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Effects in the Wray-Agarwal Turbulence model 
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Research Advisor: Ramesh Agarwal 

 

Computational Fluid Dynamics (CFD) has now become an almost indispensable tool for modern 

engineering analysis of fluid flow over aircrafts, turbomachinery, automobiles, and many other 

industrial applications. Accurate prediction of turbulent flows remains a challenging problem. The 

most popular approach for simulating turbulent flows in complex industrial applications is based 

on the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations. RANS equations 

introduce the so called “Reynolds or turbulent stresses” which are generally modeled using the 

Boussinesq approximation known as “Turbulence modeling.” Despite their development over a 

century, the turbulence models used with RANS equations still need much improvement. The first 

part of this research introduces the Quadratic Constitutive Relations (QCR), which is a nonlinear 

approach to approximating the turbulent stresses in eddy-viscosity class of turbulence models. In 

Boussinesq approximation, turbulent stresses are assumed to be linearly proportional to the strain 

with eddy viscosity being the proportionality constant.  In recent years it has been found that linear 

eddy viscosity models are not accurate for prediction of vortical flows and wall bounded flows 

with mild separation with regions of recirculating flows. Such flows occur in junctions of 

aerodynamic surfaces e.g. the wing-body junction and in inlets and ducts with corners. The 
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accurate prediction of these flows is needed for design improvements and better product 

performance. To remedy some of the shortcomings of the linear eddy-viscosity models, the 

Quadratic Constitutive Relation (QCR) for eddy viscosity is investigated to test its capability for 

predicting non-equilibrium turbulence effects. QCR is implemented in Spalart-Allmaras (SA), 

SST k-ω and Wray-Agarwal (WA) turbulence models and is applied to several applications 

involving large recirculating regions. It is demonstrated That QCR improves the results compared 

to linear eddy viscosity models. Another shortcoming of RANS models is their inability to 

accurately predict regions of transitional flow in a flow field. Many flow regions in industrial 

applications contain the transitional flow regime e.g. flows over aircraft wings and fuselages, past 

wind turbines and in gas turbines engines to name a few. The second part of this research has been 

on the development of a transitional model by suitably combining a correlation based 

intermittency-γ equation with the WA turbulence model; this new model is designated as Wray-

Agarwal-γ (WA-γ) transition model. The WA-γ is extensively validated by computing a number 

of benchmark cases. The WA-γ model is also extended to include the crossflow-instability induced 

transition which is a dominant mode of transition in flows involving three-dimensional boundary 

layers, e.g. flow past swept wings and ellipsoids. This modified WA-γ model is validated using a 

benchmark test case for analyzing crossflow-induced transition. 
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Chapter 1: Introduction 

1.1 Background and Motivation 
Computational Fluid Dynamics (CFD) is an important tool in today’s modern engineering analysis 

for aircraft, turbomachinery, automobiles, and many other industrial applications. Majority of 

flows in industrial applications are turbulent. Accurate prediction of turbulent flows remains a 

challenging problem. The most popular and widely used approach for simulating turbulent flows 

is the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations. The RANS equations 

include ‘turbulent stresses’ that are modeled in order to achieve closure to the equations. RANS 

equations introduce a great deal of empiricism and despite their many decades of use, the 

turbulence models required with these equations still need much improvement; for example, these 

models can fail to accurately capture flow separation in wall bounded flows in adverse pressure 

gradients, and secondary flows in corner flows. Standard RANS models are also limited to the 

predictions of turbulent flow regimes and cannot predict transition. Many of the aforementioned 

industrial applications can undergo flow transition, which can greatly influence the performance 

of the industrial device/product. 

1.2 Objectives 
The goal of this research is to study ways to extend the capabilities of modern RANS models, or 

develop new turbulence models e.g. the newly developed one equation Wray-Agarwal turbulence 

model. The first part of the research in this dissertation introduces the Quadratic Constitutive 

Relations (QCR), which is a nonlinear approach to solving the turbulent stresses for eddy-viscosity 

models. Normally, eddy-viscosity models use a linear approach (the Boussinesq approximation) 

to model turbulent stresses, but they appear to lack   the capability for prediction of vortical flows, 
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secondary flows, and wall bounded flows with mild separation (regions of recirculating flows). 

The secondary flows occur in junctions of aerodynamic surfaces e.g. the wing-body junction and 

in inlets and ducts. The accurate prediction of these flows is needed for design improvements and 

better performance of industrial devices. To remedy some of the shortcomings of the linear eddy-

viscosity models, the Quadratic Constitutive Relation (QCR) for eddy viscosity has been proposed 

in the literature. The first part of this research aims to show that QCR can improve a turublence 

model’s capability for predicting non-equilibrium turbulence effects. 

Another shortcoming of RANS models is their inability to accurately predict regions of transitional 

flow. Many flow regions in industrial applications fall into the transition regime e.g. flows over 

aircraft wings and fuselages, past wind turbines and in gas turbines engines  to name a few. The 

second part of this research aims at first developing and validating a transitional flow model with 

crossflow instabilities based on the Wray-Agarwal (WA) turbulence model. By including a 

correlation based intermittency (γ) model, the WA-γ transition model is validated by computing a 

number of test cases for transitional flow over a flat plate, simple and multi-element airfoils, and 

an inclined prolate spheroid.  

 

1.3 Outline 
The goal of this dissertation is twofold: (1) To examine the applicability of the QCR method when 

applied to RANS equations by numerically analyzing a number of benchmark test cases that 

contain secondary recirculating flows and (2) to extend the capabilities of original baseline WA 

model by including an intermittency equation based on the local correlation-based transition-

modelling concept, and then extend this transition model concept to include three-dimensional 

geometries with the inclusion of a crossflow-instability model.  
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A brief summary of various chapters and their content is given below:  

Chapter 2: Turbulence Modeling: This chapter briefly describes the concept of turbulent flows 

and turbulence modeling. The main approach for computing turbulent flows namely the Reynolds-

Averaged Navier-Stokes (RANS) equations and eddy-viscosity models are introduced along with 

the formulation of the newly developedWray-Agarwal turbulence model. The concept behind the 

Quadratic Constitutive Relation and the local correlation-based transition-modelling are briefly 

discussed. A brief introduction to computational fluid dynamics (CFD) is given, along with the 

software employed for developing and testing the new models. OpenFOAM is used to develop the 

new models and compute the validation cases. 

Chapter 3: The Quadratic Constitutive Relation: In this chapter, the formulation of the 

Quadratic Constitutive Relation is given. Numerical results of benchmark and validation test cases 

are provided to show that the QCR relation does not degrade the performance of the linear eddy-

viscosity models; it only improves the performance and some cases dramatically. To show 

substantial improvement in results using QCR in turbulence models, several benchmark cases of 

corner flows test in ducts are computed for both incompressible and compressible flow.  

Chapter 4: Laminar-Turbulent Transition: This chapter provides a detailed implementation of 

the intermittency equation with the Wray-Agarwal Wall-distance free turbulence model, which 

results in the WA-γ transition model. The transition correlation constants in the WA-γ model are 

validated by computing the benchmark test cases of flow past a flat plate in zero-pressure gradient 

and in pressure gradient comparing the results with the experimental data from ERCOFTAC online 

database. Several other application test cases for flows over airfoils and non-symmetrical bodies 
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are also computed to show the accuracy of this transition model compared to other existing 

transition models in the literature. 

Chapter 5: Implementation of Crossflow Transition Effects in the WA-γ Model: A brief 

introduction of crossflow-instability induced transition is given, followed by a detailed 

implementation of the crossflow transition correlation into the local correlation-based WA-γ 

transition model described in chapter 4 to develop the WA-γ-Crossflow transition model. The new 

model is validated by performing numerical analysis of flow over a prolate spheroid, which is a 

benchmark test case for analyzing crossflow-induced transition.  

Chapter 6: Summary and Future Work: This chapter provides a summary of the work 

accomplished in this dissertation with discussion of the results obtained with the integration of 

QCR in existing turbulence models (SA and SST k-ω) and in the WA model, and the newly 

developed WA-γ transition model. Future work describes ways to extend the WA-γ transition 

model to include the roughness effects.  
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Chapter 2: Introduction to Turbulence 

Modeling 

2.1 Reynolds-Averaged Navier Stokes Equations 
Laminar flow behavior can be calculated precisely using the Navier-Stokes equation if the 

boundary of a laminar flow region can be accurately described. This is because laminar flow is 

determined by a single length scale, which typically comes from the boundaries of the flow region. 

On the contrary, when flow becomes turbulent the fluctuations can only be fully characterized by 

an infinite number of length and time scales that vary from small to large values. The oldest model 

developed to mathematically approximate turbulent flow behavior is based on time-averaging of 

the Navier-Stokes equations which results in the Reynold-Averaged Navier-Stokes (RANS) 

equations. RANS averaging result in “turbulent stresses” or “Reynolds Stresses” that require 

modeling using empiricism. The most common models are the linear eddy-viscosity type transport 

models, being the simplest models that can be easily solved with RANS equations. However, they 

are not accurate in modeling flow separation, secondary flows in curved ducts and corners, vortical 

and recirculating flows, and flow transition. 

2.2 Eddy-Viscosity Turbulence Models 
The most common turbulence models are the linear eddy-viscosity type transport models, being 

the simplest models that can be easily solved with RANS equations. “Reynolds Stresses” are 

usually modeled using the eddy viscosity concept in the stress-strain constitutive relation. These 

models solve the turbulent transfer of momentum by eddies giving rise to an internal fluid friction. 

