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ABSTRACT OF THE DISSERTATION

Forward Electrophysiological Modeling and Inverse Problem for Uterine Contractions

during Pregnancy

by

Mengxue Zhang

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2018

Professor Arye Nehorai, Chair

Uterine contractile dysfunction during pregnancy is a significant healthcare challenge that

imposes heavy medical and financial burdens on both human beings and society. In the

U.S., about 12% of babies are born prematurely each year, which is a leading cause of

neonatal mortality and increases the possibility of having subsequent health problems. Post-

term birth, in which a baby is born after 42 weeks of gestation, can cause risks for both

the newborn and the mother. Currently, there is a limited understanding of how the uterus

transitions from quiescence to excitation, which hampers our ability to detect labor and treat

major obstetric syndromes associated with contractile dysfunction. Therefore, it is critical

to develop objective methods to investigate the underlying contractile mechanism using a

non-invasive sensing technique. This dissertation focuses on the multiscale forward electro-

magnetic modeling of uterine contractile activities and the inverse estimation of underlying

source currents from abdominal magnetic field measurements.
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We develop a realistic multiscale forward electromagnetic model of uterine contractions in the

pregnant uterus, taking into account current electrophysiological and anatomical knowledge

of the uterus. Previous models focused on generating contractile forces at the organ level

or on ionic concentration changes at the cellular level. Our approach is to characterize the

electromagnetic fields of uterine contractions jointly at the cellular, tissue, and organ levels.

At the cellular level, focusing on both plateau-type and bursting-type action potentials, we

introduce a generalized version of the FitzHugh-Nagumo equations and analyze its response

behavior based on bifurcation theory. To represent the anisotropy of the myometrium, we

introduce a random conductivity tensor model for the fiber orientations at the tissue level.

Specifically, we divide the uterus into contiguous regions, each of which is assigned a random

fiber angle. We also derive analytical expressions for the spiking frequency and propagation

velocity of the bursting potential. At the organ level, we propose a realistic four-compartment

volume conductor, in which the uterus is modeled based on the magnetic resonance imaging

scans of a near-term woman and the abdomen is curved to match the device used to take

the magnetomyography measurements. To mimic the effect of the sensing direction, we

incorporate a sensor array model on the surface of abdomen. We illustrate our approach

using numerical examples and compute the magnetic field using the finite element method.

Our results show that fiber orientation and initiation location are the key factors affecting

the magnetic field pattern, and that our multiscale forward model flexibly characterizes the

limited-propagation local contractions at term. These results are potentially important as a

tool for interpreting the non-invasive measurements of uterine contractions.

We also consider the inverse problem of uterine contractions during pregnancy. Our aim

is to estimate the myometrial source currents that generate the external magnetomyogra-

phy measurements. Existing works approach this problem using synthetic electromyography

data. Our approach instead proceeds in two stages: develop a linear approximation model

xii



and conduct the estimation. In the first stage, we derive a linear approximation model of the

sensor-oriented magnetic field measurements with respect to source current dipoles in the

myometrium, based on a lead-field matrix. In particular, this lead-field matrix is analyti-

cally computed from distributed current dipoles in the myometrium according to quasi-static

Maxwell’s equations, using the finite element method. In the second stage, we solve a con-

strained least-squares problem to estimate the source currents, from which we predict the

intrauterine pressure. We demonstrate our approach through numerical examples with syn-

thetic data that are generated using our multiscale forward model. In the simulations, we

assume that the excitation is located at the fundus of the uterus. We also illustrate our

approach using real data sets, one of which has simultaneous contractile pressure measure-

ments. The results show that our method well captures the short-distance propagation

of uterine contractile activities during pregnancy, the change of excitation area in subse-

quent contractions or even in a single contraction, and the timing of uterine contractions.

These findings are helpful in understanding the physiological and functional properties of the

uterus, potentially enabling the diagnosis of labor and the treatment of obstetric syndromes

associated with contractile dysfunction such as preterm birth and post-term birth.
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Chapter 1

Introduction

The uterus is a complex dynamic organ whose mechanism of operation during pregnancy

is largely unknown. During most of pregnancy, the uterus is maintained in a quiescent,

non-contractile state in which its myometrial smooth muscle cells are hyperpolarized and

non-excitable. At term, the muscle cells become depolarized, excitable, and contractile.

The coordination of these cells produces organized contractions and changes the intrauterine

pressure to dilate cervix, resulting in the expulsion of the fetus from the mother’s body [1].

In the U.S., approximately 12% of babies are born prematurely (< 37 weeks of gestation) and

up to 10% are born post-term (> 42 weeks of gestation), creating in a significant healthcare

challenge that has long-term medical and financial consequences [2–4].

For the affected children, preterm delivery results in life-long health challenges, including

motor delays, lower intelligence quotients, and behavioral problems [2]. Similarly, post-

term deliveries incur increased perinatal morbidity and mortality risks for both the mother

and fetus, and a recent study has demonstrated that affected children are at increased risk

of behavioral and emotional problems later in life [4]. Even in the case of normal term

deliveries, where false labor is diagnosed, unwanted hospital stays and treatment could be

avoided if physicians were able to more objectively determine whether the false labor would

1



progress to true labor, and, if so, on what time scale. The relatively few agents currently

used to either arrest or promote uterine contractions are typically ineffectual and are often

associated with adverse maternal and fetal effects [5–7]. Thus, there is a need for better

understanding of the mechanisms that underlie uterine smooth muscle excitation-contraction

coupling during pregnancy in order to enable prediction of labor and develop more effective

regulatory treatments.

In order to better understand the labor process, we develop a realistic multiscale forward

electromagnetic model of the pregnant uterus, taking into account current electrophysiologi-

cal and anatomical knowledge, based on which we study the myometrial source current that

produces the external electromagnetic fields. In the following, we will describe the anatomy

and electrophysiology of the uterus, and the non-invasive technique we use to sense uterine

activities.

1.1 Uterine anatomy

The uterus is an inverted pear-shaped, hollow, muscular organ with thick walls in the female

reproductive system [8]. Fig. 1.1 illustrates the anatomy and microanatomy of the human

uterus. The fundus is the uppermost curved area, where the fallopian tubes connect to the

uterus, and the cervix is in the lower end, opening into the vagina (see upper left in Fig. 1.1).

The uterine wall is comprised of three layers (upper right in Fig. 1.1):

1. the endometrium, the inner layer, which responds to cyclic ovarian hormone changes;

2. the myometrium, the middle layer, mostly consisting of smooth muscle cells, also known

as myocytes; and
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3. the perimetrium, the outer layer enveloping the uterus.

The layer responsible for uterine contractions is the myometrium (bottom in Fig. 1.1), whose

macroscopic structures are fasciculi that comprise sheet-like and cylindrical bundles of my-

ocytes (muscle fibers) embedded in a connective tissue matrix [9]. The bundles are con-

tiguous within a fasciculus with myocytes in a bundle close to each other. The fasciculi

are interconnected via communicating bridges that allow electrical communication among

them. Since the end of the 19th century, a large amount of work has been done to investi-

gate the overall muscle fiber orientations in the human uterus [10–13]. Although there is no

widely accepted model of the fiber architecture, it introduces anisotropy into action potential

propagation [13,14].

1.2 Uterine electrophysiology

The functional units of the uterus are the myocytes, which are long, narrow, and almost

spindle shaped smooth muscle cells. The cell membrane that separates the interior of the

cell from the extracellular environment is selectively permeable to ions such as Na+, K+,

Ca2+, and Cl- and regulates the entry and exit of these ions. The membrane potential, the

potential difference across the cell membrane, is a result of the unequal distribution of ions

inside and outside the cell [15–17]. Ions move through ionic channels in a direction that is

determined by the intracellular and extracellular ion concentrations as well as the membrane

potential. The concentrations of Na+, Ca2+, and Cl- are higher in the extracellular domain,

whereas the concentration of K+ is higher inside the cell. The permeability and relative

concentrations of these ions determine the resting potential of myocytes, which is in general

3



Figure 1.1: Anatomy and microanatomy of the human uterus. Upper left: illustration of the
human uterus. Upper right: uterine wall with the (a) endometrium (b) myometrium and (c)
perimetrium. Bottom: microanatomy of the pregnant human myometrium (source: Young,
1999 [9]).

-40 to -50 mV. During pregnancy, it becomes more negative, approaching -60 mV, and then

increases to about -45 mV near term.

Contractile activity in the uterus is initiated by an action potential that is generated au-

tonomously in a cell when the threshold of firing is reached. Such cells function similarly

to pacemakers in the stomach, intestine, and heart [15, 18, 19] that can spontaneously ex-

cite action potentials. In the uterus, the smooth muscle cells either can spontaneously

generate their own impulses or can be excited by the action potentials propagating from

neighboring cells. However, it is still unclear whether there exists a specific pacemaker

mechanism or a specific pacemaker area [20]. Except for some observations of contractile
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activity originating from specialized cells [21], most activities arise from any site throughout

the myometrium [22,23]. The initiation area can even change during a single contraction or

successive contractions [23].

The action potential is attributed to the entry of Ca2+ through voltage-sensitive calcium

channels, and, perhaps also through fast Na+ channels [24] close to the end of the pregnancy.

There are two predominant types of action potentials in both a single uterine smooth muscle

cell and isolated strips of myometrium: plateau-type and bursting-type [17, 25]. At term,

the mechanical contractions correlate to action potentials as follows:

1. The frequency of the contractions is related to the frequency of the action potentials.

2. The duration of the contraction is related to the duration of the train of action poten-

tials.

3. The contractile strength is related to the spike numbers in the action potential and the

number of simultaneously activated cells.

At some unknown point during pregnancy, the uterine smooth muscle cells communicate

and coordinate with each other to generate organized activities. Electrical synapses called

gap junctions, which consist of pores composed of proteins known as connexins, connect

the interiors of two cells and allow molecules and current to flow between cells. The gap

junctions are sparse throughout pregnancy but increase during delivery [26–31] and disappear

within 24 hours after delivery. The increase strengthens the coupling of cells, resulting in

the synchronization and coordination of various regions in the uterus. The action potential

propagation enabled by gap junctions has been assumed to be the only mechanism for the

recruitment of myometrium in uterine contractions [32]. However, animal and human data
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indicates that action potentials propagate noncontiguously and only over short distances [23,

33,34]. A new mechanism, called mechanotransduction, is proposed in [35] for long-distance

signaling. In this mechanism, a local contraction is initiated and propagated by action

potential, increasing the intrauterine pressure and hence the wall tension, and inducing

more local contractions to generate strong uterine contractile activities.

1.3 Non-invasive sensing techniques

Various techniques have been developed to monitor uterine activities. Apart from recording

changes in cervical dilation, the frequency and duration of uterine contractions are moni-

tored by tocodynamometry (TOCO), in which a strain gauge responds to changes in uterine

tension that are transmitted to the abdomen [36]. This technique is non-invasive, simple,

and almost risk free, but it cannot identify contraction intensity and suffers from maternal

motion artifacts. An alternative technique is to measure the intrauterine pressure using

an intrauterine pressure catheter (IUPC), which is more reliable and accurate than TOCO.

However, this procedure requires rupturing the amniotic membrane and may introduce risks

of infection and abruption. Fig. 1.2 illustrates the TOCO and IUPC techniques.

Currently, there are two methods employed to record the electrophysiological activity of

uterine contractions. The first is electromyography (EMG) [37], which measures the action

potentials using either internal electrodes or electrodes attached to the abdomen [38, 39].

EMG studies on rats with electrodes placed simultaneously in the uterus and on the ab-

dominal surface have shown that every burst of action potential recorded directly from the

myometrium corresponds to a burst measured on the abdominal surface and to the mechan-

ical contraction recorded by a pressure catheter [38]. This technique has a high temporal
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(a) TOCO (source: AMICUS Visual Solutions, 2007) (b) IUPC (source: Mosby. Inc, 2004)

Figure 1.2: TOCO and IUPC techniques used to monitor uterine contractions.

resolution, but suffers from attenuation during propagation to the maternal abdominal sur-

face because the measured activity arises from volume currents and is strongly dependent

on tissue conductivity [40]. In addition, having many pairs of electrodes on the maternal

abdomen is uncomfortable and cumbersome. A magnetic homologue, magnetomyography

(MMG), is a more recently developed non-invasive technique that records the magnetic field

corresponding to the uterine electrical activity. Unlike EMG, MMG, without making electri-

cal contact with the body and arising from the primary current, is much less dependent on

tissue conductivity [41] and is independent of any kind of reference, ensuring the localized

recording of uterine activities. However, the device for MMG recording is expensive, which

limits its wide applicability. These two techniques are illustrated in Fig. 1.3.
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(a) EMG (source: Vasak et. al., 2013 [42]) (b) MMG (source: La Rosa et. al., 2008 [43])

Figure 1.3: EMG and MMG techniques used to record the electrophysiological activity of
uterine contractions.

1.4 Clinical site and data collection

After the study protocol was explained to subjects and written consents to perform the study

were obtained, abdominal MMG data were collected at the University of Arkansas for Medical

Sciences (UAMS). The protocol was approved by the UAMS Institutional Review Board.

The system (Fig. 1.4(a)) used to record the data is called SARA: SQUID (superconducting

quantum interference device) array for reproductive assessment. This device is installed in

a magnetically shielded room next to the labor and delivery unit in the UAMS, to reduce

external magnetic fields which interfere with the biomagnetic field generated by human

organs. This SARA system consists of 151 primary magnetic sensors spaced 3 cm apart

over an area of 850 cm2 (Fig. 1.4(b)), arranged in a concave array covering the maternal

abdomen from the pubic symphysis to the uterine fundus, and laterally over a similar span.
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Each sensor measures the magnetic fields at two magnetometers, one close to abdomen and

the other 8 cm away from the first one in a direction similar but not identical to the normal

of the SARA surface (Fig. 1.4(c)). The sensor measurement is the difference between the

measurements from these two magnetometers. The subject simply sits and leans forward

slightly against the smooth surface of the array (Fig. 1.4(d)), allowing the SQUID sensors

to receive electrophysiological signals.

The procedure to record and preprocess MMG data is illustrated in Fig. 1.5. All of the

MMG data sets were first recorded at 250 Hz and then downsampled to 32 Hz. For the

preprocessing, we applied a 8th-order band-pass Butterworth filter of 0.1−1 Hz to attenuate

interfering maternal and fetal cardiac signals. A 8th-order band-stop (notch) Butterworth

filter of 0.25−0.35 Hz was also applied to suppress maternal breathing, which is a prominent

signal around 0.33 Hz. Noisy sensors were then removed to avoid possible pollution in

MMG measurements. Using spectral analysis, the primary magnetic activity of a uterine

contraction is represented by a low frequency band between 0.1 Hz and 0.4 Hz [44, 45].

The MMG activity in this range likely represents the plateau and repolarization phase of the

action potentials. For a more accurate analysis that is closer to the true time-frame, a higher

band 0.4− 1 Hz should be added to the analysis [44,45]. Also, early studies [29,46,47] have

shown that the power spectrum density of uterine EMG bursts in subjects during active labor

peaks at 0.71±0.05 Hz, compared to the 0.48±0.03 Hz value for non-laboring term subjects.

