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X-ray computed tomography is a widely used medical imaging modality for screening and 

diagnosing diseases and for image-guided radiation therapy treatment planning. Statistical iterative 

reconstruction (SIR) algorithms have the potential to significantly reduce image artifacts by 

minimizing a cost function that models the physics and statistics of the data acquisition process in 

X-ray CT. SIR algorithms have superior performance compared to traditional analytical 

reconstructions for a wide range of applications including nonstandard geometries arising from 

irregular sampling, limited angular range, missing data, and low-dose CT. The main hurdle for the 

widespread adoption of SIR algorithms in multislice X-ray CT reconstruction problems is their 

slow convergence rate and associated computational time.  

 

We seek to design and develop fast parallel SIR algorithms for clinical X-ray CT scanners. Each 

of the following approaches is implemented on real clinical helical CT data acquired from a 

Siemens Sensation 16 scanner and compared to the straightforward implementation of the 

Alternating Minimization (AM) algorithm of O’Sullivan and Benac [1]. We parallelize the 

computationally expensive projection and backprojection operations by exploiting the massively 
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parallel hardware architecture of 3 NVIDIA TITAN X Graphics Processing Unit (GPU) devices 

with CUDA programming tools and achieve an average speedup of 72X over a straightforward 

CPU implementation. We implement a multi-GPU based voxel-driven multislice analytical 

reconstruction algorithm called Feldkamp-Davis-Kress (FDK) [2] and achieve an average overall 

speedup of 1382X over the baseline CPU implementation by using 3 TITAN X GPUs.  Moreover, 

we propose a novel adaptive surrogate-function based optimization scheme for the AM algorithm, 

resulting in more aggressive update steps in every iteration. On average, we double the 

convergence rate of our baseline AM algorithm and also improve image quality by using the 

adaptive surrogate function. We extend the multi-GPU and adaptive surrogate-function based 

acceleration techniques to dual-energy reconstruction problems as well. Furthermore, we design 

and develop a GPU-based deep Convolutional Neural Network (CNN) to denoise simulated low-

dose X-ray CT images. Our experiments show significant improvements in the image quality with 

our proposed deep CNN-based algorithm against some widely used denoising techniques including 

Block Matching 3-D (BM3D) and Weighted Nuclear Norm Minimization (WNNM). Overall, we 

have developed novel fast, parallel, computationally efficient methods to perform multislice 

statistical reconstruction and image-based denoising on clinically-sized datasets. 
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Chapter 1: Introduction 
 

1.1 Motivation 
 

X-ray computed tomography (CT) is a popular noninvasive imaging modality mostly used for the 

analysis of specific internal anatomical structures and to provide more accurate information 

regarding those internal regions of interest. X-ray CT is widely used in the medical imaging 

community to help radiation oncologists devise better treatment plans and physicians detect and 

diagnose diseases. With the adoption of modern X-ray CT scanners in several areas from medical 

imaging to security applications, there is a growing challenge to analyze all this new information 

in a relevant timeframe. In a world where data-generation rates are accelerating faster than modern 

computing capabilities, and where Moore’s law has been stagnant for the last decade, simultaneous 

adoption of General Purpose computing on Graphics Processing Units (GPGPU), and 

mathematical optimizations are the industry-wide consensus for bridging the gap between them. 

 

There has been a tremendous advancement in the last few decades in the capabilities of massively 

parallel graphics hardware. A CPU consists of a few cores with large caches, which are highly 

optimized for complex sequential operations while GPUs consist of thousands of smaller 

computational cores designed for handling massively parallel tasks simultaneously and more 

efficiently. CPU cores are mostly optimized for single-threaded operations where most of the 

transistor budget is dedicated towards pipelining instructions, and out-of-order execution while 

leaving fewer resources for the integer and floating-point execution units. GPUs, on the other hand, 
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have a large portion of the transistor budget dedicated to optimizing the floating-point throughput, 

rather than generating complex instruction-level parallelism [3]. Modern GPUs rely on large 

amounts of data transfer bandwidth, device memory, fast read-only texture and shared memory, 

and thousands of high-performance computational cores clocked at 1.5 GHz to yield massive 

advantage in computational cost over CPUs. Computationally intensive algorithms like SIR 

algorithms benefit tremendously in terms of computational time by offloading their most time-

consuming parts onto GPU devices. 

 

MBIR algorithms are typically iterative where the next image estimate is computed based on the 

current image estimate and an error measure between measured data and predicted data from the 

current image [4]. These algorithms can incorporate the statistics of the measured data, and 

detector response model, which in turn reduces noise and artifacts in images reconstructed from 

low-dose X-ray CT measurements [5-9]. Two important components of these algorithms are 

forward projection, where a reconstructed image is mapped onto the measured data space and 

backprojection where measured data is mapped onto the image domain. Due to the iterative nature 

of these algorithms and the high computational burden associated with the implementation of 

projection and backprojection operations on large data and image volumes, MBIR algorithms are 

not extensively used in clinical settings. 

 

In the published literature, there are few papers that discuss parallelization strategies for helical 

CT statistical reconstruction. Much more work has been published on other imaging modalities, 

for example, in nuclear medicine [10-13] and circular-orbit cone-beam CT (CBCT) [14-17]. In 
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contrast to helical CT, however, implementations for nuclear medicine and circular orbit CBCT 

do not need to account for the movement of the scanned object along the z-direction of the scanner 

during data acquisition. One paper that does address the helical geometry describes a fast analytical 

backprojection algorithm based on helical symmetry and image rotation [18]. 

 

GPUs, therefore, have the potential to facilitate the adoption of complex MBIR algorithms, which 

can lead to improved images in terms of noise and artifact reduction, improvement of spatial and 

temporal resolutions [7-9, 19]. They are by far the least costly option for parallel computing, and 

they can provide large speedups over single-CPU implementations due to their specialized ability 

to handle arithmetic operations efficiently [7, 20-22]. GPU technology has come a long way, from 

its invention in the late 1980s to the latest release of GeForce GTX TITAN X GPUs, consisting of 

8 billion transistors on a single chip. Modern GPU technologies with their high memory bandwidth 

and peak arithmetic performance are rapidly outpacing their CPU counterparts [23, 24]. 

 

Over the years, several groups have accelerated their iterative-reconstruction algorithm 

implementations using GPUs. Andreyev et. al [25] have accelerated their blob-based iterative 

reconstruction using a Tesla GPU. X. Jia et. al [9] implemented a low-dose cone-beam CT 

reconstruction with total variation regularization on an NVIDIA Tesla C1060 GPU. McGaffin et. 

al [26] proposed a multi-GPU based fast converging stochastic group ascent algorithm to perform 

dual maximization and implemented their algorithm on NVIDIA Tesla C2050 GPUs. Meng Wu 

et. al [27] accelerated separable footprint based projection and backprojection algorithms using 

NVIDIA Tesla C2050 GPUs. Quivira et. al [28] developed an iterative 3-D reconstruction 



 

4 

 

 

algorithm for sparse X-ray CT data on TITAN X GPUs. Due to their inherent parallel architecture, 

GPUs can provide quite significant performance improvement for algorithms with highly pipelined 

structure. Current GPUs also provide very high global memory storage, which is ideal for fitting 

the whole data volume and image array in the GPU itself during kernel execution, in turn 

eliminating the high latency penalty for accessing external memory. Due to all these advantages, 

it is quite logical to use GPUs to improve the speed of image reconstruction. 

 

The second line of research for the reduction of the computational time of MBIR problems involve 

the design of efficient algorithms which amenable to parallelization [29-32]. The optimization 

framework explored in this work uses a popular linear reconstruction method, Feldkamp-Davis-

Kress (FDK), to predict an adaptive and aggressive step size. In mathematical optimization, the 

optimality of a variable in a certain optimization space is determined by minimizing an objective 

function or by maximizing the negative of the objective function. A new method named adaptive 

surrogate function is investigated in this dissertation for accelerating the convergence rate of the 

AM algorithm and is evaluated using a phantom and real clinical data obtained from a Siemens 

Sensation 16 scanner. 

 

 1.2 Contributions 
 

The contributions of the research presented in this dissertation are given below. 

 We present a fast-parallel multi-GPU based implementation of branchless distance-driven 

projectors for helical scanner geometry.  
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 We propose novel ways to compute the pre-integration part in branchless distance-driven 

projection and backprojection computation, which eliminates the need for thread 

synchronization in GPU architecture. 

 We present some novel ways to calculate the interpolation step of the branchless distance-

driven projection and backprojection operator by directly projecting the detector array to 

image voxels, which makes our implementation more amenable to GPU thread-based 

parallelization. 

 We derive a precise load sharing mechanism between multiple GPU devices to reduce the 

downtime of each device. 

  We propose a novel adaptive step-size based acceleration technique for our iterative-

reconstruction problem which doubles the rate of convergence for both the mono-energy 

and dual-energy cases. 

 We develop novel schemes to accelerate the computational performance of the Feldkamp-

Davis-Kress (FDK) reconstruction algorithm using multi GPUs in parallel. 

 We implement and validate the above-mentioned multi-GPU based algorithmic 

acceleration steps on real clinical CT data and computer-generated phantom data. 

 We also design and implement a deep Convolutional Neural Network based X-ray CT 

denoising system and validate the image quality performance of the proposed system on 

the real clinical dataset. 
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1.3 Outline 
 

The general outline of this dissertation is as follows: In Chapter 2, we discuss the basic 

reconstruction problem and our motivation for shifting towards algorithmic and parallel hardware-

based speedup. Chapter 3 contains a detailed description and derivation of our parallel multi-GPU 

based reconstruction algorithm for the mono-energetic model. Chapter 4 presents a multi-GPU 

based implementation of a popular analytical reconstruction algorithm known as FDK for clinical 

helical datasets. Next, in Chapter 5, we design a novel adaptive surrogate function and showcase 

the acceleration of the convergence rate on a multislice clinically-sized mono-energetic dataset. 

Chapter 6 contains a derivation of a multi-GPU based implementation of a dual-energy 

reconstruction algorithm and the corresponding adaptive surrogate-function based acceleration 

technique. In Chapter 7, we propose the deep CNN based X-ray CT image denoising technique 

and evaluate its performance. 
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Chapter 2: Background 
 

2.1 Image Reconstruction Overview 
 

Reconstruction algorithms for X-ray CT are broadly classified into the following categories 

depicted in Fig 2.1. 

  

Fig. 2.1 Broad classification of X-ray CT reconstruction algorithms 

 

Analytical algorithms are based on the deterministic line-integral model for measured data while 

statistical data-driven approaches are based on the arbitrarily accurate model that also accounts 

for the probability distribution of the measured data. 

 

2.1.1  Reconstruction from Line Integral Data Model 

 

In an X-ray CT system, the X-ray tube generates X-rays that propagate through the object we are 

trying to image and get attenuated as they travel through its cross-section. The attenuated exit beam 
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is then detected by the detectors along a straight-line path between the X-ray source and detector. 

The detected intensity at any detector can be represented as 

 𝐼𝑑(𝑦) ≜ ∫ 𝑆0(𝐸)𝐸exp (−∫𝜇(𝑠, 𝐸)𝑑𝑠)
𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝑑𝐸, (2.1) 

where 𝑆0(𝐸) is the spectrum of the X-ray source at energy 𝐸, 𝑦 is the source -detector pair,  𝜇(𝑠, 𝐸) 

is the energy-dependent linear attenuation coefficient along the line between source and detector, 

and 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 are the minimum and maximum energies, respectively, of the range over which 

the detectors are sensitive. The integration over energy in equation (2.1) complicates the derivation 

and implementation of algorithms that are based on this model. In order to overcome this issue, 

we use effective energy, 𝐸̅, which is defined as the same measured intensity from a monoenergetic 

source as is measured using a polyenergetic source. However, this approximation can lead to 

beam-hardening We can represent the detected intensity using effective energy as 

 𝐼𝑑(𝑦) ≜ 𝐼0(𝑦)exp (−∫𝜇(𝑠, 𝐸̅)𝑑𝑠) (2.2) 

Given the measurement, 𝐼𝑑(𝑦), we can represent the basic projection measurement, 𝑔𝑑(𝑦), as 

 𝑔𝑑(𝑦) = − log (
𝐼𝑑(𝑦)

𝐼0(𝑦)
) (2.3) 

           = ∫𝜇(𝑠, 𝐸̅)𝑑𝑠 (2.4) 

So, we can conclude that the basic CT scanner measurement is actually a line integral of the linear 

attenuation coefficient 𝜇(𝑠, 𝐸̅) at the effective energy of the scanner. However, this approximation 

can lead to significant image reconstruction errors due to beam hardening [33]. We call this line 

integral through the object along the path of a collimated X-ray beam the forward projection model. 

For analytical methods, the forward projection algorithm is derived in continuous space and then 
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subsequently discretized for practical implementation. The line integral of a 2-D function 𝑓(𝑥, 𝑦) 

is given by 

 𝑔(𝑡, 𝜃) = ∫ 𝑓(𝑥(𝑠), 𝑦(𝑠))𝑑𝑠
∞

−∞

 (2.5) 

where for any point 𝑠 along the line between source and detector, 

 𝑥(𝑠) = 𝑡 cos 𝜃 − 𝑠 sin 𝜃, (2.6) 

 𝑦(𝑠) = 𝑡 sin 𝜃 + 𝑠 cos 𝜃. (2.7) 

We can alternatively express equation (2.5) as 

 𝑔(𝑡, 𝜃) = ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡) 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞

. (2.8) 

Equation (2.8) is basically the integration of function 𝑓(𝑥, 𝑦) along the line; hence it is a line 

integral. 𝑔(𝑡, 𝜃) is called the 2-D Radon transform of 𝑓(𝑥, 𝑦). The following derivation is based 

on Kak and Slaney [34]. Since our projection corresponds to a collection of parallel line integrals, 

they are called parallel ray projections as shown in Fig 2.2. The view angle is 𝜃 and the normal 

vector normal to the direction of projection is denoted by 𝑛̂(𝜃). 
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Fig. 2.2 The geometry of parallel lines and projections used to define the Radon transform.  

 

For a fixed 𝜃, 𝑔(𝑡, 𝜃) is called the projection at angle 𝜃 for all 𝑡. Using the projection slice theorem 

[35], we can develop the relationship between the 1-D Fourier transform of the projection and the 

2-D Fourier transform of the object which is crucial to analytical reconstruction. The relationship 

is: 

 𝐺(𝜔, 𝜃) = ℱ1𝐷{𝑔(𝑡, 𝜃)} = ∫ 𝑔(𝑡, 𝜃)𝑒−𝑗2𝜋𝜔𝑡𝑑𝑡
∞

−∞

 (2.9) 

 =∭ 𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡)𝑒−𝑗2𝜋𝜔𝑡 𝑑𝑥 𝑑𝑦 𝑑𝑡
∞

−∞

 (2.10) 

 =∬ 𝑓(𝑥, 𝑦)
∞

−∞

∫ 𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡)𝑒−𝑗2𝜋𝜔𝑡 𝑑𝑡 𝑑𝑥 𝑑𝑦
∞

−∞

 (2.11) 

 =∬ 𝑓(𝑥, 𝑦)
∞

−∞

𝑒−𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃) 𝑑𝑥 𝑑𝑦 (2.12) 

 = 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃), (2.13) 
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where 𝑗 ≜ √−1. Equation (2.13), denoted by 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃) is the Fourier transform of 

projection 𝑔(𝑡, 𝜃) at angle 𝜃 and is equal to the 2-D Fourier transform of 𝑓(𝑥, 𝑦) along the 𝑛̂(𝜃) 

direction. 

The inverse Fourier transform of 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃) can be expressed in polar coordinates: 

 𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃)𝑒𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃)𝜔𝑑𝜔𝑑𝜃
∞

0

2𝜋

0

. (2.14) 

Using the projection-slice theorem from equation (2.13) we have 

 𝑓(𝑥, 𝑦) = ∫ ∫ 𝐺(𝜔, 𝜃)𝑒𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃)𝜔𝑑𝜔𝑑𝜃
∞

0

2𝜋

0

. (2.15) 

                  = ∫ ∫ |𝜔|𝐺(𝜔, 𝜃)𝑒𝑗2𝜋𝜔(𝑥 cos𝜃+𝑦 sin𝜃) 𝑑𝜔 𝑑𝜃
∞

−∞

2𝜋

0

. (2.16) 

                            = ∫ [∫ |𝜔|𝐺(𝜔, 𝜃)𝑒𝑗2𝜋𝜔𝑡 𝑑𝜔 𝑑𝜃
∞

−∞

]
𝑡=𝑥 cos𝜃+𝑦 sin𝜃

𝑑𝜃
𝜋

0

. (2.17) 

In equation (2.17) the |𝜔| factor is a filter that accentuates high frequencies for each parallel-beam 

projection. After inverse Fourier transformation, the filtered projection is backprojected by 

substituting 𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, which is followed by summation of the filtered projections at 

all angles. As a result, this approach is termed filtered backprojection (FBP) and the high pass 

filter given by |𝜔| is called a ramp filter due to its shape in Fourier space. The ramp filter is 

carefully apodized to avoid amplification of high-frequency noise in the projection. The 

apodization filter can also be utilized to control the noise-resolution tradeoff for different imaging 

needs. The three steps in filtered backprojection are shown in Fig. 2.3 
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Fig. 2.3 Linear filtered backprojection algorithm for X-ray CT 

 

The inverse Radon transform can also be adapted for use with a fan-beam geometry as shown in 

[34]. The resulting reconstruction formula for fan-beam is basically a weighted FBP formula. For 

our helical CT geometry reconstruction discussed in Chapter 4, we use the Feldkamp-Davis-Kress 

(FDK) algorithm. We rebin our cone-beam to equivalent parallel fan-beam projections and apply 

the backprojection method discussed previously. However, due to a sampling pattern difference 

between Cartesian and polar coordinate systems, interpolation can adversely affect the noise-

resolution tradeoff. 

 

2.1.2  Reconstruction from Statistical Data Model 

 

In this section, we consider a mono-energetic, scatter-free data model which accounts for the 

randomness of the measured X-ray photon counts. Detailed data models exist in the literature [1, 

36-38] which account more accurately for scatter, noise and beam hardening. At the basis of our 

statistical model, we assume the number of X-ray photons at each detector follows a Poisson 

counting process. For X-ray CT, simple Poisson is a good approximation to the more complex 
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compound Poisson process, which can effectively capture the physics of X-ray CT and scanner 

geometry since it is an appropriate model for a CT scanner with energy-integrating detectors [39]. 

If we denote the mean of our measurement data 𝑑(𝑦) as 𝑔(𝑦), where 𝑦 is our source-detector pair, 

then we can represent the probability distribution of a particular measurement 𝑑(𝑦) by 

 𝑃(𝑑(𝑦)) = exp(−𝑔(𝑦))𝑔(𝑦)𝑑(𝑦) 𝑑(𝑦)!⁄ . (2.18) 

Determination of the mean value 𝑔(𝑦) requires a forward projection which is basically an integral 

denoted by equation (2.8). However statistical reconstruction problems are not constrained by the 

projection slice theorem. The problem can simply be modeled by a discretized system matrix 

ℎ(𝑦|𝑥) that relates the image space to the data space by matrix vector multiplication as denoted 

by 

 𝑙(𝑦) =∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

, (2.19) 

where 𝜇(𝑥) is the 𝑥 − th voxel of the attenuation coefficient image. For transmission tomography, 

we use Beer’s law, 

 𝑔(𝑦) ≜ 𝐸[𝑑(𝑦)] = 𝐼0(𝑦)𝑒
−𝑙(𝑦), (2.20) 

where 𝐼0(𝑦) is the mean number of photons detected for 𝑦 − th source-detector pair in the absence 

of an attenuating medium. The likelihood function can be expressed mathematically as 

 𝜇̂ ≜ argmax
𝜇≥0

∏exp(−𝑔(𝑦)) 𝑔(𝑦)𝑑(𝑦) 𝑑(𝑦)!⁄

𝑦

. (2.21) 

where 𝜇̂ is the maximum likelihood (ML) estimate of the image and the product is taken over all 

measurements. In order to write equation (2.21) as a product of Poisson probabilities, we assume 

each measurement is independent. However, it is easier to maximize the log-likelihood function  
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 𝐿(𝑑|𝜇) ≜ argmax
𝜇≥0

∑𝑑(𝑦) log(𝑔(𝑦)) − 𝑔(𝑦)

𝑦

, (2.22) 

where we have dropped the term containing 𝑑(𝑦)! since it is independent of 𝜇 and thus irrelevant 

to our optimization problem. It has been shown previously that the problem in equation (2.22) can 

have a guaranteed convergence to a possibly non-unique global maximum [36].  

 

Since our problem can be classified as an ill-posed inverse problem, we may end up overfitting 

the image to the noisy data. In order to overcome this issue, we modify the likelihood function to 

be maximized by including a penalty. We can also think of this penalty function as an image prior 

that enforces local smoothness on the image. One of such choices is the Gibbs potential energy 

function, 

 𝑈(𝜇) ≜ ∑ ∑ 𝜙(𝜇(𝑥) − 𝜇(𝑥′))

𝑥′∈𝑁𝑥

𝑁

𝑥=1

. (2.23) 

Here, 𝑁𝑥 is a local neighborhood of voxels surrounding voxel 𝑥, the potential function 𝜙(∙)  is 

often chosen to be a convex function, and the first sum is over all the voxels in the image volume. 

The introduction of the penalty function from equation (2.23) to our original ML problem in (2.22) 

makes this a penalized-likelihood (PL) problem. PL is quite useful when the problem is particularly 

ill-posed. 

 

Numerical solutions for statistical reconstruction problems often use iterative gradient descent 

methods like Newton’s methods to optimize the problem since there exists no closed form solution 

of the PL problem.  Many algorithms have been developed previously to optimize the objective 
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function for transmission tomography. Lange and Carson proposed an expectation-maximization 

algorithm [40], Mumcuoglu et. al [41] developed a conjugate-gradient algorithm for computing 

maximum a-priori posteriori (MAP) estimates for both transmission CT and emission PET. 

Bouman et. al [42] developed an iterative coordinate-descent (ICD) algorithm which is basically 

a greedy pixel-wise computation that involves updating each image voxel sequentially. As a result, 

the ICD algorithm is not amenable to parallelization on GPU devices. Elkbari et. al [4] developed 

the concept of optimization transfer and surrogate functions which is used later in Chapter 3. 

O’Sullivan and Benac [1] developed an alternating minimization (AM) algorithm that alternates 

between exponential and linear family optimization. The proposed method provides a closed-form 

update for the ML algorithm with guaranteed convergence. For our implementation, we use an 

AM algorithm with a Huber-type penalty function used previously by [37]. 

 

2.1.3  Comparison of Analytical and Statistical Iterative Methods  

 

The main hurdle for the adoption of statistical iterative-reconstruction methods in clinical CT 

scanners is their high computational burden. Also in most cases, CT scanners collect enough data 

to enable the use of linear, single-shot reconstruction methods like FBP or FDK to reconstruct 

high-quality, low-noise images. However, for low-dose CT [6, 43-45], irregular scanner 

geometries or incomplete data, these linear methods introduce troublesome artifacts, in which case 

SIR algorithms can be advantageous. 

 

Unlike conventional linear backprojection algorithms, SIR algorithms allow the inclusion of 

additional information in the reconstruction process including photon statistics, physical properties 
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of the X-ray beam and image-penalty functions. For low-count photon measurements, Fessler [36] 

showed that the introduction of the logarithm for the computation of linear projection estimates in 

equation (2.3) adds systematic bias. However, the lack of linearization for statistical methods gives 

it an advantage over linear methods. Additionally, FBP algorithms apply the same weight to high 

variance, i.e. low-dose measurements and low variance measurements since they are unable to 

utilize the noise model of the measured data. This shortcoming introduces higher noise to images 

reconstructed from low-dose CT measurements. 

 

For multislice cone-beam CT geometries, most linear algorithms fail to reduce cone-beam artifacts 

due to the large cone-beam angle. Although the FDK algorithm discussed later in this work 

somewhat reduces the cone-beam artifact, due to their approximate nature, these artifacts are not 

completely eliminated. The methods of Hsieh [46] and Katsevich [47] attempt to reduce noise in 

analytical reconstructions, but in the end, they are of limited utility due to their inability to 

incorporate measurement statistics. SIR algorithms, on the other hand, are based on a physically 

realistic model of signal statistics [42, 48, 49]. SIR algorithms attempt to incorporate the 

nonlinearities of the measurement systems rather than trying to overfit the reconstructed image to 

a noisy measurement. The non- linear objective function along with the roughness or edge 

preserving penalty function in SIR algorithms, gives us the leverage to adaptively control the 

tradeoff between desired resolution and noise tolerance. 

 

This dissertation is focused on the reconstruction time and accuracy of different analytical and SIR 

algorithms. Although there are significant advantages for using FDK algorithms due to their 
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impressive computational efficiency, as discussed in this thesis, we believe that the use of multiple 

GPUs can reduce the reconstruction time of SIR algorithms significantly. As shown in later 

chapters we can use multiple GPUs and sophisticated parallelization schemes to not only accelerate 

the linear single-shot backprojection algorithms but we can also apply these techniques to a 

complex model-based reconstruction problem. 

 

2.2 System Modeling 
 

The system matrix used in iterative reconstruction can be computed either by ray-driven or voxel-

driven methods. In a ray-driven method, a weight is assigned to the X-ray beam proportional to 

the amount of interaction between the beam and voxels it passes through in the object being 

imaged. On the other hand, in voxel-driven methods, the detector edges are projected to the voxel 

array along the ray path to compute the system matrix. De Man et. al [50] provides a good review 

of some available projection and backprojection methods. They also proposed a distance-driven 

method as a more accurate method to perform forward and backprojection. In the following 

section, we discuss the proposed distance-driven operators. 

 

2.2.1  Branchless Distance-driven Projection  

 

For the computation of a ray-driven projection, we can evaluate the contribution of the ray to the 

voxel by calculating the length of intersection along the ray path [51-54] or interpolate based on 

the distance of the X-ray beam to nearby beams [52, 55]. However, these ray-driven algorithms 

are not easy to parallelize, and sometimes introduce moiré patterns in backprojected images [50, 
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56]. However, voxel-driven projection and backprojection are more suitable for parallel hardware 

implementation. 

 

One of the state-of-the-art projection algorithms, called distance-driven (DD) projection and 

backprojection, was proposed by De Man and Basu [50, 56]. In 2006 they proposed an extension 

to their algorithm called branchless distance-driven projection and backprojection [57] in which 

they basically parallelized the inner loop of their overlap calculation. They divided the overlap 

kernel into 3 distinct and independent steps: digital integration, interpolation, and digital 

differentiation. Schlifske et. al [58] proposed a 2-D extension to the branchless DD algorithm, in 

which they “pre-integrate” the 2-D image slice of the image volume before projection and after 

backprojection. In our work, we use a similar method in which we pre-accumulate the image 

intensities in 4 perpendicular image slabs in a recursive manner before projection in order to 

accommodate the 3-D helical nature of the data. 

