
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2018

Multi-GPU Acceleration of Iterative X-ray CT
Image Reconstruction
Ayan Mitra
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Mitra, Ayan, "Multi-GPU Acceleration of Iterative X-ray CT Image Reconstruction" (2018). Engineering and Applied Science Theses &
Dissertations. 373.
https://openscholarship.wustl.edu/eng_etds/373

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=openscholarship.wustl.edu%2Feng_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/373?utm_source=openscholarship.wustl.edu%2Feng_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Electrical and Systems Engineering

Dissertation Examination Committee:

Dr. Joseph A. O’Sullivan, Chair

Dr. Mark A. Anastasio

Dr. Martin Arthur

Dr. David G. Politte

Dr. Jeffrey F. Williamson

Multi-GPU Acceleration of Iterative X-ray CT Image Reconstruction

by

Ayan Mitra

A dissertation presented to

The Graduate School

of Washington University in

partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

August 2018

St. Louis, Missouri

© 2018, Ayan Mitra

ii

Table of Contents
List of Figures .. v

List of Tables .. ix

List of Algorithms ... x

Acknowledgments .. xi

Abstract ... xiv

Chapter 1: Introduction ... 1

1.1 Motivation .. 1

1.2 Contributions .. 4

1.3 Outline .. 6

Chapter 2: Background .. 7

2.1 Image Reconstruction Overview .. 7

2.1.1 Reconstruction from Line Integral Data Model ... 7

2.1.2 Reconstruction from Statistical Data Model .. 12

2.1.3 Comparison of Analytical and Statistical Iterative Methods 15

2.2 System Modeling ... 17

2.2.1 Branchless Distance-driven Projection .. 17

2.2.2 Branchless Distance-driven Backprojection .. 18

2.3 Graphics Processing Unit Architecture .. 19

2.4 Acceleration of Statistical Iterative-reconstruction Algorithms ... 20

2.4.1 Algorithmic Speedup ... 21

2.4.2 Hardware Speedup ... 22

Chapter 3: Multislice Statistical Iterative Helical CT Reconstruction Using GPU 24

3.1 Theory .. 24

3.1.1 Statistical Data Model .. 24

3.1.2 Image Reconstruction Formulation .. 25

3.2 Branchless Distance-driven Projectors .. 34

3.2.1 Modification of Detector Edge Projections .. 35

3.2.2 Pre-accumulation for Forward Projection .. 36

iii

3.2.3 Pre-accumulation for Backprojection... 41

3.2.4 Modified Overlap Computation ... 42

3.3 CPU Multithreaded Parallelization Scheme for Branchless Distance-driven Projectors 43

3.3.1 Symmetry ... 44

3.3.2 Multi-threaded Implementation for Forward Projection .. 46

3.3.3 Multithreaded Implementation for Backprojection .. 47

3.4 GPU Implementation of Branchless Distance-driven Projectors ... 49

3.5 Multi-GPU Implementation of Branchless Distance-driven Projectors 52

3.6 Experiments ... 55

3.7 Results .. 57

3.7.1 Ordered Subsets ... 57

3.7.2 Phantom ... 58

3.7.3 Clinical Datasets... 63

3.7.4 Timing Performance ... 66

3.8 Discussion .. 71

Chapter 4: Multislice Analytical Helical CT Reconstruction Using GPU 74

4.1 Theory .. 75

4.2 FDK Reconstruction .. 77

4.2.1 Data Preprocessing Operations .. 77

4.2.2 Redundancy Weights ... 79

4.2.3 Cone-parallel Backprojection ... 80

4.3 GPU Implementation of FDK Backprojection ... 84

4.4 Results .. 84

4.4.1 Phantom ... 85

4.4.2 Clinical Datasets... 87

4.4.3 Timing Performance ... 89

4.5 Discussion .. 92

Chapter 5: Acceleration of Iterative-reconstruction Algorithms Using Adaptive Auxiliary

Variable .. 94

5.1 Theory .. 95

5.2 Experiments ... 98

5.3 Results .. 99

iv

5.3.1 Phantom ... 99

5.3.2 Clinical Datasets... 102

5.3.3 Convergence Rate .. 104

5.4 Discussion .. 105

Chapter 6: Dual-energy AM Reconstruction Algorithm Using GPU 106

6.1 Dual-energy AM Algorithm ... 107

6.2 Adaptive Auxiliary Variable for Dual Energy ... 114

6.3 GPU Implementation ... 118

6.4 Experiments and Reconstructions .. 119

6.5 Conclusion ... 126

Chapter 7: Deep Convolutional Neural Network Based Denoising 127

7.1 Theory .. 128

7.1.1 Deep Neural Networks for X-ray Image Denoising ... 128

7.1.2 Residual Learning and Batch Normalization ... 129

7.1.3 Proposed Network Model .. 131

7.2 Experiments ... 133

7.2.1 CT Noise Model ... 133

7.2.2 Training and Testing Data .. 135

7.2.3 Compared Methods .. 136

7.3 Results .. 137

7.4 Conclusion ... 144

Chapter 8: Conclusions and Future Work ... 146

Appendix A: Derivation of the Penalized AM Algorithm ... 150

Appendix B: Derivation of Decoupled Dual-energy Surrogate Function 153

References .. 158

Curriculum Vitae .. 168

v

List of Figures

Fig. 2.1 Broad classification of X-ray CT reconstruction algorithms... 7

Fig. 2.2 The geometry of parallel lines and projections used to define the Radon transform. 10

Fig. 2.3 Linear filtered backprojection algorithm for X-ray CT ... 12

Fig. 2.4 CPU vs. GPU architecture ... 20

Fig. 3.1 The multislice helical geometry used in this dissertation. ... 34

Fig. 3.2 (a) Schematic representation of De Man and Basu’s [50] 2-D distance-driven method. (b)

Schematic representation of our 2-D distance-driven method. (c) Schematic

representation of De Man and Basu’s [50] 3-D distance-driven method. (d) Schematic

representation of our 3-D distance-driven method. .. 35

Fig. 3.3 (a) Schematic diagram of detector projection on image pixel slab which signifies the

area of overlap. (b) Our approach to the calculation of overlap between detector edge

projections and image pixel slabs. .. 43

Fig. 3.4 (a) Axial view of the quarter-rotation symmetry found in helical CT. When an integer

number of slices is chosen per quarter rotation of the gantry, the geometry calculations

need only be done for just the first quarter rotation of the scan (indicated by a dark solid

box). (b) Transverse view of the quarter-rotation symmetry. The projection calculations

for each of the slabs shown is identical in the in-plane direction and offset by multiples of

𝑁𝑞 in the 𝑧 direction. An arrow has been drawn for each slab that indicates the direction

of in-plane accumulation. The 𝑧 accumulation is always in the direction of the positive 𝑧

axis. Similar approach to quarter-rotation symmetry was explored by D. Keesing [65]. . 45

Fig. 3.5 Summing of private partial accumulation images on processors 0 and 1 into full-sized

accumulation image. At each stage, the shaded block of slices from each processor is

simultaneously summed into the full-sized accumulation image. 48

Fig. 3.6 (a) Schematic representation of Multi-GPU implementation of branchless DD projection.

(b) Schematic representation of Multi-GPU implementation of branchless DD

backprojection. .. 53

Fig. 3.7 Schematic representation of iterative algorithm execution between CPU and GPU

devices... 54

Fig. 3.8 Single iteration time for different OS using 3 TITAN X GPUs in parallel 58

Fig. 3.9 NCAT phantom reconstruction with voxel size = 1.0 × 1.0 × 1.0 mm. Scan parameters:

pitch 1.0, 16 × 1.5 mm collimation, display window width = 0.01759 mm−1 , center =
0.008795 mm−1. (a), (b) Axial slices of the actual phantom. (c), (d) Axial slices of the

FDK reconstruction of the phantom with added sinogram noise. (e) and (f) Axial slices of

the phantom reconstructed with 10 iterations with 145 ordered subsets and with added

noise in sinogram domain. .. 59

Fig. 3.10 Horizontal profile for different reconstruction images along different lines shown in

Figs. 3.9 (a), (c), and (e).. 60

vi

Fig. 3.11 Horizontal profile for different reconstruction images along different lines shown in

Figs. 3.9 (b), (d), and (f).. 60

Fig. 3.12 RMSE vs total reconstruction time for different OS configuration using 3 TITAN X

GPUs ... 62

Fig. 3.13 PAE in percentage vs total reconstruction time for different OS configuration using 3

TITAN X GPUs .. 62

Fig. 3.14 SNR in dB vs total reconstruction time for different OS configuration using 3 TITAN

X GPUs ... 63

Fig. 3.15 CNR vs total reconstruction time for different OS configuration using 3 TITAN X

GPUs ... 63

Fig. 3.16 Regularized AM reconstruction using 10 iterations of 145 ordered subsets. Voxel size

= 1.0 × 1.0 × 1.0 mm. Scan parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation.

(a) Axial slice of lung with display window width = 0.03 mm−1 , center = 0.015 mm −
1. (b) Axial slice of abdomen with display window width = 0.007 mm − 1, center =
0.021 mm−1. (c) and (d) are coronal views and (e) and (f) are sagittal views with display

window width = 0.007 mm−1, center = 0.021 mm−1. .. 64

Fig. 3.17 Regularized AM reconstruction of lung and abdominal slices using 3 TITAN X GPUs.

Voxel size = 1.0 × 1.0 × 1.0 mm. Scan parameters: 180 mAs, pitch 1.0, 16 ×
1.5 mm collimation. Axial slice of the lung with display window width = 0.03 mm−1 ,

center = 0.015 mm−1, reconstructed with (a) FDK and (c) 10 iterations of AM using 145

OS. Axial slice of the abdomen with display window width = 0.007 mm−1, center =
0.021 mm−1, reconstructed with (b) FDK and (d) 10 iterations of AM using 145 OS. (e)

and (f) are difference images between FDK and 10 AM iteration using 145 OS

corresponding to lung and abdomen slices respectively. .. 65

Fig. 3.18 Plot of I-divergence vs computation time for different ordered subset configurations by

using 3 GPUs in parallel. .. 66

Fig. 3.19 Acceleration of our multi-GPU implementation for complete clinically-sized data 67

Fig. 3.20 (a) Forward projection computational times and (b) overall speedup for a different

number of pixels along X/Y direction using different hardware configurations. 68

Fig. 3.21 (a) Backprojection computational times and (b) overall speedup for a different number

of pixels along X/Y direction using different hardware configurations. 68

Fig. 3.22 (a) Forward projection computational times and (b) overall speedup for different

number of image slices using different hardware configurations 69

Fig. 3.23 (a) Backprojection computational times and (b) overall speedup for different number of

image slices using different hardware configurations .. 69

Fig. 4.1 Schematic diagram of the cone beam to parallel fan beam rebinning scheme described in

[72]: (a) the native CB geometry; (b) the cone-parallel geometry. 77

Fig. 4.2 Parallel-beam and fan beam geometry. ... 81

Fig. 4.3 𝑣 scaling based on point projection. .. 82

vii

Fig. 4.4 NCAT phantom reconstruction with voxel size = 1.0 × 1.0 × 1.0 mm. Scan

parameters: pitch 1.0, 16 × 1.5 mm collimation, display window width =
0.01759 mm−1, center = 0.008795 mm−1. (a), (b) Axial slices of the actual phantom.

(c), (d) Axial slices of the FDK reconstruction of the phantom. 86

Fig. 4.5 Horizontal profile along the orange line through ideal phantom and noisy FDK

reconstruction image shown in Figs. 4.4 (a) and (c) ... 86

Fig. 4.6 Horizontal profile along the orange line through ideal phantom and noisy FDK

reconstruction image shown in Figs. 4.4 (b) and (d) .. 87

Fig. 4.7 Clinical abdominal reconstruction using FDK algorithm. Voxel size = 1.0 × 1.0 ×
1.0 mm. Scan parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation. (a) Axial slice

of lung with display window width = 0.03 mm−1 , center = 0.015 mm−1. (b) Axial slice

of abdomen with display window width = 0.007 mm−1, center = 0.021 mm− 1. (c)

and (d) are coronal views and (e) and (f) are sagittal views with display window width =
0.007 mm−1, center = 0.021 mm−1. .. 88

Fig. 4.8 (a) Backprojection time and (b) 8 core CPU speedup factor for a different number of

pixels along X/Y direction. ... 89

Fig. 4.9 Speedup factor for parallel fan-beam backprojection operation using a different number

of GPUs in parallel compared to baseline CPU implementation. 89

Fig 4.10 (a) Total time and (b) 8 core CPU speedup factor for a different number of pixels along

X/Y direction. ... 90

Fig. 4.11 Speedup factor for total computational time using a different number of GPUs in

parallel compared to baseline CPU implementation ... 90

Fig. 4.12 (a) Total time and (b) 8 core CPU speedup factor for a different number of image

slices. (c) Speedup factor for total computational time using a different number of GPUs

in parallel compared to baseline CPU implementation... 91

Fig. 5.1 (a) and (c) Linear attenuation coefficient map reconstructed with FDK algorithm for

NCAT data in units of mm− 1. (b), (d) The values of the auxiliary variable for the

corresponding image slice. .. 100

Fig. 5.2 Profile along the red dotted line depicted in Fig. 5.1 (c) for images reconstructed using

100 iterations of 5 OS of AM algorithm without (blue) and with (red) adaptive surrogate

function. .. 100

Fig. 5.3 (a), (b) PAE in % vs iteration number for the NCAT phantom with. (c), (d) RMSE vs

iteration number for the NCAT phantom.. 101

Fig. 5.4 (a) and (b) SNR vs iteration number for the NCAT phantom. (c) and (d) CNR for the

structure in a green dotted box in Fig. 5.1 (c) vs iteration number for the NCAT phantom.

... 102

Fig. 5.5 (a) and (b) Linear attenuation coefficient map reconstructed with FDK algorithm for real

data obtained from Siemens Sensation 16 scanner in units of mm−1. (c) And (d) are the

values of the auxiliary variable for the corresponding image slices in units of mm. 103

viii

Fig. 5.6 Objective function values vs iteration number for Siemens Sensation 16 scanner

reconstructed images (a) without ordered subset implementation and with (blue) and

without (red) adaptive auxiliary variable, and (b) with 5 ordered subset implementations

and with (blue) and without (red) adaptive auxiliary variable. 104

Fig. 6.1 The phantom linear attenuation coefficient image in 𝑚𝑚−1 at (a) 53 keV and at (b)

70 keV with four inserts (from the top, a clockwise direction) PMMA, ethanol, methyl

ethyl ketone (MEK), and calcium chloride. .. 120

Fig. 6.2 Incident spectra .. 123

Fig. 6.3 Attenuation coefficient of the component materials.. 123

Fig. 6.4 Initial (a) 𝑐1(𝑥) and (b) 𝑐2(𝑥) component images reconstructed using FDK algorithm.

(c) 𝑐1(𝑥) and (d) 𝑐2(𝑥) component images reconstructed using 400 iterations of 5 OS

DE-AM algorithm. .. 124

Fig. 6.5 Plot of RMSE between truth image and reconstructed image using 100 iterations of 29

OS DE-AM algorithm vs different energy bins. ... 125

Fig. 6.6 Total objective function values vs iteration number for 5 OS implementations of the DE-

AM algorithm.. 125

Fig. 7.1 Schematic diagram for batch normalization .. 131

Fig. 7.2 The architecture of our proposed deep CNN ... 132

Fig. 7.3 Noise simulation flowchart .. 134

Fig. 7.4 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner.

Voxel size =0.576 × 0.576 × 1.0 mm. Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6

mm collimation. The abdominal display window is −160 HU to 240 HU. (b) Low-dose

noisy image. (c) Denoised image BM3D algorithm. (d) Denoised image with WNNM

algorithm. (e) Denoised image with our proposed Deep CNN based method. 139

Fig. 7.5 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner.

Voxel size =0.576 × 0.576 × 1.0 mm. Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6

mm collimation. The abdominal display window is −160 HU to 240 HU. (b) Low-dose

noisy image. (c) Denoised image BM3D algorithm. (d) Denoised image with WNNM

algorithm. (e) Denoised image with our proposed Deep CNN based method. 140

Fig. 7.6 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner.

Voxel size =0.576 × 0.576 × 1.0 mm. Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6

mm collimation. The abdominal display window is −160 HU to 240 HU. (b) Low-dose

noisy image. (c) Denoised image BM3D algorithm. (d) Denoised image with WNNM

algorithm. (e) Denoised image with our proposed Deep CNN based method. 141

Fig. 7.7 Intensity profile along the lines in Fig. 7.4 .. 142

Fig. 7.8 Intensity profile along the lines in Fig. 7.5 .. 143

Fig. 7.9 Intensity profile along the lines in Fig. 7.6 .. 143

ix

List of Tables

Table 3.1 Hardware specification of TITAN X .. 57

Table 3.2 Parameters of measured data and image ... 58

Table 3.3 Reconstruction times using clinically-sized data and no OS for different CPU and GPU

hardware architectures. ... 67

Table 4.1 Reconstruction times using clinically-sized data and no OS for different CPU and GPU

hardware architectures. ... 87

Table 5.1 Parameters of measured data and image ... 99

Table 6.1 Execution times by using different CPU and GPU configurations for a single iteration

of DE-AM algorithm... 120

Table 6.2 Variance of different materials in different component images 124

Table 7.1 The PSNR(dB), SSIM, and RMSE values for the 3 image slices shown in the figures

previously. ... 142

x

List of Algorithms

Algorithm 3.1 AM algorithm .. 31

Algorithm 3.2 Regularized AM algorithm .. 33

Algorithm 3.3 Branchless distance-driven forward projection ... 47

Algorithm 3.4 Branchless distance-driven backprojection ... 49

Algorithm 3.5 GPU implementation of branchless distance-driven forward projection 50

Algorithm 3.6 GPU implementation of branchless distance-driven backprojection 51

Algorithm 4.1 GPU implementation of FDK backprojection ... 84

Algorithm 5.1 Regularized OS-AM algorithm with adaptive auxiliary variable 98

Algorithm 6.1 Regularized DE-AM algorithm ... 113

Algorithm 6.2 Regularized DE-AM algorithm with ordered subsets ... 114

Algorithm 6.3 Regularized OS-DE-AM algorithm with adaptive auxiliary variable 117

Algorithm 6.4 Multi-GPU based computation of incident photon intensity 118

xi

Acknowledgments

It has been an honor and privilege to work with my advisor Dr. Joseph A. O’Sullivan over these

past several years. I’m grateful for the trust that he bestowed on me to do much of my work

independently. I don’t think I’d be here without his patience, support, motivation, and guidance

along the way. I was fortunate enough to attend his Biomedical Imaging Technology course at

Washington University, which formed a significant base of the theoretical knowledge needed for

the completion of this research work. As I reflect on my rich experience as a doctoral student, I

don’t think I could have asked for a better advisor.

I would also like to sincerely express my deepest gratitude to Dr. David G. Politte, who amid all

his commitments, found time to help me with my research. He was extremely gracious to

meticulously proofread all my publications and this dissertation. I don’t think I would have

completed this dissertation without his extensive edits and helpful comments. I would like to thank

my committee members Dr. Jeffrey F. Williamson, Dr. Martin Arthur and Dr. Mark A. Anastasio

for taking time out of their busy schedule to see me through the process.

I also had the opportunity to collaborate with Dr. Bruce R. Whiting from the Department of

Radiology at University of Pittsburgh. His insights, comments and encouragement has enriched

my research experience. I am fortunate to have worked with Dr. Craig Abbey from UC Santa

Barbara, and Dr. Steven Don from Washington university Medical School and to have taken part

in many interesting discussions with them. I would also like acknowledge my current and past lab

mates, namely Dr. Soysal Degirmenci, Jingwei Liu, Shuangyue Zhang, Linyun He and Tao Ge. I

xii

also want to thank my extremely supportive friends in St. Louis, USA namely, Dr. Anirban Nandi,

Tathagata Banerjee, Prateek Gundannavar Vijay, Ahana Gangopadhyay and Oindrila Chatterjee.

My parents have provided me with unlimited support even through tough times. They would have

wanted to see me more frequently, but understood the commitments involving graduate research

in a different country. I would like to acknowledge and extend my heartfelt gratitude to my wife

Kate Lee Workman who has been there for me every step of the way.

This work was supported in part by NIH grants R01 CA149305 (J. Williamson, PI), R01 561

EB019135 (B. Whiting, PI) and R01 CA212638-02 (J.A. O’Sullivan, PI).

Ayan Mitra

Washington University in St. Louis

August 2018

xiii

Dedicated to my parents.

xiv

ABSTRACT OF THE DISSERTATION

Multi-GPU Acceleration of Iterative X-ray CT Image Reconstruction

by

Ayan Mitra

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2018

Professor Joseph A. O’Sullivan, Chair

X-ray computed tomography is a widely used medical imaging modality for screening and

diagnosing diseases and for image-guided radiation therapy treatment planning. Statistical iterative

reconstruction (SIR) algorithms have the potential to significantly reduce image artifacts by

minimizing a cost function that models the physics and statistics of the data acquisition process in

X-ray CT. SIR algorithms have superior performance compared to traditional analytical

reconstructions for a wide range of applications including nonstandard geometries arising from

irregular sampling, limited angular range, missing data, and low-dose CT. The main hurdle for the

widespread adoption of SIR algorithms in multislice X-ray CT reconstruction problems is their

slow convergence rate and associated computational time.

We seek to design and develop fast parallel SIR algorithms for clinical X-ray CT scanners. Each

of the following approaches is implemented on real clinical helical CT data acquired from a

Siemens Sensation 16 scanner and compared to the straightforward implementation of the

Alternating Minimization (AM) algorithm of O’Sullivan and Benac [1]. We parallelize the

computationally expensive projection and backprojection operations by exploiting the massively

xv

parallel hardware architecture of 3 NVIDIA TITAN X Graphics Processing Unit (GPU) devices

with CUDA programming tools and achieve an average speedup of 72X over a straightforward

CPU implementation. We implement a multi-GPU based voxel-driven multislice analytical

reconstruction algorithm called Feldkamp-Davis-Kress (FDK) [2] and achieve an average overall

speedup of 1382X over the baseline CPU implementation by using 3 TITAN X GPUs. Moreover,

we propose a novel adaptive surrogate-function based optimization scheme for the AM algorithm,

resulting in more aggressive update steps in every iteration. On average, we double the

convergence rate of our baseline AM algorithm and also improve image quality by using the

adaptive surrogate function. We extend the multi-GPU and adaptive surrogate-function based

acceleration techniques to dual-energy reconstruction problems as well. Furthermore, we design

and develop a GPU-based deep Convolutional Neural Network (CNN) to denoise simulated low-

dose X-ray CT images. Our experiments show significant improvements in the image quality with

our proposed deep CNN-based algorithm against some widely used denoising techniques including

Block Matching 3-D (BM3D) and Weighted Nuclear Norm Minimization (WNNM). Overall, we

have developed novel fast, parallel, computationally efficient methods to perform multislice

statistical reconstruction and image-based denoising on clinically-sized datasets.

1

Chapter 1: Introduction

1.1 Motivation

X-ray computed tomography (CT) is a popular noninvasive imaging modality mostly used for the

analysis of specific internal anatomical structures and to provide more accurate information

regarding those internal regions of interest. X-ray CT is widely used in the medical imaging

community to help radiation oncologists devise better treatment plans and physicians detect and

diagnose diseases. With the adoption of modern X-ray CT scanners in several areas from medical

imaging to security applications, there is a growing challenge to analyze all this new information

in a relevant timeframe. In a world where data-generation rates are accelerating faster than modern

computing capabilities, and where Moore’s law has been stagnant for the last decade, simultaneous

adoption of General Purpose computing on Graphics Processing Units (GPGPU), and

mathematical optimizations are the industry-wide consensus for bridging the gap between them.

There has been a tremendous advancement in the last few decades in the capabilities of massively

parallel graphics hardware. A CPU consists of a few cores with large caches, which are highly

optimized for complex sequential operations while GPUs consist of thousands of smaller

computational cores designed for handling massively parallel tasks simultaneously and more

efficiently. CPU cores are mostly optimized for single-threaded operations where most of the

transistor budget is dedicated towards pipelining instructions, and out-of-order execution while

leaving fewer resources for the integer and floating-point execution units. GPUs, on the other hand,

2

have a large portion of the transistor budget dedicated to optimizing the floating-point throughput,

rather than generating complex instruction-level parallelism [3]. Modern GPUs rely on large

amounts of data transfer bandwidth, device memory, fast read-only texture and shared memory,

and thousands of high-performance computational cores clocked at 1.5 GHz to yield massive

advantage in computational cost over CPUs. Computationally intensive algorithms like SIR

algorithms benefit tremendously in terms of computational time by offloading their most time-

consuming parts onto GPU devices.

MBIR algorithms are typically iterative where the next image estimate is computed based on the

current image estimate and an error measure between measured data and predicted data from the

current image [4]. These algorithms can incorporate the statistics of the measured data, and

detector response model, which in turn reduces noise and artifacts in images reconstructed from

low-dose X-ray CT measurements [5-9]. Two important components of these algorithms are

forward projection, where a reconstructed image is mapped onto the measured data space and

backprojection where measured data is mapped onto the image domain. Due to the iterative nature

of these algorithms and the high computational burden associated with the implementation of

projection and backprojection operations on large data and image volumes, MBIR algorithms are

not extensively used in clinical settings.

In the published literature, there are few papers that discuss parallelization strategies for helical

CT statistical reconstruction. Much more work has been published on other imaging modalities,

for example, in nuclear medicine [10-13] and circular-orbit cone-beam CT (CBCT) [14-17]. In

3

contrast to helical CT, however, implementations for nuclear medicine and circular orbit CBCT

do not need to account for the movement of the scanned object along the z-direction of the scanner

during data acquisition. One paper that does address the helical geometry describes a fast analytical

backprojection algorithm based on helical symmetry and image rotation [18].

GPUs, therefore, have the potential to facilitate the adoption of complex MBIR algorithms, which

can lead to improved images in terms of noise and artifact reduction, improvement of spatial and

temporal resolutions [7-9, 19]. They are by far the least costly option for parallel computing, and

they can provide large speedups over single-CPU implementations due to their specialized ability

to handle arithmetic operations efficiently [7, 20-22]. GPU technology has come a long way, from

its invention in the late 1980s to the latest release of GeForce GTX TITAN X GPUs, consisting of

8 billion transistors on a single chip. Modern GPU technologies with their high memory bandwidth

and peak arithmetic performance are rapidly outpacing their CPU counterparts [23, 24].

Over the years, several groups have accelerated their iterative-reconstruction algorithm

implementations using GPUs. Andreyev et. al [25] have accelerated their blob-based iterative

reconstruction using a Tesla GPU. X. Jia et. al [9] implemented a low-dose cone-beam CT

reconstruction with total variation regularization on an NVIDIA Tesla C1060 GPU. McGaffin et.

al [26] proposed a multi-GPU based fast converging stochastic group ascent algorithm to perform

dual maximization and implemented their algorithm on NVIDIA Tesla C2050 GPUs. Meng Wu

et. al [27] accelerated separable footprint based projection and backprojection algorithms using

NVIDIA Tesla C2050 GPUs. Quivira et. al [28] developed an iterative 3-D reconstruction

4

algorithm for sparse X-ray CT data on TITAN X GPUs. Due to their inherent parallel architecture,

GPUs can provide quite significant performance improvement for algorithms with highly pipelined

structure. Current GPUs also provide very high global memory storage, which is ideal for fitting

the whole data volume and image array in the GPU itself during kernel execution, in turn

eliminating the high latency penalty for accessing external memory. Due to all these advantages,

it is quite logical to use GPUs to improve the speed of image reconstruction.

The second line of research for the reduction of the computational time of MBIR problems involve

the design of efficient algorithms which amenable to parallelization [29-32]. The optimization

framework explored in this work uses a popular linear reconstruction method, Feldkamp-Davis-

Kress (FDK), to predict an adaptive and aggressive step size. In mathematical optimization, the

optimality of a variable in a certain optimization space is determined by minimizing an objective

function or by maximizing the negative of the objective function. A new method named adaptive

surrogate function is investigated in this dissertation for accelerating the convergence rate of the

AM algorithm and is evaluated using a phantom and real clinical data obtained from a Siemens

Sensation 16 scanner.

 1.2 Contributions

The contributions of the research presented in this dissertation are given below.

 We present a fast-parallel multi-GPU based implementation of branchless distance-driven

projectors for helical scanner geometry.

5

 We propose novel ways to compute the pre-integration part in branchless distance-driven

projection and backprojection computation, which eliminates the need for thread

synchronization in GPU architecture.

 We present some novel ways to calculate the interpolation step of the branchless distance-

driven projection and backprojection operator by directly projecting the detector array to

image voxels, which makes our implementation more amenable to GPU thread-based

parallelization.

 We derive a precise load sharing mechanism between multiple GPU devices to reduce the

downtime of each device.

 We propose a novel adaptive step-size based acceleration technique for our iterative-

reconstruction problem which doubles the rate of convergence for both the mono-energy

and dual-energy cases.

 We develop novel schemes to accelerate the computational performance of the Feldkamp-

Davis-Kress (FDK) reconstruction algorithm using multi GPUs in parallel.

 We implement and validate the above-mentioned multi-GPU based algorithmic

acceleration steps on real clinical CT data and computer-generated phantom data.

 We also design and implement a deep Convolutional Neural Network based X-ray CT

denoising system and validate the image quality performance of the proposed system on

the real clinical dataset.

6

1.3 Outline

The general outline of this dissertation is as follows: In Chapter 2, we discuss the basic

reconstruction problem and our motivation for shifting towards algorithmic and parallel hardware-

based speedup. Chapter 3 contains a detailed description and derivation of our parallel multi-GPU

based reconstruction algorithm for the mono-energetic model. Chapter 4 presents a multi-GPU

based implementation of a popular analytical reconstruction algorithm known as FDK for clinical

helical datasets. Next, in Chapter 5, we design a novel adaptive surrogate function and showcase

the acceleration of the convergence rate on a multislice clinically-sized mono-energetic dataset.

Chapter 6 contains a derivation of a multi-GPU based implementation of a dual-energy

reconstruction algorithm and the corresponding adaptive surrogate-function based acceleration

technique. In Chapter 7, we propose the deep CNN based X-ray CT image denoising technique

and evaluate its performance.

7

Chapter 2: Background

2.1 Image Reconstruction Overview

Reconstruction algorithms for X-ray CT are broadly classified into the following categories

depicted in Fig 2.1.

Fig. 2.1 Broad classification of X-ray CT reconstruction algorithms

Analytical algorithms are based on the deterministic line-integral model for measured data while

statistical data-driven approaches are based on the arbitrarily accurate model that also accounts

for the probability distribution of the measured data.

2.1.1 Reconstruction from Line Integral Data Model

In an X-ray CT system, the X-ray tube generates X-rays that propagate through the object we are

trying to image and get attenuated as they travel through its cross-section. The attenuated exit beam

8

is then detected by the detectors along a straight-line path between the X-ray source and detector.