Most of the uterine EMG studies apply a bandwidth of 0.35− 1 Hz. The lower band limit of

0.35 Hz is chosen to avoid movement artifacts and also because maternal breathing around

the frequency of 0.33 Hz can contaminate uterine EMG acquisition. For the collection of

MMG, the frequency band 0.1−0.25 Hz is also included since it is possible to acquire signals

as low as 0.1 Hz with a relatively high signal to noise ratio with the SARA system [48,49].
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(a) SARA system installed in UAMS hospital (b) The 151-channel sensor array with each
sensor spaced 3 cm apart

(c) Layout of the magnetometers of SQUID sensors (in
centimeters)

(d) Subject sits and leans against the sur-
face of the system

Figure 1.4: The SARA device used to non-invasively collect MMG data of uterine activities.

1.5 Contributions of this work

In this dissertation, we investigate the uterine contractions during pregnancy from two per-

spectives: forward and inverse. We develop a realistic multiscale forward electromagnetic
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Figure 1.5: Recording and preprocessing of real MMG data.

model considering current electrophysiological and anatomical knowledge, and derive the

inverse estimation of the underlying source currents from the external measurements. We

summarize the main contributions as follows.

Multiscale forward model: The development of effective tools to characterize uterine contrac-

tions during pregnancy is important for better understanding their underlying mechanisms.

Our method is to establish a multiscale model, which integrates the knowledge from the cellu-

lar, tissue, and organ levels, to describe the electromagnetic properties of uterine contractile

activities. Our modeling approach aims at computing the abdominal magnetic field that

is generated by the myometrial current source and propagates through a four-compartment

volume conductor. We assume that the abdomen deforms to follow the contour of the SARA

device when the subject leans against it, and we model the uterus based on the MRI of a

pregnant, near-term woman. Considering the anisotropic property of tissue fibers in the

uterus, we design a random conductivity tensor model that assigns different fiber orienta-

tions to different regions of the uterus. This model is applicable to arbitrary uterine shapes.
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The myometrial current source is modeled as a function of the transmembrane potential

by introducing a generalized version of the FitzHugh-Nagumo equations in each myometrial

cell. We investigate the parameters of this cellular model using bifurcation analysis in order

to generate both plateau-type and bursting-type potentials. We analytically compute our

model using the finite element method, investigate the effect of model configuration aspects

on model outputs, and conduct initial validation of our multiscale model against real MMG

measurements. The numerical results show that fiber orientation and initiation location

are the key factors that influence the MMG pattern, and our model flexibly characterizes

clinically observed local contractile activities during pregnancy.

Inverse estimation: The non-invasive MMG measurements obtained using the SARA device

incorporate the electrophysiological activity of the uterus. Therefore, the inverse problem

of investigating the internal myometrium from external MMG data is promising for under-

standing the physiological and functional properties of the uterus. In this work, we propose

a method to estimate the underlying source currents of uterine contractions using the MMG

obtained from the SARA device. We first develop a linear approximation model that relates

the sensor-oriented MMG measurements to the currents in the myometrium, and then con-

duct the inverse estimation. In the first stage, we introduce distributed current dipoles as the

source model in the myometrium and establish the lead-field matrix by analytically solving

the MMG measurements that propagate from the unit current dipole in the myometrium

through the realistic volume conductor to the SARA sensors outside the abdomen. In the

second stage, we solve a constrained optimization problem to estimate the main myometrial

source currents. Based on this estimation, we predict the intrauterine pressure to show its

clinical use. We validate our method using both synthetic data generated by our multiscale

foward model and real MMG data collected using the SARA device. Our method proves to

be able to characterize the short-distance propagation of local contractile activities in the
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uterus and in timing contractions as well, which is potentially helpful in predicting labor

and treating obstetric syndromes associated with preterm or post-term birth.

1.6 Organization of the dissertation

The rest of the dissertation is organized as follows. In Chapter 2, a realistic multiscale

forward electromagnetic model of uterine contractions in the pregnant uterus is presented.

In Chapter 3, the inverse estimation of source currents of uterine contractile activity that

produce MMG measurements is conducted. In Chapter 4, we summarize the contributions

of this dissertation and discuss future directions.
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Chapter 2

Realistic Multiscale Electromagnetic

Forward Modeling1

In the following chapter, we will investigate uterine contractile activities during pregnancy

from the forward modeling perspective.

We begin by developing a realistic multiscale electromagnetic model of uterine contractions

during pregnancy. At the cellular level, building on bifurcation theory, we apply generalized

FitzHugh-Nagumo (FHN) equations to produce both plateau-type and bursting-type action

potentials. At the tissue level, we introduce a random fiber orientation model applicable to

an arbitrary uterine shape. We also develop an analytical expression for the propagation

speed of transmembrane potential. At the organ level, a realistic volume conductor geome-

try model is provided based on magnetic resonance images (MRI) of a pregnant woman. To

simulate the sensing directions of the SARA device, we propose a sensor array model. We

1This chapter is based on M. Zhang, V. Tidwell, P. S. La Rosa, J. D. Wilson, H. Eswaran, and A. Ne-
horai, “Modeling magnetomyograms of uterine contractions during pregnancy using a multiscale forward
electromagnetic approach,” PLOS ONE 11(3): E0152421, DOI: 10.1371/journal.pone.0152421, Mar. 2016.
c© PLOS ONE 2016
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then demonstrate with numerical examples that our model is able to reproduce the charac-

teristics of action potentials. Additionally, we investigate the sensitivity of MMG to model

configuration aspects such as volume geometry, fiber orientation, and initiation location.

Our numerical results show that fiber orientation and initiation location are the key aspects

that greatly affect the MMG as measured by the SARA device. We conclude that sphere

is appropriate as an approximation of the volume geometry. The initial step towards vali-

dating the model against real MMG measurement is also presented. Our results show that

the model flexibly mimics the limited-propagation magnetic signature during the emergence

and decay of a uterine contraction.

2.1 Introduction

In this section, we will describe briefly the existing models and our approach to characterizing

uterine contractile activities during pregnancy.

2.1.1 Previous approaches

The uterus provides a safe environment for a developing fetus, which is later expelled through

intense contractions. These contractions are primarily regulated by uterine electrical activ-

ities [22, 32]. Previous models [50, 51] rarely considered the physiological properties of the

myometrium. A computer model consisting of discrete contractile elements that propagate

electrical impulses and generate tension is proposed in [50]. The authors predict contraction

waveforms by defining contracting and refractory periods. In [51], the authors demonstrate
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that two mechanisms, action potential propagation and calcium wave propagation, contribute

to intercellular communication.

The models presented in [52–57] take into account the physiological aspect of uterine contrac-

tions. A simple electrophysiological model of a smooth muscle cell is developed in [52]. The

limitation of this model is that it includes only sodium and potassium currents, but not other

involved physiological ionic currents. In [53], the authors propose a model that considers the

electrical and mechanical properties of smooth muscle cells; however, the model disregards

the time dependency of the calcium current. In [54], a model is developed to study the pro-

cess of myometrial excitation and contraction. This model describes L-type Ca2+ current,

Ca2+ pumps, and Na+/Ca2+ exchangers without including the time-dependency dynamics.

In [55], the authors construct a model in terms of voltage-dependent Na+ currents, voltage-

dependent Ca2+ currents, voltage and calcium-dependent K+ currents, a leakage current,

and the dynamics of intracellular calcium concentration. In [56], the authors provide a more

detailed smooth muscle cell model, which incorporates 13 ionic currents and calcium dy-

namics, to reproduce different types of action potentials. In [57], KCNQ and hERG channel

currents are added into the uterine cell model which is developed in [56], enabling simulations

of long-lasting bursting-type action potentials.

Recently, the models have focused on characterizing the electrophysiological property of

uterine contractions jointly at the cellular, tissue, and organ levels. A 2D multiscale model

for uterine electrical activity is presented in [58, 59]. This model considers K+ current and

the dynamics of Ca2+ at the cell scale, applies a 2D isotropic grid of square cells at the tissue

scale, and simulates the surface electrohysterogram at the organ scale. In [60], a multiscale

electromagnetic model of uterine contractions is developed. This model is the first to apply

16



a 3D multiscale approach to uterine modeling. However, it regards the uterus as a sphere

with fixed-angle conductivity, which is an oversimplified version of the real geometry.

2.1.2 Our approach

In this work, based on the simplified model in [60], we develop a more realistic multiscale

forward model of uterine contractions during pregnancy. We first introduce an ionic cur-

rent model capable of generating both plateau-type and bursting-type action potentials in

each myocyte. Specifically, using bifurcation analysis, we develop a generalization of the

FitzHugh-Nagumo (FHN) equations capable of generating both types of action potentials.

Second, we introduce a random fiber orientation model applicable to an arbitrary uterine

shape. An analytical expression for the speed of propagation is also developed. Third, in-

stead of a spherical model, we introduce a realistic model for the volume conductor geometry

based on magnetic resonance images (MRI) of a pregnant woman. We also propose a sensor

array model matching the SARA device to simulate real sensing directions of the SARA

device [48, 49, 61]. The numerical results illustrate the main characteristics of both types

of action potentials. We also demonstrate that the pattern of the magnetic field depends

greatly on the fiber orientation and initiation location, rather than the volume geometry. The

spherical volume geometry is therefore a good approximation of uterine geometry for inves-

tigating the MMG measurements of the SARA device. We also validate that our modeling

approach can flexibly mimic the limited-propagation magnetic field pattern of real subject

data during the emergence and decay of contraction.

Our aim is to better understand the uterine structure and the propagation of contractions

from an electrophysiological point of view and to determine which aspects of the model

17



configuration have a major influence on the pattern of the abdomen-surface magnetic field,

as measured by the SARA device. By creating a variety of model configuration aspects,

e.g., by spatially varying the fiber layout or conductivity properties of the myometrium, and

then simulating the magnetic field on the abdominal surface for each configuration, we seek

to determine the extent to which each aspect of the configuration influences the pattern of

magnetomyograms. Creating a realistic multiscale forward model of uterine contractions will

allow us to better interpret the data from MMG measurements, and thus to characterize the

underlying contractile mechanisms.

2.2 Preliminary work

In this section, we summarize our preliminary work. In our recent work [60], we proposed

a multiscale electromagnetic forward model of human myometrial contractions during preg-

nancy, whose details are listed in Table 2.1. Fig. 2.1 illustrates the three levels that are

involved in the modeling: cell, tissue, and organ.

Figure 2.1: Illustration of the three levels (cell, tissue, and organ) involved in the modeling.
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Table 2.1: Equations of our previous uterine model.

Magnetic
field

∇×B(r, t) = µ0(Js(r, t)−G(r)∇φ(r, t)) (2.1)

∇ ·GA(r)∇φ(r, t) = 0, in A (2.2)

Electrical
potential

∇ ·GU(r)∇φ(r, t) = 0, in U (2.3)

∇ ·G′e∇φe(r, t) = −∇ · ζ

ζ + 1
G
′

e∇vm(r, t), inM (2.4)

Current source
density

Js(r, t) = −ζG′e∇vm(r, t), inM (2.5)

Transmembrane
potential

∇· ζ

ζ + 1
G
′

e∇vm(r, t) = am(cm
∂vm(r, t)

∂t
+Jion(r, t)−Jstim(r, t)), inM

(2.6)

Stimulus
activity

Jstim(r, t) =
1

ε1

Np∑
i=1

νihi(r, t) (2.7)

Our modeling approach (Fig. 2.2) was to solve the forward electromagnetic problem of uter-

ine contractions using a four-compartment volume conductor geometry, namely, we com-

puted at the abdominal surface the magnetic field, B(r, t) (2.1), and the electrical potential,

φ(r, t) (2.2)–(2.4), generated by the myometrial current source density, Js(r, t) (2.5). In the
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Table 2.1: Equations of our previous uterine model (cont.)

φe(r, t) = φA(r, t), in ∂M (2.8)

n̂M · (Gi
′∇φi(r, t) +Ge

′∇φe(r, t)) = n̂M ·GA∇φA(r, t), in ∂M (2.9)

n̂M ·G
′

i∇vm(r, t) = 0, in ∂M (2.10)

Boundary
conditions

φe(r, t) = φU(r, t), in ∂U (2.11)

n̂U · (Gi
′∇φi(r, t) + Ge

′∇φe(r, t)) = n̂U ·GU∇φU(r, t), in ∂U (2.12)

n̂U ·G
′

i∇vm(r, t) = 0, in ∂U (2.13)

n̂A ·GA∇φA(r, t) = 0, in ∂A (2.14)

n̂F ·GU∇φU(r, t) = λ(n̂F ·GF∇φF(r, t)), in ∂F (2.15)

volume conductor geometry model as illustrated in Fig. 2.2, A represents the abdominal cav-

ity and ∂A the boundary surface defined by the abdomen. M represents the myometrium,

and ∂M and ∂U are its external and internal boundary surfaces, respectively. The volume
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denoted by U represents the space filled with the amniotic fluid that exists between the

internal uterine wall ∂U and the boundary ∂F defined by the fetus volume F .

Figure 2.2: Illustration of the four-compartment volume conductor geometry and the forward
electromagnetic problem of uterine contractions.

Fig. 2.3 illustrates the bidomain approach we applied to model the current source density

and the transmembrane potential. According to the Ohm’s law, the current source density

Js(r, t) was defined as the gradient of the transmembrane potential, vm(r, t) (2.6). The trans-

membrane potential vm(r, t), using reaction diffusion equations, was modeled as a function

of the ionic current dynamics, Jion(r, t), stimulus current due to excitation, Jstim(r, t) (2.7),

anisotropic conductivity, G
′
i and G

′
e, and the corresponding boundary conditions (2.8)–

(2.15).

Focusing on the plateau-type action potential, we applied the modified version of the FHN

equations [62,63] to model the ionic currents, Jion(r, t), in each myocyte. We also proposed

a general approach to design conductivity tensors, G
′
i and G

′
e, simply assuming that the
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Figure 2.3: Illustration of the bidomain approach used to model the current source density
and the transmembrane potential.

main axis of the fibers runs vertically from the fundus to the cervix for any uterine shape.

To model the volume conductor geometry, we defined a spherical uterus and also a spherical

abdomen as a simplification of the real anatomical structure. Although our preliminary work

provides a novel approach to model the contractions in the pregnant uterus, some aspects of

the model are oversimplified when compared with the realistic case.
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2.3 Realistic multiscale forward model

In this section, we explain explicitly how we develop a more realistic multiscale forward

model of uterine contractions during pregnancy, taking into consideration current electro-

physiological and anatomical characteristics of the uterus.

2.3.1 Bursting-type action potential model at the cellular level

At the cellular level, we develop an ionic current model capable of generating plateau-type

and bursting-type action potentials (Fig. 2.4), since both of them are very common in smooth

muscle cells or isolated strips of myometrium [17, 25, 64]. Particularly, we apply a variation

of the FHN equations [60], which is given by the following nonlinear dynamical system of

ordinary differential equations:

∂vm
∂t

=
1

ε1cm
(k(vm − v1)(v2 − vm)(vm − v3)− w + ν), (2.16)

∂w

∂t
= ε2(βvm − γw + δ), (2.17)

where vm is the action potential, w is a state variable, ν is the stimulus current amplitude

due to an excitation activity, which is defined in Eq. (2.7), and ε1, ε2, k, β, γ, δ, v1, v2, and

v3 are model parameters.