 

2.2.2  Branchless Distance-driven Backprojection  

 

The core calculation of the algorithm is the computation of the overlap between the projection of 

an individual slab of the image volume onto a 2-D detector array. For our specific reconstruction, 

we used helical CT geometry. In our work, we have also employed a recursive adjoint 

accumulation scheme after backprojection to retrieve our final 3-D image volume. Our proposed 

method of pre-accumulation enables us to employ interpolation directly into the image 

accumulation array which reduces some of the computational burdens associated with the 

sequential integration of the original branchless DD method. 
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We also focus on the parallelization of the branchless DD backprojection over multiple GPUs. We 

first simplify the overlap computation of the branchless DD algorithm by projecting detector 

boundaries directly onto the image voxel boundaries. After that, we added a pre-accumulation 

scheme, which reduces the sequential integration burden on individual GPU threads. Next, we 

present a pseudocode for the implementation of our proposed algorithm on single and multiple 

GPUs. Last but not least, we have validated our overall parallelization scheme by reconstructing 

images from Siemens Sensation 16 helical CT data using the alternating minimization algorithm 

and its ordered subsets version. 

 

2.3 Graphics Processing Unit Architecture 
 

Graphics processing units (GPU) are specialized devices designed to rapidly manipulate and alter 

memory to accelerate the creation of images and send them to display devices. Shaped by the fast-

growing video game industry that expects a tremendously massive number of floating-point 

calculations per video frame, there is an active research push to maximize the chip area and power 

budget dedicated to floating-point calculations. Therefore, modern GPUs are optimized for 

throughput i.e. the number of tasks processed per unit of time, while CPUs are optimized for low 

latency and the amount of time needed to perform a complex task. This high value of throughput 

is achieved by executing a large number of tasks on multiple threads while allowing individual 

threads to take a potentially much longer time to execute. This design saves chip area and power 

by allowing pipelined memory channels and arithmetic operations to have long latency. The 

reduced area and power of memory and arithmetic operations allow designers to pack more cores 

on a chip to increase the execution throughput. As compared to a normal CPU, more transistors 
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are devoted to data processing rather than data caching and flow control as shown in Fig. 2.4. 

DRAM stands for dynamic random-access memory and the ALU stand for arithmetic logic unit. 

 

 
Fig. 2.4 CPU vs. GPU architecture 

 

2.4 Acceleration of Statistical Iterative-reconstruction 

Algorithms 
 

The majority of the time for the SIR algorithms is spent in the computation of the forward 

projections and backprojections. Considering the many benefits of the statistical reconstruction, 

one goal in the research community is to speed up the execution of these methods in order to 

reconstruct large 3-D volumes in a reasonable timeframe. A variety of acceleration techniques 

have been developed and can be divided into algorithmic and hardware approaches. 
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2.4.1  Algorithmic Speedup  

 

Ordered subsets (OS) is a range-decomposition method introduced by Hudson and Larkin [59]. 

OS are able to speed up the convergence of parallel-update iterative-reconstruction algorithms 

significantly. An algorithm that utilizes OS iteratively computes image updates using only a subset 

of the available projection data. During each iteration, the OS algorithm cycles through each subset 

of data, performing an image update after each sub-iteration. OS can improve the convergence rate 

by a factor roughly equal to the number of subsets. However, for multi-GPU implementation, there 

is significant overhead in every OS iteration from combining data from multiple GPUs running in 

parallel. But, the amount of acceleration achieved using OS overshadows the increase in 

computational burden due to the OS implementation. 

 

The original OS method removes the monotonic convergence guarantee of most statistical 

reconstruction algorithms. Convergent OS methods have been developed [60], but their memory 

demands may be too high for clinical practice. However, even without the convergence guarantee, 

the original OS method tends to be stable in practice. 

 

Our surrogate-function based optimization technique discussed in Chapter 3 results in an 

independent parallel voxel-based update step which can be ideal for multi-GPU implementation. 

However, this kind of first-order surrogate function with the majorization property suffers from a 

sublinear rate of convergence. Thus, there has been a tremendous amount of research on methods 

for accelerating convex optimization. One of the most popular acceleration techniques is the Fast 
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Iterative Shrinkage-Thresholding Algorithm (FISTA) [32, 61]. In this work we propose, a novel 

adaptive surrogate-function based optimization technique.  

 

The main motivation behind adaptive surrogate-function based acceleration is the fact that the 

update steps in the original unaccelerated surrogate-function based optimization technique are very 

conservative. The small update steps guarantee convergence to a global minimum but at a slow 

rate. The acceleration method we propose computes aggressive update step-size based on the 

measured sinogram, air scan, and current estimate of the image. After every iteration, we modify 

the update steps to include the previous update in the image domain. This scheme basically yields 

step-sizes which are unique to different regions in the image space. Image regions which are most 

divergent from the converged final image will have larger update steps and vice versa. The 

adaptive update step computation is independent for each voxel and can be easily implemented in 

a parallel multi-GPU architecture with negligible computational burden.  

 

2.4.2  Hardware Speedup  

 

In general, the computational burden of tomographic reconstruction is commensurate with the 

complexity and scale of the physical model underlying the process. In recent years, massively 

parallel commodity graphics hardware (Graphics Processing Units, GPUs) allowed the use of more 

complex models while maintaining reasonable execution times. Ultimately, this led to improved 

images in terms of dose efficiency, noise, artifacts, and spatial resolution, and opened the way to 

new applications. Nowadays, it is safe to assume that any serious attempt at developing an 
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advanced reconstruction algorithm for clinical applications requires hardware acceleration, often 

from massively parallel GPU cores. 

 

With current advances in GPU memory size, we can easily fit the entire clinical image volume on 

the GPU device memory, which eliminates the high latency penalty of using external CPU memory 

to retrieve data as in older GPUs. Additionally, GPUs are notoriously slow in executing divergent 

branches (“if” statements) unless all processor cores take the branch, whereas CPUs are much 

better at this type of flow control. A modification to the distance-driven projector mentioned above 

was proposed that eliminates branching [57]. 

 

Projection and backprojection operations are often a performance bottleneck in CT reconstruction 

schemes. Being highly parallel, they are well suited for GPU implementations. The efficiency of 

projection and backprojection operations is particularly critical in iterative-reconstruction schemes 

as they are repeated multiple times and often become an overall performance bottleneck. From a 

GPU perspective, the forward projection is best obtained with a ray-driven approach, where each 

ray is assigned to an independent GPU thread. For backprojection, a voxel-driven approach is more 

adapted to the GPU architecture and avoids potential race conditions where two threads could 

write to the same memory location with unpredictable outcomes. However, a mismatch in 

projectors might lead to convergence issues in some circumstances [62]. Instead, to ensure 

convergence we employ voxel-driven projection and backprojection which are the exact adjoints 

of each other. 
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Chapter 3: Multislice Statistical Iterative 

Helical CT Reconstruction Using GPU 
 

3.1 Theory 
 

Multislice helical CT has been proven to be a successful imaging modality in many clinical 

applications and is currently in widespread use. This kind of imaging modality is inherently 3D 

since the X-ray tube continuously projects a cone beam of X-rays through the object being imaged. 

At the same time, the patient is also translated along the gantry axis. Every detector captures data 

in a partial rotation of the gantry that corresponds to each image slice. In order to reconstruct an 

attenuation image from the measured data, we need to model the system geometry accurately. 

Below, we highlight the main aspects of this process along with the formulation of the fast-parallel 

statistical iterative reconstruction (SIR) algorithm for multislice helical CT. 

 

3.1.1  Statistical Data Model 

 

In this work, we consider a mono-energetic, noisy and scatter free data model which accounts for 

the randomness of the measured X-ray photon counts. Detailed data models exist in the literature 

[1, 36-38] which account for more accurate scatter, noise and beam hardening. At the basis of our 

statistical model, we assume the photons arrive at the detector array in accordance with a Poisson 

counting process. Such a model can effectively capture the physics of X-ray CT and scanner 

geometry while simplifying the 3-D reconstruction algorithm described below. 
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The 3-D image volume of linear attenuation coefficients in units of mm−1 is represented in the 

vector array 𝜇. The index 𝑦 refers to a ray path between the X-ray source and a pixel in the multirow 

detector array. The measured transmission data for the 𝑦𝑡ℎ source-detector pair, 𝑑(𝑦), is modeled 

as originating from independent Poisson counting processes. In discretized form, the mean value 

of 𝑑(𝑦) is modeled as: 

 𝑔(𝑦: 𝜇) ≜ 𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

) + 𝛽(𝑦), (3.1) 

where 𝐼0(𝑦) is the mean number of counts in the absence of an attenuating medium, 𝛽(𝑦) is the 

mean number of background events assumed to be nonnegative and known, and 𝜇(𝑥) is the linear 

attenuation coefficient in voxel 𝑥. The system matrix elements ℎ(𝑦|𝑥) comprise the appropriately 

discretized point spread function relating the projection space to the image space. If projection 𝑦 

does not pass through voxel 𝑥, then ℎ(𝑦|𝑥) is zero. In a simple ray-tracing model, ℎ(𝑦|𝑥) 

represents the length of intersection between the voxel indexed by 𝑥 and the ray-path indexed by 

𝑦. The discretized forward projection operation can therefore be represented by 𝑙(𝑦) as: 

 𝑙(𝑦, 𝜇) ≜∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

. (3.2) 

 

3.1.2  Image Reconstruction Formulation 

 

In transmission tomography, the basic goal of image reconstruction is to estimate the spatial 

distribution of the linear attenuation coefficient, 𝜇, in the scanned object. This can be achieved by 

maximizing a log-likelihood objective function between measured data and estimated data from 

our statistical model. 
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Maximum Likelihood 

 

Using a polyenergetic data model with scatter, O’Sullivan and Benac [1] derived an alternating 

minimization (AM) algorithm to find the maximum loglikelihood (ML) solution. The problem was 

formulated as the double minimization of an I-divergence over a linear and an exponential family, 

thereby resulting in a closed-form update for each iteration. If we assume the individual detector 

measurements are independent Poisson random variables, the Poisson log-likelihood function is: 

 ℒ(𝑑; 𝜇) =∑[𝑑(𝑦)log(𝑔(𝑦: 𝜇)) − 𝑔(𝑦: 𝜇)]

𝑦

. (3.3) 

The objective of our iterative-reconstruction algorithm is to maximize the log-likelihood function 

in (3.3) subject to 𝜇(𝑥) being nonnegative, due to the nature of linear attenuation coefficients. It 

turns out that maximizing ℒ(𝑑; 𝜇) is equivalent to minimizing the I-divergence between 𝑑(𝑦) and 

𝑔(𝑦: 𝜇). In other words, 

 𝜇𝑀𝐿
∗ = argmax

𝜇≥0
ℒ(𝑑; 𝜇) = argmin

𝜇≥0
I(𝑑(𝑦)||𝑔(𝑦: 𝜇)), (3.4) 

where the I-divergence I[𝑑(𝑦)||𝑔(𝑦: 𝜇)] is defined as: 

 I[𝑑||𝑔; 𝜇] ≜∑[𝑑(𝑦) log (
𝑑(𝑦)

𝑔(𝑦: 𝜇)⁄ )+𝑔(𝑦: 𝜇) − 𝑑(𝑦)]

𝑦

. (3.5) 

The objective function presented in (3.5) can’t be optimized directly over 𝜇, in part because the 

optimization space is large. One of the best approaches is to develop surrogate functions that 

approximate the original function at every iteration and are easy to minimize. This approach leads 

to iterative algorithms where different surrogate functions are formed and solved at each iteration 

and yet the original function decreases monotonically. 
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In order to formulate a surrogate optimization function, we start with a nonnegative initial image, 

𝜇0(𝑥) where the superscript represents the iteration index, and create surrogate functions for I-

divergence at each iteration and update the image by minimizing the surrogate function. Special 

properties of the surrogate function guarantee a monotonic decrease of the original function, which 

will be explained later in this section. If we ignore the terms of the I-divergence that do not depend 

on 𝜇, the objective function to be minimized for the mono-energetic case is: 

 I[̅𝑑||𝑔; 𝜇] ≜∑[−𝑑(𝑦) log(𝑔(𝑦: 𝜇))+𝑔(𝑦: 𝜇)]

y

. (3.6) 

If we replace the estimated mean term 𝑔(𝑦: 𝜇) by 𝐼0(𝑦)exp(−∑ ℎ(𝑦|𝑥)𝜇(𝑥)𝑥 ), and ignore the 

term ∑ −𝑑(𝑦)log(𝐼0(𝑦))𝑦  (which is independent of  𝜇), equation (3.6) becomes: 

 Î[𝑑||𝑔; 𝜇, 𝜇̂] ≜ ∑𝑑(𝑦)

𝑦

∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

 + ∑𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)𝜇(𝑥)

𝑥

)

𝑦

, (3.7) 

 

                      ≜ ∑𝜇(𝑥)

𝑥

∑ℎ(𝑦|𝑥)𝑑(𝑦)

𝑦

 

+∑𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)𝜇̂(𝑥)

𝑥

)exp(−∑ℎ(𝑦|𝑥)

𝑥

(𝜇(𝑥)

𝑦

− 𝜇̂(𝑥))) . 

(3.8) 

 

 

 



 

28 

 

 

We define the forward projection of the current image estimate 𝜇̂(𝑥) as: 

 𝑞̂(𝑦) = 𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)𝜇̂(𝑥)

𝑥

), (3.9) 

the backprojection of 𝑞̂(𝑦) as 

 𝑏̂(𝑥) =∑ℎ(𝑦|𝑥)𝑞̂(𝑦)

𝑦

, (3.10) 

and the backprojection of measured data 𝑑(𝑦) as 

 𝑏̃(𝑥) =∑ℎ(𝑦|𝑥)𝑑(𝑦)

𝑦

. (3.11) 

Therefore, I-divergence can be defined as: 

 

Î[𝑑||𝑔; 𝜇, 𝜇̂] = ∑𝜇(𝑥)

𝑥

𝑏̃(𝑥)  

+ ∑ 𝑞̂(𝑦)exp(−∑ℎ(𝑦|𝑥)

𝑥

(𝜇(𝑥) − 𝜇̂(𝑥)))

𝑦

. 

(3.12) 

Using the convex decomposition described in Lemma B.0.2 in Appendix B, we can derive the 

following inequality, 

 

Î[𝑑||𝑔; 𝜇, 𝜇̂] ≤ ∑𝜇(𝑥)

𝑥

𝑏̃(𝑥)  

+ ∑𝑞̂(𝑦)∑𝑟(𝑦|𝑥)exp(−
ℎ(𝑦|𝑥)

𝑟(𝑦|𝑥)
(𝜇(𝑥) − 𝜇̂(𝑥)))

𝑥𝑦

, 

(3.13) 
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where 

 𝑟(𝑦|𝑥) ≥ 0, ∀ 𝑦, 𝑥 (3.14) 

 ∑𝑟(𝑦|𝑥)

𝑥

≤ 1 ∀ 𝑦. (3.15) 

If we choose 

 𝑟(𝑦|𝑥) =
ℎ(𝑦|𝑥)

𝑍
, ∀ 𝑥, 𝑦 

(3.16) 

where 𝑍, also referred to as auxiliary function is set equal to the maximum projection length 

through the reconstruction cylinder, or 

 𝑍 = max
𝑦
 ∑ℎ(𝑦|𝑥)

𝑥

. (3.17) 

As a result, we can satisfy the conditions denoted by equations (3.14) and (3.15). Finally, we define 

the surrogate function of the data fit term Î[𝑑||𝑔; 𝜇, 𝜇̂] using equations (3.10), (3.13) and (3.16), 

which gives 

 

Î[𝑑||𝑔; 𝜇, 𝜇̂] = ∑𝜇(𝑥)

𝑥

𝑏̃(𝑥)  

+ ∑ 𝑞̂(𝑦)∑
ℎ(𝑦|𝑥)

𝑍
exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥)))

𝑥𝑦

 

(3.18) 

 

                     = ∑𝜇(𝑥)

𝑥

𝑏̃(𝑥)

+ 
1

𝑍
∑(∑𝑞̂(𝑦)

𝑦

ℎ(𝑦|𝑥)) exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥)))

𝑥

 

(3.19) 
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            = ∑𝜇(𝑥)

𝑥

𝑏̃(𝑥)  + 
1

𝑍
∑𝑏̂(𝑥)exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥)))

𝑥

. (3.20) 

The surrogate function has the following majorization properties: 

 I[𝑑||𝑔; 𝜇]  =  Î[𝑑||𝑔; 𝜇, 𝜇] ∀ 𝜇, (3.21) 

 I[𝑑||𝑔; 𝜇]  ≤  Î[𝑑||𝑔; 𝜇, 𝜇̂] ∀ 𝜇, 𝜇̂ . (3.22) 

Using these two properties from equation (3.21) and (3.22), we can conclude that 

 I[𝑑||𝑔; 𝜇̂] − I[𝑑||𝑔; 𝜇]  ≥  Î[𝑑||𝑔; 𝜇̂, 𝜇̂]  −  Î[𝑑||𝑔; 𝜇, 𝜇̂]. (3.23) 

In other words, if one can find some 𝜇 that makes the right-hand side of (3.23) positive (some 𝜇 

that decrease the surrogate-function value), then the original objective function also decreases. 

This is the key ingredient for forming iterative algorithms using any kind of surrogate functions, 

including the Jensen type for our case. With a proper choice of 𝑟(𝑦|𝑥), the surrogate can be 

“decoupled”; in other words, minimizing Î[𝑑||𝑔; 𝜇, 𝜇̂] can become N one-dimensional independent 

convex minimization problems (one for each 𝜇(𝑥)), which are easy to parallelize. In order to solve 

this surrogate function, we can equate the derivative of this function w.r.t. 𝜇 to 0 as, or 

 
∂Î[𝑑||𝑔; 𝜇, 𝜇̂]

∂𝜇(𝑥)
 = 0 ∀ 𝑥. (3.24) 

The derivative of the surrogate function of the I-divergence is  

 
𝜕Î[𝑑||𝑔; 𝜇, 𝜇̂]

𝜕𝜇(𝑥)
= 𝑏̃(𝑥)  − 𝑏̂(𝑥)exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥))) ∀ 𝑥 . 

(3.25) 

If we denote the estimate of 𝜇 at the 𝑘-th iteration by 𝜇̂(𝑘), then the closed form solution of the 

maximum-likelihood function from O’Sullivan and Benac [1] can be expressed as 
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 𝜇̂(𝑘+1)(𝑥) = [𝜇̂(𝑘)(𝑥)  + 
1

𝑍
log

𝑏̂(𝑘)(𝑥)

𝑏̃(𝑥)
]
+

 ∀ 𝑥. (3.26) 

The [∙]+ is shorthand for max(∙ ,0). The decoupling steps provide an iterative algorithm that is 

guaranteed to decrease the objective function monotonically. Also, it creates many one-parameter 

convex functions (one for each voxel) that can be minimized in parallel using GPU threads. The 

pseudocode for the unregularized AM algorithm is shown in Algorithm 3.1. 

 

Algorithm 3.1 AM algorithm 

Input: 𝜇̂(0)(𝑥) = 0, 𝑍 = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛  ∈ ℝ+, 𝑑(𝑦), 𝐼0(𝑦) ∈ ℝ+
𝑀 

Precompute 𝑏̃(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦 , ∀ 𝑥  

for 𝑘 = 1,2,3, … do 

       𝑞̂(𝑘)(𝑦) = 𝐼0(𝑦)exp (−∑ ℎ(𝑦|𝑥)𝜇̂(𝑘)(𝑥)𝑥 ) ∀ 𝑦 

       𝑏̂(𝑘)(𝑥) = ∑ ℎ(𝑦|𝑥)𝑞̂(𝑘)(𝑦)𝑦  ∀ 𝑥 

       𝜇̂(𝑘+1)(𝑥) = [𝜇̂(𝑘)(𝑥)  + 
1

𝑍
log

𝑏̂(𝑘)(𝑥)

𝑏̃(𝑥)
]
+
 ∀ 𝑥 

end for 

 

Penalized Likelihood 

 

Since the measured data are noisy, it is necessary to regularize the optimization problem to prevent 

the algorithm from over-fitting the data through unrealistic images. This necessitates the use of 

edge-preserving penalty functions to incorporate the neighboring voxel interactions in the 

algorithm to perform a trade-off between data fitting and image smoothness.  
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To derive the algorithm for penalized maximum-likelihood estimation, we add a penalty term, 

𝑅(𝜇), to the objective function used in the AM reconstruction, and weight it by a regularization 

parameter 𝜆, where 𝜆 is a nonnegative scalar that reflects the amount of smoothing desired. A larger 

value will give emphasis to the penalty term (i.e., the prior expectation that the image will be 

smooth), whereas a smaller value will give more emphasis to the I-divergence term (i.e., the 

discrepancy between the measured data and the data estimated by the model). The added penalty 

term is defined as: 

 𝑅(𝜇(𝑥)) ≜ ∑ 𝜔(𝑥, 𝑥′)𝜓(𝜇(𝑥) − 𝜇(𝑥′)),

𝑥′∈𝑁(𝑥)

 (3.27) 

where 𝑅(𝜇(𝑥)) can be interpreted as the log-likelihood term for some prior. For 3-D regularization, 

we use the 26-voxel neighborhood 𝑁(𝑥) surrounding voxel x. The weights 𝜔(𝑥, 𝑥′) control the 

relative contribution of each neighbor. The potential function 𝜓(𝑡) is a symmetric convex function 

that penalizes the difference between the values of neighboring voxels. We used an edge preserving 

penalty function 

 𝜓(𝑡) = (|
𝑡

𝛿
| − log (1 + |

𝑡

𝛿
|)) 

(3.28) 

previously used by other researchers [40, 63, 64] and decouple the image variables of our penalized 

objective function in such a way that all the voxels can still be updated in parallel. In this penalty, 

𝑡 represents the difference between neighbouring voxel values, and δ is a parameter that controls 

the transition between a quadratic region (for smaller |
𝑡

𝛿
|) and a linear region (for larger |

𝑡

𝛿
|). For 

our specific reconstruction, we exclude a few image slices from the beginning and end of the image 

volume in the penalty calculation because those slices will have severe artifacts due to cone-beam 
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truncation. Calculating the penalty for those slices could negatively impact reconstruction of the 

inner slices since the artifacts do not carry any type of structure that can meaningfully be penalized 

by 𝑅(𝜇). The overall problem is then to find the penalized-likelihood estimate, 

 𝜇𝑃𝑀𝐿
∗ = argmin

𝜇≥0
I[𝑑||𝑔(𝜇)] + 𝜆𝑅(𝜇) (3.29) 

The addition of the penalty term eliminates the possibility of using a closed form solution as in 

equation (3.26). Instead, we use Newton's method on the decoupled I-divergence and penalty 

surrogate functions as shown in Appendix A. For ordered subsets, used in later sections, we scale 

down 𝜆 by the number of subsets used in that iteration. The pseudocode for the regularized AM 

algorithm is shown in Algorithm 3.2. 

 

Algorithm 3.2 Regularized AM algorithm 

Input: 𝜇̂(0)(𝑥) = 0 ∈ ℝ+
𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛  ∈ ℝ+, 𝑑(𝑦) ∈ ℝ+

𝑀, 𝐼0(𝑦) ∈ ℝ+
𝑀, 𝜆 ≥ 0, 𝛿 > 0 

Precompute 𝑏̃(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦 , ∀ 𝑥 

for 𝑘 = 1,2,3, … do 

       𝑞̂(𝑘)(𝑦) = 𝐼0(𝑦)exp (−∑ ℎ(𝑦|𝑥)𝜇̂(𝑘)(𝑥)𝑥 ) ∀ 𝑦 

       𝑏̂(𝑘)(𝑥) = ∑ ℎ(𝑦|𝑥)𝑞̂(𝑘)(𝑦)𝑦  ∀ 𝑥 

      𝜇̂(𝑘+1)(𝑥) = argmin
𝜇(𝑥)≥0

𝑏̃(𝑥)(𝜇(𝑥) − 𝜇̂(𝑘)(𝑥)) +
𝑏̂(𝑘)(𝑥)

𝑍
exp (−𝑍(𝜇(𝑥) − 𝜇̂(𝑘)(𝑥))) + 

                     𝜆∑
𝜔(𝑥,𝑥′)

2
𝛿2 (|

2𝜇(𝑥)−𝜇̂(𝑘)(𝑥)−𝜇̂(𝑘)(𝑥′)

𝛿
| − log (1 + |

2𝜇(𝑥)−𝜇̂(𝑘)(𝑥)−𝜇̂(𝑘)(𝑥′)

𝛿
|))𝑥′∈𝑁(𝑥)   

end for 
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3.2 Branchless Distance-driven Projectors 
 

The geometry of our helical multislice CT scanner is shown in Fig. 3.1. The X-ray source rotates 

at a radius of 𝑅𝑓 and the detector array rotates along the same direction at a radius of 𝑅𝑑 from the 

isocenter. For the point 𝑃(𝑥, 𝑦, 𝑧) on the bold line in Fig. 3.1, 𝛽 is the view angle, 𝛾 is the fan angle 

and 𝜂 is the cone angle. 𝑧𝑓𝑒𝑒𝑑 is the axial distance travelled by the patient bed in one complete 

rotation of the X-ray source detector pair. 

 

 
Fig. 3.1 The multislice helical geometry used in this dissertation.  
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3.2.1  Modification of Detector Edge Projections 

 

The core calculation of the algorithm is the computation of the overlap between the projection of 

an individual slab of the image volume onto a 2-D detector array.  

 

(a) (b) 

  

(c) (d) 

Fig. 3.2 (a) Schematic representation of De Man and Basu’s [50] 2-D distance-driven method. (b) Schematic 

representation of our 2-D distance-driven method. (c) Schematic representation of De Man and Basu’s [50] 3-D 

distance-driven method. (d) Schematic representation of our 3-D distance-driven method. 
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In our algorithm, the overlap calculations are performed directly at the level of the slab of interest. 

This differs slightly from the method proposed by De Man and Basu [57], where the overlap 

calculations are performed in the 𝑥𝑧 or 𝑦𝑧 plane passing through the origin. In that case, both the 

flattened voxel edges and detector edges would need to be projected onto the plane passing through 

the origin.  In our implementation, the only projection calculations are from the detector edges to 

the slab. The coordinates of the source-to-detector ray intersections with the flattened image voxel 

array or slabs determine the 2-D rectangular region of the slab that contributes to each detector 

element. These rays are constructed using the edges of each detector element. For the completion 

of an X-ray projection image for a particular view angle, all the slab contributions are aggregated 

for a particular detector array. The contribution is also scaled by the length of the intersection of 

the ray through that slab. For our particular reconstruction, we assumed the slabs are flat and of 

uniform thickness. 

