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ABSTRACT OF THE DISSERTATION 

 

Seismic Studies of the Tonga Subduction Zone and the Lau Back-arc Basin 

by 

Songqiao Wei 

Doctor of Philosophy in Earth and Planetary Sciences 

Washington University in St. Louis, 2016 

Professor Douglas A. Wiens, Chair 

 

This dissertation utilizes multiple techniques of seismic tomography and earthquake location 

to investigate the upper mantle structure and intermediate-depth seismicity of the Tonga 

subduction zone, the Lau back-arc basin, and adjacent regions. Data for these studies consist of 

broadband records from 49 ocean bottom seismographs and 17 island-based seismic stations 

deployed for one year in 2009-2010, as well as more limited earlier datasets. I conducted 

tomographic studies of Rayleigh wave velocity and body wave attenuation to examine the 

thermal variations and the distribution of partial melt in the mantle wedge. The shear-wave 

velocity structure is first determined using only teleseismic data with the two-plane-wave method, 

and then jointly inverted from the phase velocities of teleseismic and ambient-noise Rayleigh 

waves obtained from noise cross-correlation. Additionally, I determine the 3-D P and S wave 

attenuation structure from t* measurements using local and regional earthquakes. Tomographic 

results show extremely low velocity and high attenuation within the upper 80-km of the mantle 

beneath the Lau back-arc basin, suggesting perhaps the lowest shear-wave velocity (VSV = 3.6 

km/s) and highest seismic attenuation (QP < 35 and QS < 25) known in the mantle. These 



 xi 

anomalies require not only abnormally high temperature but also the existence of partial melt. 

The inferred melting regions align with the spreading centers at shallow depths of 20-70 km, but 

shift westwards away from the slab, indicating a passive decompression melting process 

governed by the mantle wedge flow rising from the west. Assuming that velocity anomalies 

reflect variations in mantle porosity filled with melt, the mantle porosity is reduced in areas of 

high mantle water content, implying that the melt segregation and extraction are significantly 

enhanced by the water released from the subducting slab. The low velocities and high attenuation 

beneath the northeastern Fiji Plateau and northern Lau Ridge suggest the missing lithospheric 

root in this region, where the active Taveuni Volcano exists. This, along with the low-velocity 

anomalies beneath the northwestern Lau Basin, are consistent with a second origin from the deep 

mantle in addition to the Samoan mantle plume. 

In order to investigate water-related slab processes, I precisely locate intermediate-depth 

earthquakes and associate them with the Global Centroid Moment Tensor solutions. These 

events form a double seismic zone with a separation of about 30 km in the northern part of the 

Tonga slab, with a downdip compressional upper plane and a downdip tensional lower plane. 

The lower termination of the double seismic zone correlates with the convergence rate, extending 

to 300 km in places, and is consistently deeper than in Japan and other slabs worldwide. Similar 

trends have been found for a tripe of seismicity at depths of 200-300 km. These observations 

indicate that the depth of intermediate-depth seismicity is primarily influenced by temperature, 

implying the importance of the thermally controlled processes, such as serpentine dehydration 

and fluid-related embrittlement. However, the disappearance of the double seismic zone towards 

to the south coincides with the change in slab curvature, suggesting that the stress states rather 

than dehydration reactions control the activity of the lower plane. 
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Chapter 1 

Introduction 

 

The Tonga subduction zone and the adjacent Lau back-arc basin are exemplary locations for 

understanding fundamental processes of plate tectonics, such as subduction, back-arc spreading, 

and their interactions. While the Pacific Plate has subducted westward beneath the Australian 

Plate along the Tonga Trench for considerable time, back-arc extension began at about 6 Ma, and 

then turned to seafloor spreading at about 4 Ma [Taylor et al., 1996]. This process split the 

ancient Lau-Colville volcanic arc into the Lau Ridge and Tonga Ridge, and formed the Lau 

Basin in between. Currently the maximum total back-arc spreading rate of 160 mm/yr occurs in 

the northern part of the Lau basin, and the convergence rate between the Tonga plate and the 

Pacific plate also reaches a maximum of 240 mm/yr in the north [Bevis et al., 1995]. Both rates 

decrease monotonously towards to the south, resulting in a larger distance from the spreading 

centers to the trench in the north than in the south. These variations in subduction rate and 

distance between the slab, arc, and backarc spreading center provide ideal opportunities to study 

various effects on slab and mantle wedge processes. 

Previous studies of geology, petrology, geochemistry, and geomorphology revealed 

systematic along-strike variations of the Lau back-arc spreading center, and attributed them to 

the varying interactions between the subduction and the back-arc [e.g. Zellmer and Taylor, 2001; 

Martinez and Taylor, 2002; Kelley et al., 2006; Martinez et al., 2006; Bézos et al., 2009; Escrig 
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et al., 2009]. However, most of previous seismic studies in the region were mainly confined to a 

linear seismic array nearly perpendicular to the Tonga Trench [e.g. Zhao et al., 1997; Roth et al., 

1999; Smith et al., 2001; Conder and Wiens, 2006; Wiens et al., 2008], and large scale 

tomographic studies failed to provide details due to low resolution [e.g. van der Hilst, 1995; Deal 

et al., 1999]. Thanks to the 2-D seismic array of the Ridge2000 Lau Spreading Center Imaging 

project, which consisted of 49 ocean bottom seismographs and 17 island-based stations in Tonga, 

Fiji, and the Lau Basin, the high quality data greatly improve our capability to further investigate 

the along-strike variations. 

In Chapter 2 we use the two-plane-wave method of Rayleigh wave tomography [Forsyth and 

Li, 2005; Yang and Forsyth, 2006] to analyze these data as well as data collected from 1990s 

deployments, mainly focusing on the N-S variations of partial melt beneath the back-arc 

spreading centers. In Chapter 3 we combine the ambient-noise tomography with the two-plane-

wave tomography for SV- velocity inversions with a Bayesian Monte-Carlo algorithm [Shen et 

al., 2012]. These strategies significantly improve the tomographic resolution at shallow depths, 

so that we are able to construct a comprehensive model of the uppermost mantle. This model, 

along with previous petrological studies, helps us better understand the thermal variations and 

melt distribution in this region. 

In Chapter 4 we analyze the waveforms of local earthquakes in order to investigate seismic 

attenuation in the mantle wedge. The P- and S-wave amplitude spectra from local events are first 

inverted for path-average attenuation operator (t*), and then for the 3-D tomographic models of 

QP, QS, and QP/QS. The results of attenuation generally correlate well with the SV-velocity 

structures in Chapters 2 and 3, though some discrepancies may reveal more complexities. 
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In Chapter 5 we relocate the intermediate-depth earthquakes in Chapter 4 using the 

hypocentroidal decomposition algorithm [Jordan and Sverdrup, 1981; Bergman and Solomon, 

1990], and associate half of these events with the Global Centroid Moment Tensor solutions 

[Dziewoński et al., 1981; Ekström et al., 2012]. Based on the slab geometry defined by the 

relocated hypocenters, we build 2-D thermal structures of the Tonga slab along 6 cross-sections 

and calculate the pressure-temperature condition of each event. The comparisons between the 

Tonga seismicity and the major dehydration reactions provide new evidence for the mechanisms 

of intermediate-depth earthquakes and for the depth distribution of water release in the mantle 

wedge. 
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Chapter 2 

Seismic Evidence of Effects of Water on Melt 

Transport in the Lau Back-arc Mantle 
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Conder (2015), Seismic evidence of effects of water on melt transport in the Lau back-arc mantle, 
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Abstract 

Processes of melt generation and transport beneath back-arc spreading centers are controlled 

by two end-member mechanisms: decompression melting similar to that at mid-ocean ridges 

(MORs) and hydration (flux) melting resembling that beneath arcs [e.g. Kelley et al., 2006]. The 

Lau Basin, with an abundance of spreading ridges at varying distances from the subduction zone, 

provides an opportunity to distinguish the effects of these two different melting processes on 

magma production and crust formation. Here we present constraints on the three-dimensional 

distribution of partial melt inferred from seismic velocities obtained from Rayleigh wave 

tomography using land and ocean bottom seismographs. Slow seismic velocities beneath the 

Central Lau Spreading Center (CLSC) and northern Eastern Lau Spreading Center (ELSC) 
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extend deeper and westward into the back-arc, suggesting that these spreading centers are fed by 

melting along upwelling zones from the west, helping to explain geochemical differences with 

the Valu Fa Ridge (VFR) to the south [Escrig et al., 2009], which has no distinct deep slow 

seismic velocity anomalies. A slow shear velocity region, interpreted as resulting from high melt 

content, is imaged in the mantle wedge beneath the CLSC and northeastern Lau Basin (NELB), 

even where no active spreading center currently exists. This low seismic velocity anomaly 

becomes weaker with distance south along the ELSC and VFR, in contrast to the inferred 

increase of magmatic productivity [e.g. Kelley et al., 2006]. We propose that the anomaly 

variations result from changes in the efficiency of melt extraction, with reduced presence of melt 

in the south correlating with increased fractional melting and higher water content in the magma. 

Water released from the slab may greatly reduce the melt viscosity [e.g. Giordano et al., 2008], 

enhance grain wetting and/or increase grain size [Karato, 1989], thereby facilitating melt 

transport. 
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2.1. Introduction 

Sea floor spreading in the Lau back-arc system began about 4 Ma in the north [Taylor et al., 

1996], propagated southward and split the ancient arc into the Lau Ridge and Tonga Ridge. This 

process formed the V-shape Lau Basin, with its larger distance between the spreading center and 

active Tofua volcanic arc in the north as compared to the south (Fig. 2.1a). This variation of 

distance from the arc correlates with systematic changes in the geological features of the 

spreading centers, with mid-ocean ridge basalt (MORB)-like geochemical signatures in the north, 

and arc-like signatures and much higher inferred water content in the south [e.g. Pearce et al., 

1994; Martinez and Taylor, 2002; Kelley et al., 2006]. However, two questions remain 

unresolved: (1) Why is there an abrupt change in the geochemical signatures of subduction 

[Escrig et al., 2009] and the structure of young ocean crust [Dunn and Martinez, 2011; Arai and 

Dunn, 2014] at about 20˚35’S along the ELSC, though the distance from the ridge to the arc 

changes gradually? (2) Although the ELSC has an intermediate distance from the arc as 

compared to the CLSC and VFR, why do its axial crustal properties imply the lowest magmatic 

activity [Martinez and Taylor, 2002]? These questions suggest complexities beyond the 

subduction-controlled melting process [Martinez and Taylor, 2002]. The previous studies rely on 

petrological and geochemical measurements of erupted basalts [e.g. Pearce et al., 1994; Kelley et 

al., 2006], seafloor morphology [e.g. Taylor et al., 1996], or the structure of the crust [e.g. Dunn 

and Martinez, 2011; Arai and Dunn, 2014] to infer characteristics of the melt production region 

in the mantle. In this study, we present new high resolution three-dimensional seismic 

tomography results of the mantle, placing constraints on mantle melting variations in a region 

characterized by large gradients in mantle water content. 
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2.2. Results 

We used the two-plane-wave method of Rayleigh wave tomography [Forsyth and Li, 2005; 

Yang and Forsyth, 2006] and data from two networks of land and ocean bottom seismographs 

(OBSs) (Fig. 2.1b and 2.5) to image phase velocity at periods ranging 19 - 88 s, and then 

determined the 3-D shear wave velocity of the uppermost mantle. The derived azimuthally 

averaged SV velocity structure shows a wide low-velocity zone (LVZ) with a V-shape in the 

shallow part of asthenosphere (Fig. 2.1b-c and Fig. 2.4), dipping to the west away from the arc 

(Fig. 2.2). At shallow depth, e.g. 30 km, the LVZ occurs along the spreading centers and 

connects the CLSC to the Fonualei Rift and Spreading Center (FRSC) and Mangatolu Triple 

Junction (MTJ) to the north (Fig. 2.1c). At depths of 50 km, the anomaly becomes stronger 

beneath the NELB, but weaker beneath the southern ELSC and VFR (Fig. 2.1d). The Lau Ridge 

and Fiji Plateau are characterized by a high-velocity anomaly in the uppermost mantle, implying 

that these relict island arcs are underlain by cold lithosphere to a depth of about 70 km. The high 

velocity anomaly beneath the Tonga Ridge delineates the subducting Pacific slab [Zhao et al., 

1997] (Fig. 2.2). 

The lowest mantle velocities are found at a depth of about 50 km along a band extending 

from the MTJ southward to the northern tip of the ELSC, with a minimum SV velocity of 3.5 ± 

0.15 km/s (Fig. 2.1d), significantly lower than other well-studied upper mantle LVZs [e.g. 

Nishimura and Forsyth, 1989; Harmon et al., 2009] (Section 2.4 and Fig. 2.10). The velocity 

anomaly is considerably weaker and shallower to the south along the VFR (Fig 3a). Since the 

southward decrease in anomaly magnitude correlates with a narrowing of the basin, the 

possibility that the decrease results from a lack of resolution for long period Rayleigh waves 
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must be considered. However, the anomaly trend is apparent even in mid-period phase velocity 

maps (e.g. 37 s, see Fig. 2.6), with good resolution to the southern tip of the VFR (Fig. 2.7). In 

addition, preliminary results from independent analyses of shorter period Rayleigh and Love 

waves using ambient-noise tomography [Zha et al., 2014] (Fig. 2.8) and body wave attenuation 

(Chapter 4) both provide evidence supporting a weaker slow velocity anomaly in the south 

(Section 2.4). 

 

 

2.3. Discussions 

Many factors, including temperature, composition, and melt, influence seismic velocity [e.g. 

Hammond and Humphreys, 2000; Takei, 2002; Karato, 2003; Faul et al., 2004; Jackson and 

Faul, 2010; McCarthy and Takei, 2011]. To investigate these effects, we estimated the shear 

velocity structures of a “wet” but melt-free mantle wedge beneath the Lau Basin based on 

numerical models [Harmon and Blackman, 2010], using experimental results fitted with an 

extended Burgers model [Jackson and Faul, 2010] and corrections for the effect of water 

[Karato, 2012] and radial anisotropy [Nishimura and Forsyth, 1989] (Section 2.4.4 and Fig. 

2.11). Although the predicted velocity structures (Fig. 2.11) are similar to our observations (Fig. 

2.2), the modeling is unable to explain the very low SV velocities (≤ 3.8 km/s) observed. The low 

velocities occur beneath the spreading centers at the depths expected for melt generation in the 

mantle (Fig. 2.3) and not in regions showing high water content, indicating that partial melt is the 

dominant factor. However, quantitative interpretation in terms of melt content is hampered by 

incomplete knowledge of the effects of melt on seismic velocity [Faul et al., 2004; McCarthy 

and Takei, 2011]. 
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We suggest that the extent and intensity of the low velocity anomaly provide constraints on 

the distribution and characteristics of the mantle melting process. The inclined LVZ (Fig. 2.2) 

shows a broad, asymmetric melting region originating at about 80 km depth, with the deepest 

part offset away from the slab, implying a passive decompression melting process governed by 

the mantle wedge flow pattern [Conder et al., 2002; Harmon and Blackman, 2010]. Although it 

is difficult to quantitatively relate the low shear velocity observed beneath the CLSC to mantle 

porosity filled with melt (hereinafter referred as melt porosity), given the lowest shear velocity of 

about 3.9 km/s imaged beneath the East Pacific Rise [Harmon et al., 2009], the porosity here is 

higher than beneath a fast-spreading MOR. This implies that the process of melt segregation at 

the CLSC is less efficient, consistent with the abnormally shallow depth of last melting 

equilibrium recorded in the lavas (about 35 km), as perfect segregation favors retention of high 

pressure chemical signatures (Section 2.4.5). The rapid spreading rate (about 90 mm/yr, i.e. high 

mantle matrix ascending rate), and high melt production due to high temperature both favor melt 

retention and high mantle porosities. Additionally, the higher spreading rate at the CLSC 

weakens the magmatic focusing at the ridge, hindering melt from being extracted [Kohlstedt and 

Holtzman, 2009]. 

The tomography results indicate that the MORB-like lavas erupting along the CLSC are 

derived from an upwelling zone (Fig. 2.2, A-A’) originating from the ambient mantle to the west 

of the Lau back-arc, well away from sources of water and fluid-mobile elements in the 

subducting slab. Although the northern ELSC is much closer to the slab than CLSC, there is still 

a connection of the LVZ to the west (Fig. 2.2, B-B’), suggesting that the source of melt may be 

dominated by ambient mantle near and west of the ELSC rather than the subduction-influenced 

mantle. However, the VFR, characterized by high water content [Kelley et al., 2006], shallow 



 11 

axial depths [Martinez and Taylor, 2002], and anomalous major element compositions [Escrig et 

al., 2009], lacks a sub-lithospheric melt zone to the west of the spreading axis (Fig. 2.2, C-C’). 

The horizontal component of corner flow in the mantle wedge beneath the VFR is likely slower 

than that beneath the CLSC [Harmon and Blackman, 2010], which may also lead to inefficient 

mantle supply from the west along the VFR. Therefore, although map-view results in Fig. 2.1 

cannot resolve the details of this transition due to the low lateral resolution, the contrast between 

cross-sections B-B’ and C-C’ in Fig. 2.2 suggests that the sudden change in magma chemistry 

beginning at about 20˚35’S along the ELSC [Escrig et al., 2009] represents the transition 

between spreading centers fed by decompression melting west of the axis, and those dominated 

by flux melting near the Tonga slab (Fig. 2.2). 

Interpreting the along-strike variation of seismic anomalies is complicated, as both 

temperature and water content change from north to south [e.g. Kelley et al., 2006]. The seismic 

anomaly variations are strongest at the depth of about 50 km, well beneath the lithosphere-

asthenosphere boundary (LAB) according to the half-space cooling model (dotted curves in Fig. 

2.2), excluding lithospheric cooling as a potential cause of this N-S variation. Furthermore, the 

trend in seismic velocity anomaly is opposite to the trend of the inferred source water content 

among the CLSC, ELSC and VFR, with areas of higher water content showing smaller and 

shallower seismic velocity anomalies (inset of Fig. 2.3). This contrast is surprising, given that the 

presence of water reduces the shear velocity in sub-solidus olivine by enhancing attenuation 

[Karato, 2003]. We constrain possible thermal variations along-strike by using lava composition 

and the thermobarometer of Lee et al. [2009] to estimate the P-T conditions of melting (Fig. 2.3, 

Fig. 2.12, and Section 2.4.5). Calculated melting paths reveal that the mantle is hotter beneath 

the CLSC than beneath VFR (Fig. 2.3), possibly due to less cooling by the slab. At 50 km depth, 
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the temperatures beneath the CLSC and VFR are about 1400˚C and 1350˚C, respectively. This 

difference would cause a reduction in shear wave velocity by only < 0.1 km/s (Section 2.4.5), 

much less than our observation of > 0.3 km/s. 

Therefore, we interpret the along-strike variations of seismic anomalies in terms of changes 

in melt porosity. Our results suggest the highest melt porosity occurs beneath the NELB and 

CLSC, and decreases southward to the VFR. In contrast, higher melt production is not expected 

for the NELB in numerical models [Harmon and Blackman, 2010], and as sub-axial water 

content increases southward, the onset of partial melt would be expected to deepen [Kelley et al., 

2006] and the extent of melting would increase toward the VFR, opposite to our inferences (Fig. 

2.3). However, melt porosity and extraction are not expected to follow a simple relationship with 

melt productivity, but rather may be governed by other factors such as permeability and melt 

viscosity. 

We propose that the variations in seismic velocities along the Lau back-arc spreading centers 

reflect differences in melt porosity due to changes in the efficiency of melt extraction, 

determining the relation between melt content in the mantle and magmatic expression near the 

surface. The pattern of seismic anomalies suggests two major factors controlling the efficiency of 

melt transport. One factor is the existence of a nearby spreading center as a focus for upward 

melt transport. The lowest seismic velocities occur beneath the NELB at substantial distance 

from active spreading centers, suggesting the low permeability of the overlying lithosphere and 

the lack of effective magma channel prohibit melt extraction. This implies that melt generated in 

the mantle wedge beneath this region is not efficiently extracted, either slowly solidifying or 

migrating laterally large distances to one of the spreading centers. 

The second major factor affecting melt porosity is the water content of the melt. Despite the 
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high degrees of melting of the mantle at VFR, the seismic velocities are faster throughout the 

melting region than beneath the CLSC, indicating greater melt extraction efficiency beneath the 

VFR where melts are wetter. Compared to the CLSC, the water-rich VFR melts apparently 

segregate from the mantle more efficiently, similar to the profile beneath the Tofua volcanic arc. 

Both the seismic images and the P-T calculations suggest that melt rises efficiently, ponds and 

re-equilibrates at the base of the thermal boundary layer (20-25 km depth) (Fig. 2.3). Although 

the presence of water enhances melting [Kelley et al., 2006], it also reduces the melt viscosity 

[Giordano et al., 2008] and facilitates grain growth [Karato, 1989]. If we assume the melt 

transport to be an equilibrium porous flow, it follows Darcy’s law with q ∝ d2ϕn/µ, where q is the 

melt flux, d is the grain size, ϕ is the porosity, µ is the melt viscosity, and n is about 2.6 [Miller et 

al., 2014]. Thus a decrease in melt viscosity and/or increase in grain size caused by higher water 

content would decrease melt porosity for a constant melt flux. In sum, our results and analysis 

indirectly imply that water greatly enhances melt mobility. 

Ideally one could quantitatively relate the melt porosity inferred from seismology to melt 

extraction models of spreading centers. Unfortunately, there is no well-established relation 

linking seismic velocity and melt porosity. Many factors such as the grain size [Jackson and 

Faul, 2010] and the topology of the partial melt within the matrix [Takei, 2002] also affect 

seismic velocity; and other factors such as the behavior of “wet” melt under high pressure are 

poorly understood. Further experimental studies may provide the necessary constraints to relate 

seismic images directly to factors controlling melt production and transport. 

 

 



 14 

2.4. Supplementary Materials 

2.4.1. Data processing and inversion 

Most of the data used in this study were collected from 49 broadband ocean-bottom 

seismographs (OBSs) deployed from November 2009 to November 2010 and 17 island-based 

seismic stations operated from October 2009 to December 2010. We additionally used data from 

14 OBSs of the Lau Basin Ocean Bottom Seismograph Survey (LABATTS) and 9 island-based 

stations of the Southwest Pacific Seismic Experiment (SPASE) collected during September to 

December 1994 [Zhao et al., 1997] (Fig. 2.1b and 2.5). 

Based on the Preliminary Determination of Epicenters (PDE) catalogue, we selected 

seismograms of 357 earthquakes, with surface-wave magnitudes (Ms) larger than 4.5 and 

epicentral distances between 30º and 150º (inset of Fig. 2.5). The good azimuthal distribution of 

earthquakes guarantees a large number of ray-crossings north and south of the station array, 

improving resolution in the northern and southern Lau Basin (Fig. 2.7). The raw seismogram of 

each event was cut from the origin time of the earthquake to 12,000 seconds after. Prior to the 

tomographic inversion, data were down-sampled to 1 sps and instrument responses were 

removed. For each period of interest, we used a narrow bandpass filter (4th order Butterworth, 

zero-phase shift) centered at the frequency of interest to filter the seismograms. The filtered data 

were then windowed manually to isolate the fundamental mode of the Rayleigh wave at each 

period ranging from 19 to 118 s. Noise in seismograms at long periods (> 50 s) due to ocean 

swell and associated water pressure variations as well as tilt caused by local currents was 

removed by correcting vertical channel with horizontal and pressure channels [Webb and 

Crawford, 1999; Crawford and Webb, 2000; Bell et al., 2015]. 

We then used the two-plane-wave method [Forsyth and Li, 2005] with 2-D Fréchet kernels 



 15 

[Yang and Forsyth, 2006] to invert phase velocity with isotropic and anisotropic components at 

periods from 19 to 88 s. Periods longer than 88 s were not used since the wavelengths are too 

long compared to the size of our array to provide good resolutions. Unlike the traditional 

Rayleigh wave tomography based on ray theory, this method considers scattering effects of 

Rayleigh waves outside the study region by simplifying the scattered incoming wave as the sum 

of two interfering plane waves [Forsyth and Li, 2005]. Additionally, by using 2-D Fréchet 

kernels based on the starting model, scattering and multipathing effects within the study region 

can be also approximately addressed [Yang and Forsyth, 2006]. Both calculating the 2-D Fréchet 

kernels and the nonlinear tomographic inversion require a good starting velocity model. In the 

first step that determines the average phase velocity at each period for the entire study region, we 

chose the anisotropic model of the Pacific [Nishimura and Forsyth, 1989] (NF89 model 

hereinafter) with the age ranging 0 – 4 Myr as the starting model. In the second step, we divided 

the study region into four sub-regions according to tectonic settings: Lau Basin, Fiji Plateau/Lau 

Ridge, Tonga Ridge, and background. Then we used the average phase velocity as the starting 

model to invert the 2-D phase velocity map, with nodes spaced at 186.5 km, at each period. In 

the third step, we refined the grid of nodes to spacing of 124.3 and 58.7 km progressively, and 

used the previously inverted phase velocity as the a priori model. 

Our results show strong azimuthal anisotropy in this region, consistent with previous studies 

[Smith et al., 2001]. For instance, at the depth of 50 km, the fast direction is trench-parallel 

beneath the Lau Basin but convergence-parallel beneath the Lau Ridge and Fiji Plateau. 