The models have many empirical relations and coefficients which are determined by comparison 

of the computations with the experimental data. Although no model has clearly emerged as 

superior, the Spalart-Allmaras (SA) one equation eddy-viscosity model [1] and the Shear Stress 
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Transport (SST) k-ω two equation model [2] are the most prevalent and widely used turbulence 

models in the industry. The versatility of these models in computing many aerodynamic flows with 

reproducible results using majority of CFD solvers makes them very popular. However, there are 

difficulties and challenges in predicting turbulent flows over complex 3D geometries with massive 

separation that need to be addressed; they cannot be accurately predicted by SA or SST k-ω 

models. This is due to the models containing  a great deal of empiricism that has resulted in model 

coefficients to be calibrated for only a small number of simple shear and wall bounded flows. 

2.3 Wray-Agarwal Turbulence Model 
The recently developed one equations Wray-Agarwal turbulence model [3] (WA2017) is a new 

linear eddy-viscosity turbulence model derived from k-ω closure. In this model, a new variable R 

is introduced which is defined as k/ω. It includes a cross diffusion term and a blending function 𝑓1 

to switch between the two destruction terms. The equation of WA2017 model is shown in Eq. 

(2.1). 

𝜕𝑅

𝜕𝑡
+
𝜕𝑢𝑗𝑅

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

− (1 − 𝑓1)𝐶2𝑘𝜀𝑅
2(

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
) 

 

(2.1)  

The turbulence eddy viscosity is given by the equation:  

𝜈𝑇 = 𝑓𝜇𝑅 (2.2)  

The wall blocking effect is accounted for by the damping function 𝑓𝜇. The value of 𝐶𝑤 was 

determined by calibrating the model to a simple zero pressure gradient flat plate flow. 𝜈 has the 

usual definition of kinematic viscosity. 
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𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3 , 𝜒 =

𝑅

𝜈
 (2.3)  

S is the mean strain described below.  

𝑆 =  √2𝑆𝑖𝑗𝑆𝑖𝑗 , 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (2.4)  

The model can behave either as a one equation k-ω or one equation k-ε model based on the 

switching function 𝑓1. The switching function 𝑓1 is limited by an upper value of 0.9 for better 

stability.    

𝑓1 = 𝑚𝑖𝑛(𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4), 0.9) (2.5)  

𝑎𝑟𝑔1 =
1 +

𝑑√𝑅𝑆
𝜈

1 + [
𝑚𝑎𝑥(𝑑√𝑅𝑆, 1.5𝑅)

20𝜈
]

2 (2.6)  

 

The values of constants used in WA2017 model are listed below [4].  

𝐶1𝑘𝜔 = 0.0829    𝐶1𝑘𝜀 = 0.1127 

𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜀) + 𝐶1𝑘𝜀 
𝜎𝑘𝜔 = 0.72    𝜎𝑘𝜀 = 1.0 

𝜎𝑅 = 𝑓1(𝜎𝑘𝜔 − 𝜎𝑘𝜀) + 𝜎𝑘𝜀 
𝜅 = 0.41 

𝐶2𝑘𝜔 =
𝐶1𝑘𝜔
𝜅2

+ 𝜎𝑘𝜔    𝐶2𝑘𝜀 =
𝐶1𝑘𝜀
𝜅2

+ 𝜎𝑘𝜀 

𝐶𝑤 = 8.54 

(2.7)  

The WA2017 model has shown improved accuracy over the SA model as well as being competitive 

with the SST k-ω model for a wide variety of wall-bounded and free shear layer flows [4]. The 

WA2017 model has the advantage in efficiency over multi-equation models in computational cost. 

Even though the WA2017 model appears promising, it also has limitations in accuracy for 

computing secondary flows and transitional flows. 
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2.4 The Quadratic Constitutive Relation  
In an attempt to improve RANS models, specifically linear eddy-viscosity models, new empirical 

terms in the Reynolds-stress tensor are added. The Quadratic Constitutive Relation (QCR)[5] 

modifies the traditional linear model of the Reynolds-stress tensor into a nonlinear form. The 

approximation introduces a fair level of anisotropy within the outer region of a simple boundary 

layer u'2 > w'2 > v'2 (the streamwise, spanwise and wall-normal Reynolds stresses, respectively). 

This approximation has shown improved results for some corner flows, but overall very limited 

testing has been done using this nonlinear approximation. QCR can improve a model’s capability 

for predicting non-equilibrium turbulence effects. This work investigates the influence of QCR by 

applying it to the Spalart-Allmaras (SA), Shear-Stress-Transport (SST) k-ω, and WA models. The 

SA - QCR, SST - QCR and WA- QCR models and standard SA, SST k-ω, and WA models are 

used to compute several canonical flows. Formulation of QCR is derived in a later section of this 

thesis.  

2.5 Laminar-Turbulent Transition Modeling 
Transition modeling has been a very challenging task in the turbulence modeling community due 

to many factors; lack of experimental data, complexity of transition physics, and the fact that 

transition can occur in at least four different modes which are known in the literature as natural 

transition, bypass transition, separation-induced transition, and crossflow induced transition. It is 

unlikely that all these mechanisms of transition, or even a few of them, could be modeled in 

physics-based equations framework. Currently, the most widely known and used model for 

computing transition is the four-equation SST-Transition model developed by Menter et al. [2]. 

This model is based on three correlations, which are functions of the local transition onset 

momentum thickness Reynolds number obtained from a transport equation. Recently, a three-
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equation model was developed based on the local correlation-based transition-modeling (LCTM) 

concept, removing the need for a transport equation for the transition onset momentum thickness 

Reynolds number [6]. The LCTM concept was developed as a unified concept, which could 

eventually handle all different mechanisms of transition. LCTM is a set of CFD compatible 

transport equations, which allow combining experimental correlations in a local fashion with the 

underlying turbulence model. This work intends to extend the capabilities of the WA turbulence 

model capabilities with the LCTM concept and run benchmark transition validation and 

application test cases. The goal is to create a WA transition model that will be Galilean invariant, 

provide meaningful coefficients that can be easily fine-tuned to match specific application areas, 

and reduce the formulation to a two transport equation transition model with substantially 

improved efficiency. 

2.6 OpenFOAM 
All numerical analysis in this research was performed using the CFD flow solver OpenFOAM 

(Open source Field Operation And Manipulation). OpenFOAM is an open source CFD software 

developed on Linux operating system initially released in 2004. The software continues to be 

supported by the addition of all kinds of CFD capability in complex fluid physics modeling, type 

of grids and numerical algorithms, and turbulence models. It has several well-known turbulence 

models; namely the SA model, SST k-ω model, and k-ϵ model. It can therefore be used for wide 

range of applications, including incompressible and compressible turbulent flows, buoyancy-

driven flows, multiphase flows, and turbulent flow applications with heat transfer, combustion and 

particle dynamics etc. 

In contrast to other commercial CFD software, OpenFOAM provides the source code which makes 

it easy to modify and to add new models, algorithms and other upgrades. It has been developed in 
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C++ programming language which has many good features like modularity and extensibility. 

Users can easily and effectively develop and test the new CFD capability. This is a much less 

tedious process to implement new capability in OpenFOAM than in executable commercial 

software.  

All simulation in this work are performed using OpenFOAM, and new models are developed and 

implemented as OpenFOAM libraries. All simulations use second-order upwind discretization or 

similar second order accurate schemes for the convection terms and second-order central 

differencing for viscous terms. All incompressible simulations use steady-state solution schemes, 

with a few exceptional cases using a combination of transient and steady-state solution schemes 

using the PISO and SIMPLE algorithms respectively, to reach a converged solution. Compressible 

cases utilize a local transient solver based on Kurganov-Tadmore scheme for compressible flows 

and PISO method.  
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Chapter 3: The Quadratic Constitutive 

Relation 

3.1 Formulation 
The QCR relation has no effect on how the three turbulence models solve for the eddy viscosity 

but instead it alters the way turbulent stresses are calculated. The traditional linear Boussinesq 

relation gives: 

 

 𝜏𝑖𝑗 = 2µ𝑡 (𝑆𝑖𝑗 −
1

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗) −
2

3
𝜌𝑘𝛿𝑖𝑗 (3.1)  

 

The QCR relation modifies Eq. (3.1) to the following form: 

 

 𝜏𝑖𝑗𝑄𝐶𝑅 = 𝜏𝑖𝑗 − 𝐶𝑐𝑟1[𝑂𝑖𝑘𝜏𝑗𝑘 + 𝑂𝑗𝑘𝜏𝑖𝑘] (3.2)  
 

where τij are the turbulent stresses computed from the linear Boussinesq relation (3.1) and Oik is 

an antisymmetric normalized rotation tensor defined as: 

 𝑂𝑖𝑘 = 2𝑊𝑖𝑘 √
𝜕𝑢𝑚
𝜕𝑥𝑛

𝜕𝑢𝑚
𝜕𝑥𝑛

⁄  (3.3)  

 

 𝑊𝑖𝑘 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑘

−
𝜕𝑢𝑘
𝜕𝑥𝑖

) (3.4)  

 

The denominator of the Eq. (3.3) for Oik expands to: 

 

 √
𝜕𝑢𝑚
𝜕𝑥𝑛

𝜕𝑢𝑚
𝜕𝑥𝑛

= √𝑢𝑥2 + 𝑢𝑦2+𝑢𝑧2 + 𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2 + 𝑤𝑥2 + 𝑤𝑦2 + 𝑤𝑧2 (3.5)  

 

Thus QCR can be used with any turbulence model that employs the Boussinesq relation for 

computation of eddy viscosity. Additional information about the QCR relation can be found in 

Ref. [5]. 
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3.2 Computation of Benchmark Flows 

3.2.1 Flat Plate Flow 

A turbulent flat plate boundary layer is a widely used simple verification and validation test case. 