The detected intensity at any detector can be represented as

 𝐼𝑑(𝑦) ≜ ∫ 𝑆0(𝐸)𝐸exp (−∫𝜇(𝑠, 𝐸)𝑑𝑠)
𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝑑𝐸, (2.1)

where 𝑆0(𝐸) is the spectrum of the X-ray source at energy 𝐸, 𝑦 is the source -detector pair, 𝜇(𝑠, 𝐸)

is the energy-dependent linear attenuation coefficient along the line between source and detector,

and 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 are the minimum and maximum energies, respectively, of the range over which

the detectors are sensitive. The integration over energy in equation (2.1) complicates the derivation

and implementation of algorithms that are based on this model. In order to overcome this issue,

we use effective energy, �̅�, which is defined as the same measured intensity from a monoenergetic

source as is measured using a polyenergetic source. However, this approximation can lead to

beam-hardening We can represent the detected intensity using effective energy as

 𝐼𝑑(𝑦) ≜ 𝐼0(𝑦)exp (−∫𝜇(𝑠, �̅�)𝑑𝑠) (2.2)

Given the measurement, 𝐼𝑑(𝑦), we can represent the basic projection measurement, 𝑔𝑑(𝑦), as

 𝑔𝑑(𝑦) = − log (
𝐼𝑑(𝑦)

𝐼0(𝑦)
) (2.3)

 = ∫𝜇(𝑠, �̅�)𝑑𝑠 (2.4)

So, we can conclude that the basic CT scanner measurement is actually a line integral of the linear

attenuation coefficient 𝜇(𝑠, �̅�) at the effective energy of the scanner. However, this approximation

can lead to significant image reconstruction errors due to beam hardening [33]. We call this line

integral through the object along the path of a collimated X-ray beam the forward projection model.

For analytical methods, the forward projection algorithm is derived in continuous space and then

9

subsequently discretized for practical implementation. The line integral of a 2-D function 𝑓(𝑥, 𝑦)

is given by

 𝑔(𝑡, 𝜃) = ∫ 𝑓(𝑥(𝑠), 𝑦(𝑠))𝑑𝑠
∞

−∞

 (2.5)

where for any point 𝑠 along the line between source and detector,

 𝑥(𝑠) = 𝑡 cos 𝜃 − 𝑠 sin 𝜃, (2.6)

 𝑦(𝑠) = 𝑡 sin 𝜃 + 𝑠 cos 𝜃. (2.7)

We can alternatively express equation (2.5) as

 𝑔(𝑡, 𝜃) = ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡) 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞

. (2.8)

Equation (2.8) is basically the integration of function 𝑓(𝑥, 𝑦) along the line; hence it is a line

integral. 𝑔(𝑡, 𝜃) is called the 2-D Radon transform of 𝑓(𝑥, 𝑦). The following derivation is based

on Kak and Slaney [34]. Since our projection corresponds to a collection of parallel line integrals,

they are called parallel ray projections as shown in Fig 2.2. The view angle is 𝜃 and the normal

vector normal to the direction of projection is denoted by �̂�(𝜃).

10

Fig. 2.2 The geometry of parallel lines and projections used to define the Radon transform.

For a fixed 𝜃, 𝑔(𝑡, 𝜃) is called the projection at angle 𝜃 for all 𝑡. Using the projection slice theorem

[35], we can develop the relationship between the 1-D Fourier transform of the projection and the

2-D Fourier transform of the object which is crucial to analytical reconstruction. The relationship

is:

 𝐺(𝜔, 𝜃) = ℱ1𝐷{𝑔(𝑡, 𝜃)} = ∫ 𝑔(𝑡, 𝜃)𝑒−𝑗2𝜋𝜔𝑡𝑑𝑡
∞

−∞

 (2.9)

 =∭ 𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡)𝑒−𝑗2𝜋𝜔𝑡 𝑑𝑥 𝑑𝑦 𝑑𝑡
∞

−∞

 (2.10)

 =∬ 𝑓(𝑥, 𝑦)
∞

−∞

∫ 𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡)𝑒−𝑗2𝜋𝜔𝑡 𝑑𝑡 𝑑𝑥 𝑑𝑦
∞

−∞

 (2.11)

 =∬ 𝑓(𝑥, 𝑦)
∞

−∞

𝑒−𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃) 𝑑𝑥 𝑑𝑦 (2.12)

 = 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃), (2.13)

11

where 𝑗 ≜ √−1. Equation (2.13), denoted by 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃) is the Fourier transform of

projection 𝑔(𝑡, 𝜃) at angle 𝜃 and is equal to the 2-D Fourier transform of 𝑓(𝑥, 𝑦) along the �̂�(𝜃)

direction.

The inverse Fourier transform of 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃) can be expressed in polar coordinates:

 𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃)𝑒𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃)𝜔𝑑𝜔𝑑𝜃
∞

0

2𝜋

0

. (2.14)

Using the projection-slice theorem from equation (2.13) we have

 𝑓(𝑥, 𝑦) = ∫ ∫ 𝐺(𝜔, 𝜃)𝑒𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃)𝜔𝑑𝜔𝑑𝜃
∞

0

2𝜋

0

. (2.15)

 = ∫ ∫ |𝜔|𝐺(𝜔, 𝜃)𝑒𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃) 𝑑𝜔 𝑑𝜃
∞

−∞

2𝜋

0

. (2.16)

 = ∫ [∫ |𝜔|𝐺(𝜔, 𝜃)𝑒𝑗2𝜋𝜔𝑡 𝑑𝜔 𝑑𝜃
∞

−∞

]
𝑡=𝑥 cos𝜃+𝑦 sin𝜃

𝑑𝜃
𝜋

0

. (2.17)

In equation (2.17) the |𝜔| factor is a filter that accentuates high frequencies for each parallel-beam

projection. After inverse Fourier transformation, the filtered projection is backprojected by

substituting 𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, which is followed by summation of the filtered projections at

all angles. As a result, this approach is termed filtered backprojection (FBP) and the high pass

filter given by |𝜔| is called a ramp filter due to its shape in Fourier space. The ramp filter is

carefully apodized to avoid amplification of high-frequency noise in the projection. The

apodization filter can also be utilized to control the noise-resolution tradeoff for different imaging

needs. The three steps in filtered backprojection are shown in Fig. 2.3

12

Fig. 2.3 Linear filtered backprojection algorithm for X-ray CT

The inverse Radon transform can also be adapted for use with a fan-beam geometry as shown in

[34]. The resulting reconstruction formula for fan-beam is basically a weighted FBP formula. For

our helical CT geometry reconstruction discussed in Chapter 4, we use the Feldkamp-Davis-Kress

(FDK) algorithm. We rebin our cone-beam to equivalent parallel fan-beam projections and apply

the backprojection method discussed previously. However, due to a sampling pattern difference

between Cartesian and polar coordinate systems, interpolation can adversely affect the noise-

resolution tradeoff.

2.1.2 Reconstruction from Statistical Data Model

In this section, we consider a mono-energetic, scatter-free data model which accounts for the

randomness of the measured X-ray photon counts. Detailed data models exist in the literature [1,

36-38] which account more accurately for scatter, noise and beam hardening. At the basis of our

statistical model, we assume the number of X-ray photons at each detector follows a Poisson

counting process. For X-ray CT, simple Poisson is a good approximation to the more complex

13

compound Poisson process, which can effectively capture the physics of X-ray CT and scanner

geometry since it is an appropriate model for a CT scanner with energy-integrating detectors [39].

If we denote the mean of our measurement data 𝑑(𝑦) as 𝑔(𝑦), where 𝑦 is our source-detector pair,

then we can represent the probability distribution of a particular measurement 𝑑(𝑦) by

 𝑃(𝑑(𝑦)) = exp(−𝑔(𝑦))𝑔(𝑦)𝑑(𝑦) 𝑑(𝑦)!⁄ . (2.18)

Determination of the mean value 𝑔(𝑦) requires a forward projection which is basically an integral

denoted by equation (2.8). However statistical reconstruction problems are not constrained by the

projection slice theorem. The problem can simply be modeled by a discretized system matrix

ℎ(𝑦|𝑥) that relates the image space to the data space by matrix vector multiplication as denoted

by

 𝑙(𝑦) =∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

, (2.19)

where 𝜇(𝑥) is the 𝑥 − th voxel of the attenuation coefficient image. For transmission tomography,

we use Beer’s law,

 𝑔(𝑦) ≜ 𝐸[𝑑(𝑦)] = 𝐼0(𝑦)𝑒
−𝑙(𝑦), (2.20)

where 𝐼0(𝑦) is the mean number of photons detected for 𝑦 − th source-detector pair in the absence

of an attenuating medium. The likelihood function can be expressed mathematically as

 �̂� ≜ argmax
𝜇≥0

∏exp(−𝑔(𝑦)) 𝑔(𝑦)𝑑(𝑦) 𝑑(𝑦)!⁄

𝑦

. (2.21)

where �̂� is the maximum likelihood (ML) estimate of the image and the product is taken over all

measurements. In order to write equation (2.21) as a product of Poisson probabilities, we assume

each measurement is independent. However, it is easier to maximize the log-likelihood function

14

 𝐿(𝑑|𝜇) ≜ argmax
𝜇≥0

∑𝑑(𝑦) log(𝑔(𝑦)) − 𝑔(𝑦)

𝑦

, (2.22)

where we have dropped the term containing 𝑑(𝑦)! since it is independent of 𝜇 and thus irrelevant

to our optimization problem. It has been shown previously that the problem in equation (2.22) can

have a guaranteed convergence to a possibly non-unique global maximum [36].

Since our problem can be classified as an ill-posed inverse problem, we may end up overfitting

the image to the noisy data. In order to overcome this issue, we modify the likelihood function to

be maximized by including a penalty. We can also think of this penalty function as an image prior

that enforces local smoothness on the image. One of such choices is the Gibbs potential energy

function,

 𝑈(𝜇) ≜ ∑ ∑ 𝜙(𝜇(𝑥) − 𝜇(𝑥′))

𝑥′∈𝑁𝑥

𝑁

𝑥=1

. (2.23)

Here, 𝑁𝑥 is a local neighborhood of voxels surrounding voxel 𝑥, the potential function 𝜙(∙) is

often chosen to be a convex function, and the first sum is over all the voxels in the image volume.

The introduction of the penalty function from equation (2.23) to our original ML problem in (2.22)

makes this a penalized-likelihood (PL) problem. PL is quite useful when the problem is particularly

ill-posed.

Numerical solutions for statistical reconstruction problems often use iterative gradient descent

methods like Newton’s methods to optimize the problem since there exists no closed form solution

of the PL problem. Many algorithms have been developed previously to optimize the objective

15

function for transmission tomography. Lange and Carson proposed an expectation-maximization

algorithm [40], Mumcuoglu et. al [41] developed a conjugate-gradient algorithm for computing

maximum a-priori posteriori (MAP) estimates for both transmission CT and emission PET.

Bouman et. al [42] developed an iterative coordinate-descent (ICD) algorithm which is basically

a greedy pixel-wise computation that involves updating each image voxel sequentially. As a result,

the ICD algorithm is not amenable to parallelization on GPU devices. Elkbari et. al [4] developed

the concept of optimization transfer and surrogate functions which is used later in Chapter 3.

O’Sullivan and Benac [1] developed an alternating minimization (AM) algorithm that alternates

between exponential and linear family optimization. The proposed method provides a closed-form

update for the ML algorithm with guaranteed convergence. For our implementation, we use an

AM algorithm with a Huber-type penalty function used previously by [37].

2.1.3 Comparison of Analytical and Statistical Iterative Methods

The main hurdle for the adoption of statistical iterative-reconstruction methods in clinical CT

scanners is their high computational burden. Also in most cases, CT scanners collect enough data

to enable the use of linear, single-shot reconstruction methods like FBP or FDK to reconstruct

high-quality, low-noise images. However, for low-dose CT [6, 43-45], irregular scanner

geometries or incomplete data, these linear methods introduce troublesome artifacts, in which case

SIR algorithms can be advantageous.

Unlike conventional linear backprojection algorithms, SIR algorithms allow the inclusion of

additional information in the reconstruction process including photon statistics, physical properties

16

of the X-ray beam and image-penalty functions. For low-count photon measurements, Fessler [36]

showed that the introduction of the logarithm for the computation of linear projection estimates in

equation (2.3) adds systematic bias. However, the lack of linearization for statistical methods gives

it an advantage over linear methods. Additionally, FBP algorithms apply the same weight to high

variance, i.e. low-dose measurements and low variance measurements since they are unable to

utilize the noise model of the measured data. This shortcoming introduces higher noise to images

reconstructed from low-dose CT measurements.

For multislice cone-beam CT geometries, most linear algorithms fail to reduce cone-beam artifacts

due to the large cone-beam angle. Although the FDK algorithm discussed later in this work

somewhat reduces the cone-beam artifact, due to their approximate nature, these artifacts are not

completely eliminated. The methods of Hsieh [46] and Katsevich [47] attempt to reduce noise in

analytical reconstructions, but in the end, they are of limited utility due to their inability to

incorporate measurement statistics. SIR algorithms, on the other hand, are based on a physically

realistic model of signal statistics [42, 48, 49]. SIR algorithms attempt to incorporate the

nonlinearities of the measurement systems rather than trying to overfit the reconstructed image to

a noisy measurement. The non- linear objective function along with the roughness or edge

preserving penalty function in SIR algorithms, gives us the leverage to adaptively control the

tradeoff between desired resolution and noise tolerance.

This dissertation is focused on the reconstruction time and accuracy of different analytical and SIR

algorithms. Although there are significant advantages for using FDK algorithms due to their

17

impressive computational efficiency, as discussed in this thesis, we believe that the use of multiple

GPUs can reduce the reconstruction time of SIR algorithms significantly. As shown in later

chapters we can use multiple GPUs and sophisticated parallelization schemes to not only accelerate

the linear single-shot backprojection algorithms but we can also apply these techniques to a

complex model-based reconstruction problem.

2.2 System Modeling

The system matrix used in iterative reconstruction can be computed either by ray-driven or voxel-

driven methods. In a ray-driven method, a weight is assigned to the X-ray beam proportional to

the amount of interaction between the beam and voxels it passes through in the object being

imaged. On the other hand, in voxel-driven methods, the detector edges are projected to the voxel

array along the ray path to compute the system matrix. De Man et. al [50] provides a good review

of some available projection and backprojection methods. They also proposed a distance-driven

method as a more accurate method to perform forward and backprojection. In the following

section, we discuss the proposed distance-driven operators.

2.2.1 Branchless Distance-driven Projection

For the computation of a ray-driven projection, we can evaluate the contribution of the ray to the

voxel by calculating the length of intersection along the ray path [51-54] or interpolate based on

the distance of the X-ray beam to nearby beams [52, 55]. However, these ray-driven algorithms

are not easy to parallelize, and sometimes introduce moiré patterns in backprojected images [50,

18

56]. However, voxel-driven projection and backprojection are more suitable for parallel hardware

implementation.

One of the state-of-the-art projection algorithms, called distance-driven (DD) projection and

backprojection, was proposed by De Man and Basu [50, 56]. In 2006 they proposed an extension

to their algorithm called branchless distance-driven projection and backprojection [57] in which

they basically parallelized the inner loop of their overlap calculation. They divided the overlap

kernel into 3 distinct and independent steps: digital integration, interpolation, and digital

differentiation. Schlifske et. al [58] proposed a 2-D extension to the branchless DD algorithm, in

which they “pre-integrate” the 2-D image slice of the image volume before projection and after

backprojection. In our work, we use a similar method in which we pre-accumulate the image

intensities in 4 perpendicular image slabs in a recursive manner before projection in order to

accommodate the 3-D helical nature of the data.

2.2.2 Branchless Distance-driven Backprojection

The core calculation of the algorithm is the computation of the overlap between the projection of

an individual slab of the image volume onto a 2-D detector array. For our specific reconstruction,

we used helical CT geometry. In our work, we have also employed a recursive adjoint

accumulation scheme after backprojection to retrieve our final 3-D image volume. Our proposed

method of pre-accumulation enables us to employ interpolation directly into the image

accumulation array which reduces some of the computational burdens associated with the

sequential integration of the original branchless DD method.

19

We also focus on the parallelization of the branchless DD backprojection over multiple GPUs. We

first simplify the overlap computation of the branchless DD algorithm by projecting detector

boundaries directly onto the image voxel boundaries. After that, we added a pre-accumulation

scheme, which reduces the sequential integration burden on individual GPU threads. Next, we

present a pseudocode for the implementation of our proposed algorithm on single and multiple

GPUs. Last but not least, we have validated our overall parallelization scheme by reconstructing

images from Siemens Sensation 16 helical CT data using the alternating minimization algorithm

and its ordered subsets version.

2.3 Graphics Processing Unit Architecture

Graphics processing units (GPU) are specialized devices designed to rapidly manipulate and alter

memory to accelerate the creation of images and send them to display devices. Shaped by the fast-

growing video game industry that expects a tremendously massive number of floating-point

calculations per video frame, there is an active research push to maximize the chip area and power

budget dedicated to floating-point calculations. Therefore, modern GPUs are optimized for

throughput i.e. the number of tasks processed per unit of time, while CPUs are optimized for low

latency and the amount of time needed to perform a complex task. This high value of throughput

is achieved by executing a large number of tasks on multiple threads while allowing individual

threads to take a potentially much longer time to execute. This design saves chip area and power

by allowing pipelined memory channels and arithmetic operations to have long latency. The

reduced area and power of memory and arithmetic operations allow designers to pack more cores

on a chip to increase the execution throughput. As compared to a normal CPU, more transistors

20

are devoted to data processing rather than data caching and flow control as shown in Fig. 2.4.

DRAM stands for dynamic random-access memory and the ALU stand for arithmetic logic unit.

Fig. 2.4 CPU vs. GPU architecture

2.4 Acceleration of Statistical Iterative-reconstruction

Algorithms

The majority of the time for the SIR algorithms is spent in the computation of the forward

projections and backprojections. Considering the many benefits of the statistical reconstruction,

one goal in the research community is to speed up the execution of these methods in order to

reconstruct large 3-D volumes in a reasonable timeframe. A variety of acceleration techniques

have been developed and can be divided into algorithmic and hardware approaches.

21

2.4.1 Algorithmic Speedup

Ordered subsets (OS) is a range-decomposition method introduced by Hudson and Larkin [59].

OS are able to speed up the convergence of parallel-update iterative-reconstruction algorithms

significantly. An algorithm that utilizes OS iteratively computes image updates using only a subset

of the available projection data. During each iteration, the OS algorithm cycles through each subset

of data, performing an image update after each sub-iteration. OS can improve the convergence rate

by a factor roughly equal to the number of subsets. However, for multi-GPU implementation, there

is significant overhead in every OS iteration from combining data from multiple GPUs running in

parallel. But, the amount of acceleration achieved using OS overshadows the increase in

computational burden due to the OS implementation.

The original OS method removes the monotonic convergence guarantee of most statistical

reconstruction algorithms. Convergent OS methods have been developed [60], but their memory

demands may be too high for clinical practice. However, even without the convergence guarantee,

the original OS method tends to be stable in practice.

Our surrogate-function based optimization technique discussed in Chapter 3 results in an

independent parallel voxel-based update step which can be ideal for multi-GPU implementation.

However, this kind of first-order surrogate function with the majorization property suffers from a

sublinear rate of convergence. Thus, there has been a tremendous amount of research on methods

for accelerating convex optimization. One of the most popular acceleration techniques is the Fast

22

Iterative Shrinkage-Thresholding Algorithm (FISTA) [32, 61]. In this work we propose, a novel

adaptive surrogate-function based optimization technique.

The main motivation behind adaptive surrogate-function based acceleration is the fact that the

update steps in the original unaccelerated surrogate-function based optimization technique are very

conservative. The small update steps guarantee convergence to a global minimum but at a slow

rate. The acceleration method we propose computes aggressive update step-size based on the

measured sinogram, air scan, and current estimate of the image. After every iteration, we modify

the update steps to include the previous update in the image domain. This scheme basically yields

step-sizes which are unique to different regions in the image space. Image regions which are most

divergent from the converged final image will have larger update steps and vice versa. The

adaptive update step computation is independent for each voxel and can be easily implemented in

a parallel multi-GPU architecture with negligible computational burden.

2.4.2 Hardware Speedup

In general, the computational burden of tomographic reconstruction is commensurate with the

complexity and scale of the physical model underlying the process. In recent years, massively

parallel commodity graphics hardware (Graphics Processing Units, GPUs) allowed the use of more

complex models while maintaining reasonable execution times. Ultimately, this led to improved

images in terms of dose efficiency, noise, artifacts, and spatial resolution, and opened the way to

new applications. Nowadays, it is safe to assume that any serious attempt at developing an

23

advanced reconstruction algorithm for clinical applications requires hardware acceleration, often

from massively parallel GPU cores.

With current advances in GPU memory size, we can easily fit the entire clinical image volume on

the GPU device memory, which eliminates the high latency penalty of using external CPU memory

to retrieve data as in older GPUs. Additionally, GPUs are notoriously slow in executing divergent

branches (“if” statements) unless all processor cores take the branch, whereas CPUs are much

better at this type of flow control. A modification to the distance-driven projector mentioned above

was proposed that eliminates branching [57].

Projection and backprojection operations are often a performance bottleneck in CT reconstruction

schemes. Being highly parallel, they are well suited for GPU implementations. The efficiency of

projection and backprojection operations is particularly critical in iterative-reconstruction schemes

as they are repeated multiple times and often become an overall performance bottleneck. From a

GPU perspective, the forward projection is best obtained with a ray-driven approach, where each

ray is assigned to an independent GPU thread. For backprojection, a voxel-driven approach is more

adapted to the GPU architecture and avoids potential race conditions where two threads could

write to the same memory location with unpredictable outcomes. However, a mismatch in

projectors might lead to convergence issues in some circumstances [62]. Instead, to ensure

convergence we employ voxel-driven projection and backprojection which are the exact adjoints

of each other.

24

Chapter 3: Multislice Statistical Iterative

Helical CT Reconstruction Using GPU

3.1 Theory

Multislice helical CT has been proven to be a successful imaging modality in many clinical

applications and is currently in widespread use. This kind of imaging modality is inherently 3D

since the X-ray tube continuously projects a cone beam of X-rays through the object being imaged.

At the same time, the patient is also translated along the gantry axis. Every detector captures data

in a partial rotation of the gantry that corresponds to each image slice. In order to reconstruct an

attenuation image from the measured data, we need to model the system geometry accurately.

Below, we highlight the main aspects of this process along with the formulation of the fast-parallel

statistical iterative reconstruction (SIR) algorithm for multislice helical CT.

3.1.1 Statistical Data Model

In this work, we consider a mono-energetic, noisy and scatter free data model which accounts for

the randomness of the measured X-ray photon counts. Detailed data models exist in the literature

[1, 36-38] which account for more accurate scatter, noise and beam hardening. At the basis of our

statistical model, we assume the photons arrive at the detector array in accordance with a Poisson

counting process. Such a model can effectively capture the physics of X-ray CT and scanner

geometry while simplifying the 3-D reconstruction algorithm described below.

25

The 3-D image volume of linear attenuation coefficients in units of mm−1 is represented in the

vector array 𝜇. The index 𝑦 refers to a ray path between the X-ray source and a pixel in the multirow

detector array. The measured transmission data for the 𝑦𝑡ℎ source-detector pair, 𝑑(𝑦), is modeled

as originating from independent Poisson counting processes. In discretized form, the mean value

of 𝑑(𝑦) is modeled as:

 𝑔(𝑦: 𝜇) ≜ 𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

) + 𝛽(𝑦), (3.1)

where 𝐼0(𝑦) is the mean number of counts in the absence of an attenuating medium, 𝛽(𝑦) is the

mean number of background events assumed to be nonnegative and known, and 𝜇(𝑥) is the linear

attenuation coefficient in voxel 𝑥. The system matrix elements ℎ(𝑦|𝑥) comprise the appropriately

discretized point spread function relating the projection space to the image space. If projection 𝑦

does not pass through voxel 𝑥, then ℎ(𝑦|𝑥) is zero. In a simple ray-tracing model, ℎ(𝑦|𝑥)

represents the length of intersection between the voxel indexed by 𝑥 and the ray-path indexed by

𝑦. The discretized forward projection operation can therefore be represented by 𝑙(𝑦) as:

 𝑙(𝑦, 𝜇) ≜∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

. (3.2)

3.1.2 Image Reconstruction Formulation

In transmission tomography, the basic goal of image reconstruction is to estimate the spatial

distribution of the linear attenuation coefficient, 𝜇, in the scanned object. This can be achieved by

maximizing a log-likelihood objective function between measured data and estimated data from

our statistical model.

26

Maximum Likelihood

Using a polyenergetic data model with scatter, O’Sullivan and Benac [1] derived an alternating

minimization (AM) algorithm to find the maximum loglikelihood (ML) solution. The problem was

formulated as the double minimization of an I-divergence over a linear and an exponential family,

thereby resulting in a closed-form update for each iteration. If we assume the individual detector

measurements are independent Poisson random variables, the Poisson log-likelihood function is:

 ℒ(𝑑; 𝜇) =∑[𝑑(𝑦)log(𝑔(𝑦: 𝜇)) − 𝑔(𝑦: 𝜇)]

𝑦

. (3.3)

The objective of our iterative-reconstruction algorithm is to maximize the log-likelihood function

in (3.3) subject to 𝜇(𝑥) being nonnegative, due to the nature of linear attenuation coefficients. It

turns out that maximizing ℒ(𝑑; 𝜇) is equivalent to minimizing the I-divergence between 𝑑(𝑦) and

𝑔(𝑦: 𝜇). In other words,

 𝜇𝑀𝐿
∗ = argmax

𝜇≥0
ℒ(𝑑; 𝜇) = argmin

𝜇≥0
I(𝑑(𝑦)||𝑔(𝑦: 𝜇)), (3.4)

where the I-divergence I[𝑑(𝑦)||𝑔(𝑦: 𝜇)] is defined as:

 I[𝑑||𝑔; 𝜇] ≜∑[𝑑(𝑦) log (
𝑑(𝑦)

𝑔(𝑦: 𝜇)⁄)+𝑔(𝑦: 𝜇) − 𝑑(𝑦)]

𝑦

. (3.5)

The objective function presented in (3.5) can’t be optimized directly over 𝜇, in part because the

optimization space is large. One of the best approaches is to develop surrogate functions that

approximate the original function at every iteration and are easy to minimize. This approach leads

to iterative algorithms where different surrogate functions are formed and solved at each iteration

and yet the original function decreases monotonically.

27

In order to formulate a surrogate optimization function, we start with a nonnegative initial image,

𝜇0(𝑥) where the superscript represents the iteration index, and create surrogate functions for I-

divergence at each iteration and update the image by minimizing the surrogate function. Special

properties of the surrogate function guarantee a monotonic decrease of the original function, which

will be explained later in this section. If we ignore the terms of the I-divergence that do not depend

on 𝜇, the objective function to be minimized for the mono-energetic case is:

 I[̅𝑑||𝑔; 𝜇] ≜∑[−𝑑(𝑦) log(𝑔(𝑦: 𝜇))+𝑔(𝑦: 𝜇)]

y

. (3.6)

If we replace the estimated mean term 𝑔(𝑦: 𝜇) by 𝐼0(𝑦)exp(−∑ ℎ(𝑦|𝑥)𝜇(𝑥)𝑥), and ignore the

term ∑ −𝑑(𝑦)log(𝐼0(𝑦))𝑦 (which is independent of 𝜇), equation (3.6) becomes:

 Î[𝑑||𝑔; 𝜇, �̂�] ≜ ∑𝑑(𝑦)

𝑦

∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

 + ∑𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

)

𝑦

, (3.7)

 ≜ ∑𝜇(𝑥)

𝑥

∑ℎ(𝑦|𝑥)𝑑(𝑦)

𝑦

+∑𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)�̂�(𝑥)

𝑥

)exp(−∑ℎ(𝑦|𝑥)

𝑥

(𝜇(𝑥)

𝑦

− �̂�(𝑥))) .

(3.8)

28

We define the forward projection of the current image estimate �̂�(𝑥) as:

 �̂�(𝑦) = 𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)�̂�(𝑥)

𝑥

), (3.9)

the backprojection of �̂�(𝑦) as

 �̂�(𝑥) =∑ℎ(𝑦|𝑥)�̂�(𝑦)

𝑦

, (3.10)

and the backprojection of measured data 𝑑(𝑦) as

 �̃�(𝑥) =∑ℎ(𝑦|𝑥)𝑑(𝑦)

𝑦

. (3.11)

Therefore, I-divergence can be defined as:

Î[𝑑||𝑔; 𝜇, �̂�] = ∑𝜇(𝑥)

𝑥

�̃�(𝑥)

+ ∑ �̂�(𝑦)exp(−∑ℎ(𝑦|𝑥)

𝑥

(𝜇(𝑥) − �̂�(𝑥)))

𝑦

.

(3.12)

Using the convex decomposition described in Lemma B.0.2 in Appendix B, we can derive the

following inequality,

Î[𝑑||𝑔; 𝜇, �̂�] ≤ ∑𝜇(𝑥)

𝑥

�̃�(𝑥)

+ ∑�̂�(𝑦)∑𝑟(𝑦|𝑥)exp(−
ℎ(𝑦|𝑥)

𝑟(𝑦|𝑥)
(𝜇(𝑥) − �̂�(𝑥)))

𝑥𝑦

,

(3.13)

29

where

 𝑟(𝑦|𝑥) ≥ 0, ∀ 𝑦, 𝑥 (3.14)

 ∑𝑟(𝑦|𝑥)

𝑥

≤ 1 ∀ 𝑦. (3.15)

If we choose

 𝑟(𝑦|𝑥) =
ℎ(𝑦|𝑥)

𝑍
, ∀ 𝑥, 𝑦

(3.16)

where 𝑍, also referred to as auxiliary function is set equal to the maximum projection length

through the reconstruction cylinder, or

 𝑍 = max
𝑦
 ∑ℎ(𝑦|𝑥)

𝑥

. (3.17)

As a result, we can satisfy the conditions denoted by equations (3.14) and (3.15). Finally, we define

the surrogate function of the data fit term Î[𝑑||𝑔; 𝜇, �̂�] using equations (3.10), (3.13) and (3.16),

which gives

Î[𝑑||𝑔; 𝜇, �̂�] = ∑𝜇(𝑥)

𝑥

�̃�(𝑥)

+ ∑ �̂�(𝑦)∑
ℎ(𝑦|𝑥)

𝑍
exp(−𝑍(𝜇(𝑥) − �̂�(𝑥)))

𝑥𝑦

(3.18)

 = ∑𝜇(𝑥)

𝑥

�̃�(𝑥)

+
1

𝑍
∑(∑�̂�(𝑦)

𝑦

ℎ(𝑦|𝑥)) exp(−𝑍(𝜇(𝑥) − �̂�(𝑥)))

𝑥

(3.19)

30

 = ∑𝜇(𝑥)

𝑥

�̃�(𝑥) +
1

𝑍
∑�̂�(𝑥)exp(−𝑍(𝜇(𝑥) − �̂�(𝑥)))

𝑥

. (3.20)

The surrogate function has the following majorization properties:

 I[𝑑||𝑔; 𝜇] = Î[𝑑||𝑔; 𝜇, 𝜇] ∀ 𝜇, (3.21)

 I[𝑑||𝑔; 𝜇] ≤ Î[𝑑||𝑔; 𝜇, �̂�] ∀ 𝜇, �̂� . (3.22)

Using these two properties from equation (3.21) and (3.22), we can conclude that

 I[𝑑||𝑔; �̂�] − I[𝑑||𝑔; 𝜇] ≥ Î[𝑑||𝑔; �̂�, �̂�] − Î[𝑑||𝑔; 𝜇, �̂�]. (3.23)

In other words, if one can find some 𝜇 that makes the right-hand side of (3.23) positive (some 𝜇

that decrease the surrogate-function value), then the original objective function also decreases.

This is the key ingredient for forming iterative algorithms using any kind of surrogate functions,

including the Jensen type for our case. With a proper choice of 𝑟(𝑦|𝑥), the surrogate can be

“decoupled”; in other words, minimizing Î[𝑑||𝑔; 𝜇, �̂�] can become N one-dimensional independent

convex minimization problems (one for each 𝜇(𝑥)), which are easy to parallelize. In order to solve

this surrogate function, we can equate the derivative of this function w.r.t. 𝜇 to 0 as, or

∂Î[𝑑||𝑔; 𝜇, �̂�]

∂𝜇(𝑥)
 = 0 ∀ 𝑥. (3.24)

The derivative of the surrogate function of the I-divergence is

𝜕Î[𝑑||𝑔; 𝜇, �̂�]

𝜕𝜇(𝑥)
= �̃�(𝑥) − �̂�(𝑥)exp(−𝑍(𝜇(𝑥) − �̂�(𝑥))) ∀ 𝑥 .