Although the amplitude of anisotropy at each period varies by up to 5 % depending on the degree 

of regularization, the isotropic components of phase velocity show only very small changes (< 

0.03 km/s) due to the good azimuthal coverage of the ray paths. Since the main purpose of this 
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work is to image the 3-D structure of seismic velocity and the inferred partial melt, only the 

isotropic phase velocities were analyzed in the next steps. 

Subsequently, we inverted the azimuthally isotropic phase velocity at each node to determine 

the azimuthally averaged SV velocity using Computer Programs in Seismology [Herrmann, 

2004]. We initially tried to invert the SV velocity with different uniform starting models based on 

NF89 models [Nishimura and Forsyth, 1989] or previous waveform inversions [Wiens et al., 

2006]. Since this linearized inversion may depend upon the starting model, we later divided the 

study region into six sub-regions: Lau Basin, Fiji Plateau/Lau Ridge, Tonga Ridge, North Fiji 

Basin, South Fiji Basin, and Pacific plate. The starting model for each sub-region was adopted 

from previous studies of seismic refraction [Crawford et al., 2003], body wave tomography 

[Conder and Wiens, 2006], and NF89 models [Nishimura and Forsyth, 1989]. Each individual 

node was then sorted into one of these sub-regions, and the corresponding starting model was 

used in the inversion for the shear velocity structure at that node. Compared to the inversion 

results from a uniform starting model, the results inverted from starting models of 6 sub-regions 

are almost identical for mantle structure deeper than 30 km but improve a little for shallower 

structure that agrees with geological settings better. We therefore chose the later technique to 

obtain the final results of SV velocity. Furthermore, in order to test the robustness of the 

extremely slow velocity east of the CLSC, we applied the Monte-Carlo algorithm to invert the 

node that has the lowest velocity. Tests show that the extremely slow velocity east of the CLSC 

is robust, and shear velocity inverted by the linearized method [Herrmann, 2004] is reasonable 

(next section and Fig. 2.10). 
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2.4.2. Resolution of phase-velocity inversion 

Inversion of phase velocity has an inevitable trade-off between spatial resolution and model 

resolution. Although shorter smoothing length with a finer grid of nodes could lead to more 

small-scale information (higher spatial resolution), the over-parameterized problem will be 

poorly solved in the inversion, resulting in lower model resolution and failing to provide useful 

details [Forsyth and Li, 2005]. We thus chose the inversion parameters mainly based on the 

model covariance and checkerboard tests (Fig. 2.7). For the largest node spacing of 186.5 km, we 

used a smaller a priori standard deviation (0.05 km/s) and larger smoothing length (200 km), 

giving results more damped to the starting model. As we reduced the spacing of nodes with 

subsequent iterations, inversion parameters for shorter periods were changed accordingly [Rau 

and Forsyth, 2011] so that phase velocity had more variability (a priori standard deviation as 

0.15 km/s and smoothing length as 80 km for the finest grid of nodes spacing 58.7 km). The lack 

of spatial resolution at long periods is an intrinsic problem for surface wave tomography due to 

the large wavelength of waves and the consequent great width of the Fréchet kernel. For instance, 

the inferred subducting Pacific slab with dip angle gentler than shown by Slab 1.0 model [Hayes 

et al., 2012] (Fig. 2.2) is an artifact due to the low resolution as the longer wavelength Rayleigh 

waves smear the horizontal structure more at larger depth. Since we were able to obtain useful 

resolution up to 88 s, only phase velocities at periods shorter than 90 s were used for the next 

step of shear-velocity inversion. 

Ambient-noise tomography (ANT) uses “seismic noise” to invert phase velocity at shorter 

periods and to constrain shallower structures than are resolved by the two-plane-wave 

tomography (TPWT). ANT results [Zha et al., 2014] of phase velocity at the period of 18 s (Fig. 

2.8a) are consistent with phase velocity at 21 s obtained from TPWT, both showing weaker 
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signal of LVZ in the south. Furthermore, ANT results of shear velocity at the depth of 30 km 

(Fig. 2.8b) show great agreement with TPWT (Fig. 2.1c) not only in pattern but also absolute 

values. The smooth transition from shorter periods in ANT to longer periods in TPWT suggests 

our phase-velocity inversion is robust. Additionally, high attenuation anomalies revealed by 

independent body waves analysis (Chapter 4) have similar pattern to the LVZ in this study, 

supporting our results of weaker slow anomaly to the south. 

Phase velocities at the CLSC are consistently slower than are observed at Marianas back-arc 

[Pyle et al., 2010] and about 200 km west of the East Pacific Rise 12-18˚S [Harmon et al., 2009], 

whereas only short-period phase velocities at the VFR are slower (Fig. 2.6). In addition, there are 

significant along-strike changes in the magnitude of this anomaly. In order to test our results of 

phase velocity, we applied the traditional two-station method for two sets of earthquake-station 

pairs (Fig. 2.9). The first set contains one earthquake at the Chile trench recorded by two stations 

north of the ELSC, and the second set has one earthquake at the Mariana trench recorded by two 

stations near the VFR. Fig. 2.9b and 6c show the seismograms of fundamental mode of Rayleigh 

wave filtered (4th order Butterworth, zero-phase shift) to 37 s. Given the differences of 

epicentral distance and phase delay times shown in Fig. 2.9, the average phase velocity between 

N01W and N03W is about 3.59 km/s, and that between A12W and S01W is about 3.67 km/s, 

consistent with phase velocity inverted by the TPWT (Fig. 2.6). These estimations of phase 

velocity are certainly approximate but lend evidence supporting our results of phase velocity. 

 

2.4.3. Robustness of shear-velocity inversion 

Linearized inversion [Herrmann, 2004] provides a fast way to invert shear velocity from 

phase velocity. However, the fixed thicknesses of model layers used in this method may lead to 
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bias in the inverted results. Therefore we additionally applied a Monte-Carlo algorithm to test the 

robustness of the extremely low velocity east of the CLSC (Fig. 2.10). This method generates an 

ensemble of models using random perturbations to both velocity and layer thickness of the 

linearized inverted model (starting model). It then calculates the dispersion curve for each model, 

and compares them with the original dispersion curve from the phase-velocity inversion. A 

“good” model is defined by two factors: (1) it should be as smooth as the linearized inverted 

model, and (2) its corresponding dispersion curve should have similar misfit compared to the 

starting model’s dispersion curve. The “best” model is defined as the “good” model that has 

smallest misfit. Numerical experiments with the inversion for node 364 (Fig. 2.10) show that 

although the “best” model varies from inversion to inversion, the average of 500 “good” models 

is robust and almost identical to the linearly inverted model. The largest standard deviation of 

shear velocity over all depths is 0.13 km/s, much smaller than the range of perturbation set as 

15 %, a.k.a., about 0.6 km/s. We thus conservatively estimate the uncertainty of the lowest 

velocity as 0.15 km/s. It is worthwhile to notice that the LVZ of our results is shallower than that 

from a previous waveform inversion study [Wiens et al., 2006] (green curve in Fig. 2.10), 

agreeing with the geological setting better as melting commences 60-70 km deep beneath the 

passive MOR [Shen and Forsyth, 1995]. That is because the waveform inversion [Wiens et al., 

2006] averages over the whole back-arc and parts of the arc and Fiji Plateau. Therefore, we 

conclude that shear velocity inverted by the linearized method [Herrmann, 2004] is reasonable. 

After trying various starting models and inversion parameters, an unexpected high-velocity 

zone (HVZ) deeper than about 100 km consistently appears in the result model, mainly due to 

the abnormally steep gradient of dispersion curve beyond 30 s. Beneath the node 364, the 

subducting slab is presumably about 200 km deep, leading to a difficulty to explain the HVZ 



 20 

geologically. However, given the fact that a segment of the slab 100 km deep is only 100 km east 

of the node, and the wavelength for a 70 s Rayleigh wave, which is most sensitive to the depth of 

100 km, is about 300 km, the HVZ can be explained as a smearing effect between the “fast” slab 

and the “slow” back-arc basin. As discussed in the last section, the intrinsic problem of low 

resolution at long periods is serious in the back-arc basin, since the lateral variations are too 

dramatic to be accurately resolved by the long wavelength surface waves. We thus limit our 

interpretation to the velocity structure shallower than 100 km, but have plotted structures 

between 100 and 120 km in the cross-sections for reference (Fig. 2.2). 

 For the same reason, the artificially high phase velocity at long periods, and the abnormally 

steep gradient of dispersion curve, may also result in a slight bias in the shear velocity at shallow 

depths in favor of slow velocities. Nevertheless, the fact that phase velocities at periods of 20 – 

40 s are slower than those along the East Pacific Rise (Fig. 2.6) guarantees that the shear 

velocities at depths of 30 – 60 km are consistently lower than the East Pacific Rise. 

It is worthwhile to examine whether the observed structures above 100 km deep are also 

artifacts due to this lateral “smearing”, especially the LVZ extending westwards that are parallel 

to the dominant direction of the wave paths (cross-sections A-A’ and B-B’ in Fig. 2.2). Fig. 2.7 

shows that even at the period of 50 s, most sensitive to the depth about 70 km, the lateral 

resolution is still good enough to resolve structures with a length scale of 200 km. In contrast, the 

results at 66 s show that even a larger length scale of 300 km cannot be resolved at periods of 66 

s and longer, which are most sensitive to depths of 100 km and deeper. Additionally, preliminary 

results from independent analyses of body wave attenuation (Chapter 4) also reveal a connection 

between the CLSC and the asthenosphere beneath the Fiji Plateau, which is expected by the 

numerical models [Harmon and Blackman, 2010]. 
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2.4.4. Predicting shear wave velocity 

The extended Burgers model constrained by experimental data [Jackson and Faul, 2010] 

provides a link relating temperature to seismic velocity, incorporating the important effects of 

anelasticity. We first used recent 2-D numerical mantle wedge flow models [Harmon and 

Blackman, 2010] to predict shear velocity structures beneath the CLSC, ELSC, and VFR solely 

due to thermal variations. We corrected the predicted isotropic velocities to compare with our 

observed VSV velocities by assuming that the isotropic shear velocity is the average of VSV and 

VSH, and using the radial anisotropic parameters of NF89 0-4 Myr model (VSH/VSV varies from 

1.010 to 1.016) [Nishimura and Forsyth, 1989]. Water content affects seismic velocity via 

anelastic behavior, i.e., changing characteristic frequency of anelastic relaxation. We adopted an 

assumption by Karato [2012] that ηgbs ∝ Cwr, where ηgbs is grain-boundary viscosity, Cw is water 

content, and r = 2, and applied it into Jackson and Faul’s parameterizations to estimate water 

effects. Since the potential temperature used in the numerical models is 1450 ˚C [Harmon and 

Blackman, 2010], consistent with the value revealed at the CLSC but slightly higher than that at 

the ELSC and VFR [Wiens et al., 2006], and the exponent constant r lies at the upper limit of 

Karato [2012] assumption (r = 1 – 2), the predicted SV velocity should be underestimated. We 

neglected the effects of other compositional variations on seismic velocity in this study, since 

previous geochemical studies suggest that Mg# of the mantle matrix varies less than ± 1 due to 

melt depletion [Wasylenki et al., 2003] (Tables 2.1 and 2.2). These variations potentially lead to 

a change of ± 0.015 km/s in shear velocity [Lee, 2003], much smaller than the observed along-

strike velocity change of > 0.3 km/s (inset of Fig. 2.3). 

Fig. 2.11 shows calculated SV velocity under the considerations of temperature, water, and 
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radial anisotropy. We acknowledge that several parameters for the numerical models [Harmon 

and Blackman, 2010], the extended Burgers model [Jackson and Faul, 2010], and water effects 

[Karato, 2012] are poorly constrained. It is thus difficult to evaluate the uncertainty of Fig. 2.11. 

But these estimations at least provide a quantitative and visualized way to assess the importance 

of each physical property. On the other hand, previous studies of geology, petrology, and 

geochemistry all expected large amount of melt beneath the Lau basin [e.g. Kelley et al., 2006; 

Dunn and Martinez, 2011], where the slow velocities are imaged. Therefore, we believe that it is 

reasonable to interpret the extremely low shear wave velocities as partial melting. 

 

2.4.5. Melting paths and along-strike thermal variations 

In order to estimate the temperature of the melting region beneath the Lau spreading centers, 

we applied a thermobarometer based on the Si and Mg contents of primary liquids in equilibrium 

with olivine+orthopyroxene [Lee et al., 2009]. We downloaded data from PetDB 

(http://www.earthchem.org/petdb) [Kamenetsky et al., 1997; Lehnert et al., 2000; Kent et al., 

2002; Tian et al., 2008; Hahm et al., 2012; Lytle et al., 2012], selecting only submarine glasses 

that have been analyzed for H2O, and that are primitive enough to be related to primary mantle 

melts by olivine crystallization only. The latter condition was met by selecting only those 

samples with MgO greater than that calculated for the point of plagioclase appearance on the 

cotectic (parameterized from the relationships in Fig. 10 of Langmuir et al. [2006], as a function 

of H2O, where MgO(plagioclase-in) = 8.18 - 0.93*H2O). This resulted in only 4 samples from 

the CLSC, only 1 from the ELSC, and 6 from the VFR (Tables 2.1 and 2.2). 

Even after selecting the most primitive basalts (listed in Tables 2.1 and 2.2), chemical 

compositions still need to be corrected for olivine crystallization before being input into the 
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mantle melt thermobarometer.  In order to accomplish this, equilibrium olivine was added 

stepwise to the most primitive erupted compositions. We first calculated the composition of 

olivine in equilibrium with the erupted basaltic liquid using an Fe-Mg exchange coefficient 

between olivine and liquid of KD(Fe/Mg)ol/liq = 0.3, next added 1% of that olivine to the melt 

compositions, and then calculated a new equilibrium olivine for the next 1% adding, and so on. 

This procedure iteratively continues until the latest calculated melt compositions are in 

equilibrium with mantle olivine, here assumed to have the composition of Fo90 (90 mol% 

Mg/[Mg+Fe]). Because only Fe2+ participates in this exchange relationship, the Fe3+/Fe2+ of the 

melt must be known. We estimated Fe3+/∑Fe from the concentration of H2O in each sample, 

using the relationship in Fig. 3 of Kelley and Cottrell [2009] for MORB and back-arc magmas; 

this yielded values between 14 and 18% Fe3+/∑Fe. The corrected primary (Fo90) melt 

compositions were then input into the Lee et al. [2009] thermobarometer, and the resulting P-T 

values are interpreted here to represent the last pressure (P) and temperature (T) of equilibration 

of melts in the mantle. Since the assumption of the Mg/[Mg+Fe] of the mantle directly affects 

the T calculated, we consider Fo90 to be a minimum given the significant melt fractions (extents 

of melting) involved in this region, and so the calculated temperatures are minima for each 

sample. 

Results in Fig. 2.12 show that the CLSC-ELSC melts record about 50 – 75°C higher 

temperature than those beneath the VFR, and reflect slightly higher pressures of equilibration 

(1.1 vs. 0.75 GPa, about 35 vs. 22 km). All pressures, however, are very shallow, and consistent 

with the top of the melting region in both cases. Such a condition could exist either because 

melts remained in equilibrium with the solid matrix during decompression, or because melts 

were extracted efficiently but pooled at the base of the thermal boundary layer and re-
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equilibrated there. We prefer the former interpretation for the CLSC, due to the very low seismic 

velocities observed in the melting region (30-100 km) there, and the latter for the VFR, due to 

the higher observed seismic velocities and very shallow melt equilibration (comparable to the 

thermal boundary layer or the arc Moho, likely a rheological boundary where melts stall). 

In order to backtrack the shallow equilibration conditions to those of the full melting region, 

we calculate melting paths for average CLSC and VFR primary melts. First, the extent of 

melting (F) is calculated for the final melt, from its P, T and H2O, using the cryoscopic approach 

of Langmuir et al. [2006] and values for dF/dT from Hirschmann [2010] (3.7°/% melting, 

appropriate to 2 GPa, see his Fig. 1), depression of basalt liquidus temperature as a function of 

water from Tenner et al. [2012] (their 3-oxygen mole curve at 1 GPa), and peridotite/melt 

partition coefficient for H2O (0.007) from Fig. 8 of Hirschmann et al. [2009]. The potential 

temperature of the mantle is then calculated by adding the heat of fusion (6°C/%) for that melt 

fraction, and projecting to 0 GPa along a solid adiabat with slope of 10°C/GPa. The H2O 

concentration in the initial mantle is calculated from the H2O concentration in the primary melt, 

the partition coefficient, and the degree of melting. The melting path was then calculated from 

the potential temperature and initial water content, using the same cryoscopic approach as above, 

taking into account the heat of fusion and solid adiabat. 

The potential temperature (Tp) calculated in this way is about 1500°C for CLSC and about 

1475°C for VFR. These Tp are at the high end of those estimated for MORs globally, and this 

has been a long-standing observation for Lau Basin [Kelley et al., 2006; Langmuir et al., 2006; 

Wiens et al., 2006]. The Tp calculated using the method here for northern Lau glasses (1449°C 

for average MTJ and 1463°C for the FRSC) are nearly identical to those calculated in Wiens et al. 

[2006] using an independent method based on Na(Fo90) and Fe(Fo90) (Tp = 1449 ± 23 °C). The full 
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melting paths are shown in Fig. 2.12, with the CLSC mantle melting path maintaining about 50 – 

75°C hotter than VRF mantle path throughout. The somewhat steeper trajectory for the VFR 

melting path reflects its higher water contents, which leads to greater overall extents of melting 

despite the lower initial temperature. The overall degrees of melting are very high (>30% for the 

VRF glasses), but this is consistent with the eruption of boninite liquids at the VFR (e.g., SiO2 > 

53%, TiO2 < 0.5%, MgO > 8%), generally taken to reflect equilibration with refractory mantle 

that has melting past cpx-out [Cooper et al., 2010]. 

At the depth of 50 km, the temperatures beneath the CLSC and VFR are about 1400 ˚C and 

1350 ˚C, respectively. It is important to examine the implication of this thermal difference of 50 

˚C to our seismic observations. According to the extended Burgers model [Jackson and Faul, 

2010], an increase of 50˚C at the depth of 50 km will lead to a decrease in shear wave velocity 

by < 0.1 km/s, much less than our observation of > 0.3 km/s. Additionally, experimental data for 

melt bearing samples [Faul et al., 2004] show that attenuation becomes more dependent on 

temperature when melt is present, thus an increase in temperature may cause larger decrease in 

shear wave velocity than the melt-free model predicts [Jackson and Faul, 2010]. Following 

Karato [1993], we estimated shear wave velocity as a function of temperature T: 

 V (T ) =V0 (T ) 1−
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where V0 is the velocity at infinite frequency and α is the frequency-dependent exponent. 
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So the thermal difference of 50 ˚C between the CLSC and VFR may result in only 0.1 km/s 

change in shear wave velocity. Therefore, we suggest that the along-strike thermal variation is 

not sufficient to cause the observed change of seismic velocity, which requires a significant 

decrease of melt porosity toward the VFR. 
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Figure 2.1. Maps of the study region and mantle velocities. 

(a) Tectonic map of the Lau Basin and adjacent areas with back-arc spreading centers (red lines). 

The Pacific plate subducts beneath the Tonga trench (delineated by bathymetry contours of 7, 8, 

9, and 10 km) from the southeast (bold arrow). Areas with bathymetry shallower than 1 and 0 km 

are shaded in grey and black, respectively. Features with active magmatism have red labels. 

Volcanoes of the Tofua arc are contoured in red. CLSC, Central Lau Spreading Center; ELSC, 

East Lau Spreading Center; ETZ, Extensional Transform Zone; FRSC, Fonualei Rift and 

Spreading Center; FSC, Futuna Spreading Center; MTJ, Mangatolu Triple Junction; NWLSC, 

Northwest Lau Spreading Center; NELB, North-eastern Lau Basin; VFR, Valu Fa Ridge. (b) 

Seismic stations used in this study. Bathymetry of 1000 m is contoured. Red triangles represent 

island-based stations operated from Oct. 2009 to Dec. 2010. Red dots are OBSs deployed from 
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Nov. 2009 to Nov. 2010. Yellow dots and triangles indicate OBSs and island-based stations 

operated during Sep. to Dec. 1994, respectively (see Fig. 2.5 for details). (c) Azimuthally 

averaged SV velocity at the depth of 30 km. Straight lines show the cross-sections in Fig. 2.2 and 

3. (d) Azimuthally averaged SV velocity at the depth of 50 km. Black stars are the nodes 

representing the CLSC, ELSC, and VFR in the inset of Fig. 2.3 and Fig. 2.6. In (c) and (b), shear 

velocity of 3.7, 3.8, 3.9, 4.0, and 4.1 km/s are contoured by dashed lines. Bathymetry contours 

are the same in (b).  
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Figure 2.2. Cross-sections A-A’, B-B’, and C-C’ showing azimuthally averaged SV velocity. 

Due to the low lateral resolution of surface waves at long periods, only structures above 100 km 

are well resolved and thus interpreted. Local earthquakes (black circles, within ±100 km away) 

located using the same dataset delineate the surface of the subducting slab (bold curves, Slab 1.0 

model [Hayes et al., 2012]). Dotted curves represent the bottom of the thermal lithosphere 

according to the half-space cooling model, demonstrating that most of the imaged velocity 

anomalies do not result from variations in conductive cooling. The bathymetry (curve along the 

top) is exaggerated vertically by a factor of 5. Shear velocity of 3.8 km/s is contoured by dashed 

lines. Beneath the CLSC and ELSC, the decompression melting occurs in slow velocity regions 

interpreted as upwelling mantle from the west. In contrast, beneath the VFR in the south (C-C’), 

any connection between the ridge and the asthenosphere to the west is impeded by the 

lithosphere of the relict arc (wide blue anomaly beneath the Lau Ridge at 30-70 km depth), 

implying the material supply of back-arc mantle from the west is much weaker and the spreading 

center samples only mantle in close proximity to the slab.  
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Figure 2.3. Cross-sections D-D’ and E-E’ of azimuthally averaged SV velocity with a 

schematic model showing the along-strike variations. 

The SV velocity color scale is the same in Fig. 2.2. The dashed contour represents a thin 

lithosphere with low permeability overlying the NELB. Mantle temperatures, extent of melting, 

and depth of melt equilibration (“Eq” in a box) beneath the CLSC and VFR are estimated from 

the thermobarometer of Lee et al. [2009], based on the Si and Mg concentration of primary melts 

in equilibrium with mantle olivine+orthopyroxene (Section 2.4.5). The melting path beneath the 

ELSC is not available due to the limited data for H2O in primitive melts. Black arrows in the 

cross-sections represent upward melt transport, and blue wavy lines indicate water migration. In 

the north where the CLSC is far from the slab, melts equilibrate at the depth of about 35 km with 

the maximum extent of melting of about 25%. In contrast, relatively colder mantle with greater 

water content beneath the VFR generates melts that equilibrate about 10 km shallower than 

CLSC and with about 10 % higher total extent of melting. As the distance between the spreading 

center and the Tofua arc decreases, more water enters the melting region, leading to an 
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enhancement in melt extraction (wider arrow represents more efficient melt transport). Inset 

diagram shows trends of water concentration in the melt (Section 2.4.5 and Tables 2.1 and 2.2) 

and the mantle source [Kelley et al., 2006] in contrast to our results of shear wave velocity at the 

depth of 50 km. Error bars indicate the standard deviation among all samples (absence of error 

bars indicates there is only one measurement). SV velocity of each spreading center is chosen as 

velocity of the corresponding node shown in Fig. 2.1d.  
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Figure 2.4. Maps of azimuthally averaged SV velocity at depths of 20, 40, 60, 70, 80, and 

100 km. 

Shear velocity of 3.8 km/s is contoured. Star illustrates the node 364 used in the Monte-Carlo 

inversion (Fig. 2.10). Spreading centers and bathymetry contours are labeled the same as Fig. 

2.1c.  
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Figure 2.5. Seismic stations and earthquakes used in this study. 

Red triangles represent island-based stations operated from Oct. 2009 to Dec. 2010. Red and 

black dots are WHOI (Woods Hole Oceanographic Institution) and LDEO (Lamont-Doherty 

Earth Observatory) OBSs deployed from Nov. 2009 to Nov. 2010. Open circles mean 

unrecovered OBSs. Yellow dots and triangles indicate OBSs and island-based stations deployed 

during Sep. to Dec. 1994, respectively. Spreading centers and bathymetry are labeled the same as 

Fig. 2.1b. The inset shows the earthquakes (blue dots) used in this study centered at the Lau 

Basin (red star).  
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Figure 2.6. Maps of azimuthally isotropic phase velocity at periods of 21, 28, 37, 45, and 60 

s inverted with the finest inverting grid. 

Spreading centers and bathymetry contours are labeled the same as Fig. 2.1c. Dispersion curves 

at the CLSC (blue), ELSC (green), VFR (cyan), East Pacific Ridge [Harmon et al., 2009] 

(magenta), Marians [Pyle et al., 2010] (black), and NF89 models [Nishimura and Forsyth, 1989] 

(red and dark red). The CLSC, ELSC, and VFR are represented by nodes shown in Fig. 2.1d. 

Error bars indicate the standard deviations of phase velocity.  
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Figure 2.7. Robustness of the phase-velocity inversion at periods of 37, 50 and 66 s. 