RANS turbulence models have no problem in accurately predicting the turbulent boundary layer 

and are often calibrated by computing this flow. The Reynolds number of the flow is Re = 5x106 

based on the upstream flow of M = 0.2 and reference length of one meter. The computational grids 

used were taken from the NASA Turbulence Modeling Resource (TMR) website [7]. The 

computational grid with every other node and the boundary conditions are shown in Fig.3.1.  

 

 

Figure 3.1: Grid and boundary conditions for subsonic flow past a flat plate. 

To test the correct implementation of QCR in OpenFOAM, QCR results were first compared to 

the standard models (SA and SST k – ω) results. Figures 3.2 and 3.3 show that the results of SA-

QCR and SST-QCR for skin friction on the flat plate match very well with the standard SA and 

SST k-ω results from NASA TMR [7]. This calculation validates the QCR implementation in 

OpenFOAM. Figure 3.4 compares the skin friction obtained using WA-QCR with that obtained 

with SA-QCR and SST - QCR. The comparison shows that all three QCR models are in excellent 

agreement with one another as well as with the NASA TMR [7] results.  

X 

(a) 

X 

(b) 

Y Y 
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Figure 3.2: Skin Friction Coefficient results for SA - QCR compared to NASA TMR results [7].  

  

Figure 3.3: Skin Friction Coefficient results for SST - QCR compared to NASA TMR results [7].  
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Figure 3.4: Skin Friction Coefficient results for WA - QCR compared to results from SA- QCR and SST-

QCR.  

Velocity profiles computed from different QCR models are also compared. Let u+ be the 

dimensionless velocity defined by: 

 𝑢+ =
𝑢

𝑢𝜏
 (3.6)  

where u is the fluid velocity in the x-direction and uτ is the shear velocity given by: 

 𝑢𝜏 = √
𝜏𝑤
𝜌

 (3.7)  

 

In Eq. (3.7), τw is the wall shear stress calculated numerically by OpenFOAM and ρ is the density. 

The dimensionless y-coordinate away from the wall, y+, is given by the following equation: 

 𝑦+ =
𝑦 ∗ 𝑢𝜏
𝑣

 (3.8)  

 

where ν is the kinematic viscosity. These dimensionless variables are calculated using the 

numerical solutions for wall shear stress and stream-wise velocity obtained with SA-QCR and 

SST-QCR at x = 0.97; these are compared to the results from NASA TMR as shown in Figs. 3.5 

and 3.6. 
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Figure 3.5: u+ at x=0.97 using SA-QCR and its comparison to the result from NASA TMR [7]. 

 

Figure 3.6: u+ at x=0.97 using SST-QCR and its comparison to the result from NASA TMR [7]. 

 

Figure 3.7: u+ at x=0.97 using WA-QCR and its comparison to results from SST-QCR and SA-QCR.  
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The QCR results for WA-QCR, SA-QCR and SST-QCR almost overlap with the NASA TMR 

results, validating the correct implementation of QCR in OpenFOAM. The comparison shows that 

all three models are in good agreement with one another, which is expected for this simple case. 

3.2.2 Flow in a 2D Lid-Driven Square Cavity 

Fluid flow in a lid-driven square cavity is computed at Re = 20,000.  All sides of the cavity are 

considered to be of unit length. The lid has a velocity U=1 and the viscosity of the fluid is varied 

to achieve the desired Reynolds number. The Dirichlet boundary conditions are employed on the 

cavity wall as shown in Fig. 3.8. A 500 x 500 uniform mesh is employed.  

 
Figure 3.8: Boundary Conditions for a 2D lid-driven cavity flow. 

The computed streamlines from Erturk et al. [8] are shown in Fig. 3.9. The results from this figure 

show multiple eddies in three of the four corners of the square cavity.  Figures 3.10-3.12 show the 

streamlines for SA, SST k-ω, and WA models. The left hand side shows results using the standard 

linear eddy viscosity model and the right hand side shows results using QCR. The Boussinesq type 

linear eddy viscosity relation fails to capture the formation of all secondary eddies in the three 

corners using both the SA and SST k-ω models. The WA model is able to predict the corner eddies 

with or without the QCR. The SA model is significantly improved with the addition of QCR as it 

is able to predict the additional secondary eddies in the three corners as shown in Figure 3.9. The 
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streamlines of SST k-ω model shows some improvement with the addition of QCR with the 

formation of additional eddies in the three corners. 

 
Figure 3.9: Streamline contours from Erturk et al. [8] at Re=20,000. 

  

Figure 3.10: Streamline contours for SA (left) and SA-QCR (right) at Re=20,000. 

 

Figure 3.11: Streamline contours for SST k-ω (left) and SST-QCR (right) at Re=20,000. 



18 

 

       

Figure 3.12: Streamline contours for WA (left) and WA-QCR (right) at Re=20,000. 

In Figs. 3.13-3.15, velocity components, v and u, along the horizontal and vertical centerlines of 

the cavity obtained with standard linear eddy viscosity model and corresponding QCR model are 

compared for SA, SST k-ω and WA models respectively.  It can be seen from Fig. 3.13 that the 

application of QCR to the SA model improves the solution accuracy compared to the standard SA 

model. For SST k-ω model, no significant change is observed between the result from standard 

SST and SST-QCR model as shown in Fig. 3.14. Figure 3.15 shows that the WA-QCR results 

show a minor improvement in v-velocity component along the horizontal centerline but no 

significant change in the u-velocity component along the vertical centerline when compared to the 

Standard WA model. 
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Figure 3.13: Numerical results of SA and SA-QCR models compared to solutions from Erturk et al [8]. 
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Figure 3.14: Numerical results of SST and SST-QCR models compared to solutions from Erturk et al [8]. 
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Figure 3.15: Numerical results of WA and WA-QCR models compared to solutions from Erturk et al [8]. 

3.2.3 Flow over a Backward Facing Step 

Flow over a backward facing step is a widely-tested benchmark separated flow case. In this case, 

a turbulent boundary layer upstream encounters a sudden back step causing flow separation. The 

flow reattaches downstream of the step on the lower wall. The simulations were run to match the 

flow conditions of the experiment of Driver and Seegmiller [9]. The freestream velocity is 

M=0.128. The Reynolds number based on the step height and free stream velocity is Re=36,000.  
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Figures 3.16-3.18 show the comparison of experimental pressure coefficient and skin friction 

coefficient obtained from NASA TMR [7] and the results computed with standard SA, SST k-ω 

and WA models, and SA-QCR, SST-QCR and WA-QCR models respectively. The figures indicate 

that there is minor improvement (less than 1%) with the application of QCR compared to standard 

models. WA and WA-QCR results however show better agreement with the initial detachment of 

the flow near the back step boundary compared to SA and SST k-ω models. 

 

 
Figure 3.16: Cp and Cf from SA and SA-QCR models compared to experimental results [7]  
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Figure 3.17: Cp and Cf from SST and SST-QCR models compared to experimental results [7] 

 

 
Figure 3.18: Cp and Cf from WA and WA-QCR models compared to experimental results [7]        
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3.2.4 Flow past a NACA 4412 Airfoil 

Flow past a 2D NACA 4412 airfoil is also commonly used as a validation case. This test case has 

flow separation on the upper surface of the airfoil near the trailing edge. The simulations were run 

to match the flow conditions in the experiment of Coles and Wadcock [10]. The freestream velocity 

is M = 0.09 and the Reynolds number based on the chord and free stream velocity is Rec=1.52 

million, where chord c = 1. A 897x257 non-uniform mesh with strong clustering near the airfoil 

surface was used to find the grid independent numerical solutions.  

 

 Figures 3.19-3.21 show the comparison of experimental pressure coefficient [10] and the results 

computed with standard SA, SST k-ω and WA models, and SA-QCR, SST-QCR and WA-QCR 

models respectively. The figures indicate that there is no appreciable improvement with the 

application of QCR compared to the standard models. None of the models is able to compute the 

pressure near the trailing edge region of the airfoil correctly when compared to the experimental 

data.  

 
Figure 3.19: Cp results for SA and SA-QCR models compared to experimental values. 
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Figure 3.20: Cp results for SST and SST-QCR models compared to experimental values. 

  

Figure 3.21: Cp results for WA and WA-QCR models compared to experimental values. 

3.3 Compressible Wall-Bounded Separated Flows 

3.3.1 Flow inside NASA Glenn S-Duct  

S ducts are a very common component used in the propulsion system of an aircraft, both 

commercial and military. They serve to decelerate flow, increasing static pressure, and to provide 

a fairly uniform velocity and pressure distribution at the engine face. The curved shape and 

increasing cross-sectional area of the duct create secondary flows and boundary layer separation. 

It is anticipated that the addition of the QCR terms should have some effect to the result for this 
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case. Figure 3.22 shows the S duct computational domain as well as the cross section including 

grid structure. 

Boundary conditions for this case were assigned to match the NASA Glenn experiment’s flow 

conditions [11]. Walls were assigned a no-slip adiabatic condition with a plane of symmetry 

cutting down the y-axis at z equal to zero to save computation time. The inlet was treated as a 

“pressure inlet” with a total pressure and temperature matching the experimental conditions. The 

mass flow at the outlet was set to match the centerline Mach number of M = 0.6 at the reference 

inlet. 