(3.25)

If we denote the estimate of 𝜇 at the 𝑘-th iteration by �̂�(𝑘), then the closed form solution of the

maximum-likelihood function from O’Sullivan and Benac [1] can be expressed as

31

 �̂�(𝑘+1)(𝑥) = [�̂�(𝑘)(𝑥) +
1

𝑍
log

�̂�(𝑘)(𝑥)

�̃�(𝑥)
]
+

 ∀ 𝑥. (3.26)

The [∙]+ is shorthand for max(∙ ,0). The decoupling steps provide an iterative algorithm that is

guaranteed to decrease the objective function monotonically. Also, it creates many one-parameter

convex functions (one for each voxel) that can be minimized in parallel using GPU threads. The

pseudocode for the unregularized AM algorithm is shown in Algorithm 3.1.

Algorithm 3.1 AM algorithm

Input: �̂�(0)(𝑥) = 0, 𝑍 = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ∈ ℝ+, 𝑑(𝑦), 𝐼0(𝑦) ∈ ℝ+
𝑀

Precompute �̃�(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦 , ∀ 𝑥

for 𝑘 = 1,2,3, … do

 �̂�(𝑘)(𝑦) = 𝐼0(𝑦)exp (−∑ ℎ(𝑦|𝑥)�̂�(𝑘)(𝑥)𝑥) ∀ 𝑦

 �̂�(𝑘)(𝑥) = ∑ ℎ(𝑦|𝑥)�̂�(𝑘)(𝑦)𝑦 ∀ 𝑥

 �̂�(𝑘+1)(𝑥) = [�̂�(𝑘)(𝑥) +
1

𝑍
log

�̂�(𝑘)(𝑥)

�̃�(𝑥)
]
+
 ∀ 𝑥

end for

Penalized Likelihood

Since the measured data are noisy, it is necessary to regularize the optimization problem to prevent

the algorithm from over-fitting the data through unrealistic images. This necessitates the use of

edge-preserving penalty functions to incorporate the neighboring voxel interactions in the

algorithm to perform a trade-off between data fitting and image smoothness.

32

To derive the algorithm for penalized maximum-likelihood estimation, we add a penalty term,

𝑅(𝜇), to the objective function used in the AM reconstruction, and weight it by a regularization

parameter 𝜆, where 𝜆 is a nonnegative scalar that reflects the amount of smoothing desired. A larger

value will give emphasis to the penalty term (i.e., the prior expectation that the image will be

smooth), whereas a smaller value will give more emphasis to the I-divergence term (i.e., the

discrepancy between the measured data and the data estimated by the model). The added penalty

term is defined as:

 𝑅(𝜇(𝑥)) ≜ ∑ 𝜔(𝑥, 𝑥′)𝜓(𝜇(𝑥) − 𝜇(𝑥′)),

𝑥′∈𝑁(𝑥)

 (3.27)

where 𝑅(𝜇(𝑥)) can be interpreted as the log-likelihood term for some prior. For 3-D regularization,

we use the 26-voxel neighborhood 𝑁(𝑥) surrounding voxel x. The weights 𝜔(𝑥, 𝑥′) control the

relative contribution of each neighbor. The potential function 𝜓(𝑡) is a symmetric convex function

that penalizes the difference between the values of neighboring voxels. We used an edge preserving

penalty function

 𝜓(𝑡) = (|
𝑡

𝛿
| − log (1 + |

𝑡

𝛿
|))

(3.28)

previously used by other researchers [40, 63, 64] and decouple the image variables of our penalized

objective function in such a way that all the voxels can still be updated in parallel. In this penalty,

𝑡 represents the difference between neighbouring voxel values, and δ is a parameter that controls

the transition between a quadratic region (for smaller |
𝑡

𝛿
|) and a linear region (for larger |

𝑡

𝛿
|). For

our specific reconstruction, we exclude a few image slices from the beginning and end of the image

volume in the penalty calculation because those slices will have severe artifacts due to cone-beam

33

truncation. Calculating the penalty for those slices could negatively impact reconstruction of the

inner slices since the artifacts do not carry any type of structure that can meaningfully be penalized

by 𝑅(𝜇). The overall problem is then to find the penalized-likelihood estimate,

 𝜇𝑃𝑀𝐿
∗ = argmin

𝜇≥0
I[𝑑||𝑔(𝜇)] + 𝜆𝑅(𝜇) (3.29)

The addition of the penalty term eliminates the possibility of using a closed form solution as in

equation (3.26). Instead, we use Newton's method on the decoupled I-divergence and penalty

surrogate functions as shown in Appendix A. For ordered subsets, used in later sections, we scale

down 𝜆 by the number of subsets used in that iteration. The pseudocode for the regularized AM

algorithm is shown in Algorithm 3.2.

Algorithm 3.2 Regularized AM algorithm

Input: �̂�(0)(𝑥) = 0 ∈ ℝ+
𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ∈ ℝ+, 𝑑(𝑦) ∈ ℝ+

𝑀, 𝐼0(𝑦) ∈ ℝ+
𝑀, 𝜆 ≥ 0, 𝛿 > 0

Precompute �̃�(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦 , ∀ 𝑥

for 𝑘 = 1,2,3, … do

 �̂�(𝑘)(𝑦) = 𝐼0(𝑦)exp (−∑ ℎ(𝑦|𝑥)�̂�(𝑘)(𝑥)𝑥) ∀ 𝑦

 �̂�(𝑘)(𝑥) = ∑ ℎ(𝑦|𝑥)�̂�(𝑘)(𝑦)𝑦 ∀ 𝑥

 �̂�(𝑘+1)(𝑥) = argmin
𝜇(𝑥)≥0

�̃�(𝑥)(𝜇(𝑥) − �̂�(𝑘)(𝑥)) +
�̂�(𝑘)(𝑥)

𝑍
exp (−𝑍(𝜇(𝑥) − �̂�(𝑘)(𝑥))) +

 𝜆∑
𝜔(𝑥,𝑥′)

2
𝛿2 (|

2𝜇(𝑥)−�̂�(𝑘)(𝑥)−�̂�(𝑘)(𝑥′)

𝛿
| − log (1 + |

2𝜇(𝑥)−�̂�(𝑘)(𝑥)−�̂�(𝑘)(𝑥′)

𝛿
|))𝑥′∈𝑁(𝑥)

end for

34

3.2 Branchless Distance-driven Projectors

The geometry of our helical multislice CT scanner is shown in Fig. 3.1. The X-ray source rotates

at a radius of 𝑅𝑓 and the detector array rotates along the same direction at a radius of 𝑅𝑑 from the

isocenter. For the point 𝑃(𝑥, 𝑦, 𝑧) on the bold line in Fig. 3.1, 𝛽 is the view angle, 𝛾 is the fan angle

and 𝜂 is the cone angle. 𝑧𝑓𝑒𝑒𝑑 is the axial distance travelled by the patient bed in one complete

rotation of the X-ray source detector pair.

Fig. 3.1 The multislice helical geometry used in this dissertation.

35

3.2.1 Modification of Detector Edge Projections

The core calculation of the algorithm is the computation of the overlap between the projection of

an individual slab of the image volume onto a 2-D detector array.

(a) (b)

(c) (d)

Fig. 3.2 (a) Schematic representation of De Man and Basu’s [50] 2-D distance-driven method. (b) Schematic

representation of our 2-D distance-driven method. (c) Schematic representation of De Man and Basu’s [50] 3-D

distance-driven method. (d) Schematic representation of our 3-D distance-driven method.

36

In our algorithm, the overlap calculations are performed directly at the level of the slab of interest.

This differs slightly from the method proposed by De Man and Basu [57], where the overlap

calculations are performed in the 𝑥𝑧 or 𝑦𝑧 plane passing through the origin. In that case, both the

flattened voxel edges and detector edges would need to be projected onto the plane passing through

the origin. In our implementation, the only projection calculations are from the detector edges to

the slab. The coordinates of the source-to-detector ray intersections with the flattened image voxel

array or slabs determine the 2-D rectangular region of the slab that contributes to each detector

element. These rays are constructed using the edges of each detector element. For the completion

of an X-ray projection image for a particular view angle, all the slab contributions are aggregated

for a particular detector array. The contribution is also scaled by the length of the intersection of

the ray through that slab. For our particular reconstruction, we assumed the slabs are flat and of

uniform thickness.

3.2.2 Pre-accumulation for Forward Projection

First, we consider the contribution from a 1-D pixel array (i.e., one slab of a 2-D image) to a

detector element at a fixed view angle. The pixels are uniformly spaced and represent a piecewise

continuous function, 𝑓(𝑥), using a rectangle basis of unit width [57],

 𝑓(𝑥) ≜∑𝑓𝑖𝜙(𝑥 − 𝑖)

𝑖

, (3.30)

37

where

 𝜙(𝑥) = {
0 𝑥 < −0.5
1 −0.5 ≤ 𝑥 ≤ 0.5
0 𝑥 > 0.5

 . (3.31)

We wish to find the total contribution of the pixel array to detector element 𝑘 with edges 𝑥 = 𝑢1

and 𝑥 = 𝑢2. This is mathematically expressed as:

 𝑔𝑘 ≜
1

𝑢2 − 𝑢1
∫ 𝑓(𝑥)𝑑𝑥 =

𝑢2

𝑢1

𝐹(𝑢2) − 𝐹(𝑢1)

𝑢2 − 𝑢1
, (3.32)

where

 𝐹(𝑢) ≜ ∫𝑓(𝑥)𝑑𝑥

𝑢

−∞

. (3.33)

Let 𝐾 ≜ ⌊𝑢⌋ , i.e. floor (𝑢). Plugging it into (3.29), equation (3.32) can be rewritten as

 𝐹(𝑢) =∑𝑓𝑖
𝑖

∫𝜙(𝑥 − 𝑖)𝑑𝑥

𝑢

−∞

 (3.34)

 = ∑ 𝑓𝑖 ∫𝜙(𝑥 − 𝑖)𝑑𝑥

𝐾

−∞

+

𝐾−1

𝑖=0

 𝑓𝑘 ∫𝜙(𝑥 − 𝐾)𝑑𝑥

𝑢

𝐾

(3.35)

 = ∑ 𝑓𝑖 + (𝑢 − 𝐾)𝑓𝐾

𝐾−1

𝑖=0

. (3.36)

Next, we can define an accumulated pixel array,

 𝐴[𝑚] ≜ ∑ 𝑓𝑖 .

𝑚−1

𝑖=0

 (3.37)

38

We can rewrite equation (3.35) using (3.36) as follows:

 𝐹(𝑢) = 𝐴[𝐾] + (𝑢 − 𝐾)𝑓𝐾 (3.38)

 = 𝐴[𝐾] + (𝑢 − 𝐾)(𝐴[𝑘 + 1] − 𝐴[𝐾]). (3.39)

Now 𝐹(𝑢) can be calculated simply in terms of the pre-accumulated array 𝐴, and the original pixel

values 𝑓𝑖 are no longer needed. In fact, (3.39) is nothing more than linear interpolation into array

𝐴. The final step to calculate 𝑔𝑘 is to substitute the value of 𝐹(𝑢) from equation (3.39) to equation

(3.32). Now we consider the actual contribution from a 2-D slab to a detector element 𝑘 with edges

𝑥 = 𝑢1, 𝑥 = 𝑢2, 𝑦 = 𝑣1, and 𝑦 = 𝑣2 as shown in Fig. 3.3.

 𝑔𝑘 ≜
1

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)
∫ ∫ 𝑓(𝑥, 𝑧)𝑑𝑧𝑑𝑥

𝑣2

𝑣1

𝑢2

𝑢1

. (3.40)

We can define a continuous-coordinate slab using separable rectangular functions as:

 𝑓(𝑥, 𝑧) ≜∑∑𝑓𝑖𝑗𝜙(𝑥 − 𝑖)𝜙(𝑧 − 𝑗)

𝑗𝑖

. (3.41)

We can represent in-plane calculations for each basis position 𝑗 in the z direction as:

 𝐹𝑗(𝑢) = 𝐴𝑗[𝐾] + (𝑢 − 𝐾)(𝐴𝑗[𝐾 + 1] − 𝐴𝑗[𝐾]),
(3.42)

where

 𝐴𝑗[𝑚] ≜ ∑ 𝑓𝑖𝑗

𝑚−1

𝑖=0

. (3.43)

39

This leads to

 𝑔𝑘 =
1

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)
∑𝐹𝑗(𝑢2) − 𝐹𝑗(𝑢1)

𝑗

∫ 𝜙(𝑧 − 𝑗)𝑑𝑧

𝑣2

𝑣1

 (3.44)

 𝑔𝑘 =
𝐺(𝑢1, 𝑢2, 𝑣2) − 𝐺(𝑢1, 𝑢2, 𝑣1)

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)
, (3.45)

where

 𝐺(𝑢1, 𝑢2, 𝑣) =∑𝐹𝑗(𝑢2) − 𝐹𝑗(𝑢1)

𝑗

∫𝜙(𝑧 − 𝑗)𝑑𝑧

𝑣

−∞

.
(3.46)

Similarly, we can define an accumulated voxel array in the 𝑧 direction

 𝐶𝑢1,𝑢2[𝑛] ≜ ∑𝐵𝑗(𝑢1, 𝑢2)

𝑛−1

𝑗=0

. (3.47)

Analogous to (3.39) we define 𝐽 ≜ ⌊𝑣⌋. We can then write

 𝐺(𝑢1, 𝑢2, 𝑣) = 𝐶𝑢1,𝑢2[𝐽] + (𝑣 − 𝐽)(𝐶𝑢1,𝑢2[𝐽 + 1] − 𝐶𝑢1,𝑢2[𝐽]).
(3.48)

We can also write ∑ 𝐹𝑗(𝑢2) − 𝐹𝑗(𝑢1)𝑗 as weighted sum of few elements of 𝐴𝑗[𝑚],

 𝐵𝑗(𝑢1, 𝑢2) =∑𝜔𝑚𝐴𝑗[𝑚]

𝑚

, (3.49)

Where 𝜔𝑚 is nonzero for up to four distinct values of 𝑚, as determined by (3.39) and (3.42).

Therefore, the slab can be pre-accumulated in both the x and z directions, as shown below:

 𝐶𝑢1,𝑢2[𝑛] = ∑∑𝜔𝑚𝐴𝑗[𝑚]

𝑚

𝑛−1

𝑗=0

, (3.50)

40

 = ∑𝜔𝑚
𝑚

∑ ∑ 𝑓𝑖,𝑗

𝑚−1

𝑖=0

𝑛−1

𝑗=0

, (3.51)

 = ∑𝜔𝑚
𝑚

𝑆[𝑚, 𝑛], (3.52)

where

 𝑆[𝑚, 𝑛] ≜ ∑ ∑ 𝑓𝑖,𝑗

𝑚−1

𝑖=0

.

𝑛−1

𝑗=0

 (3.53)

Finally, this accumulation can be written in recursive form for faster calculation as follows:

 𝑆[𝑚, 𝑛] = ∑𝐴𝑗[𝑚]

𝑛−1

𝑗=0

, (3.54)

 = ∑𝐴𝑗[𝑚]

𝑛−2

𝑗=0

+ 𝐴𝑛−1[𝑚],
(3.55)

 = 𝑆[𝑚, 𝑛 − 1] + ∑ 𝑓𝑖,𝑛−1

𝑚−1

𝑖=0

. (3.56)

For the projection model, as shown above, we pre-accumulate original pixel values in a recursive

manner to a pre-accumulation array corresponding to four perpendicular slabs, each contributing

to a different orientation of our view angle.

41

3.2.3 Pre-accumulation for Backprojection

Backprojection for the distance-driven kernel is defined as the transpose of the forward projection

operator. Using flow graph reversal, the transpose of the entire kernel can be done by transposing

each sub-operation and performing them in the reverse order, i.e.:

(a) Transposed digital differentiation,

(b) Transposed linear interpolation or “anterpolation”,

(c) Transposed integration,

By writing out the 2-D slab accumulation operation (3.56) in matrix form, it can be shown that the

transpose of slab accumulation is

 𝑓𝑖,𝑗
∗ = ∑ ∑ 𝑆[𝑚, 𝑛],

𝑁𝑥

𝑚=𝑖+1

𝑁𝑧

𝑛=𝑗+1

(3.57)

where 𝑁𝑥 and 𝑁𝑧 are the number of voxels in the two directions, respectively. This operation can

also be written recursively for faster calculation. If we let

 𝐷[𝑖, 𝑛] ≜ ∑ 𝑆[𝑚, 𝑛]

𝑁𝑥

𝑚=𝑖+1

,
(3.58)

then

42

 𝑓𝑖,𝑗
∗ = ∑ 𝐷[𝑖, 𝑛]

𝑁𝑧

𝑛=𝑗+1

, (3.59)

 = ∑ 𝐷[𝑖, 𝑛]

𝑁𝑧

𝑛=𝑗+2

+ 𝐷[𝑖, 𝑗 + 1], (3.60)

 = 𝑓𝑖,𝑗+1
∗ + 𝐷[𝑖, 𝑗 + 1], (3.61)

 = 𝑓𝑖,𝑗+1
∗ + ∑ 𝑆[𝑚, 𝑗 + 1].

𝑁𝑥

𝑚=𝑖+1

(3.62)

For transposed digital integration, we perform the similar recursive post accumulation technique

over the accumulated backprojection array to retrieve the individual voxel values from the 2-

parallel pair of mutually perpendicular slabs.

3.2.4 Modified Overlap Computation

After the pre-accumulation, the original voxel values are no longer required. In fact, we perform

direct interpolation of detector edges onto this accumulation array for both forward projection and

backprojection, which gives us a big boost on the time performance over the sequential

computation of digital integration for every region of overlap.

43

(a)

(b)

Fig. 3.3 (a) Schematic diagram of detector projection on image pixel slab which signifies the area of overlap. (b)

Our approach to the calculation of overlap between detector edge projections and image pixel slabs.

3.3 CPU Multithreaded Parallelization Scheme for

Branchless Distance-driven Projectors

Before performing interpolation and differentiation, we determine which part of the algorithm

could be divided into independent processes to run on a single GPU thread. The way branchless

44

projection methods are structured, the interpolation and digital differentiation for each slab at each

quarter rotation are independent of one another, so it can be implemented on a single GPU thread.

3.3.1 Symmetry

It was determined that the source-detector edge intersections with each slab (to find 𝑢1; 𝑢2; 𝑣1;

and 𝑣2) need to be calculated only for the first quarter rotation of the gantry regardless of the length

of the scan. For this symmetry to be valid, an integer number of image slices must correspond to

the distance the bed travels in a quarter rotation of the gantry. This is actually not much of a

restriction, as any helical pitch may be used, and the reconstruction slice thickness can be made

arbitrarily small. In fact, it becomes even less limiting for scanners with larger axial coverage since

they have a higher travel per rotation at a given pitch. The other constraint (which seems to always

be satisfied in practice) is for the number of views per rotation to be a multiple of four.

The quarter-rotation symmetry is illustrated in Fig. 3.4(a) for an example where the bed translates

two slices per quarter-rotation (denoted by 𝑁𝑞 in the Fig. 3.4). The solid box indicates the portion

of the scan (i.e., the first quarter rotation) for which the intersection calculations must be computed,

while the dashed boxes represent the remaining symmetric quarter rotations. Also appearing in

this figure are two diagonal lines, which correspond to the axial coverage of the cone-beam at each

view angle. Fig. 3.4(b) shows the four-fold rotational symmetry in the 𝑥𝑦 plane for an arbitrary

view angle and its
𝜋

2
-rotated offsets. A symmetric source-detector ray within each view is also

shown. This symmetry is used in conjunction with the appropriate slice offset to identify the correct

45

region of the slab in each quarter rotation. Note that the top half of Fig. 3.4 lines up vertically with

the bottom half.

Fig. 3.4 (a) Axial view of the quarter-rotation symmetry found in helical CT. When an integer number of slices is

chosen per quarter rotation of the gantry, the geometry calculations need only be done for just the first quarter

rotation of the scan (indicated by a dark solid box). (b) Transverse view of the quarter-rotation symmetry. The

projection calculations for each of the slabs shown is identical in the in-plane direction and offset by multiples of 𝑁𝑞

in the 𝑧 direction. An arrow has been drawn for each slab that indicates the direction of in-plane accumulation. The

𝑧 accumulation is always in the direction of the positive 𝑧 axis. Similar approach to quarter-rotation symmetry was

explored by D. Keesing [65].

Use of quarter-rotation symmetry requires that the image volume be accumulated in the four
𝜋

2
-

rotated orientations. (Image accumulation refers to 2-D accumulations according to 𝑆[𝑚, 𝑛] within

each slab, but not across slabs.) The direction of image accumulation in 𝑥 or 𝑦 is indicated by the

arrows in Fig. 3.4(b). Accumulation in the 𝑧 direction is always in the direction of the positive 𝑧

46

axis. Therefore, four full-sized accumulation images reside in memory during forward or

backprojection.

3.3.2 Multi-threaded Implementation for Forward Projection

This section discusses our method for parallelizing the forward projection in the helical orbit

geometry. The fact that the system matrix is symmetric for each quarter rotation makes it quite

natural to implement parallelism at the granularity of a quarter rotation of data. Each processor or

core is assigned a contiguous group of projections whose cardinality is a multiple of the number

of views in a quarter rotation. This design allows for theoretically perfect load balancing (in the

absence of memory-related latencies) during forward and backprojection since each processor

essentially makes use of the same number of nonzero ℎ(𝑦|𝑥) elements. Locality is inherent in this

framework too; each quarter rotation of data is related to a local neighborhood of slices, as seen in

Fig. 3.4(a).

The pseudocode for the parallelized forward projection is shown in Algorithms 3.3. The set 𝑍𝑝

refers to the range of voxel locations in the 𝑧 direction that contribute to view index 𝑝. The set of

symmetric view indices corresponding to quarter-rotation offsets of 𝑝 on an individual processor

are denoted 𝑄𝑝.

47

Algorithm 3.3 Branchless distance-driven forward projection

Perform 2-D accumulation of 𝜇 for each quarter rotation according to equation (3.56)

begin parallel region

 for 𝑝 ∈ views within first quarter-rotation do

 for each slab in accumulation, image do

 for 𝑢 = 1:𝑁𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do

 determine if the channel contribution to the slab is nonzero

 interpolate slab at detector column edge

 differentiate the value of the interpolation

 for 𝑣 = 1:𝑁𝑟𝑜𝑤𝑠 do

 interpolate column differentiation results at detector row edge

 for 𝑞 ∈ 𝑄𝑝 do

differentiate row interpolation values at row edges

accumulate the differentiation value to the projection array

 end for

 end for

 end for

 end for

 Weight projection by lengths of intersection through the single slab (∀𝑞 ∈ 𝑄𝑝)

 end for

end parallel region

3.3.3 Multithreaded Implementation for Backprojection

If we were to perform backprojection directly into the shared full-sized accumulation images, we

would have serious memory contention issues since multiple processors would be writing to the

same array elements simultaneously. Instead, each processor performs backprojection to its own

private accumulation image arrays (of reduced size compared to the full-sized arrays). This

eliminates any need for synchronization during the backprojection of a processor’s set of views.

It is easiest to illustrate this concept with an example. Referring to Fig. 3.5, suppose there are two

processors; the first one is assigned 𝛽 ∈ [0, 𝜋) and the second one is assigned 𝛽 ∈ [𝜋, 2𝜋). It can

be observed that processor 0 only ever needs to access slices 0 − 2, while processor 1 only ever

48

needs to access slices 1 − 3. Therefore, each partial accumulation image consists of three slices,

and each processor can easily determine what its starting slice index should be.

Fig. 3.5 Summing of private partial accumulation images on processors 0 and 1 into full-sized accumulation image.

At each stage, the shaded block of slices from each processor is simultaneously summed into the full-sized

accumulation image.

Once each processor is done backprojecting its set of views, the partial accumulation image arrays

need to be summed into the shared, full-sized accumulation image arrays. After each block, a

barrier synchronization construct is used to ensure each processor has finished summing the

current block of slices to the full-sized arrays.

The pseudocode for the parallelized backprojections is shown in Algorithm 3.4

49

Algorithm 3.4 Branchless distance-driven backprojection

Begin parallel region

 for 𝑝 ∈ views within first quarter-rotation do

 for each slab in accumulation, image do

 for 𝑢 = 1:𝑁𝑐𝑜𝑙𝑢𝑚𝑛 do

 determine if the channel contribution to the slab is nonzero

 for 𝑣 = 1:𝑁𝑟𝑜𝑤𝑠 do

adjoint differentiate the corresponding element in projection array in the

row direction

for 𝑞 ∈ 𝑄𝑝 do

 anterpolate results for corresponding row edge

end for

adjoint differentiate for corresponding detector column edge for all

relevant column edges

anterpolate result for corresponding detector column edge to slab

end for
anterpolate result for last detector column edge to slab

 end for

 end for

 end for

end parallel region

perform 2D adjoint accumulation for every quarter according to equation (3.62)

sum the four adjoint accumulation images.

3.4 GPU Implementation of Branchless Distance-driven

Projectors

In our GPU based parallel implementation of branchless DD projection, each thread calculates a

single partial projection element for specific view angle. The pre-accumulation is done before the

start of forward projection in GPU. CPU threads are very efficient in handling serial operations

like summation, however, we can harness the block reduction algorithms in CUDA to perform our

pre-accumulation on GPUs. For each flattened slab of the volumetric image, pixels are

accumulated in a vertical and horizontal direction similar to the method used by Rui Lui et al. [66].

The pre-accumulated images are mapped on to read-only texture memory due to their super-fast

50

memory access capabilities. Another motivation behind the use of texture memory is due to the

fact that bilinear interpolation step can be performed really fast due to their inherent hardware

architecture being specifically designed for pixel rasterization and rendering.

A basic pseudocode of the 3-D implementation of forward projection described in Algorithm

3.5.

Algorithm 3.5 GPU implementation of branchless distance-driven forward projection

Perform 2-D accumulation of μ for each quarter rotation according to equation (3.56)

number of GPU threads launched = number of views within 1st quarter rotation × number of

slabs in the accumulated image × number of quarter rotations assigned to each GPU

begin GPU kernel

for all GPU blocks in parallel do

 for all threads in a block do

 begin GPU thread calculation

 for every detector column

 determine if the channel contribution to the slab is nonzero

 interpolate slab at detector column edge

 differentiate the value of the interpolation

 for every detector row

 interpolate column differentiation results at detector row edge

 differentiate row interpolation values at row edges

accumulate the differentiation value to the corresponding element in projection

array

 end for

 end for

 end of GPU thread calculation

 end for

end for

weight projection by lengths of intersection through the slab

end kernel

The multislice 3-D backprojection is also computed in a similar fashion on GPU devices using the

CUDA programming language. In our implementation, a single thread computes the pre-

accumulated partial voxel value for every flattened slab. The projection values are mapped into

51

texture memory for backprojection as well. Use of GPU texture memory (cache on-chip read-only

memory) provides us fast read-only access and computationally efficient bilinear interpolation.

The accumulation step is computed separately after all the partial pre-accumulated values for each

voxel are gathered on the CPU from multiple GPU devices.

A basic pseudocode of the 3-D implementation of backprojection described in Algorithm 3.6

Algorithm 3.6 GPU implementation of branchless distance-driven backprojection

Number of GPU threads launched = Number of views within 1st quarter rotation × number of

slabs in the accumulated image × number of quarter rotations assigned to each GPU

begin GPU kernel

for all GPU blocks in parallel do

 for all threads in a block do

 begin GPU thread calculation

 weight projection by lengths of intersection through the slab

 for each detector column

determine if the channel contribution to the slab is nonzero

for every detector row

adjoint differentiate the corresponding element in projection array in the

row direction

anterpolate results for corresponding row edge

end for

anterpolate results for the last row edge

adjoint differentiate for corresponding detector column edge for all relevant

column edges

anterpolate result for corresponding detector column edge to slab

 end for

 anterpolate result for last detector column edge to slab

 end of GPU thread calculation

 end for

end for

end kernel

perform 2-D adjoint accumulation for every quarter according to equation (3.62)

sum the four adjoint accumulation images.

52

3.5 Multi-GPU Implementation of Branchless Distance-

driven Projectors

Each GPU is assigned a contiguous group of projections whose cardinality is a multiple of the

number of views in a quarter rotation. This design allows for theoretically perfect load balancing

(in the absence of memory-related latencies) during forward and backprojection since each GPU

essentially makes use of the same number of nonzero ℎ(𝑦|𝑥) elements. The full-sized

accumulation images and the projection data corresponding to each subset are stored in GPU

Global memory. In our approach, we systematically add slices with minimal synchronization

overhead between the devices. We have also determined the maximum block size that can be

summed concurrently by all devices.

Forward projection is straightforward in terms of global memory access, since each device stores

values in separate portions of the projection data array, and access to the accumulation image is

read-only. However, if we were to perform backprojection directly into the full-sized accumulation

images, we would have serious memory contention issues since multiple devices would be writing

to the same array elements simultaneously. Instead, each device performs backprojection to its

own private accumulation image arrays (of reduced size compared to the full-sized arrays). This

eliminates any need for synchronization during the backprojection of a device’s set of views. Once

each device is done backprojecting its set of views, the partial accumulation image arrays are

summed into the full-sized accumulation image arrays. Fig. 3.6 illustrates the process by which

non-overlapping groups of slices from each partial array can be added simultaneously without

53

memory contention. After each block, a barrier synchronization construct is used to ensure each

device has finished summing the current block of slices to the full-sized arrays.

(a) (b)

Fig. 3.6 (a) Schematic representation of Multi-GPU implementation of branchless DD projection. (b) Schematic

representation of Multi-GPU implementation of branchless DD backprojection.

However, these two approaches create the following constraints on several parameters as follows:

 Total number of views must be a multiple of the number of views in the one-quarter

rotation.

 Total number of quarter rotations must be a multiple of the number of GPU devices.

 The number of subsets must divide into the number of views per quarter rotation evenly.

54

For measured data where these constraints were not satisfied, we pad the measured sinograms with

zeros to increase the number of views.

To minimize the overhead time that occurs in data copying, kernel launch, etc., we create the same

number of CPU threads as the number of GPUs to be utilized. Each of the threads interacts with

an individual GPU. Each of them copies input data from the CPU to the GPU, executes the kernel,

and copies results back to the CPU. The host CPU waits for all GPU devices to complete and

merges results into one.

Fig. 3.7 Schematic representation of iterative algorithm execution between CPU and GPU devices

55

3.6 Experiments

We implemented our multi-threaded CPU algorithm using OpenMP, an industry-standard parallel

computing library designed for shared memory systems. The C code was compiled using the Intel

Compiler 18.0 with certain optimizations enabled. The code was run on an 8-core Intel 𝑖7 −

5960𝑋 (3.0 GHz, 1333 MHz front-side bus) with 64 GB RAM (1.2 GHz). The operating system

running on this machine was Microsoft Windows 7. For our multi-GPU implementation, we used

3 NVIDIA GeForce GTX TITAN X GPUs.

Phantom and clinical data were acquired from a Siemens Somatom Sensation 16 scanner (Siemens

Medical Solutions, Forchheim, Germany) without using the flying focal spot mode. The scanner

acquires 1160 views per rotation, using a 16 row × 672 channel curved detector array. The

distance between the source and isocenter is 570 mm, and the distance between the source and

detector is 1040 mm. Data for the clinical abdominal scan and phantom scan were collected from

12 gantry rotations with pitch = 1.0 and 16 × 1.5 mm collimation at isocenter. The size of the

reconstructed images is 512 × 512 × 164 with 1.0 × 1.0 × 1.0 mm voxels.

