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The Non-Masticatory Use of the Anterior Teeth Among Late Pleistocene Humans 

by 

John C. Willman 

Doctor of Philosophy in Anthropology  

Washington University in St. Louis, 2016 

Professor Erik Trinkaus, Chair 

 

 

 

Characteristic patterns of dental wear form through the use of the dentition for non-

masticatory manipulative behaviors. The use of “teeth-as-tools” or the dentition as a “third 

hand” for manipulative behaviors emphasizes the importance of the human dentition in our 

otherwise extrasomatic tool-kit. The extreme pattern of anterior dental wear found in many 

Neandertals, together with their large anterior teeth, has led researchers to suggest that the 

unique craniofacial morphology of Neandertals is the result of functional adaptation to the 

habitual use of the dentition for manipulative tasks. However, decades of research investigating 

the adaptive significance and biomechanical properties of Neandertal and modern human 

craniofacial morphology has not convincingly demonstrated whether non-masticatory behavior 

was a significant selective force during the Late Pleistocene. Studies addressing non-

masticatory behavior among Late Pleistocene archaic and modern humans through the direct 

study of dental wear are equally equivocal in this regard. The few studies that have attempted 

to systematically quantify non-masticatory dental wear among Neandertals and early modern 

humans are constrained by different analytic methods that prevent cross-study comparisons, 

contain small early modern human samples, and/or differ in conclusion as to the implied 

patterning and magnitude of behavioral shifts in the Late Pleistocene.  
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The aims of this thesis are to address non-masticatory manipulative shifts in the Middle 

to Late Pleistocene through the analysis of non-masticatory dental wear using both 

macroscopic and microscopic techniques. Scaled macrowear gradients, enamel chipping, and 

instrumental cutmarks on labial tooth surfaces were documented to understand differences in 

degree, magnitude, and repetition of non-masticatory behaviors between morphologically and 

temporally partitioned groups of Middle and Late Pleistocene humans. Data from Middle and 

Late Pleistocene fossils are studied directly rather than using recent human groups as proxies 

for Pleistocene behavioral variation.  

Changing technological, cultural, and socioeconomic organization during the Middle to 

Upper Paleolithic Transition is often used to explain craniodental structural reduction across 

the morphological transition from archaic to fully modern human morphology during the Late 

Pleistocene. The results of this thesis challenge this view by documenting a high degree of wear 

among both archaic and modern human groups in the Pleistocene. Archaic humans benefit 

from having large anterior dentitions to withstand a lifetime of anterior tooth-use, but there is 

little evidence from anatomy or dental wear to indicate that the forces exerted, or non-

masticatory activities engaged in, differed greatly from those of early modern humans. Instead, 

a high degree of anterior versus posterior dental wear is characteristic of hunter-gatherers 

generally. Thus, explanations relying on technological innovation as a means of relaxing 

selection on the body/dentition for manipulative tasks fall short in this regard. Anterior dental 

reduction (and craniofacial reduction, generally) occurred despite evidence suggestive of 

persistent use of the dentition for manipulative tasks throughout the Pleistocene and into the 

Holocene by modern humans. It is implausible that anterior tooth-use or extreme dental wear 
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would have produced selective pressure on craniodental anatomy in humans since most 

problems related to extreme tooth-use among hunter-gatherers will affect individual morbidity 

late in life but not necessarily affect reproductive fitness. There is a paradox in that anterior 

dental reduction occurred among early modern humans despite high-levels of anterior tooth 

use. Therefore, we are left with another example of how modern humans are derived with 

respect to Middle and Late Pleistocene archaic humans.
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Chapter 1. Introduction 
 

 

The spread of early modern humans and the eventual replacement or absorption of the 

Neandertals in Western Eurasia is often explained by the advent of cultural practices among 

early modern humans that provided more effective technological and socioeconomic strategies 

than possessed by their archaic counterparts (Mellars 2005; Kuhn and Stiner 2006; Klein 2008; 

Shea and Sisk 2010; Marean 2015); however, defining the spatiotemporal details and nature of 

the purported technological or socioeconomic advantages that early modern humans may have 

possessed over the Neandertals remains widely debated (Kuhn and Stiner 2001; Teyssandier 

2008; Caron et al. 2011; d'Errico et al. 2012; Langbroek 2012; Roebroeks et al. 2012; Villa and 

Roebroeks 2014; García-Diez et al. 2015; Roebroeks and Soressi 2016). Historically, many 

approaches to understanding the behavioral differences between archaic and modern humans 

have focused on the analysis of archaeological material culture (e.g., faunal remains, stone and 

osseous tools, objects of symbolic expression – beads, pendants, engravings, cave art, etc.) and 

human paleobiology. This thesis takes an integrative biocultural approach that combines 

insights from human paleobiology in light of the archaeological record of human technological 

and socioeconomic variation.  

Biocultural approaches emphasize the dynamic relationships and interactions between 

human biology and the physical and sociocultural environments humans are exposed to 

(Zuckerman and Armelagos 2011). In this sense, a biocultural approach provides compelling 

framework for the exploration of the biological consequences of anterior tooth-use (e.g., 
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craniofacial structural adaptation, dental metric evolution, dental wear-induced pathology and 

morbidity, etc.) among morphologically-defined groups of Pleistocene humans across time and 

space. Biocultural approaches focusing on human manipulative behavior are particularly well-

poised to provide nuanced understanding of the complex interplay between technocultural 

variation and human paleobiology. Biocultural approaches rely heavily on skeletal evidence of 

physiological stress, skeletal loading, disease, longevity, morbidity, and other paleobiological 

indicators of past human experience and habitual behavior which is further informed through a 

detailed reading of archaeological evidence on technocultural and socioeconomic variation 

such as those related to subsistence practices (Niewoehner 2006; Shackelford 2007; Holt and 

Formicola 2008; Trinkaus 2008; Rhodes and Churchill 2009; Villotte et al. 2010; Krueger 2011; 

Maki and Trinkaus 2011; Di Vincenzo et al. 2012; Fiorenza and Kullmer 2013; Lacy 2014; Villotte 

and Knüsel 2014; Macias and Churchill 2015; Sládek et al. 2016). For instance, changes in 

manipulative behavior during the Late Pleistocene have been inferred from a variety of 

analyses of the upper limb which emphasize reduced skeletal hypertrophy among early modern 

humans compared with Neandertals (Trinkaus and Churchill 1988; Niewoehner 2001; Churchill 

and Rhodes 2006; Trinkaus 2006b; Maki and Trinkaus 2011). Less reliance on the upper limb for 

manipulation among early modern humans is paralleled by evidence for less intensive use of 

the anterior teeth for non-masticatory1 activities – evident as a reduction in anterior dental 

wear and structural reduction of the anterior teeth  (Smith and Paquette 1989; Trinkaus 1992; 

Frayer et al. 2006; Cartmill and Smith 2009; Doboş et al. 2010; Krueger 2011). Thus, multiple 

                                                      
1 “Non-masticatory” is one of many terms frequently used in the literature to discuss the use of the dentition for 
purposes other than normal mastication. Other terms include paramastication, extra-mastication, non-dietary 
tooth-use, using the teeth-as-tools, non-alimentary tooth use, etc. 
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forms of paleobiological evidence, namely those related to the use of the upper limb and 

anterior dentition, suggest decreased reliance on the body for manipulative behavior across the 

Middle to Upper Paleolithic Transition – probably related to technological and cultural shifts 

related to manipulative behaviors2.     

Following the trend set by other researchers interested in the study of paleobiological 

reflections of technological and socioeconomic variation, a biocultural approach is adopted in 

this thesis to discern the degree to which the body, specifically the anterior dentition, was 

relied on for manipulative behavior among morphologically defined groups of archaic and 

modern humans. Of primary interest is the collection of paleobiological data on non-

masticatory behaviors through analyses of dental wear to address the degree to which 

Pleistocene humans relied on the anterior dentition for manipulative behavior in lieu of 

technological or cultural solutions.  

 

Biocultural adaptation and non-masticatory behavior 

The use of “teeth-as-tools” as a “third hand” to assist the hands in manipulative 

behaviors has a long history of study in paleoanthropology (Koby 1956; Patte 1960, 1962; Brace 

1962b, 1964, 1975; Coon 1962; Brose and Wolpoff 1971; Molnar 1972; de Lumley 1973; 

Wallace 1975; Frayer 1978; Wolpoff 1979; Trinkaus 1983). In many ways the use of teeth-as-

tools has become a quintessential feature of Neandertal behavioral reconstructions3. The 

                                                      
2 Leslie White’s (1959) classic definition of culture as “man’s extrasomatic means of adaptation” is particularly apt 
in this context.  
3 Reconstructions of Neandertals engaging in non-masticatory behaviors have even appeared in television 
documentaries, permanent museum exhibits (The Spitzer Hall of Human Origins in the American Museum of 
Natural History has a classic reconstruction of a “Neanderthal Camp” depicting a seating woman gripping animal 
hide between her teeth and one hand while scraping the hide with a stone tool held in her free hand. Another 
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prominent place of non-masticatory behavior in discussions of Middle and Late Pleistocene 

human behavior is further emphasized in the extensive literature surrounding the anterior 

dental loading hypothesis (ADLH) which attempts to explain the apparent structural 

adaptations of the face, jaws, and anterior dentition among archaic humans and the reduction 

of these features in early modern humans in terms of non-masticatory loading (or lack thereof) 

of the anterior dentition.  

The ADLH suggests that high magnitude and/or repetitive loading of the anterior 

dentition through the habitual use of teeth-as-tools provided a significant selective force in 

Neandertal craniofacial and dental evolution (Smith 1983b; Rak 1986; Demes 1987; Trinkaus 

1987; Smith and Paquette 1989; Spencer and Demes 1993; Brace 1995; Le Cabec et al. 2013). 

The behavioral basis of the ADLH was provided by qualitative descriptions of the labially worn, 

rounded, and non-occluding anterior teeth in some older adult Neandertal fossils; 

documentation of stone tool-induced cutmarks on labial enamel of incisors and canines4; and 

the large, morphologically robust anterior tooth crowns and roots of archaic compared to 

modern human dentitions (Brace 1962b, 1964; Coon 1962; Smith 1983b; Trinkaus 1983; Smith 

and Paquette 1989; Cartmill and Smith 2009). However, more recent biomechanical analyses 

repeatedly show that Neandertals are unlikely to have been capable of producing higher 

magnitude bite forces or exhibit more efficient anterior bite force production than modern 

humans despite their seemingly elevated degree of anterior tooth use for manipulative 

                                                      
reconstruction of Shanidar 1 displays him chewing hide cordage at the Gallo-Romens Museum, Tongeren, 
Belgium), and even popular culture via comic books (DC’s Showcase Presents: Anthro, Issue #74 from 1968; Joe 
Kubert’s TOR, Issue 1 of 6 from 2006).  
4 A result of behaviors frequently referred to as “stuff-and-cut” (Brace 1975) – see Chapter 2. 
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purposes (Antón 1990, 1994, 1996; Couture 1993; Dobson and Trinkaus 2002; O'Connor et al. 

2005; Clement et al. 2012). Instead, many researchers suggest that the morphological evolution 

and differentiation of Late Pleistocene human craniofacial complexes are the result of neutral 

evolutionary processes (e.g., gene flow and genetic drift) and/or climatic adaptation rather than 

functional adaptations to non-masticatory anterior tooth-using behaviors (Antón 1994; 

Maureille and Houêt 1998; Hublin 2002, 2009; Franciscus 2003; O'Connor et al. 2005; Weaver 

et al. 2007; Holton and Franciscus 2008; Weaver 2009; Holton et al. 2011; Rae et al. 2011a).  

Despite the extensive historical interest in understanding functional adaptation to 

anterior dental loading, research on non-masticatory behavior among Middle and Late 

Pleistocene humans has rarely observed the behavioral correlates of these behaviors from 

direct, quantitative analyses of the patterning of the dental wear in and of itself. Most detailed 

research focused on anterior dental wear as a means of addressing the ADLH is largely a 

product of efforts in the last decade. There are copious, qualitative descriptions of the degree 

and form of dental wear for particular archaic human fossils, but few studies that attempt 

quantification and comparisons across Neandertals and early modern humans (reviewed in 

Chapter 3). This is due in part to a historical tendency to focus on research questions that 

address morphological and functional adaptation to non-masticatory behaviors. The degree to 

which Neandertals or early modern humans engaged in non-masticatory behaviors was either 

assumed or thought to be testable from analyses of morphology – qualitative descriptions of 

anterior wear merely provided the reason to test hypotheses about biomechanical models of 

craniodental function or provide support for the ADLH more generally. Given past tendencies to 

value research approaches focused on craniodental morphology rather than the patterning of 
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dental wear, much can be gained by refocusing attention on wear. Therefore, the direct study 

of dental wear will provide an independent assessment of the degree to which the teeth were 

used for manipulation in addition to providing information on the nuanced behaviors that 

produced particular wear features.  

Furthermore, there is still no satisfactory explanation for why the demonstrably larger 

anterior dentitions of archaic humans were maintained in contrast to the drastic reduction of 

the anterior dentition in early modern humans. The magnitude and patterning of the 

manipulative shift in non-masticatory tooth use and its relationship to cultural transformations 

during the Late Pleistocene remains unclear due to conflicting conclusions in recent 

quantitative analyses of anterior dental wear, the paucity of direct comparisons between 

Neandertals and early modern humans, and the relatively small samples of early modern 

human fossils analyzed to date (when examined at all).  

 

Analogy, extrapolation, and generalization: Issues of interpretation in paleobiology 

“We know that variation is not constant through time, and that using extant 

models of variation as ‘‘yardsticks’’ against which we judge fossil samples is 

problematic. Yet, because we all (myself and colleagues included) work within a 

uniformitarianist paradigm, we must carefully consider the biases and 

assumptions inherent in this system, and clearly account for them – either in 

discussion or, when possible, in methodological design.” – Ackermann 2005:646 

 

Ethnographic analogy is a necessary starting point for the study of non-masticatory 

behaviors. Generally, idiosyncratic wear features and consistent patterns of wear are attributed 

to non-masticatory behaviors through analogy with observed behaviors in the ethnographic 
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present5 (Molnar 1972; Barrett 1977; Milner and Larsen 1991; Alt and Pichler 1998; Erdal 2008; 

Clement et al. 2009b; Krueger and Ungar 2009; Fiorenza et al. 2011a; Molnar 2011; Berbesque 

et al. 2012; Clement and Hillson 2012; Krueger 2015; Stojanowski et al. 2016). In fact, 

instrumental cutmarks on the labial enamel of Neandertals (specifically, the La Quina 5 and 

Saint-Brais Neandertals) were first attributed to non-masticatory behaviors through the use of 

behavioral analogy from high-latitude hunter-gatherers (Koby 1956).  

Comparative studies of hunter-gatherer behavioral diversity are used to build 

interpretive models to understand aspects of prehistoric foraging behaviors (Binford 2001) that 

go beyond the one-to-one correlation of ethnographically documented behaviors (e.g., “stuff-

and-cut” activities – see Chapter 2) with a particular wear feature (e.g., labial cutmarks). These 

analogical and comparative frameworks are a central theme for many biocultural approaches to 

behavioral reconstructions. One method is to study the co-variation between particular 

behaviors and their reflections in aspects of human biology across multiple groups of hunter-

gatherers from diverse climatic, ecological, and socioeconomic backgrounds. The patterning of 

variation in the comparative framework is then used to explore variation and patterning for 

variables of interest in prehistoric materials for which little is known.  

Several comparative frameworks have been developed for the study of aspects of non-

masticatory dental wear using skeletal material from ethnographic and Holocene collections 

that have well-documented contextual information (Lalueza-Fox 1992; Krueger and Ungar 

                                                      
5 The “ethnographic present” is used to denote the use of both historic documents and ethnographic studies 
occurring up until the present day. There are many issues created by the approach, the most obvious being the 
time averaging of decades or in some cases hundreds of years of historic accounts, but it is a largely inescapable 
fact in using the “present” as a means of understanding variation in the past (see discussion in Speth 2010)   
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2009; Fiorenza et al. 2011a; Krueger 2015), which have subsequently been used to explore and 

interpret non-masticatory variation among Pleistocene fossils (Krueger and Ungar 2012; 

Fiorenza and Kullmer 2013; Hlusko et al. 2013; El Zaatari et al. 2014; Fiorenza 2015; Krueger 

2016). Dental microwear texture analysis (Krueger and Ungar 2009, 2012; Hlusko et al. 2013; El 

Zaatari et al. 2014; Krueger 2014, 2015, 2016) and occlusal fingerprint analysis (Fiorenza et al. 

2011a, b; Fiorenza and Kullmer 2013; Fiorenza 2015) are particularly reliant on comparative 

analogical frameworks due in part to these technologically-innovative approaches only recently 

being applied to non-masticatory wear research. For instance, a recent publication (Krueger 

2015) on microwear texture analysis refined previous interpretations of microwear variability 

among five bioarchaeological samples (Krueger and Ungar 2009) through the inclusion of six 

newly analyzed bioarchaeological samples. Continued refinement of interpretations is to be 

expected as these methodologies are continually used to study non-masticatory wear in 

additional samples.  

While the above examples illustrate the utility of comparative approaches when 

inferring prehistoric human behavior, many problems still exist in using behavioral variation 

from the ethnographic present to understand behavioral variation in the Pleistocene (Kusimba 

2005; Speth 2010). For instance, the extent to which the environments (or perceived 

marginality) of hunter-gatherers from the ethnographic present compare to the “pristine” 

environments Pleistocene humans lived in is widely debated (Marlowe 2005; Porter and 

Marlowe 2007; Speth 2010). So too is our ability to assess aspects of Pleistocene population 

demography through the use of population densities from ethnographic peoples with complex 

technologies that provide the means by which they can live in relatively high density 
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populations (Speth 2010; Holliday et al. 2014; Gautney and Holliday 2015). Regardless of the 

numerous biases in the use of ethnographic literature, it is not without utility (Marlowe 2005; 

Speth 2010; Kelly 2013). However, the comparisons made between past and present hunter-

gatherers regularly ignore or diminish important variability (behavioral, morphological, 

ecological, etc.) in order to simplify models to interpret the behaviors of Pleistocene peoples 

(see Owen 2005; Hardy 2010). Approaches that ignore the historical contingencies influencing 

social, cultural, and technological axes of variation in behaviors of individuals and groups 

relegate hunter-gatherers as little more than relicts of a stone age past.  

The study of the origins of “behavioral modernity”, almost without exclusion, relies on 

the ethnographic record of recent hunter-gatherers as a starting point from which to test 

hypotheses related to the emergence of a supposed suite (or laundry list) of characteristics that 

apparently denote modern behavior (for a thorough review of research on the "origin of 

behavioral modernity" and a refutation of its basic tenets see: Villa and Roebroeks 2014; 

Roebroeks and Soressi 2016). General adherence to linear evolutionary models of hominin 

behavior characterize studies of behavioral modernity, but there is also a problem in conflating 

behavioral modernity with behavioral variability – only the latter is observable and testable 

using the archaeological record (Shea 2011; Langbroek 2012, 2014).  

The use of trait lists to assess modernity or studying actual behavioral variability will be 

affected by the inherently imperfect resolution of the archaeological record of past human 

behaviors. However, the way in which the presence, absence, or degree to which a behavior is 

represented in the past compared to observations in the ethnographic present can be, and is, 

interpreted in a number of ways. For instance, ethnographic analogy was used as a starting 
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point to evaluate archaeological evidence for the emergence of the division of labor (a 

“modern” behavior) in the Late Pleistocene (Kuhn and Stiner 2006:954):  

“Generalizations about recent hunter-gatherers are most helpful when they 
reveal points of discordance between what we expect from historical experience 
and what seems to have gone on during the Pleistocene. In other words, models 
developed from data on recent hunter-gatherers are most informative precisely 
when they prove to be inadequate predictors of patterns encountered in the 
Paleolithic record. Where they fail to account for what we know about earlier 
hominins, modern human analogs show us more specifically how our ancestors 
were not like us and what we need to explain about human evolution.”  
 

This approach is not unlike what Wobst (1978:303) coined “ethnography with a shovel” or the 

“tyranny of the ethnographic record” whereby evidence from ethnography is fitted to 

observations in the archaeological record. The difficulty (and some might say impossibility) of 

determining the point in prehistory when the archaeologically observed behaviors of hunters 

and gatherers coalesce with the behavioral repertoire of foragers from the ethnographic 

present (Kuhn and Stiner 2001; Kusimba 2005; Kelly 2013) is reason enough to use such 

approaches with extreme caution. But, we must also consider that behaviors found in the 

ethnographic present may be very recent innovations (Marlowe 2005; Speth 2010); or that the 

limited number of ethnographic examples of hunting and gathering behaviors may not 

encompass the complete range of variation that was present in the past (Lieberman et al. 2007; 

Kelly 2013). This is especially relevant when dealing with the time depth of the Pleistocene and 

possibility of human adaptation to no-analog paleoecological conditions.   

Generalizations are no less common when a comparative framework to interpret 

paleobiological data is based on human skeletal material from ethnographically documented 

groups, or Holocene skeletal material with a high-resolution archaeological context for past 

behaviors. It is common practice to interpret data from a particular individual or sample as 
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representative of an entire chronologically, geographically, or morphologically defined fossil 

group. This latter issue is directly relevant to the research goals of this thesis and is discussed 

using an example derived from recent literature on instrumental cutmarks on the labial 

surfaces of anterior teeth.  

Instrumental striations, or “cutmarks” on the labial surfaces of anterior teeth are 

incurred when the teeth are used like a vise to hold materials (e.g., meat or hide) while cutting 

the item with a stone tool close to the mouth. Incidental contact between the stone tool and 

enamel is not uncommon and leaves characteristic cutmarks on the labial enamel (Chapter 2). 

The use of teeth-as-tools for this kind of “stuff-and-cut” behavior has recently been used to test 

hypotheses about aspects of visuospatial integration among archaic and modern humans 

(Bruner and Lozano 2014b, 2015; Bruner and Iriki 2016; Bruner et al. 2016). Bruner and Lozano 

(2014b, 2015) have proposed that morphological differentiation in the archaic and modern 

human brains (attributed to the apparent expansion of the parietal lobes in the latter group) 

has left archaic humans with a mismatched, or impoverished, form of visuospatial integration. 

The ubiquitous presence of cutmarks on the incisors and canines of archaic Homo from Sima de 

los Huesos (a proposed ancestor of Neandertals: [Arsuaga et al. 2014]) and Neandertals is 

starkly contrasted by the percentage of individuals (46%) with cutmarks on their dentitions in a 

comparative group of Australian Aboriginal hunter-gatherers. They see the low frequency of 

this particular manipulative behavior among modern humans as evidence for a less intensive 

use of the body for manipulation among Homo sapiens – or evidence of superior visuospatial 

integration. Archaic Homo, with 100% of individuals exhibiting evidence of stuff-and-cut 
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behaviors, are viewed in a different way. As stated by the authors (Bruner and Lozano 

2014b:276):  

“Taking into consideration the evidence of a specific increase in the use of teeth 
for handling functions in the Neandertal lineage, we hypothesize that these 
species may have suffered a mismatch between cultural and neural complexity, 
in which additional anatomical elements were involved as a body interface to 
overcome insufficient visuospatial integration processes.” 