Figures 3.23-3.25 show the comparison of the calculated coefficient of pressure along the duct 

walls at three different circumferential angles (ϕ = 10o, 90o, and 170o). The SA, SST k-ω, WA 

models and their QCR extensions are compared for each angle. The figures indicate that there is 

no appreciable improvement with the application of QCR compared to standard models. WA and 

WA-QCR results show the closest agreement with experimental results. The SA-QCR model 

seems to show the most improvement over the SA model. 

  

  
Figure 3.22 S-duct full view (left) and cross-section (right) with grid structure from Ref. [18]. 
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Figure 3.23: Experimental and computed Cp using SA and SA-QCR model along the duct walls at ϕ = 10o, 

90o, and 170o 

 

 

Figure 3.24: Experimental and computed Cp using SST and SST-QCR model along the duct walls at ϕ = 

10o, 90o, and 170o 
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Figure 3.25: Experimental and computed Cp using WA and WA-QCR model along the duct walls at ϕ = 

10o, 90o, and 170o 

3.3.2 Supersonic Flow in a Square Duct 

Computation of supersonic flow in a square duct necessarily requires a compressible flow solver 

in contrast to the previous test cases. The numerical simulation for this case was run to match the 

flow conditions in the experiment of Davis and Gessner taken from NASA TMR [7]. The duct has 

a square cross-section of each side D = 25.4mm and a length x/D = 50. Figure 3.26 shows the duct 

along with its cross section including the non-uniform mesh. A quarter of the duct size was 

employed in the simulation because of symmetry. The solid walls of the duct are adiabatic with no 

slip. The upstream velocity is M = 3.9 and the Reynolds number based on D and upstream velocity 

is ReD= 508,000 with a reference temperature T = 520 R. 

 

Figures 3.27-3.29 show the comparison of dimensionless velocity profile, u/uCL (where uCL is the 

centerline velocity) at cross section x/D = 40 with computed velocity profiles using the SA and 
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SA-QCR, SST and SST-QCR, and WA and WA-QCR models respectively. It can be seen that 

QCR models show significant improvement over the results from standard models.   

 Figures 3.30-3.32 show contour plots of secondary flow at x/D=50 using the SA and SA-QCR, 

SST and SST-QCR, and WA and WA-QCR models respectively. These plots were created using 

the following equation: 

 √𝑣2 + 𝑤2/𝑢𝐶𝐿 (3.9)  

 

where v is the y-component of velocity and w is the z-component of velocity. For each turbulence 

model, it can be seen that the standard models did not develop secondary flow; however the QCR 

models developed secondary flows. This test case clearly demonstrates the strengths of QCR 

models.  

 

 
Figure 3.26: Square Duct full view (left) and square cross-section (right) with boundary conditions [7]. 
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Figure 3.27: Experimental and computed dimensionless velocity profile using SA and SA-QCR model 

across the diagonal from corner to the center of the duct at x/D = 40. 

 

 

Figure 3.28: Experimental and computed dimensionless velocity profile using SST and SST-QCR model 

across the diagonal from corner to the center of the duct at x/D = 40. 
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Figure 3.29: Experimental and computed dimensionless velocity profile using WA and WA-QCR model 

across the diagonal from corner to the center of the duct at x/D = 40. 

 

 

 Figure 3.30: Contour plots of secondary flow at x/D=50 using SA (left) and SA-QCR (right) models  
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       Figure 3.31: Contour plots of secondary flow at x/D=50 using SST (left) and SST-QCR (right) models  
 

  

       Figure 3.32: Contour plots of secondary flow at x/D=50 using WA (left) and WA-QCR (right) models  

3.3.3 Flow due to a 2D Impinging Shock 

This test case investigated a 2D impinging shock boundary layer interaction with a Mach angle of 

β = 14°. It is anticipated that QCR should have some effect on the interactive flow field of an 

incident oblique shock with a turbulent boundary layer. The flow and boundary conditions were 

set to match the experiment by Schulein et al [12]. The inlet was treated as a “pressure inlet” with 

a total pressure P0 = 2.12 MPa and total temperature T0 = 410 K. Wall temperature was kept at a 

constant Tw = 300 K. The pressure driven flow has an inlet Mach number M = 5. The outlet was 
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set to have zero gradient pressure, velocity and temperature. Figure 3.33 shows the computational 

domain with labeled boundary conditions. 

 

Pressure ratio values at the bottom wall divided by the inlet pressure were measured before and 

after the location of the shock interaction with the boundary layer. This interaction forms a 

separation bubble. Figures 3.34 and 3.35 give the pressure ratio values for SA and WA models, 

along with their QCR extensions respectively compared to the experimental values taken from 

Schulein et al [12]. It can be seen that the WA model results agree better with the experimental 

results compared to the SA model. There is no appreciable improvement with the application of 

QCR compared to the standard models without QCR.  

 

Three vertical sections were used to plot the velocity profiles along the y-axis of the flow field. 

These sections are labeled as sections 7, 8 and 9. Section 7 is measured velocity vertically at x = 

376 mm up to y = 5.1 mm. Section 8 is measured velocity vertically at x = 396 mm up to y = 10.1 

mm. Section 9 measured velocity vertically at x = 426 mm up to y = 7.1 mm. These specific 

locations were chosen to compare the computed velocity profiles with the experimental results. 

Figures 3.36-3.38 are the numerical results for SA, WA, SA-QCR, and WA-QCR models for 

sections 7-9.  There is no appreciable improvement with application of QCR compared to the 

standard models. 
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Figure 3.33: Computational domain and boundary conditions for simulation of a 2D shock  impinging on a 

turbulent boundary layer  

 

 

Figure 3.34: Wall pressure over inlet pressure ratio of SA and SA-QCR models compared to experimental 

values 

 

 

Figure 3.35: Wall pressure over inlet pressure ratio of WA and WA-QCR models compared to experimental 

values 
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Figure 3.36: Velocity profiles at section 7 for SA and SA-QCR models (left), and WA and WA-QCR models 

(right)  

 

Figure 3.37: Velocity profiles at section 8 for SA and SA-QCR models (left), and WA and WA-QCR models 

(right)  
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Figure 3.38: Velocity profiles at section 9 for SA and SA-QCR models (left), and WA and WA-QCR models 

(right)  

3.3.4 Flow due to 3D Oblique Shock Boundary Layer Interaction 

There are very few test cases where QCR has been shown to improve results drastically over the 

standard linear eddy viscosity relation. So far, QCR effects have been most evident in supersonic 

compressible flow cases with strong flow interactions with the boundary layer. A 3-D shock 

boundary layer interaction is an excellent case to show the significant effect of QCR terms on 

shock boundary layer interaction of an incident oblique shock with a turbulent boundary layer. 

Simulations by Benek et al. [13] have already shown some of the effects of the QCR terms on 3D 

shock/ boundary layer interactions. 

Benek et al. ran three different run lengths with three different mesh widths at Mach numbers of 

2.5, 2.7 and 2.9 each with three different oblique shock angles. Figure 3.39 and 3.40 show their 

computational domains for different run lengths. Figures 3.41 and 3.42 show the results of one of 

the many tests they ran; they show the streamlines of the flow near the bottom boundary of the 

computational domain, which show significant secondary flow effects with the QCR terms. 

Figures 3.43 and 3.44 show the numerical results obtained using the WA model with and without 

the QCR terms respectively. These figures exhibit similar results as seen by the simulations of 
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Benek et al. WA-QCR develops secondary flow patterns similar to what was seen in Fig. 3.41 with 

SST-QCR. This demonstrates that the QCR terms do have some significant effect in supersonic 

compressible flow with strong flow interactions with the boundary layer. 

 

Figure 3.39: Computational Domain for 2.5 m run length 
 

 

Figure 3.40: Computational Domain for 4.0 m and 5.5 m run lengths. 

 

 

Figure 3.41: Floor flow streamlines at Mach = 2.9, wedge angle = 130, width = 0.25, run length of 5.5 m, with no 

QCR terms SST k-ω model 
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Figure 3.42 Floor flow streamlines at Mach = 2.9, wedge angle = 13o, width = 0.25, run length of 5.5 m with 

QCR terms in SST k-ω model 

               

 
Figure 3.43: Floor flow streamlines at Mach = 2.9, wedge angle = 13o, width = 0.25, run length of 5.5 m, with 

no QCR terms in WA model 
 

 
Figure 3.44: Floor flow streamlines at Mach = 2.9, wedge angle = 13o, width = 0.25, run length of 5.5 m with 

QCR terms in WA model 
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Chapter 4: Laminar-Turbulence Transition 

4.1 Derivation of the WA-γ Transition model 
The Wray-Agarwal (WA) model is a one-equation eddy-viscosity model derived from the k-ω 

closure [3]. An important distinction between the WA model and previous one-equation models 

based on k-ω closure is the inclusion of the cross diffusion term in the R = k/ω equation and a 

blending function, which allows smooth switching between the two destruction terms. The model 

determines R = k/ω by the following transport equation. This model alone cannot predict transition 

and is modified to include the correlation based intermittency equation γ, employing the local 

correlation-based transition-modelling concept. In this aspect, the modeling philosophy behind the 

two equations WA-γ model is similar to that of the four equations Shear-Stress Transport (SST) 

transition model of Menter et al. [14]. A newly formed wall-distance free version of the WA 

turbulence model [15] is used to create this transition model as detailed below.  