Using data from both clinical abdominal scan and phantom scan, we performed a reconstruction

using AM reconstruction without ordered subset (OS) and a various number of OS configuration

e.g. 5 OS, 29 OS, and 145 OS. The maximum number of allowable subsets for our implementation

is 290 which was determined by the number of views or measurements per quarter rotation.

However, this choice of OS produces only one view per quarter rotation which was deemed too

56

aggressive as it resulted in some unwanted image artifacts. In order to accelerate the convergence

our AM algorithm, we have initialized the AM iterations using multi-GPU implementation of the

helical FDK image. The fast-parallel multi-GPU implementation scheme for helical FDK

reconstruction is presented in the subsequent chapter.

Finally, we performed timing tests using the full-scale abdominal dataset to quantify the

performance of our computational approach on the clinically-sized dataset. The reconstruction was

done using one iteration of AM without ordered subsets, and one iteration of 5 OS and 29 OS. In

the OS cases, the image update was performed for subsets which had an impact on timing

performance due to the need for more pre-accumulation and more frequent synchronization. To

generate a speedup bar representation a baseline serial version of AM algorithm was written and

compiled without OpenMP.

To compare both time performance and image quality, we start with an Intel Core 𝑖7 − 5960𝑋

with 8 cores, 16 hyper-threads, clocked at 3 GHz, with 20 MB caches and 64 GB of memory. For

our GPU implementation, we used GeForce GTX TITAN X. TITAN X is based on Maxwell

architecture with 3072 CUDA cores and 24 streaming multiprocessors (SMs) running at 1.2 GHz.

Each block contains 65536 registers and 48 KiB of shared memory. Some of the highlights of

TITAN X hardware are shown in Table 3.1.

57

Single precision 7.468 TeraFLOP/s

Double precision 233.376 GigaFLOP/s

Multiprocessors 24

Clock rate 1.216 GHz

Global Memory bandwidth 336.48 GB/s

L2 Cache size 3MiB

CUDA cores 3072

Shared memory per block 48KiB
Table 3.1 Hardware specification of TITAN X

3.7 Results

3.7.1 Ordered Subsets

The use of ordered subsets has a significant advantage in increasing the convergence rate. It should

be noted that OS implementation is not guaranteed to converge monotonically with increasing

numbers of iterations. So, we could devise an adaptive scheme where we reduce the number of

ordered subsets at higher iterations. For our current medical abdominal dataset, our 29-ordered

subset tends to converge after about 80-100 iterations. For further improvement in our image

reconstruction, we can use AM algorithm without ordered subset for subsequent iterations after 29

OS-AM implementation. We have also observed that higher number of OS generates more

overhead computation due to GPU device synchronization, image volume pre-accumulation, and

CPU to GPU memory transfer. The total backprojection volume doesn’t change with increase in

OS, as a result, the inter-device memory transfer time, and pre-accumulation time increases

linearly with increase in the number of OS. This phenomenon is evident in Fig. 3.8. Although

higher OS requires higher computation time per iteration, the overall speedup in the acceleration

of objective function, PAE, and RMSE convergence rate dominates over increase in per iteration

computation time as evident in Fig. 3.12, 3.13, 3.14, 3.15 and 3.18.

58

Fig. 3.8 Single iteration time for different OS using 3 TITAN X GPUs in parallel

3.7.2 Phantom

To generate synthetic sinogram from the NCAT phantom image volume, we use the MATLAB

2017b poissrnd function. Noisy photon count data were generated by sampling a Poisson pdf with

data mean given by 𝑔(𝑦: 𝜇) from equation (3.1) where we have ignored the background intensity

𝛽(𝑦) . The parameters of the measured data and reconstructed images are shown in Table 3.2. The

incident photon incident was considered to be 10000 for all measurement views.

No. of views 13920

No. of detector channels 672

No. of detector rows 16

No. of image slices 164

No. of pixels/slice 512x512
Table 3.2 Parameters of measured data and image

W/O
OS

5 OS 29 OS 145 OS

Single iteration time 13 27 93 350

0

50

100

150

200

250

300

350

400

Ti
m

e
in

 s
ec

59

(a) (b)

(c) (d)

(e) (f)

Fig. 3.9 NCAT phantom reconstruction with voxel size = 1.0 × 1.0 × 1.0 mm. Scan parameters: pitch 1.0, 16 ×

1.5 mm collimation, display window width = 0.01759 mm−1 , center = 0.008795 mm−1. (a), (b) Axial slices of

the actual phantom. (c), (d) Axial slices of the FDK reconstruction of the phantom with added sinogram noise. (e)

and (f) Axial slices of the phantom reconstructed with 10 iterations with 145 ordered subsets and with added noise in

sinogram domain.

60

Fig. 3.10 Horizontal profile for different reconstruction images along different lines shown in Figs. 3.9 (a), (c), and

(e)

Fig. 3.11 Horizontal profile for different reconstruction images along different lines shown in Figs. 3.9 (b), (d), and

(f)

To quantify the effects of the mismatch between the algorithm and the data models, the following

quantities were measured on the reconstructed images. In the following definition, N denotes the

total number of voxels in the image volume, �̂�(𝑘)(𝑥) is the reconstructed image, �̂�𝑡𝑟𝑢𝑒(𝑥) is the

61

phantom image from which the synthetic projection data were generated. This measure is termed

as Percent absolute error (PAE):

 PAE = 100 ×
1

𝑁
∑|

�̂�(𝑘)(𝑥)

�̂�𝑡𝑟𝑢𝑒(𝑥)
− 1|

𝑁

𝑥=1

. (3.62)

We use Root mean square error (RMSE), and Signal-to-noise ratio (SNR) as image quality

parameter defined as:

 RMSE = √
1

𝑁
∑[�̂�𝑡𝑟𝑢𝑒(𝑥) − �̂�(𝑘)(𝑥)]2
𝑁

𝑥=1

 (3.63)

SNR = 10 × log10 [

∑ [�̂�𝑡𝑟𝑢𝑒(𝑥)]2𝑁
𝑥=1

∑ [�̂�𝑡𝑟𝑢𝑒(𝑥) − �̂�(𝑘)(𝑥)]2𝑁
𝑥=1

].
(3.64)

We also use Contrast-to-noise ratio (CNR) as an image quality estimate defined as:

 CNR =
(�̂�𝑠

(𝑘)
− �̂�𝑏

(𝑘)
)

�̂�𝑏
(𝑘)

⁄ , (3.65)

where �̂�𝑠
(𝑘)

 is the mean attenuation coefficient of a defined structure in the region of interest, �̂�𝑏
(𝑘)

is the mean attenuation coefficient of the image background surrounding the structure, and �̂�𝑏
(𝑘)

 is

the standard deviation of the noise calculated from the pixel values outside of the targeted region

of interest. The structure of phantom used for this analysis is denoted by the green dotted line in

Fig. 3.9 (a). Pixels surrounding this structure is considered as background.

62

However, for real data, there is no true image that can be used to calculate the image quality

parameters discussed before. Instead, we use the total value of the objective function from equation

(3.5) as our performance measure.

Fig. 3.12 RMSE vs total reconstruction time for different OS configuration using 3 TITAN X GPUs

Fig. 3.13 PAE in percentage vs total reconstruction time for different OS configuration using 3 TITAN X GPUs

63

Fig. 3.14 SNR in dB vs total reconstruction time for different OS configuration using 3 TITAN X GPUs

Fig. 3.15 CNR vs total reconstruction time for different OS configuration using 3 TITAN X GPUs

3.7.3 Clinical Datasets

Fig. 3.16 shows axial, coronal, and sagittal views of the abdominal images reconstructed using 10

iterations of 145 OS AM algorithm with regularization parameters: 𝜆 = 100, and 𝛿 = 0.0002.

The sinogram data used in this reconstruction was obtained from Siemens Sensation 16 scanner at

90 kVp.

64

(a) (b)

(c) (d)

(e) (f)

Fig. 3.16 Regularized AM reconstruction using 10 iterations of 145 ordered subsets. Voxel size = 1.0 × 1.0 ×

1.0 mm. Scan parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation. (a) Axial slice of lung with display

window width = 0.03 mm−1 , center = 0.015 mm−1. (b) Axial slice of abdomen with display window width =

0.007 mm−1, center = 0.021 mm−1. (c) and (d) are coronal views and (e) and (f) are sagittal views with display

window width = 0.007 mm−1, center = 0.021 mm−1.

65

(a) (b)

(c) (d)

(e) (f)

Fig. 3.17 Regularized AM reconstruction of lung and abdominal slices using 3 TITAN X GPUs. Voxel size = 1.0 ×

1.0 × 1.0 mm. Scan parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation. Axial slice of the lung with display

window width = 0.03 mm−1 , center = 0.015 mm−1, reconstructed with (a) FDK and (c) 10 iterations of AM using

145 OS. Axial slice of the abdomen with display window width = 0.007 mm−1, center = 0.021 mm−1,

reconstructed with (b) FDK and (d) 10 iterations of AM using 145 OS. (e) and (f) are difference images between

FDK and 10 AM iteration using 145 OS corresponding to lung and abdomen slices respectively.

66

Fig. 3.18 Plot of I-divergence vs computation time for different ordered subset configurations by using 3 GPUs in

parallel.

From Fig. 3.16 we can clearly conclude that AM algorithm improves image resolution and enhance

edges. We can also observe the lung and heart motion from Fig. 3.17 (a) and (c). Lung nodules are

more prominent using our iterative reconstruction approach which can lead to better diagnosis of

tumors presents in lungs.

3.7.4 Timing Performance

We have used abdominal dataset as a benchmark for determining the timing performance of our

multi-threaded CPU and multi-GPU implementation. The wall clock time to run one iteration of

AM algorithm without ordered subset on a standalone CPU core without multi-threading was 433

seconds for projection and 435 seconds for backprojection with a total time of 882 seconds. On

the other hand, if we compiled the code with OpenMP using 8 cores with 2 hyperthreads per core,

67

the total time for a single iteration is reduced to 190 seconds. Using the Intel Thread Profiler, we

have determined that in case of our multi-threaded CPU implementation, 96.2% of the execution

time was in parallel while the rest was spent in barrier synchronization of different threads. This

profiler result confirms the efficacy of our load balancing scheme within each iteration.

Fig. 3.19 Acceleration of our multi-GPU implementation for complete clinically-sized data

Operations

Execution Time (seconds)

Single-threaded
CPU

16-threaded CPU Single-GPU Multi-GPU

Pre- accumulation 8.1 1.7 0.570 0.21

Projection 433 92 15 4.7

Exponentiation 1.1 0.25 0.07 0.029

Backprojection 435 95 22 7.6

Image Update 4.8 1.2 0.17 0.06

Total 882 190.15 37.81 12.6
Table 3.3 Reconstruction times using clinically-sized data and no OS for different CPU and GPU hardware

architectures.

68

(a) (b)

Fig. 3.20 (a) Forward projection computational times and (b) overall speedup for a different number of pixels along

X/Y direction using different hardware configurations.

(a) (b)

Fig. 3.21 (a) Backprojection computational times and (b) overall speedup for a different number of pixels along X/Y

direction using different hardware configurations.

0

20

40

60

80

100

8 16 32 64 128 256 512

Sp
e

e
d

u
p

 f
ac

to
r

Number of pixels along X/Y direction

Speedup factor for projection

8-core CPU Single GPU 3 GPUs

0

10

20

30

40

50

60

70

8 16 32 64 128 256 512

Sp
e

e
cu

p
 f

ac
to

r

Number of Pixels in X/Y direction

Speedup for backprojection

8-core CPU Single GPU 3 GPUs

69

 (a) (b)

Fig. 3.22 (a) Forward projection computational times and (b) overall speedup for different number of image slices

using different hardware configurations

(a) (b)

Fig. 3.23 (a) Backprojection computational times and (b) overall speedup for different number of image slices using

different hardware configurations

The leftmost bar in Fig. 3.19 is the execution time of the baseline serial version and the remaining

bars show runtimes for the specific optimizations using multiple CPU threads and multiple GPU

devices. Table 3.3 shows the time of execution of each component of our algorithm with different

0

20

40

60

80

100

5 10 20 40 81 164

Sp
ee

d
u

p
 f

ac
to

r

Number of image slices

8 core CPU Single GPU 3 GPUs

0

20

40

60

80

5 10 20 40 81 164

Sp
e

e
d

u
p

 f
ac

to
r

Number of image slices

8 core CPU Single GPU 3 GPUs

70

hardware configurations. For the baseline serial version, we ran our projector algorithms on a

single CPU core with nested for loops representing the parallel GPU threads. For multithreaded

CPU implementation, each CPU core launches 2 hyper-threads for every logical processor in the

core. Each hyper-thread basically acts as a standalone GPU device. Instead of parallel GPU

threads, we used a corresponding number of nested for loops. We also used a barrier

synchronization to wait for every CPU thread to finish its projection and backprojection in their

private projection and image accumulation arrays respectively. To calculate the parallelization

efficiency of the multi-threaded CPU version we define our speedup ratio according to Amdahl’s

law as follows

 𝑆 =
𝑇1
𝑇𝑁
<

1

(𝑓 +
1 − 𝑓
𝑁)

<
1

𝑓
 as 𝑁 → ∞ , (3.63)

where, 𝑇1 and 𝑇𝑁 are elapsed times of 1 and N workers. 𝑓 is the fraction of the code that is not

parallelizable. The parallel efficiency is then defined as,

 𝐸 = 𝑆 𝑁⁄ . (3.64)

From our experimentation with 𝑁 = 16 CPU threads, we get 𝑆 = 𝑇1 𝑇𝑁⁄ = 4.7 for the projection

operation. As a result, 𝑓 = 0.1603 and parallel efficiency is 𝐸 = 0.2963. So, we can conclude,

our multi-threaded CPU implementation can achieve a maximum speedup of 6.2 times for the

projection operation for the clinically-sized dataset.

71

3.8 Discussion

We have observed from Fig. 3.19 that using multiple GPUs to reconstruct images gives us better

performance in computational cost compared to our best available CPU configuration. Our primary

contribution is a novel approach of pre- accumulation for projection (see equation 3.56) and adjoint

pre-accumulation for backprojection (see equation 3.62) in the setting of the three-dimensional

branchless DD algorithm. We observe that computing times linearly decrease with increasing the

number of GPUs. Since we can divide the projection array according to its number of ordered

subsets and the number of GPU devices available, the effective size of the projection array we pass

to the GPUs is much smaller than the size of the partial image accumulation array. As a result, the

backprojection operator accumulates and write the result on a much bigger image accumulation

array than the projection array is read from. So, the time required for backprojection is higher than

for forward projection. The difference is much more significant when we use more ordered subsets

since the number of subsets only reduces the volume of projection array keeping the size of partial

accumulation array unchanged.

The time needed to combine partial image accumulation arrays from different GPU devices after

every backprojection increases the iteration time for ordered subset configurations. For ordered

subset implementation, we also need to perform measured data backprojection after every subset

iteration since all the measured data backprojection arrays for every subset cannot be saved in our

device memory. In Figure 3.18, we show the change in objective function values (defined in

equation 3.6) with iteration number for various ordered subset configurations. Since minimizing

the objective function values will maximize the log-likelihood between the measured data and our

72

estimated data by the model, we can use this distance method to estimate the accuracy and noise

reduction of our reconstruction. The objective function value at 0th iteration of Fig. 3.18 denotes

the value of the objective function between measured data and projection sinogram of FDK

reconstruction of the data. The significant decrease in the objective function values clearly

illustrates the improvement in image quality with our proposed reconstruction algorithm. In the

end, we can clearly conclude that our optimizations are effective and that our multi-GPU approach

is beneficial for both forward and backprojection cases.

For the calculation of speedup using different hardware configurations and different scan

geometries, the single-threaded CPU implementation was considered as the baseline. We observed

from Fig. 3.20 and Fig. 3.21 that computational time for both multithreaded CPU and GPU

configurations increase quadratically w.r.t. baseline CPU implementation for a different number

of pixels along X/Y direction. The number of pixels along X/Y direction determines the size of

the flattened slab. The amount of computation for every GPU thread launched is directly

proportional to the size of the flattened slab. As a result, the computational time increases

quadratically with the number of pixels along the perpendicular dimensions of the slab. However,

the speedup is small for small image volume due to overhead for data transfer between CPU and

GPU. As the image volume increases, the relative contribution of the overhead is decreased and

the actual computation time of projection and backprojection kernel dominates. Thus, we observe

a steady increase in the speedup factor with increasing image volume.

73

The computation time increases linearly with the number of views and the number of image slices

as seen in Fig. 3.22 and Fig. 3.23. The slow initial speedup can again be attributed due to overhead

for data transfer between CPU and GPU. So, the speedup factor increases slightly with increasing

number of image slices. For the brevity of this thesis, we have only shown the computational time

and speedup factor for the variation of image slices. Since the number of minimum image slice is

directly proportional to the number of views, we can observe a similar trend if we varied the

number of views.

We can expect to reduce run times with more GPUs (see Fig. 3.19), which opens the door to

exciting new possibilities in clinical settings. For precision critical applications we can use the

double precision floating-point arithmetic with TITAN Z GPUs, with some performance

degradation compared to our single precision TITAN X GPUs.

74

Chapter 4: Multislice Analytical Helical CT

Reconstruction Using GPU

In this chapter, we present the details of the efficient fully 3-D reconstruction framework using an

analytical method. The main motivation for the multi-GPU implementation of analytical

reconstruction is twofold. Firstly, the voxel-driven analytical reconstruction approach can be easily

parallelized over multiple GPU threads and across multiple GPU devices. As a result, the total

reconstruction time for a clinically sized data is < 2 seconds using 3 TITAN X GPUs in parallel.

Naturally, we can use the images reconstructed using analytical methods as the initial input for our

iterative reconstruction problem. This approach accelerates the convergence rate of our SIR

algorithms. Secondly, we can use these algorithms to calculate aggressive update step described

in Chapter 5. On average, this aggressive update step method reduces the total computation time

by 50% without adding any significant computational burden.

The structure of this chapter is described as follows: Section 4.1 describes the scanner geometry

and Feldkamp-Davis-Kress (FDK) algorithm overview. Section 4.2 describes the changes we have

proposed to cone-beam geometry to make it more amenable to multi-GPU based parallelization.

Section 4.3 describes our fast-parallel multi-GPU based implementation of the FDK algorithm.

Section 4.4 describes the experiments we have conducted to demonstrate the improvement in

performance of our parallel implementation.

75

4.1 Theory

Within the class of analytical reconstruction algorithms, there is a further dichotomy between so-

called exact algorithms and approximate algorithms. For exact reconstruction, many techniques

based on PI-lines have been developed [67-69]. There are also newer approaches that use

differentiated backprojection onto PI-lines or other lines, which require the subsequent application

of the inverse Hilbert transform and interpolation [70].

The approximate reconstruction algorithms are not mathematically exact and therefore suffer from

cone-beam and windmill artifacts in the presence of high-contrast objects, which worsen with

increasing z-direction distance from the central transverse plane. However, these algorithms offer

more practical implementations and can more readily incorporate redundant data into the

reconstruction (for better dose utilization). Among these, the Adaptive multiple plane

reconstruction (AMPR) method rebins the data into oblique planes that best fit the helix, upon

which 2-D FBP is performed; the reconstructed tilted slices are then interpolated in the z-direction

to form an image volume with uniform spacing [71]. Helical FDK algorithms form another class

of approximate methods, in which a voxel- and view-dependent weighting function is applied in

the process of performing 3-D backprojection; this weight normalizes the contribution from

redundant data [72-74]. The algorithms differ in terms of dose utilization, redundancy weighting

function, and whether the algorithm operates in the native geometry or a rebinned geometry, etc.

We present a similar multi-GPU implementation of the (3-D)-weighted cone-beam filtered

backprojection algorithm published by Tang et al. [75]. The major aspects of the algorithm and

76

other pertinent references can be found in that paper. In this section, some of the specifics will be

addressed.

The geometry of our helical multislice CT scanner is described in Fig. 3.1 in Chapter 3. A key

element of most helical FDK algorithms (including this one) is that a fixed angular interval along

the helix is chosen to reconstruct each slice. In other words, reconstruction of a slice at 𝑧 = 𝑧0 is

done by backprojecting a symmetric set of views on both sides of the slice in which the center

view’s 𝑧 source position 𝑧𝑠𝑟𝑐 = 𝑧0. The interval is fixed to 2𝜋 in our algorithm, which simplifies

the redundancy weighting and leads to good image quality.

The overall backprojection expression is given below

 𝜇(𝑥, 𝑦, 𝑧) =
𝜋

2𝜃𝑚
∫

𝑅𝑓

√𝑅𝑓
2 + �̂�2

𝜔3𝑑(𝜃, �̂�, �̂�)�̃�(𝜃, �̂�, �̂�)𝑑𝜃

𝜃𝑚

−𝜃𝑚

 (4.1)

where 𝜔3𝑑(𝜃, �̂�, �̂�) is the redundancy weighting function, �̃�(𝜃, �̂�, �̂�) is the radially-filtered

projection data, and 𝜃𝑚 = 𝜋. The (�̂�, �̂�) coordinates specify the location on the detector where the

point (𝑥, 𝑦, 𝑧) is projected at view angle 𝜃. In this expression, the 𝜃 interval is implicitly defined

such that 𝜃 = 0 intersects the helix at slice location 𝑧. In this work, a mapping from cone angle 𝜂

to linear coordinate 𝑣 on the detector is used. This is done with respect to the isocenter of the

scanner, resulting in the relationship 𝑣 = 𝑅𝑓 tan 𝜂.

77

4.2 FDK Reconstruction

4.2.1 Data Preprocessing Operations

The chosen FDK algorithm operates in the cone-parallel geometry. Therefore, the first step is to

perform row-wise fan-beam to parallel-beam rebinning, which transforms the data to the correct

geometry. Our algorithm uses linear interpolation for the azimuthal and radial resampling

operations. A schematic diagram of the helical source trajectory and projection data acquisition in

the native cone-beam geometry are shown in Fig. 4.1 (a). The corresponding row-wise fan-beam

to the parallel-beam rebinning scheme is depicted in Fig. 4.1 (b).

(a) (b)

Fig. 4.1 Schematic diagram of the cone beam to parallel fan beam rebinning scheme described in [72]: (a) the native

CB geometry; (b) the cone-parallel geometry.

The X-ray source rotates at a radius of 𝑅𝑓 and the detector array rotates along the same direction

at a radius of 𝑅𝑑 from the isocenter. For the point 𝑃(𝑥, 𝑦, 𝑧) on the bold line in Fig. 4.1 (a), 𝛽 is

78

the view angle, 𝛾 is the fan angle and 𝜂 is the cone angle. 𝑧𝑓𝑒𝑒𝑑 is the axial distance travelled by

the patient bed in one complete rotation of the X-ray source detector pair. The ray originating from

focal point S and passing through point 𝑃(𝑥, 𝑦, 𝑧) can be uniquely determined in the new cone-

parallel rebinned geometry by view angle 𝛽, cone angle 𝜂 and orthogonal distance from iso-ray

(namely orthogonal iso-distance) 𝑡. In Fig. 4.1 (b) we can also notice that the curvature of the

virtual detector array is inverted.

Depending on the particular scan geometry and the choice of 𝜃𝑚, the backprojection may require

data that was not physically measured in the 𝑣 direction, i.e. |�̂�| may be greater than the cone angle

of the scanner. For the redundancy weights (discussed below) to work properly, all data must be

available for the entirety of the backprojection operation. To fulfill this requirement, extrapolation

of rows using constant extension is performed as a preprocessing step [76]. In particular, at (𝜃, 𝑡) =

(𝜃𝑚, 0), 𝑧𝑠𝑟𝑐 =
𝜃𝑚𝑧𝑓𝑒𝑒𝑑

2𝜋
. This is the farthest 𝑧 distance from the source to the slice (ignoring the tilt

of the cone-parallel projection in 𝑧). The largest |�̂�| value will be obtained at this 𝑧𝑠𝑟𝑐 position,

and with minimum in-plane source-to-voxel distance (𝑅𝑓 − 𝑅𝐹𝑂𝑉) due to magnification.

Therefore, at isocenter, the physical height of the detector including the required extension can be

shown to be

 𝐻 =
𝜃𝑚𝑧𝑓𝑒𝑒𝑑𝑅𝑓

𝜋(𝑅𝑓 − 𝑅𝐹𝑂𝑉)
. (4.2)

79

The ramp filtering procedure can be found in [2]. Two basic frequency-domain apodization

windows have been implemented, but certainly, others can be added as needed. The existing

windows are:

 Hamming window: 0.54 + 0.46 cos(𝜋𝜔)

 Hann window: 0.5 + 0.5 cos(𝜋𝜔)

where 𝜔 ∈ [0, 1] is the normalized frequency.

As shown in equation (4.1), cosine weighting for the cone angle is only needed in the v direction,

since the X-ray source in the cone-parallel geometry only diverges in that direction. This factor,

𝑅𝑓 √𝑅𝑓
2 + �̂�2⁄ is approximated in the preprocessing stage by pre-multiplying the projection data

by the cosine of the cone angle for the center v position of each detector row (as opposed to having

it remain a voxel-dependent quantity).

4.2.2 Redundancy Weights

Unlike the circular-orbit FDK algorithm, the voxels in a helical scan are not illuminated uniformly

from all view directions. Therefore, redundancy weights are needed during backprojection to

normalize the contribution of the measurements to each voxel in the image volume. In the case of

the 2-D parallel-beam coordinate system, there exists a complementary ray (also known as the

conjugate ray) that is co-linear with the primary ray but comes from the opposing view at 𝜃 + 𝜋.

Now consider the 3-D cone-parallel projection of a point (𝑥, 𝑦, 𝑧); it will land on the detector at

radial coordinate �̂�. In the helical geometry, the opposing view will have a 𝑧 offset due to the

80

moving source in the 𝑧 direction. Therefore, the complementary ray is still co-linear with the

primary ray when projected onto the 𝑥𝑦 plane, but in 𝑧, they only intersect at the point (𝑥, 𝑦, 𝑧). In

fact, the cone angle is likely to be different for the primary and complementary ray. With the choice

of 𝜃𝑚 = 𝜋, the 3-D weighting strategy in [75] is to use both the primary and complementary ray

in the reconstruction. The ray with the smaller cone angle is weighted more heavily, as that should

reduce the cone angle artifacts in the reconstruction. Similarly, the ray whose 𝑧𝑠𝑟𝑐 position is

closer to the slice is weighted more heavily. Using the mapping from 𝜂 to 𝑣, the 3-D weighting

function implemented in our algorithm is

 𝜔3𝑑(𝜃, 𝑡, 𝑣) ≜
𝜔2𝑑(𝜃, 𝑡)|𝑣𝑐|

𝑘ℎ

𝜔2𝑑(𝜃, 𝑡)|𝑣𝑐|𝑘ℎ + 𝜔2𝑑(𝜃𝑐, 𝑡𝑐)|𝑣|𝑘ℎ
, (4.3)

where the subscript 𝑐 refers to the complementary ray, the 𝑘ℎ parameter is currently fixed to 2.0,

and

 𝜔2𝑑(𝜃, 𝑡) ≜ {
1 + 𝜃 𝜋⁄ 𝑖𝑓 − 𝜋 ≤ 𝜃 < 0

1 − 𝜃 𝜋⁄ 𝑖𝑓 0 < 𝜃 < 𝜋
. (4.4)

The in-plane parallel-beam complementary ray coordinates are simply 𝜃𝑐 = 𝜃 + 𝜋, and 𝑡𝑐 = −𝑡.

The 𝑣𝑐 coordinate can also be determined directly from the primary ray coordinates, as will be

explained at the end of the next section.

4.2.3 Cone-parallel Backprojection

This section addresses the calculation of (�̂�, 𝑣) based on the cone-parallel projection of point

(𝑥, 𝑦, 𝑧) from view angle 𝜃. Once (�̂�, 𝑣) is known, bilinear interpolation is performed on the

discrete 2-D detector array to determine the projection data value.

81

Fig. 4.2 Parallel-beam and fan beam geometry.

Figure 4.2 shows the parallel-beam geometry as well as the fan-beam coordinates for reference.

The relationship between the coordinate systems can be expressed as

 𝛽 = 𝜃 + 𝛾 (4.5)

 𝛾 = sin−1(𝑡 𝑅𝑓⁄). (4.6)

From the Fig. 4.2, it is also possible to calculate �̂� and 𝐿(𝑥, 𝑦, 𝜃):

 �̂�(𝑥, 𝑦, 𝜃) = 𝑦 cos 𝜃 − 𝑥 sin 𝜃 (4.7)

 𝐿(𝑥, 𝑦, 𝜃) = √𝑅𝑓
2 − �̂�2 + 𝑠 (4.8)

 = √𝑅𝑓
2 − �̂�2 − 𝑥 cos 𝜃 − 𝑦 sin 𝜃 (4.9)

The in-plane source-to-voxel length 𝐿(𝑥, 𝑦, 𝜃) is used to calculate the projection in the 𝑧 direction,

as shown in Fig. 4.3.

82

Fig. 4.3 𝑣 scaling based on point projection.

The similar triangles allow for the calculation of 𝑣 as:

 𝑣(𝑥, 𝑦, 𝑧𝑠𝑙𝑖𝑐𝑒 , 𝜃) =
𝑅𝑓

𝐿(𝑥, 𝑦, 𝜃)
(𝑧𝑠𝑙𝑖𝑐𝑒 − 𝑧𝑠𝑟𝑐).

(4.10)

In the cone-parallel geometry, the source is distributed along the helix for each projection, thereby

giving the projection a tilt in the 𝑧 direction. 𝑧𝑠𝑟𝑐 is therefore a function of 𝜃 and 𝑡. First consider

the native cone-beam geometry, where

 𝑧𝑠𝑟𝑐(𝛽) = 𝑧𝑠𝑟𝑐,0 +
𝑧𝑓𝑒𝑒𝑑

2𝜋
𝛽 (4.11)

and 𝑧𝑠𝑟𝑐,0 is the 𝑧 source position for the first view of the scan. Replacing 𝜃 according to (4.5) and

(4.6),

 𝑧𝑠𝑟𝑐(𝜃, 𝑡) = 𝑧𝑠𝑟𝑐,0 +
𝑧𝑓𝑒𝑒𝑑

2𝜋
[𝜃 + sin−1(𝑡 𝑅𝑓⁄)]. (4.12)

Note that there are three contexts for the 𝜃 variable in this chapter:

 Local angular coordinate centered about 𝑧𝑠𝑙𝑖𝑐𝑒 and used for 𝑧-related calculations, e.g.,

(4.1).

 Angle used for in-plane calculations, e.g., (4.7), (4.9).

83

 Global angular coordinate used to keep track of source position in the global 𝑧 coordinate

system.

Our algorithm defines two separate variables as follows:

 𝜃𝑎𝑥𝑖𝑎𝑙(𝑝) ≜ 𝑝|Δ𝜃| (4.13)

 𝜃𝑖𝑛−𝑝𝑙𝑎𝑛𝑒(𝑝) ≜ 𝑝Δ𝜃 + 𝜃0 (4.14)

where 𝑝 is the view index, Δ𝜃 is the signed view angle spacing, and 𝜃0 is the starting in-plane

angle. The absolute value operator is used in equation (4.13) since 𝑧𝑠𝑟𝑐 is defined to increase with

increasing view index, regardless of the gantry rotation direction.

For the weighting function 𝜔3𝑑(𝜃, 𝑡, 𝑣), it was noted that the 𝑣𝑐 coordinate must be calculated.