 
This study will be considered again later (Chapter 7), but the important issue in this 

discussion is an underlying assumption about the modern human comparative sample. The 

authors are attributing cutmark prevalence from a single sample of recent Australian Aboriginal 

hunter-gatherers to the entirety of Homo sapiens (Bruner and Lozano 2014b, 2015; Bruner and 

Iriki 2016; Bruner et al. 2016). The primary problem with a generalization of this sort is that it 

implies behavioral equivalence across a morphologically defined group, Homo sapiens, without 

taking into account issues of temporospatial or technocultural variation. Without any additional 

qualifier, the use of “Homo sapiens” implies that the inferred difference in cognition, based on 

the prevalence of instrumental striations on the teeth of archaic humans and Australian 

Aboriginals, is a difference that can be extrapolated to all Homo sapiens from the Late 

Pleistocene to present day. Other explanations for differences in instrumental striation 

prevalence between the archaic human and Australian Aboriginal samples will be discussed in 

Chapter 7. It should be noted that the hypothesis put forth by Bruner and colleagues (Bruner 

and Lozano 2014b, 2015; Bruner and Iriki 2016; Bruner et al. 2016) is testable with new data, 

and that no comparative data on early modern human instrumental striations had been 

published when the hypothesis was first formulated. 
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The assumption that the behavior of the earliest modern humans can be attained from 

the analysis of skeletal materials from the recent past is not uncommon in paleoanthropological 

research. Many paleoanthropologists still adhere to the outdated notion that “behavioral 

modernity” is attributed to “anatomical modernity” which assumes that the behaviors of recent 

hunter-gatherers can be unquestionably used as a proxy for the behaviors of Homo sapiens in 

the distant past. It is important to remember that there are a number of uncertainties about 

the degree to which hunter-gatherers of the ethnographic present are representative of 

Pleistocene foragers given the incredible degree of change that has taken place in 

socioeconomic and technocultural organization since the Pleistocene – much of which has 

taken place recently (Kuhn and Stiner 2001; Kusimba 2005; Marlowe 2005; Speth 2010; Kelly 

2013). Common issues of interpretation are succinctly stated by Kusimba (2005:354):  

“More broadly, though, a research agenda driven by identifying hunter-gatherers 
either in general or with reference to ethnographically known groups misses the 
goal of understanding ancient ways of life in and of themselves and sets up a 
circularity of interpretation where the nature of the society in question is 
assumed from the start. Modern hunter-gatherers are contrasted against their 
opposites—against the archaic or against the farmer—even though the features 
that distinguish them are unclear. […] The consensus view has been to retain the 
concept of the hunter-gatherer but to emphasize its diversity.” 
 

Thus, the above review illustrates the need for critical evaluations of the use of ethnographic 

comparisons in paleoanthropology, broadly speaking. A focus on behavioral variability, in the 

past and present, is one way of avoiding these common interpretative pitfalls. However, 

through research design we can also avoid problems of uniformitarian comparative frameworks 

(see opening quotation for this section). For instance, this thesis makes use of ethnographic 

comparisons to illustrate the range of behaviors that produce non-masticatory wear features 

among hunting and gathering peoples (see Chapter 2), but the interpretation of Pleistocene 
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behavioral variability is based on paleobiological data derived directly from Middle and Late 

Pleistocene human fossils. Thus, the interpretations of behavioral variation in this thesis are not 

reliant on an assumption that behavioral variation in the ethnographic present is, or is not, 

representative of behavioral variation of morphologically or chronologically defined groups of 

Middle and Late Pleistocene humans.   

 

Research questions 

Despite a long history of research and interest in non-masticatory behaviors among 

Middle and Late Pleistocene archaic humans, comparatively little is known about the use of 

teeth-as-tools among early modern humans. There are few direct studies of early modern 

human fossils, but it is generally assumed that modern humans engaged in manipulative 

behaviors involving the anterior teeth to a lesser extent than archaic Homo and late archaic 

Neandertals. Several recent studies have addressed variation in non-masticatory dental wear 

among Neandertals and early modern humans (Krueger 2011; Clement et al. 2012; Fiorenza 

and Kullmer 2013), but these studies are driven by relatively recent methodological 

approaches, and are not directly comparable to previously published data on Middle and Late 

Pleistocene archaic humans.  

As outlined above, a major shortcoming of previous research on non-masticatory 

behavior has been a lack of focus on early modern human fossils or the use of Holocene 

samples as proxies for early modern human behavioral variability. This issue is easily rectified 

through the inclusion a large sample of early modern human fossils in the present study (see 

Chapter 4). Thus, the behavioral variation studied here is a direct representation of Middle and 
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Late Pleistocene human paleobiology. A biocultural approach to non-masticatory behavior is 

adopted to explore the degree to which Pleistocene humans relied on the anterior dentition for 

manipulative behaviors. The null hypothesis addressed in each analysis is:  

H0: There are no significant differences in anterior tooth-use between archaic Homo and 

Neandertals compared to early modern humans. 

And three main sets of questions will be addressed in relation to the null hypothesis:  

(1) Are differences in anterior tooth use for manipulative behavior evident across 

morphologically defined or temporally partitioned groups of Middle and Late 

Pleistocene humans? If so, what is the magnitude or degree of change in the 

behavioral shift?   

(2) To what degree can anterior dental morphology be attributed to functional 

adaptations to the high magnitude and/or repetitive loading of the dentition 

through non-masticatory behaviors? 

(3) To what extant does the presence of labial cutmarks on the anterior dentition 

differ across morphologically defined and temporally partitioned groups of 

Middle and Late Pleistocene humans?  

These questions will be addressed through direct assessment of dental wear 

related to the degree of wear (macrowear gradients), magnitude of bite forces 

(chipping), and a particular form of wear (labial cutmarks) to explore patterns of 

anterior tooth-use for manipulative behaviors among Middle and Late Pleistocene 

humans. The results will be used to comment on hypotheses of craniofacial and dental 
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adaptation to non-masticatory behavior among Middle and Late Pleistocene humans 

with a particular emphasis on patterns of anterior dental reduction in the Pleistocene. 

 

Thesis outline 

Chapter 2 presents a brief review of the mechanisms that cause dental wear and the 

biological factors that must be taken into account when studying dental wear.  

Chapter 3 addresses issues of dental functional morphology and wear that are directly 

relevant to the topic of non-masticatory behaviors during the Middle and Late Pleistocene. A 

thorough review of research on non-masticatory dental wear assessed from Middle and Late 

Pleistocene fossils is presented.  

Chapter 4 introduces the human skeletal materials used in all analyses and provides a 

rationale for the subgrouping of the fossils for analyses. A brief synopsis of the methods used to 

clean, mold, cast, and prepare dental specimens for scanning electron microscopy (SEM) is also 

presented. The methods used for each stand-alone analysis are provided in their respective 

analysis chapters.  

Chapter 5 is concerned with macroscopic occlusal wear gradients scaled to buccolingual 

crown dimensions. The analysis is focused on understanding how anterior relative to posterior 

dental wear varies among and between groups and what this says about the degree to which 

groups differentially engaged in anterior tooth use. The importance of crown size is 

emphasized.  

Chapter 6 emphasizes aspects of anterior dental loading by analyzing enamel chipping 

and fracture found on incisors and canines. The simple premise is that a higher frequency of 
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chipping is related to more frequent loading of the anterior teeth and contact with hard 

objects. The size of chips reveals insights into bite forces exerted to fracture the enamel. This 

chapter is a compliment to the analysis of degree of wear established in Chapter 6.  

Chapter 7 examines the presence of stone-tool induced instrumental 

striations/cutmarks on the labial enamel of maxillary central incisors. A single tooth type is used 

to ensure that comparisons are made between equivalent data – a point that was not always 

considered in previous research. This chapter is aimed at understanding whether early modern 

humans used their dentitions for “stuff-and-cut” behaviors that are ubiquitous among archaic 

Homo and the Neandertals.  

Chapter 8 discusses the results of each analysis in detail and frames them within the 

current knowledge of manipulative behavior in the Middle and Late Pleistocene, functional 

adaptation, and cognition. A conclusion follows. 
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Chapter 2. An introduction to dental wear 
 

 

Introduction 

This chapter focuses on the definition and mechanisms of dental wear. A discussion of 

dental development, eruption, and dentoalveolar compensatory mechanisms to dental wear 

throughout the lifetime are presented to illustrate the universality of dental wear among 

different groups of Pleistocene humans. Dental wear is a complex process with many causal 

factors and influences interacting to produce an overall degree of wear as well as distinct dental 

wear features that can be attributed to certain types of behaviors – such as manipulative tasks 

related to the use of teeth-as-tools. This chapter introduces the basic concepts and terminology 

for describing, discussing, and understanding the progressive dental wear and mechanisms that 

produce wear; the biological factors that influence dental wear patterning and their similarities 

and differences among Late Pleistocene humans; the environmental influence on dental wear; 

how the anterior teeth are used for both dietary and non-masticatory, manipulative behaviors; 

ethnohistoric examples of the use or teeth-as-tools; and finally, a discussion of individual dental 

wear features that are often attributed to manipulative behavior (albeit, sometimes 

overlapping with dietary behaviors). The chapter ends with a discussion of anterior dental wear 

as a palimpsest of ingestive/dietary and non-masticatory/manipulative behavior and suggests a 

multifactorial approach to understanding the human use of teeth-as-tools for manipulative 

behaviors in prehistoric contexts.  
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Some functional characteristics of Middle and Late Pleistocene human dentitions may 

have evolved through natural selection to compensate for high rates of wear or a high 

prevalence of certain types of wear (e.g., chipping or fracture). Likewise, selection for certain 

characteristics may be relaxed through altered behavioral and technological change. Dental 

loading also has functional implications for the evolution of craniofacial morphology in the 

Pleistocene. Thus, the discussion of dental wear in this chapter will ground the discussion of the 

relationship between tooth-use and functional morphological in Chapter 3.   

 

Dental tissues 

Teeth are composed of four primary tissues: enamel, cementum, dentin, and pulp. The 

enamel crown is the most mineralized of these tissues, largely composed of hydroxyapatite, 

making it both hard and brittle. While the hardness of dental enamel is often stressed in the 

literature, it is becoming apparent that enamel toughness is also of consequence, especially as 

research moves forward to understand the relative influence of wear resistance versus fracture 

resistance related to the evolution of enamel material properties (Lucas et al. 2013, 2016; Lucas 

and van Casteren 2015; Ungar 2015; Xia et al. 2015; Constantino et al. 2016). Deep to, and less 

mineralized than enamel, is dentin with soft-but-tough physical properties. The pulp is the 

living tissue surrounded by dentin that contains the nerves and blood vessels that feed the 

tooth. As wear progresses from the enamel to the dentin, odontoblasts in the pulp will deposit 

secondary dentin and protect the receding pulp chamber. If the rate of wear proceeds beyond 

the rate at which secondary dentin is  deposited, the pulp chamber may become exposed 

(Figure 2.1) and infection is probable (Larsen 2015). Any inflammation due to pulp exposure is 
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referred to as pulpitis (Soames and Southam 2005). The third calcified dental tissue is the thin 

layer of cementum that surrounds the entire root surface. Periodontal ligaments attach to the 

cementum and anchor the tooth to the alveolar bone. The proportions of these tissues in 

Middle and Late Pleistocene humans and their influence on dental wear will be discussed in 

Chapter 3.  

 

Figure 2.1 Marked occlusal attrition and exposed pulp chambers. 
Occlusal view of anterior maxillary dentitions of La Ferrassie I (top) and Shanidar 1 (bottom) 
Neandertals with red arrows indicating teeth with exposed pulp chambers. The right I2 and C1 
were incorrectly reconstructed for La Ferrassie I and their positions should be switched. 
Photographs by Erik Trinkaus.  
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Dental wear basics: attrition, abrasion, and erosion 

Dental wear is the cumulative loss of dental tissue volume throughout the life of an 

individual caused by the movement of two or more textured surfaces against each other. 

Friction occurs because no surface is completely smooth although surface asperities may be 

imperceptible without the aid of high-resolution microscopy. Dental wear begins at the 

damage-tolerant and wear-resistant enamel surface before progressing to the softer-but-

tougher dentin (Chai et al. 2009; Lawn et al. 2010). The loss of dental tissue is primarily a 

microscopic process (Lucas et al. 2013), and the accumulation of microscopic wear is observed 

macroscopically as enamel polishing or faceting and eventually as the exposure of underlying 

dentin. The ratio of enamel to dentin has wide applicability in mammalian paleobiology and is 

widely used in paleoanthropology and bioarchaeology to assess dietary habits, individual ages-

at-death, and cultural behaviors (Miles 1963; Molnar 1971; Scott 1979; Smith 1984; Lovejoy 

1985; Clement et al. 2012; Gilmore and Grote 2012). Dental wear has been traditionally 

described in terms of attrition, abrasion (both masticatory/dietary and non-

masticatory/manipulative), and erosion in the anthropological literature – to which some 

researchers add dental fracture (e.g., Kaidonis et al. 1993). It should be noted that it has 

become increasingly common for researchers to adopt terminology derived from oral tribology 

(tribology is the study of wear, friction, and lubrication) to describe the underlying mechanisms 

that produce particular patterns of dental wear (Mair 2000; Zhou and Zheng 2006; Mair and 

Padipatvuthikul 2010; d’Incau et al. 2012; d’Incau and Saulue 2012; Lucas and Omar 2012). This 

summary will largely focus on the general, descriptive terms common in the anthropological 
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literature, and while oral tribology terminology is not explicitly adopted here it will be used to 

illustrate the mechanisms that cause wear as needed.   

Attrition: Attrition6 is a form of abrasion caused by tooth-to-tooth contact and is 

evident by smooth, shiny wear facets, with clearly delineated edges, on the occlusal surfaces of 

opposing maxillary and mandibular teeth (d’Incau et al. 2012). Microscopic striations occurring 

in parallel orientation to each other are often found within the borders of attrition facets 

(Kieser et al. 2001; Kaidonis 2008). Attrition facets have clinical relevance in that they assist in 

the diagnosis of departures from ideal occlusion and bruxism7 (Kaidonis et al. 1993; De Luca 

Canto et al. 2013). The dynamic nature of dental wear throughout the life of an individual leads 

to changes in shape, size, or visibility of attrition facets as dental wear progresses, human 

behavior changes, or other factors, like abrasive load, change (Kaidonis et al. 1993).  

Attrition also occurs at the interproximal (also referred to as approximal or interstitial) 

contacts between adjacent teeth in an arcade (Figure 2.2). At a gross level, interproximal 

contact facets are also characterized by a smooth, shiny appearance with strongly defined facet 

boundaries and variable facet curvature. Microscopically, interproximal contact facets have a 

roughened texture caused by the accumulation of small pits and the absence of any striations 

(Pérez-Pérez et al. 2003). The size and shape of an interproximal contact facet changes with 

progressive interproximal and occlusal wear (Deter 2012), and can lead to substantial reduction 

in the mesiodistal length of a tooth (Begg 1954; Wolpoff 1971b). Both anterior and posterior 

                                                      
6 There is some confusion surrounding the use of the term attrition since it is often used as a synonym for 
generalized loss of tooth volume through cumulative crown wear. However, others will use a strict definition of 
attrition to designate wear derived from tooth-to-tooth contact only. This latter definition is what is being defined 
above.  
7 Bruxism is the "repetitive jaw-muscle activity characterized by clenching or grinding of the teeth and/or by 
bracing or thrusting of the mandible" (Lobbezoo et al. 2013:3) that results in characteristic attrition facets. 
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teeth tilt mesially when subjected to loads (Picton 1962) and interproximal contact facet 

formation is generally attributed to the mesial movement of adjacent teeth as they are 

subjected to occlusal forces – dietary or otherwise (Osborn 1961; Wolpoff 1971b; Kaidonis et al. 

1992). 

 

Figure 2.2 Marked interproximal wear. 
The Tabun C1 right I1-left I2 (top) and the Tabun C1 right P3-M1. The lateral edge of the left I2 

has a postmortem enamel spall.   
 

Some interproximal contact facets display small furrows or channels, known as 

subvertical grooves (Kaidonis et al. 1992; Villa and Giacobini 1995a; Estalrrich et al. 2011), but 

the ultimate cause of their formation remains unclear (Figure 2.3). Interproximal contact facet 

morphology has recently proven useful in the analysis and association of teeth that are found 

mixed within archaeological sites rather than in situ within the jaws or distinct contexts (Benazzi 

et al. 2011a; Rosas et al. 2013). 
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Figure 2.3 Subvertical grooves on an interproximal contact facet (mesial view). 
Neandertal (N31 from Feldhofer, Germany) right M2 surface showing multiple subvertical 
grooves or furrows. Upper arrow is pointing to an interproximal “toothpick” groove 
(discussed below).   
 

Abrasion: Abrasive wear occurs when teeth are in contact with exogenous material – 

generally particles contained in food (Mair and Padipatvuthikul 2010; d’Incau et al. 2012), but 

also other materials that are manipulated with, or come into contact with, the dentition (e.g., 

cordage, sinew, toothpicks, pipe stems, arrow shafts, labrets, etc.). Mastication breaks down 

the bolus and creates microscopic pits and scratches on tooth surfaces. The orientations of the 

striations are generally “cross-hatched” and random in contrast to the parallel striations formed 

through attrition (Kieser et al. 2001; Kaidonis 2008). The size, shape, and hardness of the 

particles introduced with the bolus influence the density and size of microscopic pits and 

scratches on tooth surfaces (d’Incau et al. 2012). These pits and scratches are commonly 

referred to as microwear and are analyzed by paleoanthropologists and bioarchaeologists to 

reconstruct the diets of human and non-human primates (Teaford 2007). Dietary abrasion also 

has distinctive macroscopic signals. With high levels of dietary abrasion, the soft, exposed 

dentin is preferentially worn away, leaving an enamel rim that forms a “cupped” occlusal 
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surface (Molnar 1971; Kaidonis 2008). Importantly, the enamel rim and cupped dentin remain 

decorated with randomly oriented striations further illustrating dietary abrasion. Abrasive wear 

caused by non-dietary objects and manipulative behaviors can produce many distinctive wear 

features which will be discussed subsequently.  

Erosion: Erosion is caused by the presence of acid in the mouth that dissolves tooth 

surfaces. The exposure to oral acids can be voluntary (dietary) or involuntary (e.g., the 

regurgitation of stomach acid or the presence airborne acids in some occupational settings) 

(Johansson et al. 2012). Erosion is identified by cupped surfaces with rounded, but non-striated, 

edges (d’Incau et al. 2012). Erosion is well known in clinical cases (Johansson et al. 2012) but 

remains relatively rare in human groups prior to the introduction of a heavily processed, 

“Westernized” diet (Kaidonis 2008). Erosion has also been successfully characterized and 

differentiated from other forms of wear using microwear texture analysis (Hara et al. 2016). 

Oral bacteria subsisting on food particles in the mouth produce acids that dissolve dental 

tissues (Temple 2016); however, this is not generally discussed in terms of dental wear.  

Mechanisms that cause dental wear: Materials that are as hard as or harder than 

enamel (and dentin) will initiate wear. As discussed above with respect to attrition, tooth-to-

tooth contact can cause enamel wear as can dentin-to-dentin, or enamel-to-dentin contact 

given the tissues are as hard as, or harder, than each other. Environmental grit and dust, 

namely quartz, is another commonly cited cause of dental wear (Jardine et al. 2012; Lucas et al. 

2013; Wood 2013; Damuth and Janis 2014). Silica phytoliths, the microscopic silicon dioxide 

bodies formed in plants, have long been thought to induce dental wear as well (Walker et al. 

1978; Teaford 1988; Ciochon et al. 1990; Lalueza-Fox et al. 1994, 1996; Ungar 1994; Gügel et al. 
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2001; Reinhard and Danielson 2005; Rabenold and Pearson 2011, 2014), but recent 

experimental studies challenged this assertion (Lucas et al. 2013, 2014). Lucas and colleagues 

(2013) used nanowear experiments to perform controlled sliding of starch grains, enamel 

pieces, grass phytoliths, and quartz (sand) grains across flat enamel surfaces. Unsurprisingly, 

quartz and enamel induced wear (i.e., the chipping, fracture, or removal of material from a 

body) while starch grains did not (Lucas et al. 2013). On the other hand, sliding phytoliths 

across enamel only created “prows” in the enamel surface, and this displacement without the 

removal of enamel was termed “rubbing” as it did not conform to the classic definition of wear 

(Lucas et al. 2013).  

The findings of Lucas and colleagues (2013) have been challenged on semantic grounds, 

but also with regard to the role that repetitive displacement through rubbing may contribute to 

accumulated wear over a greater length of time than is shown by individual nanoindentation 

events (Rabenold and Pearson 2014). Indeed, rubbing would change the surface texture, create 

additional microasperities, which increases friction and abrasive potential. Cumulative rubbing 

events could also contribute to fatigue wear (Zum Gahr 1987; d’Incau et al. 2012; d’Incau and 

Saulue 2012). Additional experiments by Xia and colleagues (2015) examined the removal of 

enamel by aluminum (which is softer than enamel) in microscale experiments and by silicon 

dioxide (i.e., phytoliths) in nanoscale experiments. The “piling up” of enamel debris found by 

Lucas and colleagues (2013) could be washed away with water which showed that the enamel 

had truly been removed after each sliding experiment (Xia et al. 2015). Others have contributed 

to the discussion and confirmed that even very modest microcontact events between an 
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indenter and enamel in silica-slurry can remove (i.e., wear) enamel (Borrero-Lopez et al. 2014, 

2015; Constantino et al. 2016).  

The action of thousands of chewing cycles involving exogenous particles (grit, silicates, 

enamel fragments, etc.) contributes to microwear and eventually macrowear. By extension, 

repetitive non-masticatory behaviors that involve the manipulation of materials with the 

anterior teeth are expected to include abrasive particles that will contribute to micro and 

macrowear over time.  

Finally, dentin is largely ignored in anthropological studies of (dietary) microwear 

because it does not display microwear features in the same manner as enamel due different 

biomechanical properties of enamel and dentin. Other studies concerned with non-masticatory, 

manipulative dental wear more commonly observe microscopic wear features on enamel and 

dentin (Ryan 1980b; Ryan and Johanson 1989; Lozano et al. 2008), but these studies are not as 

concerned with the causal mechanisms of dental wear at the microscopic level. It has been 

noted that experimental studies should move toward considering causal mechanisms of dentin 

microwear (Lucas et al. 2013). After all, a large portion of a long-lived primate’s life will involve 

wear on exposed dentin.  

Many dental wear studies cite wear as a limiting factor in the lifespan of primates and 

other mammals (see: Logan and Sanson 2002; King et al. 2005, 2012; Cuozzo and Sauther 

2006), and thus understanding the mechanisms that cause enamel and dentin wear are of 

particular importance to understand the evolutionary adaptiveness of dentitions and their 

relationship to life history patterns and potential environmental mismatches. Dental size (larger 

molars) has been linked to increased fitness in mantled howler monkeys (DeGusta et al. 2003), 
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but selection for resistance to wear in and of itself is understudied. Much research still needs to 

be done to link the causal mechanisms of dental wear with dental size, tissue proportions, and 

rates of wear before selective advantages can be determined for interspecies comparisons.  

