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ABSTRACT OF THE DISSERTATION
Bio-Inspired Multi-Spectral Image Sensor and Augmented Reality Display for Near-Infrared

Fluorescence Image-Guided Surgery
by
Nan Cui
Doctor of Philosophy in Electrical Engineering
Washington University in St. Louis, 2018
Background: Cancer remains a major public health problem worldwide and poses a huge
economic burden. Near-infrared (NIR) fluorescence image-guided surgery (IGS) utilizes
molecular markers and imaging instruments to identify and locate tumors during surgical resection.
Unfortunately, current state-of-the-art NIR fluorescence imaging systems are bulky, costly, and
lack both fluorescence sensitivity under surgical illumination and co-registration accuracy between
multimodal images. Additionally, the monitor-based display units are disruptive to the surgical
workflow and are suboptimal at indicating the 3-dimensional position of labeled tumors. These
major obstacles have prevented the wide acceptance of NIR fluorescence imaging as the standard
of care for cancer surgery. The goal of this dissertation is to enhance cancer treatment by
developing novel image sensors and presenting the information using holographic augmented

reality (AR) display to the physician in intraoperative settings.

Method: By mimicking the visual system of the Morpho butterfly, several single-chip, color-NIR
fluorescence image sensors and systems were developed with CMOS technologies and pixelated
interference filters. Using a holographic AR goggle platform, an NIR fluorescence IGS display
system was developed. Optoelectronic evaluation was performed on the prototypes to evaluate the
performance of each component, and small animal models and large animal models were used to

verify the overall effectiveness of the integrated systems at cancer detection.

Xi



Result: The single-chip bio-inspired multispectral logarithmic image sensor | developed has better
main performance indicators than the state-of-the-art NIR fluorescence imaging instruments. The
image sensors achieve up to 140 dB dynamic range. The sensitivity under surgical illumination
achieves 6x108 uV/(mwW/cm?), which is up to 25 times higher. The signal-to-noise ratio is up to 56
dB, which is 11 dB greater. These enable high sensitivity fluorescence imaging under surgical
illumination. The pixelated interference filters enable temperature-independent co-registration
accuracy between multimodal images. Pre-clinical trials with small animal model demonstrate that
the sensor can achieve up to 95% sensitivity and 94% specificity with tumor-targeted NIR
molecular probes. The holographic AR goggle provides the physician with a non-disruptive 3-
dimensional display in the clinical setup. This is the first display system that co-registers a virtual
image with human eyes and allows video rate image transmission. The imaging system is tested
in the veterinary science operating room on canine patients with naturally occurring cancers. In
addition, a time domain pulse-width-modulation address-event-representation multispectral image

sensor and a handheld multispectral camera prototype are developed.

Conclusion: The major problems of current state-of-the-art NIR fluorescence imaging systems are
successfully solved. Due to enhanced performance and user experience, the bio-inspired sensors
and augmented reality display system will give medical care providers much needed technology

to enable more accurate value-based healthcare.
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Chapter 1: Introduction

Cancer remains a major public health problem in the US and poses a huge economic burden [1].
One in four deaths in the US is caused by cancer [2]. Although chemotherapy and radiotherapy
continue to play major roles in cancer treatment, surgery remains the primary curative option for
most solid cancers[3]. Despite advancements of imaging technologies in the operating room, an
overwhelming majority of physicians still rely on their unaided eyes and palpation to distinguish
cancerous from healthy tissue, leading to subjective decision making and variable outcomes.
Studies show that incomplete tumor resections are observed in all types of cancer, for example,
20-70% for breast cancer [4, 5], 28% for colon cancer [6] and 40% for head and neck cancer [7].
Secondary surgeries not only are expensive but also have limited success because of the difficulty
in seeing microscopic tumors or diffuse cells. Additionally, scar tissue formation perturbs the
surgical planes, making it more difficult for the physician to identify the remaining tumor tissue.
These studies underscore the importance of complete tumor removal during the first surgery and

the need for a paradigm shift in the design of imaging systems for image-guided surgery (IGS).

The remainder of this chapter will provide an overview of the current state-of-the-art image guided
surgical instruments. | will highlight the major issues with FDA approved instruments for IGS and

will outline my research contributions in this thesis.

1.1 Image-Guided Surgery with Fluorescent Molecular

Markers
Fluorescence-based intraoperative imaging techniques were first explored in the 1950s using

fluorescein to identify brain tumors [8]. With the recent FDA approval of the metabolic marker 5-



ALA, brain cancer surgery is routinely performed under image guidance [9]. The visible-spectrum
fluorescence emitted by both fluorescein and 5-ALA enables physicians to assess the location of
tumors under a surgical microscope. However, due to tissue’s high absorption coefficients in the
visible spectrum, only fluorophores near the tissue surface can be imaged, which limits their
diagnostic potential. For imaging more than a few millimeters below the surface of the skin, near
infrared (NIR) fluorophores (700 to 950 nm) are used because of the low absorption coefficient of
water and oxy- and deoxy-hemoglobin in this spectrum [10-12]. Furthermore, the low auto-
fluorescence in the NIR spectrum coupled with the use of non-ionizing radiation enable high-

contrast imaging without exposing the patient to harmful radiation [13].

There are currently only two FDA-approved, non-specific molecular markers with NIR
fluorescence (NIRF): indo-cyanine green (ICG) and methylene blue [11]. Both markers are used
either for mapping the primary draining lymphatic nodes near the tumor site, known as sentinel
lymph nodes (SLNs), or for assessing blood perfusion in tissue [14]. Preliminary results from our
lab on 11 patients with breast cancer [15, 16] concur with other published studies [17] that NIRF
from ICG has higher sensitivity for identifying SLNs than does visible inspection of ICG or
radioactive tracers. Despite these promising results, fluorescence-based SLN mapping using ICG

is not currently adopted as the standard of care during oncology procedures.

e Inaccuracy of Intraoperative NIRF Instruments: The FDA stipulates several criteria for
intraoperative use of NIRF instruments [10-12], including a minimum range of operational
temperatures between 10 °C and 35 °C. The reason for the large operational temperature range
is that large thermal gradients exist within standard operating rooms (ORs) due to building

cooling and heating, and these ranges are even greater for ORs outside the US. Current FDA-



approved instruments combine at least two separate image sensors, one for visible-spectrum
imaging and one for NIR imaging, with optimized dichroic beam splitters and spectral filters
[15]. Since each individual component has a different thermal expansion coefficient, co-
registration between color and NIRF images is a function of temperature. Although the FDA
does not yet stipulate any co-registration accuracy, the preliminary data indicate co-registration
errors in FDA-approved instruments ranging from several millimeters to a centimeter within

the 10-35 °C range (Figure 1.1(a)).

8.0 (a)

Beam Splitter Instrument —

6.5 -

Co-registration Error (mm)
5
L

Figure 1.1(a) Measured co-registration error between NIR and color image in FDA-approved Visionsense Iridium
instrument. (b) and (c). Tumor-targeted agent correctly highlights the cancerous tissue at 15 °C (b), but at 35 °C the
sciatic nerve (arrow) is tagged as cancerous tissue (c) due to temperature-induced co-registration error.
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By gradually heating and then cooling the instruments, different co-registration errors are
observed at the same temperatures, which makes off-line corrections intractable. The co-
registration errors result in incorrect superposition of tumor-targeted tissue on anatomical
features (Figure 1.1 (b), (c)). Superposition can lead to incomplete resection of tumor tissue

and iatrogenic damage of healthy tissue and is a liability for FDA-approved instruments.

e Intraoperative Display Devices: Displaying information in the OR without intruding in
the surgical flow is a major challenge for IGS. Three-dimensional real-world information is
projected on two-dimensional monitors, resulting in loss of important depth information.
Wearable goggles are ideal for displaying information in the OR: they provide protection to
the physician’s eyes and can present 3-D information to the operator without interfering in the
surgical workflow. In our previous research, we integrated various types of video- [18] and
see-through [19-21] goggles with beam-splitter multispectral cameras and provided real-time
information to physicians about the location of SLNs in patients with breast cancer. One of the
major shortcomings of our goggle technology is the fact that NIR fluorescence information is
not co-registered with the physician’s natural vision, which leads to confusion and distraction

of the physician.

Despite the fact that the first fluorescence-based IGS was performed more than 70 years ago, two

obstacles have stood between molecular imaging in the NIR spectrum and its wide acceptance as

the standard of care for cancer surgery: (1) Current state-of-the-art NIRF imaging systems are

bulky and costly—they use an external monitor to display information, which interferes with the

surgical workflow—and they lack both sensitivity under surgical illumination and co-registration

accuracy between multimodal images (Fig. 1) [10-12]. (2) Large molecular markers targeting

monoclonal antibodies do not highlight proliferating tumor edges [22, 23]. Tumor detection can
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be further improved by utilizing small molecular probes targeting affibodies or peptides, instead
of large, monoclonal antibody (mAb) probes [22, 24]. Due to the small size of affibody-based
molecular probes, unbound tracer is quickly removed from blood and normal tissue, and the patient
is typically imaged 2-6 hours post-injection, whereas mAb-based markers take 3 to 7 days to clear
from normal tissue [25, 26]. Thus, affibody- and peptide-based markers can enable same-day
administration of the probe and surgery, thereby reducing hospital stays and overall treatment costs

[23, 27].

1.2 Research Goal and Achievements
The overarching goal of this dissertation is to enhance cancer treatment by decreasing, and ideally

eliminating, positive tumor margins and small metastatic tumors by imaging small tumor-targeted
molecular probes with novel bio-inspired image sensors and presenting this information using
holographic display to the physician in intraoperative settings. | have leveraged complementary,
small molecular probes targeting different tumor marker antigens to highlight tumor margins and
small tumors during surgery. | have tested my complete imaging system on both small and large
animals with naturally occurring tumors. My pre-clinical data reveals high sensitivity of my
imaging system to NIR-fluorescent molecular markers under surgical light conditions.
Furthermore, the integration of my bio-inspired imaging system with wearable holographic

augmented reality (AR) goggles enables seamless integration in the surgical workflow.

1.3 Contributions of this Dissertation
Toward achieving the overarching goal of this thesis, | have made several key contributions

outlined below:



1. Toaddress the high dynamic range and low-noise imaging requirements in the operating room,
I developed a bio-inspired, single-chip, visible-NIR fluorescent image sensor with dynamic
range exceeding 140 dB (120 dB logarithmic response). The image sensor successfully mimics
the visual system of the Morpho butterfly by utilizing (a) logarithmic photodetector necessary
to image scenes with dynamic range exceeding 140 dB and (b) pixelated spectral filters
necessary to simultaneously image both visible and NIR spectra. The image sensor was
designed and fabricated in a standard 0.35um CMOS process by TSMC. Pixelated spectral
filters were integrated with the CMOS image sensor in the cleanroom facilities at University
of Illinois. | performed detailed optoelectronic evaluation of the image sensor and then tested
the sensor’s ability to detect and specify tumors with small NIR fluorescent molecular markers.
Due to the low read-out noise and high dynamic range, the sensor achieved ~95% sensitivity
and ~94% specificity in detecting orthotopic prostate cancers in murine models when imaged

under surgical light illumination.

2. To address changes in displaying information in the operating room without intruding in the
surgical work flow, | integrated my bio-inspired image sensor with a holographic AR goggle
platform to display real-time NIR fluorescent information to the physician. My key
contribution is the accurate co-registration of NIR fluorescent information with the physician’s
natural eyesight. With the complete imaging and display system, the physician observes the
patients with his or her natural eyesight, which is augmented with NIR information that
highlights the location of the tumors. The imaging system was tested in the veterinary science
operating room on canine patients with naturally occurring cancers. According to the feedback
from the veterinarian physician, my system provided critical information about the location of

the lymphatic nodes during the surgery without intruding in the surgical workflow.
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3. To ensure that there are no cancerous cells left in the patient’s body, | developed a handheld
imaging device that can provide close inspection of the surgical cavity. The imaging platform,
inspired by the visual system of the Morpho butterfly, combines a custom designed CMOS
image sensor in 180nm image specific technology with pixelated spectral filters. My CMOS
image sensor contains custom circuitry that enables high-dynamic-range imaging under
surgical light illumination. Due to the monolithic integration of spectral filters with CMOS
imaging elements, the NIR-fluorescent information is correctly reregistered with color
information over large temperature range. | could achieve accurate temperature-independent

image co-registration compared to state-of-the-art, FDA approved imaging instruments.

4. To address the high dynamic range needs for intraoperative procedures, | designed the first
time-domain  pulse-width-modulation (PWM) address-event representation (AER)
multispectral imaging system. The AER image sensor provides temporal information when a
corresponding pixel in the array has relevant information. The pixel’s address is reported
outside the image sensor when its intensity value crosses a user-set threshold value, and an
external processing unit aggregates and displays the image information. The monolithic
integration of the AER image sensor with a pixelated spectral filter array enables imaging of
weak fluorescent signals under bright surgical light illumination. The image sensor was able
to detect tumors with 85% sensitivity and 87% specificity when an antibody-targeted

molecular marker was used.

1.4 Organization of this Dissertation
This dissertation is organized as follows. Literature overview and motivation for fluorescence-

based image-guided surgery is presented in Chapter 2. A bio-inspired, high dynamic range,

multispectral image sensor based on logarithmic domain pixel is presented in Chapter 3. Chapter
7



4 describes a time-domain pulse-width-modulation address-event representation bio-inspired
multispectral imaging system. Chapter 5 presents a handheld, bio-inspired multispectral image
sensor for image-guided cancer surgery. Chapter 6 describes my work on the holographic AR
goggles display unit integrated with a bio-inspired image sensor for real-time assessment of tumors
and lymphatic nodes in large animals with naturally occurring tumors. Concluding remarks are

presented in Chapter 7.



Chapter 2: Overview of FDA Approved
Instruments for Fluorescence-Based Image-
Guided Surgery

The goal of image-guided surgery (IGS) is to provide critical information to the physician about

the location of tumor vs. healthy tissue during intraoperative procedures. Various technigques have
been developed for IGS, including: x-ray imaging, two-photon imaging, fluorescence and others.
Fluorescence imaging is of particular interest because it utilizes fluorescent molecular markers to
highlight the location of the cancerous tissue and enables high signal-to-background imaging.
Fluorescence imaging in the near infrared (NIR) spectrum (wavelengths from 700 nm to 1000 nm)
has gained lot of traction during the last decade for numerous reasons. First, due to tissue’s low
absorption and scattering coefficient in the NIR spectrum, NIR photons can travel and penetrate
several centimeters deep in the tissue [10-12]. Second, the low auto-fluorescence in the NIR
spectrum coupled with the use of non-ionizing radiation enables high-contrast imaging without
exposing the patient to harmful radiation [13]. Third, the human eye is invisible to the NIR
spectrum. Hence, imaging in the NIR spectrum does not interfere with or obstruct the physician’s

natural vision. However, specialized image sensors are needed to sense NIR photons.

Despite the fact that the first fluorescence-based 1GS was performed more than 70 years ago,
molecular imaging in the NIR spectrum is not widely accepted as the standard of care for cancer
surgery because (1) current state-of-the-art NIRF imaging systems are bulky and costly; they use
an external monitor to display information, which interferes with the surgical workflow, and they

lack both sensitivity under surgical illumination and co-registration accuracy between multimodal



images [10-12]; and (2) large-size molecular markers targeting monoclonal antibodies do not

highlight proliferating tumor edges [22, 23].

This chapter first outlines the Food and Drug Administration (FDA) requirements for
intraoperative procedures, then describes in detail the shortcomings of current FDA-approved

instruments which are preventing wide dissemination of newer instruments.