This can be obtained in a few steps. First, using Fig. 4.3 again, the chord length along the ray (for

a circle of radius 𝑅𝑓) is√𝑅𝑓
2 − 𝑡2. Therefore, the complementary in-plane source-to-voxel length

is

 𝐿𝑐 = 2√𝑅𝑓
2 − 𝑡2 − 𝐿. (4.15)

From there, it is straightforward to calculate 𝑣𝑐:

 𝑧𝑠𝑟𝑐,𝑐 = 𝑧𝑠𝑟𝑐,0 +
𝑧𝑓𝑒𝑒𝑑

2𝜋
[𝜃𝑐 + sin

−1(𝑡𝑐 𝑅𝑓⁄)] (4.16)

 𝑣𝑐 =
𝑅𝑓

𝐿𝑐
(𝑧𝑠𝑙𝑖𝑐𝑒 − 𝑧𝑠𝑟𝑐,𝑐).

(4.17)

84

4.3 GPU Implementation of FDK Backprojection

The GPU implementation of our backprojection algorithm is shown below

Algorithm 4.1 GPU implementation of FDK backprojection

Number of GPU threads launched = Number of pixels in a slice × number of slices assigned to

each GPU

begin GPU kernel

for all GPU blocks in parallel do

 for all threads in a block do

 begin GPU thread calculation

 compute the view range for current reconstruction slice

 for every view within our reconstruction slice range

 determine the range of channels contributing to our reconstruction slice

 for every channel within our reconstruction slice range

determine the range of detector rows contributing to our reconstruction

slice

for every detector row within reconstruction slice range

use bilinear interpolation to obtain projection data value at every

detector coordinate for the current view

calculate corresponding redundancy weight

compute the normalized 3-D weight

accumulate weighted projection data to current voxel

end for

 end for

 end for

 end of GPU thread calculation

 end for

end for

end kernel

4.4 Results

We implemented our multi-threaded CPU algorithm using OpenMP, an industry-standard parallel

computing library designed for shared memory systems. The C code was compiled using the Intel

Compiler 18.0 with certain optimizations enabled. The code was run on an 8-core Intel 𝑖7 −

5960𝑋 (3.0 GHz, 1333 MHz front-side bus) and 64 GB RAM (1.2 GHz). The operating system

85

running on this machine was Microsoft Windows 7. For our multi-GPU implementation, we used

3 NVIDIA GeForce GTX TITAN X GPUs.

The clinical data were acquired on a Siemens Somatom Sensation 16 scanner (Siemens Medical

Solutions, Forchheim, Germany) without using the flying focal spot mode. The scanner acquires

1160 views per rotation, using a 16 row × 672 channel curved detector array. The distance

between the source and isocenter is 570 mm, and the distance between the source and detector is

1040 mm.

4.4.1 Phantom

We use an NCAT phantom image as the ideal (truth) image. To generate synthetic noisy sinogram

from the NCAT phantom image volume, we use the MATLAB 2017b poissrnd function. Noisy

photon count data were generated by sampling a Poisson pdf with data mean given by 𝑔(𝑦: 𝜇)

from equation (3.1) where we have ignored the background intensity 𝛽(𝑦). The parameters of the

measured data and the reconstructed image is shown previously in Table 3.2. The incident photon

incident was considered to be 10000 for all measurement views.

86

(a) (b)

(c) (d)

Fig. 4.4 NCAT phantom reconstruction with voxel size = 1.0 × 1.0 × 1.0 mm. Scan parameters: pitch 1.0, 16 ×

1.5 mm collimation, display window width = 0.01759 mm−1 , center = 0.008795 mm−1. (a), (b) Axial slices of

the actual phantom. (c), (d) Axial slices of the FDK reconstruction of the phantom.

Fig. 4.5 Horizontal profile along the orange line through ideal phantom and noisy FDK reconstruction image shown

in Figs. 4.4 (a) and (c)

87

Fig. 4.6 Horizontal profile along the orange line through ideal phantom and noisy FDK reconstruction image shown

in Figs. 4.4 (b) and (d)

To quantify the effects of the mismatch between the algorithm and the data models, Percent

absolute error (PAE), Root mean square error (RMSE) and Signal-to-noise ratio (SNR) defined in

equation (3.62), (3.63) and (3.64) respectively.

 PAE in % RMSE SNR in dB

Fig. 4.4 (a) and (c) 5.6983 7.245E-04 23.1523

Fig. 4.4 (b) and (d) 5.7545 7.561E-04 23.6975
Table 4.1 Reconstruction times using clinically-sized data and no OS for different CPU and GPU hardware

architectures.

4.4.2 Clinical Datasets

The details of our clinical dataset are described in Chapter 3.6. In this chapter we present axial,

sagittal and coronal slices of our helical FDK reconstruction in Fig. 4.7.

88

(a) (b)

(c) (d)

(e) (f)

Fig. 4.7 Clinical abdominal reconstruction using FDK algorithm. Voxel size = 1.0 × 1.0 × 1.0 mm. Scan

parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation. (a) Axial slice of lung with display window width =

0.03 mm−1 , center = 0.015 mm−1. (b) Axial slice of abdomen with display window width = 0.007 mm−1, center

= 0.021 mm−1. (c) and (d) are coronal views and (e) and (f) are sagittal views with display window width =

0.007 mm−1, center = 0.021 mm−1.

89

4.4.3 Timing Performance

This section addresses the timing performance of our FDK algorithm implementation for

different hardware configurations.

(a) (b)

Fig. 4.8 (a) Backprojection time and (b) 8 core CPU speedup factor for a different number of pixels along X/Y

direction.

Fig. 4.9 Speedup factor for parallel fan-beam backprojection operation using a different number of GPUs in parallel

compared to baseline CPU implementation.

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512
sp

e
e

d
u

p
 f

ac
to

r

Number of pixels along X/Y
direction

Backprojection speedup
using 8-core CPU

0

500

1000

1500

2000

8 16 32 64 128 256 512

Sp
ee

d
u

p
 f

ac
to

r

Number of pixels along X/Y direction

Single GPU 3 GPUs

90

(a) (b)

Fig 4.10 (a) Total time and (b) 8 core CPU speedup factor for a different number of pixels along X/Y direction.

Fig. 4.11 Speedup factor for total computational time using a different number of GPUs in parallel compared to

baseline CPU implementation

0

2

4

6

8

10

8 16 32 64 128 256 512

8-core CPU speedup

0

200

400

600

800

1000

1200

1400

1600

8 16 32 64 128 256 512

sp
ee

d
u

p
 f

ac
to

r

Number of pixels along X/Y direction

Single GPU 3 GPUs

91

(a) (b)

(c)

Fig. 4.12 (a) Total time and (b) 8 core CPU speedup factor for a different number of image slices. (c) Speedup factor

for total computational time using a different number of GPUs in parallel compared to baseline CPU

implementation.

0

2

4

6

8

10

10 20 41 82 164

Sp
ee

d
u

p
 f

ac
to

r

Number of image slices

0

200

400

600

800

1000

1200

1400

1600

10 20 41 82 164

Sp
ee

d
u

p
 f

ac
to

r

Number of image slices

Single GPU 3 GPUs

92

4.5 Discussion

The total reconstruction time using 3 GPUs in parallel including data read from hard disk drive

was less than 2.2𝑠 for a clinically-sized data. Compared to other existing methods in the literature,

the computational performance of our multi-GPU algorithm is quite competitive. Since we do not

have the exact hardware and GPU configuration so a fair and exact comparison would be hard to

execute. The speedup factors of different hardware configurations and different scan geometries,

were baselined against the reconstruction time of single-threaded CPU implementation. We can

clearly observe that in Fig. 4.8 (a), computational time for both CPU and GPU configurations

increased in a quadratic fashion consistent with our algorithm. The number of pixels along X/Y

direction determines the size of the flattened slab. The amount of computation of every GPU thread

launched is directly proportional to the size of the flattened slab. As a result, the computational

time increases quadratically with the number of pixels along the perpendicular dimensions of the

slab. However, the speedup is small for small image volume due to overhead for data transfer

between CPU and GPU. However, when the image volume increases, the relative contribution of

the overhead is deceased and the total computation time of backprojection kernel dominates. As a

result, we can observe a steady increase in the speedup factor for larger image volume in Fig 4.8

(b) and Fig. 4.9.

When we change the number of views or the number of image slices, there is a linear trend in the

increase of computation time as seen in Fig. 4.10. The slow initial speedup in Fig. 4.10 (b) and

Fig. 4.11 can also be attributed due to the overhead for data transfer between CPU and GPU. For

the brevity of this thesis, we have only shown the computational time and speedup factor for the

93

variation of image slices. Since the number of minimum image slice is directly proportional to the

number of views, we can observe a similar trend if we varied the number of views. When we vary

the number of detector rows, as seen in Fig. 4.12, we see a linear increase in the computational

time for backprojection. However, when the number of detector rows is small there is significant

overhead for data transfer. So, the speedup factor increases slightly with an increase in the number

of detector rows.

The 3-D helical FDK reconstruction algorithm presented in this dissertation has significantly low

computational burden as presented in Fig. 4.8 (a), Fig. 4.10 (a) and Fig. 4.12 (a). Our approach

also improves reconstruction accuracy due to 1-D tangential ramp filtering and no interpolation

along the 𝑧-axis for this filter [75]. The 3-D weighting function 𝜔3𝑑(𝜃, 𝑡, 𝑣) described in equation

(4.3) is ray dependent and enables our algorithm to reach reconstruction accuracy comparable to

exact cone-beam reconstruction algorithms like Katsevich algorithm [47, 67, 77]. The voxel-

driven reconstruction method and cone-beam to parallel-beam rebinning approach allows us to

update image voxels independently on GPU threads without any thread synchronization. We can

also divide the projection data equally on multiple-GPU devices and simultaneously update image

voxels over multiple devices in parallel. The detailed algorithm presented in algorithm 4.1 gives

us close to 1300X speedup using 3 TITAN X GPUs in parallel over baseline single-threaded CPU

implementation. Consequently, we can use this approach without any significant computational

burden to calculate initial image estimate for SIR algorithms described in Chapter 3 and aggressive

update steps for adaptive surrogate functions described in Chapter 5.

94

Chapter 5: Acceleration of Iterative-

reconstruction Algorithms Using Adaptive

Auxiliary Variable

The main hurdle for the adoption of SIR algorithms in practice is the iterative nature of these

algorithms and high computation time. The actual computation time required varies with the field

of application, the volume of the measured data, and the level of accuracy desired in the

reconstructed images. In security applications, the reconstruction time of three-dimensional image

volumes must satisfy the rate at which bags travel through the scanner. For many medical

applications, the time depends on the availability of radiologists, which can vary widely. There are

various pathways to decrease the time in iterative image reconstruction. One of the most effective

pathways is to use multiple Graphics processing units (GPUs) to parallelize the computationally

intensive parts of the algorithm. [9, 27, 58, 66, 78, 79]. A second pathway is to use advanced

algorithms from convex optimization theory [32]. A third pathway is to accelerate the convergence

rate of existing algorithms by sacrificing guaranteed convergence properties [29-31]. A new

method in the third category, named adaptive auxiliary variable is investigated in this article for

accelerating the convergence rate of the AM algorithm using a phantom and real clinical data

obtained from Siemens Sensation 16 scanner.

In our current work, we first assume a Poisson distribution model for the measured transmission

data. Then we calculate a maximum-likelihood estimate between the measured data and data

model by reformulating the estimation problem as a double minimization of an I-divergence

95

problem. A Huber-type penalty is then added to the divergence term. Finally, we formulate an

objective function with the I-divergence and regularization terms. As the optimization space is

quite large, we have reformulated the objective function as an N one-dimensional convex

optimization problem where 𝑁 is the number of voxels of the image being reconstructed. We then

provide pseudo-codes for the general AM algorithm and its accelerated version with the ordered-

subset technique. Next, we derive our proposed auxiliary variable based acceleration method and

present a pseudocode for its efficient parallel implementation. Finally, we have validated our

proposed acceleration technique with NCAT phantoms and Siemens Sensation 16 helical scan data

by comparing the convergence rates of straightforward implementation of the AM algorithm with

its accelerated version.

5.1 Theory

The AM algorithm in closed form solution yields additive updates for the linear attenuation

coefficient values with step-sizes or auxiliary variables that are chosen to guarantee convergence.

This guaranteed convergence criterion results in step sizes that are unnecessarily conservative.

Therefore, to accelerate the convergence of our algorithm, we will try to choose bigger step sizes

using adaptive auxiliary variables 𝑍(𝑥) such that 𝑟(𝑦|𝑥) =
ℎ(𝑦|𝑥)

𝑍(𝑥)
 .

For the derivation of these so-called adaptive auxiliary variables, we start with data fit term

surrogate function from equation (3.12) in Chapter 3,

96

Î[𝑑||𝑔; 𝜇, �̂�] = ∑𝜇(𝑥)

𝑥

�̃�(𝑥) +∑𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)�̂�(𝑥)

𝑥

)

𝑦

×∑
ℎ(𝑦|𝑥)

𝑍(𝑥)
exp(−𝑍(𝑥)(𝜇(𝑥) − �̂�(𝑥)))

𝑥

.

(5.1)

The derivative of this function with respect to 𝜇(𝑥) would be,

𝜕Î[𝑑||𝑔; 𝜇, �̂�]

𝜕𝜇(𝑥)
= �̃�(𝑥)

−∑ℎ(𝑦|𝑥)𝐼0(𝑦)

𝑥

 exp (−𝑍𝑗(𝜇(𝑥)

− �̂�(𝑥))) exp(−∑ℎ(𝑦|𝑥)�̂�(𝑥)

𝑥

)

(5.2)

Now if our current estimate of 𝜇(𝑥) at 𝑘-th iteration is �̂�(𝑘)(𝑥) and if we denote 𝑍(𝑥) as 𝑍(𝑘)(𝑥)

then we can write

𝜕Î[𝑑||𝑔;𝜇,�̂�]

𝜕𝜇(𝑥)
|
𝜇(𝑥)=�̂�(𝑘)(𝑥)

= 0 ∀ 𝑥 (5.3)

⟹ 𝑍(𝑘)(𝑥) =

log (
∑ ℎ(𝑦|𝑥)𝐼0(𝑦)exp(−∑ ℎ(𝑦|𝑥)�̂�(𝑥)𝑥)𝑦

�̃�(𝑥)
)

�̂�(𝑘)(𝑥) − �̂�(𝑥)
 ∀ 𝑥

(5.4)

Since we are minimizing the surrogate function around �̂�(𝑥) so any non-negative value for this

variable can be used. The inverse of the auxiliary variable basically acts as the weight in closed

form update. So, if we can effectively reduce the value of 𝑍(𝑥), we can accelerate the convergence

of our algorithm. One such choice would be to make �̂�(𝑥) = 0 ∀ 𝑥. Thus, our auxiliary variable

can be written as:

97

𝑍(𝑘)(𝑥) =

log (
∑ ℎ(𝑦|𝑥)𝐼0(𝑦)𝑦

�̃�(𝑥)
)

�̂�(𝑘)(𝑥)
 ∀ 𝑥.

(5.5)

Now we denote the back projection of incident photon intensity as follows

 �̃�0(𝑥) =∑ℎ(𝑦|𝑥)𝐼0(𝑦)

𝑦

 . (5.6)

Then adaptive auxiliary can be denoted as

𝑍(𝑘)(𝑥) =

log (
�̃�0(𝑥)

�̃�(𝑥)
)

�̂�(𝑘)(𝑥)
 ∀ 𝑥.

(5.7)

According to our previous estimate of Z from equation (3.16), we can use the length of

reconstruction diameter as a threshold for our proposed adaptive auxiliary variable 𝑍(𝑘)(𝑥).

 𝑍(𝑘)(𝑥) = {
log(

�̃�0(𝑥)

�̃�(𝑥)
)

�̂�(𝑘)(𝑥)
if
log(

�̃�0(𝑥)

�̃�(𝑥)
)

�̂�(𝑘)(𝑥)
< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛,

�̃�0(𝑥)

�̃�(𝑥)
> 1, �̂�(𝑘)(𝑥) > 0

2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 else

. (5.8)

We have ignored nonpositive values of 𝑍(𝑘)(𝑥) by the inequalities
�̃�0(𝑥)

�̃�(𝑥)
> 1, and �̂�(𝑘)(𝑥) > 0 in

equation (5.8). Also, it’s evident from equation (5.7) that both backprojection arrays can be

precomputed. So, the adaptive nature of the auxiliary variable comes from the fact that after each

iteration, the denominator is updated with the current estimate of the reconstructed image. For

parallel processing units like GPUs, this step doesn’t add any significant burden to the overall

computation time since the computation of each element of the auxiliary variable is independent

of each other and GPU threads can compute all the elements efficiently.

98

The regularized AM algorithm with ordered subset is described in Algorithm 5.1 with initial image

estimate derived from FDK algorithm.

Algorithm 5.1 Regularized OS-AM algorithm with adaptive auxiliary variable

Input: �̂�(0,0)(𝑥) = �̂�𝐹𝐷𝐾(𝑥) ∈ ℝ+
𝑁, 𝑑(𝑦), 𝐼0(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 > 0, 𝕐𝑙 ∀ subset index 𝑙 =
0,1,2, … . (𝐿 − 1).
Precompute �̃�𝑙(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦∈𝕐𝑙 , ∀ 𝑙 and 𝑥

Precompute �̃�(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦 , ∀ 𝑥

Precompute �̃�0(𝑥) = ∑ 𝑑(𝑦)𝐼0(𝑦)𝑦 , ∀ 𝑥

Precompute 𝑍0(𝑥) = {
log(

�̃�0(𝑥)

�̃�(𝑥)
)

�̂�𝐹𝐷𝐾(𝑥)
if
log(

�̃�0(𝑥)

�̃�(𝑥)
)

�̂�𝐹𝐷𝐾(𝑥)
< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛,

�̃�0(𝑥)

�̃�(𝑥)
> 1, �̂�𝐹𝐷𝐾(𝑥) > 0

2 × 𝑅𝑟𝑒𝑐𝑜𝑛 else

 ∀ 𝑥

For iteration: 𝑘 = 1,2,3, …. do

 for 𝑙 = 0,1,2, … . (𝐿 − 1) do

 �̂�(𝑘,𝑙)(𝑦) = 𝐼0(𝑦)exp (−∑ ℎ(𝑦|𝑥)�̂�(𝑘,𝑙)(𝑥)𝑦) for every 𝑦 ∈ 𝕐𝑙

 �̂�(𝑘,𝑙)(𝑥) = ∑ ℎ(𝑦|𝑥) �̂�(𝑘,𝑙)(𝑦)𝑦 ∀ 𝑥

�̂�(𝑘,𝑙+1)(𝑥) = argmin
𝜇(𝑥)≥0

�̃�(𝑘)(𝑥)(𝜇(𝑥) − �̂�(𝑘,𝑙)(𝑥)) +
�̂�(𝑘,𝑙)(𝑥)

𝑍(𝑘)(𝑥)
exp (−𝑍(𝑘)(𝑥)(𝜇(𝑥) −

�̂�(𝑘,𝑙)(𝑥))) +
𝜆

𝐿
 ∑

𝜔(𝑥,𝑥′)

2
𝛿2 (|

2𝜇(𝑥)−�̂�(𝑘,𝑙)(𝑥)−�̂�(𝑘,𝑙)(𝑥′)

𝛿
| − log (1 +𝑥′∈𝑁(𝑥)

|
2𝜇(𝑥)−�̂�(𝑘,𝑙)(𝑥)−�̂�(𝑘,𝑙)(𝑥′)

𝛿
|))

 end for

 �̂�(𝑘+1,0)(𝑥) = �̂�(𝑘,𝐿)(𝑥) ∀𝑥

 𝑍(𝑘+1)(𝑥) = {
log(

�̃�0(𝑥)

�̃�(𝑥)
)

�̂�(𝑘+1,0)(𝑥)
𝑖𝑓

log(
�̃�0(𝑥)

�̃�(𝑥)
)

�̂�(𝑘+1,0)(𝑥)
< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛,

�̃�0(𝑥)

�̃�(𝑥)
> 1, �̂�(𝑘+1,0)(𝑥) > 0

2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 𝑒𝑙𝑠𝑒

 ∀ 𝑥

end for

5.2 Experiments

To generate synthetic sinogram from the NCAT phantom image volume, we add a Poisson noise

to the forward projection data of the phantom image using equation (3.1). We use the NCAT

99

phantom image volume and MATLAB 2017b poissrnd function to generate our noisy estimation

of the sinogram. Noisy photon count data were generated by sampling a Poisson pdf with data

mean given by 𝑔(𝑦: 𝜇) from equation (3.1) where we have ignored the background intensity term

𝛽(𝑦). The parameters of the measured data and reconstructed images are shown in Table 5.1.

No. of views 13920

No. of detector channels 672

No. of detector rows 16

No. of image slices 164

No. of pixels/slice 512x512
Table 5.1 Parameters of measured data and image

To quantify the effects of the mismatch between the algorithm and the data models, we use PAE,

RMSE and SNR metrics defined in equation (3.62), (3.63) and (3.64) respectively.

5.3 Results

5.3.1 Phantom

Since we start our iterative algorithm with initial image estimate derived from the linear

reconstruction algorithms like FBP or FDK, we can use this initial image estimate to precompute

the initial values of the auxiliary variable. The value of 𝑍𝐹𝐷𝐾(𝑥) is shown in Fig. 5.1 (b) and 5.1

(d) for reconstructed data using NCAT phantom, where �̂�(𝑘+1)(𝑥) = �̂�𝐹𝐷𝐾(𝑥). The region of the

image with higher attenuation coefficients show a lower value of the auxiliary variable which in

turn results in higher update steps and vice-versa.

100

(a) (b)

(c) (d)

Fig. 5.1 (a) and (c) Linear attenuation coefficient map reconstructed with FDK algorithm for NCAT data in units of

mm−1. (b), (d) The values of the auxiliary variable for the corresponding image slice.

Fig. 5.2 Profile along the red dotted line depicted in Fig. 5.1 (c) for images reconstructed using 100 iterations of 5

OS of AM algorithm without (blue) and with (red) adaptive surrogate function.

101

(a) (b)

(c) (d)

Fig. 5.3 (a), (b) PAE in % vs iteration number for the NCAT phantom with. (c), (d) RMSE vs iteration number for

the NCAT phantom.

102

(a) (b)

(c) (d)

Fig. 5.4 (a) and (b) SNR vs iteration number for the NCAT phantom. (c) and (d) CNR for the structure in a green

dotted box in Fig. 5.1 (c) vs iteration number for the NCAT phantom.

5.3.2 Clinical Datasets

The clinical data were acquired on a Siemens Somatom Sensation 16 scanner (Siemens Medical

Solutions, Forchheim, Germany) without using the flying focal spot mode. The scanner acquires

1160 views per rotation, using a 16 row × 672 channel curved detector array. The distance

103

between the source and isocenter is 570 mm, and the distance between the source and detector is

1040 mm. A lung slice and an abdominal slice is shown in Fig. 5.5 (a) and 5.5 (b) respectively.

The value of 𝑍𝐹𝐷𝐾(𝑥) is shown in Fig. 5.5 (b) and 5.5 (d) for reconstructed data using Siemens

Sensation 16 scanner, where �̂�(𝑘+1)(𝑥) = �̂�𝐹𝐷𝐾(𝑥).

(a) (b)

(c) (d)

Fig. 5.5 (a) and (b) Linear attenuation coefficient map reconstructed with FDK algorithm for real data obtained from

Siemens Sensation 16 scanner in units of mm−1. (c) And (d) are the values of the auxiliary variable for the

corresponding image slices in units of mm.

104

(a) (b)

Fig. 5.6 Objective function values vs iteration number for Siemens Sensation 16 scanner reconstructed images (a)

without ordered subset implementation and with (blue) and without (red) adaptive auxiliary variable, and (b) with 5

ordered subset implementations and with (blue) and without (red) adaptive auxiliary variable.

5.3.3 Convergence Rate

The RMSE and PAE values (defined in equation (3.62) and (3.63) respectively) for the phantom

reconstruction shows 2X increase in the convergence rate. The increase in convergence rate is

estimated from the Fig. 5.3, 5.4 and 5.6, by comparing the number of iterations needed by the

standard AM algorithm and the adaptive surrogate function based AM algorithm to reach the same

values of the objective function or another image quality metric. The objective function value also

shows a 2X increase in the convergence rate for the clinical dataset as well. Even with the addition

of OS, we can still achieve the same amount of acceleration in convergence rate. However, for

higher OS like 29 OS, the rate of acceleration slows down faster than other OS configurations. The

main reason for this change can be attributed to the fact that the adaptive surrogate function is not

updated for a significant number of image update steps in 29 OS configurations.

105

5.4 Discussion

In this chapter, we have proposed a novel approach to adaptively compute the additive step in the

AM algorithm. We have observed that our approach of using adaptive auxiliary variable combined

with OS creates no extra computation cost compared to the straightforward implementation of the

OS-AM algorithm. From the image quality assessment parameters, we can conclude that our

proposed adaptive auxiliary variable technique shows an average of 2X increase in convergence

rate for every OS configuration. We can expect to achieve further acceleration with the addition

of other acceleration methods like Nesterov's momentum-based acceleration techniques.

106

Chapter 6: Dual-energy AM Reconstruction

Algorithm Using GPU

Dual-energy X-ray CT (DECT) reconstruction algorithms have the potential to improve the image

contrast and reduce the artifacts [80, 81], which can be highly useful in different clinical

applications including radiation dose reduction [82], material decomposition [83, 84] and energy

selective imaging. In proton therapy dose prediction analysis, the stopping power of high energy

proton beam depends on the estimates of electron density and mean excitation energy. The electron

density and the mean excitation energy is derived from a mono-energy estimation of X-ray CT

scanning introduces uncertainties due to the beam hardening effect and the method by which the

electron density is converted to CT number. Mono-energy estimation fail to disambiguate the

Hounsfield unit (HU) degeneracy on density and tissue composition. In order to accurately

estimate these parameters, Dual-energy CT (DECT) image reconstructions are widely used in this

domain [85-89]. DECT has the potential to reduce range uncertainties by estimating two

independent parameters, which can resolve the dependence of photon stopping power on density

and tissue composition.

The dual-energy alternating minimization (DE-AM) described in this chapter is an extension of

the AM algorithm proposed by O’Sullivan and Benac [1] and discussed in Chapter 3. Simulated

data reconstructed in this chapter consists of four inserts suspended in water with calcium chloride

and polystyrene used as basis vector material. The DE-AM algorithm combined with ordered

subsets produced slow convergence rate along with high computational time.

107

Motivated by studies demonstrating the slow convergence of the DE-AM algorithm, we have

proposed a novel adaptive auxiliary variable based acceleration step which estimates an aggressive

update step based on the initial estimate computed using the linear analytical methods like FDK.

We have applied this acceleration method to simulated data generated using Siemens Sensation 16

helical scan geometry. Along with algorithmic acceleration steps, we have also proposed fast-

parallel multi-GPU based computation of dual-energy alternating minimization algorithm.

6.1 Dual-energy AM Algorithm

At the basis of our statistical model, we assume that the photons arrive at the detectors in

accordance with a Poisson counting process. Let the 3-D image volume of linear attenuation

coefficients (in mm−1) be represented by the vector 𝜇. Let 𝑦 denote a ray path between the X-ray

source and a pixel in the multi-row detector array, 𝑥 denote a voxel in the image volume and X-

ray spectra by 𝑗 ∈ {1,2}. The measured transmission data, 𝑑𝑗(𝑦), is modeled as originating from

independent Poisson counting processes. In discretized form, the mean value of 𝑔𝑗(𝑦: 𝜇) is

 𝑔𝑗(𝑦: 𝜇) =∑𝐼0𝑗(𝑦, 𝐸)exp [−∑ℎ(𝑦|𝑥)𝜇(𝑥, 𝐸)

𝑥

]

𝐸

+ 𝛽𝑗(𝑦), (6.1)

where the outer sum is over discrete energies of the X-ray photons. 𝐼0𝑗(𝑦, 𝐸) is the mean number

of counts in the absence of an attenuating medium for X-ray photon energy 𝐸 (nominally with

units of keV), 𝛽𝑗(𝑦) is the mean number of background events assumed to be nonnegative and

known. The summation in the exponent represents the forward projection of the attenuation

function. The system matrix elements ℎ(𝑦|𝑥) comprise the appropriately discretized point-spread

108

function relating the projection space to the image space. If projection 𝑦 does not pass through

voxel 𝑥, then ℎ(𝑦|𝑥) is zero. The attenuation function 𝜇(𝑥, 𝐸) (in mm−1) is indexed by image

space coordinates, 𝑥, and by X-ray photon energy, 𝐸. We envision a small number, 𝑀, of different

types of materials indexed by 𝑚,

 𝜇(𝑥, 𝐸) = ∑ 𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑀

𝑚=1

 (6.2)

with known linear attenuation coefficients 𝜇𝑚(𝐸) in mm−1 and relative partial densities 𝑐𝑚(𝑥)

[90]. This two parameter Basis vector model (BVM) assumes that attenuation coefficients of

unknown materials are linear combinations of the corresponding radiological quantities of

dissimilar basis substances i.e. polystyrene, calcium chloride [91]. For pure linear combinations,

the relative partial densities are nonnegative and sum to one. Our model allows the values of

𝑐𝑚(𝑥) to be nonnegative, and does not enforce a sum constraint in order to allow the 𝜇𝑚(𝐸) to

merely span the set of allowable attenuation functions 𝜇(𝑥, 𝐸). Our model for 𝜇(𝑥, 𝐸) in equation

(6.2) is equivalent to having terms (𝜇 𝜌⁄)(𝑥, 𝐸)𝜌(𝑥, 𝐸), where (𝜇 𝜌⁄)(𝑥, 𝐸) is the mass attenuation

coefficient (usually given in cm2 g⁄ and 𝜌(𝑥, 𝐸) is the partial density (in g cm3⁄ , with ℎ(𝑦|𝑥) in

cm) of the m−th constituent. The model (6.2) is related to others in the literature [4, 92-95].

For our Alternating minimization (AM) algorithm, we use the maximum-likelihood solution

derived by O’Sullivan and Benac [1]. The problem was formulated as the double minimization of

an I-divergence over a linear and exponential family, thereby resulting in a closed-form update for

each iteration. The objective function to be minimized for the poly-energetic case is

109

 𝐼[𝑑||𝑔] ≜∑∑[𝑑𝑗(𝑦) log (
𝑑𝑗(𝑦)

𝑔𝑗(𝑦: 𝜇)
⁄)+𝑔𝑗(𝑦: 𝜇) − 𝑑𝑗(𝑦)]

𝑦

2

𝑗=1

. (6.3)

The objective function presented in (6.3) can’t be optimized directly over 𝜇 since the optimization

space is large. One of the best approaches is to develop surrogate functions that approximate the

original function at every iteration and are easy to minimize. This approach leads to iterative

algorithms where different surrogate functions are formed and solved at each iteration and yet the

original function decreases monotonically. The decoupled objective function as derived in

Appendix B is:

Î[𝑑||𝑔; 𝑐, �̂�] = ∑∑∑∑∑ [�̂�𝑗
(𝑘)(𝑦, 𝐸)𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝑐𝑚(𝑥)

𝑀

𝑚=1𝑥𝑦

2

𝑗=1𝐸

+
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑍𝑚(𝑥)
�̂�𝑗
(𝑘)(𝑦, 𝐸)exp (−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − �̂�𝑚

(𝑘)(𝑥)))] .

