

because the ratio of the “on-pipe” demands compared to the flows transmitted to the downstream 

sections of the network is relatively small. For dead-ends, however, all water demands are being 

directly withdrawn from the pipe at different spatial locations as shown in Figure 2-1a. Hence, 

applying spatial aggregation to the dead-end links would consistently overestimate the average 

flow velocity at the different axial locations along the pipe, and more importantly, under-simulate 

the actual residence time as depicted in Figure 2-1c. The later would cause the simulated 

disinfectant concentrations to be systematically over-predicted, which was observed in previous 
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studies [10,17]. Alternatively, unrealistically high wall demand coefficients had been used to fit 

the field measured concentrations [4,18,19]. The first study to address water distribution network 

dead-ends was done by Buchberger and Wu [20].  They generated the realistic spatial and temporal 

distributions of the flow rate and the corresponding Reynolds number at different sections along 

the dead-end pipe. Yet, their work was only limited to modeling the hydraulics, and was never 

extended to water quality simulations.  

 

 

 

Figure 2-1. (a, b) Realistic vs skeletonized representation of flow demands, and (c) Over and 

under-estimation of average flow velocity and residence time due to skeletonization. 
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The primary objective of this study is to develop a realistic modelling approach to simulate 

water quality in dead-ends while considering both the temporal variation and spatial distribution 

of flow demands, and the subsequent variability in the transport parameters. The new model 

(Washington University Dead End Simulator – WUDESIM), is coupled with a stochastic flow 

demand generator based on a nonhomogeneous Poisson process to simulate residential water use 

pulses on fine time scales. In addition, the model employs a genetic algorithm optimization routine 

for the calibration of the hydraulic profile of the dead-end.  

2.3 Methodology 

2.3.1 Mathematical Background 

Disinfectant transport and decay in a dead-end pipe can be appropriately modeled by a dynamic 

2-D convection-diffusion-reaction equation in cylindrical coordinates to represent the mass 

balance on the disinfectant concentration 𝐶(𝑥, 𝑟, 𝑡), which can be written as [4]: 

𝜕𝐶

𝜕𝑡
= − 

𝜕

𝜕𝑥
(𝑢 𝑓(𝑟) 𝐶) +

𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
) +

1

𝑟

𝜕

𝜕𝑟
(𝑟 𝐷

𝜕𝐶

𝜕𝑟
) − 𝑘𝑏𝐶                       (2 − 1) 

where, 𝑥 & 𝑟 are the axial and radial space coordinates, respectively (m); 𝑡 is the time (sec); 𝑢 is 

the average flow velocity in the pipe (m/sec); 𝑓(𝑟) is the radial flow distribution parameter; 𝐷 is 

the molecular diffusivity of the disinfectant in water (m2/sec); and 𝑘𝑏 is the first order decay rate 

constant in the bulk flow (sec-1).  

Disinfectant consumption at the pipe wall can be simulated by imposing a Robin type 

boundary condition to describe the instantaneous exhaustion at the wall (𝑟 = 𝑎, 𝐷𝜕𝐶/𝜕𝑟 +

𝑊𝑑𝐶 = 0) where, 𝑎 is the pipe radius (m), Wd is the wall demand parameter (m/sec). This 

boundary condition only applies to pipes with fast chlorine reaction at the wall, i.e. is not limited 
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by the rate of radial diffusion.  For thicker pipe scales with significant biofilm buildup, a two layer 

mass transfer approach would more appropriate [14].  

The numerical solutions for the dynamic 2-D convection-diffusion-reaction equation are 

typically computationally intensive. Previous researchers treated this by either removing the time 

dependence represented by the accumulation term and then solving a steady state 2-D equation, or 

reducing the model to an unsteady 1-D advection-dispersion-reaction (ADR) model to preserve 

the dynamic behavior of solute transport in water distribution systems. The latter approach was 

implemented in this study. Hence, Equation 2-1 is simplified to: 

𝜕𝐶

𝜕𝑡
= − 𝑢

𝜕𝐶

𝜕𝑥
+ 𝐸

𝜕2𝐶

𝜕𝑥2
− 𝐾𝐶                                                      (2 − 2) 

where, 𝐸 is the effictive longitudinal dispersion coefficient (m2/sec), 𝐾 is the overall lumped first 

order decay constant (sec-1) that accounts for disinfectant consumption both in the bulk phase and 

at the pipe wall. Rossman et al. [5] used a lumped mass-transfer coefficient to account for the 

radial transport of solute and the further first order reaction at the pipe wall analogous to film 

models for heat transfer: 𝐾 = 𝑘𝑏 + 𝑅𝑤, where, 𝑘𝑏is the bulk demand coefficient (sec-1); 𝑅𝑤 is the 

overall wall demand: 𝑅𝑤 = 𝑘𝑤𝑘𝑓 [𝑟ℎ(𝑘𝑤 + 𝑘𝑓)]⁄ ; kw is the wall decay constant (m/sec); 𝑘𝑓  is the 

mass transfer coefficient (m/sec); and rh is the pipe hydraulic mean radius (m). Removing the 

dispersion term in Equation 2-2 gives the 1-D advection-reaction equation incorprated in 

EPANET.  

The 1-D ADR model in the dimensionless form can be written as: 

𝜕𝐶∗  

𝜕𝑡∗
= −

𝜕𝐶∗

𝜕𝑥∗
+

1

𝑃𝑒

𝜕2𝐶∗

𝜕𝑥∗2 − 𝐷𝑎    𝐶∗                                        (2 − 3) 

where, 𝐶∗ is the dimensionless concentration (𝐶∗ =  𝐶/𝐶0); 𝑡∗ is the dimensionless time (𝑡∗ =

𝑡/𝜏0); 𝑥∗ is the dimensionless axial distance (𝑥∗ = 𝑥/𝐿); 𝑃𝑒 is the axial Peclet number (𝑃𝑒 =
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𝑢 𝐿/𝐸); and 𝐷𝑎 is the Damkohler number (𝐷𝑎 = 𝐾𝜏0).  𝐶0 is a reference concentration usually 

taken as the inlet concentration (mg/L); while 𝜏0 is the characteristic residence time (𝜏0 = 𝐿/𝑢) 

(sec); and 𝐿 is the pipe length (m).   

The dimensionless Peclet number (Pe) dictates whether the solute transport is dominated 

by advection or dispersion/diffusion. For axial mass transfer in a pipe geometry, the Peclet number 

can also be seen as the ratio between the characteristic time scales of both phenomena. The 

characteristic advection time can be written as: 𝜏𝑎 =
𝐿

𝑢
, while the characteristic time for axial 

dispersion, assuming that molecular diffusion is negligible compared to dispersion under laminar 

flow conditions, can be expressed as: 𝜏𝑑 =
𝐿2

𝐸
. Hence, Peclet number can be written as: 𝑃𝑒 =

𝜏𝑑

𝜏𝑎
=

𝑢𝐿

𝐸
. Thus for conditions where the characteristic time for dispersion is much longer than advection, 

the transport is advection-dominated (i.e. Peclet number is very large, and the dispersive transport 

term in equation 2-3 vanishes, which gives the 1-D advection-reaction equation). On the other 

hand, when both time scales are comparable (Pe is approximately equal to unity), both phenomena 

must be considered. Under low flow conditions, Pe approaches zero, and the transport is mainly 

dominated by dispersion (or diffusion in case of stagnation). It is important to note here that, while 

dead-ends mostly operate under laminar flow conditions, a few events of transitional and turbulent 

flow regimes do occasionally take place when high flow events are incurred. Hence, it is important 

to have both advection and dispersion/diffusion terms in the equation to accurately simulate the 

dead-end pipe under all scenarios. Similarly, the Damkohler number can be seen as the ratio 

between the characteristic time scales for advection and reaction, which for a first order reaction 

rate it can be written as: 𝐷𝑎 =
𝜏𝑟

𝜏𝑎
=

(𝐿/𝑢)

(1/𝐾)
= 𝐾𝐿/𝑢. Here, 𝐾 is the lumped first order rate constant 

that includes both bulk and wall reactions and mass transfer to the pipe wall. 
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The main concern that arises from reducing the 2-D model in Equation (2-1) into the 1-D 

model in equation (2-2) is the error caused by neglecting the combined effects of radial molecular 

diffusion and the flow velocity profile in the radial direction (e.g. 𝑓(𝑟) = 2[1 − (𝑟/𝑎)2] for fully 

developed laminar flow). The incorporation of an appropriate dispersion coefficient is hence 

crucial for the success of such approximation. For this purpose, the classical work by Taylor [21] 

has been widely used in the literature, where the dispersion coefficient in the steady laminar flow 

can be expressed as: 

𝐸𝑇 =
𝑎2𝑢2

48𝐷
                                                                           (2 − 4) 

However, Taylor’s formula only reflects the ultimate value that the dispersion coefficient 

approaches after a certain initialization period has elapsed (𝑡 >  0.5
𝑎2

𝐷
). For a typical dead-end 

pipe with a 6-inch diameter, this initialization period is approximately twenty weeks for a solute 

with a molecular diffusivity in the order of 10-9 m2/sec (e.g. chlorine). Furthermore, the extended 

stagnation periods typically encountered in dead-ends lead to partial loss of the dispersion memory 

between demand pulses. Therefore, the longitudinal dispersion in pulsating laminar flow is 

expected to always be within the initialization period, and the use of a highly dynamic time-

evolving dispersion coefficient is essential to simulate the complex nature of flow demands in 

dead-ends. In this study, the dynamic rates of dispersion developed by Lee [22] for pulsating 

laminar flows are implemented. The instantaneous rate of dispersion is expressed as the dynamic 

weighted average of two factors: (i) the dispersion memory from previous pulses; and (ii) the 

nonlinear excitation from current pulse. The instantaneous rate of dispersion during pulse (k) is 

expressed as: 

𝐸𝑘(𝑡) = 𝐸𝑘−1(𝑡𝑘−1) (
𝑢𝑘

𝑢𝑘−1
) exp (−

𝑡 − 𝑡𝑘−1

𝑡0
) + 𝐸𝑇𝑘

[1 − exp (−
𝑡 − 𝑡𝑘−1

𝑡0
)]              (2 − 5) 
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where, 𝐸𝑘−1  is the instantaneous dispersion coefficient for pulse (𝑘 − 1); 𝑡𝑘−1 is the ending time 

of pulse (𝑘 − 1); 𝐸𝑇𝑘
 is the Taylor’s dispersion coefficient for pulse (𝑘); 𝑡0 = 𝑎2/16𝐷 is the 

Lagrangian time scale. If the flow is intermittent so that pulse (𝑘 − 1) is stagnant (i.e., uk-1=0); 

then the first term on the RHS telescopes to pulse (𝑘 − 2). The time-averaged rate of dispersion 

during any pulse (k) can hence be calculated as: 

𝐸̅𝑘 =
1

(𝑡𝑘 − 𝑡𝑘−1)
∫ 𝐸𝑘(𝑡)𝑑𝑡

𝑡𝑘

𝑡𝑘−1

                                              (2 − 6) 

The present study is the first to use these highly dynamic dispersion rates, which was made possible 

by coupling the water quality simulator with a stochastic water demands generator that simulates 

the demand pulses on a second by second basis.  

In dead-end pipes, the average flow velocities are generally low and laminar conditions 

typically prevail. Furthermore, solute transport is mostly dominated by axial dispersion, as the 

values of 𝑃𝑒 are generally small. However, large flow rates can also take place during peak demand 

hours where occasional transitional or turbulent conditions may occur leading to advection 

dominated transport. Hence, longitudinal dispersion in the transitional and turbulent regimes 

(Re>2,300) was also considered in this work by using the empirical formula derived by Sattar [23] 

using gene expression programming (GEP): 

𝐷𝑥
∗ =

𝑐1   𝑓∗𝑐2𝑑𝑐3

𝑢
                                                                   (2 − 7) 

where, 𝐷𝑥
∗ is the inverse of the radial Peclet number; f* is the pipe friction factor [24]; 𝑑 is the pipe 

diameter; {𝑐𝑖}𝑖=1
3 are three empirical parameters: 𝑐1 = 219;  𝑐2 = 2.82; and 𝑐3 = −0.82. The 

formula (GEP3) was chosen as it showed reasonable description of the experimental data for 

Reynolds numbers in the range (2,300 < Re <10,000). It’s worth mentioning here that, although 
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widely employed in water distribution system models, the classical formula developed by Taylor 

[24] for the dispersion rate under turbulent conditions wasn’t implemented in this study. The 

reason is that this formula is only valid under highly turbulent regimes (Re > 20,000) [25], a 

situation that is highly unlikely to take place in dead-ends where flow regimes are mainly laminar 

with only occasional transitional to early turbulent flows. 

Because of the spatial variation in flow velocity at different axial locations, transport and 

reaction parameters are not only considered as functions in time, but axial coordinate as well, i.e.: 

𝑢 = 𝑢(𝑥, 𝑡); 𝐸 = 𝐸(𝑥, 𝑡); and, 𝐾 = 𝐾(𝑥, 𝑡). This is simulated by splitting the dead-end into a 

specified number of sections of variable lengths based on the locations of the draw off points 

(Figure 2-1a). The flow velocity decreases in the axial direction as a result of the withdrawals and 

the hydraulic profile is simply generated by mass continuity.  

The initial condition is expressed by a given concentration profile in the pipe. The boundary 

conditions are expressed as follows: 

(1) at 𝑥 = 0;  𝐶 = 𝐶0(𝑡). The inlet node concentration is specified as a prescribed time series. This 

is the solute source. 

(2) at 𝑥 = 𝐿; 𝜕𝐶 𝜕𝑥⁄ = 0. The terminal node is described by a no-flux (free discharge) condition. 
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2.3.2 Numerical Approach 

Analytical solutions for the ADR equation have only been developed for limited cases. For 

example, solutions developed by van Genuchten and Alves [26] can only be applied to cases of 

steady flow where the dispersion coefficients and reaction rates are time independent. Although a 

wide range of numerical methods has been developed for solving the dynamic ADR model, mixed 

Eulerian-Lagrangian numerical methods are particularly known to be efficient in solving both 

dispersion-dominated and advection-dominated transport problems [27].  They were successfully 

applied to simulate solute transport in drinking water distribution systems [10,16,17]. In the 

present study, a two-stage Eulerian-Lagrangian numerical scheme combined with the numerical 

Green’s function technique proposed by Tzatchkov [10] is implemented. First, the Lagrangian step 

is executed using the explicit method of characteristics (MOCs) to solve the advection and reaction 

terms, then the Eulerian step is executed to solve the dispersion term using an implicit finite 

difference scheme. The details of the employed Eulerian-Lagrangian scheme are shown in the 

supplementary information section 2.10.1. A special form of the original ADR equation is used to 

describe mass conservation at the withdrawal nodes due to the local discontinuity in the transport 

and reaction parameters u, E and K; further details are given in supplementary information section 

2.10.1. 

2.3.3 Stochastic Demand Generator 

A stochastic model is developed in this study to simulate the behavior of flow demands in 

residential dead-ends that exhibit random temporal and spatial fluctuations. The model is 

connected to the dead-end water quality simulator to provide the time variable flow demands at 

different withdrawal nodes. The model is developed based on the non-homogenous Poisson 

process that was first introduced by Buchberger and Wu [20] to stochastically simulate the 
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intensity, duration and frequency of residential demands.  Demand pulses are generated on 

instantaneous basis (i.e. second-by-second) as Poisson rectangular pulses arriving at consumption 

nodes at a non-homogenous arrival rate. Demand volumes are calculated as the summation of 

individual pulse volumes; that is the product of pulse intensity times duration. Flow rates are then 

averaged over a specified period known as pulse aggregation interval, which was chosen to be 5 

minutes in this study to sufficiently represent the potential effects of stochastic demands on model 

hydraulics and transport based on the results of Yang and Boccelli [28]. Log-normal probability 

distributions were used to describe the intensity and duration of water pulses as Buchberger and 

Wells [29] found that they provide favorable description of actual residential demands. The 

underlying equations used to develop the model are described in [30], and are hence not reproduced 

here. Indoor and outdoor water demands are generated as separate Poisson pulses and then 

aggregated to give the total instantaneous nodal demand. The statistical parameters used for both 

indoor and outdoor demand intensities and durations are taken similar to Nilsson et al. [31]. 

2.3.4 Case Study for Model Application  

The present model is first applied to simulate the concentrations of free chlorine and fluoride tracer 

in the dead-end links of the Cherry Hills/Brushy Plains (CHBP) service area of the South Central 

Connecticut Regional Water Authority (SCCRWA). This residential network was previously used 

by Rossman et al. [5] to compare the results of EPANET with sampling data collected during the 

field campaign conducted by SCCRWA on August 13-15,1991. The results of this specific 

campaign were later used by many researchers to verify water quality models in distribution 

systems [10,16,18]. The original study used a skeletonized grid of the actual all-pipe CHBP 

network that has 32 dead ends. Sampling was conducted at the pump station and eight other 

locations through the network, two of which were on the terminal junctions of dead-end links - 
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Pipes 10 and 34 [5]. A list of the simulations performed using WUDESIM is given in Table 2-1. 

Eight different simulations were conducted to verify the model against field measurements, four 

Monte-Carlo ensembles were executed for the uncertainty analysis study, and 15 simulation 

scenarios were performed to examine the sensitivity of the model results to different input 

parameters. 

Table 2-1. List of simulations performed in Chapter 2 

I – Model Verification Simulations 

Simulation No. Solute Pipe No. Axial Hydraulic Profile 

1-A, B Fluoride 10, 34 GA Calibrated 

2-A, B Chlorine 10, 34 GA Calibrated 

3-A, B Fluoride 10, 34 Equal Shares 

4-A, B Chlorine 10, 34 Equal Shares 
    

II – Monte-Carlo Simulations 

MC-Ensemble Solute Pipe No. Demand Variation 

5-A Fluoride 10 Spatial 

5-B Fluoride 10 Temporal 

6-A Chlorine 10 Spatial 

6-B Chlorine 10 Temporal 
    

III – Sensitivity Analysis Simulations 

Simulation No. Variation Parameter 

7 Base Case 

8-A, B Flow rate 

9-A, B Pipe diameter 

10-A, B Pipe length 

11-A, B Average inlet concentration 

12-A, B Amplitude of inlet sine wave 

13-A, B Period of inlet sine wave 

14-A, B Bulk decay rate constant 
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2.4 Results and Discussion 

2.4.1 Model Verification 

Since limited data was available on the actual water use locations in the CHBP network, Google 

Earth® software was used to locate the two dead ends and identify the number of consumption 

points on each dead end using aerial photos captured on March 15, 1992 – approx. 7 months after 

the sampling study (Supplementary material section 2.10.2). The axial locations of the withdrawal 

nodes were scaled from the aerial photos to be used in the simulation. Aerial photos (Figure S 2-

2) showed that pipes 10 and 34 could be simulated with seven and five consumption nodes, 

respectively, with an axial spacing of at least 60 ft between every two consecutive nodes. This 

number was determined by counting the number of consumption points on each dead end assuming 

each building to represent a single consumption point. Consecutive buildings with a spacing less 

than 10% of the total dead end length were lumped into one consumption point. 

The accuracy of any water quality simulator is largely controlled by the proper calibration 

of the underlying hydraulic model. Individual water consumption of each withdrawal node on the 

dead-end links was unknown, unlike the lumped hourly demands that were available through 

Example 2 in EPANET as generalized hourly demands. Hence, there was a need for a special 

technique to calibrate the time-averaged axial hydraulic profile in each of the two dead-ends. 

Several techniques were previously developed for the calibration of hydraulic models in water 

distribution systems [32]. Of these techniques, evolutionary optimization algorithms are usually 

preferred mainly because they do not involve complex mathematical procedures, yet they are 

robust and accurate in locating optimal solutions. For instance, genetic algorithms (GAs) were 

previously used for hydraulic calibration in water distribution systems by few researchers [33,34]. 

In the present study, genetic algorithms were used to calibrate the hydraulic model of each 
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simulated dead end by optimizing the share of each of the withdrawal nodes from the total pipe 

demand to minimize the error between simulated and filed measured concentrations. The 

implemented fitness function represented the Coefficient of Variation of the root mean square 

deviation (RMSD) between field measured and simulated concentrations 𝐶𝑉𝑟𝑚𝑠: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐶𝑉𝑟𝑚𝑠 =
1

𝐶𝑚̅𝑒𝑎𝑠

√
∑ (𝐶𝑖 − 𝐶𝑠𝑖𝑚)2𝑁𝑚𝑒𝑎𝑠

𝑖=1

𝑁𝑚𝑒𝑎𝑠
                (2 − 8) 

Where, 𝐶𝑉𝑟𝑚𝑠 is the deviation function targeted for minimization; 𝐶𝑖 is the field measured 

concentration at some time t (mg/L); 𝐶𝑠𝑖𝑚is the simulated concentration at time t (mg/L); 𝑁𝑚𝑒𝑎𝑠 

is the number of field measurements; 𝐶𝑚̅𝑒𝑎𝑠 is the average over all field measured concentrations 

(mg/L). Fluoride tracer measurements were used for hydraulic calibration because the transport of 

non-reactive solutes is only controlled by advection and dispersion.  

Figure 2-2 shows the simulation results of the present model (WUDESIM) for fluoride 

tracer in comparison with EPANET and ADRNET [17] models plotted against field 

measurements. Consistent with the literature, the accuracy of advection-based models, such as 

EPANET, in simulating solute transport in dead-ends is substantially lower than advection-

dispersion models, mainly because solute transport in dead-ends is dispersion-dominated. 

ADRNET is an advection-dispersion-reaction model that incorporates (Eq. 2-2) as the governing 

equation. Both the present model and ADRNET use Eulerian-Lagrangian numerical schemes and 

use stochastic flow demands generated based on Poisson processes. The reason for choosing 

ADRNET to be compared against WUDESIM is to test the effect of considering the spatial 

distribution of flow demands and transport parameters as well as the highly dynamic dispersion 

coefficients implemented in WUDESIM on the simulation accuracy under laminar conditions. It 

is clear from the fluoride tracer results that the present model predicts field measurements slightly 
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better than ADRNET, mainly due to the realistic consideration of flow velocity and dispersion 

coefficient. The optimized average hydraulic flow profile generated from GAs calibration of the 

shares of the withdrawal nodes indicated that the share of the last withdrawal node on both dead 

ends was noticeably larger than all other nodes in the optimized flow profile as it alone accounted 

for 35-40% of the total water volume consumed during the simulation period. Going back to the 

original sampling study presented by Clark et al.  [35], we found that a special fitting was installed 

on the hydrants where samples were collected to allow continuous flow of water at a rate ranging 

from 3.79 to 15.14 lpm (1 to 4 gpm). This could explain the reason why the terminal nodes had 

the largest demand share, and at the same time proved the efficiency of the implemented GA in 

optimizing the hydraulic profile. 

 

 

Figure 2-2. Fluoride tracer concentrations simulated by ADRNET model [17], EPANET [5] and 

WUDESIM  (present model) against field measurements for the terminal junctions of: (a) Pipe 

10; (b) Pipe 34. 
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Figure 2-3 shows the results of the simulated concentrations of free chlorine by the three 

models plotted against field measurements. The values of the bulk and wall decay coefficients 

were taken as kb=0.55 day-1 and kw=0.15 m/day, matching the values previously used by EPANET 

and ADRNET. For both dead ends, the simulated concentrations by WUDESIM were in a 

remarkably better agreement with field measurements as illustrated by the 𝐶𝑉𝑟𝑚𝑠 values shown in 

Table 2-2. The present model better simulates the excessive residence times in dead ends compared 

to ADRNET that tends to systematically overestimate the chlorine concentrations as spatial 

aggregation approximation under-simulates the residence time in dead ends. Chlorine 

disappearance in dead ends is mainly caused by long periods of stagnation usually encountered in 

the times of low demand. This also leads to excessive concentrations of disinfection by products 

DBPs in the extremities of the distribution network [36].  

 

 

Figure 2-3. Free chlorine concentrations simulated by ADRNET model [17], EPANET [5] and 

WUDESIM (present model) against field measurements for the terminal junctions of: (a) Pipe 

10; (b) Pipe 34. 
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The high degree of detail used herein to simulate dead end pipes represented by considering 

the exact axial locations of withdrawal points and the calibrated share of each node of the overall 

demand may not be available for water utilities in the design stage of the water distribution system. 

Hence, previous WUDESIM simulations were repeated but with considering equally spaced nodes 

with equal demand shares instead of the GA calibrated demands, i.e. assuming that the only known 

dead-end parameter is the number of withdrawal nodes. As shown in Table 2-2, simulation 

accuracy represented by the deviation function 𝐶𝑉𝑟𝑚𝑠 dropped for all cases as a result of this 

approximation compared to the calibrated WUDESIM model. However, it still showed higher 

accuracy compared to both ADRNET and EPANET models especially for the case of chlorine, as 

the simulated residence time in the dead end is still closer to reality.  

 

Table 2-2. CVrms values between field measurements and simulation results 

Solute / Pipe Simulation Model 

 

WUDESIM 

GA Calibrated 

Shares 

WUDESIM 

Equal 

Shares 

ADRNET EPANET 

Fluoride Pipe 10 8.45% 13.69% 14.84% 33.49% 

Fluoride Pipe 34 8.14% 9.00% 9.26% 21.71% 

Chlorine Pipe 10 36.66% 41.59% 54.22% 64.12% 

Chlorine Pipe 34 50.10% 51.90% 88.70% 101.10% 
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The high magnitudes observed for the 𝐶𝑉𝑟𝑚𝑠 in the case of chlorine compared to flouride 

(Table 2-2) are attributed to the unrealistic first order decay rate with a constant bulk decay 

coefficient employed by all three models, which is known to be inefficient in simulating bulk decay 

and compared to higher order models [37], or dynamic reaction rates [38], which was outside the 

scope of the current study. Using the genetic algorithm to calibrate the wall demand kw for 

WUDESIM resulted in a slight enhancement in the simulation accuracy where the 𝐶𝑉𝑟𝑚𝑠 dropped 

to 34.56% and 48.64% for pipe 10 and 34 respectively, using kw values of 0.593 m/day and 0.3764 

m/day respectively. The results showed minimal sensitivty to the variation of kw as the bulk 

demand dominated chlorine decay because of relatively low flow velocities. 

2.4.2 Computational Efficiency 

As the proposed modeling approach considers the simulation of dead ends with a high level of 

spatial and temporal detail, this comes with an increased computational cost when compared to 

simple models with spatially aggregated, temporally averaged flow demands and steady dispersion 

rates. The increased computational burden takes place due to two main factors:  

I. The added computational step required to generate the stochastic flow demands aggregated at 

minor time steps that subsequently leads to an increased number of hydraulic steps for the total 

time of simulation. The computational time for this step increases as the required pulse 

aggregation time decreases where smaller water quality steps are required to capture flow 

variation at a higher level of temporal detail. 

II. As the spatial variation in flow rates is considered, downstream pipe sections experience lower 

flow velocities, and hence finer discretization grids are generated for a particular water quality 

step (Equation S-2.3). In addition, the multi-segment model introduces the need to solve an 

extra set of linear equations every quality step to generate the concentration at the connecting 
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withdrawal nodes (Eq. S-2.10). The size of the system of equations increases as the number of 

considered sections increases. 

To quantitatively illustrate the added computational burden, the proposed multi-segment 

modeling approach is used to simulate a typical residential dead end pipe of 244-m (800 ft) length 

and 20.3 cm (8-inch) nominal diameter. Five model simulations were conducted for a base flow 

rate of 600 L/hr in a diurnal water demand pattern (Figure 2-4a) for a 7 days period. The inlet 

chlorine concentration is assumed to have a sinusoidal time distribution (Figure 2-4b) given by: 

C0(t) = C̅0 + A ∗ sin (
2πt

λ
), where C̅0 = 10mg/L, A = 2.5mg/L and λ=6 hrs. The choice of the 

sinusoidal time distribution was based on the study of Li et al. [39] where the results showed that 

axial dispersion plays a key role in solute transport for the cases of instantaneous and sinusoidal 

profiles of the solute source. A bulk and wall decay rates are 0.5 day-1 and 0.5 m/day, respectively.  

 

 

Figure 2-4. (a) Demand pattern for base case scenario; (b) Time distribution of chlorine 

concentration at pipe inlet. 
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Under these conditions, the first simulation using the simplified ADR model takes the dead 

end as a single segment pipe with hourly flow demands lumped at the outlet and a steady Taylor’s 

dispersion coefficient, which overall represents the simplified model. For the other four 

simulations, the stochastic demand generator was used to produce demand pulses aggregated at a 

5 minutes period with each simulation considering a different number of water use points (5, 10, 

15 and 20 homes, respectively). These simulations represent the detailed modelling approach using 

dynamic dispersion coefficients as proposed by the current study. The differences in model setup 

between the simplified and the detailed models are summarized in Table 2-3. All five simulations 

were performed on a personal computer equipped with an Intel®Core™i7 3632QM CPU 

@2.2GHz capable of performing 70.4 GFLOPS – peak theoretical performance. The software 

environment used to perform the simulations was MATLAB R2013a while the genetic algorithm 

simulations were performed using the associated Optimization Toolbox 6.3. As shown in (Fig. 2-

5), the required CPU time for the 5 segment model is almost 10 times as large as the simplified 

model. The CPU time then increases linearly with the number of sections considered by the model. 

 

Table 2-3. Summary of the differences between simplistic and high level model. 

 

Parameter Simplified  model Detailed model 

Spatial Demand 

distribution 
Aggregated (single segment) Multiple Segments  

Temporal Demand 

distribution 
Averaged (hourly basis) Stochastic Demand pulses 

   
Dispersion rate Steady Taylor’s dispersion (Eq. 2-4) Dynamic (Eq. 2-5) 
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2.4.3 Sensitivity Analysis  

From a practical viewpoint, a typical water distribution system comprises several hundred dead 

end links. This complexity leads to massive computational requirement, making it very difficult to 

use such a sophisticated model in real time to account for all network dead ends. Thus we 

conducted a parametric sensitive analysis to help decide when the simplified single segment model 

can be used in place of the detailed model (Table 2-3). The objective is to understand how the two 

models differ under the variation of different simulation parameters in three groups: (i) hydraulic 

parameters, (ii) pipe specific parameters, and (iii) solute specific parameters. The values for the 

variable parameters are shown in Table 2-4. The base case scenarios represent the same parameters 

as in the computation time analysis. One parameter is changed at a time from the base case, 

resulting in a total of 15 different scenarios. All five simulations described previously are repeated 

for the simplified model and for the detailed model with 5, 10, 15 and 20 segments/homes. 

 

Table 2-4. Simulation parameter values for the sensitivity analysis study scenarios. 

Parameter Min Base Case Max 

(i) Hydraulic Qb (L/hr) 300 600 900 

(ii) Pipe Specific 
d (cm) 15.24 [6] 20.32 [8] 25.40 [10] 

L (m) 121.92 [400] 243.84 [800] 365.76 [1200] 

(iii) Solute Specific 

0C  (mg/L) 5 10 15 

A (mg/L) 1 2.5 4 

λ (hr) 3 6 9 

kb (day-1) 0.05 0.5 1.5 
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The deviation in model outputs was evaluated as the 𝐶𝑉𝑟𝑚𝑠 (Equation 2-8) of the outlet 

concentrations between the two models. This deviation reflected the error generated by the 

simplified model compared to the detailed model, assuming detailed the model to be exact. The 

results show that the deviation scales up as the number of segments increases because the error 

due to the spatial aggregation approximation increases with the number of withdrawal points in 

the dead end pipe. The 𝐶𝑉𝑟𝑚𝑠 strongly depends on four out of the seven parameters considered: 

the increase of the pipe diameter, pipe length, and bulk decay coefficient, and the decrease of the 

base flow rate resulted in an increase of the 𝐶𝑉𝑟𝑚𝑠. Parameters controlling the time distribution of 

inlet concentration profile, showed negligible influence on the deviation between the simplified 

and the detailed models.  

To generalize the findings of the sensitivity analysis, a set of three dimensionless 

parameters was evaluated for each scenario: the Reynolds number (Re), axial Peclet number (Pe) 

and the Damkohler number (Da). They were calculated as a time-average value for the single 

segment case in each simulation scenario. As shown in Figure 2-5 the 𝐶𝑉𝑟𝑚𝑠 dropped as the 

simulation Reynolds number increased, but increased with the increase in the Peclet number. This 

shows that the average flow velocity has a critical influence on the error in the simplified model, 

whereas the error drops rapidly as the flow velocity increases. Although by definition the axial 

Peclet number is directly proportional to the flow velocity, the dispersion coefficient in the 

denominator is a function of (u2) based on Taylor’s definition given by Equation (2-4). Thus the 

overall dependence of Peclet number is inversely proportional to the flow velocity, or more 

specifically, directly proportional to the characteristic residence time: 𝜏0 = 𝐿 𝑢⁄  . It can also be 

seen from (Fig. 2-5b) that the effect of Reynolds number diminishes as the flow approaches the 

upper bounds of laminar regime for the 5 segments pipe scenario, a consequence that was expected 
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as the advective transport becomes mainly dominant and the role of dynamic dispersion diminishes 

in comparison with the steady Taylor dispersion. From (Fig. 2-5d), it’s clear that with an increase 

in Damkohler number, the 𝐶𝑉𝑟𝑚𝑠 scales up. This further shows that the increase in the flow velocity 

or the drop in the characteristic residence time will reduce the error associated with the simplified 

model. The flow velocity plays an interesting role in this case, because the increase in flow velocity 

enhances mass transfer of disinfectants to the pipe wall or kf in (Equation 2-2), and thus the 

calculated overall first-order decay constant. Furthermore, increasing the flow velocity also 

decreases the residence time, which leades to a smaller Damkohler number. 

 

Figure 2-5. (a) Simulation time for base case scenario simulations, (b) – (d) dependence of the 

rmsCV   on the time averaged Reynolds number (Re), Peclet number (Pe) and Damkohler 

number (Da), respectively. 
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2.4.4 Uncertainty Analysis 

Residential water demands exhibit large temporal and spatial fluctuations; both directly affect the 

disinfectant transport and reaction in the distribution network. A Monte-Carlo simulation approach 

was implemented to understand the extent to which spatial distribution and temporal variation of 

water demands affect the efficacy of the simulation model in predicting disinfectant residuals in 

dead ends. Statistical parameters are typically used to simulate residential demand pulses.  This 

implies that wide disparities exist in the intensity, duration and frequency of outdoor demand 

pulses compared to indoor demand pulses [40]. Thus the generated time series of aggregated flows 

heavily depend on the ratio of indoor/outdoor flows to the total demand. In this study, the average 

and standard deviation for the intensity of indoor demand pulses were taken as 8.52 lpm and 4.73 

lpm respectively.  For outdoor demand pulses, these values increased to 15.14 lpm and 3.79 lpm, 

respectively. The uncertainty in temporal distribution of flow demands was considered by taking 

the percentage of indoor demands out of the total nodal demand to be uncertain. The uncertainty 

in the spatial distribution of flow demands was studied by considering the share of each withdrawal 

point from a fixed total pipe demand for the dead end to be the uncertain parameter. Thus four sets 

of Monte-Carlo ensembles were executed where each set comprised 200 individual simulations 

(Table 2-1).  All simulations were conducted to the dead end pipe 10 in the CHBP study which 

has seven withdrawal nodes as aforementioned. The first two sets (5-A, B) are intended to compare 

the uncertainty in the predicted conservative tracer (fluoride) concentration profile due to temporal 

heterogeneity versus spatial heterogeneity. The other two sets (6-A, B) were investigated for the 

concentrations of a reactive disinfectant (free chlorine). To isolate the two different sources of 

uncertainty, the time distribution of the total pipe demand was kept unchanged for all spatial 

variation simulations. 
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The share of each withdrawal node was assumed to follow a lognormal distribution with 

an average of (1/Nseg), where Nseg is the number of considered pipe segments (Nseg = 7 for pipe 

10), and a standard deviation of the same magnitude.  Similarly, for the temporal variation 

simulations, all withdrawal points were assigned equal shares of the total pipe demand. The indoor 

demands ratio was given a uniform probability distribution with a minimum of 50% and a 

maximum of 100%. To ensure the convergence of the simulated 200 realizations, the average and 

standard deviation of the simulation RMSD were calculated after each realization until reaching a 

stable value. All four Monte-Carlo simulations converged relatively quickly (<100 simulations). 

Analysis results showed that the uncertainty in the generated concentration profile due to 

variability in the spatial distribution of water demands was significantly larger than that caused by 

temporal variability.  This conclusion applies to both conservative tracer and reactive disinfectant 

cases.  

Figure 2-6 shows the time evolution for the coefficient of variation in the outlet 

concentration-time profiles for the four Monte-Carlo simulation ensembles. The uncertainty in the 

fluoride concentration profile was consistently larger than that of the reactive free chlorine for both 

temporal and spatial variability simulations. This effect suggests that the decay term in (Equation 

2-2) attenuates the difference between simulation results of hydraulic dispersion under different 

flow demand distributions. Another factor that showed great dependence on the spatial demand 

distribution compared to temporal distribution was the simulation accuracy. Figure 2-7 shows the 

Box-and-Whisker plots of the distribution of the 𝐶𝑉𝑟𝑚𝑠 values of the four Monte-Carlo ensembles. 

While temporal variation showed minimal effect on the simulation accuracy, spatial distribution 

showed significant influence for both cases of fluoride tracer and free chlorine. It is also clear that 
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the variation in the 𝐶𝑉𝑟𝑚𝑠 values for the case of free chlorine is minor compared to fluoride tracer 

which is consistent with the uncertainty analysis results. 

 

Figure 2-6. Time evolution of the coefficient of variation CV for the concentration profiles of (a) 

fluoride tracer, and (b) free chlorine. 

 

 

Figure 2-7. Box-and-Whisker plots of the CVrms of (a)  fluoride tracer, and (b) free chlorine. Tick 

marks represent the 5
th

/95
th

 percentile rang. 

 



 

 

57 

   

2.5 Correction Factors for Spatial Aggregation 

Temporal distribution of flow demands was shown in the uncertainty analysis to have minimal 

effect on the solute transport compared to the spatial distribution. In the sensitivity analysis, we 

further showed that the spatial aggregation in water demand is the primary source of modeling 

errors using the simplified model as compared to the detailed model.  The temporal aggregation at 

nodes are least important.  These modeling and analysis results suggest that the implementation of 

hourly averaged flow rates and steady dispersion coefficients will not significantly compromise 

the accuracy, while spatial aggregation would. However, using multi-segment model to simulate 

the dead end was shown to greatly increase the computational cost compared to the simplified 

model. Therefore to approximate the behavior of the detailed model and reduce computational 

demand, we have proposed a set of three correction factors analytically derived for the simplified 

model when the number of withdrawal points is known for a dead end pipe. The correction factors 

were developed in a way that translates the three dimensionless groups Re, Pe and Da from a multi-

segment to a single-segment model while using hourly averaged demands and steady dispersion 

rates. The detailed derivation is given in the supplementary material Section 2.10.3. The correction 

factors for the residence time 𝐶𝐹𝜏, Taylor’s dispersion coefficient 𝐶𝐹𝐸, and the overall wall 

demand 𝐶𝐹𝑅 are: 

𝐶𝐹𝜏 =
𝜏𝑐𝑜𝑟𝑟

𝜏0
= ∑

1

𝑁𝑠𝑒𝑔 − 𝑖 + 1

𝑁𝑠𝑒𝑔

𝑖=1

                         (2 − 9) 

𝐶𝐹𝐸 =
𝐸𝑇,𝑐𝑜𝑟𝑟

𝐸𝑇,0
=

∑ (𝑁𝑠𝑒𝑔 − 𝑖 + 1)2
𝑁𝑠𝑒𝑔

𝑖=1

𝑁𝑠𝑒𝑔
3            (2 − 10) 
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𝐶𝐹𝑅 =
𝑅𝑤,𝑐𝑜𝑟𝑟

𝑅𝑤,0
=

1

𝐶𝐹𝜏
∑(𝑁𝑠𝑒𝑔 − 𝑖 + 1)−2/3

𝑁𝑠𝑒𝑔

𝑖=1

    (2 − 11) 

  The 15 different scenarios considered in the sensitivity analysis study were re-simulated 

after applying the correction factors to the simplified model. The 𝐶𝑉𝑟𝑚𝑠 was plotted before and 

after applying the corrections for the cases of 5, 10, 15 and 20 segments.  As can be seen from 

Figure 2-8, the correction factors greatly enhanced the simulation accuracy where the error 

dropped for all the simulated scenarios. The enhancement of the accuracy increased with 

increasing pipe diameter, pipe length and bulk decay coefficient, and decreasing the flow rate. This 

result again affirms the residence time as the main controlling parameter, and the increased 

effectiveness of the correction factors at higher residence time in the pipe. 

 

Figure 2-8. Comparison of the rmsCV  before and after applying the derived correction factors. (a) 

– (d) represent the 5, 10, 15 and 20 segments scenarios, respectively. 
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2.6 Conclusions 

A numerical model, WUDESIM, was developed to simulate disinfectant residuals in the dead end 

mains of water distribution systems. This is so far the first study to account for the combined 

effects of spatial and temporal distribution of flow demands on disinfectant transport in dead ends. 

The model represents the spatial distribution of flow demands by considering multiple draw-off 

nodes that withdraw water and disinfectant along the axis of the pipe. Temporal distribution of 

demand pulses was simulated using a non-homogenous Poisson process. The model implemented 

highly dynamic dispersion rates for pulsating laminar flows, and employed an Eulerian-

Lagrangian numerical scheme to solve the 1-D advection-dispersion-reaction equation. A genetic 

Algorithm optimization technique was used to calibrate the hydraulic profile of the dead-end. A 

Monte-Carlo simulation was executed to investigate the influence of spatial and temporal 

distributions of flow demands on the simulation accuracy.  

The simulation results of the new model showed better agreement with field measured 

concentrations when compared to an advection based model EPANET as well as an advection-

dispersion based model ADRNET. Analysis of the results suggests that spatial distribution of flow 

demands have a significant influence on the generated concentration profile, and subsequently, the 

simulation accuracy. The approximation of spatial aggregation of flow demands should be avoided 

in simulating water quality in the dead ends because it might substantially reduce the simulation 

accuracy. Water quality models treating dead-end pipes as multiple segments with spatially 

variable hydraulic and transport parameters can yield realistic residence time and disinfectant 

concentrations. 
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2.7 List of Symbols 

A    Amplitude of inlet concentration sine wave (mg/L) 

a    pipe radius (in) 

C   instantaneous disinfectant concentration in the dead end (mg/L) 

C*   dimensionless disinfectant concentration = C/C0 

C0     pipe inlet concentration (mg/L) 

𝐶𝑉𝑟𝑚𝑠    coefficient of variation of the root mean square deviation 

E   longitudinal dispersion coefficient (m2/sec) 

ET    Taylor’s dispersion coefficient (m2/sec) 

D    molecular diffusivity (m2/sec) 

𝐷𝑥
∗          inverse of the radial Peclet number 

Da   Damkohler number= 𝐾 𝜏0 

𝑑   pipe diameter (in) 

f*   pipe friction factor 

f(r)   radial flow distribution parameter 

K    overall first order decay rate constant (sec-1) 

kb   decay rate constant for bulk flow (sec-1) 

kw   wall decay constant (m/sec) 

kf    mass transfer coefficient (m/sec) 

L   pipe length (ft). 

λ   period of the inlet concentration sine wave (hr) 

Nseg   No. of withdrawal points along the axis of the dead end pipe 

Nmeas   No. of field measurements 

Pe   axial Peclet number = uL/E 

Qb          base flow demand (L/hr) 

Rw   overall wall demand (sec-1) 

Re   Reynolds number 

r   radial space coordinate (m) 

rh   pipe hydraulic mean radius (m). 