 

3.2.2  Pre-accumulation for Forward Projection

 

First, we consider the contribution from a 1-D pixel array (i.e., one slab of a 2-D image) to a 

detector element at a fixed view angle. The pixels are uniformly spaced and represent a piecewise 

continuous function, 𝑓(𝑥), using a rectangle basis of unit width [57], 

 𝑓(𝑥) ≜∑𝑓𝑖𝜙(𝑥 − 𝑖)

𝑖

, (3.30) 
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where 

 𝜙(𝑥) = {
0 𝑥 < −0.5
1 −0.5 ≤ 𝑥 ≤ 0.5
0 𝑥 > 0.5

 . (3.31) 

We wish to find the total contribution of the pixel array to detector element 𝑘 with edges 𝑥 = 𝑢1 

and 𝑥 = 𝑢2. This is mathematically expressed as: 

 𝑔𝑘 ≜
1

𝑢2 − 𝑢1
∫ 𝑓(𝑥)𝑑𝑥 =

𝑢2

𝑢1

𝐹(𝑢2) − 𝐹(𝑢1)

𝑢2 − 𝑢1
, (3.32) 

where 

 𝐹(𝑢) ≜ ∫𝑓(𝑥)𝑑𝑥

𝑢

−∞

. (3.33) 

Let 𝐾 ≜ ⌊𝑢⌋ , i.e. floor (𝑢). Plugging it into (3.29), equation (3.32) can be rewritten as 

                         𝐹(𝑢) =∑𝑓𝑖
𝑖

∫𝜙(𝑥 − 𝑖)𝑑𝑥

𝑢

−∞

 (3.34) 

 
 = ∑ 𝑓𝑖 ∫𝜙(𝑥 − 𝑖)𝑑𝑥

𝐾

−∞

+

𝐾−1

𝑖=0

 𝑓𝑘 ∫𝜙(𝑥 − 𝐾)𝑑𝑥

𝑢

𝐾

 
(3.35) 

                                   = ∑ 𝑓𝑖 + (𝑢 − 𝐾)𝑓𝐾

𝐾−1

𝑖=0

. (3.36) 

Next, we can define an accumulated pixel array, 

 𝐴[𝑚] ≜ ∑ 𝑓𝑖 .

𝑚−1

𝑖=0

 (3.37) 
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We can rewrite equation (3.35) using (3.36) as follows: 

                        𝐹(𝑢) = 𝐴[𝐾] + (𝑢 − 𝐾)𝑓𝐾 (3.38) 

 = 𝐴[𝐾] + (𝑢 − 𝐾)(𝐴[𝑘 + 1] − 𝐴[𝐾]). (3.39) 

Now 𝐹(𝑢) can be calculated simply in terms of the pre-accumulated array 𝐴, and the original pixel 

values 𝑓𝑖 are no longer needed. In fact, (3.39) is nothing more than linear interpolation into array 

𝐴. The final step to calculate 𝑔𝑘 is to substitute the value of 𝐹(𝑢) from equation (3.39) to equation 

(3.32). Now we consider the actual contribution from a 2-D slab to a detector element 𝑘 with edges 

𝑥 = 𝑢1, 𝑥 = 𝑢2, 𝑦 = 𝑣1, and  𝑦 = 𝑣2 as shown in Fig. 3.3. 

 𝑔𝑘 ≜
1

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)
∫ ∫ 𝑓(𝑥, 𝑧)𝑑𝑧𝑑𝑥

𝑣2

𝑣1

𝑢2

𝑢1

. (3.40) 

We can define a continuous-coordinate slab using separable rectangular functions as: 

 𝑓(𝑥, 𝑧) ≜∑∑𝑓𝑖𝑗𝜙(𝑥 − 𝑖)𝜙(𝑧 − 𝑗)

𝑗𝑖

. (3.41) 

We can represent in-plane calculations for each basis position 𝑗 in the z direction as: 

 𝐹𝑗(𝑢) = 𝐴𝑗[𝐾] + (𝑢 − 𝐾)(𝐴𝑗[𝐾 + 1] − 𝐴𝑗[𝐾]), 
(3.42) 

where 

 𝐴𝑗[𝑚] ≜ ∑ 𝑓𝑖𝑗

𝑚−1

𝑖=0

. (3.43) 
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This leads to 

 𝑔𝑘 =
1

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)
∑𝐹𝑗(𝑢2) − 𝐹𝑗(𝑢1)

𝑗

∫ 𝜙(𝑧 − 𝑗)𝑑𝑧

𝑣2

𝑣1

 (3.44) 

 𝑔𝑘 =
𝐺(𝑢1, 𝑢2, 𝑣2) − 𝐺(𝑢1, 𝑢2, 𝑣1)

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)
, (3.45) 

where 

 𝐺(𝑢1, 𝑢2, 𝑣) =∑𝐹𝑗(𝑢2) − 𝐹𝑗(𝑢1)

𝑗

∫𝜙(𝑧 − 𝑗)𝑑𝑧

𝑣

−∞

. 
(3.46) 

Similarly, we can define an accumulated voxel array in the 𝑧 direction 

 𝐶𝑢1,𝑢2[𝑛] ≜ ∑𝐵𝑗(𝑢1, 𝑢2)

𝑛−1

𝑗=0

. (3.47) 

Analogous to (3.39) we define 𝐽 ≜ ⌊𝑣⌋. We can then write  

 𝐺(𝑢1, 𝑢2, 𝑣) = 𝐶𝑢1,𝑢2[𝐽] + (𝑣 − 𝐽)(𝐶𝑢1,𝑢2[𝐽 + 1] − 𝐶𝑢1,𝑢2[𝐽]). 
(3.48) 

We can also write ∑ 𝐹𝑗(𝑢2) − 𝐹𝑗(𝑢1)𝑗  as weighted sum of few elements of 𝐴𝑗[𝑚], 

 𝐵𝑗(𝑢1, 𝑢2) =∑𝜔𝑚𝐴𝑗[𝑚]

𝑚

, (3.49) 

Where 𝜔𝑚 is nonzero for up to four distinct values of 𝑚, as determined by (3.39) and (3.42). 

Therefore, the slab can be pre-accumulated in both the x and z directions, as shown below: 

                                𝐶𝑢1,𝑢2[𝑛] = ∑∑𝜔𝑚𝐴𝑗[𝑚]

𝑚

𝑛−1

𝑗=0

, (3.50) 
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  = ∑𝜔𝑚
𝑚

∑ ∑ 𝑓𝑖,𝑗

𝑚−1

𝑖=0

𝑛−1

𝑗=0

, (3.51) 

                                                  = ∑𝜔𝑚
𝑚

𝑆[𝑚, 𝑛], (3.52) 

where 

 𝑆[𝑚, 𝑛] ≜ ∑ ∑ 𝑓𝑖,𝑗

𝑚−1

𝑖=0

.

𝑛−1

𝑗=0

 (3.53) 

Finally, this accumulation can be written in recursive form for faster calculation as follows: 

                                𝑆[𝑚, 𝑛] = ∑𝐴𝑗[𝑚]

𝑛−1

𝑗=0

, (3.54) 

  = ∑𝐴𝑗[𝑚]

𝑛−2

𝑗=0

+ 𝐴𝑛−1[𝑚], 
(3.55) 

       = 𝑆[𝑚, 𝑛 − 1] + ∑ 𝑓𝑖,𝑛−1

𝑚−1

𝑖=0

. (3.56) 

For the projection model, as shown above, we pre-accumulate original pixel values in a recursive 

manner to a pre-accumulation array corresponding to four perpendicular slabs, each contributing 

to a different orientation of our view angle. 
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3.2.3  Pre-accumulation for Backprojection

 

Backprojection for the distance-driven kernel is defined as the transpose of the forward projection 

operator. Using flow graph reversal, the transpose of the entire kernel can be done by transposing 

each sub-operation and performing them in the reverse order, i.e.:  

(a) Transposed digital differentiation, 

(b) Transposed linear interpolation or “anterpolation”, 

(c) Transposed integration, 

 

By writing out the 2-D slab accumulation operation (3.56) in matrix form, it can be shown that the 

transpose of slab accumulation is 

 𝑓𝑖,𝑗
∗ = ∑ ∑ 𝑆[𝑚, 𝑛],

𝑁𝑥

𝑚=𝑖+1

𝑁𝑧

𝑛=𝑗+1

 
(3.57) 

where 𝑁𝑥 and 𝑁𝑧 are the number of voxels in the two directions, respectively. This operation can 

also be written recursively for faster calculation. If we let 

 𝐷[𝑖, 𝑛] ≜ ∑ 𝑆[𝑚, 𝑛]

𝑁𝑥

𝑚=𝑖+1

, 
(3.58) 

then 
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                                    𝑓𝑖,𝑗
∗ = ∑ 𝐷[𝑖, 𝑛]

𝑁𝑧

𝑛=𝑗+1

, (3.59) 

 = ∑ 𝐷[𝑖, 𝑛]

𝑁𝑧

𝑛=𝑗+2

+ 𝐷[𝑖, 𝑗 + 1], (3.60) 

                                           = 𝑓𝑖,𝑗+1
∗ + 𝐷[𝑖, 𝑗 + 1], (3.61) 

                                           = 𝑓𝑖,𝑗+1
∗ + ∑ 𝑆[𝑚, 𝑗 + 1].

𝑁𝑥

𝑚=𝑖+1

 
(3.62) 

For transposed digital integration, we perform the similar recursive post accumulation technique 

over the accumulated backprojection array to retrieve the individual voxel values from the 2-

parallel pair of mutually perpendicular slabs.  

 

3.2.4  Modified Overlap Computation

 

After the pre-accumulation, the original voxel values are no longer required. In fact, we perform 

direct interpolation of detector edges onto this accumulation array for both forward projection and 

backprojection, which gives us a big boost on the time performance over the sequential 

computation of digital integration for every region of overlap. 
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(a) 

 
(b) 

Fig. 3.3 (a) Schematic diagram of detector projection on image pixel slab which signifies the area of overlap. (b) 

Our approach to the calculation of overlap between detector edge projections and image pixel slabs. 

 

3.3  CPU Multithreaded Parallelization Scheme for 

Branchless Distance-driven Projectors
 

Before performing interpolation and differentiation, we determine which part of the algorithm 

could be divided into independent processes to run on a single GPU thread. The way branchless 
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projection methods are structured, the interpolation and digital differentiation for each slab at each 

quarter rotation are independent of one another, so it can be implemented on a single GPU thread. 

 

3.3.1  Symmetry

 

It was determined that the source-detector edge intersections with each slab (to find 𝑢1; 𝑢2; 𝑣1; 

and 𝑣2) need to be calculated only for the first quarter rotation of the gantry regardless of the length 

of the scan. For this symmetry to be valid, an integer number of image slices must correspond to 

the distance the bed travels in a quarter rotation of the gantry. This is actually not much of a 

restriction, as any helical pitch may be used, and the reconstruction slice thickness can be made 

arbitrarily small. In fact, it becomes even less limiting for scanners with larger axial coverage since 

they have a higher travel per rotation at a given pitch. The other constraint (which seems to always 

be satisfied in practice) is for the number of views per rotation to be a multiple of four. 

 

The quarter-rotation symmetry is illustrated in Fig. 3.4(a) for an example where the bed translates 

two slices per quarter-rotation (denoted by 𝑁𝑞 in the Fig. 3.4). The solid box indicates the portion 

of the scan (i.e., the first quarter rotation) for which the intersection calculations must be computed, 

while the dashed boxes represent the remaining symmetric quarter rotations. Also appearing in 

this figure are two diagonal lines, which correspond to the axial coverage of the cone-beam at each 

view angle. Fig. 3.4(b) shows the four-fold rotational symmetry in the 𝑥𝑦 plane for an arbitrary 

view angle and its 
𝜋

2
-rotated offsets. A symmetric source-detector ray within each view is also 

shown. This symmetry is used in conjunction with the appropriate slice offset to identify the correct 
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region of the slab in each quarter rotation. Note that the top half of Fig. 3.4 lines up vertically with 

the bottom half. 

 
Fig. 3.4 (a) Axial view of the quarter-rotation symmetry found in helical CT. When an integer number of slices is 

chosen per quarter rotation of the gantry, the geometry calculations need only be done for just the first quarter 

rotation of the scan (indicated by a dark solid box). (b) Transverse view of the quarter-rotation symmetry. The 

projection calculations for each of the slabs shown is identical in the in-plane direction and offset by multiples of 𝑁𝑞 

in the 𝑧 direction. An arrow has been drawn for each slab that indicates the direction of in-plane accumulation. The 

𝑧 accumulation is always in the direction of the positive 𝑧 axis. Similar approach to quarter-rotation symmetry was 

explored by D. Keesing [65]. 

 

Use of quarter-rotation symmetry requires that the image volume be accumulated in the four 
𝜋

2
-

rotated orientations. (Image accumulation refers to 2-D accumulations according to 𝑆[𝑚, 𝑛] within 

each slab, but not across slabs.) The direction of image accumulation in 𝑥 or 𝑦 is indicated by the 

arrows in Fig. 3.4(b). Accumulation in the 𝑧 direction is always in the direction of the positive 𝑧 
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axis. Therefore, four full-sized accumulation images reside in memory during forward or 

backprojection. 

 

3.3.2  Multi-threaded Implementation for Forward Projection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

 

This section discusses our method for parallelizing the forward projection in the helical orbit 

geometry. The fact that the system matrix is symmetric for each quarter rotation makes it quite 

natural to implement parallelism at the granularity of a quarter rotation of data. Each processor or 

core is assigned a contiguous group of projections whose cardinality is a multiple of the number 

of views in a quarter rotation. This design allows for theoretically perfect load balancing (in the 

absence of memory-related latencies) during forward and backprojection since each processor 

essentially makes use of the same number of nonzero ℎ(𝑦|𝑥) elements. Locality is inherent in this 

framework too; each quarter rotation of data is related to a local neighborhood of slices, as seen in 

Fig. 3.4(a). 

 

The pseudocode for the parallelized forward projection is shown in Algorithms 3.3. The set 𝑍𝑝 

refers to the range of voxel locations in the 𝑧 direction that contribute to view index 𝑝. The set of 

symmetric view indices corresponding to quarter-rotation offsets of 𝑝 on an individual processor 

are denoted 𝑄𝑝. 
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Algorithm 3.3 Branchless distance-driven forward projection 

Perform 2-D accumulation of 𝜇 for each quarter rotation according to equation (3.56) 

begin parallel region 

       for 𝑝 ∈ views within first quarter-rotation do 

             for each slab in accumulation, image do 

                   for 𝑢 = 1:𝑁𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do 

                         determine if the channel contribution to the slab is nonzero 

                         interpolate slab at detector column edge 

                         differentiate the value of the interpolation 

                               for 𝑣 = 1:𝑁𝑟𝑜𝑤𝑠 do 

                                     interpolate column differentiation results at detector row edge                            

                                     for 𝑞 ∈ 𝑄𝑝 do 

differentiate row interpolation values at row edges 

accumulate the differentiation value to the projection array                         

                                     end for 

                         end for 

                   end for 

             end for 

        Weight projection by lengths of intersection through the single slab (∀𝑞 ∈ 𝑄𝑝) 

       end for 

end parallel region 
 

3.3.3  Multithreaded Implementation for Backprojection

 

If we were to perform backprojection directly into the shared full-sized accumulation images, we 

would have serious memory contention issues since multiple processors would be writing to the 

same array elements simultaneously. Instead, each processor performs backprojection to its own 

private accumulation image arrays (of reduced size compared to the full-sized arrays). This 

eliminates any need for synchronization during the backprojection of a processor’s set of views. 

 

It is easiest to illustrate this concept with an example. Referring to Fig. 3.5, suppose there are two 

processors; the first one is assigned 𝛽 ∈ [0, 𝜋) and the second one is assigned 𝛽 ∈ [𝜋, 2𝜋). It can 

be observed that processor 0 only ever needs to access slices 0 − 2, while processor 1 only ever 
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needs to access slices 1 − 3. Therefore, each partial accumulation image consists of three slices, 

and each processor can easily determine what its starting slice index should be. 

 

 
 

Fig. 3.5 Summing of private partial accumulation images on processors 0 and 1 into full-sized accumulation image. 

At each stage, the shaded block of slices from each processor is simultaneously summed into the full-sized 

accumulation image. 

 

Once each processor is done backprojecting its set of views, the partial accumulation image arrays 

need to be summed into the shared, full-sized accumulation image arrays. After each block, a 

barrier synchronization construct is used to ensure each processor has finished summing the 

current block of slices to the full-sized arrays. 

 

The pseudocode for the parallelized backprojections is shown in Algorithm 3.4 
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Algorithm 3.4 Branchless distance-driven backprojection 

Begin parallel region 

       for 𝑝 ∈ views within first quarter-rotation do 

             for each slab in accumulation, image do 

                   for 𝑢 = 1:𝑁𝑐𝑜𝑙𝑢𝑚𝑛 do 

                         determine if the channel contribution to the slab is nonzero 

                               for 𝑣 = 1:𝑁𝑟𝑜𝑤𝑠 do 

adjoint differentiate the corresponding element in projection array in the 

row direction                    

for 𝑞 ∈ 𝑄𝑝 do 

      anterpolate results for corresponding row edge 

end for 

adjoint differentiate for corresponding detector column edge for all 

relevant column edges              

anterpolate result for corresponding detector column edge to slab 

end for 
anterpolate result for last detector column edge to slab 

                   end for 

             end for 

      end for 

end parallel region 

perform 2D adjoint accumulation for every quarter according to equation (3.62) 

sum the four adjoint accumulation images. 
 

3.4  GPU Implementation of Branchless Distance-driven 

Projectors
 

In our GPU based parallel implementation of branchless DD projection, each thread calculates a 

single partial projection element for specific view angle. The pre-accumulation is done before the 

start of forward projection in GPU. CPU threads are very efficient in handling serial operations 

like summation, however, we can harness the block reduction algorithms in CUDA to perform our 

pre-accumulation on GPUs. For each flattened slab of the volumetric image, pixels are 

accumulated in a vertical and horizontal direction similar to the method used by Rui Lui et al. [66]. 

The pre-accumulated images are mapped on to read-only texture memory due to their super-fast 
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memory access capabilities. Another motivation behind the use of texture memory is due to the 

fact that bilinear interpolation step can be performed really fast due to their inherent hardware 

architecture being specifically designed for pixel rasterization and rendering.  

 

A basic pseudocode of the 3-D implementation of forward projection described in Algorithm  

3.5. 

Algorithm 3.5 GPU implementation of branchless distance-driven forward projection 

Perform 2-D accumulation of μ for each quarter rotation according to equation (3.56) 

number of GPU threads launched = number of views within 1st quarter rotation × number of 

slabs in the accumulated image × number of quarter rotations assigned to each GPU 

begin GPU kernel 

for all GPU blocks in parallel do 

       for all threads in a block do 

             begin GPU thread calculation 

             for every detector column 

                   determine if the channel contribution to the slab is nonzero 

                   interpolate slab at detector column edge 

                   differentiate the value of the interpolation 

                   for every detector row 

                         interpolate column differentiation results at detector row edge 

                         differentiate row interpolation values at row edges 

accumulate the differentiation value to the corresponding element in projection 

array 

                   end for 

             end for 

             end of GPU thread calculation 

       end for 

end for 

weight projection by lengths of intersection through the slab 

end kernel 
 

The multislice 3-D backprojection is also computed in a similar fashion on GPU devices using the 

CUDA programming language. In our implementation, a single thread computes the pre-

accumulated partial voxel value for every flattened slab. The projection values are mapped into 
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texture memory for backprojection as well. Use of GPU texture memory (cache on-chip read-only 

memory) provides us fast read-only access and computationally efficient bilinear interpolation. 

The accumulation step is computed separately after all the partial pre-accumulated values for each 

voxel are gathered on the CPU from multiple GPU devices. 

 

A basic pseudocode of the 3-D implementation of backprojection described in Algorithm 3.6 

Algorithm 3.6 GPU implementation of branchless distance-driven backprojection 

Number of GPU threads launched = Number of views within 1st quarter rotation × number of 

slabs in the accumulated image × number of quarter rotations assigned to each GPU 

begin GPU kernel 

for all GPU blocks in parallel do  

       for all threads in a block do  

             begin GPU thread calculation 

             weight projection by lengths of intersection through the slab 

                   for each detector column  

determine if the channel contribution to the slab is nonzero    

for every detector row 

adjoint differentiate the corresponding element in projection array in the 

row direction 

anterpolate results for corresponding row edge 

end for 

anterpolate results for the last row edge 

adjoint differentiate for corresponding detector column edge for all relevant       

column edges              

anterpolate result for corresponding detector column edge to slab 

                   end for 

                   anterpolate result for last detector column edge to slab 

             end of GPU thread calculation 

       end for 

end for 

end kernel 

perform 2-D adjoint accumulation for every quarter according to equation (3.62) 

sum the four adjoint accumulation images. 
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3.5  Multi-GPU Implementation of Branchless Distance-

driven Projectors
 

Each GPU is assigned a contiguous group of projections whose cardinality is a multiple of the 

number of views in a quarter rotation. This design allows for theoretically perfect load balancing 

(in the absence of memory-related latencies) during forward and backprojection since each GPU 

essentially makes use of the same number of nonzero ℎ(𝑦|𝑥) elements. The full-sized 

accumulation images and the projection data corresponding to each subset are stored in GPU 

Global memory. In our approach, we systematically add slices with minimal synchronization 

overhead between the devices. We have also determined the maximum block size that can be 

summed concurrently by all devices. 

 

Forward projection is straightforward in terms of global memory access, since each device stores 

values in separate portions of the projection data array, and access to the accumulation image is 

read-only. However, if we were to perform backprojection directly into the full-sized accumulation 

images, we would have serious memory contention issues since multiple devices would be writing 

to the same array elements simultaneously. Instead, each device performs backprojection to its 

own private accumulation image arrays (of reduced size compared to the full-sized arrays). This 

eliminates any need for synchronization during the backprojection of a device’s set of views. Once 

each device is done backprojecting its set of views, the partial accumulation image arrays are 

summed into the full-sized accumulation image arrays. Fig. 3.6 illustrates the process by which 

non-overlapping groups of slices from each partial array can be added simultaneously without 
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memory contention. After each block, a barrier synchronization construct is used to ensure each 

device has finished summing the current block of slices to the full-sized arrays. 

 

  
(a) (b) 

Fig. 3.6 (a) Schematic representation of Multi-GPU implementation of branchless DD projection. (b) Schematic 

representation of Multi-GPU implementation of branchless DD backprojection. 

 

However, these two approaches create the following constraints on several parameters as follows: 

 Total number of views must be a multiple of the number of views in the one-quarter 

rotation. 

 Total number of quarter rotations must be a multiple of the number of GPU devices. 

 The number of subsets must divide into the number of views per quarter rotation evenly. 
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For measured data where these constraints were not satisfied, we pad the measured sinograms with 

zeros to increase the number of views. 

 

To minimize the overhead time that occurs in data copying, kernel launch, etc., we create the same 

number of CPU threads as the number of GPUs to be utilized. Each of the threads interacts with 

an individual GPU. Each of them copies input data from the CPU to the GPU, executes the kernel, 

and copies results back to the CPU. The host CPU waits for all GPU devices to complete and 

merges results into one. 

 
Fig. 3.7 Schematic representation of iterative algorithm execution between CPU and GPU devices 
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3.6  Experiments
 

We implemented our multi-threaded CPU algorithm using OpenMP, an industry-standard parallel 

computing library designed for shared memory systems. The C code was compiled using the Intel 

Compiler 18.0 with certain optimizations enabled. The code was run on an 8-core Intel 𝑖7 −

5960𝑋 (3.0 GHz, 1333 MHz front-side bus) with 64 GB RAM (1.2 GHz). The operating system 

running on this machine was Microsoft Windows 7. For our multi-GPU implementation, we used 

3 NVIDIA GeForce GTX TITAN X GPUs. 

 

Phantom and clinical data were acquired from a Siemens Somatom Sensation 16 scanner (Siemens 

Medical Solutions, Forchheim, Germany) without using the flying focal spot mode. The scanner 

acquires 1160 views per rotation, using a 16 row × 672 channel curved detector array. The 

distance between the source and isocenter is 570 mm, and the distance between the source and 

detector is 1040 mm. Data for the clinical abdominal scan and phantom scan were collected from 

12 gantry rotations with pitch = 1.0 and 16 × 1.5 mm collimation at isocenter. The size of the 

reconstructed images is 512 × 512 × 164 with 1.0 × 1.0 × 1.0 mm voxels. 

 

Using data from both clinical abdominal scan and phantom scan, we performed a reconstruction 

using AM reconstruction without ordered subset (OS) and a various number of OS configuration 

e.g. 5 OS, 29 OS, and 145 OS. The maximum number of allowable subsets for our implementation 

is 290 which was determined by the number of views or measurements per quarter rotation. 

However, this choice of OS produces only one view per quarter rotation which was deemed too 
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aggressive as it resulted in some unwanted image artifacts. In order to accelerate the convergence 

our AM algorithm, we have initialized the AM iterations using multi-GPU implementation of the 

helical FDK image. The fast-parallel multi-GPU implementation scheme for helical FDK 

reconstruction is presented in the subsequent chapter. 

 

Finally, we performed timing tests using the full-scale abdominal dataset to quantify the 

performance of our computational approach on the clinically-sized dataset. The reconstruction was 

done using one iteration of AM without ordered subsets, and one iteration of 5 OS and 29 OS. In 

the OS cases, the image update was performed for subsets which had an impact on timing 

performance due to the need for more pre-accumulation and more frequent synchronization. To 

generate a speedup bar representation a baseline serial version of AM algorithm was written and 

compiled without OpenMP. 

 

To compare both time performance and image quality, we start with an Intel Core 𝑖7 − 5960𝑋 

with 8 cores, 16 hyper-threads, clocked at 3 GHz, with 20 MB caches and 64 GB of memory. For 

our GPU implementation, we used GeForce GTX TITAN X. TITAN X is based on Maxwell 

architecture with 3072 CUDA cores and 24 streaming multiprocessors (SMs) running at 1.2 GHz. 