The behavior of a nonlinear dynamical system depends greatly on the values of its parame-

ters. For example, for certain set of parameters, the FHN model has a stable but excitable

equilibrium. That is, if the system undergoes a sufficiently large perturbation, there is a large

excursion of variables in phase space before returning to the equilibrium, hence generating a
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(a) Plateau-type action potential (b) Bursting-type action potential

Figure 2.4: Caricature of the two types of action potentials observed in the human uterus.

plateau-type action potential (Fig. 2.5(a)). There is also a range of parameter values where

the FHN model displays limit cycle characteristics; that is, the variables settle on a closed

trajectory in phase space, hence spike trains occur in the system (Fig. 2.5(b)).

In this work, we focus on investigating the bursting-type action potential, which occurs when

the FHN model displays limit cycle behavior. In order to identify the set of parameters that

generates a limit cycle, we apply bifurcation analysis to the variation of the FHN model.

Bifurcation analysis is a powerful tool to investigate such properties of nonlinear dynamical

systems. It helps to identify the set of parameters with which certain behavior occurs in

the systems. The parameter that is varied is known as a bifurcation parameter. We assume

in this work that the uterus is formed by cells of the same type. The excitation activity is

represented by a specified stimulus current but the parameters of the ionic current cell model

are exactly the same throughout the uterus. Therefore, the only degree of freedom that we

have is the stimulus amplitude, which can be varied at initiation, so it can be regarded as

the bifurcation parameter. In other words, our claim is that the cell response changes on the

basis of the initiation activity.

In bifurcation analysis, equilibrium, limit cycle, and their stabilities appear as a function

of the bifurcation parameter. Since the right hand side of Eq. (2.16) is a cubic polynomial
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(a) Phase space plot with variables returning to equilibrium and the corresponding plateau-type
action potential

(b) Phase space plot with variables settling on a closed trajectory and the corresponding bursting-
type action potential

Figure 2.5: Different behaviors of a nonlinear dynamical system.

of vm, it is difficult to write explicitly the equilibrium v∗m as a function of the bifurcation

parameter ν. Instead, we rewrite the stimulus amplitude ν as a function of the equilibrium

v∗m:

ν(v∗m) = −k(v∗m − v1)(v2 − v∗m)(v∗m − v3) + (βv∗m + δ)/γ, (2.18)

where v∗m is the value of action potential at the equilibrium. Therefore, by finding the

conditions in which the system has an unstable equilibrium and limit cycle, we can then

derive the corresponding values for the stimulus amplitude using Eq. (2.18). In this work,
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we are interested in the case when there is always only one equilibrium in the FHN model

whatever the stimulus amplitude ν, for which the parameters should satisfy the following

condition (see Appendix A):

∆1 , (v1 + v2 + v3)
2 − 3(v1v2 + v1v3 + v2v3)−

3β

kγ
< 0. (2.19)

Using bifurcation analysis (see Appendix A), we identify the following condition under which

the FHN model has an unstable equilibrium and also a limit cycle:

v1 + v2 + v3 −
√

∆2

3
< v∗m <

v1 + v2 + v3 +
√

∆2

3
, (2.20)

where the parameters v1, v2, v3, k, γ, ε1, ε2, cm should satisfy

∆2 = (v1 + v2 + v3)
2 − 3(v1v2 + v1v3 + v2v3)−

3ε1ε2cmγ

k
> 0. (2.21)

Note that the parameters need to satisfy both ∆1 < 0 and ∆2 > 0, which introduces the

following relationship:

β > ε1ε2cmγ
2. (2.22)

With Eq. (2.18) and inequalities (2.19)–(2.21), we finally obtain the set of stimulus amplitude

ν that leads to a limit cycle.

A periodic bursting-type action potential can then be derived by designing a stimulus ampli-

tude so that the state of the FHN model periodically switches between a stable equilibrium

and a limit cycle, hence producing a periodic spike trains. Here, we model the stimulus

activity Jstim using a periodic function with stimulus amplitude ν in the limit cycle range (a
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value satisfying Eq. (2.18) and inequality (2.19)–(2.21)):

Jstim =
1

ε1
νh(t), (2.23)

where h(t) = h(t + T ), which is a periodic function with frequency f = 1/T that controls

the time interval between trains of spikes and therefore consecutive contractions.

Frequency of bursting-type action potential Having an analytical expression that

relates the spike frequency of a bursting-type action potential with the model parameters is

useful for designing realistic action potentials. The FHN system exhibits oscillatory solution

when it has a limit cycle other than an unstable equilibrium. With the analysis of eigenvalues

during bifurcation analysis (see Appendix A), the oscillatory frequency of the FHN model

in a limit cycle is

ω =

√
ε2
ε1cm

g(v1, v2, v3, k, β, δ, γ, ν), (2.24)

where g(v1, v2, v3, k, β, δ, γ, ν) is a function of v1, v2, v3, k, β, δ, γ, ν. The frequency is

proportional to the square root of ε2 and inversely proportional to the square root of ε1.

We can therefore enhance the frequency of spike trains simply by either decreasing ε1 or

increasing ε2.

2.3.2 Random conductivity tensor model at the tissue level

At the tissue level, we introduce a random conductivity tensor model that aims at better

capturing the lack of global structure of the uterine fibers. The velocity of the transmembrane

potential propagation is dependent on the myocyte fiber anisotropy. In order to take into

account the myometrial fiber orientations, we assume a regular fiber structure, that is, we
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define al(r) as a unit vector parallel to the main fiber orientation at a point r. Following the

procedure presented in our recent work [60], the conductivity tensors in a global coordinate

system are given by

G
′

i(r) = (σil − σit)a3(r)aT
3 (r) + σitI3, (2.25)

G
′

e(r) = (σel − σet)a3(r)aT
3 (r) + σetI3, (2.26)

where G
′
i(r) (G

′
e(r)) is the intra (extra) cellular conductivity tensor, σil, σit (σel, σet) are

the longitudinal and transversal conductivity values of the intra (extra) cellular domain,

respectively, a3(r) is a basis vector that is parallel to al(r), and I3 denotes an identity

matrix of size 3× 3.

In our recent work [60], we represented the uterus as a hollow volume with uniform thickness

and introduced a general framework for designing the tensor direction in the myometrium

for an arbitrary uterine shape. Specifically, we presented the fiber orientation a3(r) using its

angle α with respect to a vector defined in the tangential plane at the point r (Fig. 2.6). The

angle α can be modeled as a spatial basis function defined over the whole uterine domain.

In the numerical example, however, we only considered a fixed fiber angle of π/4 for the

whole myometrium (Fig. 2.7(a)). In this work, we define the fiber orientation using a finite

element mesh. We divide the uterus into 25 contiguous regions, via random sampling of the

finite elements within the myometrium model and resampling any point that lies less than

4 cm from its nearest neighbor. We compute the vector based on the surface normals at our

uterus model mesh points for an arbitrary uterine shape. Given a mesh point r, with surface
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normal n̂(r) = [nx, ny, nz]
′
, the fiber orientation a3(r) is defined as

a3(r) =


nxny cos(α)− nz sin(α)√

n2
x + n2

z√
n2
x + n2

z cos(α)

nzny cos(α)− nx sin(α)√
n2
x + n2

z

 , (2.27)

where α is the angle of the fiber with respect to the tangent vector. In this work, the vertical

axis is the y axis rather than the z axis in [60]. In order to take into account the spatial

variation of the fiber orientations, we assign a random fiber angle to each region of uterus by

sampling from the normal distribution (0, π/4) (Fig. 2.7(b)), where 0 denotes that the fiber

is oriented along the vertical axis of the uterus.

Figure 2.6: Illustration of the fiber orientation a3(r) with respect to the fiber angle α.

Propagation speed of bursting-type potential In our recent work [60], we obtained an

expression for the anisotropy ratio ζ by solving for a traveling wave with known propagation

speed of plateau-type potential. In the following, we derive an expression for the speed of
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(a) Fixed fiber angle: α = π/4 (b) Random fiber angle: α ∼ N (0, π/4)

Figure 2.7: Fixed and random fiber angles of the myometrium.

propagation of the bursting-type potential by following a similar solution for the traveling

wave with a fixed value of ζ.

A traveling wave is defined as a wave that travels without change of shape. The speed

of propagation of the leading front of the waveform can then be taken as the wavespeed.

Considering the leading front of a transmembrane potential, the variable w of the FHN

model changes very slowly, which is then regarded to be set at the resting value that can be

obtained through Eq. (2.17) as follows:

w =
1

γ
(βvmr + δ), (2.28)
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where vmr is the resting potential. Replacing (2.28) in Eq. (2.6), the reaction diffusion

equation is then presented by

∂vm
∂t

=
k

ε1cm
((vm − v1)(v2 − vm)(vm − v3)−

1

kγ
(βvmr + δ)) +

ζ

ζ + 1

σel
amcm

∂2vm
∂l2

, (2.29)

where am is the surface-to-volume ratio of the membrane. Eq. (2.29) matches with the

standard form of the reaction diffusion equation for an excitable kinetics model in [65],

whose wavespeed is given by

c =
ṽ1 − 2ṽ2 + ṽ3

cm

(
kσelζ

2ε1am(ζ + 1)

)1/2

, (2.30)

where ṽ1, ṽ2, and ṽ3 are the roots of the following polynomial

f(vm) = (vm − v1)(v2 − vm)(vm − v3)−
1

kγ
(βvmr + δ). (2.31)

Note that the speed of propagation is proportional to the square root of the extracellular

longitudinal conductivity σel and inversely proportional to the membrane capacitance cm and

the square root of surface-to-volume ratio am.

2.3.3 Realistic volume conductor model at the organ level

At the organ level, we create an anatomically realistic model for the volume conductor.

Rather than using a simple spherical geometry for the uterus, we model the uterus based

on the MRI of a real, pregnant, near-term woman. We adapt a uterine mesh from the

FEMONUM project [66], creating a smooth 3D model for the organ with a uniform 1 cm

thickness (Fig. 2.8(a)). Similarly, rather than using a spherical model for the abdomen, we
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assume that when the mother leans against the SARA device, her abdomen will deform

slightly to follow the device contour. Following this assumption, we create an abdominal

model that follows the shape of the SARA device, offset from the front of the uterus by

roughly 2 cm (Fig. 2.8(b)).

(a) Outer surface of the anatomical uterus (b) Outer surface of the SARA-based abdomen

Figure 2.8: Realistic uterus and abdomen models.

2.3.4 Sensor model on the abdominal surface

Finally, in order to obtain a more accurate simulation of magnetic field measurements, espe-

cially around the lower abdomen, we replicate the true sensor positions and sensing directions

of the SARA device, rather than simply observing the normal component of the magnetic

field at the abdomen. The SARA sensors are hardware magnetometers; each sensor mea-

sures the magnetic field at two coils (Fig. 1.4(c)). The first is on the inner surface of the

device close to the mother’s abdomen (denoted as B1) and the second is displaced 8 cm from
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the first in a direction roughly normal to the SARA surface (denoted as B2). The recorded

SARA measurement from the ith sensor is actually the difference between the fields at these

two points, which is given by

Bi = Bi1 −Bi2, (2.32)

where i = 1, 2, · · · , 151. This recording is very similar, but not identical, to the normal

component of the magnetic field. This discrepancy is particularly notable in areas such as

the lower central portion of the SARA device where the convexity of the surface results, due

to space constraints in placing the sensors, in a non-negligible difference between the surface

normal and the actual sensor orientation.

2.4 Summary of modeling assumptions

In this section, we list all the assumptions that are used to formulate the model:

1. Cellular level

The uterus is formed by the same type of cells (myocyte) with cylindrically symmetric

electrical conductivity. The myocyte can spontaneously initiate the electrical activity

or can be excited by neighboring cells. The plateau-type and bursting-type action

potentials are initiated in cells in the form of a stimulus current.

2. Tissue level

Although there is no well-defined global fiber structure, the fibers in localized regions

of the uterus have similar orientations. The conductivities of the intracellular and

extracellular domains of the myometrium are inhomogeneous and anisotropic with
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equal anisotropic ratio. The transmembrane potential travels across the myometrium

without change of shape so that it can be considered as a traveling wave.

3. Organ level

The volume conductor is modeled as four compartments with electrically conductive

boundaries between compartments except for the external boundary of the abdomen.

When leaning against the SARA device, the abdomen will deform to follow the SARA

device shape. The anatomically realistic uterus with a layer of uniform-thickness wall

is modeled based on the MRI of a pregnant, near-term woman. The uterus has in-

homogeneous and anisotropic conductivity while the other three compartments are

considered to be homogeneous and isotropic.

4. Electromagnetics

The electromagnetic properties of uterine contractions are modeled using the quasi-

static approximation of the Maxwell’s Equations [67,68]. We can use this approxima-

tion because bioelectromagnetic fields with frequency below 1 KHz vary slowly and

the corresponding spatial length scale is much larger than the volume conductor of

geometry. Changes in the bioelectric sources, therefore, affect the bioelectromagnetic

fields instantaneously in the whole volume conductor of geometry. The displacement

current, which is a result of the time-varying electric field, is much smaller than the

ohmic current that results from ions flowing in the medium. Hence, the total current

density in the volume conductor can be regarded as the ohmic current only.
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2.5 Numerical examples

In this section, we evaluate our multiscale forward model at the cellular, tissue, and organ

levels.

2.5.1 Cellular level

The plateau-type action potential under certain parameters was illustrated in our recent

work [60]. To generate a bursting-type action potential, we computed the range of the

stimulus current amplitude such that the FHN system, with model parameters given in

Table 2.2, underwent a limit cycle behavior. Specifically, ∆1 in this case is negative and ∆2

is positive, hence by evaluating Eq. (2.18) and inequality (2.20), we obtained that ν should

range between 0.012 and 0.207. We confirmed our computation with the bifurcation diagram

(Fig. 2.9), which was generated using XPPAUT [69] that is an effective numerical tool for

simulating, animating, and analyzing dynamical systems. The bifurcation parameter ν is

shown on the horizontal axis and the vertical axis shows the values of the function. The red

lines denote stable equilibria while the black lines are unstable equilibria. The green solid

circles represent stable limit cycles while the blue ones refer to unstable limit cycles. Note

that limit cycle behavior is produced when the stimulus current amplitude ν is between the

two vertical lines.

The ionic current model is a nonlinear dynamical system of ordinary differential equations

that can be solved numerically. We used MATLAB’s built-in ode45 function, which includes

the fourth order Runge-Kutta method, to validate our cellular-level model. We reproduced

different types of action potentials (Fig. 2.10) by varying the stimulus current. Fig. 2.10(a)
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Table 2.2: Ionic current model parameters.