(6.4)

We define the forward projection of current image estimate at energy level 𝐸, �̂�(𝑘)(𝐸) as:

 �̂�𝑗
(𝑘)(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp [−∑∑ ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑀

𝑚=1𝑥

]. (6.5)

The data forward projection is defined as:

 �̂�𝑗
(𝑘)(𝑦, 𝐸) = �̂�𝑗

(𝑘)(𝑦, 𝐸)
𝑑𝑗(𝑦)

∑ �̂�𝑗
(𝑘)(𝑦, 𝐸′)𝐸′

. (6.6)

Next the back projections �̂�𝑗
(𝑘)(𝑥, 𝐸) and �̃�𝑗

(𝑘)(𝐸) of the current estimates �̂�𝑗
(𝑘)(𝑦, 𝐸) and �̂�𝑗

(𝑘)(𝑦, 𝐸)

are calculated as:

110

 �̃�𝑗,𝑚
(𝑘)
(𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝐸𝑦

�̂�𝑗
(𝑘)(𝑦, 𝐸) (6.7)

 �̂�𝑗,𝑚
(𝑘)(𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝐸𝑦

�̂�𝑗
(𝑘)(𝑦, 𝐸). (6.8)

If we replace the estimates from equations (6.7) and (6.8) to equation (6.4), we can rewrite our

data fit term surrogate function as:

Î[𝑑||𝑔; 𝑐, �̂�] = ∑∑∑ [𝑐𝑚(𝑥)�̃�𝑗,𝑚
(𝑘)(𝑥)

𝑀

𝑚=1𝑥

2

𝑗=1

+
�̂�𝑗,𝑚
(𝑘)(𝑥)

𝑍𝑚(𝑥)
exp (−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − �̂�𝑚

(𝑘)(𝑥)))] .

(6.9)

In order to derive the closed form solution of the surrogate function presented equation (6.9), we

equate its derivative w.r.t. 𝑐𝑚(𝑥) to 0.

𝜕Î[𝑑||𝑔; 𝑐, �̂�]

𝜕𝑐𝑚(𝑥)
=∑�̃�𝑗,𝑚

(𝑘)
(𝑥) − �̂�𝑗,𝑚

(𝑘)(𝑥)exp (−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − �̂�𝑚
(𝑘)(𝑥)))

2

𝑗=1

= 0, (6.10)

 ⇒ 𝑐𝑚(𝑥) = [�̂�𝑚
(𝑘)(𝑥) −

1

𝑍𝑚(𝑥)
log (

∑ �̃�𝑗,𝑚
(𝑘)
(𝑥)2

𝑗=1

∑ �̂�𝑗,𝑚
(𝑘)2

𝑗=1 (𝑥)
)]. (6.11)

Finally, the updated estimate, �̂�𝑚
(𝑘+1)(𝑥), is calculated iteratively in closed form solution,

 �̂�𝑚
(𝑘+1)(𝑥) ≜ [�̂�𝑚

(𝑘)(𝑥) −
1

𝑍𝑚(𝑥)
log (

∑ �̃�𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

∑ �̂�𝑗,𝑚
(𝑘)2

𝑗=1 (𝑥)
)]. (6.12)

111

The function 𝑍𝑚(𝑥) is a precomputed normalization function, which can be freely chosen subject

to the constraints reviewed by O’Sullivan et al.[1]

 𝑍𝑚(𝑥) = 𝑍 = max
𝑦,𝐸

∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝑥𝑚

. (6.13)

Since it’s an ill-posed inverse problem, we add a penalty term, 𝑅(𝜇), to the objective function used

in the AM reconstruction, and weight it by a regularization parameter 𝜆, where 𝜆 is a scalar that

reflects the amount of smoothing desired. A larger value will give emphasis to the penalty term

(i.e., the prior expectation that the image will be smooth), whereas a smaller value will give more

emphasis to the I-divergence term (i.e., the discrepancy between the measured data and the data

estimated by the model). The added penalty term is defined as

 𝑅(𝜇(𝑥)) = 𝜆 ∑ 𝜔(𝑥, 𝑥′)𝜓(𝜇(𝑥) − 𝜇(𝑥′))

𝑥′∈𝑁(𝑥)

, (6.14)

where 𝑅(𝜇) can be interpreted as the log-likelihood term for some prior. For 3-D regularization,

we use the 26-voxel neighborhood 𝑁(𝑥) surrounding voxel 𝑥. The weights 𝜔(𝑥, 𝑥′) control the

relative contribution of each neighbor. The potential function 𝜓(𝑡) is a symmetric convex function

that penalizes the difference between the values of neighboring voxels. For computational

simplicity, we use a modified potential function used by Lange [37]

 𝜓(𝑡) ≜ 𝛿2 [|
𝑡

𝛿
| − log (1 + |

𝑡

𝛿
|)], (6.15)

where δ is a parameter that controls the transition between a quadratic region (for smaller

|
𝜇(𝑥)−𝜇(𝑥′)

𝛿
|) and a linear region (for larger |

𝜇(𝑥)−𝜇(𝑥′)

𝛿
|). For our specific reconstruction, we exclude

112

a few image slices from the beginning and end in the penalty calculation because those slices will

have severe artifacts due to cone-beam truncation. Calculating the penalty for those slices could

negatively impact reconstruction of the inner slices since the artifacts do not any type of structure

that can meaningfully be penalized by 𝑅(𝜇). The overall problem is then to find the penalized-

likelihood estimate,

 𝜇𝑃𝑀𝐿
∗ = argmin

𝜇≥0
I[𝑑||𝑔(𝜇)] + 𝜆𝑅(𝜇), (6.16)

where 𝜆 is a scalar value that controls the desired smoothness. This approach is also called

penalized maximum likelihood estimation. It is worth noting that (6.3) is a special case of (6.16)

when 𝜆 = 0.

Implementation of the Regularized DEAM Algorithm

The decoupling steps provide an iterative algorithm that is guaranteed to decrease the objective

function monotonically. Also, it creates many one-parameter convex functions (one for each

voxel) that can be minimized in parallel using GPU threads. The pseudocode for the regularized

AM algorithm is shown in Algorithm 6.1.

113

Algorithm 6.1 Regularized DE-AM algorithm

Input: �̂�m
0 (𝑥) ∈ ℝ+

𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ×max
𝐸
∑ 𝜇𝑚(𝐸)𝑚 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 > 0.

for 𝑘 = 1,2,3, … do

 �̂�𝑗
𝑘(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp[−∑ 𝜇𝑚(𝐸)𝑚 ∑ ℎ(𝑦|𝑥)�̂�𝑚

𝑘 (𝑥)𝑥]

 �̂�𝑗
(𝑘)(𝑦, 𝐸) = �̂�𝑗

(𝑘)(𝑦, 𝐸)
𝑑𝑗(𝑦)

∑ �̂�𝑗
(𝑘)(𝑦,𝐸′)𝐸′

 �̃�𝑗,𝑚
𝑘 (𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 �̂�𝑗

(𝑘)(𝑦, 𝐸)

 �̂�𝑗,𝑚
𝑘 (𝑥)=∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 �̂�𝑗

(𝑘)(𝑦, 𝐸)

 �̂�𝑚
𝑘+1(𝑥) = argmin

𝑐𝑚(𝑥)≥0
∑ �̃�𝑗,𝑚

𝑘 (𝑥)(𝑐𝑚(𝑥) − �̂�𝑚
𝑘 (𝑥)) + ∑

�̂�𝑗,𝑚
𝑘 (𝑥)

𝑍
exp(−𝑍(𝑐𝑚(𝑥) −

2
𝑗=1

2
𝑗=1

 �̂�𝑚
𝑘 (𝑥))) + 𝜆∑

𝜔
𝑥𝑥′

2
𝛿2 (|

2𝑐𝑚(𝑥)−𝑐�̂�
𝑘 (𝑥)−𝑐�̂�

𝑘 (𝑥′)

𝛿
| − log (1 + |

2𝑐𝑚(𝑥)−𝑐�̂�
𝑘 (𝑥)−𝑐�̂�

𝑘 (𝑥′)

𝛿
|))𝑥′∈𝑁𝑥

end for

Acceleration methods

Ordered Subsets

Ordered subsets is a widely-used technique to increase the convergence speed by using a subset of

data at each sub-iteration. The subsets are constructed to be balanced, disjoint, and exhaustive. If

the data is partitioned into L number of subsets, at sub-iteration 𝑙, a surrogate function for the data-

fitting term with only data indices in the corresponding subset is created and minimized with a

proportional regularization term. Since the original data-fitting term for which we create surrogate

functions changes at each iteration, there is no guaranteed convergence. Denoting all source-

detector pairs as 𝕐 and source-detector pairs in subset 𝑙 as 𝕐𝑙 for 𝑙 = 0,1, … , (𝐿 − 1), the

regularized ordered subsets algorithm (OS-AM) is presented in Algorithm 6.2.

114

Algorithm 6.2 Regularized DE-AM algorithm with ordered subsets

Input: ĉm
0 (𝑥) ∈ ℝ+

𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ×max
𝐸
∑ 𝜇𝑚(𝐸)𝑚 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 >

0, 𝕐𝑙 ∀ 𝑙 = 0,1, … (𝐿 − 1).

for 𝑘 = 1,2,3,…. do

 for 𝑙 = 0,1,2, … . (𝐿 − 1) do

 �̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp[−∑ 𝜇𝑚(𝐸)𝑚 ∑ ℎ(𝑦|𝑥)�̂�𝑚

(𝑘,𝑙)
(𝑥)𝑥]

 �̂�𝑚
(𝑘,𝑙)

(𝑥) =∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 �̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸)

 �̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸) = �̂�𝑗

(𝑘,𝑙)(𝑦, 𝐸)
𝑑𝑗
𝑙(𝑦)

∑ �̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸′)𝐸′

 �̃�𝑗,𝑚
𝑘 (𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 �̂�𝑗

(𝑘,𝑙)(𝑦, 𝐸)

 �̂�𝑚
𝑘+1(𝑥) = argmin

𝑐𝑚(𝑥)≥0
�̃�𝑚
𝑙 (𝑥)(𝑐𝑚

(𝑘,𝑙)
(𝑥) − �̂�𝑚

(𝑘,𝑙)
(𝑥)) +

�̂�𝑚
(𝑘,𝑙)

 (𝑥)

𝑍
exp (−𝑍(𝑐𝑚

(𝑘,𝑙)
(𝑥) −

 �̂�𝑚
(𝑘,𝑙)

(𝑥))) +𝜆∑
𝜔
𝑥𝑥′

2
𝛿2 (|

2𝑐𝑚
(𝑘,𝑙)

(𝑥)−𝑐�̂�
(𝑘,𝑙)

(𝑥)−𝑐�̂�
(𝑘,𝑙)

(𝑥′)

𝛿
| − log (1 +𝑥′∈𝑁𝑥

 |
2𝑐𝑚

(𝑘,𝑙)
(𝑥)−𝑐�̂�

(𝑘,𝑙)
(𝑥)−𝑐�̂�

(𝑘,𝑙)
(𝑥′)

𝛿
|))

 end for

 �̂�𝑚
(𝑘+1,0)(𝑥) = �̂�𝑚

(𝑘,𝐿)(𝑥)

end for

6.2 Adaptive Auxiliary Variable for Dual Energy

The AM algorithm in closed form solution yields additive updates for the linear attenuation

coefficient values with step sizes or auxiliary variables that are chosen to guarantee convergence.

This guaranteed convergence criterion results in step sizes that are unnecessarily conservative. For

115

the derivation of these so-called adaptive auxiliary variables, we start with data fit term surrogate

function

Î[𝑑||𝑔; 𝑐, �̂�] = ∑∑∑ [𝑐𝑚(𝑥)�̃�𝑗,𝑚
(𝑘)(𝑥)

𝑀

𝑚=1𝑥

2

𝑗=1

+
�̂�𝑗,𝑚
(𝑘)(𝑥)

𝑍𝑚(𝑥)
exp(−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − �̂�𝑚(𝑥)))] .

(6.17)

The derivative of this function with respect to 𝑐𝑚(𝑥) would be,

𝜕Î[𝑑||𝑔; 𝑐, �̂�]

𝜕𝑐𝑚(𝑥)
=∑�̃�𝑗,𝑚

(𝑘)(𝑥) − �̂�𝑗,𝑚
(𝑘)(𝑥)exp(−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − �̂�𝑚(𝑥)))

2

𝑗=1

= 0.

(6.18)

Now if we equate our previous estimate to be �̂�𝑚(𝑥) = 0, we can write

 �̂�𝑗,𝑚
(𝑘)(𝑥)|

𝑐�̂�(𝑥)=0
=∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)

𝐸𝑦

. (6.19)

Our current estimate 𝑐𝑚(𝑥) at 𝑘-th iteration is �̂�𝑚
(𝑘)(𝑥) and estimate of 𝑍𝑚(𝑥) at 𝑘-th iteration is

𝑍𝑚
(𝑘)(𝑥). As a result, we can write

𝜕Î[𝑑||𝑔;𝑐,𝑐̂]

𝜕𝑐𝑚(𝑥)
|
𝑐𝑚(𝑥)=𝑐�̂�

(𝑘)
(𝑥),𝑐�̂�(𝑥)=0

= 0 ∀ 𝑥 and 𝑚 = 1. . . 𝑀, (6.20)

116

⟹∑�̃�𝑗,𝑚
(𝑘)(𝑥)

2

𝑗=1

−∑∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)

𝐸𝑦

exp (−𝑍𝑚(𝑥)�̂�𝑚
(𝑘)(𝑥))

2

𝑗=1

= 0,

(6.21)

⟹ 𝑍𝑚

(𝑘)(𝑥) =

log (
∑ ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)𝐸𝑦
2
𝑗=1

∑ �̃�𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

�̂�𝑚
(𝑘)(𝑥)

 ∀ 𝑥 and 𝑚.
(6.22)

We can also rewrite the numerator as follows:

 �̃�0𝑗,𝑚(𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)

𝐸𝑦

, (6.23)

⟹ 𝑍𝑚

(𝑘)(𝑥) =

log (
∑ �̃�0𝑗,𝑚(𝑥)
2
𝑗=1

∑ �̃�𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

�̂�𝑚
(𝑘)(𝑥)

 ∀ 𝑥 and 𝑚 = 1. . . 𝑀.
(6.24)

If we put constraints then we can rewrite adaptive auxiliary variable as

 𝑍𝑚
(𝑘)(𝑥) =

{

 log(

∑ �̃�0𝑗,𝑚(𝑥)
2
𝑗=1

∑ �̃�𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

�̂�𝑚
(𝑘)(𝑥)

𝑖𝑓

log (
∑ �̃�0𝑗,𝑚(𝑥)
2
𝑗=1

∑ �̃�𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

�̂�𝑚
(𝑘)(𝑥)

< 𝑍,

Z 𝑒𝑙𝑠𝑒

 (6.25)

where

 𝑍 = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ∗ max
𝐸
∑𝜇𝑚(𝐸)

𝑚

. (6.26)

The OS-DE-AM algorithm with adaptive step-size is presented in Algorithm 6.3.

117

Algorithm 6.3 Regularized OS-DE-AM algorithm with adaptive auxiliary variable

Input: ĉm
(0,0)

(𝑥) ∈ ℝ+
𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ×max

𝐸
∑ 𝜇𝑚(𝐸)𝑚 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 > 0,

𝕐𝑙 ∀ 𝑙 = 0,1, … (𝐿 − 1).

Precompute �̂�𝑗
0(𝑦, 𝐸) = �̂�𝑗

0(𝑦, 𝐸)
𝑑𝑗(𝑦)

∑ �̂�𝑗
0(𝑦,𝐸′)𝐸′

∀ 𝑗, 𝑦, 𝐸

Precompute �̃�𝑗,𝑚
(0)
(𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 �̂�𝑗

(0)(𝑦, 𝐸) ∀ 𝑗, 𝑥,𝑚

Precompute �̃�0𝑗,𝑚(𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)𝐸𝑦 ∀ 𝑗, 𝑥,𝑚

Precompute 𝑍𝑚
(0)(𝑥) =

{

 log(
∑ �̃�0𝑗,𝑚(𝑥)2
𝑗=1

∑ �̃�
𝑗,𝑚
(0)

(𝑥)2
𝑗=1

)

𝑐�̂�
(𝐹𝐷𝐾)

(𝑥)
𝑖𝑓

log(
∑ �̃�0𝑗,𝑚(𝑥)2
𝑗=1

∑ �̃�
𝑗,𝑚
(0)

(𝑥)2
𝑗=1

)

𝑐�̂�
(𝐹𝐷𝐾)

(𝑥)
< 𝑍 ∀ 𝑥 and 𝑚

Z 𝑒𝑙𝑠𝑒

for 𝑘 = 1,2,3,…. do

 for 𝑙 = 0,1,2, … . (𝐿 − 1) do

 �̂�𝑗
(𝑘,𝑙)

(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp[−∑ 𝜇𝑚(𝐸)𝑚 ∑ ℎ(𝑦|𝑥)�̂�𝑚
(𝑘,𝑙)

(𝑥)𝑥]

 �̂�𝑚
(𝑘,𝑙)

(𝑥) =∑ ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 �̂�𝑗
(𝑘,𝑙)

(𝑦, 𝐸)2
𝑗=1

 �̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸) = �̂�𝑗

(𝑘,𝑙)(𝑦, 𝐸)
𝑑𝑗
𝑙(𝑦)

∑ �̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸′)𝐸′

 �̃�𝑚
(𝑘,𝑙)

(𝑥) = ∑ ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 �̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸)2

𝑗=1

�̂�𝑚
𝑘+1(𝑥) = argmin

𝑐𝑚(𝑥)≥0
�̃�𝑚
(𝑘,𝑙)

(𝑥)(𝑐𝑚
(𝑘,𝑙)

(𝑥) − �̂�𝑚
(𝑘,𝑙)

(𝑥)) +
�̂�𝑚
(𝑘,𝑙)

 (𝑥)

𝑍
exp (−𝑍(𝑐𝑚

(𝑘,𝑙)
(𝑥) −

�̂�𝑚
(𝑘,𝑙)

(𝑥))) + 𝜆∑
𝜔
𝑥𝑥′

2
𝛿2 (|

2𝑐𝑚
(𝑘,𝑙)

(𝑥)−𝑐�̂�
(𝑘,𝑙)

(𝑥)−𝑐�̂�
(𝑘,𝑙)

(𝑥′)

𝛿
| − log (1 +𝑥′∈𝑁𝑥

|
2𝑐𝑚

(𝑘,𝑙)
(𝑥)−𝑐�̂�

(𝑘,𝑙)
(𝑥)−𝑐�̂�

(𝑘,𝑙)
(𝑥′)

𝛿
|))

 end for

 �̂�𝑚
(𝑘+1,0)(𝑥) = �̂�𝑚

(𝑘,𝐿)(𝑥)

 �̃�𝑗,𝑚
𝑘 (𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝐸𝑦

�̂�𝑗
𝑘(𝑦, 𝐸)

 𝑍𝑚
(𝑘+1)(𝑥) =

{

 log(
∑ �̃�0𝑗,𝑚(𝑥)2
𝑗=1

∑ �̃�
𝑗,𝑚
(𝑘)

(𝑥)2
𝑗=1

)

𝑐�̂�
(𝑘+1,0)

(𝑥)
𝑖𝑓

log(
∑ �̃�0𝑗,𝑚(𝑥)2
𝑗=1

∑ �̃�
𝑗,𝑚
(𝑘)

(𝑥)2
𝑗=1

)

𝑐�̂�
(𝑘+1,0)

(𝑥)
< 𝑍 ∀ 𝑥 and 𝑚

Z 𝑒𝑙𝑠𝑒

end for

118

6.3 GPU Implementation

In order to utilize this parallel architecture of GPU devices, we have presented a scheme to

compute the energy integrating incident photon intensity in Algorithm 6.4.

Algorithm 6.4 Multi-GPU based computation of incident photon intensity

Input: ∑ ℎ(𝑦|𝑥)�̂�𝑚
(𝑘,𝑙)

(𝑥)𝑥 ∈ ℝ+
𝑀 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝕐𝑙 ∀ 𝑙 = 0,1, … (𝐿 − 1).

Begin parallel region for every element in measurement array

For every energy 𝐸 do

�̂�𝑗
(𝑘,𝑙)

(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp [−∑𝜇𝑚(𝐸)

𝑚

∑ℎ(𝑦|𝑥)�̂�𝑚
(𝑘,𝑙)

(𝑥)

𝑥

]

𝑝�̂�𝑗
(𝑘,𝑙)(𝑦, 𝐸) = �̂�𝑗

(𝑘,𝑙)(𝑦, 𝐸)𝑑𝑗
𝑙(𝑦)

𝑝�̂�𝑗
(𝑘,𝑙)(𝑦)+= 𝜇𝑚(𝐸)𝑝�̂�𝑗

(𝑘,𝑙)(𝑦, 𝐸)

𝑞�̂�𝑗
(𝑘,𝑙)(𝑦)+= 𝜇𝑚(𝐸)�̂�𝑗

(𝑘,𝑙)
(𝑦, 𝐸)

𝑞�̂�𝑗
(𝑘,𝑙)(𝑦)+= �̂�𝑗

(𝑘,𝑙)
(𝑦, 𝐸)

End for

𝑝�̂�𝑗
(𝑘,𝑙)(𝑦) = 𝑝�̂�𝑗

(𝑘,𝑙)(𝑦)
1

𝑞�̂�𝑗
(𝑘,𝑙)(𝑦)

End Parallel Region

�̃�𝑗,𝑚
(𝑘,𝑙)(𝑥) =∑ℎ(𝑦|𝑥)𝑝�̂�𝑗

(𝑘,𝑙)(𝑦)

𝑦

�̂�𝑗,𝑚
(𝑘,𝑙)(𝑥) =∑ℎ(𝑦|𝑥)𝑞�̂�𝑗

(𝑘,𝑙)(𝑦)

𝑦

119

GPU devices accelerate computational performance when each thread in the device perform an

independent operation on an independent element of an array. The absence of device and thread

synchronization yield the fastest acceleration. In the pseudocode mentioned above, each of the N-

GPUs operates on 1 𝑁⁄ -times the measured data. Each thread of each GPU operates on independent

elements of the measured data which eliminates the slowdown related to GPU thread

synchronization. We can store the whole projection data on TITAN X GPU texture memory for

fast read only memory access. We can use local memory to store the accumulation values of each

energy and equate the value to projection element array stored in global memory. Since each GPU

thread writes data on independent and unique elements in projection array, this mitigates the need

of atomic operations which speeds up the computation. The most computationally intensive parts

are still the projection and backprojection operations. However, we use the same parallelization

techniques mentioned in Chapter 3 to accelerate our reconstruction.

6.4 Experiments and Reconstructions

We have used a water phantom with four insets depicted in Fig. 6.1 as a benchmark for determining

the timing performance of our multi-threaded CPU and multi-GPU implementation. For the entire

data volume using 13920 views, 672 × 16 detector elements, the total computational time of this

energy-dependent accumulation for 120 individual energies are 0.12 seconds compared to 20

seconds for baseline CPU implementation. The wall clock time to run one iteration of AM

algorithm without ordered subset on a standalone CPU core without multi-threading was 433

seconds for every projection and 435 seconds for every backprojection with a total time of 1782

120

seconds. On the other hand, if we compiled the code with OpenMP using 8 cores with 2

hyperthreads per core, the total time for a single iteration reduced to 384 seconds. Using the Intel

Thread Profiler, we have determined that in case of our multithreaded CPU implemention, 96.2%

of the execution time was in parallel while the rest was spent in barrier method based

synchronization over different threads. This profiler result confirms the efficacy of our load

balancing scheme within each iteration.

(a) (b)

Fig. 6.1 The phantom linear attenuation coefficient image in 𝑚𝑚−1 at (a) 53 keV and at (b) 70 keV with four inserts

(from the top, a clockwise direction) PMMA, ethanol, methyl ethyl ketone (MEK), and calcium chloride.

Operations

Execution Time (seconds)
Single-

threaded
CPU

16-threaded
CPU

Single GPU Multi GPU

Pre- accumulation (× 2) 8.1 × 2 1.7× 2 0.570 × 2 0.21× 2
Projection (× 2) 433 × 2 92× 2 15× 2 4.7× 2
Exponentiation 20 4 0.37 0.12

Backprojection (× 2) 435× 2 95× 2 22× 2 7.6× 2
Image Update (× 2) 4.8× 2 1.2× 2 0.17× 2 0.06× 2

Total 1781.8 383.8 75.85 25.26
Table 6.1 Execution times by using different CPU and GPU configurations for a single iteration of DE-AM

algorithm

121

X-rays emitted from tubes are not monoenergetic, instead, the distribution of the photon energies

obeys a spectrum [96, 97]. Figure 6.2 shows incident X-ray spectrum corresponding to 90 kVp

and 140 kVp. The photons at lower energies are more likely to be absorbed as the linear attenuation

coefficient of the material is higher for low photon energies. Therefore, as photons penetrate

through an object, the mean photon energy coming out of the object is higher. This is referred as

beam hardening phenomenon and it is the source of many image artifacts, such as cupping artifact

and streaking artifact.

All 3-D images presented in Fig. 6.1 are 512 × 512 × 164 in size with pixel size of 1mm ×

1mm × 1mm. All 3-D simulations use 𝐼0 = 100000 which corresponds to the number of

unattenuated photons. The two component materials used are calcium chloride (𝑐1(𝑥)) and

polystyrene (𝑐2(𝑥)). The attenuation coefficient spectra for the two components are shown in

Figure 6.3. The initial images shown in Fig. 6.4 (a) and (b) are reconstructed with FDK algorithm

and then converted to component coefficient images. The coefficients for the conversion from

linear attenuation coefficient to component coefficeint are computed using water equivalent

attenuation corresponding to tube voltages 90 kVp and 140 kVp. From equation (6.6), we can

denote the forward projection of the data mean estimate as:

 �̃�𝑗
(𝑘)(𝑦) =∑𝐼0𝑗(𝑦, 𝐸)exp [−∑ℎ(𝑦|𝑥)𝜇𝑤𝑎𝑡𝑒𝑟(𝐸, 𝑥)

𝑥

]

𝐸

, (6.26)

where 𝜇𝑤𝑎𝑡𝑒𝑟(𝐸, 𝑥) is the energy dependent attenuation coeffiecient map in mm−1 for a phantom

image made of water. Now we can perform backprojections of �̃�𝑗
(𝑘)(𝑦) using FDK algorithm for

122

the 90 kVp and 140 kVp spectra. From the NIST X-Ray Mass Attenuation Coefficient table for

water, we can estimate the two corresponding keV energy bins where the attenuation coefficient

of water is approximately equal to our FDK reconstruction for the two energy spectra. For our

specific spectra shown in Fig. 6.2, 55 keV and 70 keV are the two water equivalent energy bins

for the 90 kVp and 140 kVp spectra respectively. For these two energy bins, we use the

corresponding attenuation coefficients of calcium chloride and polystyrene and use BVM

described in equation (6.2) to estimate the initial 𝑐1
𝐹𝐷𝐾(𝑥) and 𝑐2

𝐹𝐷𝐾(𝑥) images shown in Fig. 6.4

(a) and (b).

 Figure 6.4 (c) and (d) give the reconstructed component images obtained by using 400 iterations

of 5 OS unregularized DE-AM algorithm with noiseless data. Unregularized DE-AM algorithm

produce images with a large bias for the estimations of high density material Calcium Chloride as

shown in Fig. 6.4 (c) and (d). Higher standard deviations are observed for edge regions of 𝑐1(𝑥)

and reconstructions for 𝑐2(𝑥) tend to have more uniform standard deviations over the whole

region, except for calcium chloride and PMMA, which have relatively higher attenuation

coefficients. In Fig. 6.5, we have plotted the RMSE value between ideal phantom image and 29

OS-DE-AM reconstructed image for different energy bins. The RMSE value for Calcium chloride

and PMMA are higher compared to all other materials due to their relatively higher attenuation

coefficients.

123

Fig. 6.2 Incident spectra

Fig. 6.3 Attenuation coefficient of the component materials

124

(a) (b)

(c) (d)

Fig. 6.4 Initial (a) 𝑐1(𝑥) and (b) 𝑐2(𝑥) component images reconstructed using FDK algorithm. (c) 𝑐1(𝑥) and (d)

𝑐2(𝑥) component images reconstructed using 400 iterations of 5 OS DE-AM algorithm.

 PMMA Ethanol MEK CaCl

𝑐1(𝑥) Image 6.9686 × 10−4 4.2806 × 10−4 3.7981 × 10−4 2.8867 × 10−4

𝑐2(𝑥) Image 5.6032 × 10−4 2.0106 × 10−4 1.7828 × 10−4 0.0041

Table 6.2 Variance of different materials in different component images

125

Fig. 6.5 Plot of RMSE between truth image and reconstructed image using 100 iterations of 29 OS DE-AM

algorithm vs different energy bins.

Fig. 6.6 Total objective function values vs iteration number for 5 OS implementations of the DE-AM algorithm.

126

6.5 Conclusion

In this chapter, DE-AM algorithms were used to reconstruct 3-D images from data simulated with

the geometry of the Siemens Sensation 16 scanner. We have shown significant improvement in

computational time compared to baseline CPU implementation. We have proposed a novel

approach to adaptively compute the additive step in the DE-AM algorithm. We have observed that

our approach of using adaptive auxiliary variable combined with OS creates no extra computation

cost compared to the straightforward implementation of the OS-AM algorithm. From the Fig. 6.6,

we can conclude that our proposed adaptive auxiliary variable technique shows an average of 2X

increase in convergence rate for 5 OS configuration.

127

Chapter 7: Deep Convolutional Neural

Network Based Denoising

In order to reduce the potential radiation risk, low-dose CT has gained increased attention in

medical imaging community. Currently, patients go through multiple X-ray CT scans during

image-guided radiation therapy, which elevates the potential risk for tissue damage and radiation-

induced cancer [98, 99]. However, simply lowering the radiation dose will significantly degrade

the image quality. Therefore, there is increasing demand for fast image reconstruction algorithms

that can produce higher quality images in clinically relevant time. In this chapter, we explore the

deep Convolutional neural network (CNN) as a noise reduction strategy for low-dose CT. A deep

convolutional neural network is used to map low-dose CT images towards its corresponding

normal-dose counterparts using recently proposed residual learning method [100]. Qualitative

results demonstrate a great potential of the proposed method for artifact reduction and structure

preservation. In terms of the quantitative metrics, the proposed method has shown a substantial

improvement on PSNR, RMSE, and SSIM than the competing state-of-art methods like Block

matching 3D (BM3D) [101] and Weighted nuclear norm minimization (WNNM) [102].

Furthermore, the speed of our method is significantly faster than the iterative and linear

reconstruction methods discussed in previous chapters.

128

7.1 Theory

7.1.1 Deep Neural Networks for X-ray Image Denoising

Most clinical X-ray CT scanners currently being used employ some version of analytical

reconstruction algorithms like FBP or FDK. However, in low-dose X-ray CT, the linear

reconstruction algorithms introduce severe artifacts typically due to beam hardening, photon

starvation, scatter and other causes which reduces the diagnostic reliability. Therefore, high quality

diagnostically relevant low-dose X-ray CT reconstruction is a topic of major research effort. In

previous chapters, we have observed that model-based image reconstruction problems perform

reliably well but they are still computationally expensive even with the introduction of multiple

GPUs in parallel. As a result, we have explored the possibility of leveraging the tremendous

potential of artificial intelligence especially deep convolutional neural networks to perform X-ray

CT image denoising.