In the wall-distance-free WA model [3,15], the eddy-viscosity is given by: 

 

𝜈𝑇 = 𝑓𝜇𝑅 (4.1)  

 

The transport equation for R which includes the effect of γ in the production term is formulated as 

[16]: 

 

𝜕𝜌𝑅

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝑅

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑅𝜇𝑇)

𝜕𝑅

𝜕𝑥𝑗
] + 𝛾𝜌𝐶1𝑅𝑆 + 𝜌𝑓1𝐶2𝑘𝜔

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

𝑅

𝑆
+  𝑃𝑅

𝑙𝑖𝑚

− (1 − 𝑓1)𝜌𝐶2𝑘𝜖min (
𝑅2

𝑆2
𝜕𝑆

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
, 𝐶𝑚

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑅

𝜕𝑥𝑗
)      

 

(4.2)  

In Eq. (4.1),   𝑃𝑅
𝑙𝑖𝑚 is used to ensure proper generation of R for very low values of turbulent 

intensity Tu. This term is formulated as: 
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𝑃𝑅
𝑙𝑖𝑚 = 1.5𝑊max(𝛾 − 0.2, 0) (1.0 − 𝛾)min (max (

𝑅𝑒𝑣
2420

− 1, 0) , 3)max (3𝑣 − 𝑣𝑡 , 0) (4.3)  

 

Following [6], the intermittency transport equation can be written as: 

𝜕𝜌𝛾

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝛾

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑇
𝜎𝛾
)
𝜕𝛾

𝜕𝑥𝑗
] + 𝐹𝑙𝑒𝑛𝑔𝑡ℎ𝜌𝑆𝛾(1 − 𝛾)𝐹𝑜𝑛𝑠𝑒𝑡 − 𝜌𝑐𝑎2𝛺𝛾𝐹𝑡𝑢𝑟𝑏(𝑐𝑒2𝛾 − 1) 

 

(4.4)  

In Eq. (4.4), 𝐹𝑜𝑛𝑠𝑒𝑡 is used to trigger the intermittency production and is a function of 𝑅𝑇 , 𝑅𝑒𝑣, and 

𝑅𝑒𝜃𝑐 as given in the following equations: 

 

𝐹𝑜𝑛𝑠𝑒𝑡1 =
𝑅𝑒𝑣

2.2𝑅𝑒𝜃𝑐
,   𝐹𝑜𝑛𝑠𝑒𝑡2 = min(𝐹𝑜𝑛𝑠𝑒𝑡1,  2.0),  𝐹𝑜𝑛𝑠𝑒𝑡3 = 𝑚𝑎𝑥 (1 − (

𝑅𝑇
3.5
)
3

,  0) 

 

(4.5)  

𝐹𝑜𝑛𝑠𝑒𝑡 = max(𝐹𝑜𝑛𝑠𝑒𝑡2 − 𝐹𝑜𝑛𝑠𝑒𝑡3,  0) (4.6)  

𝐹𝑡𝑢𝑟𝑏 = 𝑒
−(
𝑅𝑇
2
),   𝑅𝑇 =

𝜇𝑡
𝜇
,   𝑅𝑒𝑣 =

𝜌𝑑𝑤
2 𝑆

𝜇
 (4.7)  

 

The model constants for the intermittency equation are as follows [6]: 

 

𝐹𝑙𝑒𝑛𝑔𝑡ℎ = 100,   𝑐𝑒2 = 50,   𝑐𝑎2 = 0.06,   𝜎𝛾 = 1.0 (4.8)  
 

The local turbulence intensity 𝑇𝑢𝐿 is given by [16]: 

 

𝑇𝑢𝐿 = 𝑚𝑖𝑛

(

 100 

√2𝑅
3

√ 𝑆
0.3 ∗ 𝑑𝑤

,  100

)

  (4.9)  

 

 

where dw is the wall distance. In the original formulation of 𝑇𝑢𝐿 obtained from Ref. [6], R replaces 

turbulent kinetic energy k (note that R = k/ω) and ω in the original formulation is replaced by ω ≈ 

S/0.3. 
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The formula for the pressure gradient parameter can be written as [6]: 

   

𝜆𝜃𝐿 = −7.57 ∙ 10
−3
𝑑𝑉

𝑑𝑦

𝑑𝑤
2

𝜈
+ 0.0128 (4.10)  

 

This term is bounded by -1.0 ≤ 𝜆𝜃𝐿 ≤ 1.0 for numerical robustness. 

The 𝑅𝑒𝜃𝑐 correlation is given by [6]: 

 

𝑅𝑒𝜃𝑐 = 100.0 + 1000.0 ∗ exp [−1.0 ∗ 𝑇𝑢𝐿 ∗ 𝐹𝑃𝐺]  (4.11)  
 

where FPG is a correlation function of 𝜆𝜃𝐿: 

𝐹𝑃𝐺 = {
min(1 + 𝐶𝑃𝐺1𝜆𝜃𝐿 , 𝐶𝑃𝐺1

𝑙𝑖𝑚) ,  𝜆𝜃𝐿 ≥ 0                                                       

min(1 + 𝐶𝑃𝐺2𝜆𝜃𝐿 + 𝐶𝑃𝐺3min [𝜆𝜃𝐿 + 0.0681, 0], 𝐶𝑃𝐺2
𝑙𝑖𝑚),  𝜆𝜃𝐿 < 0 

 (4.12)  

 

𝐶𝑃𝐺1 = 14.68,   𝐶𝑃𝐺2 = −7.34,   𝐶𝑃𝐺3 = 0.0 
(4.13)  

 

𝐶𝑃𝐺1
𝑙𝑖𝑚 = 1.5,   𝐶𝑃𝐺2

𝑙𝑖𝑚 = 3.0 (4.14)  

 

FPG is limited in order to avoid negative values: 

 

𝐹𝑃𝐺 = max (𝐹𝑃𝐺 , 0) (4.15)  

 

The wall blocking effect is accounted for by the damping function fμ.  

 𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3
, 𝜒 =

𝑅

𝜈
 (4.16)  

 

S is the mean strain given by 

 

 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗, 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (4.17)  

 

W is the mean vorticity given by 

 𝑊 = √2𝑊𝑖𝑗𝑊𝑖𝑗,   𝑊𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) (4.18)  
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While the C2kω term is active, Eq. (4.2) behaves as a one-equation model based on the standard k-

ω equations. The inclusion of the cross diffusion term in the derivation causes the additional C2kε 

term to appear. This term corresponds to the destruction term in one equation models derived from 

the standard k-ε closure. The presence of both terms allows the WA model to behave as either a 

one-equation k-ω or one equation k-ε model based on the switching function f1.  The blending 

function was designed so that the k-ω destruction term is active near solid boundaries and the k-ε 

destruction term becomes active away from the wall near the end of the log-layer. This function 

was modified from the original Wray-Agarwal model to remove its dependence on the wall 

distance. The following equations describe the formulation of 𝑓1for wall distance free WA model 

[15]. 

 𝑓1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) (4.19)  

 

 𝑎𝑟𝑔1 =
𝑅 + 𝑣

2

𝜂2

𝐶𝜇𝑘𝜔
 (4.20)  

 𝑘 =
𝑣𝑇𝑆

√𝐶𝜇
 , 𝜔 =

𝑆

√𝐶𝜇
 , 𝜂 = 𝑆 ∗ max (1, |

𝑊

𝑆
|)  (4.21)  

 

The model constants and equations for C1, C2kω, C2kε, and 𝜎𝑅 terms are described by the following 

equations: 

𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜀) + 𝐶1𝑘𝜔 (4.22)  

𝐶2𝑘𝑒 =
𝐶1𝑘𝜀
κ2

+ 𝜎𝑘𝜀 (4.23)  

𝐶2𝑘𝜔 =
𝐶1𝑘𝜔
κ2

+ 𝜎𝑘𝜔 (4.24)  

𝐶1𝑘𝜔 = 0.0829, 𝐶1𝑘𝜀 = 0.1284 (4.25)  

𝜎𝑅 = 𝑓1(𝜎𝑘𝜔 − 𝜎𝑘𝜀) + 𝜎𝑘𝜀 (4.26)  

𝜎𝑘𝜔 = 0.72, 𝜎𝑘𝜀 = 1.0 (4.27)  

𝜅 = 0.41,  𝐶𝜔 = 8.54,   𝐶𝑚 = 8.0 (4.28)  
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4.2 Calibration of Correlations and Validation Cases  

4.2.1 Zero-Pressure Gradient Flat Plate Flow 

Computations were performed for the three zero pressure gradient flat plate cases (T3A, T3B, 

T3A-), which employ different free-stream velocities 𝑈∞and free-stream turbulence intensities 

𝑇𝑢∞as shown in Table 4.1. The mesh used in simulations of all three cases is the same as shown 

in Figure 4.1. The WA-γ model results are compared to the results from the four-equation SST-

Transition model and the experimental data [17]. 

Table 4.1: Inlet flow conditions for T3 series flat plates  
𝑼∞ (m/s) 𝑻𝒖∞(%) 𝝁𝑻/𝝁 ρ (kg/m

3
)  μ (kg/m.s) 

T3A 5.4 3.5 13.3 1.2 1.8e-5 

T3B 9.4 6.5 100 1.2 1.8e-5 

T3A- 19.8 0.874 8.72 1.2 1.8e-5 

 

 

 
Figure 4.1: Grid in the computational domain for flow over T3 series flat plates.  

 

Skin friction results for the three T3A, T3B and T3- flat plate cases are shown in Figs. 4.2 – 4.4. 

As shown in these figures, the computed results for the WA-γ model for all three flat plate cases 

2m 0.33m 

1

m 
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are in good agreement with the experimental data and outperform the results from the four-

equation SST-Transition model.  