Rayleigh waves at these periods are most sensitive to the depths of about 50 km (where the 

lowest velocity is), 70 km (where the inclined LVZ extends away from the trench), and 100 km 

(the maximum depth to be interpreted), respectively. Left panels: maps of double standard 

deviation inverted with the finest grid. Middle panels: resolution test of phase-velocity inversion 

with the finest inverting grid (regularly spacing black points). Black dots and triangles represent 

63 OBSs and 26 land-based seismic stations used in this study, respectively. Area within the 

black polygon is chosen as the result-displaying region according to the reasonable resolutions of 

phase-velocity inversion at all periods. Spreading centers and bathymetry contours are labeled 

the same as Fig. 2.1c. Right panels: Rayleigh wave ray-paths (black lines) used in phase-velocity 

inversion. Seismic stations are labeled the same as Fig. 2.1b.  
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Figure 2.8. Results of ambient-noise tomography from Zha et al. [2014]. 

(a) Isotropic phase velocity of Rayleigh wave at the period of 18 s. Black dots indicate the OBSs 

used in this study, red triangles represent active volcanoes, and black lines mean the spreading 

centers. (b) Azimuthally averaged SV velocity at the depth of 30 km.  
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Figure 2.9. Two examples of phase velocity measured by two-station method. 

(a) Surface wave (black curves) of two earthquakes (red stars) propagated to four OBSs (red 

dots). (b) The earthquake at the Chile trench was recorded by station N01W and N03W. 

Difference of epicentral distances is about 171.5 km. Rayleigh wave at the period of 37 s has a 

delay time of 47.8 s, suggesting a phase velocity of 3.59 km/s. (c) The earthquake at the Mariana 

trench was recorded by station A12W and S01W. Difference of epicentral distances is about 

165.1 km. Rayleigh wave at period of 37 s has a delay time of 45.0 s, suggesting a phase velocity 

of 3.67 km/s.  
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Figure 2.10. Shear-velocity inversion of Monte-Carlo algorithm for the node 364. 

(a) Models of shear velocity. (b) Forwardly calculated dispersion curves. Each grey curve 

indicates one “good” model whose smoothness and misfit are smaller than the criteria. Blue, 

magenta, black, red, and dark red curves represent the model from linearly inversion, average 

model, best model of Monte-Carlo inversion, and NF89 models of two age categories 

[Nishimura and Forsyth, 1989], respectively. In (a), Wiens et al. [2006] model of SV velocity 

(green) is shown as the green curve for reference. In (b), green curve indicates phase velocities 

inverted by TPWT, with error bars showing the standard deviations.   
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Figure 2.11. Cross-sections of predicted shear velocity. 

Calculations are based on numerical models of temperature and water content [Harmon and 

Blackman, 2010], extended Burgers model [Jackson and Faul, 2010], and corrections of radial 

anisotropy [Nishimura and Forsyth, 1989] and effects of water [Karato, 2012]. Notice the color 

scale is the same in Fig. 2.2. Although compared to the CLSC, the temperature beneath the VFR 

is lower due to the slab cooling, potentially increasing the seismic velocity, the much higher 

water content reduces the velocity more significantly and leads to a stronger signal of low 

velocity in the prediction.  
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Figure 2.12. Pressures and temperatures of equilibration of Lau Basin glasses with Fo90 

mantle. 

We used major elements, H2O measurements, fO2 constraints and the thermobarometer of Lee et 

al. [2009] to calculate P-T paths for most primitive melts (crystallizing olivine only). Back-arc 

averages for VFR and CLSC-ELSC high-temperature cluster are shown with smaller symbols 

and error bars for ± 1 s.d. Fields are given for FRSC, MTJ and Tonga Arc Volcano A for 

comparison. All data are from PetDB [Kamenetsky et al., 1997; Lehnert et al., 2000; Kent et al., 

2002; Tian et al., 2008; Hahm et al., 2012; Lytle et al., 2012] and Cooper et al. [2010]. Dry 

solidus is from Hirschmann [2000]. Back-arc averages are backtracked along wet decompression 

melting paths, using method given in Section 2.4.5. 
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Table 2.1. Erupted Compositions downloaded from PetDB 

(http://www.earthchem.org/petdb) [Lehnert et al., 2000] 

Regio
n Sample Latitu

de (˚) 
Longitu

de (˚) 

Eleva
tion 
(m) 

Reference SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 
H2O, 
wt% 

Fe3+/
FeT Mg# MgO

-pl-in 

CLSC SSV0708-
061-001-001 -18.206 -176.39 -2188 Lytle et al. [2012] 50.49 0.71 15.04 9.38 0.18 8.64 14.02 1.92 0.03 0.06 0.09 0.14 63 8.10 

CLSC WASRNDB-
026-002 -18.228 -176.26 -2296 Tian et al. [2008]; 

Hahm et al. [2012] 50.64 0.93 15.52 9.63 0.20 8.46 13.25 2.05 0.05 0.06 0.12 0.14 62 8.07 

CLSC SSV0708-
063-001-001 -18.257 -176.45 -2716 Lytle et al. [2012] 48.77 0.78 17.33 8.36 0.14 10.36 12.85 1.98 0.01 0.05 0.06 0.14 69 8.12 

CLSC SSV0708-
062-001-001 -18.347 -176.50 -2523 Lytle et al. [2012] 50.16 0.90 15.44 9.08 0.18 8.74 13.96 2.12 0.04 0.06 0.08 0.14 64 8.10 

ELSC WASRNDB-
005-008 -19.908 -176.06 -2436 Tian et al. [2008]; 

Hahm et al. [2012] 51.32 0.89 14.93 9.28 0.18 8.14 13.19 1.94 0.04 0.06 0.24 0.14 62 7.96 

VFR SO48/61GC -21.822 -176.44 1760 Kent et al. [2002] 51.01 0.68 15.36 8.33 0.16 7.79 12.63 1.51 0.23 0.08 1.30 0.16 64 6.97 
VFR SO35/84KD1 -22.140 -176.61 1723 Kent et al. [2002] 50.36 0.76 15.92 8.86 0.16 7.31 12.61 1.55 0.16 0.06 1.26 0.16 61 7.00 

VFR SON0048-
114 -22.188 -176.54 -1500 Kent et al. [2002] 50.91 0.58 15.05 9.21 0.19 7.10 12.30 1.35 0.28 0.08 1.35 0.16 59 6.92 

VFR SON0035-
128 -22.290 -176.57 -1550 Kamenetsky et al. 

[1997] 

53.38 0.50 13.44 8.45 0.23 8.20 11.98 1.25 0.51 0.09 2.05 0.18 65 6.27 

 

* H2O concentration as measured in glasses; MgO-pl-in is MgO calculated for appearance of plagioclase on the cotectic [Langmuir et 

al., 2006]. 

** Fe3+/FeT calculated from H2O, using correlation in Kelley and Cottrell [2009]. 
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Table 2.2 Calculated primary mantle melt compositions 

Region Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O Fe2O3 Mg# T (°C) P (GPa) 

CLSC SSV0708-061-001-001 49.19 0.63 13.43 8.35 0.16 12.60 12.52 1.71 0.03 0.05 0.08 1.30 70 1357.35 1.10 
CLSC WASRNDB-026-002 49.04 0.82 13.60 8.58 0.18 12.92 11.61 1.80 0.04 0.05 0.11 1.31 70 1364.73 1.20 
CLSC SSV0708-063-001-001 48.29 0.76 16.96 7.17 0.14 10.82 12.57 1.94 0.01 0.05 0.06 1.27 70 1310.82 1.05 
CLSC SSV0708-062-001-001 48.95 0.81 13.98 8.03 0.16 12.11 12.64 1.92 0.04 0.05 0.07 1.28 70 1345.61 1.11 
ELSC WASRNDB-005-008 49.98 0.79 13.22 8.35 0.16 12.58 11.68 1.72 0.04 0.05 0.21 1.28 70 1347.33 1.00 
VFR SO48/61GC 50.57 0.63 14.23 7.39 0.15 11.15 11.70 1.40 0.21 0.07 1.20 1.37 70 1282.91 0.76 
VFR SO35/84KD1 49.62 0.68 14.20 7.99 0.14 12.06 11.25 1.38 0.14 0.05 1.12 1.41 70 1311.38 0.95 
VFR SON0048-114 50.17 0.51 13.21 8.41 0.17 12.69 10.79 1.18 0.25 0.07 1.18 1.44 70 1322.86 0.94 
VFR SON0035-128 52.47 0.47 12.54 7.18 0.21 10.83 11.17 1.17 0.48 0.08 1.91 1.58 70 1252.86 0.55 

 

+ Primary compositions are calculated by incrementally adding equilibrium olivine until melt is in equilibrium with Fo90 (using the 

Fe3+/FeT given, and assuming KD=0.3). 

++ T and P are equilibrium temperature and pressure calculated using Lee et al. [2009] thermobarometer, assuming liquids in 

equilibrium with Fo90 mantle. 
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Chapter 3 

Upper mantle structure of the Tonga-Lau-Fiji region 

from Rayleigh wave tomography 

 

 

Abstract 

We investigate the seismic structure of the upper mantle in the Tonga-Lau-Fiji region by 

jointly inverting the phase velocities of Rayleigh wave from the ambient-noise tomography and 

the two-plane-wave tomography, using seismic data from ocean bottom seismographs (OBSs) 

and land stations. 3-D tomographic results suggest a wide low-velocity zone, with a minimum 

SV-velocity of about 3.6 km/s, indicating upwelling hot asthenosphere with extensive partial 

melting beneath the Lau Basin. The variations of velocity anomalies along the spreading centers 

suggest the varying mantle porosity filled with melt, further implying a change in the efficiency 

of melt extraction due to water released from the slab. In the north where the spreading centers 

are distant from the Tonga slab, the inferred melting commences at about 70 km depth, and 

forms an inclined zone in the mantle, dipping to the west away from the arc, suggesting a passive 

decompression melting process supplied by the Australian mantle from the west. In the south, as 

the supply from the Australian mantle is impeded by the Lau Ridge lithosphere, the subduction-

related flux melting dominates in the back-arc, which results in the rapid transition in 
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geochemistry and axial morphology along the Eastern Lau Spreading Center and the Valu Fa 

Ridge. The remnant Lau Ridge and the Fiji Plateau are characterized by a thick lithosphere and a 

hot asthenosphere. Our results suggest the removal of the lithosphere of the eastern Fiji Plateau 

and northern Lau Ridge, where the active Taveuni Volcano exists. This, along with the low-

velocity anomalies beneath the northwestern Lau Basin, implies a second origin from the deep 

mantle in addition to the Samoan mantle plume. Azimuthal anisotropy shows that the mantle 

flow direction rotates from eastwards beneath Fiji to southwards beneath the Lau Basin, 

providing evidence for the southwards flow of the mantle wedge and the Samoan plume. 
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3.1. Introduction:  

Back-arc spreading centers are usually compared with mid-ocean ridges (MORs) due to the 

similar mechanisms and contributions to the global plate tectonics. However, because of the 

significant influence of the adjacent subduction process, the back-arc spreading centers are 

obviously different from the MORs in geomorphological, geophysical, and geochemical 

perspectives [e.g. Taylor et al., 1996; Zhao et al., 1997; Kelley et al., 2006]. The Lau back-arc 

basin and the adjacent areas are exemplary locations for understanding the interactions between 

the back-arc spreading and the subduction processes. While the Pacific Plate is subducting along 

the Tonga trench beneath the Australian Plate, new oceanic crust is generated at the back-arc 

spreading centers in the Lau Basin (Fig. 3.1). 

The Lau back-arc started extending at about 6 Ma, then transitioned to seafloor spreading at 

about 4 Ma in the north [Taylor et al., 1996]. This process propagated southwards and split the 

ancient Lau-Colville arc, which ceased its volcanic activities at about 5 Ma [Parson and Wright, 

1996], into the Lau Ridge and Tonga Ridge, and formed the Lau back-arc basin with the active 

Tofua volcanic arc immediately to the west of the Tonga Ridge. Currently the total spreading 

rate of the ridges in the northern part of the Lau Basin is about 160 mm/yr, while the 

convergence rate at the trench also reaches a maximum of about 240 mm/yr in the north [Bevis et 

al., 1995]. Therefore, the rigid Tonga Ridge is rotating clockwise, resulting in a larger distance 

from the spreading center to the trench in the north than in the south. This variation of distance 

from the back-arc spreading centers to the subducting slab presumably causes systematic 

variations in the geological features of the spreading centers [Martinez and Taylor, 2002]. The 

CLSC, 160-185 km away from the volcanic arc, is characterized by a normal crustal thickness of 

6-7 km, shallow bathymetry, fast spreading rates of 85-95 mm/yr, and mid-ocean ridge basalt 
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(MORB)-like geochemical features. To the south, the ELSC is 60-110 km away from the arc, 

and has a thin crust, deep axial bathymetry, and intermediate spreading rates of 60-95 mm/yr. 

Lavas from the ELSC are strongly depleted compared to the MORB, and their arc geochemical 

signatures are weaker than that from the VFR. To the further south, the VFR, 40-60 km away 

from the arc, is characterized by a thick crust (7.5-9 km), shallow bathymetry, slower spreading 

rates of 40-60 mm/yr, and primarily arc-like compositions of rocks [Pearce et al., 1994; Turner 

et al., 1999; Zellmer and Taylor, 2001; Martinez and Taylor, 2002; Crawford et al., 2003]. This 

distance-controlling hypothesis explains the along-strike variations resulting from increasing 

input of subduction-related materials southwards [Martinez and Taylor, 2002], though direct 

evidence from seismic imaging are needed. 

More recent studies of geochemistry and geophysics in this region revealed additional 

complexities, in smaller scales, beyond the distance-controlling hypothesis. Geomorphological 

surveys indicated that the spreading center becomes flatter and more faulted when the spreading 

rate increases, which is opposite to the usual trend at MORs globally [Martinez et al., 2006]. 

Although the distance from the spreading centers to the arc decreases southwards gradually, Mg 

# and trace element concentrations (e.g. Ba, Th, and La) of the lavas show abrupt transitions at 

latitudes of about 20.6˚S and 21.2˚S [Escrig et al., 2009], coinciding with the transitions of the 

axial morphology from the northern ELSC to the central ELSC and the central ELSC to the 

VFR, respectively [Martinez et al., 2006]. In addition, the crustal and mantle structure of the Fiji 

Plateau and the Lau Ridge are poorly known [e.g. Dubois et al., 1973]. Although most 

geochemical evidence shows a signature of the Samoan plume in the northern Lau Basin [e.g. 

Wendt et al., 1997; Turner and Hawkesworth, 1998], studies of the Fijian volcanoes and the 

back-arc spreading centers in the northwestern Lau Basin imply more complexities in terms of 
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mantle source materials [Gill and Whelan, 1989; Lytle et al., 2012]. A detailed seismic model for 

the Fiji Plateau is essential to address these problems. 

Previous passive seismological studies in this region mainly consist of the Southwest Pacific 

Seismic Experiment (SPASE) (November, 1993 to December, 1995) and the Lau Basin ocean-

bottom seismograph survey (LABATTS) (September, 1994 to December, 1994). Body wave 

tomographic results showed a region with low seismic velocities [Zhao et al., 1997; Conder and 

Wiens, 2006] and high attenuation [Roth et al., 1999] in the uppermost mantle beneath the 

CLSC, and shifting westwards asymmetrically. Shear wave splitting results suggested that 

mantle flow is parallel to the convergence direction beneath the Fiji Plateau, and rotates 

perpendicular to the convergence direction with increasing proximity to the trench [Smith et al., 

2001]. However, since most of the seismic stations in these two experiments were deployed 

linearly across the Tonga Ridge, the CLSC and the Fiji Plateau, the previous studies were only 

able to demonstrate the variations of seismic properties along the E-W direction, but failed to 

show the complex 3-D patterns. Particularly, the changes along the spreading centers and the 

characteristics of the Fiji Plateau were not fully addressed. 

The Ridge2000 Lau Spreading Center Imaging project in 2009-2010 provides high quality 

seismic data to help us better understand the N-S striking variations. 3-D active seismic surveys 

related the abrupt changes in geomorphology and geochemistry along the ELSC-VFR to a zoned 

structure with a rapid transition from a typical oceanic crust to an abnormally hydrous crust 

southwards, implying a dramatic increase in the influence of subduction as the spreading center 

moves closer to the arc [Dunn and Martinez, 2011; Dunn et al., 2013; Arai and Dunn, 2014]. 

Ambient-noise tomography further supported this idea by directly imaging the connection 

between the back-arc and arc melting regions beneath the VFR [Zha et al., 2014]. Moreover, the 
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Rayleigh wave tomography using teleseismic data emphasized the melt extraction rate, 

influenced by the water released from the slab, as one of the crucial factors in controlling the 

magmatism in the Lau Basin [Wei et al., 2015]. 

Although Zha et al. [2014] and Wei et al. [2015] inverted for the S-wave velocity structures 

of the Lau Basin from ambient-noise tomography (ANT) at short periods and teleseismic 

Rayleigh waves with two-plane-wave tomography [Forsyth and Li, 2005; Yang and Forsyth, 

2006] (TPWT) at long periods, respectively, no study has investigated the entire dispersion 

curves over all periods. Both methods provide structural information in complimentary period 

bands: ANT inverts phase velocities at periods from 8 to 18 s, most sensitive to depths of about 

10-25 km, whereas TPWT inverts those from 23 to 88 s, most sensitive to depths of about 30-

140 km. Inverting the entire dispersion curve can greatly improving the resolutions at depths of 

25-35 km, where the interactions between the arc and back-arc magmatism are expected to be 

intense. Additionally, the structures of the Lau Ridge, Fiji Plateau, and the Tofua arc have not 

been investigated in detail. Therefore, in this study, we first present new results of azimuthal 

anisotropy of Rayleigh waves and S-wave velocities by jointly inverting from phase velocities of 

ANT and TPWT. In the light of our S-wave velocity structure as well as previous studies, we try 

to construct a comprehensive model of the upper mantle for Tonga, Lau, Fiji, and the adjacent 

regions. 

 

 

3.2. Data and Methods 

3.2.1 Data collection 

Most of the data used in the phase-velocity inversion was collected from 49 OBSs deployed 
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from November 2009 to November 2010 (red and black dots in Fig. 3.2), and 17 island-based 

seismic stations operated from October 2009 to December 2010 (red triangles in Fig. 3.2). The 

OBS array consisted of two main profiles extending across the ELSC to the active Tofua arc, one 

profile along the ELSC between the two main profiles, and several sparsely distributed sites. 

Each OBS from Woods Hole Oceanographic Institution (WHOI) contains a Guralp CMG3T 

seismometer and a Quanterra Q330 datalogger, while other OBSs from Lamont-Doherty Earth 

Observatory (LDEO) use Sercel (formerly Mark Products) L-4C seismometers and LDEO-

designed dataloggers. The land stations were deployed over islands of Tonga and Fiji. Each of 

them contains a broadband three-component seismometer (Guralp CMG3T, Streckeisen STS-2, 

or Nanometrics Trillium 120PA) and a Reftek 130-01 recorder. We additionally used data from 

14 OBSs of the LABATTS experiment and 9 island-based stations of the SPASE project 

collected from September to December 1994 for the TPWT. 

 

3.2.2 Phase-velocity inversion: ambient noise cross-correlation 

The ANT was conducted in a similar way as Zha et al. [2014] using a frequency-domain 

method [Ekström et al., 2009], but we additionally included the data from land stations in this 

study. The daily seismograms recorded by vertical channels were first quality-controlled, 

corrected for clock drift and instrument responses, downsampled to 5 sps, cut into 100 

overlapping windows, and then Fourier-transformed to the frequency domain. A cross-

correlation spectrum between each station pair was normalized by the spectral amplitudes, 

averaged over all windows in a day, and stacked over all days. This frequency-domain 

normalization for each short time window effectively removes the effects of large earthquakes. 

We calculated phase velocities using the zero-crossing of the averaged cross-correlation 
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spectra to generate a suite of possible dispersion curves [Ekström et al., 2009]. In order to extract 

the most reasonable dispersion curve, we adopted previous results for the crustal structure 

[Crawford et al., 2003] and a Vp/Vs ratio of 1.85 [Conder and Wiens, 2006] as a reference 

model. We discarded dispersion curves between stations that have bathymetry differences greater 

than 1 km, and the average water depth between the stations were adopted into the reference 

model. All dispersion curves were manually examined to exclude those with physically 

unreasonable values. 

752 dispersion curves were used for the phase-velocity inversion with a grid of node spacing 

0.2˚. The finite-frequency sensitivity kernels were calculated using the method of Yoshizawa and 

Kennett [2002] and the Pacific Ocean model by Nishimura and Forsyth [1989] (henceforth the 

NF89 model) for 0-4 Myr lithospheric age as the starting model. The tomographic inversion 

inverts for both isotropic and azimuthally anisotropic components of the Rayleigh wave phase 

velocity. However, robust results of anisotropy can be only resolved in a small region where 

most OBSs are concentrated, which has been discussed by Menke et al. [2015] along with the 

results of S-wave splitting. Therefore, the anisotropic components of the ANT results were not 

included in the rest of data processing and discussions. Since the quality of data from OBSs is 

restricted in a narrow frequency band, we were only able to get robust phase velocities at periods 

from 8 to 18 s. Readers are referred to Zha et al. [2014] for more technical details. 

 

3.2.3 Phase-velocity inversion: two-plane wave method for teleseismic data 

Following Wei et al. [2015], we selected seismograms of 357 earthquakes with surface-wave 

magnitudes (Ms) larger than 4.5 and epicentral distances between 30º and 150º, which occurred 

during the time when stations were operating (inset of Fig. 3.2). Prior to the tomographic 
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inversion, data were down-sampled to 1 sps and instrument responses were removed. For each 

period of interest from 19 to 88 s, we used a narrow bandpass filter (4th order Butterworth, zero-

phase shift) centered at the frequency of interest to filter the seismograms. The filtered data were 

then windowed manually to isolate the fundamental mode of the Rayleigh wave. Noise in 

seismograms at long periods (> 50 s) due to ocean swell and associated water pressure variations, 

as well as tilt caused by local currents, was removed by correcting the vertical channel using the 

horizontal and pressure channels [Webb and Crawford, 1999; Crawford and Webb, 2000; Bell et 

al., 2015]. 

We then applied the two-plane-wave analysis method [Forsyth and Li, 2005] with 2-D 

Fréchet kernels [Yang and Forsyth, 2006] to invert phase velocity at each period with isotropic 

and anisotropic components. The advantages of this method include (1) addressing wavefront 

effects of global heterogeneities outside of the study region with the two-plane-wave 

approximation, (2) correcting the effects of scattering and multipathing within the inversion 

region with the 2-D finite-frequency Fréchet kernels, (3) computational efficiency, and (4) being 

able to combine two datasets over different time periods (1994 and 2009-2010) to expand the 

resolving region. 

In order to take account of azimuthal anisotropy, the study region was divided into four 

subregions according to the tectonic setting: Lau Basin, Fiji Plateau-Lau Ridge, Tonga Ridge and 

background, and the average anisotropy of each subregion is included in the inversion. We then 

conducted a series of TPWT phase-velocity inversions with progressively finer grids (extending 

down to 58.7 km spacing) and smaller smoothing length (ending at 50-80 km depending on the 

period). Such a strategy can largely eliminate the dependence on the starting model and the a 

priori information [Rau and Forsyth, 2011]. More details of the TPWT phase-velocity inversions 
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are discussed by Wei et al. [2015]. Both azimuthally isotropic and anisotropic components of the 

phase velocity were solved simultaneously, but only the isotropic phase velocities were used for 

the SV-velocity inversion. 

 

3.2.4 Combining dispersion curves 

Combining ANT and TPWT provides more complete measurements of phase velocity for the 

next step of the SV-velocity inversion. However, as these two methods are based on different 

principles and assumptions, the results of phase velocity at the common periods from two 

methods are usually not identical [Yao et al., 2006]. In this study, we were not able to resolve the 

results of ANT and TPWT at a common period because of the high noise level of the OBS data. 

The data around the period of 20 s had too much seafloor noise from other sources to obtain 

good results with ANT, and 20 s is at the shortest period end for realistic application of TPWT. 

Fig. 3.3 shows that the resulting phase velocities agree well at the adjacent periods, although 

small-scale discrepancies still exist. A further investigation that compares the TPWT with 

Eikonal and Helmholtz tomography of the OBS data [Lin et al., 2009; Lin and Ritzwoller, 2011; 

Jin and Gaherty, 2015] suggests that the real uncertainties of phase velocities are as large as 0.2 

km/s at periods of 19 and 21 s for such geometry of the seismic array, significantly larger than 

the standard deviation given by the TPWT inversion (< 0.1 km/s). Since the Eikonal and 

Helmholtz tomography require regularly distributed stations deployed over the same time, which 

largely limit the usability of our data and the resolving region, we use the phase velocities from 

the TPWT but amplified the uncertainties according to the comparisons with the Helmholtz 

tomography. 

The two sets of dispersion curves were combined in the geographical region well resolved by 
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both methods (blue outline in Fig. 3.3a) for the SV-velocity inversion. The phase velocities were 

interpolated onto a uniform grid of nodes spacing 0.2˚ before being combined at each node (Figs. 