Symbol Value

cm 0.01 [F/m2]
ε1 10 [Ωm2]
ε2 10 [s−1]
v1 −0.02 [V]
v2 −0.04 [V]
v3 −0.065 [V]
k 7000 [V−2]
δ 0.052 [V]
γ 0.1
β 1

Figure 2.9: Bifurcation diagram, produced by XPPAUT, of action potential with respect to
the variation of the stimulus current amplitude.
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shows a plateau-type action potential, which was obtained by applying no stimulus cur-

rent. In this case, a stable equilibrium exists in the FHN model. The system returns to

the equilibrium point after experiencing an excitation, generating the plateau-type action

potential. If the stimulus current is set to be 0.15 V, it falls in the limit cycle range and

hence a bursting-type action potential will be generated (Fig. 2.10(b)). A periodic stimulus

current that varies between the stable equilibrium and limit cycle ranges gives rise to periodic

bursting-type action potentials. Fig. 2.10(c) shows an example of the periodic bursting-type

action potential by applying a sinusoidal stimulus current with amplitude ν = 0.11 V and

frequency f = 0.05 Hz in Eq. (2.23).

Using as a reference the average bursting-type action potential that was recorded from iso-

lated tissue strips of human myometrium at term [17], we designed the stimulus current of

the generalized FHN model. In particular, as reported in [17] from the 39th week of preg-

nancy, the resting potential is approximately −56 mV and the interval between consecutive

contractions is around 7 minutes. Therefore, in this numerical example, we introduced the

Heaviside function, which is a unit step function whose value is zero for negative argument

and one for positive argument, as the stimulus current. With a periodic Heaviside function

whose duration is 1 minute and period is 7 minutes, the generated periodic bursting-type

action potential is illustrated in Fig. 2.10(d). We observe that the resting potential of our

model is −55.6 mV, and the interval between consecutive contractions is about 420 s, which

are in fair agreement with the recorded values in [17].

Using the stimulus current in Fig. 2.10(b), we examined the relationship between the fre-

quency of burstings and parameters ε1 and ε2 and the results are given in Table 2.3. We

generated transmembrane potentials for different combinations of ε1 and ε2 values. It shows
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(a) Plateau-type action potential (b) Bursting-type action potential

(c) Periodic bursting-type action potential under
a sinusoidal stimulus

(d) Periodic bursting-type action potential under
a periodic heaviside-function stimulus

Figure 2.10: Various action potentials by applying different stimuli.

that we are able to obtain a higher frequency with smaller ε1 and larger ε2, which is consistent

with the relationship that is derived in Eq. (2.24).

2.5.2 Tissue level

Table 2.4 gives the parameter values (other than those included in Table 2.2) for the analysis

of the propagation speed of the bursting-type potential. According to Eq. (2.30), the speed

of propagation is 0.0429 m/s along the main fiber direction. In order to verify this speed,
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Table 2.3: Frequency of spike trains (spiking/second).

HHH
HHHε2

ε1 1 2 3 4 5 6 7 8 9 10

1 0.164 0.161 0.159 0.156 0.154 0.151 0.149 0.147 0.145 0.143
2 0.333 0.323 0.313 0.302 0.294 0.286 0.278 0.270 0.263 0.256
3 0.488 0.458 0.444 0.431 0.429 0.425 0.408 0.400 0.392 0.377
4 0.606 0.588 0.571 0.556 0.541 0.532 0.526 0.510 0.502 0.495
5 0.769 0.741 0.714 0.690 0.667 0.645 0.625 0.606 0.600 0.581
6 0.870 0.847 0.833 0.800 0.769 0.741 0.733 0.720 0.707 0.693
7 1.042 1.000 0.947 0.918 0.882 0.861 0.840 0.833 0.800 0.769
8 1.200 1.190 1.087 1.020 1.000 0.962 0.926 0.893 0.861 0.820
9 1.333 1.277 1.200 1.136 1.111 1.064 1.020 1.000 0.980 0.943
10 1.556 1.429 1.304 1.250 1.200 1.154 1.111 1.071 1.034 1.020

the fiber angle α in Eq. (2.27) was set to be 0 so that the fibers lay along the vertical axis of

the uterus. In our numerical simulation, we took the difference between the top and equator

of uterus and find that the the speed at the equator is approximately 0.0421 m/s, which is

a good match with the above theoretic value of wavespeed.

Table 2.4: Parameters for speed analysis.

Symbol Value
am 575870 [m−1]
vmr −0.056 [V]
σel 0.68 [S/m]
ζ 0.518

2.5.3 Organ level

We tested various configuration aspects, e.g., shape of uterus, shape of abdomen, fiber ori-

entation, and initiation location, by simulating the abdomen-surface magnetic field using

our multiscale forward model. Fig. 2.11 illustrates the simulation results of the abdominal
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magnetic field under each configuration (the detailed configuration for each subfigure is given

in Table 2.5). In [60], we illustrated the normal magnetic field for a spherical abdomen and

one initiation on the fundus of a spherical myometrium with a fixed-angle fiber orientation

(Fig. 2.11(a)). In order to investigate the sensitivity of MMG to each aspect in the configu-

ration, we simulated the normal magnetic field with one aspect of the configuration changed

in each numerical example (Fig. 2.11(b)–(e)) when compared with the original configuration

in Fig. 2.11(a). Fig. 2.11(b) was generated by introducing an anatomical uterus developed

from the FEMONUM project instead of the spherical uterus. It can be seen that the normal

magnetic field pattern for the anatomical uterus is similar to that for the spherical uterus.

In Fig. 2.11(c), the normal magnetic field pattern over a SARA-shape abdomen is presented.

We observe that no significant difference is introduced into the abdominal magnetic field by

the abdomen shape change. Fig. 2.11(d) illustrates the normal magnetic field for a random

fiber orientation sampled from a normal distribution, which displays a significantly different

pattern from that for a fixed-angle fiber orientation. The normal magnetic field pattern

for initiation located at the lateral of the uterus is given in Fig. 2.11(e). It is obvious that

the propagation direction of magnetic field is significantly influenced by the location of the

initiation area. Fig. 2.11(f) presents the magnetic field pattern after applying the sensor

model, which replicates the true SARA sensor readings, to the configuration in Fig. 2.11(c).

It is shown that significant difference of the magnetic field pattern is introduced at the lower

abdomen by the SARA sensor model.

2.5.4 Initial validation with real data

Matching a simulation for a full contraction to a real contraction would require the opti-

mization of many variables, such as the initiation location, initiation intensity, and fiber
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(a) Normal component (b) Normal component (c) Normal component

Figure 2.11: Simulated magnetic fields on the abdominal surface at time instants t =
10 [s], 36 [s], 55 [s] corresponding to Configures a – f in Table 2.5.

directions, and the consideration of complex scenarios such as one transmembrane potential

taking a tortured path that travels across the whole uterus [33], or a transmembrane poten-

tial that travels confined within a restricted area and recruits other initiations in areas across

the uterus [70,71]. In the second scenario, the locations and activation times of the recruited

initiations must also be optimized. Without an inverse model, manually optimizing these
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(d) Normal component (e) Normal component (f) Sensing component

Figure 2.11: Simulated magnetic fields on the abdominal surface at time instants t =
10 [s], 36 [s], 55 [s] corresponding to Configures a – f in Table 2.5 (cont.)

variables is infeasible. As such, we validate our model by comparing its magnetic field out-

puts during a limited portion of a uterine contraction with the real MMG data. Specifically,

we match the MMG during the emergence and decay of contractions, when it is known that

the contraction will be limited to a small region around a single initiation site.
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Table 2.5: Detailed model configurations for Fig. 2.11.

XXXXXXXXXXXXNo.
Configuration Shape of

uterus
Shape of
abdomen

Fiber
orientation

Initiation
location

Sensor
model

a Sphere Sphere Fixed-angle Fundus No
b FEMONUM Sphere Fixed-angle Fundus No
c Sphere SARA-shape Fixed-angle Fundus No
d Sphere Sphere Random Fundus No
e Sphere Sphere Fixed-angle Lateral No
f Sphere SARA-shape Fixed-angle Fundus Yes

The real data presented here was collected from a pregnant woman whose gestational age was

38 weeks and 4 days (see Section 1.4 for details of recording and preprocessing). The example

MMG signal collected by Sensor MLJ4 of the SARA device (Fig. 2.12(a)) is presented in

Fig. 2.12(b) and we chose to simulate the emergence and decay of one pre-labor uterine

contraction, which are marked in red boxes (1050 s− 1065 s, 1135 s− 1150 s). Considering

the alternating positive and negative magnetic field measurements, we decided to adopt the

ionic current model that can generate bursting-type action potentials.

In our numerical example, we applied the simplified spherical uterus with a 16 cm radius

measured from the center to the external boundary surface of the myometrium ∂M and

assumed the uterine wall with a uniform thickness of 1 cm. The spherical abdominal com-

partment with a 21 cm radius was 2 cm offset from the front of the uterus. The spherical

uterus and abdomen were chosen according to the above analysis at the organ level that the

geometry has little impact in the magnetic field pattern. We also defined the fetus to be a

solid sphere with a 12 cm radius concentric to the myometrium. The conductivity values

of the homogeneous and isotropic compartments are listed in Table 2.6. The anisotropy of

uterus was represented by the random conductivity tensor model and the surface normals
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(a) The position of Sensor MLJ4 of the SARA device

(b) The emergence and decay portions (1050 s− 1065 s, 1135 s− 1150 s) of real subject data collected
by Sensor MLJ4

Figure 2.12: The example trace of real subject data collected by Sensor MLJ4 of the SARA
device.

were specified relative to the mesh points of the uterus. We randomly chose the conductiv-

ities of uterus to be either 0 or sampled from a normal distribution such that the average

value matched the conductivity value in Table 2.4. We assumed that one initiation was
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located at the back of the uterus, centered at (0, 13.0, −7.5) cm. The stimulus current was

represented by Jstim(r, t) = 1
ε1 ∗ Vstim ∗ heaviside(t) ∗ heaviside(Tstim − t) ∗ heaviside(0.05 −

((y − cos(−π6 ) ∗ 0.15)2 + (z − sin(−π6 ) ∗ 0.15)2 + x2)1/2) ∗ cos(2π ∗ 0.05 ∗ (t − Tstim)) with

amplitude Vstim = 0.11 V and duration Tstim = 5 s.

Table 2.6: Conductivity values of the homogeneous and isotropic compartments.

Symbol Value
GA 0.2 [S/m]
GU 1.74 [S/m]
GF 0.5 [S/m]
Gair 5 ∗ 10−15 [S/m]
ζ 0.818

The limited propagation of the bursting-type transmembrane potential, as expected during

the emergence and decay of a new contraction, can be achieved either by simply electrically

isolating the limited propagation area or, more realistically, by having region-specific ionic

current model parameters. To test the more realistic limited-propagation approach, we set

the ionic current model parameters to lie within the limit cycle range for the region of uterus

less than 10 cm from the center of the initiation, and designed the parameters to be within

the stable equilibrium range outside this region (see Table 2.7 for detailed parameters).

The computation of the electromagnetic fields on the uterine and abdominal surfaces was

implemented using the finite element method (FEM) solver COMSOL Multiphysics version

4.3a on a server with 12 processors at 2.3 GHz and 64 GB RAM. We discretized the four-

compartment volume conductor into 1,181,186 tetrahedral elements, which were allocated

as: 109,237 elements in the additional compartment concentric to the abdomen with a 50

cm radius, 321,633 elements in the abdominal cavity, 555,180 elements in the myometrium,

190,289 elements in the intrauterine cavity, and 4,847 elements in the fetus. The uterine

and abdominal surfaces were divided into 38,844 and 6,834 triangular elements, respectively.
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Table 2.7: Region-specific ionic current model parameters.

Symbol Value within propagation area Value outside propagation area

cm 0.01 [F/m2] 0.01 [F/m2]
ε1 10 [Ωm2] 200 [Ωm2]
ε2 10 [s−1] 0.09 [s−1]
v1 −0.02 [V] −0.02 [V]
v2 −0.04 [V] −0.04 [V]
v3 −0.065 [V] −0.065 [V]
k 7000 [V−2] 10000 [V−2]
δ 0.052 [V] 0.052 [V]
γ 0.1 0.1
β 1 1

After the discretization, the computations of transmembrane potential, electrical potential,

and magnetic field were given in three steps. The first step to solve the 10-minutes uterine

transmembrane potential required four and a half hours when the number of degree of free-

dom was 223,274, while the solution time in the second step for electrical potential was seven

hours with the number of degree of freedom 1,440,961. In the computation of the abdom-

inal magnetic field, the number of degree of freedom was 1,579,337 and the corresponding

solution time was four hours when we applied the generalized minimal residual (GMRES)

solver.

Fig. 2.13 shows several snapshots of the real subject MMG and the FEM solution of our

forward model at three time instants within the limited propagation mode of a contraction

(i.e., during the beginning or end of a contraction). Fig. 2.13(a) provides the magnetic

field measurements of the pregnant woman during the two portions of a uterine contrac-

tion. Fig. 2.13(b) illustrates the simulated magnetic field on the abdominal surface and the

corresponding transmembrane potential on the uterine surface is shown in Fig. 2.13(c). We

observe that our multiscale forward model is able to capture certain features of the subject’s
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MMG recordings, such as the spreading pattern of magnetic field at different areas, by the

proper placement of the initiation and the restriction of the propagation area.

(a) Real subject data (b) Simulated MMG (c) Simulated transmembrane po-
tential

Figure 2.13: Real subject MMG data and FEM solution of our forward model at different
time instants.

2.6 Discussion

As an ionic current model, the FHN equations produced a fair approximation of the plateau-

type action potential [60]. In this work, we generated a periodic bursting-type action po-

tential by applying a periodic stimulus current into the FHN equations. Our simulation
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result at the cellular level shows that the simple spikes in a burst depolarize to an average of

−25 mV. However, the depolarization of bursting-type action potential in human myocytes

reported in [17] is much smaller (−42 mV). Note that in [60], the authors pointed out that

the model parameters v1, v2, v3, and k control the range of vm, which means that it is pos-

sible to generate a bursting-type action potential that matches experimental values in the

literature through adjusting parameters.

In our previous work, the magnetic field was recognized as highly dependent on the fiber ori-

entation of the myometrium. Our numerical simulation results (Fig. 2.11(a) and Fig. 2.11(d))

provide a good illustration that the direction and intensity of the magnetic field change signif-

icantly under different fiber orientations. The magnetic field recordings of pregnant women

obtained using the SARA device also demonstrate the relationship between the pattern of

the magnetic field and the complex fiber orientations. In order to obtain the best match to

subject recordings, fiber orientations should ideally be accurate to each individual subject.

Unfortunately, a widely accepted model of fiber architecture of the myometrium is currently

unavailable [13]. The current technique is to study the global fiber structure based on mag-

netic resonance (MR) diffusion tensor imaging (DTI). However, it is difficult to get approval

for MRI studies on pregnant women that are not medically indicated, thus making it chal-

lenging to obtain an accurate fiber structure for every pregnant woman. We can instead

apply an averaged fiber structure of human myometrium that can be obtained from MRDTI

studies on the subjects recruited in this project.

In our work, we assume that the abdomen follows the contour of the SARA device after

the pregnant woman sits and leans her abdomen against the device. This abdominal model

should be incorporated into our entire modeling if it could produce magnetic field that

matches more with real data. However, the magnetic field measured at the realistic abdomen
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(Fig. 2.11(c)) shows minimal changes when compared with that measured at the spherical

abdomen (Fig. 2.11(a)). In this sense, a sphere is suitable to represent the geometry of the

abdomen.