 

 

Figure 4.2: T3A Flat Plate results  

 

Figure 4.3: T3B Flat Plate results  
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Figure 4.4: T3A- Flat Plate results  

4.2.2 Non-Zero-Pressure Gradient Flat Plate Flow  

The ERCOFTAC test cases T3C2-5 [17] take into account the effects of pressure gradient and 

free-stream turbulence decay on transition prediction. A non-zero pressure gradient effect in the 

simulations was achieved by using the polynomial expressions from Suluskna et al [18] to modify 

the shape of the duct upper boundary. T3C4 was the only case that required a different shape. The 

polynomial expression for the domain width as a function of x for the T3C cases is expressed by 

Eq. (4.29), and the domain width for T3C4 is expressed by Eq. (4.30) as follows: 

 

 

ℎ

𝐷
= min(1.231x6 − 6.705𝑥5 + 14.061𝑥4 − 14.113𝑥3 + 7.109𝑥2 − 1.9𝑥

+ 0.95, 1.0) 
(4.29)  

 

ℎ

𝐷
= min(1356x6 − 7.591𝑥5 + 16.513𝑥4 − 17.510𝑥3 + 9.486𝑥2 − 2.657𝑥

+ 0.991, 1.0) 
(4.30)  

 

In Eq. (4.29) and Eq. (4.30), h is the upper boundary height, D is the inlet height (0.3m), and x is 

distance along the plate from the leading edge. Each T3C case uses different free-stream velocity 

𝑈∞and free-stream turbulence intensity 𝑇𝑢∞as shown in Table 4.2. 
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Table 4.2: Inlet flow conditions for T3C series of flat plates  
𝑼∞ (m/s) 𝑻𝒖∞(%) 𝝁𝑻/𝝁 ρ (kg/m

3
) μ (kg/ms) 

T3C2 5.0 3.10 9.0 1.2 1.8e-5 

T3C3 3.7 3.10 6.0 1.2 1.8e-5 

T3C4 1.28 3.10 2.5 1.2 1.8e-5 

T3C5 8.4 3.70 15 1.2 1.8e-5 

 

Skin friction results for the T3C flat plate cases given in Table 4.2 are shown in Figs. 4.5-4.8. The 

computed results from the WA-γ model for all four T3C flat plate cases are in reasonably good 

agreement with the experimental values [17]. 

 

 
 

Figure 4.5: T3C2 Flat Plate results  
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Figure 4.6: T3C3 Flat Plate results  

 
Figure 4.7: T3C4 Flat Plate results  
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Figure 4.8: T3C5 Flat Plate results  

 

4.3 Application Test Cases 

4.3.1 S809 Airfoil 

The S809 airfoil is a “laminar flow” airfoil designed for wind turbines, with a 21% thick chord 

[19]. The airfoil is designed for typical wind energy applications at Mach 0.1 flow that can have 

laminar flow up to 50% chord length on both the upper and lower surfaces. Computations were 

performed at three angles of attack α = 0°, 5°, and 10° at Reynolds number = 2 x 106. For all 

angles of attack, the free stream turbulence intensity was 𝑇𝑢∞ = 0.2% with a viscosity ratio of 

𝜈𝑡

𝜈
= 10 in the computations. A very fine C-mesh was used with high clustering near the airfoil 

surface to guarantee a y+ of less than one on all parts of the airfoil. 

 

Figures 4.9-4.11 show numerical results for the coefficient of pressure on the airfoil surface using 

the WA-γ transition model. These results are compared to the experimental data and the SST-

Transition and SST k-ω turbulence model results. For every angle of attack computed, the WA-γ 
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transition model performs at least as well as the four-equation SST transition model and as 

expected both transition models outperform the fully turbulent SST k-ω model. 

 

Figure 4.9: Pressure coefficient on S809 airfoil at α = 0° 

 

Figure 4.10: Pressure coefficient on S809 airfoil at α = 5° 
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Figure 4.11: Pressure coefficient on S809 airfoil at α = 10° 

4.3.2 Aerospatiale-A Airfoil 

The Aerospatiale-A airfoil provides a case of laminar-separation-induced transition. It is a 0.6m 

chord airfoil designed for helicopter applications. Numerical results are compared to the 

experimental data from the ONERA F1 wind tunnel test [20]. An angle of attack α = 13.1° is 

employed with Reynolds number of 2.07 x 106. Appropriate boundary conditions are set in the 

computation to obtain a turbulence intensity of 𝑇𝑢 = 0.2% with a viscosity ratio of 
𝜈𝑡

𝜈
= 10 at the 

leading edge of the airfoil. A very fine C-mesh is used with strong clustering near the airfoil surface 

to guarantee a y+ of less than one on all parts of the airfoil. 

 

Figure 5 shows numerical results for the coefficient of skin-friction along the airfoil surface using 

the WA-γ transition model. These results are compared to the SST-Transition model and the 
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experimental data. Both transition models compare very well with the experimental data. WA-γ is 

twice more efficient in computations compared to SST Transition model. 

 

Figure 4.12: Results for Aerospatiale-A airfoil at α = 13.1° 

4.3.3 NLR-7301 Two-Element Airfoil 

The NLR-7301 two-element airfoil is also a commonly used configuration for validation of 

transitional flow. The configuration used in this study has a moderate flap angle of 200 which is a 

typical take-off flap setting. The gap width between the airfoil and flap is 2.6%c, where c is the 

chord of the main airfoil. The freestream conditions are α = 13.1° and Reynolds number = 2.51 x 

106. A very fine C-mesh is used with strong clustering near the airfoil surface to guarantee a y+ of 

less than one on all parts of the airfoil and flap. Numerical results using WA-γ for the coefficient 

of pressure and friction are compared with the experimental data [21].  

 

Figure 4.13 shows the pressure coefficient distribution on the airfoil and flap surfaces compared 

to the experimental values. Figure 4.14 shows a magnified perspective of the pressure coefficient 

values near the leading edge of the airfoil. The comparison of computations and experimental data 

shows that the transition model is able to capture the small separation bubble near the airfoil 
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leading edge. Figures 4.15 and 4.16 show the comparison of WA-γ numerical results for the skin 

friction coefficient on the airfoil and flap compared to the experimental data. The dashed bars mark 

the experimental transition location. The computational result using WA-γ transition model is in 

good agreement with the experimental data, and numerical transition prediction is only slightly 

ahead of the experimental transition location. 

  

Figure 4.13: Pressure coefficient on the surface of NLR-7301 airfoil and flap. 

  

Figure 4.14: Pressure coefficient on NLR-7301 airfoil leading edge. 
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Figure 4.15: Skin-friction coefficient on NLR-7301 airfoil. 

 

Figure 4.16: Friction coefficient on NLR-7301 flap.  
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4.3.4 Flow past a Circular Arc 

Drag crisis is a well-known phenomenon first observed by Eiffel [22] more than a century ago.  

Experiments demonstrate that the drag crisis corresponds to narrowing of the wake of the bluff 

obstacle. Transition of the boundary layer around an object from laminar to turbulent moves the 

separation point further along on the rear surface of the object in the flow field. A critical Reynolds 

number associated with this transition is largely affected by the shape of the obstacle, its surface 

roughness, and the free stream turbulence intensity. Generally, drag crisis has been described for 

a symmetrical object, where there is almost no measurable lift force. Slender bodies at an angle of 

attack and airfoils/wings are designed to achieve large lift with low drag. If the incidence angle 

becomes too large, lift abruptly decreases due to separation and drag increases; this is also a well-

known phenomenon known as stall. Recently, Bot et al. [23] showed experimentally that for a 

relatively streamlined non-symmetrical body, a sharp jump in lift can be observed as the flow 

transitions from laminar to turbulent at a critical Reynolds number. They called this sudden jump 

in lift as the lift crisis in drag crisis region; it is associated with flow transition on the upper surface 

boundary layer allowing the flow to remain attached further along the surface similar to the 

situation leading to drag crisis.   

  

A two-dimensional structured mesh was generated for numerical simulations. The geometry of arc 

cylinder corresponding to the experiment [23] is shown in Figure 4.17. The circular arc section is 

a 3-mm-thick arc of radius 50mm with a chord length 𝑐 = 74.5mm, and maximum height h =

16.6mm. 
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Figure 4.17: Geometry of the circular arc section. 

 

Bot et al.’s experiments [23] were conducted in the IRENav hydrodynamic tunnel using a 192 ×

192 mm test section. The 2D computational domain is created to replicate the experimental setup 

shown in Fig. 4.18. 

 

Figure 4.18: Computational domain around the circular arc. 

The structured mesh around the circular arc cylinder in test section of the tunnel is shown in Fig. 

4.19. The mesh contains about 215,000 elements. Two sharp corners of the curved plate were 

slightly modified with the radius of curvature of c/100 at the corner as shown in Figure 4.19(c). 

Corners were rounded to minimize the numerical error when approximating the elements of the 

metric tensor by using the central differencing. Very fine grid spacing is generated near wall 

boundaries to ensure that y+ < 1 everywhere on the arc walls.  

 

(a) Entire computational domain and mesh around circular arc 
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(b) Zoomed-in-view of mesh near the arc 

 

(c) Zoomed-in-view of mesh around the corner of the 

arc cylinder (radius of curvature at corner =  c/100) 

Figure 4.19: Computational domain and mesh around the circular arc. 