2.1 Requirements for Intraoperative lllumination and

Intraoperative Imaging Instruments
The goal of NIR fluorescence-based image-guided cancer surgery is to simultaneously capture

both visible and NIR images. NIR fluorescence images capture only information about the location
of the molecular fluorescent dye and lack any anatomical information. Fluorescent images
resemble a bright start against a black background. Hence, the location of the fluorescent marker
is needed so that the physician can correctly remove all cancerous tissue without damaging healthy
tissue. Therefore, the patient wound site must be illuminated with both visible and NIR spectra

and imaged with sensors that can capture photons in both spectra.

The FDA regulates the optical properties for both visible and NIR light sources, such as maximum
optical power, temperature color and color rendering index among others. Surgical light sources
must adhere to the following FDA requirements to be used in the operating room. First, the optical
power for visible spectrum illumination must be between 40 kLux and 160 kLux. Second, the color
temperature of the light source must be between 3000 K and 6700 K. Third, the color rendering
index must be greater than 0.85. To excite NIR fluorophores from tumor targeted dyes, laser light
illumination is preferred over LED-based illumination because of the higher excitation optical

power over a narrow spectral bandwidth. The narrower spectral bandwidth is important when
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imaging molecular markers with small Stokes shift, i.e. the difference between the maximum
absorption and maximum emission of the molecular marker. The maximum optical power for
laser-based illumination at 780 nm without inflicting tissue damage is approximately 150 mW/cm?.
However, protective laser goggles are required for everyone in the operating room, including the
patient, posing an immense hurdle for seamless integration of this technology in the operating
room. Hence, maximum laser light illumination at 780 nm is typically limited to 10 mW/cm? in

the operating room because protective goggles are not necessary.

e Dynamic Range Requirements for Intraoperative Imaging Devices: An image sensor
for fluorescence-based IGS must simultaneously capture both visible and NIR photons. Next,
I consider the photon flux from both visible and NIR photons impinging on an image sensor
during an intraoperative procedure of a patient model with a tumor that is 5 mm beneath the
surface (Figure 2.1). I will assume that the visible spectrum illumination is 40 kLux and NIR
laser-based excitation power is 10 m\W/cm?. Based on this assumption, the visible spectrum
illumination sources will generate ~4x10%® photons/cm?*sec. Since the index of refection for
human skin is between 1.33 and 1.51, about 1x10*® photons/cm?*sec will be reflected based
on Snell’s law for reflection. The reflected photon flux will be recorded by the imaging

instrument placed 1 m above the patient’s body and a color image will be formed.

The 780 nm laser light source will generate 8x10*® photons/cm?*sec NIR photons and impinge
on the patient’s body. About 4x10% photons/cm?*sec NIR photons will get reflected from the
patient’s body and will impinge on the image sensor. These photons must be blocked with
high-optical-density spectral filters because they carry no information about the fluorescent

markers. The photons that are refracted in the patient’s body will undergo multiple scattering
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and absorption events. About 4x10%** photons/cm?*sec NIR photons will reach the tumor and
excite fluorophores from the tumor targeted dye. If the quantum yield and concentration of the
molecular marker are 5% and 10uM, respectively, then approximately
1x10*3 photons/cm?*sec fluorescent photons will be radially emitted by the molecular marker.
Some of fluorescent photons will travel back toward the surface, where they will undergo
multiple scattering and absorption events. Lastly, 6x10° photons/cm?*sec fluorescent photons
will emerge from the tissue into air and will be registered by the image sensor. Hence, the
image sensor has to capture both color and NIR photons with 100 dB difference in photon flux.
This difference is further exacerbated if the tumor is located deeper in the tissue and the
fluorophen concentration is lower than that assumed in this example. Hence, an image sensor
must have at least 100 dB dynamic range imaging capabilities for successful clinical

translation.

»

visible illumination: 4x10™  visible reflection: 1x10’

‘/-@ I ~100dB difference

NIR excitation: 8x10" 7 NIR emission: 6x10™

unit: photons/cmzs

Figure 2.1 Modeling the dynamic range of an intraoperative imaging device for fluorescence-based image-guided
cancer surgery. The dynamic range of an imaged scene exceeds 100 dB depending on the tumor location and
concentration of molecular markers.
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The FDA regulations also require the operational temperature for intraoperative imaging
instruments to be between 10 °C and 35 °C. The reason for this large operating temperature range
IS because temperature gradients in the operating room are common due to room heating and
cooling. Although the average temperature in the operating room is typically between 18 °C and
20 °C, large temperature gradients across the operating room are observed. The optoelectronic
performance of the imaging device, such as co-registration accuracy between NIR and visible
images, across this temperature range should be critically evaluated. Unfortunately, FDA does not
have any requirements about the co-registration accuracy between these two imaging modalities

and FDA-approved instrument lack co-registration accuracy.

2.2 FDA-Approved Instruments for NIR Fluorescence
Image-Guided Surgery

There are currently five FDA approved imaging devices for fluorescence-based NIR image-guided
surgery (see Table 2.1). All FDA approved instruments are based on a beam splitter design: two
separate image sensors are combined together with a beam splitter and spectral filters and used to
separately capture visible and NIR spectrum photons. The visible image sensor captures photons
with wavelengths between 400 nm and 650 nm, and the NIR image sensor captures photons with
wavelength between 650 nm and 1000 nm. The visible spectrum image is enhanced with the NIR
fluorescent image, which provides the location of the cancerous tissue. It is imperative that these
two images are correctly co-registered across all possible operating conditions, including the
specified operating temperature range of 10 °C and 35 "C. However, FDA approved instruments
have three major shortcomings, which can explain the limited dissemination of these instruments
in the operating room: limited dynamic range imaging capabilities, temperature-dependent co-

registration inaccuracy and large footprint which intrudes on the surgical workflow.
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Table 2.1 Summary of the FDA-approved intraoperative NIRF imaging instruments

Description Fluobeam PDE SPY Elite Iridium Spectrum
Designer Fluoptics Hamamatsu Novadag Vision Sense Quest
Instrument type Single camera Single Two adjacent Beam splitter | Optical prism
camera cameras
Real-time color/NIR overlay No No No Yes Yes
Surgical light Dim Dim Dim Dim On
Sensor bit depth 8 8 8 12 12
Exposure time Imstols NS NS NS NS
Maximum FPS 25 20 20 NS 20
Resolution 720 x 576 640 x 480 1024 x 768 960 x 720 1024 x 1024
Fluorescence Detection ~5nM ~15 nM ~5nM ~50 pM ~10 M

2.2.1 Limited Dynamic Range in FDA Approved Instruments

FDA approved instruments have low dynamic range of ~80 dB. Since the dynamic range in the
operating room exceeds 100 dB, the physician has to stop the surgery, dim the surgical lights, use
the imaging instrument to identify the location of the fluorescent markers and then continue the
surgery without guidance under normal surgical illumination conditions. The limited dynamic
range is a result of using current state-of-the-art CMOS imagers based on a 4 transistor per pixel

paradigm (Figure 2.2).

Output Bus

VDD

SEL

Vout
M4

1 (f

Figure 2.2 State-of-the-art image sensors utilize 4 transistors per pixel to achieve low readout noise. The transfer
transistor coupled with pinned photodiode and peripheral correlated double-sampling circuitry enables removal of
1/f and reset noise. Hence, low readout noise of ~1 electron is achieved in today’s state-of-the-art imagers.
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State-of-the-art image sensors have pixels comprised of 4 transistors: a reset transistor M1, a charge
transfer M2, an amplifier M3 and a row select switch Mas. The switch transistor controls access to
the pixel’s output by the read-out bus and peripheral circuitry. The source follower buffers the
integrated and reset voltage before providing the result to the readout bus. The transfer transistor
is closely integrated with the pinned photodiode and enables charge transfer of the integrated
photodiode voltage to the floating diffusion node. The gates of all transistors are controlled by
digital circuits placed in the periphery of the imaging array. The pixel operates as follows. First
the floating diffusion and photodiodes are reset to a reference voltage level, Vs, by turning on both
M1 and M transistors. Next, both M1 and M transistors are turned off and the photodiode

integrates the incident photon converted to electron-hole pairs on its intrinsic capacitor.

After the end of the integration period, the pixel is accessed by turning on My transistor. During
the read-out phase, first transistor My is pulsed and the output voltage is sampled on the peripheral
correlated double sampling circuit, typically constructed using switch capacitor circuits. The

output voltage from the pixel can be represented by equation (2.1):

_ 2lpias
Voutl - Vrst - Vt3 - k,W3/L3 + Vreset noise (2-1)

In equation (2.1), Vs is the reference voltage to which the photodiode was set during the reset
period; Vi3 is the threshold voltage of the source follower transistor Ms; the third term on the right-
hand side describes the contributions of the biasing current for the source follower; and the last

term is the rest noise, which is equal to kT/C.
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Once the reset voltage is sampled in the peripheral circuitry, the transfer transistor is turned on and
integrated photodiode charges are transferred on the floating diffusion node. The output voltage at

this point can be represented by equation (2.2):

_ 2lpiqs
Voutz - Vphoto - Vt3 - /kIW3/L3 + Vresetnoise + Vshotnoise (2-2)

In equation (2.2), Vpnoto is the integrated photodiode voltage and Vsnot noise iS the noise associated
with the photocurrent across the photodiode. Note that the photodiode is biased in reverse mode
and the photocurrent linearly discharges the photodiode capacitance. High photon flux will
generate more electron-hole pairs, which will lead to larger photocurrent. Hence, the photodiode
voltage will discharge quicker when illuminated with higher light intensities. The reverse-bias
photodiode enables a linear relationship between photocurrent and output voltage, which is

desirable when generating color images.

Correlated double sampling (CDS) is a method whereby two samples with correlated noise sources
are subtracted to provide an output with lower noise. CDS circuits in the periphery of the image
sensor provide the final output by subtracting the voltage samples described by equations (2.1) and

(2.2). The final output is described by equation (2.3):

Vout = Vout1 = Vourz = Vist — Vphoto 1t Vshot noise (2.3)

The shot noise term in equation (2.2) is proportional to the square root of the generated electron-
hole pairs at the photodiode node. Shot noise is regarded as the limiting factor when imaging
scenes with moderate to high light intensities, while readout noise, i.e. temporal noise associated
with all transistors in the pixel and read-out circuitry, is the limited factor for low light imaging

applications. Furthermore, the dynamic range of the pixel is defined as the ratio of the pixel well
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depth capacity to the readout noise in dark. Since a state-of-the-art image sensor can achieve close
to 1e readout noise and have pixel well depth ~10 ke, the dynamic range of current state-of-the-
art image sensor is around 80 dB. The dynamic range of the image sensor can be improved with
multiple integration readout or by completely redesigning the pixel to fit the demands of the

applications.

e Imaging tumor bearing animals with FDA approved instrument under surgical
illumination: We demonstrate the limited dynamic range imaging capabilities of FDA
approved instruments in a murine animal model of breast cancer. 4T1 breast cancer cells are
orthotopically injected in the animal and left to grow for ~2 weeks. A tumor-targeted agent is
injected 24 hours prior to imaging the animals. The animal is imaged under 60 kLux surgical
light illumination and laser light excitation power of 5 mW/cm? at 785 nm. The objective is to
provide a good SNR image for both color and NIR spectra to the end-user with an instrument
with 80 dB dynamic range. The results are presented in Figure 2.3. The images in Figure 2.3
are obtained with exposure times of 0.1 ms and 40 ms, respectively. When the animal was
imaged with an exposure time of 0.1 ms, the color image is well illuminated, while the NIR
image has very low contrast. The animal was then imaged with 40 ms exposure time, resulting
in awell-illuminated NIR image but a saturated color image. This is due to the large difference
between the visible and NIR photon flux in the operating room. Utilizing a single exposure
time in a pixelated camera enables only one of the two imaging modalities to have satisfactory
contrast and high signal-to-noise ratio, rendering this technology incompatible with the

demands of intraoperative imaging applications.
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Color Image Near Infrared Image Combined Color-NIR Image

(a}

(b)

Figure 2.3 Single-exposure cameras have limited capabilities for simultaneous imaging of color and near-infrared
(NIR) images with high contrast under surgical light illumination. (a) Exposure time of 0.1 ms produces good color
but poor NIR contrast images. (b) Exposure time of 40 ms produces oversaturated color image but good NIR
contrast image.

2.2.2 Co-Registration Inaccuracy in FDA Approved Instruments
Co-registration accuracy between color and NIRF images is one of the most important attributes

for an instrument to be clinically relevant. Yet, state-of-the-art NIRF instrumentation comprising
a beam splitter and dichroic mirrors suffers from temperature-dependent co-registration inaccuracy
due to thermal expansion and thermal shifts of individual optical components. These FDA-
approved instruments are rated to function between 10 °C and 35 °C, though they fail to maintain

co-registration accuracy in this range.

We evaluated co-registration accuracy as a function of temperature for both our bio-inspired sensor
and a state-of-the-art NIRF imaging system composed of a single lens, beam splitter, and two
image sensors (Figure 2.4). The sensors were placed 60 cm from a calibrated checkerboard target
to emulate the distance at which the sensor will be placed during preclinical and clinical trials. At
the starting operating point, the beam-splitter NIRF system achieves subpixel co-registration
accuracy using standard calibration methods. However, the disparity between the two images
increases as the instrument’s operating temperature increases, leading to large co-registration

errors. And, as the instrument is cooled, the trajectory of the co-registration error differs from that

18



when the instrument is heated up. Hence, placing a temperature sensor on the instrument will not

sufficiently correct for thermal expansion of the individual optical elements.

e Clinical Implications for Co-Registration Inaccuracy: The implication of the
temperature-dependent co-registration error between the NIR and color images in state-of-the-
art NIRF systems is demonstrated in a murine model where 4T1 cancer cells are implanted
next to a sciatic nerve. At ~2 weeks post-implantation, the tumor size is ~1 cm and is imaged
with the tumor-targeted agent. The animal is imaged with a beam-splitter NIRF image sensor
placed inside a thermal chamber, which has a viewing port that allows imaging of the animal
without perturbing the temperature of the instrument. The animal is kept on a heated thermal

pad to maintain constant body temperature of ~37 °C.
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Figure 2.4 Co-registration accuracy as a function of temperature. The instrument is calibrated at the starting
temperature of 15 °C and achieves subpixel co-registration accuracy. However, when the instrument is heated up to
35 °C, the co-registration error increases up to 2.5 mm. When the instrument is cooled, different co-registration
errors are observed.
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Figure 2.5(a) is a composite image taken with the NIRF system at 15 °C operating temperature.
The green false color indicates the NIRF signal from the tumor-targeted agent. The
fluorescence signal from the tumor tissue underneath the sciatic nerve is much weaker than the
fluorescence signal from the surrounding tumor tissue. After thresholding the fluorescence
signal, the location of the sciatic nerve is observed due to the absence of fluorescence signal
(Figure 2.5(a), arrow). Since the image sensor is calibrated at 15 °C operating temperature, the
NIR image (i.e., location of the tumor) is correctly co-registered on the color image (i.e.,

anatomical features).

Figure 2.5(b) is another set of images recorded with the NIRF sensor at 32 “C. Because of the
thermally induced shift in the optical elements of the NIRF instrument, the fluorescence image
is shifted with respect to the color image. The NIRF image incorrectly marks the sciatic nerve
as cancerous tissue, while the cancerous tissue immediately next to the sciatic nerve has low
fluorescence signal. This incorrect labelling of cancerous and nerve tissue can lead to
latrogenic damage to healthy tissue, which might not be visible to physicians, while leaving

behind cancerous tissue in the patient.

20



Figure 2.5 Color/ NIR composite images recorded with a beam-splitter NIRF system while the instrument is at an
operating temperature of (a) 15°C and (b) 32°C.