The spherical volume conductor geometry was thought to be an oversimplification of the

true geometry so that a more realistic model needs to be developed. However, the simulation

result for an anatomical uterus from the FEMONUM project (Fig. 2.11(b)) displays a quite

similar magnetic field pattern to that for a spherical one (Fig. 2.11(a)). The spherical uterus

assumption is appropriate for the SARA device analysis, since the shape of the SARA device

is concave, which is related to the shape of the abdomen. Despite a variety of uterine shapes

at different stages of pregnancy, a spherical geometry is therefore a good choice for simplified

modeling without causing too much distortion.

It is expected that each uterine myocyte can act as a pacemaker as well as a pacefollower. In

this work, we observe that the location of initiation has a significant impact on the magnetic

field pattern (Fig. 2.11(e)). The sensitivity of propagating direction to initiation locations

makes it possible for us to determine from real data where the initiation is located. Exploring

the configurations that characterize specific contraction patterns is exactly what we want to

achieve by developing the multiscale forward model of contractions in pregnant uterus.

Obtaining a better replication of real data in a relatively simple way is possible with the

following steps. Regarding the volume conductor geometry, we propose to use the simple

spherical model no matter which stage the pregnant woman is in and how her abdomen is

deformed. Accurate modeling for the conductivity tensor and initiation location is important

since they have a more significant effect on the pattern of magnetic field. The fiber orientation

should be averaged to population according to the MR DTI. A periodic bursting-type action

potential is introduced into our model by adding a periodic stimulus current in the FHN
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model. In [56], the ionic current model with a simple constant stimulus current produces

more complex action potentials other than the bursting-type one simply by adjusting the

model parameters, which makes it a perfect candidate as our ionic current model.

The simulation of our multiscale forward model to match with real MMG data shows that our

model is able to mimic the limited-propagation magnetic field patterns during the emergence

and decay of a uterine contraction. Note that this result is obtained by applying an excitation

at the back of the uterus, a random fiber direction, a simplified spherical volume conductor

geometry, and region-specific ionic current model parameters. Our model, therefore, can

flexibly mimic the magnetic field patterns at different stages of uterine contractions by simply

changing the model configuration. Our modeling approach enables us to test for different

scenarios hypothesized in the literature regarding the recruitment of different regions of

uterus during a contraction [33,70,71].

Our initial validation on real data shows that reproducing the magnetic field patterns for

a full uterine contraction process would require estimating model parameters for specific

subject and setting appropriate model configurations as described in Table 2.5. In fact, based

on our results, the magnetic field patterns are sensitive to ionic current model parameters,

myometrial fiber orientation, and initiation location. To estimate the configurations that best

predict the data of a particular subject, there is a need to formally solve the inverse problem

for uterine contractions using our proposed multiscale model. Given the MMG measurements

and our multiscale forward model, we can estimate the current density, conductivity tensor,

and initiation location by solving the inverse problem. Developing the multiscale forward

model is a prerequisite to solving the inverse problem, while solving the inverse problem

bridges the multiscale modeling and clinical applications.
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2.7 Summary

We developed a realistic multiscale forward model of contractions in the pregnant uterus

jointly at the cellular, tissue, and organ levels. Our approach incorporated current electro-

physiological and anatomical knowledge of uterine contractions to compute the abdominal

magnetic field. At the cellular level, we introduced a variation of the FitzHugh-Nagumo

equations to generate both plateau-type and bursting-type action potentials. Analytical ex-

pressions for the speed of propagation and frequency of the bursting potential were derived

and validated using numerical examples. We also designed a random conductivity tensor

model applicable to an arbitrary uterine shape at the tissue level. At the organ level, we

introduced a realistic anatomical model for the volume conductor geometry, based on mag-

netic resonance images of a pregnant woman. In order to simulate the real measurements

of the SARA device, we proposed an array sensor model on the abdominal surface. Finally,

we investigated the sensitivity of the magnetic field pattern to the configuration aspects us-

ing numerical examples. Since the volume conductor geometry rarely changes the pattern of

magnetic field, we conclude that the spherical shape approximates the geometry of the uterus

and abdomen well. We demonstrate that the fiber orientation and initiation location have

a great effect on the pattern of magnetic field. By appropriately setting the configurations

of our multiscale forward model, we demonstrate that it can capture the key characteristics

of the limited-propagation magnetic field pattern during the emergence and decay of the

uterine contractions.
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Chapter 3

Inverse Estimation of Uterine Source

Currents2

In Chapter 2, we proposed a realistic multiscale electromagnetic forward model of contractile

activities in the pregnant uterus. In this chapter, based on the developed model and by

solving the inverse problem, we will investigate the inner uterine source currents that are

responsible for the external magnetic fields on the abdominal surface.

In particular, we develop a linear forward approximation model, based on the quasistatic

Maxwell’s equations and a realistic four-compartment volume conductor, that relates the

magnetic fields to the source currents on the uterine surface through a lead-field matrix. To

compute the lead-field matrix, we use a finite element method that considers the anisotropic

property of the myometrium. We estimate the source currents by minimizing a constrained

least-squares problem to solve the non-uniqueness issue of the inverse problem. Because we

lack the ground truth of the source current, we propose to predict the intrauterine pressure

from our estimated source currents by using an absolute-value-based method and compare

2This chapter is based on M. Zhang, P. S. La Rosa, H. Eswaran, and A. Nehorai, “Estimating uterine
source current during contractions using magnetomyography measurements,” to appear in PLOS ONE.
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the result with real abdominal deflection recorded during contractile activity. We test the

feasibility of the lead-field matrix by displaying the lead fields that are generated by putative

source currents at different locations in the myometrium: cervix and fundus, left and right,

front and back. We then illustrate our method by using three synthetic MMG data sets,

which are generated using our previously developed multiscale model of uterine contractions,

and three real MMG data sets, one of which has simultaneous real abdominal deflection

measurements. The numerical results demonstrate the ability of our method to capture

the local contractile activity of human uterus during pregnancy. Moreover, the predicted

intrauterine pressure is in fair agreement with the real abdominal deflection with respect to

the timing of uterine contractions.

3.1 Introduction

It is an inverse problem to estimate the parameters of the source currents underlying uterine

contractions, such as their locations and time courses, from electromagnetic measurements.

Solving this inverse problem is important for understanding the physiological, functional,

and pathological properties of the uterus, which can be helpful in the diagnosis of labor and

treatment of obstetric syndromes associated with contractile dysfunction, such as preterm

birth, post-term birth, and dysfunctional labor, to name a few. Uterine contractile dys-

function during pregnancy is a significant healthcare challenge that has long-term medical

and financial consequences [2–4]. Therefore, investigating this inverse problem can lead to

considerable clinical benefits for both mothers and children.
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3.1.1 Previous approaches

There is little work focusing on estimating the source currents of uterine activities dur-

ing pregnancy [72, 73]. In [72], the authors investigated this problem based on simulated

electrohysterogram data, also known as EMG. However, EMG, which is recorded by elec-

trodes attached to the abdomen and arises from the volume current, is strongly dependent

upon tissue conductivity [40], resulting in severe attenuation when electrophysiological sig-

nals propagate to the abdominal surface. Unlike EMG signals, MMG signals are detectable

outside the boundary of the skin without making electrical contact with the body and are

independent of any kind of reference, thus ensuring that each sensor mainly records localized

activity. Moreover, MMG is more strongly coupled to the primary current and is much less

dependent on tissue conductivity [41]. The authors in [73] evaluated the ability of a simu-

lated full-coverage biomagnetic device to non-invasively monitor uterine magnetic activities.

The device, however, is currently unavailable for taking the MMG measurements. In [48],

the SARA device is developed to non-invasively collect the abdominal MMG data of uterine

contractions.

3.1.2 Our approach

In this work, derived from the quasistatic Maxwell’s equations, we develop a linear forward

model of the abdominal magnetic field of uterine contractile events with respect to source

current dipoles in an anisotropic myometrium. Specifically, taking into account the complex

volume conductor geometry, we apply the FEM method to numerically compute the lead-field

matrix that represents the linear relation. We estimate the source currents by minimizing

the least-squares error penalized by a `1 norm on the current dipoles, based on which we
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predict the corresponding intrauterine pressure in order to explore its clinical implications.

Using both synthetic MMG data, generated using our multiscale model of uterine contrac-

tions [74] presented in Chapter 2, and real MMG data sets, we show that the estimated

source current distribution in the myometrium matches with the synthetic source current

in the initiation and tissue recruitment in localized uterine contractions. We also validate

that our contractile pressure prediction from the estimated source currents resembles the

real abdominal deflection measurement, which is recorded simultaneously with the MMG

data, in the timing of the contraction process. To the best of our knowledge, our results are

the first to estimate source currents in the uterus during real contractions.

3.1.3 Mathematical notations

The mathematical notation used in this chapter is as follows: Italic lowercase or uppercase

letters denote scalars; bold italic lowercase letters indicate vectors; bold italic uppercase

letters denote matrices, except for vector fields, which are in bold calligraphic uppercase

e.g., electric field E, magnetic field B, current density J , and lead field L. The `1 and `2

norms defined in the Euclidean space are denoted by ‖ · ‖1 and ‖ · ‖2, respectively.

3.2 Real and synthetic data

The collection and preprocessing of real MMG data have already been presented in Sec-

tion 1.4 of Chapter 1. In this section, we describe the measurement of uterine shape change

that is recorded simultaneously with MMG and also the generation of synthetic MMG data.
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Three real MMG data sets were used for the estimation of uterine source current. Among

these data sets, one set has simultaneous recordings of the abdominal deflection, which

were collected using an air-filled bag that was placed between the maternal abdomen and

the SARA system. During uterine contractions, the pressure on the airbag induced by the

abdominal shape change was transmitted via a tube to a pressure sensor that was connected

to a standard fetal monitor which was located outside the shielded room. The output of the

monitor was digitized and synchronized with the MMG signals. This simultaneous recording

was performed as a proof of concept study and is difficult for routine application since noise

artifacts could be introduced in the MMG data due to application of an external device.

Synthetic MMG data sets were also employed to test our estimation approach. These syn-

thetic data sets were generated using our realistic multiscale electromagnetic model [74]

which is detailed described in Chapter 2. The volume conductor in this model is exactly the

same as the one in this inverse estimation work, and a sensor model is used to replicate the

true SARA sensor positions and sensing directions as illustrated in Fig. 1.4. In particular,

we represent the volume conductor as four compartments (from the inner layer to the outer

layer: fetus, amniotic fluid, uterus, and abdomen) with electrically conductive boundaries

between compartments (Fig. 3.1). Assuming the cylindrical symmetry of fibers, the aver-

age longitudinal and transversal conductivity values for the myometrium are 0.68 S/m and

0.22 S/m, respectively. The corresponding conductivity values for the abdomen, amniotic

fluid, and fetus are 0.2 S/m, 1.74 S/m, and 0.5 S/m, respectively.

Considering that fundus is one possibility among the sites that the uterine electrical acitivity

is observed to arise [75–77], we set the initiation to occur at the fundus in the simulations.

The final synthetic MMG data was generated by adding white noise with 5 fV/
√

Hz to the

original synthetic time courses.
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Figure 3.1: Four compartments of the volume conductor (from the outer layer to the inner
layer): the abdominal cavity, A; the myometrium, M; the amniotic fluid, U ; and the fetus,
F .

3.3 Linear forward model

In this section, we introduce a linear forward model for the magnetic field based on a lead-

field matrix that is constructed on the realistic four-compartment volume conductor.

3.3.1 Generation of electromagnetic fields

The electromagnetic fields of uterine contractions can be derived from the quasistatic ap-

proximation of Maxwell’s equations, since the frequency of the associated bioelectrical phe-

nomena is typically below 1 kHz. Thus the time derivatives of the electromagnetic fields can

57



be ignored as source terms. In the quasistatic approximation,

∇×E = 0, (3.1)

∇ ·E =
ρ

ε0
, (3.2)

∇×B = µ0J , (3.3)

∇ ·B = 0, (3.4)

where E and B are the electric and magnetic fields, respectively; ε0 and µ0 denote the

permittivity and permeability of the free space, respectively; and ρ and J are the total

charge density and current density, respectively. We divide the total current density, J(r),

into two components: the volume current, Jv(r) = σ(r)E(r), which is the result of the

macroscopic electric field in the volume conductor, and the primary current, Jp(r):

J(r) = Jp(r) + Jv(r)

= Jp(r) + σ(r)E(r),

(3.5)

where σ(r) is the macroscopic conductivity of the volume conductor. The primary current,

Jp(r), is related to the original biological activity, which is the source current density we

consider in this work. From Eq (3.1), the electric field, E, can be represented as the negative

gradient of a scalar electrical potential, V , as

E = −∇V. (3.6)
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Therefore, the total current density in Eq (3.5) becomes

J(r) = Jp(r)− σ(r)∇V (r). (3.7)

From Eqs (3.3) and (3.7), we obtain that ∇ · (∇×B) = 0 = µ0∇ · J = µ0∇ · (Jp − σ∇V ),

hence

∇ · (σ∇V ) = ∇ · Jp, (3.8)

which shows that the scalar electrical potential, V , can be solved analytically using FEM [78]

given the source current density, Jp, and proper boundary conditions.

3.3.2 Linear approximation

The forward problem in uterine contractions is to calculate the magnetic field, B(r), outside

the abdomen generated by the source current density, Jp(r), within the uterus. According

to the Biot-Savart law, the magnetic field can be computed as

B(r) =
µ0

4π

∫
J(r′)× l

l3
dv′, (3.9)

where l = r − r′ is the vector pointing from the source point r′ to the observation point r

with magnitude l = ‖l‖2. Here, the prime refers to quantities in the source region. Since
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l/l3 = −∇(1/l) = ∇′(1/l), Eq (3.9) becomes

B(r) =
µ0

4π

∫
J(r′)×∇′1

l
dv′

=
µ0

4π

∫ (
∇′ × J(r′)

l
−∇′ × J(r′)

l

)
dv′

=
µ0

4π

∫
∇′ × J(r′)

l
dv′ − µ0

4π

∫
∇′ × J(r′)

l
dv′

=
µ0

4π

∫
∇′ × J(r′)

l
dv′ − µ0

4π

∫
n̂′ × J(r′)

l
ds′,

(3.10)

where n̂′ is the unit normal vector pointing outwards the source surface. For the total

current density that approaches zero sufficiently fast when the source point, r′, goes to

infinity, Eq (3.10) becomes

B(r) =
µ0

4π

∫
∇′ × J(r′)

l
dv′. (3.11)

With Eq (3.7),

B(r) =
µ0

4π

∫
∇′ × (Jp(r′)− σ(r′)∇′V (r′))

l
dv′

=
µ0

4π

∫ (
∇′ × Jp(r′)

l
− ∇

′ × (σ(r′)∇′V (r′))

l

)
dv′.

(3.12)

Since ∇× (σ∇V ) = ∇σ ×∇V + σ∇×∇V = ∇σ ×∇V ,

B(r) =
µ0

4π

∫ (
∇′ × Jp(r′)

l
− ∇

′σ(r′)×∇′V (r′)

l

)
dv′. (3.13)
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With ∇σ × ∇V = V (∇ × ∇σ) − ∇ × (V∇σ) = −∇ × (V∇σ), the magnetic field, B, is

represented as

B(r) =
µ0

4π

∫ (
∇′ × Jp(r′)

l
+
∇′ × (V (r′)∇′σ(r′))

l

)
dv′

=
µ0

4π

∫
∇′ × (Jp(r′) + V (r′)∇′σ(r′))

l
dv′.