Simulation studies are making progress in this direction and show promise in linking the 

microscopic removal of dental tissue to the accumulation of macroscopic wear over time 

(Borrero-Lopez et al. 2014, 2015; Constantino et al. 2016). In sum, the use of innovative 

methods, such as those described, that incorporate observations of wear from the nanoscale to 

the macroscale are revolutionizing the study of dental wear and its utility for reconstructing 

prehistoric behavior (Lucas et al. 2013, 2016; Borrero-Lopez et al. 2014, 2015; Lucas and van 

Casteren 2015; Ungar 2015; Xia et al. 2015; Constantino et al. 2016). 

The multifactorial nature of dental wear: Attrition, abrasion, and erosion are rarely 

found in isolation; instead, they interact in complex ways to generate an overall pattern of 

dental wear related to physiological, mechanical, and cultural factors (Kieser et al. 2001; Addy 

and Shellis 2006; Kaidonis 2008; Mair and Padipatvuthikul 2010; Khan and Young 2011; d’Incau 

et al. 2012). However, there are distinctive characteristics of each of these forms of dental wear 

that allow researchers to determine the relative contributions of attrition, abrasion, and 

erosion to the overall pattern of dental wear. 

 

The effects of dental eruption sequence and timing on dental wear 

 An understanding of the timing and sequence of dental crown formation and 

subsequent eruption is of particular interest in biological anthropology as a means of 

determining the relative age of immature fossil specimens as well as maturation rates. Dental 
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crown formation is of little interest here as unerupted teeth are not subject to dental wear. 

However, the sequence and timing of permanent tooth eruption is of great importance for the 

understanding of dental wear gradients and age-related rates of wear.  

Both the sequence and timing of dental mineralization and eruption include significant 

variation among and between individuals, sexes, and populations; although, there are three 

consistent phases for the timing and sequence of dental emergence for the permanent 

dentition in humans (Hillson 1996:140):  

1. Around 5 to 8 years of age the incisors and first molars erupt.  

2. Around 9.5 to 12.5 years of age the canines, premolars, and second molars 

erupt. 

3. Around the late teens to early twenties the third molars erupt.  

In general, mandibular teeth erupt earlier than their maxillary counterparts, and teeth that 

erupt more closely in time have more commonly reversed eruption sequences (modified from 

Hillson 1996:141; parentheses indicate common reversals in eruption sequence):  

 Maxillary:    M1 – I1 – I2 – (P3 – C – P4) – M2 – M3 

 Mandibular:  (M1 – I1) – I2 – (C – P3) – (P4 – M2) – M3 

The pattern and sequence of dental mineralization and eruption is known to vary both 

within Late Pleisotcene humans and relative to Holocene human groups (BH Smith 1991; 

Tompkins 1996; TM Smith et al. 2007b; Bayle et al. 2009b, b, 2010; Guatelli-Steinberg 2009; 

Shackelford et al. 2012). Unfortunately, conclusions regarding the relative differences in 

pattern and timing of  Neandertal and early modern human dental development are far from 

consensus given the paucity of younger individuals in the fossil record suitable for study and 



30 
 

differences in methodology between studies. For example, some studies of incremental growth 

suggest that Neandertals have relatively rapid rates of growth relative to recent modern 

humans (Ramirez Rozzi and Bermúdez de Castro 2004; Smith et al. 2007a), while others suggest 

that incremental growth rates are within the recent human range of variation (Guatelli-

Steinberg et al. 2005, 2007; Macchiarelli et al. 2006). Furthermore, the issue has been raised as 

to whether it is suitable to apply recent human developmental standards to immature Late 

Pleistocene fossils (Guatelli-Steinberg 2009; Shackelford et al. 2012). Despite the above 

disagreements there is some support for delayed mineralization of the incisors and third 

premolars relative to the molars in Neandertals compared to early modern humans and 

Holocene human groups, as well as evidence for the precocious eruption of maxillary and 

mandibular third molars among both Neandertals and early modern humans, all of which 

indicate that dental development continued to evolve since the Late Pleistocene (Tompkins 

1996; Smith et al. 2007a; Bayle et al. 2010). 

The above discussion on the sequence and timing of dental mineralization and eruption 

is a necessary prelude to the discussion of dental wear despite the rather intuitive conclusion: 

earlier erupting teeth attain occlusion and are exposed to wear agents for a longer period of 

time than later erupting teeth. When combined, dental eruption and dental wear gradients 

along a tooth row can be used to record the relative ages of deceased individuals (Miles 1963; 

Scott 1979; Lovejoy 1985; Brothwell 1989; Ubelaker 1989; Buikstra and Ubelaker 1994; Mays et 

al. 1995; Mays 2002), as well as to infer relative differences in diet and behavior within and 

between different groups (Molnar 1971; Smith 1984; Alexandersen 1988; Skinner 1997; Deter 

2009; Clement et al. 2012). Diet, environment, and biological factors (e.g., such as tooth size, 
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tissue proportions, and relative eruption sequences) influence the overall rates of attrition 

among groups, and therefore ages obtained from dental wear gradients are generally 

population-specific (and often most useful in bioarchaeological settings where large sample 

sizes are more common). However, most ordinal scales have relatively broad age categories 

(e.g., 8 ordinal values in the widely-used Smith 1984 system) which encompass several years of 

life in each category. The imprecise nature of ordinal scores is particularly useful when 

estimating age in fossil humans since biological “populations” are non-existent, and small fossil 

samples must be grouped into categories often defined by broad temporospatial criteria. 

However, the relative differences in eruption sequences (see discussion of dental tissue 

proportions in Chapter 3) between Neandertals, early modern humans, and Holocene human 

groups could affect interpretations of Late Pleistocene demography and life history that rely 

heavily on dental aging techniques (e.g., mineralization, eruption, and wear gradients). 

Nonetheless, most broad-range assessments of Late Pleistocene demography and life history 

generally focus on few age categories due to the obvious sampling limitations in the Pleistocene 

fossil record (e.g., Trinkaus 1995, 2011; Caspari and Lee 2004). Thus, criticism of the use of 

dental aging techniques for Late Pleistocene fossils (e.g., Smith et al. 2012) is largely unfounded 

due to the necessity of using broad age categories encompassing several, averaged wear 

categories.   

 

Dentoalveolar compensatory mechanisms in relation to dental wear 

Marked dental wear is a naturally occurring process that was ubiquitous in hominin 

evolution until relatively recently (Kaifu 2000b). Dental crowns decrease in height, breadth, and 
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length as wear progresses and a series of skeletal compensatory mechanisms occur in the jaws 

to maintain efficient occlusion throughout the lifetime of an individual. Research encompassing 

the study of mismatches between high attrition oral environments in our evolutionary past and 

the generally low attrition oral environments of the present (and also including the study of 

shifts in oral pathology from prehistory to present) have been increasingly studied under the 

umbrella of “evolutionary dentistry”, or more generally, evolutionary medicine (Corruccini 

1999; Kaifu et al. 2003; Rose and Roblee 2009; Gibbons 2012; Ungar et al. 2012; Benazzi et al. 

2013). A description of the mechanisms related to progressive dental wear and maintenance of 

functional occlusion are discussed below.  

 Continuous eruption: Gottlieb (1927) first proposed that teeth continually erupt 

throughout the course of an individual’s lifetime, and this conjecture has been continually 

supported by studies from worldwide samples of human skeletal material dated to prehistoric 

and recent contexts (Murphy 1959a; Hylander 1977b; Newman and Levers 1979; Whittaker et 

al. 1982, 1985; Levers and Darling 1983; Varrela et al. 1989, 1995; Danenberg et al. 1991; Glass 

1991; Kerr 1991; Margvelashvili et al. 2013), in clinical settings (Crothers and Sandham 1993), 

among the great apes (Dean et al. 1992; Villmoare et al. 2013), and other hominins (Martinón-

Torres et al. 2011; Margvelashvili et al. 2013; Villmoare et al. 2013). This proposed 

compensatory mechanism is called continuous eruption (also commonly referred to as 

supereruption or supraeruption). The apposition of cementum at the root apices is thought to 

cause or co-occur with continuously erupting teeth (Hopewell-Smith 1920; Azaz et al. 1974, 

1977; Levers and Darling 1983; Leider and Garbarino 1987). Three continuous eruption 

scenarios are generally agreed upon (Berry 1976; d’Incau et al. 2012): 
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1. The rate of continuous eruption closely approximates the rate at which occlusal 

crown height is lost through lifelong attrition. Functional occlusion is maintained 

without a significant loss of the occlusal vertical dimension or interocclusal 

space. This explanation is the most commonly cited scenario in anthropological 

studies of dry skeletal material. A distance greater than 2 mm between 

cementoenamel junction (CEJ) and the alveolar crest (AC) is generally taken as 

evidence of supereruption (Ogden 2008), but root exposure may not be present 

if healthy alveolar bone migrates with the supererupting teeth making 

continuous eruption difficult to assess without longitudinal or cross-sectional 

studies using methods that do not rely on root exposure (Kaifu et al. 2003).   

2. Continuous eruption occurs with little occlusal attrition and increases the 

occlusal vertical dimension while maintaining a relatively constant interocclusal 

space. In this case, the alveolar bone migrates with the supererupting teeth. 

Again, this type of continuous eruption is only detectable in longitudinal studies 

(and to a lesser extent, cross-sectional studies) rather than measuring the 

distance between CEJ and AC (e.g., Whittaker et al. 1990).  

3. Continuous eruption occurs at a slower rate than dental wear, typical of later 

stages of wear when the softer dentin is worn, and causes a decrease in occlusal 

vertical dimension and increase in interocclusal space. The presence of oral 

pathologies (e.g., periodontitis or periapical lesions) are common if this scenario 

occurs, making root exposure as an indicator of supereruption less reliable.  
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Continuous eruption is a difficult phenomenon to study given that it can be 

accompanied by essentially no root exposure, exceptional root exposure, or be associated with 

alveolar pathology. It is further complicated by the fact that many studies are concerned with 

periodontal disease or supereruption and each are often measured the same way (CEJ-AC 

height). If there is no root exposure, and there is healthy alveolar bone, there is no way to 

detect supereruption in anything but longitudinal or cross-sectional studies. One possible 

method of detecting continuous eruption in these cases could be addressed by assessing the 

position of molar roots relative to the inferior alveolar nerve canal (e.g., Margvelashvili et al. 

2013), and/or examination of cementum deposition along root apices using radiographs or 

computed microtomography methods.  

An interesting case of supereruption with migrating alveolar bone comes from instances 

of ablation – the practice of removing anterior teeth for symbolic, ritual, medicinal, and other 

cultural motives that often expresses aspects of social identity (Stojanowski et al. 2014; 

Willman et al. 2016). In cases of maxillary incisor ablation the unopposed mandibular incisors 

continually erupt forming a pronounced occlusal “arch” (Humphrey and Bocaege 2008); but 

importantly, the mandibular alveolar bone generally remains healthy and migrates with the 

teeth revealing little to no root exposure (Figure 2.4). The antemortem loss of teeth also 

frequently leads to individual teeth supererupting as seen in the mandible of the Early Upper 

Paleolithic specimen Tianyuan 1 (Shang and Trinkaus 2010) (Figure 2.4). Clinical implant cases 

also provide strong support of continuous eruption of teeth adjacent to the static implants (Heij 

et al. 2005). Again, it is important to note that root exposure is not seen in the clinical cases 
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unless related to pathology; instead, supereruption is documented through studies capable of 

determining facial height growth or in comparison to implants. 

Finally, one clinical study showed that continuous eruption is accompanied by other 

compensatory changes in anterior occlusion, which include a shift from incisor over-bite to 

edge-to-edge occlusion along with some increase in mandibular incisor prognathism (Crothers 

and Sandham 1993).  

 

Figure 2.4 Examples of supereruption.  
Top left: recent anatomy collection specimen showing antemortem loss of the left M1 and 
supereruption of unrestricted M1. Top right: Tianyuan 1 early modern human showing 
supereruption similar to specimen on left (photo by Erik Trinkaus). Bottom: Late Upper 
Paleolithic individual from Afalou showing compensatory supereruption of the incisors due to 
maxillary central incisors ablation (maxilla not shown). Slanted wear is also common. 
 

 

Mesial drift: The mesial migration of the dentition occurs in conjunction with the loss of 

dental tissue at the interproximal spaces (Kaifu et al. 2003; d’Incau et al. 2012). Histological 

examination shows resorption of alveolar bone mesial to each tooth and apposition distal to 



36 
 

each tooth (Saffar et al. 1997), and distal cementum apposition matches mesial drift 

(Dastmalchi et al. 1990). The mesial drift of the dentition, as well as a concomitant decrease in 

total arch length, has been investigated substantially in prehistoric and recent human groups 

through the analysis of dry skeletal materials and contemporary clinical studies (Begg 1954; 

Beyron 1964; Murphy 1964; Wolpoff 1971b; Fishman 1976; Hylander 1977b; Hinton 1982; 

Corruccini 1990; Nara et al. 1998; Watanabe et al. 1998; Deter 2012). Mesial drift is typically 

discussed in relation to the postcanine dentition while incisor lingual tilting (discussed below) is 

the mechanism more often cited for maintaining close proximity between the anterior teeth.  

However, the maintenance of tight, mesiodistally abutted teeth often does not occur in 

individuals with exceptional dental wear (i.e., Smith [1984] scores 7-8), especially in the 

anterior teeth (but see incisor lingual tilting below), where small spaces are present between 

adjacent tooth roots (Willman, personal observation) (Figure 2.5). A possible explanation is that 

heavily worn teeth are more frequently found in older individuals and the aging of osteoblasts, 

osteoclasts, and osteocytes impairs function of these cells or leads to cell death (for a 

discussion of cell aging in bone see: Boskey and Coleman 2010); and thus diminish the capacity 

for normal apposition and resorption associated with mesial movement. A second explanation 

is that the rate of dental wear increases with the exposure of the softer dentin and the rate of 

wear progresses more quickly than the rate of alveolar bone resorption and apposition 

associated with mesial drift can occur. These two explanations need not be mutually exclusive.  
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Figure 2.5 Interdental spaces formed through excessive occlusal wear.  
Palate of Ortucchio 1 (Late Upper Paleolithic, Italy). Red arrows indicate spaces between 
teeth that fail to close through mesial drift. It is most likely a product of an extreme rate of 
occlusal wear. Missing teeth were lost antemortem despite extensive alveolar pathology.  
 

 

 Incisor lingual tilting and anterior occlusion: As progressive interproximal and occlusal 

wear occurs throughout a lifetime, the anterior teeth maintain tight contacts at the 

interproximal spaces through a process of mesial drift and lingual tilting (also referred to as 

posterior tipping) whereby the anterior teeth obtain a more axial orientation. The process has 

been documented in many skeletal collections and clinical settings of individuals with little wear 

to individuals with extensive wear (Lundström and Lysell 1953; Lysell and Filipsson 1958; 

Hasund 1964; Hylander 1977b; Forsberg 1979; Seddon 1984; Krogstad and Dahl 1985; Varrela 

1990; Johansson et al. 1993; Crétot 1997; Kaifu 2000a), as well as among the great apes (Dean 

et al. 1992; Villmoare et al. 2013), and some hominins (Margvelashvili et al. 2013; Villmoare et 

al. 2013).  
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Changes in anterior occlusion occur in conjunction with progressive occlusal wear and 

lingual tilting. In unworn, normally occluding anterior teeth, both overjet and overbite are 

greater than zero resulting in a slight overlap of the maxillary anterior teeth over the 

mandibular anterior teeth in “scissors occlusion” (Reinhardt 1983a; Kaifu 1996). As the anterior 

teeth undergo further wear and axial inclination, overbite will become zero and overjet will 

continue to diminish producing “edge-to-edge” occlusion (Reinhardt 1983a; Kaifu 1996). 

Scissors occlusion is evident in the deciduous dentition of the Roc du Marsal infant (Madre-

Dupouy 1992:111), the mixed dentition of the Teshik Tash child (Weidenreich 1945:163), and 

the slightly worn dentition of Le Moustier 1 (Thompson and Illerhaus 1998:653-5; Ponce de 

León and Zollikofer 1999:481-2). The development of edge-to-edge occlusion through 

progressive wear and compensatory mechanisms occurs by the same means in both 

Neandertals and modern humans, and thus occlusal differences cannot be a cause of distinct 

dental wear patterns among or between these groups. These lifelong changes in incisor 

procumbency through wear and lingual tilting have also been documented through the analysis 

of incisor beveling angles in recent humans, Late Pleistocene humans, Paranthropus robustus, 

and Australopithecus africanus (Ungar and Grine 1991; Ungar et al. 1997).  

Hypercementosis: Many possible scenarios have been presented for the apposition of 

tooth root cementum beyond normal physiological limits, generally referred to as 

hypercementosis (Pinheiro et al. 2008; d’Incau et al. 2015). Recent research has lent support to 

the idea of “compensatory hypercementosis” to repeated or high levels of stress on tooth roots 

due to masticatory and non-masticatory behaviors (Pedersen 1949; Le Cabec et al. 2013). 

However, hypercementosis co-occurs with heavy attrition (Gardner and Goldstein 1931; 
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Comuzzie and Steele 1989; Trinkaus et al. 2008), periodontal disease (Corruccini et al. 1987; 

Comuzzie and Steele 1989; Bosshardt and Selvig 1997; Pinheiro et al. 2008; Martinón-Torres et 

al. 2011; Zhou et al. 2012), occlusal stress (Thomas 1921; Gardner and Goldstein 1931; 

Corruccini et al. 1987; Comuzzie and Steele 1989), and continuous eruption (Hopewell-Smith 

1920; Kronfeld 1938; Azaz et al. 1974, 1977) among other influences (Pinheiro et al. 2008). With 

the exception of periodontal disease all of the above factors are also influenced by age, further 

complicating simple associations between prevalence and etiology. While hypercementosis 

does appear to indicate physiological compensation for repetitive or heavy loading of the 

dentition in some cases, periodontal disease is also a plausible cause, and caution should be 

taken when interpreting the etiology of hypercementosis for isolated teeth, since the alveolar 

bone is necessary for determining periodontal status.  

Compensatory mechanisms summary: Compensatory mechanisms, related to the 

maintenance of ideal occlusal relationships with progressive wear, are well documented in 

clinical and skeletal analyses of recent humans. Continuous eruption, mesial drift, and lingual 

tilting are particularly well understood; and the role of normal cementum remodeling and 

hypercementosis has become better understood in recent years. Several studies have greatly 

expanded our knowledge of compensatory mechanisms beyond recent human samples, and it 

is now becoming clear that these mechanisms are also at work among the great apes (Dean et 

al. 1992; Villmoare et al. 2013), australopithecines and paranthropines (Villmoare et al. 2013), 

and Early and Middle Pleistocene Homo (Martinón-Torres et al. 2011; Margvelashvili et al. 

2013). Evidence of compensatory mechanisms in Late Pleistocene humans are also documented 

through individual cases of continuous eruption, maintenance of tight interproximal contacts in 
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the presence of heavy interproximal and occlusal wear through mesial drift, and the indirect 

measure of lingual tilting through incisor beveling angles and anterior root functional 

morphology. Thus, there is no reason to assume that the physiological processes occurring with 

progressive dental wear among Neandertals, early modern humans, and recent humans would 

lead to anything other than differences in degree of wear and compensation rather than unique 

patterns of wear and compensation between groups.  

 

Dental occlusal variation 

 Dental occlusal variation describes the position of individual teeth, spatial relationships 

between adjacent teeth, and form of contact between maxillary and mandibular teeth. 

Departures from “ideal” occlusion are generally referred to as “malocclusion”, but such 

departures from ideal occlusion are so common in contemporary populations that it is more 

appropriate to discuss the spatial relationships between teeth in terms of “occlusal variation” in 

clinical discussions (Harris and Corruccini 2008). In fact, no less than 70% of American youths 

today exhibit some form of malocclusion (Proffit et al. 2007), and the percentage exceeds 50% 

among global populations consuming “Westernized” diets (see citations in: Corruccini 1991; 

Corruccini 1999; Larsen 2015). Environmental factors such as a shift from mechanically tough 

and/or wear-inducing diets widely cited as the primary cause of malocclusion in today 

(Corruccini 1991, 1999; Rose and Roblee 2009). While there is a genetic component that 

dictates the potential size of the jaws in adults (ones that would accommodate the entire 

dentition in ideal occlusion), it is the stimulation of jaws during development that will ultimately 

influence whether that potential is achieved (Corruccini 1991, 1999). Similarly, occlusal and 
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interproximal wear can decrease tooth size in abrasive environments preventing malocclusion 

(Rose and Roblee 2009). The diets and non-masticatory behaviors of most hunter-gatherers and 

pre-industrial populations provided sufficient stimulation and/or abrasive loads to combat the 

contemporary problem of rampant malocclusion.  

Examples of malocclusion or dental crowding among Archaic Homo are virtually 

unknown. A single mandible dentition from Krapina exhibits incisor crowding (Wolpoff 1979; 

Frayer and Russell 1987), and while premolar rotations are relatively common among 

Neandertals they are most likely of hereditary, rather than environmental, origin (Rougier et al. 

2006; Willman et al. 2012). Interestingly, malocclusion is far more common in modern human 

fossils (although the frequency is far from that of post-agricultural and contemporary 

populations). Malocclusion has been documented in several Middle Paleolithic modern humans 

from Qafzeh (Sarig et al. 2013; Sarig and Tillier 2014, 2016), and dental crowding and 

malocclusion is becoming increasingly well-documented in Early Upper Paleolithic specimens 

(Hillson 2006; Trinkaus et al. 2014). Malocclusion is also noted in several Late Upper Paleolithic 

contexts (Anderson 1968; Angel and Kelley 1986; Kramar 2008; Willman et al. 2016), and rates 

appear to be higher than in earlier periods (Willman, personal observation).  

 The rarity of malocclusion among Late Pleistocene humans, and for that matter, most 

pre-industrialized populations suggests that its occurrence will have a negligible effect on the 

present analyses. Occlusal alignment may bias some analyses that rely on the identification of 

and functional interpretations of wear facets, but this is still a matter of debate (Sarig and Tillier 

2014; Fiorenza and Kullmer 2015; Sarig and Tillier 2016). The crowding and misalignment of 

anterior teeth in the early modern human specimen Dolní Vĕstonice 15 may have contributed 
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to the smaller amount of instrumental striations on the right I2 compared to the remaining 

three maxillary incisors, but the instrumental striations were present nonetheless (Willman 

2016). However, the analyses undertaken in this thesis should not be greatly affected by 

occlusal variation. Furthermore, tell-tale signs of malocclusion will be evident from the 

examination of abnormal attritional facets and can therefore be removed from consideration in 

particularly analyses as necessary (e.g., Sarig et al. 2013). 