𝜏0  characteristic residence time (sec)  

t   time (sec) 

t0   Lagrangian time scale = a2/16D (sec) 

t*   dimensionless time = 𝑡 𝜏0⁄ ; 

u   average flow velocity in the pipe (m/sec) 

Wd         wall demand parameter (m/sec) 

x   axial space coordinate (m) 

x*   dimensionless axial distance = x/L; 
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2.10 Supplementary Material 

2.10.1 Eulerian-Lagrangian Numerical Solution 

The governing ADR transport equation (Equation 2-2) is split into two separate steps: 

I- Lagrangian Step: 

Ca-Ck

Δt
= -u

∂Ck

∂x
-K Ck                                                (S-2.1)   

II-Eularian Step: 

Ck+1-Ca

Δt
= E

∂2Ck

∂x2
                                                          (S-2.2) 

The space-time domain for each pipe segment is discretized into a rectangular grid as shown in 

Figure S 2-1  

 

Figure S 2-1 Time space discretization grid for pipe segment i 
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The total number of axial grid points in any segment is Ni + 1 and is calculated as: 

Ni + 1 = INTEGER (
Li

uiΔt
)                        (S-2.3) 

Where: Li is the length of segment i; ui is the flow velocity in segment i; and Δt is water quality 

time step.  

The grid size for the pipe segment is then calculated by: 

Δxi = (
Li

Ni + 1
)                                          (S-2.4) 

In the Lagrangian stage, the current time step (tk) grid points are projected forwards in time based 

on the MOCs scheme where their projection locations on the following time step (tk+1) are given 

the symbol (βj) (Figure S 2-1). These projections are conducted based on the characteristic 

advection line described by dxi/dt = ui. Hence, the forward projection locations can be calculated 

based on the following equation: 

βj = xj + uiΔt                                              (S-2.5) 

Using the known concentration profile for the current time step at all the axial grid points Ck(Xj) , 

the values of the concentration profile can be evaluated at different βj positions. By applying the 

reaction term to the advected concentration profile, we can get the advected-reacted concentration 

profile defined for numerical grid locations Ca(βj) in the next time step for each segment. 

Ca(βj) = Ck(Xj)* exp(-KiΔt)                      (S-2.6) 

The following time-step concentration profile defined at grid locations Ca(Xj) = Cj
a  can then be 

evaluated from Ca(βj) through linear interpolation. The Eulerian step is then introduced using the 
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fully implicit forward time central space FTCS finite difference discretization of the dispersion 

equation which gives: 

Cj
k+1-Cj

a

Δt
= Ei

Cj-1
k+1-Cj

k+1 + Cj+1
k+1

(Δx)2
          (S-2.7) 

The previous equation can be re-arranged to give the following system of linear equations: 

-riCj-1
k+1 + (1-2ri)Cj

k+1-riCj-1
k+1 = Cj

a        (S-2.8) 

Where: ri = EiΔt/Δxi
2. The numerical Green’s function technique proposed by Aldama [1] and 

implemented in the model developed by Tzatchkov  [2] is used in this study to efficiently solve 

the generated system of linear equations numerically. The concentration at each grid point is 

computed as the superposition of three numerical components: 

Cj
k+1 = Hj

k+1 + Grj
k+1*Cj=1

k+1 + Gfj
k+1*Cj=Ni+1

k+1            (S-2.9) 

The first term on the LHS represents the homogeneous solution obtained by assigning zero 

boundary conditions at both front and rear points of each pipe segment (at j=1,and j= Ni+1). The 

second and third terms represent two particular solutions obtained for both the front and rear end 

of each segment. To evaluate the values of Greens’ functions at different grid locations, the 

discretized form of the dispersion equation (Equation S-2.8) is used. For the homogenous part, the 

values of Hj=1 and Hj=Ni-1 are set as zeros. For the rear Green’s function, the values of Grj=1 and 

Grj=Ni-1 are set as one and zero respectively, while for the front Green’s function Gfj=1 and Gfj=Ni-1 

are taken as zero and one respectively. The values on the RHS of (Equation S-2.8) are set to Ca
j 

that were evaluated in the previous Lagrangian step when calculating the homogenous part, while 

taken equal to zeros for the other two particular functions. By applying these conditions in (Eq. S-

2.8), three systems of linear equations are generated for each pipe segment, which are solved to 
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get the values of the three Greens’ functions at all grid locations. To generate the concentration 

profile in each segment, (Eq. S-2.9) is applied for each grid point to calculate the concentration 

values. However, the values of Cj=1
k+1 and Cj=Ni+1

k+1  (which are the concentration values at the 

connecting withdrawal nodes) are still unknown at this point. To evaluate the concentration values 

at the withdrawal nodes, a special numerical discretization for the dispersion equation (Eq. S-2.2) 

is required to account for the spatial variation in characteristics between the two connected pipe 

segments. This can be described as: 

(Δxi + Δxi+1)

2

Cni
k+1-Cni

a

Δt
= [Ei

(Cj=Ni

k+1 )i-Cni
k+1

Δxi
+ Ei+1

(Cj=2
k+1)i+1-Cni

k+1

Δxi+1
]       (S-2.10) 

Where: Cni is the concentration at withdrawal node i that connects the pipe segments i and i+1 

(Figure S 2-1). Using mass balance, the concentration at any node i is always equal to the 

concentration of the terminal grid point in segment i: 

Cni = (Cj=Ni+1)i                  (S-2.11) 

By substituting the values of (Cj=Ni

k+1 )i , (Cj=2
k+1)i+1  from (Eq. S-2.9) into (Eq. S-2.10), we get a 

closed set of linear equations that is solved simultaneously to generate the concentrations at the 

withdrawal nodes. The latter are plugged in (Eq. S-2.7) to calculate the concentrations at different 

grid points and the procedure is repeated for all segments. As the model considers extended period 

simulations (EPS) of hydraulic and transport parameters, pipe flow changes from one hydraulic 

step to the other while kept steady within the hydraulic step. The duration of the simulation 

hydraulic step is dictated by the aggregation period of the generated stochastic demands. A new 

discretization grid is generated for all segments at the beginning of each new hydraulic step and 

the transport and reaction parameters are recalculated.  
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2.10.2 Aerial Photos of the Cherry Hill Brushy Plains dead ends 

Using the site maps given in the original paper [3], and by comparing the skeletonized grid with 

the all-pipe layout given in [4], the exact dead end pipes that were included in the sampling study 

were identified. Google Earth® software was then used to locate the two dead ends and identify 

the number of consumption points on each dead end through aerial photos captured on March 15, 

1992. (Figure S 2-2). 

Figure S 2-2. Aerial Photos of Dead End pipes 10 and 34 retrieved by Google® earth® for (a), 

(c) 9/19/2013; (b), (d) 3/15/1992. 
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2.10.3 Analytical Derivation of the Correction Factors 

I- Residence Time 

The corrected residence time τcorr for a multi-segment dead end with Nseg withdrawal points is 

evaluated as the sum of residence times over all segments, which can be written as: 

τcorr = ∑ τi

Nseg

i=1

= A p ∑
Li

Qi

Nseg

i=1

         (S-2.12) 

Where, τi is the residence time in segment i; Li is the length of segment i; Qi is the flow rate of 

segment i; and Ap is the pipe cross-sectional area. From mass conservation, Qi can be written as: 

Qi = Q1-∑qj

i-1

j=1

         (S-2.13) 

Where, Q1 is the total dead end pipe demand; qj is the flow demand of withdrawal point j. 

Assuming equally spaced withdrawal nodes with equal demand shares, Li and Qi can be written 

as: 

Li =
L

Nseg
              (S-2.14) 

Qi = Q1-(i-1)  
Q1

Nseg
=

Q1

Nseg
[Nseg-i + 1]        (S-2.15) 

Where, L is the total pipe length. Applying in (Eq. S-2.12) yields: 

τcorr =
Ap  L

Q1
  ∑

1

Nseg-i + 1

Nseg

i=1

= τ0 ∑
1

Nseg-i + 1

Nseg

i=1

              (S-2.16) 
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where, τ0 is the residence time calculated using the single segment model based on the total 

demand of the dead end pipe. The correction factor for the residence time in the pipe can then be 

written as: 

CFτ =
τcorr

τ0
= ∑

1

Nseg-i + 1

Nseg

i=1

         (S-2.17)  

II- Dispersion Rate 

Taylor’s dispersion coefficient for each segment i can be written as: 

ET,i =
ui

2a2

48D
       (S-2.18) 

Where, ui is the flow velocity in segment i, which based on (Eq. S-2.15) and after applying mass 

continuity for a steady incompressible flow can be written as: 

ui =
u1

Nseg
[Nseg-i + 1]      (S-2.19) 

The corrected dispersion coefficient can be approximated as the average over different segments 

of the dead end: 

ET,corr =
1

Nseg
∑ ET,i

Nseg

i

         (S-2.20) 

Which after applying (Eq. S-2.18) and (Eq. S-2.19) will be: 

ET,corr =
u1

2a2

48D

∑ (Nseg-i + 1
Nseg

i=1
)2

Nseg
3 = ET,0

∑ (Nseg-i + 1
Nseg

i=1
)2

Nseg
3           (S-2.21) 
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where, ET,0 is the dispersion coefficient of the single segment model based on the total demand of 

the dead end pipe. The correction factor for the dispersion rate in the pipe can then be written as: 

CFE =
ET,corr

ET,0
=

∑ (Nseg-i + 1)2
Nseg

i=1

Nseg
3             (S-2.22) 

III- Wall demand 

The overall wall demand for each segment i can be written as: 

Rw,i =
kwkf,i

rh(kw + kf,i)
                    (S-2.23) 

Where kf,i is the lumped mass transfer coefficient of segment i which is a function of the flow 

velocity [3]. For laminar flow: 

kf,i = α + β
ui

1 + χ ui
2 3⁄

           (S-2.24) 

where, α = 3.65
D

d
; β = 0.0668

d

Li
; and χ = 0.04(

d2

D Li
)2 3⁄ . Dead end pipes are typically 

characterized by low flow velocities, which indirectly results in high wall decay coefficient kw as 

a result of significant biofilm growth [5,6]. In addition, it leads to low magnitudes for the mass 

transfer coefficient, leading the overall wall demand to be consistently mass transfer limited. Under 

these conditions, (Eq. S-2.23) can then be reduced to: 

Rw,i ≅
kf,i

rh
…∀

kw

kf,i
>> 1                    (S-2.25) 

The dependence of the overall mass transfer coefficient on the flow velocity is highly nonlinear as 

shown in (Eq. S-2.24), and therefore some simplifying assumptions were to be made in order to 
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reduce the wall demand formula. In particular, the magnitude of the term (  χ ui
2 3⁄

) compared to 

unity is of interest in this case. This term can be written in its original form as: 

0.04χ ui
2 3⁄

= 0.04(
Re Sc

Li
d⁄

)2 3⁄                            (S-2.26) 

Where, Re is the Reynolds number; and Sc is the Schmidt number. The magnitude of this term for 

a dead end operating under an average Reynolds number of 500, with Schmidt number in the order 

of 1000 and with segment length of around 100 diameters will be in the order of 10. Thus, (Eq. S-

2.24) can be reduced to: 

kf,i ≅ α +
β

χ
ui

1 3⁄
…∀ 0.04(

Re Sc

Li
d⁄

)

2 3⁄

>> 1                (S-2.27) 

The same analysis can be applied to compare the magnitudes of the two terms in (Eq. S-2.27) as 

follows: 

β

α χ
ui

1 3⁄
= 0.458(

Re  Sc
Li

d
⁄

)1 3⁄   

Which will be in the order of 10 considering the same magnitudes for Re, Sc and 
Li

d⁄ . Therefore, 

the overall wall demand for segment i in the reduced form can be written as: 

Rw,i ≅
β

χ rh
ui

1 3⁄
= 6.68(

D2

Lid4
)

1 3⁄

 ui
1 3⁄

                (S-2.28) 

The corrected wall demand rate can be approximated as the weighted average over all segments, 

where weights are evaluated based on the relative residence time in order to conserve the overall 

dimensionless Damkohler number: 
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Rw,corr = ∑
τi

τcorr
Rw,i

Nseg

i

          (S-2.29) 

By combining (Eq. S-2.14) and (Eq. S-2.15): 

τi =
τ0

Nseg-i + 1
                         (S-2.30) 

And from (Eq. S-2.17) we can get: 

τi

τcorr
=

1

CFτ
⋅

1

Nseg-i + 1
             (S-2.31) 

Plugging in (Eq. S-2.29) yields:  

Rw,corr =
1

CFτ
∑  

Nseg

i

6.68(
D2

Lid4)
1 3⁄

Nseg-i + 1
[

 u1

Nseg
(Nseg-i + 1)]1/3           (S-2.32) 

And from (Eq. S-2.28), the wall demand rate based on the total pipe flow demand can be written 

as: 

Rw,0 = 6.68(
D2

(LiNseg)d4
)1 3⁄ u1

1 3⁄
                    (S-2.33) 

Therefore, the correction factor for the wall demand rate will be: 

CFR =
Rw,corr

Rw,0
=

1

CFτ
∑(Nseg-i + 1)-2/3

Nseg

i=1

     (S-2.34) 
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2.10.4 Supplementary Nomenclature  

Ap   pipe cross-sectional area 

a    pipe radius (in) 

βj   Advection projections 

C   instantaneous disinfectant concentration in the dead end (mg/L) 

CF   correction factor 

E   longitudinal dispersion coefficient (m2/sec) 

ET    Taylor’s dispersion coefficient (m2/sec) 

D    molecular diffusivity (m2/sec) 

d   pipe diameter (in) 

Gf   front solution of numerical green’s function 

Gr   rear solution of numerical green’s function 

H    homogenous solution of numerical green’s function  

K    overall first order decay rate constant (sec-1) 

kw   wall decay constant (m/sec) 

kf    mass transfer coefficient (m/sec) 

L   pipe length (ft). 

Nseg   No. of withdrawal points along the axis of the dead end pipe 

Ni   No. of grid points in segment i 

Qi         flow rate of segment i 

qj         flow demand of withdrawal point j 

Rw   overall wall demand (sec-1) 

rh   pipe hydraulic mean radius (m). 

τ0  characteristic residence time (sec)  

t   time (sec) 

u   average flow velocity in the pipe (m/sec) 

x   axial space coordinate (m) 
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Chapter 3  

Investigating the Role of Biofilms in 

Trihalomethane Formation in Water 

Distribution Systems with a Multi-Species 

Reactive Transport Model 
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3.1 Abstract 

Biofilms are ubiquitous in the pipes of drinking water distribution systems (DWDSs), and recent 

experimental studies revealed that the chlorination of the microbial carbon associated with the 

biofilm contributes to the total disinfection by-products (DBPs) formation with distinct 

mechanisms from those formed from precursors derived from natural organic matter (NOM). A 

multiple species reactive-transport model was developed to explain the role of biofilms in DBPs 

formation by accounting for the simultaneous transport and interactions of disinfectants, organic 

compounds, and biomass. Using parameter values from experimental studies in the literature, the 

model equations were solved to predict chlorine decay and microbial regrowth dynamics in an 

actual DWDS, and trihalomethanes (THMs) formation in a pilot-scale distribution system 

simulator. The model’s capability of reproducing the measured concentrations of free chlorine, 

suspended biomass, and THMs under different hydrodynamic and temperature conditions was 

demonstrated. The contribution of bacteria-derived precursors to the total THMs production was 

found to have a significant dependence on the system’s hydraulics, seasonal variables, and the 

quality of the treated drinking water. Under system conditions that promoted fast bacterial re-

growth, the transformation of non-microbial into microbial carbon DBP precursors by the biofilms 

showed a noticeable effect on the kinetics of THMs formation, especially when a high initial 

chlorine dose was applied. These conditions included elevated water temperature and high 

concentrations of nutrients in the influent water. The fraction of THMs formed from microbial 

sources was found to reach a peak of 12% of the total produced THMs under the investigated 

scenarios. The results demonstrated the importance of integrating bacterial regrowth dynamics in 

predictive DBPs formation models. 
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Figure 3-1. Graphical Abstract for the work presented in Chapter 3. 
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3.2 Introduction 

Water quality reaching the consumer’s tap is largely dictated by the physical, chemical, and 

biological processes that take place in the distribution system. While chlorine is routinely used by 

drinking water utilities to inhibit microbial regrowth in their distribution systems, it reacts with the 

residual natural organic matter (NOM) leading to the undesired formation of carcinogenic 

disinfection byproducts (DBPs). Moreover, the biodegradable fraction of NOM fed to the system 

supports the growth of biofilms [1], which play a major role in the accumulation and release of 

bacterial and pathogenic species, and thus compromise the microbiological quality of the treated 

drinking water [2,3]. Significant modeling efforts have been devoted over the past three decades 

to predict the formation of DBPs during water treatment [4–7]; yet more research is still required 

to understand their formation and transport in the distribution system. Specifically, the role of 

biofilms has been generally overlooked in previous modeling studies despite their ubiquitous 

existence in drinking water distribution systems with considerable surface biomass concentrations 

(up to 104 – 107 CFU/cm2) [8].  

Previous field studies found consistently higher levels of trihalomethanes (THMs) in the 

distribution network and at the points of use compared to finished water [9,10]. Experimental pilot-

scale studies showed that the production of THMs in a simulated pipe environment was always 

higher than that observed for glass bottle tests, which was accompanied by faster chlorine 

consumption rates in the pipe environment [11]. This observation was attributed to the existence 

of a reservoir of THMs precursor material attached to the pipe wall, which can be explained by the 

radial mass transfer of organic compounds to the biofilm, and the bio-sorption of NOM to the 

extracellular polymeric substance (EPS) [12]. On the other hand, biofilms were found to 
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biodegrade haloacetic acids (HAAs), which influences their fate since their levels do not typically 

show a consistent increase with the residence time as in the case of THMs [13].  

The microbial carbon content associated with the biofilm has been recently shown to act 

as a precursor for DBPs formation in the distribution system as a result of the chlorination of both 

pure bacterial cells [14], or the EPS, which is largely composed of dissolved organic compounds 

such as polysaccharides, proteins and nucleic acids [15,16]. Hence, the detachment of biomass 

from the biofilm matrix by either active dispersal of planktonic cells [17] or passive dispersal due 

to fluid shear or grazing [18] can contribute to the total budget of DBPs precursors. Therefore, the 

question arises whether this contribution is significant enough to influence the dynamics of DBPs 

formation in the distribution system? Moreover, what would be the system conditions that might 

promote or depress this contribution? A multiple-species reactive transport model was developed 

to help answer these questions.  

Numerous mathematical multispecies models have been developed in the literature to 

describe disinfectant decay and bacterial regrowth in the distribution system [19–24]. A good 

review of these models and their limitations can be found in [25]. One of the first-generation 

models was presented by Lu et al. [21], which accounted for the simultaneous transport of 

substrates, disinfectants and microorganisms in the bulk phase and the biofilm under steady state 

conditions. However, their model did not account for substrate utilization and bacterial re-growth 

in the bulk phase, and assumed a simple first order reaction kinetics for chlorine decay. Munavalli 

and Kumar [19] presented a dynamic multi-component model that considered a more realistic 

expression for chlorine decay with a parameter that depends on the concentration of the organic 

carbon, while Zhang et al. [20] applied the alternating split-operator (ASO) algorithm to decouple 

the transport and reaction processes, which significantly simplified the numerical solution for 
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complex reaction mechanisms of the multi-component model. Yet, all these models were mainly 

concerned with simulating the biological processes in the system, and none of them was extended 

to include the formation and transport of DBPs.  

EPANET-MSX [26] is an advection based, public domain, generalized multi-species 

model that can be used to simulate the reaction and transport of any set of interacting chemical or 

biological species. However, like most of the other multi-species models, EPANET-MSX does not 

account for dispersion as a solute transport mechanism. Hence, it is not capable of providing 

accurate simulations for constituent transport in low flow pipes and dead-end zones. These zones 

are known to be responsible for most of the water quality degradation that takes place in the system 

due to extended residence times, and therefore require a special modeling approach such as the 

one we developed in our previous study (WU-DESIM) [27]. With the increasing public awareness 

of the need for water conservation, the effect of these zones on water quality deterioration is 

expected to even magnify because of the generally lower flow rates [28]. 

In this study, a 1-D multi-component reactive-transport model (WU-MSRT – Washington 

University Multi-Species Reactive Transport) is developed to simulate the transport and 

consumption of disinfectants, transformation of the biodegradable fraction of NOM into biomass 

through bacterial regrowth in the biofilm, the release of biomass to the bulk fluid through 

detachment from the biofilm, and the formation of DBPs from precursors of both microbial and 

non-microbial origin. The model considers both advective and dispersive transport mechanisms, 

and hence is capable of efficiently simulating constituent transport under different flow conditions, 

ranging from the advection-dominated transport in the main trunk pipes to the dispersion-

dominated transport in dead-ends. The model was applied to investigate the system conditions 

under which microbial carbon can significantly contribute to the overall DBPs budget in the 
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finished drinking water including the effect of using booster re-chlorination to control bacterial 

regrowth in the system. 

3.3 Methodology 

3.3.1 Model development 

Mathematical Formulation 

For a water parcel moving through a distribution pipe containing disinfectants, organic 

compounds, nutrients, biomass and disinfection byproducts, the biochemical reactions are 

considered to take place at two interconnected sites within the bulk flow and in the accumulated 

biofilm at the pipe wall. Solute transport can be appropriately modeled by a dynamic 2-D 

convection-diffusion equation in cylindrical coordinates to represent the mass balance on the 

concentration of each of the bulk phase constituents Ci,b(x,r,t) as given by: 

∂Ci,b

∂t
+  

∂

∂x
(u̅ f(r) Ci,b)-

∂

∂x
(Di,L

∂Ci,b

∂x
) -

1

r

∂

∂r
(r Di,r

∂Ci,b

∂r
)

= ∑ Ri,j(

Nr,b

j=1

Ci=1…Ns,b
)                                             for 0 < r < rf           (3-1) 

While for wall zone constituents Ci,w , it can be written as:  

∂Ci,w

∂t
-
1

r

∂

∂r
(r Di,w

∂Ci,w

∂r
) = ∑ Ri,k(Ci=1…Ns,w

)                               for rf < r < r0          (3-2)

Nr,w

k=1

 

where, x & r are the axial and radial space coordinates, respectively (m); t is the time (sec); u̅ is 

the average flow velocity in the pipe (m/sec); f(r) is the radial flow distribution parameter; Di,L and 

Di,r are the longitudinal and radial molecular diffusivities of the solute in bulk water (m2/sec); Di,w 
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is the molecular diffusivity in the biofilm (m2/sec); Ri,j is the reaction involving species i in the 

bulk reaction j; and Ri,k is the reaction involving species i in the wall reaction k;  Ns,b and Ns,w are 

the number of species in the bulk and the wall phases; rf is the radial location of the bulk/biofilm 

interface (m); and r0 is the pipe radius (m). 

In Chapter 2 [27], the reduction of the 2-D model into a 1-D model for numerical simplicity 

purposes was discussed, together with the associated incorporation of the dispersive transport 

mechanism for the case of a single-component (chlorine). The governing 1-D advection-

dispersion-reaction (ADR) equation for each of the bulk phase constituents Ci,b(x,t) can hence be 

written as: 

∂Ci,b

∂t
+ u̅

∂Ci,b

∂x
-Di

∂2Ci,b

∂x2
= ∑ Ri,j(

Nr,b

j=1

Ci=1…Ns,b)-
kf,i

rh
(Ci,b-Ci,w)                     (3-3) 

While for wall zone constituents Ci,w it can be written as:  

∂Ci,w

∂t
= ∑ Ri,k(Ci=1…Ns,w) +

kf,i

rh
(Ci,b-Ci,w)

Nr,w

k=1

                                                           (3-4) 

where, Di is the axial dispersion coefficient of constituent i; kf,i is the lumped mass transfer 

coefficient of constituent i at the bulk/biofilm interface (m/sec); and rh is the hydraulic mean radius 

(m). Although the dynamic 2-D convection-diffusion equation provides a superior description of 

the solute transport compared to the 1-D model, the computational requirement for the numerical 

solution of a multi-species 2-D model is immense. Nevertheless, previous studies showed that both 

models qualitatively generate similar patterns for solute concentration distributions [29]. 

Therefore, we applied the simplified 1-D ADR formula in this study to create WU-MSRT.  
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The bulk zone represents the mobile portion with both advection and hydraulic dispersion 

controlling the transport of bulk phase constituents in the axial direction (Equation 3-3). The wall 

zone represents a thin biofilm layer uniformly distributed over the inner pipe surface, and it 

represents the stagnant portion with a behavior resembling a batch reacting system with zero net 

convective flux (Equation 3-4). Constituents are assumed to have uniform concentration profiles 

across the pipe cross section in the bulk phase as well as within the biofilm at the wall zone. Mass 

transfer of constituents at the bulk/biofilm interface is modeled as a thin film concentration 

boundary layer (CBL) with a lumped mass transfer coefficient (kf) as appears in the second term 

on the right side of (Equations 3-3 & 3-4). This coefficient is dependent on the flow conditions 

and the molecular diffusion coefficient of the component [19]. 

The disinfectant considered in our model is chlorine, which is the most commonly adopted 

disinfectant by water utilities worldwide. THMs were selected as the representative DBP species 

for simulation because they typically constitute the largest fraction of DBPs in drinking water 

(typically accounts for approximately 50% of identified halogenated DBPs on a weight basis) [30]. 

However, the developed approach in this study can be applied for simulating any other disinfectant 

(e.g. chloramines), or DBP species (e.g. HAAs or nitrogenous DBPs) given that the appropriate 

set of reaction mechanisms is implemented. Total organic carbon (TOC) was adopted as a 

surrogate of the THMs precursor content derived from NOM, while biodegradable organic carbon 

(BDOC) was used as a measure of the microbial growth substrate. 

Monod kinetics expressions were adopted to simulate bacterial regrowth and substrate 

utilization in the bulk flow and within the biofilm [19–24]. The rate of biomass detachment from 

the biofilm is assumed to have a first order dependence on both the shear stress at the pipe wall, 

and the attached biomass concentration [31,32]. Second order reaction kinetics were used to 
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describe chlorine-TOC reaction and THMs formation from NOM-based THMs precursors [33–

35]. Details of the various processes considered in the model are included in the supplementary 

material section 3.9.2.  

The model consists of 10 mass balance equations (Equations S-3.1 to S-3.10) to represent 

the spatial and temporal distributions of five constituents: chlorine, TOC, BDOC, biomass, and 

THMs, in two phases (Figure 3-2): bulk solution (Equations S-3.1 to S-3.5), and within the biofilm 

at the wall (Equations S-3.6 to S-3.10). To solve the complex system of partial differential 

equations (PDEs) that constitute the model, we applied the split-operator method (SOM) to 

decouple the transport and reaction processes of the multi-component system  [20,36]. More details 

on the numerical approach are included in the supplementary material section 3.9.3. 
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Figure 3-2. Schematic diagram of the fundamental processes considered in the model. NOM: 

Natural organic matter; BDOC: Biodegradable organic carbon; THMs: Trihalomethanes. 
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Modeling THMs formation from Biomass 

A simple two constituent second order kinetic model was developed to simulate the kinetics of 

chlorine-biomass reaction, and THMs formation from microbial carbon in the bulk solution: 

aClb + bXb → cHb                                                                                                                        (3-5) 

The reaction rate is assumed to be of second order; first order with respect to both chlorine and 

biomass. The formation of THMs is then proportional to the chlorine demand of the reaction, 

which yields the following system of differential equations representing mass balance on each of 

the constituents: 

∂Clb
∂t

= -kCl,XClbXb                                                                                                                      (3-6) 

∂Xb

∂t
= -YXkCl,XClbXb ,      YX =

b

a
                                                                                              (3-7) 

∂Hb

∂t
= YH,2kCl,XClbXb ,      YH,2 =

c

a
                                                                                           (3-8) 

Where, Clb is the free chlorine concentration in the bulk solution (mgCl/L); Xb is the bulk biomass 

concentration (mgC/L); Hb is the concentration of THMs in the bulk phase (µg/L); kCl,X is the 

second order reaction rate (L/mgC.sec); YX is the yield coefficient representing the consumption 

of chlorine reactive sites in the biomass (mgC/mgCl); YH,2 is the THMs formation yield as a 

fraction of chlorine demand (µgTHM/mgCl). The previous system of equations can be analytically 

solved to yield the temporal distribution of the three constituents [33]. The model is applied to the 

experimental data of Wang et al. [15] for chloroform formation at different contact times between 

a bacterial cell solution and free chlorine in a bench scale reactor, where a non-linear least squares 

method was used to calibrate the values of kCl,X, YX and YH,2. The second order model yielded a 
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good fit for the experimental measurements (Figure 3-3), and the parameter values that gave the 

best fit are listed in Table S 3-3. (see supplementary material section 3.9.4 for more discussion). 

A sensitivity analysis was performed on the given second order model, and the yield parameter for 

THM formation YH,2 (ugTHM/mgC) was found to have the highest influence on the ultimate 

concentration of THMs, followed by the rate constant kCl,X (L/mgC.sec). The yield parameter for 

the decay of organic carbon YX (mgC/mgCl) showed a conditional sensitivity, where increasing 

this parameter considerably lowered the THM formation, while decreasing it didn’t have much 

effect, which is attributed to the second order reaction being limited by the biomass concentration 

instead of chlorine concentration.  

 

Figure 3-3. Second order model fit of THM formation from the chlorination of bacterial 

solution. Experimental measurements adopted from Wang et al. [15] 
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3.3.2 Model Implementation 

The model was verified by comparing the simulation results to the field measured concentrations 

of free chlorine and heterotrophic plate counts (HPCs) in a full-scale DWDS, and THMs in a pilot-

scale pipe loop setup. The model was then used to predict THMs levels in the full-scale DWDS 

and to investigate the effects of hydrodynamics, water temperature, and the concentration of 

organics on bacterial regrowth and THMs formation from biomass in a hypothetical pipe system. 

Table 3-1 summarizes the simulations conducted in this study. 

 

Table 3-1. List of simulations conducted in Chapter 3 

# 
Simulation 

Type 

No. of 

Simulations 

Investigated 

Property 
Comparison Against 

1 

Model 

Verification 

4 
Bacterial regrowth 

and Chlorine decay 
Field measurements - actual DWDS 

2 8 
THMs formation 

from NOM 
Pilot scale pipe loop system 

3 
Model 

Application 
4 

Total THMs 

formation 

Field measurements – actual 

DWDS 

4 

Model 

Application 

6 

THMs formation 

from Biomass 

Hypothetical system - Variable 

Flow 

5 5 
Hypothetical system - Variable 

Temperature 

6 5 
Hypothetical system - Variable 

TOC0 
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Bacterial dynamics module verification  

The model was applied to simulate chlorine decay and bacterial regrowth in an actual DWDS. The 

field measurements conducted by Prevost et al. [37] in the sampling campaign of the distribution 

system of the city of Laval, Quebec, Canada were used (see Table S 3-5). The published data set 

included heterotrophic plate counts (HPCs) and free chlorine concentrations measured at estimated 

progressive residence times downstream the Pont Viau treatment plant. The sampling data revealed 

the seasonal dependence of organic matter concentrations where BDOC contents were generally 

higher in warm water samples [38]. Data samples collected from large diameter transmission lines 

were used for comparison against model simulations with the exception of the final data points at 

a residence time of 20hr, which were collected from small diameter pipes. The steady state 

conditions were simulated by running the simulations using the average flow conditions (u̅ = 

0.1m/s -Re ≅ 30,000) until convergence (0.1%) was achieved for the concentrations of the ten 

constituents. 

THMs module verification 

The model was implemented to simulate chlorine disappearance and THMs formation in a pilot 

scale distribution system simulator to understand the effects of flow conditions and pipe materials. 

Experiments were performed on two pipe loops in the U.S. EPA’s Test and Evaluation (T&E) 

facility in Cincinnati, Ohio, USA [39]. The first loop consisted of a new PVC pipe while the second 

loop was an aged ductile iron pipe with heavy scale build up. The published data set included the 

concentrations of THMs and free chlorine in water samples collected at regular time intervals 

under different flow regimes including turbulent, transitional, laminar, and stagnant flows. To 

simulate the new PVC pipe, wall zone was omitted from the model, and simulations were 

performed for only the five bulk-phase species. 
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Model application 

The model, WU-MSRT, was then applied to simulate a hypothetical water distribution pipe that 

receives the effluent of a water treatment plant with the properties tabulated in Table S 3-4 for a 

total residence time of 72 hours. Re-chlorination was assumed to take place after 36 hours by 

introducing a chlorine dose to increase the residual concentration back to the initial level of 1 

mg/L. The effects of altering the flow conditions (Re=5,000-30,000), water temperature (T=0oC-

30oC), and initial TOC/Cl ratio (TOC0/Cl0=1-3) on bacterial regrowth and THMs formation from 

biomass were investigated. 

Parameters acquisition 

The model equations comprise 22 parameters that can be categorized into three sets: i- parameters 

for the bacterial regrowth module; ii- parameters for the THMs formation from chlorine-NOM 

reaction; and iii-parameters for the THMs formation from the chlorination of biomass. The values 

or formulae used for the three sets are given in Tables S 3-1, S 3-2, and S 3-3 in the supplementary 

material, respectively, together with the corresponding literature sources or the actual values used 

to give the best fit for the verification simulations. 
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3.4 Results and Discussion 

3.4.1 Model Verification 

Bacterial regrowth in the full-scale distribution system 

Generally, the model showed good capability to simulate microbial regrowth and chlorine 

disappearance in the Pont Viau system under different temperatures and initial substrate 

concentrations. Figure 3-4 shows the results of the model simulations plotted against field 

measurements for HPC and free chlorine concentrations. The model was able to demonstrate the 

increase in the initial rate of bacterial growth corresponding to an increase in the water temperature. 

In warm (T=23.1 oC - Figure 3-4a) and lukewarm (T=13.5 oC - Figure 3-4b) water samples, rapid 

bacterial regrowth took place until reaching a maximum value corresponding to near-full substrate 

utilization. More importantly, the applied high chlorine dose (Cl0=0.83mg/L) for the high 

temperature case (T=23.1 oC) was shown to be unable to inhibit fast microbial regrowth as shown 

in Figure 3-4a. In the cold-water samples (T=1 oC - Figure 3-4c, and 1.8 oC - Figure 3-4d), slower 

bacterial growth took place, where in one of the cases the chlorine dose has almost completely 

depleted while microbial growth is still taking place due to the remaining unmetabolized substrate 

(Figure 3-4c). Simulation results showed a noticeable sensitivity towards four of the model 

parameters: the maximum substrate utilization rate (umax), the detachment coefficient (kdet), the 

temperature dependence rate constant (Ti), and the rate constant of the second order reaction 

between chlorine and bacteria (kcl,x), which is in good agreement with previous studies [19,40].  
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Figure 3-4. Model simulation results against field measured concentrations of free chlorine 

(mg/l) and HPC (log CFU/ml) for Prevost et al. [37] sampling campaign of the Pont Viau 

distribution network on: (a) 07-06-93;  (b) 05-18-1993; (c) 01-12-1993;  and (d) 12-15-1992. 

 

 

 



 

 

96 

   

An interesting remark was that the same set of parameters (shown in Table S 3-1) was used 

to simulate the four scenarios under different temperatures and initial water quality conditions. 

This implies that the model has a high predictive capability, where after being calibrated for a 

certain distribution system, it can be used to simulate the given distribution system under different 

seasonal scenarios without the need for recalibration with every scenario. The only exception was 

for the rate of biomass detachment, which showed an obvious dependence on the temperature that 

could not be accounted for using a constant detachment coefficient (kdet) as done by previous 

researchers. Future experimental and modeling studies might be required to elucidate the role of 

temperature in biomass detachment from the biofilm. 

THMs formation in the pilot-scale distribution system simulator 

Simulations were performed for all the described experimental cases for both the DI and PVC pipe 

loops (except for the stagnant flow case). Comparisons with measured concentrations were plotted 

in Figure 3-5 for the turbulent and transitional flow regimes and Figure 3-6 for the laminar flow 

regime. Overall, the model results were consistent with the measurements for both pipe loops 

under different hydrodynamic conditions, although it generated better results for the ductile iron 

pipe loop, which can be explained by the detailed consideration of the bulk and wall compartments, 

and properly accounting for mass transfer at the interface under different flow conditions. One 

important observation was that THMs formation continued in both pipe loops for several hours 

after complete chlorine disappearance. This illustrated the inadequacy of the second order model 

that implies that THMs formation should cease once chlorine is totally depleted from the system. 

A different model that separates the kinetics of THMs formation from chlorine decay through 

introducing the fast formation of a chlorinated intermediate followed by slower formation of 

THMs can be more suitable [41]. The model predicted minimal bacterial growth in the PVC pipe 
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under different flow regimes due to the absence of a biofilm layer that is typically responsible for 

bacterial production. For the DI loop, bacterial populations showed delayed development because 

of the high initial chlorine concentrations, which was consistent with the experimental results as 

no increase in the water turbidity was noticed in the samples collected at different times. The 

overall THMs production from bacteria was hence negligible under these conditions. Under 

laminar flow regimes (Figure 3-6), the model showed superior performance when compared to an 

advection-based technique that was simulated by ignoring the dispersive transport mechanism. 

Moreover, dispersive transport in real distribution network pipes will have an even higher impact 

on solute transport due to the dynamic nature of the inlet solute profile compared to the studied 

pipe loop with a fixed boundary condition [42]. This is the first study to consider dispersive 

transport in modeling THMs formation in drinking water pipes.  

We noted that the dispersion coefficient required to fit the laminar flow regime in the DI 

pipe was almost one-tenth of the calculated Taylor’s dispersion rate, while no adjustment was 

required to yield a good fit for the smooth PVC pipe. This might be a result of the introduction of 

local mixing near the pipe wall due to the roughness of the DI pipe, which disturbs the velocity 

profile. The PVC pipe loop required a slower second order reaction rate constant (kcl,N) compared 

to the DI pipe loop by a factor of 28%, implying faster chlorine decay in the DI pipe, which is in 

agreement with the literature [43,44]. The yield coefficients for TOC decay (YN), and THMs 

formation (YH,1) were found to consistently increase with the initial TOC/Cl ratio (see Figure S 3-

2), which is a characteristic of the second order kinetics, and was observed by previous researchers 

for bench scale experiments as well [34].  
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Figure 3-5. Model simulation results against experimentally measured concentrations of free 

chlorine (mg/l) and TTHM (µg/l) for Yang et al. [39] pilot scale study – DI pipe loop: (a) 

Re=52,500;  (b) Re=5,000 ; and (c) Re=3,500, and PVC pipe loop: (d) Re=52,500; (e) Re=5,000; 

and (f) Re=3,500. 
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Figure 3-6. Model simulation results against experimentally measured concentrations of Yang et 

al. [39] pilot scale study for free chlorine (mg/l) in: (a) DI pipe loop; and (b) PVC pipe loop, and 

TTHM (µg/l) in: (c) DI pipe loop; and (d) PVC pipe loop. 
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3.4.2 THMs formation in a full-scale distribution system 

The model was applied to predict THMs levels in the Pont Viau distribution system that was used 

to verify the bacterial growth module. The calibrated relationships for the coefficients of THMs 

formation from NOM-based THM precursors (see Figure S 3-2), and from biomass-derived 

precursors (see Table S 3-3) were used for simulation. Since THMs formation yields are strongly 

dependent on the pH level, it is important to remark that the average pH of the water in the 

distribution system (8.1) [45] was consistent with the pH of the experimental studies used to 

calibrate the model. Figure 3-7 shows the simulated total THMs concentrations as well as the 

fraction of THMs formed from biomass-derived precursors. The results indicated that the THMs 

concentrations in the system are generally lower than the maximum permissible concentration of 

80µg/L. During the earlier described sampling study, the concentration of total dissolved halogens 

(DOX) was sampled with the THMs levels estimated to constitute 3.8~7.9% [45]. The provided 

regression model (based on field samples in the presence of free chlorine) was used herein to 

estimate the concentration of THMs for each one of simulated four scenarios. The calculated 

THMs ranges were: (a) 14.0~29.0µg/L; (b) 9.6~20.0µg/L; (c) 4.3~8.9 µg/L; and (d) 3.9~8.1 µg/L, 

and they all were in good agreement with what the model predicted (Figure 3-7). This validated 

the predictive capability of the model to estimate the THMs levels in real DWDSs. 
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Figure 3-7. Predicted THM concentrations in the Pont Viau distribution network corresponding 

to Prevost et al. [37] field sampling on: (a) 07-06-93;  (b) 05-18-1993; (c) 01-12-1993; and (d) 

12-15-1992. 
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The fraction of THMs generated by biomass-derived precursors was found to depend 

mainly on the factors controlling the rate of bacterial regrowth, including the concentration of 

nutrients, water temperature, and the initial chlorination dose. The maximum fraction was 

observed for sample (a) (Figure 3-7a), which had the highest temperature (T=23.1 oC) and initial 

substrate concentration (BDOC0=0.83 mg/L) that lead to a relatively quick bacterial growth 

(Figure 3-4a). More importantly, the use of a high dose of free chlorine (Cl0=0.83 mg/L) to control 

the bacterial regrowth resulted in a high fraction of THMs formed from biomass-derived 

precursors of about 5% of the total THMs, compared to less than 2% for sample (b) that had the 

same nutrient concentration (BDOC0=0.82 mg/L) but a much lower chlorine dose (Cl0=0.38 

mg/L). The same remark can be noted by comparing the two cold-water samples (c) and (d), with 

both having almost similar temperatures (T=1 oC and 1.8 oC). More interestingly, the bacterial 

contribution to THMs formation was slightly higher for the cold-water sample (d) compared to the 

lukewarm (T=13.5 oC) sample (b) since it had a higher chlorine dose (Cl0=0.54 mg/L), despite the 

higher temperature and BDOC concentration in the latter. To further elucidate the role of initial 

chlorine dose, we ran two more scenarios of simulation (a), with the first one having the initial 

chlorine concentration increased to 1.24 mg/L (1.5 times the original dose), while the other having 

the initial BDOC concentration decreased to 0.55 mg/L (0.66 times the original dose), to represent 

two alternative measures for controlling bacterial re-growth. Increasing the initial chlorine dose 

failed to control the fast regrowth observed in the warm sample (results not shown), but more 

importantly, the contribution of bacteria-derived precursors increased to 7.6%. On the other hand, 

reducing the influent substrate concentrations was found to be more effective in controlling the 

fast regrowth, and the contribution dropped to 3.2%. These results highlighted the significant effect 

of the initial chlorine dose on the contribution of bacteria-derived precursors to THMs formation. 
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It is important to note that despite the generally low contribution of bacteria-derived 

precursors observed for the studied system, their formation mechanisms were different from that 

of NOM based precursors. While THMs formation from NOM proceeds once the chlorine dose is 

applied, a clear delay is observed in the THMs formation from biomass until bacterial re-growth 

takes place. This delay period is mainly dictated by the rate of bacterial growth, which depends on 

the water temperature and the concentration of substrates. Furthermore, this contribution is 

expected to become more significant if the drinking water was re-chlorinated, where bacterial re-

growth would increase rapidly after the complete exhaustion of the initial chlorine dose if enough 

nutrients still exist in the system. 

3.4.3 Model Application – Hypothetical Pipe System 

Influence of hydraulic conditions 

Applying the model to the hypothetical pipe system at different flow conditions, we found that the 

flow velocity significantly affects THMs formation from biomass as it controls bacterial regrowth 

through two simultaneous processes: (1) Increasing the flow velocity enhances the mass transfer 

of solutes across the bulk/biofilm interface. This includes the transport of disinfectants and 

substrates, which are the two key species controlling bacterial growth in the biofilm. (2) High shear 

stresses enhance the detachment of the biomass from the biofilm. The Blasius equation 

implemented to estimate shear stress under turbulent conditions shows that the shear stress 

increases with the flow velocity to a power greater than 1.  