The concept of the first feedforward supervised deep multilayer perceptron was introduced by

Alexey Ivakhnenko in 1965 [103]. Other researchers subsequently used deep learning in computer

vision, speech recognition problems, however, their application and adoption were somewhat

limited by the astronomically high computational cost. In 2009, NVIDIA was involved in what

was called the “big bang” of deep learning, as deep-learning neural networks were trained with

NVIDIA Graphics processing units (GPUs). GPUs speed up training algorithms by orders of

magnitude, reducing running times from weeks to days. In May 2016, IEEE Transactions on

Medical Imaging published a special issue on ‘‘Deep Learning in Medical Imaging’’ [104]

129

containing 18 special issue articles that outlined the tremendous potential of deep learning based

algorithms in the medical imaging domain. Over the year several researchers have tried to harness

the sophisticated pattern recognition power of deep networks and apply that to low-dose CT

denoising field [105-109]. Deep Convolutional Neural Network (CNN) can easily learn high

dimensional features through a hierarchical framework. The main advantage of this approach is

the low computational burden along with seamless integration with the post-processing workflow

from CT scanner reconstruction without ever accessing the sinogram itself.

In this work, we treat the learning problem as a discriminative one i.e. separating the noise from

the noisy image by feedforward CNN instead of learning over a generative adversarial model with

the predefined image prior. We use deep architecture to extract high-level image patterns and

characteristics [110], batch normalization [100, 111], and residual learning [111, 112] to speed up

our learning rate. We have also parallelized our algorithm and implemented it on NVIDIA TITAN

X GPUs to reduce computational time. The main advantage of our design is the use of residual

learning to learn and extract the pattern of noise itself instead of learning complex organ structures

typically present in X-ray CT images.

7.1.2 Residual Learning and Batch Normalization

The main motivation for the use of deep residual learning proposed by Kaiming et. al [112] stems

from the increased difficulty in training deeper networks. They reformulated their learning

problem as a residual function with reference to the layer inputs, instead of learning the

unreferenced function. With growing evidence in favor of residual mapping being easier to learn

130

rather than original unreferenced mapping, residual networks can learn residual mapping in a few

stacked layers thereby increasing training accuracy with increasing network depth. Leveraging this

residual network strategy, we can form deep CNN which can easily learn complex noise patterns

present in X-ray CT measurements arising from various factors like a cone-beam artifact, detector

edge response, beam hardening and scatter. In our approach, we use a single residual unit to predict

the residual image similar to the methods used by Kai Zhang et al. [111].

One of the major problems in training deep networks is the fact that the distribution of the internal

hidden network’s input changes during training which slows down learning rate and requires

careful initialization of parameters. The change in mean and standard deviation of the internal

hidden layer non-linearity input for each mini-batch during training is known as internal

covariance shift [100]. Batch Normalization (BN) is therefore used to reduce the internal

covariance shift by introducing a normalization step and performing the performing the

normalization for each mini batch of our training CNN model. Batch normalization has shown to

increase learning rate, quantitative accuracy and reduce overall dependence to accurate

initialization of parameters [100]. We have shown a schematic diagram of our batch normalization

implementation in Fig. 7.1. The “Layer” in Fig 7.1 can be any hidden layer in our network. The

output of this network is denoted by the vector 𝑥. The mean and standard deviation of this output

over a mini-batch can be represented by 𝜇 and 𝜎 respectively. The distribution of 𝑥 could change

over different mini-batch training which can introduce internal covariance shift. In order to solve

this problem, we add two other additional terms 𝛾 and 𝛽, which act as the new standard deviation

131

and mean over different mini-batches. Therefore, batch normalization only adds two extra

parameters per activation layer and they can be easily updated with back-propagation.

Fig. 7.1 Schematic diagram for batch normalization

We have proposed that addition of both batch normalization and residual learning can enhance the

Deep CNN performance on learning complex X-ray CT noise pattern and at the same time result

in the fast, robust and stable training regimen. In the subsequent chapters, we have discussed the

details of our training network and the performance of our network on simulated low-dose X-ray

CT noise.

7.1.3 Proposed Network Model

In this section, we discuss the rationale behind our proposed network architecture and training

parameters. Following the improved results from using very small (3 × 3) convolutions filters for

deep network architecture [113], we adopt this architecture instead of pooling layers. Therefore,

the size of our receptive field is (2𝐷 + 1) × (2𝐷 + 1) for a network of depth 𝐷. Higher receptive

depth field is advantageous in capturing high level X-ray CT image details and texture information.

For our general image denoising task, we set a receptive field size of 41 × 41 with corresponding

network depth of 20.

132

The input to our Deep CNN is a noisy low-dose X-ray CT reconstructed image denoted by 𝜇𝐿𝐷(𝑥),

where 𝑥 denotes the voxel indices. We can represent our noisy observation as follows

 𝜇𝐿𝐷(𝑥) = 𝜇𝐻𝐷(𝑥) + 𝛽(𝑥) (7.1)

where 𝜇𝐻𝐷(𝑥) is the equivalent high dose (clean) image and 𝛽(𝑥) is the added measurement noise.

The noise model is described in the following chapter but for our current analysis, we can assume

it as an additive noise model. Our deep CNN residual learning is trained on the residual mapping

𝛽(𝑥). We have used averaged mean squared error as our error estimate for training purposes

 ℇ(Θ) =
1

2𝑁
∑‖ℛ(𝜇𝐿𝐷(𝑥); Θ) − (𝜇𝐿𝐷(𝑥) − 𝜇𝐻𝐷(𝑥))‖

2
𝑁

𝑥=1

 (7.2)

where Θ denote all the training parameters, ℛ(∙) is the residual mapping function consisting of all

network layer weights and bias terms, ℇ(∙) is the error function, and 𝑁 is the total number of

voxels.

Fig. 7.2 The architecture of our proposed deep CNN

For a given depth D, we have three different layers shown in different colors in Fig. 7.2. The first

layer is called Conv+ReLU which stands for a combination of convolutional (Conv) and Rectified

Linear Unit (ReLU) layers. Each of these layers consists of a standard ReLU (max(0, .)) function

and 64 filters of size 3 × 3 used to generate 64 feature maps. Conv+BN+ReLU are the next

133

(𝐷 − 2) layers consisting of 64 filters of size 3 × 3 used to generate 64 feature maps, batch

normalization, and ReLU. The last Conv layer consists of a filter of size 3 × 3 to reconstruct the

residual image output.

For our optimization problem, we use a mini batch Stochastic gradient descent (SGD) method

known as ADAM [114]. The main advantage of using Adam’s SGD algorithm is that the

hyperparameters have intuitive interpretations and they require minimal tuning. Adam

optimization with batch normalization and residual learning paradigm have shown to produce

faster convergence and better denoising performance for Gaussian noise compared to other state-

of-the-art denoising networks [111].

7.2 Experiments

7.2.1 CT Noise Model

The noise model for this study was developed by Dr. Bruce R. Whiting with the support of the

NIH grant “Measuring the Impact of Noise on CT Readers”, 5-R01-EB019135-03. The overall

noise consists stochastic acquisition noise [38] (both quantum and electronic) since these kinds of

noise are directly related to radiation exposure. The basic acquisition noise model in sinogram

domain can be treated as a random point process due to little temporal and spatial correlation

between measurements [115, 116]. However, in X-ray CT image domain, the noise model is non-

local and correlated over many pixels, which makes the standard denoising algorithms like BM3D

and WNNM quite ineffective [117].

134

Fig. 7.3 Noise simulation flowchart

The amount of synthetic noise 𝛽 added to the high dose image is computed by equating the Noise

equivalent quanta (NEQ) of the target low-dose scan image (reduced by a predetermined factor 𝜌)

depicted by the LHS of equation (7.3) to the NEQ of the high dose depicted by the RHS of equation

(7.3) with some added noise 𝛽.

𝑞2

𝑞 + 𝛽(𝑔, 𝑑, 𝜌) + 𝛽𝑠
=

(𝑞𝜌)2

𝑞𝜌 + 𝛽𝑠
, (7.3)

where 𝑞 is the flux, 𝛽𝑠 is the system noise, 𝑔 is the gantry index, and 𝑑 is detector index. The

magnitude of 𝛽(𝑔, 𝑑, 𝜌) can be reformulated as done previously [118],

 𝛽(𝑔, 𝑑, 𝜌) = 𝑝(𝑑) × 𝑄0 × 𝑇(𝑔, 𝑑) × (
1

𝜌
− 1) + 𝛽𝑠 × (

1

𝜌2
− 1) (7.4)

135

where 𝑝 is the bowtie profile, 𝑄0 is flux, and 𝑇 represents tube current modulation. In the data flow

described in Fig. 7.3, synthetic noise is injected to create a simulated image. In order to create an

ensemble, the random noise generation step is repeated for every image slice.

7.2.2 Training and Testing Data

The data used in this study were collected as a part of the NIH grant “Measuring the Impact of

Noise on CT Readers”, 5-R01-EB019135-03, Bruce R. Whiting P.I. We have collected X-ray CT

images consisting of 60 appendicitis cases and 60 non-appendicitis cases from Siemens Somatom

Definition AS scanner. Scan parameters: tube current = 180 mAs; pitch = 0.75; collimation =

19 × 0.6 mm. Each of these 3D X-ray image volumes on average consists of 400 slices. However,

we have only used 20 non-appendicitis cases and 20 appendicitis cases with a total of ~16000

image slices. The noise level introduced in the image was varied using the parameter 𝜌 using the

equation (7.4). The choice of the parameter 𝜌 was selected from the noise observer study with a

small random fluctuation. We use a patch size of 40 × 40 and crop 128 × 1600 patches to train

the model.

For testing our deep CNN denoising performance, we use 3 new appendicitis cases out of the

remaining 20 appendicitis cases. We initialize the weights by the method in [119] and use Adam’s

SGD with weight decay of 0.0001, a momentum of 0.9 and a mini-batch size of 128. We train 50

epochs for our deep CNN models. The learning rate was decayed exponentially from 1𝑒−1 to 1𝑒−4

for the 50 epochs. We use the MatConvNet package [120] to train the proposed deep CNN models.

136

All the experiments were carried out using the MATLAB (R2017b) environment running on a PC

with 8-core Intel 𝑖7 − 5960𝑋 (3.0 GHz, 1333 MHz front-side bus), 64 GB RAM (1.2 GHz) and

a NVIDIA TITAN X GPU. It takes about one and a half day to run our algorithm for 50 epochs

on the specified dataset.

7.2.3 Compared Methods

We compared the proposed deep CNN method with two state-of-the-art, non-local similarity-based

denoising methods: BM3D [101] and WNNM [102]. In BM3D, the image denoising is based on

nonlocal image modeling, principal component analysis, and local shape-adaptive anisotropic

estimation. The nonlocal image modeling was exploited by grouping similar image patches in 3-

D groups. WNNM algorithm on the other hand, iteratively found an analytical fixed-point solution

of the data fidelity term constructed over the noisy image and approximate low-noise solution.

Experimental results clearly showed that the proposed WNNM algorithm outperformed BM3D in

terms of both quantitative measure and visual perception quality. The implementation codes were

downloaded from the authors’ websites and the default parameter settings were used in our

experiments.

137

7.3 Results

In order to compare the performance of our Deep CNN based denoising technique with other

existing methods, we use Peak signal-to-noise ratio (PSNR), Structural similarity (SSIM), and

Root mean square error (RMSE) as image quality metrics. Given a high dose (clean) image 𝐾 of

size 𝑀 ×𝑁, and it’s denoised estimate 𝐼, the RMSE is defined as

 𝑅𝑀𝑆𝐸 = √
1

𝑀𝑁
∑∑(𝐾(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))2

𝑁

𝑗=1

𝑀

𝑖=1

. (7.5)

If we define the maximum intensity of the denoised image as 𝑀𝐴𝑋𝐼, then PSNR can (in dB) is

defined as:

 𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋𝐼

2

1
𝑀𝑁

∑ ∑ (𝐾(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))2𝑁
𝑗=1

𝑀
𝑖=1

). (7.6)

 𝑃𝑆𝑁𝑅 = 20 ∙ log10(𝑀𝐴𝑋𝐼) − 10 ∙ log10 (
1

𝑀𝑁
∑∑(𝐾(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))2

𝑁

𝑗=1

𝑀

𝑖=1

). (7.7)

The difference between SSIM and other techniques mentioned previously such as RMSE or PSNR

is that these approaches estimate absolute errors; while, SSIM is a perception-based method that

incorporates perceptual phenomena such as luminance masking, and contrast masking terms.

SSIM considers image degradation as a perceived change in structural information. Structural

information is based on the concept that when pixels are spatially close to each other, they have

strong interdependencies. These dependencies carry important information about the structure of

138

the objects in the visual scene. Luminance masking is a phenomenon whereby image distortions

tend to be less visible in bright regions, while contrast masking is a phenomenon whereby

distortions become less visible where there is a significant activity or "texture" in the image. The

SSIM index is calculated on various windows of an image. The measure between two windows 𝑥

and 𝑦 of common size N × N is:

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝑐1)(𝜎𝑥2 + 𝜎𝑦2 + 𝑐2)
, (7.8)

where 𝜇𝑥 and 𝜇𝑦 are the means of all the pixels in the window 𝑥 and 𝑦 respectively, 𝜎𝑥
2 and 𝜎𝑦

2

are the variance in the windows 𝑥 and 𝑦 respectively, and 𝜎𝑥𝑦 is the covariance between 𝑥 and 𝑦.

𝑐1 = (𝑘1𝐿)
2 and 𝑐2 = (𝑘2𝐿)

2 are used to stabilize the division with weak (small) denominator. 𝐿

is the dynamic range of the pixel-values (typically this is 2#bits per pixel − 1). The default values

of 𝑘1and 𝑘1 are 0.01 and 0.03 respectively.

139

(a) (b)

(c) (d)

(f)

Fig. 7.4 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner. Voxel size

=0.576 × 0.576 × 1.0 mm. Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6 mm collimation. The abdominal

display window is −160 HU to 240 HU. (b) Low-dose noisy image. (c) Denoised image BM3D algorithm. (d)

Denoised image with WNNM algorithm. (e) Denoised image with our proposed Deep CNN based method.

140

(a) (b)

(c) (d)

(e)

Fig. 7.5 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner. Voxel size

=0.576 × 0.576 × 1.0 mm. Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6 mm collimation. The abdominal

display window is −160 HU to 240 HU. (b) Low-dose noisy image. (c) Denoised image BM3D algorithm. (d)

Denoised image with WNNM algorithm. (e) Denoised image with our proposed Deep CNN based method.

141

(a) (b)

(c) (d)

(e)

Fig. 7.6 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner. Voxel size

=0.576 × 0.576 × 1.0 mm. Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6 mm collimation. The abdominal

display window is −160 HU to 240 HU. (b) Low-dose noisy image. (c) Denoised image BM3D algorithm. (d)

Denoised image with WNNM algorithm. (e) Denoised image with our proposed Deep CNN based method.

142

Figure No. 7.4 PSNR (dB) SSIM RMSE

BM3D 25.2158 0.9121 13.9878

WNNM 25.6885 0.909 13.2470

Deep CNN 27.1579 0.9225 11.1853

Figure No. 7.5 PSNR (dB) SSIM RMSE

BM3D 25.6644 0.9452 13.2837

WNNM 25.9677 0.9398 12.8279

Deep CNN 27.5299 0.9514 10.7163

Figure No. 7.6 PSNR (dB) SSIM RMSE

BM3D 26.3476 0.9562 12.2789

WNNM 26.39 0.9529 12.2131

Deep CNN 27.9087 0.9614 10.2591
Table 7.1 The PSNR(dB), SSIM, and RMSE values for the 3 image slices shown in the figures previously.

Fig. 7.7 Intensity profile along the lines in Fig. 7.4

143

Fig. 7.8 Intensity profile along the lines in Fig. 7.5

Fig. 7.9 Intensity profile along the lines in Fig. 7.6

144

7.4 Conclusion

Extensive experimental results have demonstrated that the proposed method produces superior

image denoising performance in terms of RMSE, PSNR and SSIM metrics compared to traditional

methods like BM3D and WNNM. Our deep CNN learns to distinguish the structural information

of the object from various noise intensity. However, it should be noted that some texture

information may be lost as demonstrated in Fig. 7.4 (e). Further validation maybe required through

reader study to conclude the clinical applicability of our Deep CNN based denoising algorithm.

Traditional methods like BM3D and WNNM lose image resolution when the noise in the image is

strong as shown in Fig. 7.4 and Fig. 7.6. BM3D and WNNM methods work best for Fig. 7.6. One

possible explanation for this observation is that most of the abdominal image consists of soft tissue

and both BM3D and WNNM work best for a uniform tissue region. From Fig. 7.6, we can

demonstrate that our deep CNN is able to describe the details of the vessels in the liver. In Fig.

7.7, 7.8, and 7.9 our proposed network suitably reduces noise and describes the peak points. On

average, over the 3 independent test cases consisting of 1328 image slices in total, our proposed

denoising method outperforms BM3D method by almost 2.2dB and WNNM method by 1.7dB.

The SSIM and RMSE metric also shows better performance with our denoising method.

In addition to visual quality, another important aspect of an image restoration method is the testing

speed. We use the NVIDIA cuDNN-v5 deep learning library to accelerate the GPU computation

of the proposed Deep CNN. We have ignored data transfer between CPU and GPU from our model

145

execution time. With a single TITAN X GPU, we can run our Deep CNN based denoising

algorithm on an 512 × 512 image with an average time of 53ms whereas BM3D takes on average

2.85s and WNNM takes on average 773s on a CPU. With GPU acceleration, BM3D may run

slightly faster than our Deep CNN implementation, however, the image quality enhancement is

significantly better with our method.

146

Chapter 8: Conclusions and Future Work

In this work, we have developed multislice fully 3D spiral/helical X-ray CT reconstruction

algorithm for both analytical and statistical methods. For statistical reconstruction, we have

compared our estimated projection data against the measured data to compute the next image

iterate estimate. If we could formulate an accurate system model, the reconstructed images would

have little bias. However, we have tried to match the system matrix for projection and

backprojection algorithms to ensure that they are the exact transpose of each other. We have

validated this claim by running our alternating minimization algorithm without any ordered subset

for 5000 iterations on the clinically-sized dataset. After 5000 iterations, we have seen a steady

pattern of increase in the objective function. However, this pattern changes when we switch our

computation to double precision. Hence, we can conclude that use of single-precision floating-

point arithmetic in the image-estimate step creates rounding errors which make the objective

function diverge.

The raw CT data derived from the scanner has been preprocessed to mitigate the effects of detector

sensitivity variation, beam hardening, and X-ray tube current modulation. The main focus of our

work has mostly been devoted to accurate reconstruction models rather than the preprocessing

steps. We have split the measured data and image volume into different CPU cores and GPU

devices in such a way that the overhead due to memory and device synchronization, and data

transfer is minimized. We have also ensured every CPU core and GPU device performs the exact

amount of computations so that the ordered subsets (OS) can be executed in a computationally

147

efficient way. We have also proposed novel surrogate function, which decreases our original

objective function faster than Jensen-type surrogate functions used in previous literature. We have

shown that ordered subsets along with adaptive surrogate functions can significantly decrease the

convergence rate. We have met the convergence criteria in 60 − 80 iterations using the adaptive

surrogate function and a large number (29) of ordered subsets. Although the total computation

time for the converged image using our methods on a clinically-sized dataset is 900 − 1000 times

higher than analytical methods like FDK, it is still promising since as the total computation time

is < 30 minutes.

Regarding the regularization that was added to the AM algorithm, choosing suitable regularization

parameters is notoriously difficult (especially in 3D). One could possibly test a range of parameters

by performing several “trial” reconstructions on a down sampled dataset, or on just a few slices,

and then attempt to scale the parameters accordingly for the full-scale problem. Other more

systematic methods exist but are also more computationally demanding.

We have also observed a slow convergence of high frequencies using our alternating minimization

algorithm. We can see a striped pattern in coronal and sagittal view of our helical CT

reconstruction. We have also observed that these stripes are inclined towards helical trajectory. As

iteration progresses, these striped patterns gradually disappear. In a helical CT scan, different

voxels are seen a different number of times, and as a result, they are illuminated differently which

can be the reason for these helical scan artifacts. The analytical FDK algorithm takes care of these

artifacts by employing different weights for different view angle and voxel as discussed in Chapter

148

4. However, the absence of these weighting functions in AM algorithm can cause these artifacts.

Since in AM algorithm, the voxel update step is the ratio of two backprojection images, these

artifacts don’t cancel out since they are dependent on view angles. Weighting function similar to

ones employed in FDK algorithm can be added to branchless distance-driven projection and

backprojection algorithms to get rid of these artifacts in early iterations.

The adaptive auxiliary variable derived for single-energy and dual-energy reconstruction problems

has some drawbacks too. The condition of guaranteed convergence is absent for these types of

surrogate functions. As a result, they should be carefully applied only to initial iterations. The

update step in adaptive step size derivation doesn’t consider the term with penalty function. We

have avoided this step due to a slightly higher computational burden. However, for accurate results

in case of noisy measurement, we can modify the computation step for the adaptive update

function, for mono-energy as

 𝑍(𝑘)(𝑥) = {

log(
�̃�0(𝑥)

�̃�(𝑥)
)

�̂�𝐴
(𝑘)(𝑥)

𝑖𝑓
log(

�̃�0(𝑥)

�̃�(𝑥)
)

�̂�𝐴
(𝑘)(𝑥)

< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 ,
�̃�0(𝑥)

�̃�(𝑥)
> 1 , �̂�(𝑘)(𝑥) > 0

2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 𝑒𝑙𝑠𝑒

 (8.1)

where,

 �̂�𝐴
(𝑘)(𝑥) = �̂�(𝑘)(𝑥) + 𝜆∑

𝜔
𝑥𝑥′

2
𝛿2 (|

2�̂�(𝑘)(𝑥)

𝛿
| − log (1 + |

2�̂�(𝑘)(𝑥)

𝛿
|))𝑥′∈𝑁𝑥 . (8.2)

For dual energy, we can modify our adaptive surrogate function based update step as:

149

 𝑍𝑚
(𝑘)(𝑥) =

{

 log (

∑ �̃�0𝑗,𝑚(𝑥)
2
𝑗=1

∑ �̃�𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

�̂�𝑚𝐴
(𝑘)(𝑥)

𝑖𝑓

log (
∑ �̃�0𝑗,𝑚(𝑥)
2
𝑗=1

∑ �̃�𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

�̂�𝑚𝐴
(𝑘)(𝑥)

≤ 𝑍

Z 𝑒𝑙𝑠𝑒

 (8.3)

 �̂�𝑚𝐴
(𝑘)(𝑥) = �̂�𝑚

(𝑘)(𝑥) + 𝜆 ∑
𝜔𝑥𝑥′

2
𝛿2 (|

2�̂�𝑚
(𝑘)(𝑥)

𝛿
| − log (1 + |

2�̂�𝑚
(𝑘)(𝑥)

𝛿
|))

𝑥′∈𝑁𝑥

. (8.4)

For the deep CNN based denoising algorithm, we assume the images are 2D even though they are

reconstructed from a spiral scan. As we have discussed before, the spiral scanning introduces its

own artifacts. However, we haven’t incorporated that into the noise model for our analysis. To the

best of my knowledge, 3-D multislice X-ray CT images haven’t been denoised with neural

networks by other research groups. Further work is needed to model 3-D nature of the noise

statistics and incorporate that into our residual denoising method.

In conclusion, the work in this dissertation has described a solid computational foundation for

multi-GPU based X-ray CT reconstruction problems upon which many improved techniques can

be tested in a short amount of time. It is anticipated that the multi-GPU based reconstruction and

denoising methods described in this thesis will be used in future projects.

150

Appendix A: Derivation of the Penalized AM

Algorithm

Using the convex decomposition lemma, for any convex function 𝑓(∙), we can write

 𝑓[𝛼𝑡1 + (1 − 𝛼)𝑡1] ≤ 𝛼𝑓(𝑡1) + (1 − 𝛼)𝑓(𝑡1),where 0 ≤ 𝛼 ≤ 1 (A.1)

Using this property,

𝜓(𝜇(𝑥) − 𝜇(𝑥′))

= 𝜓 {𝛼 [
1

𝛼
(𝜇(𝑥) − �̂�(𝑥)) + (�̂�(𝑥) − �̂�(𝑥′))]

+ (1 − 𝛼) [
−1

(1 − 𝛼)
(𝜇(𝑥′) − �̂�(𝑥′)) + (�̂�(𝑥) − �̂�(𝑥′))]}

(A.2)

 ≤ 𝛼𝜓 [
1

𝛼
(𝜇(𝑥) − �̂�(𝑥)) + (�̂�(𝑥) − �̂�(𝑥′))]

+ (1 − 𝛼)𝜓 [
−1

(1 − 𝛼)
(𝜇(𝑥′) − �̂�(𝑥′)) + (�̂�(𝑥) − �̂�(𝑥′))].

(A.3)

To simplify equation (A.3), let 𝛼 ≜ 1 2⁄ to obtain

𝜓(𝜇(𝑥) − 𝜇(𝑥′))

≤
1

2
𝜓[2(𝜇(𝑥) − �̂�(𝑥)) + (�̂�(𝑥) − �̂�(𝑥′))]

+
1

2
𝜓[−2(𝜇(𝑥′) − �̂�(𝑥′)) + (�̂�(𝑥) − �̂�(𝑥′))]

(A.4)

 =
1

2
𝜓[2𝜇(𝑥) − �̂�(𝑥) − �̂�(𝑥′)] +

1

2
𝜓[2𝜇(𝑥′) − �̂�(𝑥) −

�̂�(𝑥′)].

(A.5)

151

We have exploited the evenness of the potential 𝜓(∙) to derive equation (A.5) from equation (A.4).

We plug this surrogate for 𝜓(𝜇(𝑥) − 𝜇(𝑥′)) into (3.27), and define the modified penalty function

�̂�(𝜇) by ignoring the part independent of 𝜇(𝑥) as follows

�̂�(𝜇) =∑ ∑
𝜔(𝑥, 𝑥′)

2
𝛿2 (|

2𝜇(𝑥) − �̂�(𝑥) − �̂�(𝑥′)

𝛿
|

𝑥′∈𝑁(𝑥)𝑥

− log (1 + |
2𝜇(𝑥) − �̂�(𝑥) − �̂�(𝑥′)

𝛿
|))

(A.6)

So, we want to solve the penalized-likelihood function as follows

𝜕Î[𝑑||𝑔; 𝜇, �̂�]

𝜕𝜇(𝑥)
 + 𝜆

𝜕�̂�(𝜇)

𝜕𝜇(𝑥)
= 0 ∀ 𝑥. (A.7)

The derivative of the surrogate of I-divergence is determined to be

𝜕Î[𝑑||𝑔; 𝜇, �̂�]

𝜕𝜇(𝑥)
= �̃�(𝑥) − �̂�(𝑥)exp(−𝑍(𝜇(𝑥) − �̂�(𝑥))) ∀ 𝑥. (A.8)

The derivative of the penalty term is

𝜕�̂�(𝜇)

𝜕𝜇(𝑥)
=∑𝜔(𝑥, 𝑥′)

𝜕𝜓(𝑡)

𝜕𝑡
𝑥′

|

𝑡=2𝜇(𝑥)−�̂�(𝑥)−�̂�(𝑥′)

 (A.9)

Replacing the values of the derivatives from equation (A.8) and (A.9) into (A.7) we can write,

�̃�(𝑥) − �̂�(𝑥)exp(−𝑍(𝜇(𝑥) − �̂�(𝑥)))

+∑𝜔(𝑥, 𝑥′)𝛿 (1 +
1

1 +
𝑡
𝛿

)

𝑥′

|

𝑡=2𝜇(𝑥)−�̂�(𝑥)−�̂�(𝑥′)

= 0

(A.10)

152

Since there is no closed form solution of equation (A.10) so we use Newton's method to solve for

𝜇(𝑥). Using newton’s method, we can write

�̂�(𝑘+1)(𝑥)

= �̂�(𝑘)(𝑥) − 𝛾 [
𝜕2 (𝐼[𝑑||𝑔; 𝜇, �̂�] + 𝜆�̂�(𝜇))

𝜕𝜇2(𝑥)
]

−1

𝜕 (𝐼[𝑑||𝑔; 𝜇, �̂�] + 𝜆�̂�(𝜇))

𝜕𝜇(𝑥)

(A.11)

where,

𝜕 (Î[𝑑||𝑔; 𝜇, �̂�] + 𝜆�̂�(𝜇))

𝜕𝜇(𝑥)

= �̃�(𝑥) − �̂�(𝑥)exp(−𝑍(𝜇(𝑥) − �̂�(𝑥)))

+∑𝜔(𝑥, 𝑥′)𝛿 (1 +
1

1 +
𝑡
𝛿

)

𝑥′

|

𝑡=2𝜇(𝑥)−�̂�(𝑥)−�̂�(𝑥′)

(A.12)

𝜕2 (Î[𝑑||𝑔; 𝜇, �̂�] + 𝜆�̂�(𝜇))

𝜕𝜇2(𝑥)

= −𝑍�̂�(𝑥)exp(−𝑍(𝜇(𝑥) − �̂�(𝑥)))

− ∑𝜔(𝑥, 𝑥′)
1

(1 +
𝑡
𝛿
)
2

𝑥′

|

𝑡=2𝜇(𝑥)−�̂�(𝑥)−�̂�(𝑥′)

.

(A.13)

The 𝛾 term represents step size.

153

Appendix B: Derivation of Decoupled Dual-

energy Surrogate Function

For the derivation of the decoupled dual-energy surrogate function, we start with our original goal

of minimizing I-divergence over 𝑐𝑚,𝑗 ≥ 0,

 I[𝑑||𝑔] ≜∑∑(𝑑𝑗(𝑦) log
𝑑𝑗(𝑦)

𝑔𝑗(𝑦: 𝑐)
+ 𝑔𝑗(𝑦: 𝑐) − 𝑑𝑗(𝑦))

𝑦

2

𝑗=1

, (B.1)

where

 𝑔𝑗(𝜇, 𝑐) ≜∑𝑞𝑗(𝑦: 𝐸)

𝐸

 (B.2)

휀𝑗 = {𝑞𝑗: 𝑞𝑗(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp(−∑∑ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑚𝑥

) , 𝐸

≠ 0, 𝑞𝑗(𝑦, 0) = 𝛽𝑗(𝑦)}.

(B.3)

The exponential family 휀𝑗 defines the model used for the data.

The main difficulty in solving the original objective function denoted by equation (B.1) is the

summation over all the energies inside the “log” denominator. In order to decouple our

computation of the summation over energy part, we would need to move the denominator part out

of logarithm.

154

Lemma B.0.1 The I-divergence (B.1) can be written in the variational form

 I[𝑑||𝑔] = min
𝑝𝑗∈ℒ(𝑑𝑗)

∑I[𝑝𝑗||𝑞𝑗],

2

𝑗=1

 (B.4)

where

 I[𝑝𝑗||𝑞𝑗] =∑∑(𝑝𝑗(𝑦, 𝐸) log
𝑝𝑗(𝑦, 𝐸)

𝑞𝑗(𝑦, 𝐸)
+ 𝑞𝑗(𝑦, 𝐸) − 𝑝𝑗(𝑦, 𝐸))

𝑦𝐸

, (B.5)

 ℒ(𝑑𝑗) = {𝑝𝑗(𝑦, 𝐸) ≥ 0:∑𝑝𝑗(𝑦, 𝐸)

𝐸

= 𝑑𝑗(𝑦)}. (B.6)

In order to prove this lemma, we start with Lagrange multipliers to enforce equality in equation

(B.6).

𝐿𝑗 =∑∑(𝑝𝑗(𝑦, 𝐸) log
𝑝𝑗(𝑦, 𝐸)

𝑞𝑗(𝑦, 𝐸)
+ 𝑞𝑗(𝑦, 𝐸) − 𝑝𝑗(𝑦, 𝐸))

𝑦𝐸

+ 𝜆𝑗(𝑦)(∑𝑝𝑗(𝑦, 𝐸)

𝐸

− 𝑑𝑗(𝑦)).