 

Environmental factors influencing dental wear 

 Environment is a particularly important factor in comparative dental wear studies of 

temporally and ecogeographically disparate human groups. In the simplest sense, environment 

dictates local food availability, locally adaptive technocultural strategies, and exogenous 

abrasive loads – there is also extensive interplay between these factors.  

 Ungar and colleagues (1995) were able to show that both quantity and particle size of 

exogenous grit varied by environment, position in canopy, and season at two study sites. 

Galbany and colleagues (2014) compared macrowear among forest-dwelling mandrills and 

savannah yellow baboons while controlling for age to show that the environmental quartz load 

was particularly important (it is higher in the mandrill environment) in the faster rate of dental 

wear in mandrills. While molar wear seems less affected, howler monkeys (Alouatta palliata) in 

areas with considerable volcanic ash contribution to exogenous environmental grit experience 

more extensive anterior dental wear than those in areas without volcanic ash (Spradley et al. 

2016). Disturbed versus pristine habitats also contribute subtle differences to microwear, but 

the strength of the relationship is stronger in the more frugivorous capuchins (Sapajus paella) 
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than folivorous Howler monkeys (Alouatta belzebul) in another study sample (Estalrrich et al. 

2015). A study of incisor microwear in shrews (Withnell and Ungar 2014) with various diets and 

habitats found small but significant differences in microwear when controlling for diet (e.g., 

omnivory, faunivory, and insectivore) and habitat. The study also showed that shrews living in 

the same habitats but eating different diets had the strongest contrasts in microwear which 

suggests that controlling for habitat type will provide a better dietary signal (Withnell and 

Ungar 2014). Similar research on incisor microwear in rodents is beginning to tease out the 

effect of diet, habitat, and substrate on microwear signals for paleoecological reconstructions 

(Caporale and Ungar 2016).  

An extreme example from contemporary settings has been documented in miners 

compared to white-collar workers (Enbom et al. 1985). Miners working more than 10 years had 

significantly more dental wear than miners with shorter work histories and white-collar workers 

illustrating the effect airborne dust can have on wear patterning (Enbom et al. 1985).  

Controlled grouping of samples by location, ecogeography, and/or climate is 

increasingly common in dental wear studies. Many bioarchaeological and paleoanthropological 

studies show significant differences in dietary and non-masticatory behaviors as reflected in 

dental macro and microwear when controlling for environmental categories (Pérez-Pérez et al. 

2003; El Zaatari 2008, 2010; Deter 2009; Krueger and Ungar 2009; El Zaatari et al. 2011, 2016; 

Fiorenza et al. 2011b; El Zaatari and Hublin 2014; Krueger 2015, 2016).   
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Non-masticatory, manipulative behavior and dental wear 

The human dentition has long been considered to be an integral component of the 

mostly extrasomatic human tool-kit (Brace 1962b; Dahlberg 1963; S Molnar 1972; Larsen 1997; 

Clement et al. 2009a; P Molnar 2011), and ethnographic and ethnohistoric documentation of 

the use of teeth-as-tools to manipulate cultural artifacts is widespread. For instance, the Hadza 

(contemporary hunter-gatherers from Tanzania) are known to use their teeth to straighten 

arrow shafts, cut string, strip bark from branches, tighten bow strings, soften leather, fletch 

arrows, peel tubers, and preform stuff-and-cut behaviors (Woodburn and Hudson 1966; 

Woodburn 1970; Marlowe and Berbesque 2009; Berbesque et al. 2012). A similar range of 

behaviors are known among various groups of Kalahari hunter-gatherers (Marshall and Gardner 

1957; Marshall 1971) (Figure 2.6). 

Similarly, aboriginal Australians straightened spear shafts, softened sinew, and stripped 

bark with their dentitions; but also used their teeth to retouch stone tools, sharpen the ends of 

digging sticks or spears in absence of a knife, or grasp an object being manipulated with the 

hands (Gould 1968; Molnar 1972; Barrett 1977; Hayden 1979; Dunlop and Martin-Jones 2011 

[1967]).  

Eskimo and Inuit hunter-gatherers of the Arctic are perhaps the most widely cited 

groups with reference to the non-masticatory use of teeth (Figure 2.7). They used their teeth to 

stabilize bow-drills, soften leather, and work sinew as well as a variety of other tasks (Pedersen 

1947; Pedersen 1949; Merbs 1968, 1983; Molnar 1972). The use of the dentition as a ‘third-

hand’ to grasp and hold materials while cutting them into smaller pieces with a free hand, i.e. 

“stuff-and-cut”, was particularly pervasive among Arctic hunter-gatherers (Koby 1956; Brace 
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1975; Lalueza-Fox and Frayer 1997); but this behavior is also commonly documented in 

disparate human groups of the ethnographic present (Uomini 2008). 

 

Figure 2.6 Examples of non-masticatory behaviors among !Kung hunter-gatherers. 
“Stuff-and-cut” behavior (top, middle, and bottom, left) being used to reduce meat gripped 
between the teeth for consumption (Marshall and Gardner 1957). Using the dentition to 
manipulate cordage (top and  middle, right) and to shape wood (bottom, right) in the making 
of a snare (Marshall 1971). [Used with permission, Documentary Educational Resources]  
 

 

Eskimo and Inuit hunter-gatherers of the Arctic are perhaps the most widely cited 

groups with reference to the non-masticatory use of teeth (Figure 2.7). They used their teeth to 

stabilize bow-drills, soften leather, and work sinew as well as a variety of other tasks (Pedersen 
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1947; Pedersen 1949; Merbs 1968, 1983; Molnar 1972). The use of the dentition as a ‘third-

hand’ to grasp and hold materials while cutting them into smaller pieces with a free hand, i.e. 

“stuff-and-cut”, was particularly pervasive among Arctic hunter-gatherers (Koby 1956; Brace 

1975; Lalueza-Fox and Frayer 1997); but this behavior is also commonly documented in 

disparate human groups of the ethnographic present (Uomini 2008). 

Many more ethnographic examples can be drawn upon, but the trend is clear: humans 

use their teeth to manipulate artifacts by clamping and grasping materials between the teeth or 

chewing and dragging abrasive-laden materials like hide, fiber, and cordage across the 

dentition. These abrasive activities result in a variety of dental wear features.  

Ethnographic analogy is useful in documenting the types of non-masticatory activities 

that form distinct patterns on the teeth of prehistoric human groups. However, many activities 

can lead to similar patterns of wear (S. Molnar 1972; P. Molnar 2011). Therefore, we generally 

cannot know what specific activity or task created a particular non-masticatory wear feature; 

but, recording non-masticatory wear features allows researchers to compare the degree and 

pattern of non-masticatory tooth use across spatiotemporally variable human groups (Molnar 

2011). In addition to ethnohistoric examples of non-masticatory dental wear, bioarchaeological 

studies of human dental wear have thoroughly documented many non-masticatory dental wear 

features among temporospatially disparate human groups. Case studies are described below in 

relation to specific types of dental wear features. 
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Figure 2.7 Softening of sealskin boots and use of bow-drill (Netsilik).  
Gripping, clenching, and pulling motions used to soften boots before wearing (Left). Use of 
composite bow-drill clenched between anterior teeth (Right). (Brown and Balikci 1967).  
[Used with permission, Documentary Educational Resources] 
 

 

Dental wear features and their interpretations 

Occlusal macrowear: The measurement of occlusal enamel loss and concomitant dentin 

exposure is the simplest description of macroscopic dental wear. Generally, pictorial 
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representations accompanied by written descriptions of discrete wear stages are used to assign 

an ordinal wear score to a tooth (Miles 1963; Molnar 1971; Scott 1979; Smith 1984; Lovejoy 

1985; Alexandersen 1988), or the ratio of exposed dentin relative to remaining enamel is 

calculated using occlusal photographs (Richards and Brown 1981; Clement 2007; Deter 2009; 

Galbany et al. 2011; Pinilla and Trinkaus 2017a). The methods both have benefits and 

drawbacks. Ordinal scores are easily and quickly collected data, and there is little margin for 

error when estimating a wear stage for a tooth that presents a partial occlusal surface due to 

either antemortem (e.g., chipped or fractured) or postmortem damage. Ratios of dentin 

exposure relative to enamel allow for more precision in analyses, while ordinal scales can mask 

some variation. Currently there are two means of calculating the ratio: (1) reconstruct the full 

occlusal surface by adding surface area for interproximal wear or missing area due to chipping, 

fracture, or damage; and (2) ignore all but postmortem damage and record the ratio with the 

remaining enamel and dentin. Furthermore, there can be issues of comparability between 

studies depending on whether the full crown border is considered to be the surface area or 

whether only the occlusal surface is considered to be the area in direct contact opposing teeth 

– as indicated by wear facets. Ordinal scores are readily comparable and can often be assessed 

from published photographs.  

Macrowear is particularly useful for standardizing other dental wear features. For 

instance, some features are thought to intensify with wear, such as dental chipping, whereby 

the enamel rim on well-worn teeth could be more easily spalled than in teeth with more 

occlusal enamel (Scott and Winn 2011). Other dental wear features may be underrepresented 

in more heavily worn teeth, such as labial cutmarks (see below), since a shorter labial face 
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means less surface area for cutmarks or the erasing of labial cutmarks close to the occlusal edge 

with advanced attrition. Making comparisons across similarly worn teeth can explore the 

potential biases in feature representation across the use-life of the dentition. 

The gradient of anterior (incisor and canine) relative to posterior (premolar and molar) 

dental wear can be used to examine the intensity of anterior tooth use within and between 

groups. For instance, anterior dental wear is known to decrease with the adoption of an 

agricultural lifestyle in many parts of the world (Hinton 1981; Smith 1984; Kaifu 1999; Eshed et 

al. 2006; Deter 2009; Larsen 2015), while both anterior and posterior wear are greatly reduced 

in “traditional societies” that are introduced to manufactured materials and processed diets 

(Corruccini 1999; Kaifu 1999). Since anterior teeth are involved in the initial processing of food 

and manipulative behavior, anterior occlusal macrowear is an amalgamation of dietary and 

non-masticatory behaviors.  

 

Figure 2.8 Incisor and canine wear showing extreme beveling angle (Shanidar 1). 
Photograph credit: Erik Trinkaus.  
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Incisor beveling angles: Incisor beveling angles are a measure of the incisal wear plane 

orientation relative to the tooth cervix (Ungar and Grine 1991). With high levels of occlusal and 

interproximal wear the incisors will maintain occlusion through lingual tilting (“posterior 

tipping”) (Ungar et al. 1997). The extreme results of incisor beveling are labially open, rounded, 

and non-occluding incisors – characteristics seen in several older Neandertal specimens (Brace 

1962b, 1964; Wallace 1975; Trinkaus 1983) (Figure 2.8). Incisor beveling angles are a result of 

non-masticatory and dietary behaviors, and differential rates of beveling are known to 

differentiate human groups (Ungar et al. 1997). 

Enamel chipping and fracture: Enamel chipping and fracture occurs when the occlusal 

surface is subjected to high bite forces on large and/or hard artifacts (Constantino et al. 2010). 

Chipping and fracture are commonly recorded in bioarchaeological studies (Turner and Cadien 

1969; Bonfiglioli et al. 2004; Belcastro et al. 2007; Molnar 2008; Scott and Jolie 2008; Scott and 

Winn 2011; Tanga et al. 2016). The chipping of anterior teeth is related to non-masticatory 

activities and the initial processing of hard food items (e.g., frozen foods, bone, nuts, seeds, 

etc.). Lithic retouching with the anterior dentition, strong axially-inclined biting on hard-objects, 

or clamping materials (e.g., hide, leather) while applying external forces (e.g., pulling the 

material away from the mouth) are some possible scenarios that could produce enamel 

chipping. 

 Chipping on the posterior teeth is more frequently associated with the mastication of 

food with high levels of grit or hard particles. However, chipping may also occur through forces 

generated during non-masticatory behaviors that use the posterior teeth as vises and clamps 
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while manipulating the object through “levering” motions with the free hands (e.g., spear shaft 

straightening).  

Recent experimental research found a close relationship between the size of dental 

chips on the posterior dentition and bite force using ideal glass dome models and bunodont 

teeth of some mammals (e.g., peccaries, sea otters, monkeys, apes, and humans) (Chai and 

Lawn 2007ba, b; Lawn and Lee 2009; Lawn et al. 2009; Lee et al. 2009; Myoung et al. 2009; Chai 

et al. 2010, 2011; 2011; Constantino et al. 2011; Ziscovici et al. 2014). Experimental research 

have generated models that allow estimates of bite forces to be calculated on the basis of tooth 

dimensions and chip dimensions, and these equations have been used to calculate bite force 

estimates both hominins and non-human primates (Constantino et al. 2010, 2012). While no 

equations have been developed for the estimation of bite force from chips on the anterior 

dentition, ordinal scores have been developed for chip size classes (Bonfiglioli et al. 2004). Chip 

size classes in addition to presence/absence data can therefore be used to understand the 

relative loads placed on the anterior dentition.  

Occlusal Grooves:  Occlusal grooves are caused by the abrasion of materials against the 

occlusal surfaces of teeth in a unidirectional orientation. Grooves are generally attributed to 

the processing of pliable materials like sinew, fibers, basketry materials, and cordage (Cybulski 

1974; Schulz 1977; Pedersen and Jakobsen 1989; Larsen et al. 1998; Bocquentin et al. 2005; 

Molleson 2005; Erdal 2008; Lorkiewicz 2011). Abrasion from the movement of materials across 

tooth surfaces produces characteristic, parallel striations within the boundaries of the grooves 

and can often be traced across several occlusal tooth surfaces (Larsen 1985; Minozzi et al. 2003; 

Waters-Rist et al. 2010). 
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Notches: Notches are indentations on the occlusal edge of a tooth (Bonfiglioli et al. 

2004; Tanga et al. 2016) most likely derived from the habitual biting or clenching of hard 

objects in the same location. Abrasion, repeated chipping, and fatigue wear are all possible 

causal factors. Pipe stems, carpenter’s nails, and sewing needles among other objects are 

examples of materials producing notches in ethnohistoric and contemporary occupational 

settings (Corruccini et al. 1982; Alt and Pichler 1998; Prpié-Mehiéié and Buntak-Kobler 1998; 

Turner and Anderson 2003); but activities involving the habitual gripping, working, or breaking 

bone and wooden tools between the teeth are other possible causal factors in notch formation. 

Clinical settings have also documented seed processing (e.g., pumpkin, sunflower, and melon) 

as a cause of notches on the anterior teeth (Kaidonis et al. 2012).  

Occlusal striations: Occlusal striations are microscopic striations that occur in groups 

and are aligned in parallel on occlusal surfaces (Figure 2.9). They differ from grooves in that 

they are much smaller and may not be continuous across an entire occlusal surface, and they 

can be differentiated from striations on attritional facets because they are not limited to facet 

boundaries. They are most likely the result of grit and silica particles that adhere to materials 

dragged across the anterior teeth (e.g., plant fibers or leather softened with the dentition) 

(Ryan 1980a; Lozano et al. 2008) rather than cordage or sinew which tends to create 

macroscopic grooves and notches with parallel striations within the boundary of the wear 

feature. 
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Figure 2.9 Occlusal striations (right C1, Picken’s Hole 1a, Neolithic). 
Occlusal striation probably related to pulling abrasive material across the occlusal surface.  

 

Enamel polishing: Enamel polishing is associated with an absence of features in a 

localized area and is thought to relate to the working of pliable materials like leather or hide 

(Puech 1982; Lozano et al. 2008) (Figure 2.10). There may be some wear features (e.g., pits) 

that may still be visible within the polished area but often exhibit polishing as well. Likewise, 

other wear features could overlay the polished surface while the polished margins still provide 

evidence of the features. Some tough materials (e.g., wood, leaves, and keratin) also appear to 

polish enamel surfaces (Lucas 2004). One study has suggested that the use of abrasive plant-

based toothbrushes can leave characteristic polishing traces (Cook et al. 2015). 
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Figure 2.10 Enamel polishing (right I2, Sunghir 2, Early Upper Paleolithic). 
Enamel polishing is indicated within the black outline. Some pitting of the surface is also 
present. 

 

 Interproximal grooves: Interproximal grooves are frequently found at or near the 

cementoenamel junction of premolars and molars (Lukacs and Pastor 1988; Formicola 1991; 

Milner and Larsen 1991), and current consensus supports their presence as an indication of 

dental probing or “toothpick” use (Ungar et al. 2001; Lozano et al. 2013). However, some 

posterior tooth interproximal grooves seem more indicative of working materials such as sinew 

or cordage as evinced by mirrored grooves on antimeres, or the wrapping of the groove around 

the mesial edges of the tooth as if a cord is being working back and forth with the hands (e.g., 

Brown and Molnar 1990). Seemingly rarer still, are interproximal grooves that occur on the 

enamel and not the dentin (Molnar 2008) which negates their interpretation as palliative in 
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nature since the gingival tissue is not near the feature. Occasionally, these grooves are found on 

the anterior teeth and some of the groove wraps around the edges of a tooth as if fiber or 

sinew has been dragged around the tooth (Frayer and Russell 1987; Formicola and Repetto 

1989; Molnar 2008; Willman, personal observation) (Figure 2.3 and Figure 2.11).  

 

Figure 2.11 Interproximal grooves on mandibular anterior teeth.  
Specimen from Schela Cladovei (Mesolithic, Romania). Arrows indicate location of 
interproximal grooves. They are present on each tooth in this mandible but not all are 
marked in this view.  

 

Experiments have attempted to elucidate how interproximal grooves were formed and 

what materials were used. One study replicated interproximal grooves with grass stalks (Hlusko 

2003) while another used deer bone and antler, calf sinew, and wood all with and without the 

addition of abrasive particles (Bouchneb and Maureille 2004). Of all materials used, calf sinew is 

the only material to produce grooves that do not look like known grooves from Pleistocene 

fossils (Bouchneb and Maureille 2004).  
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Figure 2.12 Extensive instrumental striations on the Saint-Brais Neandertal (left I1). 
The cutmarks are so distinct that they are visible macroscopically (left image). A large, 
scallop-shaped enamel chip is also visible lateral to midline on the labio-occlusal edge (left 
image). Right image: SEM micrograph showing extensive striations at 50x magnification.  

 

Labial Instrumental Striations: The “stuff and cut” behavior (Brace 1975) is often 

evoked to explain the presence of striations  on the labial surfaces of the anterior teeth (Figure 

2.12). Accidental contact between a cutting tool and the labial enamel produces distinct 

cutmarks that have been experimentally replicated (Bromage and Boyde 1984; Bermúdez de 

Castro et al. 1988; Lozano et al. 2004; Frayer et al. 2010), and are similar in morphology to 

stone-tool induced cutmarks on butchered animal bones (Shipman and Rose 1984; Bromage et 

al. 1991). Instrumental striations are known from many paleoanthropological and 

bioarchaeological contexts. The orientation of each instrumental striations is generally 

categorized into one of four categories (horizontal, right oblique, vertical, or left oblique), but 

the emphasis in the literature tends to be on determining handedness of individuals based on 

the predominance of left or right oblique orientation striations (Koby 1956; Trinkaus 1983; 
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Bermúdez de Castro et al. 1988; Lalueza Fox 1992; Lalueza-Fox and Frayer 1997; Lozano et al. 

2004, 2008, 2009; Volpato et al. 2012; Estalrrich and Rosas 2013; Fiore et al. 2015; Willman 

2016, 2017). The ratio of right to left handedness (~10:1) inferred from striation orientation 

among Middle and Late Pleistocene archaic Homo is consistent with that seen in humans today, 

associated with hemispheric dominance, and viewed as a probable indicator for a spoken 

language capacity among archaic Homo (Lalueza-Fox and Frayer 1997; Lozano et al. 2009; 

Frayer et al. 2010, 2012; Volpato et al. 2012; Fiore et al. 2015; Willman 2016, 2017). However, 

vertical and horizontal striations also reveal important information about behaviors that may 

not be related to cutting materials at oblique angles (Lalueza-Fox 1992; Molnar 2008; Willman 

2017). The behaviors are not always readily interpretable but the difference in patterns at least 

confirms that the task involved different motions of the instrument-wielding hand when 

contact is made with the labial enamel. A preponderance of vertical striations have recently 

been interpreted as a product of downward scraping motions related to hide/leather-working 

among the early modern humans at Dolní Vĕstonice II (Willman 2016). Hence, the preference 

for general terms such as “instrumental striations” to describe these wear features sensu lato, 

and specific terms like “labial cutmarks” to describe the marks left by stuff-and-cut behaviors.  

Lingual surface attrition of the maxillary anterior teeth (LSAMAT): LSAMAT describes 

the marked wear of the lingual surfaces of maxillary incisors and canines without concomitant 

wear on the lingual surfaces of mandibular incisors and canines (Turner and Machado 1983; 

Irish and Turner 1987). The behavior is often thought of as a product of peeling, processing, 

and/or consuming fibrous vegetable foods like roots or tubers (Turner and Machado 1983; Irish 

and Turner 1987; Larsen et al. 1998; Berbesque et al. 2012), but in some circumstances LSAMAT 
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is thought to be a result of processing or softening of hide and leather or other pliable materials 

with the anterior dentition (Alt and Pichler 1998; Porr and Alt 2006; Willman 2016). Figure 2.13 

shows recently described LSAMAT examples from the Early Upper Paleolithic sites of Dolní 

Vĕstonice II and Pavlov I as well as a previously undescribed case from the Late Upper 

Paleolithic of Croatia.    

 

Figure 2.13 Lingual surface attrition of the maxillary anterior teeth (LSAMAT). 
Examples range from incipient (A) to extreme (D and E). (A) Dolní Vĕstonice (DV) 14 has 
lingual faces with smoothly-worn surfaces. Latero-lingual extensions of dentin visible of 
several incisors. (B) DV 15 has a wellworn tuberculum on each incisor. Major rotation of right 
canine and incisor irregularities are also evident. (C) DV 13 has extensive exposure lingual 
dentin. (D) Pavlov 1 has lost nearly all of the lingual enamel. (E) Extreme example from a Late 
Upper Paleolithic individual from Vindija, Croatia.  
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Lingual surface attrition is also present on some anterior teeth with little occlusal wear. I 

suggest that this is due to normal anterior occlusal relationships and the transition from scissors 

occlusion to edge-to-edge occlusion with progressive wear. If non-masticatory activity such as 

clamping, gripping, and pulling occurred in the presence of a slight overbite and overjet, wear 

would occur on the lingual surface of the maxillary anterior teeth and to a lesser extent on the 

labio-occlusal edge of the anterior mandibular teeth. This type of wear is quite different from 

the LSAMAT, and distinctions will be made when referring to either manifestation of lingual 

surface attrition.  