(3.14)

Based on the equivalence between Eqs (3.9) and (3.11), we obtain from Eq (3.14) that

B(r) =
µ0

4π

∫
(Jp(r′) + V (r′)∇′σ(r′))× l

l3
dv′. (3.15)

According to Eq (3.8), the electrical potential, V , in the above equation can be computed

from the source current density, Jp, and is linearly related to Jp. Therefore, based on

Eq (3.15), the magnetic field, B, is linearly related to the source current density, Jp [79].

Thus, there is a lead field, L(r, r′), relating the magnetic field measurement, B, at r to the

source current, Jp, at r′, satisfying

B(r) =

∫
L(r, r′) · Jp(r′) dv′. (3.16)

If the source current, Jp, is a current dipole with moment q = qdq in location rq, i.e.,

Jp(r) = qδ(r − rq), the magnetic field is given by

B(r) = L(r, rq) · q, (3.17)

where q = qdq denotes a current dipole with magnitude q pointing at direction dq.
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For simplicity, the orientation of the current dipole is assumed to be perpendicular to the

surface. When taking measurements using the SARA device, we cannot obtain all the

components of the magnetic field; instead, we get a specific sensor-oriented component.

Under these conditions, Eq (3.17) becomes

b(r) = L(r, r′)q, (3.18)

where b denotes the sensor-oriented magnetic field measurement that is generated by a

normal current dipole with magnitude q. Note that according to Eq (3.18), the lead field

L(r, r′) is exactly the same as the magnetic field measurement b at r if we apply a unit

normal current dipole with q = 1 at r′. If the volume conductor is spherically symmetric

and piecewise homogeneous, the lead field for the normal component of the magnetic field

has a closed form [79]. However, it is a great challenge to obtain an explicit expression for

the lead field in a complex volume conductor. We choose to solve this problem using FEM,

which is a powerful tool for numerically solving for the lead field since it can deal with the

anisotropy and realistic geometry in our volume conductor.

In this work, considering the random initiation area [22,23], we adopt the distributed source

current instead of a small number of current dipoles. In this case, a much larger number

(usually greater than 5, 000) of current dipoles are distributed over the whole myometrium.

Since the myometrium is a thin layer [9], it is feasible for us to assume that the source current

is limited to the external uterine surface. We divide the external uterine surface into small

elements and introduce a current dipole at every vertex of the elements. Therefore, the lead

field L(ri, r
′
j) is the numerical solution b(ri) of the sensor-oriented magnetic field at sensor
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location ri generated by a unit current dipole at r′j, i.e.,

L(ri, r
′
j) = b(ri) , g(ri, r

′
j), i = 1, 2, . . . ,M, j = 1, 2, . . . , N, (3.19)

where M is the number of SARA sensors and N denotes the number of current dipoles. The

linear relationship between the current dipole amplitudes qt and the measurements bt at

time t, therefore, is given by

bt =


bt(r1)

...

bt(rM)

 =


g(r1, r

′
1) . . . g(r1, r

′
N)

...
. . .

...

g(rM , r
′
1) . . . g(rM , r

′
N)



qt(r

′
1)

...

qt(r
′
N)

 = Gqt, t = 1, 2, . . . , T,

(3.20)

where

1. bt(ri), i = 1, 2, . . . ,M is the magnetic field measured by ith sensor at time t;

2. qt(r
′
j), j = 1, 2, . . . , N is the amplitude of the jth current dipole at time t;

3. G = {g(ri, r
′
j), i = 1, 2, . . . ,M, j = 1, 2, . . . , N} is the lead-field matrix, with g(ri, r

′
j)

obtained using Eq (3.19).

3.4 Inverse estimation of source currents

The data collected by all sensors at time t can be expressed as

bt = Gqt + et, (3.21)
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for t = 1, 2, . . . , T , where et is the measurement noise at time t. With the constructed

lead-field matrix G, we are interested in estimating the current dipole amplitudes qt from

the magnetic fields bt measured using the SARA device. In the MMG inverse estimation

problem, the number of unknowns, N , is usually greater than 5, 000, but the number of

measurements, M , is about one hundred. Because of this ill-posed nature, the inverse prob-

lem has an identifiability issue, in that there is no unique mathematically correct solution

for the problem. To resolve this issue, it is necessary to impose additional constrains on

the current dipoles. Here, we are interested in the most significant source currents, hence

we embed extra information as an `1 norm on the current distribution [80]. The resulting

convex optimization problem is known as the Lasso problem [81]:

q̂t = arg min
qt

1

2
‖bt −Gqt‖22 + λ‖qt‖1, t = 1, 2, . . . , T, (3.22)

where λ is a regularization parameter balancing the least-squares error and the `1 penalty. A

small λ puts more emphasis on the least-squares error, whereas large values of λ emphasize

the `1 penalty. Applying convex optimization algorithms [82], we can obtain the source

current amplitudes after solving this Lasso problem.

3.5 Prediction of intrauterine pressure

Clinically, uterine contraction is measured using either an external measuring device (TOCO)

or internal pressure device (IUPC). The TOCO technique is widely used by physicians as it

is simple and almost risk free to the mother and the fetus, but is qualitative only and does

not reflect the contractile intensity. IUPC is considered as a gold standard for assessing the

uterine contractions during labor. Uterine catheterization, however, is an invasive procedure
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that requires the rupture of the amniotic membranes. In this work, to show that our work

has clinical implications even without the ground truth of source currents, we predict the

intrauterine pressure from our estimated source currents.

The amplitude of the contractile pressure varies based on the uterine shape change. We

employ an absolute-value-based method [83] to predict the contractile pressure from our

estimated source currents. To each estimated source current at each location, we first apply

a 4th-order low-pass Butterworth filter with a cut-off frequency of 2 Hz and then downsample

the source currents with a sampling frequency of 4 Hz to lower the computational complexity.

After rectifying the source currents, we obtain the approximate energy by summing over all

locations. We then smooth the energy by applying a 4th-order low-pass Butterworth filter

with a cut-off frequency of 0.02 Hz and resample at the original sampling frequency, resulting

in our predicted contractile pressure measurement.

3.6 Numerical examples

In this section, we first illustrate the constructed lead-field matrix and then present numerical

examples using both synthetic and real MMG data to illustrate our approach.

For the construction of the lead-field matrix, we divided the external uterine surface into

12,412 vertices, i.e., N = 12, 412. The sensor-oriented magnetic field is measured on the

abdominal surface using the SARA device with 151 sensors, i.e., M = 151. The constructed

lead-field matrix G is therefore a 151-by-12,412 matrix, corresponding to the SARA device

with 151 sensors and 12,412 unit current dipoles on the external uterine surface.
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3.6.1 Validation of the constructed lead-field matrix

We displayed the lead fields corresponding to particular source locations on the SARA de-

vice to test the feasibility of the constructed lead-field matrix G. In order to present the

relationship between the lead field and source location and distance, the specific source lo-

cations were chosen to be pairs, such as cervix and fundus, left and right, front and back

(from the front perspective). The corresponding results are illustrated in Figs. 3.2-3.4. The

values of the spatial coordinates (x, y, z) are expressed in meters. Figs. 3.2 and 3.3 show

the source coordinates at the cervix (−0.022,−0.153, 0.007), fundus (0.044, 0.150, 0.038), left

(−0.109, 0.0007, 0.101), and right (0.106,−0.0004, 0.098) and the corresponding lead fields.

We observe that the magnetic field patterns appear at the corresponding surrounding areas

of the sources. The lead fields generated by the sources at the front (0.001,−0.075, 0.148)

and back (−0.0001,−0.075, 0.014) of the uterus are presented in Fig. 3.4. Note that the

magnetic-field intensity generated by a source at the front is higher than that generated by

the one at the back, which is in agreement with the inverse square nature of magnetic field

with respect to the distance between source and observation points.

3.6.2 Estimation using synthetic MMG data

We utilized three synthetic MMG data sets (see details in Table 3.1 and Figs. 3.5-3.7) to test

our inverse estimation approach. Since fundus is one of the sites where uterine contractions

are observed to arise [75–77], we excited the uterine activity at the upper left (from the

rear perspective) of the uterus in the simulations. The parameters of the cell-level model in

our multiscale model were set to generate plateau-type and bursting-type action potentials,

which are the two predominant types in both a single uterine smooth muscle cell and isolated

66



(a) A unit current dipole at the cervix
(−0.022,−0.153, 0.007)

(b) The corresponding lead field generated by the
unit current dipole at the cervix

(c) A unit current dipole at the fundus
(0.044, 0.150, 0.038)

(d) The corresponding lead field generated by the
unit current dipole at the fundus

Figure 3.2: Lead fields corresponding to unit current dipoles (locations highlighted in red)
at the cervix and fundus of the uterus.

strips of myometrium [17, 25]. In each simulation, the sampling frequency was 10 Hz with

simulation length of 10 s. We obtained the synthetic MMG data bt, t = 1, 2, . . . , 100 as

100 151-by-1 vectors and the lead-field matrix G as a 151-by-12,412 matrix, i.e., M = 151,

N = 12, 412, and T = 100.

The initiation area of the first two synthetic MMG data sets is illustrated in Fig. 3.8, in

which the uterus is drawn in blue with the initiation area highlighted in green. The contour
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(a) A unit current dipole on the left side
(−0.109, 0.0007, 0.101)

(b) The corresponding lead field generated by the
unit current dipole on the left

(c) A unit current dipole on the right side
(0.106,−0.0004, 0.098)

(d) The corresponding lead field generated by the
unit current dipole on the right

Figure 3.3: Lead fields corresponding to unit current dipoles (locations highlighted in red)
on the left and right side of the uterus.

Table 3.1: Details of three synthetic MMG data sets.

Data set
Initiation

area
Action

potential
Sampling
frequency

M N T

1 1 plateau 10 Hz 151 12,412 100
2 1 bursting 10 Hz 151 12,412 100
3 2 bursting 10 Hz 151 12,412 100
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(a) A unit current dipole on the front side
(0.001,−0.075, 0.148)

(b) The corresponding lead field generated by the
unit current dipole on the front

(c) A unit current dipole on the back side
(−0.0001,−0.075, 0.014)

(d) The corresponding lead field generated by the
unit current dipole on the back

Figure 3.4: Lead fields corresponding to unit current dipoles (locations highlighted in red)
on the front and back side of the uterus.

of the SARA device is sketched in black curves. The first data set represents the short-time

oscillations of magnetic field (Fig. 3.5(a)), that correspond to plateau-type action potential

recruiting a small region in the upper left of the uterus (Fig. 3.5(c)). In the second data

set, local activity of bursting-type action potential (Fig. 3.6(c)) was adopted to generate

long-time oscillations of magnetic field (Fig. 3.6(a)). Regarding the change of pacemaker

locations during a single contraction or successive contractions [23], we shifted the initiation
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(a) Synthetic MMG over all SARA sensors (b) Example traces from sensors MLQ3, MLJ2,
and MRD2, respectively

(c) Layout plot over SARA device

Figure 3.5: Sensor temporal courses of synthetic MMG Data set 1 in Table 3.1.

area from the location illustrated in Fig. 3.9(a) to that in Fig. 3.9(b) during one contraction,

resulting in a local contractile activity shown in Fig. 3.7(c).

In the literature, there are many ways to define the regularization parameter λ [84]. In

general, the degree of the regularization should be consistent with the level of noise involved

in the measurements. Therefore, the regularization parameter λ was set to be a little bit
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(a) Synthetic MMG over all SARA sensors (b) Example traces from sensors MLQ3, MLJ2,
and MRD2, respectively

(c) Layout plot over SARA device

Figure 3.6: Sensor temporal courses of synthetic MMG Data set 2 in Table 3.1.

greater than the noise in our estimation. The choice of the regularization parameter is

beyond the scope of this work.

Fig 3.10 shows the time courses of the estimated source currents for Data Set 1 in Table 3.1.

Here, we were interested in the ones with higher intensity, hence set the threshold of the

71



(a) Synthetic MMG over all SARA sensors (b) Example traces from sensors MLQ3, MLJ2,
and MRD2, respectively

(c) Layout plot over SARA device

Figure 3.7: Sensor temporal courses of synthetic MMG Data set 3 in Table 3.1.

absolute value of amplitudes to be 2 × 10−5. Fig. 3.11(a) illustrates snapshots of the es-

timated source currents on the uterine surface after thresholding at different time instants

t = 0.5 s, 1.0 s, 2.0 s. The synthetic source currents generated using our multiscale model

are presented as the Arrow Surface (red arrows on the uterine surface) in Fig. 3.11(b), in

which the synthetic MMG on the uterine surface is also displayed. Red arrows in this figure
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Figure 3.8: Location of the initiation area in the uterus for Data Sets 1 and 2 in Table 3.1.
Blue, uterus; green, initiation area; black, the contour of SARA device.

reflect the direction of the source current. We observe that the synthetic source currents

are distributed in a small local region in the upper left of the uterus at the beginning, then

appear in a constrained neighboring region, and finally return to quiescence. Comparing

Fig. 3.11(a) with Fig. 3.11(b), we can see that the distribution area of the estimated source

currents resembles that of the synthetic ones, although it is not exactly the same. Fur-

thermore, while we did not consider the tangential component of the source current, the

estimated source currents capture the emergence of local activities and the involvement of

a larger excited area in the following contractile activities, which are in agreement with the

tissue recruitment and contraction coordination via limited action potential propagation in

local contractions.
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(a) The first location (b) The second location

Figure 3.9: Locations of the initiation area in the uterus for Data Set 3 in Table 3.1. Blue,
uterus; green, initiation areas; black, the contour of SARA device.

(a) Estimated source current amplitudes at all
source locations

(b) Example traces of estimated source current
amplitudes at the fundus, middle, and cervix of
the uterus, respectively

Figure 3.10: Temporal courses of estimated source current amplitudes for Data Set 1 in
Table 3.1.
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(a) Estimated source current amplitudes (b) Synthetic source current amplitudes generated
by our multiscale model

Figure 3.11: Estimated and synthetic source current amplitudes at time instants t = 0.5 [s],
1.0 [s], 2.0 [s] for Data Set 1 in Table 3.1.
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The snapshots of the estimated source currents for Data Sets 2 and 3 in Table 3.1 are

illustrated in Figs. 3.12 and 3.13, respectively. We observe that similar results are obtained

for both data sets, i.e., the occurrence of local activity and recruitment of neighboring area

for the synthetic and estimated source currents are fairly well matched. Note from the

results at different time instants, t = 2.8 s and t = 7.0 s, in Fig. 3.13 that the estimated

source currents reflect the change of the excited area from the upper left to a relatively lower

position during the contraction, due to the initiation area change as shown in Fig. 3.9.

3.6.3 Estimation using real MMG data

We validated our inverse estimation method using three real data sets (see details in Ta-

ble 3.2). The temporal courses of signals after preprocessing are presented in Figs. 3.14-3.16.