3.4a and 3.4b). The phase velocities at periods of 19 and 21 s were discarded due to the large 

uncertainties, and the uncertainties at other periods were amplified following the rule that at each 

period, the minimum uncertainty was amplified to a reference value and uncertainties of other 

nodes were amplified in the same scale. According to previous experience [Yang et al., 2008; 

Shen et al., 2013] and the comparison between Helmholtz tomography and the TPWT mentioned 

above, the reference uncertainty is assigned as 0.2 km/s for periods of 18-23 s, 0.15 km/s for 

periods of 16, 17, 25.6, and 28.2 s, and 0.1 km/s for other periods. A modified running average 

filter was applied so that the resulting dispersion curve is smoother but the phase velocity at each 

period can be adjusted only within the uncertainties. In the outer regions where no ANT results 

were available, we used phase velocities from the TPWT at all periods to invert for SV-velocity 

(Fig. 3.6c), and the resolving boundary (black polygon in Fig. 3.5a) was defined as Wei et al. 

[2015]. 

It is worthwhile to examine the noticeable depression of the dispersion curve at certain 

nodes. This depression can be observed solely by TPWT (Fig. 3.4c) or by combining ANT and 

TPWT (Fig. 3.4a), and has been previously observed at the East Pacific Rise [Forsyth et al., 

1998]. Therefore, we conclude that the depression of the dispersion curve convincingly reflects a 

strong low-velocity zone (LVZ) beneath a very thin lithosphere. 

 

3.2.5 SV-wave-velocity inversion with a Bayesian Monte-Carlo algorithm 

Previous studies [e.g. Wei et al., 2015] suggest that the linearized inversion of SV-velocity 

from phase velocity dispersion curves [Herrmann, 2004] depends upon the starting model. In 
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order to avoid the potential biases due to the starting model, we applied a Bayesian Monte-Carlo 

method [Shen et al., 2012] to invert for the SV-wave velocity at each node. 

The Bayesian Monte-Carlo method constructs a prior distribution of SV-velocity models at 

each node defined by perturbations relative to the starting model and models constraints. The 

posterior distribution thus provides statistical information of all possible SV-velocity models that 

satisfy the Rayleigh wave dispersion data within tolerances depending on data uncertainties. 

Each model consists 6 layers: (1) water with fixed thickness from a topography/bathymetry 

model by Lindquist et al. [2004]; (2) sediments with a thickness of 500 ± 500 m and a fixed VSV 

of 2 km/s; (3) crust with VSV linearly increasing from 3.4 ± 0.3 km/s at the top to 3.8 ± 0.3 km/s 

at the bottom, and a thickness of 7 ± 3 km for nodes in oceanic crust, 25 ± 7 km for nodes on the 

ridges, or intermediate values for nodes in the transition region according to a previous seismic 

refraction survey [Crawford et al., 2003]; (4) uppermost mantle from the Moho to a LVZ with a 

thickness of 35 ± 20 km and VSV characterized by a B-spline perturbing ± 15%; (5) a LVZ with a 

thickness of 10 ± 7 km and a constant VSV with a perturbation of ± 15%; (6) mantle beneath the 

LVZ with a fixed thickness of 150 km and VSV characterized by a B-spline perturbing ± 10%. 

The 4th to 6th layers were designed to capture the strong LVZ suggested by the dispersion 

curves. We also applied a physical dispersion correction [Kanamori and Anderson, 1977] using a 

1-D Q model simplified from a seismic attenuation study in the same region (Chapter 4). 

Examples of the SV-velocity inversion at certain nodes are shown in Fig. 3.6. The results of 

the Bayesian Monte-Carlo inversion fit the measured dispersion curves as well as the linearized 

inversion. But this technique significantly reduces the dependence on the starting model and, 

more importantly, eliminates the artificial vibrations that induce low velocities beneath the high 

velocities, or vice versa (Fig. 3.4h). 



 58 

 

 

3.3. Results 

3.3.1 Azimuthally averaged phase velocity 

Fig. 3.5 shows 2-D maps of azimuthally averaged phase velocities at representative periods 

from the ANT and TPWT. Since the ANT inverts waveform cross-correlations among stations, 

the resolving region is confined in a smaller area and varies slightly at different periods. The 

TPWT provides results encompassing larger areas, because it has some limited resolution outside 

the array and because we included data from the 1994 deployment. Because of the varying 

wavelengths of Rayleigh waves, the resolution length of the ANT is as small as 50 km at shortest 

periods, whereas the TPWT has larger resolving lengths (Fig. 3.6). As discussed in Section 3.2.4, 

the L2 norm of the model actually underestimates the phase-velocity uncertainties. We thus 

amplify the errors according to previous experience (Figs. 3.4a-c). 

 

3.3.2 Azimuthal anisotropy of phase velocity 

Seismic azimuthal anisotropies were resolved simultaneously with the isotropic phase 

velocities by the TPWT. Since the Rayleigh waves sample large areas, we divided the study 

region into 4 tectonic subregions: the Lau Basin, the Fiji Plateau/Lau Ridge, the Tonga Ridge, 

and the surrounding region, and then inverted for an average anisotropy of each subregion (Fig. 

3.7a). This method is best for regions with similar dimensions in each direction and worse for 

elongated ones. We thus only interpret the results for the Lau Basin and the Fiji Plateau-Lau 

Ridge (Figs. 3.7b and 3.7c). The magnitude of anisotropy varies depending upon the chosen 
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parameters of the tomographic inversion such as smoothing length and damping coefficient, but 

the fast directions are robust. We thus confine our interpretation to the directions of anisotropy. 

 

3.3.3 Azimuthally averaged SV-velocity 

Fig. 3.5b shows the misfit of the Bayesian Monte-Carlo inversion at each node. The 

inversion results at most of nodes are well constrained, except 7 nodes with large misfits, which 

are excluded for further discussion. The average models from the Monte-Carlo inversion are 

shown in Figs. 3.8 and 3.9 to represent the azimuthally averaged SV-velocity structure beneath 

the Tonga-Lau-Fiji region. 

Thanks to the high resolution of the ANT phase velocity maps at short periods, small-scale 

features are well resolved at shallow depths within the region of the ANT-TPWT joint inversion. 

But this resolution contrast also introduces artificial discontinuous features at the boundary of the 

joint-inversion region. For instance, low-velocity anomalies are imaged at the depth of 20 km 

beneath the LETZ in Fig. 3.7, but artificially stop at the northern boundary of the joint-inversion 

region (white contour) instead of extending southwards to the CLSC. We believe that the 

velocities within the white contour are more convincing, and thus hesitate to over interpret any of 

the shallow features along this boundary. 

The most obvious feature in our results is the contrast between the Lau Basin and the 

remnant arcs. The Tonga Ridge, Fiji Plateau, and Lau Ridge are characterized by low velocities 

at depths shallower than 30 km and by high velocities at depths of 30-50 km, indicating the crust 

and mantle lithosphere respectively. In contrast, a V-shaped low-velocity zone (LVZ) has been 

imaged in the uppermost mantle of the Lau Basin, forming an asymmetric triangular region 

beneath the back-arc spreading centers. While the depth increases to about 100 km, all these 
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features fade away, leaving the subducting slab with high velocities as the dominant structure. 

 

 

3.4. Discussion 

3.4.1 Factors controlling seismic velocity 

Interpreting seismic observations always results in non-unique solutions since many factors 

can influence seismic velocity. In order to study the distribution of melt, it is necessary to 

distinguish the effects of melt from other effects before discussing the implications. Generally 

speaking, seismic properties of mantle rocks are controlled by temperature, composition, grain 

size, and melt/free fluid through anharmonic and anelastic behaviors. 

Thermal variations affect seismic properties in both anharmonic and anelastic ways. For high 

frequency seismic waves, a reduction in density due to thermal expansion (anharmonic 

oscillation) results in reductions in elastic moduli and thus seismic velocity [Anderson, 2007]. 

However in the seismically observable frequency band (0.01-1 Hz), anelasticity can be 

equivalently important as seismic attenuation also affects seismic velocity [Karato, 1993]. The 

effects of temperature on anharmonic and anelastic behaviors are revealed by experiments of 

rock deformation [e.g. Isaak, 1992; Faul and Jackson, 2005; Jackson and Faul, 2010]. 

Seismological and geochemical comparisons among different back-arc basins suggest that 

temperature plays a dominant role in the back-arc system [Wiens et al., 2006]. 

Compositional variations of mantle rocks have been considered unimportant to the variations 

observed in seismic results because the shear modulus is increased by the depletion of FeO in 

olivine but also reduced by the depletion of Al2O3 [Faul and Jackson, 2005]. However, studies 

on natural peridotite [Lee, 2003; Schutt and Lesher, 2010] indicate that melt depletion leads to an 
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increase of about 0.7% in S-wave velocity, much smaller than regional velocity variations (> 

10%) observed in our results. 

Structurally bound water is thought to reduce seismic velocity through by increasing 

anelasticity [Karato, 2003]. However, since water also enhances grain growth and this has the 

opposite effect on anelasticity, this competing effect may eliminate the effects of water on 

seismic properties [Abers et al., 2014]. In contrast to the relatively dry MORs with the water 

concentrations of 0.01-0.05 wt % in the mantle source, the CLSC and ELSC lie on the upper 

bound of the MOR regime with the water content of 0.04-0.06 wt %, and the VFR is 

characterized with significantly larger water content of 0.22 wt % [Kelley et al., 2006]. In 

addition, since the water concentrations in many regions beneath the Lau Basin exceed the 

minimum storage capacity of nominally anhydrous mantle minerals [Kelley et al., 2006], a 

certain amount of free water may exist in the mantle wedge. Therefore, the effects of water 

content to the seismic velocity could be significant, thus have to be taken into account. On the 

other hand, high water content facilitates partial melting by reducing rock melting point, thus it is 

difficult to distinguish the effect of water from temperature and melt. Along the Lau spreading 

centers, the magnitude of slow anomaly increases from south to north (Fig. 3.8), opposite to the 

trend of decreasing water content [Kelley et al., 2006], implying that the structurally bound water 

content is not the predominant factor controlling the seismic velocity. The mantle water content 

is also higher near the slab, whereas the largest seismic anomalies occur beneath the back-arc 

spreading center, again suggesting that the observed slow velocity anomalies do not result 

directly from mantle water. 

Melt/fluid (such as free water) introduces more complex effects on seismic velocity. It is 

generally accepted that partial melting decreases the anharmonic shear modulus of the rocks and 
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the reduction of the S-wave velocity highly depends on melt geometry [e.g. Hammond and 

Humphreys, 2000a; Takei, 2002]. However, the effects of partial melting on seismic attenuation 

and consequently seismic velocity through anelastic behavior have not been well constrained. 

Hammond and Humphreys [2000b] did not observe melt-related attenuation in the seismic band 

in numerical calculations while Jackson et al. [2004] claimed that melt influences seismic 

attenuation through grain-boundary sliding based on experiments. On the other hand, partial 

melting may dehydrate residual mantle rocks [Hirth and Kohlstedt, 1996], causing a decrease in 

seismic attenuation and an increase in seismic velocity due to a reduction in anelasticity. The 

latter effect also depends upon the water supply. Geochemical studies reveal a positive 

correlation between the water concentration of the mantle and the extent of melting beneath the 

back-arc spreading centers [Kelley et al., 2006], in contrast to a negative correlation beneath the 

MORs [Asimow and Langmuir, 2003]. 

Following Wei et al. [2015], we converted recent 2-D numerical models of mantle wedge 

flow by Harmon and Blackman [2010] to SV-velocities in order to visualize the potential effects 

of temperature and water on seismic velocity. Such conversion is based on available rock 

physical models and experimental constraints, including an extended Burgers model that fits data 

of forced torsional oscillation experiments [Jackson and Faul, 2010] and the effects of bound 

water on seismic velocity as proposed by Karato [2012]. The calculated isotropic S-wave 

velocities are converted to SV-velocities for comparison with the results from this study using the 

radial anisotropy as a function of depth from the NF89 0-4 Myr model [Nishimura and Forsyth, 

1989]. Since the potential temperature used in the numerical models is 1450 ˚C [Harmon and 

Blackman, 2010], consistent with the value revealed at the CLSC but slightly higher than that at 

the ELSC and VFR [Wei et al., 2015], and the exponent constant of water effects r lies on the 



 63 

upper limit [Karato, 2012], the predicted values in Fig. 3.9 should provide a lower bounds for 

SV-velocity. We acknowledge that several parameters of the models are poorly constrained, and 

other models [e.g. Goes et al., 2012] may produce a predicted model of SV-velocity slightly 

closer to our observations. But none of these models can explain the low velocities solely by 

variations of temperature and water content. Therefore, it is reasonable to attribute the extremely 

low SV-velocities to partial melting, though calculating the mantle porosity filled with melt (melt 

porosity hereafter) is beyond current knowledge of rock physics [Faul and Jackson, 2015]. 

In summary, the large-scale contrast of the subducting slab with fast seismic velocities versus 

the spreading centers with slow seismic velocities is interpreted as being thermally controlled. 

Water incorporated in the mineral structure further reduces the S-wave velocity. Basaltic melt 

with variable water content, which significantly decreases seismic velocity in the melting region, 

provides a good explanation for the very low velocity anomalies observed in the Lau Basin 

beneath the spreading centers and volcanic arc. 

 

3.4.2 CLSC-ELSC-VFR, Tofua arc, and Tonga Ridge 

At shallow depths (20 km in Fig. 3.7), the low-velocity anomalies correlate well with 

topography, showing the contrast between the thicker arc crust and the thin oceanic crust. 

Although we are not able to resolve the Moho precisely without constraints of converted seismic 

waves (e.g. receiver functions), it is reasonable to conclude that the crustal thickness is about 25 

km beneath the Tonga Ridge and less than 10 km in the Lau Basin. The back-arc spreading 

centers are also characterized by low-velocity anomalies, indicating melt in the upper mantle. 

At greater depths, an LVZ encompasses an N-S striking broad region beneath the Lau Basin. 

Since these depths are convincingly below the lithosphere-asthenosphere boundary (LAB) 



 64 

predicted by a simple half-space cooling model [Wei et al., 2015], this V-shaped LVZ illustrates 

a contrast between the hot asthenosphere of the Lau Basin and the cold and thicker lithosphere of 

the Tonga and Lau ridges. Cross-sections (Fig. 3.8) show this LVZ becoming deeper with 

distance away from the arc, indicative of a broad and asymmetric hot region beneath the back-arc 

basin. As discussed in the previous sections, the widespread low velocity in the mantle indicates 

high temperature, while the extremely slow anomalies at depths of 30-70 km beneath the arc and 

spreading center represent high melt porosity in the mantle wedge. So the inclined LVZ implies 

that hot materials upwell from the deep west governed by the mantle wedge corner flow [Conder 

et al., 2002], triggering extensive passive decompression melting, similar to the asymmetric 

melting region beneath the East Pacific Rise (EPR) [Forsyth et al., 1998; The MELT Seismic 

Team, 1998]. The onset of melt appears to occur at depths of 70-80 km west of the spreading 

centers (Fig. 3.8), consistent with petrological expectations [Shen and Forsyth, 1995]. The off-

axis melt may percolate towards to spreading centers along the bottom of the 

thermal/compositional lithosphere driven by the focusing effects [Sparks and Parmentier, 1993; 

Phipps Morgan, 1997]. On the other hand, off-ridge volcanism in the Lau Basin [Falloon et al., 

1992] may be also related to these melts. 

The V-shaped LVZ can be explained by the opening of the back-arc basin, since the hot 

asthenosphere is wider in the north than in the south. However, this mechanism cannot explain 

the small-scale variations of the extreme-low-velocity anomalies along the spreading centers, as 

the along-strike thermal variation is only about 50 ˚C, potentially resulting in a slight change in 

velocity of 0.1 km/s [Wei et al., 2015]. Therefore, we attribute these along-strike variations to 

changes in melt porosity. Our results suggest the melt porosity is highest beneath the 

northeastern Lau Basin and the CLSC, and decreases southwards to the VFR. Additionally, the 
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melting commences deeper in the north, and becomes shallower in the south. However, higher 

melt production and deeper onset of melting are expected in the south due to the higher mantle 

water content there according to previous numerical models [Harmon and Blackman, 2010], 

petrological studies [Kelley et al., 2006], and surveys of crustal structure [Dunn and Martinez, 

2011], opposite to our inferences. These discrepancies imply that the efficiency of melt 

extraction varies along the spreading centers, due to the water released from the slab or the 

existence of a nearby spreading center [Wei et al., 2015]. At the VFR, an enormous amount of 

water from the slab enters the back-arc melting region, which reduces melt viscosity and/or 

increases mantle grain size, and further enhancing the upward melt transport by porous flow 

extraction and reducing melt porosity. At the CLSC, the mantle water content drops to the 

regime of MORB [Kelley et al., 2006], so water has little effect on melt extraction. The large 

melt production and rapid upwelling rate of the matrix help the mantle to retain the partial melt. 

At the northeastern Lau Basin, between the CLSC and the FRSC, a melts generated in the mantle 

wedge are trapped in the mantle because of the lack of an effective magma channel, either slowly 

solidifying or migrating laterally in large distances to one of the spreading centers. 

The combination of the ANT and the TPWT greatly strengthen our capability of studying the 

interactions between the arc and back-arc melting. The arc is presumably dominated by flux 

melting whereas the back-arc is dominated by decompression melting. The cross-sections B-B’ 

and C-C’ (Fig. 3.9) show that in the north where the CLSC and ELCS are distant from the 

volcanic arc, two melting regions are separated in the uppermost mantle but connect at greater 

depths. This is also observed in the Mariana Island Arc, where the back-arc spreading center is 

located more than 100 km away from the volcanic arc [Barklage et al., 2015]. In the south as the 

VFR is closer to the arc, two melting regions with different mechanisms interact at all depths. 
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These observations provide the direct seismic evidence for the distance-controlling hypothesis, 

that the interactions between the arc and back-arc melting predominantly determine the along-

strike variations of geology, petrology, and geomorphology [Martinez and Taylor, 2002]. Due to 

the low lateral resolution of Rayleigh wave tomography, it is difficult to resolve the details of 

flux melting, especially the dehydration of the slab and the hydration of the mantle wedge. 

However, the high-velocity anomalies corresponding to the slab show a gap at the depths of 50-

100 km, potentially illustrating these reactions. The slow anomalies are generally weaker beneath 

the Tofua volcanic arc than that in the back-arc. This could partially result from the strong 

depletion at the arc, but also imply that the melt porosity beneath the arc is significantly lower 

than that in the back-arc. The more water-riched arc magma segregates and erupts more 

efficiently compared to the back-arc magma that lies in the MOR regime of low water content 

[Kelley et al., 2006]. 

Comparisons among cross-sections also reveal the cause of the abrupt change in geochemical 

signatures and axial morphology along the ELSC-VFR at about 20.6˚S and 21.2˚S [Bézos et al., 

2009; Escrig et al., 2009]. The cross-sections B-B’ and C-C’ (Fig. 3.9) suggest that the major 

sources of mantle materials of the CLSC and ELSC are the Australian mantle from the west with 

a small contribution from the slab-influenced mantle wedge. In contrast, the LVZ beneath the 

VFR appears to be disconnected to the west, implying that the supply of mantle materials from 

the Australian asthenosphere is impeded by the thick lithosphere of the Lau Ridge. On the other 

hand, the influence of subduction increases consistently to become the dominant material source 

at the VFR. We propose that the sudden transition in magma chemistry at about 20.6˚S and 

21.2˚S represents the transition between spreading centers fed by Australian mantle from the 

west and those restricted to melts generated near the Tonga slab. In other words, this abrupt 



 67 

transition not only reflects a gradual change in the influence from subduction, but also another 

gradual change in the influence from the Australian mantle in an opposite trend. We also notice 

that these variations of seismic velocity structure coincide with a transition in the extinct Lau 

Ridge between uplifted section to the north and the submerged section to the south. Our 

inferences suggest that the uplifted section to the north corresponds to areas underlain by rising 

warm mantle capable of providing buoyancy, and the southern section lacking such mantle 

structure. 

 

3.4.3 Fiji Plateau and Lau Ridge 

Figs. 3.8 and 3.9 suggest the crustal thickness of the Fiji Plateau-Lau Ridge is about 25-30 

km. The high-velocity anomalies in the mantle are indicative of cold lithosphere of this ancient 

arc with a thickness of 70-80 km. The asthenosphere is characterized by a thick LVZ with SV-

velocity of 4.1-4.3 km/s, consistent with previous observations [Dubois et al., 1973] as well as 

the typical SV-velocity for young oceanic asthenosphere given by Nishimura and Forsyth [1989]. 

The slow velocities in the LVZ can be explained by thermal variations without any significant 

existence of melt, although the role of small amounts of partial melt in the asthenosphere 

generally is a subject of considerable debate [e.g. Goes et al., 2012; Holtzman, 2016]. 

One intriguing feature is a slow anomaly at the depths of 50-60 km beneath the active 

Taveuni Volcano and the northernmost Lau islands, which connects to the broad V-shaped LVZ 

in the central Lau Basin. This suggests the removal of the lithosphere of the eastern Fiji Plateau 

and the northern Lau Ridge. Although this anomaly appears to be an arm extending from the V-

shaped LVZ beneath the Lau Basin, isotopic studies reveal that the magma from the Taveuni 

Volcano has similar origin with the Samoa mantle plume rather than the Lau spreading centers 
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[Pearce et al., 2007]. Additionally, analyses of trace elements suggested that the magmatism 

rejuvenated since 3 Ma with a strong signal of ocean-island basalt (OIB) [Gill and Whelan, 

1989]. Therefore, one reasonable explanation is that hot materials from deep mantle, perhaps 

related to the Samoa mantle plume, upwell and erode the lithosphere beneath the Taveuni 

Volcano, although the mechanism of removing the lithosphere is unclear. 

 

3.4.4 Northern Lau Basin 

Although it is widely accepted that material from the Samoan mantle plume enters into the 

Tonga mantle wedge from north [Turner and Hawkesworth, 1998; Pearce et al., 2007], the 

details of this process, especially beneath the northern Lau Basin, are unclear. There are two 

series of back-arc spreading centers in this region: the eastern series consisting of the Fonualei 

Rift and Spreading Center (FRSC) and the Mangatolu Triple Junction (MTJ) close to the Tonga 

trench, and the western series including the Lau Extensional Transform Zone (LETZ), the Peggy 

Ridge (PR), and the Northwest Lau Spreading Center (NWLSC). Recent isotopic geochemical 

analyses of rock samples collected from these two series reveal heterogeneities across the 

northern Lau Basin. In the west along the NWLSC-PR-LETZ, the diversity of geochemical 

signatures suggest that the magma originates from more than two mantle sources, including the 

Samoan mantle plume, a shallow MORB-like source beneath the spreading centers, and a 

possible second plume from deep west [Lytle et al., 2012]. In the east along the MTJ-FRSC, the 

lavas are dominated by flux melting resembling those at the VFR but with a strong signature of 

the Samoan plume [Caulfield et al., 2012]. 

Figs. 3.8 and 3.9 show two distinct LVZs at the depth of 20-30 km beneath the MTJ-FRSC 

and the NWLSC-PR-LETZ, respectively, but connecting and forming a broader LVZ at the 
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depths below 40 km. These results suggest that hot materials of the Samoan plume enter into the 

Tonga mantle wedge within a broad flow, supplying both series of spreading centers. But as the 

mantle rises, the hot materials are confined along the spreading centers due to the focusing effect 

of the ridges. Unlike the similar feature observed at the CLSC (cross-section A-A’), the 

connection of the LVZ at the depths below 40 km does not imply much interaction between the 

melting processes beneath two series of spreading centers, since no geochemical signature of 

subduction is found at the NWLSC-PR-LETZ. This can explain the existence of partial melt 

trapped beneath the northeastern Lau Basin, as the lateral material exchange is inactive across 

such a long distance from the MTJ-FRSC to the NWLSC-PR-LETZ. In addition, the cross-

section E-E’ (Fig. 3.9) shows a connection between the PR and the removal of Fijian lithosphere. 

Given the fact that the OIB signatures have been observed in both locations [Gill and Whelan, 

1989; Lytle et al., 2012], this connection potentially reveals a mutual origin of the lavas at the 

NWLSC-PR-LETZ and northeastern Fiji. 

 

3.4.5 Mantle flow: indicated by the seismic anisotropy 

The azimuthal anisotropy results (Figs. 3.7 and 3.11) suggest that the mantle anisotropy 

beneath the Lau Basin changes its fast direction from spreading-parallel (largely E-W) at periods 

shorter than 30 s to trench-parallel (mostly N-S) at longer periods, before becoming statistically 

unresolvable at the longest periods. These observations differ somewhat from previous studies of 

S-wave splitting and the ANT that consistently show trench-parallel anisotropy in the Lau Basin 

[Smith et al., 2001; Menke et al., 2015]. However, the S-wave splitting analysis only measures 

the accumulated anisotropy along all depths, so would be unable to resolve changes with depth.  

The ANT in Menke et al. [2015] was confined in a small area near the ELSC, where the 4-Myr 
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old [Taylor et al., 1996] oceanic lithosphere is expected to be less than 20-km thick. Given the 

sensitivity kernels of Rayleigh waves, the trench-parallel anisotropy shown in Menke et al. 

[2015] may represent the mantle flow in the uppermost asthenosphere near the spreading center. 