Figure 3-8a shows the bacterial growth dynamics in the simulated pipe system under 

different flow conditions. In these simulations, the flow velocity was altered to effectively change 

the Reynolds number. The growth scheme can be seen to have two distinct patterns based on the 
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hydraulic conditions. The first pattern takes place at Reynolds numbers in the range (5,000 – 

15,000), while the second scheme takes place in the range (25,000-30,000), with a transition stage 

in between (15,000-25,000). The first pattern is characterized by immediate bacterial growth 

within the first 6 hours until reaching a maximum peak of HPC=2.5-3*104 CFU/mL, followed by 

a fast mortality within the following 12 hours that kills the major portion of biomass (around 70% 

of suspended biomass) before introducing re-chlorination after 36 hours. The second growth 

pattern shows a delayed growth phase, where the peak biomass concentration is reached after 12 

hours, followed by a very slow mortality rate during the following 24 hours. In the first pattern, 

the increase in the flow velocity from Re=5,000 to 15,000 is shown to enhance the initial bacterial 

growth rate (higher peak concentration at an earlier time), which can be explained by the improved 

delivery of nutrients to the biofilm where bacterial growth mainly takes place. Although increasing 

the flow velocity also promotes mass transfer of chlorine to the biofilm, its overall effect on 

biomass mortality and inactivation is greatly reduced by the resistance factor (kr) – (See Equation 

S-3.9). Bacterial growth then reaches a maximum after fully utilizing the substrate (BDOC 

concentration drops to 10% of initial value in less than 4 hours). However, this happens at a point 

where high chlorine residuals are still existent in the bulk phase (chlorine concentrations are 20% 

of initial dose after 6 hours), which can explain the fast mortality of bacteria after reaching this 

maximum.  
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Figure 3-8. Model application results for the concentrations of (a) HPC (log CFU/ml); and (b) 

THM (µg/l) produced from bacteria-derived precursors, under different flow conditions. 
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To help better understand the two growth patterns, the total biomass growth rate in the 

biofilm (Equation S-3.9) can be viewed as a combination of three terms: 

∂Xw

∂t
= [substrate utilization-detach. rate-chlorination]Xw                             (3-9) 

The rate of mass transfer of bacterial cells from the bulk phase to the biofilm and the rate of natural 

biomass mortality have small magnitudes compared to the other terms and do not play a significant 

role in the initial growth phase, and hence were ignored in this analysis. Increasing the flow 

velocity will generally increase the absolute magnitudes of the three terms but with different rates. 

In the first pattern, the substrate utilization term dominates over the detachment rate and the 

chlorination rate terms leading to rapid bacterial growth. A threshold is then reached somewhere 

at Re=15,000-25,000, where the detachment rate combined with higher chlorine delivery becomes 

significant enough to initially inhibit the fast bacterial growth in the biofilm. In the second pattern, 

bacterial growth slowly takes place after some delay period that increases with the flow velocity, 

or more precisely, with the shear stress as the detachment rate term increases. Since chlorine 

depletes by parallel reactions with NOM and pipe material demand, bacterial decay then proceeds 

at a much slower rate compared to the first pattern (chlorine residuals drop to only 4% of the 

initial dose after 10 hours). When the water is re-chlorinated such that the residual concentration 

is raised back to the initial chlorine dose of 1 mg/L, a spontaneous death of all the remaining 

bacteria is observed under all simulated flow regimes. Regrowth is then inhibited after booster 

chlorination as the substrate has been fully utilized at this point. 

The effect of flow conditions on the THMs production from biomass can be realized from 

Figure 3-8b. THMs formation from biomass can be divided into two phases; the initial-

chlorination phase and the re-chlorination event. Both phases can be readily explained by the 
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bacterial growth dynamics shown in Figure 3-8a. For the initial-chlorination phase, higher THMs 

formation rates are observed for the first growth pattern corresponding to fast bacterial growth 

that is concurrent with high chlorine residuals in the system. This leads the THMs yield to increase 

with the flow velocity until reaching the previously described threshold. For the second growth 

pattern, the delayed bacterial growth leads to a delay in THMs formation. The re-chlorination 

event then increases the THMs concentrations with a magnitude that corresponds to the remaining 

fraction of biomass in the system after the initial-chlorination phase, which reflects the quantity 

of bacteria-derived precursors available for THMs formation. The maximum THMs yield from 

biomass took place at the case of Re=15,000 with the ratio of THMs formed from microbial origin 

of maximum 12% of the total THMs yield of the pipe (see Figure S 3-5a). 

Influence of water temperature 

Temperature has an interesting effect on the dynamics of bacterial regrowth where an increase in 

the temperature affects multiple simultaneous processes: (1) A rise in the temperature leads to a 

faster disappearance of chlorine residuals, due to the increased reaction rate with organic 

compounds. A simultaneous consumption of the substrate will also take place. (2) Temperature 

enhances bacterial growth with an exponential dependence term in the Monod’s expression to a 

certain threshold (see Equations S-3.4 & S-3.9). (3) Temperature increases the reaction rate 

between chlorine and biomass, leading to faster mortality, and faster THMs production. Figure S 

3-3a shows the bacterial growth dynamics in the simulated pipe under different temperatures. It 

can be seen that as the temperature drops from 30oC to 0oC, a clear delay in the bacterial growth 

takes place, where the peak biomass concentration increases from 5 hrs for 30oC to more than 36 

hours for 0oC. This happens since for lower temperatures, substrate utilization proceeds at a slower 

rate, in addition to the slower chlorine consumption that leads the bulk phase residuals to exist for 
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a longer residence time at a higher concentration. The peak biomass concentration drops from 

3*104 CFU/mL to 2.2*104 CFU/mL (36%) as the temperature rises from 20oC to 30oC, due to the 

higher chlorine residual concentration at the point where the peak biomass takes place, while it 

drops from 3*104 CFU/mL to 1*104 CFU/mL (67%) as the temperature drops from 20oC to 0oC 

due to the consumption of the substrate. Figure S 3-3b illustrates the effect of temperature on 

THMs formation, where in the initial chlorination phase the production of THMs consistently 

increases with temperature from 0oC to 25oC. THMs production from the 25oC case was still 

larger than the 20oC case even though bacterial populations reached a higher magnitude for the 

latter. THMs production following the re-chlorination event was proportional to the concentration 

of the suspended biomass in the system at the point of chlorine dosing where the maximum yield 

was observed for the case of 10oC. However, overall THMs production of the 25oC simulation 

was the highest with the fraction of THMs from bacteria-derived precursor of (~11%) (see Figure 

S 3-5b).  

Influence of TOC/Cl ratio 

Increasing the influent concentration of TOC to the system promotes bacterial growth in the 

distribution system as this increases the substrate concentration and simultaneously consumes 

chlorine residuals. Figure S 3-4a shows the HPC concentrations in the simulated pipe under 

different initial TOC/Cl ratios, where the rate of microbial growth is consistently enhanced as this 

ratio increases. As the inlet TOC/Cl ratio increases from 1 to 3, the peak biomass concentrations 

increases from  1*104 CFU/mL to 5*104 CFU/mL, and the time taken to reach this peak drops 

from 15 to 4 hours. Furthermore, the surviving biomass in the system after chlorine consumption 

increases consistently with the influent TOC concentration, which leads to even higher THMs 

formation under re-chlorination condition as shown in Figure S 3-4b. The fraction of THMs 



 

 

109 

   

formed from bacteria-derived precursors consistently increases with the inlet TOC concentration 

where the maximum contribution (~10.5%) was observed for TOC/Cl=3 (see Figure S 3-5c).  

3.4.4 Environmental Implications 

The results of this study demonstrated the importance of considering a parallel route for DBPs 

formation represented by the mass transfer of NOM to the biofilm followed by biotransformation 

and then detachment of biomass-derived precursors back to the bulk phase as an important 

alternative to the well-known DBP formation route from direct chlorination of NOM based 

precursors. Previous field studies showed that a BDOC concentration of as low as 0.5 mg/L is 

sufficient to support bacterial regrowth if low disinfectant residuals existed in the system [46]. If 

water utilities responded by simply increasing the disinfectant dosage, this might lead to the 

adverse effect of forming excessive harmful DBPs in the distribution systems, especially if the 

system conditions, i.e. hydraulics and temperature, assisted fast bacterial regrowth. A safer practice 

would be to implement a treatment technique that removes microbial substrates, such as bio-

filtration [8]. While HPCs are typically used as an indicator of the microbiological quality of 

drinking water, they are currently not enforced in the US under the safe drinking water act 

(SDWA), as they do not necessarily reflect a health hazard [25,47]. However, the current practice 

completely overlooks their important contribution to the formation of disinfection byproducts, 

which are potential carcinogens, teratogens or mutagens. Future modeling work on other 

disinfection byproducts, such as HAAs and nitrogenous DBPs can provide the full picture on the 

role of biofilms in the formation and fate of the overall DBPs. 
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3.5 Conclusions 

A multi-species reactive-transport model for simulating the transport and interactions of 

disinfectants, organic compounds, biomass, and disinfection byproducts (DBPs) in the pipes of 

drinking water distribution systems was developed. This study presents the first attempt to model 

the formation of DBPs from organic precursors of microbial origin, which is implemented to 

investigate the role of biofilms in the formation and fate of trihalomethanes (THMs) in the 

distribution system. The capability of the model to simulate chlorine decay, bacterial regrowth 

dynamics, and THMs formation in an actual distribution system under different hydraulic, seasonal 

and water quality conditions was demonstrated. Simulation results revealed that fast bacterial 

regrowth in the system increases the contribution of biomass-derived precursors to the total THMs 

budget, especially if high initial chlorine doses were applied to preserve the microbiological 

quality of the finished water. While this contribution was found to increase almost consistently 

with the water temperature and the concentration of nutrients, system hydraulics had a rather 

interesting effect, where multiple competing phenomena are significantly controlled by the flow 

conditions. These phenomena include the rate of mass transfer of nutrients and disinfectants from 

the bulk flow to the biofilm, and the rate of biomass detachment from the biofilm under shear 

stresses. Under the studied conditions, the contribution of bacteria-derived precursors was found 

to reach a maximum of 12% of the total formed THMs, which is significantly less than those 

formed from NOM-based precursors. However, while the formation of THMs from NOM 

proceeds instantly after applying the chlorine dose, the mechanisms of THMs formation from 

bacterial sources were mainly controlled by the rates of bacterial regrowth in the system, which 

influenced the overall THM formation mechanism. These results highlighted the importance of 

integrating bacterial dynamics modeling with predictive DBPs formation models. The presented 
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model can be used by water utilities to balance the risks of microbiological and DBPs 

contamination, by simulating different scenarios for the quality of the treated drinking water 

effluent from the treatment plant. The model can also be implemented to identify the locations 

where excessive microbial regrowth or DBPs formation are expected to take place, and the further 

optimization of the operational schemes to ensure safe drinking water supply at all points in the 

network. 

3.6 List of Symbols 

Ci concentration of the ith species (mg/L) 

Di diffusion coefficient of species i (m2/sec) 

f(r) radial flow distribution parameter 

kf,i lumped mass transfer coefficient of constituent i (m/sec) 

Ri reaction involving species i (mg/L.sec) 

Re Reynolds number (-) 

r radial coordinate (m) 

rf radial location of the bulk/biofilm interface (m) 

rh hydraulic mean radius (m) 

r0 pipe radius (m) 

t time (sec) 

u̅ average flow velocity in the pipe (m/sec) 

x axial coordinate (m) 

 

Subscripts 

b bulk phase 

i one of the constituents 

j one of the wall zone reactions 

k one of the bulk phase reaction 

L longitudinal 

r radial 

w wall zone 
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3.9 Supplementary Material 

3.9.1 Mathematical expressions for mass balance 

1- Bulk Chlorine: Clb 

∂Clb
∂t

+ u̅
∂Clb
∂x

-Dcl

∂2Clb
∂x2

= -kCl,NNbClb-kCl,XClbXb-
kf,cl

rh

(Clb-Clw)           (S-3.1) 

2- Bulk NOM: Nb 

∂Nb

∂t
+ u̅

∂Nb

∂x
-DN

∂2Nb

∂x2

= -
1

Y
μmax

Sb

ks + Sb
[exp(-kinactClb)exp (- (

Topt-T

Topt-Ti
)

2

)] Xb

+ a[YXkCl,XClb + kmort]Xb-YNkCl,NNbClb-
kf,N

rh

(Nb-Nw)        (S-3.2) 

3- Bulk BDOC: Sb 

∂Sb

∂t
+ u̅

∂Sb

∂x
-Ds

∂2Sb

∂x2

= -
1

Y
μmax

Sb

ks + Sb
[exp(-kinactClb)exp (- (

Topt-T

Topt-Ti
)

2

)] Xb

+ a[YXkCl,XClb + kmort]Xb-YSkCl,NSbClb-
kf,s

rh

(Sb-Sw)                (S-3.3) 

4- Suspended Biomass: Xb 

∂Xb

∂t
+ u̅

∂Xb

∂x
-DX

∂2Xb

∂x2

= μmax

Sb

ks + Sb
[exp(-kinactClb)exp (- (

Topt-T

Topt-Ti
)

2

)] Xb

+ kdetτw

Xw

rh
-[YXkCl,XClb

+ kmort]Xb-
kf,X

rh
(Xb-

Xw

rh
)                                          (S-3.4) 
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5- Bulk Trihalomethanes: Hb 

∂Hb

∂t
+ u̅

∂Hb

∂x
-DH

∂2Hb

∂x2
= YH,1kCl,NNbClb + YH,2kCl,XClbXb-

kf,H

rh

(Hb-Hw)      (S-3.5) 

6- Wall Chlorine: Clw 

∂Clw
∂t

= -kCl,NNwClw-kCl,XClw
Xw

rh
-kwClw +

kf,cl

rh

(Clb-Clw)                               (S-3.6) 

7- Wall NOM: Nw 

∂Nw

∂t
= -

1

Y
μmax

Sw

ks + Sw
[exp (-

kinact

kr
Clw) exp (- (

Topt-T

Topt-Ti
)

2

)]
Xw

rh

+ a [YX

kCl,X

kr
Clw + kmort]

Xw

rh
-YNkCl,NNwClw +

kf,N

rh

(Nb-Nw)      (S-3.7) 

8- Wall BDOC: Sw 

∂Sw

∂t
= -

1

Y
μmax

Sw

ks + Sw
[exp (-

kinact

kr
Clw) exp (- (

Topt-T

Topt-Ti
)

2

)]
Xw

rh

+ a [YX

kCl,X

kr
Clw + kmort]

Xw

rh
-YSkCl,NSwClw +

kf,s

rh

(Sb-Sw)          (S-3.8) 

9- Fixed Biomass (Biofilm): Xw 

∂Xw

∂t
= μmax

Sw

ks + Sw
[exp (-

kinact

kr
Clw) exp (- (

Topt-T

Topt-Ti
)

2

)] Xw-[YX

kCl,X

kr
Clw

+ kmort]Xw-kdetτwXw + kf,X (Xb-
Xw

rh
)                                               (S-3.9) 

10- Wall Trihalomethane: Hw 

∂Hw

∂t
= YH,1kCl,NNwClw + YH,2kCl,XClb

Xw

rh
-
kf,H

rh

(Hb-Hw)                                       (S-3.10) 
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3.9.2 Fundamental processes considered in the model 

Bacterial regrowth and biofilm dynamics.  

Monod kinetics expressions were adopted to simulate bacterial regrowth and substrate utilization 

in the bulk flow and within the biofilm (first term on the right in Equations S-3.2-4 & S-3.7-9). 

The effect of chlorine concentration on reducing biomass activity is accounted for using an 

empirical inactivation coefficient of exponential dependence. An empirical relationship is adopted 

to model the effect of temperature on the maximum rate of substrate utilization. [1],[2,3] A 

resistance factor is considered to account for the additional impedance supplied by the biofilm for 

the attached biomass against chlorine action and was integrated in the Monod kinetics expression 

as well as the adopted formulae for chlorine-induced mortality (first and second terms on the right 

in Eq. S-3.9).[4] Mass transfer of the biomass from the bulk phase to the biofilm is simulated using 

the thin film CBL model, followed by spontaneous attachment. The kinetic formula describing the 

detachment rate of bacteria from the wall zone is assumed to have a first order dependence on the 

concentration of the attached bacteria per unit surface area, and first order with the shear stress 

(third term on the right in Eq. S-3.4&9). [5,6] Shear stress is calculated by the Blasius equation. 

[7] Detached bacteria is added to the bulk phase bacteria and assumed to have similar reaction 

mechanisms as suspended planktonic cells. Release of biodegradable organic matter from bacterial 

cell lysis is considered as a fraction of chlorine-induced biomass mortality (second term on the 

right Eq. S-3.2-3 & S-3.7-8). 

Chlorine consumption and THMs formation from NOM.  

A simple two constituent reaction model was used to simulate the kinetics of chlorine-TOC 

reaction (first term on the right Eq. S-3.1&6). The reaction rates were assumed to be of second 
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order, first order with respect to both chlorine and TOC. Yield coefficients were used to represent 

the depletion of chlorine-reactive sites upon chlorination (third term on the right Eq. S-3.2-3 & S-

3.7-8). [8,9] The adopted second order model has previously shown superior results compared to 

the first order models to describe bulk chlorine decay because of the variable reactant concentration 

instead of constant decay. The rate constant (kCl,N) was considered to have an Arrhenius 

dependence on water temperature (Table S 3-2). [10] THM formation from chlorination of TOC 

was assumed to take place in proportion to the loss of chlorine (i.e. the chlorine demand) (first 

term on the right in Eq S-3.5&10). [8] Chlorine demand by the wall material was assumed to have 

a first order dependence on the chlorine concentration in the biofilm phase (third term on the right 

in Eq. S-3.6). 

3.9.3 Numerical solution of the governing equations  

An efficient numerical method is essential to appropriately solve the described dynamic non-linear 

mathematical model represented by equations (S-3.1 to S-3.10). In this study, the split-operator 

method (SOM) was used to decouple the transport and reaction processes of the multi-component 

system. SOM has been commonly applied for the solution of multi-species reactive transport 

models in groundwater [11,12], as well as drinking water distribution systems [3,13]. Splitting the 

governing partial differential equations by the separation of the transport operators from the 

reaction operators significantly reduces the model complexity. The simple sequential SOM is 

implemented in this study where the solution advances by solving the transport component over 

the full water quality time step Δt, and then solving the reaction component over Δt. Applying the 

SOM, the previously described generalized governing equation (Eq. 3-3) for the mass balance of 

species i is split into two separate components. The first component comprises the transport 
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operators, which constitute advection and dispersion processes for bulk phase species, while for 

the wall species; no solution is required in this step: 

∂Ci,b
*

∂t
+ u̅

∂Ci,b
*

∂x
-Di

∂2Ci,b
*

∂x2
= 0                                                                                               (S-3.11) 

Where Ci* is the intermediate solution for the concentration of species i after applying the transport 

operators. No interaction takes place between the modeled species during the transport step and 

hence the solution of the advection-dispersion equation can proceed independently for each 

component. Although a wide range of numerical methods has been developed for solving the 

dynamic advection-dispersion equation, the mixed Eularian-Lagrangian numerical methods are 

particularly known to be efficient in solving both dispersion-dominated and advection-dominated 

transport problems [14].  They were successfully applied to simulate solute transport in drinking 

water distribution systems [15–17]. In the present model, a two stage Eularian-Lagrangian 

numerical scheme combined with the numerical Green’s function technique is used [15]. First, the 

Lagrangian step is executed using the explicit method of characteristics (MOCs) to solve the 

advection term, then the Eularian step is executed to solve the dispersion term using an implicit 

finite difference scheme. Detailed numerical solution for the Eularian-Lagrangian technique is 

described elsewhere [18] . The second step comprises the solution of the reaction and mass transfer 

processes in the bulk phase and within the biofilm: 

∂Ci,b
n+1

∂t
= ∑ ri,j(

Nr,b

j=1

Ci=1…Ns,b
* )-

kf,i

rh
(Ci,b-Ci,w)                                                                  (S-3.12) 

∂Ci,w
n+1

∂t
= ∑ ri,k(Ci=1…Ns,w) +

kf,i

rh
(Ci,b-Ci,w)

Nr,w

k=1

                                                               (S-3.13) 
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The above local reaction step is always in the form of a set of first order ordinary differential 

equations (ODEs) that are solved using an explicit Runge-Kutta (4,5) with a variable time step 

solver (ODE45 in MATLAB R2013a). The software environment used to perform all simulations 

in the study was MATLAB R2013a. 

3.9.4 Second order kinetic model for THM formation from chlorination of 

bacterial cells. 

The model was applied to the experimental data provided by Wang et al., 2012[19] for DBP 

formation at different contact times between a bacterial cell solution and free chlorine in a bench 

scale reactor. The initial concentrations for chlorine and biomass where 5 mg/L and 108 CFU/mL, 

respectively, at pH=7.5. In a different study by Wang et al., 2013[20], the total organic carbon 

content of the cell solution was measured to be 43.8 µgC/1010Cells for the same bacterial culture 

strain (Pseudomonas aeruginosa – wild type PAO1). This was used to convert the initial cell 

density into biomass carbon concentration. The model gave good results against experimental 

measurements as shown in Fig. 3-3. The parameter values that gave the best fit are given in Table 

S 3-3, and were found to be consistent with the literature. In the same study by Wang et al., 

2012[19], the formation of chloroform was found to linearly increase with increasing the chlorine 

dosage in the DBP formation experiments that were chlorine limited as shown in Fig. S 3-1, with 

an average slope of 4.89 ugTHM/mgCl, which is consistent with the fitted value of YH,2. This 

implies that the developed second order model can be extended to describe any chlorine dosage in 

a real distribution system.  

Several previous studies investigated the kinetics of chlorine reaction with biomass [21–24]. The 

fitted second order reaction rate constant kCl,X was consistent with the value reported by Chen and 
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Stewart, 1996 [24] for chlorine-cell reaction of pseudomonas aeruginosa in the long-duration batch 

experiment which was 4.7E-4±1E-4 (L/mg.sec). J. J. Wang et al., 2013 [25] reported a 

trihalomethane formation potential of 57.3±3 ugTHM/mgC, which is comparable to the value of  

YH,2

YX
= 49.86 in our study, or the 46.9 ugTHM/mgC reported by Wang et al., 2012[19] for P. 

aeruginosa.  
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3.9.5 Supplementary Tables 

Table S 3-1. Parameters used in the bacterial growth simulation 

Paramet

er 
Unit Value or Formula Source 

Remarks/ Value used if 

different 

Di m2/sec 
Di =

a2u2

48Ddiff
 

Dx* = c1   f *c2dc3 ⁄ u 

[26] Re < 2,300  

[27] Re > 2,300 

kf,i m/sec kf,i = Shi(Re, Sc)*(
Di

d
) [28]  

β CFU/mgC 
108 For P. aeruginosa [29] 

109 
109 [3] 

Y mgC/mgC 0.15 [3,4]  

μmax sec-1 
4.2 × 10-4 [4] 

[30] 

7.0 × 10-4 

 1.7 × 10-4 

ks mgC/L 0.4 [3] 0.195 

kmort sec-1 
8.3 × 10-6 

9 × 10-7 

[30] 

[4] 
 

kinact L/mgCl2 0.35 [4] 0.25 

a [-] 0.3 [4]  

YS mgC/mgCl2 1.4985*(BDOC0/Cl0)-0.4  (best fit) 

kdet 

m.sec/g 6.618x10-7 [6] 
13.8x10-6 for 23.1°C 

10.5x10-6 for 13.5°C 

sec-1 4x10-4 [4] 
3.2x10-6 for 1.8°C 

3.1x10-6 for 1°C 

τw g/m.sec2 τw = 0.0395Re-0.25ρwateru
2 [7] 

Variation of water 

dynamic viscosity with 

Temp. was considered  

Ti °C 7 - (best fit) 



 

 

126 

   

Topt °C 37 - (best fit) 

kr [-] 3-3000 [4] 100 

BDOC0/ 

TOC0 
[-] 0.1-0.3 [31] (best fit)‡ 

kw m/sec 0.2 - (best fit) 

‡ Since the exact initial TOC concentrations were not provided in the study by Prevost et al. [32], 

a value within this range was separately chosen for each simulation to yield the best fit for chlorine 

decay. The used concentrations were close to the published range (2.8-3.3 mg/L) for the same field 

campaign in a different publication.[33] The evaluated second order rate constant for chlorine-

TOC decay (kCl,N) in the distribution system was slower than the value in table S 3-2 by a factor 

of 40%. 
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Table S 3-2. Parameters used for the THM formation and NOM decay 

Notes: The yield coefficients for TOC decay and THM formation were assumed to be relative to 

the overall chlorine consumption based on the initial and final measured concentrations in the pipe 

loop experiments: YN = (TOC0-TOCf) (Cl0-⁄ Clf); and  YH = (THMf-THM0) (Cl0-⁄ Clf).  

 

  

Parameter Unit Value or Formula Source Calibrated range 

kCl,N L/mgC.sec 
1.8*106

60
exp (-

6050

T + 273
) [10] 

 

A smaller value by 

27% was used for the 

PVC pipe loop 

 

YH,1 
µgTHM/mg

Cl 

31.6-58.1 [9] DI pipe loop: 9.5-82 

(see Fig S 3-2a) 

PVC pipe loop: 15.8-

139.1 (see Fig S 3-2b) 

36.27-188.60 [8] 

5.68-39.73 [34] 

YN mgC/mgCl 

0.4-4.88 [8] DI pipe loop: 0.365-

2.50 (see Fig S 3-2d) 

PVC pipe loop: 0.154-

1.8 (see Fig S 3-2e) 

0.46-1.76 [9] 
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Table S 3-3. Parameters used to fit the second order model of chlorine-biomass reaction  

Parameter Best fit Value 

kCl,X (L/mgC.sec)* 3.19E-4 

YX (mgC/mgCl)** 0.09 

YH,2 (ugTHM/mgCl) 4.487 

 

*A temperature dependence was added to the second order rate constant for the bacterial regrowth 

simulation to have the same exponential dependence as chlorine-TOC reaction as reported by 

Kiéné et al., 1998[10]: 

kCl,X = 2.959*105exp (-
6050

T + 273
) 

= 3.19 × 10-4@T = 20°C 

** The value of YX was shown in a previous study [24] to vary with the initial chlorine to biomass 

concentration. Hence, a different value was used for the model verification simulations of bacterial 

regrowth. A value of 0.8 gave the best fit, which is consistent with an assumption of a linear 

relationship with the initial chlorine concentration as well as the value given by Chen and Stewart 

[24] of 0.59±0.15 for the long duration experiments. 
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Table S 3-4. Parameters used in the hypothetical pipe system for model application 

Parameter Base Value Variation 

Influent Chlorine concentration (Cl0) 1 mg/L  

Influent HPC (X0) 10 CFU/mL  

Pipe diameter 0.254m [10”]  

Reynolds number (Re) 20,000 30,000 – 25,000 – 20,000– 

15,000 – 10,000 – 5,000 

Temperature (T) 20oC 30oC – 25oC – 20oC – 10oC – 

0oC 

Influent TOC concentration (TOC0) 

  

2 mg/L 3 - 2.5 – 2 - 1.5 – 1  mg/L 

Influent BDOC concentration 

(BDOC0) 

0.6 mg/L 30% of TOC0 

   

  

 

Table S 3-5. Water quality parameters for the Pont Viau treatment plant effluent (adopted from 

Prevost et al.[32]) 

Sample Sampling date BDOC0 (mg/L) Cl0 (mg/L) Temperature (oC) 

(a) 7/6/1993 0.83 0.83 23.1 

(b) 5/18/1993 0.82 0.38 13.5 

(c) 1/12/1993 0.47 0.27 1 

(d) 12/15/1992 0.35 0.54 1.8 
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3.9.6 Supplementary Figures 
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Figure S 3-1. THM formation from bacterial precursors at different chlorine doses. 
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Figure S 3-2. Yield coefficients for TOC decay and THM formation used to simulate the pilot-

scale study by Yang et al.[35] : YH,1 (µgTHM/mgCl) values for: (a) DI pipe; (b) PVC pipe; and 

(c) Combined, YN (mgC/mgCl) values for: (d) DI pipe; (e) PVC pipe; and (f) Combined. 
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Figure S 3-3. Model application results for the concentrations of (a) HPC (log CFU/ml); and (b) 

THM (µg/l), produced from bacterial biomass precursors, under different temperature 

conditions. 
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Figure S 3-4. Model application results for the concentrations of (a) HPC (log CFU/ml); and (b) 

THM (µg/l), produced from bacterial biomass precursors, under different initial TOC/Cl ratios. 
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Figure S 3-5. Total THMs concentration and the fraction of THMs formed from bacterial 

precursor for the peak scenarios of: (a) Re=15,000; (b) T=25oC; and (c) TOC0/Cl0=3. THM 

formation from NOM was simulated using: YH,1 =27 µgTHM/mgCl, a value that approximately 

corresponds to TOC0/Cl0=2 in Figure S 3-2c. 
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3.9.7 Supplementary Nomenclature 

a fraction of dead bacteria converted into substrate after lysis (-) 

β equivalent number of bacteria per mg organic carbon in cell biomass (CFU/mgC) 

Cl concentration of free chlorine as a function of time and axial dimension (mg/L) 

N concentration of NOM in the pipe (mg/L) 

Di longitudinal dispersion coefficient for species i (m2/sec) 

H concentration of TTHM in the pipe (ug/L) 

i identifier for one of the model species  

kdet coefficient of bacterial detachment from biofilm by shear stress (m.sec/g) 

kf,i mass transfer coefficient for species i (cm/sec) 

ki1,i2 second order reaction rate between any two constituents i1 and i2 (L/mg.sec) 

kinact coefficient of chlorine inactivation to bacterial growth (L/mg.sec) 

ks half saturation constant of bacterial growth (mgC/L) 

kw first order chlorine consumption rate by pipe material (sec-1) 

rh hydraulic mean radius of the pipe (cm) 

Re Reynolds number (-) 

S concentration of BDOC in the pipe (mg/L) 

T temperature (oC)  

t time (sec) 

τw shear stress at the pipe wall (g/m.sec2) 

u flow velocity (m/sec) 

μmax maximum substrate utilization by bacterial species (sec-1) 

Xb bulk concentration of bacteria HPC (mgC/L) 

Xw surface concentration of bacteria HPC (mgC/cm2) 

x axial dimension (m) 

Yi reaction yield coefficient of constituent i (mass/mass) 

Subscripts 

b bulk phase 

w wall zone 
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Chapter 4  

Modeling the Release and Transport of 

Dissolved and Particulate Lead from Lead 

Service Lines 
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4.1 Abstract 

Partial replacement of lead service lines (LSLs) often results in the excessive long-term release of 

lead particulates due to the disturbance of pipe scale and galvanic corrosion. In this study, a 

modeling approach to simulate the release and transport of particulate and dissolved lead from full 

and partially replaced LSLs is developed. A mass transfer model is coupled with a stochastic 

residential water demand generator to investigate the effect of normal household usage (NHU) 

flow patterns on lead exposure. The model is calibrated by comparing simulation results against 

experimental measurements from pilot-scale setups where lead release under different flow rates 

and water chemistry scenarios was reported. Applying the model within a Monte-Carlo simulation 

framework, the partial replacement of the LSL was predicted to result in releasing spikes with 

significantly high concentrations of particulate lead (1011.9±290.3 µg/L) that were five times 

higher than those released from the full LSL. Sensitivity analysis revealed that the intensity of flow 

demands significantly affects particulate lead release, while dissolved lead levels were more 

dependent on the lengths of stagnation periods. Pre-flushing of the LSL prior to regulatory 

sampling was found to under-estimate the maximum monthly exposure of dissolved lead by 19%, 

while sampling at low flow rates (<5.2 LPM) was found to consistently suppress the high spikes 

induced by particulate lead mobilization. 
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Figure 4-1. Graphical Abstract of the work presented in Chapter 4 
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4.2 Introduction 

Lead is a hazardous neurotoxin that can irreversibly affect the intellectual development in children, 

even at blood lead levels (BLLs) as low as 5 µg/dL [1–4]. The recent events in Flint, Michigan, 

have drawn attention to drinking water contamination by lead and its associated public health 

concerns [5–8]. Lead contamination takes place as a result of the internal corrosion of Pb-

containing materials in contact with drinking water, including lead pipes, solder, and premise 

plumbing components, with the major source being the lead service lines (LSLs) that connect the 

water main to the building inlet [9,10]. Although the use of lead pipes in drinking water systems 

was banned in 1986, partial or full LSLs still supply millions of households in the United States 

with drinking water [11,12]. This legacy infrastructure of aging pipes may pose a future hazard to 

the quality of drinking water, especially if changes to the water chemistry are introduced without 

sufficient planning. For example, changing the secondary disinfectant from chlorine to chloramine 

triggered the lead poisoning crisis in Washington, DC [13,14], while in Flint, MI, the trigger was 

shifting to a more corrosive water source and the discontinuation of corrosion control treatment 

[6]. 

LSL replacement remains the most effective long-term solution to eliminate this potential 

threat; however, replacing the existing legacy of ~6.1 million lines is expected to come with 

significant expense [15]. Since the ownership of the LSL is typically shared between the consumer 

and the utility, both parties are responsible for the replacement costs. A partial replacement 

situation, in which the water utility replaces the part of the line from the water main to the property 

boundary – typically with a copper pipe –, arises if the consumer chooses not to replace their part 

or if the water utility does not inform the consumer about the replacement plans. Partial 

replacement of the LSL can result in the acceleration of lead release due to galvanic corrosion [16–
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18], whose effects were found to persist, and even magnify, for months after the replacement [19]. 

Furthermore, the replacement of LSLs disturbs the stable thin layer of lead oxide scale that has 

formed over decades [16], which ultimately leads to the release of lead particulates and lead-

containing iron-rusts [20,21] that can either directly flush out of the tap or accumulate in the 

household premise plumbing components and gradually release soluble lead [22]. The release of 

particulate lead introduces sporadic spikes of very high lead concentrations that can become 

bioavailable after ingestion and result in hazardous BLLs [2,13,23,24].  

Since lead release from LSLs is dictated by multiple parameters, such as pipe age and 

dimensions, water-use patterns, water chemistry, and previous disturbances to the LSL, 

computational modeling can offer helpful tools to predict and control lead release under a diverse 

range of scenarios. Several studies have pursued modeling the leaching of dissolved lead from 

LSLs. Kuch and Wagner [25] proposed two mass transfer models to describe lead release into 

drinking water under both steady state turbulent flow and stagnant conditions. Van Der Leer et al. 

[26] developed an exponential model to describe the mass transfer of lead under stagnant 

conditions, and combined it with an advection-based model to describe lead transport under 

different flow regimes. Their model was later implemented by Hayes [27] in a Monte-Carlo 

probabilistic framework to assess lead release within a water supply zone. Cardew [28] developed 

a convective-diffusion model to simulate lead transport under laminar flow conditions. 

Nevertheless, no previous work has so far addressed the issue of particulate lead release into 

drinking water from a modeling perspective, especially from disturbed or partially replaced LSLs. 

Moreover, the realistic variation in flow demands under different household consumption patterns 

was generally overlooked in previous models, but it is crucial in accurately simulating both the 

leaching of soluble lead and the mobilization of lead particulates from LSLs [29]. 
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This study presents an approach for modelling particulate lead release from LSLs through 

coupling the concept of stacked cohesive scale layers with a convective-diffusion mass transfer 

equation. To generate realistic flow patterns, a stochastic model is developed to represent the 

instantaneous residential demands based on non-homogenous Poisson pulses. The model is applied 

to investigate release schemes of particulate and dissolved lead from full and partial LSLs under 

normal household usage (NHU) conditions. 

4.3 Methodology 

The model comprises two independent modules for the simulation of the release of both particulate 

and dissolved lead in LSLs. In the dissolved lead module, lead release from the LSL is described 

by applying an equilibrium boundary condition at the pipe wall, while a cohesive transport model 

was developed to simulate the mobilization of particulate lead due to turbulent shear stresses at 

the pipe wall. Both modules were calibrated and verified through comparisons with experimental 

measurements from pilot-scale experiments in the literature. 

4.3.1 Model development 

Mathematical formulation 

The mass balance on the concentration of the dissolved lead in the LSL is described by a dynamic 

2-D convection-diffusion equation in the axial and radial directions: 

∂Cs

∂t
= - 

∂

∂x
(u̅ f(r) Cs) +

∂

∂x
(DL,s

∂Cs

∂x
) +

1

r

∂

∂r
(r Dr,s

∂Cs

∂r
)                                             (4-1) 

where, Cs is the dissolved lead concentration (µg/L), u̅ is the average flow velocity in the pipe 

(cm/sec), f(r) is the radial flow velocity profile (-), DL,s and Dr,s are respectively the apparent 

diffusivities of dissolved lead in the longitudinal and radial directions (cm2/sec), t is the time (sec), 

and x and r are the axial and radial space co-ordinates, respectively (cm). The term on the left 
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accounts for the dynamic change in solute concentration with time, while the terms on the right 

account for, from left to right, the convective flux in the axial direction, the diffusive flux in the 

axial direction, and the diffusive flux in the radial direction. The mass balance equation is solved 

under the following boundary conditions:  Cs = C0, x = 0  ;  
∂Cs

∂x
= 0, x = L  ; 

∂Cs

∂r
= 0, r = 0  ; 

and Cs = Ceq, r = r0 . Here C0 is the influent concentration at the pipe inlet (µg/L),  L is the pipe 

length (cm), and r0 is the pipe radius (cm).  

The fourth boundary condition describes a situation where dissolved lead concentration at 

the pipe wall is at equilibrium with the lead corrosion products, i.e., lead release is rate limited by 

diffusion [28,30]. An alternative boundary condition can be applied if lead release from the lead 

scale is limited by the rate of the dissolution reaction, which can be written as Dr,s
∂Cs

∂r
= Rdiss,

r = r0 [31,32]. In this case, lead concentrations at the pipe wall are not equivalent to the 

equilibrium solubility of the lead corrosion products, and therefore a precipitation reaction should 

be considered to simulate the concurrent removal of dissolved lead from the solution [33]. 

Particulate transport in a fluid flow is governed by multiple phenomena that include 

convection, diffusion, coagulation, and deposition. These phenomena are dependent on the particle 

size; hence, particulate transport is best described by the distribution of the particle sizes. The 

governing transport equation of particulate lead in a flow stream can be written as [34]: 

∂

∂t
n(v, x⃗ , t) = -∇ ∙ (n(v)U⃗⃗ p)

+
1

2
∫β(v', v-v')

v

0

n(v')n(v-v') dv' -n(v)∫ β(v, v')n(v')

∞

0

dv'                         (4-2) 

where n is the dimensionless particle size distribution function (=n*/n0
* ), n* is the dimensional 

size distribution function (n* = dN* dv⁄ ; N* is the particle number concentration per unit volume 
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of the fluid (#/cm3), and v is the particle size (µm3)), n0
*  is the size distribution function at the pipe 

inlet,  U⃗⃗ p is the dimensionless particle velocity vector =(Up
*⃗⃗ ⃗⃗  /u̅ ), Up

*⃗⃗ ⃗⃗   is the dimensional particle 

velocity vector (cm/sec), and β is the collision frequency function. The particle velocity vector for 

subcritical Stokes numbers can be written as 

U⃗⃗ p = U⃗⃗ -
2

Pe
(∇ ln(n))-Stk (U⃗⃗ ∙ ∇)U⃗⃗                                                                                     (4-3) 

where, U⃗⃗  is the dimensionless fluid velocity vector = (U⃗⃗ */u̅), U⃗⃗ * is the dimensional fluid velocity 

vector (cm/sec), and Pe, and Stk are the Peclet and the Stokes numbers. The terms on the right-

hand side of the equation account for transport by, from left to right, advection, diffusion, and 

inertia. The relative importance of the effect of inertia is described by the Stokes number (Stk =

τp/τf), where τp is the particle relaxation time τp = (ρs-ρf)Dp
2/18ρfν, and τf is the characteristic 

flow time, which can be described as the viscous (turbulence) time τf = ν/u*
2
 [35].  

For a LSL with a typical diameter of 1.9 cm (3/4”), a turbulent flow regime can be 

established by a flow rate as low as 0.06 L/sec, which is less than the intensity of most of the 

typical flow demands at the household level [36]. Hence, the flow regime in the LSL is expected 

to be turbulent for most cases where a flow demand exists. It can be shown that under modest 

turbulent flow regimes, the behavior of a suspended particle as large as 44 µm (about 100 times 

the 0.45 µm threshold for particulate lead) will be dominated by turbulent diffusivity rather than 

inertia (Stk < 0.2). At such a low Stokes number, particles are expected to precisely follow the 

turbulent fluctuations of the flow stream [37], and hence their transport can be modeled as a solute 

tracer. Therefore, the transport of mobilized particulate lead with the bulk flow is described by a 

2-D convective-diffusion equation: 
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∂Cp

∂t
= - 

∂

∂x
(u̅ f(r) Cp) +

∂

∂x
(DL,p

∂Cp

∂x
) +

1

r

∂

∂r
(r Dr,p

∂Cp

∂r
) -Rset                  (4-4) 

where Cp is the particulate lead concentration in the bulk flow (µg/L), DL,p and Dr,p are the 

apparent diffusivities of particulate lead in the longitudinal and radial directions, respectively 

(cm2/sec), and Rset is the rate of particulate lead settling (μg/L/sec). 

The critical particle size that can be suspended by the turbulent flow can be simply 

calculated by comparing the settling velocity ws = (ρs-ρf)gDp
2/18μ, to the shear velocity at the 

pipe wall u* = (τw/ρf)
0.5. Using this analysis, particles with diameters as large as 57 µm will 

become fully suspended by the flow, even under the modest turbulent flow conditions. Therefore, 

particle settling is assumed to only take place under stagnant condition, and is described in this 

study by a first order reaction in the concentration of mobilized particulate lead:  Rset =

 ksetCpδ(u̅-0). Here, kset is the first order settling rate constant (sec-1), and δ is a function that 

takes a value of one when u̅ = 0 (i.e., stagnation), and zero otherwise. The transport equation is 

solved under the following boundary conditions: Cp = 0, x = 0 ; 
∂Cp

∂x
= 0, x = L ; 

∂Cp

∂r
= 0, r =

0 ; and Dr,p
∂Cp

∂r
= Rdet, r = r0. The fourth boundary condition describes particulate lead 

detachment from the accumulated scale by a flux boundary condition at the pipe wall, where Rdet 

is the rate of mass detachment of particulate lead per unit surface area of the pipe wall (μg/cm2/sec).  

The potentially releasable mass of particulate lead stored in the cohesive scale layers at the pipe 

wall is described by 

dP

dt
= Rgen-Rdet + Rsetrh                                                                                                  (4-5) 

where P is the mass of potentially releasable lead particles accumulated at the pipe surface 

(μg/cm2), Rgen is the rate of generation of particulate lead due to galvanic corrosion and other 
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disturbances of the pipe scale (μg/cm2/sec), and rh is the hydraulic mean radius (cm). The 

accumulated particles are assumed to be held in successive cohesive layers of varying strengths. 

Each layer has a certain shear strength that is inversely proportional to the instantaneous releasable 

potential of the attached particles. A similar concept was previously applied by Boxall and Saul to 

simulate discoloration in drinking water distribution systems due to the mobilization of rust 

particles [38,39]. An empirical equation is formulated to describe the relationship between the 

shear strength of the current layer and the instantaneous releasable potential: 

τs =
(Pmax-P)l

m
                                                                                                                   (4-6) 

where τs is the shear strength of the current layer of accumulated particles (N/cm2), Pmax is the 

maximum potential for the attached particles (μg/cm2), m and l are two empirical parameters 

controlling the slope and the non-linearity of the relationship, respectively.  

The rate of particle detachment is a function of the shear stress residual, which is the difference 

between the applied shear stress under the given hydraulic conditions, and the shear strength of 

the current layer:  

Rdet = kdet(τa-τs)
n                                                                                                           (4-7) 

where τa is the instantaneous shear stress at the pipe wall (N/cm2), kdet and n are two empirical 

parameters controlling the magnitude and the non-linearity of the relationship, respectively. 

Regular flow events impose a turbulent shear stress that can be calculated by the Blasius equation 

τa = 0.0395Re-0.25ρwateru̅
2. 

Particle generation is assumed to take place under stagnant conditions due to galvanic 

corrosion [17,18], at a rate that linearly diminishes as the releasable potential approaches the 

maximum threshold: 

Rgen = kgen(Pmax-P)δ(u̅-0)                                                                                      (4-8) 
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where kgen is an empirical parameter controlling the magnitude of the rate of particle generation 

(sec-1). The derived dimensionless forms of the governing transport equations, as well as the 

alternating direction implicit (ADI) numerical scheme used to solve the model, are given in the 

supporting information. 

Stochastic water demands generation. 