(B.7)

Minimizing over 𝑝𝑗(𝑦, 𝐸) and solving for 𝜆𝑗(𝑦) to enforce the equality in Equation (B.6) yields

𝑝𝑗(𝑦, 𝐸) = 0 if 𝑞𝑗(𝑦, 𝐸) = 0 (defining I[0||0] = 0) and if 𝑞𝑗(𝑦, 𝐸) ≠ 0

 𝑝𝑗(𝑦, 𝐸) = 𝑑𝑗(𝑦)
𝑞𝑗(𝑦, 𝐸)

∑ 𝑞𝑗(𝑦, 𝐸′)𝐸′
. (B.8)

Substituting this expression of 𝑝𝑗(𝑦, 𝐸) back into the I-divergence in equation (B.5) produces the

lemma B.0.1.

155

Therefore, we can express the original maximum-likelihood estimation problem in (B.1) as a

double minimization problem over the exponential and linear family with the inequality constraint

𝑐𝑚(𝑥) ≥ 0 for all (𝑚, 𝑥). However, there is still difficulty inside the exponential term in equation

(B.3) since the optimization space is really large. So, to tackle this issue, we employ the following

convex decomposition lemma.

Lemma B.0.2 Suppose that f is a convex function defined on a convex cone 𝒟 ⊂ ℝ𝑛. Given 𝑥𝑖 ∈

𝒟, 𝑖 = 1,2, …,

 𝑓 (∑𝑥𝑖
𝑖

) ≤∑𝑟𝑖𝑓 (
1

𝑟𝑖
𝑥𝑖)

𝑖

 (B.9)

for all 𝑟 ∈ 𝛲, with 𝑟𝑖 > 0 for all 𝑖. If 𝑓 is strictly convex, equality holds if and only if (1 𝑟𝑖⁄)𝑥𝑖 = 𝑥

is independent of 𝑖.

By applying Lemma B.0.2 to our objective function in (B.5), we have

156

∑∑∑∑∑�̂�𝑗(𝑦, 𝐸

𝑚

)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑥𝐸𝑦

2

𝑗=1

+∑∑∑𝐼0𝑗(𝑦, 𝐸)exp(−∑∑ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑥𝑚

)

𝑦𝐸

2

𝑗=1

=∑∑∑∑∑�̂�𝑗(𝑦, 𝐸

𝑚

)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑥𝐸𝑦

2

𝑗=1

+∑∑∑�̂�𝑗(𝑦, 𝐸)exp(−∑∑ℎ(𝑦|𝑥)𝜇𝑚(𝐸)(�̂�𝑚(𝑥)

𝑥𝑚𝑦𝐸

2

𝑗=1

− 𝑐𝑚(𝑥))),

(B.10)

 ≤ ∑∑∑∑∑{�̂�𝑗(𝑦, 𝐸)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑚𝑥𝐸𝑦

2

𝑗=1

+ 𝑟(𝑥,𝑚|𝑦, 𝐸)�̂�𝑗(𝑦, 𝐸)exp [
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑟(𝑥,𝑚|𝑦, 𝐸)
(�̂�𝑚(𝑥) − 𝑐𝑚(𝑥))]},

(B.11)

for all 𝑟(𝑥,𝑚|𝑦, 𝐸) > 0 such that

 ∑∑ 𝑟(𝑥,𝑚|𝑦, 𝐸)

𝑀

𝑚=1𝑥

≤ 1∀(𝑦, 𝐸). (B.12)

Note the inequality in (B.11); this minor extension of the convex decomposition lemma is valid

due to the possibility of adding a dummy 𝑥 variable (again denoted 0) such that �̂�𝑚(0) − 𝑐𝑚(0) =

0 for each 𝑚. Equality is achieved in (B.11) if
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑟(𝑥,𝑚|𝑦,𝐸)
(�̂�𝑚(𝑥) − 𝑐𝑚(𝑥)) is only a function of

157

(𝑦, 𝐸). One clear possibility for this is if the algorithm converges and �̂�𝑚(𝑥) = 𝑐𝑚(𝑥). To derive

an alternating minimization algorithm for X-ray transmission CT, set

 𝑟(𝑥,𝑚|𝑦, 𝐸) =
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑍𝑚(𝑥)
, (B.13)

where 𝑍𝑚(𝑥) are chosen to enforce the constraint (B.11). In general, the 𝑍𝑚(𝑥) must be large

enough, one such choice being

 𝑍𝑚(𝑥) = 𝑍0 = max
𝑦,𝐸

∑∑ ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑀

𝑚=1𝑥

. (B.14)

The resulting decoupled objective function is

∑∑∑∑∑{�̂�𝑗(𝑦, 𝐸)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑚𝑥𝐸𝑦

2

𝑗=1

+
�̂�𝑗(𝑦, 𝐸)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑍𝑚(𝑥)
exp[𝑍𝑚(𝑥)(�̂�𝑚(𝑥) − 𝑐𝑚(𝑥))]}.

(B.15)

158

References

[1] J. A. O'Sullivan and J. Benac, "Alternating minimization algorithms for transmission

tomography," IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 283-297, 2007.

[2] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging. SIAM, 2001.

[3] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, "Graphics processing unit (GPU)

programming strategies and trends in GPU computing," Journal of Parallel and

Distributed Computing, vol. 73, no. 1, pp. 4-13, 2013.

[4] I. A. Elbakri and J. A. Fessler, "Statistical image reconstruction for polyenergetic X-ray

computed tomography," IEEE transactions on medical imaging, vol. 21, no. 2, pp. 89-99,

2002.

[5] K. Li, J. Tang, and G. H. Chen, "Statistical model based iterative reconstruction (MBIR)

in clinical CT systems: experimental assessment of noise performance," Medical physics,

vol. 41, no. 4, 2014.

[6] P. J. Pickhardt et al., "Abdominal CT with model-based iterative reconstruction (MBIR):

initial results of a prospective trial comparing ultralow-dose with standard-dose imaging,"

American journal of roentgenology, vol. 199, no. 6, pp. 1266-1274, 2012.

[7] X. Zhao, J.-j. Hu, and P. Zhang, "GPU-based 3D cone-beam CT image reconstruction for

large data volume," Journal of Biomedical Imaging, vol. 2009, p. 8, 2009.

[8] X. Jia, B. Dong, Y. Lou, and S. B. Jiang, "GPU-based iterative cone-beam CT

reconstruction using tight frame regularization," Physics in Medicine & Biology, vol. 56,

no. 13, p. 3787, 2011.

[9] X. Jia et al., "GPU-based fast low-dose cone beam CT reconstruction via total variation,"

Journal of X-ray science and technology, vol. 19, no. 2, pp. 139-154, 2011.

[10] M. Schellmann, T. Kosters, and S. Gorlatch, "Parallelization and runtime prediction of the

listmode osem algorithm for 3d pet reconstruction," in Nuclear Science Symposium

Conference Record, 2006. IEEE, 2006, vol. 4, pp. 2190-2195: IEEE.

[11] M. Tianyu, Z. Rong, and J. Yongjie, "Communication optimization and auto load balancing

in parallel OSEM algorithm for fully 3-D SPECT reconstruction," in Nuclear Science

Symposium Conference Record, 2005 IEEE, 2005, vol. 5, pp. 2695-2699: IEEE.

[12] M. D. Jones and R. Yao, "Parallel programming for OSEM reconstruction with MPI,

OpenMP, and hybrid MPI-OpenMP," in Nuclear Science Symposium Conference Record,

2004 IEEE, 2004, vol. 5, pp. 3036-3042: IEEE.

159

[13] C. A. Johnson and A. Sofer, "A data-parallel algorithm for iterative tomographic image

reconstruction," in Frontiers of Massively Parallel Computation, 1999. Frontiers' 99. The

Seventh Symposium on the, 1999, pp. 126-137: IEEE.

[14] M. Knaup, W. A. Kalender, and M. KachelrieB, "Statistical cone-beam CT image

reconstruction using the cell broadband engine," in Nuclear Science Symposium

Conference Record, 2006. IEEE, 2006, vol. 5, pp. 2837-2840: IEEE.

[15] M. Kachelriess, M. Knaup, and O. Bockenbach, "Hyperfast parallel‐beam and cone‐beam

backprojection using the cell general purpose hardware," Medical Physics, vol. 34, no. 4,

pp. 1474-1486, 2007.

[16] T. M. Benson and J. Gregor, "Framework for iterative cone-beam micro-CT

reconstruction," IEEE transactions on nuclear science, vol. 52, no. 5, pp. 1335-1340, 2005.

[17] J. Kole and F. Beekman, "Parallel statistical image reconstruction for cone-beam x-ray CT

on a shared memory computation platform," Physics in Medicine & Biology, vol. 50, no.

6, p. 1265, 2005.

[18] S. Steckmann, M. Knaup, and M. Kachelrieß, "Algorithm for hyperfast cone-beam spiral

backprojection," Computer methods and programs in biomedicine, vol. 98, no. 3, pp. 253-

260, 2010.

[19] B. Jang, D. Kaeli, S. Do, and H. Pien, "Multi GPU implementation of iterative tomographic

reconstruction algorithms," in Biomedical Imaging: From Nano to Macro, 2009. ISBI'09.

IEEE International Symposium on, 2009, pp. 185-188: IEEE.

[20] N. Gac, S. Mancini, M. Desvignes, and D. Houzet, "High speed 3D tomography on CPU,

GPU, and FPGA," EURASIP Journal on Embedded systems, vol. 2008, p. 5, 2008.

[21] J. Kole and F. J. Beekman, "Evaluation of accelerated iterative x-ray CT image

reconstruction using floating point graphics hardware," Physics in Medicine & Biology,

vol. 51, no. 4, p. 875, 2006.

[22] F. Xu and K. Mueller, "Real-time 3D computed tomographic reconstruction using

commodity graphics hardware," Physics in Medicine & Biology, vol. 52, no. 12, p. 3405,

2007.

[23] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, "Fast GPU-based CT reconstruction

using the common unified device architecture (CUDA)," in Nuclear Science Symposium

Conference Record, 2007. NSS'07. IEEE, 2007, vol. 6, pp. 4464-4466: IEEE.

[24] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU

computing," Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, 2008.

160

[25] A. Andreyev, A. Sitek, and A. Celler, "Acceleration of blob-based iterative reconstruction

algorithm using Tesla GPU," in Nuclear Science Symposium Conference Record

(NSS/MIC), 2009 IEEE, 2009, pp. 4095-4098: IEEE.

[26] M. G. McGaffin and J. A. Fessler, "Alternating dual updates algorithm for X-ray CT

reconstruction on the GPU," IEEE transactions on computational imaging, vol. 1, no. 3,

pp. 186-199, 2015.

[27] M. Wu and J. A. Fessler, "GPU acceleration of 3D forward and backward projection using

separable footprints for X-ray CT image reconstruction," in Proc. Intl. Mtg. on Fully 3D

Image Recon. in Rad. and Nuc. Med, 2011, vol. 6, p. 021911.

[28] F. Quivira, S. Bedford, R. Moore, J. Beaty, and D. Castañón, "Sparse Data 3-D X-ray

reconstructions on GPU processors," Electronic Imaging, vol. 2016, no. 19, pp. 1-5, 2016.

[29] S. Degirmenci, D. G. Politte, C. Bosch, N. Tricha, and J. A. O'Sullivan, "Acceleration of

iterative image reconstruction for x-ray imaging for security applications," in

Computational Imaging, 2015, p. 94010C.

[30] S. Degirmenci, A General Framework of Large-Scale Convex Optimization Using Jensen

Surrogates and Acceleration Techniques. Washington University in St. Louis, 2016.

[31] C. Bosch, S. Degirmenci, J. Barlow, A. Mesika, D. G. Politte, and J. A. O'Sullivan,

"Optimizing convergence rates of alternating minimization reconstruction algorithms for

real-time explosive detection applications," in SPIE Defense+ Security, 2016, pp. 98470P-

98470P-17: International Society for Optics and Photonics.

[32] Q. Xu, D. Yang, J. Tan, A. Sawatzky, and M. A. Anastasio, "Accelerated fast iterative

shrinkage thresholding algorithms for sparsity‐regularized cone‐beam CT image

reconstruction," Medical physics, vol. 43, no. 4, pp. 1849-1872, 2016.

[33] R. A. Brooks and G. Di Chiro, "Beam hardening in x-ray reconstructive tomography,"

Physics in medicine & biology, vol. 21, no. 3, p. 390, 1976.

[34] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging. IEEE press,

1988.

[35] M. Levoy, Volume rendering using the Fourier projection-slice theorem. Computer

Systems Laboratory, Stanford University, 1992.

[36] J. A. Fessler, "Statistical image reconstruction methods for transmission tomography,"

Handbook of medical imaging, vol. 2, pp. 1-70, 2000.

[37] K. Lange, "Convergence of EM image reconstruction algorithms with Gibbs smoothing,"

IEEE transactions on medical imaging, vol. 9, no. 4, pp. 439-446, 1990.

161

[38] B. R. Whiting, P. Massoumzadeh, O. A. Earl, J. A. O'Sullivan, D. L. Snyder, and J. F.

Williamson, "Properties of preprocessed sinogram data in x‐ray computed tomography,"

Medical physics, vol. 33, no. 9, pp. 3290-3303, 2006.

[39] G. M. Lasio, B. R. Whiting, and J. F. Williamson, "Statistical reconstruction for x-ray

computed tomography using energy-integrating detectors," Physics in medicine & biology,

vol. 52, no. 8, p. 2247, 2007.

[40] K. Lange and R. Carson, "EM reconstruction algorithms for emission and transmission

tomography," J Comput Assist Tomogr, vol. 8, no. 2, pp. 306-16, 1984.

[41] E. U. Mumcuoglu, R. Leahy, S. R. Cherry, and Z. Zhou, "Fast gradient-based methods for

Bayesian reconstruction of transmission and emission PET images," IEEE transactions on

Medical Imaging, vol. 13, no. 4, pp. 687-701, 1994.

[42] C. A. Bouman and K. Sauer, "A unified approach to statistical tomography using

coordinate descent optimization," IEEE Transactions on image processing, vol. 5, no. 3,

pp. 480-492, 1996.

[43] A. K. Hara, R. G. Paden, A. C. Silva, J. L. Kujak, H. J. Lawder, and W. Pavlicek, "Iterative

reconstruction technique for reducing body radiation dose at CT: feasibility study,"

American Journal of Roentgenology, vol. 193, no. 3, pp. 764-771, 2009.

[44] P. Prakash et al., "Reducing abdominal CT radiation dose with adaptive statistical iterative

reconstruction technique," Investigative radiology, vol. 45, no. 4, pp. 202-210, 2010.

[45] G. S. Desai, R. N. Uppot, W. Y. Elaine, A. R. Kambadakone, and D. V. Sahani, "Impact

of iterative reconstruction on image quality and radiation dose in multidetector CT of large

body size adults," European radiology, vol. 22, no. 8, pp. 1631-1640, 2012.

[46] J. Hsieh, "Adaptive streak artifact reduction in computed tomography resulting from

excessive x‐ray photon noise," Medical Physics, vol. 25, no. 11, pp. 2139-2147, 1998.

[47] A. Katsevich, "Analysis of an exact inversion algorithm for spiral cone-beam CT," Physics

in Medicine & Biology, vol. 47, no. 15, p. 2583, 2002.

[48] K. Lange and J. A. Fessler, "Globally convergent algorithms for maximum a posteriori

transmission tomography," IEEE Transactions on Image Processing, vol. 4, no. 10, pp.

1430-1438, 1995.

[49] J. A. Fessler, "Hybrid Poisson/polynomial objective functions for tomographic image

reconstruction from transmission scans," IEEE Transactions on Image Processing, vol. 4,

no. 10, pp. 1439-1450, 1995.

[50] B. De Man and S. Basu, "Distance-driven projection and backprojection in three

dimensions," Physics in medicine and biology, vol. 49, no. 11, p. 2463, 2004.

162

[51] G. Zeng and G. Gullberg, "Ray-driven backprojector for backprojection filtering and

filtered backprojection algorithms," in Proceedings of the 1993 IEEE Nuclear Science

Symposium & Medical Imaging Conference, 1994: Publ by IEEE.

[52] W. Zhuang, S. Gopal, and T. Hebert, "Numerical evaluation of methods for computing

tomographic projections," IEEE Transactions on Nuclear Science, vol. 41, no. 4, pp. 1660-

1665, 1994.

[53] R. L. Siddon, "Fast calculation of the exact radiological path for a three‐dimensional CT

array," Medical physics, vol. 12, no. 2, pp. 252-255, 1985.

[54] G. T. Herman, Fundamentals of computerized tomography: image reconstruction from

projections. Springer Science & Business Media, 2009.

[55] P. M. Joseph, "An improved algorithm for reprojecting rays through pixel images," IEEE

transactions on medical imaging, vol. 1, no. 3, pp. 192-196, 1982.

[56] B. De Man and S. Basu, "Distance-driven projection and backprojection," in Nuclear

Science Symposium Conference Record, 2002 IEEE, 2002, vol. 3, pp. 1477-1480: IEEE.

[57] S. Basu and B. De Man, "Branchless distance driven projection and backprojection," in

Computational Imaging, 2006, p. 60650Y.

[58] D. Schlifske and H. Medeiros, "A fast GPU-based approach to branchless distance-driven

projection and back-projection in cone beam CT," in Proc. SPIE, 2016, vol. 9783, p.

97832W.

[59] H. M. Hudson and R. S. Larkin, "Accelerated image reconstruction using ordered subsets

of projection data," IEEE transactions on medical imaging, vol. 13, no. 4, pp. 601-609,

1994.

[60] S. Ahn, J. A. Fessler, D. Blatt, and A. O. Hero, "Convergent incremental optimization

transfer algorithms: application to tomography," IEEE Trans Med Imaging, vol. 25, no. 3,

pp. 283-96, Mar 2006.

[61] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear

inverse problems," SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183-202, 2009.

[62] G. L. Zeng and G. T. Gullberg, "Unmatched projector/backprojector pairs in an iterative

reconstruction algorithm," IEEE transactions on medical imaging, vol. 19, no. 5, pp. 548-

555, 2000.

[63] J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange, "Grouped-coordinate ascent

algorithms for penalized-likelihood transmission image reconstruction," IEEE transactions

on medical imaging, vol. 16, no. 2, pp. 166-175, 1997.

163

[64] H. Erdogan and J. A. Fessler, "Ordered subsets algorithms for transmission tomography,"

Physics in medicine and biology, vol. 44, no. 11, p. 2835, 1999.

[65] D. Keesing, "Development and implementation of fully 3D statistical image reconstruction

algorithms for helical CT and half-ring PET insert system," 2009.

[66] R. Liu, L. Fu, B. De Man, and H. Yu, "GPU-based branchless distance-driven projection

and backprojection," IEEE transactions on computational imaging, vol. 3, no. 4, pp. 617-

632, 2017.

[67] A. Katsevich, "An improved exact filtered backprojection algorithm for spiral computed

tomography," Advances in Applied Mathematics, vol. 32, no. 4, pp. 681-697, 2004.

[68] F. Noo, J. Pack, and D. Heuscher, "Exact helical reconstruction using native cone-beam

geometries," Physics in Medicine & Biology, vol. 48, no. 23, p. 3787, 2003.

[69] Y. Zou and X. Pan, "Exact image reconstruction on PI-lines from minimum data in helical

cone-beam CT," Physics in Medicine & Biology, vol. 49, no. 6, p. 941, 2004.

[70] H. Schöndube, K. Stierstorfer, and F. Noo, "Accurate helical cone-beam CT reconstruction

with redundant data," Physics in Medicine & Biology, vol. 54, no. 15, p. 4625, 2009.

[71] S. Schaller, K. Stierstorfer, H. Bruder, M. Kachelriess, and T. Flohr, "Novel approximate

approach for high-quality image reconstruction in helical cone-beam CT at arbitrary pitch,"

in Medical Imaging 2001: Image Processing, 2001, vol. 4322, pp. 113-128: International

Society for Optics and Photonics.

[72] X. Tang, J. Hsieh, A. Hagiwara, R. A. Nilsen, J.-B. Thibault, and E. Drapkin, "A three-

dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image

reconstruction in volumetric CT under a circular source trajectory," Physics in Medicine &

Biology, vol. 50, no. 16, p. 3889, 2005.

[73] K. Taguchi, B.-S. S. Chiang, and M. D. Silver, "A new weighting scheme for cone-beam

helical CT to reduce the image noise," Physics in Medicine & Biology, vol. 49, no. 11, p.

2351, 2004.

[74] K. Stierstorfer, A. Rauscher, J. Boese, H. Bruder, S. Schaller, and T. Flohr, "Weighted

FBP—a simple approximate 3D FBP algorithm for multislice spiral CT with good dose

usage for arbitrary pitch," Physics in Medicine & Biology, vol. 49, no. 11, p. 2209, 2004.

[75] X. Tang, J. Hsieh, R. A. Nilsen, S. Dutta, D. Samsonov, and A. Hagiwara, "A three-

dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image

reconstruction in volumetric CT—helical scanning," Physics in Medicine and Biology, vol.

51, no. 4, p. 855, 2006.

164

[76] K. Taguchi, B.-S. S. Chiang, and M. D. Silver, "A new weighting scheme for cone-beam

helical CT to reduce the image noise," Physics in Medicine and Biology, vol. 49, no. 11, p.

2351, 2004.

[77] A. Katsevich, "Theoretically exact filtered backprojection-type inversion algorithm for

spiral CT," SIAM Journal on Applied Mathematics, vol. 62, no. 6, pp. 2012-2026, 2002.

[78] A. Mitra, D. G. Politte, B. R. Whiting, J. F. Williamson, and J. A. O’Sullivan, "Multi-GPU

Acceleration of Branchless Distance Driven Projection and Backprojection for Clinical

Helical CT," Journal of Imaging Science and Technology, vol. 61, no. 1, pp. 10405-1-

10405-13, 2017.

[79] A. Mitra, S. Degirmenci, D. G. Politte, and J. A. O’Sullivan, "Fast Parallel GPU

Implementation for Clinical Helical CT using Branchless DD," in GPU Technology

Conference, 2016, p. 6234.

[80] L. Yu, A. N. Primak, X. Liu, and C. H. McCollough, "Image quality optimization and

evaluation of linearly mixed images in dual‐source, dual‐energy CT," Medical physics, vol.

36, no. 3, pp. 1019-1024, 2009.

[81] J. Hsieh, "Computed tomography: principles, design, artifacts, and recent advances," 2009:

SPIE Bellingham, WA.

[82] D. Marin et al., "Low-tube-voltage, high-tube-current multidetector abdominal CT:

improved image quality and decreased radiation dose with adaptive statistical iterative

reconstruction algorithm—initial clinical experience," Radiology, vol. 254, no. 1, pp. 145-

153, 2009.

[83] X. Liu, L. Yu, A. N. Primak, and C. H. McCollough, "Quantitative imaging of element

composition and mass fraction using dual‐energy CT: Three‐material decomposition,"

Medical physics, vol. 36, no. 5, pp. 1602-1609, 2009.

[84] T. R. Johnson et al., "Material differentiation by dual energy CT: initial experience,"

European radiology, vol. 17, no. 6, pp. 1510-1517, 2007.

[85] T. Tsunoo, M. Torikoshi, Y. Ohno, K. Uesugi, and N. Yagi, "Measurement of electron

density in dual‐energy x‐ray CT with monochromatic x rays and evaluation of its

accuracy," Medical physics, vol. 35, no. 11, pp. 4924-4932, 2008.

[86] M. Bazalova, J.-F. Carrier, L. Beaulieu, and F. Verhaegen, "Dual-energy CT-based

material extraction for tissue segmentation in Monte Carlo dose calculations," Physics in

Medicine & Biology, vol. 53, no. 9, p. 2439, 2008.

[87] R. E. Alvarez and A. Macovski, "Energy-selective reconstructions in x-ray computerised

tomography," Physics in Medicine & Biology, vol. 21, no. 5, p. 733, 1976.

165

[88] M. Torikoshi et al., "Electron density measurement with dual-energy x-ray CT using

synchrotron radiation," Physics in Medicine & Biology, vol. 48, no. 5, p. 673, 2003.

[89] B. Schaffner and E. Pedroni, "The precision of proton range calculations in proton

radiotherapy treatment planning: experimental verification of the relation between CT-HU

and proton stopping power," Physics in Medicine & Biology, vol. 43, no. 6, p. 1579, 1998.

[90] J. F. Williamson et al., "Prospects for quantitative computed tomography imaging in the

presence of foreign metal bodies using statistical image reconstruction," Medical physics,

vol. 29, no. 10, pp. 2404-2418, 2002.

[91] D. Han, J. V. Siebers, and J. F. Williamson, "A linear, separable two‐parameter model for

dual energy CT imaging of proton stopping power computation," Medical physics, vol. 43,

no. 1, pp. 600-612, 2016.

[92] B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, "An iterative maximum-

likelihood polychromatic algorithm for CT," IEEE transactions on medical imaging, vol.

20, no. 10, pp. 999-1008, 2001.

[93] I. A. Elbakri and J. A. Fessler, "Statistical X-ray-computed tomography image

reconstruction with beam-hardening correction," 2001: SPIE.

[94] P. Sukovic and N. H. Clinthorne, "Penalized weighted least-squares image reconstruction

for dual energy X-ray transmission tomography," IEEE transactions on medical imaging,

vol. 19, no. 11, pp. 1075-1081, 2000.

[95] C. H. Yan, R. T. Whalen, G. S. Beaupre, S. Y. Yen, and S. Napel, "Reconstruction

algorithm for polychromatic CT imaging: application to beam hardening correction," IEEE

Transactions on medical imaging, vol. 19, no. 1, pp. 1-11, 2000.

[96] J. M. Boone and A. E. Chavez, "Comparison of x‐ray cross sections for diagnostic and

therapeutic medical physics," Medical Physics, vol. 23, no. 12, pp. 1997-2005, 1996.

[97] J. Boone et al., "Handbook of Medical Imaging: Volume 1. Physics and Psychophysics,"

ed: SPIE press, Bellingham, 2000.

[98] M. M. Rehani et al., "Managing patient dose in computed tomography," Ann ICRP, vol.

30, no. 4, pp. 7-45, 2000.

[99] M. W. Kan, L. H. Leung, W. Wong, and N. Lam, "Radiation dose from cone beam

computed tomography for image-guided radiation therapy," International Journal of

Radiation Oncology* Biology* Physics, vol. 70, no. 1, pp. 272-279, 2008.

[100] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by

reducing internal covariate shift," in International conference on machine learning, 2015,

pp. 448-456.

166

[101] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "BM3D image denoising with shape-

adaptive principal component analysis," in SPARS'09-Signal Processing with Adaptive

Sparse Structured Representations, 2009.

[102] S. Gu, L. Zhang, W. Zuo, and X. Feng, "Weighted nuclear norm minimization with

application to image denoising," in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2014, pp. 2862-2869.

[103] A. G. e. Ivakhnenko and V. G. Lapa, "Cybernetic predicting devices," PURDUE UNIV

LAFAYETTE IND SCHOOL OF ELECTRICAL ENGINEERING1966.

[104] H. Greenspan, B. van Ginneken, and R. M. Summers, "Guest editorial deep learning in

medical imaging: Overview and future promise of an exciting new technique," IEEE

Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153-1159, 2016.

[105] E. Kang, J. Min, and J. C. Ye, "A deep convolutional neural network using directional

wavelets for low‐dose X‐ray CT reconstruction," Medical physics, vol. 44, no. 10, 2017.

[106] H. Chen et al., "Low-dose CT via convolutional neural network," Biomedical optics

express, vol. 8, no. 2, pp. 679-694, 2017.

[107] H. Chen et al., "Low-dose CT with a residual encoder-decoder convolutional neural

network," IEEE transactions on medical imaging, vol. 36, no. 12, pp. 2524-2535, 2017.

[108] G. Wang, "A perspective on deep imaging," IEEE Access, vol. 4, pp. 8914-8924, 2016.

[109] X. Yang et al., "Low-dose x-ray tomography through a deep convolutional neural

network," Scientific reports, vol. 8, no. 1, p. 2575, 2018.

[110] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing systems,

2012, pp. 1097-1105.

[111] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser:

Residual learning of deep cnn for image denoising," IEEE Transactions on Image

Processing, vol. 26, no. 7, pp. 3142-3155, 2017.

[112] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770-778.

[113] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image

recognition," arXiv preprint arXiv:1409.1556, 2014.

[114] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint

arXiv:1412.6980, 2014.

167

[115] J. Wang, T. Li, H. Lu, and Z. Liang, "Penalized weighted least-squares approach to

sinogram noise reduction and image reconstruction for low-dose X-ray computed

tomography," IEEE transactions on medical imaging, vol. 25, no. 10, pp. 1272-1283, 2006.

[116] J. Hsieh, O. Gurmen, and K. F. King, "Investigation of a solid-state detector for advanced

computed tomography," IEEE transactions on medical imaging, vol. 19, no. 9, pp. 930-

940, 2000.

[117] A. Britten, M. Crotty, H. Kiremidjian, A. Grundy, and E. Adam, "The addition of computer

simulated noise to investigate radiation dose and image quality in images with spatial

correlation of statistical noise: an example application to X-ray CT of the brain," The

British journal of radiology, vol. 77, no. 916, pp. 323-328, 2004.

[118] P. Massoumzadeh, S. Don, C. F. Hildebolt, K. T. Bae, and B. R. Whiting, "Validation of

CT dose‐reduction simulation," Medical physics, vol. 36, no. 1, pp. 174-189, 2009.

[119] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification," in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 1026-1034.

[120] A. Vedaldi and K. Lenc, "Matconvnet: Convolutional neural networks for matlab," in

Proceedings of the 23rd ACM international conference on Multimedia, 2015, pp. 689-692:

ACM.

168

Curriculum Vitae

Ayan Mitra

Degrees Ph.D., Electrical Engineering, Washington University in St. Louis,

St. Louis, MO, U.S.A., 2018.

B.E., Electrical Engineering, Jadavpur University, Kolkata, India,

2013.

Selected Publications A. Mitra, D. G. Politte, J. A. O’Sullivan, “Accelerating Iterative

Image Reconstruction via Adaptive Surrogate Functions,” Proc. of

Electronic Imaging 2018 (in print).

S. Don, D. G. Politte, R. Holdener, A. Mitra, C. Abbey, B.R.

Whiting, “Stochastic Noise Tolerance in Pediatric Appendicitis CT,”

SPR Annual Meeting 2018 (accepted).

A. Mitra, D. G. Politte, B. R. Whiting, J. F. Williamson, J. A.

O’Sullivan, “MultiGPU Acceleration of Branchless Distance Driven

Projection and Backprojection for Clinical Helical CT,” Journal of

Imaging Science and Technology, 61(1), page 1-13, 2017.

169

A. Mitra, D.G. Politte, J.A. O’Sullivan, “MultiGPU Acceleration of

Iterative X-Ray CT Image Reconstruction,” GPU technology

Conference 2017.

A. Mitra, S. Degirmenci, D.G. Politte, J.A. O’Sullivan, “Fast

Parallel GPU Implementation for Clinical Helical CT using

Branchless DD,” GPU technology Conference 2016.

A. Mitra, A. Roy, “A high regulated low ripple DC power supply

based on LC filter and IGBT,” International Journal of Power

Electronics and Drive System (IJPEDS), Vol. 3, No. 1, March 2013,

pp. 30-40, ISSN: 2088-8694.

Publications in

Preparation

A. Mitra, D. G. Politte, B. R. Whiting, J. F. Williamson, J. A.

O’Sullivan, “Accelerating Dual Energy Iterative Image

Reconstruction via Adaptive Surrogate Functions.”

August 2018

	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 8-15-2018

	Multi-GPU Acceleration of Iterative X-ray CT Image Reconstruction
	Ayan Mitra
	Recommended Citation

	tmp.1536177619.pdf.RbCch