The boundary conditions in the numerical calculations correspond to the experiment carried out in 

the hydrodynamic tunnel by Bot et al. [23]. The density and viscosity of the fluid is set as that of 

standard liquid water at room temperature. The left boundary of the domain is set as the velocity 

inlet in the horizontal direction corresponding to the uniform velocity of water upstream in the 

tunnel. The velocity ranges between 1.35 m/s and 8.09 m/s to achieve range of Reynolds numbers 

from 1 × 105 to 6 × 105. The turbulence intensity is set at 1.8% at both the velocity inlet and 

pressure outlet. No-slip conditions are applied to all wall boundary types.  

 

For flow past the circular arc, both drag crisis and lift crisis were observed experimentally in a 

particular velocity range by Bot et al. [23]. Drag and lift crisis were observed past Reynolds 

number Re = 2 × 105, also known as the critical Reynolds number with an associated critical 

velocity. Figure 4.20 shows the computed results using WA-γ model for the coefficient of lift and 

their comparison to the experimental results from Bot et al. [23]; the theoretical calculations of 

Bot et al. based on circulation around the arc are also shown in Figure 4.20. In addition to 

numerical results from transition SST k-ω and k-kl-ω turbulence models [24, 32] are also shown. 

All numerical models predict the location of transition reasonably well showing sudden jump in 

lift (called lift crisis by Bot et al. [23]). It can be noted from Figure 4.20 that the WA-γ transition 
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model outperforms the other transition models, as its results are closest to the measured values and 

are well within the error bars for the laminar region. It also does not have a steep drop off for the 

lift coefficient at high Reynolds numbers when the flow is fully turbulent which can be observed 

in results from the SST-transition model. The results of WA-γ model and k-kl-ω are fairly close. 

 
Figure 4.20: Lift coefficient 𝑪𝑳 vs. Reynolds number for flow past the circular arc. 

Figure 4.21 shows the numerical results from WA-γ model for the coefficient of drag and their 

comparison with the experimental results of Bot et al. [23] and numerical results obtained using 

the transition SST k-ω, and k-kl-ω models [24]. The WA-γ transition model and SST-Transition 

model both do reasonably well in predicting the drag crisis within a very tight margin to the 

experimental value, whereas the k-kl-ω seems to miss the mark to a much larger degree. None of 

the models correlates well with the measured drag coefficient values; however WA-γ transition 
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model shows superior performance compared to the other two models. Significant amount of errors 

are present within the experimental data in the laminar region as indicated by the error bars. The 

WA-γ transition model numerical results are either within or very close to these error bars.   

 
Figure 4.21: Drag coefficient 𝑪𝑫 vs. Reynolds number for flow past the circular arc. 

In the experiments performed by Bot et al. [23], velocity field measurements were obtained in 

order to better characterize the lift crisis. Values were taken from the wake created by the circular 

arc at locations x/c = 1.2 and x/c = 1.5. Figures 4.22(a) and 4.22(b) show the computed velocity 

profiles using the WA-γ transition model and their comparison with experimental data at x/c = 1.2 

and x/c=1.5 at Reynolds number of 1.91 x 105, just before the lift crisis. The WA-γ transition 

model has nearly the same minimum velocity values in the wake as the experiment, but the 

computed values return to freestream velocity sooner than the experimental results. This indicates 

that the overall computed wake width is much narrower than that observed experimentally. Figures 
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4.23(a) and 4.23(b) show the computed velocity profiles using the WA-γ transition model and their 

comparison with experimental data at x/c = 1.2 and x/c=1.5 at Reynolds number of 2.05 x 105, just 

after the lift crisis. These figures show that the numerical results have slightly lower minimum 

velocities than the experimental results but the computed and experimental wake widths are nearly 

the same. Overall, the results show that the WA-γ transition model is able to predict the flow past 

a circular arc reasonably well including the lift crisis in the drag crisis region. 

 
Figure 4.22: Computed and experimental velocity profiles at (a) x/c = 1.2 and (b) x/c=1.5 at Re = 1.91 x 105. 
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Figure 4.23: Computed and experimental velocity profiles at (a) x/c = 1.2 and (b) x/c=1.5 at Re = 2.05 x 105. 
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Chapter 5: Implementation of Crossflow 

Transition Effects in WA-γ Model 

5.1 Crossflow Coupling with the WA-γ Transition model 
Transition modeling has been a very challenging task within the turbulence modeling community 

due to many factors; lack of experimental data, complexity of transition physics, and the fact that 

transition can occur in at least four different modes which are known in the literature as natural 

transition, bypass transition, separation-induced transition, and crossflow induced transition. The 

WA-γ transition model, and many other commercial models, lack the ability for predicting the 

crossflow-induced transition. The goal of this chapter is to extend the WA-γ model to include the 

crossflow effects for predicting crossflow induced transition without adding any additional 

transport type equation. 

Grabe et al. [25] have explored two variants of a correlation-based transport model that can predict 

transition due to crossflow instability. These two variants use the local C1-criterion [26] approach 

and the local helicity approach. The local helicity approach is chosen here and is used for 

crossflow-instability prediction in the WA-γ transition model [16]. This approach has the 

advantage that it uses many local quantities similar to the LCTM and requires nearly no 

modification of the original model, and as a result requires the least CPU overhead over the original 

WA-γ model. 

 

The helicity crossflow model determines a local helicity value: 

 

𝐻𝑒 = 𝑢⃗ ∙ (∇ × 𝑢⃗ ) (5.1)  
 

The local helicity given by Eq. (5.1) is used to determine the helicity Reynolds number: 
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𝑅𝑒𝐻𝑒 =
𝜌𝑧2𝐻𝑒

𝜇|𝑢⃗ |
 (5.2)  

 

A helicity Reynolds number at transition onset, ReHe,t
+, is defined as a function of the stream wise 

shape factor H in order to account for the influence of the pressure gradient on the transition 

location. This transition onset Reynolds number is used to develop a critical crosswise Reynolds-

number ratio: 

 
𝑅𝑒𝐻𝑒

𝑅𝑒𝐻𝑒,𝑡
+ = 1 

 
(5.3)  

Experimental data from various infinite swept wing flows as well as data from three-dimensional 

non wing-like configurations such as ellipsoids were used to develop an empirical transition 

criterion by Grabe et al. [25]. A curve fit through the numerical data gives: 

 

𝑅𝑒𝐻𝑒,𝑡
+ = max (−456.8𝐻 + 1332.7, 150.0) (5.4)  

 

As previously mentioned, H is approximated by the pressure gradient parameter λ+. Note that this 

parameter is different from the parameter in the LCTM and has a constant, CHe,max = 0.6944, 

calibrated by computations of flows over infinite swept wings: 

  

𝜆+ =
𝜌𝑙2

𝜇

𝑑|𝑢⃗ 𝑒|

𝑑𝑠 
, 𝑙 =

𝑑𝑤

𝐶𝐻𝑒,𝑚𝑎𝑥 

2

15
  (5.5)  

 

In Eq. (5.5), dw is the wall distance and 𝑢⃗ 𝑒 is the local velocity at the boundary layer edge defined 

by the following equation. 

 

|𝑢𝑒⃗⃗⃗⃗ | = √𝑢∞2 +
2𝛾̃

𝛾̃ − 1
[1 − (

𝑃

𝑃∞
)
1−
1
𝛾̃
]
𝑃∞
𝜌∞
   (5.6)  
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where 𝛾̃ is the heat capacity ratio. The shape factor H is computed using the correlation of Cliquet 

et al. [27].   

 

 

𝐻 = 4.02923 − √−8838.4𝜆+4 + 1105.1𝜆+3 − 67.962𝜆+2 + 17.574𝜆+ + 2.0593 
 

(5.7)  

 

A new set of onset functions are used to implement the helicity crossflow approach into the 

intermittency equations. These equations are the following: 

 

 

𝐹𝑜𝑛𝑠𝑒𝑡1,𝑐𝑓 =
𝐶 ∗ 𝑅𝑒𝐻𝑒

𝑅𝑒𝐻𝑒,𝑡
+ , 𝐶 = 1.4,    

𝐹𝑜𝑛𝑠𝑒𝑡2,𝑐𝑓 = min(max (𝐹𝑜𝑛𝑠𝑒𝑡1,𝑐𝑓, 𝐹𝑜𝑛𝑠𝑒𝑡1,𝑐𝑓
4 ), 2.0) 

𝐹𝑜𝑛𝑠𝑒𝑡,𝑐𝑓 = max (𝐹𝑜𝑛𝑠𝑒𝑡2,𝑐𝑓 −𝑚𝑎𝑥 (1 −
𝑅𝑇
3.5
, 0.0) , 0.0) 

 

(5.8)  

The crossflow onset is implemented into the intermittency transport equation given by: 

𝜕𝜌𝛾

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝛾

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑇
𝜎𝛾
)
𝜕𝛾

𝜕𝑥𝑗
] + 𝜌𝑆𝛾(1 − 𝛾)(𝐹𝑙𝑒𝑛𝑔𝑡ℎ𝐹𝑜𝑛𝑠𝑒𝑡 + 𝐹𝑙𝑒𝑛𝑔𝑡ℎ,𝑐𝑓𝐹𝑜𝑛𝑠𝑒𝑡,𝑐𝑓) 

−𝜌𝑐𝑎2𝛺𝛾𝐹𝑡𝑢𝑟𝑏(𝑐𝑒2𝛾 − 1) 
 

(5.9)  

where 𝐹𝑙𝑒𝑛𝑔𝑡ℎ,𝑐𝑓 = 5.0. 

The main advantage of using the local helicity approach is that it is not restricted to certain 

geometries and can be applied to arbitrarily shaped configurations.  