In contrast, our results (Fig. 3.7b and Fig. 3.11) show the spreading-parallel anisotropy at 

shorter periods, reflecting the shear strain parallel to the spreading direction frozen in the 

newborn oceanic lithosphere (about 40-km thick in average), resembling the East Pacific Rise 

[Forsyth et al., 1998]. Trench-parallel anisotropy is observed at longer periods, indicating the 

underlying mantle flow parallel to the trench. The fast direction changes at the period of 31 s, 

while the corresponding Rayleigh waves are most sensitive to the depths of 40-50 km. These 

transition depths roughly coincide with the depths where large melt porosity exists, probably 

implying that the decoupling between the lithosphere and asthenosphere is facilitated by partial 

melt. 

It is worthwhile to notice that the fast directions beneath the lithosphere are not perfectly 

aligned with the expected directions of mantle flow. Beneath the Fiji Plateau-Lau Ridge, the fast 

direction appears to be E-W striking with an oblique angle of about 15˚ with respect to the 

subduction direction. This may reflect the fact the corner flow of the mantle wedge is not exactly 

perpendicular to the trench as the subduction rate and the rate of slab roll-back are faster in the 

north than that in the south [Bevis et al., 1995]. Beneath the Lau Basin, although the fast axis of 

mantle rocks show an N-S strike with an oblique angle of about 15˚ with respect to the trench. 

One possible explanation is that the observed fast direction reflects a combined flow pattern 

including the along-strike southwards flow of the Samoan plume (striking 195˚ from north) 

superposed by the mantle wedge corner flow away from the slab (striking 270˚ from north). An 

alternative explanation is that our observation implies a complex history of deformation [Boneh 
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and Skemer, 2014; Boneh et al., 2015], that even if the mantle flow has been rotated from E-W 

striking to trench-parallel (striking 195˚ from north), the rotation of the fast axis of 

crystallographic preferred orientation (CPO) is lagged to striking 180˚ from north. 

Beneath the Fiji Plateau-Lau Ridge, the fast directions at periods shorter than 40 s 

presumably indicate the anisotropy formed when the arc was active and later frozen in the 

lithosphere. The fast directions appear more complex, possibly because the Fijian islands rotated 

counterclockwise by about 90˚ since 6.8 Ma [Malahoff et al., 1982]. Many fore-arcs and arcs 

show along strike fast directions that may result from horizontal compression. However, 

anisotropy at longer periods consistently strikes E-W, suggesting a mantle flow perpendicular to 

the trench which is consistent with previous studies of S-wave splitting [Smith et al., 2001] and 

geodynamic expectations [Harmon and Blackman, 2010]. 

 

 

3.5. Conclusions 

We obtained a comprehensive structure of SV-velocity for the Tonga-Lau-Fiji region by 

jointly inverting the Rayleigh wave phase velocities from the ANT and the TPWT with a 

Bayesian Monte-Carlo method [Shen et al., 2012]. Our results suggest a thin crust (about 7 km 

thick) and lithosphere of the Lau Basin in contrast to the 25-35 km-thick crust and 40-50 km-

thick lithosphere beneath the Tonga Ridge and the Fiji Plateau-Lau Ridge. A broad LVZ is 

imaged in the uppermost mantle beneath the Lau Basin, indicative of hot materials upwelling 

from the Australian mantle in the west. Additionally, extremely low-velocity anomalies exist 

beneath the Lau Basin at the depths of 20-80 km, suggesting partial melting mainly commences 

at 70-80 km depth. The broadly distributed melting region, along with the asymmetric mantle 
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upwelling, proves that decompression melting is the dominant melting process in the back-arc. 

More detailed investigations on the variations of the seismic low velocities along the 

spreading centers suggest that the water released from the slab significantly facilitate the melt 

transport and extraction at the VFR where the spreading center is much closer to the Tofua 

volcanic arc compared to the CLSC and ELSC in the north. The abrupt changes in geochemistry 

and geomorphology at about 20.6˚S and 21.2˚S along the ELSC-VFR result from a transition of 

the dominating source of mantle materials. The magmas at the CLSC and ELSC are 

predominantly supplied by the Australian mantle from the west, while the materials at the VFR 

mainly come from the subduction-related mantle wedge from the east. 

The lithosphere of the northeastern Fiji Plateau and north Lau Ridge appears to be removed 

by a hot spot from deep mantle, which may also contribute to the spreading centers in the 

northwestern Lau Basin. The MTJ and FRSC are dominated by flux melting similar to the VFR. 

All these spreading centers in the northern Lau Basin are significantly influenced by the Samoan 

mantle plume originating from deep north. This is also supported by our results of azimuthal 

anisotropy, which suggest that the mantle flow direction changes from eastwards beneath the Fiji 

Plateau to southwards beneath the Lau Basin. 
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Figure 3.1. Tectonic map of the Lau Basin and adjacent areas with back-arc spreading 

centers (red curves). 

The Pacific Plate subducts beneath the Tonga trench (delineated by bathymetry contours of 7, 8, 

9, and 10 km) from the southeast (bold arrow). Areas with bathymetry shallower than 1 and 0 km 

are shaded in gray and black, respectively. Features with active magmatism are labeled in red. 

CLSC, Central Lau Spreading Center; ELSC, East Lau Spreading Center; LETZ, Lau 

Extensional Transform Zone; FRSC, Fonualei Rift and Spreading Center; FSC, Futuna 

Spreading Center; MTJ, Mangatolu Triple Junction; NWLSC, Northwest Lau Spreading Center; 

VFR, Valu Fa Ridge. 
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Figure 3.2. Seismic stations and earthquakes used in this study. 

Red triangles represent island-based stations operated from Oct. 2009 to Dec. 2010. Red and 

black dots are WHOI and LDEO OBSs deployed from Nov. 2009 to Nov. 2010, respectively. 

Yellow dots and triangles indicate OBSs and island-based stations deployed during Sep. to Dec. 

1994, respectively. Spreading centers are denoted by black curves, and the 1000 m bathymetric 

contours are shown. The inset shows the earthquakes (blue dots) used in this study centered at 

the Lau Basin (red star). 
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Figure 3.3. Nodes for SV-velocity inversion. 

(a) Green dots represent the nodes for the TPWT, black dots indicated the nodes for the ANT, 

and red dots included by the blue contour are the nodes for the ANT-TPWT joint inversion. 

Black polygon outlines the region in which we display the TPWT inversion, and blue outlines 

the region in which we display the joint ANT-TPWT inversion, based on the areas of good 

resolution for each method. Magenta stars illustrate nodes used as examples shown in Fig. 3.4. 

(b) Misfit of the Bayesian Monte-Carlo inversion for each node. 7 nodes (black) with large 

misfits are discarded. The misfit is defined as the mean square root of the errors normalized by 

the phase-velocity uncertainties. 

 

  



 82 

 

Figure 3.4. Examples of the joint ANT-TPWT dispersion curves and the results of the SV-

velocity inversion. 

Each row shows the dispersion curves and SV-velocity models of nodes at the ELSC (a, d, g), at 

the Fiji Plateau (b, e, h), and in the northern Lau Basin without ANT coverage (c, f, i). (a-c): 

original dispersion curves measured by the ANT (red) and the TPWT (blue) with error bars 

showing the standard deviations. Green curves indicate the combined dispersion curve with 
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amplified uncertainties. (d-f): Fit to the observed dispersion curves, with measured dispersion 

curves (green), dispersion curves corresponding to the linearized inversion (blue), and the 

average SV-velocity model from the Monte-Carlo inversion (red). (g-i): Resulting SV velocity 

models from various inversions, showing the averaged accepted model (red) with the standard 

deviations (magenta) in comparison with the starting model (black) and the linearized inversion 

result (blue dashed curve). 

  



 84 

 

Figure 3.5. Maps of azimuthally averaged phase velocity at periods of 10 and 18 s inverted 

by ANT, 23 and 37 s inverted by TPWT. 

Spreading centers are denoted by black lines. The 1 km bathymetric contour and the coastlines 

are shown to outline the Tonga Ridge, Tofua arc, Lau Ridge, and Fiji Plateau. The 7, 8, 9, and 10 

km contours are also shown to delineate the Tonga trench. 
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Figure 3.6. Checker board tests at periods of 10 and 18 s from the ANT, and 23 and 27 s 

from the TPWT. 

Spreading centers and bathymetric contours are labeled the same as Fig. 3.5. The black polygon 

outlines the region of reasonable resolution in the TPWT phase-velocity inversion, that is 

displayed in the results section. Black dots on the TPWT maps show the locations of the seismic 

stations. 
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Figure 3.7.  Azimuthal Rayleigh wave anisotropy results from TPWT. 

(a) The nodes for the TPWT are divided into 4 tectonic subregions: the Lau Basin (black dots), 

the Fiji Plateau/Lau Ridge (magenta dots), the Tonga Ridge (cyan dots), and the surrounding 

region (green dots). Spreading centers and bathymetry contours are labeled the same as Fig. 3.5. 

(b) The relationship of azimuthal anisotropy to period for the Lau basin. The period is displayed 

on the y-axis with period increasing downwards, since shorter periods are sensitive to shallower 

structure. Short bars through each symbol show the fast direction in map view (the arrow shows 

the direction of north in map view). Error bars display doubled standard deviations. (c) The 

relationship of anisotropy to period for the Fiji Plateau-Lau Ridge, with symbols the same as in 

b. 

 

  



 87 

 

Figure 3.8. Maps of azimuthally averaged SV-velocity at depths of 20, 30, 40, 50, 60, and 

100 km relative to sea level. 

White contour encloses the region of the ANT-TWPT joint inversion. Black straight lines show 

the cross-sections in Fig. 3.9. The cross-sections A-A’, B-B’, and C-C’ start from and extend 

perpendicular to the Tonga trench. Spreading centers and bathymetry contours are labeled as in 

Fig. 3.5.  
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Figure 3.9. Cross-sections showing azimuthally averaged SV-velocity. 

Black bold curves delineate the surface of the subducting slab from the Slab 1.0 model [Hayes et 

al., 2012]. The bathymetry is plotted above with vertical exaggeration. The Lau Basin part of the 

cross-sections A-A’ and E-E’ are enlarged to show details.  



 89 

 

Figure 3.10. Cross-section of the predicted SV-velocities for the ELSC based on 

temperature and water content. 

Calculations are based on numerical models of temperature and water content [Harmon and 

Blackman, 2010], extended Burgers model fit of experimental results relating temperature and 

velocity [Jackson and Faul, 2010], and the effects of water extrapolated from rheological 

relationships [Karato, 2012]. Isotropic S velocities predicted by the numerical results are 

converted to SV velocities using Nishimura and Forsyth [1989]. Notice the color scale is the 

same in Fig. 3.9. Modified from the Extended Data Fig. 8 in Wei et al. [2015]. 
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Figure 3.11. Conceptual explanation of the azimuthal anisotropy results from TPWT. 

Two insets are from Fig. 3.7, showing the relationship of anisotropy to period for the Fiji 

Plateau-Lau Ridge (left) and the Lau Basin (right). Short bars through circles indicate the fast 

direction in map view (the arrow shows the direction of north in map view). Error bars display 

doubled standard deviations. Rayleigh wave samples shallower structure at shorter periods and 

deeper earth at longer periods. Its maximum sensitivity to shear velocity perturbations is located 

at a depth of about one third of its wavelength. Consequently, we color-code the anisotropy 

within the lithosphere with green and those in the mantle with black, corresponding to the motion 

of lithosphere (green arrows) and mantle (black arrows) in the schematic plot. 
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Chapter 4 

3-D Seismic Attenuation Structure of the Tonga-Lau-

Fiji Subduction System and Implications for Mantle 

Melting 

 

 

Abstract 

We image the 3-D attenuation structures of the Tonga subduction zone and the Lau back-arc 

basin using local earthquake waveforms recorded by the 2009-2010 Ridge2000 Lau Spreading 

Center Imaging project, which consisted of 49 ocean-bottom seismographs (OBSs) and 17 

island-based seismic stations deployed in Tonga, Fiji, and the Lau Basin for about one year. The 

amplitude spectra of P and S waves from local earthquakes are inverted for the path-average 

attenuation operator (t*) along with the seismic moment and corner frequency with varying 

frequency-dependent exponent (𝛼). Analysis shows that the data are best fit by the assumption of 

𝛼 ≈ 0.27, supporting the laboratory-based models of grain boundary sliding. The t* 

measurements are inverted with various techniques to obtain 3-D tomographic models of QP, QS, 

and QP/QS. Results show strong anomalies of high P- and S-wave attenuation within the upper 

100 km of the mantle beneath the back-arc basin, with perhaps the highest seismic attenuation 

(QP < 30 and QS < 20) known in the mantle found immediately beneath the spreading center. 
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High attenuation anomalies form an inclined zone dipping from the back-arc spreading centers to 

the west away from the slab. This high-attenuation zone in the back-arc requires not only the 

abnormally high temperature but also the existence of partial melt, suggesting that hot materials 

supplied from the Australian mantle upwell along with the mantle wedge flow pattern, triggering 

extensive decompression melting near the back-arc spreading centers. The backarc basin 

attenuation anomalies show low QP/QS ratios (< 1.5), in contrast to more conventional QP/QS 

ratios (> 1.8) beneath the Fiji Platform, implying significant bulk attenuation in the region of the 

mantle containing significant partial melt. P-wave attenuation displays different N-S trend along 

the back-arc spreading centers compared to SV-wave velocity and S-wave attenuation, suggesting 

the significant impacts of melt/free fluid on bulk attenuation. 
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4.1. Introduction 

Melting processes in the mantle wedge are of great importance for understanding the 

interaction between subduction, arc volcanism, and back-arc spreading. It is widely accepted that 

the volatiles released from the subducting slab lower the melting temperature of the mantle 

wedge, resulting in flux melting to supply the volcanic arc. On the other hand, the extensional 

environment in the back-arc triggers decompression melting to form new crust at back-arc 

spreading centers [Wiens et al., 2008]. Studies within the last two decades suggest that these two 

melting processes interact with each other, determining the geomorphology and crustal 

properties observed at the seafloor [Martinez and Taylor, 2002; Kelley et al., 2006; Dunn and 

Martinez, 2011; Zha et al., 2014; Wei et al., 2015]. However, more details remain unknown due 

to the lack of high-resolution observations constraints on the subsurface structure and processes. 

Therefore, investigating the details of the mantle wedge melting requires integration of 

various types of seismic observations. Particularly, since the structurally bound water plays a 

more important role in controlling seismic properties due to its abundant presence in the mantle 

wedge, detecting water becomes a serious challenge for seismic studies. However, it is difficult 

to distinguish the effects of water on seismic velocity from that of temperature [Karato, 2003]. 

Seismic attenuation provides an alternative approach to identify spatial variations of temperature, 

water content, and partial melt due to the different dependences of attenuation on these physical 

factors [van der Lee and Wiens, 2006]. 

The Tonga subduction zone and the adjacent Lau back-arc basin, one of the most active 

regions in the world, offer a unique opportunity to study the detailed processes of the mantle 

wedge melting. Here we present seismic tomographic structures of P and S wave attenuation in 

the Tonga-Lau-Fiji system and discuss their implications for understanding seismic attenuation 
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mechanisms in the mantle, as well as backarc melt distribution and subduction dynamics. 

 

4.1.1 Tectonic Setting 

The Tonga subduction zone and the adjacent Lau back-arc basin are characterized by 

abnormally fast convergence and back-arc spreading rates [Bevis et al., 1995], as well as 

unusually high temperatures and large extent of melting in the back-arc [Kelley et al., 2006]. The 

back-arc mantle melting process is thought to be significantly influenced by the adjacent 

subduction and the supply of slab-derived fluids, which leads to systematic variations in 

geochemistry [Bézos et al., 2009; Escrig et al., 2009], petrology [Kelley et al., 2006], 

geomorphology [Martinez et al., 2006], and seismology [Dunn and Martinez, 2011; Dunn et al., 

2013; Arai and Dunn, 2014; Zha et al., 2014; Wei et al., 2015]. In the north of the study region 

(Fig. 4.1a), where the Central Lau Spreading Center (CLSC) is 160-185 km away from the active 

Tofua arc, the influence of the subduction is minor so that the spreading center acts like a normal 

mid-ocean ridge (MOR) with a normal crustal thickness of 6-7 km and mid-ocean ridge basalt 

(MORB)-like lavas [Kelley et al., 2006]. Further south, where the East Lau Spreading Center 

(ELSC) is 60-110 km away from the arc, the arc and back-arc melting processes interact with 

each other extensively to produce a thin crust with strongly depleted lavas compared to MORB.  

At the southernmost extent of the study region, where the Valu Fa Ridge (VFR) is 40-60 km 

away from the arc, the arc melting process is so dominating that the ridge appears to be assemble 

to the Tofua arc with similar geochemistry signatures and large crustal thickness (7.5-9 km) 

[Pearce et al., 1994; Turner et al., 1999; Martinez and Taylor, 2002; Crawford et al., 2003; 

Jacobs et al., 2007]. 

In addition to this subduction-influencing melting process, comparisons between melt 
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production and mantle in situ melt content (mantle porosity filled with melt, hereinafter melt 

porosity) suggest that the melt segregation and extraction are also significantly influenced by the 

subduction, as the water released from the slab enhances melt mobility [Wei et al., 2015]. 

The Fiji Plateau and the Lau Ridge are parts of a remnant volcanic arc that ceased and split 

about 4-6 Ma before the formation of the Lau Basin. Previous seismic studies reveal a 25-35 km 

thick crust, a 40-50 thick lithosphere with high seismic velocity, and a hot asthenosphere with 

low seismic velocity and high attenuation in this region [Roth et al., 1999; Conder and Wiens, 

2006; Wiens et al., 2008; Wei et al., 2015; Chapter 3]. 

 

4.1.2 Seismic attenuation 

Seismic attenuation quantifies the energy loss of seismic waves during propagation due to 

intrinsic energy dissipation by the media. The attenuation of P and S waves are characterized by 

the inverse of the quality factors QP and QS, respectively, and are directly determined by the 

anelasticity of the bulk and shear elastic moduli Qκ
-1 and Qµ

-1 as 

   (4.1) 

   (4.2) 

where , VP and VS are the P- and S-wave velocities, respectively [Aki and 

Richards, 2002]. 

According to rock physics, seismic attenuation results from the anelastic behavior of mantle 

rocks, including grain boundary sliding, dislocation creep, and other mechanisms. Laboratory 

experiments at seismic frequencies show that grain boundary sliding is probably the predominant 

mechanism in the upper mantle, so that seismic attenuation increases exponentially with respect 

to temperature T as 

1/QP = 1− R( ) /Qκ + R /Qµ

1/QS = 1/Qµ

R = (4VS
2 ) / (3VP

2 )
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   (4.3) 

where 𝜔 is the angular frequency, d is the grain size, m is a grain-size-dependent exponent, E is 

the activation energy, and 𝛼 is a universal frequency-dependent exponent [Jackson et al., 2002; 

Faul and Jackson, 2005; Jackson and Faul, 2010; Abers et al., 2014; Faul and Jackson, 2015] 

The anelastic response consists of a broad high-temperature background superposed by a high-

frequency peak. The former background is attributed to diffusionally assisted grain boundary 

sliding with a strong grain-size dependence (m = 2 or 3) and a mildly frequency dependence (𝛼 = 

0.27), whereas the latter peak corresponds to elastically accommodated grain boundary sliding 

with linear dependences on grain size and frequency (m = 1 and 𝛼 = 1) [Jackson and Faul, 2010; 

Faul and Jackson, 2015]. Therefore, the frequency dependence should be 0.2-0.4, as used by 

previous seismic studies [Stachnik et al., 2004; Rychert et al., 2008; Pozgay et al., 2009]. The 

extended Burgers model based on these experiments provides a quantitative way to relate 

temperature to seismic properties for melt- and water-free olivine aggregates [Jackson and Faul, 

2010], though the extrapolation of these laboratory-based models needs to be carefully 

examined. 

Although Faul et al. [2004] observed a strong reduction of seismic velocity and an increase 

of attenuation related to partial melt, the mechanism is still unclear, leading to difficulties to 

extrapolating experimental results to the upper mantle condition. The effect of melt is highly 

dependent on the geometry of the melts [Mavko and Nur, 1975; O'Connell and Budiansky, 1977; 

Schmeling, 1985; Faul and Jackson, 2015]. At low melt porosity, isolated melt pockets cause no 

energy dissipation at the seismic frequencies and affect seismic velocity only by reducing the 

elastic modulus. As the melt porosity increases, the melt flow between adjacent pockets may 

Q−1 ∝ ωdme
E
RT⎛

⎝⎜
⎞
⎠⎟

−α
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dissipate seismic energy only for disk-shaped inclusions [Schmeling, 1985]. But these two 

mechanisms contribute only to shear attenuation, leading to QP/QS = 2.25. Furthermore, when the 

melt porosity becomes large enough, bulk fluid flow of melt in response to pressure gradients 

can cause bulk attenuation [Faul and Jackson, 2015], resulting in a smaller QP/QS ratio observed 

in Tonga and Marianas previously [Roth et al., 1999; Pozgay et al., 2009]. 

Structurally bounded water, i.e. hydrogen defects, could significantly increase seismic 

attenuation [Karato, 2003; Aizawa et al., 2008; Karato, 2012]. On the other hand, the increasing 

water content may also lead to larger grain sizes, reducing seismic attenuation through grain 

boundary sliding [Abers et al., 2014]. The consequence of these two competing effects is not 

clear, but study of mantle regions known to have a high water content, like this study, may 

provide some constraints. Additionally, since the water concentration beneath the Lau Basin 

exceeds the minimum storage capacity of nominally anhydrous mantle minerals at certain 

locations [Kelley et al., 2006], free water may locally exist in the mantle wedge, affecting 

seismic properties in similar ways as melt. At greater depths and higher temperatures, however, 

free water will not exist and high water concentrations will produce an aqueous melt 

[Hirschmann, 2006]. 

 

 

4.2. Data and Methods 

4.2.1 Data collection and processing 

In this study we analyzed seismic data recorded at 49 ocean-bottom seismographs (OBSs) in 

the Lau Basin and 17 island-based temporary seismic stations on Tonga and Fiji islands (red 

symbols in Fig. 4.1b) deployed for about one year. Each OBS from Woods Hole Oceanographic 
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Institution (WHOI) used a Guralp CMG3T seismometer and a Quanterra Q330 datalogger, 

whereas other OBSs from Lamont-Doherty Earth Observatory (LDEO) were equipped with 

Sercel L-4C seismometers and LDEO-designed recorders. Each island-based station consisted of 

a broadband 3-component seismometer (Guralp CMG3T or Streckeisen STS-2 or Nanometrics 

Trillium 120 PA) and a Reftek 130-01 datalogger. 

1163 local earthquakes (gray dots in Fig. 4.1b), with 94851 P arrivals and 14772 S arrivals, 

were manually located using this dataset. Of these events, 764 were listed in the Reviewed ISC 

Bulletin [ISC, 2013] whereas the other 399 were newly detected (Chapter 5). Since large 

numbers of deep earthquakes (depths 500-680 km) are present in Tonga, we detected and located 

new events in a depth range of 50-450 km in order to increase the amount of intermediate-depth 

earthquakes for better-balanced sources of tomography. Events shallower than 50 km were 

excluded to prevent strong wave propagations effects associated with the Moho and near-source 

shallow structure. We then windowed the three-channel seismogram for each event-station pair 

that has a clear P arrival. Data was downsampled to 40 sps and corrected for instrument 

responses. Horizontal channels were rotated into a radial-transverse coordinate system based on 

previously determined OBS orientations [Zha et al., 2013]. 

 

4.2.2 Determining t* and Source Parameters 

We investigated path-averaged attenuation by inverting for t* = t/Q, where t is the travel time 

for each event-station pair. For the k-th earthquake recorded at the j-th station, the displacement 

spectrum  can be expressed as 

   (4.4) 

Ajk fi( )

Ajk fi( ) = CjkM 0ke
−π fi

1−α t0 jk
*

1+ fi fck( )2
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   (4.5) 

where  is a constant factor for each event-station (k-j) pair accounting for frequency-

independent effects,  and  are the seismic moment and corner frequency for this event k, 

respectively, and  is the attenuation factor at 1 Hz for event k and station j [e.g. Anderson and 

Hough, 1984].  can be approximately estimated by combining effects of geometric spreading 

[Kanamori and Stewart, 1976], free surface [Helmberger, 1974], and a spherically averaged 

radiation pattern [Aki and Richards, 2002]. Eq. 4.5 is then solved with a non-negative least 

square algorithm for the attenuation along each path  as well as M0 and fc for the event.  This 

method has been widely used at several subduction zones [Stachnik et al., 2004; Rychert et al., 

2008; Pozgay et al., 2009], so here we emphasize the differences and improvements. 

For each P wave, the signal was windowed for 5 s starting 0.5 s before the arrival pick on the 

vertical channel, and the noise was windowed with the same length immediately preceding the 

signal window (Fig. 4.2a). Both spectra of signal and noise were calculated with a multi-taper 

technique [Lees and Park, 1995], and the frequency band used in Eq. 4.5 was automatically 

determined as the largest frequency range in which the spectral signal-to-noise ratio (SNR) is 

consistently higher than 2 (Fig. 4.2c). Only spectra with a frequency range larger than 3 Hz are 

used in the inversion. For each S wave, the data window and frequency band are determined in 

the similar way on the transverse channel, with a window length of 8 s, the critical SNR of 1.8, 

and the minimum frequency range of 1 Hz (Figs. 4.2b and 4.2d). Even with this weaker quality 

control for S waves, the amount of usable S signals is about one tenth of that of P signals due to 

the extremely high S-wave attenuation in the back-arc (Fig. 4.3). 