Each block contains 65536 registers and 48 KiB of shared memory. Some of the highlights of 

TITAN X hardware are shown in Table 3.1. 
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Single precision 7.468 TeraFLOP/s 

Double precision 233.376 GigaFLOP/s 

Multiprocessors 24 

Clock rate 1.216 GHz 

Global Memory bandwidth 336.48 GB/s 

L2 Cache size 3MiB 

CUDA cores 3072 

Shared memory per block 48KiB 
Table 3.1 Hardware specification of TITAN X 

 

3.7  Results 
 

3.7.1  Ordered Subsets 

 

The use of ordered subsets has a significant advantage in increasing the convergence rate. It should 

be noted that OS implementation is not guaranteed to converge monotonically with increasing 

numbers of iterations. So, we could devise an adaptive scheme where we reduce the number of 

ordered subsets at higher iterations. For our current medical abdominal dataset, our 29-ordered 

subset tends to converge after about 80-100 iterations. For further improvement in our image 

reconstruction, we can use AM algorithm without ordered subset for subsequent iterations after 29 

OS-AM implementation. We have also observed that higher number of OS generates more 

overhead computation due to GPU device synchronization, image volume pre-accumulation, and 

CPU to GPU memory transfer. The total backprojection volume doesn’t change with increase in 

OS, as a result, the inter-device memory transfer time, and pre-accumulation time increases 

linearly with increase in the number of OS. This phenomenon is evident in Fig. 3.8. Although 

higher OS requires higher computation time per iteration, the overall speedup in the acceleration 

of objective function, PAE, and RMSE convergence rate dominates over increase in per iteration 

computation time as evident in Fig. 3.12, 3.13, 3.14, 3.15 and 3.18. 
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Fig. 3.8 Single iteration time for different OS using 3 TITAN X GPUs in parallel 

 

3.7.2  Phantom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

 

To generate synthetic sinogram from the NCAT phantom image volume, we use the MATLAB 

2017b poissrnd function. Noisy photon count data were generated by sampling a Poisson pdf with 

data mean given by 𝑔(𝑦: 𝜇) from equation (3.1) where we have ignored the background intensity 

𝛽(𝑦) . The parameters of the measured data and reconstructed images are shown in Table 3.2. The 

incident photon incident was considered to be 10000 for all measurement views. 

No. of views 13920 

No. of detector channels 672 

No. of detector rows 16 

No. of image slices 164 

No. of pixels/slice 512x512 
Table 3.2 Parameters of measured data and image  

W/O
OS

5 OS 29 OS 145 OS

Single iteration time 13 27 93 350
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(a) (b) 

 
(c) (d) 

 
 

(e) (f) 

Fig. 3.9 NCAT phantom reconstruction with voxel size = 1.0 × 1.0 × 1.0 mm. Scan parameters: pitch 1.0, 16 ×

1.5 mm collimation, display window width = 0.01759 mm−1 , center = 0.008795 mm−1. (a), (b) Axial slices of 

the actual phantom. (c), (d) Axial slices of the FDK reconstruction of the phantom with added sinogram noise. (e) 

and (f) Axial slices of the phantom reconstructed with 10 iterations with 145 ordered subsets and with added noise in 

sinogram domain. 
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Fig. 3.10 Horizontal profile for different reconstruction images along different lines shown in Figs. 3.9 (a), (c), and 

(e) 

 

 
Fig. 3.11 Horizontal profile for different reconstruction images along different lines shown in Figs. 3.9 (b), (d), and 

(f)  

 

To quantify the effects of the mismatch between the algorithm and the data models, the following 

quantities were measured on the reconstructed images. In the following definition, N denotes the 

total number of voxels in the image volume, 𝜇̂(𝑘)(𝑥) is the reconstructed image, 𝜇̂𝑡𝑟𝑢𝑒(𝑥)  is the 
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phantom image from which the synthetic projection data were generated. This measure is termed 

as Percent absolute error (PAE): 

 PAE = 100 ×
1

𝑁
∑|

𝜇̂(𝑘)(𝑥)

𝜇̂𝑡𝑟𝑢𝑒(𝑥)
− 1|

𝑁

𝑥=1

. (3.62) 

We use Root mean square error (RMSE), and Signal-to-noise ratio (SNR) as image quality 

parameter defined as: 

 RMSE = √
1

𝑁
∑[𝜇̂𝑡𝑟𝑢𝑒(𝑥) − 𝜇̂(𝑘)(𝑥)]2
𝑁

𝑥=1

 (3.63) 

 
SNR = 10 × log10 [

∑ [𝜇̂𝑡𝑟𝑢𝑒(𝑥)]2𝑁
𝑥=1

∑ [𝜇̂𝑡𝑟𝑢𝑒(𝑥) − 𝜇̂(𝑘)(𝑥)]2𝑁
𝑥=1

]. 
(3.64) 

We also use Contrast-to-noise ratio (CNR) as an image quality estimate defined as: 

 CNR =
(𝜇̂𝑠

(𝑘)
− 𝜇̂𝑏

(𝑘)
)

𝜎̂𝑏
(𝑘)

⁄ , (3.65) 

where 𝜇̂𝑠
(𝑘)

 is the mean attenuation coefficient of a defined structure in the region of interest, 𝜇̂𝑏
(𝑘)

 

is the mean attenuation coefficient of the image background surrounding the structure, and 𝜎̂𝑏
(𝑘)

 is 

the standard deviation of the noise calculated from the pixel values outside of the targeted region 

of interest. The structure of phantom used for this analysis is denoted by the green dotted line in 

Fig. 3.9 (a). Pixels surrounding this structure is considered as background. 
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However, for real data, there is no true image that can be used to calculate the image quality 

parameters discussed before. Instead, we use the total value of the objective function from equation 

(3.5) as our performance measure. 

 
Fig. 3.12 RMSE vs total reconstruction time for different OS configuration using 3 TITAN X GPUs 

 

 
Fig. 3.13 PAE in percentage vs total reconstruction time for different OS configuration using 3 TITAN X GPUs 
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Fig. 3.14 SNR in dB vs total reconstruction time for different OS configuration using 3 TITAN X GPUs 

 
Fig. 3.15 CNR vs total reconstruction time for different OS configuration using 3 TITAN X GPUs 

 

3.7.3  Clinical Datasets 

 

Fig. 3.16 shows axial, coronal, and sagittal views of the abdominal images reconstructed using 10 

iterations of 145 OS AM algorithm with regularization parameters: 𝜆 = 100, and 𝛿 = 0.0002. 

The sinogram data used in this reconstruction was obtained from Siemens Sensation 16 scanner at 

90 kVp. 
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(a) (b) 

 

  

(c) (d) 

 
(e) (f) 

Fig. 3.16 Regularized AM reconstruction using 10 iterations of 145 ordered subsets. Voxel size = 1.0 × 1.0 ×

1.0 mm.  Scan parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation. (a) Axial slice of lung with display 

window width = 0.03 mm−1 , center = 0.015 mm−1. (b) Axial slice of abdomen with display window width =

0.007 mm−1, center = 0.021 mm−1. (c) and (d) are coronal views and (e) and (f) are sagittal views with display 

window width = 0.007 mm−1, center = 0.021 mm−1. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 3.17 Regularized AM reconstruction of lung and abdominal slices using 3 TITAN X GPUs. Voxel size = 1.0 ×

1.0 × 1.0 mm.  Scan parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation. Axial slice of the lung with display 

window width = 0.03 mm−1 , center = 0.015 mm−1, reconstructed with (a) FDK and (c) 10 iterations of AM using 

145 OS. Axial slice of the abdomen with display window width = 0.007 mm−1, center = 0.021 mm−1, 

reconstructed with (b) FDK and (d) 10 iterations of AM using 145 OS. (e) and (f) are difference images between 

FDK and 10 AM iteration using 145 OS corresponding to lung and abdomen slices respectively. 
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Fig. 3.18 Plot of I-divergence vs computation time for different ordered subset configurations by using 3 GPUs in 

parallel. 

 

From Fig. 3.16 we can clearly conclude that AM algorithm improves image resolution and enhance 

edges. We can also observe the lung and heart motion from Fig. 3.17 (a) and (c). Lung nodules are 

more prominent using our iterative reconstruction approach which can lead to better diagnosis of 

tumors presents in lungs. 

 

3.7.4  Timing Performance 

 

We have used abdominal dataset as a benchmark for determining the timing performance of our 

multi-threaded CPU and multi-GPU implementation. The wall clock time to run one iteration of 

AM algorithm without ordered subset on a standalone CPU core without multi-threading was 433 

seconds for projection and 435 seconds for backprojection with a total time of 882 seconds. On 

the other hand, if we compiled the code with OpenMP using 8 cores with 2 hyperthreads per core, 
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the total time for a single iteration is reduced to 190 seconds. Using the Intel Thread Profiler, we 

have determined that in case of our multi-threaded CPU implementation, 96.2% of the execution 

time was in parallel while the rest was spent in barrier synchronization of different threads. This 

profiler result confirms the efficacy of our load balancing scheme within each iteration. 

 

 
Fig. 3.19 Acceleration of our multi-GPU implementation for complete clinically-sized data 

 

Operations 

Execution Time (seconds) 
 

Single-threaded 
CPU 

16-threaded CPU Single-GPU Multi-GPU 

Pre- accumulation 8.1 1.7 0.570 0.21 

Projection 433 92 15 4.7 

Exponentiation 1.1 0.25 0.07 0.029 

Backprojection 435 95 22 7.6 

Image Update 4.8 1.2 0.17 0.06 

Total 882 190.15 37.81 12.6 
Table 3.3 Reconstruction times using clinically-sized data and no OS for different CPU and GPU hardware 

architectures.   
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(a) (b) 

Fig. 3.20 (a) Forward projection computational times and (b) overall speedup for a different number of pixels along 

X/Y direction using different hardware configurations. 

 

  
(a) (b) 

Fig. 3.21 (a) Backprojection computational times and (b) overall speedup for a different number of pixels along X/Y 

direction using different hardware configurations. 
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 (a) (b) 

Fig. 3.22 (a) Forward projection computational times and (b) overall speedup for different number of image slices 

using different hardware configurations 

 

 
(a) (b) 

Fig. 3.23 (a) Backprojection computational times and (b) overall speedup for different number of image slices using 

different hardware configurations 

 

The leftmost bar in Fig. 3.19 is the execution time of the baseline serial version and the remaining 

bars show runtimes for the specific optimizations using multiple CPU threads and multiple GPU 

devices. Table 3.3 shows the time of execution of each component of our algorithm with different 
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hardware configurations. For the baseline serial version, we ran our projector algorithms on a 

single CPU core with nested for loops representing the parallel GPU threads. For multithreaded 

CPU implementation, each CPU core launches 2 hyper-threads for every logical processor in the 

core. Each hyper-thread basically acts as a standalone GPU device. Instead of parallel GPU 

threads, we used a corresponding number of nested for loops. We also used a barrier 

synchronization to wait for every CPU thread to finish its projection and backprojection in their 

private projection and image accumulation arrays respectively. To calculate the parallelization 

efficiency of the multi-threaded CPU version we define our speedup ratio according to Amdahl’s 

law as follows 

 𝑆 =
𝑇1
𝑇𝑁
<

1

(𝑓 +
1 − 𝑓
𝑁 )

<
1

𝑓
  as 𝑁 → ∞ , (3.63) 

where, 𝑇1 and 𝑇𝑁 are elapsed times of 1 and N workers. 𝑓 is the fraction of the code that is not 

parallelizable. The parallel efficiency is then defined as, 

 𝐸 = 𝑆 𝑁⁄ . (3.64) 

From our experimentation with 𝑁 = 16 CPU threads, we get 𝑆 = 𝑇1 𝑇𝑁⁄ = 4.7 for the projection 

operation. As a result, 𝑓 = 0.1603  and parallel efficiency is 𝐸 = 0.2963. So, we can conclude, 

our multi-threaded CPU implementation can achieve a maximum speedup of 6.2 times for the 

projection operation for the clinically-sized dataset. 
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3.8 Discussion 
 

We have observed from Fig. 3.19 that using multiple GPUs to reconstruct images gives us better 

performance in computational cost compared to our best available CPU configuration. Our primary 

contribution is a novel approach of pre- accumulation for projection (see equation 3.56) and adjoint 

pre-accumulation for backprojection (see equation 3.62) in the setting of the three-dimensional 

branchless DD algorithm. We observe that computing times linearly decrease with increasing the 

number of GPUs. Since we can divide the projection array according to its number of ordered 

subsets and the number of GPU devices available, the effective size of the projection array we pass 

to the GPUs is much smaller than the size of the partial image accumulation array. As a result, the 

backprojection operator accumulates and write the result on a much bigger image accumulation 

array than the projection array is read from. So, the time required for backprojection is higher than 

for forward projection. The difference is much more significant when we use more ordered subsets 

since the number of subsets only reduces the volume of projection array keeping the size of partial 

accumulation array unchanged. 

 

The time needed to combine partial image accumulation arrays from different GPU devices after 

every backprojection increases the iteration time for ordered subset configurations. For ordered 

subset implementation, we also need to perform measured data backprojection after every subset 

iteration since all the measured data backprojection arrays for every subset cannot be saved in our 

device memory. In Figure 3.18, we show the change in objective function values (defined in 

equation 3.6) with iteration number for various ordered subset configurations. Since minimizing 

the objective function values will maximize the log-likelihood between the measured data and our 
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estimated data by the model, we can use this distance method to estimate the accuracy and noise 

reduction of our reconstruction. The objective function value at 0th iteration of Fig. 3.18 denotes 

the value of the objective function between measured data and projection sinogram of FDK 

reconstruction of the data. The significant decrease in the objective function values clearly 

illustrates the improvement in image quality with our proposed reconstruction algorithm. In the 

end, we can clearly conclude that our optimizations are effective and that our multi-GPU approach 

is beneficial for both forward and backprojection cases. 

 

For the calculation of speedup using different hardware configurations and different scan 

geometries, the single-threaded CPU implementation was considered as the baseline. We observed 

from Fig. 3.20 and Fig. 3.21 that computational time for both multithreaded CPU and GPU 

configurations increase quadratically w.r.t. baseline CPU implementation for a different number 

of pixels along X/Y direction. The number of pixels along X/Y direction determines the size of 

the flattened slab. The amount of computation for every GPU thread launched is directly 

proportional to the size of the flattened slab. As a result, the computational time increases 

quadratically with the number of pixels along the perpendicular dimensions of the slab. However, 

the speedup is small for small image volume due to overhead for data transfer between CPU and 

GPU. As the image volume increases, the relative contribution of the overhead is decreased and 

the actual computation time of projection and backprojection kernel dominates. Thus, we observe 

a steady increase in the speedup factor with increasing image volume. 
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The computation time increases linearly with the number of views and the number of image slices 

as seen in Fig. 3.22 and Fig. 3.23. The slow initial speedup can again be attributed due to overhead 

for data transfer between CPU and GPU. So, the speedup factor increases slightly with increasing 

number of image slices. For the brevity of this thesis, we have only shown the computational time 

and speedup factor for the variation of image slices. Since the number of minimum image slice is 

directly proportional to the number of views, we can observe a similar trend if we varied the 

number of views. 

 

We can expect to reduce run times with more GPUs (see Fig. 3.19), which opens the door to 

exciting new possibilities in clinical settings. For precision critical applications we can use the 

double precision floating-point arithmetic with TITAN Z GPUs, with some performance 

degradation compared to our single precision TITAN X GPUs. 
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Chapter 4: Multislice Analytical Helical CT 

Reconstruction Using GPU 
 

In this chapter, we present the details of the efficient fully 3-D reconstruction framework using an 

analytical method. The main motivation for the multi-GPU implementation of analytical 

reconstruction is twofold. Firstly, the voxel-driven analytical reconstruction approach can be easily 

parallelized over multiple GPU threads and across multiple GPU devices. As a result, the total 

reconstruction time for a clinically sized data is < 2 seconds using 3 TITAN X GPUs in parallel. 

Naturally, we can use the images reconstructed using analytical methods as the initial input for our 

iterative reconstruction problem. This approach accelerates the convergence rate of our SIR 

algorithms. Secondly, we can use these algorithms to calculate aggressive update step described 

in Chapter 5. On average, this aggressive update step method reduces the total computation time 

by 50% without adding any significant computational burden. 

 

The structure of this chapter is described as follows: Section 4.1 describes the scanner geometry 

and Feldkamp-Davis-Kress (FDK) algorithm overview. Section 4.2 describes the changes we have 

proposed to cone-beam geometry to make it more amenable to multi-GPU based parallelization. 

Section 4.3 describes our fast-parallel multi-GPU based implementation of the FDK algorithm. 

Section 4.4 describes the experiments we have conducted to demonstrate the improvement in 

performance of our parallel implementation. 
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4.1 Theory 
 

Within the class of analytical reconstruction algorithms, there is a further dichotomy between so-

called exact algorithms and approximate algorithms. For exact reconstruction, many techniques 

based on PI-lines have been developed [67-69]. There are also newer approaches that use 

differentiated backprojection onto PI-lines or other lines, which require the subsequent application 

of the inverse Hilbert transform and interpolation [70]. 

 

The approximate reconstruction algorithms are not mathematically exact and therefore suffer from 

cone-beam and windmill artifacts in the presence of high-contrast objects, which worsen with 

increasing z-direction distance from the central transverse plane. However, these algorithms offer 

more practical implementations and can more readily incorporate redundant data into the 

reconstruction (for better dose utilization). Among these, the Adaptive multiple plane 

reconstruction (AMPR) method rebins the data into oblique planes that best fit the helix, upon 

which 2-D FBP is performed; the reconstructed tilted slices are then interpolated in the z-direction 

to form an image volume with uniform spacing [71]. Helical FDK algorithms form another class 

of approximate methods, in which a voxel- and view-dependent weighting function is applied in 

the process of performing 3-D backprojection; this weight normalizes the contribution from 

redundant data [72-74]. The algorithms differ in terms of dose utilization, redundancy weighting 

function, and whether the algorithm operates in the native geometry or a rebinned geometry, etc. 

We present a similar multi-GPU implementation of the (3-D)-weighted cone-beam filtered 

backprojection algorithm published by Tang et al. [75]. The major aspects of the algorithm and 
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other pertinent references can be found in that paper. In this section, some of the specifics will be 

addressed. 

 

The geometry of our helical multislice CT scanner is described in Fig. 3.1 in Chapter 3. A key 

element of most helical FDK algorithms (including this one) is that a fixed angular interval along 

the helix is chosen to reconstruct each slice. In other words, reconstruction of a slice at 𝑧 = 𝑧0 is 

done by backprojecting a symmetric set of views on both sides of the slice in which the center 

view’s 𝑧 source position 𝑧𝑠𝑟𝑐 = 𝑧0. The interval is fixed to 2𝜋 in our algorithm, which simplifies 

the redundancy weighting and leads to good image quality. 

 

The overall backprojection expression is given below 

 𝜇(𝑥, 𝑦, 𝑧) =
𝜋

2𝜃𝑚
∫

𝑅𝑓

√𝑅𝑓
2 + 𝜂̂2

𝜔3𝑑(𝜃, 𝑡̂, 𝜂̂)𝜌̃(𝜃, 𝑡̂, 𝜂̂)𝑑𝜃

𝜃𝑚

−𝜃𝑚

 (4.1) 

where 𝜔3𝑑(𝜃, 𝑡̂, 𝜂̂) is the redundancy weighting function, 𝜌̃(𝜃, 𝑡̂, 𝜂̂) is the radially-filtered 

projection data, and 𝜃𝑚 = 𝜋. The (𝑡̂, 𝜂̂) coordinates specify the location on the detector where the 

point (𝑥, 𝑦, 𝑧) is projected at view angle 𝜃. In this expression, the 𝜃 interval is implicitly defined 

such that 𝜃 = 0 intersects the helix at slice location 𝑧. In this work, a mapping from cone angle 𝜂 

to linear coordinate 𝑣 on the detector is used. This is done with respect to the isocenter of the 

scanner, resulting in the relationship 𝑣 = 𝑅𝑓 tan 𝜂. 
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4.2 FDK Reconstruction 
 

4.2.1 Data Preprocessing Operations  

 

The chosen FDK algorithm operates in the cone-parallel geometry. Therefore, the first step is to 

perform row-wise fan-beam to parallel-beam rebinning, which transforms the data to the correct 

geometry. Our algorithm uses linear interpolation for the azimuthal and radial resampling 

operations. A schematic diagram of the helical source trajectory and projection data acquisition in 

the native cone-beam geometry are shown in Fig. 4.1 (a).  The corresponding row-wise fan-beam 

to the parallel-beam rebinning scheme is depicted in Fig. 4.1 (b).  

 

   
(a) (b) 

Fig. 4.1 Schematic diagram of the cone beam to parallel fan beam rebinning scheme described in [72]: (a) the native 

CB geometry; (b) the cone-parallel geometry. 

 

The X-ray source rotates at a radius of 𝑅𝑓 and the detector array rotates along the same direction 

at a radius of 𝑅𝑑 from the isocenter. For the point 𝑃(𝑥, 𝑦, 𝑧) on the bold line in Fig. 4.1 (a), 𝛽 is 
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the view angle, 𝛾 is the fan angle and 𝜂 is the cone angle. 𝑧𝑓𝑒𝑒𝑑 is the axial distance travelled by 

the patient bed in one complete rotation of the X-ray source detector pair. The ray originating from 

focal point S and passing through point 𝑃(𝑥, 𝑦, 𝑧) can be uniquely determined in the new cone-

parallel rebinned geometry by view angle 𝛽, cone angle 𝜂 and orthogonal distance from iso-ray 

(namely orthogonal iso-distance) 𝑡. In Fig. 4.1 (b) we can also notice that the curvature of the 

virtual detector array is inverted.  

 

Depending on the particular scan geometry and the choice of 𝜃𝑚, the backprojection may require 

data that was not physically measured in the 𝑣 direction, i.e. |𝜂̂| may be greater than the cone angle 

of the scanner. For the redundancy weights (discussed below) to work properly, all data must be 

available for the entirety of the backprojection operation. To fulfill this requirement, extrapolation 

of rows using constant extension is performed as a preprocessing step [76]. In particular, at (𝜃, 𝑡) =

(𝜃𝑚, 0), 𝑧𝑠𝑟𝑐 =
𝜃𝑚𝑧𝑓𝑒𝑒𝑑

2𝜋
. This is the farthest 𝑧 distance from the source to the slice (ignoring the tilt 

of the cone-parallel projection in 𝑧). The largest |𝜂̂| value will be obtained at this 𝑧𝑠𝑟𝑐 position, 

and with minimum in-plane source-to-voxel distance (𝑅𝑓 − 𝑅𝐹𝑂𝑉) due to magnification. 

Therefore, at isocenter, the physical height of the detector including the required extension can be 

shown to be 

 𝐻 =
𝜃𝑚𝑧𝑓𝑒𝑒𝑑𝑅𝑓

𝜋(𝑅𝑓 − 𝑅𝐹𝑂𝑉)
. (4.2) 
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The ramp filtering procedure can be found in [2]. Two basic frequency-domain apodization 

windows have been implemented, but certainly, others can be added as needed. The existing 

windows are: 

 Hamming window: 0.54 + 0.46 cos(𝜋𝜔) 

 Hann window: 0.5 + 0.5 cos(𝜋𝜔) 

where 𝜔 ∈ [0, 1] is the normalized frequency.  

As shown in equation (4.1), cosine weighting for the cone angle is only needed in the v direction, 

since the X-ray source in the cone-parallel geometry only diverges in that direction. This factor, 

𝑅𝑓 √𝑅𝑓
2 + 𝜂̂2⁄  is approximated in the preprocessing stage by pre-multiplying the projection data 

by the cosine of the cone angle for the center v position of each detector row (as opposed to having 

it remain a voxel-dependent quantity). 

 

4.2.2 Redundancy Weights  

 

Unlike the circular-orbit FDK algorithm, the voxels in a helical scan are not illuminated uniformly 

from all view directions. Therefore, redundancy weights are needed during backprojection to 

normalize the contribution of the measurements to each voxel in the image volume. In the case of 

the 2-D parallel-beam coordinate system, there exists a complementary ray (also known as the 

conjugate ray) that is co-linear with the primary ray but comes from the opposing view at 𝜃 + 𝜋. 

Now consider the 3-D cone-parallel projection of a point (𝑥, 𝑦, 𝑧); it will land on the detector at 

radial coordinate 𝑡̂. In the helical geometry, the opposing view will have a 𝑧 offset due to the 



 

80 

 

 

moving source in the 𝑧 direction. Therefore, the complementary ray is still co-linear with the 

primary ray when projected onto the 𝑥𝑦 plane, but in 𝑧, they only intersect at the point (𝑥, 𝑦, 𝑧). In 

fact, the cone angle is likely to be different for the primary and complementary ray. With the choice 

of 𝜃𝑚 = 𝜋, the 3-D weighting strategy in [75] is to use both the primary and complementary ray 

in the reconstruction. The ray with the smaller cone angle is weighted more heavily, as that should 

reduce the cone angle artifacts in the reconstruction. Similarly, the ray whose  𝑧𝑠𝑟𝑐 position is 

closer to the slice is weighted more heavily. Using the mapping from 𝜂 to 𝑣, the 3-D weighting 

function implemented in our algorithm is 

 𝜔3𝑑(𝜃, 𝑡, 𝑣) ≜
𝜔2𝑑(𝜃, 𝑡)|𝑣𝑐|

𝑘ℎ

𝜔2𝑑(𝜃, 𝑡)|𝑣𝑐|𝑘ℎ + 𝜔2𝑑(𝜃𝑐, 𝑡𝑐)|𝑣|𝑘ℎ
, (4.3) 

where the subscript 𝑐 refers to the complementary ray, the 𝑘ℎ parameter is currently fixed to 2.0, 

and 

 𝜔2𝑑(𝜃, 𝑡) ≜ {
1 + 𝜃 𝜋⁄ 𝑖𝑓 − 𝜋 ≤ 𝜃 < 0

1 − 𝜃 𝜋⁄ 𝑖𝑓 0 < 𝜃 < 𝜋
. (4.4) 

The in-plane parallel-beam complementary ray coordinates are simply 𝜃𝑐 = 𝜃 + 𝜋, and 𝑡𝑐 = −𝑡. 

The 𝑣𝑐 coordinate can also be determined directly from the primary ray coordinates, as will be 

explained at the end of the next section. 

 

4.2.3 Cone-parallel Backprojection  

 

This section addresses the calculation of (𝑡̂, 𝑣) based on the cone-parallel projection of point 

(𝑥, 𝑦, 𝑧) from view angle 𝜃. Once (𝑡̂, 𝑣) is known, bilinear interpolation is performed on the 

discrete 2-D detector array to determine the projection data value. 
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Fig. 4.2 Parallel-beam and fan beam geometry. 

 

Figure 4.2 shows the parallel-beam geometry as well as the fan-beam coordinates for reference. 

The relationship between the coordinate systems can be expressed as 

 𝛽 = 𝜃 + 𝛾 (4.5) 

 𝛾 = sin−1(𝑡 𝑅𝑓⁄ ). (4.6) 

From the Fig. 4.2, it is also possible to calculate 𝑡̂ and 𝐿(𝑥, 𝑦, 𝜃): 

 𝑡̂(𝑥, 𝑦, 𝜃) = 𝑦 cos 𝜃 − 𝑥 sin 𝜃 (4.7) 

 𝐿(𝑥, 𝑦, 𝜃) = √𝑅𝑓
2 − 𝑡̂2 + 𝑠 (4.8) 

 = √𝑅𝑓
2 − 𝑡̂2 − 𝑥 cos 𝜃 − 𝑦 sin 𝜃 (4.9) 

The in-plane source-to-voxel length 𝐿(𝑥, 𝑦, 𝜃) is used to calculate the projection in the 𝑧 direction, 

as shown in Fig. 4.3.  
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Fig. 4.3 𝑣 scaling based on point projection. 