Synthetic water demand patterns at the scale of an individual household are modeled by a 

stochastic Poisson pulse process at a fine time resolution (1 sec) [40–43]. Demands are modeled 

as rectangular pulses with a non-homogenous (time dynamic) arrival rate λ (sec-1), where each 

pulse is assigned a randomly selected intensity I (l/sec) and duration T (sec) based on lognormal 

probability distributions. The mutual dependence between pulse duration and intensity is 

considered by modeling the natural logarithms of the two characteristic variables (i.e., ln(I), and 

ln(T)) using a bivariate normal distribution[44] which is given by 

f(y1, y2) =
1

√(2π)2|Σ|
exp {

-1

2(1-ρ̇2)
[(

y1-μ1

σ1
)
2

+ (
y2-μ2

σ2
)
2

-
2ρ̇(y1-μ1)(y2-μ2)

σ1σ2
]}                                                                       (4-9) 

where y1 = ln(T),  y2 = ln(I), μi, and σi are the mean and the standard deviation of variables yi 

(i = 1, 2), ρ̇ is the Pearson correlation coefficient between y1 and y2, and Σ is the covariance matrix 

given by 

Σ = (
σ1

2  ρ̇σ1σ2

 ρ̇σ1σ2 σ2
2 )                                                                                                       (4-10) 
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4.3.2 Model Calibration and Verification 

Dissolved lead module 

The model was used to simulate the release of dissolved lead in a pilot-scale pipe experiment under 

stagnation conditions. The simulation results were compared with the experimental measurements 

made by Xie et al. [45] for five different water chemistry compositions: high dissolved inorganic 

carbon (DIC  = 50 mgC/L), high free chlorine (Cl2 = 2 mg/L), high monochloramine (NH2Cl = 2 

mg/L as Cl2), high pH (pH = 10), and high orthophosphate (PO4
3- = 1 mg/L as P). The experiment 

setup consisted of a group of 24-inch long lead pipes with a 1.9 cm nominal diameter that were 

conditioned by being repeatedly emptied and filled with an aqueous solution made from Milli-Q 

water at pH = 10 with DIC = 10 mgC/L, and 3.5 mg/L free chlorine, for eight months. Lead scales 

on the conditioned sections included Pb(II) hydrocerussite (Pb3(OH)2(CO3)2), and lead(IV) oxides 

scrutinyite (α-PbO2) and plattnerite (β-PbO2). After conditioning, the effluent water was sampled 

at different stagnation stages: 0, 1, 2, 3, 8, and 24 hrs, for each of the five water chemistry 

compositions. The experimental study investigated the release of dissolved lead triggered by water 

chemistry changes from the conditions under which the scales have originally developed.  

Under stagnation, the governing transport equation (Equation 4-1) reduces to a dynamic 1-

D diffusion equation in the radial direction because the axial convective flux term vanishes (u̅=0), 

while the axial diffusive flux can be dropped because of symmetry (C0=0). In the simulations, the 

equilibrium concentration implemented in the boundary condition (Ceq) was always set equal to 

the experimentally measured concertation after 24 hours of stagnation [26,28]. Therefore, the sole 

parameter that required calibration in this case was the radial diffusion coefficient Dr,s, which was 

adjusted by a genetic algorithm (GA) to minimize the root mean square error (RMSE) between the 

measured and the simulated concentrations. 
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Particulate lead module 

Model simulations were compared to the results of the long term (7 months) pilot scale study by 

Cartier et al. [46], which investigated lead leaching from different service line configurations under 

variable flow conditions. To understand the role of galvanic corrosion in releasing lead 

particulates, we simulated two of the experimental scenarios considered in their study: a full LSL 

(100%-Pb), and a partially replaced LSL (50% lead downstream Pb-D). The simulated pipe rigs 

had a 1.9 cm nominal diameter and a length of 3 m (1.5 m for the case of Pb-D). To study the role 

of hydraulic conditions in mobilizing lead particulates, three sampling flow rates were examined: 

low flow (1.3 LPM), normal (medium) flow (8 LPM), and high flow (32 LPM). 

For each one of the simulated monitoring sampling scenarios, the simulation started with 

a three-day period of normal water use, in which a flow event lasting 100 minutes at a flow rate of 

1.3 LPM was simulated to match the sampling procedure adopted in the experiments. This event 

was followed by a 16 hours stagnation period, after which the simulated concentrations were 

compared to the collected samples at each flow rate. Cartier et al. [46] also performed an intensive 

sequential sampling at high flow with a series of 11 sampling events after the initial monitoring 

sampling of the high flow case, which we also simulated in this study. 

The five empirical parameters in the relationships describing the shear strength of the 

cohesive layers and the detachment process (Equations 4-6 and 4-7) (i.e., l, m, n, kdet and Pmax) 

were calibrated by comparing the model simulations with the measured concentrations from the 

monitoring sampling events under different flow rates. Simulations of the intensive sampling 

events were used to calibrate the generation parameter kgen by simulating particle regeneration 

during the stagnation periods between the successive intensive flow events.  
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4.3.3 Model Validation and Application 

The calibrated model was applied to simulate two hypothetical LSLs: a full pipe (100% Pb, L=20 

m), and a partially replaced pipe with 50% lead downstream (50% PbD, L=10 m) pipe. The chosen 

pipe length was based on literature ranges, where the national average LSL length in the US was 

found to be 55-68 ft (16.8-20.7 m), of which only 40-45% is under the utilities’ jurisdiction [10]. 

The calibrated transport model for both particulate and dissolved lead was linked to the stochastic 

demand generator to represent realistic flow demands for daily normal household usage (NHU) 

scenarios. For both particulate and dissolved lead, the simulations were performed in a Monte-

Carlo framework with 200 different NHU scenarios for each one of the two cases (100% Pb and 

50% PbD), (i.e., total = 2*2*200 = 800 simulations). Each NHU scenario represented a 4-week 

period (1 month) of realistic flow simulations. Although the same stochastic demand generation 

parameters (λ , μi, and σi) were used to generate the residential demand pulses for all 200 scenarios, 

each scenario had a different demand pattern based on the pulse arrival rate, pulse intensity, and 

pulse duration, all randomly drawn from the probability distributions as previously described.  

The model was validated by comparing the predicted lead levels from the Monte-Carlo 

simulation with field-measured concentrations from the sampling study by Clark et al. [29] that 

included 24 homes in the cities of Washington, D.C., and Providence, RI. The sampling sites 

consisted of nine partial LSLs, and eight full LSLs, while the seven remaining sites had unknown 

connections. Sampling was conducted at a range of flow rates between 0.8 to 14.2 LPM to 

represent the range of normal household water use. Following a stagnation period of minimum 6 

hours, three sequential profiles (10 L each) were collected from each tap beginning with low flow 

(1 L/min), then medium flow with the kitchen tap fully opened but without removing the faucet 

aerator (3-10 L/min), and finally a high flow profile after removing the aerator (4-14 L/min). The 
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published study reported a data set of the collected samples that had visible particulates or Pb 

concentrations above 15 μg/L, mostly from sites with high particulate lead concentrations [29]. 

These samples were compared to our Monte-Carlo simulation results at the corresponding 

sampling flow rates to validate the simulated ranges of lead concentrations. 

4.4 Results and Discussion 

4.4.1 Model Calibration and Verification 

Dissolved lead module 

Simulations were conducted using the soluble lead module for the five different water chemistry 

compositions sampled in the experimental study of Xie et al. [45]  The measured and simulated 

stagnation curves are shown in Figure 4-2a, where the diffusion model performed well in 

describing the buildup of dissolved lead in the pipe for different water chemistries. The error 

between the simulated and the measured concentrations was calculated as:  

RMSE% =

[
 
 
 
√ ∑ (Cmeas,i-Csim)

2

Nmeas

i=1

Nmeas⁄

]
 
 
 

C̅meas⁄                 (4-11) 

The RMSE% ranged from 11% for the high DIC case to 44% for the high orthophosphate 

case. The poorest fit was observed for the high pH and the high orthophosphate cases due to the 

drop in the concentrations measured at 8 hours compared to 4 hours, which is not consistent with 

the increasing trends typically observed in stagnation curves. The calibrated radial diffusion 

coefficients (Dr,s) and equilibrium concentrations after 24 hours (Ceq) are given in Table S 4-3. 

An interesting outcome was observed for the calibrated model, where a positive linear correlation 

between the two parameters was noticed (r2 = 0.965) (see Figure S 4-1). This finding suggests that 

the need for explicitly calibrating the radial diffusion coefficient under different water chemistry 
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scenarios might be eliminated if the ultimate equilibrium solubility was known for the given 

scenario.  

The alternative boundary condition representing the dissolution-limited release scenario 

was also applied, where precipitation was taken as a first order reaction in the concentration of 

dissolved lead as proposed by Xie [33]. Figure 4-2b compares the simulation results for both the 

diffusion-limited and the dissolution-limited formulations of the model against measured 

concentrations for the high DIC case. Both models reproduced the experimental results well, 

however, the diffusion-limited model gave a slightly better description of the initial stagnation 

stage (0-10 hrs), while the dissolution limited model better predicted the ultimate concentration 

after 24 hours. It should however be noted that, as suggested by Van Der Leer et al. [26], the radial 

diffusion coefficient requires calibration for the diffusion model to give accurate descriptions. 

Otherwise, using the molecular diffusivity of lead (1E-5 cm2/sec) will lead to excessively fast 

release rates in the initial stagnation stage compared to the measured stagnation curves [33]. 

During normal water use, stagnation periods rarely exceed 10 hours, hence the diffusion model 

was found to be more suitable for simulating dissolved lead release under NHU conditions in this 

study. Moreover, since the stagnation periods required before sample collection are typically either 

30 minutes (30MS) or 6 hours (6HS), implementing the diffusion model for designing or assessing 

zonal sampling surveys [27] might be more suitable.  
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Figure 4-2. (a) Dissolved lead simulation results at different stagnation stages for different water 

compositions plotted against experimental measurements; and (b) Simulation results of the 

dissolution-limited vs. diffusion-limited models. 
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Particulate lead module 

The particulate lead model was applied to simulate the monitoring sampling at different flow rates 

for the two simulated pipe configurations (100%-Pb and 50%Pb-D) in the study of Cartier et al. 

[46]. The calibrated model performed well in describing the measured release of particulate lead 

from both the full and the partially replaced LSLs under different flow conditions (Table 4-1). The 

RMSE% between the simulated and mean measured concentrations for the full pipe case was 13%, 

while for the partial pipe case it was 25.6%. Generally, the deviation between the simulation and 

the mean measurement was between 2% to 29% of the standard deviation of the measurements 

collected at the same flow rate (Figure S 4-2). The calibration parameters for the particulate lead 

module are given in Table S 4-4. The simulated particulate lead release from the partially replaced 

pipe under medium flow (simulation: 196 μg/L; experiment: 254±390 µg/L) and high flow 

(simulation 858 μg/L; experiment: 724±683 µg/L) was significantly higher compared to the full 

service line under medium flow (simulation: 51 μg/L; experiment 35±55 µg/L) and high flow 

(simulation: 180 μg/L; experiment: 187±343 µg/L). In contrast, almost no difference was observed 

between the two LSLs under low flow. Accordingly, this was reflected in the calibrated model 

parameters, where the detachment coefficients kdet for the 50%Pb-D case was almost 10 times 

higher than the 100%Pb case (Table S 4-4).  

The simulation of the intensive sampling events was used to calibrate the model 

compartment describing particle generation under successive consecutive stagnation and 

unidirectional flushing events. The concentration was higher for the 50%Pb-D configuration 

(simulation: 160 μg/L; experiment: mean=151 μg/L), than for the 100%-Pb configuration 

(simulation: 44 µg/L; experiment: mean=66 μg/L). This was also reflected in the calibrated 

generation coefficient kgen, which was 20% higher for the partial LSL than for the full LSL. 
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Generally, the model showed high sensitivity towards small changes in the detachment coefficient 

kdet and the empirical exponent l in the shear stress relationship.  

The dissolved lead release was predicted for the 100%-Pb monitoring sampling at different 

flow rates, where the best fit was achieved by the combination of (Dr,s=1.935 x 10-6  cm2/sec and 

Ceq=74.16 μg/L), which is consistent with the linear relationship derived from the dissolved lead 

module verification (Figure S 4-1). These parameters were used for simulating dissolved lead 

under NHU in the model application simulations described in the following section. 

 

 

Table 4-1. Simulated vs Experimentally measured particulate lead concentrations 

 Low Flow (1.3 lpm) Medium Flow (8 lpm) High Flow (32 lpm) 

 Simulation Experiment Simulation Experiment Simulation Experiment 

Full 11 μg/L 12±7 μg/L 51 μg/L 35±55 μg/L 180 μg/L 187±343 μg/L 

Partial 14 μg/L 12±9 μg/L 196 μg/L 254±390 μg/L 858 μg/L 724±683 μg/L 
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4.4.2 Model Validation and Application 

Comparison with field samples 

To validate the simulated release of particulate and dissolved lead under typical NHU demand 

patterns, the results from the Monte-Carlo simulation were compared to the field samples with Pb 

concentrations above 15 μg/L from the field study of Clark et al. [29]. The reported field 

concentrations were re-categorized into three groups based on the sampling flow rate (site 

independent): low flow (0.8-6.5 L/min; N= 32 samples), medium flow (6.5 - 10.3 L/min; N= 45 

samples), and high flow (10.3 – 14.2 L/min; 31 samples). Figure 4-3 shows the box and whisker 

plots of the simulated and field measured levels at the three different flow ranges. Model results 

were generally higher than the field measurements especially for the medium and high flow 

categories, where the Pb levels for the low flow were (field: 46.7±37.1 μg/L; simulation: 54.9±48.9 

μg/L), medium flow: (field: 60.2±53.8 μg/L; simulation: 84.64±81.81 μg/L), and high flow: (field: 

64.86±68.29 μg/L; simulation: 88.4±101.5 μg/L). This might be attributed to the profile sampling 

technique that was used in the field, where the three profiles were collected in series; consequently, 

by the time the first samples of the medium and the high flow profiles were collected, the lead 

service line has been flushed for around 13 and 18 minutes, respectively. Despite the potential 

variability in the nature of the pipe scales between the LSLs in the field study and the pipe sections 

in the pilot studies used for model calibration, the simulation results were in qualitative agreement 

with the field-measured trends at similar flow ranges. This can be seen from the consistent increase 

in the lead levels with increasing the sampling flow rate, which reflects the increase in particulate 

lead release. These results are also in agreement with a recently published field study in which 

elevated lead release after LSL replacement was found to be dominated by lead particulates, with 

samples containing Pb levels above 100 μg/L comprising almost 100% particulate lead [47]. 
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Figure 4-3. Box and whisker plots of Pb levels from Monte-Carlo simulations and field samples 

grouped by sampling flow rate (Low Flow = 0.8-6.5 LPM; Medium Flow = 6.5-10.3 LPM; High 

Flow = 10.3-14.2 LPM). Whiskers and dots represent the 10th/90th and 5th /95th of the plotted data 

ranges, respectively. 
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Particulate and dissolved lead release under daily NHU 

To demonstrate the daily trends of water consumption, Figure 4-4a shows a typical daily demand 

pattern randomly selected from one of the simulated 200 NHU scenarios. The trend shows two 

peak demand periods, one in the morning and one in the afternoon, which reflects the typical 

diurnal nature of water consumption in US homes. During the night, a long stagnation period (~6 

hours) that was only interrupted by a single demand pulse took place. Between the two peak 

demand periods, a second stagnation period with a shorter duration existed, which can correspond 

to the time when the house is partially or un-occupied. As illustrated in Figure 4-4b, the dissolved 

lead concentration in the full LSL builds up during the periods of no consumption as lead 

continuously leaches from the pipe wall and diffuses into the water. This buildup is repeatedly 

interrupted by the demand pulses that flush part of the dissolved lead out of the pipe. The drop in 

the dissolved lead concentration is dependent on the flow rate (pulse intensity), as well as the pulse 

duration (Figure 4-4a). If the duration of the flow pulse is long enough, dissolved lead will continue 

to flush out until a certain minimum concentration threshold is reached, where the radial mass flux 

from the pipe wall is equivalent to the convective mass flux transporting the lead out of the pipe. 

In general, dissolved lead concentrations were lowest during the two daily peak demand periods, 

while they were highest during the two stagnation periods. Unlike dissolved lead, particulate lead 

showed “spikes” of relatively higher concentrations that were induced by high flow demands. In 

the given example, the two particulate lead peaks corresponded to the highest demand pulses 

encountered during the selected day (20 LPM and 22 LPM). The concentrations drop shortly after 

these spikes, since the releasable particulate potential has become exhausted by the applied shear 

stress residual. It can also be noticed that, although the second peak demand pulse has a higher 

intensity (higher shear stress) than the first peak pulse, the released particulate concentration from 
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the second peak is lower, since particle generation has not completely replenished the releasable 

particulate potential.  

 

Figure 4-4. (a) 1 day flow demand pattern from one realization randomly selected from the 

Monte-Carlo pool; and (b) Particulate vs. dissolved lead release under NHU for the full LSL. 
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While the highest peak introduced by particulate lead for the example day had a 

concentration of 42.3 µg/L for the full LSL, this concentration significantly increased when the 

partial replacement situation was simulated to a maximum level of 147.5 μg/L, about 10 times the 

action level of lead (Figure S 4-3). During those two spikes, the mass of lead released was 434 µg 

for the full pipe case, and 809.37 μg for the partially replaced LSL, which confirms the hazardous 

nature of the particulate lead release, especially for partial LSLs. To put these numbers into 

perspective, a lead paint chip of approximately the size of a penny has around 310 µg of lead [23]. 

On the other hand, the maximum concentration of dissolved lead for the selected day was 27.4 

μg/L for the full pipe (Figure 4-4b), and dropped to 23.6 µg/L for the partially replaced pipe (Figure 

S 4-3). 

Maximum monthly levels of particulate and dissolved lead 

Figure 4-5 shows box and whisker plots of the maximum monthly concentrations of particulate vs. 

dissolved lead from the full and the partial LSLs for the conducted 200 NHU simulations. The 

maximum concentrations from particulate lead for both the full pipe (195.7±45.6 μg/L), and the 

partially replaced pipe (1011.9±290.3 µg/L) were significantly higher than dissolved lead for the 

full pipe (35.5±1.5 µg/L), and the partial pipe (32.9±1.3 µg/L), which was consistent with the 

trends seen at the daily level. It is important to note that while the partial replacement of the LSL 

reduced the levels of dissolved lead for all scenarios, the drop in the maximum monthly 

concentration compared to the full pipe was never more than 14%, and the benefit of replacing 

half the pipe never translated to an equivalent 50% reduction in the dissolved lead concentrations, 

which is consistent with previous pilot scale studies.[46] Moreover, partial LSL replacement only 

decreased the total monthly mass released in the form of dissolved lead by 30% from (91.1±0.83 

mg/month) for the full LSL to (63.0±0.58 mg/month) for the partially replaced line, while 
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particulate mass release almost doubled from 13.1±0.58 mg/month to 23.7±1.58 mg/month). These 

results are also consistent with recent field sampling studies which concluded that partial LSL 

replacement may be worse than leaving the LSL intact due to the potential for elevated particulate 

lead release [47]. 

 

 

Figure 4-5. Box and whisker plots of Pb levels for the maximum monthly Pb levels. Whiskers 

and dots represent the 10th/90th and 5th /95th of the plotted data ranges, respectively. 
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It is important to note that the lead mass released from the LSL in the particulate form is 

not necessarily equivalent to the direct exposure experienced by the household occupants. 

Depending on their size distribution, lead particulates might accumulate within the interior of the 

premise plumbing system, where they can slowly dissolve as they come in contact with the 

drinking water. Moreover, larger particles can be retained by the faucet aerator installed on the 

kitchen tap [2,24]. The configuration, age, size, and materials of the internal premise plumbing 

fixtures will, therefore, play a significant role in determining the breakthrough of lead particles 

and the subsequent customer exposure, which needs future investigation from both modeling and 

experimental perspectives. 

Effect of water use patterns on lead release 

To test the sensitivity of lead release to the variability in the patterns of water use, two other Monte-

Carlo ensembles were performed (800 simulations each) representing the cases of a higher flow 

frequency, and higher mean flow intensity. In the first ensemble, the overall demand volume was 

increased from 421.8±0.7 L/day to 1261.7±1.5 L/day by tripling the rates of pulse arrival λ (Table 

S2), while the mean flow intensity and duration were unchanged. This resulted in lowering the 

overall concentrations of both dissolved and particulate lead, where the maximum monthly 

concentration of particulate lead dropped to 179.9±50.2 μg/L (-8%) for the full LSL and to 

946.2±322.3 μg/L (-6.5%) for the partial LSL. The reduction in dissolved lead levels was more 

profound, where the maximum monthly concentration dropped to 28.7±1.1 μg/L (-19.2%) for the 

full LSL, and to 26.6±1.3 μg/L (-19%) for the partial LSL. This drop is mainly caused by the 

increase in the rate of pulse arrival, which means that the LSL is being flushed more often as the 

average period of uninterrupted stagnation events decreased from 17.6 minutes to 5.9 minutes.  
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The second ensemble tested the effect of increasing the mean flow intensity from 4.3 LPM 

to 8.7 LPM, which increased the overall demand volume from 421.8±0.7 L/day to 842.5±0.7 

L/day, while the pulse arrival rates and the mean pulse duration were kept constant. The increase 

in the mean pulse intensity had a significant effect on particulate lead release, where the maximum 

monthly concentrations increased to 314.2±83.8 μg/L (+61%) for the full LSL and to 

2,296.6±766.5 μg/L (+127%) for the partial LSL. On the other hand, it had an opposite effect on 

the dissolved lead concentrations, which dropped by 6% and 5% for the full and partial LSL, 

respectively. 

Effect of pre-flushing and sampling flow rate on regulatory sampling 

The lead concentration profile in Figure 4-4b shows that the dissolved lead concentrations 

exceeded the action level more than once during the example day. Our results also showed that if 

the LSL was pre-flushed for 5 minutes at an average flow rate of 8 LPM prior to the typical 

sampling procedure (6 hr stagnation, then 1 L first draw sample), the observed sampling 

concentration would be 30.1 µg/L. Although this concentration is well above the action level, it is 

still 19% below the maximum monthly concentration recorded for this simulation (36.8 µg/L). 

Thus pre-flushing of the LSL prior to regulatory sampling can mask the actual exposure of lead 

encountered during NHU. More importantly, excessive concentrations of particulate lead were 

mainly induced by high flow rates, where more than 90% of the flow events that induced 

particulate release higher than 15 µg/L were above 5.2 LPM. Hence, these spikes would be 

consistently missed if the sampling were performed at the low flow rates (< 3 LPM) typically used 

for regulatory sampling. 
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4.5 Limitations and recommendations for future development 

Although the particulate lead module presents a simple way to simulate the complex processes that 

control particulate release and transport, it is still dependent on a group of semi-empirical 

parameters that are problem-specific. Therefore, accurate calibration of the presented model using 

data from pilot studies might be required before applying it to simulate other systems. In these 

pilot studies, it is preferred to utilize pipe sections cut from aged LSLs harvested from the same 

water system to match the prevalent scales in the existing LSLs [18,22]. Calibration of the 

particulate lead model can be accomplished by collecting a systematic series of samples under 

variable flow conditions that represent the expected flow ranges in the system. The dissolved lead 

model can be calibrated through comparisons with experimentally determined stagnation curves 

using water composition that is consistent with the water reaching the consumer taps.  

It is also important to note that the detachment of particulate lead from pipe scales is a 

semi-random process that comprises a huge degree of variability between different systems and 

different LSLs [12,48,49]. This is attributed to a group of factors that include the inherent 

variability in the pipe scales, history of disturbances to the LSLs, water chemistry conditions, the 

presence of iron mains, connection type between lead and copper pipes [50], flow patterns, and 

temperature. Even for the same LSL sampled under the same flow conditions, the release of 

particulate lead might still significantly vary from one sample to another as indicated by the typical 

large standard deviations in the results of pilot studies at high sampling flows [22,46]. Hence, the 

presented modeling approach is not intended to be applied in a deterministic style to predict 

particulate lead release in a single LSL for a particular scenario, but rather in a more probabilistic 

manner to delineate the trends of lead release in a given system based on an ensemble of 

simulations.  
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Since this is the first effort to model particulate lead, the probabilistic components of the 

model were limited to the description of the flow conditions as we used a stochastic demands 

generator to represent the NHU flow patterns. Other important components of the transport model, 

such as the description of particle generation and detachment, were assumed deterministic. 

However, given the semi-random nature of particulate lead release, future studies should consider 

a more probabilistic formulation for these model components, and further build on the presented 

model to provide a stochastic description of these phenomena. 
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4.8 Supplementary Material 

4.8.1 Non-dimensional forms of the governing equations. 

The governing transport equation for dissolved lead (Eq. 4-1) can be put in the following non-

dimensional form: 

∂Cs
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∂t*
= -f(r*) 
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where Cs
* = Cs/Ceq; x* = x/L; r* = r/r0; t* = t/Tres ; Tres = L/u̅; PeL,s =

u̅L

DL,s
; and Ar,s =

Dr,s

r0
2 Tres. The boundary conditions can hence be written as: Cs
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* = 0;  
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Similarly, the governing equation for the particulate phase (Eq. 4-4) can be written as: 
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where, Cp
* = Cp/(

Pmax

rh
); PeL,p =

u̅L

DL,p
;  Ar,p =

Dr,p

r0
2 Tres; and Aset = ksetTres. The boundary 

conditions can therefore be written as: Cp
* = 1,  x* = 0; 

∂Cp
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∂x* = 0, x* = 1;  
∂Cp
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∂r* = 0, r* = 0; and  
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The attached particulate concentration can be put in dimensionless form as follows: 

dP*

dt*
= [Agen(1-P*) + AsetCp

* ]δ(u̅-0)-2Adet Ar,p                                                     (S-4.3) 
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where, Agen = kgenTres. Reformulating the governing equations (Eq. 4-1, 4-4, and 4-5) in 

dimensionless forms gave rise to a set of non-dimensional groups that govern the emission and 

transport of dissolved and particulate lead. For example, the Peclet numbers PeL,s and PeL,p 

govern the rate of solute transport by advective compared to dispersive transport mechanisms in 

the axial direction, while their peers Ar,s and Ar,p govern the same in the radial direction. 

Particulate lead generation, detachment, and settling are controlled by the three dimensionless 

groups Agen, Adet and Aset. Hence, these three groups dictate the relative contribution of each 

one of the three phenomena to the overall release of particulate lead. 

4.8.2 Numerical Solution of the governing equations 

The Alternating Direction Implicit (ADI) scheme is used to solve the two governing convection-

diffusion equations (Eq. 4-1, & 4-4), where each time step is divided into two half steps such that 

the numerical integration is first performed in the r-direction to evaluate the solution at t+Δt/2, 

followed by the integration in the x-direction to obtain the solution at t+Δt [1]. In the first half 

step, the finite difference scheme is implicit in the radial direction but explicit in the axial 

direction, while in the second half step the scheme is implicit in the axial direction and explicit in 

the radial direction. The advection term was treated using the explicit first order upwind scheme 

in the first half step, and an implicit central difference scheme in the second half step. A central 

difference scheme was used to discretize the diffusion terms in both the axial and the radial 

directions. The resulting system of linear equations was solved using the Thomas algorithm for 

tridiagonal coefficient matrices. Detailed description of the ADI numerical scheme can be found 

elsewhere [2,3]. 
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4.8.3 Stochastic water demands generation 

The detailed procedure of generating demand pulses by drawing random values for y1 and y2 is 

described elsewhere [4]. Based on equations 4-9 and 4-10, the stochastic demand generation 

model comprises five parameters: μ1, μ2, σ1, σ2, and ρ̇. These parameters were adopted from the 

data fitting made previously done by Creaco et al. [4], where the method of moments was used to 

fit the simulated flow rates to the residential demands monitored with a 1 sec time step resolution 

during a field campaign of 21 households in Milford, Ohio [5]. In terms of the pulse arrival time, 

the arrival rate λ is assumed to take different values during the day, where each day is divided 

into 12 time slots to account for the sub-daily trends of water consumption. The mean values 

from the fitting study for the five parameters, as well as the demand arrival rates for the 12 slots, 

were used in this model (see Tables S 4-1 and S 4-2).  
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4.8.4 Supplementary Tables 

Table S 4-1. Stochastic demands generation model parameters. 

Parameter unit value 

μ1 ln(sec) 3.01 

μ2 ln(L/sec) 1.23 

 σ1 ln(sec) -2.63 

σ2 ln(L/sec) 0.66 

ρ̇ (-) 0.63 

 

Table S 4-2. Pulse arrival rate for the 12 slots during one day. 

Time Slot λ (sec-1) 

0:00-2:00 0.0002326 

2:00-4:00 0.0001936 

4:00-6:00 0.0006166 

6:00-8:00 0.0015811 

8:00-10:00 0.0013878 

10:00-12:00 0.0012466 

12:00-14:00 0.0009728 

14:00-16:00 0.0009890 

16:00-18:00 0.0014566 

18:00-20:00 0.0012724 

20:00-22:00 0.0010900 

22:00-24:00 0.0008136 
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Table S 4-3. Calibration parameters for the dissolved lead simulation module 

Simulation Dr,s
*
 (1 x 10-6  cm2/sec) Ceq

**
 (μg/L) 

High DIC 2.890 109.88 

NH2Cl 2.265 88.51 

High pH 1.935 74.16 

Cl2 1.350 67.21 

High P 1.105 51.04 

 

* Calibration of the radial diffusion coefficient Dr,s was done by a genetic algorithm (GA) to 

minimize the root mean square error (RMSE) between the measured and the simulated 

concentrations. The optimization was performed using the genetic algorithm (GA) toolbox in 

MATLAB 2013, with the following main parameters: Population size = 50; Crossover fraction 

= 0.7; Adaptive feasible Mutation function; and Constraint dependent crossover function. 

** The equilibrium concentration implemented in the boundary condition (Ceq) was always set 

equal to the experimentally measured concertation after 24 hours of stagnation. 
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Table S 4-4. Calibration parameters for the particulate lead simulation module 

Parameter 100%Pb 50%PbD 

kset
*
 2.3 x 10-3 2.3 x 10-3 

kgen 3.0 x 10-6 3.5 x 10-6 

kdet 5.5 x 10-2 6.0 x 10-1 

l 2.8 1.6 

m 0.8 2.5 

n 1.05 1.15 

Pmax
** 50 50 

 

* For all simulations, particle settling was assumed to take place only under stagnant conditions, 

and was described by a first order reaction in the concentration of mobilized particulate lead Cp 

with a half-life time (t1/2) of 5 minutes. This time represents the gravitational settling time 

required by a particle of a size equal to 4 μm across a LSL of a diameter = ¾”. The settled mass, 

i.e., the mass removed from the suspended phase, was added to the releasable particulate 

potential after each time step. 

** The maximum potential Pmax tended to have no effect on the concentration profiles since the 

change in the particulate potential was typically small, hence an arbitrary value (Pmax=50 

µg/cm2) was used for all simulations. The initial condition for the stored releasable potential 

P(t=0) is calculated by assuming that the initial layer strength is equivalent to the shear stress 

induced by the 50th percentile of the monthly flow rates. 
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4.8.5 Supplementary Figures 
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Figure S 4-1. Correlation between the calibrated radial diffusion coefficient and the equilibrium 

concentration.  
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Figure S 4-2. Particulate lead release from (a) Full lead pipe (100% Pb), and (b) Partially 

replaced pipe (50% PbD) from simulations against experimental measurements under different 

sampling flow rates. 
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 Figure S 4-3. Particulate vs dissolved lead release under NHU for the partial LSL. 
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Figure S 4-4. Box and whisker plots of the 200 Monte-Carlo simulations total lead mass released 

during one month for the four scenarios. 

 

 

 

 

 

 

 

  



 

 

184 

   

4.8.6 Supplementary References 

[1] J.H. Ferziger, Numerical methods for engineering application, John Wiley & Sons, 1981. 

[2] O.N. Ozdemir, A.M. Ger, Realistic numerical simulation of chlorine decay in pipes, Water 

Res. 32 (1998) 3307–3312. 

[3] G. Naser, B.W. Karney, A 2-D transient multicomponent simulation model: Application to 

pipe wall corrosion, J. Hydro-Environment Res. 1 (2007) 56–69. 

[4] E. Creaco, R. Farmani, Z. Kapelan, L. Vamvakeridou-Lyroudia, D. Savic, Considering the 

Mutual Dependence of Pulse Duration and Intensity in Models for Generating Residential 

Water Demand, J. Water Resour. Plan. Manag. 141 (2015) 4015031. 

[5] S.G. Buchberger, Random demands, travel times, and water quality in deadends, Awwa 

Research Foundation and National Science Fondation, 2003. 

  



 

 

185 

   

Chapter 5  

Influence of the Dead-End Sections of 

Drinking Water Distribution Networks on 

the Optimization of Booster Chlorination 

Systems 
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5.1 Abstract 

The design challenge of finding the optimal layout and scheduling of booster chlorination stations 

has stimulated considerable research over the last two decades. The majority of previous studies 

that addressed this topic relied on EPANET, an advection-based water quality model, for the 

simulation of the transport and decay of disinfectant residuals in the pipes of the distribution 

network. Nevertheless, EPANET is known to produce erroneous predictions for the dead-end 

branches of the distribution network where low-flow conditions and frequent stagnations are 

abundant, especially when a skeletonized representation of the flow demands is employed. This 

study aims at investigating the impact of implementing an advanced water quality model for 

simulating the dead-end sections of the distribution network on the outcomes of the optimization 

of booster chlorination systems. To this end, an advection-dispersion-reaction (ADR) transport 

model that considers the spatial distribution of flow demands along the dead-end pipe is linked to 

a genetic algorithm based optimization routine. The objective function is formulated and solved to 

find the optimal locations and chlorine-dosing schedules of the booster stations that minimize the 

total cost of booster construction and operation, while maintaining a sufficient residual throughout 

the distribution network. Taken together, the results of this study suggest that optimization 

outcomes generated by EPANET simulations may produce a booster chlorination system that fails 

to maintain an adequate residual concentration in the periphery pipes of a real-life water 

distribution system. 
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5.2 Introduction 

Chlorine is broadly adopted by water supply utilities worldwide as the disinfecting agent of choice 

for drinking water treatment. A sufficient residual concentration is typically maintained throughout 

the distribution system to prevent microbiological contamination of the treated water as it 

transports through the pipes of the distribution network. However, applying large doses of the 

disinfectant at the treatment point has traditionally been associated with several issues, including 

consumer complaints about water taste and odor problems near the treatment locations, and high 

disinfection byproduct (DBP) levels especially at the far ends of the network [1,2]. As an 

alternative, booster chlorination can be implemented to maintain a uniform residual concentration 

by injecting the disinfectant at multiple locations in the network with smaller, more distributed, 

doses [3]. Such practice enables preserving a sufficient residual at all points in the network, while 

simultaneously reducing the formation of DBPs. Booster stations can also be activated in case a 

contamination event is detected, which can potentially curb the spread of contaminants by rapidly 

injecting large doses of the disinfectant in the proximity of the infected zones [4]. 

Finding the optimal layout and operation of booster chlorination stations has been 

extensively addressed by several previous studies. Boccelli et al. [5] formulated an optimization 

model for booster injection scheduling with the objective of minimizing the total disinfectant mass 

dose. Tryby et al. [6] extended their work by considering the locations of booster stations as 

decision variables in the optimization problem, which was formulated as a mixed integer linear 

programming (MILP) problem. Munavalli and Kumar  [7] formulated the objective function to 

determine chlorine injection rates for boosters with known locations that minimize the residual 

concentration deviations at the demand nodes from the minimum specified concentration, which 
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was solved by means of a genetic algorithm (GA). Propato and Uber [8] proposed a linear least 

squares (LSL) method to minimize the deviations of residual concentrations from desired levels. 

Prasad et al. [9] formulated a multi-objective optimization model to minimize the total disinfectant 

dose and maximize the volumetric demand within specified residual limits, which was solved 

using a multi-objective genetic algorithm (NSGA-II). Ostfeld and Salomons [10] used a GA to 

simultaneously optimize pump scheduling and the layout and operation of booster chlorination 

stations. Ohar and Ostfeld [11] built upon their work by linking a GA to a multi-species water 

quality simulation model in order to incorporate DBP levels in the constraints. DBP formation was 

also included in more recent studies [12–14]. A comprehensive literature review on the 

optimization of booster chlorination systems can be found in the recent works of Islam et al. [13], 

and Mala-Jetmarova et al. [15].  

The majority of the above-mentioned studies adopted a simulation-optimization approach, 

in which an optimization algorithm is coupled with a water quality simulator to compute the 

objective function and to determine constraint violations corresponding to each of the candidate 

solutions. EPANET is a generic, open-source, software package for simulating both the hydraulics 

and water quality in water distribution networks. It has been implemented in most of these studies, 

in either its original single-species release or its multi-species extension EPANET-MSX, to 

simulate the decay and transport of chlorine in the studied distribution systems. Nevertheless, the 

water quality module incorporated in EPANET is based on an advection-reaction transport model 

[16] that does not account for dispersion as a solute transport mechanism [17–21]. While this 

simplification does not generally compromise the accuracy of water quality simulations for main 

transmission lines where the flow is highly turbulent, previous studies showed that EPANET fails 
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to accurately predict field observed disinfectant concentrations in the dead-end branches at the 

perimeters of the distribution system where laminar flow conditions prevail [16,22].  

Dead-end zones are generally characterized by intermittent low-flow events and frequent 

stagnations. They are known to be responsible for most of the water quality deterioration in the 

distribution system, and are particularly more susceptible to water quality monitoring failures [23]. 

The long residence time typically encountered in these zones results in the disappearance of 

chlorine residuals, excessive growth of biofilms, and high DBPs formation [24–28]. Furthermore, 

dead-end sections typically comprise a non-trivial fraction (≥25%) of the total water infrastructure 

and tend to service an even larger percentage of the residential consumer base [22]. Therefore, 

relying on EPANET for simulating chlorine decay and transport in these low-flow zones can 

potentially yield flawed results if used to conduct the water quality simulations required to solve 

network optimization problems. This includes the optimization of booster chlorination systems, 

real-time boost-response systems [4], pump scheduling with water quality constraints [29], sensor 

placement for reactive contaminant detection [30], and contaminant source identification [31].  

In addition to the fundamental shortcoming of neglecting dispersive transport, spatial 

aggregation of water demands is typically employed in hydraulic, and subsequently water quality, 

simulations conducted with EPANET [32,33]. Under this approximation, multiple water uses are 

lumped into a single demand point assigned to a specific junction on the network grid, a practice 

known as network skeletonization. For main water arteries, spatial aggregation of flow demands 

is a reasonable approximation because the ratio of “on-pipe” demands compared to the flows 

transmitted to downstream sections of the network is relatively small. For dead-ends, however, all 

water demands are being directly withdrawn along the pipe at different spatial locations. Hence, 

applying spatial aggregation to dead-end links would consistently overestimate the average flow 
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velocity at different axial locations of the pipe, and more importantly, under-predict the residence 

time [34]. The later will cause the simulated disinfectant concentrations to be systematically over-

predicted as observed in previous studies [16,22,35]. Hence, chlorine doses determined by such 

simulations will most likely be insufficient to sustain the minimum residual in the extremities of 

the distribution system. 

In Chapter 2, a special model for simulating water quality in the dead-end branches of 

water distribution networks (WUDESIM) was developed. The model considers both advective and 

dispersive solute transport mechanisms as well as the realistic spatial distribution of water demands 

along the pipe. The model displayed better agreement with field-measured concentrations of 

fluoride tracer and free chlorine compared to those simulated by EPANET. In addition, a set of 

three correction factors were analytically derived to adjust the residence time, dispersion rate, and 

chlorine wall demand in order to overcome simulation errors caused by the spatial aggregation of 

demands associated with network skeletonization. In this Chapter, WUDESIM is used to explore 

the influence of considering a more accurate model to conduct water quality simulations of the 

dead-end sections on the optimization of booster-chlorination systems. The effects of employing 

network skeletonization and neglecting solute dispersion in low-flow pipes on the optimal 

placement and operation of the boosters are investigated. The sensitivity of the optimization results 

to seasonal variations in chlorine decay rates and water demands is examined. 
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5.3 Methodology 

5.3.1 Mathematical formulation of the transport model 

Chlorine transport and decay in a dead end pipe can be modeled by a dynamic 2-D convection-

diffusion equation in cylindrical coordinates representing the mass balance on the disinfectant 

concentration: 

∂

∂t
C(x, r, t) = - 

∂

∂x
(u f(r) C) +

∂

∂x
(D

∂C

∂x
) +

1

r

∂

∂r
(r D

∂C

∂r
) -∑ rk

Nr

k=1

                 (5-1) 

where, C is the chlorine concentration in the pipe (mg/L), x & r are the axial and radial space 

coordinates, respectively (m); t is the time (sec); u is the average flow velocity across the pipe 

cross section (m/sec); f(r) is the radial velocity distribution parameter; D is the molecular 

diffusivity of chlorine in water (m2/sec); and rk is the kth reaction of chlorine in the bulk flow (sec-

1). This 2-D model can be simplified into a 1-D model by incorporating dispersive solute transport, 

which gives the following 1-D advection-dispersion-reaction (ADR) equation [34]: 

∂C

∂t
= - u

∂C

∂x
+ E

∂2C

∂x2
-K C                                                                 (5-2) 

where, E is the effective longitudinal dispersion coefficient (m2/sec), K is the overall lumped first-

order decay constant (sec-1) that accounts for disinfectant decay in the bulk flow, and radial mass 

transfer and reaction at the pipe wall [16]. Removing the dispersion term in the previous equation 

gives the 1-D advection-reaction (AR) equation incorporated in EPANET. The longitudinal 

dispersion coefficient under laminar flow conditions is calculated by the classical formula of 

Taylor, (1953): ET =
a2u2

48D
. The model uses a two-stage Eulerian-Lagrangian numerical scheme 
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combined with the numerical Green’s function technique for solving the dynamic ADR equation 

[34].  

5.3.2 Correction factors for network skeletonization  

In addition to dispersion, the spatial aggregation of water demands due to network skeletonization 

is a significant source of modeling errors encountered when using EPANET as revealed by the 

sensitivity analysis conducted in Chapter 2. Nevertheless, breaking down each dead-end link into 

multiple segments, with a decreasing flow in the axial direction, was also shown to substantially 

increase the computational cost of solving the ADR equation compared to the skeletonized (single-

segment) model. Therefore to approximate the behavior of the detailed, multi-segment, model 

while simultaneously reducing the computational demand, a set of three correction factors were 

analytically derived to enhance the accuracy of the skeletonized model [34]. The correction factors 

were developed in a way that translates the three dimensionless groups: Reynolds number (Re), 

Peclet number (Pe) and Damkohler number (Da) of the single-segment model, to match its multi-

segment equivalent. In Chapter 2, these correction factors were tested for a wide range of scenarios, 

and were shown to significantly enhance the simulation accuracy of the skeletonized (single-

segment) representation. The correction factors for the residence time CFτ, Taylor’s dispersion 

coefficient CFE, and the chlorine wall demand CFR are given as: 

CFτ =
τcorr

τ0
= ∑

1

Nseg-i + 1

Nseg

i=1

                                                         (5-3) 

CFE =
ET,corr

ET,0
=

∑ (Nseg-i + 1)2
Nseg

i=1

Nseg
3                                               (5-4) 
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CFRw =
Rw,corr

Rw,0
=

1

CFτ
∑(Nseg-i + 1)-2/3                                        (5-5)

Nseg

i=1

 

As can be seen from the previous equations, all three-correction factors are functions of a 

single parameter: the number of segments (Nseg) of the multi-segment equivalent of the single-

segment model. This resembles the spacing between each two consecutive water uses, assuming 

that all water uses are equally spaced and have equal demands. Model users can simply define a 

global segment length for the entire network, which is then used by the model to calculate the 

equivalent number of segments for each dead-end pipe by rounding up the ratio of the pipe length 

to the segment length. It is noteworthy that these correction factors are particularly useful for use 

in network optimization problems, where numerous water quality simulations are typically 

executed. Moreover, for large network models, the computational cost of evaluating the objective 

function can be very expensive. Hence, relying on these correction factors to approximate the high-

level of detail required to simulate dead-end branches, while eliminating the additional complexity 

of such a spatially resolved representation is essential. 