Similar co-registration issues have been observed in color imaging technology. Prior to 1975, color
cameras were constructed in the same way as today’s FDA-approved instruments for NIR
fluorescence image-guided surgery. They were constructed from a beam splitter, relay lenses and
three individual CCD sensors with macroscopic red, green and blue filters. Temperature dependent
co-registration errors were a major issue for color technology, and many papers and patents tried
to solve this problem. However, with the emergence of the Bayer color pattern, which led to the
monolithic integration of color filters with imaging arrays, co-registration errors were no longer
an issue. Furthermore, this monolithic integration reduced the cost, power consumption and size

of the image sensor, which enabled the emergence of cellphone-based cameras.

Inspired by this design methodology, various commercial image sensors have integrated pixelated
color-NIR filters with imaging arrays. For example, Omnivision provides a 1 Mega-pixel image
sensor constructed from polymer based pixelated spectral filters. Although, these sensors provide
an interesting step toward single-chip imaging solution, the optical filters lack the transmission

and optical density requirements for intra-operative procedures. Coupled with the single
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integration method for all pixels in the imaging array, these sensors can achieve very poor

fluorescence detection capabilities under surgical light illumination.

2.2.3 FDA Approved Instruments are Bulky and Interfere with the Surgical

Workflow
The large footprints of the current FDA-approved instruments are due to two factors: large

imaging instruments and external monitors for displaying information. The external monitor
encumbers integration of this technology in the surgical arena. First, monitors are not ideal for
displaying 3-D information in surgical settings. Physicians must stop the surgery, look away from
the surgical area and search for information on monitors, upsetting the surgical workflow. Second,
operating rooms are very crowded, and so introducing large and costly instruments is not widely
accepted. Hence, integrating compact instruments with smaller displays will be critical for wide

dissemination of this technology.
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Chapter 3: A Bio-Inspired 140 dB Dynamic
Range 302 by 240 Resolution Color/Near-
Infrared Logarithmic Imaging Sensor for

Fluorescence-Guided Surgery

3.1 Introduction
The threat that cancer poses to human health and the necessity to improve the current imaging

instruments for cancer surgery was discussed in the previous chapter. However, it is worthwhile
to emphasize this because this chapter serves as one of the core parts of this dissertation. Cancer
remains a major public health problem worldwide and poses a huge economic burden [1]. One in
four deaths in the US is caused by cancer [2]. Although chemotherapy and radiotherapy continue
to play major roles in cancer treatment, surgery remains the primary curative option for most solid
cancers [28]. Image-guided surgery aims to provide critical decision-making information, such as
locations of cancerous tissues, during intraoperative procedures and hence improve surgical
outcome by complete removal of tumorous tissues. Specifically, near-infrared fluorescence image-
guided surgery utilizes molecular markers and imaging instruments to identify tumor locations and
presents this information to the surgeon without interrupting the surgical workflow. However,
current state-of-the-art near-infrared (NIR) fluorescence imaging systems are bulky, costly, and
lack both sensitivity under surgical light illumination and co-registration accuracy between
multimodal images [29, 30]. As a result, an overwhelming majority of physicians still rely on their
unaided eyes and palpation as primary sensing modalities to distinguish cancerous tissues from
healthy tissues, leading to subjectivity and variable outcomes. Incomplete tumor resections are

observed in many types of cancer. For example, 20-70% of breast cancers [4, 5], 28% of colon
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cancers [6] and 40% of head and neck cancers [7] patients will have positive tumor margins.
Secondary surgeries are expensive and have limited success rates because of the difficulty in
identifying microscopic tumors or diffuse cells. Additionally, scar tissue formation from primary
surgery disrupts surgical planes, making it more difficult for the physician to identify remaining
tumor tissues. These studies underline the added importance of complete tumor removal during
the first surgery and the need for a paradigm shift in the design of NIR fluorescence imaging

systems for IGS.

Fluorescence-based intraoperative imaging techniques were first explored in the 1950s using
fluorescein to identify brain tumors [8]. With recent FDA approval of the metabolic marker 5-
ALA, brain cancer surgery is starting to be routinely performed under image guidance [9]. The
visible-spectrum fluorescence emitted by fluorescein and 5-ALA enables physicians to assess the
location of tumors under a surgical microscope. However, due to high absorption coefficients of
tissues in the visible spectrum, only fluorophores near the tissue surface can be imaged, which
limits diagnostic potential. For imaging more than a few millimeters below the surface of the skin,
NIR fluorophores (700 to 950 nm) are used because of the low absorption coefficient of water and
oxy- and deoxy-hemoglobin in this spectrum [10]. Furthermore, the low auto-fluorescence in the
NIR spectrum coupled with the use of non-ionizing radiation enables high contrast to background
imaging without exposing the patient and caregiver to harmful radiation [13]. Because human
vision cannot detect near-infrared light, the surgeon’s vision is not obscured when using NIR light.
However, an imaging sensor capable of capturing both color and NIR light needs to be utilized for
intraoperative procedures to localize and correctly superimpose tumor tissue on the correct

anatomy of the patient.
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Tumor-specific molecular markers are designed by targeting tumor antigens (or tumor markers)
that are overexpressed in diseased tissues. Surgeons perform primary tumor biopsies to determine
appropriate tumor biomarkers, which are then targeted with fluorescent markers to enable
intraoperative tumor localization. The tumor microenvironment is very different from that of
healthy tissue. For example, the metabolic rates of tumor cells are much higher than that of normal
tissues, leading to higher glucose consumption rates and the formation of new vasculature
necessary to deliver nutrients to the diseased tissues. Hence, a metabolic marker targeting glucose
consumption can be used to highlight and localize tumor tissue. Metabolic glucose probes labeled
with F, Cu and Ga are widely used for SPECT and CT imaging to localize tumor tissue [31]. For
intraoperative imaging, NIR fluorescent probes targeting glucose metabolism have shown

promising results for localizing tumor tissues.

Commercial IGS instruments, like FLARE [32], SPY [33], and PED [34], suffer from two major
drawbacks. First, these instruments use multiple cameras with complex optics like beam splitters
and optical filters to capture different wavelengths of light. These optical elements are subject to
misalignment and thermal expansion. Color and NIRF information will not be correctly co-
registered if the temperature changes or misalignment occurs. This will lead to the generation of
false positive signals because the NIRF information no longer indicates the correct position of the
tumor. Second, traditional linear CCD/CMOS image sensors with dynamic range of up to 80 dB
are incapable of capturing high dynamic range (HDR) images (greater than 100 dB) in the
operating room [35]. Since the photodiodes are reverse biased, the maximum signal the sensor can
detect (full well capacity) is limited by the power rail and photodiode capacitance. The minimum
signal is limited by the noise floor including the reset noise, electronic read-out noise, and photon

shot noise. Many methods, including multiple exposures and time domain imaging, have been used
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to extend the dynamic range of linear imaging systems. These methods increase the computation
load of the systems or decrease the video frame rate due to slow exposure. There is a need to

improve the pixel architecture to enable HDR imaging.

To address these problems, | designed an image sensor based on the compound eye of the Morpho
butterfly. Individual ommatidium’s in the compound eye have different combinations of tapetal
filter stacks, which comprise stacks of alternating layers of air and cytoplasm. These tapetal filter
stacks have selective spectral sensitivity across ultraviolet, visible, and NIR spectra. Furthermore,
individual ommatidium responds logarithmically to light intensity, which enables high dynamic
range imaging capabilities while capturing multispectral information. We have mimicked both
concepts from the Morpho butterfly by monolithically integrating pixelated spectral filters with an
array of logarithmic photodetectors. The pixel is composed of three transistors and a forward
biased photodiode, which enables dynamic range imaging capabilities more than 140 dB (120dB
logarithmic response). By reshaping the photon shot noise, the noise power at the photodiode
become constant, leading to high SNR up to 56dB. The pixelated spectral filters record both visible
spectrum and NIR images that are inherently co-registered. In this chapter, | will discuss in greater
detail the image sensor operation and optoelectronic characteristics as well as present data from

pre-clinical study.

3.2 Analysis on Logarithmic Pixel with Forward-Biased
Photodiode

The logarithmic pixel (Figure 3.1) has three transistors and an N-diffusion/P-sub forward-biased
photodiode (PD). The PD is connected in parallel with an NMOS reset transistor (M) so that the
photodiode could be reset from output voltage to reset voltage. The open circuit voltage Voc of the

forward-biased PD can be derived from Shockley equation, | obtained a close form expression of
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Voc in equation (3.1), where 1 is the output current of photodiode, o is the reverse saturation current,
V is the output voltage, k is the Boltzmann’s constant, T is temperature, and Iph is the photocurrent.

The open circuit voltage is the logarithm of the photocurrent.
V. = Lin(2 + 1) (3.1)
q Iy

A source follower consists of a PMOS transistor (M2). A current source buffers the open circuit
voltage of PD with unit gain before outputting it on the column output bus. An NMQOS transistor

(M3) selects specific rows such as the pixels in the same column sharing the same output bus.

RST*l M2
- -

— — Qutput Bus

Figure 3.1 Pixel schematic. The sensor has QVGA resolution. Three registers control the reset and readout sequence.
The pixel architecture is inspired by traditional active pixel sensor (APS) with a forward-biased photodiode.

The logarithmic compression increases the dynamic range. As shown in equation (3.1), the
maximum detectible signal is no longer limited by the power rail and the capacitance of the
photodiode. Semiconductor physics shows that the theoretical maximum open circuit voltage is
Eg/q, where Eg is the bandgap of silicon and q is elementary charge [36]. In reality, the maximum

open circuit voltage is affected by the recombination rate of the material.
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The fixed pattern noise (FPN) and temporal noise and are two major noise sources that degrade
the image and reduce the detectability of the sensor, thus define the minimum detectible signal. A
major drawback of traditional logarithmic sensors is their sensitivity to device parameter
variations. These variations offset the pixel response. Because the traditional logarithmic sensor
continues sensing without a deterministic reference level, a regular double sampling technique
cannot reduce this variation and leads to high FPN. However, the deterministic reset voltage in
this design can be used for differential double sampling (DDS). Before a new read-out cycle, the

reset voltage, i.e., -0.3 V, is buffer by M and the output voltage Vout: is given by
Vout1 = Vrst + |Vi2l (3.2)
where Vi, is the threshold voltage of Mo.

After exposure time t, the output voltage Voutz is sampled.
KT I
Voutz = ;ln(ILoh + 1) + Vil (3-3)

By subtracting Vou from Vout2, the final output voltage of the pixel is read out. The DDS removes

the FPN caused by transistor parameter, i.e., threshold voltage variations.

Generally, shot noise power spectral density is calculated as: <i>> = 2ql, where q is the elementary
charge and | is the current flow. The current in the photodiode consists of a current Ioexp% due

to holes injected into the n-region, a current I, + L,, due to holes generated in the n-region and

being collected by the p region current. | assumed that these currents occurred independently. Here,
lo is reverse saturation current, V is the voltage between the anode and cathode, k is the

Boltzmann’s constant, T is temperature, and Iph is the photocurrent. These relations indicated that
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<i>> = 2¢q (Ioexp%+ Iy + Iph). | introduced the effective noise temperature ratio t =

dal

Because the low frequency conductance is G = o= kq—T(I + Iy + Ipp), | obtained ¢ = 0.5[1 +

(1 + If—oh) exp (— %)]. At open circuit, 1 =0,V =V, = %ln(%), yieldedt = 0.5(1+ 1) =
1, which indicated <i?>> = 4kTG. Thus, the open circuit noise of a forward-biased photodiode
under illumination only exhibited thermal noise. This can be modeled as a resistor. Thus, the noise
equivalent circuit of the pixel with forward-biased photodiode can be modeled as a noisy current
source, a noiseless conductor, a capacitor connected in parallel (Figure 3.2). This circuit has RC
time constant equals to 1/RC. As a result the output noise power across the whole spectrum equals

to KT/C [37]. With increasing signal level and constant noise, this pixel architecture boosts the

SNR as well.

1 — Output Bus

Figure 3.2 Noise equivalent circuits for the logarithmic pixel with forward-biased photodiode.

Different from pixels using reversed-biased photodiode, the exposure time for the forward-biased
diode has insignificant impact. Because of the low RC constant of the forward-biased photodiode,
it reaches illumination-dependent steady state in few microseconds. After stabilized, the reset noise

is also automatically canceled.
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3.3 System Overview
The sensor was implemented with an imaging array with 302 x 240 pixels on a standard 0.35-um

mixed signal CMOS process. Each pixel was 15 um x 15 um with a 68% fill factor. As shown in
Figure 3.3, the pixel topology consisted of a 2 x 2 super pixel pattern repeated across the imaging
array. Red, green, blue, and NIR interference filters were integrated on top of the pixels to capture
the visible and NIR spectra. Photolithography and physical vapor deposition (PVD) were used to
pattern and deposit interleaved layers of dielectric with different indices of refraction, i.e., SiO>
and TiOz. By tuning the thickness and the number of dielectric layers, the cut-off wavelength and

the shape of the passband were tuned.
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C 14-bit ADC D E Topet il

Figure 3.3 Sensor architecture (left), the micrograph of the image sensor, and the micrograph of the pixelated
spectral filter array (right). The QVGA resolution pixel array is addressed by 3 register banks. The output is
digitized by a 14-bit ADC.

The row reset registers, row select register and column read-out register were interfaced with
individual pixels to control the transistor gates within each pixel, thereby enabling the read-out of
each pixel. Off-chip reference voltage generators provided accurate reference voltages. A 14-bit

analog-to-digital converter (ADC) was utilized to digitize the data. A field-programmable gate
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array (FPGA) was used to transfer the raw data through USB2.0 at a frame rate of 30 fps (up to

100 fps) for real-time processing.

3.4 Optoelectronic Characteristic Evaluation
Before translating to fluorescence detection sensitivity, the optoelectronic characteristic of this

sensor was tested. Several different optical setups were used to measure the opto-electrical
characteristics. Various light sources were coupled into an integrating sphere (Newport, 819D-SF-
4). The output port of the integrating sphere was aligned to an adjustable iris (Thorlabs, SM2D25)
and an aspherical condensing lens (Thorlabs, ACL7560) to produce uniform and collimated
illumination. A single forward-biased on-chip photodiode was first tested to verify the theoretical
analysis. The voltage signal and the noise were measured by Agilent B2912A precise
source/measurement unit. As shown in Figure 3.4, the voltage signal was a logarithmic function

of illumination and the noise was constant.
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Figure 3.4 Measured signal and noise of a single on-chip photodiode
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The dynamic range and photo response of the sensor were measured by coupling a broadband
halogen light source into the integrating sphere. The halogen light source was fed with a constant
current using a direct current (DC) power supply (Agilent Technologies, N5746A) to generate
constant illumination. By tuning the intensity of the light source, the digital values for different
illumination were measured. As shown in Figure 3.5, the sensor had a logarithmic response from
10 mW/cm? to 1 mW/cm?, or 120 dB. The response from 107" mW/cm? to 10°® mW/cm? was
closed to linear due to the reverse saturation current. The dynamic range of this image sensor
enables real-time fluorescence imaging under surgical illumination in the operating room. During
the experiment, | noticed that the image sensor was not saturated at 1 m\W/cm?. However, because
of the limited research resources, | was not able to produce stronger illumination with uniform and
stable photon flux. The major trade-off is the decreasing sensitivity of the forward biased

photodiode.
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Figure 3.5 Logarithmic photo-response of the sensor.
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As shown in Figure 3.6, the sensitivity is inverse-proportional to the optical power under medium
to high illumination because the logarithmic photo response “compress” the output data. As the
sensitivity drops, the sensor needs more photons to generate higher digital value. Eventually, the
sensitivity drops below the noise floor of the ADC and the image sensor reaches its full scale.
However, compared with a state-of-the-art linear 4-transistor (4T) CMOS camera [38], this sensor
still has up to 25 time higher sensitivity under low to medium illumination. This boosts the
detectability of weak fluorescence. Other factors, like the swing of the source follower, the carrier

recombination inside the photodiode, also limits the dynamic range.
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Figure 3.6 The sensitivity of the image sensor. It is inverse-proportional to the optical power of the illumination.