Labial microwear: Microwear is most commonly studied with the goal of reconstructing 

diets. Dietary studies typically focus on the occlusal and buccal surfaces of premolars and 

molars using SEM to document the size, frequency, and orientation of microscopic pits and 

striations; or confocal light microscopy and scale-sensitive fractal analysis to examine 

microwear textures (Pérez-Pérez et al. 2003; Teaford 2007; Ungar et al. 2008; Romero and De 

Juan 2012; Krueger 2016). However, both of these methods have been used to examine the 

labial surfaces of anterior teeth in attempts to reconstruct patterns of dietary and non-

masticatory behaviors in fossil and bioarchaeological groups (Ungar and Spencer 1999; Teaford 

et al. 2001; Romero and De Juan 2003; Henry et al. 2006; Krueger and Ungar 2009, 2012; 

Hlusko et al. 2013; El Zaatari et al. 2014; Krueger 2014, 2015, 2016). Non-masticatory studies 

examine an area of labial enamel at the incisal or canine edge, under high-magnification, with a 

total field of view of ~0.02 mm2. As stressed above, the incisors and canines are involved in 

both dietary and non-masticatory behaviors, and this combination of activities makes it difficult 
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to discern the relative influences of diet and non-masticatory behaviors in labial microwear 

studies (Teaford et al. 2001; Henry et al. 2006).  

Krueger (Krueger and Ungar 2009, 2012; Hlusko et al. 2013; El Zaatari et al. 2014; 

Krueger 2014, 2015, 2016) has made the most progress in teasing apart the relative influence of 

diet, environmental abrasive loads, and non-masticatory behavior on microwear texture signals 

through a broad, ethnohistoric comparative framework. Unfortunately, but to be expected, 

early ethnographers were not thinking about how their behavioral descriptions would aid the 

interpretation of non-masticatory dental microwear research and descriptions of anterior 

tooth-use can be vague. As discussed earlier (Chapter 1), the use of microwear texture analyses 

to address non-masticatory behavior is relatively recent and continues to be refined with the 

addition of new samples. Thus, there is an assumption that the range of microwear texture 

variation represented in the ethnohistoric samples is broad enough to encompass the 

behaviors of Pleistocene humans.  

Occlusal and buccal microwear studies have documented the effects of food-processing 

on the formation of microwear in humans and primates showing links to levels of abrasives and 

feature density (Teaford and Oyen 1989; Teaford and Lytle 1996; Romero et al. 2012). Turnover 

rates in occlusal microwear features occur within 7-14 days depending on the nature of the 

abrasives in the diet (Teaford and Oyen 1989), and buccal microwear has a slower turnover rate 

(Romero et al. 2012). How much these turnover rates on the postcanine teeth can be 

extrapolated for the anterior teeth, whose function is different, is unknown. However, turnover 

does occur and in individuals using teeth-as-tools it may be even more accelerated than is seen 
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on the posterior teeth given the size discrepancies between microwear and many non-

masticatory dental wear features.  

A further consideration of microwear analyses is the small area of a tooth analyzed in 

labial microwear studies there are several issues that are missed when only microwear is 

considered. First, many dental wear features (e.g., enamel chipping or instrumental striations) 

are often larger than the entire area analyzed in microwear studies. Second, the focus on wear 

near the labial edge ignores features that may be more densely packed on the labial midface or 

higher (e.g., labial cutmarks). Last, the mesial, distal, occlusal, and lingual surfaces are 

completely ignored in microwear analyses, and all of these surfaces can have diverse dental 

wear features indicative of non-masticatory behaviors. Future research comparing microwear 

alongside additional wear variables will help parse out these discrepancies.  

 

Conclusions 

From this broad review of dental wear, and the factors that contribute to its patterning, 

it has been made clear that the process is a dynamic one – changing throughout the lifetime of 

an individual; and it is influenced by a great many biological, environmental, and behavioral 

stimuli. Dental wear can be thought of as a palimpsest of human dietary and non-masticatory 

manipulative behaviors, where the size and depth of the feature, tissue affected, and abrasive 

loads will all affect that rate at which features are erased (turnover) or remain.  

Most dental wear studies in paleoanthropological contexts focus on a single method or 

wear feature. In such studies entire dental surfaces and informative wear features are 

overlooked, greatly reducing the behavioral resolution one can glean from more holistic 
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approaches. However, there are limitations related to access to fossils, time needed for specific 

analyses, and cost. All of these factors play into researcher decisions to focus on certain aspects 

of wear or methodologies. Finally, many of the dental wear features associated with non-

masticatory behavior are related to the processing of perishable archaeological materials such 

as leather, wood, sinew, cordage, plant fibers, etc. Thus, careful focus on wear features, while 

not being able to directly comment on the precise task being performed (Molnar 2011), can 

reveal something about the types of materials being manufactured or worked with the anterior 

dentition.    
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Chapter 3. Non-masticatory tooth-use in the Pleistocene  

 

Introduction  

The extent to which non-masticatory tooth use, inferred largely through the patterning 

of dental wear, has been used to support or refute interpretations of behavioral variability, 

cognitive ability, language capacity, or morphological evolution and adaptation of 

morphologically defined archaic and modern human is rather astounding (Brace 1962b, 1995; 

Brose and Wolpoff 1971; Frayer 1978; Smith 1983b, 2015; Rak 1986; Demes 1987; Trinkaus 

1987; Smith and Paquette 1989; Antón 1990, 1994, 1996; Spencer and Demes 1993; Lalueza-

Fox and Pérez-Pérez 1994; Lalueza-Fox and Frayer 1997; Dobson and Trinkaus 2002; Bermúdez 

de Castro et al. 2003; O'Connor et al. 2005; Bailey 2006; Lozano et al. 2008, 2009, nd; Cartmill 

and Smith 2009; Weaver 2009; Frayer et al. 2010, 2012; Krueger 2011; Uomini 2011; Clement et 

al. 2012; Krueger and Ungar 2012; Volpato et al. 2012; Estalrrich and Rosas 2013, 2015; 

Fiorenza and Kullmer 2013; Hlusko et al. 2013; Le Cabec et al. 2013; Bruner and Lozano 2014b; 

El Zaatari et al. 2014; Bruner and Lozano 2015; Fiore et al. 2015; Fiorenza 2015; Bruner and Iriki 

2016; Bruner et al. 2016; Krueger 2016). However, the majority of research to date is biased 

toward the study of non-masticatory wear among Middle Pleistocene archaic Homo and the 

Neandertals. Research within the last decade has started to include samples of early modern 

humans (Krueger 2011; Clement et al. 2012; Fiorenza and Kullmer 2013), but most studies are 

driven by particular methodologies (e.g., dental microwear texture analysis or occlusal 

fingerprint analysis), which makes it difficult to compare with approaches using light or 

scanning electron microscopy to document specific wear features (Ryan 1980b; Ryan and 
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Johanson 1989; Lozano et al. 2008; Lozano et al. 2015; Sarig et al. 2016; Willman 2016). The 

following review discusses the current state of non-masticatory dental wear research on 

Pleistocene humans and illustrates the current gaps in the literature that will be addressed in 

the present study.   

 

Neandertal and early modern human craniofacial shape, bite force, and dental wear  

 Functional adaptation, climatic adaptation, or neutral evolutionary processes are 

frequently invoked to explain the differences between archaic and modern human craniofacial 

morphology during the Late Pleistocene (e.g., Weaver et al. 2007; Weaver 2009; Holton et al. 

2011; Rae et al. 2011ba, b). The “Anterior Dental Loading Hypothesis” (ADLH), one of the more 

influential hypotheses in the literature, posits that high magnitude and/or repetitive loading of 

the anterior dentition through the habitual use of teeth-as-tools provided a strong selective 

force in Neandertal craniofacial and dental evolution (Smith 1983b; Rak 1986; Demes 1987; 

Trinkaus 1987; Smith and Paquette 1989; Spencer and Demes 1993; Brace 1995; Le Cabec et al. 

2013). A variety of qualitative descriptions of Neandertal anterior dental morphology and wear 

patterns have been used to support the behavioral basis for the ADLH, including: labially worn, 

rounded, and non-occluding anterior teeth in some Neandertal fossils; frequent documentation 

of stone tool-induced cutmarks on the labial enamel; large anterior relative to posterior dental 

dimensions of Neandertals compared to modern humans; and large anterior tooth roots (Brace 

1962b, 1964; Coon 1962; Smith 1983b; Trinkaus 1983).   

While Neandertal dental morphology is suggestive of functional adaptation to repetitive 

and/or heavy loading of the anterior dentition in both mastication and the use of the teeth-as-

tools, evidence for craniofacial skeletal functional adaptation to non-masticatory behavior is 
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less clear. Although historically the focus has been largely qualitative (O’Connor et al. 2005), the 

modelling of bite force magnitude and/or efficiency of bite force production among 

Neandertals and modern humans have become more common in recent years (Antón 1990, 

1994; Couture 1993; Spencer and Demes 1993; O'Connor et al. 2005; Holton 2009; Wroe et al. 

2010; Eng et al. 2013). Qualitative descriptions of morphology postulated as functionally linked 

to non-masticatory behavior (although not ignoring the importance of resisting masticatory 

forces as well) include the well-defined nuchal and cervical muscle attachments necessary for 

stabilizing the head against repetitive gripping and pulling of objects held between the teeth 

like a vise (Brose and Wolpoff 1971; Smith 1983b; Trinkaus 1986; Smith and Paquette 1989), a 

vertically long face (Smith 1976, 1983; Rak 1986), and the orientation of the infraorbital region 

for efficient load dissipation (Smith 1983b; Rak 1986; Demes 1987; Trinkaus 1987). While the 

nuchal and cervical musculature attachments are likely reflective of muscular hypertrophy and 

can be linked to head stabilization, there is little support to date that facial height or the 

orientation of the infraorbital region in Neandertals is functionally linked to resisting loads 

placed on the craniofacial system during masticatory and/or non-masticatory activity.  

Quantitative analyses repeatedly show that Neandertals are unlikely to have produced 

higher magnitude bite forces or have more efficient anterior bite force production than modern 

humans despite the seemingly elevated levels of anterior dental wear among Neandertals 

(Antón 1990, 1994, 1996; Couture 1993; Dobson and Trinkaus 2002; O'Connor et al. 2005; 

Clement et al. 2012). Furthermore, neutral evolutionary processes and climatic adaptation 

better explain many aspects of Late Pleistocene craniofacial evolution than functional 

adaptation to non-masticatory behaviors (Antón 1994; Maureille and Houêt 1998; Hublin 2002, 
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2009; Franciscus 2003; O'Connor et al. 2005; Weaver et al. 2007; Holton and Franciscus 2008; 

Weaver 2009; Holton et al. 2011). Finally, none of these studies of craniofacial morphology 

address whether the potential to produce high magnitude loads actually translates to the 

production of high loads in life. However, the direct analysis of dental chipping, fracture, and 

catastrophic crown failure can assess the differential loading of the anterior dentition among 

Neandertals and modern humans (e.g., Constantino et al. 2010; discussed futher below). 

Craniofacial morphology does not provide definitive evidence for Neandertals engaging 

in more non-masticatory activity or producing higher magnitude loads with the anterior 

dentition relative to modern humans. However, the robust size and morphology of Neandertal 

anterior dental morphology, their heavy anterior relative to posterior occlusal attrition, the 

presence of labial cutmarks, and frequent chipping do support the behavioral inference for the 

use of teeth-as-tools (Cartmill and Smith 2009). Furthermore, differences in craniofacial form 

between Late Pleistocene human groups should not have any effect on the presence or 

patterning of specific dental wear features.  

 

Anterior tooth dimensions and discrete morphology 

In addition to the large metric dimensions of Middle and Late Pleistocene archaic human 

anterior teeth, the perception of robust anterior dental crowns is reinforced by a series of 

discrete morphological characteristics that are seen in high frequency among archaic humans 

but less frequently among Middle Paleolithic modern humans, Upper Paleolithic modern 

humans, and recent human groups (Figure 3.1). Generally, the ASUDAS scoring procedures for 

discrete dental traits are used for modern human groups (Turner et al. 1991), but the system is 



67 
 

typically modified for the study of archaic Homo given their propensity to exhibit “mass-

additive” (as defined by Irish 1998) traits (e.g., labial convexity, shovel shaping, and lingual 

tubercles Figure 3.2) beyond the typical range of variation observed in modern humans 

(Crummett 1995; Bailey 2002, 2006; Bailey and Hublin 2006; Martinón-Torres et al. 2012). 

 
Figure 3.1 Maxillary anterior tooth discrete dental morphology. 
Data on mass-additive traits available in the literature. Middle Pleistocene data is from 
Martinón-Torres et al. (2012). See Zapata et al. (2017) for remaining sources of data. 
 

Like enamel thickness, tooth form and size are strongly tied to both fracture resistance 

(Lucas et al. 2008b; Lawn et al. 2009, 2013; Constantino et al. 2010, 2011) and the capacity to 

withstand lifelong wear (Lucas 2004). Larger teeth have the added benefit of providing more 

surface area, and therefore more microcontacts, for the efficient breakdown of exogenous 
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substances (Lucas 2004) or increased surface area for non-masticatory manipulative behavior. 

With respect to Late Pleistocene humans, there is little overall difference between groups in 

mean postcanine buccolingual crown breadths; whereas, there is a marked reduction in 

labiolingual breadths of the anterior teeth between archaic and early modern (and recent) 

humans (Frayer 1978; Trinkaus 1978, 2004; Stefan and Trinkaus 1998; Hillson 2006; Trinkaus et 

al. 2014) – a difference established by the middle of the Middle Pleistocene in Europe (Trinkaus 

2004).  

 
Figure 3.2 An example of mass-additive dental traits in archaic humans.  
The complex and “robust” morphology of a Neandertal LI1 (left: Saint-Brais) is contrasted 
with the relatively simple morphology an early modern human LI1 (right: Brassempouy 2206). 
Note the antemortem enamel chipping on both incisors. The irregular labial surface of the 
Brassempouy incisor is due to a large calculus deposit. 
 

In addition to the large, buttressed dental crowns Neandertals exhibit large anterior 

tooth roots when compared to modern humans in terms of length, cross-sectional properties, 
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and total volume (Smith and Paquette 1989; Le Cabec et al. 2013). The long length of anterior 

tooth roots of Neandertals occurs independently of their large jaws (Le Cabec et al. 2012). Large 

anterior tooth roots are also found among Lower and Middle Pleistocene Homo suggesting that 

large roots are the ancestral condition (Smith and Paquette 1989; Le Cabec et al. 2013). While 

not common, some early modern humans do overlap with archaic humans in root dimensions 

(Le Cabec 2013; Trinkaus et al. 2013b, 2014). 

Large roots have several benefits in high attrition environments. First, when the crown is 

fully worn away the tooth root functions as an occlusal surface and large roots remain 

functional longer than smaller roots. Second, the greater surface area of large roots provide 

more attachment area for the periodontal ligament fibers (Hylander 1977a). Lastly, long and 

broad roots provide an efficient means of dissipating occlusal forces into the surrounding 

alveolar bone (Smith 1983b; Smith and Paquette 1989), and the labiolingually broad root 

morphology efficiently resists compressive forces and fracture (Kloehn 1938; Trinkaus 1978; Le 

Cabec et al. 2013).  

The morphologically robust and relatively large teeth of Archaic Homo, and particularly 

the Neandertals, are therefore generally interpreted as a buffer against a high levels of anterior 

tooth use in incisal preparation of food and especially for the use of teeth-as-tools (Smith 

1976a, 1983b; Rak 1986; Demes 1987; Trinkaus 1987; Smith et al. 1989; Spencer and Demes 

1993; Antón 1994).  
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Dental tissue proportions 

 Over the last decade there have been great advances in the use of 2D and 3D computed 

and microcomputed tomography for the quantification of dental tissue proportions (i.e., 

enamel, dentin, and pulp) and morphology (Macchiarelli et al. 2013). Neandertal dental tissue 

proportions are among the most widely published taxon using these newly available 

methodologies (Olejniczak et al. 2008; Bayle et al. 2009b, 2017; Smith et al. 2009, 2012; 

Crevecoeur et al. 2010b; Benazzi et al. 2011b; Willman et al. 2012; Le Cabec et al. 2013; Le 

Cabec et al. 2014). Other studies of dental tissue proportions include some specimens of 

Middle Pleistocene Homo (Raynal et al. 2010; Zanolli et al. 2010; Smith et al. 2012; Le Cabec et 

al. 2013; Liu et al. 2013; Zanolli and Mazurier 2013; Xing et al. 2014) and various Middle 

Paleolithic/Middle Stone Age humans from across Africa and southwest Asia (Smith et al. 2006, 

2012; Hublin et al. 2012; Le Cabec et al. 2013), but few Upper Paleolithic/Later Stone Age early 

modern humans (Bayle et al. 2009a, 2010; Le Cabec et al. 2013). Overall trends in dental tissue 

proportions between Late Pleistocene human groups remain difficult to elucidate due to small 

sample sizes (Smith et al. 2012), and may be further conflated by grouping African Middle 

Paleolithic/Middle Stone Age regional samples (particularly those of North and South Africa) 

that have a complex mix of archaic and derived features (Trinkaus 2013). However, some 

interesting distinctions between Neandertals and (primarily recent) modern human dental 

tissue proportions have been outlined.  

Smith and colleagues (2012) show that two-dimensional (2D) average enamel thickness 

and relative enamel thickness (a unitless measurement scaled to tooth size for intertaxon 

comparisons) is lower on average for Neandertal maxillary and mandibular canine, premolar, 
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and molar teeth when compared to their fossil modern human and recent human sample. 

Incisor average enamel thickness values are similar between Neandertals and the fossil modern 

human sample but thinner in comparison to recent modern humans (Smith et al. 2012). These 

differences are largely due to the greatly expanded dentin volume in Neandertal dentitions 

relative to the modern human samples (Bayle et al. 2010, 2017; Smith et al. 2012). However, 

Bayle et al. (2017) show that 2D and 3D average enamel thickness values are similar to slightly 

higher among the Sima de las Palomas Neandertal maxillary incisors, but also emphasize that 

the chronological and geographic patterning of dental tissue proportions among Neandertals is 

poorly understood.  

Interestingly, the mixed dentition of the Lagar Velho 1 child has intermediate enamel 

thickness values to the Roc de Marsal 1 Neandertal child and the Late Upper Paleolithic child La 

Madeleine 4 (Bayle et al. 2009a, b, 2010). Furthermore, the La Madeleine 4 child is similar to 

recent human enamel thickness values (Bayle et al. 2009a). The trends seen in the European 

Upper Paleolithic mixed dentitions are a case in point that more European adult dentitions 

must be studied in order to elucidate overall trends in archaic versus early modern human 

dental tissue proportions – trends that the largely African Middle Paleolithic/Middle Stone Age 

sample of the largest study to date (Smith et al. 2012) cannot fully remark upon.  

 As discussed in Chapter 2, dental wear is a result of dietary and environmental factors. 

Trends in dental tissue proportions do have an effect on rates of dental wear, but there is a 

complex interplay between enamel thickness and dental size, diet, and environment. This has 

led some researchers to critique the use of dental wear aging techniques for demographic and 

life history studies (Smith et al. 2012); but as discussed above with regard to differences in 
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timing and sequence of dental development, most studies use ordinal scales and time-averaged 

samples by compressing the scale into fewer categories (e.g., Trinkaus 1995, 2011; Caspari and 

Lee 2004). The present study is less affected by the issue of differential enamel thickness 

between archaic and early modern humans given the focus on the anterior dentition. While it 

has been shown that the enamel of Neandertal canines exhibits lower average and relative 

enamel thickness values compared to the sample of fossil modern humans, the values for 

incisors are quite similar (Smith et al. 2012).  

 Postcanine enamel thickness is often used to infer dietary strategies of extinct human 

and non-human primates. Many researchers have suggested that thick enamel provides 

resistance to crack propagation and catastrophic crown failure related to hard-object feeding 

and its attendant production of high bite forces (Kay 1981; Dumont 1995; Lucas et al. 2008b, b; 

Vogel et al. 2008; Constantino et al. 2010, 2012).  Similarly, thickly enameled anterior teeth 

would be more resistant to catastrophic failure. Thick enamel also provides a defense against 

the lifetime accumulation of dental wear in the presence of dietary abrasives and erosion in the 

postcanine teeth (Molnar and Gantt 1977; King et al. 2005; Rabenold and Pearson 2011, 2014; 

Pampush et al. 2013), and increases the longevity of anterior tooth use for incisal food 

preparation and use of the teeth in manipulative tasks. Typically, researchers frame the hard-

object feeding versus lifetime resistance to wear in opposition, but the hypotheses need not be 

mutually exclusive (Pampush et al. 2013).  
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Reconciling dietary and manipulative use of the anterior teeth  

 The study and interpretation of wear (microwear especially) as an indication of ingestive 

behaviors among nonhuman primates has had a long history of study (e.g., Walker 1976; Ungar 

1994; Krueger and Ungar 2009; Krueger 2011, 2014, 2015), but the advent of technocultural 

solutions that can make ingestion an exosomatic exercise complicates the issue among tool-

using hominins. Fork and knife as well as cooking and other culinary traditions involving pre-

ingestive preparation of food are intuitive examples of how culture or traditions among recent 

humans reduce the use of the incisors for ingestion. In deeper time, simpler behaviors such as 

the cutting, pounding, or grinding of foods could also relegate the incisors unnecessary as food 

bypasses the anterior dentition and is moved directly to the postcanine dentition for 

mastication. An example of exosomatic food breakdown, documented ethnographically in 

many disparate groups, that receives ample attention in Middle and Late Pleistocene contexts 

is the “stuff-and-cut” behavior (Figure 2.6).  This technique involves gripping an object, often 

meat, between one hand and the anterior teeth while using the free hand to cut the food item 

close to the mouth with a stone tool or metal blade which breaks down food into smaller, 

chewable portions (Koby 1956; Brace 1962b, 1964, 1975; Uomini 2008).  

 Incisor and canine dental wear also complicates the issue of linking form and function to 

ingestion alone. The spatulate incisors of the anthropoid primates, including hominins, are 

generally thickest near the cervix and taper toward the occlusal surface. The canines are conical 

but are similarly thickened at the cervix and taper toward the occlusal surface. Relatively 

unworn incisors would therefore be most efficient at cutting and slicing food, while increasingly 

worn and blunted anterior teeth would be sufficient for the gripping, grinding, and fracture of 
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food, but not cutting. Wallace (1975) noted the difficulties of cutting food with heavily worn 

anterior teeth and made specific reference to the heavily worn, rounded, and non-occluding 

teeth of La Ferrassie I and several recent human examples. Furthermore, the occlusal to cervical 

tapering of incisors and canines results in increasingly large occlusal surface area with 

progressive wear (until it diminishes when wear progresses to root surfaces). Increased surface 

area provides a greater number of microcontacts for simple fracture and gripping behaviors and 

would be more greatly accentuated in groups expressing more mass-additive anterior dental 

characteristics (e.g., labial convexity, shovel shaping, and lingual tubercles). Given the 

propensity of elevated anterior relative to posterior dental wear in many hunter-gatherers and 

most pre-industrial peoples (Molnar 1971; Kaifu 1999; Deter 2009; Clement et al. 2012), it is 

interesting to note that the use-life of the anterior teeth as a functional and efficient cutting 

and slicing edge aiding with ingestion is relatively short compared to its use-life as a blunt, but 

more expansive, occlusal surface. The use of cutting implements in stuff-and-cut behaviors is 

often used instead of incisor partitioning of foodstuffs – i.e., blunt, worn teeth are better for 

gripping and holding than cutting.  