5.3.3 Objective function, constraints, and decision variables 

The objective function is formulated with the aim of minimizing the total cost of placing, 

constructing, and operating the booster chlorination system, while ensuring that the residual 

concentrations at all network junctions are within the acceptable bounds. The objective function is 

formulated as the summation of the capital cost of booster system design (BCD), chlorine injection 

cost (BCI), and constraint violation penalty function (PEN) [11].  

The operational cost of booster chlorine injection BCI ($/day) can be defined as [10]:  
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BCI = λ ∑{∑Clb,i*Δti}                                                                    (5-6)

ni

i=1

nb

b=1

 

where, Clb,i is the chlorine mass injection dose of booster b during injection pattern interval i in 

(kgCl/min); nb is the number of chlorine boosters in the design; ni is the number of injection 

pattern intervals in one day (intervals/day); Δti is the length of the injection pattern interval i in 

minutes (min/interval); λ is the chlorine injection cost per unit mass of chlorine (= 2 $/kgCl).  

The capital cost of the booster chlorination system design BCD ($/day) is written as [10]:  

BCD = DRV(AI, BLD) [∑ α(Clb
max)β + γVb

nb

b=1

]                                   (5-7) 

where, DRV is the daily return value coefficient (day-1), which is a function of AI, the annual 

interest rate (%), and BLD booster station life duration (years); Clb
max is the maximum injection 

rate (mgCl/min) of booster station b; Vb is the total injected mass (mgCl) of booster station b; and 

α, β and γ are empirical booster chlorination capital cost coefficients [α = 2.21 $(mg/min)-β, β =

0.13(-), and γ = 0($/mg)]. 

  The penalty function for constraint violations PEN is calculated as [11]:  

PEN = ∅ × ∑{∑max(Ct,j-C
max, 0) + ∑max(Cmin-Ct,j, 0)}                 (5-8)

nt

t=1

nt

t=1

nj

j=1

 

where, Ct,j is the residual concentration at junction j during time step t in (mg/L); nj is the number 

of junctions in the system; nt is the number of time steps during the water quality monitoring 

window; Cmax is the maximum permissible concentration (= 4 mg/L); Cmin is the minimum 
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required residual concentration (= 0.2 mg/L); and ∅ is a constraint violation penalty coefficient of 

500.  

The decision variables are: (i) the locations of the chlorine boosters, and (ii) the patterns of 

chlorine mass injection rates for each booster. A system of five chlorine boosters is considered 

herein with an injection pattern interval of four hours (240 min/interval). Therefore, for each 

booster station, six different injection doses are determined, and hence the total number of 

variables is 35 (five locations + 5×6 doses). Although the mass injection rates are kept constant 

during the four-hour pattern interval, the outgoing concentration may change on an hourly basis 

since the outgoing flow rate has a pattern time step of 1 hour.  

The solution scheme is depicted in Figure 5-1. The genetic algorithm (GA) function in 

MATLAB R2016b Optimization Toolbox™ is used to solve the optimization problem because it 

can handle the integer variables representing booster locations [30]. For each generation, GA 

creates a population of strings (population size = 100 individuals), each comprises a different 

combination of the decision variables, i.e. a different configuration for booster locations (integer), 

and injection rates (real). For each candidate solution, EPANET simulation of the hydraulics and 

water quality is first executed. This is followed by the execution of WUDESIM, a C++ application 

linked to EPANET programmer’s toolkit, for the simulation of all dead-end branches of the 

network. The objective function is then evaluated for each solution by determining constraint 

violations and adding the penalty function to the capital and injection costs. The GA then performs 

the operations of selection, crossover, and mutation based on the fitness of each solution in the 

previous generation, and generates the individuals for the new generation. This process is repeated 

until either one of the two stopping criteria is met, namely reaching the selected maximum number 
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of generations (=1500 generations), or observing no improvement in the objective function for a 

specified number of consecutive generations (max stall generations = 150, tolerance = 10-6). 

 

 

Figure 5-1. Schematic of the solution scheme. 

5.3.4 Case Study Description: C-Town network 

A medium-sized water distribution network, C-Town network, is used as a benchmark for 

examining the booster-chlorination optimization problem with both EPANET and WUDESIM. C-

Town network, displayed in Figure 5-2, comprises 388 nodes connected by 429 links. The network 

is supplied by a single water source (Reservoir R1). Water storage and distribution across the 

network are supplied by seven elevated tanks (T1-T7) whose water levels control the operation of 

eleven pumps (PU1-PU11) grouped into five pumping stations and one control valve (V2). This 

network was previously used as a model water distribution system for the Battle of the Water 

Calibration Networks (BWCN) [37], and more recently for the Battle of the Attacks Detection 

Algorithms [38]. The considered network has 72 dead-end branches comprising a total of 102 
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links. The network consists of five district-metered areas (DMA); the nodes of each have a 

different water demand pattern. Chlorine decay is assumed to take place in the bulk phase with a 

first-order decay constant of Kb = -0.5 day-1, and at the pipe wall with a first-order decay constant 

of Kw = -0.5 m/day. 

The repetitive cyclical simulation (RCS) approach is adopted herein to establish periodicity 

in the hydraulic and water quality parameters similar to previous studies [11]. The total simulation 

time is chosen to be 2 weeks (336 hours) to ensure that the water quality in the system has 

converged into a consistent periodic cycle that is independent of the initial conditions before the 

start of the water quality monitoring window. The monitoring window is represented by the final 

3 days (72 hours) of the simulation, during which residual chlorine concentrations are evaluated 

to calculate the objective function and determine constraint violations. In the calibrated network 

model that was given as the solution of the BWCN [37], each DMA had a 168 hours pattern, with 

a 1-hour time step. In this study, we reduced the length of the demand pattern to 24 hours by taking 

the average of the 168 hour-long pattern to achieve periodic cyclical conditions within a feasible 

simulation duration (14 cycles). The hydraulic and water-quality time steps are set to 1:00 hour 

and five minutes, respectively. Junctions with zero flow and zero concentrations throughout the 

simulation duration were excluded during the evaluation of the objective function. 

 

 

 

 

 



 

 

198 

   

 

 

 

Figure 5-2. Optimal layout of booster stations using EPANET for water quality simulations. 
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5.4 Results and Discussion 

5.4.1 Error in EPANET optimization  

First, we start by optimizing the booster chlorination system by linking the Genetic Algorithm to 

EPANET, which is used for executing the water quality simulations of the entire network, 

including dead-end branches. We then conduct a water quality simulation for the optimized booster 

system design, this time using WUDESIM for simulating the dead-end branches, to demonstrate 

the deviation between the two models. We investigate the effects of considering dispersive solute 

transport and spatially distributed demands on optimization outcomes. This is followed by a 

discussion of the influence of the flow regime, and the spacing between user demands on the 

deviation between the two models.   

EPANET optimization results  

Figure 5-2 depicts the optimal layout of a booster chlorination system consisting of five booster 

stations in the C-TOWN network. Here, only EPANET is used to simulate the water quality in all 

the network pipes. The GA finds a near-feasible optimal solution, in which almost all (99.88%) of 

the simulated residual concentrations for the entire network, during the monitoring window, are 

within 0.2 and 4.0 mg/L. The total injection and capital costs as calculated by equations 6, and 7 

are 111.40 $/day and 33.94 $/day, respectively. The optimal layout features a booster station 

located at the water source (reservoir R1), while the other four are distributed across the network. 

Two of the boosters are located near storage tanks, namely the boosters at junctions J420 (located 

near T3), and J216 (located near T2). The other two boosters (J385 and J201) are located at 

downstream sections of the network, mainly to boost the residual concentration at the far-end 

zones. Chlorine residuals simulated by EPANET for the entire network have an average 
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concentration of 1.45 mg/L, while junctions located on dead-end branches have a lower average 

concentration of 1.11 mg/L. This reflects the adverse effects of the higher water ages at these 

locations on the decay of the disinfectant residual, and highlights the importance of implementing 

an accurate water quality model for dead-end branches. 

Deviation from WUDESIM simulation results 

To demonstrate the effects of using EPANET compared to a more accurate water quality model 

for simulating dead-end branches on the resulting booster design, water quality in the dead-end 

links is simulated using WUDESIM for the optimal solution that was generated by EPANET in 

the previous step. For WUDESIM simulations, a global segment length, i.e. spacing between each 

two consecutive water uses, of 20 m is first selected to demonstrate the deviation between the two 

models. In the following section, the sensitivity of the results towards the selected segment length 

is examined. Figure 5-3 displays two histograms showing the distribution of the residual 

concentrations for all the junctions located on dead-end branches as simulated by EPANET and 

WUDESIM-20m. For EPANET simulation, only 0.46% of all the simulated concentrations for 

junctions on dead-end branches were less than 0.2 mg/L, which is slightly higher than the 

corresponding fraction for the entire network (0.12%). For WUDESIM-20m simulation, the 

fraction of violating concentrations within dead-end junctions is 6.64%, which is significantly 

higher than that simulated by EPANET. In addition, the average concentrations for the violating 

instances for EPANET and WUDESIM-20m are 0.179 mg/L and 0.123 mg/L, respectively. This 

implies that optimization results generated by EPANET may produce a booster chlorination 

system that fails to preserve the minimum residual concentration in the dead-end pipes of the water 

distribution system. 
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Figure 5-3. Distribution of residual concentrations for all the junctions located on dead-end 

branches as simulated by: a) EPNAET, and b) WUDESIM with a 20 m segment length. 
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The average concentration simulated by WUDESIM-20m for all dead-end junctions is 0.97 

mg/L, which is 12.6% less than that simulated by EPANET. The generally lower concentrations 

simulated by WUDESIM compared to EPANET reveal that the main reason behind the deviation 

between the two models is the extended, yet more realistic, residence times simulated by 

WUDESIM. As previously mentioned, the aggregation of flow demands due to network 

skeletonization associated with EPANET results in residence times that are considerably shorter 

than those encountered by real-life dead-end links with spatially distributed demand uses. This is 

further demonstrated by plotting the residual concentration profiles as simulated by both models 

for two of the network junctions (J184, and J52) that featured the highest deviations between the 

two models (Figure 5-4).  

 

 

Figure 5-4. Residual concentration profiles during the window period for the two of the dead-

end junctions: a) Junction J184, and b) Junction J52, as simulated by EPANET vs WUDESIM 

with a 20 m segment length. 
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The deviation is calculated herein as the normalized root mean squared deviation (nRMSD) 

between the hourly concentrations reported by the two models for any given junction (j): 

nRMSDj  =

√
1
nt

∑ (Ct,j
EPANET-Ct,j

WUDESIM)2nt
t=1

1
nt

∑ (Ct,j
WUDESIM)

nt
t=1

                                          (5-9) 

The first junction (J184), is the terminal junction of pipe (P776), which operates under laminar 

flow conditions during almost the entire simulation period, and with an average Reynolds number 

of (Re̅̅̅̅  =  2135.67). Hence, longitudinal dispersion is expected to play a significant role in the 

transport of the disinfectant since the value of Taylor’s dispersion rate under laminar conditions 

increases with the square of the flow velocity. It can also be seen that the concentration profile 

simulated by WUDESIM is somehow “smoothed” compared to EPANET, which is another 

evidence of the significant role of dispersive transport. Dispersion is known to cause spreading of 

advective wave fronts, which dampens the temporal variations in the concentrations at the terminal 

junction [20]. Furthermore, the length of the upstream pipe (421.07 m) is significantly longer than 

most of the other dead-end links (longer than 97% of all the links on dead-end branches), and is 

hence characterized by a long residence time (R. T.̅̅ ̅̅ ̅̅ =  5.87 hrs), which is longer than 89% of all 

dead-end links in the network. This long residence time gets even longer when simulated by 

WUDESIM since the pipe is split into 22 segments, corresponding to the selected 20 m segment 

length, which results in a corrected residence time that is almost 3.7X that simulated by EPANET. 

The combination of the extended residence time and laminar flow conditions resulted in the 

strongest deviation between the two models among all the simulated dead-end junctions 

(nRMSDJ184 =  10.38).  
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The second highest deviation corresponds to junction J52 (nRMSDJ52 =  7.06), which is the 

terminal junction of pipe P37 that has a length of 180.61 m (>82% of the dead-end links). Similarly, 

the flow in the upstream pipe is fairly within the laminar regime (Re̅̅̅̅  =  1167.3), and the mean 

residence time is significantly longer than other dead-ends (RT̅̅̅̅  =  9.16 hrs, longer than 97% of 

all dead-end links). Furthermore, when simulated by WUDESIM, this pipe is split into 10 

segments, which increases the residence time by a factor of 2.93X after applying the correction 

factor. Similar behavior is also observed for all the junctions that displayed high deviation between 

the two models. On the other hand, dead-end junctions that are located downstream of links 

operating under high turbulent conditions, or characterized by short residence times, exhibited 

negligible deviations between the two models.  

Error dependence on Reynolds number and segment length 

In the previous section, we demonstrated that the deviation between EPANET and WUDESIM 

appears to be mainly dependent on two factors: flow regime, and pipe length (equivalent number 

of segments for the correction factors). To further investigate the effects of these two parameters 

on the deviation between the two models, the nRMSD of all the dead-end junctions in the network 

is plotted against the average Reynolds number of their upstream pipes for both the original and 

the corrected cases. Here, the corrected Reynolds number is equivalent to the original value 

multiplied by the inverse of the correction factor for residence time (1/ CFτ). As can be seen from 

Figure 5-5, the deviation between the two models appears to decrease exponentially with the 

Reynolds number, and the correlation is notably more pronounced when the correction factors for 

the residence time are factored in. Looking at Figure 5-5b, it can be clearly seen that for pipes with 

a corrected Reynolds number above 4,000 (i.e. turbulent regime), the deviation between the two 

models is negligible (nRMSD < 0.2).  
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Figure 5-5. Normalized root mean squared deviation (nRMSD) between EPANET and 

WUDESIM with a 20 m segment length for all the simulated dead-end junctions plotted against 

the average Reynolds number of the upstream link before and after factoring by the correction 

factor for residence time. 
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It is also worth noting that the strong correlation observed between the nRMSD and the 

corrected Reynolds number is unique, and that similar correlations between the deviation and other 

dimensionless quantities, such as Peclet and Damkohler numbers, or other parameters, such as the 

residence time, corrected residence time, dispersion coefficient, or pipe length, could not be 

established. This indicates that the corrected Reynolds number can be used as a quick guide to 

determining whether WUDESIM must be executed to correct EPANET simulations of specific 

dead-end links. This observation is of significant value for network optimization problems that 

comprise numerous water quality simulations since solving the ADR transport equation is 

computationally more expensive compared to the simpler AR equation.   

To further elucidate the role of the equivalent number of segments (or segment length) in 

the deviation between the two models, the cumulative distribution of the residual concentrations 

at dead-end junctions simulated by EPANET and WUDESIM for four different segment lengths 

is plotted in Figure 5-6. As can be seen from the figure, the overall concentration distribution 

reflects the higher concentrations simulated by EPANET compared to WUDESIM for all segment 

lengths. The deviation between the two models decreases consistently as the segment length 

increases from 15 m to 60 m. As previously mentioned, only 0.46% of all the dead-end 

concentrations simulated by EPANET are less than 0.2 mg/L, and the average residual 

concentration for dead-end junctions is 1.11 mg/L. On the other hand, the fraction of violating 

dead-end concentrations simulated by WUDESIM decreases from 8.6% for a segment length of 

15 m, to 2.1% for a segment length of 60 m, while the mean residual concentrations of all dead-

end junctions increases from 0.96 mg/L for the 15 m spacing to 1.04 mg/L for the 60 m spacing. 
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Figure 5-6. Cumulative distribution of residual concentrations at the dead-end junctions as 

simulated by EPANET vs WUDESIM with varying segment lengths of 15, 30, 45, and 60 

meters. 
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5.4.2 Optimization using WUDESIM simulations 

In the previous section, we demonstrated how using the more realistic water quality model 

(WUDESIM) to simulate the dead-end branches reveals the potential inadequacy of EPANET in 

designing booster systems that are capable of maintaining the minimum residual concentration at 

the extremities of the distribution network. To reduce the magnitude and frequency of violations, 

we examine two alternative approaches. First, booster locations are kept similar to those optimized 

using EPANET simulations, while injection doses (booster scheduling) are re-optimized using 

WUDESIM-20m simulations of the dead-end branches. Second, we employ WUDESIM-20m 

simulations to re-optimize both the layout (locations) and doses (scheduling) of the booster 

chlorination system. We then compare the enhancement in the booster system performance for 

both scenarios against the original case in which the full optimization was done using EPANET 

simulations.  

Optimizing doses for the same booster locations 

Assuming that the utility operators find that several of the dead-end branches consistently suffer 

from violations of the minimum residual constraint. As a first response, they examine re-

optimizing the doses using WUDESIM-20m simulations for the same booster layout previously 

designed by EPANET. The resulting optimal schedule effectively reduces the fraction of violating 

concentrations for the dead-end junctions from 6.64% to 5.56%. In addition, the average 

concentration of the violating junctions slightly increases from 0.123 mg/L to 0.131 mg/L, while 

the overall concentration of dead-end junctions increases from 0.97 mg/L to 1.07 mg/L. 

Nevertheless, the total chlorine injection cost would increase by about 8.1% from 111.40 $/day to 

120.42 $/day. This indicates that simply increasing the doses, while effective in reducing both the 
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frequency and magnitude of violating residual concentrations, may not be an efficient solution to 

alleviate all the violations, which highlights the need for re-designing the booster chlorination 

system with a new layout using WUDESIM.  

Optimizing both doses and locations 

As an alternative to optimizing only the injection doses (booster scheduling), both the layout and 

scheduling of the booster chlorination system are optimized using WUDESIM-20m simulation. 

Figure 5-7 displays the new optimal layout of the five booster stations. The new design features a 

booster station located at the water source (reservoir R1) similar to the previous design that 

employed EPANET simulations. In addition, two of the other four boosters only slightly moved 

from their previous locations (J420  J287) and (J201  J301), reflecting the importance of these 

two locations in controlling the residual concentration in the entire network, not just the dead-end 

zones. The remaining two boosters are completely moved from their original locations and are 

stationed at the proximity of two dead-end branches in the new layout. The first booster is located 

at junction J178, which is the inlet of pipe P776 that was previously found to have to the highest 

deviation between EPANET and WUDESIM-20m, i.e. the worst decay of the chlorine residual 

due to the extended residence time (Figure 5-4a). Similarly, the second booster is located at 

junction J142, which is the second junction upstream a relatively long dead-end branch consisting 

of five links with a total length of about 2 km. The total residence time of this branch is (23.5 hrs), 

and the nRMSD at the terminal junction of this branch (junction J144) is 1.054 (more than 87% of 

all dead-end junctions).  
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Figure 5-7. Optimal layout of booster stations using WUDESIM with a 20 m spacing length for 

water quality simulations. 
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More importantly, by re-optimizing both the layout and scheduling, the fraction of dead-end 

concentration violations is reduced to 4.56% compared to 5.56% for the case where only the doses 

are re-optimized. Furthermore, the average concentration of violating concentrations increases 

from 0.131 mg/L to 0.145 mg/L, and the mean residual concentration for all dead-end junctions 

increases from 1.07 mg/L to 1.12 mg/L. It is also noteworthy that the injection cost only increases 

by 1.7% from 120.42 $/day to 122.45 $/day reflecting a better distribution of the chlorination dose 

by re-optimizing the layout. It is important to note that, while the performance of the dead-end 

branches was generally enhanced by moving two of the booster stations from their original 

locations to the inlets of two dead-end branches, this does not affect the concentration in other 

non-dead-end junctions in the network and does not induce any additional violations. Moreover, 

the average concentration in the entire network is 1.57 mg/L, which is slightly higher than the case 

where only the doses are re-optimized 1.54 mg/L. This shows that considering a more accurate 

model for simulating the realistic residence time in dead-end branches can significantly influence 

the optimization results.  

5.4.3 Sensitivity Analysis 

To generalize the findings of this study, we consider two sensitivity analysis scenarios in which 

system conditions are varied from the base case considered in the previous sections. The first 

scenario is simulated by increasing the global chlorine decay rates, in both the bulk phase and pipe 

wall, by 20%. This may happen due to seasonal variations in network conditions, such as an 

increase in the water temperature or in the organic content of the treated water [2]. The second 

scenario features lowering the global flow demands in the entire network by 20%, which may 

happen as a result of the wide implementation of water conservation practices and the recent spread 

of green buildings [39,40]. For each scenario, the optimal layout of the booster chlorination system 
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that was previously designed using EPANET simulation (Figure 5-2) is used, while the scheduling 

is re-optimized by employing EPANET for water quality simulations. Afterward, WUDESIM-

20m is used to simulate the re-optimized configuration to determine the constraint violations. 

Effect of chlorine decay rate 

In the first sensitivity analysis scenario, the global chlorine decay rates are increased by 20% to 

Kb = -0.6 day-1 and Kw = -0.6 m/day. By running an EPANET simulation of the same layout 

and doses from the base case, the lower concentration constraint (0.2 mg/L) is violated in 1% of 

the concentrations of all the network junctions, and 2.1% of those for dead-end junctions. To 

overcome this, booster chlorination dosing is increased by re-optimizing the scheduling of the 

boosters. This slightly reduces the fraction of violating concentrations within all junctions to 0.5%, 

and within dead-end junctions to 1.7%, while the chlorine injection cost increases by 7% form 

111.3 $/day to 119.08 $/day. When the simulations are redone using WUDESIM-20m, the fraction 

of violating concentrations across the entire network significantly increases to 2.4%, and for dead-

end junctions, it increases to 8.26%. Furthermore, the average concentration of violating dead-end 

concentrations drops from 0.123 mg/L for the base case to 0.114 mg/L for the high decay rate 

scenario. It is also noteworthy that under such scenario, the utility is restricted from increase the 

dosing rates above the optimized schedule to avoid violating the upper residual concentration limit 

(4.0 mg/L). For example, increasing the chlorination doses by only 10%, while reduces the fraction 

of violating concentrations to 0.3%, it results in concentrations as high as 4.5 mg/L in several of 

the network junctions, especially ones immediately downstream of booster locations. This 

demonstrates the difficulty to maintain a sufficient residual in the far-ends of the network under 

high chlorine decay conditions, while simultaneously respecting the upper residual constraint near 

the injection locations. A potential solution to this problem is to increase the number of booster 
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stations, which will provide better control of the water quality but at the expense of increasing the 

capital cost. 

Effect of flow demands 

In the second sensitivity analysis scenario, the global demand for all the network junctions is 

reduced by 20%. As a result, the average demand of the water source (reservoir R1) decreases 

from 170.03 LPS to 136.08 LPS. By running an EPANET water quality simulation using the same 

layout and doses of the base case, the upper concentration constraint (4.0 mg/L) is violated in 2.3% 

of the residual concentrations of all junctions. As a response, the utility operators decide to reduce 

the chlorine dosing rates at the pre-optimized booster locations by re-optimizing the booster 

chlorination schedule. This results in reducing the injection cost by 15% from 111.40 $/day to 

94.84 $/day. While this effectively eliminates all high concentration violations in the network, it 

also results in a few violations of the lower residual constraint compared to the base case (0.39% 

of all network concentrations, and 1.27% of all dead-end concentrations) as predicted by EPANET 

simulations. This happens due to the higher water age in the network resulting from lowering the 

global demand, which highlights the potential implications of widespread deployment of water 

conservation fixtures on the overall water quality in the distribution system. Furthermore, when 

water quality simulations are run using WUDESIM-20m, the dead-end violations increased 

significantly to 10.087%, with the average concentration for violating observations of 0.10 mg/L. 

This indicates an even more severe deviation from EPANET predictions compared to the base 

scenario, and confirms the critical role played by the extended residence time in dictating the water 

quality in the peripheries of the network.   

 



 

 

214 

   

5.5 Conclusions 

This study investigated the effects of employing an advanced water quality model on finding the 

optimal design of booster chlorination systems. Previous studies have generally relied on EPANET 

to simulate the transport and decay of disinfectant residuals in the pipes of the distribution network. 

Yet, EPANET was previously found to give inaccurate simulations of the residual concentrations 

in the dead-end branches, especially when a skeletonized (aggregated) representation of the flow 

demands is used. In this study, an advection-dispersion-reaction (ADR) transport model that 

considers the realistic spatial distribution of flow demands along the dead-end pipe is linked to a 

genetic algorithm to find the optimal layout and operation of booster stations. The results highlight 

the importance of considering dispersive solute transport, as well as the excessive residence times 

encountered in the dead-end sections, in the water quality simulations conducted for network 

optimization problems. While this study addressed the optimization of booster chlorination 

systems, its implications extend to a wide array of network optimization applications, including 

pump scheduling for water quality optimization, optimal sensor placement for reactive 

contaminant detection, and design of real-time boost-response systems. 

5.6 Acknowledgments  

Partial support from the Lucy and Stanley Lopata Endowment at Washington University in St. 

Louis is gratefully acknowledged. 

 

 

 



 

 

215 

   

5.7 References 

[1] P. Hua, E. Vasyukova, W. Uhl, A variable reaction rate model for chlorine decay in drinking 

water due to the reaction with dissolved organic matter, Water Res. 75 (2015) 109–122. 

[2] I. Fisher, G. Kastl, A. Sathasivan, Evaluation of suitable chlorine bulk-decay models for 

water distribution systems, Water Res. 45 (2011) 4896–4908. 

[3] M.E. Tryby, D.L. Boccelli, M.T. Koechling, J.G. Uber, R.S. Summers, L. a Rossman, 

Booster chlorination for managing disinfectant residuals, J. Am. Water Works Assoc. 91 

(1999) 95–108. 

[4] S.L.I. Parks, J.M. VanBriesen, Booster Disinfection for Response to Contamination in a 

Drinking Water Distribution System, J. Water Resour. Plan. Manag. 135 (2009) 502–511. 

[5] D.. Boccelli, M.E. Tryby, J.G. Uber, L.A. Rossman, M.L. Zierolf, M. Polycarpou, Optimal 

Scheduling of Booster Disinfection in Water Distribution Systems, J. Water Resour. Plan. 

Manag. 124 (1998) 99–111. 

[6] M. Tryby, D. Boccelli, J. Uber, L. Rossman, Facility Location Model for Booster 

Disinfection of Water Supply Networks, J. Water Resour. Plan. Manag. 128 (2002) 322–

333. 

[7] G.R. Munavalli, M.S.M. Kumar, Optimal Scheduling of Multiple Chlorine Sources in 

Water Distribution Systems, J. Water Resour. Plan. Manag. 129 (2003) 493–505. 

[8] M. Propato, J.G. Uber, Linear Least-Squares Formulation for Operation of Booster 

Disinfection Systems, J. Water Resour. Plan. Manag. 130 (2004) 53–62. 



 

 

216 

   

[9] T.D. Prasad, G.A. Walters, D.A. Savic, Booster disinfection of water supply networks: 

Multiobjective approach, J. Water Resour. Plan. Manag. 130 (2004) 367–376. 

[10] A. Ostfeld, E. Salomons, Conjunctive optimal scheduling of pumping and booster chlorine 

injections in water distribution systems, Eng. Optim. 38 (2006) 337–352. 

[11] Z. Ohar, A. Ostfeld, Optimal design and operation of booster chlorination stations layout in 

water distribution systems, Water Res. 58 (2014) 209–220. 

[12] A. Maheshwari, A.A. Abokifa, R.D. Gudi, P. Biswas, Two-Point Constraint Control of 

Water Quality in Distribution Networks, in: CCWI 2017 – Comput. Control Water Ind., 

2017. 

[13] N. Islam, R. Sadiq, M.J. Rodriguez, Optimizing Locations for Chlorine Booster Stations in 

Small Water Distribution Networks, J. Water Resour. Plan. Manag. 143 (2017) 4017021. 

[14] A. Maheshwari, A.A. Abokifa, R.D. Gudi, P. Biswas, Co-ordinated, Decentralization based 

Optimization of Disinfectant Dosing in Large Scale Water Distribution Networks, J. Water 

Resour. Plan. Manag. (2018) Accepted. 

[15] H. Mala-Jetmarova, N. Sultanova, D. Savic, Lost in optimisation of water distribution 

systems? A literature review of system operation, Environ. Model. Softw. 93 (2017) 209–

254. 

[16] L.A. Rossman, R.M. Clark, W.M. Grayman, Modeling Chlorine Residuals In Drinking 

Water Distribution Systems, J. Environ. Eng. 120 (1994) 803–820. 

[17] P. Romero-Gomez, C.Y. Choi, Axial Dispersion Coefficients in Laminar Flows of Water-



 

 

217 

   

Distribution Systems, J. Hydraul. Eng. 137 (2011) 1500–1508. 

[18] O.N. Ozdemir, A.M. Ger, Realistic numerical simulation of chlorine decay in pipes, Water 

Res. 32 (1998) 3307–3312. 

[19] H.A. Basha, L.N. Malaeb, Eulerian-Lagrangian Method for Constituent Transport in Water 

Distribution Networks, J. Hydraul. Eng. 133 (2007) 1155–1166. 

[20] Z. Li, S.G. Buchberger, V. Tzatchkov, Importance of Dispersion in Network Water Quality 

Modeling, in: Proc. World Water Environ. Resour. Congr. 2005, 2005: pp. 1–12. 

[21] D.H. Axworthy, B.W. Karney, Modelling low velocity/high dispersion flow in water 

distribution systems, J. Water Resour. Plan. Manag. 122 (1996) 218–221. 

[22] V.G. Tzatchkov, A.A. Aldama, F.I. Arreguin, Advection-Dispersion-Reaction Modeling in 

Water Distribution Networks, J. Water Resour. Plan. Manag. 128 (2002) 334–342. 

[23] V.C.F. Dias, M.C. Besner, M. Prévost, Predicting water quality impact after district metered 

area implementation in a full-scale drinking water distribution system, J. Am. Water Works 

Assoc. 109 (2017) E363–E380. 

[24] B. Barbeau, V. Gauthier, K. Julienne, A. Carriere, Dead-end flushing of a distribution 

system: Short and long-term effects on water quality, J. Water Supply Res. Technol. 54 

(2005) 371–383. 

[25] R. Galvin, Eliminate Dead-End Water, OPFLOW - AWWA Mag. 37 (2011) 20–21. 

[26] P. Biswas, C. Lu, R.M. Clark, A model for chlorine concentration decay in pipes, Water 

Res. 27 (1993) 1715–1724. 



 

 

218 

   

[27] H. Der Yeh, S. Bin Wen, Y.C. Chang, C.S. Lu, A new approximate solution for chlorine 

concentration decay in pipes, Water Res. 42 (2008) 2787–2795. 

[28] A.A. Abokifa, Y.J. Yang, C.S. Lo, P. Biswas, Investigating the role of biofilms in 

trihalomethane formation in water distribution systems with a multicomponent model, 

Water Res. 104 (2016) 208–219. 

[29] E. Price, A. Ostfeld, Optimal Pump Scheduling in Water Distribution Systems Using Graph 

Theory under Hydraulic and Chlorine Constraints, J. Water Resour. Plan. Manag. 142 

(2016) 4016037. 

[30] Z. Ohar, O. Lahav, A. Ostfeld, Optimal sensor placement for detecting organophosphate 

intrusions into water distribution systems, Water Res. 73 (2015) 193–203. 

[31] A. Seth, K.A. Klise, J.D. Siirola, T. Haxton, C.D. Laird, Testing Contamination Source 

Identification Methods for Water Distribution Networks, J. Water Resour. Plan. Manag. 142 

(2016) 4016001. 

[32] G. Farina, E. Creaco, M. Franchini, Using EPANET for modelling water distribution 

systems with users along the pipes, Civ. Eng. Environ. Syst. 31 (2014) 36–50. 

[33] A. Menapace, D. Avesani, M. Righetti, A. Bellin, G. Pisaturo, Uniformly Distributed 

Demand EPANET Extension, Water Resour. Manag. 32 (2018) 2165–2180. 

[34] A.A. Abokifa, Y.J. Yang, C.S. Lo, P. Biswas, Water quality modeling in the dead end 

sections of drinking water distribution networks, Water Res. 89 (2016) 107–117. 

[35] Z. Li, Network Quality Modeling with Stochastic Water Demands and Mass Dispersion, 



 

 

219 

   

PhD Dissertation, University of Cincinnati, Cincinnati, Ohio, USA, 2006. 

[36] G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. 

R. Soc. A Math. Phys. Eng. Sci. 219 (1953) 186–203. 

[37] A. Ostfeld, E. Salomons, L. Ormsbee, J.G. Uber, C.M. Bros, P. Kalungi, R. Burd, B. Zazula-

Coetzee, T. Belrain, D. Kang, K. Lansey, H. Shen, E. McBean, Z.Y. Wu, T. Walski, S. 

Alvisi, M. Franchini, J.P. Johnson, S.R. Ghimire, B.D. Barkdoll, T. Koppel, A. Vassiljev, 

J.H. Kim, G. Chung, D.G. Yoo, K. Diao, Y. Zhou, J. Li, Z. Liu, K. Chang, J. Gao, S. Qu, 

Y. Yuan, T.D. Prasad, D. Laucelli, L.S. Lyroudia Vamvakeridou, Z. Kapelan, D. Savic, L. 

Berardi, G. Barbaro, O. Giustolisi, M. Asadzadeh, B.A. Tolson, R. McKillop, Battle of the 

water calibration networks, J. Water Resour. Plan. Manag. 138 (2012) 523–532. 

[38] R. Taormina, S. Galelli, N.O. Tippenhauer, E. Salomons, A. Ostfeld, D.G. Eliades, M. 

Aghashahi, R. Sundararajan, M. Pourahmadi, M.K. Banks, B.M. Brentan, E. Campbell, G. 

Lima, D. Manzi, D. Ayala-Cabrera, M. Herrera, I. Montalvo, J. Izquierdo, E. Luvizotto, 

S.E. Chandy, A. Rasekh, Z.A. Barker, B. Campbell, M.E. Shafiee, M. Giacomoni, N. Gatsis, 

A. Taha, A.A. Abokifa, K. Haddad, C.S. Lo, P. Biswas, M.F.K. Pasha, B. Kc, S.L. 

Somasundaram, M. Housh, Z. Ohar, The Battle of the Attack Detection Algorithms: 

Disclosing Cyber Attacks on Water Distribution Networks, J. Water Resour. Plan. Manag. 

Accepted (2018). 

[39] W.J. Rhoads, A. Pearce, A. Pruden, M.A. Edwards, Anticipating the Effects of Green 

Buildings on Water Quality and Infrastructure, Journal-American Water Work. Assoc. 107 

(2015) 50–61. 



 

 

220 

   

[40] W.J. Rhoads, A. Pruden, M.A. Edwards, Survey of green building water systems reveals 

elevated water age and water quality concerns, Environ. Sci. Water Res. Technol. 2 (2016) 

164–173. 

  



 

 

221 

   

Chapter 6  

Chloroform Formation Mechanism from the 

Chlorination of Resorcinol as a Model Humic 

Precursor: Insights from Quantum Chemical 

Calculations 
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6.1 Abstract 

Reactions between chlorine-based disinfectants and the different fractions of natural organic 

matter leading to the formation of disinfection byproducts (DBPs) are not very well understood 

due to the complexity of the aquatic humic material. The majority of the kinetic models developed 

to describe the formation of DBPs are based on empirical or semi-empirical equations derived by 

regression analysis from experimental measurements. Recent studies focused on identifying the 

propensity of different individual components of the organic matrix to form certain DBPs. This 

study proposes employing first-principles calculations to investigate the molecular mechanisms of 

trihalomethane formation from the chlorination of model humic precursors. Quantum chemical 

computations are used to explore the reaction mechanism, and to study the kinetics and 

thermodynamics of the reaction pathways. The proposed framework is demonstrated by 

elucidating the chlorination mechanism of resorcinol (1,3-dihydroxybenzene), which has been 

identified in the literature as an efficient surrogate precursor for the formation of chloroform. 

Computational results bring new insights into the structures of intermediates and transition states, 

kinetics of the elementary reactions along the mechanism, and identifying the dominant formation 

pathways. 
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Figure 6-1. Graphical abstract of the work presented in Chapter 6. Investigating the pathways of 

chloroform formation from the chlorination of resorcinol as a model humic precursor. 
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6.2 Introduction 

The formation of disinfection byproducts (DBPs) is influenced by a wide variety of factors, 

including the disinfectant type and dose, organic matrix, pH, temperature, bromide concentration, 

and contact time. The quantity of natural organic matter (NOM) generally reflects the amount of 

precursor material in the water matrix, which is typically measured through various representative 

parameters, such as the total or dissolved organic carbon (TOC/DOC) or the ultraviolet absorbance 

at 254 nm (UV254), to assess DBPs formation potential. However, NOM consists of a 

heterogeneous and complex array of precursor compounds; each has different reaction kinetics, 

mechanisms, and pathways for DBPs formation.  

For instance, humic fractions of NOM were found to have a higher yield of trihalomethane 

(THM) compounds compared to the fulvic fraction. Similarly, the hydrophobic fractions were 

consistently found to produce higher THM concentrations. Hence, due to the complexity and 

uncertainty of the reactions between chlorine-based disinfectants and the organic matrix, the 

majority of the kinetic models developed to describe DBPs formation are based on empirical or 

semi-empirical equations derived by regression analysis (Brown et al., 2011). These relationships 

often include empirical parameters that require fitting to experimental data. Hence, none of these 

models can be classified as a purely “predictive” model that can be applied to new systems.  

Since the reactivity of organic substrates strongly depends on the presence of certain 

moieties in their molecules, recent studies focused on identifying the propensity of different 

individual components of the organic matrix to form certain DBPs (Yang, 2017). For instance, an 

increase in the electron-rich aromatic content of NOM was found to correlate with higher THMs 

formation. Such studies demonstrate the strong potential for the development of analytically 
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derived mechanistic models to predict DBPs formation via developing a molecular understanding 

of the reaction mechanisms and kinetics (Lebedev et al., 2004).  

 Ab-initio quantum chemical calculations can provide a valuable tool for exploring the 

chemical reaction pathways by identifying transient species, kinetic, and thermodynamic 

information. The objective of this chapter is to propose a framework for implementing first-

principles calculations to derive theoretical models for the formation of disinfection byproducts. 

This framework is demonstrated by investigating the mechanisms of THM formation from the 

halogenation of dihydroxy aromatic precursor compounds. Particularly, this study is focused on 

outlining the detailed reaction pathway for m-dihydroxybenzene structures (resorcinol-like 

structures), which have been identified as efficient precursors for THM formation. Rate 

coefficients of rate-limiting elementary reactions are calculated from transition state theory (TST) 

and the minimum-energy path (MEP) is obtained using the intrinsic reaction coordinate (IRC) 

calculations for each of the elementary reactions along the pathway. The proposed approach can 

be expanded to investigate the reaction mechanisms of other model precursors, which can pave the 

road towards creating mechanistic DBP formation of a true predictive nature.  A complete 

understanding of the processes leading to DBP formation has the potential to optimize the 

predictions of DBP formation and to lead to improved DBP control strategies (Arnold et al., 2008). 

 

 

Figure 6-2. Resorcinol (1,3-dihydroxybenzene) as a model humic precursor 
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6.3 Methodology 

6.3.1 Resorcinol like structures as model precursors 

Structures related to 1,3-dihydroxybenzenes (1,3-benzenediols), such as, resorcinol and orcinol, 

were found to be the most efficient precursors of CHC13 formation by multiple previous studies 

(Arnold et al., 2008; Bond et al., 2009; Bond and Graham, 2017; Deborde and von Gunten, 2008; 

Heasley et al., 2004; Rebenne et al., 1996). They could possibly be responsible for the fast reacting 

fraction of THM precursors, which represents 15–30% of the THM precursors of natural waters 

(Bond et al., 2012; Gallard and Von Gunten, 2002). Hence, several previous studies focused on 

understanding the reaction mechanism of resorcinol, as a model precursor compound, with 

chlorine to understand the formation of trihalomethane compounds.  

The concentration of free chlorine residual is the summation of both hypochlorous acid 

(HOCl) and hypochlorite ion (OCl-). The pKa of HOCl is approximately 7.53, hence at neutral pH, 

ca. 80% of the free chlorine exists in the protonated form, which is a strong electrophile that is 

known to participate in addition and substitution reactions with a variety of organic molecules. 

Analysis by GC/MS showed that l,3-aromatic diols were converted to several metastable trichloro-

substituted intermediates during reaction with chlorine in acidic and neutral solution, which were 

subsequently decomposed to CHC13. While these studies have identified several important 

mechanisms for the formation of trihalomethane, many details of the conversion of these substrates 

to trihalomethanes require clarification. Chlorination of functional groups in NOM leads to a 

variety of coexisting chlorinated compounds via multistep, parallel reactions. Furthermore, a 

reaction-specific characterization of NOM, which includes key intermediates resulting in THM 

formation, is still lacking.  
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6.3.2 Proposed Mechanism of Resorcinol Chlorination 

The only in-depth investigation of the reaction pathway was conducted by (Boyce and Hornig, 

1983), in which the conversion of 1,3-dihydroxyaromatic precursors to THMs was systematically 

investigated by GC/MS. They proposed that the reaction mechanism occurs in two stages: (1) 

extensive incorporation of halogen by electrophilic substitution and addition processes, followed 

by (2) a complex series of hydrolysis and decarboxylation steps leading to CHC13 formation via 

carbon-carbon bond cleavage about the C2-site of the aromatic ring (Figure 6-3). 

 It is well established that phenolic compounds react with bromine or chlorine by either 

oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The 

dominant process mainly depends on the relative position of the hydroxyl substituents and the 

possibility of quinone formation (Criquet et al., 2015). Hence, the presence of an unsubstituted 

carbon atom at the ortho-position with respect to both phenolic hydroxyl substituents seems to be 

required for the efficient reaction of 1,3-aromatic diols such as resorcinol. The observations by 

(Boyce and Hornig, 1983) are indicative of an electrophilic substitution in the aromatic ring, which 

is highly favored when both OH groups are located at an appropriate orientation to stabilize the 

transition state of the reaction through the donation of electron density.   
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Figure 6-3. Simplified reaction pathway for the conversion of 1,3-dihydroxyaromatic substrates 

to CHCI3 as proposed by (Boyce and Hornig, 1983). 
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The proposed reaction scheme involves the following four basic stages: 

1- Initially, multiple steps of electrophilic substitution in resorcinol take place yielding trichloro-

l,3-dihydroxybenzene:  

 

 

2- Further addition of chlorine forms the cyclohexenedione intermediates, which can be either 

tetrachloro (I in Figure 6-3) or pentachloro (II in Figure 6-3). This is followed by hydrolysis and 

oxidative ring cleavage on either side of the 3- position of the ring structure.               
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3- The reaction then proceeds by a complex series of decarboxylation of the resulting keto-

carboxylic acids, which is accompanied by the incorporation of chlorine. 

 

4- The final step is usually base-catalyzed hydrolysis of the resulting chlorinated ketones (or keto 

carboxylic acids) to form chloroform. 
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A similar process of electrophilic substitution, followed by multiple steps of hydrolysis and 

decarboxylation was also proposed by (Heasley et al., 1989). In their study, it was concluded that 

the 4- (or 6-) position is about 1.5 times more reactive for electrophilic substitution than the 

sterically hindered 2-position (the position between the hydroxyl groups). They tetrachloro 

intermediate (I in Figure 6-3) that follows the initial electrophilic substitution on the reaction 

pathway was not detected. Hence, they concluded that it is rapidly converted to the pentachloro 

intermediate (II in Figure 6-3), which in turn undergoes immediate ring-cleavage to produce 

CHC13 and other products after a series of decarboxylation, Cl incorporation, and hydrolysis.    

Gaps in the Proposed Mechanism 

Although a concerted effort has been made in the previous studies to outline the possible reaction 

mechanisms leading to chloroform formation, a clear understanding of the thermodynamics and 

kinetics is still missing. A few clear gaps in the proposed mechanism are outlined below: 

1- The mechanism proposes multiple probable pathways to chloroform formation, without 

discussing which pathway is expected to dominate the reaction. For example: 

 Is ring cleavage by hydrolysis more favorable for the tetrachloro or the pentachloro 

cyclohexenedione intermediates?  