Because of the intrinsic trade-off between the source corner frequency (fc) and the attenuation 

ln Ajk fi( ){ }+ ln 1+ fi fck( )2{ }− ln Cjk{ } = ln M 0k{ }−π fi1−αt0 jk*

Cjk

M 0k fck

t0 jk
*

Cjk

t0 j
*
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term (t*), the inversion sometimes results in unrealistic values of fc. We applied a priori 

information about how corner frequency scales with body-wave magnitude (mb) from the 

Reviewed ISC Bulletin [ISC, 2013] to constrain fc within a reasonable range of stress drops. We 

use the assumption of a circular rupture [Anderson, 1986] and empirical relationships 

   (4.6) 

   (4.7) 

   (4.8) 

where 𝛽 is the shear velocity (assumed as 4 km/s), ∆𝜎 is the stress drop, and MW is the moment 

magnitude [Anderson and Hough, 1984; Hough, 1996; Hough et al., 1999; Pozgay et al., 2009; 

Das et al., 2011]. The magnitude-frequency distribution of the Reviewed ISC Bulletin [ISC, 

2013] suggests a complete detection of earthquakes with mb larger than 4, whereas some smaller 

events as small as mb = 3 can still be detected [Willemann, 1999]. Therefore, we assume mb as 

3.0 for those earthquakes not listed in the Reviewed ISC Bulletin [ISC, 2013]. We use upper and 

lower bounds of ∆𝜎 of 20 and 0.5 MPa to determine reasonable bounds on the minimum and 

maximum fc, and carried out a grid search over those fc using Eq. 4.5 to determine the best fitting 

fc and t* (Figs. 4.2e and 4.2f). In addition, we required the S-wave corner frequency fc(S), usually 

poorly constrained because of the limited S wave frequency range, to be equal to fc(P). After 

trying different values of 𝛼, we assumed a slight frequency dependence with 𝛼 = 0.27 according 

to previous laboratory experiments [Jackson et al., 2002; Jackson and Faul, 2010]. The 

validation of these assumptions will be discussed in the next section. 

After the first round of inversion of Eq. 4.5 for each event, we compared the observed 

spectrum with the synthetic one calculated from the inverted fc and t* values. Event-station pairs 

with a poor fit were discarded and only the good pairs were input for the second round of 

fc = 0.49β Δσ M 0( )1/3

logM 0 = 1.5MW + 9.095

MW = 1.54mb − 2.54
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inversion to produce the final results of t*. In this way very poor fitting data due to high noise 

levels or instrument malfunction were not used in the overall estimates of M0 for each event and 

the final t* measurements. 

 

4.2.3 Evaluating Assumptions of the t*-inversion 

In order to test our assumptions for the corner frequency and 𝛼 value, we additionally 

conducted t*-inversions over all events with a fixed stress drop (the corner frequency of each 

event is fixed according to Eqs. 4.6-4.8) and 𝛼 value, and then use the average misfit of all t*-

inversions for each set of parameters as an indicator of the goodness of our assumptions. Fig. 4.4 

shows that the method of determining the corner frequency by a grid search produces lower 

misfit by introducing an additional variable, but misfits with fixed stress drops do not show 

significant preference. This means that the choice of the stress drop and the corner frequency 

does not dramatically affect the t*-inversion. We thus conclude that the grid search over fc is the 

best way to eliminate the trade-off between fc and t*, as previously discussed by Stachnik et al. 

[2004], Rychert et al. [2008], and Pozgay et al. [2009]. 

Although we are not able to directly invert for 𝛼, the misfit reaches minimum when 𝛼 = 0.3 

for every set of stress drops. This agrees well with the value suggested by laboratory experiments 

(0.27) for attenuation in high temperature polycrystalline olivine, which is interpreted using a 

model of grain boundary relaxation [Jackson et al., 2002; Jackson and Faul, 2010]. Because of 

the generally good agreement with the laboratory results, and because we cannot determine the 

best fitting  𝛼  with  high  precision,  we use t* measurements determined assuming 𝛼 = 0.27 as 

suggested by laboratory experiments and a grid search over the stress drop and fc for the 

tomographic inversion. 
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4.2.4 Tomographic Inversion 

The tomographic problem for attenuation structure is given by 

   (4.9) 

where  is the t* measurement of the i-th seismic ray, the seismic velocity of the j-th node ( ) 

and the path length for the i-th ray in the block around the j-th node ( ) together form the 

tomography kernel  , and the attenuation of the j-th node ( ) is the model parameter 𝑚!. 

We inverted Eq. 4.9 separately for QP and QS using the measurements of t*(P) and t*(S), 

respectively. A 2-D P- and S-wave velocity model from previous regional tomography [Conder 

and Wiens, 2006], was adopted and projected parallel to the trench to build a 3-D velocity model. 

Seismic path lengths and travel times were calculated by ray tracing with a pseudo-bending 

algorithm [Um and Thurber, 1987]. We ignored the uncertainties of the velocity model, raypaths, 

and travel times, since the uncertainties of the t* measurements are much more significant. 

The tomographic inversion was performed using a generalized least-squares method with a 

maximum-likelihood linear inverse solution [Tarantola and Valette, 1982; Menke, 2012; 2014]. 

An assumed uncertainty in theory of 0.03 s was input into the inversion based on previous 

experience [Stachnik et al., 2004; Rychert et al., 2008]. Since the most attenuated signal should 

be buried in noise, the tomographic results of attenuation could be underestimated. For the same 

reason, we set the a priori model of Q-1 as zero, so that the final results would give a lower bond 

of attenuation structure. A second-derivative smoothing and damping constraints were also 

imposed as a priori information. We conducted a series of inversions with different smoothing 

and damping coefficients, and chose the values that best balance the model resolution and misfit 

ti
* =

lij
vj
1
Qj

= Gijmj
j
∑

ti
* vj

lij

Gij Qj
−1
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(details in Section 4.3.3). 

The much smaller number of good S-wave t* measurements resulting from the high 

attenuation causes some difficulty in determining a good QS model and in comparing QS and QP 

structure. Therefore we utilized a several different methods for the tomographic inversions. 

Table 4.1 lists all cases of Q inversion. The last column shows the cases producing the final 

reliable results that we use for the discussion and interpretation. 

For the QP inversion with more than 10,000 t*(P) values, we used a 3-D grid of nodes spacing 

29 km horizontally and 25 km vertically down to the depth of 300 km and a 1-D structure 

between 300-700 km where lateral resolution is poor (Case 1). We excluded t* measurements 

with from earthquakes outside the study region with raypaths that have sampled structures above 

300 km before entering the 3-D grid. A biconjugate-gradient technique [Barrett et al., 1994] was 

used to reduce the computational expense. However, this technique may result in negative QP
-1 

values at certain nodes with poor data coverage. In order to avoid these unrealistic solutions, we 

started with the best parameters for the final inversion, and iteratively increased the damping 

coefficient. The starting model in each iteration was adopted from the previous inverted model 

except that all negative QP
-1 values were replaced by 0.0001 [Rychert et al., 2008]. For QS with 

only a few thousands of t*(S) measurements, we used a sparser grid of nodes spacing 77 km 

horizontally and 25-100 km vertically down to the depth of 300 km (Case 2). The tomographic 

inversion was performed in the same way as for QP
-1 except that a non-negative least square 

algorithm instead of the biconjugate-gradient technique with iterations was utilized. 

Since the amount of S-wave data is less than 1/10 of the P-wave data, we additionally 

inverted t*(S) with the more robust QP model, so that P-wave data helps constrain the S-wave 

attenuation (Case 3): 
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Compared to the Eq. 4.9, the model parameter becomes (QP/QS)j at the j-th node, and QP
-1 is 

inverted with t*(P) data previously. Unlike the direct inversions of Q-1, this inversion of QP/QS 

does not produce negative solutions. We thus used the damped Singular Value Decomposition 

(SVD) method to invert the Eq. 4.10 with the same grid of nodes used for independently 

inverting for QS
-1. The QS

-1 model is simply the product of the inverted QP/QS and the QP
-1 

model, which is separately inverted with t*(P) data. This strategy greatly improves the vertical 

resolution of QS beneath the Fiji Plateau (Figs. 4.8e and 4.8h), since almost all S waves recorded 

at the Fijian stations come from deep earthquakes along near-vertical raypaths. 

However, the joint inversion of Q-1 may introduce biases to QP/QS due to the different 

sampling of P and S waves. As shown in Fig. 4.3, S waves are more attenuated than P waves. So 

S waves are often not observed for the most highly attenuating paths, while P signals are 

analyzed and contribute to the tomographic inversion. This may produce a bias in which QS
-1 and 

QP/QS are underestimated. Therefore, to obtain the best estimate of the QP/QS ratio, we selected 

event-station pairs which have both reliable measurements of t*(P) and t*(S), and inverted for QP
-1 

and QS
-1 independently with same damping and smoothing coefficients (Case 4). The inversions 

were performed in the same way as Case 2. The final model of QP/QS is given by directly 

dividing QS
-1 model by QP

-1 model with the optimistic parameters. Nodes with too high QP or QS 

were masked out to avoid computational instabilities. Due to the limited data and resolution, we 

do not invert for bulk attenuation, but infer it from QP/QS ratios. 
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4.3. Results 

4.3.1 Path-averaged Attenuation at each Station 

We obtained 20716 robust measurements of P-wave t* and 1523 for S wave. Extreme t* 

values (t* < 0 or path-averaged 1/QP > 30 or path-averaged 1/QS > 50), which may result from 

the non-negative least squares inversion, were discarded, leaving 20690 t*(P) and 1514 t*(S). 

About 10% of these t* measurements were further excluded for the tomographic inversions as 

those raypaths sample structures out of the inversion grid, leaving the number of data shown in 

Table 4.1. Fig. 4.5 plots the depth distribution of all earthquakes for these t* measurements, 

showing that earthquakes are the predominant sources. Consequently, the majority of the 

raypaths are nearly vertical, resulting in limited vertical resolution in the tomography.  

Before the tomographic inversions, we estimate the path-averaged attenuation Q-1 = t*/t and 

path-averaged QP/QS = (t*(S)/tS)/(t*(P)/tP) for each event-station pair. Fig. 4.6a shows an example 

of P waves from one earthquake recorded at several stations. The path-averaged attenuation 

observed at the fore-arc and the Fiji Plateau is obviously lower than near the back-arc spreading 

center. The mean values of the path-averaged attenuation and QP/QS originating from the entire 

dataset of earthquakes deeper than 410 km are plotted at each station in Fig. 4.6. The fore-arc 

stations are characterized by low P- and S-attenuation whereas high attenuations are observed in 

the back-arc. Perhaps surprisingly, the Fijian stations show somewhat higher S-attenuation 

compared to the ones in the Lau Basin. This probably reflects a thick layer of high 

asthenospheric attenuation beneath the Fiji Plateau and the Lau Ridge lithosphere as shown in 

the tomographic results in the next section, as well as the fact that the path-averaged QP/QS 

appears is near the expected value (2.25) beneath Fiji but is anomalously low beneath the 

backarc spreading center. 
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4.3.2 Tomographic Results 

Tomographic QP
-1 images show strong high-attenuation anomalies in the upper mantle 

beneath the Lau Basin in contrast to the subducting slab with low attenuation (Fig. 4.7). These 

anomalies form an inclined zone extending from shallow in the back-arc to deep away from the 

subducting slab (Figs. 4.7e-4.7g). The strongest anomalies are imaged along the southern ELSC 

and northern VFR but are lower amplitude at the CLSC, which may partially reflect less dense 

station and raypath coverage in this area. The Fiji Plateau-Lau Ridge is characterized by a thick 

lithosphere with low attenuation underlying by a thick high-attenuation asthenosphere. Since the 

majority of the sources are deep earthquakes, the poor vertical resolution may bias the depths and 

thickness of the high-attenuation anomalies. Similar features are also imaged in a S-velocity 

structure from Rayleigh wave tomography [Wei et al., 2015] but with a better constraint on 

depths. It should be noted that these results have poor relative resolution in areas of very low 

attenuation, thus some regions have zero attenuation when they almost certainly should have 

small but non-zero values. 

The S-wave dataset contains relatively fewer sources at intermediate depths (Fig. 4.5), 

because the intermediate-depth events are smaller on average. This results in much fewer non-

vertical raypaths contributing to the tomographic inversion for S waves than for P waves. In fact, 

the S-wave attenuation in the back-arc is so high that no S wave along a near-horizontal raypath 

can be observed at the Fijian stations, consistent with previous observations by Barazangi and 

Isacks [1971]. Thus no horizontal ray contributes to the independent inversion of QS (Case 2), 

leading to poorly constrained features beneath Fiji (Fig. 4.8h). Therefore, we prefer the S-wave 

attenuation tomography carried out using the P-wave attenuation as a constraint (case 3), which 
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constrains the structures beneath Fiji with the help of P waves (Figs. 4.8a-4.8g). The resulting 

structures beneath the back-arc (Fig. 4.8e) are similar to the results of Case 2 (Fig. 4.8g), 

supporting the usage of this strategy. A similar high-attenuation region for S waves is imaged 

beneath the Lau Basin compared to the QP model. However, the depth range of high attenuation 

beneath the Lau Basin might be underestimated as more S-wave signals from intermediate-depth 

events are missed. 

QP/QS ratios determined using the above methods may be biased due to the much better 

sampling of P waves, for instance, the extremely low QP/QS anomaly near the slab beneath the 

back-arc in Fig. 4.9a. We thus prefer the QP/QS results using only source-station pairs with both 

P and S observations (Case 4) shown in Figs. 4.9b and 4.9c. Extremely low QP/QS ratios down to 

0.8 are imaged near the intermediate-depth slab and beneath the back-arc basin, whereas the 

QP/QS beneath Fiji is about 1.8-2.0, relatively close to the expected 2.25 for attenuation purely in 

shear. The QP/QS values in the mantle wedge are consistently lower than 1.5. Overall these 

results are consistent with Roth et al. [1999], who determined an average QP/QS ratio of 1.75 for 

the entire region. 

 

4.3.3 Resolution and Extreme Values 

One crucial question of the tomographic inversions is the choice of damping and smoothing 

coefficients. We first conducted a series of inversions with varying coefficients and then 

calculated the model misfits (Fig. 4.10). The misfit does not change significantly when the 

smoothing and damping are small enough, although the inversion results may still vary 

dramatically. 

Therefore, more synthetic tests were carried out to determine the optimal parameters for the 
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inversions. Figs. 4.11a and 4.11b show the recovery of the P-attenuation inversion for a 

checkerboard structure. We also constructed a synthetic structure as expected to investigate the 

recovery (Figs. 4.11c and 4.11b). These results suggest that P-attenuation structure can be well 

resolved in the back-arc basin, but the features beneath the Fiji Plateau and the Lau Ridge are 

significantly elongated and smeared along the dominant direction of the seismic raypaths. This is 

due to the poor azimuthal coverage of earthquakes used in the tomographic inversions. 

Therefore, the high-attenuation zone beneath Fiji could likely be thinner with a higher 

attenuation amplitude compared to features shown in Figs. 4.7 and 4.8. Similar tests were also 

conducted for the QS and QP/QS inversions to choose the optimal parameters for damping and 

smoothing. 

 

 

4.4. Discussion 

4.4.1 Physical Implications of High Seismic Attenuation 

High seismic attenuation is indicative of high temperature, water content, and/or melt 

porosity [Karato, 2003; Faul et al., 2004; Jackson and Faul, 2010; McCarthy et al., 2011; Faul 

and Jackson, 2015], thus giving non-unique implications. In general, our P- and S-wave 

attenuation results for the Tofua arc and the Lau back-arc (minimum QP = 30-50 and QS = 20-35) 

are much greater than those observed at Alaska (minimum QP = 205-345 and QS = 95-140) 

[Stachnik et al., 2004], Central America (minimum QS = 38-84) [Rychert et al., 2008], Mariana 

arc (minimum QP = 56-70 and QS = 45-58), and Mariana back-arc (minimum QP = 43-60 and QS 

= 33-42) [Pozgay et al., 2009]. These values anti-correlate with the inferred in situ temperatures, 

suggesting that temperature is the predominant factor to control seismic attenuation in the 
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arc/back-arc systems. 

In order to investigate the effects of thermal variations and water content, we converted a 2D 

numerical model for the ELSC and Tonga mantle wedge by Harmon and Blackman [2010] to S-

wave attenuation (Fig. 4.12c). Following Wei et al. [2015], the conversion is based on available 

rock physical models and experimental constraints: (1) the extended Burgers models that fits 

data of forced torsional oscillation experiments (hereinafter JF10 model [Jackson and Faul, 

2010]) and (2) an assumption of water effects by scaling the characteristic frequency of grain 

boundary relaxation  

   (4.11) 

where  is the water content, is the reference water content (= 10-4 wt.%), r is an exponent 

constant of water effects between 1 and 2, T is the temperature, T0 is the reference temperature (= 

1300 K), and H* is the activation enthalpy for grain boundary sliding [Karato, 2012]. Since the 

potential temperature used in the numerical models is 1450 ˚C, slightly higher than the value 

revealed from geochemistry [Kelley et al., 2006], and r is chosen as 2, lying at the upper limit, 

the predicted seismic attenuation should draw the upper bound for observations. Furthermore, we 

calculated QP models for the ELSC by assuming QP/QS = 1.75 according to Roth et al. [1999] 

(Fig. 4.12a) or QP/QS = 2.25 for no bulk attenuation (Fig. 4.12b). We are aware that several 

parameters of the models are poorly constrained and assumptions are in need of further 

verifications. However, these calculations provide an effective way to visualize the effects of 

temperature and water, and estimate the highest possible values of seismic attenuation based on 

current knowledge. 

These calculations, along with other extrapolation of laboratory-based attenuation models 
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[e.g. McCarthy et al., 2011], always predict several times less attenuation than observed. By 

comparing Fig. 4.12 with Figs. 4.7f and 4.8e, several first-order discrepancies can be noted. 

Although high attenuation is predicted beneath the Tofua arc due to the high water content, the 

observed sharp boundary between high and low attenuation beneath the arc cannot be modeled 

since the water distribution is more diffusive, and high attenuation is predicted in the fore-arc 

where we observe low attenuation. In addition, water cannot explain the large attenuation 

observed centered beneath the ELSC, where the mantle has much lower water content than 

beneath the Tofua arc.  This discrepancy implies that the structurally bound water is not the 

primary contributor to the observed high attenuation and its effects on seismic properties may be 

overestimated in the prediction. The observed high-attenuation within the mantle wedge is not 

predicted by the models, showing a similar discrepancy between the predicted SV-velocity and 

observations [Wei et al., 2015]. The extremely high attenuation beneath the Lau Basin cannot be 

explained by variations of temperature and water content, even if the big uncertainties of these 

predications are taken into account. 

The extremely high attenuation observed beneath the volcanic arc and back-arc could be 

explained if melt and/or free water plays a more important role than previous suggestions such as 

Hammond and Humphreys [2000a]. In order to reconcile observations of seismic attenuation 

over different subduction systems, Abers et al. [2014] rescaled the effective viscosity and 

relaxation time of the JF10 model by a factor of 42. The adjusted JF10 model can fit most 

observations at arcs with a melt porosity of 1%, although observations at back-arc basins, 

including this study, requires the melt porosity to be higher than 4% (Fig. 11 in Abers et al. 

[2014]). Such high melt porosity, however, seems to be unrealistic given the U-isotropic studies 

[McKenzie, 2000] and microstructure of mantle rocks [Zhu et al., 2011; Miller et al., 2014], 



 111 

suggesting the effects of melt on attenuation may be still underestimated. One possible 

mechanism for melt-related attenuation is melt squirt [Mavko and Nur, 1975], which was 

generally assumed to be effective at frequencies higher than seismic band. But our results 

unambiguously show QP/QS lower than 1.5 beneath the back-arc basin, where partial melting is 

expected, requiring a mechanism for bulk attenuation. Mechanisms involving free fluid flow, 

such as melt squirt, need to be reconsidered as nonequilibrium melt geometries and stress-driven 

melt segregation may make these mechanisms more effective at seismic frequency band 

[Cooper, 2002; Holtzman and Kendall, 2010; Abers et al., 2014]. 

Although it is difficult to distinguish the effects of melt/fluid from the big uncertainties of 

model predictions, melts must play an important role in increasing seismic attenuation to such 

high values. Therefore, we are confident to attribute the strong anomalies of high attenuation 

beneath the back-arc spreading centers to the presence of in situ partial melting, but hesitated to 

evaluate the melt porosity. 

 

4.4.2 Back-arc melting with high attenuation 

High P- and S-wave attenuation anomalies are imaged beneath the Lau Basin, forming an 

inclined zone dipping to the west away from the trench, indicative of high temperature and 

partial melt. This pattern is in agreement with the SV-velocity structure from Rayleigh wave 

tomography (Fig. 4.13) [Wei et al., 2015; Chapter 3], implying a broad and asymmetric region of 

hot materials upwelling from the deep west to supply the mantle wedge. This process triggers 

extensive decompression melting that generates large amount of magma erupting at the back-arc 

spreading centers as well as remaining in the upper mantle. However, the attenuation structures 

also show several features different from the SV-velocity structure, suggesting more complexities 
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of the region. 

In contrast to Fig. 4.13a that shows lower SV-velocities at larger depths beneath the CLSC in 

the north, higher P-attenuation is mapped beneath the southern ELSC and northern VFR (Fig. 

4.7) and S-attenuation anomalies appear to be localized with a decreasing depth from north to 

south (Fig. 4.8). This discrepancy partly results from the limited resolving region as P- and S-

attenuation tomography both lose resolution near the CLSC and southern VFR (Fig. 4.11). 

However, the prominent extremely high P-attenuation anomalies beneath the southern ELSC is 

in the center of our seismic array and thus well resolved. One plausible explanation is that the 

melt/free fluid significantly increases bulk attenuation and thus P-wave attenuation, although its 

effects on S-wave velocity and attenuation are much smaller. 

Our results show a sharp boundary between the highly attenuation back-arc and the low 

attenuation fore-arc along the Tofua arc. Although Fig. 4.11d suggests that the arc signature 

might be smeared, the high-attenuation anomalies at the Tofua arc are undoubtedly weaker than 

that in the back-arc, implying that signature of sub-arc melt in the mantle is significantly smaller 

in extent and intensity compared to the back-arc spreading center melt. Additionally, this sharp 

boundary in seismic attenuation contradicts the diffusive distribution of water flux beneath the 

arc as inferred by numerical models [Harmon and Blackman, 2010], implying that the 

structurally bounded water is not the primary factor controlling the seismic attenuation in the Lau 

Basin. This agrees with the inference by Wei et al. [2015], who reached the same conclusion by 

comparing the along-strike variations of S-wave velocity and water content. 

 

4.4.3 High attenuation beneath the Fiji Plateau-Lau Ridge 

Both P- and S-wave results suggest a significant layer of high attenuation beneath the Fiji 
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Plateau and the Lau Ridge, although its thickness is difficult to constrain. According to Section 

4.3, this high-attenuation zone could be thinner with even higher attenuation than it appears in 

Figs. 4.7 and 4.8. This feature has been also observed by previous studies of Rayleigh wave 

tomography and interpreted as the hot Fijian asthenosphere with perhaps minor partial melting 

(Fig. 4.13) [Wei et al., 2015; Chapter 3]. 

Besides of the high-attenuation in this region, a small area with even stronger anomalies, as 

well as lower SV-velocities, are consistently imaged beneath the northeastern Fiji Plateau and the 

northern Lau Ridge, where the active Taveuni Volcano exists. Geochemical analyses of trace 

elements suggest that the magmatism in this region rejuvenated since 3 Ma with an obvious 

signature of ocean island basalt (OIB) [Gill and Whelan, 1989]. Although abundant evidence 

support the idea that the Samoan mantle plume upwells to influence the whole region of Lau and 

Fiji [Pearce et al., 2007; Price et al., 2014], a more detailed geochemical study in the 

northwestern Lau Basin propose a possible second plume originating from deep west [Lytle et 

al., 2012]. Nevertheless, our results of high attenuation indicate the temperature of the upper 

mantle beneath the northeastern Fiji Plateau and the northern Lau Ridge is higher than that of the 

ambient Fijian asthenosphere, potentially implying hot materials upwelling from deep mantle. 

 

4.4.2 QP/QS variations  

Low QP/QS anomalies are imaged beneath the back-arc basin, indicating significant bulk 

attenuation. Since the most likely mechanism of bulk attenuation is the bulk fluid flow in 

response to pressure gradients [Faul and Jackson, 2015], these low ratios suggest high porosities 

of melt and/or free water. One intriguing feature is a region of QP/QS as low as about 0.7 imaged 

near the subducting slab down to 200 km deep, potentially indicating the dehydration reactions 
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of the serpentinized slab at these depths. More high-resolution studies of QP/QS are needed to 

clarify it implications. 

The relatively low ratios beneath the Fiji Plateau and Lau Ridge (about 1.8-2.0) are in 

agreement with the value (1.75) proposed by Roth et al. [1999], who estimated the average 

QP/QS over the whole region of Tonga, Lau, and Fiji. 

 

 

4.6. Conclusions 

We investigate the seismic attenuation of the upper mantle in the Tonga-Lau-Fiji region by 

analyzing P and S waveforms from local earthquakes. Average misfits of the t*-inversion with 

varying values of 𝛼 shows that 𝛼 is approximately 0.3, in good agreement with the value of 0.27 

suggested by models based on rock physics experiments [Faul et al., 2004; Faul and Jackson, 

2005; Jackson and Faul, 2010; Faul and Jackson, 2015]. This is consistent with the idea that the 

attenuation is dominated by the thermal effects associated with grain boundary sliding. 