Among these three data sets, Data set 1 includes simultaneous MMG and abdominal deflec-

tion recordings. The temporal course MMG signals over SARA sensors of Data set 1 are

illustrated in Fig. 3.14(a) with the corresponding abdominal deflection shown in Fig. 3.14(c).

The noisy signals in the top are due to maternal motion rather than uterine contractile ac-

tivity. We can see strong uterine activities in the lower right region of the abdomen (from

the rear perspective). MMG signals after preprocessing of Data sets 2 and 3 are given in

Figs. 3.15 and 3.16, respectively. In these two figures, subfigure a presents the layout plot

of MMG signals over the SARA sensors with high-amplitude signals highlighted in red. The

frequency spectrum in the frequency band of 0.1 − 1 Hz obtained from sensors in region

where strong uterine activities occur is given in subfigure c.

For the first MMG data set that lasts for 12 minutes, we removed MMG data from two noisy

sensors and also removed two corresponding rows of the lead-field matrix, thus obtaining the
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(a) Estimated source current amplitudes (b) Synthetic source current amplitudes generated
by our multiscale model

Figure 3.12: Estimated and synthetic source current amplitudes at time instants t = 0.5 [s],
5.0 [s], 9.0 [s] for Data Set 2 in Table 3.1.
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(a) Estimated source current amplitudes (b) Synthetic source current amplitudes generated
by our multiscale model

Figure 3.13: Estimated and synthetic source current amplitudes at time instants t = 0.5 [s],
2.8 [s], 7.0 [s] for Data Set 3 in Table 3.1.
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Table 3.2: Details of three real MMG data sets.

Data set Data M N T
1 MMG & abdominal deflection 149 12,412 23,040
2 MMG 148 12,412 16,001
3 MMG 148 12,412 19,201

(a) Layout plot of MMG signals over SARA
device

(b) Example MMG signal from Sensor MRA1 in the lower
right side of the abdomen

(c) Abdominal deflection

Figure 3.14: Preprocessed signals of Data set 1 in Table 3.2

MMG data bt, t = 1, 2, . . . , 23, 040 as 23,040 149-by-1 vectors and the lead-field matrix G

as a 149-by-12,412 matrix, i.e., M = 149, N = 12, 412, and T = 23, 040 (see Data Set 1 in

Table 3.2). The temporal courses of the MMG data over 149 sensors are shown in Fig. 3.17(a),

with amplitude in Tesla (T). The MMG data collected when the woman experienced no

contractions is at the level of several 10−13s. Therefore, the regularization parameter λ was

set to be 10−12, slightly greater than the noise, in this estimation. The estimated MMG and

source currents are shown in parts b and c of Fig. 3.17. As can be seen from Fig. 3.17, the

source-current patterns match well with the real MMG data, i.e., there are stronger source
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(a) Layout plot of MMG signals over SARA
device that covers one contraction (430 s−
490 s)

(b) Expanded view of MMG signals that were obtained from
10 sensors in the lower left side of the abdomen

(c) Frequency spectrum obtained from these sensors

Figure 3.15: Preprocessed MMG signals of Data set 2 in Table 3.2

currents underlying more intense uterine electrical activities. In addition, we observe that

the reconstructed MMG using our estimated source currents is in fair agreement with the

real MMG data. Fig. 3.18 shows several snapshots of the real MMG data and corresponding

estimated MMG and source current amplitudes. Fig. 3.18(a) illustrates the real MMG data

on the abdominal surface, and Fig. 3.18(b) shows the reconstructed MMG data on the

abdominal surface using the estimated source currents in the myometrium in Fig. 3.18(c).

According to the non-invasive MMG recording on the abdominal surface, the cervix is active
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(a) Layout plot of MMG signals over SARA
device that covers two contractions (580 s−
640 s)

(b) Expanded view of MMG signals that were obtained from
10 sensors in the upper right side of the abdomen

(c) Frequency spectrum obtained from these sensors

Figure 3.16: Preprocessed MMG signals of Data set 3 in Table 3.2

during this uterine contraction period, i.e., this contractile activity is constrained in the

lower left region of the uterus (from the front perspective). The estimated source currents

capture this local contraction: the source currents first arise in a small region in the lower

left part of the uterus, then appear in larger regions when the contraction becomes stronger,

and finally reverse this process.

For the other two data sets, we also removed the noisy sensors and the corresponding rows

of the lead-field matrix before estimation (see Data Sets 2 and 3 in Table 3.2). In Figs. 3.19

81



(a) Sensor temporal courses of real MMG
data

(b) Sensor temporal courses of the recon-
structed MMG using our estimated source
current

(c) Temporal courses of estimated source
current amplitudes

(d) Example traces of real MMG data, recon-
structed MMG, and estimated source current am-
plitude, respectively

Figure 3.17: Sensor temporal courses of estimated source current amplitudes and the corre-
sponding estimated MMG of Data Set 1 in Table 3.2.
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(a) Real MMG data on the ab-
dominal surface collected by the
SARA device

(b) Reconstructed MMG on the
abdominal surface, using our es-
timated source currents

(c) Estimated source current
amplitudes in the myometrium

Figure 3.18: Estimated source current amplitudes and the corresponding estimated MMG
of Data Set 1 in Table 3.2 at time instants t = 380 [s], 400 [s], 420 [s].

and 3.20, we illustrate the temporal courses and snapshots of the two MMG data sets and

the estimated source currents, respectively. We observe that the results are similar to those

of the first data set, i.e., the estimated source current density matches well with the local

contraction in the lower region and upper left region of the uterus, respectively.
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(a) Data Set 2 (b) Example traces for Data Set 2

Figure 3.19: Sensor temporal courses of estimated source current amplitudes and the corre-
sponding estimated MMG for Data Sets 2 and 3 in Table 3.2.
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(c) Data Set 3 (d) Example traces for Data Set 3

Figure 3.19: Sensor temporal courses of estimated source current amplitudes and the corre-
sponding estimated MMG for Data Sets 2 and 3 in Table 3.2 (cont.)
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(a) Real MMG data for Data Set 2 (b) Estimated source current amplitudes in the
myometrium for Data Set 2

Figure 3.20: Estimated source current amplitudes for Data Sets 2 and 3 in Table 3.2 at
different time instants t = 430 [s], 450 [s], 470 [s] and t = 377.75 [s], 380.75 [s], 383.75 [s],
respectively.
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(c) Real MMG data for Data Set 3 (d) Estimated source current amplitudes in the
myometrium for Data Set 3

Figure 3.20: Estimated source current amplitudes for Data Sets 2 and 3 in Table 3.2 at
different time instants t = 430 [s], 450 [s], 470 [s] and t = 377.75 [s], 380.75 [s], 383.75 [s],
respectively (cont.)
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3.6.4 Intrauterine pressure prediction

Currently, TOCO or IUPC is widely used by physicians for assessing uterine contractions

during pregnancy. To show the potential clinical implications of our source current esti-

mation despite the lack of ground truth, we predicted intrauterine pressure for Data Set

1 in Table 3.2, which includes simultaneous measurement of abdominal deflection during a

contraction as described earlier.

Fig. 3.21 shows the real abdominal deflection data in red and our predicted intrauterine

pressure in blue. We observe that 83.33% of the predicted intrauterine pressure peaks dis-

play good predictive timing of uterine contractions when compared with the real abdominal

deflection peaks. Note that the intrauterine pressure predicted from the myometrial source

currents is several seconds in advance of the measured abdominal deflection, which is in agree-

ment with the fact that the uterine electrical activities induce the increase of intrauterine

pressure. According to the estimated source currents, there exist local contractile activities

in uterus. Based on the mechanotransduction mechanism proposed in [35], a local contrac-

tion slightly increases the intrauterine pressure, resulting in a global wall tension increase

and the induction of more local contractions that generate high intrauterine pressure. One

possible reason for the difference of phase shifts between the real and predicted contractions

is that the predicted contractions are calculated based on the local activities while the real

ones are for the global change. The phase shift is dependent on the complex tissue recruit-

ment and contraction coordination following the local contraction. The predicted contractile

pressure curves for Data Sets 2 and 3 in Table 3.2 are also presented in Fig 3.22.
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Figure 3.21: Real abdominal deflection observed during a contraction (red) and our predicted
intrauterine pressure (blue) for Data Set 1 in Table 3.2.

3.7 Discussion

In this work, we tested our inverse estimation approach using synthetic MMG data sets

which were generated using our previously developed multiscale model. The initiation areas

were set at the fundus of the uterus (Fig. 3.8) and the resulting electrophysiological activity

further recruits more area of the uterus in local contractions (Figs. 3.11-3.12). In real high-

resolution recordings, there exist complex wave-propagation patterns, such as three or more

wavefronts emerging at different positions of uterus and time instants and propagating in

different directions [85]. According to our previous work [74], it is possible to obtain various

magnetic field patterns by changing the model configuration, such as initiation location,

initiation time, and fiber orientations, which will affect the emerging position, emerging

time, and propagating direction of the waves. MMG measurement is independent of any
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(a) Data Set 2

(b) Data Set 3

Figure 3.22: Predicted intrauterine pressure for Data Sets 2 and 3 in Table 3.2.
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kind of reference, thus ensuring that the SARA device measures localized activity. The

magnetic sensors of the SARA device are spaced 3 cm apart. Activities at different positions

should be differentiable if the distance between them is greater than the distance between

neighboring sensors. Our estimation result in Fig. 3.13 reflects the shift of excited areas in

uterus during one local contraction.

In our multiscale model, the coordination of uterine contractions is through the continuous

propagation of action potential in smooth muscle cells. However, animal and human data in-

dicates that action potentials propagate noncontiguously and over short distances [23,33,34].

During the local contractions in real MMG data, we observe that the estimated source cur-

rents arise not only continuously, but also in areas that are not the neighbor of initiation

area (Figs. 3.18 and 3.20). One possible explanation for this is the mechanotransduction for

long-distance signaling mechanism presented in [35]. Particularly in the mechanotransduc-

tion mechanism, one local contraction increases intrauterine pressure, then increases wall

tension, and induces more local contractions to generate strong uterine contractile activity.

Uterine activities are generated by myometrial source currents [34]. It is common to model

these currents using current dipoles [86]. According to the superposition principle, all com-

plex sources can be approximated by multiple current dipoles. In this work, we are interested

in the distribution of source currents and hence assume for simplicity that the current dipoles

are perpendicular to the surface of the myometrium. Our numerical results (Figs. 3.11-3.13,

3.18 and 3.20) show that the distribution of the source current estimation over the my-

ometrium is in agreement with the synthetic source current and the MMG pattern measured

using the SARA device, respectively. The snapshots of estimation results for synthetic MMG

data (Figs. 3.11-3.13) illustrate that our approach can track the emergence of local activity
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and the recruitment of larger area of source currents, although we do not consider the tan-

gential component. Furthermore, the contractile force assessment based on the estimated

source currents for real MMG data (Fig. 3.21) proves that the inverse solution characterizes

the timing of the contraction process as measured by the uterine shape change. Estimating

the directions of source currents can be accommodated using the same framework. In this

case, the inverse solution would be the amplitudes of the source currents in three orthogo-

nal directions at each vertex, calculated using the lead-field matrix, in which each column

corresponds to the lead field generated by a unit current dipole pointed in each direction.

Regarding the volume conductor, a set of concentric spheres with homogeneous and isotropic

conductivities is the simplest model, in which case the radial component of magnetic field

has a closed form with respect to a tangential current dipole [41, 79]. A variant on the

spherical model introduced in our previous work [60] is a set of spheres with the outer

uterine layer shifted to the front of the abdomen. In [87], a more complex volume conductor

represented by differently shaped ellipsoids is developed, which was constructed based on

anatomic diagrams from Hunter’s Anatomia Uteri Humani Gravidi [88]. In this project, we

applied a more realistic volume conductor, proposed in our previous work [74], based on the

MRI of a near-term woman and the abdomen that deforms to follow the SARA contour.

The spherical representation of the volume conductor geometry is a good approximation

at the early stage of pregnancy, and its lead field can be expressed in a closed form. Our

lead-field matrix, however, is constructed for a realistic geometry that is obtained after the

acquisition of anatomical magnetic resonance images of a pregnant, near-term woman. In

general, the computation of the lead field for this realistic geometry requires numerical solu-

tions, for which we applied the finite element method, considering the anisotropic property

of the myometrium. Numerical solution is computationally expensive and requires specifying
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conductivity values for each compartment. The conductivity values of the intracellular and

extracellular domains, unlike those of the abdomen, amniotic fluid, and fetus [89], have not

been reported. In this work, these values were obtained from the effective myometrium con-

ductivity calculated by applying Archie’s law [90]. Regardless, construction of a lead-field

matrix by using precise experimentally-confirmed conductivity values remains desirable.

The performance of the inverse calculation is sensitive to the regularization parameter λ. In

general, the degree of the regularization should be consistent with the level of noise in the

measurement data. Accordingly, the choice of λ is often determined by popular methods

such as the discrepancy principle, χ2 test, L-curve, and generalized cross validation [84]. In

this work, a fixed value of λ, determined according to the noise, was used for the estimation.

Although we did not choose an optimal value, λ was set to ensure that the signal to noise

ratios (SNRs) of the MMG data sets were in a consistent range in order to mitigate their

potential influence. We postulate that optimizing the regularization parameter will further

improve the performance of our estimation, the next natural research topic.

Source estimation has wide application in many different anatomical domains, such as the

brain, heart, and uterus [73,91–94]. The inverse problem is to estimate a large number of cur-

rent dipoles from about one hundred measurements, which is mathematically ill-conditioned

in the sense that various source configurations can produce the same magnetic field pattern.

To solve it, it is necessary to impose additional constrains on the current dipoles. Among

them, the most commonly used is the minimum-norm constraint, which imposes a weighted

`2 norm on the source current distribution [79, 95–97]. A nonlinear smooth constraint is

included using Bayesian methods [98], whose performance depends greatly on the choice of

prior distributions. In spite of these methods, it is quite difficult to validate the estimation

accuracy. However, our first attempt at source estimation for uterine contractions, despite
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its limitations, is promising. Future research on developing a method to solve this inverse

estimation is needed to achieve good estimation performance.

3.8 Summary

We proposed a method to estimate the underlying source currents in the myometrium from

non-invasive abdominal MMG measurements of uterine contractile activities during preg-

nancy. Our method incorporates electrophysiological and anatomical knowledge of uterine

contractions. We developed a forward model to describe the relationship between the ab-

dominal magnetic field and myometrial source currents based on a lead-field matrix, and we

used this model to compute the unknown source currents in the myometrium. We intro-

duced a realistic four-compartment geometry as the volume conductor model and a current

dipole as the source model. We also applied the finite element method to construct the lead-

field matrix. We obtained the estimation of underlying source currents in the myometrium

by solving a constrained optimization problem. Using an absolute-value-based method, we

also predicted the intrauterine pressure, which is clinically used for uterine contraction mea-

surements, from the estimated source currents. Finally, we displayed the lead fields that

are generated by unit current dipoles at particular locations and illustrated our approach

through numerical examples, using both synthetic and real MMG data. We then estimated

the source currents and predicted the intrauterine pressure to show its clinical implications.