It has been suggested that wear in the form of dietary microstriations can be isolated 

from other forms of non-masticatory dental wear on the labial and occlusal surfaces of incisors 

using an SEM on the basis of size (Lozano et al. 2008), or through the use of comparative 

ethnographic framework and microwear texture analysis (Krueger and Ungar 2009; Krueger 

2015). However, these methods may not be as straightforward as thought. For instance, objects 

manipulated with the anterior dentition in non-dietary contexts can have small grit or other 

exogenous particles adherent to them. These particles could induce the same size striations and 
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pits expected to form through normal ingestive behavior. It is clear that other dental wear 

features should be taken into account to assist in understanding manipulative versus dietary 

influences on overall patterns of dental wear.  

In summary, anterior tooth use for dietary purposes is a difficult process to detect in 

technologically inclined hominins as much of incisal preparation of foods can be exosomatic. 

Many of the behaviors that use the anterior teeth for preparing food for mastication can be 

viewed as non-masticatory behaviors. A final example illustrating this point can be found in a 

critique of Wallace’s (1975) assertion that the rounding of the anterior dentition is entirely due 

to dietary behaviors. Wallace (1975:395) asserted that:   

“Because of the open bite, with consequent loss of effective incision, La Ferrassie 
I grasped the grit-laden piece of meat or fibrous vegetable in hand and in a 
raking, stripping movement pulled it over the incisor stumps to shred or tear off a 
mouthful of food. Alternately and habitually pulled outwards, upwards, and 
downwards, grit-laden food [sic].” 

 
While the above scenario is related to incisor processing for food, the forceful behaviors are 

manipulative in the same sense that many uses of the dentition are non-masticatory, tool-using 

behaviors. In this sense, we can view the manipulation of foodstuffs with the anterior teeth as a 

form of manipulative behavior (Hylander 1977a; Cartmill and Smith 2009).  

Anterior dental wear can be considered a palimpsest of dietary/ingestive and non-

masticatory, manipulative behaviors. Careful consideration of multiple dental wear features 

and total occlusal wear can help determine relative differences in degree and use of the 

anterior dentition in chewing and as a tool.  
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Historical recognition of non-masticatory behavior among archaic humans 

The use of “teeth-as-tools” for non-masticatory, manipulative behaviors is a central 

theme in reconstructions of Neandertal and archaic Homo behavioral repertoires. These non-

masticatory behaviors are largely inferred from the degree and patterning of anterior dental 

wear and interpreted using ethnographic analogy and actualistic studies of human non-

masticatory behaviors. Extensive anterior tooth wear was first acknowledged among the 

Neandertals specimens from Spy (Fraipont and Lohest 1887), and was followed by Martin’s 

(1923) description of wear-related striations on the labial surfaces of the maxillary anterior 

teeth of La Quina 5, but neither case was initially attributed to non-masticatory behaviors. Koby 

(1956) was the first to identify and attribute extensive labial striations on the Saint-Brais 

maxillary central incisor, and by extension the striations on the teeth of La Quina 5, to non-

masticatory behaviors. Koby (1956) specifically identified the striations as cutmarks caused by 

accidental contact between a stone tool and the labial enamel when cutting materials held 

between the front teeth. He based this interpretation on non-masticatory behaviors 

documented ethnographically among the high-latitude hunter-gatherers.  

Other researchers began to acknowledge that the use of teeth-as-tools was a likely 

contributor to the pattern of heavily worn, rounded, and non-occluding anterior teeth of some 

older adult Neandertals and archaic Homo fossils (e.g., La Ferrassie 1, Gibraltar 1, Shanidar 1, 

and Broken Hill 1). Eventually the large and morphologically robust anterior teeth of 

Neandertals and archaic Homo were considered alongside the dental wear evidence for non-

masticatory behaviors (Brace 1962b, 1964; Coon 1962), and views stressing functional 

adaptation to non-masticatory behaviors and/or structural reduction through cultural 
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innovation permeated the literature (Rak 1986; Demes 1987; Trinkaus 1987; Smith and 

Paquette 1989; Spencer and Demes 1993; Brace 1995; Le Cabec et al. 2013). 

 

Direct analyses of non-masticatory dental wear on Pleistocene fossils 

Instrumental striations on the anterior teeth caused by “stuff-and-cut” behaviors (Brace 

1975) are the most frequently documented dental wear feature in the Pleistocene. Cutmarks 

are documented for the Early Pleistocene from one individual at Gran Dolina (Lozano et al. 

2015) and at Dmanisi (Margvelashvili et al. 2016). Although no detailed analyses have been 

done on the striations, there is an intriguing case attributed to the central incisors of the OH 65 

maxilla (Homo habilis) (Clarke 2012). However, instrumental striations are noted in abundance 

on Middle and Late Pleistocene human teeth: Boxgrove (Hillson et al. 2010), Broken Hill 

(Lalueza-Fox and Pérez-Pérez 1994), Mauer (Puech et al. 1987), Pontnewydd (Compton and 

Stringer 2012), Qesem (Sarig et al. 2016), Sima de los Huesos (Bermúdez de Castro et al. 1988; 

Lozano et al. 2004; Lozano et al. 2008; Lozano et al. 2009), Angles sur l’Anglin (Patte 1960), 

Cova Negra (Bermúdez de Castro et al. 1988; Arsuaga et al. 1989; Arsuaga et al. 2001), Hortus 

(de Lumley 1973; Estalrrich and Rosas 2015), Krapina (Lalueza-Fox and Frayer 1997; Fiore et al. 

2015), Sima de las Palomas (Willman 2017), Regourdou 1 (Volpato et al. 2012), Shanidar 

(Trinkaus 1983), El Sidrón (Estalrrich and Rosas 2013, 2015), Spy (Estalrrich and Rosas 2015), 

Tabun C1 (Lalueza-Fox and Pérez-Pérez 1994), and Vindija (Frayer et al. 2010). To date, only a 

few examples exist among modern humans and all but one (Willman 2016) are from the 

Holocene (Lalueza-Fox and Pérez-Pérez 1994; Lozano et al. 2008; Molnar 2008; Dinnis et al. 

2014). Striations have been examined in other studies using light-microscopy (Bax and Ungar 
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1999), but methods used in the study make it difficult to interpret and compare these striations 

to the work of other researchers.  Other striations that have not been studied in the same ways 

but could be related to instruments contacting enamel are found elsewhere (Lukacs and Pastor 

1988), but the striations are quite fine and etiology is uncertain. Finally, the Paleoindian Buhl 

burial has been cited numerous times as having cutmarked anterior teeth (Lozano et al. 2008, 

nd; Estalrrich and Rosas 2013, 2015; Bruner and Lozano 2014b; Spinapolice 2015; Bruner et al. 

2016), but there is absolutely no reference to this form of dental wear anywhere in the original 

publication (Green et al. 1998).  

Particular dental wear features (i.e., enamel flaking, pits and gouges, and occlusal 

striations) were documented using scanning electron microscopy (SEM) at low-level 

magnification for a small sample of Neandertals and Middle Paleolithic modern humans, and 

the total number of dental wear features was highest among the Neandertals (Ryan 1980b). 

Enamel chipping has been extensively documented in bioarchaeological research (see Chapter 

2), but similar documentation in the form of inter- or intra-site comparisons is largely absent for 

Late Pleistocene fossils. It is not uncommon for chipping to be noted on individual teeth when 

present (Arsuaga et al. 1989; Formicola and Repetto 1989; Garralda and Vandermeersch 2000; 

Rougier 2003; Maureille et al. 2008; Doboş et al. 2010; Frayer et al. 2010; Liu et al. 2010; 

Janković et al. 2012); however, researchers will rarely note an absence of antemortem enamel 

chipping. Therefore, enamel chipping prevalence remains poorly understood for Middle to Late 

Pleistocene contexts aside from a few case studies for the Sima de los Huesos hominins (Lozano 

et al. 2008), some earlier (Rougier 2003) and later Neandertals (Estalrrich and Rosas 2015; 

Willman 2017), and the Late Upper Paleolithic humans from Taforalt (Bonfiglioli et al. 2004).  
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Incisor beveling angles reflect dentoalveolar compensation to progressive wear due to 

the cumulative effects of ingestive and non-masticatory anterior tooth-use. Compensatory 

mechanisms maintain functional occlusion as wear changes occlusal relationships during life 

(see Chapter 2), and beveling angles can document the shift from scissors occlusion to edge-to-

edge occlusion of incisors. In older individuals with exceptional wear, the incisors may no longer 

occlude and often appear heavily rounded. An analysis of incisor beveling angles among 

Neandertals and recent human groups from the Holocene show more pronounced beveling 

among Neandertals (Ungar et al. 1997). The Holocene samples included Ipiutak hunter-

gatherers from Point Hope, Alaska and food-producing Puebloan individuals from the 

southwestern United States (Ungar et al. 1997), but no fossils of Late Pleistocene early modern 

humans. Nonetheless, the study indicates that the mechanisms of anterior dentoalveolar 

compensation are similar across archaic and modern human groups despite differences in tooth 

size and morphology. 

Additional studies looking at differences in the degree of wear between archaic and 

early modern humans is provided by analyses of macrowear gradients. Trinkaus (1992) 

observed macrowear and scaled it to buccolingual crown breadth (see Chapter 5) for a sample 

of Middle Paleolithic modern humans and Neandertals from southwest Asia to understand 

differences in the relative rates of wear between morphologically defined groups while 

accounting for the greater size of archaic relative to Middle Paleolithic modern human anterior 

teeth. His analysis showed similar degrees of wear but a clear separation of samples on the 

basis of large anterior tooth dimensions in the Neandertals. This implies that Neandertals 

exhibit higher rates of anterior relative to posterior tooth wear than Middle Paleolithic modern 
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humans because their anterior teeth exhibit higher rates of wear despite their absolutely larger 

dimensions (i.e., larger teeth are expected to were more slowly than smaller teeth if all 

behavioral and environmental factors are equal). This study has been replicated with more 

inclusive samples of Neandertals and early modern humans (Doboş et al. 2010; Willman 2016, 

2017). The results are largely the same, albeit there is some overlap between samples, and the 

large size of the anterior teeth in archaic Homo indicates an advantage in terms of resistance to 

cumulative wear.  

Clement and colleagues (2012) examined occlusal wear gradients (ratio of dentine to 

enamel) in addition to controlling for eruption sequences. Their results showed considerable 

overlap between recent humans, early modern humans, and Neandertal samples. Some of the 

Holocene and early modern human fossils were even found to have more severe wear than 

Neandertals, in addition to a propensity for uneven wear across the anterior teeth compared to 

the evenly distributed wear across Neandertal anterior teeth (Clement et al. 2012). They 

conclude that there is no support for the ADLH and that all Late Pleistocene humans used their 

dentitions in similar ways. However, the use of occlusal wear ratios removes a biologically 

relevant factor in dental wear: tooth size. Even if dentin exposure is similar for each tooth type, 

there are differences in occlusal area between the groups. Thus, there is still some indication 

that the large anterior teeth of archaic Homo were under stabilizing selection given their 

establishment by the middle of the Middle Pleistocene and maintenance among later 

Neandertals (Trinkaus 2004) – possible related to maintaining functional dentitions for 

manipulative purposes throughout the lifetime.  
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Another macroscopic perspective on the use of teeth as tools uses data from Occlusal 

Fingerprint Analysis (OFA) (Fiorenza et al. 2011a; Fiorenza and Kullmer 2013, 2015; Fiorenza 

2015). OFA (Kullmer et al. 2009) uses digital models of molar crowns to examine the patterning 

of occlusal wear facets related to contact between maxillary and mandibular teeth. Fiorenza 

and Kullmer (2011a) identified wear facets that are not thought to form under normal 

masticatory regimes and they coined the term “para-facets” to describe them. Para-facets were 

predominantly found on teeth of hunter-gatherers that are ethnohistorically known to have 

used their teeth-as-tools, but samples were limited to 35 maxillary molars from six different 

groups with nearly half the teeth (N=17) belonging to one group (Fiorenza et al. 2011a). The 

presence of para-facets was interpreted as forming through the use of teeth-as-tools – perhaps 

through clenching an object between the teeth and manipulated it with the hands. Para-facets 

have since been documented in Neandertals and Middle Paleolithic modern humans from Skhul 

and Qafzeh suggesting similar forms of non-masticatory behaviors (Fiorenza and Kullmer 2013; 

Fiorenza 2015). However, there is some debate as to whether para-facets are markers of non-

masticatory behaviors. A main critique concerns the presence of malocclusion in many of the 

Middle Paleolithic modern humans examined (Sarig and Tillier 2014, 2016; Fiorenza and 

Kullmer 2015). However, the method is promising and expanded sampling of ethnohistoric 

groups may help refine interpretations as seen in microwear texture analyses (Krueger and 

Ungar 2009; Krueger 2015).  

SEM-based approaches to labial microwear and non-masticatory behavior among 

Neandertals and early modern humans have provided mixed results as only one study has been 

attempted (Henry et al. 2006). An SEM microwear analysis suggested that the patterning of 
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microwear on the labial surface of incisors among Neandertals and early modern humans co-

varies with ecogeography rather than taxonomic or technocultural distinctions (Henry et al. 

2006). The authors also discussed the difficulties in distinguishing the role of exogenous 

environmental grit, diet, and/or non-masticatory behaviors in the production of microwear 

(Henry et al. 2006) – conflicting factors that are also stressed in bioarchaeological contexts 

(Teaford et al. 2001). While not examining Pleistocene fossils, bioarchaeological research has 

shown that labial microwear can discriminate between groups on the basis of diet (Ungar and 

Spencer 1999; Romero and De Juan 2003, 2004), or that differences could relate to differences 

in the loading of the incisors (Spencer and Ungar 2000) – conclusions that are not necessarily 

mutually exclusive. Thus, SEM-based analyses of microwear have yielded conflicting results.  

Krueger (2015; Krueger and Ungar 2009) has used a comparative database of 

bioarchaeological samples with well-documented information on diet, environmental abrasive 

loads, non-masticatory behaviors, and climate from ethnohistorical documents and/or 

archaeological inferences. Microwear texture variables for anisotropy, textural fill volume, 

heterogeneity, and complexity were shown to differentiate bioarchaeological groups (Krueger 

2015). However, the differences must then be interpreted through the contextual data (i.e., 

diet, non-masticatory behaviors, abrasive loads, etc.) available for each bioarchaeological 

group. The assumptions made with comparative samples are then compounded with the 

additional of fossil taxa for which all behavioral and environmental contexts are inferred 

through human paleobiology and Pleistocene archaeology – contexts which are far less assured 

than in recent bioarchaeological samples. 
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Krueger and Ungar (2012) examined microwear textures for 17 Krapina individuals and 

determined that they were probably engaging in non-masticatory behaviors to a moderate 

degree based on textural fill volume and heterogeneity variable similarity to a Coast Tsimshian 

bioarchaeological sample, but Krapina had an environmental abrasive load more similar to that 

of a Puye Pueblo sample based on microwear texture complexity. Interestingly, the lack of 

similarity with the Nunavut sample was used suggested to the authors that the Krapina 

Neandertals were less actively using intensive clamping/grasping non-masticatory behaviors. 

However, it is interesting to note that the extensive documentation of labial cutmarks and 

chipping in the Krapina sample suggests they were engaged in intensive anterior tooth-use 

(Lalueza-Fox and Frayer 1997; Fiore et al. 2015). Another microwear texture study showed that 

Neandertal non-masticatory behavior varies between groups categorized “warm, woodland” 

and “cold, open steppe” (Krueger 2016). The “cold, open steppe” Neandertals were similar to 

the Ipiutak bioarchaeological sample (high textural fill volume and low anisotropy) suggesting 

extensive clamping and grasping non-masticatory behaviors – perhaps related to the 

production of cold weather necessities like hide (Krueger 2016). The “warm, woodland” sample 

was more similar to a Tigara sample that also engaged in non-masticatory behaviors but did not 

process the same types of materials as the Ipiutak (Krueger 2016). The ecogeographic 

difference between warm and cold Neandertal groups is a particularly novel finding especially 

when one considers the extent to which Neandertals have been viewed as behaviorally 

inflexible.  

The above examples were not done with the most recently published comparative 

sample (11 bioarchaeological groups: Krueger 2015), so it is likely these conclusions will be 
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refined in the future. While labial microwear textures in Neandertals co-vary with 

ecogeography (Krueger and Ungar 2012; Krueger 2016), Krueger (2011) suggests that early 

modern humans did not engage in much non-dietary tooth-use irrespective of climate, region, 

or chronology. Technology differences between Neandertals and early modern humans was 

proposed as an explanation for the relatively low and invariable signal for non-masticatory 

behaviors in her early modern human sample (Krueger 2011). In contrast, Willman (2016) has 

shown that the early modern humans from Dolní Vĕstonice II engaged in extensive non-

masticatory behaviors, but that these behaviors produced different forms of dental wear 

features than are typically recognized among Neandertals (i.e., LSAMAT and vertical 

instrumental striations).  

Interestingly, the results of incisor microwear texture analyses reached extremely 

similar conclusions to studies of molar microwear textures among early modern humans and 

Neandertals. The molar analyses show Neandertals varied their diets in different ecogeographic 

and climatic conditions whereas early modern humans did not (El Zaatari et al. 2011; El Zaatari 

and Hublin 2014; El Zaatari et al. 2016). In additional postcanine buccal microwear (Pinilla and 

Trinkaus 2017b), molar macrowear (Fiorenza et al. 2011b; Fiorenza 2015), and SEM microwear 

on labial incisor surfaces (Henry et al. 2006) all show strong patterning of wear by 

ecogeography among Neandertals and some early modern humans. As a whole, this may 

suggest that diet and ecogeography have a predominant signal in many forms of wear analysis. 

If this is the case, it is less clear how well microwear texture is characterizing non-masticatory 

versus dietary behaviors from incisor labial surface microwear textures. The contrasts in incisor 

microwear and dental wear feature analyses (e.g., cutmarks, chipping, etc.) outlined above also 
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suggests that the non-masticatory signal from microwear texture analysis may not correlate 

strongly with the larger wear features documented using low-level microscopy and SEM. Some 

cross-validation of methodologies between microwear texture analysis and dental wear feature 

analyses would aid future interpretations.  

Interproximal grooves are perhaps the only wear feature regularly published for archaic 

and modern human groups but their etiology is often debated (Formicola 1988b, 1991; Brown 

1991; Frayer 1991; Lalueza-Fox et al. 1993; Bermúdez de Castro et al. 1997; Lebel et al. 2001; 

Trinkaus et al. 2003; Durband et al. 2012; Lozano et al. 2013; Sun et al. 2014). Interproximal 

grooves are generally found on the posterior teeth except for a few, rare cases featuring 

interproximal grooves between the anterior teeth of Upper Paleolithic and Holocene (Formicola 

and Repetto 1989; Molnar 2008; Willman, personal observation). 

A final note on the documentation of wear features concerns prevalence. It is common 

for descriptions of fossils to include data on a dental feature when they are present. However, 

the focus on presence creates a natural overrepresentation of particular wear features 

(cutmarks, chipping, interproximal grooving, etc.). This dissertation attempts to rectify this bias 

by providing data on absence whenever possible. However, the concentration on prevalence in 

the literature will naturally lead to inflated prevalence in this research as well. 

 

Conclusions 

 Detailed analyses of anterior dental wear are frequently neglected in analyses 

concerned with non-masticatory behaviors. The tendency is to cite evidence of extreme wear 

among Neandertals to support the ADLH or non-masticatory behavior in general, but 
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systematic studies of wear are still relatively rare. The non-masticatory dental wear in Middle 

and Late Pleistocene humans is more fully documented than in early modern humans, and few 

studies or descriptions are comparable. Newer analyses that include modern human samples 

are methodologically driven, which makes the data difficult to compare – especially with 

analyses that focus on more traditional wear feature descriptions (cutmarks, chipping, 

macrowear, etc.). Cross-validation of methods and expanded sampling of early modern humans 

have been proposed as two ways forward in the study of Neandertal and early modern human 

non-masticatory behavior. Unfortunately, cross-validating other methods is outside of the 

scope of this dissertation. However, expanded sampling is possible and dental wear feature 

analysis for instrumental striations and enamel chipping will provide comparative data that will 

contribute to future studies aimed at cross-validation of newer methodologies.  
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Chapter 4. Materials 
 

Introduction 

The methods used in this dissertation differ for each individual analysis. Therefore, 

independent methods are presented with each analysis chapter. Here, a brief introduction to 

the samples studied, a description of dental molding and casting is provided, and a 

rationalization for sample sub-groupings. The chapter concludes with a table presented fossil 

samples studied and an indication of what analyses they were included in.  

 

Sample descriptions 

 The macroscopic and microscopic methods used in this thesis require very different 

forms of data which means that sampling strategies differ greatly between analyses. A brief 

description of each sampling strategy is therefore warranted before detailed protocols are 

presented in individual analysis chapters.  

Scaled occlusal macrowear gradients require no molding or casting of dentitions – only 

occlusal wear scores (Smith 1984) and buccolingual crown breadths were needed. All data was 

acquired from visual and metric investigations of the original specimens, or from published 

literature and photographs when the original specimens were not available. The completeness 

of fossils (number of observable teeth), and the presence of both wear and metric data when 

using data obtained from sources other than direct observation (e.g., literature and/or 

photographs) are the primary factors limiting sample size. Sampling strategies in each type of 

analysis address this issue. 
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A limiting factor for macrowear analyses is the presence of both anterior and posterior 

teeth in the same jaw. Data obtained from full arcades (I1-M2, see Chapter 5) are most limited 

in this regard given the relative rarity of complete dentitions in the Pleistocene fossil record. A 

second analysis of individual anterior teeth (I1, I2, or C) versus a first molars from the same jaw 

allowed more inclusive sampling of fragmentary dentitions. Finally, the use of data culled from 

the literature does not always provide paired metric and wear score data. Therefore, a final 

analysis observing differential occlusal wear of each anterior tooth (I1, I2, or C) versus a first 

molar of the same jaw, without corresponding metric data, was also performed.   

 Antemortem anterior dental chipping analyses sampled any anterior tooth that was 

available for study (also see Chapter 6 for taphonomic issues) with a limited number of 

observations obtained from comparable published analyses. Most observations could be made 

macroscopically or with low magnification. Thus, chipping could be assessed (in most cases) 

even if molding and casting was not possible due to the fragility of a specimen or prohibition by 

curators. Occasionally, an ante- or postmortem origin of an enamel chip could not be 

conclusively determined with macroscopic of low magnification observations. If the specimen 

was molded and cast it was observed with SEM to confirm the nature of the chip. If casts were 

not available, inconclusive specimens was removed from analyses.  

 Instrumental striations on labial enamel surfaces concentrated on a single tooth type 

(maxillary central incisors) – a sampling strategy intended to reduce error when calculating 

frequency by individual (see Chapter 7). The use of high-resolution epoxy-resin casts was 

necessary for each specimen with few exceptions. Light microscopy also works well for 

identifying some striations, but is less reliable when there are few striations and/or additional 
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postmortem taphonomic modification of a surface. Therefore, the analysis of instrumental 

striations strongly emphasized analysis of high quality I1 casts obtained from the original fossils 

by the author, or ones that were loaned to the author for this study.   