We obtain separate QP and QS models, with the QS model constrained by far fewer 

observations. The preferred QS model is obtained using the QP model as a constraint. In order to 

avoid potential bias due to different sampling, the QP/QS model is obtained by dividing QS
-1 by 

QP
-1 from each independent inversion using event-station pairs with both reliable t*(P) and t*(S) 

measurements. These strategies optimize the tomographic resolutions and robustness for 

different purposes, although the depths and thickness of the imaged features are still poorly 

constrained due to low vertical resolution. 

Strong anomalies of high P- and S-wave attenuation are imaged beneath the Lau back-arc 

basin, extending deep to the west away from the subduction slab. Tests with currently available 
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knowledge of rock physics suggest that the extremely high attenuation, QP < 30 and QS < 20, are 

indicative of not only abnormally high temperature but also the presence of partial melt in the 

back-arc upper mantle. Additionally, low QP/QS ratios (< 1.5) are also observed beneath the Lau 

Basin, suggesting significant bulk attenuation due to partial melt. The inclined high-attenuation 

zone suggests that hot materials supplied from the Australian asthenosphere upwell into the 

mantle wedge, resulting in extensive decompression melting beneath the back-arc spreading 

centers. Due to the limited resolving region, the N-S variations of attenuation along the back-arc 

spreading centers are not as obvious as that of SV-velocities [Wei et al., 2015; Wei et al., In 

prep.]. However, both SV-wave velocities and S-wave attenuations show a trend of deeper and 

larger melt porosity in the north, whereas P-waves display highest attenuation beneath the 

northern VFR in the south. This discrepancy might imply more dramatic impacts of melt/free 

fluid on bulk attenuation than on shear attenuation. 

A thick lithosphere with little attenuation is mapped beneath the Fiji Plateau and the Lau 

Ridge, overlying a hot asthenosphere characterized by high attenuation. A localized anomaly of 

high attenuation beneath the northeastern Fiji Plateau and northern Lau Ridge, along with the 

abnormally low SV-velocity from Rayleigh wave tomography [Wei et al., 2015; Wei et al., In 

prep.], indicate hot materials upwelling from deep mantle to supply the Taveuni Volcano and 

other active magmatism in this region. 
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Figure 4.1. Maps of the Tonga-Lau-Fiji region. 

(a) Tectonic map with back-arc spreading centers (red lines). The Pacific plate subducts beneath 

the Tonga trench (delineated by bathymetric contours of 7, 8, 9, and 10 km) from the southeast. 

Land areas are filled with black, whereas areas with bathymetry shallower than 1.5 km are 

shaded in gray. CLSC, Central Lau Spreading Centre; ELSC, East Lau Spreading Centre; FRSC, 

Fonualei Rift and Spreading Centre; FSC, Futuna Spreading Centre; LETZ, Extensional 

Transform Zone; MTJ, Mangatolu Triple Junction; NWLSC, Northwest Lau Spreading Centre; 

NELB, northeastern Lau Basin; VFR, Valu Fa Ridge. (b) Seismic stations (red dots for WHOI 

OBSs, red diamonds for LDEO OBSs, and red triangles for island-based stations) used in this 

study. Back-arc spreading centers are shown as black curves. Inset display the study region in a 

global map. (c) Earthquakes (black dots) used in this study, though not all of them are recorded 

well enough to calculate reliable t* measurements. Land areas are filled with black, whereas 

bathymetries of 1.5, 7, 8, 9, and 10 km are contoured. 

 

  



 122 

 

Figure 4.2. Example seismograms recorded at OBS C10W and spectra for P and S waves. 

(a) P wave recorded on the vertical channel. Green bars bound the windows of the P wave and 

background noise preceding. The earthquake was on August 15th, 2010 (mb = 4.7) and located at 

22.1˚S 179.3˚W. (b) S wave recorded on two horizontal channels. The leftmost green bar 

indicates the P arrival, whereas other green bars bound the windows of the S wave and 

background noise preceding. (c) Spectra of the P wave (blue) and the noise (red) shown in Fig. 

4.2a. Green bars bound the frequency band used in the t*-inversion. Green dashed curve shows 

the synthetic spectrum defined by the inverted t*(P) = 0.46. (d) Spectra of the S wave (blue) and 

the noise (red) shown in Fig. 4.2b. Green bars bound the frequency band used in the t*-inversion. 

Green dashed curve shows the synthetic spectrum defined by the inverted t*(S) = 1.10. (e) Misfit 

of the t*-inversion as a function of corner frequency. Red triangle represents the best fc 

corresponding to the final results of t*. (f) Inverted seismic moment as a function of corner 

frequency. 
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Figure 4.3. Example P- and S-wave spectra recorded at OBS B07W in the Lau back-arc 

basin (a, b) and at station FONI on the Tonga fore-arc ridge (c, d). 

The event occurred on April 10th, 2010 (mb = 5.5) and was located at 20.1˚S 175.8˚W.  Spectra 

are plotted in the same manner as Figs. 4.2c and 4.2b. Seismic signals are more attenuated in the 

back-arc than in the fore-arc, and attenuation is higher on the S wave. Only a small frequency 

band records the S wave above the noise level for the back-arc station. 
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Figure 4.4. Average L2 norm misfit of t*-inversions over all events as functions of 𝛼 value 

and stress drop Δσ. 

The 𝛼 value corresponding to the minimum misfit is close to the value suggested by 

experimental constraints (0.27) [Jackson et al., 2002; Jackson and Faul, 2010].  
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Figure 4.5. Depth distributions of earthquakes (a-c) and source events of t* measurements 

(d-f) used for inversions of QP (Case 1), QS (Case 3), and QP/QS (Case 4). 

Most event-station pairs with a good t*(S) measurement usually also have a good t*(P) 

measurement. But a few exceptions lead to fewer events for the QP/QS inversion compared to the 

QS inversion. 

 

 

  



 126 

 

Figure 4.6. Average attenuation along event-station pairs. 

(a) P waves of an earthquake (green dot) recorded at seismic stations (black triangles). The event 

occurred on December 20th, 2010 (mb = 3.9) and was located at 21.3˚S 176.2˚W. Raypaths are 

color-coded by the path-averaged attenuation along each path. (b) Mean value of the average P-

wave attenuation at each station over all events shallower than 150 km. Only stations with more 

than 2 measurements are plotted. (c) Same as (b) for events between 150- and 410-km deep. (d) 

Same as (b) for events deeper than 410 km. (c) Same as (d) for S-wave attenuation. (d) Same as 

(d) for average QP/QS. 
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Figure 4.7. P-wave attenuation in map view (a-d) and cross-sections (e-h). 

The 1000 m bathymetric contour is shown in the map views. Topography and bathymetry are 

plotted on the top of the cross-sections with a 5-times exaggeration. Black bold curves delineate 

the surface of the subducting slab in the Slab 1.0 model [Hayes et al., 2012]. 
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Figure 4.8. S-wave attenuation in map view (a, b) and cross-sections (c-f). 

(a-f) are plotted in the same manner as Fig. 4.7. (g) S-wave attenuation inverted independently. 

The location of the cross-section is the same as (d). Because of little vertical resolution beneath 

the Fiji Plateau, high-attenuation anomalies are wrongly mapped at shallow depths with stronger 

amplitudes. 
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Figure 4.9. QP/QS results. 

(a) QP/QS is inverted from t*(S) and the QP model (Case 3). (b,c) QP/QS is inverted using only t* 

measurements along the same raypaths (Case 4). Due to the different sampling of P and S waves, 

Case 3 may underestimate QP/QS near the slab. Black line in Fig. 4.9b illustrates the location of 

the cross-section in Figs. 4.9a and 4.9c. 
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Figure 4.10. Misfit of QP-inversion (blue or red dots) with varying damping and smoothing 

coefficients. 

Results corresponding to selected parameters (red dots) are shown as examples. Red star 

represents the parameters chosen for the final results. Larger damping coefficients (a, c) lead to 

relatively smaller anomaly amplitudes, whereas larger smoothing coefficients (c, d) result in 

relatively smoother models but greater misfit. 
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Figure 4.11. Synthetic tests of QP-inversion. 

(a) Input model of the checkerboard test. Black lines in map view illustrate the locations of the 

cross-sections. (b) Output model of (a). (c) Input model of a synthetic high-attenuation zone in 

the back-arc. Black lines in map view illustrate the locations of the cross-sections. (b) Output 

model of (c). 
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Figure 4.12. Cross-sections of predicted Q models for the ELSC. 

(a) Thermal model of the ELSC by Harmon and Blackman [2010]. The blue column contours 

0.1% water content in the input model. (b) Predicted QS model. Calculations are based on Fig. 

4.12a, extended Burgers model [Jackson and Faul, 2010], and effects of water (r = 2) [Karato, 

2012]. (c) QP model converted from (b) assuming QP/QS = 1.75 [Roth et al., 1999]. (d) QP model 

converted from (b) assuming QP/QS = 2.25 (no bulk attenuation). (e-g) Same as (b-d) except r = 

1. Notice the color scale is the same in Figs. 4.7 and 4.8.  
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Figure 4.13. Comparisons between SV-velocity structure from Rayleigh wave tomography 

(Chapter 3) and P-wave attenuation. 

(a) Map view at the depth of 50 km plotted in the same manner as Fig. 4.7a. (b) Cross-section 

along the black line in (a) plotted in the same manner as Fig. 4.7e. P-wave attenuation images (c-

d) are from Fig. 4.7. The depth of 120 km is shown by a dashed black line. 
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Table 4.1. Cases for Q inversion. 

The last column indicates the type of final results for further discussions. 

Case Input 
Data 

amount 
Equation Inversion algorithm 

Model 

parameter 
Output Final 

1 t*(P) 18660 4.9 
Biconjugate-gradient 

with iterations 
QP

-1 QP QP 

2 t*(S) 1363 4.9 
Non-negative least 

square 
QS

-1 QS  

3 
QP

-1 from Case 1 and 

t*(S) 
1363 4.10 Damped SVD QP/QS 

QP/QS 

and QS 
QS 

4 
t*(P) and t*(S) of same 

event-station pair 
973 4.9 

Non-negative least 

square 
QP

-1 and QS
-1 QP/QS QP/QS 
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Chapter 5 

Intermediate-depth double seismic zone in Tonga and 

relationships to slab thermal and stress states 

 

 

Abstract 

Intermediate-depth earthquakes in the Tonga subduction zone are precisely relocated using 

data from a local ocean bottom seismograph array as well as regional and global seismic stations. 

Results reveal a double seismic zone in the northern part of the slab within a depth range of 70-

300 km. Focal mechanisms show a downdip compressional upper plane and a downdip tensional 

lower plane with a separation of about 30 km. The seismogenic zone becomes shallower and 

thinner and forms a single plane dominated by downdip compression south of 21°S. The lower 

end of the double seismic zone in Tonga is significantly deeper than that in Japan and in other 

slabs worldwide. As the Tonga slab is inferred to be the coldest in the world due to its high 

convergence rate, this suggests that the thermal structure of the slab controls the maximum depth 

of the double seismic zone. Additionally, an inclined stripe of high seismicity is observed at 

depths of 200-300 km, with many earthquakes in this region occurring on between the two 

seismicity planes. The depth of this seismicity decreases linearly from north to south, in good 

correlation with the convergence rate. Numerical thermal models reveal that these events 
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occurred at various pressures but a nearly constant temperature. We propose that this stripe is 

caused by dehydration of the uppermost slab mantle when it reaches the temperature of about 

550 ˚C. However, the disappearance of the double seismic zone to the south coincides with the 

change in slab curvature, suggesting that the slab stress states rather than dehydration reactions 

control the activity of the lower plane. 
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5.1. Introduction 

Intermediate-depth earthquakes, occurring at depths of 70-300 km, are observed at most 

subduction zones though their mechanism remains controversial, as the pressure (P) and 

temperature (T) should be too high to allow brittle failure. Various mechanisms have been 

proposed to explain these earthquakes: (1) dehydration embrittlement in which rocks undergo 

sudden weakening and embrittlement during their dehydration [e.g. Kirby, 1995; Kirby et al., 

1996; Jung et al., 2004], (2) plastic shear instability in which rapid generation of heat triggers 

melting and allows runaway shear failure [e.g. Hobbs and Ord, 1988; Kelemen and Hirth, 2007], 

and (3) transformational faulting where phase transformations lead to elastic failures [e.g. Kao 

and Liu, 1995]. After decades of study, it is clear that the distribution of intermediate-

earthquakes coincides well with locations where dehydration of one or more minerals are 

expected to occur [e.g. Peacock, 2001; Hacker et al., 2003; Yamasaki and Seno, 2003; 

Brudzinski et al., 2007]. These observations suggest that intermediate-depth earthquakes may be 

triggered by dehydration of crustal and mantle rocks, increasing the pore fluid pressure and 

hence reducing the confining pressure. 

It is worthwhile to note that ‘dehydration embrittlement’ sensu stricto refers to brittle failure 

that occurs in situ and simultaneous with the dehydration, which has been only observed in few 

experiments [Lee and Kirby, 1984] and is challenged by recent experimental results [Proctor and 

Hirth, 2015]. van Keken et al. [2012] state that the presence of fluids, possibly due to 

dehydration, is more important than dehydration embrittlement itself. We thus use ‘fluid-related 

embrittlement’ to describe the mechanism by which the increase of pore fluid pressure within the 

subducting slab triggers earthquakes, and assume that the dehydration of several kinds of 

hydrous minerals are the most likely sources of the free fluids. This mechanism therefore has 
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important implications for mantle water budget and the global water cycle [Hacker, 2008; van 

Keken et al., 2011]. However, the detailed processes of intermediate-depth earthquake 

nucleation, such as whether the increase in pore fluid pressure will result in reactivation of outer 

rise faults or generating new faults, remains controversial [Jung et al., 2004; Billen et al., 2007; 

Warren et al., 2007]. 

More intriguingly, double seismic zones (DSZ), in which intermediate-depth earthquakes 

occur along two layers parallel to the dip of the subducting slab and separated by 20-40 km, have 

been observed in some subduction zones [e.g. Umino and Hasegawa, 1975; Engdahl and Scholz, 

1977; Hasegawa et al., 1978; Kawakatsu, 1985; McGuire and Wiens, 1995]. The upper plane is 

usually confined in the slab crust and uppermost mantle with downdip compressional stresses, 

whereas the lower plane is about 20-40 km deep from the slab surface with downdip tensional 

events. These phenomena can be generally explained by unbending and fluid-related 

embrittlement, so that the upper plane is attributed to the phase transitions from basalt to eclogite 

as well as other dehydration reactions in the crust [e.g. Peacock, 2001; Wang, 2002; Hacker et 

al., 2003; Yamasaki and Seno, 2003; Brudzinski et al., 2007]. 

The lower zone seismicity is more difficult to explain, and has been attributed to dehydration 

of antigorite in the slab mantle, although many studies doubt the presence of hydrated minerals at 

the appropriate depth in the mantle [e.g. Kelemen and Hirth, 2007]. Additionally, numerical 

modeling suggest that negative pressure gradients due to unbending can drive the water from 

dehydration reactions into the core of the slab [Faccenda and Mancktelow, 2010; Faccenda et 

al., 2012]. More detailed studies in northeastern Japan and Alaska suggest that the upper plane of 

the DSZ may also extend into the uppermost mantle, corresponding to the breakdown of 

antigorite or chlorite [Kita et al., 2010b; Abers et al., 2013]. Since these dehydration reactions 
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occur under certain p-T conditions, the distribution of intermediate-depth earthquakes and the 

DSZ are generally controlled by the thermal structure of the slab, which is function of the 

convergence rate and the slab age [e.g. Peacock, 2001; Abers et al., 2013]. 

The Tonga subduction zone, with fastest convergence rate among all subduction zones and a 

relatively old incoming-plate age, has an abundance of intermediate-depth earthquakes. The 

convergence rate varies from 240 mm/yr in the north to about 160 mm/yr at 22°S [Bevis et al., 

1995] while the slab age and dip angle roughly remain constant (Fig. 5.1), so the slab thermal 

structure changes systematically along strike. Thus it is an exemplary region to isolate the 

influence of the slab temperature structure on the intermediate-depth earthquakes from other 

factors. 

The DSZ in Tonga was initially discovered by Kawakatsu [1985] with a depth range from 60 

to 200 km. Although overall the slab is dominated by downdip compressional stress [Isacks and 

Molnar, 1971], a few earthquakes in the lower plane of the DSZ are characterized by downdip 

tensional stresses [Kawakatsu, 1985; 1986]. However, due to the lack of local seismic data, the 

Tonga DSZ has not been precisely delineated, and its implications for intermediate-depth 

seismicity and slab processes such as dehydration reactions remain unclear. Here we present the 

precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone using a 

combination of local and global data and derive a more detailed image of the Tonga DSZ. We 

then interpret the results in terms of thermal models, the p-T conditions, and the stress state of 

the slab. 
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5.2. Data and Methods 

Most of the data used in this study was collected from 49 ocean bottom seismographs (OBSs) 

deployed in the Tonga-Lau-Fiji region from November 2009 to October 2010, and 17 island-

based seismic stations operated from October 2009 to December 2010 (red symbols in Fig. 5.1). 

Each of 29 OBSs from Woods Hole Oceanographic Institution (WHOI) contains a Guralp 

CMG3T seismometer and a Quanterra Q330 datalogger, while other 20 OBSs from Lamont-

Doherty Earth Observatory (LDEO) use Sercel L-4C seismometers and LDEO-designed 

dataloggers. All of these OBSs were operating well during the deployment. The land stations 

were deployed over islands of Tonga and Fiji. Each of them contains a broadband three-

component seismometer (Guralp CMG3T, Streckeisen STS-2, or Nanometrics Trillium 240PA) 

and a Reftek 130-01 recorder. 

 

5.2.1 Locating/relocating Earthquakes 

We first manually examined 764 earthquakes from the Reviewed International Seismological 

Centre (ISC) Bulletin [ISC, 2013] that occurred between December 2009 and December 2010 

with epicenters confined in latitudes of 16.5˚S-24˚S and longitudes of 177˚E-171˚W using the 

data from the local seismic array. P and S arrivals of these 764 events were manually picked, and 

then relocated using the Antelope software package [Harvey, 2003] using the generalized 

earthquake-location package [Pavlis et al., 2004] with the ISAP91 velocity model [Kennett and 

Engdahl, 1991]. We additionally picked the arrivals of 399 previously unlocated earthquakes, 

which were automatically detected by Antelope, in the same region and time period but confined 

in a depth range of 50-450 km. This results in 94851 P arrivals and 14772 S arrivals for 1163 

earthquakes in total. We also combined the arrival data of more than 2000 events from the 1994 
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Lau Basin Ocean Bottom Seismograph Survey (LABATTS) and the 1993-1995 Southwest 

Pacific Seismic Experiment (SPASE) [Wiens et al., 1997; Koper et al., 1998] (yellow symbols in 

Fig. 5.1). In order to investigate the slab stress state, we also relocated earthquakes from the 

Global Centroid Moment Tensor (CMT) catalog [Dziewoński et al., 1981; Ekström et al., 2012] 

in the same region over 1977-2013 using the P, S, and pP arrivals recorded by global stations in 

the ISC catalog [ISC, 2013]. S arrivals for epicentral distances larger than 10˚ were omitted due 

to generally large arrival time uncertainties. 

Since the focus of this study is the intermediate-depth earthquakes, we used the 

hypocentroidal decomposition relative relocation algorithm [Jordan and Sverdrup, 1981; 

Bergman and Solomon, 1990] to relocate only the events that were initially located within the 

depth range of 50-450 km. Including earthquakes at depths of 300-450 is essential to constrain 

the slab geometry. The advantage of combining the local data with the ISC teleseismic data in 

the same relative relocation is significant, because the arrivals recorded by the local stations can 

help to constrain the CMT events without local records through the overlapping global stations. 

After the initial inversion, the most poorly located events eliminated and the remaining 

dataset was again relocated. This procedure was repeated several times in order to include only 

earthquakes with the smallest uncertainties. We initially divided the events into 3 subsets in 3 

subregions from north to south, and relocated each subset. Such strategy of reducing data amount 

is necessary because the hypocentroidal decomposition algorithm is designed for clustered 

events so that raypaths to the same station sample similar lateral heterogeneity. As some events 

with large uncertainties were discarded after iterations, the final round of relocation included 

only two subsets in the northern and southern subregions divided along 20.1˚S. No significant 

discrepancies among hypocenters near 20.1˚S are found because of this dividing. The final result 
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consists of 374 events recorded by both local and global stations during 1993-1995 and 2009-

2010, of which 27 have the CMT solutions, and 297 events with CMT solutions with constrained 

by only global stations. 

We further projected these earthquakes into 6 cross-sections perpendicular to the Tonga 

trench, each with a width of 133 km (Fig. 5.3), and determined the slab geometry for each cross-

section based on these events. The slab surface is fit using the smoothing spline algorithm in 

MATLAB, such that the resulting surface lies above 85% of all hypocenters at depths 50-400 

km. 

 

5.2.2 Modeling Slab Thermal Structures 

In order to investigate the p-T conditions of these earthquakes, we develop 2-D thermal 

models for each cross-section with varying slab geometry defined in the last section. The 

modeling generally follows that of van Keken et al. [2002] and Syracuse et al. [2010], 

benchmarked by van Keken et al. [2008], in which a dynamic corner flow in the mantle wedge is 

driven exclusively by the kinematic motion of the slab under a fixed overriding plate. The 

models are calculated using a finite element approach based on the SEPRAN modeling package 

(http://ta.twi.tudelft.nl/sepran/sepran.html), following the methods described in Cuvelier et al. 

[1986]. 

By ignoring the thermal buoyancy in the wedge, secondary convection, and compressible 

effects of mantle, the governing equations are simplified as the conservation of mass 

   (5.1) 

and the conservation of momentum 

   (5.2) 

 ∇⋅ !v = 0

∇⋅τ −∇P = 0
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where  is the velocity, P is the dynamic pressure,  is the deviatoric stress tensor given by 

   (5.3) 

where 𝜂 is the effective dynamic viscosity, and  is the strain rate tensor given by 

   (5.4) 

The mantle viscosity is defined by a non-Newtonian, temperature- and stress-dependent rheology 

based on a dislocation creep flow law for dry olivine as 

   (5.5) 

where R = 8.3145 J/mol/K is the gas constant, A, E, 𝜇, and n are listed in Table 1 [Karato and 

Wu, 1993]. The temperature is calculated based on the heat advection-diffusion equation 

   (5.6) 

where T is the temperature, t is the time, H is the volumetric heat production, ρ, cp, and ϰ are 

listed in Table 1. The overriding plate is modeled as a young oceanic lithosphere (half space 

cooling profile) with an initial age of 10 Myr. The modeling thus is time-dependent, although the 

kinematic descriptions and boundary conditions are fixed. We take models after evolution of 20 

Myr, which is (more than) sufficient to reach a quasi-steady-state thermal structure. 

The mantle potential temperature is assumed to be constant as 1500 ˚C over all cross-sections 

according to the estimation from major element chemistry at the Central Lau Spreading Center 

[Wei et al., 2015], though this value is about 25 ˚C higher than that for the southern cross-

sections. The condition of plate coupling between the slab and the mantle wedge is crucial for 

modeling the shallow part of the subduction zone. We adopt the assumption of Syracuse et al. 

[2010] that the plates partially couple above the depth of 80 km and become fully coupled below 
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this depth, hereinafter ‘D80’ assumption. This assumption is valid in this study as our focus is 

the intermediate-depth earthquakes and the slab surface shallower than 50 km is poorly 

constrained due to the lack of precisely relocated seismicity. 

The kinematic information of the slab for each cross-section is shown in Table 1, according 

to previous geodetic studies and modeling [Zellmer and Taylor, 2001; Syracuse and Abers, 2006; 

Syracuse et al., 2010]. The convergence rates are corrected normal to the trench, and the back-

arc spreading rates are also taken into account so that VC describes motion of the incoming plate 

with respect to the arc. The other parameters, including the plates’ age and sediment thickness, 

are set constant for all cross-sections as shown in Table 1. Therefore, the differences between 

individual 2-D thermal models come solely because of the varying slab geometry and the 

convergence rate VC. 

 

5.3. Results 

5.3.1 Earthquake locations 

A total of 671 intermediate-depth earthquakes with 95% relative location uncertainties 

smaller than 8 km in all directions were relocated (Fig. 5.2 and Table 5.3). Figs. 5.3 and 5.4 

show systematic along-strike variations of the intermediate-depth earthquakes in the Tonga 

subduction zone. It is likely that fewer earthquakes are relocated along cross-section F-F’ due to 

poorer local station coverage. Nevertheless, the seismogenic zone is thicker in the north than in 

the south. Two linear features of seismicity are observed in the map views: Stripe I at the depths 

of 100-150 km only in the north and Stripe II at the depths of 200-300 km through out the whole 

study region. Stripe I is located right beneath the volcanic arc, whereas the Stripe II appears to 

become shallower and closer to the arc towards south. A clear DSZ can be identified along the 
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cross-section C-C’ and D-D’, although the hypocenter distributions along A-A’ and B-B’ 

possibly have similar patterns. 