 On which side of C3 site in the aromatic ring is the cleavage more favorable? 

 In what order do the decarboxylation and Cl incorporation reactions happen after ring 

cleavage?  

2- The mechanism proposes the presence of several short-lived intermediates along the reaction 

pathway that were not directly measured by GC/MS. Hence, a complete understanding of the 

mechanism is missing.  
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3- In each pathway, how does the kinetics of each of the three main stages (electrophilic 

substitution, hydrolysis, and decarboxylation) compare?  

4- In each pathway, which of the proposed elementary reaction steps is rate limiting? 

Investigating the pathway with first principles calculations 

In this study, we propose a framework for employing first-principles calculations to investigate 

the mechanisms of the chemical reactions leading to the formation of disinfection byproducts. The 

previously proposed pathway of chloroform formation from the chlorination of resorcinol is 

investigated by means of quantum chemical calculations. Using density functional theory (DFT), 

both the thermodynamics and kinetics of the elementary reaction steps along the pathway are 

modeled, allowing the evaluation of the detailed mechanism.  

 Particularly, we aim to verify the presence of the proposed intermediate structures involved 

in the mechanism, and to determine which one of the three steps (electrophilic substitution, 

hydrolysis, and decarboxylation) is rate limiting. In addition, computational results bring new 

insights into the electronic nature, chemical equilibria, and kinetics of the elementary reactions of 

this pathway, enabled by computed energies of structures that are not possible to access 

experimentally (Bond and Graham, 2017; Liu et al., 2014; Liu and Zhong, 2017; Trogolo et al., 

2015; Yu et al., 2017; Zhang et al., 2014). 
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6.3.3 Computational Methods 

Density functional theory (DFT) calculations are performed by using the B3LYP method (Becke’s 

three-parameter functional with the correlation functional of Lee, Yang, and Parr), in conjunction 

with the 6-31+G(d) basis set. The findings of (Boyce and Hornig, 1983) are used to postulate the 

potential reactants and products, and their associated intermediates along the reaction pathway. 

Each proposed reaction is examined using DFT models to evaluate its kinetics and 

thermodynamics. In the proposed pathway, all structures of the reactants, transition states, and 

products involved in the formation reactions of chloroform during chlorination of resorcinol are 

fully optimized. Vibrational frequencies are calculated at the same level of theory to characterize 

the nature of the stationary points as minima (no imaginary frequency) or transition states (only 

one imaginary frequency). All computations are carried out with the GAUSSIAN-09 suite of 

programs (g09) 

 The minimum-energy path (MEP) for each reaction is obtained using intrinsic reaction 

coordinate (IRC) calculations to confirm the connection of each transition state with the designated 

reactants/products. Since aqueous solvent effects are expected to play an important role in the 

reaction thermodynamics and kinetics, the solvent effect of water on the reactions of chloroform 

formation from resorcinol are considered by conducting the optimization and frequency 

calculations with the polarizable continuum model (PCM) using the integral equation formalism 

variant (IEF-PCM) in conjunction with the B3LYP/6-31+G(d) level of theory. 

 For a given reaction step, minimum energy pathway (MEP) calculations are used to 

estimate the free energy of activation, defined as the difference between the estimated highest free 

energy value along the profile of the reaction coordinate and the free energy of the preceding stable 

reactant or stable intermediate structure. Gibbs free energies of reactions (ΔGr) are hence 
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calculated as (ΔGproducts− ΔGreactants), while activation free energy barriers (ΔG‡) are calculated as 

(ΔGTS− ΔGreactants). Approximate reaction rate constants are estimated from computed activation 

free energies based on transition state theory and the Eyring−Polanyi equation to estimate a 

transition-state theory (TST) rate constant: 

kTST =
kBT

h
exp(

-ΔG‡

RT
)                                  (6-1) 

 

6.4 Results and Discussion 

Assuming that the electrophilic substation in the aromatic ring proceeds fairly quickly, the focus 

here is on the reaction pathway following ring cleavage. The first, and perhaps the most import, 

question here is: at what site does ring opening take place? In their proposed mechanism, Boyce 

and Hornig, 1983 suggested two different locations for the hydrolysis and oxidative ring cleavage 

as depicted in Figure 6-4 for both the tetra- and penta- chloro cyclohexedione intermediates. In 

both cases, ring opening is proposed to take place around the 3- position to yield carboxy enolate 

intermediates that proceed to form their corresponding keto carboxylic acids.  
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Figure 6-4. Proposed reaction pathways for ring cleavage around the 3- position of the tetra- and 

penta- chloro hexenediones 

 

Table 6-1 summarizes the energetics for both the tetra- and penta- choloro rings as calculated at 

the B3LYP/6-31+g(d) level of theory. As can be seen from the results, the first step of ring 

cleavage to form the enolate intermediate is thermodynamically favorable for ring cleavage at 

either the A (between the 2- and 3- position) or B (between the 3- and 4- position) locations. For 

both the tetra- and penta- chloro cases, ring cleavage at the B location is thermodynamically more 

favorable than the A location. The reason is likely the interaction between the oxyanion of the 

enolate intermediate with the proton from the nearby hydroxyl group, which stabilizes the 

intermediate formed from B-cleavage compared to A-cleavage. However, the second step on the 

reaction pathway that leads to the formation of the enol intermediate from the protonation of the 

enolate oxyanion is found to be thermodynamically unfavorable for all the studied pathways. 
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Nevertheless, the overall reaction combining both steps is still thermodynamically favorable for 

the ring cleavage at the A position but not at the B position. These results suggest that the ring 

cleavage at the A-position proceeds via a concerted reaction mechanism rather than a step-wise 

mechanism, and that the formation of the enol from the enolate intermediate is not 

thermodynamically favorable (Figure 6-5). The third step involving the formation of the keto-

carboxylic acids is found to be thermodynamically favorable for all cases.  

 

Table 6-1. Reaction energies and activation free energies (at 298 K and 1 atm) in kcal/mol 

pentachloro 

Open ring A ΔGr (kcal/mol) Open ring B ΔGr (kcal/mol) 

step 1 -33.118011 step 1 -35.40376298 

step 2 32.071734 step 2 37.384030 

step 3 -10.81891404 step 3 -13.74149329 

tetrachloro 

Open ring A ΔGr (kcal/mol) Open ring B ΔGr (kcal/mol) 

step 1 -35.736939 step 1 -42.26720541 

step 2 31.494155 step 2 45.938760 

step 3 -8.650305691 step 3 -15.86549202 
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Figure 6-5. Concerted reaction mechanism for ring cleavage 

 

Nevertheless, the activation barriers for this reactions are relatively large (ΔG‡ = 55.184 kcal/mol 

and 54.885 kcal/mol for the tetrachloro and pentachloro cases respectively). The structures of both 

transition states are depicted in figure 6-6.   
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Figure 6-6. Structures of the transition states for proton transfer after ring cleavage for a) tetra- 

and b) penta- chloro cases 

 

 

 

Following ring cleavage, the reaction pathway is proposed to involve multiple steps of 

decarboxylation and halogenation, which is eventually followed by base catalyzed hydrolysis to 

form chloroform. The proposed pathway following ring cleavage at the A-location for the 

pentachloro case is depicted in Figure 6-7. Following the formation of the keto-carboxylic acid 

intermediate, the reaction may proceed via either decarboxylation mechanism (elementary steps 

D1, and P1) followed by a halogenation mechanism (elementary steps E2, and C2), or vice versa 

(C1, E1 followed by D2, and P2).  
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Figure 6-7. Proposed reaction pathway showing decarboxylation and chlorination steps 

 

The decarboxylation reaction involves two elementary steps. The first step features the concerted 

formation of CO2 and the protonation of the carbonyl oxygen to form an enol intermediate, while 

the second step involves proton transfer to regenerate carbonyl. Similarly, halogenation is 

proposed to proceed via two steps. The first step involves base catalyzed enolization of the keto-
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carboxylic acid by removal of the alpha proton to form the corresponding enolate intermediate. 

Enolate anions are particularly strong nucleophiles and can hence react rapidly with HOCl in the 

following step. Table 6-2 summarizes the results of the calculations for the depicted elementary 

steps.  

Table 6-2. Reaction energies and activation free energies (at 298 K and 1 atm) in kcal/mol 

Reaction Step ΔGr (kcal/mol) ΔG‡ (kcal/mol) 

E1 -22.35061556 N/A 

E2 -24.27581317 N/A 

C1 -13.85253728 9.934094979 

C2 -12.93735305 10.42687 

D1 -21.34032607 24.57827251 

D2 -20.32815405 26.3346702 

P1 -12.04189771 24.05869506 

P2 -13.88551915 23.60375103 

 

In the proposed mechanism, both decarboxylation reactions (D1, and D2) and the consequent 

proton transfer reactions (P1, and P2) are thermodynamically favorable (Table 6-2). The activation 

barrier for the D1 decarboxylation reaction of the pentachloro intermediate ΔG‡ = 24.578 kcal/mol 

is lower than that for the D2 reaction of the hexachloro intermediate ΔG‡ = 26.334 kcal/mol, and 

is also more thermodynamically favorable (ΔGr = -21.340 kcal/mol for D1 and -20.328 kcal/mol 

for D2, respectively). However, the activation barrier for the subsequent proton transfer is lower 

for the hexachloro case (P2) ΔG‡ = 23.604 kcal/mol than that for the pentachloro case (P1) ΔG‡ = 

24.0587 kcal/mol, and is also more thermodynamically favorable (ΔGr = -12.042 kcal/mol for P1 
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and -13.886 kcal/mol for P2, respectively). The structures of the transition states for the four 

elementary reactions are depicted in Figure 6-8.  

 

 

Figure 6-8. Structure of the transition state for the decarboxylation reaction elementary steps a) 

D1 and b) P1 

 

The transition states for the halogenation reactions C1, and C2 could not be found using the PCM 

solvation model, and hence for these calculations the SMD solvation model was used to get 

accurate results for the transition states. Both halogenation steps are found to have activation 

barriers that are relatively lower than all the other elementary steps throughout the pathway (ΔG‡ 

= 9.934 kcal/mol for the C1 reaction and ΔG‡ = 10.427 kcal/mol for the C2 reaction). This suggests 

that the chlorination steps are the most kinetically favorable compared to the other elementary 

steps. Furthermore, the formation of the enolate anions by base-catalyzed enolization reactions 

(E1, and E2) was found to be thermodynamically favorable. However, the transition states for both 

enolization steps (E1 and E2) could not be located using neither the PCM nor the SMD solvation 

models. Therefore, a more sophisticated approach, such as the cluster-continuum approach, can be 

used to accurately model solvent effects by accounting for the direct involvement of the solvent. 
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This approach involves modeling each species as a microsolvated cluster that contains the solute 

plus several explicitly modeled water molecules, further embedded in an SMD implicit continuum 

model solvent. 

An alternative mechanism for the halogenation reaction under acidic conditions can proceed via 

the direct attack of the HOCl-H3O
+ on the C=C bond of the enol intermediate resulting from the 

ring cleavage at the A-site, which leads to the protonation of the ketone group forming a cation. 

This is followed by the deprotonation of the carbonyl by water that acts as a weak base, which 

reforms the carbonyl compound similar to the product of the C1 reaction.  

  

The structure of the transition state for the first halogenation step is depicted in Figure 6-9. The 

activation barrier of this mechanism ΔG‡ = 11.354 kcal/mol is comparable to the main mechanism 

of base catalyzed enolization followed by direct halogenation (C1, and C2 reactions). Yet overall 

reaction rate may be limited by the subsequent steps. 
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Figure 6-9. Structure of the transition state for the chlorination reaction under acidic conditions 

 

6.5 Conclusions 

This study proposes employing first-principles calculations to investigate the molecular mechanisms 

of trihalomethane formation from the chlorination of model humic precursors. Quantum chemical 

computations are used to explore the reaction mechanism, and to study the kinetics and 

thermodynamics of the reaction pathway. The proposed framework is demonstrated by elucidating the 

chlorination mechanism of resorcinol (1,3-dihydroxybenzene), which has been identified in the 

literature as an efficient precursor for the formation of chloroform. Computational results bring new 

insights into the structures of intermediates and transition states, kinetics of the elementary reactions 

along the mechanism, and identifying the dominant formation pathways.   
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Chapter 7  

Computational Materials Design of SnO2 

Nanostructured Sensors for the Online 

Monitoring of Volatile Disinfection 

Byproducts 

 

 

 

Parts of the results presented in this chapter were published in: 

A. A. Abokifa, K. Haddad, J. Fortner, C. S. Lo, and P. Biswas. Sensing Mechanism of Ethanol 

and Acetone at Room Temperature by SnO2 Nano-columns Synthesized by Aerosol Routes: 

Theoretical Calculations Compared to Experimental Results. Journal of Materials Chemistry A 

2018, 6, 2053-2066 

Other parts are currently under review in: 

 A. A. Abokifa, K. Haddad, B. Raman, J. Fortner, and P. Biswas. Room Temperature Sensing 

Mechanism of SnO2 towards Chloroform: Ab-initio Theoretical Calculations Compared to 

Sensing Experiments. Sensors and Actuators B: Chemical (Submitted - March 2018) 
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7.1 Abstract 

SnO2 is a semiconducting metal oxide that is broadly employed as the active sensing material in 

chemiresitive gas sensors. Recent studies demonstrated the capability of SnO2 sensors to detect 

various gases, including volatile organic compounds (VOCs), at room temperature. In this study, 

room temperature sensing of chloroform (CHCl3), which is one of the most ubiquitous disinfection 

byproduct in drinking water, using SnO2 nanostructured thin films synthesized via a single-step 

aerosol chemical vapor deposition (ACVD) process is demonstrated. The sensing mechanism is 

investigated by means of dispersion-corrected density functional theory (DFT) calculations and ab 

inito molecular dynamics (AIMD) simulations of chloroform’s adsorption on the (110) surface 

facet of rutile SnO2. Theoretical calculations demonstrate that the direct adsorption of chloroform 

on the stoichiometric and the oxygen defective (110) surface is thermodynamically favorable. 

Upon their adsorption, chloroform molecules donate charge to the surface inducing a drop in the 

sensor’s resistance that promotes the sensing response. Long-range dispersive interactions are 

found to play a significant role in chloroform binding to SnO2, and generally account for more than 

50% of the calculated adsorption energies. AIMD simulations in the canonical (NVT) ensemble at 

room temperature show that chloroform molecules minimally interact with the ionosorbed oxygen 

species (O2
−) suggesting that the sensing mechanism is mainly attributed to the direct binding of 

chloroform molecules on the sensor’s surface. Taken together, the results of this study suggest that 

nanostructured metal-oxide materials are promising material candidates for the room temperature 

sensing of chlorinated volatile organic compounds, with potential for real-time monitoring 

applications. 
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Figure 7-1. Graphical Abstract of the work presented in Chapter 7. A useful feedback loop: 

insights from theoretical calculations are used for rational design of nanosensors and for 

elucidating surface interactions 
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7.2 Introduction 

Chloroform (CHCl3 - Trichloromethane) is a chlorinated volatile organic compound (Cl-VOC) 

with well-documented toxicity and carcinogenic effects [1,2]. It is widely used as a solvent in the 

chemical and pharmaceutical industries, and as a precursor for the large-scale production of 

fluoropolymers and refrigerants. Industrial waste and spills are known to be the primary sources 

of chloroform emission to the environment [3]. Additionally, chloroform is one of the most 

ubiquitous disinfection byproducts (DBPs) in drinking water systems, which are commonly 

produced during water treatment as a result of the reactions between chlorine-based disinfectants 

and residual natural organic matter [4,5]. Water supply utilities routinely sample the finished 

drinking water in their systems to test for the presence of chloroform and other toxic 

trihalomethane compounds (THMs) in order to protect public health and to ensure compliance 

with regulatory limits [6].  

Traditional methods used for the analysis of THMs in the aqueous phase include direct 

aqueous injection, liquid-liquid extraction, and solid-phase extraction. In addition, headspace (HS) 

sampling techniques, including static HS, dynamic HS (purge and trap) [7], and solid phase 

microextraction (SPME) [8] methods, have gained notable popularity because they capitalize on 

the inherent volatility of THMs enabling direct sampling in the vapor phase to reduce interference 

[9]. However, most of these techniques still rely on traditional methods, such as gas 

chromatography (GC) coupled with either mass spectrometry (MS) or electron capture detection 

(ECD) [10], which makes them costly, bulky, and time-consuming. A promising alternative is to 

implement chemiresistive gas sensor arrays, traditionally known as electronic noses [11], for the 

real-time detection of THMs through headspace sampling. 
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Semiconducting metal-oxides are commonly employed as the active sensing material in 

chemiresistive gas sensors owing to their high sensitivity, unique chemical and physical stability, 

scalability, and low cost [12–14]. Previous studies demonstrated the successful application of 

various metal-oxide sensors for the detection of chloroform vapor. For example, Nie et al. prepared 

a chloroform sensor based on ZnO/CuO/Al2O3 composites that displayed optimal performance at 

200 °C [15]. Şennik et al. fabricated Pd-loaded TiO2 nanowires that showed high sensitivity 

towards chloroform at 200 °C [16]. Despite such material advances, the high working temperatures 

(150-400 °C) typically required to operate such sensors effectively reduce their long-term stability 

and complicate their miniaturization [17]. As a result, recent research efforts have aimed at 

fabricating resistive metal-oxide sensors with enhanced room temperature sensing capabilities 

[17]. Recently, Perillo and Rodrigues demonstrated room temperature chloroform detection with 

a sensor based on TiO2 nanotubes [18], while Zhou et al. [19] achieved the same using bilayer 

composite thin films of ZnO and reduced graphene oxide (RGO).   

Tin dioxide (SnO2) is an n-type semiconducting metal-oxide that displayed a robust room 

temperature response towards several gases of environmental interest, such as NO2 [20–24], CO 

[25,26], H2 [25–27], and NH3 [28]. To this point, no previous studies focused on investigating the 

room temperature sensing of chloroform by SnO2 despite its well-known sensitivity towards other 

VOCs such as ethanol [25,29–32] and acetone [33]. A few studies have included chloroform as an 

interfering gas while examining the specificity of their SnO2-based sensors, including NiO doped 

SnO2 nanospheres [34], SiO2@SnO2 core-shell nanofibers [35], SnO2 quantum dots on RGO [36], 

and nanostructured WO3–SnO2 [37]. Interestingly, all the above-mentioned sensors showed little 

to no response towards chloroform compared to the other tested analytes. It is noteworthy that for 

all of these studies, the active materials were all composites, i.e. they featured SnO2 coupled with 
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other metal-oxides, or carbon-based materials. Although relying on such composite materials is 

now common practice for the fabrication of resistive sensors, mainly to enhance their sensitivity 

at ambient temperature, it also complicates the sensor synthesis/scale-up compared to single-

component materials. Alternatively, sensors based on bare-SnO2 have relatively higher potential 

for mass production and broad-scale application, especially if adequate sensitivity at room 

temperature is achieved. Hence, a necessary first step towards the rational design of efficient SnO2 

sensors for broad-scale applications in sensor arrays, and to improve upon their sensitivity and 

specificity, is to explore the fundamental aspects of their surface chemistry and sensing mechanism 

towards Cl-VOCs.  

The primary sensing mechanism of chemiresistive gas sensors is generally attributed to the 

surface adsorption of the analyte molecules and the accompanying charge transfer, which induces 

a change in the electrical conductivity of the oxide. Hence, theoretical ab initio quantum chemical 

calculations have been routinely used in the literature to supplement experimental efforts by 

delivering an atomistic level understanding of the thermodynamic and electronic properties of the 

surface-adsorbate systems. A few theoretical investigations examined the adsorption of 

chloroform on different substrates, including pristine and doped graphene [38,39], graphene oxide 

[40], single wall carbon nanotubes [41], ZnF2 [42], and Pd-Au [3]. Yet, to our knowledge, no first-

principles studies have been conducted for chloroform’s adsorption on the surface of rutile SnO2. 

Recently, our group used a facile aerosol chemical vapor deposition (ACVD) process to 

prepare nanostructured SnO2 thin-film sensors that exhibited a strong room temperature sensing 

response towards VOCs with different degrees of polarity [43,44]. With the help of theoretical 

calculations, we postulated that the sensing response is triggered by the direct adsorption of the 

polar VOC molecules on the surface of SnO2, which is accompanied by the release of charge from 
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the adsorbate molecules to the surface [45]. Here, we conduct a thorough study of the room 

temperature sensing of chloroform by bare-SnO2 sensors. The sensing response of the ACVD 

fabricated thin film sensors towards chloroform at different vapor concentrations is demonstrated. 

Further, corresponding ab initio density functional theory (DFT) calculations are conducted to 

deliver a fundamental understanding of the sensing mechanism by providing atomic-level insights 

into the surface interaction mechanisms, considering the role of surface oxygen defects and long-

range dispersive interactions. A detailed investigation of the adsorption energetics and geometries, 

as well as the deformations in the charge density and the electronic structures, is provided. Ab 

initio molecular dynamics (AIMD) simulations are then used to examine the adsorption 

mechanisms at room temperature in the presence of oxygen from the ambient atmosphere.  

7.3 Experimental Details 

The SnO2 nanostructured thin films are deposited using a single-step gas-phase deposition process 

(ACVD), which has been previously used to synthesize thin films for energy storage, solar energy 

[46], and electrochemical sensing [47]. In the ACVD system, described elsewhere [44], the films 

are deposited at a temperature of 550 °C using a tetramethyl tin (TMT, Sigma-Aldrich) precursor 

carried by nitrogen gas (11 sccm) and a dilution flow rate of oxygen at 100 sccm. For all samples, 

the feeder tube to substrate distance is set at one centimeter and the deposition time is set at 17 

minutes. The nanostructured thin films are deposited directly onto Au/Cr interdigitated electrodes 

on a silicon substrate (IDE, 20 fingers, 50 µm wide and 2.4 µm long, spaced 50 µm apart). The 

gas sensing experiments are performed using a bubbler and mass flow controllers to produce five 

different concentrations of chloroform— 300, 500, 600, 700, and 1000 ppm—for a five-minute 

exposure period followed by a five-minute degassing period. A dilution flow of dry, filtered air 

(hydrocarbon trap, model HT200-4 Agilent) is introduced to ensure a gas flow rate of 750 sccm is 
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consistently delivered to the sensor manifold. In addition, this carrier stream also helps control the 

concentration of chloroform vapors delivered to the manifold containing the sensors. The 

resistance measurements are performed with an NI PXI-4071 Digital Multimeter in the 1 kOhm 

test range. The results are analyzed with a low pass filter (3rd order, lowpass digital Butterworth 

filter) in MATLAB. 

7.4 Computational Methods 

7.4.1 Density Functional Theory (DFT) Calculations 

All calculations were performed with the Vienna ab initio simulation package (VASP version 

5.3.5) [48,49]. The projector augmented wave (PAW) method [50,51], with the frozen-core 

approximation, is used with a 500 eV energy cutoff. The Sn 4d states are treated as valence states. 

For the exchange-correlation (XC) functional, we employed the generalized gradient 

approximation (GGA) with the formulation proposed by Perdew–Burke–Ernzerhof (PBE) [52]. 

Bader charge analysis was performed to analyze the charge transfer between the surface and the 

adsorbate molecules. We chose to limit our focus to the (110) surface because it is the most 

thermodynamically favorable facet of rutile SnO2 [53]. The perfect (110) surface (110-sto) is 

modelled here as a p(2×2) surface slab cleaved from the fully relaxed bulk rutile structure (a=b= 

4.830 Å, c= 3.243 Å, α = β = γ = 90o) with an imposed additional vacuum layer of 15 Å to avoid 

interactions with periodic images in the z-direction. The modeled surface slab consists of four 

(Sn2O4) tri-layers (Figure 7-2), with a total of 96 atoms (Sn32O64). An oxygen vacancy is 

introduced by removing one of the bridging oxygen atoms (Obr) from the topmost atomic layer to 

create the partially reduced (oxygen defective) surface (110-red). For all geometry optimization 

calculations, the top two tri-layers are allowed to relax while the bottom two layers are fixed at 

bulk positions. For the adsorption calculations, a chloroform molecule is adsorbed on one side of 
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the slab, and dipole corrections are employed to generate accurate adsorption energies. Since the 

noncovalent interactions are expected to play an important role in our study, the empirical van der 

Waals corrections, as prescribed by Grimme [54] (DFT-D3) with Becke-Jonson (BJ) damping are 

considered in all calculations. For geometry optimization, the conjugate gradient algorithm is used 

to relax the atomic positions until the Hellmann-Feynman forces on each ion are smaller than 0.02 

eV/Å and have an overall energy convergence of 10−5 eV. For the Brillouin zone integration, the 

k-meshes are generated automatically using the Monkhorst–Pack (MP) method with a (4×2×1) k-

point mesh. Density of states (DOS) calculations were conducted on the most stable adsorption 

configurations using a denser k-point mesh of (20×20×1) to obtain accurate electronic structures. 

The linear tetrahedron method with Blöchl corrections is used to determine how the partial 

occupancies are set for each orbital. 

7.4.2 Ab-initio Molecular Dynamics (AIMD) Simulations 

To study the interactions between chloroform and the (110) surface of SnO2 under ambient 

conditions, we perform ab initio molecular dynamics (AIMD) simulations considering the 

canonical (NVT) ensemble in VASP. Similar to the DFT calculations, the GGA-PBE functional 

with the D3(BJ) dispersion corrections are employed. To simulate a large interface for surface 

interactions between SnO2 and the adsorbate molecules, a p(4×2) simulation box consisting of 192 

atoms (4 layers of Sn16O32) with surface dimensions of (12.98 Å × 13.66 Å) is used, and a vacuum 

space of 20 Å is imposed above the surface. An energy cutoff of 300 eV is employed for the AIMD 

simulations, and the k-space is sampled only at the Γ-point given the large size of the simulation 

box. A Nosè-Hoover thermostat is applied to conduct constant temperature simulations at T = 298 

K. A time step of 0.5 femtoseconds (fs) is used to integrate the equations of motion, and 15 

pecoseconds (ps) trajectories (30,000 steps) are generated for all adsorbate–adsorbent systems for 
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each simulation. Three simulation ensembles were conducted for: (1) the perfect (110) surface; (2) 

the partially reduced (110) surface; and (3) the partially reduced (110) surface with pre-adsorbed 

oxygen molecules.  

 

Figure 7-2. A surface slab of four tri-layers representing the stoichiometric (110) surface of 

rutile SnO2. The topmost layer features four atom types: Obr is the bridging oxygen, Oip is the in-

plane oxygen, Sn5c is the five-fold coordinated tin, and Sn6c is the six-fold coordinated tin. 
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7.5 Results and Discussion 

7.5.1 Room temperature sensing response of SnO2 towards Chloroform  

ACVD deposited SnO2 nanostructured thin films are first experimentally tested for their sensing 

response to chloroform at room temperature. A representative trace showing the characteristic 

response of the nanostructured SnO2 films at room temperature is depicted in Figure 7-3. In 

addition, the inset shows an SEM image of the nanostructured thin films, which were more 

thoroughly characterized and shown to have the (110), (101), and (211) facets exposed, as reported 

in previous work [44]. The introduction of chloroform evokes a step-wise decrease in resistance 

during the exposure periods, which indicate that charge is transferred from the adsorbed 

chloroform molecule to the surface.  

 

Figure 7-3. (a) Representative trace of the gas sensing response of SnO
2
 nanostructured thin 

films towards chloroform. (b) SEM images of nanostructured thin films and a single column 

(inset). 
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The sensing response of resistive metal-oxide sensors at increased temperatures has been 

classically attributed to the change in the sensor’s resistance resulting from the surface interactions 

between the analyte gas molecules and the ionosorbed oxygen species [55]. Oxygen molecules 

from the ambient atmosphere first adsorb on the surface of the metal-oxide, and then ionize to form 

superoxide species (O2
−) by uptaking free electrons from the conduction band. At higher 

temperatures (>200 °C), superoxide molecules dissociate after capturing extra electrons from the 

surface to form oxygen ions (O- and O2−)  according to the following mechanism [56]: 

O2(gas) → O2(ads)                                                                    (7 − 1) 

O2(ads) + e− → O2
−(ads)                                                         (7 − 2) 

O2
−(ads) + e− → 2O−(ads)                                                      (7 − 3) 

O−(ads) + e− → O2−(ads)                                                       (7 − 4) 

The trapping of the metal-oxide’s free electrons by the pre-adsorbed oxygen species 

reduces its carrier concentration and conductivity before introducing the target vapor. Trapped 

electrons are then released back to the surface when the target gas molecules interact with the pre-

adsorbed oxygen species resulting in a measurable drop in the resistance. For this processes, the 

ionosorbed (O-) anions are generally regarded as the most chemically active reaction centers that 

enable the detection of various gases [57]. For example, Nie et al. suggested that the sensing 

mechanism of their ZnO/CuO/Al2O3 composites is attributed to the catalytic oxidation of 

chloroform molecules at the surface according to the following reaction [15]: 

CHCl3(g) + O−(ads) → COCl2(g) + HCl(g) + e−                                           (7 − 5) 
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However, since the dissociation of the less chemically active (O2
−) species (Equation 7-3 in the 

abovementioned mechanism) only takes place at elevated temperatures, the oxidation of the 

chloroform molecules is unlikely to occur at room temperature. In a recent study, we found that 

the room-temperature response of the ACVD-deposited SnO2 thin film sensors towards ethanol 

and acetone under argon conditions was identical to that observed under ambient conditions [45]. 

Furthermore, theoretical results elucidated that ethanol and acetone do not interact with the pre-

adsorbed (O2
−) species on the surface of SnO2 suggesting that the room temperature sensing 

mechanism of polar VOC molecules by SnO2 sensors is primarily driven by their direct adsorption 

on the surface. Herein, we investigate the direct adsorption of chloroform on the surface of SnO2 

by means of DFT calculations. We then demonstrate the interaction of chloroform molecules with 

the SnO2 surface in both the presence and absence of pre-adsorbed oxygen species by means of ab 

initio MD simulations at room temperature. 

7.5.2 Adsorption geometries and energetics  

Adsorption on the perfect (110) surface 

To begin, we conduct a thorough investigation of the possible configurations by which chloroform 

may adsorb on the stoichiometric surface of SnO2. The topmost layer of a perfect (110) surface 

slab comprises four different atom types (Figure 7-2), namely the five-fold coordinated tin (Sn5c), 

six-fold coordinated tin (Sn6c), bridging oxygen (Obr), and in-plane oxygen (Oip). Chloroform, on 

the other hand, features a distorted tetrahedral geometry with three electronegative chlorine atoms 

and one hydrogen atom. Six possible adsorption configurations are identified considering the 

partial charges and electronegativities of the surface atoms and the adsorbate molecule. Figure 7-

4 shows the six configurations before and after relaxation. The six configurations can be broadly 

classified into three categories depending on the orientation of the hydrogen atom that can point 
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either upwards (Hup) or downwards (Hdn), or adopt a horizontal orientation (Hhl). It is important to 

note that these configurations are defined for the surface-adsorbate systems before conducting the 

geometry optimization calculations because, after relaxation, these systems evolve into new 

configurations that are less readily definable. For the first category (Hup), the H atom is pointing 

upwards away from the surface, while the three electronegative Cl atoms interact with the surface 

Sn cations; either with one Sn6c and two Sn5c (Hup1,sto) or with one Sn5c and two Sn6c (Hup2,sto). For 

the second category (Hdn), the H atom faces downwards perpendicular to the surface and directly 

interacts with a surface oxygen atom; either the Oip (Hdn1,sto) or the Obr (Hdn2,sto). The third 

configuration (Hhl) involves two modes of interaction; the first is a close interaction between the 

horizontally oriented H atom and a surface Obr atom, while the second is a rather loose (distant) 

interaction between either one Cl atom (Hhl1,sto) or two Cl atoms (Hhl2,sto) and the underlying 

surface Sn5c cations. 

The energy of adsorption (𝐸𝑎𝑑𝑠) is defined as the difference in the total energy when the 

chloroform molecule is adsorbed on the surface, and when it is isolated in the vapor phase: 

𝐸𝑎𝑑𝑠 = Δ𝐸𝑡𝑜𝑡 = −[𝐸𝑠𝑢𝑟𝑓+𝑚𝑜𝑙 − (𝐸𝑠𝑢𝑟𝑓 + 𝐸𝑚𝑜𝑙)]                                           (7 − 6) 

where, 𝐸𝑠𝑢𝑟𝑓+𝑚𝑜𝑙 is the total energy of the surface with the adsorbed molecule in the optimized 

adsorption configuration, and 𝐸𝑠𝑢𝑟𝑓  and 𝐸𝑚𝑜𝑙 are the optimized energies of the clean surface slab 

and the isolated gas molecule, respectively. According to this definition, a positive value for the 

adsorption energy indicates an exothermic process, i.e. the adsorption is thermodynamically 

favorable. The calculated adsorption energies are listed in Table 7-1. The adsorption energies for 

the different configurations on the stoichiometric surface are within the range of 0.69 eV to 1.00 

eV, with the exception of the Hdn2,sto configuration whereby the adsorption is drastically less stable 

than all the other configurations (𝐸𝑎𝑑𝑠=0.35 eV).  
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Table 7-1. Adsorption energy (eV), dispersion energy (eV), and charge transfer for the 

adsorption of chloroform on the stoichiometric and reduced SnO2 (110) surface. The 

configurations are ranked in a descending order by Eads from the most stable to the least stable. A 

negative sign for the charge transfer indicates net electron gain by the surface. 

 

 

 

 

 

 

 

 

 

Surface Configuration E
ads 

(eV) ΔE
disp 

(eV) Charge Transfer 

(110-sto) 

H
dn1,sto

 1.004 0.589 -0.109 

H
hl2,sto

 0.938 0.518 -0.08 

H
hl1,sto

 0.925 0.494 -0.073 

H
up1,sto

 0.734 0.582 -0.106 

H
up2,sto

 0.688 0.523 -0.061 

H
dn2,sto

 0.347 0.257 -0.018 

(110-red) 

H
dn1,red

 0.754 0.52 -0.065 

H
hl2,red

 0.621 0.471 -0.039 

H
hl1,red

 0.604 0.397 0.249 

H
up3,red

 0.564 0.502 -0.028 

H
up1,red

 0.558 0.496 -0.032 

H
up2,red

 0.555 0.533 -0.05 
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Figure 7-4. Studied configurations of chloroform before and after adsorption on the perfect 

(110) surface. Red color represents oxygen atoms, gray is tin, green is chlorine, brown is carbon, 

and white is hydrogen. 

 

For the calculated adsorption energies, the Hdn1,sto configuration is found to be the most 

stable (1.00 eV), followed by the two Hhl configurations (~0.93 eV), then the two Hup 

configurations (~0.7 eV). Here, a consistent trend is observed, where the adsorption energy appears 

to increase as the number of binding modes between the chloroform molecule and the surface 

increases. For example, the relaxed structure for the most stable configuration (Hdn1,sto) comprises 

two distinct modes of binding: (i) through electrostatic interactions between the H atom and nearby 

surface Obr and Oip atoms (bond lengths = 2.44~2.51 Å), and (ii) through covalent interactions 

between two Cl atoms and surface Sn5c cations (bond length = 2.91 Å). Although the relaxed 

structures for the Hhl configurations also feature two binding modes, their adsorption energies are 
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relatively less stable than Hdn1,sto since only one Cl atom (instead of two) interacts with the surface 

Sn5c, while the other two point away from the surface. Relaxed Hup and Hdn2,sto configurations 

include only one binding mode either between Cl atoms and surface Sn5c centers, or between H 

and a surface Obr atom, which justifies their lower adsorption energy compared to the other 

configurations.  

Taking a closer look at the most stable configuration (Hdn1,sto), the adsorption energy of 

(1.00 eV) indicates a weak chemisorption phenomenon, which is also supported by the minor 

distortions observed in the geometry of the chloroform molecule following its adsorption on the 

surface. For example, the C-Cl bonds for the two Cl atoms binding to the surface Sn5c cations 

stretch by 1.58% from 1.771 Å before relaxation to 1.799 Å after relaxation. However, it is 

noteworthy that the GGA method used herein slightly overestimates the C-Cl bonds in chloroform 

compared to the experimentally observed length of 1.762 Å, which is consistent with previous 

GGA-based theoretical studies [42].   

 Previous calculations for chloroform adsorption on carbon-based materials, such as 

graphene [39] and graphene oxide [40], were found to yield adsorption energies in the range of 

0.2-0.4 eV, which are notably less stable than our calculated energies for rutile SnO2. For the 

adsorption on pristine graphene, the Hup configurations featuring the Cl3 tripod interacting with 

carbon atoms appeared to be the most stable (Eads = ~0.36 eV) [39]. Nevertheless, the adsorption 

energy on graphene is still considerably lower than the corresponding Hup configurations on SnO2 

(Eads = ~0.7 eV), which can be attributed to the higher polarity, and thus the strength, of the 

covalent Sn-Cl bonds compared to the C-Cl bonds formed between chloroform and graphene. 

Furthermore, the calculated binding energy for chloroform adsorption on the rutile (110) surface 

of SnO2 (1.00 eV) is considerably more stable than the previously calculated value on the rutile 
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(110) surface of ZnF2 (0.20 eV) using a similar dispersion corrected D3 method [42]. Yet, the ZnF2 

study only considered the upright adsorption configuration with one chlorine atom interacting with 

the undercoordinated metallic Zn center similar to the (Hhl1,sto) configuration in our study. 

Role of bridging oxygen vacancies (Obr-vac)  

Oxygen vacancies are one of the most common defect sites on the surfaces of semiconducting 

metal-oxides. They are hence expected to play a critical role in the surface interactions between 

SnO2 surface and chloroform molecules, and thus affect the sensing mechanism. On the (110) 

surface of SnO2, bridge-bonded oxygen vacancies (Obr-vac) are the most prevalent [58] since they 

exhibit the lowest formation energy compared to other Ovac types [59]. The removal of a bridging 

oxygen atom gives rise to a pair of under coordinated five-fold tin cations (Sn5c). Previous 

experimental studies suggest that the presence of surface oxygen vacancies enhances room 

temperature sensing response of SnO2 nanocrystals to NO2  [23], which is in agreement with 

theoretical work demonstrating that the presence of Obr-vac leads to stronger adsorption and a larger 

charge transfer [60]. However, in a recent study, our group found that Obr-vac reduced the stability 

of the adsorption of ethanol and acetone on the (110) and (101) surfaces of SnO2 [45], indicating 

that surface oxygen vacancies exert different effects on the adsorption of different molecules 

depending on their properties.  

  Similar to the perfect surface, six possible configurations are identified for chloroform 

adsorption on the reduced (110) surface with a bridging oxygen vacancy (Obr-vac), which can be 

defined according to the same classification of Hup, Hdn, and Hhl. The six configurations before and 

after relaxation are displayed in Figure 6-5. A corresponding configuration to the Hdn2,sto 

configuration on the perfect surface does not exist for the reduced case since the bridging oxygen 

atom is now missing. Instead, a third Hup configuration is defined for the reduced surface (Hup1,red) 
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in which one Cl atom is placed near the Obr vacancy site, and thus interacts with the two under 

coordinated Sn5c cations that emerge after vacancy formation. Further, both Hhl configurations on 

the reduced surface feature a Cl atom filling the vacancy site, while the H atom interacts with the 

nearby bridging oxygen Obr atom.  

 

 

Figure 7-5. Studied configurations of chloroform before and after adsorption on the oxygen-

defective (110) surface. Red color represents oxygen atoms, gray is tin, green is chlorine, brown 

is carbon, and white is hydrogen. 
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For all configurations, the calculated adsorption energies for chloroform on the defective 

surface (Δ𝐸𝑎𝑑𝑠= 0.56-0.75 eV) are less stable than those calculated for a perfect surface, indicating 

weaker binding on the reduced surface. Yet, similar to the adsorption on the stoichiometric surface, 

a clear relationship between binding strength and the number of binding modes between the 

molecule and the reduced surface in the optimized geometry is observed. Once more, the Hdn1,red 

configuration exhibits the highest adsorption strength (0.75 eV) on the defective surface, followed 

by the Hhl configurations (~0.61 eV), and the Hup configurations (~0.56 eV).  

 Focusing on the most stable configuration (Hdn1,red), the relaxed structure shows a slight 

distortion from the corresponding configuration on the stoichiometric surface mainly because the 

Obr-vac breaks the overall symmetry causing the horizontally oriented H atom to interact with only 

one, rather than two, surface Obr atoms. This considerably stretches one of the Cl-Sn5c bonds to 

3.27 Å, while the other Cl-Sn5c bond retains a similar bond length of (2.91 Å) to that observed for 

the stoichiometric case. Correspondingly, the interaction between the H atom and surface Obr atom 

exhibits a shorter bonding distance of 2.15 Å, compared to the 2.44 Å seen for the perfect surface 

indicating a stronger electrostatic interaction. A similar stretching in the C-Cl bond to 1.799 Å is 

observed for the reduced case.  

Although the Hhl1,red is only the third most stable configuration for chloroform adsorption 

on the defective surface, its relaxed structure exhibits a unique feature that is not observed for any 

other configuration on either the reduced or the stoichiometric surfaces. After relaxation, the Cl 

atom near the defect location dissociates and goes to fill the bridging oxygen vacancy (Obr) site, 

while the conjugate dichloromethyl group (CHCl2) binds to the adjacent Obr atom. This 

observation suggests that the dechlorination of the chloroform molecule over the reduced surface 

is thermodynamically possible. 
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Role of dispersive (vdW) interactions 

The effective tripod of three electronegative chlorine atoms on one side of the chloroform molecule 

gives rise to a finite dipole moment that significantly affects its adsorption properties [40]. Thus, 

long-range vdW interactions are considered in our calculations based on the empirical dispersion 

corrections proposed by Grimme (D3) in conjunction with the Becke-Johnosn (BJ) damping 

technique. In this method, the total corrected energy of the system Etot is the summation of the 

conventional DFT energy EDFT, and an additional energy term that accounts for dispersive 

interactions Edisp [61]. Hence, by using a similar formula to the one employed for calculating the 

adsorption energy, the contribution of dispersive interactions between the surface and the 

adsorbate molecule can be evaluated as: 

𝐸𝑎𝑑𝑠 = Δ𝐸𝑡𝑜𝑡 = Δ𝐸𝐷𝐹𝑇 − Δ𝐸𝑑𝑖𝑠𝑝                                                         (7 − 7) 

The calculated values of the dispersion energy for the stoichiometric and the oxygen defective 

surfaces are given in Tables 1. For all the studied systems, the contribution of dispersive 

interactions to the adsorption energy is significant (>50%). For the most stable configuration on 

the stoichiometric surface (Hdn1,sto), dispersive interactions account for 59% of the adsorption 

energy (1.00 eV) indicating a weak chemisorption process. On the other hand, the contribution of 

dispersive interactions is higher (69%) for the most stable configuration on the reduced surface, 

while the adsorption energy is lower (0.75 eV), suggesting a strong physisorption phenomena on 

the defective surface. In general, the contribution of dispersion to the adsorption energy for the 

reduced surfaces (66%-96%) is greater than stoichiometric surfaces (53%-79%), despite the fact 

that the magnitudes of the dispersion energies are almost similar for both cases. This can be simply 

explained by the higher total adsorption energies on the stoichiometric surfaces due to the strong 

electrostatic interactions between the H atom and surface oxygen atoms.  
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7.5.3 Electronic Structure Calculations 

Charge transfer mechanisms 

To further elucidate the sensing mechanism of SnO2 towards chloroform, we conducted Bader 

Charge Analysis [62] for all the adsorption configurations highlighted in the previous sections 

(Table 1). For both the stoichiometric and oxygen defective surfaces, adsorption of chloroform is 

accompanied by the release of charge from the molecule to the surface, which is in agreement with 

the drop in the film’s resistance observed in the sensing experiments. The only exception is the 

Hhl1,red case for chloroform dechlorination over the reduced surface, where the molecule uptakes a 

net charge of 0.25 e after adsorption. The reversal in the charge transfer direction for this particular 

configuration can be attributed to the high electronegativity of the dissociated Cl atom filling the 

Obr-vac site, which uptakes charge from the undercoordinated Sn5c cations that possess excess 

charge due to vacancy formation [45].  