  

Dental molding and casting for SEM analysis 

Cotton-tipped applicators and 70% alcohol were used to gently clean tooth surfaces. 

After specimens air-dried, Colténe President Plus Jet light body polyvinylsiloxine (Coltène 

Whaledent) was used to generate dental molds. This material was chosen for its accurate 

replication properties (Beynon 1987; Hillson 1992; Pérez-Pérez et al. 2003; Galbany et al. 2004; 

Fiorenza et al. 2009; Goodall et al. 2015). Dust-free, plastic bags were used to store the molds 

immediately after their removal from the crowns.  

Positive casts were made with Epo-tek 301 epoxy-resin. Casts were mounted on 

aluminum pin stubs and sputter-coated with ~ 20 nm of gold to guarantee conductivity for SEM 

analysis. Taphonomic surface alterations and antemortem dental wear features were 

documented on each dental cast using an accelerating voltage of 15 kV and working distance of 

10-30 mm. Both high vacuum with secondary electron emission and low vacuum modes were 

used as needed. Analyses began with a field of view that encompassed a large portion of the 

labial enamel and magnification was increased to examine features in greater detail (Lozano et 

al. 2008). JEOL Neoscope JCM-5000 SEM (Monsanto Center Research Facility of the Missouri 

Botanical Garden, Saint Louis, MO, USA) was used for the majority of analyses, but a subset of 

the sample was analyzed using a Hitachi S3000N (SSTT-IUA) (Universitat de Barcelona, Spain).   
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Rationale for fossil sample sub-grouping 

Chronological subdivisions are used to account for broad changes in behavior and 

technology throughout the Middle and Late Pleistocene. This is not to say that this study adopts 

any notion of “linear evolution”, but acknowledges that there are vastly different technological 

strategies that were adopted by human groups during the Pleistocene. The chronological sub-

grouping is based upon Marine Isotope Stages (MIS). Many of the fossils in this study have been 

directly or relatively dated with widely agreed upon results; however, there are fewer data 

available for some fossils (especially those from older excavations with less refined excavation 

techniques) which makes the use of broad chronological categories useful. The Neandertal 

sample is split into “earlier Middle Paleolithic Neandertals” (MIS 7-5) and “later Middle 

Paleolithic Neandertals” (MIS 4-3) – acknowledging both morphological and behavioral changes 

through time. However, the sample was condensed into a single group for macrowear gradient 

analyses due to small sample size. Likewise, early modern humans are divided into “Early Upper 

Paleolithic” (> 20 ka B.P.) and “Late Upper Paleolithic” (< 20 ka B.P. and > 10 ka B.P.) samples. 

The Early Upper Paleolithic corresponds largely to fossils with Aurignacian, Gravettian, and 

early Epigravettian chronologies and technocomplexes, but also includes fossils from non-

Western Eurasian sites with morphological and chronological similarities (e.g., Tianyuan, Nazlet 

Khater, and Wadjak). The Late Upper Paleolithic sample designation corresponds with the onset 

of the Last Glacial Maximum and ends with the beginning of the Holocene. The 10 ka B.P. 

boundary used here is not the precise end of the Pleistocene, or beginning of the Holocene, but 

all samples close to this boundary are hunter-gatherers continuing the socioeconomic trends 

observed during the Late Upper Paleolithic. A few Mesolithic fossils were included in the 
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macrowear gradient chapter as well. These groupings are chronologically broad enough to 

provide adequate sample sizes for analyses while not being too broad to completely mask 

behavioral variation across the assigned temporal boundaries (should meaningful variation 

exist).  

 In addition to the widely accepted Neandertal and Upper Paleolithic modern human 

groups described above are the Southwest Asian, MIS 5b, Middle Paleolithic modern humans 

from Skhul and Qafzeh. Again, this is a category based on both techno-chronological and 

morphological distinctions – acknowledging morphological distinctions from late archaic 

humans as well as chronological and technological differentiation from Early Upper Paleolithic 

modern humans. There are also a number of fossils from the Middle Paleolithic of North Africa 

(“Aterian” contexts) included in the macrowear gradient analysis. The samples from North 

Africa have a suite of derived and ancestral morphological characteristics and are described as 

“anatomically modern” humans by some researchers (e.g., Le Cabec et al. 2012, 2013; Smith et 

al. 2012) but “late archaic” humans by others (e.g., Trinkaus 2013). Therefore, the Aterian 

fossils were treated as a distinct sample based upon their technological, chronological, and 

geographic distinctions from the Neandertal and early modern human samples. Aterian data 

was only used in Chapter 5. 

 A small sample of Middle Pleistocene archaic Homo (including a few specimens 

attributed to the late Early Pleistocene) are discussed in relation to labial cutmarks, but are not 

a focus of this dissertation. These samples are largely for comparative purposes as the sample 

size is exceptionally meager, the chronology is rather broad, and consequently 

paleoenvironmental reconstructions are difficult. However, the Sima de los Huesos sample is 
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well-documented with respect to specific dental wear features (Lozano et al. 2008, 2009); and it 

will provide a broader comparative perspective for some, predominantly microscopic, analyses.  

Finally, not all fossils can be used for each analysis due to differences in completeness 

and preservation of individual dentitions. In addition, both macroscopic and microscopic 

methods are employed, but microscopic methods are only possible if high resolution casts were 

available for study or curators allowed the molding and casting of specimens. Therefore, Table 

4.1 notes which specimens were used for each analysis. Specific sources taken from the 

literature are listed in tables in the Appendix and are referenced in the analyses chapters. 
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Table 4.1 Fossil sites with specimens examined for each analysis. 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 

Late Early Pleistocene to Middle Pleistocene  
 Africa – Morocco Rabat (Thomas 

Quarry) 
12-11 470-360 ka BP   + (Raynal et al. 2010) 

 Africa – Zambia Broken Hill (Kabwe) 9 or 8 >300 ka BP + + + (Trinkaus 2009) 
 East Asia – China Chaoxian 7-6 200-160 ka BP   + (Chen et al. 1987; Bailey and 

Liu 2010) 
 East Asia – China Jinnushan  >220 ka BP   + (Chen and Yuan 1988) 
 Europe – 

Germany 
Mauer 15 ~600 ka BP + + + (Wagner et al. 2011) 

 Europe – Italy Fontana Ranuccio 11 ~400 ka BP  + + (Rubini et al. 2014) 
 Europe – Spain Atapuerca – Sima 

del Elefante 
 1.3 to 1.2 ma BP +   (Bermúdez de Castro et al. 

2011) 
 Europe – Spain Atapuerca – Gran 

Dolina 
25 936 ka BP +   (Parés et al. 2013) 

 Europe – Spain Atapuerca – Sima 
del los Huesos 

12 ~430 ka BP + + + (Arsuaga et al. 2014) 

 Europe – United 
Kingdom 

Boxgrove 13 ~500 ka BP  +  (Roberts et al. 1997) 

         
Earlier Neandertals (MIS 7-5) 
 Europe – Belgium Scladina I-4A 5e 127 +46/-32 ka BP   + (Pirson et al. 2014) 
 Europe – Croatia Krapina 6/5e 130 ± 10 ka BP + + + (Rink et al. 1995) 
 Europe – France  Bau de l’Aubesier 4 7 or 6 191 ± 15 – 169 ± 17 ka BP  +  (Lebel and Trinkaus 2002) 
 Europe – France Biache-Saint-Vaast 7  + + + (Rougier 2003) 
 Europe – France La Chaise (Abri 

Bourgeois-
Delaunay) 

6/5 150-120 ka BP  + + (Blackwell et al. 1983; 
Condemi 2001) 

 Europe – France Montgaudier 5e ~130 ka BP  + + (Mann and Vandermeersch 
1997) 

 Europe – France Montmaurin 
Coupe-Gorge 

~7   + + (Billy 1982) 

 Europe – France Payre 8/7   + + (Moncel and Condemi 2007; 
Moncel et al. 2008) 
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Table 4.1 Continued 

Earlier Neandertals (MIS 7-5) Continued 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 Europe – 

Germany 
Erhingsdorf 7 ~230 ka BP  + + (Blackwell and Schwarcz 

1986) 
 Europe – Italy Fate 5a    + (de Lumley and Giacobini 

2013a, b) 
 Europe – Italy Saccopastore 7 or 5e ~250 ka BP or ~130-100 

ka BP 
 + + (MIS 5e: Bruner and Manzi 

2006; MIS 7: Marra et al. 
2015) 

 Europe – United 
Kingdom 

Pontnewydd  7 ~220 ka BP + + + (Aldhouse-Green 1995; 
Aldhouse-Green et al. 2012) 

 West Asia – Israel Tabun C2 6  + + + (Grün and Stringer 2000; 
Mercier and Valladas 2003) 

 West Asia – Israel Tabun C1, B-series, 
BC7 

5 90 +30/-16 ka BP (BC7) + + + (Grün and Stringer 2000; 
Coppa et al. 2005) 

         
Later Neandertals (MIS 4-3) 
 Europe – Belgium Goyet 3  + + + (Rougier et al. 2012) 
 Europe – Belgium Spy 3 ~36 ka BP + + + (Semal et al. 2009) 
 Europe – Croatia Vindija 3 33-32 ka BP + + + (Karavanić 1995; Higham et 

al. 2006; Janković et al. 2006) 
 Europe – Czech 

Republic 
Kůlna 3 50 ± 5 ka BP + + + (Rink et al. 1996; Svoboda et 

al. 1996; Svoboda 2005) 
 Europe – Czech 

Republic 
Švédův stůl 4   + + (Svoboda et al. 1996; 

Svoboda 2005) 
 Europe – France Angles Sur l’Anglin  “Mousterian” +   (Patte 1960; Oakley et al. 

1971; de Lumley 1976) 
 Europe – France Arcy-sur-Cure 

(Grotte du Bison) 
4    + (David et al. 2009; Enloe 

2011) 
 Europe – France Arcy-sur-Cure 

(Grotte de l’Hyène) 
4  + + + (Oakley et al. 1971) 

 Europe – France Bau de l’Aubesier late MIS 5, 
MIS 4, or 
early MIS 3 

  +  (Trinkaus et al. 2000) 

 Europe – France Grotte Boccard 4 Mousterian  +  (Maureille et al. 2008) 
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Table 4.1 Continued 
Later Neandertals (MIS 4-3) Continued 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 Europe – France Combe Grenal 4 ~70 ka BP + +  (Garralda and 

Vandermeersch 2000) 
 Europe – France La Ferrassie 3 ~43–45 ka BP + + + (Heim 1976; Guérin et al. 

2015) 
 Europe – France Hortus 4  + + + (de Lumley 1973; Condemi et 

al. 2010) 
 Europe – France Genay  4    + (de Lumley 1987; Yokoyama 

1987; Garralda et al. 2008) 
 Europe – France Monsempron 4  + + + (Coulonges et al. 1952; 

Oakley et al. 1971) 
 Europe – France Le Moustier 3  + + + (Laville et al. 1980; Valladas 

et al. 1986; Mellars and Grün 
1991) 

 Europe – France Petit-Puymoyen 3  + + + (Guillien 1961) 
 Europe – France Les Pradelles 

(Marillac) 
3 ~45-40 ka BP   + (Maureille et al. 2007; 

Mussini 2011) 
 Europe – France La Quina 4  + + + (Delpech 1996; Mellars 1996) 
 Europe – France Regourdou 4  + + + (Delpech 1996; Bonifay et al. 

2007) 
 Europe – France  Saint-Césaire 3  + + + (Lévêque and Backer 1993; 

Morin et al. 2005) 
 Europe – 

Germany 
Neandertal 3 ~40 ka BP + + + (Schmitz et al. 2002; Feine et 

al. 2006) 
 Europe – 

Hungary 
Subalyuk 4 ~70-60 ka BP   + (Pap et al. 1996; Schwartz 

and Tattersall 2002) 
 Europe – Italy Guattari 4 74-60 ka BP  + + (Schwarcz et al. 1991) 
 Europe – Spain Banyoles 4 ~66 ± 7 ka BP  + + (Grün et al. 2006) 
 Europe – Spain Cova Foradá 4 or 3   + + (Campillo et al. 2002; Lozano 

et al. 2013) 
 Europe – Spain Cova Negra 3  + +  (Arsuaga et al. 2007) 
 Europe – Spain El Sidrón 3 ~49 ka BP + +  (Torres Pérez-Hidalgo et al. 

2010; Wood et al. 2013b) 
 Europe – Spain Sima de las Palomas 3 ≤43–40 ka cal. BP and 

~40-50 ka cal. BP 
+ + + (Walker et al. 2008) 
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Table 4.1 Continued 
Later Neandertals (MIS 4-3) Continued 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 Europe – Spain Valdegoba  6 to 3 180-31 ka BP (probably 

Würm) 
  + (Quam et al. 2001) 

 Europe – Spain Zafarraya  >46.7 ka BP + + + (Wood et al. 2013a) 
 Europe – 

Switzerland 
Saint-Brais 3 “final Mousterian”; ~40 

ka BP 
+ +  (Koby 1956; Oakley et al. 

1971; Becker and Rauber 
2007) 

 Europe – United 
Kingdom 

La Cotte de Saint 
Brelade 

4-3    + (Stringer and Currant 1986; 
Bates et al. 2013) 

 West Asia – Iraq Shanidar 4-3 46.0 ± 1.5 ka to 70-60 ka 
BP for the middle of level 
D 

+ + + (Trinkaus 1983) 

 West Asia – Israel Amud 4-3 70-55 ka BP + + + (Suzuki and Takai 1970; 
Valladas et al. 1999; Rink et 
al. 2001) 

 West Asia – Israel Kebara 4 ~60 ka BP + + + (Valladas et al. 1987; 
Schwarcz et al. 1989; Bar-
Yosef et al. 1992) 

 West Asia – 
Republic of 
Georgia 

Sakijia 4 or 3 >45.7 ka BP (Würm I)   + (Pinhasi et al. 2012; Moncel 
et al. 2015) 

 West Asia – 
Uzbekistan 

Teshik-Tash 4 or 3     + (Glantz et al. 2009) 

         
Middle Paleolithic Modern Humans  
 West Asia - Israel Skhul 5 135-100 ka BP + + + (Grün et al. 2005) 
 West Asia - Israel Qafzeh 5 MIS 5; 92 ± 5 ka BP + + + (Vandermeersch 1981; 

Schwarcz et al. 1988; 
Valladas et al. 1988) 

         
North African Aterian 
 Africa – Morocco Dar es Soltane II 3    + (Debénath et al. 1982; Hublin 

et al. 2012) 
 Africa – Morocco Grotte des 

Contrebandiers 
5b-5d 107 – 96 ± 4 ka BP   + (Jacobs et al. 2011; Hublin et 

al. 2012) 
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Table 4.1 Continued 
Early Upper Paleolithic 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 Africa – 

Democratic 
Republic of 
Congo 

Ishango 3/2 ~25-20 ka BP + + + (Boaz et al. 1990; Crevecoeur 
et al. 2010a) 

 Africa – Egypt  Nazlet Khater 3 37,570 ± 350/310 B.P.  + + (Crevecoeur 2008; 
Crevecoeur 2012) 

 Africa – Egypt  Wadi Kubbaniya 3/2 ~25-20 ka BP   + (Wendorf et al. 1986) 
 East Asia – China Liujiang 3 ~60-30 ka BP   + (Wu 1982) 
 East Asia – China  Tianyuan 3 34,430 ± 510 BP  + + (Shang et al. 2007; Shang and 

Trinkaus 2010) 
 East Asia – China  Zhoukoudian Upper 

Cave 
3 34-29 ka BP   + (Wu and Poirier 1995) 

 Europe – Austria  Miesslingtal 3 “late Aurignacian”  + + (Szombathy 1950; Ahern et 
al. 2013) 

 Europe – Czech 
Republic 

Brno II 
(Francouzská) 

3 23,680 ± 200 BP  + + (Jelínek et al. 1959; Pettitt 
and Trinkaus 2000) 

 Europe – Czech 
Republic 

Brno III 3    + (Absolon 1929; Matiegka 
1929) 

 Europe – Czech 
Republic 

Dolní Vĕstonice 3 25,570 ± 280 to 26,640  ± 
110 BP 

+ + + (Trinkaus and Svoboda 2006) 

 Europe – Czech 
Republic 

Mladeč 3 31,190 ± 400/390 B.P. 
(Mladeč 1); 31,320 ± 
410/390 B.P. (Mladeč 2) 

 + + (Wild et al. 2005; Teschler-
Nicola 2006) 

 Europe – Czech 
Republic 

Pavlov 3 26-25 ka BP + + + (Trinkaus and Svoboda 2006) 

 Europe – Czech 
Republic 

Předmostí 3 29-27 ka BP    + (Svoboda 2008; Velemínská 
and Brůžek 2008) 

 Europe – France  Brassempouy 3 34-30 ka BP + +  (Henry-Gambier et al. 2004) 
 Europe – France  Isturitz   + +  (Gambier 1990) 
 Europe – France  Abri Pataud 2 ~22 ka BP + + + (Chiotti et al. 2015) 
 Europe – France  Les Rois 3 30.4-27.3 ka BP + + + (Ramirez Rozzi et al. 2009) 
 Europe – Italy Arene Candide IP  23,440 ± 190 BP + + + (Pettitt et al. 2003) 
 Europe – Italy Barma Grande 2-4   + + + (Formicola 1988a; Formicola 

et al. 2004) 
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Table 4.1 Continued 

Early Upper Paleolithic Continued 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 Europe – Italy Ostuni  24,410 ± 320 BP + + + (Vacca and Coppola 1993; 

Coppola 2012) 
 Europe – 

Romania 
Muierii 1 3 ~30 ka BP  + + (Soficaru et al. 2006; Doboş 

et al. 2010) 
 Europe – Russia Kostenki 14 

(Markina Gora) 
 ~29 ka BP (minimum)   + (Sinitsyn 1996; Sinitsyn et al. 

1996; Sinitsyn 2004) 
 Europe – Russia  Sunghir 3 27,050 ± 210 BP (Cy1); 

23,830 ± 220 BP (Cy2); 
26,000 ± 410 BP (Cy3) 

 + + (Dobrovolskaya et al. 2012; 
Trinkaus et al. 2014) 

 Europe – Ukraine  Buran Kaya III, 
Layer 6-1 

3 31,900 ± 240/220 BP + +  (Prat et al. 2011; Péan et al. 
2013) 

 Europe – United 
Kingdom 

Kent’s Cavern 3 ~36 ka BP or 
30,900 ± 900 ka BP 

 + + (Hedges et al. 1989; Higham 
et al. 2011; White and Pettitt 
2012) 

 Southeast Asia – 
Indonesia 

Wajak 3 37.4-28.5 ka BP 
(minimum age) 

 + + (Storm et al. 2013) 

 Southeast Asia – 
Laos 

Tam Pa Ling 3 ~46 ka BP   + (Demeter et al. 2012) 

 West Asia – Israel  Nahal Ein Gev  25-22 ka BP   + (Arensburg 1977; 
Hershkovitz et al. 1995) 

         
Late Upper Paleolithic 
 Africa – Algeria  Afalou Bou 

Rhummel 
2 11,450 ± 230 to 13,120 ± 

370 BP 
  + (Hachi 1996; Hachi et al. 

2002) 
 Africa – Morocco  Taforalt 2 12-11 ka BP   + (Mariotti et al. 2009) 
 Africa – Sudan  Jebel Sahaba 2 14-12 ka BP   + (Wendorf 1968) 
 East Asia – Japan Minatogawa 2 18,250 ± 650 to 13,460 ± 

110 BP 
  + (Suzuki and Hanihara 1982; 

Kaifu et al. 2011; Matsu’ura 
and Kondo 2011) 

 Europe – Croatia Šandalja II 2 12,320 ± 100 BP  + + (Janković et al. 2012) 
 Europe – Croatia  Vindija (Level D) 2  + + + (Malez and Ullrich 1982; 

Janković et al. 2006) 
 Europe – Czech 

Republic  
Konĕprusy (Zlatý 
Kůň) 

2 12,870 ± 70 BP  + + (Svoboda et al. 2002) 
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Table 4.1 Continued 
Late Upper Paleolithic Continued 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 Europe – France Bruniquel (Abri 

Lafaye) 
2 15,290 ± 150 BP   + (Gambier et al. 2000) 

 Europe – France  Cap Blanc 2 Upper Magdalenian   + (Dahlberg and Carbonell 
1961; Oakley et al. 1971) 

 Europe – France Farincourt 2 Upper Magdalenian  + + (Joffroy and Mouton 1946; 
Sauter 1957; Oakley et al. 
1971) 

 Europe – France Lafaye 2 Middle Magdalenian  + + Henry-Gambier, personal 
communication 

 Europe – France Laugerie-Basse  Magdalenian   + (Oakley et al. 1971) 
 Europe – France  Roc-de-Cave  11,210 ± 140 BP   + (Gambier et al. 2000) 
 Europe – France Rocher de la Peine 2 Late Magdalenian  + + (Ehrhardt 1992; Gambier and 

Houët 1993) 
 Europe – France  Rond-du-Barry 8 2 17,100 ± 450   + (Gambier and Houët 1993) 
 Europe – France Saint-Germaine-la-

Rivière 
2 15,780 ± 200 BP  + + (Gambier et al. 2000) 

 Europe – 
Germany 

Bonn-Obercassel 2 11,570 ± 100 BP (OBK 1); 
12,180 ± 100 BP (OBK 2) 

 + + (Street et al. 2006) 

 Europe – 
Germany 

Brillenhöhle 2 12,470 ± 65 BP  + + (Orschiedt 2002) 

 Europe – Italy  Arene Candide 2/1 11-10 ka BP (AC 2, 3, & 4); 
9,925 ± 50 BP (AC 5) 

  + (Paoli et al. 1980; Formicola 
et al. 2005) 

 Europe – Italy  Grotta Giovanna 2 12,840 ± 100 BP (layer B)  +  (Cardini 1971; Bietti 1990; 
Naldini Segre 1992) 

 Europe – Italy Maritza  2 Between 13.5 and 10.5 ka 
BP 

 + + (Mallegni 2005c) 

 Europe – Italy Ortucchio 2 12,619 ± 410 BP  + + (Mallegni 2005d) 
 Europe – Italy La Punta 2/1 10,581 ± 100  + + (Mallegni 2005b) 
 Europe – Italy Riparo Fredian 2/1 9458 ± 91 BP (Level 4); 

10,870 ± 119 BP (Level 5) 
+ + + (Boschian et al. 1995; 

Mallegni 2005a; Vierin 2012) 
 Europe – Italy Romanelli 2/1 ~12-10 ka BP  + + (Fabbri 1987; Bietti 1990) 
 Europe – Italy Romito  11,150 ± 150   + (Mallegni and Fabbri 1995) 
 Europe – Italy San Teodoro 2 14-10 ka BP   + (Fabbri 1995; D'Amore et al. 