At depths greater than 300 km, the epicenters curve and form a shallower dip in the north, 

suggesting a flattened slab in that region [Hamburger and Isacks, 1987]. The slab surfaces fit by 

the relocated hypocenters (red curves in Fig. 5.4) generally agree well with the Slab 1.0 model 

[Hayes et al., 2012] (black dashed curves in Fig. 5.4) at depths shallower than 300 km but 

deviate below. The slab rebends upwards at a depth slightly greater than the depth of stripe II. 

 

5.3.2 Thermal models 

As expected, the cold core of the Tonga slab extends deeper compared to that in northeastern 

Japan [van Keken et al., 2012] due to its high convergence rate. This is true even for the southern 

sections where the 400 ˚C isotherm extends to 200 km. But the northern cross-sections, with 

higher convergence rates, show a cold core with temperature lower than 400 ˚C extending as 

deep as 300 km. For comparison, the lower end of the isotherm of 400 ˚C in Tohoku is only 170-

km deep [van Keken et al., 2012]. 

The relocated hypocenters, along with their principle axes if associated with a Global CMT 

solution [Dziewoński et al., 1981; Ekström et al., 2012], are superposed onto the thermal 

structures in Fig. 5.5. We further sorted the events into three categories: downdip compressional 

events of which T axes are within 30˚ of the slab dip vector, downdip tensional of which P axes 

within 30˚ of the slab dip vector, and null events which do not fall into either of the previous 

groupings, in many cases because the principal exes are oriented along strike. The double-plane 

structure of downdip compressional focal mechanisms overlying downdip tensional mechanisms 

then can be easily identified along northern cross-sections. 
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According to the thermal models, the p-T conditions of the slab surface and earthquakes 

along each cross-section were extracted to plot Fig. 5.6. We also assumed a crustal thickness of 

5.5 km based on a previous active source seismic refraction study of the incoming Pacific plate 

[Crawford et al., 2003], and then determined the p-T conditions of the Moho. The largest source 

of uncertainty in the earthquake pressure and temperature are possible systematic errors 

introduced by fitting the slab surface with hypocenters, as intermediate-depths earthquakes are 

generally believed to be within the subducting plate. Studies of converted seismic waves in 

Alaska, Central Cascadia, and northeastern Japan suggest that the hypocenters at depths greater 

than 100 km may take place close to or below the slab Moho instead of the surface, whereas at 

shallower depths the upper zone earthquakes occur in the subducting oceanic crust [e.g. Abers et 

al., 2013; Shiina et al., 2013]. We thus estimated the uncertainties of the slab location to be about 

5 km normal to the slab, and further calculated the corresponding uncertainties of temperature 

and pressure for the earthquakes. The estimated errors of pressure are negligible but the thermal 

uncertainties can be as large as 300 ˚C for earthquakes near the slab surface (Fig. 5.6). However, 

the p-T conditions of the slab surface and the Moho are more reliable since their thermal histories 

are mainly determined by the slab thermal parameters and crustal thickness. 

 

 

5.4. Discussion 

5.4.1 Double seismic zone 

Fig. 5.7 plots the seismicity as a function of the depth normal to the slab surface along each 

cross-section, showing thick seismogenic zones along the northern cross-sections. In the 

northernmost region (A-A’), the overall seismicity does not show a double-planed structure, but 
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the focal mechanisms of large events appear to be separated so that the downdip compressional 

events are closer to the slab surface and the downdip tensional ones are deeper within the slab. 

This is in agreement with Kawakatsu [1985; 1986], suggesting the existence a DSZ based largely 

on focal mechanisms, with a much less active lower downdip-tensional plane. 

Based on the distribution of the depths below the slab surface, we identify the lower plane of 

the DSZ along the cross-sections B-B’, C-C’, and D-D’ as labeled in Fig. 5.7. These events in the 

lower plane and the downdip tensional ones are highlighted in Fig. 5.6 by blue and magenta dots, 

respectively. The lower plane events are observed at various pressures but confined in a 

relatively narrow range of temperature from about 500 to 700 ˚C, consistent with the lower 

planes in other subduction zones that cut across isotherms at a shallow angle [Peacock, 2001]. In 

contrast, the downdip tensional events are not restricted to a certain thermal range or fixed slab-

normal depths, especially along the cross-section A-A’. Kita et al. [2010b] observed similar 

phenomena in East Hokkaido that a few downdip tensional events occurred between the two 

planes of the DSZ, and attributed these interplane earthquakes to the rise of the slab neutral plane 

due to the regional stress field. 

The DSZ in Tonga extends to the depth of about 300 km, obviously deeper than those in 

northeastern Japan and other subduction zones which are limited to 180-km deep [Yamasaki and 

Seno, 2003]. This contrast of DSZ depths coincides with the difference of the lowest extent of 

the 400-˚C isotherms between Tonga and Tohoku (Fig. 5.5 in this study versus Fig. 4 in van 

Keken et al. [2012]). It is difficult to compare the absolute temperatures corresponding to the 

lower limit of the DSZ in other subduction zones [e.g. Yamasaki and Seno, 2003], since different 

numerical models are based on slightly different assumptions and parameters. However, the 

strong correlation between the depths of the lower limit of the DSZ and the convergence rates is 
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convincing. Since the most obvious consequence of varying convergence rate is thermal 

structure, we conclude that the termination of the DSZs among all subduction zones are 

predominantly controlled by slab temperature, further implying the importance of any thermal-

controlled mechanisms for triggering seismicity. 

The breakdown of hydrous minerals, such as serpentine, has been proposed to explain the 

intermediate-depth earthquakes and the DSZ [e.g. Peacock, 2001; Hacker et al., 2003; Yamasaki 

and Seno, 2003; Brudzinski et al., 2007]. Since absolute locations of the slab surface and Moho 

cannot be well mapped without seismic converted waves, it is difficult to distinguish earthquakes 

in the crust from those in the mantle. Therefore, we assume that most events deeper than 7 km 

from the fitted surface are mantle seismicity, and compare their p-T conditions with the 

dehydration reactions predicted for a composition of hydrous depleted mid-ocean-ridge-basalt 

mantle (DMM) [Workman and Hart, 2005]. Three major dehydration reactions of mantle 

minerals are shown as gray curves in Fig. 5.6: (1) breakdown of antigorite to enstatite and 

forsterite at low pressures or to enstatite and phase A at high pressures, (2) breakdown of phase 

A to forsterite, and (3) breakdown of chlorite to garnet [Schmidt and Poli, 2003; Komabayashi et 

al., 2005]. Under the consideration of thermal uncertainties, almost all earthquakes fall on the 

left side of the gray curves in Fig. 5.6. This agrees well with the hypothesis of fluid-related 

embrittlement that intermediate-depth earthquakes are induced by dehydrations of antigorite, 

phase A, and chlorite. However, the mineral transitions at high pressures are poorly constrained 

by experiments, prohibiting us from investigating the mechanisms in detail. 

 

5.4.2 Seismicity Stripe I 

The Stripe I of seismicity appears as clusters of earthquakes at depths of 100-150 km along 
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the cross-sections A-A’ and B-B’. Focal mechanisms include both downdip compression and 

tension, suggesting both of the two planes of the DSZ are included in the Stripe I. Despite a few 

events near the slab surface along the cross-section B-B’, most of the Stripe I occurs within the 

slab mantle, with various temperatures but nearly constant pressures (Figs. 5.6 and 5.8). Given 

the lateral location of the Stripe I coinciding with the Tofua volcanic arc on the surface, these 

earthquakes may imply the dehydration of antigorite that releases water melting the overriding 

mantle wedge to form the volcanic arc [Wilson et al., 2014]. It is mysterious that Stripe I seems 

to fade away in the south which seismicity becomes more diffusive. One possible explanation is 

that this seismicity becomes less prominent, and perhaps shallower, as the slab turns to be 

warmer in the south. 

 

5.4.3 Seismicity Stripe II 

Seismicity Stripe II at depths of 200-300 km lies between the two planes of the DSZ. In 

contrast to the Stripe I, this stripe of earthquakes shows a more consistent relationship to the p-T 

diagram. The average pressure of Stripe II earthquakes decreases southwards from 8.5 GPa in 

along the cross-section A-A’ to 4.5 GPa along E-E’ (Fig. 5.8), although the average temperature 

stays almost constant between 325 to 425 ˚C (Fig. 5.9). 

Given the large thermal uncertainties, it is difficult to estimate the absolute values or even the 

trend of the temperature of the Stripe II along various cross-sections. However, the thermal 

structures of the slab Moho are more robust as they primarily depend on the crustal thickness, 

which is well resolved as 5.5 km based on previous studies of seismic refraction [Crawford et 

al., 2003]. If the earthquakes of stripe II result from a reaction in the uppermost mantle, the 

Moho temperature will be the controlling variable. We therefore projected the temperatures of all 
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events to the Moho path in the p-T diagrams while keeping the pressures unchanged, thus 

estimating the temperature of the Moho adjacent to the earthquake locations. A few events with 

relatively high temperatures are excluded for this projection since the Stripe II apparently lies in 

the cold core of the slab. This strategy is based on the fact that the thermal gradient is much 

larger than the pressure gradient. The resulting statistics of the projected earthquake temperatures 

(Fig. 5.10) show more obvious peaks along all cross-sections within an even narrower thermal 

range of 475-525 ˚C. This strongly suggests that a mechanism corresponding to the Stripe II 

happens nearly isothermally under the pressures of 4.5-8.5 GPa. 

Fig. 5.11a shows the original p-T conditions of the Stripe II earthquakes and their p-T 

conditions projected to the slab Moho along all cross-sections, both displaying nearly isothermal 

trends that cut across the p-T trajectory of antigorite dehydration [Schmidt and Poli, 2003; 

Komabayashi et al., 2005]. Because phase relationships at low temperatures (< 500 ˚C) and high 

pressures (> 6 GPa) are poorly constrained by experiments, it is difficult to relate these trends to 

any specific reaction. Additionally, since numerical modeling tests suggest that free fluids may 

not percolate into the mantle wedge but transport in distance along the slab or even into the slab 

core [Faccenda and Mancktelow, 2010; Faccenda et al., 2012; Wilson et al., 2014], these nearly 

isothermal trends are more likely to reflect a combination of stress states and pore pressures, 

instead of any in situ dehydration reaction.  

My proposed model is that the stripe II seismicity results from the dehydration of antigorite 

and/or phase A in the uppermost subducting mantle just below the Moho. Hydrous minerals in 

the subducting mantle are thought to consist largely of serpentine minerals formed by the 

reaction of seawater with mantle peridotite in the plate bending region just seaward of the trench 

[e.g. Ranero et al., 2003; Faccenda et al., 2009]. These minerals will form a layer of thickness 5-
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15 km thick as suggested by seismic profiles [Contreras-Reyes et al., 2007; van Avendonk et al., 

2011], presumably governed by the maximum depth of extensional faulting [e.g. Lefeldt et al., 

2009; Emry and Wiens, 2015]. The slab mantle starts dehydrating when the uppermost mantle 

reaches the temperature of about 550 ˚C, releasing abundance of free water. Driven by the 

negative pressure gradients, the water percolates upward and also towards the cold core of the 

slab to trigger the extensive seismicity (Fig. 5.11b). 

 

5.4.4 Activity of the DSZ 

DSZs have been so far observed in several subduction zones, including the Aleutians 

[Engdahl and Scholz, 1977], northeast Japan [e.g. Hasegawa et al., 1978; Kita et al., 2010a], the 

Kuriles [Kao and Liu, 1995], New Britain [McGuire and Wiens, 1995], Tonga [Kawakatsu, 

1985; 1986]. The cause of the DSZ however still remains controversial, as its appearance shows 

no obvious correlation with the slab age, the age of subduction zone, the convergence rate, or the 

slab geometry. Even though [Brudzinski et al., 2007] propose a global prevalence of the DSZs, 

their level of earthquake activity, particularly in the lower plane, varies dramatically. In contrast 

to northeastern Japan where the two planes of the DSZ are both highly active [e.g. Kita et al., 

2010b], the lower plane in Tonga appears to be significantly less active than the upper plane. 

Since intermediate-depth earthquakes occur through out the whole region, the corresponding 

petrological changes discussed above should happen universally. However, Fig. 5.7 

unambiguously shows that the seismogenic zone becomes thinner towards south while the lower 

plane of the DSZ becomes inactive. This transition coincides with the change in the slab 

curvature from north to south. In the north, the Tonga slab rebends upwards at depths greater 

than 300 km and then lies horizontally in the mantle transition zone, possibly resulting from the 
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rapid opening of the Lau back-arc basin since 4 Ma [Hamburger and Isacks, 1987]. But in the 

south, the slab unbends at depths of 150-200 km, and then keeps straight down to at least 600-km 

deep [Zhao et al., 1997]. 

Slab unbending has been long proposed as a mechanism to provide the stress that drives 

water from the upper part of the slab towards the center [Faccenda and Mancktelow, 2010; 

Faccenda et al., 2012] and facilitates intermediate depth earthquakes [Wang, 2002]. Similarly, 

the slab rebending at greater depths in the north introduces the same stress field to the slab, of 

which downdip compression near the top and downdip tension at the bottom. In the light of the 

fact that the background stress field in this region is downdip compressional [Isacks and Molnar, 

1971], we propose that the stress field rather than petrological reactions is the dominant 

mechanism controlling the seismic activity of the lower plane. In the north where the Tonga slab 

undergoes unbending and rebending, the compressional stress in the upper part of the slab is 

strengthened by the overall stress field, whereas the tensional stress in the lower part of the slab 

is weakened, resulting in a DSZ with an active upper plane and a weak lower plane. In the south, 

the overall stress field is much more compressive since the slab extends continuously to the 

bottom of the mantle transition zone (MTZ) [Zhao et al., 1997], in contrast to the northern region 

where the slab lays flat on the top of the MTZ [van der Hilst, 1995]. Without the contribution of 

the rebending, the tensional stress in the deeper part of the slab is overprinted by the 

overwhelming compression, leading to the cease of the lower plane, or even few downdip 

tensional events. This can also explain the downdip tensional events lying between the two 

planes of the DSZ along the cross-section A-A’, as the slab rebending is most intense in the north 

that raises the neutral plane closer to the slab surface. Similar phenomena have been observed in 

East Hokkaido at shallower depths [Kita et al., 2010b]. 
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An alternative explanation for the weak activities of the lower plane is the influence of the 

Louisville Ridge. The subduction of this ridge, a chain of seamounts, is characterized as aseismic 

near the trench. Because of a few large earthquakes occurring near the location where the 

Louisville Ridge subducts in 1970s and 1980s, Christensen and Lay [1988] suggested the ridge 

keeps the same direction after subduction (blue region in Fig. 5.13). The aseismic ridge may 

mute the lower plane of the DSZ at intermediate depths, although the mechanism remains 

unclear [e.g. Wang and Bilek, 2011]. However, Giardini and Woodhouse [1986] proposed that 

the subducted Louisville Ridge was responsible to the seismic gap at depths greater than 400 km 

between the latitudes of 22.2˚S and 23.2˚S, implying a southwards shear deformation. If the 

Louisville Ridge was indeed shear-deformed southwards (green region in Fig. 5.13), it should 

have no influence to our study region. 

In sum, our result suggest the stress states of unbending and rebending, which result from the 

overall dynamics of the Tonga slab and its interaction with the MTZ, play an important role in 

controlling the activity of the Tonga DSZ, though the possible effects from the subducted 

Louisville Ridge cannot be verified. 

 

 

5.5. Conclusions 

We used data from OBSs and island-based stations deployed in the Tonga-Fiji area from 

1993 to 1995 and 2009 to 2010 to investigate the intermediate-depth seismicity of the Tonga 

subducting slab. The events were relocated with both local and teleseismic P, pP, and S arrivals 

using a hypocentroidal decomposition relative location algorithm [Jordan and Sverdrup, 1981; 

Bergman and Solomon, 1990]. The results show a double seismic zone with a separation of about 
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30 km along the northern part of the Tonga slab within a depth range of about 70-300 km. The 

upper plane is more seismically active and characterized by downdip compressional events 

whereas the lower plane is characterized by downdip tensional stresses, consistent with the slab 

unbending model. 

The lower limit of the DSZ beneath Tonga is significantly deeper than that in Japan and 

Mariana (about 200 km [e.g. Yamasaki and Seno, 2003; Kita et al., 2006; Kita et al., 2010a; 

Shiobara et al., 2010]), implying the importance of thermal variations in controlling the DSZ. 

Since the Tonga slab is the coldest slab due to its fastest subduction rate and old lithospheric age, 

thermally controlled processes such as serpentine dehydration can occur at greater depths, 

resulting in greater depths of fluid-related embrittlement and thus the intermediate-depth 

seismicity. Two stripes of earthquakes are identified: the shallower stripe is confined in the north 

exactly beneath the Tofua volcanic arc, resulting from the serpentine dehydration that supplies 

water to the arc. The deeper stripe of seismicity may imply dehydration reactions of antigorite 

and phase A in the uppermost slab mantle under pressures of 4.5-8.5 GPa. Driven by slab 

unbending, the water released from dehydration percolates into the cold core of the slab to 

trigger extensive earthquakes. 

The lower plane of the DSZ appears to be absent in the southern Tonga slab, leaving a 

thinner seismogenic zone. This transition coincides with the change in the slab geometry, 

suggesting that the slab rebending provides additional stress to unbending in order to counteract 

the background compressional stress field, causing the downdip tensional earthquakes in the 

lower plane. In contrast, the southern part of the slab lacks such rebending since the slab 

penetrates to the bottom of the MTZ. Therefore the background compressional stress field 

overwhelms the effects of slab unbending to cease the lower plane. 
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Figure 5.1. Tectonic map and seismic station locations. 

The Pacific plate subducts beneath the Tonga trench from the southeast (bold arrow). Spreading 

centers are denoted by black lines, and the 1500 m bathymetric contour is shown. Red triangles 

represent island-based stations operated from Oct. 2009 to Dec. 2010, and red dots are OBSs 

deployed from Nov. 2009 to Nov. 2010. Yellow dots and triangles indicate OBSs of the 1994 

LABATTS project and island-based stations of the 1993-1995 SPASE project, respectively. Inset 

displays the study region in a global map. 
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Figure 5.2. Three-dimensional view of 95% uncertainty ellipsoids for all events. 

Ellipse colors indicate depths. The black bar illustrates the scale of 10 km. Inset shows the 

statistical distribution of the 3D-averaged location errors. 
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Figure 5.3. Map view of the relocated earthquakes. 

(a) Map view of all relocated intermediate-depth earthquakes. b) Map view of relocated Global 

CMT events, with moment tensor solutions shown as lower hemisphere projections. 1 km 

bathymetric contours are shown to outline the Tonga Ridge, Tofua arc, Lau Ridge, and Fiji 

Plateau, and 7, 8, 9, and 10 km contours are also shown to delineate the Tonga trench. 
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Figure 5.4. Cross-sections of seismicity and slab surface fits. 

Earthquakes are shown as blue dots, and the slab surface fit by the seismicity in this study (red 

curves) and the Slab 1.0 model [Hayes et al., 2012] (black dashed curves) are plotted for 

comparison. The red triangle on the top represents the Tofua volcanic arc. 
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Figure 5.5. Cross-sections of the modeled thermal structure, observed seismicity, and 

principal axes of events from CMT solutions. 

The temperature contour interval is 200 ˚C, and the bold black curve represents the slab surface. 
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Circles with black and gray bars show the P (gray) and T (black) axes of focal mechanisms 

projected to the cross-sections. These events are sorted into the categories of downdip 

compression (yellow circles), downdip tension (magenta circles), and null (gray circles) based on 

the directions of the principal axes. The length of each bar reflects the angles between the axis 

and the section plane. Small gray dots illustrate the events without CMT solutions. Superposed 

on the left is the slab curvature, defined as the second derivative of the slab surface with distance 

along the profile, for each cross-section. 
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Figure 5.6. Modeled pressures and temperatures (p-T) of earthquakes for each cross-

section. 

Black dots indicate the earthquake p-T conditions with temperature uncertainties (gray error 

bars). Most of the temperature uncertainties result from uncertainty in the positioning of the slab 

relative to the earthquakes.  The downdip tensional events are color-coded with magenta, 

whereas the events in the lower plane of the DSZ identified in Fig. 5.7 are color-coded with blue. 

There is some overlap between these two categories. The p-T paths of the slab surface and the 

Moho are illustrated by the red and blue curves, respectively. The black dashed curve represents 

a p-T threshold, of which events falling left are considered as within the slab cold core and are 

projected to the Moho p-T path in Figs. 5.10 and 5.11. Bold gray curves show predicted 

breakdowns of antigorite (1), phase A and enstatite (2), and chlorite (3) [Schmidt and Poli, 2003; 

Komabayashi et al., 2005]. 
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Figure 5.7. Distribution of depths beneath the slab surface for earthquake at vertical 

depths of 100-300 km along each cross-section. 

Downdip compressional and tensional events are color-coded as labeled. The lower plane of the 

DSZ is identified along cross-sections B-B’, C-C’, and D-D’. 
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Figure 5.8. Distribution of pressure conditions of earthquakes along each cross-section. 

Red lines represent the Stripe II, showing its average pressure and depth decrease from north to 

south. 

 

  



 169 

 

Figure 5.9. Distribution of thermal conditions of earthquakes along each cross-section. 

Red dotted lines represent the temperature of the center of Stripe II, showing its average 

temperature confined in a narrow range of 325-425 ˚C. 
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Figure 5.10. Distribution of thermal conditions of earthquakes projected to the Moho p-T 

path along each cross-section. 

Red lines represent the temperature of the center of Stripe II, showing its average temperature 

confined in a narrow range of 475-525 ˚C. 
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Figure 5.11. Mechanisms for the Stripe II. 

(a) Modeled p-T paths for the earthquakes in Stripe II and the Moho along the cross-sections. 

Open ellipses represent the earthquake clusters identified in Figs. 5.7-5.9. Colored lines show the 

Moho P-T paths for each of the cross sections.  Solid ellipses indicate these earthquakes clusters 

shifted to the Moho p-T paths. Bold gray curves show dehydration reactions as in Fig. 5.6. (b) 

The Stripe II zoomed in along cross-section C-C’. The events are labeled in the same manner as 

Fig. 5.5. The solid and dashed black curves illustrate the slab surface and Moho, respectively. 

The water drop symbols and arrows represent the dehydration that produces free water 

percolating into the slab core, and triggering extensive seismicity as the Stripe II. 
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Figure 5.12. Schematic illustrations of the stress states within the Tonga slab. 

(a) In northern Tonga the slab rebends upwards at greater depth due to the slab flattening in the 

MTZ. The slab geometry (bold curves) is adopted from the thermal model of the cross-section A-

A’. (b) In central and southern Tonga the slab penetrates into the lower part of the MTZ without 

further bending at greater depths. The slab geometry (bold curves) is adopted from the thermal 

model of the cross-section F-F’. Thin curve next to the slab shows the curvature of the slab 

surface. Bold arrows indicate the overall stress field whereas thin arrows represent local stresses 

due to unbending or bending. (c) and (d) show stress status resulting from the combination of the 

overall stress and unbending/rebending. Gray dots represent earthquakes. 
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Figure 5.13. Earthquakes since 1980 from the Reviewed ISC Bulletin [ISC, 2013] (black 

dots) superposed by the events relocated in this study (red circles). 

The green region represents the subducted Louisville Ridge if it was shear-deformed southwards 

[Giardini and Woodhouse, 1986], whereas the blue region illustrates the ridge without any 

distortion. Coastlines are contoured, and bathymetry of 4.5, 7, 8, 9, and 10 km are also contoured 

to delineate the Louisville Ridge and the Tonga trench. 
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Table 5.1. Thermodynamic parameters used in thermal modeling. 

Symbol Name Value Units 

A Scaling factora 3.5 × 1022 s-1 

n Stress exponenta 3.5  

m Grain-size exponenta 0  

E* Activation energya 540 kJ/mol 

V* Activation volume 0 cm3/mol 

µ Shear modulusa 80 GPa 

ρ Density 3300 Kg/m3 

Tp Mantle potential temperatureb 1500 ˚C 

dT/dz Mantle adiabatic gradient 0.5 ˚C/km 

cp Specific heat 1250 J/kg/K 

ϰcrust Thermal conductivity, crust 2.5 W/m/K 

ϰmantle Thermal conductivity, mantle 3.1 W/m/K 

a Parameters used in Karato and Wu [1993] dislocation creep regime for dry olivine. 

b Based on Wei et al. [2015]. 
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Table 5.2. Slab parameters for each cross-section. 

(based on Zellmer and Taylor [2001] and Syracuse et al. [2010]). 

Cross-

section 

Slab 

dip (˚) 

VC 

(km/Ma) 

Age 

(Ma) 

Sediment 

thickness (km) 

Subducted sediment 

thickness (km) 

Upper plate 

age (Ma) 

A-A’ 51 192.1 

109 0.4 0.2 20 

B-B’ 54 172.6 

C-C’ 54 154.5 

D-D’ 48 135.3 

E-E’ 52 115.2 

F-F’ 54 95.9 
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Table 5.3. Statistics of relocated earthquakes. 

 
Constrained by 

local arrivals 

Constrained by ISC 

arrivals 

Associated with 

Global CMT 
Numbers 

 ✔ ✗ ✗ 155 

 ✔ ✔ ✗ 192 

 ✔ ✔ ✔ 27 

 ✗ ✔ ✔ 297 

Total 374 516 324 671 
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