 

The similar triangles allow for the calculation of 𝑣 as: 

 𝑣(𝑥, 𝑦, 𝑧𝑠𝑙𝑖𝑐𝑒 , 𝜃) =
𝑅𝑓

𝐿(𝑥, 𝑦, 𝜃)
(𝑧𝑠𝑙𝑖𝑐𝑒 − 𝑧𝑠𝑟𝑐). 

(4.10) 

In the cone-parallel geometry, the source is distributed along the helix for each projection, thereby 

giving the projection a tilt in the 𝑧 direction. 𝑧𝑠𝑟𝑐 is therefore a function of 𝜃 and 𝑡. First consider 

the native cone-beam geometry, where 

 𝑧𝑠𝑟𝑐(𝛽) = 𝑧𝑠𝑟𝑐,0 +
𝑧𝑓𝑒𝑒𝑑

2𝜋
𝛽 (4.11) 

and 𝑧𝑠𝑟𝑐,0 is the 𝑧 source position for the first view of the scan. Replacing 𝜃 according to (4.5) and 

(4.6), 

 𝑧𝑠𝑟𝑐(𝜃, 𝑡) = 𝑧𝑠𝑟𝑐,0 +
𝑧𝑓𝑒𝑒𝑑

2𝜋
[𝜃 + sin−1(𝑡 𝑅𝑓⁄ )]. (4.12) 

Note that there are three contexts for the 𝜃 variable in this chapter: 

 Local angular coordinate centered about 𝑧𝑠𝑙𝑖𝑐𝑒 and used for 𝑧-related calculations, e.g., 

(4.1). 

 Angle used for in-plane calculations, e.g., (4.7), (4.9). 
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 Global angular coordinate used to keep track of source position in the global 𝑧 coordinate 

system. 

 

Our algorithm defines two separate variables as follows: 

 𝜃𝑎𝑥𝑖𝑎𝑙(𝑝) ≜ 𝑝|Δ𝜃| (4.13) 

 𝜃𝑖𝑛−𝑝𝑙𝑎𝑛𝑒(𝑝) ≜ 𝑝Δ𝜃 + 𝜃0 (4.14) 

where 𝑝 is the view index, Δ𝜃 is the signed view angle spacing, and 𝜃0 is the starting in-plane 

angle. The absolute value operator is used in equation (4.13) since 𝑧𝑠𝑟𝑐 is defined to increase with 

increasing view index, regardless of the gantry rotation direction. 

 

For the weighting function 𝜔3𝑑(𝜃, 𝑡, 𝑣), it was noted that the 𝑣𝑐 coordinate must be calculated. 

This can be obtained in a few steps. First, using Fig. 4.3 again, the chord length along the ray (for 

a circle of radius 𝑅𝑓) is√𝑅𝑓
2 − 𝑡2. Therefore, the complementary in-plane source-to-voxel length 

is 

 𝐿𝑐 = 2√𝑅𝑓
2 − 𝑡2 − 𝐿. (4.15) 

From there, it is straightforward to calculate 𝑣𝑐: 

 𝑧𝑠𝑟𝑐,𝑐 = 𝑧𝑠𝑟𝑐,0 +
𝑧𝑓𝑒𝑒𝑑

2𝜋
[𝜃𝑐 + sin

−1(𝑡𝑐 𝑅𝑓⁄ )] (4.16) 

 𝑣𝑐 =
𝑅𝑓

𝐿𝑐
(𝑧𝑠𝑙𝑖𝑐𝑒 − 𝑧𝑠𝑟𝑐,𝑐). 

(4.17) 
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4.3 GPU Implementation of FDK Backprojection 
 

The GPU implementation of our backprojection algorithm is shown below 

Algorithm 4.1 GPU implementation of FDK backprojection 

Number of GPU threads launched = Number of pixels in a slice × number of slices assigned to 

each GPU 

begin GPU kernel 

for all GPU blocks in parallel do  

       for all threads in a block do  

             begin GPU thread calculation 

              compute the view range for current reconstruction slice 

                   for every view within our reconstruction slice range  

                         determine the range of channels contributing to our reconstruction slice 

                               for every channel within our reconstruction slice range 

determine the range of detector rows contributing to our reconstruction 

slice  

for every detector row within reconstruction slice range 

use bilinear interpolation to obtain projection data value at every 

detector coordinate for the current view 

calculate corresponding redundancy weight 

compute the normalized 3-D weight 

accumulate weighted projection data to current voxel 

end for 

                               end for 

                   end for 

             end of GPU thread calculation 

       end for 

end for 

end kernel 
 

4.4 Results 
 

We implemented our multi-threaded CPU algorithm using OpenMP, an industry-standard parallel 

computing library designed for shared memory systems. The C code was compiled using the Intel 

Compiler 18.0 with certain optimizations enabled. The code was run on an 8-core Intel 𝑖7 −

5960𝑋 (3.0 GHz, 1333 MHz front-side bus) and 64 GB RAM (1.2 GHz). The operating system 
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running on this machine was Microsoft Windows 7. For our multi-GPU implementation, we used 

3 NVIDIA GeForce GTX TITAN X GPUs. 

 

The clinical data were acquired on a Siemens Somatom Sensation 16 scanner (Siemens Medical 

Solutions, Forchheim, Germany) without using the flying focal spot mode. The scanner acquires 

1160 views per rotation, using a 16 row × 672 channel curved detector array. The distance 

between the source and isocenter is 570 mm, and the distance between the source and detector is 

1040 mm. 

 

4.4.1 Phantom  

 

We use an NCAT phantom image as the ideal (truth) image. To generate synthetic noisy sinogram 

from the NCAT phantom image volume, we use the MATLAB 2017b poissrnd function. Noisy 

photon count data were generated by sampling a Poisson pdf with data mean given by 𝑔(𝑦: 𝜇) 

from equation (3.1) where we have ignored the background intensity 𝛽(𝑦). The parameters of the 

measured data and the reconstructed image is shown previously in Table 3.2. The incident photon 

incident was considered to be 10000 for all measurement views. 
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(a) (b) 

 
(c) (d) 

Fig. 4.4 NCAT phantom reconstruction with voxel size = 1.0 × 1.0 × 1.0 mm.  Scan parameters: pitch 1.0, 16 ×

1.5 mm collimation, display window width = 0.01759 mm−1 , center = 0.008795 mm−1. (a), (b) Axial slices of 

the actual phantom. (c), (d) Axial slices of the FDK reconstruction of the phantom. 

 
Fig. 4.5 Horizontal profile along the orange line through ideal phantom and noisy FDK reconstruction image shown 

in Figs. 4.4 (a) and (c) 
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Fig. 4.6 Horizontal profile along the orange line through ideal phantom and noisy FDK reconstruction image shown 

in Figs. 4.4 (b) and (d) 

 

To quantify the effects of the mismatch between the algorithm and the data models, Percent 

absolute error (PAE), Root mean square error (RMSE) and Signal-to-noise ratio (SNR) defined in 

equation (3.62), (3.63) and (3.64) respectively. 

 PAE in % RMSE SNR in dB 

Fig. 4.4 (a) and (c) 5.6983 7.245E-04 23.1523 

Fig. 4.4 (b) and (d) 5.7545 7.561E-04 23.6975 
Table 4.1 Reconstruction times using clinically-sized data and no OS for different CPU and GPU hardware 

architectures. 

 

4.4.2 Clinical Datasets  

 

The details of our clinical dataset are described in Chapter 3.6. In this chapter we present axial, 

sagittal and coronal slices of our helical FDK reconstruction in Fig. 4.7. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 4.7 Clinical abdominal reconstruction using FDK algorithm. Voxel size = 1.0 × 1.0 × 1.0 mm.  Scan 

parameters: 180 mAs, pitch 1.0, 16 × 1.5 mm collimation. (a) Axial slice of lung with display window width =

0.03 mm−1 , center = 0.015 mm−1. (b) Axial slice of abdomen with display window width = 0.007 mm−1, center 

= 0.021 mm−1. (c) and (d) are coronal views and (e) and (f) are sagittal views with display window width =

0.007 mm−1, center = 0.021 mm−1. 
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4.4.3 Timing Performance  

 

This section addresses the timing performance of our FDK algorithm implementation for 

different hardware configurations. 

 

  
(a) (b) 

Fig. 4.8 (a) Backprojection time and (b) 8 core CPU speedup factor for a different number of pixels along X/Y 

direction. 

 
Fig. 4.9 Speedup factor for parallel fan-beam backprojection operation using a different number of GPUs in parallel 

compared to baseline CPU implementation. 
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(a) (b) 

Fig 4.10 (a) Total time and (b) 8 core CPU speedup factor for a different number of pixels along X/Y direction. 

 

 
Fig. 4.11 Speedup factor for total computational time using a different number of GPUs in parallel compared to 

baseline CPU implementation 
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(a) (b) 

 
(c) 

Fig. 4.12 (a) Total time and (b) 8 core CPU speedup factor for a different number of image slices. (c) Speedup factor 

for total computational time using a different number of GPUs in parallel compared to baseline CPU 

implementation. 
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4.5 Discussion 
 

The total reconstruction time using 3 GPUs in parallel including data read from hard disk drive 

was less than 2.2𝑠 for a clinically-sized data. Compared to other existing methods in the literature, 

the computational performance of our multi-GPU algorithm is quite competitive. Since we do not 

have the exact hardware and GPU configuration so a fair and exact comparison would be hard to 

execute.  The speedup factors of different hardware configurations and different scan geometries, 

were baselined against the reconstruction time of single-threaded CPU implementation. We can 

clearly observe that in Fig. 4.8 (a), computational time for both CPU and GPU configurations 

increased in a quadratic fashion consistent with our algorithm. The number of pixels along X/Y 

direction determines the size of the flattened slab. The amount of computation of every GPU thread 

launched is directly proportional to the size of the flattened slab. As a result, the computational 

time increases quadratically with the number of pixels along the perpendicular dimensions of the 

slab. However, the speedup is small for small image volume due to overhead for data transfer 

between CPU and GPU. However, when the image volume increases, the relative contribution of 

the overhead is deceased and the total computation time of backprojection kernel dominates. As a 

result, we can observe a steady increase in the speedup factor for larger image volume in Fig 4.8 

(b) and Fig. 4.9. 

 

When we change the number of views or the number of image slices, there is a linear trend in the 

increase of computation time as seen in Fig. 4.10. The slow initial speedup in Fig. 4.10 (b) and 

Fig. 4.11 can also be attributed due to the overhead for data transfer between CPU and GPU. For 

the brevity of this thesis, we have only shown the computational time and speedup factor for the 
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variation of image slices. Since the number of minimum image slice is directly proportional to the 

number of views, we can observe a similar trend if we varied the number of views. When we vary 

the number of detector rows, as seen in Fig. 4.12, we see a linear increase in the computational 

time for backprojection. However, when the number of detector rows is small there is significant 

overhead for data transfer. So, the speedup factor increases slightly with an increase in the number 

of detector rows. 

 

The 3-D helical FDK reconstruction algorithm presented in this dissertation has significantly low 

computational burden as presented in Fig. 4.8 (a), Fig. 4.10 (a) and Fig. 4.12 (a). Our approach 

also improves reconstruction accuracy due to 1-D tangential ramp filtering and no interpolation 

along the 𝑧-axis for this filter [75]. The 3-D weighting function 𝜔3𝑑(𝜃, 𝑡, 𝑣) described in equation 

(4.3) is ray dependent and enables our algorithm to reach reconstruction accuracy comparable to 

exact cone-beam reconstruction algorithms like Katsevich algorithm [47, 67, 77]. The voxel-

driven reconstruction method and cone-beam to parallel-beam rebinning approach allows us to 

update image voxels independently on GPU threads without any thread synchronization. We can 

also divide the projection data equally on multiple-GPU devices and simultaneously update image 

voxels over multiple devices in parallel. The detailed algorithm presented in algorithm 4.1 gives 

us close to 1300X speedup using 3 TITAN X GPUs in parallel over baseline single-threaded CPU 

implementation. Consequently, we can use this approach without any significant computational 

burden to calculate initial image estimate for SIR algorithms described in Chapter 3 and aggressive 

update steps for adaptive surrogate functions described in Chapter 5.  
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Chapter 5: Acceleration of Iterative-

reconstruction Algorithms Using Adaptive 

Auxiliary Variable 
 

The main hurdle for the adoption of SIR algorithms in practice is the iterative nature of these 

algorithms and high computation time. The actual computation time required varies with the field 

of application, the volume of the measured data, and the level of accuracy desired in the 

reconstructed images. In security applications, the reconstruction time of three-dimensional image 

volumes must satisfy the rate at which bags travel through the scanner. For many medical 

applications, the time depends on the availability of radiologists, which can vary widely. There are 

various pathways to decrease the time in iterative image reconstruction. One of the most effective 

pathways is to use multiple Graphics processing units (GPUs) to parallelize the computationally 

intensive parts of the algorithm. [9, 27, 58, 66, 78, 79]. A second pathway is to use advanced 

algorithms from convex optimization theory [32]. A third pathway is to accelerate the convergence 

rate of existing algorithms by sacrificing guaranteed convergence properties [29-31]. A new 

method in the third category, named adaptive auxiliary variable is investigated in this article for 

accelerating the convergence rate of the AM algorithm using a phantom and real clinical data 

obtained from Siemens Sensation 16 scanner. 

 

In our current work, we first assume a Poisson distribution model for the measured transmission 

data. Then we calculate a maximum-likelihood estimate between the measured data and data 

model by reformulating the estimation problem as a double minimization of an I-divergence 
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problem. A Huber-type penalty is then added to the divergence term. Finally, we formulate an 

objective function with the I-divergence and regularization terms. As the optimization space is 

quite large, we have reformulated the objective function as an N one-dimensional convex 

optimization problem where 𝑁 is the number of voxels of the image being reconstructed. We then 

provide pseudo-codes for the general AM algorithm and its accelerated version with the ordered-

subset technique. Next, we derive our proposed auxiliary variable based acceleration method and 

present a pseudocode for its efficient parallel implementation. Finally, we have validated our 

proposed acceleration technique with NCAT phantoms and Siemens Sensation 16 helical scan data 

by comparing the convergence rates of straightforward implementation of the AM algorithm with 

its accelerated version. 

 

5.1 Theory 
 

The AM algorithm in closed form solution yields additive updates for the linear attenuation 

coefficient values with step-sizes or auxiliary variables that are chosen to guarantee convergence. 

This guaranteed convergence criterion results in step sizes that are unnecessarily conservative. 

Therefore, to accelerate the convergence of our algorithm, we will try to choose bigger step sizes 

using adaptive auxiliary variables 𝑍(𝑥) such that 𝑟(𝑦|𝑥) =
ℎ(𝑦|𝑥)

𝑍(𝑥)
 . 

 

For the derivation of these so-called adaptive auxiliary variables, we start with data fit term 

surrogate function from equation (3.12) in Chapter 3, 
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Î[𝑑||𝑔; 𝜇, 𝜇̂] = ∑𝜇(𝑥)

𝑥

𝑏̃(𝑥) +∑𝐼0(𝑦)exp(−∑ℎ(𝑦|𝑥)𝜇̂(𝑥)

𝑥

)

𝑦

×∑
ℎ(𝑦|𝑥)

𝑍(𝑥)
exp(−𝑍(𝑥)(𝜇(𝑥) − 𝜇̂(𝑥)))

𝑥

. 

(5.1) 

The derivative of this function with respect to 𝜇(𝑥) would be, 

 

𝜕Î[𝑑||𝑔; 𝜇, 𝜇̂]

𝜕𝜇(𝑥)
= 𝑏̃(𝑥)

−∑ℎ(𝑦|𝑥)𝐼0(𝑦)

𝑥

 exp (−𝑍𝑗(𝜇(𝑥)

− 𝜇̂(𝑥))) exp(−∑ℎ(𝑦|𝑥)𝜇̂(𝑥)

𝑥

)  

(5.2) 

Now if our current estimate of 𝜇(𝑥) at 𝑘-th iteration is 𝜇̂(𝑘)(𝑥) and if we denote 𝑍(𝑥) as 𝑍(𝑘)(𝑥) 

then we can write 

 
𝜕Î[𝑑||𝑔;𝜇,𝜇̂]

𝜕𝜇(𝑥)
|
𝜇(𝑥)=𝜇̂(𝑘)(𝑥)

= 0 ∀ 𝑥 (5.3) 

 
⟹ 𝑍(𝑘)(𝑥) =

log (
∑ ℎ(𝑦|𝑥)𝐼0(𝑦)exp(−∑ ℎ(𝑦|𝑥)𝜇̂(𝑥)𝑥 )𝑦

𝑏̃(𝑥)
)

𝜇̂(𝑘)(𝑥) − 𝜇̂(𝑥)
  ∀ 𝑥 

(5.4) 

Since we are minimizing the surrogate function around 𝜇̂(𝑥) so any non-negative value for this 

variable can be used. The inverse of the auxiliary variable basically acts as the weight in closed 

form update. So, if we can effectively reduce the value of 𝑍(𝑥), we can accelerate the convergence 

of our algorithm. One such choice would be to make 𝜇̂(𝑥) = 0 ∀ 𝑥. Thus, our auxiliary variable 

can be written as: 
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𝑍(𝑘)(𝑥) =

log (
∑ ℎ(𝑦|𝑥)𝐼0(𝑦)𝑦

𝑏̃(𝑥)
)

𝜇̂(𝑘)(𝑥)
 ∀ 𝑥. 

(5.5) 

Now we denote the back projection of incident photon intensity as follows 

 𝑏̃0(𝑥) =∑ℎ(𝑦|𝑥)𝐼0(𝑦)

𝑦

 . (5.6) 

Then adaptive auxiliary can be denoted as 

 
𝑍(𝑘)(𝑥) =

log (
𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂(𝑘)(𝑥)
 ∀ 𝑥. 

(5.7) 

According to our previous estimate of Z from equation (3.16), we can use the length of 

reconstruction diameter as a threshold for our proposed adaptive auxiliary variable 𝑍(𝑘)(𝑥). 

 𝑍(𝑘)(𝑥) = {
log(

𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂(𝑘)(𝑥)
if
log(

𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂(𝑘)(𝑥)
< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛,

𝑏̃0(𝑥)

𝑏̃(𝑥)
> 1,  𝜇̂(𝑘)(𝑥) > 0 

2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 else

.    (5.8) 

We have ignored nonpositive values of 𝑍(𝑘)(𝑥) by the inequalities 
𝑏̃0(𝑥)

𝑏̃(𝑥)
> 1, and 𝜇̂(𝑘)(𝑥) > 0 in 

equation (5.8). Also, it’s evident from equation (5.7) that both backprojection arrays can be 

precomputed. So, the adaptive nature of the auxiliary variable comes from the fact that after each 

iteration, the denominator is updated with the current estimate of the reconstructed image. For 

parallel processing units like GPUs, this step doesn’t add any significant burden to the overall 

computation time since the computation of each element of the auxiliary variable is independent 

of each other and GPU threads can compute all the elements efficiently. 
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The regularized AM algorithm with ordered subset is described in Algorithm 5.1 with initial image 

estimate derived from FDK algorithm.  

 

Algorithm 5.1 Regularized OS-AM algorithm with adaptive auxiliary variable 

Input: 𝜇̂(0,0)(𝑥) = 𝜇̂𝐹𝐷𝐾(𝑥) ∈ ℝ+
𝑁, 𝑑(𝑦), 𝐼0(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 > 0, 𝕐𝑙 ∀ subset index 𝑙 =
0,1,2, … . (𝐿 − 1). 
Precompute 𝑏̃𝑙(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦∈𝕐𝑙 , ∀ 𝑙 and 𝑥  

Precompute 𝑏̃(𝑥) = ∑ 𝑑(𝑦)ℎ(𝑦|𝑥)𝑦 , ∀ 𝑥  

Precompute 𝑏̃0(𝑥) = ∑ 𝑑(𝑦)𝐼0(𝑦)𝑦 , ∀ 𝑥  

Precompute 𝑍0(𝑥) = {
log(

𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂𝐹𝐷𝐾(𝑥)
if
log(

𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂𝐹𝐷𝐾(𝑥)
< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛,

𝑏̃0(𝑥)

𝑏̃(𝑥)
> 1,  𝜇̂𝐹𝐷𝐾(𝑥) > 0 

2 × 𝑅𝑟𝑒𝑐𝑜𝑛 else

   ∀ 𝑥 

For iteration: 𝑘 = 1,2,3, …. do  

      for 𝑙 = 0,1,2, … . (𝐿 − 1) do  

            𝑞̂(𝑘,𝑙)(𝑦) = 𝐼0(𝑦)exp (−∑ ℎ(𝑦|𝑥)𝜇̂(𝑘,𝑙)(𝑥)𝑦 ) for every 𝑦 ∈ 𝕐𝑙 

            𝑏̂(𝑘,𝑙)(𝑥) = ∑ ℎ(𝑦|𝑥) 𝑞̂(𝑘,𝑙)(𝑦)𝑦  ∀ 𝑥 

𝜇̂(𝑘,𝑙+1)(𝑥) = argmin
𝜇(𝑥)≥0

𝑏̃(𝑘)(𝑥)(𝜇(𝑥) − 𝜇̂(𝑘,𝑙)(𝑥)) +
𝑏̂(𝑘,𝑙)(𝑥)

𝑍(𝑘)(𝑥)
exp (−𝑍(𝑘)(𝑥)(𝜇(𝑥) −

𝜇̂(𝑘,𝑙)(𝑥))) +
𝜆

𝐿
 ∑

𝜔(𝑥,𝑥′)

2
𝛿2 (|

2𝜇(𝑥)−𝜇̂(𝑘,𝑙)(𝑥)−𝜇̂(𝑘,𝑙)(𝑥′)

𝛿
| − log (1 +𝑥′∈𝑁(𝑥)

|
2𝜇(𝑥)−𝜇̂(𝑘,𝑙)(𝑥)−𝜇̂(𝑘,𝑙)(𝑥′)

𝛿
|)) 

 

       end for 

       𝜇̂(𝑘+1,0)(𝑥) = 𝜇̂(𝑘,𝐿)(𝑥) ∀𝑥 

       𝑍(𝑘+1)(𝑥) = {
log(

𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂(𝑘+1,0)(𝑥)
𝑖𝑓

log(
𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂(𝑘+1,0)(𝑥)
< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛,

𝑏̃0(𝑥)

𝑏̃(𝑥)
> 1,  𝜇̂(𝑘+1,0)(𝑥) > 0 

2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 𝑒𝑙𝑠𝑒

   ∀ 𝑥 

end for 
 

5.2 Experiments 
 

To generate synthetic sinogram from the NCAT phantom image volume, we add a Poisson noise 

to the forward projection data of the phantom image using equation (3.1). We use the NCAT 
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phantom image volume and MATLAB 2017b poissrnd function to generate our noisy estimation 

of the sinogram. Noisy photon count data were generated by sampling a Poisson pdf with data 

mean given by 𝑔(𝑦: 𝜇) from equation (3.1) where we have ignored the background intensity term 

𝛽(𝑦). The parameters of the measured data and reconstructed images are shown in Table 5.1. 

No. of views 13920 

No. of detector channels 672 

No. of detector rows 16 

No. of image slices 164 

No. of pixels/slice 512x512 
Table 5.1 Parameters of measured data and image 

To quantify the effects of the mismatch between the algorithm and the data models, we use PAE, 

RMSE and SNR metrics defined in equation (3.62), (3.63) and (3.64) respectively. 

 

5.3 Results 
 

5.3.1 Phantom  

 

Since we start our iterative algorithm with initial image estimate derived from the linear 

reconstruction algorithms like FBP or FDK, we can use this initial image estimate to precompute 

the initial values of the auxiliary variable. The value of 𝑍𝐹𝐷𝐾(𝑥) is shown in Fig. 5.1 (b) and 5.1 

(d) for reconstructed data using NCAT phantom, where 𝜇̂(𝑘+1)(𝑥) = 𝜇̂𝐹𝐷𝐾(𝑥). The region of the 

image with higher attenuation coefficients show a lower value of the auxiliary variable which in 

turn results in higher update steps and vice-versa. 
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(a) (b) 

 
(c) (d) 

Fig. 5.1 (a) and (c) Linear attenuation coefficient map reconstructed with FDK algorithm for NCAT data in units of 

mm−1. (b), (d) The values of the auxiliary variable for the corresponding image slice. 

 
Fig. 5.2 Profile along the red dotted line depicted in Fig. 5.1 (c) for images reconstructed using 100 iterations of 5 

OS of AM algorithm without (blue) and with (red) adaptive surrogate function. 
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(a) (b) 

 

 
(c) (d) 

Fig. 5.3 (a), (b) PAE in % vs iteration number for the NCAT phantom with. (c), (d) RMSE vs iteration number for 

the NCAT phantom. 
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(a) (b) 

 
(c) (d) 

Fig. 5.4 (a) and (b) SNR vs iteration number for the NCAT phantom. (c) and (d) CNR for the structure in a green 

dotted box in Fig. 5.1 (c) vs iteration number for the NCAT phantom. 

 

5.3.2 Clinical Datasets  

 

The clinical data were acquired on a Siemens Somatom Sensation 16 scanner (Siemens Medical 

Solutions, Forchheim, Germany) without using the flying focal spot mode. The scanner acquires 

1160 views per rotation, using a 16 row × 672 channel curved detector array. The distance 



 

103 

 

 

between the source and isocenter is 570 mm, and the distance between the source and detector is 

1040 mm. A lung slice and an abdominal slice is shown in Fig. 5.5 (a) and 5.5 (b) respectively. 

The value of 𝑍𝐹𝐷𝐾(𝑥) is shown in Fig. 5.5 (b) and 5.5 (d) for reconstructed data using Siemens 

Sensation 16 scanner, where 𝜇̂(𝑘+1)(𝑥) = 𝜇̂𝐹𝐷𝐾(𝑥). 

 

 
(a) (b) 

 
(c) (d) 

Fig. 5.5 (a) and (b) Linear attenuation coefficient map reconstructed with FDK algorithm for real data obtained from 

Siemens Sensation 16 scanner in units of mm−1. (c) And (d) are the values of the auxiliary variable for the 

corresponding image slices in units of mm. 
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(a) (b) 

Fig. 5.6 Objective function values vs iteration number for Siemens Sensation 16 scanner reconstructed images (a) 

without ordered subset implementation and with (blue) and without (red) adaptive auxiliary variable, and (b) with 5 

ordered subset implementations and with (blue) and without (red) adaptive auxiliary variable. 