As shown in Figure 3.7, the measured temporal noise from this sensor was constant. This
conclusion is generally accepted by the electrical circuit community since the 1970s [39]. Another
explanation is that the noise is also “compressed” by the logarithmic response. Although the
photon shot noise increases with the photon flux, the logarithmic photo response performs a non-

linear transformation and suppresses the noise. Adding the reset noise and readout noise, the
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overall noise becomes constant. Both explanations reach the same conclusion. Compared with a
state-of-the-art linear 4-transistor (4T) CMOS camera [38] which has dominant photon shot noise,
the constant readout noise of this sensor leads to more than 56 dB signal-to-noise ratio (SNR) at

full scale (Figure 3.8). The SNR of this sensor is up to 180 times greater (or 25 dB more) than the

SNR of the state-of-the-art 4T CMOS camera.
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Figure 3.7 Temporal noise of the sensor. The forward-biased diode’s noise can be modeled by a noise-less resistor
with a noise current source in parallel.
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Figure 3.8 Signal to noise ratio at different signal levels. 56dB SNR is achieved.

The spatial uniformity or fixed pattern noise (FPN) of the red, green, blue and NIR channels was
below 0.6% as a function of light intensity (Figure 3.9). The spatial variations primarily came
from two sources: 1) the device parameter variation in the pixels, such as the different threshold
voltages of the source followers, the non-uniform biasing current for each column and the non-
uniformity of the reverse saturation current of each photodiode, i.e., dark current non-uniformity
(DCNU) (Figure 3.10); and 2) the non-uniform thickness of the dielectric layers of each
interference filter, which introduces photo-response non-uniformity (PSNU). Whereas the DDS
removed most of the non-uniformity caused by 1), further improvement of the nanofabrication

process could be possible to reduce 2).
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Figure 3.9 FPN of the sensor (left) and the histogram of the NIR channel at ImW/cm2 (right).
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Figure 3.10 Histogram of the NIR channel at dark. The DCNU is 0.05%. The DDS removes most of the non-
uniformity.

The quantum efficiency (QE) was measured by coupling the output of a monochromator (Princeton
Instrument, Acton SP 2150) into the integrating sphere. The photon flux was measured by a
calibrated photodiode (Thorlabs, S130C) driven by a power meter (Thorlabs, PM100D). The
measured QE is shown in Figure 3.11. The peak QEs of the red, green, blue and NIR channels

were between 3 and 9% across a 400 nm to 1000 nm wavelength range. The low QE is due to the
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non-optimized fabrication process and the destruction of micro-lens array while integrating the

pixelated filter.
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Figure 3.11 Quantum efficiency of the red, green, blue and NIR channels.

3.5 Pre-clinical Evaluations and Animal Study
Figure 3.12 demonstrates the high dynamic range (HDR) capability of this sensor. The LED panel

with visible short-pass filter was directly pointed at the sensor. A vial of QDot 800 was placed in
front of the LED panel and excited by a 785-nm laser to produce fluorescence emissions at 800
nm. The scene had approximately 100dB DR. A commercial digital single-lens reflex camera with
the same lens (f = 35 mm, aperture /2.8, exposure time 1/30 s) was used for comparison. Compared
with the low dynamic range (LDR) commercial imaging sensor (Figure 3.12(a)), this sensor
captures the entire DR without losing details in the color image, such as the outline of the vial
(Figure 3.12(b)) and captured the NIR fluorescence (Figure 3.12(c)). The color and NIR images

are co-registered thus can be superimposed onto each other (Figure 3.12(d)).
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Figure 3.12 Comparison between the LDR color sensor (a) and this HDR color/NIR sensor (b,c,d). The commercial
LDR sensor is not able to capture the details in the LED panel nor the vial in front of it (a). However, this HDR
sensor can capture both HDR color image (b) and NIR image (c). The color and NIR images can be seamlessly

superimposed (d).

The fluorescence sensitivity of this sensor was tested by imaging 9 different ICG concentrations
in plastic vials under surgical light illumination and excited with a laser light excitation power of
20 mW/cm? at 785 nm. For each concentration, three different vials were tested and a control vial
with deionized water imaged at a frame rate of 30 fps. A 10 x 10 region of interest within each
vial was selected to avoid edge artifacts, such as specular reflection of the plastic itself. An average
intensity value and standard deviation of the NIR pixels were computed within the region of
interest. The detection threshold was determined as the average NIR signal plus three standard

deviations of the control vial. Figure 3.13 shows that this sensor can detect as low as 40 nM ICG.
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Figure 3.13 Fluorescence detection limits. This sensor can detect as low as 40 nM ICG at 20 mW/cm2 NIR
excitation.

We used J:NU mice with tumors to demonstrate the fluorescence detection capability of this
sensor. Animals were obtained from The Jackson Laboratory, Bar Harbor, ME. A 2-month-old
male J:NU nude mouse with PC3 cancer was imaged 24 hours post-injection of 20 nmol IRDye
800 CW, i.e., an EGFR tumor-targeted NIR fluorescence contrast agent. The imaging setup
consisted of the custom sensor with a Canon EF lens (f = 35 mm, aperture /2.8), a laptop (Lenovo
Thinkpad W530), a 780-nm laser (B&W TEK Inc., BWF2-780-0.8) and a visible-light LED panel
(Genaray, LED-7100T). A 780-nm band-stop filter (Semrock, NF03-785E-25) was placed in front
of the sensor to block fluorescence excitation. The laser was coupled to the optics by an optical
fiber. The laser optics consisted of a bandpass filter at 780 nm (Semrock, LL01-780-12.5), an
aspheric condenser lens (Thorlabs, ACL25416U-B), and a diffuser (Edmund Optics, 47-994) to
create a 10-cm uniform circular illumination pattern with 5-20 m\W/cm? excitation power. The
LED panel produced 5 kLux of visible light at the surface of the imaging with a light temperature

of 5,000 K. A visible short-pass filter (3M, Cool Mirror Film 330) was placed on top of the LED
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panel to suppress any leakage of wavelengths above 700 nm that would deteriorate the
fluorescence signal acquired by the sensor. Figure 3.14 shows the color image, the NIR
fluorescence image in jet color and the superimposed image. The sensor accurately highlighted the

position of the tumor. The sensor achieved ~95% sensitivity and ~94% specificity.

Figure 3.14 (a) Color image, (b) NIR fluorescence image and (c) superimposed image of a mouse with cancer.
Tumor-targeted contrast agent was injected 24 hours before imaging.

3.6 Conclusion and Discussion
In this chapter, | presented an HDR color/near-infrared logarithmic imaging sensor using forward-

biased photodiode for fluorescence-guided surgery. | described the design method in detail and
experimentally measured the optoelectronic characteristic and the fluorescence sensitivity of this
sensor. With the pixelated multispectral filter array, the imaging system provides color and co-

registered NIR information to the end user. Compared with the state-of-the-art linear CMOS image
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sensors (Table 3.1), this sensor has equivalent thermal noise as dominant noise. The exposure time
does not affect the output significantly, thus a shutter is not needed. It has higher DR, SNR,

sensitivity and frame rate.

Table 3.1 Design summary and comparison with the state-of-the-art linear CMOS sensors

Description This work [38] [40]
Pixel size 15 um x 15 pm 6.5um x 6.5um 7.8um x 7.8um
Dominant noise equivalent thermal noise photon shot noise photon shot noise
Shutter type No shutter Rolling shutter Rolling shutter
Dynamic range 140dB 95dB 62dB
Maximum SNR 56dB 45dB 48dB
Full well capacity Not applicable 54,000 electrons 72,000 electrons
Sensitivity up to 108uV/(mwW/cm?) 107uV/(mW/cm?) N/A
Resolution 302x240 2048x2048 1280x720
Maximum FPS 100 74 40

This sensor also solves the common problems of traditional logarithmic CMOS image sensors:

high FPN, high temporal noise and low SNR. The comparison is shown in Table 3.2.

Table 3.2 Design summary and comparison with the state-of-the-art logarithmic sensors

Description This work [41] [42] [43]
CMOS technology 0.35 um 0.5 um 0.18 um 0.25 pm
Pixel size 15 um x 15 pm 75um x 10 pm | 5.6 um x 5.6 pm 10 pm x 10 pm
Fill factor 68% Near 100% 33% 43%
Dynamic range 140 dB 120 dB 143 dB 120 dB
Imaging array size 302 x 240 525 x 525 352 x 288 N/A
Temporal noise 625 pv 2280 uv 950 pv N/A
Fixed pattern noise 0.6% 2.5% 2% 2.46%
Signal-to-noise ratio 56 dB at full scale N/A 48.1dB N/A
Quantum efficiency 3%-9%" N/A N/A N/A
Fluorescence detection 40 nM ICG™ N/A N/A N/A

* Blue 3%, Green 5%, Red 8%, NIR 9%, ** under 20mwW/cm? excitation

We also demonstrated the application using an animal model. The imaging system provides color

and co-registered NIR information to users. Because of its compact size, inherent accurate co-
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registration and excellent dynamic range, this sensor can assist physicians under surgical

illumination without impacting the normal surgical workflow.

Because the photodiode voltage reaches illumination-dependent steady state regardless of the
initial value, the reset transistor could be removed in future design (Figure 3.15). It will reduce the
number of transistors to 2 and number of metal lines to 4. In this way the photosensitive area can
be enlarged. Therefore, the capacitance of the photodiode can be increased, and the equivalent
thermal noise can be reduced. Without having DDS, other FPN removal techniques need to be
incorporated. Other future work includes increasing the imaging array size, reducing pixel pitch,

and integrating the ADC and peripheral circuits on a chip.
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Figure 3.15 Future 2-transistor pixel schematic.
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Chapter 4: A 120 dB OVGA Resolution
Time-Based Pulse-Width-Modulation
Address-Event Representation Color-

Infrared Imaging System for Fluorescence-
Guided Surgery

4.1 Introduction
Surgery is the primary curative option for patients with cancer. Surgeons relay on two main sensing

modalities during intraoperative procedure, namely touch and visual inspection to differentiate
healthy from diseased tissue. However, the low visual contrast between healthy tissue and tumor’s
proliferating edges results in incomplete resection of all types of tumors. For example, 20-70% of
patients with breast cancer [4, 5], 28% with colon cancer [6] and 40% with head and neck cancer
[7] will have positive tumor margins and will require either secondary surgeries and chemotherapy.
However, secondary surgeries not only are expensive but also have limited success because of the
difficulty in seeing microscopic tumors or diffuse cells. Additionally, scar tissue formation
perturbs the surgical planes, making it more difficult for the surgeon to identify the remaining
tumor tissue. These studies underscore the importance of complete tumor removal during the first
surgery and the need for a paradigm shift in the design of imaging systems for image-guided

surgery (IGS).

Fluorescence based image guided surgery in the NIR spectrum has gained lot of traction in the last
decade due to proliferation of FDA-approved instruments and novel tumor targeted molecular
probes. The low absorption coefficient of water, oxy- and deoxy-hemoglobin combined with low

auto-fluorescence in the NIR spectrum, enables imaging tumor targeted molecular markers from
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several millimeters deep in the tissue. There are currently only two FDA-approved, non-specific
molecular markers with NIR fluorescence (NIRF): indocyanine green (ICG) and methylene blue
[11]. Both markers are used either for mapping the primary draining lymphatic nodes near the
tumor site, known as sentinel lymph nodes (SLNSs), or for assessing blood perfusion in tissue [14].
There are many tumor-targeted molecular probes being developed and tested in variety of clinical
trials. Although none of them are FDA approved, some of the molecular probes have successfully

completed phase 2 and phase 3 clinical trials.

Variety of IGS instruments have been approved by the FDA during the last decade and have been
typically adopted in large clinical centers. However, most FDA approved instrument suffer from
two major drawbacks: temperature dependent co-registration error and dynamic range of less than
80 dB which limits its usability during intraoperative procedures. The limited dynamic range of
the current FDA approved instrument, require surgeons to stop the surgery, turn off the surgical
light, use image guidance to identify the location of the cancerous tissue, and continue the surgery
either in dimmed light conditions or without image guidance under regular surgical illumination.
Although these instruments provide invaluable information to the surgeons, their integration in the

operating room is far from ideal.

To address these problems, in this chapter I will describe our efforts to develop a bio-inspired,
multispectral imaging system with high dynamic range imaging capabilities. The design of the
imaging system is inspired by the visual system of the Morpho butterfly in two respects: (1)
pixelated multispectral filters comprised of layers of stacked dielectrics, and (2) the image sensor
utilizes an address-event representation (AER) read-out scheme which is similar to an integrate-
and-fire neuron. To boost the dynamic range, the sensor uses time-domain pulse-width-modulation

(PWM) technology. The pixelated spectral filters were integrated in the cleanroom facilities at
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University of Illinois at Urbana-Champaign. The complete system was used together with an
affibody molecular marker targeting epidermal growth factor receptor which is overexpressed in
cancerous cells. The imaging system with affibody NIR molecular marker was able to detect
orthotopic implanted prostate cancer cells with sensitivity and specificity of ~85% and 87%,
respectively. The small foot print of the imaging system, coupled with the high dynamic range,
and low cost can enable value-based health care in both resource-limited and resource-rich

hospitals.

4.2 Time-Based PWM AER Color-Infrared Image Sensor

The DR of an image sensor is defined by the ratio of the maximum output signal and the minimum
detectible signal. A traditional active pixel sensor (APS) converts different illuminances into
different voltages as shown in Figure 4.1 (a), i.e., the darker the image is, the higher the reported
voltage after a fixed integration time. The DR is limited by the power rail, full well capacity, reset
noise, readout noise and fabrication process. The typical DR of a traditional APS is limited to 60—

80 dB.

To overcome the DR limit of APS, several approaches have incorporated piecewise linear response
pixels [44], logarithmic pixels [41] and linear-log pixels [42]. Another design is based on
measuring the time required for the photodiode to discharge to a given voltage. This technique is
known as time-based pulse width modulation (PWM) imaging. This technique allows for each
pixel to have an individual integration time. Because the brightness of the image is extracted from
the time domain instead of the voltage domain, the DR is not limited by the power rail and full
well capacity. As shown in Figure 4.1 (b), the DR is only limited by the shortest integration time

when the maximum photocurrent is generated and the longest integration time when only dark
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current discharges the photodiode. The time domain PWM sensors have been reported to achieve

DRs up to 140 dB [35].
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Figure 4.1 (a) Traditional APS pixels. All pixels are exposed to light for the same amount of time. The dark pixels
have a smaller voltage drop, while the bright pixels have a larger voltage drop. (b) Time domain PWM sensor. All
pixels are discharged to the same voltage level. It takes the dark pixels a longer time to reach this voltage level,
while it takes a shorter time for the bright pixels.