Figure 7-6 displays the differential charge density plots for the most stable configurations on 

the stoichiometric and oxygen defective surfaces. The plotted charge density deformation is 

described as: 

𝛥𝜌 = 𝜌(𝑠𝑢𝑟𝑓+𝑚𝑜𝑙) − (𝜌𝑠𝑢𝑟𝑓 + 𝜌𝑚𝑜𝑙)                                             (7 − 8) 

The blue color represents the regions experiencing charge density depletion, indicating the release 

of electrons, while the yellow color represents the regions with a gain in the charge density due to 

the trapping of electrons. As can be observed from the figures, an excess charge density (yellow 

isosurface) is accumulated around the surface bridging oxygen (Obr) and in-plane oxygen (Oip) 

atoms in the topmost layer from either the stoichiometric or the reduced surface, accompanied by 

a charge depletion zone (blue isosurface) localized around the H atom from chloroform. This 
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indicates that surface oxygen atoms act as electrophilic centers that uptake charge from the 

chloroform molecule upon adsorption, which also explains the net release of charge from 

chloroform to SnO2. Bader charge analysis demonstrates that for the stoichiometric case, surface 

oxygen atoms from the topmost layer gain a total of 0.086 e while the H atom from chloroform 

loses 0.123 e. For the reduced case, surface oxygen atoms gain 0.075 e while H loses 0.117 e. In 

both cases, part of the charge lost by the hydrogen atom is also localized over the adjacent carbon 

atom. In addition to the electrostatic interaction between the surface oxygens and chloroform’s 

hydrogen, another strong covalent interaction is observed between surface Sn5c centers and Cl 

atoms for both the stoichiometric and reduced surfaces. This can be visualized by inspecting the 

charge depletion zones (blue) around both atoms, while a charge accumulation zone (yellow) is 

simultaneously formed along the line connecting their centers, indicating strong electron sharing 

between the two atoms as a clear sign of covalent bonding. Yet, the formed Sn-Cl bond is polar as 

indicated by the small charge accumulation (yellow) zone localized around the more 

electronegative chlorine atoms. 

 

Figure 7-6. Charge density deformation plots for the most stable configurations of chloroform 

adsorption on the (a) stoichiometric (110) surface, and (b) reduced (110) surface. Blue and 

yellow colors represent zones experiencing a charge density depletion and accumulation, 

respectively. 
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Density of states analysis 

Further insight into how chloroform adsorption influences the electronic properties of the SnO2 

sensor can be gained by conducting density of states (DOS) calculations. Figure 7-7 shows the 

total density of states (TDOS) plots of the chloroform molecule before and after adsorption on the 

stoichiometric surface for the most stable configuration (Hdn1,sto). Two major changes can be 

observed. First, the free state is characterized by isolated peaks corresponding to discrete molecular 

orbitals, while the adsorbed state features a clear broadening in the peaks near the HOMO level. 

Regardless, no significant change is observed for deep states (E ≤ -10 eV), where the peaks remain 

sharp and isolated. Such broadening in the peaks of the adsorbed molecule indicates a strong 

hybridization with the orbitals of the surface, which is additional evidence of covalent-like bonding 

between the molecule and the surface. The second observation is that the TDOS peaks of the 

adsorbed molecule are shifted towards lower energies. Previous studies attributed the shifting of 

the orbital energy levels to charge transfer corresponding to ionic bonding, while peak broadening 

was attributed to covalent bonding [63]. Based on these classifications, the electronic structure of 

the adsorbed molecule is altered due to strong orbital hybridization with the SnO2 surface orbitals, 

which supports the hypothesis that adsorption on the stoichiometric surface is a chemical 

adsorption phenomena. To understand the nature of this hybridization, the projected density of 

states (PDOS) for each atom type in the free chloroform molecule (i.e. C, H, and Cl) were 

inspected. The peaks near the Fermi level are found to mainly consist of the p-states of the Cl 

atoms. To demonstrate orbital coupling between the molecule and the surface, the PDOS of the Cl 

atoms in the adsorbed chloroform molecule is plotted in Figure 7-8, together with the PDOS of the 

surface Sn5c centers at which the molecule binds as previously mentioned. The hybridization seems 
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to take place mainly within the valence band region of the SnO2 surface. In this region, PDOS of 

the two atoms show a strong overlap between the p-states of Cl, and the s- and d-states of Sn5c. 

 

 

 

Figure 7-7. The total density of states (TDOS) plot of the chloroform molecule before and after 

adsorption on the stoichiometric (110) surface. The zero energy is set to the HOMO level of the 

free chloroform molecule isolated in the vacuum space above the surface. 
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Figure 7-8. The projected density of states (PDOS) plots of the bonded Cl atoms and surface 

Sn
5c

 centers for the case of chloroform adsorption on the stoichiometric (110) surface. The zero 

energy is set to the VBM of the stoichiometric surface. 
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7.5.4 Ab-initio Molecular Dynamics Simulations at Room Temperature 

To elucidate the sensing mechanism at room temperature, we perform AIMD simulations on the 

(110) surface for (1) the stoichiometric case, (2) the oxygen defective case, and (3) the oxygen 

defective case with pre-adsorbed oxygen species. For scenarios (2) and (3), two bridging oxygen 

atoms are removed from the topmost atomic layer to create the reduced surface (25% of the 

exposed Obr atoms). For each scenario, three chloroform molecules are randomly placed at a large 

distance above the surface (~5 Å) at the beginning of the simulation and then allowed to move 

freely under canonical conditions (NVT) for the entire simulation period (15 ps). For all scenarios, 

chloroform molecules descend gradually towards the surface as the simulation proceeds and then 

adsorb initially at random locations after a short period (3~4 ps). Molecules then diffuse laterally 

across the surface for a longer period (5~6 ps), during which different binding configurations are 

sampled. Eventually, the simulation equilibrates when all the chloroform molecules find their most 

stable adsorption sites on the surface, at which they vibrate periodically for the rest of the 

simulation period (last 5~7 ps). Figure 7-9 shows the change in the free energy of the ionic system 

during the AIMD simulation for the stoichiometric surface, where it can be observed that the 

energy of the system initially drops as the molecules approach the surface, then fluctuates while 

the molecules sample different adsorption configurations until it eventually reaches a minimum 

energy state once all the chloroform molecules have met their most stable adsorption sites.   
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Figure 7-9. Change in the total energy of the system during the AIMD simulation of chloroform 

adsorption on the stoichiometric (110) surface. 

 

Figure 7-10 depicts a final snapshot of the AIMD simulations after 15 ps for the three simulated 

scenarios. For the first scenario (stoichiometric surface – Figure 7-10a), the final adsorption 

configuration of two out of the three chloroform molecules is identical to the most stable (Hdn1,sto) 

configuration predicted by the DFT calculations with two Cl atoms bound to Sn5c centers while 

the H atom interacts with the neighboring two Obr atoms and one Oip atom interchangeably. The 

third configuration, however, resembles the Hup1,sto configuration where the H atom is pointing 

upwards, while two Cl atoms interact with Sn5c centers. For the second scenario (reduced surface 

– Figure 7-10b), each of the three chloroform molecules takes a different final configuration, where 

only one molecule adopts the most stable (Hdn1,red) configuration. One of the other two molecules 

adopts the (Hhl2,red) configuration, the second most stable for the reduced surface, in which one Cl 
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fills the Obr vacancy location, the other Cl interacts with the neighboring Sn5c center, and the H 

atom interacts with a surface Obr atom. Interestingly, the third molecule takes a configuration 

identical to the most stable configuration on the stoichiometric surface (Hdn1,sto). These results 

suggest that, at room temperature, chloroform molecules do not necessarily adopt the most stable 

configuration; instead, they might be ‘trapped’ in another thermodynamically stable configuration 

for a certain period.   

   For the third scenario (reduced surface with pre-adsorbed O2), two oxygen molecules are 

first introduced to the system at a similar 5 Å distance from the reduced surface. The NVT 

simulations were then run for 5 ps before introducing the three chloroform molecules to ensure 

that oxygen molecules pre-adsorb on the surface. The two oxygen molecules find stable binding 

sites at the oxygen defect location almost immediately (< 0.5 ps). They take the straddled binding 

configuration whereby one oxygen atom fills the vacancy site, while the other interacts with the 

neighboring Sn5c atom. Following their adsorption on the surface, the O=O bonds stretch by up to 

0.31 Å (from 1.23 Å before adsorption to 1.54 Å after adsorption). Despite the stretching, O=O 

bonds do not break completely during the simulation, which confirms that the majority of the pre-

adsorbed oxygen species at room temperature are (O2
−) rather than (O−) in agreement with our 

previous DFT results [45].   

After introducing the three chloroform molecules, they do not show any particular interaction 

with the pre-adsorbed oxygen molecules, except during the second phase of sampling different 

adsorption configuration where the H atom is sometimes seen electrostatically attracted to one of 

the oxygen atoms in a fashion similar to their attraction to surface Obr atoms. The final 

configuration (Figure 7-10c), however, does not show any interaction between chloroform and 

pre-adsorbed O2. Instead, all three molecules take configurations similar to the adsorption on the 
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stoichiometric surface at the Sn5c centers. It is important to note that the topmost layer has 16 Sn 

atoms, only half of which are five-fold coordinated Sn5c centers. Thus, following oxygen 

adsorption, only 6 Sn5c centers are available for chloroform adsorption through Cl-binding, which 

should be enough to bind all the three chloroform molecules with the most stable Hdn1,sto 

configuration where each molecule binds to two Sn5c centers. However, only one chloroform 

molecule was able to find this configuration, while the other two took the Hhl1,sto configuration with 

only one Cl atom bound to Sn5c while the other being consistently repelled by the pre-adsorbed 

oxygen atom. These results suggest that pre-adsorbed oxygen species might force chloroform 

molecules to adopt less stable configurations if their surface concentration is high enough to pre-

occupy all the oxygen vacancies (and thus the neighboring Sn5c centers) on the surface. In general, 

AIMD results suggest that pre-adsorbed oxygen species play a minimal role in the sensing 

mechanism at room temperature since the incoming chloroform molecules prefer binding directly 

to the surface rather than interacting with them.   
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Figure 7-10. A final snapshot of the ab initio molecular dynamics (AIMD) simulation at 15 ps 

for the (a) stoichiometric (110) surface, (b) reduced (110) surface, and (c) reduced (110) surface 

with pre-adsorbed O
2
 species. 
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7.6 Conclusions 

Chloroform is a toxic volatile organic compound that is widely present in a variety of systems. 

Room temperature sensing of chloroform by nanostructured SnO2 thin film sensors is 

demonstrated both theoretically and experimentally. Thin SnO2 films are prepared using a single-

step aerosol chemical vapor deposition (ACVD) process that has a strong potential for scale-up. 

Dispersion-corrected density functional theory calculations of chloroform’s adsorption on the 

SnO2 surface were used to elucidate the sensing mechanism. Calculations show that chloroform’s 

adsorption on both the stoichiometric and oxygen defective (110) surface of rutile SnO2 is 

thermodynamically favorable, and with binding energies that are much stronger than previously 

calculated energies for chloroform’s adsorption on carbon-based materials. Chloroform molecules 

are observed to donate charge to the SnO2 surface following their adsorption, which triggers a 

sensing response by lowering the resistance of the thin film sensors, and is in agreement with the 

observed sensing response. The electronic structure of the chloroform molecule is strongly 

distorted after adsorption and the density of states features a strong orbital hybridization between 

the surface and the molecule, which suggests a chemical adsorption phenomenon. Ab initio 

molecular dynamics simulations are implemented to examine the adsorption mechanism at room 

temperature in the presence of oxygen from the ambient atmosphere. Simulations demonstrate that 

chloroform molecules minimally interact with the pre-adsorbed oxygen species (𝑂2
−), supporting 

the hypothesis that the primary sensing mechanism at room temperature is attributed to the direct 

adsorption of chloroform molecules on the sensor’s surface rather than due to interactions with the 

ionosorbed oxygen. Taken together, the results of this study suggest that chemiresistive metal-

oxide gas sensor arrays can provide a cheaper and more portable alternative to traditional gas 

analysis methods, such as GC-MS or GC-ECD, for the detection of chlorinated volatile organic 
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compounds in industrial and environmental systems. More specifically, such sensor arrays can be 

implemented for the real-time monitoring of carcinogenic trihalomethane compounds in drinking 

water supply systems, which is of significant importance for protecting public health. 
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Chapter 8  

Conclusions and Future Directions 
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8.1 Summary of the Dissertation 

To guarantee the efficient and sustainable operation of our aging water supply system, advanced 

computational tools for the simulation and management of the water quality need to be developed. 

A water supply system can be visualized as a huge reactor with numerous processes taking place 

at a wide range of length and time scales. The formation and degradation of the various compounds 

are dictated by the chemical interactions taking place at the molecular level, while their fate and 

transport at the continuum scale is controlled by the various mass transfer phenomena. This 

highlights the need for developing a multi-scale modeling framework that is capable of providing 

the finest description of each of the phenomena of interest at its appropriate scale of resolution, 

while simultaneously linking these scales to render a high fidelity representation of the system. 

The main objective of the presented work is to demonstrate and apply multi-scale modeling 

techniques to understand the fundamental physical, chemical, and biological processes that dictate 

the water quality in the supply system. Towards this goal, this dissertation focused on creating 

computational models at three interdependent scales of resolution: 

8.1.1 Continuum Scale Modeling 

In the context of water distribution systems, continuum-scale models are the most useful since they 

enable the prediction of the spatiotemporal concentration profiles of the different water 

constituents, while incorporating the influence of the dynamic hydraulics in the system on their 

fate and transport. Hence, the main focus of this dissertation was on developing advanced reactive-

transport models for the simulation of the chemical and microbiological deterioration of drinking 

water quality as it travels through the distribution network and inside premise plumbing by 

simulating the decay and transport of disinfectants, the formation and transport of disinfection 

byproducts and biomass, and the release of lead.  
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In Chapter 2, an advanced transport modeling technique capable of accurately simulating the 

low-flow dead-end zones of the distribution system is developed. The model considers both 

dispersive solute transport mechanisms and the spatiotemporal distribution of flow demands. 

Comparison against field measurements of free chlorine and fluoride tracer revealed that the 

simulation results of the newly developed model are more accurate than previously developed 

advection-based models, and advection-dispersion models in the literature. The approximation of 

spatial aggregation of flow demands for simulating water quality was found to cause substantial 

errors in the simulation of disinfectant transport and decay in the dead-ends. 

In Chapter 3, a multi-species reactive transport model is developed to simulate the dynamic 

interplay between the various water constituents, including the transformation of the biodegradable 

fraction of natural organic matter (NOM) into biomass through biofilm growth, biomass release 

through biofilm detachment under shear stresses, and DBP formation from the parallel reactions 

of chlorine with precursors of both microbial and non-microbial origin. This model is used to 

investigate the role of biofilms in the formation and fate of disinfection byproducts in the pipes of 

the distribution system. Simulation results revealed that fast bacterial regrowth in the system 

increases the contribution of biomass-derived precursors to the total THMs budget, especially if 

high initial chlorine doses were applied to preserve the microbiological quality of the finished 

water. The results highlighted the importance of integrating bacterial dynamics modeling with 

predictive DBPs formation models. 

In Chapter 4, a transport model for the simulation of particulate and dissolved lead release 

from full and partially replaced LSLs was developed by coupling a mass transfer model with a 

stochastic residential water demand generator to investigate the effect of normal household usage 

(NHU) flow patterns on lead exposure. Applying the model within a Monte-Carlo simulation 
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framework, the partial replacement of the LSL was predicted to result in releasing spikes with 

significantly high concentrations of particulate lead (1011.9±290.3 µg/L) that were five times 

higher than those released from the full LSL. Sensitivity analysis revealed that the intensity of flow 

demands significantly affects particulate lead release, while dissolved lead levels were more 

dependent on the lengths of stagnation periods. The results highlighted the importance of 

incorporating realistic demand simulations in conjunction with the transport model for the accurate 

estimation of total lead exposure. 

8.1.2 System Scale Modeling 

Chapter 5 considers the design problem of finding the optimal layout and scheduling of booster 

chlorination systems from a new perspective. While previous studies in the literature focused on 

applying different optimization routines to enhance the accuracy and computational speed of 

solving the optimization problem, this study looked further into examining the influence of the 

underlying water quality model used to conduct the simulations on the outcomes of the 

optimization. To this end, the advection-dispersion-reaction (ADR) transport model that was 

developed for the accurate simulation of dead-end pipes is linked to a genetic algorithm based 

optimization routine. The objective function is formulated and solved to find the optimal locations 

and chlorine-dosing schedules of the booster stations that minimize the total cost of booster 

construction and operation, while maintaining a sufficient residual throughout the distribution 

network. The results of this study suggest that optimization outcomes generated by EPANET 

simulations may produce a booster chlorination system that fails to maintain an adequate residual 

concentration in the periphery pipes of a real-life water distribution system. The results highlight 

the importance of considering dispersive solute transport, as well as the excessive residence times 

encountered in the dead-end sections, in the water quality simulations conducted for network 
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optimization problems. While this study addressed the optimization of booster chlorination 

systems, its implications extend to a wide array of network optimization applications, including 

pump scheduling for water quality optimization, optimal sensor placement for reactive 

contaminant detection, and design of real-time boost-response systems. 

8.1.3 Molecular Scale Modeling 

Chemical interactions and material properties result from quantum mechanical interactions 

between atoms or molecules, hence, quantum chemical calculations were employed in this study 

to investigate the molecular mechanisms leading to the formation of disinfection byproducts, and 

to study the surface chemistry of novel nanomaterials applied for their sensing.  

Chapter 6 proposes employing first-principles calculations to investigate the molecular 

mechanisms of trihalomethane formation from the chlorination of model humic precursors. 

Quantum chemical computations are used to explore the reaction mechanism, and to study the 

kinetics and thermodynamics of the reaction pathway. The proposed framework is demonstrated 

by elucidating the chlorination mechanism of resorcinol (1,3-dihydroxybenzene), which has been 

identified in the literature as an efficient precursor for the formation of chloroform. Computational 

results bring new insights into the structures of intermediates and transition states, kinetics of the 

elementary reactions along the mechanism, and identifying the dominant formation pathways. 

Chapter 7 demonstrated the room temperature sensing of chloroform by nanostructured SnO2 thin 

film sensors both theoretically and experimentally. Thin SnO2 films are prepared using a single-

step aerosol chemical vapor deposition (ACVD) process that has a strong potential for scale-up. 

Dispersion-corrected density functional theory calculations of chloroform’s adsorption on the 

SnO2 surface were used to elucidate the sensing mechanism. Calculations show that chloroform’s 

adsorption on the surface of rutile SnO2 is thermodynamically favorable. Chloroform molecules 
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are observed to donate charge to the SnO2 surface following their adsorption, which triggers a 

sensing response by lowering the resistance of the thin film sensors, and is in agreement with the 

observed sensing response. Taken together, the results of this study suggest that chemiresistive 

metal-oxide gas sensor arrays can provide a cheaper and more portable alternative to traditional 

gas analysis methods, such as GC-MS or GC-ECD, for the detection of chlorinated volatile organic 

compounds in industrial and environmental systems. More specifically, such sensor arrays can be 

implemented for the real-time monitoring of carcinogenic trihalomethane compounds in drinking 

water supply systems, which is of significant importance for protecting public health. 

8.2 Future Directions 

8.2.1 Impacts of water conservation practices on water quality 

As the overall domestic per-capita water consumption continues to decline under the enhanced 

efficiency of water use fixtures and widespread embracement of water conservation practices, 

concerns have arisen over the implications of the decreased flow velocities on the water quality, 

especially in these problematic zones. It is hence important to study the effects of the increased 

residence time on the water quality in the low-flow sectors of the distribution network under 

various potential water conservation scenarios. A combined framework that joins the advanced 

transport models described in Chapter 2 with the detailed reactions developed in Chapter 3 is 

required to assess the impacts of water conservation practices. Furthermore, as more water utilities 

shift from using chlorine to chloramine as their disinfectant of choice, the formation of the 

currently unregulated nitrogenous disinfection byproducts (N-DBPs) is expected to increase, 

which poses a public health concern given their toxicity. Thus, future work should aim at 

expanding the proposed framework to incorporate the formation of emerging byproducts, 

especially N-DBPs, such as nitrosamines and haloacetonitriles.  



 

 

293 

   

It is noteworthy that the multi-species model proposed in chapter 3 offers a great deal of 

flexibility in the simulation of different constituents thanks to the underlying numerical scheme 

used to solve the governing transport equations. The split operator method (SOM) offers an 

efficient way to decouple the transport and the reaction compartments of the model by splitting 

the governing mass balance partial differential equations (PDEs) into a set of independent PDEs 

for the transport (advection and dispersion/diffusion) of each constituent, and a separate system of 

coupled ordinary differential equations (ODEs) for the reactions of all constituents. Hence, other 

solutes can be readily included in the model by simply adjusting the set of ODEs provided that the 

correct reaction expressions and parameters are included. This applies to, for example, replacing 

the reaction terms of the disinfectant from those corresponding to free chlorine to reflect the 

reactions of chloramine with NOM and biomass. Assuming that a similar two-constituent second-

order kinetic model is used; the kinetic parameters in equations S-3.1 to S-3.10 can be changed 

based on data from bench-scale experiments and then calibrated and validated against pilot scale 

or field measurements following the same procedure described in Chapter 3. For instance, the yield 

coefficient for DBP formation in equation S-3.5 and the biomass inactivation coefficient in 

equation S-3.4 will likely be lower for the case of chloramine compared to free chlorine, which is 

a stronger oxidant. In addition, the formation of other N-DBPs can be included if kinetic data for 

their formation is available from bench scale experiments. 

Furthermore, a modeling framework that incorporates the multi-species reactive transport 

model proposed in chapter 3 can be developed to study the intrusion of microbial contaminants 

through the cracks of the pipes and junctions. The intrusion of microbiological pathogens usually 

takes place when low or negative pressure episodes occur at or near such cracks, and in the 

presence of an external contamination source (such as leakage from sewer mains). The intrusion 
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is controlled by numerous factors, all of which have been extensively studied in the previous 

literature, including the magnitude and duration of the low/negative pressure event, the pathway 

for pathogen entry, pathogen occurrence in the external source of contamination, and volume of 

water that may enter through the different pathways. Yet, the fate and transport of such pathogenic 

species after they enter the pipes of the distribution system has not been well studied although it 

significantly dictates the public exposure. Using this framework, the mechanisms by which such 

microorganisms can be harbored within the existing biofilms, their decay via interactions with the 

disinfectant, and the role of the hydraulics can be examined. 

8.2.2 Water quality deterioration in premise plumbing systems due to lead 

corrosion 

The recent crisis in Flint, MI drew attention to the significant public health hazards of lead 

poisoning through the exposure to Pb-contaminated drinking water. Pb contamination results from 

the internal corrosion of Pb-containing materials in contact with water. While the major source of 

lead in drinking water is typically the lead service line (LSL), which generally accounts for 50-

75% of Pb concentrations measured at the tap, other plumbing components such as Pb-containing 

fixtures, fittings, and solder can also contribute to the total lead at the tap. Chapter 4 focused on 

developing a transport model for the simulation of particulate and dissolved lead release from full 

and partially replaced LSLs. This can be incorporated into a comprehensive computational tool for 

the simulation of lead release from the various premise-plumbing components. Such tool can be 

useful for the estimation of total lead concentrations at the tap, and the comprehensive framework 

can be used for predicting areas in the supply system with an elevated risk of high Pb levels by 

linking lead release models with the reactive transport models that simulate the water chemistry in 

the distribution system.  
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In addition, a computational modelling system that incorporates the lead release model 

developed in Chapter 4 into a Monte Carlo probabilistic framework for simulating lead emissions 

within a water supply area can be developed to mimic the real-world variation in the factors 

controlling lead release from LSLs. Such modeling framework can help water utilities assess the 

impacts of proposed changes to water treatment on lead release, design sampling procedures to 

evaluate lead exposure, or optimize corrective measures to lower lead levels in their systems. The 

utility needs to first calibrate the presented model using data from pilot scale studies that examine 

lead release in their systems. In these pilot studies, it is preferred to use harvested pipe sections cut 

from aged LSLs to match the prevalent lead scales in their systems. After calibration, the model 

can be used in conjunction with the stochastic flow generator to assess lead levels in a simulated 

water supply zone under a range of different scenarios. The input parameters characterizing each 

scenario can be classified into three different categories: (i) Parameters related to the water 

chemistry and types of lead scales (plumbosolvency), (ii) Water use patterns (demand parameters), 

and (iii) LSL geometric characteristics (length, diameter). Statistical Distribution based on data 

collected from the field (ii, and iii) + pilot scale experiments with harvested LSL sections (i) can 

be used to generate the inputs for the Monte-Carlo simulations. This modeling framework can then 

be used to evaluate various sampling strategies and to identify optimal intervention measures to 

control Pb levels, or be incorporated into a risk assessment tool for lead exposure that considers 

the variability in Pb concentration across the system.  

Another important point for future research is related to the description of particulate lead 

transport. As discussed in section 4.3.1, particulate transport in fluid flow is governed by multiple 

phenomena that include convection, diffusion, coagulation, and deposition. These phenomena are 

dependent on the particle size; hence, particulate transport can be best described by tracking the 
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evolution of particle size distribution, which can be achieved using a governing transport equation 

similar to equation 4-2. Yet, since accurate measurements of the size distributions of lead 

particulates released from lead service lines had not been done in the previous literature, at least 

up until this work was published, the use of this extensive formulation was not possible at this 

stage. A modeling approach that considers the size distribution of lead particles and their 

coagulation under different water chemistry scenarios will be very helpful.  

Furthermore, particulate lead generation from partially replaced lead service lines needs to 

be investigated by future studies. It is well known that the significant disturbances caused by 

cutting and connecting the copper pipe to the partially replaced lead service line destabilizes the 

existing scales in the remaining section of the lead pipe, which leads to the release of Pb particles 

on the short term as observed in numerous pilot-scale experiments and field sampling data. Yet, 

long-term release of particulate lead from partially replaced service lines was also observed, which 

suggests that galvanic corrosion plays a key role in the generation of Pb particles. This process is 

likely caused by the structural destabilization of the lead-oxide layer that is caused by the galvanic 

corrosion of the underlying lead pipe in which elemental lead is oxidized to Pb2+. This is indeed 

supported by previous pilot scale studies that showed that the galvanic currents display minimal 

reduction even after several months following the partial replacement of the LSL. One possible 

way to account for this important mechanism in the model is by changing the generation term in 

equation 4-8, from being empirically calibrated to experimental data, to a one that incorporates the 

galvanic current. Alternatively, the mechanism for particle generation can be based on aqueous 

nucleation, which could be either homogenous or heterogenous (i.e. catalyzed by the presence of 

other solids). In this case, both the dissolved and particulate lead models should be linked to 

account for the transformation between the two phases.  
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8.2.3 Real-time Optimization and Management of the Water Quality 

Optimization of the water quality in the supply system can be achieved by linking water treatment 

processes to the real-time (RT) hydraulic and water quality conditions in the distribution system. 

Nevertheless, simulating the water quality in the entire system is computationally expensive, 

which inhibits running the optimization algorithms in RT. Future studies should aim to develop 

advanced real-time modeling and optimization techniques capable of handling large on-line 

monitoring and control data to enable better water quality management. To achieve this goal, 

modern optimization techniques, such as Bayesian optimization, can be adopted to enable RT 

optimization of the expensive objective functions by minimizing the number of required 

simulations to find the optimal solution. In addition, machine learning can be used to build cheaper 

surrogate models to imitate the complexity of the physics-based water quality models. Building on 

the transport models developed under theme one, ideas in the real-time optimization of disinfectant 

dosing and corrosion control treatment to maximize disinfectant residuals and minimize lead levels 

in the system can be explored. Furthermore, a framework for finding optimal network sectorization 

scenarios through stochastic modeling approaches to maximize the water quality while minimizing 

treatment/operation costs can be very useful. 

In addition, a framework similar to the one presented in chapter 5 for the optimization of 

booster chlorination systems can be developed for optimizing the locations of water quality 

monitors for contaminant intrusion detection. The decision variables, in this case, are the locations 

of a given number of monitoring stations, and the objective function will target minimizing the 

expected time of contaminant detection and minimizing public exposure to the contaminant under 

a range of different possible contamination scenarios. The influence of using an advanced water 

quality model for simulating both a conservative and reactive contaminants on the outcomes of the 
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optimization can be examined. This problem can also be expanded to a multi-objective 

optimization framework by optimizing the location of the monitoring stations for regulatory 

monitoring (e.g. placing the monitors in locations with the highest potential for DBP formation or 

lowest chlorine residuals), in addition to the rapid detection of deliberate or accidental contaminant 

intrusion. 

8.2.4 Leveraging Advances in Materials Science Research for on-line Sensing 

Current advances in applied nanoscience have offered promising solutions to many of the 

challenges associated with improving and managing water quality. The past decade has witnessed 

a revolution in developing functional nano-based materials for the efficient and cost-effective 

sensing of water quality parameters, including metal/metal-oxide nanoparticles and carbon-based 

materials. Advancing the design of nanoscale sensors with high sensitivity and specificity towards 

water contaminants is of significant interest for the purposes of water quality monitoring and 

management. A key factor that controls the performance of such nano-based sensors is their 

surface chemistry because it dictates the adsorption and transformation mechanisms of different 

compounds. First principles simulation techniques based on quantum chemistry can hence provide 

valuable guidance, as they are capable of simulating surface interactions with an atomistic-scale 

resolution. A useful feedback loop can be established in which insights from theoretical 

calculations are used for the rational design of these nanomaterials and applied to elucidate their 

surface catalysis mechanisms.  

Analysis of regulated disinfection byproducts typically involves rigorous sampling 

techniques that are commonly off-line, costly, and time-intensive. A promising alternative is to 

capitalize on the inherent volatility of many of the drinking water DBPs, such as trihalomethanes, 

to enable headspace sampling with chemiresistive vapor sensors, commonly known as e-noses. 
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Semiconducting metal oxides are commonly employed as the active sensing material in such 

resistive gas sensors because of their high sensitivity, unique chemical and physical stability, 

scalability, and low cost. Nevertheless, the high working temperature (150-400 °C) typically 

required to operate these sensors reduces their long-term stability and complicates their 

miniaturization. Computational chemistry methods can be used to investigate and tune the surface 

chemistry of metal-oxide sensors to enable their operation at ambient temperatures with high 

sensitivity and selectivity towards regulated DBPs. Chapter 7 focused on understanding the 

adsorption and surface interaction mechanisms of ethanol and acetone as model polar VOCs, as 

well as chloroform as a model trihalomethane, on tin dioxide (SnO2) nanosensors. To enhance the 

sensitivity, this framework can be extended to other metal-oxide candidates such as ZnO, CuO, 

and Al2O3, and their composites with carbon-based materials, such as reduced graphene oxide 

(RGO) and doped graphene. In addition, computational screening of metal dopants, such as Pt, Pd, 

Au, and Ni, and the tuning of functional groups on carbon-based materials, can be pursued to 

enhance the selectivity of the sensors towards specific DBPs of interest.  
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Appendix I 

Real-Time Identification of Cyber-Physical 

Attacks on Water Distribution Systems via 

Machine Learning Based Anomaly Detection 

Techniques 
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I.1 Abstract 

Smart water infrastructures are prone to cyber-physical attacks that can disrupt their operations or 

damage their assets. An algorithm is developed to identify suspicious behaviors in the different 

cyber-physical components of a smart water distribution system. The algorithm incorporates 

multiple modules of anomaly-detection techniques to recognize different types of anomalies in the 

real-time monitoring and control data. Trained artificial neural networks are used to detect unusual 

patterns that do not conform to normal operational behavior. Principal component analysis is 

conducted to decompose the high-dimensional space occupied by the sensory data to uncover 

global anomalies. The algorithm is trained using a historical dataset of trusted observations and 

tested against a validation and a test dataset, both featuring a group of simulated attack scenarios. 

The proposed approach successfully identifies all the attacks featured in the BATtle of the Attack 

Detection ALgorithms (BATADAL) datasets with high sensitivity and specificity. Nevertheless, 

the performance is sensitive to high background noise in the sensory data.  
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I.2 Introduction 

Numerous water utilities have recently started adopting smart technologies in their drinking water 

distribution systems (DWDSs) to improve their overall performance, efficiency, and reliability. 

Smart water distribution networks belong to the group of modern cyber-physical systems (CPSs), 

in which on-line monitoring, data collection and transmission, real-time computation, and 

automated operation of the functional processes are tightly integrated (Lee 2008). Hence, smart 

water grids commonly rely on a coordinated network of distributed sensors and remote actuators, 

which are typically linked to programmable logic controllers (PLCs). A PLC is an embedded 

device that handles the data of its linked infrastructure component and simultaneously controls its 

operation. Process monitoring and control data is usually collected by a supervisory control and 

data acquisition (SCADA) system, which is a centralized computer that analyzes the data, performs 

simulations and/or optimization computations, and coordinates the operation of the cyber-physical 

system in real-time (Shamir and Salomons 2008). The increased interest in embracing smart 

network technologies over the past decade has been complemented with a consistent growth in the 

development of related industrial tools and solutions, such as advanced metering technologies 

(Cominola et al. 2015), sensor networks, data analytics tools, and automation systems. 

Nevertheless, the enhanced connectivity instigated by such advanced control technology has 

concurrently opened the door to a novel class of security vulnerabilities that were not inherent to 

the physical infrastructure system (Laszka et al. 2017; Rasekh et al. 2016). 

Despite the numerous merits of implementing modern networking technologies in the 

sector of critical infrastructure systems, linking the physical components of the infrastructure with 

cyber-space can expose these systems to the vast realm of cyber-based threats. From a national 

security standpoint, water infrastructure systems, including drinking water treatment facilities and 
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distribution networks, possess a sensitive disposition given the critical role they play in the 

sustainable development of modern communities. This role makes WDSs a highly attractive target 

for cyber-attacks that can be potentially perpetrated by terrorists, subversives, and adversary states. 

These attacks can target the SCADA module, the sensors that monitor the system’s processes, the 

PLCs that locally operate the physical components of the infrastructure or the wireless 

communication routes between the different elements of the CPS. Such cyber-based attacks are 

capable of remotely perturbing the performance of the system, providing unauthorized parties with 

access to critical and confidential information, and -if sophisticated enough- can result in physical 

damage to the assets of the infrastructure. Additionally, such attacks can compromise the water 

quality by altering automated treatment schemes or by targeting water quality sensors to suppress 

contamination warnings, which can pose a significant threat to public safety (Laszka et al. 2017).  

The last decade has witnessed a spike in the number of cyber-security incidents involving 

water infrastructure systems. In 2015, the US Department of Homeland Security (DHS) reported 

that the Industrial Control Systems-Cyber Emergency Response Team (ICS-CERT) received and 

responded to 25 cyber-related incidents that targeted water and wastewater systems, making it the 

third highest targeted sector by cyber incidents after critical manufacturing and energy (DHS ICS-

CERT 2015). Two well-cited examples for the type of threats that modern water systems face are 

the cyber-attacks that targeted the SCADA systems of the Maroochy Water Services in 

Queensland, Australia (Slay and Miller 2008), and the water utility of Boca Raton, Florida (Horta 

2007). To mitigate similar threats in the future, previous studies discussed the importance of 

establishing a mature cyber-security culture within the water industry in order to reduce the 

susceptibility of smart WDSs to cyber-attacks (Panguluri et al. 2017). Moreover, imposing 

additional security measures on the different components of the CPS, including the remote 
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sensors/actuators, the communications network, and the SCADA module (Mathur 2017) can 

potentially enhance their resilience in the face of cyber-attacks. However, the relatively extended 

periods of the WDS operation implies that the probability that one of its components is attacked at 

least once during its lifetime is non-negligible (Taormina et al. 2016). Thus, developing strategies 

that can effectively detect any abnormal behavior in the different domains of the cyber-physical 

system in real-time is of prime importance in order to prevent service interruptions and protect 

both the system’s assets and public health. The general problem of the detection and identification 

of attacks on cyber-physical systems, as well as intrusion detection for the underlying SCADA 

systems, has been addressed by several studies (Gao et al. 2010; Maglaras and Jiang 2014; 

Pasqualetti et al. 2013). Nevertheless, most of the previous efforts were devoted to detecting 

attacks on smart power grids and communication networks (Kosut et al. 2010; Sridhar and 

Govindarasu 2014), with disproportionately less emphasis on water infrastructure systems.  

For drinking water distribution networks, the broad topic of detecting physical-based 

threats has been previously investigated by several studies that mainly focused on the classical 

problems of fault detection (Eliades and Polycarpou 2012; Izquierdo et al. 2007; Srirangarajan et 

al. 2013) and contamination event detection (Arad et al. 2013; Housh and Ohar 2017a; b; Ohar et 

al. 2015; Perelman et al. 2012). While the problems of detecting cyber-based and physical-based 

threats both belong to the general class of event identification, three important differences exist 

between these two problems, namely the spatial and temporal resolutions, and attack concealment 

(Housh and Ohar 2018). The most fundamental difference is that cyber-based attacks can be 

potentially concealed by the attacker in order to cover any traces in the sensory data. Attack 

concealment can be done by means of a deception attack, in which the attacker alters the 

observations received by the SCADA system by sending false plausible values instead of the real 
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suspicious ones (Taormina et al. 2017). One possible way to do this is by conducting a “replay 

attack” in which observations during normal operations are recorded by the attacker, and then 

replayed to the SCADA system during the attack, which makes the detection of such stealthy 

attacks a very challenging task. 

A few attempts have been made to tackle the problem of cyber-physical attacks detection 

on water infrastructure systems. Amin et al. (2013a; b) investigated the detection and isolation of 

cyber-attacks on the SCADA system of an irrigation canal network using an approximate 

hydrodynamic model. Yet, their work was not extended to pressurized looped WDSs. Almalawi 

et al. (2016) proposed an intrusion detection method to detect SCADA tailored attacks based on a 

data-driven clustering technique with a demonstration on a simple WDS model example. Recently, 

Taormina et al. (2017) developed a modeling framework to assess the hydraulic response of water 

distribution networks to cyber-physical attacks. The framework consists of two components, 

namely an attack model that can define the elements of the CPS that can be attacked as well as the 

types of attacks that can target each element, and a modelling toolbox (implemented in EPANET 

software) that further simulates the effects of different classes of cyber-attacks on the operation of 

water distribution systems. Nevertheless, their work focused on simulating and characterizing 

cyber-attacks rather than their detection and identification. 

This study aims to develop an approach for the identification of cyber-physical attacks on 

WDSs in real-time by detecting suspicious anomalies in the SCADA observations using machine-

learning techniques, namely principal component analysis (PCA) and artificial neural networks 

(ANNs). The design goals of the detection algorithm are: i) to determine the existence of an 

ongoing attack with maximum speed and reliability; ii) to avoid issuing false alarms and to 

recognize when the system is no longer under attack, iii) to identify which components of the 
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cyber-physical infrastructure have been compromised during the attack, and iv) to reliably 

distinguish between anomalies caused by cyber-attacks and measurement noise. The algorithm is 

first trained using a trusted set of SCADA observations, then validated, and tested against two 

different datasets comprising a group of simulated malicious attack scenarios. 

I.3 Case Study and Datasets 

A medium-sized water distribution network, C-Town network, is used as a benchmark for 

algorithm development and application. C-Town network consists of 388 nodes connected by 429 

links. Water storage and distribution across the network are supplied by seven tanks (T1-T7) whose 

water levels control the operation of eleven pumps (PU1-PU11) grouped into five pumping stations 

(PS1-PS5), and one control valve (V2). This network was recently used for the BATtle of the 

Attack Detection ALgorithms (BATADAL) (Abokifa et al. 2017; Taormina et al. 2018) 

(https://batadal.net/). The system implements a smart water grid technology featuring a set of 

remote sensors and actuators in order to monitor and control the operation of all tanks, functioning 

valves, and pumping stations. These sensors/actuators are connected to nine PLCs that transmit 

the data to a centralized SCADA system, which coordinates the network operation in real-time. 

As described in the BATADAL, the system is subject to a group of simulated cyber-

physical attacks that perturb the functionality of the actuators, alter the readings of the deployed 

sensors, and interfere with the connections between the networked components in the cyber-layer. 

These attacks are generated with the MATLAB modeling toolbox epanetCPA, which allows the 

simulation of the hydraulic response of water distribution systems to cyber-physical attacks using 

EPANET (Taormina et al. 2017). Three independent datasets are used to train, validate, and test 

the algorithm, respectively. The first (training) dataset comprises historical SCADA observations 

generated for a period of one year (on an hourly basis) prior to the deployment of the smart 

https://batadal.net/
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technology. This dataset is guaranteed to contain no attacks, and hence, it is used to train the 

algorithm to recognize the normal behavior of the system. The second (validation) dataset was 

generated for a six-month period following the deployment of the smart technology and contains 

seven different simulated attack scenarios (Table I-1). This dataset is used to validate the 

performance of the proposed technique in detecting cyber-physical attacks. In addition, a 

sensitivity analysis is performed at this step to adjust the different parameters of the algorithm to 

yield best detection performance. Similarly, the third (test) dataset was generated for a three-month 

period and contains seven simulated attacks (Table I-2). The test dataset is used herein to verify 

the efficiency of the tuned algorithm in identifying multiple attacks in a real-time stream of 

observations that the algorithm has never seen before (i.e. was not part of the training/validation 

process).  
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Table I-1. Specifications of the simulated attacks featured in the validation dataset 

Att# 

Start time  

End time   

[dd/mm/yyyy hh] 

Attack Details 

1 
13/09/2016 23 

16/09/2016 00 

Low level in T7 due to SCADA sending wrong 

control 

settings to PLC9. Alteration of T7 water levels 

reaching 

SCADA with a replay attack. 

2 
26/09/2016 11 

27/09/2016 10 

Similar to Attack #1, but with SCADA concealment 

extended to pumps PU10/PU11 FLOW and STATUS 

readings. 

3 
09/10/2016 09 

11/10/2016 20 

False low levels readings sent from T1 by PLC2.  

This triggers PLC1 to keep pumps PU1/PU2 ON, 

driving T1 to overflow. Concealment of T1 water 

level increase via progressive offsetting. 

4 
29/10/2016 19 

02/11/2016 16 

Similar to Attack #3, but with SCADA concealment 

performed using replay attack for T1 water levels, 

PU1/PU2 FLOW and SETTING readings, and 

PRESSURE at pumps outlet. 

5 
26/11/2016 17 

29/11/2016 04 

Working speed of PU7 reduced to 0.9 of nominal 

speed  

causing lower water levels in T4. 

6 
06/12/2016 07 

10/12/2016 04 

Similar to Attack #5, but speed reduced to 0.7 and 

water level drop in T4 concealed from SCADA with 

a replay attack. 

7 
14/12/2016 15 

19/12/2016 04 

Similar to Attack #6, but concealment extended to 

pumps  

PU6/PU7 FLOW and STATUS readings. 
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Table I-2. Specifications of the simulated attacks featured in the test dataset 

 

 

 

Att# 

Start time 

End time 

[dd/mm/yyyy hh] 

Attack Details 

1 
16/01/2017 09 

19/01/2017 06 

Change the Levels of T3 at which PU4 and PU5 operate. 

Lower levels of T3, which are altered with replay attack 

for concealment. Replay attacks for concealing pump 

flows and settings. Inlet and outlet pressure readings are 

not altered. 

2 
30/01/2017 08 

02/02/2017 00 

Attack on sensor readings from T2 to PLC3. T2 reads 

always LOW and PLC3 keeps the valve V2 OPEN. 

Concealment done with a polyline on T2. 

3 
09/02/2017 03 

10/02/2017 09 
Deliberately Switching PU3 ON 

4 
12/02/2017 01 

13/02/2017 07 
Deliberately Switching PU3 ON 

5 
24/02/2017 05 

28/02/2017 08 

Similar to Attack 2 but with replay attacks to alter also V2 

FLOW/SETTINGS, and suction/discharge pressure 

readings (P_J14, P_J422) 

6 
10/03/2017 14 

13/03/2017 21 

Change the levels at which PU10 and PU11 operate based 

on T7. PU10 and PU11 will switch continuously. Water 

levels in T7 are altered using replay attack, so are PU 

flows/settings and outlet/inlet pressure. Inlet pressure 

concealments terminate before the end of the other attacks. 