 

5.3.3 Convergence Rate  

 

The RMSE and PAE values (defined in equation (3.62) and (3.63) respectively) for the phantom 

reconstruction shows 2X increase in the convergence rate. The increase in convergence rate is 

estimated from the Fig. 5.3, 5.4 and 5.6, by comparing the number of iterations needed by the 

standard AM algorithm and the adaptive surrogate function based AM algorithm to reach the same 

values of the objective function or another image quality metric. The objective function value also 

shows a 2X increase in the convergence rate for the clinical dataset as well. Even with the addition 

of OS, we can still achieve the same amount of acceleration in convergence rate. However, for 

higher OS like 29 OS, the rate of acceleration slows down faster than other OS configurations. The 

main reason for this change can be attributed to the fact that the adaptive surrogate function is not 

updated for a significant number of image update steps in 29 OS configurations.  
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5.4 Discussion 
 

In this chapter, we have proposed a novel approach to adaptively compute the additive step in the 

AM algorithm. We have observed that our approach of using adaptive auxiliary variable combined 

with OS creates no extra computation cost compared to the straightforward implementation of the 

OS-AM algorithm. From the image quality assessment parameters, we can conclude that our 

proposed adaptive auxiliary variable technique shows an average of 2X increase in convergence 

rate for every OS configuration. We can expect to achieve further acceleration with the addition 

of other acceleration methods like Nesterov's momentum-based acceleration techniques.  
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Chapter 6: Dual-energy AM Reconstruction 

Algorithm Using GPU 
 

Dual-energy X-ray CT (DECT) reconstruction algorithms have the potential to improve the image 

contrast and reduce the artifacts [80, 81], which can be highly useful in different clinical 

applications including radiation dose reduction [82], material decomposition [83, 84] and energy 

selective imaging. In proton therapy dose prediction analysis, the stopping power of high energy 

proton beam depends on the estimates of electron density and mean excitation energy. The electron 

density and the mean excitation energy is derived from a mono-energy estimation of X-ray CT 

scanning introduces uncertainties due to the beam hardening effect and the method by which the 

electron density is converted to CT number. Mono-energy estimation fail to disambiguate the 

Hounsfield unit (HU) degeneracy on density and tissue composition. In order to accurately 

estimate these parameters, Dual-energy CT (DECT) image reconstructions are widely used in this 

domain [85-89]. DECT has the potential to reduce range uncertainties by estimating two 

independent parameters, which can resolve the dependence of photon stopping power on density 

and tissue composition. 

 

The dual-energy alternating minimization (DE-AM) described in this chapter is an extension of 

the AM algorithm proposed by O’Sullivan and Benac [1] and discussed in Chapter 3. Simulated 

data reconstructed in this chapter consists of four inserts suspended in water with calcium chloride 

and polystyrene used as basis vector material. The DE-AM algorithm combined with ordered 

subsets produced slow convergence rate along with high computational time. 
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Motivated by studies demonstrating the slow convergence of the DE-AM algorithm, we have 

proposed a novel adaptive auxiliary variable based acceleration step which estimates an aggressive 

update step based on the initial estimate computed using the linear analytical methods like FDK. 

We have applied this acceleration method to simulated data generated using Siemens Sensation 16 

helical scan geometry. Along with algorithmic acceleration steps, we have also proposed fast-

parallel multi-GPU based computation of dual-energy alternating minimization algorithm. 

 

6.1 Dual-energy AM Algorithm 
 

At the basis of our statistical model, we assume that the photons arrive at the detectors in 

accordance with a Poisson counting process. Let the 3-D image volume of linear attenuation 

coefficients (in mm−1) be represented by the vector 𝜇. Let 𝑦 denote a ray path between the X-ray 

source and a pixel in the multi-row detector array, 𝑥 denote a voxel in the image volume and X-

ray spectra by 𝑗 ∈ {1,2}. The measured transmission data, 𝑑𝑗(𝑦), is modeled as originating from 

independent Poisson counting processes. In discretized form, the mean value of 𝑔𝑗(𝑦: 𝜇) is 

 𝑔𝑗(𝑦: 𝜇) =∑𝐼0𝑗(𝑦, 𝐸)exp [−∑ℎ(𝑦|𝑥)𝜇(𝑥, 𝐸)

𝑥

]

𝐸

+ 𝛽𝑗(𝑦), (6.1) 

where the outer sum is over discrete energies of the X-ray photons. 𝐼0𝑗(𝑦, 𝐸) is the mean number 

of counts in the absence of an attenuating medium for X-ray photon energy 𝐸 (nominally with 

units of keV), 𝛽𝑗(𝑦) is the mean number of background events assumed to be nonnegative and 

known. The summation in the exponent represents the forward projection of the attenuation 

function. The system matrix elements ℎ(𝑦|𝑥) comprise the appropriately discretized point-spread 
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function relating the projection space to the image space. If projection 𝑦 does not pass through 

voxel 𝑥, then ℎ(𝑦|𝑥) is zero. The attenuation function 𝜇(𝑥, 𝐸) (in mm−1) is indexed by image 

space coordinates, 𝑥, and by X-ray photon energy, 𝐸. We envision a small number, 𝑀, of different 

types of materials indexed by 𝑚, 

 𝜇(𝑥, 𝐸) = ∑ 𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑀

𝑚=1

 (6.2) 

with known linear attenuation coefficients 𝜇𝑚(𝐸) in mm−1 and relative partial densities 𝑐𝑚(𝑥) 

[90]. This two parameter Basis vector model (BVM) assumes that attenuation coefficients of 

unknown materials are linear combinations of the corresponding radiological quantities of 

dissimilar basis substances i.e. polystyrene, calcium chloride [91]. For pure linear combinations, 

the relative partial densities are nonnegative and sum to one.  Our model allows the values of 

𝑐𝑚(𝑥) to be nonnegative, and does not enforce a sum constraint in order to allow the 𝜇𝑚(𝐸) to 

merely span the set of allowable attenuation functions 𝜇(𝑥, 𝐸). Our model for 𝜇(𝑥, 𝐸) in equation 

(6.2) is equivalent to having terms (𝜇 𝜌⁄ )(𝑥, 𝐸)𝜌(𝑥, 𝐸), where (𝜇 𝜌⁄ )(𝑥, 𝐸) is the mass attenuation 

coefficient (usually given in cm2 g⁄  and 𝜌(𝑥, 𝐸) is the partial density (in g cm3⁄ , with ℎ(𝑦|𝑥) in 

cm) of the m−th constituent. The model (6.2) is related to others in the literature [4, 92-95]. 

 

For our Alternating minimization (AM) algorithm, we use the maximum-likelihood solution 

derived by O’Sullivan and Benac [1]. The problem was formulated as the double minimization of 

an I-divergence over a linear and exponential family, thereby resulting in a closed-form update for 

each iteration. The objective function to be minimized for the poly-energetic case is 
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 𝐼[𝑑||𝑔] ≜∑∑[𝑑𝑗(𝑦) log (
𝑑𝑗(𝑦)

𝑔𝑗(𝑦: 𝜇)
⁄ )+𝑔𝑗(𝑦: 𝜇) − 𝑑𝑗(𝑦)]

𝑦

2

𝑗=1

. (6.3) 

The objective function presented in (6.3) can’t be optimized directly over 𝜇 since the optimization 

space is large. One of the best approaches is to develop surrogate functions that approximate the 

original function at every iteration and are easy to minimize. This approach leads to iterative 

algorithms where different surrogate functions are formed and solved at each iteration and yet the 

original function decreases monotonically. The decoupled objective function as derived in 

Appendix B is: 

 

Î[𝑑||𝑔; 𝑐, 𝑐̂] = ∑∑∑∑∑ [𝑝̂𝑗
(𝑘)(𝑦, 𝐸)𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝑐𝑚(𝑥)

𝑀

𝑚=1𝑥𝑦

2

𝑗=1𝐸

+
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑍𝑚(𝑥)
𝑞̂𝑗
(𝑘)(𝑦, 𝐸)exp (−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − 𝑐̂𝑚

(𝑘)(𝑥)))] . 

(6.4) 

We define the forward projection of current image estimate at energy level 𝐸, 𝜇̂(𝑘)(𝐸) as: 

 𝑞̂𝑗
(𝑘)(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp [−∑∑ ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑀

𝑚=1𝑥

]. (6.5) 

The data forward projection is defined as: 

 𝑝̂𝑗
(𝑘)(𝑦, 𝐸) = 𝑞̂𝑗

(𝑘)(𝑦, 𝐸)
𝑑𝑗(𝑦)

∑ 𝑞̂𝑗
(𝑘)(𝑦, 𝐸′)𝐸′

. (6.6) 

Next the back projections 𝑏̂𝑗
(𝑘)(𝑥, 𝐸) and 𝑏̃𝑗

(𝑘)(𝐸) of the current estimates 𝑞̂𝑗
(𝑘)(𝑦, 𝐸) and 𝑝̂𝑗

(𝑘)(𝑦, 𝐸) 

are calculated as: 
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 𝑏̃𝑗,𝑚
(𝑘)
(𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝐸𝑦

𝑝̂𝑗
(𝑘)(𝑦, 𝐸) (6.7) 

 𝑏̂𝑗,𝑚
(𝑘)(𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝐸𝑦

𝑞̂𝑗
(𝑘)(𝑦, 𝐸). (6.8) 

If we replace the estimates from equations (6.7) and (6.8) to equation (6.4), we can rewrite our 

data fit term surrogate function as: 

 

Î[𝑑||𝑔; 𝑐, 𝑐̂] = ∑∑∑ [𝑐𝑚(𝑥)𝑏̃𝑗,𝑚
(𝑘)(𝑥)

𝑀

𝑚=1𝑥

2

𝑗=1

+
𝑏̂𝑗,𝑚
(𝑘)(𝑥)

𝑍𝑚(𝑥)
exp (−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − 𝑐̂𝑚

(𝑘)(𝑥)))] . 

(6.9) 

In order to derive the closed form solution of the surrogate function presented equation (6.9), we 

equate its derivative w.r.t. 𝑐𝑚(𝑥) to 0. 

 
𝜕Î[𝑑||𝑔; 𝑐, 𝑐̂]

𝜕𝑐𝑚(𝑥)
=∑𝑏̃𝑗,𝑚

(𝑘)
(𝑥) − 𝑏̂𝑗,𝑚

(𝑘)(𝑥)exp (−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − 𝑐̂𝑚
(𝑘)(𝑥)))

2

𝑗=1

= 0, (6.10) 

 ⇒ 𝑐𝑚(𝑥) = [𝑐̂𝑚
(𝑘)(𝑥) −

1

𝑍𝑚(𝑥)
log (

∑ 𝑏̃𝑗,𝑚
(𝑘)
(𝑥)2

𝑗=1

∑ 𝑏̂𝑗,𝑚
(𝑘)2

𝑗=1 (𝑥)
)]. (6.11) 

Finally, the updated estimate, 𝑐̂𝑚
(𝑘+1)(𝑥), is calculated iteratively in closed form solution, 

 𝑐̂𝑚
(𝑘+1)(𝑥) ≜ [𝑐̂𝑚

(𝑘)(𝑥) −
1

𝑍𝑚(𝑥)
log (

∑ 𝑏̃𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

∑ 𝑏̂𝑗,𝑚
(𝑘)2

𝑗=1 (𝑥)
)]. (6.12) 
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The function 𝑍𝑚(𝑥) is a precomputed normalization function, which can be freely chosen subject 

to the constraints reviewed by O’Sullivan et al.[1] 

 𝑍𝑚(𝑥) = 𝑍 = max
𝑦,𝐸

∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝑥𝑚

. (6.13) 

Since it’s an ill-posed inverse problem, we add a penalty term, 𝑅(𝜇), to the objective function used 

in the AM reconstruction, and weight it by a regularization parameter 𝜆, where 𝜆 is a scalar that 

reflects the amount of smoothing desired. A larger value will give emphasis to the penalty term 

(i.e., the prior expectation that the image will be smooth), whereas a smaller value will give more 

emphasis to the I-divergence term (i.e., the discrepancy between the measured data and the data 

estimated by the model). The added penalty term is defined as 

 𝑅(𝜇(𝑥)) =  𝜆 ∑ 𝜔(𝑥, 𝑥′)𝜓(𝜇(𝑥) − 𝜇(𝑥′))

𝑥′∈𝑁(𝑥)

, (6.14) 

where 𝑅(𝜇) can be interpreted as the log-likelihood term for some prior. For 3-D regularization, 

we use the 26-voxel neighborhood 𝑁(𝑥) surrounding voxel 𝑥. The weights 𝜔(𝑥, 𝑥′) control the 

relative contribution of each neighbor. The potential function 𝜓(𝑡) is a symmetric convex function 

that penalizes the difference between the values of neighboring voxels. For computational 

simplicity, we use a modified potential function used by Lange [37]  

 𝜓(𝑡) ≜ 𝛿2 [|
𝑡

𝛿
| − log (1 + |

𝑡

𝛿
|)], (6.15) 

where δ is a parameter that controls the transition between a quadratic region (for smaller 

|
𝜇(𝑥)−𝜇(𝑥′)

𝛿
|) and a linear region (for larger |

𝜇(𝑥)−𝜇(𝑥′)

𝛿
|). For our specific reconstruction, we exclude 
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a few image slices from the beginning and end in the penalty calculation because those slices will 

have severe artifacts due to cone-beam truncation. Calculating the penalty for those slices could 

negatively impact reconstruction of the inner slices since the artifacts do not any type of structure 

that can meaningfully be penalized by 𝑅(𝜇). The overall problem is then to find the penalized-

likelihood estimate, 

 𝜇𝑃𝑀𝐿
∗ = argmin

𝜇≥0
I[𝑑||𝑔(𝜇)] + 𝜆𝑅(𝜇), (6.16) 

where 𝜆 is a scalar value that controls the desired smoothness. This approach is also called 

penalized maximum likelihood estimation. It is worth noting that (6.3) is a special case of (6.16) 

when 𝜆 = 0. 

 

Implementation of the Regularized DEAM Algorithm 

 

The decoupling steps provide an iterative algorithm that is guaranteed to decrease the objective 

function monotonically. Also, it creates many one-parameter convex functions (one for each 

voxel) that can be minimized in parallel using GPU threads. The pseudocode for the regularized 

AM algorithm is shown in Algorithm 6.1. 
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Algorithm 6.1 Regularized DE-AM algorithm 

Input: 𝑐̂m
0 (𝑥) ∈ ℝ+

𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ×max
𝐸
∑ 𝜇𝑚(𝐸)𝑚 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 > 0. 

for 𝑘 = 1,2,3, … do 

       𝑞̂𝑗
𝑘(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp[−∑ 𝜇𝑚(𝐸)𝑚 ∑ ℎ(𝑦|𝑥)𝑐̂𝑚

𝑘 (𝑥)𝑥 ] 

       𝑝̂𝑗
(𝑘)(𝑦, 𝐸) = 𝑞̂𝑗

(𝑘)(𝑦, 𝐸)
𝑑𝑗(𝑦)

∑ 𝑞̂𝑗
(𝑘)(𝑦,𝐸′)𝐸′

 

       𝑏̃𝑗,𝑚
𝑘 (𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 𝑝̂𝑗

(𝑘)(𝑦, 𝐸) 

       𝑏̂𝑗,𝑚
𝑘 (𝑥)=∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 𝑞̂𝑗

(𝑘)(𝑦, 𝐸) 

       𝑐̂𝑚
𝑘+1(𝑥) = argmin

𝑐𝑚(𝑥)≥0
∑ 𝑏̃𝑗,𝑚

𝑘 (𝑥)(𝑐𝑚(𝑥) − 𝑐̂𝑚
𝑘 (𝑥)) + ∑

𝑏̂𝑗,𝑚
𝑘  (𝑥)

𝑍
exp(−𝑍(𝑐𝑚(𝑥) −

2
𝑗=1

2
𝑗=1

        𝑐̂𝑚
𝑘 (𝑥))) + 𝜆∑

𝜔
𝑥𝑥′

2
𝛿2 (|

2𝑐𝑚(𝑥)−𝑐𝑚̂
𝑘 (𝑥)−𝑐𝑚̂

𝑘 (𝑥′)

𝛿
| − log (1 + |

2𝑐𝑚(𝑥)−𝑐𝑚̂
𝑘 (𝑥)−𝑐𝑚̂

𝑘 (𝑥′)

𝛿
|))𝑥′∈𝑁𝑥  

end for 
 

Acceleration methods 

 

Ordered Subsets 

 

Ordered subsets is a widely-used technique to increase the convergence speed by using a subset of 

data at each sub-iteration. The subsets are constructed to be balanced, disjoint, and exhaustive. If 

the data is partitioned into L number of subsets, at sub-iteration 𝑙, a surrogate function for the data-

fitting term with only data indices in the corresponding subset is created and minimized with a 

proportional regularization term. Since the original data-fitting term for which we create surrogate 

functions changes at each iteration, there is no guaranteed convergence. Denoting all source-

detector pairs as 𝕐 and source-detector pairs in subset 𝑙 as 𝕐𝑙 for 𝑙 =  0,1, … , (𝐿 − 1), the 

regularized ordered subsets algorithm (OS-AM) is presented in Algorithm 6.2. 
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Algorithm 6.2 Regularized DE-AM algorithm with ordered subsets 

Input: ĉm
0 (𝑥) ∈ ℝ+

𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ×max
𝐸
∑ 𝜇𝑚(𝐸)𝑚 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 >

0, 𝕐𝑙 ∀ 𝑙 = 0,1, … (𝐿 − 1). 

for 𝑘 = 1,2,3,…. do 

      for 𝑙 = 0,1,2, … . (𝐿 − 1) do  

             𝑞̂𝑗
(𝑘,𝑙)(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp[−∑ 𝜇𝑚(𝐸)𝑚 ∑ ℎ(𝑦|𝑥)𝑐̂𝑚

(𝑘,𝑙)
(𝑥)𝑥 ] 

             𝑏̂𝑚
(𝑘,𝑙)

(𝑥) =∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 𝑞̂𝑗
(𝑘,𝑙)(𝑦, 𝐸) 

               𝑝̂𝑗
(𝑘,𝑙)(𝑦, 𝐸) = 𝑞̂𝑗

(𝑘,𝑙)(𝑦, 𝐸)
𝑑𝑗
𝑙(𝑦)

∑ 𝑞̂𝑗
(𝑘,𝑙)(𝑦, 𝐸′)𝐸′

 

            𝑏̃𝑗,𝑚
𝑘 (𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 𝑝̂𝑗

(𝑘,𝑙)(𝑦, 𝐸) 

            𝑐̂𝑚
𝑘+1(𝑥) = argmin

𝑐𝑚(𝑥)≥0
𝑏̃𝑚
𝑙 (𝑥)(𝑐𝑚

(𝑘,𝑙)
(𝑥) − 𝑐̂𝑚

(𝑘,𝑙)
(𝑥)) +

𝑏̂𝑚
(𝑘,𝑙)

 (𝑥)

𝑍
exp (−𝑍(𝑐𝑚

(𝑘,𝑙)
(𝑥) −

               𝑐̂𝑚
(𝑘,𝑙)

(𝑥))) +𝜆∑
𝜔
𝑥𝑥′

2
𝛿2 (|

2𝑐𝑚
(𝑘,𝑙)

(𝑥)−𝑐𝑚̂
(𝑘,𝑙)

(𝑥)−𝑐𝑚̂
(𝑘,𝑙)

(𝑥′)

𝛿
| − log (1 +𝑥′∈𝑁𝑥

                |
2𝑐𝑚

(𝑘,𝑙)
(𝑥)−𝑐𝑚̂

(𝑘,𝑙)
(𝑥)−𝑐𝑚̂

(𝑘,𝑙)
(𝑥′)

𝛿
|)) 

      end for 

      𝑐̂𝑚
(𝑘+1,0)(𝑥) = 𝑐̂𝑚

(𝑘,𝐿)(𝑥) 

end for 

 

6.2 Adaptive Auxiliary Variable for Dual Energy 
 

The AM algorithm in closed form solution yields additive updates for the linear attenuation 

coefficient values with step sizes or auxiliary variables that are chosen to guarantee convergence. 

This guaranteed convergence criterion results in step sizes that are unnecessarily conservative. For 
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the derivation of these so-called adaptive auxiliary variables, we start with data fit term surrogate 

function 

 

Î[𝑑||𝑔; 𝑐, 𝑐̂] = ∑∑∑ [𝑐𝑚(𝑥)𝑏̃𝑗,𝑚
(𝑘)(𝑥)

𝑀

𝑚=1𝑥

2

𝑗=1

+
𝑏̂𝑗,𝑚
(𝑘)(𝑥)

𝑍𝑚(𝑥)
exp(−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − 𝑐̂𝑚(𝑥)))] . 

(6.17) 

The derivative of this function with respect to 𝑐𝑚(𝑥) would be, 

 

𝜕Î[𝑑||𝑔; 𝑐, 𝑐̂]

𝜕𝑐𝑚(𝑥)
=∑𝑏̃𝑗,𝑚

(𝑘)(𝑥) − 𝑏̂𝑗,𝑚
(𝑘)(𝑥)exp(−𝑍𝑚(𝑥)(𝑐𝑚(𝑥) − 𝑐̂𝑚(𝑥)))

2

𝑗=1

= 0. 

(6.18) 

Now if we equate our previous estimate to be 𝑐̂𝑚(𝑥) = 0,  we can write 

 𝑏̂𝑗,𝑚
(𝑘)(𝑥)|

𝑐𝑚̂(𝑥)=0
=∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)

𝐸𝑦

. (6.19) 

Our current estimate 𝑐𝑚(𝑥) at 𝑘-th iteration is 𝑐̂𝑚
(𝑘)(𝑥) and estimate of 𝑍𝑚(𝑥) at 𝑘-th iteration is 

𝑍𝑚
(𝑘)(𝑥). As a result, we can write 

 
𝜕Î[𝑑||𝑔;𝑐,𝑐̂]

𝜕𝑐𝑚(𝑥)
|
𝑐𝑚(𝑥)=𝑐𝑚̂

(𝑘)
(𝑥),𝑐𝑚̂(𝑥)=0

= 0 ∀ 𝑥 and 𝑚 = 1. . . 𝑀, (6.20) 
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⟹∑𝑏̃𝑗,𝑚
(𝑘)(𝑥)

2

𝑗=1

−∑∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)

𝐸𝑦

exp (−𝑍𝑚(𝑥)𝑐̂𝑚
(𝑘)(𝑥))

2

𝑗=1

= 0, 

(6.21) 

 
⟹ 𝑍𝑚

(𝑘)(𝑥) =

log (
∑ ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)𝐸𝑦
2
𝑗=1

∑ 𝑏̃𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

𝑐̂𝑚
(𝑘)(𝑥)

  ∀ 𝑥 and  𝑚. 
(6.22) 

We can also rewrite the numerator as follows: 

 𝑏̃0𝑗,𝑚(𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)

𝐸𝑦

, (6.23) 

 
⟹ 𝑍𝑚

(𝑘)(𝑥) =

log (
∑ 𝑏̃0𝑗,𝑚(𝑥)
2
𝑗=1

∑ 𝑏̃𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

𝑐̂𝑚
(𝑘)(𝑥)

  ∀ 𝑥 and  𝑚 = 1. . . 𝑀. 
(6.24) 

If we put constraints then we can rewrite adaptive auxiliary variable as 

 𝑍𝑚
(𝑘)(𝑥) =

{
 
 

 
 log(

∑ 𝑏̃0𝑗,𝑚(𝑥)
2
𝑗=1

∑ 𝑏̃𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

𝑐̂𝑚
(𝑘)(𝑥)

𝑖𝑓 

log (
∑ 𝑏̃0𝑗,𝑚(𝑥)
2
𝑗=1

∑ 𝑏̃𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

𝑐̂𝑚
(𝑘)(𝑥)

< 𝑍,

Z 𝑒𝑙𝑠𝑒

 (6.25) 

where 

 𝑍 = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ∗ max
𝐸
∑𝜇𝑚(𝐸)

𝑚

. (6.26) 

The OS-DE-AM algorithm with adaptive step-size is presented in Algorithm 6.3. 
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Algorithm 6.3 Regularized OS-DE-AM algorithm with adaptive auxiliary variable 

Input: ĉm
(0,0)

(𝑥) ∈ ℝ+
𝑁 , Z = 2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑛 ×max

𝐸
∑ 𝜇𝑚(𝐸)𝑚 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝜆 ≥ 0, 𝛿 > 0,

𝕐𝑙 ∀ 𝑙 = 0,1, … (𝐿 − 1). 

Precompute 𝑝̂𝑗
0(𝑦, 𝐸) = 𝑞̂𝑗

0(𝑦, 𝐸)
𝑑𝑗(𝑦)

∑ 𝑞̂𝑗
0(𝑦,𝐸′)𝐸′

∀ 𝑗, 𝑦, 𝐸 

Precompute 𝑏̃𝑗,𝑚
(0)
(𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 𝑝̂𝑗

(0)(𝑦, 𝐸) ∀ 𝑗, 𝑥,𝑚 

Precompute 𝑏̃0𝑗,𝑚(𝑥) = ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐼0𝑗(𝑦, 𝐸)𝐸𝑦  ∀ 𝑗, 𝑥,𝑚  

Precompute 𝑍𝑚
(0)(𝑥) =

{
 

 log(
∑ 𝑏̃0𝑗,𝑚(𝑥)2
𝑗=1

∑ 𝑏̃
𝑗,𝑚
(0)

(𝑥)2
𝑗=1

)

𝑐𝑚̂
(𝐹𝐷𝐾)

(𝑥)
𝑖𝑓 

log(
∑ 𝑏̃0𝑗,𝑚(𝑥)2
𝑗=1

∑ 𝑏̃
𝑗,𝑚
(0)

(𝑥)2
𝑗=1

)

𝑐𝑚̂
(𝐹𝐷𝐾)

(𝑥)
< 𝑍   ∀ 𝑥 and 𝑚

Z 𝑒𝑙𝑠𝑒

    

for 𝑘 = 1,2,3,…. do 

      for 𝑙 = 0,1,2, … . (𝐿 − 1) do  

             𝑞̂𝑗
(𝑘,𝑙)

(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp[−∑ 𝜇𝑚(𝐸)𝑚 ∑ ℎ(𝑦|𝑥)𝑐̂𝑚
(𝑘,𝑙)

(𝑥)𝑥 ] 

             𝑏̂𝑚
(𝑘,𝑙)

(𝑥) =∑ ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 𝑞̂𝑗
(𝑘,𝑙)

(𝑦, 𝐸)2
𝑗=1  

               𝑝̂𝑗
(𝑘,𝑙)(𝑦, 𝐸) = 𝑞̂𝑗

(𝑘,𝑙)(𝑦, 𝐸)
𝑑𝑗
𝑙(𝑦)

∑ 𝑞̂𝑗
(𝑘,𝑙)(𝑦, 𝐸′)𝐸′

 

            𝑏̃𝑚
(𝑘,𝑙)

(𝑥) = ∑ ∑ ∑ 𝜇𝑚(𝐸)ℎ(𝑦|𝑥)𝐸𝑦 𝑝̂𝑗
(𝑘,𝑙)(𝑦, 𝐸)2

𝑗=1  

𝑐̂𝑚
𝑘+1(𝑥) = argmin

𝑐𝑚(𝑥)≥0
𝑏̃𝑚
(𝑘,𝑙)

(𝑥)(𝑐𝑚
(𝑘,𝑙)

(𝑥) − 𝑐̂𝑚
(𝑘,𝑙)

(𝑥)) +
𝑏̂𝑚
(𝑘,𝑙)

 (𝑥)

𝑍
exp (−𝑍(𝑐𝑚

(𝑘,𝑙)
(𝑥) −

𝑐̂𝑚
(𝑘,𝑙)

(𝑥))) + 𝜆∑
𝜔
𝑥𝑥′

2
𝛿2 (|

2𝑐𝑚
(𝑘,𝑙)

(𝑥)−𝑐𝑚̂
(𝑘,𝑙)

(𝑥)−𝑐𝑚̂
(𝑘,𝑙)

(𝑥′)

𝛿
| − log (1 +𝑥′∈𝑁𝑥

|
2𝑐𝑚

(𝑘,𝑙)
(𝑥)−𝑐𝑚̂

(𝑘,𝑙)
(𝑥)−𝑐𝑚̂

(𝑘,𝑙)
(𝑥′)

𝛿
|)) 

      end for 

      𝑐̂𝑚
(𝑘+1,0)(𝑥) = 𝑐̂𝑚

(𝑘,𝐿)(𝑥) 

       𝑏̃𝑗,𝑚
𝑘 (𝑥) =∑∑𝜇𝑚(𝐸)ℎ(𝑦|𝑥)

𝐸𝑦

𝑝̂𝑗
𝑘(𝑦, 𝐸) 

      𝑍𝑚
(𝑘+1)(𝑥) =

{
 

 log(
∑ 𝑏̃0𝑗,𝑚(𝑥)2
𝑗=1

∑ 𝑏̃
𝑗,𝑚
(𝑘)

(𝑥)2
𝑗=1

)

𝑐𝑚̂
(𝑘+1,0)

(𝑥)
𝑖𝑓 

log(
∑ 𝑏̃0𝑗,𝑚(𝑥)2
𝑗=1

∑ 𝑏̃
𝑗,𝑚
(𝑘)

(𝑥)2
𝑗=1

)

𝑐𝑚̂
(𝑘+1,0)

(𝑥)
< 𝑍   ∀ 𝑥 and 𝑚

Z 𝑒𝑙𝑠𝑒

    

end for 
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6.3 GPU Implementation 
 

In order to utilize this parallel architecture of GPU devices, we have presented a scheme to 

compute the energy integrating incident photon intensity in Algorithm 6.4. 