4.2.1 Sensor Architecture and AER Readout Scheme
The sensor was designed with an imaging array of 304 x 240 pixels, implemented in a standard

0.18-um mixed signal CMOS process. The pixel array covered 77% of the total die area of 9.9 mm
by 8.2 mm. As shown in Figure 4.2, the pixel topology consists of a 2 by 2 super pixel pattern
repeated across the imaging array. Red, green, blue, and NIR interference filters are integrated on
top of the pixels to capture visible and NIR spectra. Physical vapor deposition (PVD) is used to
deposit multiple dielectric layers with different indices of refraction, i.e., SiO2 and TiO2. By tuning
the thickness and dielectric layer numbers, | tuned the cut-off frequency and the passband shape

of the filters. The imaging array is controlled by on-chip X/Y reset control registers, address
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encoders and address-event-representation (AER) arbiters for asynchronous data transfer [45]. An
on-chip reference voltage generator provides accurate reference voltages.
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Figure 4.2 Sensor architecture and micrograph.

The pixel values are read out asynchronously. Compared with conventional image sensors, which
acquire the voltage of all photodiodes after a pre-determined integration time and report values by
scanning the whole imaging array, this sensor reports the timestamp and address of a pixel only
after an event is generated. An event includes whether a pixel is reset or discharged to the reference
voltage level. The X/Y address encoder represents the 9-bit X address and 8-bit Y address for that
pixel. The 4-phase AER handshaking circuits communicates with the X/Y arbiters. Because the
request and acknowledgement signals of the pixels are shared across each row and column, events
are transmitted on a “first-come-first-serve” basis. When one pixel finishes integration, a “Y-
Request” is first pulled to generate an event. As soon as the Y address encoder generates the
address and the “Y-Acknowledge” signal is received, the pixel pulls down the “X Request” and

the X address encoder generates the X address. Once the external image processor receives the
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X/Y request and the addresses, the “X-Acknowledge” signal is sent to the X arbiter and the control
logic in the pixel sets the pixel ready to start the next cycle of integration. An off-chip processor
is implemented using a Xilinx Spartan 6 FPGA. The processor has a 1 MHz digital counter for
time-to-digital conversion, providing 1-us timestamp resolution. It counts the time between two
events and converted this time interval to a digital data to represent the pixel intensity.

4.2.2 Pixel Design

As shown in Figure 4.3, the pixel uses n-well/p-sub photodiodes with PMOS reset transistors (M1)
so that the photodiodes (PDs) discharges from the power rail to maximize the voltage swing. The
voltage of the photo-voltage Vint is compared with two different reference voltages, Vreft and Vet
by a comparator implemented using a differential amplifier (M2-Ms) with hysteresis (M7-Mz1) for
correlated double sampling (CDS). The output of the comparator OUT is connected to an in-pixel
logic for AER communication. The pixel has a pixel pitch of 30 by 30 um, and the photosensitive

area covers 20% of the area.
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Figure 4.3 Pixel circuit.
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The signal-to-noise ratio (SNR) of the sensor is reduced by reset noise, readout noise, dark current
shot noise and photon shot noise. The readout noise, dark current shot noise and photon shot noise
are determined by the circuit and fabrication process. However, the reset noise is largely reduced
by CDS. It eliminates the reset noise by subtracting two timestamps when Vin: crossed two different
voltages. The dark current non-uniformity can also be suppressed using CDS, leading to low fixed

pattern noise (FPN).

4.3 System Characterization
The electrical characteristic of this sensor is comprehensively evaluated in [35]. This sensor has

been reported to achieve >50 dB uniform SNR from 10 to 10,000 lux due to the complete discharge
of photodiodes. This is sufficient to realize 8-bit color resolution. The integration time is less than
10 ms from 10 to 10,000 lux for a 500-mV integration swing, enabling video rate data streaming.
The following sections focus on evaluating the optical performance and fluorescence detection of
the proposed imaging system.

4.3.1 Spectral Response

To capture both color and NIR fluorescence images, the imaging system has an array of pixelated
interference filters to create 4 different channels and efficiently convert different photon
wavelengths to a photocurrent. The blue, green, red and NIR filters roughly have passbands from
400 — 500 nm, 500 — 580 nm, 570 — 700 nm and 700 — 1000 nm, respectively. The quantum
efficiency (QE) for each channel was evaluated using a monochromator (Princeton Instruments
Acton SP2150). A DC power supply (Agilent N5746A) was used to provide a constant power
supply to the illumination bulb of the monochromator. An optical fiber and an aspheric condensing
lens (Thorlabs ACL 7560) were used to expand the beam while maintaining the uniformity of the
monochromator output. The measured QE is plotted in Figure 4.4. The color channels have 3 —

49



17% QE, whereas the NIR channel has 7% QE above 800 nm. To suppress the 780 nm NIR
excitation, | used a 780-nm notch filter (Semrock, NF03-785E-25) with optical density 6 in front

of the imaging system.

The QE of the blue channel is low because the fabrication technology is not optimized for imaging.
The shallow p-n junction causes low photon absorption. The high-density surface defects introduce
recombination center and reduces the net generation rate of electron-hole pairs. Furthermore, the
micro-lens array which focuses the beams onto the photodiodes is not available in this fabrication

process. By optimizing the p-n junction depth and adding a micro-lens array, the QE could be

increased.
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Figure 4.4 Quantum efficiency of the imaging system. Blue, green, red, and NIR pixels have ~3%, 13%, 17% and
13% peak QE. Note that | added a 780-nm notch filter to block the NIR laser excitation, which leads to the QE
around 780 nm being negligible.
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4.3.2 Photo Response Non-Uniformity
Although CDS largely eliminates dark current non-uniformity, photo response non-uniformity

caused by fabrication variations across the silicon wafer, especially thickness variation and the
misalignment of the pixelated interference filter, still exists and contributed toward the FPN. To
evaluate the FPN, a broad-band tungsten light source (Thorlabs, OSL1) and an integrating sphere
(Newport 819D-SF-4) were used to generate uniform illumination. The FPN is plotted against the
reference voltage in Figure 4.5. The FPN is approximately 3% for the red and green channels and

7% for the blue and NIR channels.

Because the photodiode has a linear response, | applied a flat field calibration using linear
regression. | used 6 sets of training data and mapped the gain and offset of each pixel to the average

ones. This reduced the FPN of all channels to less than 2%.
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Figure 4.5 FPN of the imaging system. (left) Before calibration, the FPN is between 3% and 7.5%, and (right) after
calibration, the FPN drops down to less than 2%.

An important feature of this imaging system is that the signal to noise ratio (SNR) is approximately
a constant number for each pixel regardless of the photon flux. Because the photodiodes are always
completely discharged, photon shot noise is the dominant noise source: the SNR only depends on
the number of photon-generated electrons. Once the potential well depth is fixed, the SNR is

approximately a constant number within 6 decades of illumination range (Figure 4.6).
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Figure 4.6 Signal to noise ratio of the imaging system. The SNR maintains 56 dB for 6 decades of different
illumination. It drops at low optical power due to the readout noise.

4.3.3 Fluorescence Detectability
The fluorescence detectability was evaluated using ICG water solution at different concentrations.

Two sets of ICG solutions were tested, and the average response was reported to minimize the
error caused by weighing and dilution. The ICG solution was excited by a 780-nm laser (BWF2-
780-0.8) filtered by a laser clean-up filter (Semrock, LL01-780-12.5) at 20 mW/cm? power. An
aspheric condenser lens (Thorlabs, ACL25416U-B) and a diffuser (Edmund Optics, 47-994) were
placed in front of the filter to create a uniform illumination pattern. The modified LED light source
was turned on during the experiment to provide 40 kLux visible illumination. Background
subtraction [46] was applied to remove auto-fluorescence and other background noise. Figure 4.6
shows the normalized photo response versus ICG concentration. | used distilled water as a

reference sample. The detection limit was defined by (2) [47]:

Liimit = Iy + 30y (2)
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where limit is the photo response of the detection limit, lo is the photo response of the reference
sample, and oo is the standard deviation of the reference sample photo response. The horizontal
dashed line indicates lo+3op, and the solid line indicates the photo response at different
concentrations. Figure 4.7 shows that this imaging system can detect approximately 50 nM of ICG

under surgical illumination.

Sensor Response
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log(Normalized Fluorescence)
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Figure 4.7 Fluorescence detectability. This imaging system can detect as low as ~50 nM of ICG at 20 mW/cm? NIR
excitation.

4.4 Pre-Clinical Studies

Quantum dots (Qdot) 800 has sufficient absorption at 780 nm and emission at 800 nm [48]. | filled
a glass vial with approximately 5 mL of QDot 800 and verified the performance of this imaging
system under surgical illumination by recording the color image, NIR image and the superimposed
image, as shown in Figure 4.8. The NIR signal is clearly emitted from QDot800. The NIR image

is correctly superimposed over the color image without any co-registration error.
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Distilled Water Qdot 800

Color Image Near IR Image Superimposed Image

Figure 4.8 Image of the glass vial containing QDot800. A vial of water is placed next to it for comparison. The NIR
image is correctly superimposed on the vial of Qdot800.

4.5 Imaging Tumors Under Surgical Light Hlumination
I used this imaging system to identify orthotopic prostate cancer in a murine model (n=3). The

animal was injected with IRBOOCW-EGFR targeted marker. Because this imaging system has high
co-registration accuracy and NIRF sensitivity, the physician could easily locate the tumors, resect
them, and ensure that the tumor margins were negative (Figure 4.9). When | compared results

obtained with my bio-inspired imaging system against histology results, | found that my imaging

system together with the tumor-targeted probe had a sensitivity of 85%, a specificity of 87%.

color image NIR fluorescence image superimposed image

Figure 4.9 Color image, NIR fluorescence image and superimposed image of a mouse with ICG injected into the
kidney.

54



4.6 Conclusions
Fluorescence-guided surgery gives the surgeon anatomical information of healthy tissue and the

intraoperative position of tumor tissue. Current technology is limited by co-registration accuracy
and the DR of state of the art image sensors. Most state-of-the-art instruments are not capable of
capturing weak fluorescence signals under surgical light conditions. | developed a time-based
PWM AER color/NIR imaging system. This imaging system solved the co-registration problem
by monolithic integration of pixelated spectral filters with bio-inspired image sensor. Due to the
time-based PWM imaging technique, the DR of the sensor can be extended up to 120 dB. |
evaluated the performance of this imaging system and demonstrated its effectiveness using

fluorescence molecular markers in prostate cancer animal models.
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Chapter 5: A Miniature Handheld Multi-
Exposure Color/Near-Infrared Fluorescence
Camera Prototype for Image-Guided
Surgery

5.1 Introduction
The goal of image-guided surgery (IGS) is to provide time critical information to the physician

about the locations of tumor and healthy tissue during intraoperative procedures. Various
techniques have been developed for IGS, including x-ray imaging, two-photon imaging,
fluorescence and others. Fluorescence imaging is of particular interest because it utilizes
fluorescent molecular markers to highlight the location of the cancerous tissue and enables high
signal-to-background imaging. Fluorescence-based intraoperative imaging techniques were first
explored in the 1950s using fluorescein to identify brain tumors [8]. With the recent FDA approval
of the metabolic marker 5-ALA, brain cancer surgery is routinely performed under image guidance
[9]. The visible-spectrum fluorescence emitted by both fluorescein and 5-ALA enables physicians
to assess the location of tumors under a surgical microscope. However, due to tissue’s high
absorption coefficients in the visible spectrum, only fluorophores near the tissue surface can be
imaged, which limits its diagnostic potential. For imaging more than a few millimeters below the
surface of the skin, near infrared (NIR) fluorophores (700 to 950 nm) are used because of the low
absorption coefficient of water and oxy- and deoxy-hemoglobin in this spectrum [10-12].
Furthermore, the low auto-fluorescence in the NIR spectrum coupled with the use of non-ionizing
radiation enables high contrast to background imaging without exposing the patient to harmful

radiation [13].
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Despite the fact that the first fluorescence-based 1GS was performed more than 70 years ago,
molecular imaging in the NIR spectrum is not widely accepted as the standard of care for cancer
surgery because (1) current state-of-the-art NIRF imaging systems are bulky and costly, (2) they
lack both sensitivity under surgical illumination and co-registration accuracy between multimodal

images [10-12].

To address these shortcomings, | have developed, designed and tested a compact, handheld, bio-
inspired, single-chip, multispectral imaging device for image-guided cancer surgery. The image
sensor is realized by monolithic integration of pixelated spectral filters with a custom CMOS
image sensor. The custom CMOS image sensor, fabricated in Tower Semiconductors 180 nm
process dedicated for image sensor, has custom peripheral circuitry that enables pixel wise control
of light exposure. Hence, each group of pixels in the imaging array (i.e. red, green, blue and NIR
pixels) can capture information with maximum signal-to-noise ratio and high contrast for each
individual channel. The monolithic integration of filters and pixels enables temperature invariant
co-registration accuracy between NIR and color images. This co-registration accuracy is critical
for complete resection of all cancerous tissue and prevention of iatrogenic damage to healthy
tissue. Detailed optoelectronic evaluation of the sensor is presented in this chapter, followed by

both preclinical and clinical evaluation of the sensor.

5.2 System Overview of Handheld, Bio-Inspired Image

Sensor
Surgery is the primary curative option for patients with cancer. During open surgery, the physician

uses his or her touch and eyesight to identity cancerous tissue. However, tumor margins are very
difficult to identify because healthy and tumor tissues blend in very well in terms of color and

structure. To alleviate this issue, | have developed a compact, handheld multispectral imaging
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device that can be inserted in the surgical wound site and enable physicians to evaluate tumor
margins (Figure 5.1). The image sensor is comprised of three major components: a compact lens
for the collection of visible and NIR light, a custom CMOS image sensor with pixelated visible-
NIR pixels and independent exposure control for different subpixels in the imaging array, and a

data acquisition module for data transfer, image processing and display.
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Figure 5.1 System overview (a): System block diagram showing the fluorescence contrast agent injected into the
patient’s body prior to imaging. A NIR laser excites the fluorophore, and the custom image sensor captures the
NIRF emission. The data are buffered by the field-programmable gate array (FPGA) data acquisition module and
transferred to a PC. (b) Miniature image sensor next to a penny for scale. (c) Handheld prototype of my imaging
device used during surgery.

5.2.1 Custom Multi-Exposure Color/NIR CMOS Image Sensor
There are two important aspects of my image sensor design: small form factor and independent

exposure time for individual groups of pixels. The exposure control is important for the following
reason. The minimum FDA-approved surgical illumination in the operating room is 40 KLux,
whereas typical NIR laser light excitation is between 5 mW/cm? and 25 mW/cm?. Hence, the
photon flux from the visible light reflected from tissue and fluorescence fluency rate can have a

dynamic range exceeding 100 dB. State-of-the-art CMOS image sensors have typical dynamic
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range of 60 dB to 80 dB, which is insufficient for intraoperative applications. Therefore, a custom

CMOS image sensor with a compact form factor is necessary to address this clinical application.

The small form factor for my imaging system is important because of the need to image small
surgical cavities and place the sensor as close as possible to the imaged tissue for improved
magnification. An alternative approach would be to use a fiber probe to inspect the tissue of
interest. However, the size and number of optical fibers will limit the imaging spatial resolution.
Optical losses within the fiber would also decrease the sensitivity of the instrument, which can
lead to incomplete tumor resection. Hence, using an image sensor capable of simultaneously
recording color and NIR information, and that is compact enough to be placed near the tissue of

interest, is the preferred approach.

To satisfy the above described criteria, | designed, fabricated and tested a custom image sensor
prototype using Tower Jazz 180 nm custom image sensor technology. A block diagram and
micrograph of the image sensor is presented in Figure 5.2. The sensor has 110 by 64 front-side
illuminated pixels controlled by several peripheral registers, such as column and row select
register, pixel reset register and charge transfer shift register. The size of the sensor is 2.2 mm x
1.3 mm including the pixel array and peripheral circuitry. Voltage regulators and digital-to-analog
converters are used to provide the proper reference voltages to both pixels and peripheral analog
circuits. The photo signal from individual pixels is provided to the peripheral readout circuits,

where correlated double sampling and analog-to-digital conversion are performed.