Our work is potentially important as a starting point for characterizing underlying activities

of uterine contractions during pregnancy, and potentially for diagnosing contractile dysfunc-

tions.
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Chapter 4

Conclusions and Future Work

In this chapter, we summarize the key contributions of this work in Section 4.1 and discuss

the future work in Section 4.2.

4.1 Summary and conclusions

In this dissertation, based on MMG measurements, we studied the forward electromagnetic

modeling and inverse estimation of uterine contractions during pregnancy.

We proposed a realistic multiscale forward electromagnetic model of human uterine contrac-

tions during pregnancy. Our approach aimed at computing the abdominal magnetic field

that is generated by uterine activities, taking into account current electrophysiological and

anatomical knowledge of the uterus jointly at the cellular, tissue, and organ levels. We

applied a generalized version of the FitzHugh-Nagumo equations to each uterine smooth

muscle cell and investigated its parameter values using bifurcation analysis to model both

plateau-type and bursting-type action potentials. The simplicity and flexibility of this model

for capturing action potential characteristics make it a good candidate for the cellular model,
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although it does not consider detailed ionic dynamics such as those of Ca2+, K+, and Na+.

For the myometrium, considering the anisotropic property of tissue fibers, we designed a ran-

dom conductivity tensor model that is applicable to arbitrary uterine shapes. We divided

the entire uterus wall into 25 contiguous regions and assigned a random fiber orientation to

each region. We also derived analytical expressions for the propagation speed and spiking

frequency of the bursting potential. At the organ level, we introduced a realistic four-

compartment volume conductor, including the fetus, amniotic fluid, uterus, and abdomen,

based on the MRI of a near-term woman. We also proposed a sensor array model to rep-

resent the sensing directions of the SARA device that is used to take MMG measurements.

We illustrated our analysis of the cellular model parameters through a numerical example

with a periodic Heaviside stimulus current. The resulting resting potential is −55.5 mV and

the period of consecutive contractions is about 420 s, which closely approximate the real

human recordings. With numerical examples, we tested the sensitivity of MMG outputs

to our model configuration aspects, such as volume conductor shape, fiber orientation, and

initiation location and demonstrated that the last two are the main factors that affect the

MMG pattern. We also showed that tuning the parameters of our multiscale forward model

enables it to capture local uterine contractile activity that is observed in real MMG data.

To investigate inner uterine activity from external non-invasive recordings based on the model

we developed, we then developed a general analysis for the inverse problem involved in uter-

ine contractions during pregnancy. Our aim was to estimate the underlying source currents

that result in the abdominal MMG measurements. We applied distributed current dipoles

as the source model embedded in the previously developed realistic volume conductor. We

constructed a lead-field matrix based on the quasi-static Maxwell’s equations, using the fi-

nite element method to relate the sensor-oriented magnetic field to the unit current dipoles.

Based on this lead-filed matrix, we developed a linear approximation model representing the
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relationship between the abdominal MMG measurements and the amplitudes of the current

dipoles. To solve the non-uniqueness issue, we conducted the estimation by solving a con-

strained least-squares problem, focusing on the main source currents. Based on the estimated

source currents, we predicted the contractile pressure using an absolute-value-based method

to show the clinical implications of our work. We presented the lead-field matrix by display-

ing the lead fields corresponding to unit current dipoles in different areas of the myometrium,

including the fundus and cervix, and the left, right, front, and back sides. We illustrated our

approach through numerical examples with both synthetic MMG data, which were gener-

ated using our multiscale forward model, and real MMG data, which were collected using the

SARA device. Considering the random initiation area and the short-distance propagation of

the action potential, we assumed the initiation to be located at the fundus of the uterus and

set the parameters of our multiscale model to generate limited-propagation plateau-type and

bursting-type action potentials according to our previous bifurcation analysis. We showed

that our approach captures the local initiation, the further short-distance recruitment, and

the change of active areas of contractile activity during pregnancy. We also observed that

the predicted contractile pressure matches with the real uterine shape change with respect to

the timing of contractions. This should allow us to detect labor from external non-invasive

measurements, which is particularly important in the diagnosis and treatment of preterm

and post-term births.

4.2 Future directions

In this section, we discuss potential future research directions.
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Ionic current model: In this dissertation, we applied the FitzHugh-Nagumo equations as

the ionic current model at the cellular level in the multiscale forward model. Although this

model can capture the characteristics of action potential response, it includes no detailed

information about the dynamics of ions that are functionally important in uterine activity,

in particular Ca2+, Na+, and K+. The action potential of myocytes is attributed to the

entry of Ca2+ through voltage-sensitive Ca2+ channels, and possibly also through fast Na+

channels close to the end of the pregnancy. The differences in excitability between pregnant

and non-pregnant myometria are influenced by changes in K+ conductance, such as a de-

crease in the BKCa channel conductance and an increase in conductance through delayed

rectifier channels. Therefore, developing an ionic current model that includes the detailed

ion dynamics would make the multiscale model more realistic.

Anisotropy of myometrium: We have identified that the anisotropic property of the my-

ometrium greatly affects the magnetic field pattern of uterine contractions. However, there

is no widely accepted global model of the fiber architecture of the myometrium. Some local

structures exist according to the MRI DTI images of pregnant women. It would be helpful

to incorporate realistic fiber structures to make the multiscale model more accurate.

Mechanical force model: In the multiscale forward modeling work, we focused on the electro-

physiological and anatomical aspects of uterine contractions, but not the mechanical aspect.

A mechanical contraction is a result of shortening of the myometrial cells following their ex-

citation. It appears in the form of a force generation and an intrauterine pressure increase.

The force generation in the myometrial smooth muscle cells is controlled by the intracellular

Ca2+ concentration, which is highly related to the Ca2+ channels. It would be interesting to

develop a mechanical force model to describe the force generation, allowing further validation

of our multiscale model with real measurements.
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Source current direction: In the inverse problem work, we assumed that the current dipoles

were perpendicular to the myometrium surface. Although the inverse solution can capture

the characteristics of the local contractions during pregnancy, it would be interesting to

estimate the directions of the current dipoles, for which it is promising to apply the same

inverse estimation framework. In this case, the direction can be represented as three or-

thogonal components, and each column of the lead-field matrix would correspond to the

lead field generated by a unit current dipole in each component. The inverse solution would

be the amplitudes of the current dipoles in each component at the source locations. This

approach would help to investigate the propagation direction of source currents during the

contractions at term.

Regularization parameter: In this work, we chose a fixed value for the regularization param-

eter in solving the optimization problem. This parameter plays a critical role in balancing

the estimation error and sparse penalty. Therefore, obtaining an optimal value for this reg-

ularization parameter would provide a more accurate estimation of the contractile source

currents.

Inverse estimation method: Estimating the amplitudes of a large number of current dipoles

from hundreds of measurements is mathematically ill-posed. In this dissertation, we imposed

an `1-norm constraint on the amplitudes, focusing on the most significant source currents

that contributed to uterine contractions. It would be interesting to develop an estimation

method in order to achieve better performance.

Initiation localization: In this work, we found that the magnetic field measurements of uterine

activity can be greatly affected by the location of the initiation area. The myometrial smooth

muscle cells can function as pacemakers to spontaneously excite electric activity. However,

it is still uncertain whether a pacemaker mechanism exists in the uterus or not. In clinical
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experiments, uterine activities are observed to be initiated at any site of the myometrium, and

the initiation area can vary during subsequent contractions or even in a single contraction.

It would be illustrative to localize the initiation area to help determine the existence of

pacemaker cells in the uterus.

Prediction of labor: It would be interesting to predict labor based on the estimated inter-

nal uterine source currents together with the external measurements. This prediction is

extremely important in the timing of labor, which can help physicians to diagnose uterine

dysfunction associated with preterm or post-term bith and provide timely treatment.
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[96] Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum
norm estimates. Medical & Biological Engineering & Computing. 1994;32(1):35–42.
Available from: http://dx.doi.org/10.1007/BF02512476.

[97] Hauk O. Keep it simple: a case for using classical minimum norm estimation in the
analysis of EEG and MEG data. NeuroImage. 2004;21(4):1612–1621. Available from:
http://www.sciencedirect.com/science/article/pii/S1053811903007845.

[98] Baillet S, Garnero L. A Bayesian approach to introducing anatomo-functional priors in
the EEG/MEG inverse problem. IEEE Transactions on Biomedical Engineering. 1997
May;44(5):374–385.

[99] Hale JK, Buttanri H, Kocak H. Dynamics and Bifurcations. Texts in Applied Mathe-
matics. Springer New York; 1996.

109



Appendix A

Bifurcation Analysis of the

Generalized FitzHugh-Nagumo Model

The variation of the FitzHugh-Nagumo (FHN) equations is represented as

∂vm
∂t

=
1

ε1cm
(k(vm − v1)(v2 − vm)(vm − v3)− w + ν) , f1(vm, w), (A.1)

∂w

∂t
= ε2(βvm − γw + δ) , f2(vm, w). (A.2)

The nullclines of the FHN model are given by the following two equations

f1(vm, w) = 0, (A.3)

f2(vm, w) = 0. (A.4)

The vm-nullcline is a cubic function of vm, which is shown as

w = k(vm − v1)(v2 − vm)(vm − v3) + ν, (A.5)
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and the w-nullcline is a straight line as follows:

w =
β

γ
vm +

δ

γ
. (A.6)

The equilibrium of the FHN system is the intersection of these two nullclines, which is defined

as (v∗m, w
∗). The stimulus amplitude ν can then be denoted as a function of the equilibrium

v∗m with other parameters fixed:

ν(v∗m) = −k(v∗m − v1)(v2 − v∗m)(v∗m − v3) + (βv∗m + δ)/γ. (A.7)

We are interested in the case when there is always only one equilibrium in the FHN system

whatever the stimulus amplitude ν, for which the slope of the w-nullcline should be greater

than the maximal slope of the vm-nullcline. The slope of the straight w-nullcline is
β
γ , while

the maximal slope of the vm-nullcline is found at the point vm = v1 + v2 + v3
3 and it is equal

to
k(v1 + v2 + v3)

2

3 − k(v1v2 + v1v3 + v2v3). The condition for the existence and uniqueness

of equilibrium is therefore given by:

∆1 , (v1 + v2 + v3)
2 − 3(v1v2 + v1v3 + v2v3)−

3β

kγ
< 0. (A.8)

The local stability of the equilibrium is determined by linearization of the nonlinear FHN

model at the equilibrium, which is given by

∂

∂t
x = Dx, (A.9)
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where x =

 vm − v∗m

w − w∗

, and D is the Jacobian matrix at the equilibrium (v∗m, w
∗), which

is shown as follows:

D =

 ∂f1(vm, w)
∂vm

∂f1(vm, w)
∂w

∂f2(vm, w)
∂vm

∂f2(vm, w)
∂w




(v∗m,w∗)

,

 f1vm f1w

f2vm f2w


=

 q(v∗m, v1, v2, v3, k)
ε1cm − 1

ε1cm

ε2β −ε2γ

 ,

(A.10)

where q(v∗m, v1, v2, v3, k) = −3kv∗2m + 2k(v1 + v2 + v3)v
∗
m− k(v1v2 + v1v3 + v2v3). The solution

of Eq. (A.9) can be represented as

x(t) = exp(λt) v, (A.11)

where λ is the eigenvalue of the Jacobian matrix D and v is its corresponding eigenvector.

By solving the characteristic equation

det(D − λI) = 0, (A.12)

we obtain the relationship between eigenvalue λ and the equilibrium v∗m, which is given as

follows:

λ2 − (f1vm + f2w)λ+ (f1vmf2w − f1wf2vm) = 0. (A.13)

Depending on the values of eigenvalues, we can determine whether the equilibrium is stable

or not. Since we are interested in characterizing the stability of equilibrium as a function of
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model parameters, we need to compute eigenvalues as a function of these parameters and so

we assess stability through the evaluation of two conditions as presented in Table A.1.

Table A.1: Conditions for the stability of equilibrium.
Type Stability Eigenvalues (λ1 and λ2) Condition 1 Condition 2
saddle unstable λ1 > 0, λ2 < 0 or λ1 < 0, λ2 > 0 λ1λ2 < 0

node/focus stable Re(λ1) < 0, Re(λ2) < 0 λ1λ2 > 0 λ1 + λ2 < 0
node/focus unstable Re(λ1) > 0, Re(λ2) > 0 λ1λ2 > 0 λ1 + λ2 > 0

When the node or focus loses stability, it is possible to construct a bounding surface around

the unstable equilibrium. According to the Poincaré-Bendixson theorem [99], a limit cycle

must exit in the FHN system when the node or focus is unstable. In other words, the

behavior of the FHN system changes qualitatively from a stable equilibrium to a limit cycle.

Therefore, in order to identify the ranges of v∗m so that the FHN system has a limit cycle,

we need to compute condition 1 and condition 2 in Table A.1 under which the node or focus

is unstable, that is,

λ1λ2 = f1vmf2w − f1wf2vm = −ε2γ
q(v∗m, v1, v2, v3, k)

ε1cm
+

ε2β

ε1cm
> 0, (A.14)

λ1 + λ2 = f1vm + f2w =
q(v∗m, v1, v2, v3, k)

ε1cm
− ε2γ > 0. (A.15)

With the condition (A.8), the discriminant of inequality (A.14) is negative. Therefore,

inequality (A.14) is satisfied for all v∗m so that we only need to consider inequality (A.15). If

the discriminant of the quadratic polynomial in inequality (A.15) is negative, the inequality

is also satisfied for all v∗m. In this work, we are interested in the case when the quadratic

polynomial has positive discriminant, i.e.,

∆2 > 0, (A.16)
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where ∆2 = (v1 +v2 +v3)
2−3(v1v2 +v1v3 +v2v3)− 3ε1ε2cmγ

k
, in which case inequality (A.15)

is satisfied if

v1 + v2 + v3 −
√

∆2

3
< v∗m <

v1 + v2 + v3 +
√

∆2

3
. (A.17)

In a word, the equilibrium is unstable and instead the FHN system has a limit cycle if the

equilibrium satisfies inequality (A.17) with the parameters v1, v2, v3, k, β, γ, ε1, ε2, cm

satisfying inequalities (A.8) and (A.16). Together with Eq. (A.7) and inequality (A.17), we

finally obtain the range of the stimulus amplitude ν to produce a limit cycle.

At the transition point (the point at which equilibrium loses stability), the real parts of

eigenvalues vanish and the eigenvalues are

λ1,2 = ±i
√
f1vmf2w − f1wf2vm . (A.18)

These eigenvalues correspond to an oscillatory solution, i.e., spike trains, with a frequency

given by

ω =
√
f1vmf2w − f1wf2vm =

√
ε2
ε1cm

√
−γq(v∗m, v1, v2, v3, k) + β. (A.19)

According to Eq. (A.7), v∗m in the above equation is a function of v1, v2, v3, k, β, δ, γ, ν.

Hence, the frequency can be represented as

ω =

√
ε2
ε1cm

g(v1, v2, v3, k, β, δ, γ, ν), (A.20)

where g(v1, v2, v3, k, β, δ, γ, ν) =
√
−γq(v∗m, v1, v2, v3, k) + β, which is a function of v1, v2, v3,

k, β, δ, γ, ν.
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