Algorithm 6.4 Multi-GPU based computation of incident photon intensity 

Input: ∑ ℎ(𝑦|𝑥)𝑐̂𝑚
(𝑘,𝑙)

(𝑥)𝑥 ∈ ℝ+
𝑀 , 𝑑𝑗(𝑦), 𝐼0𝑗(𝑦) ∈ ℝ+

𝑀, 𝕐𝑙 ∀ 𝑙 = 0,1, … (𝐿 − 1).   

Begin parallel region for every element in measurement array 

For every energy 𝐸 do 

𝑞̂𝑗
(𝑘,𝑙)

(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp [−∑𝜇𝑚(𝐸)

𝑚

∑ℎ(𝑦|𝑥)𝑐̂𝑚
(𝑘,𝑙)

(𝑥)

𝑥

] 

𝑝𝑠̂𝑗
(𝑘,𝑙)(𝑦, 𝐸) = 𝑞̂𝑗

(𝑘,𝑙)(𝑦, 𝐸)𝑑𝑗
𝑙(𝑦) 

𝑝𝑡̂𝑗
(𝑘,𝑙)(𝑦)+= 𝜇𝑚(𝐸)𝑝𝑠̂𝑗

(𝑘,𝑙)(𝑦, 𝐸) 

𝑞𝑡̂𝑗
(𝑘,𝑙)(𝑦)+= 𝜇𝑚(𝐸)𝑞̂𝑗

(𝑘,𝑙)
(𝑦, 𝐸) 

𝑞𝑠̂𝑗
(𝑘,𝑙)(𝑦)+= 𝑞̂𝑗

(𝑘,𝑙)
(𝑦, 𝐸) 

End for 

𝑝𝑡̂𝑗
(𝑘,𝑙)(𝑦) =  𝑝𝑡̂𝑗

(𝑘,𝑙)(𝑦)
1

𝑞𝑠̂𝑗
(𝑘,𝑙)(𝑦)

 

End Parallel Region 

𝑏̃𝑗,𝑚
(𝑘,𝑙)(𝑥) =∑ℎ(𝑦|𝑥)𝑝𝑡̂𝑗

(𝑘,𝑙)(𝑦)

𝑦

 

𝑏̂𝑗,𝑚
(𝑘,𝑙)(𝑥) =∑ℎ(𝑦|𝑥)𝑞𝑡̂𝑗

(𝑘,𝑙)(𝑦)

𝑦
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GPU devices accelerate computational performance when each thread in the device perform an 

independent operation on an independent element of an array. The absence of device and thread 

synchronization yield the fastest acceleration. In the pseudocode mentioned above, each of the N-

GPUs operates on 1 𝑁⁄ -times the measured data. Each thread of each GPU operates on independent 

elements of the measured data which eliminates the slowdown related to GPU thread 

synchronization. We can store the whole projection data on TITAN X GPU texture memory for 

fast read only memory access. We can use local memory to store the accumulation values of each 

energy and equate the value to projection element array stored in global memory. Since each GPU 

thread writes data on independent and unique elements in projection array, this mitigates the need 

of atomic operations which speeds up the computation. The most computationally intensive parts 

are still the projection and backprojection operations. However, we use the same parallelization 

techniques mentioned in Chapter 3 to accelerate our reconstruction. 

 

6.4 Experiments and Reconstructions 
 

We have used a water phantom with four insets depicted in Fig. 6.1 as a benchmark for determining 

the timing performance of our multi-threaded CPU and multi-GPU implementation. For the entire 

data volume using 13920 views, 672 × 16 detector elements, the total computational time of this 

energy-dependent accumulation for 120 individual energies are 0.12 seconds compared to 20 

seconds for baseline CPU implementation. The wall clock time to run one iteration of AM 

algorithm without ordered subset on a standalone CPU core without multi-threading was 433 

seconds for every projection and 435 seconds for every backprojection with a total time of 1782 



 

120 

 

 

seconds. On the other hand, if we compiled the code with OpenMP using 8 cores with 2 

hyperthreads per core, the total time for a single iteration reduced to 384 seconds. Using the Intel 

Thread Profiler, we have determined that in case of our multithreaded CPU implemention, 96.2% 

of the execution time was in parallel while the rest was spent in barrier method based 

synchronization over different threads. This profiler result confirms the efficacy of our load 

balancing scheme within each iteration. 

 

 
(a) (b) 

Fig. 6.1 The phantom linear attenuation coefficient image in 𝑚𝑚−1 at (a) 53 keV and at (b) 70 keV with four inserts 

(from the top, a clockwise direction) PMMA, ethanol, methyl ethyl ketone (MEK), and calcium chloride. 

 

Operations 

Execution Time (seconds) 
Single-

threaded 
CPU 

16-threaded 
CPU 

Single GPU Multi GPU 

Pre- accumulation (× 2) 8.1 × 2 1.7× 2 0.570 × 2 0.21× 2 
Projection (× 2) 433 × 2 92× 2 15× 2 4.7× 2 
Exponentiation 20 4 0.37 0.12 

Backprojection (× 2) 435× 2 95× 2 22× 2 7.6× 2 
Image Update (× 2) 4.8× 2 1.2× 2 0.17× 2 0.06× 2 

Total 1781.8 383.8 75.85 25.26 
Table 6.1 Execution times by using different CPU and GPU configurations for a single iteration of DE-AM 

algorithm 
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X-rays emitted from tubes are not monoenergetic, instead, the distribution of the photon energies 

obeys a spectrum [96, 97]. Figure 6.2 shows incident X-ray spectrum corresponding to 90 kVp 

and 140 kVp. The photons at lower energies are more likely to be absorbed as the linear attenuation 

coefficient of the material is higher for low photon energies. Therefore, as photons penetrate 

through an object, the mean photon energy coming out of the object is higher. This is referred as 

beam hardening phenomenon and it is the source of many image artifacts, such as cupping artifact 

and streaking artifact. 

 

All 3-D images presented in Fig. 6.1 are 512 × 512 × 164 in size with pixel size of 1mm ×

1mm × 1mm. All 3-D simulations use 𝐼0 = 100000 which corresponds to the number of 

unattenuated photons. The two component materials used are calcium chloride (𝑐1(𝑥)) and 

polystyrene (𝑐2(𝑥)). The attenuation coefficient spectra for the two components are shown in 

Figure 6.3. The initial images shown in Fig. 6.4 (a) and (b) are reconstructed with FDK algorithm 

and then converted to component coefficient images. The coefficients for the conversion from 

linear attenuation coefficient to component coefficeint are computed using water equivalent 

attenuation corresponding to tube voltages 90 kVp and 140 kVp. From equation (6.6), we can 

denote the forward projection of the data mean estimate as: 

 𝑞̃𝑗
(𝑘)(𝑦) =∑𝐼0𝑗(𝑦, 𝐸)exp [−∑ℎ(𝑦|𝑥)𝜇𝑤𝑎𝑡𝑒𝑟(𝐸, 𝑥)

𝑥

]

𝐸

, (6.26) 

where 𝜇𝑤𝑎𝑡𝑒𝑟(𝐸, 𝑥) is the energy dependent attenuation coeffiecient map in mm−1 for a phantom 

image made of water. Now we can perform backprojections of 𝑞̃𝑗
(𝑘)(𝑦) using FDK algorithm for 
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the 90 kVp and 140 kVp spectra. From the NIST X-Ray Mass Attenuation Coefficient table for 

water, we can estimate the two corresponding keV energy bins where the attenuation coefficient 

of water is approximately equal to our FDK reconstruction for the two energy spectra. For our 

specific spectra shown in Fig. 6.2, 55 keV and 70 keV are the two water equivalent energy bins 

for the 90 kVp and 140 kVp spectra respectively. For these two energy bins, we use the 

corresponding attenuation coefficients of calcium chloride and polystyrene and use BVM 

described in equation (6.2) to estimate the initial 𝑐1
𝐹𝐷𝐾(𝑥) and 𝑐2

𝐹𝐷𝐾(𝑥) images shown in Fig. 6.4 

(a) and (b). 

 

 Figure 6.4 (c) and (d) give the reconstructed component images obtained by using 400 iterations 

of 5 OS unregularized DE-AM  algorithm with noiseless data. Unregularized DE-AM algorithm 

produce images with a large bias for the estimations of high density material Calcium Chloride as 

shown in Fig. 6.4 (c) and (d). Higher standard deviations are observed for edge regions of 𝑐1(𝑥) 

and reconstructions for 𝑐2(𝑥) tend to have more uniform standard deviations over the whole 

region, except for calcium chloride and PMMA, which have relatively higher attenuation 

coefficients. In Fig. 6.5, we have plotted the RMSE value between ideal phantom image and 29 

OS-DE-AM reconstructed image for different energy bins. The RMSE value for Calcium chloride 

and PMMA are higher compared to all other materials due to their relatively higher attenuation 

coefficients. 
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Fig. 6.2 Incident spectra 

 

 
Fig. 6.3 Attenuation coefficient of the component materials 
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(a) (b) 

 
 

(c) (d) 

Fig. 6.4 Initial (a) 𝑐1(𝑥) and (b) 𝑐2(𝑥) component images reconstructed using FDK algorithm. (c) 𝑐1(𝑥) and (d) 

𝑐2(𝑥) component images reconstructed using 400 iterations of 5 OS DE-AM algorithm. 

 

 PMMA Ethanol MEK CaCl 

𝑐1(𝑥) Image 6.9686 × 10−4 4.2806 × 10−4 3.7981 × 10−4 2.8867 × 10−4 

𝑐2(𝑥) Image 5.6032 × 10−4 2.0106 × 10−4 1.7828 × 10−4 0.0041 

Table 6.2 Variance of different materials in different component images 
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Fig. 6.5 Plot of RMSE between truth image and reconstructed image using 100 iterations of 29 OS DE-AM 

algorithm vs different energy bins. 

 

 
Fig. 6.6 Total objective function values vs iteration number for 5 OS implementations of the DE-AM algorithm. 
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6.5 Conclusion 
 

In this chapter, DE-AM algorithms were used to reconstruct 3-D images from data simulated with 

the geometry of the Siemens Sensation 16 scanner. We have shown significant improvement in 

computational time compared to baseline CPU implementation. We have proposed a novel 

approach to adaptively compute the additive step in the DE-AM algorithm. We have observed that 

our approach of using adaptive auxiliary variable combined with OS creates no extra computation 

cost compared to the straightforward implementation of the OS-AM algorithm. From the Fig. 6.6, 

we can conclude that our proposed adaptive auxiliary variable technique shows an average of 2X 

increase in convergence rate for 5 OS configuration. 
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Chapter 7: Deep Convolutional Neural 

Network Based Denoising 
 

In order to reduce the potential radiation risk, low-dose CT has gained increased attention in 

medical imaging community. Currently, patients go through multiple X-ray CT scans during 

image-guided radiation therapy, which elevates the potential risk for tissue damage and radiation-

induced cancer [98, 99]. However, simply lowering the radiation dose will significantly degrade 

the image quality. Therefore, there is increasing demand for fast image reconstruction algorithms 

that can produce higher quality images in clinically relevant time. In this chapter, we explore the 

deep Convolutional neural network (CNN) as a noise reduction strategy for low-dose CT. A deep 

convolutional neural network is used to map low-dose CT images towards its corresponding 

normal-dose counterparts using recently proposed residual learning method [100]. Qualitative 

results demonstrate a great potential of the proposed method for artifact reduction and structure 

preservation. In terms of the quantitative metrics, the proposed method has shown a substantial 

improvement on PSNR, RMSE, and SSIM than the competing state-of-art methods like Block 

matching 3D (BM3D) [101] and Weighted nuclear norm minimization (WNNM) [102]. 

Furthermore, the speed of our method is significantly faster than the iterative and linear 

reconstruction methods discussed in previous chapters. 
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7.1 Theory 
 

7.1.1 Deep Neural Networks for X-ray Image Denoising  

 

Most clinical X-ray CT scanners currently being used employ some version of analytical 

reconstruction algorithms like FBP or FDK. However, in low-dose X-ray CT, the linear 

reconstruction algorithms introduce severe artifacts typically due to beam hardening, photon 

starvation, scatter and other causes which reduces the diagnostic reliability. Therefore, high quality 

diagnostically relevant low-dose X-ray CT reconstruction is a topic of major research effort. In 

previous chapters, we have observed that model-based image reconstruction problems perform 

reliably well but they are still computationally expensive even with the introduction of multiple 

GPUs in parallel. As a result, we have explored the possibility of leveraging the tremendous 

potential of artificial intelligence especially deep convolutional neural networks to perform X-ray 

CT image denoising. 

 

The concept of the first feedforward supervised deep multilayer perceptron was introduced by 

Alexey Ivakhnenko in 1965 [103]. Other researchers subsequently used deep learning in computer 

vision, speech recognition problems, however, their application and adoption were somewhat 

limited by the astronomically high computational cost. In 2009, NVIDIA was involved in what 

was called the “big bang” of deep learning, as deep-learning neural networks were trained with 

NVIDIA Graphics processing units (GPUs). GPUs speed up training algorithms by orders of 

magnitude, reducing running times from weeks to days. In May 2016, IEEE Transactions on 

Medical Imaging published a special issue on ‘‘Deep Learning in Medical Imaging’’ [104] 
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containing 18 special issue articles that outlined the tremendous potential of deep learning based 

algorithms in the medical imaging domain. Over the year several researchers have tried to harness 

the sophisticated pattern recognition power of deep networks and apply that to low-dose CT 

denoising field [105-109]. Deep Convolutional Neural Network (CNN) can easily learn high 

dimensional features through a hierarchical framework. The main advantage of this approach is 

the low computational burden along with seamless integration with the post-processing workflow 

from CT scanner reconstruction without ever accessing the sinogram itself. 

 

In this work, we treat the learning problem as a discriminative one i.e. separating the noise from 

the noisy image by feedforward CNN instead of learning over a generative adversarial model with 

the predefined image prior. We use deep architecture to extract high-level image patterns and 

characteristics [110], batch normalization [100, 111], and residual learning [111, 112] to speed up 

our learning rate. We have also parallelized our algorithm and implemented it on NVIDIA TITAN 

X GPUs to reduce computational time. The main advantage of our design is the use of residual 

learning to learn and extract the pattern of noise itself instead of learning complex organ structures 

typically present in X-ray CT images. 

 

7.1.2 Residual Learning and Batch Normalization  

 

The main motivation for the use of deep residual learning proposed by Kaiming et. al [112] stems 

from the increased difficulty in training deeper networks. They reformulated their learning 

problem as a residual function with reference to the layer inputs, instead of learning the 

unreferenced function. With growing evidence in favor of residual mapping being easier to learn 
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rather than original unreferenced mapping, residual networks can learn residual mapping in a few 

stacked layers thereby increasing training accuracy with increasing network depth. Leveraging this 

residual network strategy, we can form deep CNN which can easily learn complex noise patterns 

present in X-ray CT measurements arising from various factors like a cone-beam artifact, detector 

edge response, beam hardening and scatter. In our approach, we use a single residual unit to predict 

the residual image similar to the methods used by Kai Zhang et al. [111]. 

 

One of the major problems in training deep networks is the fact that the distribution of the internal 

hidden network’s input changes during training which slows down learning rate and requires 

careful initialization of parameters. The change in mean and standard deviation of the internal 

hidden layer non-linearity input for each mini-batch during training is known as internal 

covariance shift [100]. Batch Normalization (BN) is therefore used to reduce the internal 

covariance shift by introducing a normalization step and performing the performing the 

normalization for each mini batch of our training CNN model. Batch normalization has shown to 

increase learning rate, quantitative accuracy and reduce overall dependence to accurate 

initialization of parameters [100]. We have shown a schematic diagram of our batch normalization 

implementation in Fig. 7.1. The “Layer” in Fig 7.1 can be any hidden layer in our network. The 

output of this network is denoted by the vector 𝑥. The mean and standard deviation of this output 

over a mini-batch can be represented by 𝜇 and 𝜎 respectively. The distribution of 𝑥 could change 

over different mini-batch training which can introduce internal covariance shift. In order to solve 

this problem, we add two other additional terms 𝛾 and 𝛽, which act as the new standard deviation 
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and mean over different mini-batches. Therefore, batch normalization only adds two extra 

parameters per activation layer and they can be easily updated with back-propagation. 

 
Fig. 7.1 Schematic diagram for batch normalization 

 

We have proposed that addition of both batch normalization and residual learning can enhance the 

Deep CNN performance on learning complex X-ray CT noise pattern and at the same time result 

in the fast, robust and stable training regimen. In the subsequent chapters, we have discussed the 

details of our training network and the performance of our network on simulated low-dose X-ray 

CT noise. 

 

7.1.3 Proposed Network Model  

 

In this section, we discuss the rationale behind our proposed network architecture and training 

parameters. Following the improved results from using very small (3 × 3) convolutions filters for 

deep network architecture [113], we adopt this architecture instead of pooling layers. Therefore, 

the size of our receptive field is (2𝐷 + 1) × (2𝐷 + 1) for a network of depth 𝐷. Higher receptive 

depth field is advantageous in capturing high level X-ray CT image details and texture information. 

For our general image denoising task, we set a receptive field size of 41 × 41 with corresponding 

network depth of 20. 
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The input to our Deep CNN is a noisy low-dose X-ray CT reconstructed image denoted by 𝜇𝐿𝐷(𝑥), 

where 𝑥 denotes the voxel indices. We can represent our noisy observation as follows 

 𝜇𝐿𝐷(𝑥) = 𝜇𝐻𝐷(𝑥) + 𝛽(𝑥) (7.1) 

where 𝜇𝐻𝐷(𝑥) is the equivalent high dose (clean) image and 𝛽(𝑥) is the added measurement noise. 

The noise model is described in the following chapter but for our current analysis, we can assume 

it as an additive noise model. Our deep CNN residual learning is trained on the residual mapping 

𝛽(𝑥). We have used averaged mean squared error as our error estimate for training purposes 

 ℇ(Θ) =
1

2𝑁
∑‖ℛ(𝜇𝐿𝐷(𝑥); Θ) − (𝜇𝐿𝐷(𝑥) − 𝜇𝐻𝐷(𝑥))‖

2
𝑁

𝑥=1

 (7.2) 

where Θ denote all the training parameters, ℛ(∙) is the residual mapping function consisting of all 

network layer weights and bias terms, ℇ(∙) is the error function, and 𝑁 is the total number of 

voxels. 

 
Fig. 7.2 The architecture of our proposed deep CNN 

 

For a given depth D, we have three different layers shown in different colors in Fig. 7.2. The first 

layer is called Conv+ReLU which stands for a combination of convolutional (Conv) and Rectified 

Linear Unit (ReLU) layers. Each of these layers consists of a standard ReLU (max(0, . )) function 

and 64 filters of size 3 × 3 used to generate 64 feature maps. Conv+BN+ReLU are the next 
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(𝐷 − 2) layers consisting of 64 filters of size 3 × 3 used to generate 64 feature maps, batch 

normalization, and ReLU. The last Conv layer consists of a filter of size 3 × 3 to reconstruct the 

residual image output. 

 

For our optimization problem, we use a mini batch Stochastic gradient descent (SGD) method 

known as ADAM [114]. The main advantage of using Adam’s SGD algorithm is that the 

hyperparameters have intuitive interpretations and they require minimal tuning. Adam 

optimization with batch normalization and residual learning paradigm have shown to produce 

faster convergence and better denoising performance for Gaussian noise compared to other state-

of-the-art denoising networks [111]. 

 

7.2 Experiments 
 

7.2.1 CT Noise Model  

 

The noise model for this study was developed by Dr. Bruce R. Whiting with the support of the 

NIH grant “Measuring the Impact of Noise on CT Readers”, 5-R01-EB019135-03. The overall 

noise consists stochastic acquisition noise [38] (both quantum and electronic) since these kinds of 

noise are directly related to radiation exposure. The basic acquisition noise model in sinogram 

domain can be treated as a random point process due to little temporal and spatial correlation 

between measurements [115, 116]. However, in X-ray CT image domain, the noise model is non-

local and correlated over many pixels, which makes the standard denoising algorithms like BM3D 

and WNNM quite ineffective [117]. 
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Fig. 7.3 Noise simulation flowchart 

 

The amount of synthetic noise 𝛽 added to the high dose image is computed by equating the Noise 

equivalent quanta (NEQ) of the target low-dose scan image (reduced by a predetermined factor 𝜌) 

depicted by the LHS of equation (7.3) to the NEQ of the high dose depicted by the RHS of equation 

(7.3) with some added noise 𝛽. 

 
𝑞2

𝑞 + 𝛽(𝑔, 𝑑, 𝜌) + 𝛽𝑠
=

(𝑞𝜌)2

𝑞𝜌 + 𝛽𝑠
, (7.3) 

where 𝑞 is the flux, 𝛽𝑠 is the system noise, 𝑔 is the gantry index, and 𝑑 is detector index. The 

magnitude of 𝛽(𝑔, 𝑑, 𝜌) can be reformulated as done previously [118], 

 𝛽(𝑔, 𝑑, 𝜌) = 𝑝(𝑑) × 𝑄0 × 𝑇(𝑔, 𝑑) × (
1

𝜌
− 1) + 𝛽𝑠 × (

1

𝜌2
− 1) (7.4) 
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where 𝑝 is the bowtie profile, 𝑄0 is flux, and 𝑇 represents tube current modulation. In the data flow 

described in Fig. 7.3, synthetic noise is injected to create a simulated image. In order to create an 

ensemble, the random noise generation step is repeated for every image slice. 

  

7.2.2 Training and Testing Data 

 

The data used in this study were collected as a part of the NIH grant “Measuring the Impact of 

Noise on CT Readers”, 5-R01-EB019135-03, Bruce R. Whiting P.I. We have collected X-ray CT 

images consisting of 60 appendicitis cases and 60 non-appendicitis cases from Siemens Somatom 

Definition AS scanner. Scan parameters: tube current = 180 mAs; pitch = 0.75; collimation =

19 × 0.6 mm. Each of these 3D X-ray image volumes on average consists of 400 slices. However, 

we have only used 20 non-appendicitis cases and 20 appendicitis cases with a total of ~16000 

image slices. The noise level introduced in the image was varied using the parameter 𝜌 using the 

equation (7.4). The choice of the parameter 𝜌 was selected from the noise observer study with a 

small random fluctuation. We use a patch size of 40 × 40 and crop 128 × 1600 patches to train 

the model. 

 

For testing our deep CNN denoising performance, we use 3 new appendicitis cases out of the 

remaining 20 appendicitis cases. We initialize the weights by the method in [119] and use Adam’s 

SGD with weight decay of 0.0001, a momentum of 0.9 and a mini-batch size of 128. We train 50 

epochs for our deep CNN models. The learning rate was decayed exponentially from 1𝑒−1 to 1𝑒−4 

for the 50 epochs. We use the MatConvNet package [120] to train the proposed deep CNN models. 
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All the experiments were carried out using the MATLAB (R2017b) environment running on a PC 

with 8-core Intel 𝑖7 − 5960𝑋 (3.0 GHz, 1333 MHz front-side bus), 64 GB RAM (1.2 GHz) and 

a NVIDIA TITAN X GPU. It takes about one and a half day to run our algorithm for 50 epochs 

on the specified dataset. 

 

7.2.3 Compared Methods 

 

We compared the proposed deep CNN method with two state-of-the-art, non-local similarity-based 

denoising methods: BM3D [101] and WNNM [102]. In BM3D, the image denoising is based on 

nonlocal image modeling, principal component analysis, and local shape-adaptive anisotropic 

estimation. The nonlocal image modeling was exploited by grouping similar image patches in 3-

D groups. WNNM algorithm on the other hand, iteratively found an analytical fixed-point solution 

of the data fidelity term constructed over the noisy image and approximate low-noise solution. 

Experimental results clearly showed that the proposed WNNM algorithm outperformed BM3D in 

terms of both quantitative measure and visual perception quality. The implementation codes were 

downloaded from the authors’ websites and the default parameter settings were used in our 

experiments. 