After the image sensor was fabricated by Tower Jazz semiconductor, I monolithically integrated
an array of pixelated spectral filters on the surface of the CMOS image sensor. The pixelated

spectral filters were realized by depositing different thicknesses of alternating layers of silicon
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dioxide and silicon nitrite. I integrated four different spectral filters in a 2-by-2 pattern across the
image sensor with center passband wavelengths at the red, green, blue, and NIR spectrum. Since
the four spectral filters are adjacent to each other, the color and NIR images are inherently co-
registered. The co-registration accuracy was independent of the operating temperature and distance

of the imaged object, which is not the case with FDA-approved NIRF instruments [15].
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Figure 5.2 (a) Circuit diagram of the image sensor. The pixel topology consists of a 2 by 2 super pixel pattern
repeated across the 110 by 64 imaging array. (b) Chip micrograph.

Figure 5.3 (a) shows the pixel schematic of my custom image sensor. The pixel is composed of a
photodiode and four transistors: reset, charge transfer, source follower and address transistors. The
charge transfer transistor is optimized to allow full transfer of all charges from the photodiode
capacitance to the floating diffusion node. To minimize the pixel pitch, the reset potential bus and
the readout bus are shared. The readout circuitry controls the connectivity of the pixel output bus.
During the reset phase of the pixel, the output bus is connected to a Vreset potential, which sets the
voltage on the photodiode node. During the readout phase, the output bus is connected to a current

source, and the photodiode voltage is read out from the pixel.
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Figure 5.3 (a) Schematic of the pixel utilized in my custom image sensor. The typical 4-transistor active pixel
architecture uses a shared reset and output bus to increase the fill factor. (b) Timing diagram of the read-out
sequence. The multi-exposure readout scheme increases the signal level of the NIR channel.

The timing sequence for reading out both color and NIR pixels is shown in Figure 5.3 (b). During
the reset phase (t1), all pixels are reset to Vreset potential by setting a high RST signal. The charges

in the potential well of the photodiode and the float diffusion node are cleared during this phase.
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The voltage at the float diffusion node is read out for correlated double sampling (CDS). After a
short exposure time (t2), the charge transfer transistors of visible pixels are turned on (t3) and
charges accumulated on the photodiode (Q1) during t2 are transferred to the floating diffusion
node. After the charge transfer is completed, all visible spectrum pixels are read out. After a longer
exposure time (t4), the charge transfer transistors of the NIR pixels are turned on (t5) and the
photodiode charge (Q2) accumulated on the photodiode is transferred on the floating diffusion
node. The NIR pixels are read out only from the imaging array during the next timing sequence.
Finally, all pixels are reset and another frame is started.

5.2.2 Pixelated Color/NIR Filters

Pixelated spectral filters were designed by stacking layers of materials with different dielectric

constants and different thicknesses. The pixel’s transmission can be modeled by equation (5.1):

A=t lams, ans il 6

where q is the number of thin film assemblies in the filter, 7 is the optical admittance of each thin
film, & is the phase factor of the light in each thin film, and #m is the optical admittance of the
substrate. The optical admittance of the filter is a function of the index of refraction and incident
angle of the incoming light beam. The phase factor is a function of the index of refraction, the
thickness of the film, the frequency of the light and the incident angle. The transmission of the

filter is described by equation (5.2):

4nyRe(n,,)

T = T
(7703+C)(7703+C)

(5.2)

By tuning the material and thickness of each layer, spectral filters with different cutoff frequencies

can be achieved. The spectral filters were realized by using physical vapor deposition (PVD) to
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alternatively deposit layers of low dielectric material, SiO>, and high dielectric material, TiO>, onto
the top surface. The spectral filters were pixelated and matched the 7.4 um pitch of the underlying
CMOS pixels. A cross-sectional profile of a single pixel with interference filters residing on top is
presented in Figure 5.4. The photodiode was realized by doping two silicon junctions with positive
and negative ions. The three metal layers (M1, M2 and M3) are metal connections between the
four transistors in the pixel. The interference filter has a periodic pattern of the two dielectric

materials.

Figure 5.4 SEM micrograph of the interference filter and the underlying pixel. The interference filter is realized by
alternatively stacking dielectric layers with high and low indices of refraction.

5.2.3 Lens and Spectral Filter
A miniature lens with an /4.5 aperture and a fixed focal length of 27 mm is integrated with the

image sensor. The diameter of the lens is 12 mm, and the weight of the lens is 30 g. The miniature
form factor of both lens and image sensor reduced the overall size and weight of the handheld
system to improve compactness and maximize ergonomics. Because a 780 nm laser light source
is used to excite the molecular probe, a notch filter (NFO3-785E-25, Semrock) with high optical

density (OD =6.011) was placed between the lens and the image sensor.
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5.2.4 Data Acquisition Module, Image Processing and Display
A 12-bit parallel data stream is acquired and serialized by a field-programmable gate array (FPGA)

data acquisition board (XEM3010, Opal Kelly Inc., USA). The data from the image sensor is
transferred to a computer (Thinkpad W530, Lenovo) via a USB 2.0 port. System software and
firmware ensured that no frames or pixel data are dropped during the serial transfer of data. A
custom program written in C++ acquires the data from the image sensor and performs color
correction and flat field calibration for all pixels in the four different channels. The calibrated data
is split into color image acquired after short integration time, NIR image acquired after long
exposure time and a composite image with both imaging modalities combined. The C++ program
utilized parallel threads such that when data is recorded to a solid state hard drive, high priority is
allocated to the saving thread. Hence, no data is lost when saving the data, whereas some data may

be skipped or lost when displayed on the screen.

5.3 Optoelectronic Performance Evaluation
The image sensor’s performance is evaluated for quantum efficiency, divergence response, fixed

pattern noise, signal-to-noise ratio and sensitivity using the optical setup depicted in Figure 5.5.
The setup consists of a computer-controlled monochromator (Acton SP2150, Princeton
Instrument), an adjustable iris (SM2D25, Thorlabs), an aspheric collimating lens (ACL7560,

Thorlabs) and a motor-controlled rotation stage (NR360S, Thorlabs).
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Figure 5.5 Block diagram of the optical setup for optoelectronic characterization of my custom multispectral image
sensor.

Quantum efficiency is defined as the ratio of photon-generated electrons to the number of incident
photons. The number of electrons is calculated from the conversion gain of the sensor and the
digital output. The number of photons is measured by a calibrated photodiode (S130C, Thorlabs)
driven by a power meter (PM100D, Thorlabs). The incident wavelengths are swept from 400 nm
to 1000 nm in 10 nm step increments and the monochromatic light impinges on the surface of the

image sensor at normal incident angle.

The quantum efficiency of the image sensor is presented in Figure 5.6. The blue, green, and red
filters have quantum efficiency (QE) peaks of approximately 18% at 450, 550, and 625 nm,
respectively. The NIR pixel had a peak QE of 8.5% at 805 nm, which matched the peak emission
wavelength of indo-cyanate green (ICG) dye used during surgery. The sensor under testing also

contained an additional notch filter at 780 nm to block the excitation light for ICG fluorophores.
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Figure 5.6 Quantum efficiency of the image sensor. Peak
QE of the color and NIR channel are 18% and 8.5%.

The low quantum efficiency of the pixels was partially due to the lack of micro-lens array on each
pixel and the shallow p-n junction utilized in the process. The use of micro-lens array and deeper
p-n junctions to realize photodiodes would significantly increase the quantum efficiency especially

in the NIR spectrum.

The light’s incident angle on the interference filters affects the transmission band. When the
incident angle increases, the distance that light travels within each thin film layer of the
interference filter increases causing a change in the phase factor ¢, as described by equation (5.2).
Since the fluorescence emitted by a molecular probe radiates equally in all directions, the
transmission band of the interference filter will shift toward shorter wavelength. This phenomenon
is called “blue shift”. Blue shifting will cause leakage of backscattered excitation light, resulting
in a low signal-to-background ratio and a decreased sensitivity at peak emission wavelengths for

ICG. As aresult, the detection limit of fluorescence is compromised.
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To evaluate the impact of divergent light on the image sensor, | rotated the sensor such that the
incident angle was swept from 0° to 30" in increments of 5°. The recorded spectral response is

shown in Figure 5.7.
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Figure 5.7 Divergence response of the interference filter. The cutoff wavelength decreases as the incident angle
increases. This is called the “blue-shift” effect. Blue shift will cause leakage of NIR excitation as well as visible
illumination to the NIR channel, which degrades the NIR image quality and the fluorescence detection limit.

The figure indicates that when the incident angle for the incoming light is less than 10°, the cutoff
wavelength for the NIR filter is decreased by 15 nm. Since the full-width at half-maximum for the
notch filter is 15 nm, the excitation light source is successfully suppressed. In real applications,
the sensor is placed behind the lens. The chief ray angle (CFA) of the lens is the angle of light
incident directly on the surface of the sensor. By selecting the correct lens and properly limiting
the field of view, the CFA can be constrained to maintain the performance of the sensor. When the
CFA angle exceeds 10°, the passband for the NIR filter will be significantly blue shifted and
excitation photon will be registered by the NIR pixel. At high CFA angles, the detection limit of

ICG will be therefore significantly decreased.
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The spatial non-uniformity of the sensor is characterized by fixed pattern noise (FPN). The FPN
versus signal level is shown in Figure 5.8(left). The maximum FPN for visible spectrum pixels is
approximately 16% at full well, and the FPN for the NIR spectrum pixels is approximately 12%.
Although CDS removes most of the dark current non-uniformity (DCNU), the fabrication
dependent non-uniformity of the pixelated filter introduces photo-response non-uniformity
(PRNU), which is the dominant source of FPN. The major defect in the filters is the structural
collapse of the dielectric layers near the pixel edge. To suppress the FPN, flat field correction
method is introduced. The FPN after calibration is shown in Figure 5.8(right) where the maximum

FPN is less than 2% at full well dynamic range.
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Figure 5.8 (left) Uncalibrated FPN versus signal level. The FPN increases monotonically with signal level. The
maximum FPN is 16% (color channels) and 11% (NIR channel) at full well. (right) Calibrated FPN versus signal
level. The FPN is less than 2% for all intensities.

The signal-to-noise ratio (SNR) is evaluated using the same optical setup that is used for the FPN
measurement. The SNR versus signal level is shown in Figure 5.9. The SNR at a low signal level
is limited by the readout noise of the sensor, which is 54e". As the signal level increases, the photon
shot noise becomes the dominant source of the noise and SNR approaches the shot noise limit. To
obtain the best quality image and maximum detectability, the multi-exposure scheme is used to

ensure that both color and NIR channels have sufficient signal levels to maintain high SNRs.
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Figure 5.9 Signal-to-noise ratio versus signal level. At low illumination levels, the readout noise dominates the
signal, whereas at a high illumination levels, the photon shot noise dominates the output signal.

A summary of the image sensor performance is presented in Table 5.1

Table 5.1 The summary and comparison between this multi-exposure multispectral image sensor and related work.

Description This work [49] [50] [51]
Filter type Stacked dielectric Plasmonic Fabre-Perot | Fabre-Perot
Detection range (nm) 400-1000 400- 700 470- 1000 400- 750
# of spectral bands 4 6 100 3
Visible bandwidth (nm) 80-100 100-150 10 100-150
Visible transmission 60% 50% 85% 65%
NIR bandwidth (nm) >250 N/A 10 N/A
NIR transmission 80% <10% 85% <5%
NIR filter optical density 2.5 N/A >2 N/A
NIR filter type long pass N/A band pass N/A
Multi-exposure Yes No No No
Pixel size (um) 7.4 10 5.5 1.75
Number of pixels 7k 10k 2M 3M
Fabrication technology 0.18 um CMOS | 0.35 um CMOS CMOS CMOS
Fill factor 50% N/A N/A N/A
Well capacity 25k electrons N/A N/A N/A
Input referred noise 54 electrons N/A N/A N/A
Maximum SNR 45 dB N/A N/A N/A
Dynamic range 54 dB N/A N/A N/A
Power consumption 150 mwW N/A N/A N/A

An important attribute for the camera is the lowest detectible ICG concentration under surgical

light. I prepared vials with aqueous solutions of ICG at different concentrations from 1 nM to 1000
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nM. The vials are placed 20 cm from the camera to emulate typical distance during clinical trials.
A control group with deionized water is used to measure background signal. The vials are
illuminated with a modified light emitting diode surgical light source [52] providing approximately
40 kLux luminance and a 780 nm excitation light source (BWF2-780-0.8-200-0.22-SMA,
BWTEK) filtered with a laser clean-up filter (LL01-780-12.5, Semrock). The optical power of the
excitation source is 10 mW/cm?. The exposure time is set to 10 ms for color pixels and 35 ms for
NIR pixels. The mean and standard deviation of the fluorescence signal are calculated from a
region of 10 by 10 pixels. The experiments are repeated three times with the different vials with
the same ICG concentrations. The results are plotted in Figure 5.10. The dashed lines represent the
average fluorescence intensity level of the control group o plus 3 times the standard deviation of

the average signal oo. The solid lines show the normalized average fluorescence intensity level of

different ICG concentrations g«. The detection limit of the camera is defined as:

Wimit = argmin, (px > po + 300) (5.3)
Because the NIR pixels are sufficiently exposed regardless of the short exposure time of visible
color channels, the multi-exposure camera can detect 50 nM ICG. Compared with single-exposure

results with detection limit of 100 nM, the performance was twice as high.
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Figure 5.10 Sensitivity for different ICG concentrations. The horizontal dashed lines represent the detection limit,
while the solid lines represent the photo response. The multi-exposure sensor can detect 50 nM ICG.

5.4 Imaging Spontaneous Tumors Under Surgical Light

Illumination
I used my bio-inspired sensor to identify spontaneous tumor development in a transgenic PyMT

murine model for breast cancer (n=3). All animals developed multifocal tumors throughout the
mammary tissues by 5-6 weeks, and some of the small tumors blended in well with surrounding
healthy tissue due to their color and were difficult to differentiate visually with the unaided eye.
However, because my bio-inspired sensor has high co-registration accuracy and NIRF sensitivity,
the physician could easily locate the tumors, resect them, and ensure that the tumor margins were
negative (Figure 5.11). When | compared results obtained with my bio-inspired image sensor
against histology results, I found that my sensor together with the tumor-targeted probe had a
sensitivity of 78%, a specificity of 73%, and an area under the receiver operator curve of 72%
using parametric analysis. In addition, while visible-spectrum imaging picks up only surface

information, fluorescence imaging in the NIR spectrum enables deep-tissue imaging, which helps
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identify the location of tumors before surgery. Compared to the state-of-the-art, non-real-time,
bulky Pearl imaging system, with a receiver operator curve of 77.9% and relevant standard error
of 7.1% [53], my bio-inspired sensor provides similar real-time accuracy under surgical light

illumination.

(@) (b)

Figure 5.11 In vivo preclinical mouse study. NIR images use jet color map. (a) Single-exposure NIR image; (b)
multi-exposure NIR image; (c) color image; (d) superimposed image.

5.5 Clinical Translation of My Bio-Inspired Technology

My bio-inspired, handheld image sensor was then used in an operating room to track sentinel
lymph nodes (SLNSs) in patients with breast cancer. Human study protocols were approved by the
Institutional Review Board of Washington University in St. Louis. The human procedure was
carried out in accordance with approved guidelines. The inclusion criteria for patients in this study
were newly diagnosed clinically node-negative breast cancer, negative nodal basin clinical exam,
and at least 18 years of age. The exclusion criteria from this study were contraindication to surgery;
receiving any investigational agents; history of allergic reaction to iodine, seafood, or ICG;
presence of uncontrolled intercurrent illness; or pregnancy or breastfeeding. All patients gave
informed consent for this HIPAA-compliant study. The study was registered on clinicaltrials.gov

website (trial ID no. NCT02316795).