7 
25/03/2017 20 

27/03/2017 01 
T4 signal arriving PLC6 is altered 
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I.4 Anomaly Characterization 

In an ideal scenario, the utility should possess an accurate hydraulic model of its WDS that is 

routinely calibrated by the collected monitoring data. The presence of such a model would be of 

value in detecting abnormal system behaviors and can provide useful insights if used in 

conjunction with an algorithm that analyzes the data from the SCADA system. In such a 

framework, detection of cyber-physical attacks (CPAs) is driven by precise simulations of the 

system dynamics (Housh and Ohar 2018). Nevertheless, a clear limitation arises for such “model-

based” approaches in cases where accurate water demand patterns in the system are not readily 

available or if the network model is computationally expensive prohibiting real-time evaluations 

(Abokifa et al. 2016). Thus, to reduce the dependence of the designed algorithm on the availability 

of a calibrated network model, the attack detection problem considered herein is exclusively 

dependent on the given SCADA observations. Hence, identification of attacks is only achieved 

through employing anomaly detection techniques that target discovering irregularities in the data 

induced by cyber-physical attacks. In other words, the main aim of the proposed “data-based” 

approach is to search for extended inconsistencies in the observations that can be interpreted as 

indicators or “fingerprints” inflicted by an ongoing attack. An anomaly can be generally defined 

as a data point (or a series of points) that does not conform to a well-defined notion of normal 

behavior (Chandola et al. 2009; Hawkins 1980). Hence, a first step to detect anomalies in a given 

set of observations is to define a domain (subset) of observations that are trusted to represent the 

normal behavior of the system. In our case, this domain is defined by the first (training) dataset of 

historical SCADA observations.  
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Taormina et al. (2017) provides a thorough discussion on how the operation of WDSs is altered 

in response to CPAs. Here, we discuss the different classes of anomalies that can be induced by 

CPAs in the sensory data of WDSs, and propose a different approach to detect each class. 

 Simple Outliers vs Contextual anomalies 

In the context of detecting cyber-physical attacks on WDSs, the definition of an anomaly should 

not be limited to the identification of “simple outliers”, i.e. data points that lie beyond certain 

historical fences defined based on a reference dataset representing normal (expected) behavior. An 

example of this is an attack that persistently shuts down a pumping station resulting in excessively 

low levels in one or more tanks. However, a cyber-physical attack can interfere with the 

performance of one of the infrastructure components in a way that alters its operational patterns -

compared to the normal conditions-, while maintaining its performance characteristics (e.g. tank 

level or pumping flow rate) within the normal historic min/max bounds. In this case, the anomalous 

pattern is described as a “contextual anomaly” rather than a simple outlier, which means that the 

suspicious observation is anomalous within a specific temporal context based on the previous 

observations, regardless of its magnitude. 

To illustrate the difference between these two types of anomalies, Figure 1-a shows a series 

of anomalous data points observed in the flow data of Pump 1 in the second (validation) dataset. 

These anomalies correspond to the third attack event (Table I-1). As can be seen, the suspicious 

data points are noticeably lower in magnitude compared to the minimum historic bound recorded 

in the first (training) dataset. On the other hand, Figure 1-b shows an anomalous pattern in the flow 

data of Pump 7, which corresponds to the fifth attack in the validation dataset. In this case, the 

magnitudes of the anomalous points are well within the previously defined historic bounds. 
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Nevertheless, pump performance has been clearly interrupted as shown by the evident change in 

the flow patterns. 

In this study, “simple outliers” are detected by comparing the observations to certain 

statistical fences determined by a given number of standard deviations below and above the mean, 

and interquartile ranges above and below the upper and lower quartiles. On the other hand, 

identifying “contextual anomalies” that do not conform to the regular operational patterns requires 

training the algorithm to “learn” these patterns in the first place. This can be accomplished using 

a supervised machine-learning algorithm that is trained to forecast a future data point from a series 

of previous observations. In this study, we used Artificial Neural Networks (ANNs) for this task 

due to their known capability of modeling complex nonlinear relationships. ANNs were previously 

used to forecast dynamic time series patterns of water resources variables (Maier and Dandy 2000), 

and applied to forecast the dynamic hydraulic and water quality states for water distribution 

networks by creating surrogate models (meta-models) (Broad et al. 2010, 2015; May et al. 2008; 

Razavi et al. 2012; Romano and Kapelan 2014). In this study, we use ANNs to model the patterns 

of each individual sensor/actuator, and anomalies are detected by comparing the observed data 

points against the values predicted by the ANNs model.  
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Figure I-1. Validation dataset observations for: (a) Pump 1 flow during attack 3 (simple outlier), 

and (b) Pump 7 flow during attack 5 (contextual anomaly). Attack Flag indicates when the 

system is subject to one of the simulated attacks. 
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Stealthy attacks and global anomalies 

As previously discussed, one of the most challenging aspects regarding the detection of cyber-

based threats on water distribution systems, and a one that sets it apart from the traditional problem 

of physical fault detection, is the potential for attack concealment. This may involve replaying part 

of the historical observations to make the data appear normal. Such stealthy attacks may interfere 

with the performance of multiple components of the WDS without significantly altering the 

individual characteristics of any of them. For instance, in the seventh attack scenario featured in 

the validation dataset (Table I-1), the attacker conceals the SCADA readings of the water level in 

T4, and the flow and status of pumps PU6/PU7 with a replay attack. Hence, detection methods 

that separately analyze the data from each of these individual sensors, such as statistical fences 

and ANN models discussed in the previous section, may miss such attacks since the induced 

anomalies in each of the data arrays will likely be below their detection limits. This highlights the 

need for incorporating an additional detection method that aims to discover such “global 

anomalies” by analyzing the combined data obtained from all sensors in the multi-dimensional 

space.  

In this study, we use principal component analysis (PCA), a linear dimensionality reduction 

technique (Cunningham and Ghahramani 2014; Jolliffe and Cadima 2016), to project the observed 

multi-dimensional data from all sensors onto a set of principal components. By doing this, 

anomalies in the data arrays corresponding to all the monitors are synergized, which gives a 

magnified response enabling the capture of global anomalies corresponding to stealthy attacks 

(Lakhina et al. 2004). The fundamental concept here is that, for water distribution systems, a 

certain degree of correlation exists between the global observations made by all the monitors 

(sensors/actuators) at any given time step. When the attacker conceals the readings of a subset of 
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these sensors during a certain time step, the concealed readings will not follow this correlation 

even if they still follow the normal pattern for the concealed component. 

To illustrate this concept, Figure 2 depicts a simple case of two sensors with a set of 

observations comprising an anomaly. The time sequence of the observations is not relevant here, 

since we are only interested in the correlation between the readings of the two sensors regardless 

of when these observations are made. The anomalous reading corresponds to a one that the attacker 

concealed in the data of one of the sensors (sensor 1 in this case). By looking at the projections on 

the axes representing the two sensors, the anomalous reading appears to fall within the max/min 

bounds of all observations. Yet, by projecting the data on the principal components, it becomes 

clear how the concealed point appears as an anomaly on the second principal component. 

 

  

 

 

Figure I-2. Schematic of anomaly detection by PCA projection 
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I.5 Algorithm Development and Anomaly Detection 

The detection algorithm is designed as an “ensemble model” featuring four different modules. 

Each module targets the detection of a specific class of outliers/anomalies separately (Figure 3). 

The first module checks whether the given SCADA observations follow the actuator rules defined 

for the system, while the second module focuses on finding simple statistical outliers with 

excessively high or low magnitudes. The third module aims at revealing contextual anomalies 

using trained ANN models, and the fourth module targets discovering global anomalies in the 

multi-dimensional space using PCA. Anomalies from the four modules are then integrated by 

means of an alarm watch window method as discussed in the following subsections.  

Module 1: verification of actuator rules  

The first module checks that the operational statuses of the pumps and valves follow the 

appropriate control rules based on the observed water levels in their controlling tanks at all times. 

For example, in the given C-Town system, Pump 1 operation is controlled by the water level in 

Tank 1. Actuator control rules dictate that a drop in the tank level below 4 m triggers the operation 

of Pump 1 by switching it on, which should change its status to (S_PU1 = 1). Pump operation 

should carry on until the tank level goes above 6.3 meters, at which the pump should be switched 

off changing the status to (S_PU1 = 0). Thus, these rules might be violated if the system is subject 

to a “deception” attack that manipulates the communications between the PLC connected to the 

tank level sensor and that connected to pump actuator. The module returns a flag for each data 

point that violates any of the rules depicted in the input file.     
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Figure I-3. Schematic diagram of the attack detection algorithm 

 

Module 2: detection of simple outliers via statistical fences 

The second module focuses on detecting outliers with suspiciously high/low magnitudes compared 

to statistical bounds based on historical observations. Let A be the training dataset, which is an 

(N × M) matrix comprising N observations (time-steps) from M monitors (sensors/actuators). 

Hence, A = [
1
, 

1
, … , 

M
], where 

i
= [x1,i, x2,i, … , xj,i, … , xN.i]

T
 is the vector of N observations 

made by monitor i, and xj,i is the observation made by monitor i during time step j. A simple 

statistical approach to detect outliers in a new observation made by one of the monitors can be 

done by specifying certain boundaries for each monitor i defined by multiples of the standard 

deviation above and below the mean, or based on the interquartile range (IQR) as follows: 

Upper fence: ui = max (μi + ni
uσi  ,   Q3i + mi

u[Q3i-Q1i])                                     (1) 

Lower fence: li = min (μi-ni
lσi ,   Q1i-mi

l[Q3i-Q1i])                                       (2) 

where, ui and li are the designated upper and lower boundaries for monitor i; μi and σi are the 

mean and standard deviation of data vector 
i
, respectively; Q1i and Q3i are the lower and upper 

quartiles of the data array 
i
, respectively; ni

u and ni
l are the standard deviation multipliers 
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representing the upper and lower fences; and mi
u and mi

l are the interquartile range multipliers for 

the upper and lower fences, respectively. The upper and lower multipliers of the standard deviation 

and the IQR (i.e. ni
u,l

 and mi
u,l

) are defined based on the maximum and minimum values recorded 

in the training dataset for each monitor. The first module compares new observations by any of 

the monitors, e.g. in the validation or test datasets, to the upper and lower fences, and returns a 

flag for any observation lying beyond these fences, with an arbitrary tolerance margin (5%).  

Module 3: detection of contextual anomalies via ANN models 

Herein, ANN models are used to construct the forecasted patterns for each of the monitored 

hydraulic parameters based on the learned system performance from the training dataset to uncover 

anomalous patterns. To this end, ANN models are designed to predict a single future reading from 

a series of previous observations for each of the monitors. A multi-layer perceptron (MLP) neural 

network model is used, which is a computational model consisting of multiple layers of inter-

connected artificial neurons. Each neuron performs a nonlinear computation, and the weighted 

sum of the outputs from all the neurons in one layer is fed to the neurons of the following layer 

(feed-forward NN).  

ANN models architecture 

A separate ANN model is constructed for each individual monitor. The output layer consists of 

one neuron, while the input layer consists of a set of I input neurons, which comprises the array of 

previous observations used to predict the next observation. A single layer of hidden neurons is 

employed, with a number of hidden neurons that is equal to the number of neurons in the input 

layer. Therefore, each monitor’s training data array 
i
 containing N observations is split into a 

group of (N-I) training sets, with each set consisting of I inputs and one desired output. For 
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example, the first set for any monitor i will comprise observations [x1,i, x2,i, … , xI,i] as inputs and 

[xI+1,i] as the desired output. The output of each neuron k can be written as: 

yk = g(∑xr,kwr,k +

I

r=1

w0.k)                                                          (3) 

where, yk is the output of neuron k, xr,k and wr,k are the input and the weight coefficient of neuron 

k in the current layer from neuron r in the preceding layer, w0.k is the bias coefficient of neuron k, 

and g is the hyperbolic-tangent sigmoid transfer function defined as: 

g(z) =
2

1 + e-2z
-1                                                                    (4) 

By tuning the weights assigned to each neuron, the desired relationship between the inputs 

and the outputs of the ANN can be established. This process is known as training or learning, and 

in this study, it is done using a backpropagation algorithm that adjusts the weight coefficients of 

the ANN through minimizing the error between model predictions and the observations for each 

one of the (N-I) training sets using the Levenberg-Marquardt optimization algorithm incorporated 

in the MATLAB R2016a Neural Network Toolbox™.   

The performance of the ANN forecasting model mainly depends on its architecture. 

Typically, increasing the number of neurons enhances the accuracy, yet it also increases the 

complexity and computational burden of training the model. The maximum training error 

generated from the constructed ANN models for the water level in Tank 1 with different 

architectures was studied. Each architecture is characterized by a different size (i.e. number of 

neurons) for the hidden layer, which is also equivalent to number of input observations I. Error 

bars represent the standard deviation of five different ANN models constructed for each 

architecture. As expected, the accuracy of the trained ANNs increases consistently with increasing 

the size of the input/hidden layer since the number of previous observations propagated into the 
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model to forecast a future data point increases. Nevertheless, no significant enhancement is 

observed for architectures with I > 40 neurons. Similar behavior is also observed in the models 

for Pump 1 flow. Thus, an input/hidden layer size of I = 40 is selected for all ANN models to 

achieve an acceptable performance with minimal complexity.  

Data Pre-processing  

Prior to constructing the ANN models, we observed that the raw hydraulic data for tank levels, 

pumping flow rates, and pressures, comprises sharp fluctuations on short time intervals (Figure 1), 

which makes training the ANNs a complex and computationally demanding process. Therefore, 

instead of using raw observations, preprocessing is first conducted by projecting the data into a 

spectral frequency domain representation of the time series signal in order to generate a smoothed 

form of the data that preserves the same structure but with less frequent fluctuations. To do that, 

the Fast Fourier Transform (FFT) of the signal is obtained to decompose the time series data into 

its underlying frequencies for each of the given data arrays (
i
). Then, the raw data is smoothed 

using a third degree low pass Butterworth filter, with a cutoff frequency that corresponds to 50% 

of the cumulative amplitude of the signal. Figure 4 shows the flow data for pumps 1 and 7 before 

and after smoothing for the same attack events displayed in Figure 1. It demonstrates that the 

filtered data clearly features the same anomalies existing in the raw data for both types of 

anomalies, but the high frequency fluctuations are significantly smoothed. In addition to 

facilitating the ANN training process, smoothing the data decreases the training error, which 

results in a higher forecasting accuracy for the trained models and enhances anomaly detection. 
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Figure I-4. Raw vs. smoothed data for: (a) Pump 1 flow (simple outlier), and (b) Pump 7 flow 

(contextual anomaly). 

 

Anomaly detection via ANN  

To define anomalies using the trained ANNs, a different technique should be used in place of the 

previously described statistical fences (Equations 1, & 2). Herein, anomalous observations are 

defined based on their deviation from the values predicted by the ANN model, and thus, the 

accuracy of the model in forecasting normal observations should be considered in such evaluation. 

Therefore, outliers should be defined based on how large their prediction errors are in comparison 

with the maximum error encountered in forecasting observations of the training dataset. For each 

monitor i, the maximum training error can be written as: 
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ϵi
train = maxs(|oi,s

train-pi,s
train|)                                                               (5) 

where, oi,s and pi,s are the desired (observed) and predicted outputs of training set s for monitor i. 

In this study, observations in both the validation and test datasets that have a prediction error 

greater than the maximum training error multiplied by a specific factor α are considered 

anomalous: 

|oi
valid/test

-pi
valid/test

| ≥ α ϵi
train                                                               (6) 

To demonstrate this, Figure 5-a shows the smoothed flow observations for pump 10 for the 

validation dataset as well as the predicted values by the ANN model. The depicted threshold is 

equal to (±ϵtrain). The deviation (error) between the predicted and observed points during the 

attack event is clearly larger than that when the system is not under attack (Figure 5-b).  
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Figure I-5. (a) Smoothed data for pump 10 flow, and (b) error between observed and modeled 

flow by the trained ANNs. 

 

 

Module 4: detection of global anomalies via PCA decomposition 

PCA is a coordinate transformation method that has been previously used to detect traffic 

anomalies in networked systems (Huang et al. 2007; Lakhina et al. 2004; Lee et al. 2013). It can 

be used to re-map a given set of multi-dimensional data points onto new axes known as the 

principal components (PCs). Each PC points in the direction representing the maximum variance 

remaining in the data after accounting for the variance in the preceding components. Hence, the 

first PC captures the maximum variance in the data that can be projected on a single axis, while 
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the following orthogonal PCs capture the remaining variance, with each component capturing the 

largest variance for the next orthogonal direction. The set of M principal components {pl}l=1
M  is 

defined as (Lakhina et al. 2004): 

pl = arg max
‖v‖=1

‖(Z-∑Zpjpj
T

l-1

j=1

)v‖                                                   (7) 

which can be solved by evaluating the M eigenvectors of the covariance data matrix: ΣZ =
1

N
ZTZ, 

where Z is the standardized (z-score) version of the training observations matrix A. Evaluation of 

the principal components and projections of the sensory data are conducted using the Statistics and 

Machine Learning Toolbox™ incorporated in MATLAB R2016a.  

Projections on the Normal and Anomalous Subspaces 

In the context of anomaly detection, PCs can be split into two sets corresponding to the normal 

and anomalous subspaces (Lakhina et al. 2004; Ringberg et al. 2007). The first set representing 

the “normal subspace” consists of the PCs that contain most of the natural variation in the data 

(e.g. PC1 in Figure 2). On the other hand, the rest of the PCs that only capture minimal variability 

are representative of the “anomalous subspace” in which the projections of anomalous 

observations appear more distinctive (e.g. PC2 in Figure 2). Herein, the first 14 principal 

components {pl}l=1
14  are found to capture 99% of the variance in the training data matrix, which 

unveils the low intrinsic dimensionality of the observations matrix. Therefore, they are considered 

representative of the normal subspace, while the rest of the principal components {pl}l=15
31  represent 

the anomalous subspace. To demonstrate the difference between the two subspaces, Figure 6 

shows the projections of the validation dataset observations on PC1 and PC18 representing the 

normal and anomalous subspaces, respectively. For the projections on PC18, anomalous 

observations induced by the first four attacks clearly appear to have either excessively high or low 
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values compared to other observations reported when the system is not under attack, which 

facilitates their detection. On the other hand, projections on PC1 comprise no clear outliers, even 

during an ongoing attack, since they mostly correspond to the normal periodic patterns of the data. 

In this study, anomalous observations are defined as the ones yielding projections that are further 

than γ standard deviations above or below the mean projection (μl ± γσl) for any of the anomalous 

subspace principal components. 

 

 

Figure I-6. Projections of the validation dataset on: (a) PC18 (anomalous subspace), and (b) PC1 

(normal subspace). 
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Leave One Out (LOO) Approach 

In addition to directly using the projections of the data points on the PCs to find anomalies, we 

also implement the leave one out (LOO) methodology demonstrated by Lee et al. 2013, which 

examines the effect of adding the observations of interest on changing the direction of the principal 

components. We first start by evaluating the initial PCs of the training observations matrix A. Then 

we proceed by adding each of the observations from the validation or test datasets to the training 

dataset, and then re-evaluating the principal components each time. With adding a new 

observation, the directions of the resulting PC vectors are expected to deviate from the original 

directions, and the angle of the deviation will be dependent on the outlier-ness of the added 

observation. Therefore, an anomalous data instance will yield a larger deviation than the one 

generated by adding a normal data instance as shown in Figure 7-a. The deviation can be quantified 

by calculating the cosine similarity between the directions of the PCs before and after adding the 

observation as:  

Siml = 1- cos(θ) = 1- |
〈pl, p̂l〉

‖pl‖‖p̂l‖
|                                                           (8) 

where pl and p̂l are the principal component vectors before and after adding the data instance. 

According to this definition, the similarity can take any value between 0 and 1, with (Sim = 1) 

corresponding to the largest deviation (i.e. pi and p̂i are orthogonal), and (Sim = 0) representing 

the smallest deviation (i.e. pi and p̂i have similar orientation). Figure 7-b shows the similarity plot 

inflicted by the projections of the validation dataset on PC15 of the anomalous subspace. 

Anomalous points corresponding to attack events have clearly larger deviations relative to normal 

observations collected when the system is not under attack. Thus, observations having a cosine 

similarity more than γ standard deviations above the mean (μ + γσ) are considered anomalous. 
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Figure I-7. (a) Schematic of the Leave One Out (LOO) method for a normal vs anomalous 

observation, and (b) Cosine similarity for projections on PC 15. 

 

Integration of the four modules and real-time operation 

Alarm watch window 

The detection algorithm operates in a real-time fashion, where the time-series observations are 

analyzed one-by-one by each of the four modules (Figure 3). If any of the four modules discovers 

an anomaly in the incoming data stream, the algorithm raises a flag to mark the anomalous point. 

Since the anomaly can be induced either by a benign data point or by an actual attack, the algorithm 

puts the system under watch for a user-specific window time-period. If a second anomaly is 

detected during the watch window, the entire period between the first and second anomalies is 

flagged, and the watch is extended for another window starting from the second discovered 

anomaly. This process is repeated until no more anomalies are discovered within a window period 
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starting from the last discovered anomaly. The algorithm issues an attack alarm only if the total 

flagged period between the first and last discovered anomalies is longer than a user-specific 

threshold period, which in this study is taken equal to the window period for simplicity. 

Conversely, if no alarm is issued, the algorithm stops the watch and discards the discovered flags. 

Benign observations are then added to the pool of trusted data that is used to re-train modules 2, 3 

and 4. 

While the employed approach performs well in detecting the attacks featured in the 

BATADAL dataset, enhancements can still be made to the way the algorithm implements the 

window period method. For example, the frequency and magnitude of anomalies discovered during 

the watch window can be factored in. This means that anomalies simultaneously detected by more 

than one module, or whose deviations from the detection thresholds are very large, should have 

more weight in determining the existence of an attack. Another modification can be by changing 

the detection thresholds to become more stringent during the watch window. The algorithm can 

also use a probability-based method similar to those employed by previous studies (Arad et al. 

2013; Perelman et al. 2012), which can be done by recursively updating the probability of an event 

with the detection of every new anomaly, using Bayes’ rule for example, to decide whether an 

anomalous sequence of observations corresponds to an event. 

Module retraining and thresholds update  

To elucidate the re-training processes of the three modules, assume we start with the previously 

mentioned training observations matrix A(N × M). The incoming vector of observations from all 

monitors at the following time-step N + 1 can be written as [xN+1,1, … , xN+1,i, … , xN+1,M]. For 

instance, this can correspond to the observations made by all M monitors during the first time-step 

in the validation or test datasets. If no anomalies are discovered, this vector is added to the training 
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data matrix A, thus increasing its size by one row, i.e. ([N + 1] × M). The user can specify the 

maximum permissible size for the training data matrix, beyond which, the oldest observations will 

be discarded to accommodate newer ones. Module 2 is re-trained by re-calculating all the 

previously defined statistical properties (μi, σi, Q1i, and Q3i) and thresholds (ni
u,l

, and mi
u,l

). For 

module 3, ANN models for all monitors are re-trained, and the maximum training error (ϵi
train) is 

re-evaluated for each monitor to update its detection threshold. Module 4 is re-trained by re-

evaluating the set of M principal components {pi}l=1
M , and re-calculating the mean and standard 

deviation of the projections (μl, and σl) on the anomalous subspace PCs to update their detection 

thresholds. It should be noted that, while the threshold coefficients for modules 3 and 4, i.e. α and 

γ, are fixed throughout the process, the detection thresholds are updated during retraining since 

they depend on ϵi
train, μl, and σl. These dynamic thresholds are particularly useful for systems with 

large seasonal variations in water demands, which was not the case in the BATADAL datasets. 

The frequency at which each of the three modules is re-trained using the updated data matrix 

is user-specific, but is also subject to some restrictions. While modules 2 and 4 can be retrained 

with every new row of observations added to the data matrix, re-training the ANN models is 

restricted by having a sequence of I + 1 benign observations with no interrupting attacks. In 

addition, retraining the ANN models is the most computationally demanding among the three 

modules, which may limit how frequently they can be re-trained without needing additional 

computational resources. Algorithm users can set the initial weight coefficients for the re-training 

process to those of the previously trained ANN models instead of random values to reduce the 

computational burden. Besides, while not examined herein, users may want to periodically discard, 

or at least double-check, some of the anomalous observations that do not end up being labeled as 

attacks instead of using them for retraining. Accordingly, anomalous instances that are extremely 
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far from the alarm thresholds, or that raise flags by more than one module are good candidates for 

exclusion. 

I.6 Results and Discussion 

Algorithm validation and performance tuning 

To assess the efficiency of the proposed technique in identifying CPAs, the trained algorithm is 

applied to the second (validation) dataset with seven simulated attacks (Table I-1). A combined 

performance metric score is implemented to quantify the efficiency of the algorithm in detecting 

attacks both quickly and reliably and to tune its performance by finding the best window. 

Performance Metrics 

Using a similar approach to the one adopted in the BATADAL (Taormina et al. 2018), algorithm 

performance is evaluated using a combined score metric (S) that consists of two components, 

namely Time-To-Detection (STTD) which reflects the time required for detecting a threat, and 

Confusion-Matrix (SCM) which quantitatively determines the quality of recognizing true threats: 

S = (STTD + SCM)/2                                                                       (9) 

The first component STTD represents the performance metric for the time to detection as a ratio of 

the total attack duration ΔT for all the existing attacks in the dataset: 

STTD = 1-
1

NA
∑

TTDi

ΔTi
 

NA

i=1

                                                               (10) 

where NA is the number of attacks. According to this definition, STTD can take any value between 

zero and 1, with STTD = 0 representing the worst case scenario where none of the attacks is 

detected while they are taking place (i.e. TTDi = ΔTi), while STTD = 1 represents the ideal case 

scenario where all attacks are detected immediately (i.e. TTDi = 0). The second component  SCM 
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represents the Area Under the Curve (AUC) which is a metric used to maximize true alarms while 

minimizing false alarms (Powers 2011): 

SCM =
TPR + TNR

2
                                                                     (11) 

TPR is the Ture-Positive-Rate, which is the ratio of true positive (TP) alarms to the sum of true-

positives (TP) and false-negatives (FN), and thus it represents the sensitivity of the algorithm to 

detect true threats. TNR is the True-Negative-Rate, which is the ratio of true negative (TN) alarms 

to the sum of true-negatives and false-positives (FP), and hence TNR quantifies the specificity of 

the algorithm in recognizing when the system is not under attack. Therefore, SCM can take any 

value between 0 and 1, with SCM = 1 representing and ideal case where no false positives and no 

false negatives are labeled by the algorithm, while SCM = 0, represents the worst case where the 

algorithm can’t label any true positives or negatives. Nevertheless, SCM should practically be 

greater than 0.5, which is the score achieved by a naïve algorithm that predicts that the system is 

under attack at all times. Hence, the overall performance score should take a value in the range 

[0.75-1] for the detection technique to be deemed successful.  

Attack detection performance 

Figure 8-a shows a plot of the attacks detected by the algorithm compared to the actual attacks in 

the validation dataset. As can be seen from the figure, the algorithm is able to detect all the seven 

simulated attacks, together with one false attack of a relatively shorter duration (between the fourth 

and fifth attacks). For all the detected attacks, the algorithm labels the start of the threat almost at, 

or even slightly before, the official attack start-time. This means that the time to detection (the 

time needed by the algorithm to recognize an attack) is near zero for all the labeled attacks 

(∀ i, TTDi ≅ 0), which is translated to a high TTD score of (STTD = 0.984). This can be attributed 

to the fact that an alarm watch is immediately triggered at the detection of the first anomaly, which 
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may happen to be induced by a benign observation right before the beginning of the attack. This 

is followed by the discovery of other anomalies during the window period, which are combined by 

the algorithm and are eventually translated into a labeled attack. Additionally, Figure 8-a shows 

that the algorithm is able to maintain the true alarm status for as long as the actual attack is still 

active. This is mainly because the algorithm extends the watch period until no extra flags are 

discovered within a similar window starting from the last discovered flag. However, this also leads 

to the algorithm falsely extending the alarm periods for a few time steps after the formal end of 

the actual attack for most attacks (attacks 1, 3, 5 and 6).  

 

Figure I-8. Detected vs. labeled attack for: (a) validation dataset, and (b) test dataset. 
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It is noteworthy that the time-to-detection (TTD) as defined in the BATADAL does not 

reflect the practical time taken by the proposed algorithm when operated in a real-time fashion. 

This is because the attack alarm is issued after a window period has elapsed starting from when 

the first anomaly is discovered. Nevertheless, since the algorithm was able to label all the simulated 

attacks at or before their actual start, the practical TTD for real-time operation is expected to be 

less than the window period.  

 For the validation dataset, the confusion matrix score of the algorithm is slightly less than 

the time to detection score (SCM = 0.953), which is attributed to its low true negative rate (TNR =

0.946). This is due to the relatively large number of false positives (FP = 4.764%) that mainly 

correspond to the extended alarm periods after the end of the true attacks as well as the one false 

attack detected. Nevertheless, the algorithm has a significantly lower number of false negatives 

(FN =  0.479%), which is more essential since undetected attacks can yield serious consequences 

if they resulted in physical damage to the infrastructure or if the water quality is compromised. 

The overall performance score of the algorithm for the validation dataset is sufficiently close to 

unity (S = 0.968), indicating a satisfactory performance.  

Role of each module 

Figure 9 shows the attacks detected by each of the four modules for the validation dataset. It can 

be seen that, for most of the detected attacks, each module was able to pick up some of the 

anomalies. Nevertheless, none of the modules was able to detect all of the seven simulated attacks 

independently. Thus, compiling the flags detected by all four modules is necessary to detect all 

attacks with high speed and reliability. The third and fourth modules (ANNs, and PCA) appear to 

be the most efficient in terms of accurately detecting most of the attacks at the right start times, 

while each of the first and second modules fully detected only two of the seven attacks. Moreover, 
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the drop in the calculated performance score when only the third and fourth modules are used to 

detect attacks is negligible (S = 0.966), reflecting the dominance of the ANN and PCA methods.  

 

 

 

 

Figure I-9. Role of each module in attacks detection for the validation dataset 

 

It is worth mentioning that the fourth module (PCA) is the only one that appropriately 

detected the seventh attack event, while the three other modules failed to detect it even partially. 

During this attack, the individual behavior of each of the attacked network elements does not 
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display any exceptionally suspicious inconsistencies due to attack concealment. Nevertheless, 

projecting their combined data on the principal components of the anomalous subspace shows a 

clear anomalous sequence during the seventh attack event (Figure 10). PCA was able to detect this 

attack since it takes into consideration the naturally existing correlation between the collected 

readings from different sensors in order to identify anomalous behaviors that can go undetected 

when data from each sensor is only analyzed independently. While this demonstrates the critical 

role of the fourth module in detecting such global anomalies, it is important to note that the PCA 

module also yields a group of sporadic falsely labeled flags induced by benign observations. 

However, most of these flags are eventually discarded by the algorithm because they are not 

typically followed by any more flags within the window period.  

 

Figure I-10. PCA for the detection of seventh attack in the validation dataset in which the 

affected system components were concealed by the attacker 
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Optimal alarm window 

The fact that the algorithm flags some of the benign observations sheds light on two important 

aspects of the proposed approach: (i) the sensitivity of the detected outliers to the threshold limits, 

and (ii) the effect of the window size on the algorithm performance. It is imperative that using a 

more stringent threshold criteria for defining an anomalous observation would typically improve 

the detection of attacks by minimizing the number of false negative alarms, yet, this would also 

lead to a higher number of false-positive alarms because noisy observations that do not necessarily 

correspond to an attack can still be flagged. Therefore, before applying the algorithm to new 

datasets, calibration should be conducted to draw the appropriate line between normal and 

anomalous data instances based on the characteristics of the system. While the second module 

requires no calibration since the detection thresholds (ni
u,l

, and mi
u,l

)  are defined based on the 

maximum and minimum values in the training dataset, the threshold coefficients for the third and 

fourth modules, i.e. α and γ, require calibration. In this study, these parameters were selected by 

enumeration to yield the best performance for each module separately (α = 5, and γ = 3). Another 

alternative to this approach is to use a different threshold coefficient for the ANN model of each 

monitor {αi}i=1
M , as well as each principal component {γi}i=1

M  instead of the global settings used 

herein. While this will increase the number of calibration parameters from two to 2M, it is expected 

to enhance the performance of the algorithm. An optimization routing, e.g. genetic algorithm, can 

be used to perform the calibration instead.    

A similar effect can also be inflicted by the chosen window, since a larger window means 

that the system is put under an alarm watch for extended periods of time even when no flags are 

being detected. On the other hand, a shorter window can result in missing most of the attacks since 

the majority of the flags will be discarded within a short period if no more flags are discovered. 
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Figure 11-a shows the effect of the size of the alarm-watch window period on each of the three 

performance metrics. It demonstrates that an optimal window period can be selected to achieve the 

best performance, while smaller and larger windows would generally yield less accurate results. It 

is noteworthy here that finer sampling frequencies can enable the users to choose a shorter window 

without compromising on the accuracy. This will shorten the delay period before an attack alarm 

is issued after a series of anomalous observations is detected. 

 

Figure I-11. (a) Sensitivity analysis for the window period selection for the validation dataset, 

and (b) Effect of measurement noise on detection performance for the test dataset.  
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Attack localization  

Only the first three modules of the detection algorithm are capable of attack localization, which is 

identifying the actual components of the cyber-physical system that were directly targeted or 

affected by the attack. This is because they rely on analyzing the data from each sensor/actuator 

individually, while the fourth module (PCA) only recognizes global anomalies without specifying 

which component is the actual source of the anomaly. For all the detected attacks, the algorithm 

picks anomalies in the observations obtained from multiple sensors/actuators at the same time; 

however, most of these anomalies are typically concentrated in the data from only two or three 

elements. Table I-3 lists the localized attacks as identified by the algorithm from the anomalies in 

the validation dataset, while Table I-1 shows the actual attacked components during each attack 

scenario. For instance, during the first attack, the water level information of Tank 7 is manipulated, 

which jeopardizes the operations of Pumps 10 and 11. While the algorithm does not specify Tank 

7 as an attacked component, it still discovers the inflicted anomalous observations in the flow of 

the corresponding pumps. Thus, for this attack, the algorithm can only give multiple probable 

scenarios without necessarily specifying which one is true. For example, the detected anomalies 

can correspond to a direct attack on the actuators connected to the pumps, the manipulation of the 

connection between Tank 7 sensor (PLC9) and pumps actuators (PLC5), or a direct attack on the 

tank sensor (PLC9). Similarly, for most of the attacks, the algorithm is able to identify either the 

actual targeted components or the sensors/actuators that immediately control or are controlled by 

its operation. However, this is not the case for the fourth attack, where the readings of Tank 1 level 

sent to PLC2 are manipulated and the operation of pumps 1 and 2 is compromised, yet the 

corresponding anomalies are picked up from multiple elements. The majority of these anomalies 

are concentrated in the suction pressure observations of Valve 2 and pumping stations 4 and 5, 
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which are distributed across more than one PLC, and do not have any common connectivity with 

the truly targeted components (Table I-1). Thus, for this attack, the algorithm is neither able to 

localize the actual attacked components, nor the immediately affected ones. Still, such confusion 

is expected based on the study of Taormina et al. (2017), where they showed that the same 

hydraulic response for the WDS can be reached due to drastically different attack scenarios. 

 

Table I-3. Attack localization results for the validation and test datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Att# Detected Attack Components 

Validation 

1 PU11 Flow / PU10 Flow / PS5 DP 

2 PS5 DP 

3 T1 Level  / PU1 Flow / PS1 DP / V2 SP 

4 V2 SP / PS5 SP / PS4 SP 

5 PU6 Flow / T4 Level 

6 PU6 Flow / PU7 Flow 

7 PS3 DP 

Test 

1 PS2 DP 

2 V2 DP / PS2 SP / PS3 SP / PU7 Flow / T2 Level 

3 PU3 Flow / PU2 Flow 

4 PU3 Flow / PU1 Flow / T1 Level / PU2 Flow 

5 PS2 SP / PS3 SP / PU7 Flow 

6 PS4 SP / T6 Level / V2 SP 

7 PS3 DP 
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Algorithm testing and effect of measurement noise 

Detecting Attacks in the test dataset 

The tuned algorithm is finally tested against the third test dataset containing approximately 3 

months of observations and featuring seven different attack scenarios (Table I-2). This fresh 

dataset has not been involved in either the training or the validation of the algorithm and thus can 

reflect the actual performance in detecting CPAs in new observations. Figure 8-b displays the 

actual attacks featured in the dataset plotted against the attacks detected by the algorithm. Similar 

to the validation dataset, the algorithm detects all the seven attacks in the test dataset demonstrating 

high detection efficiency. In addition, the algorithm identifies the existence of the threat at or 

before the formal start time of the actual attack for most of the attacks. Nevertheless, the time-to-

detection score for the test dataset (STTD = 0.963) is clearly less than the validation dataset. This 

can be attributed to the delay encountered in detecting the seventh attack, which also happened to 

be the shortest attack in the test dataset resulting in a high (TTDi ΔTi⁄ ) ratio. Although the 

percentage of false positives in the test dataset (FP = 3.159%) is less than that encountered in the 

validation dataset, the confusion matrix score for the test dataset (SCM = 0.947) is still lower than 

the validation dataset. This is mainly because the test dataset yields a higher percentage of true 

negatives (FN = 1.292%) than the validation dataset due to the delayed identification of the 

seventh attack scenario. Thus, the overall performance score of the test dataset (S=0.955) is lower 

than that of the validation dataset, which is expected since the selection of the window period was 

conducted for the latter. 

 By inspecting the labeled attacks by each of the four modules for the test dataset, it was 

clear that the fourth module (PCA decomposition) is the most efficient in appropriately detecting 

all the seven attacks. Similar to the validation dataset, PCA was the only module capable of 
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detecting the sixth attack that induces only minor anomalies in the observations of each individual 

sensor/actuator due to concealment, and thus can only be discovered by a coordinate 

transformation method. It is worth noting that the first module does not detect any attacks in the 

test dataset since during the attacks all the actuator rules were precisely followed. This scenario 

can take place if the attacker had intimate knowledge of the system, which could be gained through 

eavesdropping on network communications. This allows the attacker to conceal the apparent 

sensor/actuator readings to obey the rules at all times, corresponding to a highly sophisticated 

attack. Table I-3 lists the localized attacks as identified by the algorithm from the anomalous 

observations in the test dataset. Similar to the validation dataset, the algorithm identifies the actual 

compromised or the immediately affected network components for the majority of the attacks. 

Effect of noise 

Since the algorithm adopts a “data-based” approach for the detection of cyber-physical attacks by 

isolating anomalous observations, it is important to test its robustness against outliers caused by 

measurement noise that does not necessarily correspond to an attack. So far, the datasets that were 

used in the training, validation, and testing of the algorithm are considered to correspond to a group 

of perfect monitors. However, a real-life sensor signal will typically constitute some degree of 

undesired noise that either takes the form of a continuous or a semi-continuous uniform 

background noise, or can be a group of outliers with different magnitudes that are randomly 

encountered across the time series signal. The algorithm can readily isolate and discard the flags 

inflicted by the latter form of noise thanks to the window period rule as previously demonstrated. 

Nevertheless, the former type of uniform noise can be confusing to the detection algorithm because 

of its continuous nature, which might cause a series of anomalous observations that can be 

interpreted by the algorithm as an attack.  
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To test the robustness of the detection technique to sensor noise, the algorithm is applied 

to the test dataset after adding Gaussian background noise to the observations in the test dataset. 

For each observation, a noise component is randomly generated from a normal distribution with a 

zero mean and a standard deviation equivalent to a chosen fraction of the standard deviation of the 

clear signal (σnoise/σsignal) and then added to the clear signal. A range of different standard 

deviations is tested, starting from zero up to 0.5, which correspond to a perfectly clear signal and 

a highly noisy signal, respectively. Figure 11-b shows the three performance scores for each tested 

scenario with different (σnoise/σsignal) ratios. As expected, the detection performance of the 

algorithm drops as the signal noise increases. The overall performance score (S) drops consistently 

due to the decrease of the confusion matrix score (SCM), while the time to detection score does not 

change much. It should be noted that for these tests, the second module (simple outlier detection) 

is turned off. The extended periods of anomalous observations caused by the signal noise lead the 

algorithm to label them as attacks, which resulted in a near trivial solution (S=0.761) for the case 

of  σnoise/σsignal = 0.5, where the algorithm labels almost the entire simulation period as a 

continuous attack event. Thus, noise reduction might be crucial for successfully applying this 

approach if the data has a high degree of noise.  

I.7 Conclusions  

Implementing smart networking technologies in the sector of water infrastructure systems has 

expanded the domain of potential threats from the traditional risks associated with direct physical 

attacks that commonly aim at sabotaging the infrastructure equipment or compromising the water 

quality, to the risks of malicious attacks originating in the cyber-space. In this study, an 

algorithm is developed for the detection of cyber-physical attacks on smart water distribution 

systems. The algorithm employs multiple anomaly detection techniques to spot different types of 
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anomalous observations in the sensory data. Artificial neural network models are first trained to 

predict the regular patterns of the system’s operation and then used to identify suspicious 

observations that are inconsistent with the normal behavior of the system. Principal component 

analysis is conducted to decompose the multi-dimensional sensory data matrix into two sub-spaces 

representing the normal and the anomalous projections, which efficiently discovers global 

anomalies that are caused by highly concealed attacks.  

The algorithm performs well in detecting all the simulated attacks in the validation and test 

datasets with short or no delays. Nevertheless, it tends to put the system under a false attack status 

for a few time-steps after the real threat no longer exists. Integrating the flags detected by all 

modules is shown to be necessary to detect and localize all attack scenarios with high efficiency. 

Yet, the principal component analysis appears to be the most reliable component of the algorithm, 

especially in discovering stealthy attacks that induce minor inconsistencies in the sensory data 

because of attack concealment. For most of the identified attacks, the algorithm was generally able 

to localize the system elements that are impacted by the threat. Nevertheless, for one of the attacks, 

the algorithm could identify neither the actual targeted elements, nor those that are immediately 

affected by their operation, because the discovered anomalies were dispersed in the observations 

from multiple unrelated sensors/actuators. 

The algorithm shows a robust performance in the face of mild measurement noise. 

However, high noise adversely affects the detection ability as the algorithm confuses the extended 

anomalies caused by random noise with those inflicted by an actual attack. In addition, several 

anomalous events can still take place during usual operation of systems, such as pipe bursts or 

pump shut-offs, which might be interpreted by the algorithm as a deliberate attack on the system. 
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A number of computer codes and simulation programs have been developed throughout the work 

presented in this dissertation. A subset of these codes and programs are available for download 

from the author's profile on GitHub: https://github.com/aabokifa 

A list of the developed codes and programs, along with a brief description of each, is 

provided below. 

1- WU-DESIM: (Washington University - Dead End SIMulator) 

A C++ code linked to EPANET programmers' toolkit. The program simulates the water quality in 

the dead-end pipes of any given distribution system while accounting for solute dispersion and the 

realistic spatial distribution of the flow demands along the dead-end pipe. 

2- WU-MSRT (Washington University - Multiple Species Reactive Transport) 

A MATLAB code for simulating the reactive transport of multiple species in the pipes of water 

distribution systems. The code numerically solves the coupled advection-dispersion-reaction 

equations for all the different constituents in two compartments: bulk flow and biofilm. 

3- WU-LRSIM (Washington University-Lead Release SIMulator) 

A MATLAB/C++ code for simulating the release and transport of dissolved and particulate lead 

from lead service lines. The code numerically solves the 2-D convection diffusion equation for 

both dissolved and particulate lead suspended in the bulk flow, and the mass balance for the 

releasable lead particulates attached to the LSL wall. 

4- WU-ADAL (Washington University- Attack Detection ALgorithm) 

A MATLAB code for the real-time identification of cyber-physical attacks on smart water 

distribution systems. The code integrates trained Artificial Neural Network (ANN) models and 
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Principal Component Analysis (PCA) to detect suspicious behaviors in the different components 

of the distribution system resulting from cyber-based attacks on the SCADA system.  
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