 

  



 

137 

 

 

7.3 Results 
 

In order to compare the performance of our Deep CNN based denoising technique with other 

existing methods, we use Peak signal-to-noise ratio (PSNR), Structural similarity (SSIM), and 

Root mean square error (RMSE) as image quality metrics. Given a high dose (clean) image 𝐾 of 

size 𝑀 ×𝑁, and it’s denoised estimate 𝐼, the RMSE is defined as 

 𝑅𝑀𝑆𝐸 = √
1

𝑀𝑁
∑∑(𝐾(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))2

𝑁

𝑗=1

𝑀

𝑖=1

. (7.5) 

If we define the maximum intensity of the denoised image as 𝑀𝐴𝑋𝐼, then PSNR can (in dB) is 

defined as: 

 𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋𝐼

2

1
𝑀𝑁

∑ ∑ (𝐾(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))2𝑁
𝑗=1

𝑀
𝑖=1

). (7.6) 

 𝑃𝑆𝑁𝑅 = 20 ∙ log10(𝑀𝐴𝑋𝐼) − 10 ∙ log10 (
1

𝑀𝑁
∑∑(𝐾(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))2

𝑁

𝑗=1

𝑀

𝑖=1

). (7.7) 

The difference between SSIM and other techniques mentioned previously such as RMSE or PSNR 

is that these approaches estimate absolute errors; while, SSIM is a perception-based method that 

incorporates perceptual phenomena such as luminance masking, and contrast masking terms. 

SSIM considers image degradation as a perceived change in structural information. Structural 

information is based on the concept that when pixels are spatially close to each other, they have 

strong interdependencies. These dependencies carry important information about the structure of 
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the objects in the visual scene. Luminance masking is a phenomenon whereby image distortions 

tend to be less visible in bright regions, while contrast masking is a phenomenon whereby 

distortions become less visible where there is a significant activity or "texture" in the image. The 

SSIM index is calculated on various windows of an image. The measure between two windows 𝑥 

and 𝑦 of common size N × N is: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝑐1)(𝜎𝑥2 + 𝜎𝑦2 + 𝑐2)
, (7.8) 

where 𝜇𝑥 and 𝜇𝑦 are the means of all the pixels in the window 𝑥 and 𝑦 respectively, 𝜎𝑥
2  and 𝜎𝑦

2 

are the variance in the windows 𝑥 and 𝑦 respectively, and 𝜎𝑥𝑦 is the covariance between 𝑥 and 𝑦. 

𝑐1 = (𝑘1𝐿)
2 and 𝑐2 = (𝑘2𝐿)

2 are used to stabilize the division with weak (small) denominator.  𝐿 

is the dynamic range of the pixel-values (typically this is 2#bits per pixel − 1). The default values 

of  𝑘1and 𝑘1 are 0.01 and 0.03 respectively.  
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(a) (b) 

 
(c) (d) 

 
(f) 

Fig. 7.4 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner. Voxel size 

=0.576 × 0.576 × 1.0 mm.  Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6 mm collimation. The abdominal 

display window is −160 HU to 240 HU. (b) Low-dose noisy image. (c) Denoised image BM3D algorithm. (d) 

Denoised image with WNNM algorithm. (e) Denoised image with our proposed Deep CNN based method. 
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(a) (b) 

 
(c) (d) 

 
(e) 

Fig. 7.5 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner. Voxel size 

=0.576 × 0.576 × 1.0 mm.  Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6 mm collimation. The abdominal 

display window is −160 HU to 240 HU. (b) Low-dose noisy image. (c) Denoised image BM3D algorithm. (d) 

Denoised image with WNNM algorithm. (e) Denoised image with our proposed Deep CNN based method. 
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(a) (b) 

 
(c) (d) 

 
(e) 

Fig. 7.6 (a) Clinical abdominal image collected from Siemens Somatom Definition AS scanner. Voxel size 

=0.576 × 0.576 × 1.0 mm.  Scan parameters: 180 mAs, pitch 0.75, 19 × 0.6 mm collimation. The abdominal 

display window is −160 HU to 240 HU. (b) Low-dose noisy image. (c) Denoised image BM3D algorithm. (d) 

Denoised image with WNNM algorithm. (e) Denoised image with our proposed Deep CNN based method. 
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Figure No. 7.4 PSNR (dB) SSIM RMSE 

BM3D 25.2158 0.9121 13.9878 

WNNM 25.6885 0.909 13.2470 

Deep CNN 27.1579 0.9225 11.1853 
 

Figure No. 7.5 PSNR (dB) SSIM RMSE 

BM3D 25.6644 0.9452 13.2837 

WNNM 25.9677 0.9398 12.8279 

Deep CNN 27.5299 0.9514 10.7163 
 

Figure No. 7.6 PSNR (dB) SSIM RMSE 

BM3D 26.3476 0.9562 12.2789 

WNNM 26.39 0.9529 12.2131 

Deep CNN 27.9087 0.9614 10.2591 
Table 7.1 The PSNR(dB), SSIM, and RMSE values for the 3 image slices shown in the figures previously. 

 

 
Fig. 7.7 Intensity profile along the lines in Fig. 7.4 
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Fig. 7.8 Intensity profile along the lines in Fig. 7.5 

 

 
Fig. 7.9 Intensity profile along the lines in Fig. 7.6 
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7.4 Conclusion 
 

Extensive experimental results have demonstrated that the proposed method produces superior 

image denoising performance in terms of RMSE, PSNR and SSIM metrics compared to traditional 

methods like BM3D and WNNM. Our deep CNN learns to distinguish the structural information 

of the object from various noise intensity. However, it should be noted that some texture 

information may be lost as demonstrated in Fig. 7.4 (e). Further validation maybe required through 

reader study to conclude the clinical applicability of our Deep CNN based denoising algorithm. 

 

Traditional methods like BM3D and WNNM lose image resolution when the noise in the image is 

strong as shown in Fig. 7.4 and Fig. 7.6. BM3D and WNNM methods work best for Fig. 7.6. One 

possible explanation for this observation is that most of the abdominal image consists of soft tissue 

and both BM3D and WNNM work best for a uniform tissue region. From Fig. 7.6, we can 

demonstrate that our deep CNN is able to describe the details of the vessels in the liver. In Fig. 

7.7, 7.8, and 7.9 our proposed network suitably reduces noise and describes the peak points. On 

average, over the 3 independent test cases consisting of 1328 image slices in total, our proposed 

denoising method outperforms BM3D method by almost 2.2dB and WNNM method by 1.7dB. 

The SSIM and RMSE metric also shows better performance with our denoising method. 

 

In addition to visual quality, another important aspect of an image restoration method is the testing 

speed. We use the NVIDIA cuDNN-v5 deep learning library to accelerate the GPU computation 

of the proposed Deep CNN. We have ignored data transfer between CPU and GPU from our model 
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execution time. With a single TITAN X GPU, we can run our Deep CNN based denoising 

algorithm on an 512 × 512 image with an average time of 53ms whereas BM3D takes on average 

2.85s and WNNM takes on average 773s on a CPU. With GPU acceleration, BM3D may run 

slightly faster than our Deep CNN implementation, however, the image quality enhancement is 

significantly better with our method.  
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Chapter 8: Conclusions and Future Work 
 

In this work, we have developed multislice fully 3D spiral/helical X-ray CT reconstruction 

algorithm for both analytical and statistical methods. For statistical reconstruction, we have 

compared our estimated projection data against the measured data to compute the next image 

iterate estimate. If we could formulate an accurate system model, the reconstructed images would 

have little bias. However, we have tried to match the system matrix for projection and 

backprojection algorithms to ensure that they are the exact transpose of each other. We have 

validated this claim by running our alternating minimization algorithm without any ordered subset 

for 5000 iterations on the clinically-sized dataset. After 5000 iterations, we have seen a steady 

pattern of increase in the objective function. However, this pattern changes when we switch our 

computation to double precision. Hence, we can conclude that use of single-precision floating-

point arithmetic in the image-estimate step creates rounding errors which make the objective 

function diverge. 

 

The raw CT data derived from the scanner has been preprocessed to mitigate the effects of detector 

sensitivity variation, beam hardening, and X-ray tube current modulation. The main focus of our 

work has mostly been devoted to accurate reconstruction models rather than the preprocessing 

steps. We have split the measured data and image volume into different CPU cores and GPU 

devices in such a way that the overhead due to memory and device synchronization, and data 

transfer is minimized. We have also ensured every CPU core and GPU device performs the exact 

amount of computations so that the ordered subsets (OS) can be executed in a computationally 
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efficient way. We have also proposed novel surrogate function, which decreases our original 

objective function faster than Jensen-type surrogate functions used in previous literature. We have 

shown that ordered subsets along with adaptive surrogate functions can significantly decrease the 

convergence rate. We have met the convergence criteria in 60 − 80 iterations using the adaptive 

surrogate function and a large number (29) of ordered subsets. Although the total computation 

time for the converged image using our methods on a clinically-sized dataset is 900 − 1000 times 

higher than analytical methods like FDK, it is still promising since as the total computation time 

is < 30 minutes. 

 

Regarding the regularization that was added to the AM algorithm, choosing suitable regularization 

parameters is notoriously difficult (especially in 3D). One could possibly test a range of parameters 

by performing several “trial” reconstructions on a down sampled dataset, or on just a few slices, 

and then attempt to scale the parameters accordingly for the full-scale problem. Other more 

systematic methods exist but are also more computationally demanding. 

 

We have also observed a slow convergence of high frequencies using our alternating minimization 

algorithm. We can see a striped pattern in coronal and sagittal view of our helical CT 

reconstruction. We have also observed that these stripes are inclined towards helical trajectory. As 

iteration progresses, these striped patterns gradually disappear. In a helical CT scan, different 

voxels are seen a different number of times, and as a result, they are illuminated differently which 

can be the reason for these helical scan artifacts. The analytical FDK algorithm takes care of these 

artifacts by employing different weights for different view angle and voxel as discussed in Chapter 
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4. However, the absence of these weighting functions in AM algorithm can cause these artifacts. 

Since in AM algorithm, the voxel update step is the ratio of two backprojection images, these 

artifacts don’t cancel out since they are dependent on view angles. Weighting function similar to 

ones employed in FDK algorithm can be added to branchless distance-driven projection and 

backprojection algorithms to get rid of these artifacts in early iterations. 

 

The adaptive auxiliary variable derived for single-energy and dual-energy reconstruction problems 

has some drawbacks too. The condition of guaranteed convergence is absent for these types of 

surrogate functions. As a result, they should be carefully applied only to initial iterations. The 

update step in adaptive step size derivation doesn’t consider the term with penalty function. We 

have avoided this step due to a slightly higher computational burden. However, for accurate results 

in case of noisy measurement, we can modify the computation step for the adaptive update 

function, for mono-energy as 

 𝑍(𝑘)(𝑥) = {

log(
𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂𝐴
(𝑘)(𝑥)

𝑖𝑓
log(

𝑏̃0(𝑥)

𝑏̃(𝑥)
)

𝜇̂𝐴
(𝑘)(𝑥)

< 2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 ,
𝑏̃0(𝑥)

𝑏̃(𝑥)
> 1 ,  𝜇̂(𝑘)(𝑥) > 0 

2 ∗ 𝑅𝑟𝑒𝑐𝑜𝑛 𝑒𝑙𝑠𝑒

    (8.1) 

where, 

 𝜇̂𝐴
(𝑘)(𝑥) = 𝜇̂(𝑘)(𝑥) + 𝜆∑

𝜔
𝑥𝑥′

2
𝛿2 (|

2𝜇̂(𝑘)(𝑥)

𝛿
| − log (1 + |

2𝜇̂(𝑘)(𝑥)

𝛿
|))𝑥′∈𝑁𝑥 .    (8.2) 

For dual energy, we can modify our adaptive surrogate function based update step as: 
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 𝑍𝑚
(𝑘)(𝑥) =

{
 
 

 
 log (

∑ 𝑏̃0𝑗,𝑚(𝑥)
2
𝑗=1

∑ 𝑏̃𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

𝑐̂𝑚𝐴
(𝑘)(𝑥)

𝑖𝑓 

log (
∑ 𝑏̃0𝑗,𝑚(𝑥)
2
𝑗=1

∑ 𝑏̃𝑗,𝑚
(𝑘)(𝑥)2

𝑗=1

)

𝑐̂𝑚𝐴
(𝑘)(𝑥)

≤ 𝑍

Z 𝑒𝑙𝑠𝑒

 (8.3) 

 𝑐̂𝑚𝐴
(𝑘)(𝑥) = 𝑐̂𝑚

(𝑘)(𝑥) + 𝜆 ∑
𝜔𝑥𝑥′

2
𝛿2 (|

2𝑐̂𝑚
(𝑘)(𝑥)

𝛿
| − log (1 + |

2𝑐̂𝑚
(𝑘)(𝑥)

𝛿
|))

𝑥′∈𝑁𝑥

. (8.4) 

 

For the deep CNN based denoising algorithm, we assume the images are 2D even though they are 

reconstructed from a spiral scan. As we have discussed before, the spiral scanning introduces its 

own artifacts. However, we haven’t incorporated that into the noise model for our analysis. To the 

best of my knowledge, 3-D multislice X-ray CT images haven’t been denoised with neural 

networks by other research groups. Further work is needed to model 3-D nature of the noise 

statistics and incorporate that into our residual denoising method. 

 

In conclusion, the work in this dissertation has described a solid computational foundation for 

multi-GPU based X-ray CT reconstruction problems upon which many improved techniques can 

be tested in a short amount of time. It is anticipated that the multi-GPU based reconstruction and 

denoising methods described in this thesis will be used in future projects. 
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Appendix A: Derivation of the Penalized AM 

Algorithm 
 

Using the convex decomposition lemma, for any convex function 𝑓(∙),  we can write 

 𝑓[𝛼𝑡1 + (1 − 𝛼)𝑡1] ≤ 𝛼𝑓(𝑡1) + (1 − 𝛼)𝑓(𝑡1),where 0 ≤ 𝛼 ≤ 1 (A.1) 

Using this property, 

 

𝜓(𝜇(𝑥) − 𝜇(𝑥′))

= 𝜓 {𝛼 [
1

𝛼
(𝜇(𝑥) − 𝜇̂(𝑥)) + (𝜇̂(𝑥) − 𝜇̂(𝑥′))]

+ (1 − 𝛼) [
−1

(1 − 𝛼)
(𝜇(𝑥′) − 𝜇̂(𝑥′)) + (𝜇̂(𝑥) − 𝜇̂(𝑥′))]}  

(A.2) 

 

                           ≤ 𝛼𝜓 [
1

𝛼
(𝜇(𝑥) − 𝜇̂(𝑥)) + (𝜇̂(𝑥) − 𝜇̂(𝑥′))]

+ (1 − 𝛼)𝜓 [
−1

(1 − 𝛼)
(𝜇(𝑥′) − 𝜇̂(𝑥′)) + (𝜇̂(𝑥) − 𝜇̂(𝑥′))]. 

(A.3) 

To simplify equation (A.3), let 𝛼 ≜ 1 2⁄  to obtain 

 

𝜓(𝜇(𝑥) − 𝜇(𝑥′))

≤
1

2
𝜓[2(𝜇(𝑥) − 𝜇̂(𝑥)) + (𝜇̂(𝑥) − 𝜇̂(𝑥′))]  

+
1

2
𝜓[−2(𝜇(𝑥′) − 𝜇̂(𝑥′)) + (𝜇̂(𝑥) − 𝜇̂(𝑥′))] 

(A.4) 

 

                                        =
1

2
𝜓[2𝜇(𝑥) − 𝜇̂(𝑥) − 𝜇̂(𝑥′)]  +

1

2
𝜓[2𝜇(𝑥′) − 𝜇̂(𝑥) −

𝜇̂(𝑥′)]. 

(A.5) 
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We have exploited the evenness of the potential 𝜓(∙) to derive equation (A.5) from equation (A.4). 

We plug this surrogate for 𝜓(𝜇(𝑥) − 𝜇(𝑥′)) into (3.27), and define the modified penalty function 

𝑅̂(𝜇) by ignoring the part independent of 𝜇(𝑥) as follows 

 

𝑅̂(𝜇) =∑ ∑
𝜔(𝑥, 𝑥′)

2
𝛿2 (|

2𝜇(𝑥) − 𝜇̂(𝑥) − 𝜇̂(𝑥′)

𝛿
|

𝑥′∈𝑁(𝑥)𝑥

− log (1 + |
2𝜇(𝑥) − 𝜇̂(𝑥) − 𝜇̂(𝑥′)

𝛿
|)) 

(A.6) 

So, we want to solve the penalized-likelihood function as follows 

 
𝜕Î[𝑑||𝑔; 𝜇, 𝜇̂]

𝜕𝜇(𝑥)
 + 𝜆

𝜕𝑅̂(𝜇)

𝜕𝜇(𝑥)
= 0 ∀ 𝑥. (A.7) 

The derivative of the surrogate of I-divergence is determined to be 

 
𝜕Î[𝑑||𝑔; 𝜇, 𝜇̂]

𝜕𝜇(𝑥)
= 𝑏̃(𝑥)  − 𝑏̂(𝑥)exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥))) ∀ 𝑥. (A.8) 

The derivative of the penalty term is 

 
𝜕𝑅̂(𝜇)

𝜕𝜇(𝑥)
=∑𝜔(𝑥, 𝑥′)

𝜕𝜓(𝑡)

𝜕𝑡
𝑥′

|

𝑡=2𝜇(𝑥)−𝜇̂(𝑥)−𝜇̂(𝑥′)

 (A.9) 

Replacing the values of the derivatives from equation (A.8) and (A.9) into (A.7) we can write, 

 

𝑏̃(𝑥) − 𝑏̂(𝑥)exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥)))

+∑𝜔(𝑥, 𝑥′)𝛿 (1 +
1

1 +
𝑡
𝛿

)

𝑥′

|

𝑡=2𝜇(𝑥)−𝜇̂(𝑥)−𝜇̂(𝑥′)

= 0 

(A.10) 
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Since there is no closed form solution of equation (A.10) so we use Newton's method to solve for 

𝜇(𝑥). Using newton’s method, we can write 

 

𝜇̂(𝑘+1)(𝑥)

= 𝜇̂(𝑘)(𝑥) − 𝛾 [
𝜕2 (𝐼[𝑑||𝑔; 𝜇, 𝜇̂] + 𝜆𝑅̂(𝜇))

𝜕𝜇2(𝑥)
]

−1

𝜕 (𝐼[𝑑||𝑔; 𝜇, 𝜇̂] + 𝜆𝑅̂(𝜇))

𝜕𝜇(𝑥)
 

(A.11) 

where, 

 

𝜕 (Î[𝑑||𝑔; 𝜇, 𝜇̂] + 𝜆𝑅̂(𝜇))

𝜕𝜇(𝑥)

= 𝑏̃(𝑥)  − 𝑏̂(𝑥)exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥)))

+∑𝜔(𝑥, 𝑥′)𝛿 (1 +
1

1 +
𝑡
𝛿

)

𝑥′

|

𝑡=2𝜇(𝑥)−𝜇̂(𝑥)−𝜇̂(𝑥′)

 

(A.12) 

 

𝜕2 (Î[𝑑||𝑔; 𝜇, 𝜇̂] + 𝜆𝑅̂(𝜇))

𝜕𝜇2(𝑥)

= −𝑍𝑏̂(𝑥)exp(−𝑍(𝜇(𝑥) − 𝜇̂(𝑥)))

− ∑𝜔(𝑥, 𝑥′)
1

(1 +
𝑡
𝛿
)
2

𝑥′

|

𝑡=2𝜇(𝑥)−𝜇̂(𝑥)−𝜇̂(𝑥′)

. 

(A.13) 

The 𝛾 term represents step size. 
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Appendix B: Derivation of Decoupled Dual-

energy Surrogate Function 
 

For the derivation of the decoupled dual-energy surrogate function, we start with our original goal 

of minimizing I-divergence over 𝑐𝑚,𝑗 ≥ 0, 

 I[𝑑||𝑔] ≜∑∑(𝑑𝑗(𝑦) log
𝑑𝑗(𝑦)

𝑔𝑗(𝑦: 𝑐)
+ 𝑔𝑗(𝑦: 𝑐) − 𝑑𝑗(𝑦))

𝑦

2

𝑗=1

, (B.1) 

where 

 𝑔𝑗(𝜇, 𝑐) ≜∑𝑞𝑗(𝑦: 𝐸)

𝐸

 (B.2) 

 

𝜀𝑗 = {𝑞𝑗: 𝑞𝑗(𝑦, 𝐸) = 𝐼0𝑗(𝑦, 𝐸)exp(−∑∑ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑚𝑥

) , 𝐸

≠ 0, 𝑞𝑗(𝑦, 0) = 𝛽𝑗(𝑦)}. 

(B.3) 

The exponential family 𝜀𝑗 defines the model used for the data. 

 

The main difficulty in solving the original objective function denoted by equation (B.1) is the 

summation over all the energies inside the “log” denominator. In order to decouple our 

computation of the summation over energy part, we would need to move the denominator part out 

of logarithm. 



 

154 

 

 

Lemma B.0.1 The I-divergence (B.1) can be written in the variational form 

 I[𝑑||𝑔] = min
𝑝𝑗∈ℒ(𝑑𝑗)

∑I[𝑝𝑗||𝑞𝑗],

2

𝑗=1

 (B.4) 

where 

 I[𝑝𝑗||𝑞𝑗] =∑∑(𝑝𝑗(𝑦, 𝐸) log
𝑝𝑗(𝑦, 𝐸)

𝑞𝑗(𝑦, 𝐸)
+ 𝑞𝑗(𝑦, 𝐸) − 𝑝𝑗(𝑦, 𝐸))

𝑦𝐸

, (B.5) 

 ℒ(𝑑𝑗) = {𝑝𝑗(𝑦, 𝐸) ≥ 0:∑𝑝𝑗(𝑦, 𝐸)

𝐸

= 𝑑𝑗(𝑦)}. (B.6) 

In order to prove this lemma, we start with Lagrange multipliers to enforce equality in equation 

(B.6). 

 

𝐿𝑗 =∑∑(𝑝𝑗(𝑦, 𝐸) log
𝑝𝑗(𝑦, 𝐸)

𝑞𝑗(𝑦, 𝐸)
+ 𝑞𝑗(𝑦, 𝐸) − 𝑝𝑗(𝑦, 𝐸))

𝑦𝐸

+ 𝜆𝑗(𝑦)(∑𝑝𝑗(𝑦, 𝐸)

𝐸

− 𝑑𝑗(𝑦)). 

(B.7) 

Minimizing over 𝑝𝑗(𝑦, 𝐸) and solving for 𝜆𝑗(𝑦) to enforce the equality in Equation (B.6) yields 

𝑝𝑗(𝑦, 𝐸) = 0 if 𝑞𝑗(𝑦, 𝐸) = 0 (defining I[0||0] = 0) and if 𝑞𝑗(𝑦, 𝐸) ≠ 0 

 𝑝𝑗(𝑦, 𝐸) = 𝑑𝑗(𝑦)
𝑞𝑗(𝑦, 𝐸)

∑ 𝑞𝑗(𝑦, 𝐸′)𝐸′
. (B.8) 

Substituting this expression of 𝑝𝑗(𝑦, 𝐸) back into the I-divergence in equation (B.5) produces the 

lemma B.0.1. 
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Therefore, we can express the original maximum-likelihood estimation problem in (B.1) as a 

double minimization problem over the exponential and linear family with the inequality constraint 

𝑐𝑚(𝑥) ≥ 0 for all (𝑚, 𝑥). However, there is still difficulty inside the exponential term in equation 

(B.3) since the optimization space is really large. So, to tackle this issue, we employ the following 

convex decomposition lemma. 

 

Lemma B.0.2 Suppose that f is a convex function defined on a convex cone 𝒟 ⊂ ℝ𝑛. Given 𝑥𝑖 ∈

𝒟, 𝑖 = 1,2, …, 

 𝑓 (∑𝑥𝑖
𝑖

) ≤∑𝑟𝑖𝑓 (
1

𝑟𝑖
𝑥𝑖)

𝑖

 (B.9) 

for all 𝑟 ∈ 𝛲, with 𝑟𝑖 > 0 for all 𝑖. If 𝑓 is strictly convex, equality holds if and only if (1 𝑟𝑖⁄ )𝑥𝑖 = 𝑥 

is independent of 𝑖. 

By applying Lemma B.0.2 to our objective function in (B.5), we have 
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∑∑∑∑∑𝑝̂𝑗(𝑦, 𝐸

𝑚

)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑥𝐸𝑦

2

𝑗=1

+∑∑∑𝐼0𝑗(𝑦, 𝐸)exp(−∑∑ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑥𝑚

)

𝑦𝐸

2

𝑗=1

=∑∑∑∑∑𝑝̂𝑗(𝑦, 𝐸

𝑚

)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑥𝐸𝑦

2

𝑗=1

+∑∑∑𝑞̂𝑗(𝑦, 𝐸)exp(−∑∑ℎ(𝑦|𝑥)𝜇𝑚(𝐸)(𝑐̂𝑚(𝑥)

𝑥𝑚𝑦𝐸

2

𝑗=1

− 𝑐𝑚(𝑥))), 

(B.10) 

 

                           ≤ ∑∑∑∑∑{𝑝̂𝑗(𝑦, 𝐸)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑚𝑥𝐸𝑦

2

𝑗=1

+ 𝑟(𝑥,𝑚|𝑦, 𝐸)𝑞̂𝑗(𝑦, 𝐸)exp [
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑟(𝑥,𝑚|𝑦, 𝐸)
(𝑐̂𝑚(𝑥) − 𝑐𝑚(𝑥))]}, 

(B.11) 

for all 𝑟(𝑥,𝑚|𝑦, 𝐸) > 0 such that 

 ∑∑ 𝑟(𝑥,𝑚|𝑦, 𝐸)

𝑀

𝑚=1𝑥

≤ 1∀(𝑦, 𝐸). (B.12) 

Note the inequality in (B.11); this minor extension of the convex decomposition lemma is valid 

due to the possibility of adding a dummy 𝑥 variable (again denoted 0) such that 𝑐̂𝑚(0) − 𝑐𝑚(0) =

0 for each 𝑚. Equality is achieved in (B.11) if 
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑟(𝑥,𝑚|𝑦,𝐸)
(𝑐̂𝑚(𝑥) − 𝑐𝑚(𝑥)) is only a function of 
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(𝑦, 𝐸). One clear possibility for this is if the algorithm converges and 𝑐̂𝑚(𝑥) = 𝑐𝑚(𝑥). To derive 

an alternating minimization algorithm for X-ray transmission CT, set 

 𝑟(𝑥,𝑚|𝑦, 𝐸) =
ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑍𝑚(𝑥)
, (B.13) 

where 𝑍𝑚(𝑥) are chosen to enforce the constraint (B.11). In general, the 𝑍𝑚(𝑥) must be large 

enough, one such choice being 

 𝑍𝑚(𝑥) = 𝑍0 = max
𝑦,𝐸

∑∑ ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑀

𝑚=1𝑥

. (B.14) 

The resulting decoupled objective function is 

 

∑∑∑∑∑{𝑝̂𝑗(𝑦, 𝐸)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)𝑐𝑚(𝑥)

𝑚𝑥𝐸𝑦

2

𝑗=1

+
𝑞̂𝑗(𝑦, 𝐸)ℎ(𝑦|𝑥)𝜇𝑚(𝐸)

𝑍𝑚(𝑥)
exp[𝑍𝑚(𝑥)(𝑐̂𝑚(𝑥) − 𝑐𝑚(𝑥))]}. 

(B.15) 
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