72



The mean+SD age and body mass index of all patients were 64+14 years and 32.7+6.9 kg/m?.
Before the surgical procedure, **™Tc-sulfur colloid (834 pCi) and ICG (500 umol, 1.6 mL) were
injected into patient’s tumor area, followed by site massage for approximately 5 min. At 10-15
min post injection, physicians proceeded with the surgery per standard of care. Once the physician
identified the SLNs using the visible properties of ICG (i.e., green color) and radioactivity using
the gamma probe, the physician used my bio-inspired imaging system to locate the SLNs. The
patients were imaged under simultaneous surgical light illumination (60 kLux) and laser light
excitation power of 10 m\W/cm? at 785 nm. The physician then proceeded with the resection of the
SLNs. The imaging system was set up at a 1 m working distance, and the illumination module was
placed at a 1 m distance. The color pixels’ exposure time was set to 10 ms to ensure non-saturated
color images were recorded, and the NIR pixels’ exposure time was set to 35 ms to ensure imaging

rates of 25 frames/sec. The average imaging time with my bio-inspired sensor was 2.5+0.6 min.

In a pilot clinical trial, I investigated the utility of my bio-inspired image sensor to locate SLNs in
human patients (n=3) with breast cancer using the ICG lymphatic tracer. ICG naturally exhibits a
green color due to its absorption spectra, as well as NIRF at 800 nm. ICG passively accumulates

in the SLNs and is cleared through the liver and bile ducts within 24-36 h post-injection.

Figure 5.12 presents images of SLN tissue resected from a patient and displayed on a monitor to
the physician. The color images recorded by my sensor provide information about the anatomical
features of the patient, while the NIR image provides information about the location of the sentinel
lymph nodes. Because both images were inherently co-registered and with the help of
superimposed color-NIR information, the physician can easily identify anatomical features that

need to be resected (Figure 5.12 (d)) and identify healthy tissue that needs to be preserved.
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At the same exposure times for both visible and NIR pixels, i.e., 10 ms, the color image (Figure
5.12 (c)) showed good contrast between various regions in the SLN and the surrounding tissue.
However, the NIR pixels captured only few photons, and the NIR image (Figure 5.12 (a)) had poor
contrast and a poor SNR. Hence, the physician was unable to locate the SLN with high confidence
using the NIR image obtained with short exposure time. When the exposure time for the visible
and NIR pixels was decoupled and the NIR exposure time was set to 35 ms, a brighter NIR image
(Figure 5.12 (b)) was obtained and the locations of the sentinel lymph nodes were accurately
determined and resected. Because the exposure time was optimized for the color and NIR pixels
separately, a high contrast color image and high contrast NIR image were obtained during the

surgical procedure and presented to the physician.
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(a) (b) (c) (d)

Figure 5.12 Human SLN surgery study. NIR images use jet color map. (a) Single-exposure NIR image; (b) multi-
exposure NIR image; (c) color image; (d) superimposed image.

5.6 Conclusions
This chapter described a handheld, bio-inspired, multispectral image sensor for image-guided

surgery. Due to the monolithic integration of spectral filters with an array of imaging elements, a

compact and ergonomic imaging device is realized for evaluating incision wounds for residual
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cancer cells. The sensor is used in preclinical experiments to detect tumor cells in PyMT
spontaneous breast cancer model. I also translated this sensor in the operating room to detect lymph
nodes in patients with breast cancer. The compact form factor of my sensor enabled both seamless
integration of the sensor into the surgical suite and presentation of time-critical information to the

physician.
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Chapter 6: Head-Mounted Augmented
Reality System with Microsoft HoloL ens for
Near-Infrared Fluorescence-Based Image-
Guided Surgery

6.1 Introduction
The successful detection and complete removal of cancerous tissue without damaging surrounding

healthy tissue remains a challenge [54]. Surgeons rely on traditional techniques, such as visual
inspection and touch, as their primary sensing modalities. Due to low visual and structural
contrasts, surgeons have to subjectively determine whether all cancerous tissues were removed
and whether iatrogenic damage was introduced during surgery. Typically, secondary surgeries are
required to remove any remaining tumor tissues and/or to repair damage inflicted to healthy tissue
during the primary surgery. Approximately 20% to 70% of patients with breast cancer require

additional surgeries [5].

To provide surgeons with additional anatomical information about tissues/organs, X-rays,
computed tomography (CT), ultrasound, magnetic resonance imaging (MRI) and positron
emission tomography (PET) greatly assist in preclinical diagnosis and surgical planning. However,
because of their large footprints, ionizing radiation, and slow scanning time, these devices are

difficult to adapt into the operating room to give intraoperative guidance.

Image-guided surgery (IGS) solves these problems by providing intraoperative structural and
functional tissue or organ information to surgeons in clinical settings. Because near-infrared
fluorescence (NIRF) has 1) low auto-fluorescence in human tissue, 2) low tissue scattering and

absorption in the NIR region, and 3) an invisible fluorescent spectrum to the human eye, NIRF is
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of particular interest for IGS [10]. Two non-specific NIR fluorescent dyes have been approved by
the FDA: methylene blue (MB) [55] and indo-cyanine green (ICG) [56]. In addition, target-specific
NIR dyes have been developed by laboratories in academia and industry in the past few years [56-
58]. These dyes enable NIR IGS to provide high contrast deep imaging in the range of millimeters
to a centimeter [32, 33, 59] and interference-free surgical workflow and light sources, allowing the

surgeon to quickly and accurately identify tumors.

Because the NIRF wavelength is invisible to human eyes, specialized imaging systems are
required. The systems should be capable of superimposing real-time NIRF images over visible
anatomical features. The systems should also be compact and light enough to provide hands-free
operation in the operating room. State-of-the-art NIRF IGS devices such as FLARE [32], SPY
[33], and PDE [34] use two charge-coupled device (CCD) imaging sensors for visible spectrum
imaging and NIR imaging. Using optimized dichroic beam splitters and spectral filters, color and
NIRF images are captured and co-registered. However, these systems have several major
shortcomings. As shown in Figure 6.1(left), one of the most severe shortcomings is that the
combined NIR and color information is presented on a remote computer monitor. Surgeons have
to look up at the monitor and memorize the image before continuing with the resection. Another
shortcoming is the large footprint and high costs of these systems. These limit the intraoperative

clinical translation of the systems.

Recently, video display goggles for NIRF IGS have been developed. Gao et al. developed a
compact threshold detection-based complementary metal-oxide-semiconductor (CMOS) imaging
goggle system [18]. Color and NIRF information was overlaid and displayed on a head-mounted
device (HMD) with an opaque liquid crystal display (LCD) screen. This system had a minimized

footprint and enabled hands-free operation without interfering with the surgical workflow.
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However, the natural vision of the surgeon was blocked. Because surgeons are trained to use their
natural vision, use of LCDs requires training and complicates the clinical translation of this
technology. Liu [60], Armstrong [61], Shao [62] and Modal [19] developed transparent HMD
using custom optics or Google Glass. Surgeons were able to see through the transparent display
units. Although the virtual NIRF images captured by NIR cameras were correctly overlaid with
the virtual color image captured by secondary cameras, none of these technologies co-registered
the virtual fluorescence image with the natural vision of the surgeons. Liao [63] developed a see-
through augmented reality system for MRI guided surgery. This system co-registered the imaging
target, the virtual image and the vision of the surgeon using a half-silvered mirror. However, the
virtual image and its location are calculated using pre-operative MRI data. No real-time data were
transmitted. The virtual NIRF image always followed the surgeon’s eyesight. The image either
distorted, shifted, or even completely disappeared when the perspective changed. The structural

and functional information that NIRF provides becomes less informative.
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Figure 6.1 Comparison between the monitor-based display (left) and augmented reality-based display (right). Instead
of displaying both the virtual NIRF image and virtual color image on a monitor, the augmented reality-based display
system superimposes the virtual NIRF image directly on top of the patient’s body.

In this chapter, | present an augmented reality NIRF imaging system using Microsoft HoloLens.

Unlike the traditional augmented reality systems presented by Haouchine [64], Badiali [65], and
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Kang [66], which augmented virtual color images (displayed on monitors) with preoperative
CT/MRI/ultrasound information, the HoloLens is an augmented reality (AR) HMD that allows
users to combine real-world with real-time virtual images (holograms). The HoloLens uses a
transparent display with light projectors to create holograms on the glass in front of the user’s eyes.
It contains multiple sensors to scan the environment, which enables the holograms to be placed at
a specific location in the real world, as shown in Figure 6.1 (right). Compared with other HMDs,
the imaging system I developed can ensure that real-time virtual images are correctly co-registered
with real-world objects regardless of user head movement and without blocking natural vision. |
designed the imaging system using a single CMOS imaging sensor placed on a custom printed
circuit board (PCB). Spectral filters were placed on the imaging sensor so that the imaging system
was optimized for NIRF. The custom signal processing algorithm including serial/wireless data
transmission. Image calibration/co-registration was implemented on the computer and on the
HoloLens. | also utilized a custom-built NIR spectrum calibration board that allowed for the
automatic co-registration of virtual images and real-world objects. The system sensitivity and co-
registration accuracy were evaluated. An animal model was used to demonstrate the application of

this system. The advantages of this system are also discussed.

6.2 System Setup and Co-Registration Algorithm

6.2.1 System Setup
Figure 6.2 depicts the entire imaging system including the fluorophore excitation laser, custom

NIR camera, calibration board, wireless router and the HoloLens.
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(a) (b)

Figure 6.2 Augmented reality imaging system for NIRF IGS. (a) System setup including a custom NIR camera, a
wireless router, a 780-nm laser with its optics, a calibration board and a HoloLens. (b) User wearing the HMD.

A 780-nm laser (BWF2-780-0.8, B&W TEK Inc.) was used to excite the fluorophores. The beam
was coupled by fibers (M28L05, Thorlabs) and filtered by a laser clean-up filter (LL01-780-12.5,
Semrock) to minimize leakage outside the desired bandwidth. The filtered laser beam was
expanded by an aspherical lens (ACL25416U-B, Thorlabs) and a diffuser (47-997, Edmund
Optics) to generate a 10 cm x 10 cm uniform pattern with approximately 20 mW/cm? excitation

power.

The custom NIR camera was placed at 60-cm fixed working distance looking straight down. The
camera consisted of a custom PCB, including a single-chip NIR CMOS image sensor, reference
voltage regulators, a USB controller and a field programmable gate array (FPGA)-based image
signal processor (XEM6310 Spartan 6, Opal Kelly). A high quantum efficiency at 800 nm for the
CMOS imaging sensor allowed for the efficient imaging of fluorescence signals in the NIR
spectrum. The small feature size allowed for full integration with the HMD in the next-generation
device. The exposure time and readout gain of the CMOS imaging sensor were programmed by
FPGA using a serial peripheral interface (SPI) bus. External triggers started image acquisition to
synchronize with the rest of the imaging system. Once exposure was complete, raw data were sent
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to the FPGA via a serial bus. The FPGA de-serialized the 12-bit raw data and sent the data to a PC
via USB 3.0 bus to generate image frames. The sensor utilized a variable exposure time ranging

from 2 ms to 33 ms. The frame rate was 30 frames per second.

To reduce the background noise level and collect light from 800 nm up to 1000 nm, a 780-nm
notch filter (NFO3-785E-25, Semrock) were placed in front of the imaging sensor to remove visible

light and fluorophore excitation light. The maximum leakage from 400 nm to 800 nm was 1.01%.

To co-register the virtual image with natural vision, a calibration board was developed. The
calibration board was 6 inches x 4 inches and consisted of 4 NIR light-emitting diode (LED)
tracking pods on the same plane. The LEDs (SFH4557, Osram) were centered at 860 nm and
placed at fixed positions on the calibration board. Because the LEDs were bright enough to saturate
the imaging sensor, assuming that the rest of the image was not saturated, the location of the LEDs
within the image were determined and used by the co-registration algorithm, which was

implemented by custom C++ code and OpenCV APIs on a PC.

Once the image was correctly co-registered using the algorithm, the transformed image was sent
wirelessly via TCP/IP protocol using a wireless router (AC1200, Netgear). A 1200 Mbps data rate
ensured support for a 30 frames-per-second transmission. The HoloLens received and rendered the
data using custom C# code and Unity APIs. All data transmission and processing were performed

concurrently using multi-thread programming techniques.

The signal flow is shown in Figure 6.3.
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Figure 6.3 Typical signal flow using augmented reality for NIRF IGS. The custom NIR camera captures the NIRF
from the target and sends the raw data to a PC. The processed data are sent wirelessly to the HoloLens.

6.2.2 Co-Registration Algorithm
A precise calculation of the disparity between hologram and natural vision is of great importance.

Miss-registration would result in an incorrect estimation of tumor position and lead to unsuccessful
removal of all cancerous tissue and damage to healthy tissue. To co-register the imaging target
between the hologram and natural vision, a co-registration calibration algorithm using an LED
tracking pod was performed. The imaging region of interest (ROI) was defined by the position and

size of the calibration board. Images of every target within the ROl were calibrated.

Before performing the co-registration algorithm, the camera calibration was performed.
Unfortunately, all cameras are subject to distortion. Radial distortion is due to increased/decreased
image magnification with distance from the optical axis, and tangential distortion is due to the
imperfect alignment of optical elements with respect to the imaging plane. | used a black-white
chessboard pattern to compute the distortion coefficient [k1 k2 p1 p2 ks]". The distortion can be

reduced by using equations (6.1) and (6.2) [67]:
Xaistort = X(1 + kyr? + kor* + k37®) + 2pixy + po(r? + 2x2) (6.1)
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Yaistort = y(1 + k1rz + kzr4 + k3r6) + 2p,xy + pl(rz + 2}’2) (6.2)

where 2 = x% + y?, (X, y) is the distortion-free points in the imaging plane and (Xaistort, Ydistort) iS

the distorted points in the imaging plane.

Next, the user would use gesture and voice control to place the calibration hologram, which has a
uniform default color, on top of the calibration board. The calibration hologram is the same size
as the calibration board (6 inches x 4 inches), and the user would use their natural vision to ensure
that the hologram is completely superimposed. This ensures that every object on this plane within
the calibration board was co-registered with the user’s natural vision after co-registration
calibration. To evaluate the accuracy of this initial placement, the user would use a highly
subjective standard. If the user was unable to determine a disparity, the initial placement was
completed. Because the co-registration algorithm was completely independent of the initial
placement, as long as the user was satisfied, the user will not find disparity between the real-world
object and the later co-registered hologram. Once placed and once the user is satisfied with the
alignment, the NIR camera would start capturing images, and the HoloLens would compute the
position information of the hologram. The hologram remained at this position even if the user

position changed. The hologram showed the un-calibrated image.

After the images were captured, a threshold applied to the pre-calibrated hologram. All pixel values
below a threshold (95% of the dynamic range) were set to 0. Because the LEDs on the calibration
plane emitted strong NIR signals, only the LEDs in the hologram were above the threshold and
were detected. To compute the actual position of the LEDs in the pre-calibrated hologram, a

contour detection was performed using the Canny edge detection method [68]. The positions of
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the center of LEDs in the pre-calibrated hologram [X.ep i Yieo i]" (i=1,2,3,4) were defined as the

image mass center of these contours.