5.2 Flow past a Prolate Spheroid 
The 6:1 inclined prolate spheroid [28] has a simple geometry but is a challenging configuration 

for transition predictions due to its non-wing like geometry. The flow around the spheroid shape 

is comparable to flow around a commercial aircraft fuselage and exhibits complex flow features. 

The major and minor axis lengths of the experimental and numerical geometry are 2.4 and 0.4 

meters respectively. Figure 5.1 shows the geometry of the prolate spheroid.  
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Figure 5.1: Prolate spheroid geometry.  

The flow Reynolds number based on the major axis and freestream velocity is 6.5 x 105. 

Turbulence intensity was set at 0.2%. Very fine grid spacing is generated near wall boundaries to 

ensure that y+ < 1 everywhere on the spheroid surface. More than 6.5 million finite volume cells 

were used to generate the mesh in the computational domain.  

 

Transitional flow at two different angles of attack, - 5 degree and 15 degree, was investigated. Skin 

friction contour plots for numerical and experimental results [29] at 5o angle of attack are shown 

in Fig. 5.2. Laminar to turbulent flow transition takes place nearly halfway along the surface of 

the prolate spheroid. Both transition models, WA-γ and WA-γ- Crossflow capture the laminar flow 

region on the upstream side of the spheroid, but without the crossflow the WA-γ model 

significantly underestimates the skin friction distribution. The addition of crossflow captures the 

general shape of the transition region, however inconsistencies can be observed in the lower half 

of the spheroid. Same problem was observed by Grabe et al [25] and Langtry et al. [30] and remains 

a topic of further investigation. Nevertheless, WA-γ- Crossflow model gives much improved 

results.  
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Figure 5.2: Coefficient of skin-friction contours on prolate spheroid at 5o angle of attack.  

A plot of the coefficient of skin friction along the center line of the X-Z plane over the prolate 

spheroid at 5o angle of attack is shown in Figure 5.3. The WA-γ transition model without crossflow 

predicts transition near the back end of the spheroid whereas the results with WA-γ-Crossflow 

transition model align with experimental data very well. The model is able to predict the correct 

location of transition onset as well as the correct skin friction values measured in the experiment.   

 

Figure 5.3: Comparison of coefficient of skin-friction along the centerline of X-Z plane of the prolate spheroid 

at α = 5o. 

 Computed skin-friction contour plots using the WA-γ model without and with crossflow along 

with the experimental results [29] at 15o angle of attack are shown in Fig. 5.4. The results for WA-
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γ transition model without crossflow underestimate the skin friction distribution. Adding the 

crossflow in WA-γ model resulted in better agreement with the experimental values for the 

transition onset location. At this angle of attack, unlike what was observed at 5o angle of attack, it 

seems that the numerical models are also able to predict transition onset further down the spheroid 

surface.  

 

 

Figure 5.4: Comparison of coefficient of skin-friction contours on prolate spheroid at 15o angle of attack.  

 A plot of the coefficient of skin-friction along the center line of the X-Z plane on the prolate 

spheroid at 15o angle of attack is shown in Fig. 5.5. Although the WA-γ transition model without 

crossflow is able to predict transition onset further upstream, it still does not match the transition 

onset region observed experimentally without the addition of crossflow. Discrepancies are 

observed in the peak values of the coefficient of skin-friction right after the transition onset. Even 

fully turbulent flow models reflect similar low skin friction values, which can lead one to believe 

that this may be a turbulence issue and not a fault of the transition model as discussed by Pillai and 

Lardeau [31]. 
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Figure 5.5 :Comparison of coefficient of skin-friction along the centerline of X-Z plane on prolate spheroid at 

α = 15o. 
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Chapter 6: Summary and Future Work 

6.1 Summary 
The quadratic constitutive relation (QCR) was successfully implemented in OpenFOAM with SA, 

SST k-ω and WA turbulence models.  The accuracy of QCR models compared to standard linear 

SA, SST k-ω and WA turbulence models was evaluated by computing seven different flows: 

boundary layer flow past a flat plate, flow in a lid-driven cavity, flow over a backward facing step, 

flow past a NACA 4412 airfoil, supersonic flow in a square duct, flow due to a two-dimensional 

impinging shock on a flat plate, and a three-dimensional oblique shock boundary layer interaction. 

All models agreed well with the skin friction results for turbulent boundary layer flow past a flat 

plate as expected. This test case verified that all the QCR models were correctly implemented in 

OpenFOAM. Differences in QCR and standard linear eddy-viscosity model results were observed 

in case of flow in a lid-driven cavity.  The SA-QCR model improved its ability to predict additional 

secondary eddies in the corners as well as obtained results for the velocity profiles in better 

agreement with the experimental data. The WA-QCR model also showed minor improvement in 

computation of velocity components when compared to the experimental data. However, the SST-

QCR model showed no definitive improvement and showed the same results as the standard SST 

k-ω model. For the flow over a backward facing step, NACA 4412 airfoil, and two-dimensional 

impinging shock, the QCR models showed no improvement over the standard models, which was 

unexpected. The computation of 3D supersonic flow in a square duct showed visible improvement 

when QCR models were used. The three-dimensional oblique shock boundary layer interaction 

case showed that there is some significant effect with the use of QCR for high velocity corner 

flows. The QCR models were all able to compute secondary flows where available whereas 
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standard models could not. It is concluded that QCR models can be beneficial compared to 

standard turbulence models with a small added computational effort and cost.  

An additional accomplishment of this research has been the implementation and verification of the 

local correlation-based transition-modelling concept in OpenFOAM with the Wray-Agarwal 

(WA) wall-distance-free turbulence model [4]. The accuracy of the Wray-Agarwal-transition 

model WA-γ was evaluated by computing several ERCOFTAC benchmark flat plate transition 

cases in zero and mildly varying pressure gradients and comparing them with the experimental 

data and the numerical results from four equation SST transition model. The two-equation WA-γ 

transition model outperformed the four-equation SST-Transition model in accuracy for all three 

zero-pressure gradient T3 flat plates transitional flow cases. The WA-γ model also performed very 

well in accurately predicting the experimental results for the non-zero-pressure gradient T3C flat 

plates transitional flow cases. Transitional flow past two 2D airfoils namely the S809 airfoil and 

Aerospatiale-A airfoil was also computed using both the WA-γ transition and SST-Transition 

model. Both models predicted the experimental data very well, with the WA-γ transition being on 

par or slightly better than the SST-Transition model. Transitional flow past the NRL-7301 two-

element airfoil and a circular arc was also computed using the WA-γ transition model and 

performed very well when compared to the experimental data. Overall, the WA-γ transition model 

showed very good numerical predictions and matched or exceeded the results from SST-Transition 

model in transition prediction both in accuracy and efficiency.  

The WA-γ transition model was extended to account for crossflow-induced transition in a very 

simple and effective way. The WA-γ-Crossflow transition model is based on the local helicity 

approach to predict the onset of crossflow transition. Efforts were made to maintain simplicity and 

to keep the basic validated properties of the original WA-γ transition model for prediction of by-
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pass and separation-induced transition. Transitional flow simulations for flow past a prolate 

spheroid at two different angles of attack confirmed the effectiveness of the model in accounting 

for crossflow effects. Values of skin friction along various planes of the spheroid as well as the 

contour plots of skin friction on the body demonstrated that the WA-γ-Crossflow model was able 

to predict the general features and shape of the transition regime on a three-dimensional body like 

spheroid as attested by comparisons with the experimental data. Further validation should be done 

by computing 3D flow past swept wings and other body shapes for which experimental data is 

available.  

 

6.2 Future Work: Inclusion of Surface Roughness in 

Transition Model 
Surface roughness is an important factor when considering transition onset of flow from laminar 

to turbulence. Roughness is a common side effect caused by manufacturing or by environmental 

degradation of the surface material, such as erosion. Surface conditions play a major role in 

boundary-layer characteristics and it is important that transition models can account for it. Langtry 

et al. [30] reported a logarithmic dependency between stationary crossflow Reynolds number and 

the surface roughness.  A similar approach can be used to mimic the roughness effect into the 

crossflow model. This approach, used by Pillai et al. [31], adds a roughness constant, Cr, which is 

defined as  

𝐶𝑟 = 2.0 − 0.5
ℎ
ℎ𝑜 

  
(6.1)  

where h is the surface roughness and ho is a constant with a value of 0.25 µm. This roughness 

constant could be used to modify the transition onset equation as follows: 
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𝐹𝑜𝑛𝑠𝑒𝑡1,𝑐𝑓 =
𝐶𝑟 ∗ 𝐶 ∗ 𝑅𝑒𝐻𝑒

𝑅𝑒𝐻𝑒,𝑡
+   

 
(6.2)  

The correlation and relative constants must be calibrated using crossflow case with varying 

roughness. The NLF(2)-0415 airfoil case is one such case that can be used. This case is a classical 

swept wing configuration used to calibrate crossflow transition with roughness effects. The 

NLF(2)-0415 was experimentally investigated at Arizona State University [33]. This infinite swept 

wing airfoil has a fixed sweep angle of 45 degree with a flow angle of attack of -4 degree. A range 

of Reynolds numbers along with varying surface roughness levels should be used to compare to 

the experimental data shown in Fig. 6.1. This figure shows the varying chordwise transition 

location on the airfoil as a function of Reynolds number with three different roughness values 

along the upper surface of the airfoil. Additionally, replacing the use of helicity in the model should 

be a top priority in order to preserve the Galilean invariance, which is the case with the original 

WA-γ transition model. This will extend the models applicability to cases involving moving 

reference frames.  
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Figure 6.1: Transition location on upper surface of a rough airfoil vs. Reynolds number. 
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