Because the physical locations of the LEDs on the calibration plane were known, the locations
[XLep i’ yiep i’]" (i=1,2,3,4) of the LEDs projected in the post-calibrated imaging plane (hologram)
were easily calculated. [Xiep i’ Yiep i’]T were co-registered with the user’s natural vision. | defined

the projection matrix T such that:

' XLED XLED
XLED | _ _rel1 t12 t13
[YLED'] = Toxs [YLlEDl = [t21 22 t23] [YLlﬁnl (6.3)
T can be retrieved by:
t11
t12
13| _ AT AV=1AT
| = (ATA)TIATH (6.4)
t22
t23
where:
[XLED.1  YLED.1 1 0 0 07 [XLED 1']
0 0 0 Xggp1 Yiepa 1 YLED 1’
A = |XLED_2 YLED_.2 1 0 0 0 b= XLED_z'
0 0 0 Xpgp2 Yiep2 1 YLED 2

All pixels [x y]" in the pre-calibrated hologram were transformed using T to obtain the calibrated
value [x’ y’]", which was re-projected to the hologram. The co-registration algorithm was

completed:
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[;:] = Toxs E’l (6.5)

After this co-registration calibration, the hologram was co-registered with the real-world object on
the calibration board and the user’s natural vision. The flowchart of this algorithm is shown in
Figure 6.4. Because the camera was placed at a fixed position, this co-registration was only
required once to ensure that the user’s initial natural vision was co-registered with the initial
hologram. If the user’s position changes, the HoloLens will transform the hologram to compensate

for movement and to ensure that the hologram was co-registered with the user’s natural vision.

Camera Contour
calibration detection
Hologram Center

] 8 .

Placing detection

Image
Acquisition

No
. Inverse affin
satisfied? verse a |.e
transformation
Yes +
Threshold | | Apply
detection transformation

t

Figure 6.4 Co-registration calibration algorithm flow chart.

6.3 Input/Output Interface and Additional Features

In the operating room, the surgeons need distraction-free user interface. Traditional input/output
(1/0) devices such as keyboards, mice, push buttons and touch screens interfere with the surgical

workflow. The surgeons have to take off their gloves before selecting the desired function of an
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instrument. To overcome this drawback, | implemented the voice and gesture 1/O for the system.
Using the HoloLens build-in microphone and infrared detector, the surgeon’s voice and hand

gesture can be tracked and recognized by the system to trigger the specific command.

Features such as displaying the X-ray, CT and MRI images are also implemented. The images
were pre-loaded to the system prior to surgery. They provide additional information to the surgeons

during operation (Figure 6.5).

Real-timL e e

NIR hologrdm

Figure 6.5 Pre-loaded CT images with the real-time NIR hologram. All commands such as zoom in/out of the CT
images and going to next page is voice and gesture controlled.

6.4 System Evaluation

6.4.1 Sensitivity Evaluation
The sensitivity of this system is evaluated by NIRF signal responses for solutions with different

ICG concentrations. ICG was diluted in de-ionized water. A control group with 100% de-ionized
water is used as the background signal. The exposure time of the camera is set to 30 ms to ensure
a 30 frames-per-second real-time video frame rate. Vials containing the different ICG

concentrations are placed 60 cm from the custom NIR camera. They were illuminated with a 780-
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nm laser at an optical power of 20 mW/cm?. The standard deviation (o:) and mean value (u«) at

concentration ¢ mol/L (M) of a 10-pixel x 10-pixel ROI are calculated from the raw data.
The detection limit was defined by (6.6).
Limie = Io + 309 (6.6)

where liimit IS the photo response of the detection limit, lo is the photo response of the reference
sample, and op is the standard deviation of the reference sample photo response. The fluorescence
response of this imaging system is shown in Figure 6.6. The ICG concentration ranged from 500
pM to 10 uM. The response is shown in a logarithm scale. Figure 6.6 shows a minimum detection

limit of approximately 10 nM ICG under an excitation illumination of 20 mW/cm?,
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Figure 6.6 Contrast of the imaging system. The red line represents the contrast for each ICG concentration level. The
horizontal blue line represents contrast equal to 2. The augmented reality system can detect as low as ~10 nM ICG
under an excitation illumination of 20 mW/cm?,

6.4.2 Resolution Evaluation
To evaluate the resolution of the imaging system, | used the 1ISO 12233 test chart as an imaging

target. The test chart is placed 60 cm from the camera and illuminated with a broad band light
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source (OSL1, Thorlabs). A slant edge method is used to calculate the modulation transfer function
(MTF) from the images acquired. The resolution is calculated by applying the Rayleigh criterion,
which defines the resolution as the distance between two points that are resolved when the first
minimum of one Airy disk is aligned with the central maximum of the second Airy disk. Under

this criterion, the minimum resolvable distance corresponds to an MTF value of 26.4% [69].

Figure 6.7 shows the horizontal and vertical MTF. By applying the Rayleigh criterion, the
resolution of my imaging system is 23.6 line pairs per millimeter along the horizontal direction

and 29.8 line pairs per millimeter along the vertical direction.
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Figure 6.7 Horizontal and vertical modulation transfer function. The horizontal blue line represents the contrast
under the Rayleigh criterion. The augmented reality system’s resolution is 23.6 Ip/mm and 29.8 Ip/mm horizontally
and vertically.

6.4.3 Co-Registration Evaluation
The co-registration calibrations are subject to errors, such as size mismatches of the initial

calibration hologram and the calibration board, an inaccurate initial placement of calibration
hologram and errors in LED tracking pod detection. These errors would accumulate, cause errors
in the transformation matrix and affect the position of each pixel in the post-calibrated hologram.
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However, because the user precedes the calibration after they are satisfied with the initial

placement, these errors are negligible.

Because the hologram is a 2D plane superimposed on the calibration plane, the hologram of any
non-planar real-world object would have additional co-registration errors with the user’s natural
vision. Figure 6.8 depicts the error model. The co-registration error (ei) between the real-world
point Pi and the point indicated by the hologram Pi’ is a function of both the height of the imaging
object (hi) and the view angle of the user (6). As the angle increased to 90 degrees, the error is
minimized regardless of the height of the real-world object. When the user is looking at an angle

between 0 degrees and 90 degrees, the error is calculated per (6.7):

e = by (67)

" tan®

h2 :
il

Figure 6.8 Co-registration error model. The error is a function of the target height and viewing angle.

Calibration board plane

Practically, the viewing angle is between 60 degrees and 90 degrees. When observed from a 90-
degree angle, the error is minimized according to equation (6.7). To evaluate the maximum error,
I used a black and white chessboard and a blue square target on the same plane to evaluate the co-

registration error. The target is placed on the calibration board plane and then +0.5 cm, +£1 cm,

+1.5 cm, and £2 cm above/below the plane. The viewing angle is set to 60 degrees. | placed a web
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camera behind the HoloLens optics to represent the user’s eye and to collect data. The web camera
is pre-calibrated using the method described in [67]. A camera-to-world transformation matrix is
acquired during the calibration. | computed the real-world coordinates of the blue square target
and the holograms. The co-registration error is shown in Figure 6.9. The maximum error is

approximately 12 mm.
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Figure 6.9 Co-registration error from a 60-degree viewing angle.

6.5 In Vivo and Ex Vivo Animal Study

The standard operating procedure for removing sentinel lymph nodes (SLNS) in veterinary surgery
is to inject ICG into the lymphatic system. By tracking the visible green color of ICG, the physician
removes the SLN relying on the unaided eyes. In this in vivo study, | used my head-mounted
augmented reality system to help physicians locate SNLs by tracking NIR fluorescence emitted by
ICG. The experiment is conducted at the University of Illinois Veterinary Teaching Hospital.
Canine patients with head and neck cancer are imaged 20 minutes post-ICG injection. To

maximize the fluorescence emission, the injected ICG dosage is diluted 20 times lower than typical
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(0.5 mg/ml, inject 0.4 ml) to prevent fluorescence quenching. A 780-nm laser illuminated the

surgical area (diameter = 20 cm) at 5 mW/cm? optical power.

Wearing the head-mounted augmented reality goggles, the physician detected SLNs with an
overlaid jet color virtual image, indicating fluorescence intensity. As shown in Figure 6.10 (left),
an image is captured by a second HoloLens from the physician’s assistant’s view. The same virtual

images are displayed by two HoloLenses at the same position.

In the ex vivo study, the removed SNL was examined using the same optical and data acquisition

setup. Figure 6.10 (right) shows that the virtual NIRF is correctly superimposed on the SNL.

Real-time NIR holograms
superimposed over lymph node

Figure 6.10 In vivo (left) and ex vivo (right) animal study for SNL removal assisted by the augmented reality HMD

6.6 Conclusions
In this chapter, | presented a head-mounted augmented reality system for NIRF image-guided

surgery using a Microsoft HoloLens. The effectiveness of this technology is evaluated by in vivo
and ex vivo animal studies. The holograms were correctly superimposed onto the lymph nodes and

provided the physicians with real-time guidance during the surgery.

By using the augmented reality system, the physician was able to locate the 3-D anatomical

features through the optics using their natural vision and see virtual holograms representing the
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NIRF signal captured by my custom NIR camera. Compared with commercial NIRF imaging
devices, this system is compact and wearable. Complex and heavy dichroic optical setups were
replaced with a single CMOS camera. The NIRF was no longer displayed on the computer
monitors, which would interfere with the surgical workflow. The virtual hologram was
superimposed over anatomical features and correctly co-registered with the physician’s natural
vision using the calibration board and our co-registration algorithm. This guaranteed that the real-
time data were co-registered after a one-time calibration process. To the best of my knowledge,
this is the first HMD that co-registers a virtual image with human eyes and allows video rate image
transmission. The comparison between commercial and state-of-the-art devices for IGS and this

work is shown in Table 6.1.

Table 6.1 Summary and comparison between this augmented reality HMD and related work

Description Display unit Natural vison | Co-register with Real-time
preserved? natural vision? data?
This work HMD Yes Yes Yes
Flare PC Monitor No No Yes
SPY PC Monitor No No Yes
PDE PC Monitor No No Yes
[51] PC Monitor No No Yes
[52] PC Monitor No No Yes
[53] PC Monitor No No Yes
[45] HMD No No Yes
[46] HMD No No Yes
[47] HMD Yes No Yes
[49] HMD Yes No Yes
[48] HMD Yes No Yes
[50] Half-gilvered Yes Yes No
mirror
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Chapter 7: Conclusions and Future Work

7.1 Conclusions
NIRF image-guided surgery is a powerful technique that helps the physician identify tumors for

resection without damaging surrounding healthy tissue. State-of-the-art NIR fluorescence image-
guided surgery instruments suffer from three critical problems: 1) they require multiple cameras
and beam splitters to capture different wavelengths so that the instruments suffer from thermal
expansion and non-deterministic co-registration error; 2) the intensities of the visible spectrum and
the NIR spectrum span more than 5 orders of magnitude difference, and traditional CCD/CMOS
sensors are unable to simultaneously capture this entire range; and 3) the display unit of these
instruments is monitor-based. The physician cannot focus on the surgical area while performing
surgery. These problems prevent the seamless integration of these instruments into the regular
surgical workflow. In this dissertation, | presented bio-inspired sensing technologies and a display

technology to solve the above-mentioned problems.

In Chapter 2, I reviewed the FDA regulation required specifications for intraoperative illumination
and working condition of imaging systems. Based on the specifications, | analyzed the drawbacks

of state-of-the-art FDA-approved instruments in depth.

Chapter 3 served as the major part of this dissertation. | investigated a bio-inspired multispectral
CMOS logarithmic image sensor. The logarithmic image sensor has novel pixel architecture with
forward-biased photodiodes. The novel architecture expands the physical limits of traditional 4-
transistor CMOS image sensors, achieves a more than 140 dB dynamic range, and enables imaging

fluorescence markers under surgical illumination with high sensitivity. Bio-inspired multispectral

93



filter array is monolithically integrated such that the temperature-dependent co-registration

inaccuracy is removed.

In Chapter 4 | described our efforts to develop a time-domain PWM AER multispectral imaging
system. The small foot print of the imaging system, coupled with the high dynamic range, and low

cost can enable value-based health care in both resource-limited and resource-rich hospitals.

As explained in Chapter 5, | developed, designed and tested a compact, handheld, bio-inspired,
single-chip, multispectral imaging device for image-guided cancer surgery. The image sensor is
integrated with pixelated spectral filters. To further increase the DR, custom peripheral circuitry
enables pixel wise control of light exposure. The compact form factor of my sensor enables both
seamless integration of the sensor into the surgical suite and presentation of time-critical

information to the physician.

Finally, I investigated the design of an augmented reality system for IGS using a Microsoft
HoloLens platform. I integrated my image sensor with a holographic goggle platform to display
real-time NIR fluorescent information to the physician. My key contribution is the accurate co-
registration of NIR fluorescent information with the physician’s natural eyesight. With the
complete imaging and display system, the physician observes the patients with his or her natural

eyesight, which is augmented with NIR information that highlights the location of the tumors.

Table 7.1 shows the comparison between this work and FDA-approved instruments. This work
has addressed all the three major problems of FDA-approved instruments while maintain good

benchmarks of other major performance indicators.
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Table 7.1 Design Summary of this work and compression with the FDA-approved instruments.

Description | This work Fluobeam PDE SPY Elite Iridium Spectrum
Designer Nan Cui Fluoptics Hamamatsu Novadaq Vision Sense Quest
FDA approved No Yes Yes Yes Yes Yes
Instrument Single Single Single Two adjacent Beam splitter | Optical prism
type camera camera camera cameras
Real-time
color/NIR Yes No No No Yes Yes
overlay
Surgical light On Dim Dim Dim Dim On
Logarithmic
Sensor type CMOS CCD CCD CCD CCD CCD
Sensor bit
depth 14 8 8 8 12 12
Extri’%se”re Arbitrary | 1mstols NS NS NS NS
Maximum
£pS 100 25 20 20 NS 20
Sensor
. 302x240 720 x 576 640 x 480 1024 x 768 960 x 720 1024 x 1024
resolution
Fluorescence
Detection ~40nM ~5nM ~15nM ~5nM ~50pM ~10nM
Limit
Display unit AR HMD monitor Monitor monitor monitor monitor

As the main contribution of this dissertation, the novel multispectral logarithmic CMOS image

sensor has significant improvement over a state-of-the-art low-noise high-dynamic-range image

sensor in major aspects, as shown in Table 7.2.

Table 7.2 The comparison between the major contribution of this dissertation and the state-of-the-art low-noise
high-dynamic-range image sensor.

Description This work State-of-the-art | Improvement
# of transistors per pixel down to 2 4 Reduced 50%
# of metal lines down to 4 6 Reduced 33%

Dominant noise equivalent thermal noise photon shot noise Boost SNR

Dynamic range 120dB logarithmic and more 95dB 25dB and more

Maximum SNR 56dB 45dB Increased 11dB
Full well capacity unlimited 450,000 electrons Boost DR
Sensitivity up to ~6x108uV/(mW/cm?) | ~2x107uV/(mW/cm?) ~25 times
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7.2 Future Works

This dissertation presented several technologies aimed at addressing problems with state-of-the-
art NIRF IGS instruments. The proposed technologies have good optoelectronic performance and
pre-clinical evaluation results. Nevertheless, these technologies are pre-production prototypes. To
translate into mass production, additional work is required. For example, the pixel arrays of all
image sensors should be expanded to higher resolutions, e.g., 1080p or 4k resolution. Such large
arrays pose certain issues that would need to be addressed to produce readouts with desirable frame
rates. More complex and optimized algorithms would have to be implemented for real-time image
processing. Other important future work would be to extend the 2D augmented reality to 3D. To
reconstruct a 3D surface of NIRF emission, 3D depth-sensing techniques such as time-of-flight or

stereo image sensors should be incorporated.
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