2009) 
 Europe – Italy Villabruna  2 12,140 ± 70 BP   + (Vercellotti et al. 2008) 
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Table 4.1 Continued 
Late Upper Paleolithic Continued 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 Europe – 

Portugal  
Cisterna (Almonda) 2 ~13 ka BP  + + (Trinkaus et al. 2011) 

 Europe – 
Romania 

Climente II 2 12,565 ± 37 BP  + + (Bonsall et al. 2012) 

 Europe – Spain Balma Guilanyà  1 11,095 ± 195   + (Garcia-Guixé et al. 2009) 
 Europe – Spain  El-Mirón 2 15,460 ± 40 BP   + (Carretero et al. 2015) 
 Europe – Spain  Nerja 2 Solutrean   + (Lalueza-Fox 1995; Jordá 

Pardo and Aura 2008) 
 Europe – 

Switzerland 
Le Bichon 2 11,760 ± 110 (tibia); 

11,610 ± 110 (femur) 
 + + (Morel 1993) 

 Europe – United 
Kingdom  

Gough’s Cave 2 12,590 ± 50; 12,485 ± 50 
BP 
 

+ + + (Stevens et al. 2010) 

 Europe – United 
Kingdom  

Tornewton 2 ~15-10 ka BP  +  (Stringer and Powers 1978) 

 Southeast 
Australia 

Cohuna 2/1 ~13-9 ka BP   + (Brown 1987) 

 Southeast 
Australia 

Coobool Creek 2 12,500 ± 400 BP   + (Brown 1987) 

 Southeast 
Australia 

Kow Swamp 2/1 13,000 ± 280 to 9590 ± 
130 BP 

  + (Thorne 1975) 

 Southeast 
Australia 

Talgai 2 11,650 ± 100 BP (soil 
horizon) 

  + (Oakley et al. 1975) 

 Southeast Asia – 
Indonesia  

Liang Lemdubu 2 19 ka BP   + (O’Connor et al. 2005) 

 Southeast Asia – 
Laos  

Tam Hang  2 13,740 ± 80 BP   + (Shackelford and Demeter 
2012; Kuzmin and Keates 
2014) 

 Southeast Asia – 
Malaysia  

Perak Man (Gua 
Gunung Ruhtuh) 

2/1 10,120 ± 110 BP   + (Majid 1994) 

 Southeast Asia – 
Papua New 
Guinea 

Watinglo 2/1 10,000 BP   + (Bulbeck and O’Connor 2011) 

 Southeast Asia – 
Vietnam 

Hang Cho 1 9259 ± 206 BP   + (Matsumura et al. 2008) 
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Table 4.1 Continued 

Late Upper Paleolithic Continued 
 Geographic Area Site MIS Age Cutmarks Chipping Macrowear Dating & Context 
 West Asia – Israel Ein Mallaha (Eynan) 2/1 Early, Late, and Final 

Natufian 
  + (Bocquentin 2007) 

 West Asia – Israel Erq El-Ahmar 2/1 Natufian   + (Oakley et al. 1975) 
 West Asia – Israel Hayonim 2 Early and Late Natufian; 

12,360 ± 160 and 12,010 
± 180 BP 

  + (Hopf and Bar-Yosef 1987; 
Belfer-Cohen 1988) 

 West Asia – Israel Nahal Oren 2/1 Late Natufian   + (Noy et al. 1973; Crognier 
and Dupouy-Madre 1974) 

 West Asia – Israel Ohalo II 2 ~19 ka BP + + + (Hershkovitz et al. 1995) 
 West Asia – 

Jordan  
Wadi Hammeh 2 ~12 ka BP   + (Webb and Edwards 2002) 

         
Mesolithic  
 Europe – France  Baume de Montclus 1 ~7-6.5 ka BP   + (Ferembach 1974b; 

Meiklejohn et al. 2010) 
 Europe – France  Combe Capelle 1 8561 ± 27 BP   + (Hoffmann et al. 2011) 
 Europe – France Hoëdic 1 5750 ± 35 to 7165 ± 60 BP   + (Meiklejohn et al. 2010) 
 Europe – France  Rochereil 1 Azilian   + (Ferembach 1974a) 
 Europe – France  Téviec  1 6322 ± 40 to 6740 ± 60 BP   + (Meiklejohn et al. 2010) 
 Europe – Italy  Mondeval de Sora 1 7,330 ± 59 BP    (Alciati et al. 1995) 
 Europe – 

Romania  
Schela Cladovei  1 Late Mesolithic; ~7.2-6.3 

ka cal. BP 
  + (Bonsall 2008) 

 Europe – Spain  Braña-Arintero 1 6980±50 BP (Braña 1) 
7030±50 BP (Braña 2)  

  + 
 

(Vidal Encinas et al. 2010) 

 Europe – United 
Kingdom 

Gough’s Cave  1 9,080 ± 150; 9,100 ± 
100 BP 

  + (Hedges et al. 1991) 
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Chapter 5. Scaled occlusal macrowear gradients 
 

 

Hypotheses and Predictions 

H0: There will be no observable differences in scaled occlusal macrowear gradients between 

chronologically and morphologically-defined human groups.   

This null hypothesis will be rejected if significant differences in the patterning of scaled 

occlusal wear gradients between groups are found between chronologically and 

morphologically-defined groups.  If rejected, the magnitude and direction of the behavioral 

shifts among Middle and Late Pleistocene groups will be assessed. 

 

Brief rationale for analysis 

 Extensive tooth wear, disproportionately concentrated on the anterior relative to 

posterior teeth is nearly universal among hunting and gathering peoples from the Pleistocene 

to the present day (Molnar 1972; Hinton 1981; Smith 1983a; Kaifu 2000b; Bermúdez de Castro 

et al. 2003; Deter 2009; Berbesque et al. 2012; Clement and Hillson 2012; Clement et al. 2012; 

Littleton et al. 2013; Botha and Steyn 2015).  However, gross differences in dental dimensions 

between archaic and modern human groups make comparisons of occlusal wear gradients less 

straight forward than studies of more recent human groups. This is primarily due to the high 

frequencies of mass-additive dental traits found among archaic humans – particularly in the 

anterior dentition (see Chapter 3). There are several ways in which researchers have attempted 

to account for potential bias from between group dental size differences when examining 

macrowear gradients among Late Pleistocene humans.  
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 One method is to restrict comparisons to groups with similarly sized dentitions. For 

instance, despite having additional comparative data on chimpanzees, Smith (1983) restricted 

comparisons to Late Pleistocene humans and Holocene foragers and agriculturalists when she 

examined I1 versus M1 wear gradients (ordinal wear scores were used [Smith 1983, 1984]). This 

was due to the massive size difference between human and chimpanzee central incisors: “In 

chimpanzees, the heavily worn, greatly expanded maxillary central incisors attest to their use in 

stripping and husking foods. Since I1 wear for chimpanzees and humans cannot reflect equal use 

due to the size difference, they are omitted from this comparison (Smith 1983:119).” The 

reasoning behind the exclusion of non-human primate data is sound, but the same reasoning 

can be applied to comparisons of archaic and modern human group central incisors (or anterior 

teeth in general) – the larger anterior teeth of the former would require more wear per unit 

area to attain the same wear score as a smaller tooth crown from a modern human.  

In a similar study, Kaifu (2000b) examined the antiquity of extensive dental wear in 

genus Homo and used Smith’s (1984) occlusal wear scores to investigate patterns of wear 

across a relatively large sample of fossil Homo. The use of ordinal wear scores allowed Kaifu 

(2000a) to note that many hominin taxa exhibited high rates of wear. However, the interspecific 

differences in tooth size will inevitably effect the rate of dental wear, and these differences 

would be quite meaningful considering the range of crown size variation found across both 

time and space in genus Homo.  

Clement and colleagues (2012) examined Neandertal and modern human occlusal wear 

gradients using ratios of dentin exposure while controlling for dental eruption sequence. They 

found that in many cases Pleistocene and recent human groups exhibited more extensive 
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anterior dental wear than the Neandertals (Clement et al. 2012). Again, this study did not 

consider the differences in anterior tooth size between archaic and modern human groups.  

The above examples illustrate a problem in assessing Pleistocene dental wear gradients: 

overlapping in occlusal wear (whether an ordinal scoring of ratio approach) does not account 

for differences in total crown volume lost when comparing groups that differ in some aspect of 

dental metrics. For example, if we examine a Neandertal I1 and an Epipaleolithic modern 

human I1 that exhibit the same ratio of dentin exposure (or even have same ordinal wear score) 

the Neandertal tooth would have lost more total crown volume given the larger tooth 

dimensions. Furthermore, the functional area of the occlusal surface changes drastically with 

increasing dental wear due to the changing convexity of a given crown. Incisors provide the 

most drastic example whereby the occlusal surface initially enlarges with increasing wear 

before diminishing again as wear approaches the root (see Figure 2 in Bermúdez de Castro et al. 

2003).  

The relatively thin enamel and expanded dentin in Neandertal teeth compared to those 

of modern humans poses a problem when using dentin exposure ratios. For instance, if one 

takes similarly sized Neandertal and early modern humans molars, each worn to a Smith stage 6 

(i.e., the enamel rim is complete), the Neandertal would exhibit a higher percentage of exposed 

dentin, because Neandertals exhibit thinner overall enamel (see Chapter 2). Therefore, ordinal 

scales may be a more appropriate, albeit a less precise scale, because of enamel thickness 

differences between archaic and early modern humans (see Trinkaus 2011 for a similar 

argument). While no system accounts for differences in tissue proportions, wear, and crown 
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size perfectly at the level of interspecific variation, it seems that some proxy for occlusal area 

relative to crown wear is both a biologically and functionally important consideration.  

The introduction of crown size into analyses of occlusal macrowear helps parse out any 

influence differential tooth dimensions may have on macrowear variation at the individual and 

group-level (Trinkaus 1992; Doboş et al. 2010; Willman 2016, 2017). Trinkaus (1992) first 

employed a relatively simply means of controlling for tooth size when examining occlusal wear 

gradients by multiplying the occlusal wear score of a given tooth by its buccolingual crown 

breadth, the assumption is that similarly sized tooth surfaces wear at similar rates. Trinkaus 

(1992) summed anterior and posterior tooth scores separately and examined the results in 

bivariate plots. This approach introduces dental size, and ensures that similarly worn teeth are 

compared to each other through the use of the same multiplier (i.e., their wear score).  

 Graphically, the y-axis represents the scaled macrowear scores of the summed anterior 

teeth and the x-axis represents the scores for the posterior dentition. Slopes will be positive 

due to a greater number (and larger average breadth by tooth type) of the summed posterior 

teeth compared to summed anterior teeth with an additional influence from the multiplicative 

effect of occlusal wear scores. Due to the nature of the variables, values at the extremes of a 

distribution for any group will be highly influential on the slope of the line. At the level of the 

individual, anterior teeth are expected to wear more quickly than posterior teeth due to their 

smaller size. Thus, a difference in grade between groups is expected when teeth (particularly 

anterior ones) of different dimensions, but the same or similar wear scores, are compared. 
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Methods 

Anterior relative to posterior occlusal macrowear was scaled to buccolingual crown 

dimensions by multiplying the occlusal wear score (Smith 1984) of a tooth by the buccolingual 

(BL) crown dimension of the same tooth. Right and left side Smith scores and BL widths were 

averaged for an individual if an antimere was present. Summed anterior (I1, I2, and C) scaled 

wear scores and summed posterior (P3-M2) scaled wear scores were then calculated for each 

individual with a complete hemi-arcade series. Calculations were done separately for maxillary 

and mandibular dentitions. The summed anterior scaled wear scores were plotted against the 

summed posterior scaled wear scores using bivariate plots. This method follows Trinkaus (1992) 

with several notable exceptions: 

1. Teeth worn beyond their maximum buccolingual crown diameters were measured 

and included in the present study.  

2. Smith’s (1984) system of categorizing occlusal wear scores was substituted for the 

scale used by Molnar (1971).  

3. Data obtained from the literature were also included in this analysis. 

4. Third molars were excluded from the analysis. 

5. Entire dentitions and partial dentitions were analyzed. Difference combinations of 

anterior and posterior teeth were included or dropped from analyses.  

These exceptions to the methods employed previously (Trinkaus 1992) were made to 

increase fossil sample sizes beyond comparisons between the few relatively complete Middle 

and Late Pleistocene dentitions. The exceptions are explored more below. 
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1. Dental metrics 

Buccolingual crown dimensions measured from original fossils were measured in a way 

that reflected occlusal wear rather than correcting for it. For instance, if a crown is worn to such 

a degree that the maximum buccolingual crown breadth is no longer preserved, a researcher 

may estimate tooth within a few fractions of a millimeter. However, this study only considers 

measurements that reflect the functional dimension of the tooth crown. That is to say that any 

tooth worn beyond its maximum dimensions is still providing a functional occlusal surface. 

Thus, the buccolingual dimensions measured will reflect occlusal wear instead of correcting for 

wear.  

Measurements of worn teeth were made with calipers perpendicular to the 

cementoenamel junction (sometimes using the alveolar plane as an additional reference in 

cases of extreme or atypical wear) regardless of the degree of occlusal surface slanting. Lingual 

tilting of molars (Reinhardt 1983b; Taylor 1991) can create an occlusal surface that is equal to 

or even greater than the original crown dimensions due to the formation of strongly slanted 

wear and commensurate dislocation of root tips on one side of the tooth (typically the buccal 

roots in the mandible and lingual roots in the maxilla). This occurrence was more common and 

accentuated in the Late Upper Paleolithic samples, but was not common (Willman, personal 

observation). Nevertheless, attritional facets on the roots delimit the functional occlusal surface 

and the buccolingual dimension measured in these rare cases.  

Smith (1984) scores of 6, 7, 8 and sometimes 5 are often accompanied by a substantial 

loss of crown height, buccolingual, and/or mesiodistal dimensions. Dental metrics are 

commonly sought for studies of biological distance or functional morphology; therefore, teeth 



 

108 
 

worn to such an extent are of less utility for these purposes unless the original crown size can 

be reasonably estimated at the discretion of the researcher. Estimated maximum buccolingual 

dimensions are of no use in the present study and worn crown dimensions are infrequently 

reported in the literature. When using buccolingual dimensions from the literature, care was 

taken to determine whether the dimensions reflect actual, worn, or estimated buccolingual 

dimensions. If occlusal wear was severe, and there is no indication of whether a tooth was 

measured worn or if maximum diameters were estimated, that tooth/specimen was not 

included in the present study unless it could be re-measured firsthand or from high-quality 

casts. Furthermore, published dimensions were only used if they were rounded to the nearest 

0.1 mm, since some studies (particularly older publications) only provide dimensions to the 

nearest 0.5 mm which are not accurate enough for the present study.  

When antimeres were present, an average value for used. Buccolingual dimensions 

provided by B. H. Smith (personal communication) reflect wear and present no problems for 

the present study. The source of all buccolingual metrics are provided for each specimen in 

Appendix Table 2.    

In addition to scaled occlusal wear gradients, differential wear of anterior teeth versus 

first molars wear also analyzed. These scores are the raw, unscaled Smith scores for individual 

anterior teeth minus the value of the first molar from the same jaw. Zero would indicate no 

difference between anterior and posterior wear scores, a positive score indicates higher 

anterior relative to posterior wear scores, and a negative score indicates molar wear was higher 

than anterior wear scores. Box and whisker plots using standard interquartile range scores are 
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provided with complimentary density plots for each tooth type. The density plots help illustrate 

the overlap in values given the high frequency of overlapping scores in each sample.  

 

2. Occlusal Wear 

 Trinkaus (1992) employed Molnar’s (1971) occlusal wear recording system but all of the 

individuals included in that analysis have been re-coded for the present study using Smith’s 

(1984) system. The Smith system is more commonly, but not universally, used by researchers in 

large part for its clear graphic and written description as well as its suggested use for standard 

osteological data collection (Buikstra and Ubelaker 1994). Molnar’s system persists in the 

paleoanthropological literature, but it is largely synonymous with the Smith system in terms of 

intent and outcome (Table 5.1). One difference is the attention paid to secondary dentin 

formation by Molnar (1971), but secondary dentin is not always a useful characteristic when 

dentin is altered by postmortem processes (e.g., root etching, desert varnish, enamel/dentin 

spalling). One area of possible error is a Smith (1984) and Molnar (1971) scores of “1” are not 

entirely complimentary. Molnar concludes that a “1” is “unworn” but for the Smith system it 

can be unworn or “polished”.  
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Table 5.1 Molar dental macrowear scoring systems. 
 Smith Molnar Skinner 

1 Unworn to polished or small 
facets (no dentin exposure). 

Unworn Enamel faceting (trace). On individual cusps of the primary molars and permanent 
molars this earliest stage of attrition is visible as tiny planes or facets which reflect light 
from their flat surfaces. [T]here is no reduction in crown height at this attrition stage.  

2 Moderate cusp removal 
(blunting). Permanent molars 
show no more than one or 
two pinpoint exposures. 

Wear facets, no 
observable dentin. 

Enamel rounding (mid). Cusp tips are slightly smoothed and rounded with loss of 
angulated faceting. Main fissures and crenulations are largely pristine.  There is only 
minimal loss of crown height. 

3 Full cusp removal and/or 
some dentin exposure, 
pinpoint to moderate. 

Cusp pattern partially or 
completely obliterated. 
Small dentin patches 

Enamel flattening (advanced).  There is appreciable reduction in crown height resulting 
in broad, flattish, low occlusal elevation. On cheek teeth the majority of the occlusal 
surface is involved although deeper fissures may be little affected. Cusp tips are 
obviously rounded. There is trace, or typically no, dentin exposure but dentin may be 
discernible through a thin enamel layer. 

4 Several large dentin 
exposures, still discrete. 

Three or more small 
dentin patches. 

Slight dentin exposure. On molariform teeth, this stage is differentiated from the next 
by the fact that attrition tends to be angled such that dentin is exposed first on one side 
of the tooth and only later on the other as well. At this stage, one or two (rarely more) 
islands of dentin are exposed on one side of the tooth (buccal in lowers, lingual in 
uppers).  

5 Two dentinal areas 
coalesced. 

Three or more large 
dentin patches, secondary 
dentin, none to slight. 

Dentin advanced. Dentin islands show on both sides of molariform teeth of a size 
exceeding that of the previous stage. There is no coalescence of dentin islands. 

6 Three dentinal areas 
coalesced, or four coalesced 
with enamel island. 

Secondary dentin 
moderate to extensive, 
entire tooth completely 
surrounded by enamel. 

Strong dentin exposure. On molariform teeth there is coalescence of two or more 
islands of dentin even to the point where enamel remnants may only remain on the 
central occlusal surface. There is marked crown height reduction. 

7 Dentin exposed on entire 
surface, enamel rim largely 
intact. 

Crown, enamel worn away 
on at least one side, 
extensive secondary 
dentin. 

Enamel ring. All occlusal enamel is worn away on molariform teeth leaving only an 
enamel ring of fairly uniform width circumferentially. There may be darkly stained 
islands of secondary dentin. 

8 Severe loss of crown height, 
breakdown of enamel rim; 
crown surface takes on shape 
of roots. 

Roots functioning in 
occlusal surface. 

Root involvement. While self-explanatory, this occurs on the labial and buccal side of 
mandibular teeth and on the lingual side of maxillary teeth. 

1 Descriptions are from Smith (1984:45), Molnar (1971:178), and Skinner (1997:681-682). 
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Table 5.1 (Continued) Premolar dental macrowear scoring systems. 
 Smith Molnar Skinner 

1 Unworn to polished or small 
facets (no dentin exposure). 

Unworn. Enamel faceting (trace). [T]here is no reduction in crown height at this attrition stage. 

2 Moderate cusp removal 
(blunting). 

Wear facets, no 
observable dentin. 

Enamel rounding (mid). Cusp tips are slightly smoothed and rounded with loss of 
angulated faceting. Main fissures and crenulations are largely pristine.  There is only 
minimal loss of crown height. 

3 Full cusp removal and/or 
moderate dentin patches. 

Cusp pattern partially or 
completely obliterated. 
Small dentin patches. 

Enamel flattening (advanced).  There is appreciable reduction in crown height resulting 
in broad, flattish, low occlusal elevation. On cheek teeth the majority of the occlusal 
surface is involved although deeper fissures may be little affected. Cusp tips are 
obviously rounded. There is trace, or typically no, dentin exposure but dentin may be 
discernible through a thin enamel layer.   

4 At least one large dentin 
exposure on one cusp. 

Two or more dentin 
patches, one of large size. 

Slight dentin exposure. On premolars one cusp, as opposed to both, shows slight dentin 
exposure.  

5 Two large dentin areas (may 
be slight coalescence). 

Two or more dentin 
patches, secondary dentin 
may be slight. 

Dentin advanced. Dentin islands show on both sides of molariform teeth of a size 
exceeding that of the previous stage. There is no coalescence of dentin islands. 

6 Dentinal areas coalesced, 
enamel rim still complete. 

Entire tooth still 
surrounded by enamel, 
secondary dentin 
moderate to heavy. 

Strong dentin exposure. On molariform teeth there is coalescence of two or more 
islands of dentin even to the point where enamel remnants may only remain on the 
central occlusal surface. There is marked crown height reduction. 

7 Full dentin exposure, loss of 
rim on at least one side. 

Crown (enamel) worn 
away on at least one side, 
extensive secondary 
dentin. 

Enamel ring. All occlusal enamel is worn away on molariform teeth leaving only an 
enamel ring of fairly uniform width circumferentially. There may be darkly stained 
islands of secondary dentin.  

8 Severe loss of crown height; 
crown surface takes on 
shape of roots. 

Roots functioning in 
occlusal surface. 

Root involvement. While self-explanatory, this occurs on the labial and buccal side of 
mandibular teeth and on the lingual side of maxillary teeth. 

1 Descriptions are from Smith (1984:45), Molnar (1971:178), and Skinner (1997:681-682). 
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Table 5.1 (Continued) Incisor and canine dental macrowear scoring systems. 
 Smith Molnar Skinner 

1 Unworn to polished or small 
facets (no dentin exposure). 

Unworn. Enamel faceting (trace). On canine teeth, faceting can be seen on the side or tip of the 
crown while incisors show initial reduction of mammelons. Otherwise there is no 
reduction in crown height at this attrition stage. 

2 Point or hairline of dentin. Wear facets minimal in 
size. 

Enamel rounding (mid). On incisors, the mammelons are worn away while the incisal 
edge is still narrow and unflattened.  There is only minimal loss of crown height. 

3 Dentin line of distinct 
thickness. 

Cusp pattern obliterated, 
small dentin patches may 
be present. 

Enamel flattening (advanced). There is appreciable reduction in crown height resulting 
in broad, flattish, low occlusal elevation. Incisors exhibit a broad, flat incisal edge with 
crown reduction and often darkly staining dentin visible through a thin enamel veneer.  
Canines may tend to show relatively more dentin than the other teeth at this stage. 

4 Moderate dentin exposure 
no longer resembling a line. 

Dentine patch (minimal). Slight dentin exposure. For canines, only a small spot of dentin is exposed—about the 
size of a pencil dot. Incisors show a thin strip of dentin, tapering mesially and distally—
about the width of a thin pencil line. 

5 Large dentin area with 
enamel rim complete. 

Dentine patch (extensive). Dentin advanced. Larger spots and strips of dentin may be seen on canines and incisors, 
respectively. 

6 Large dentin area with 
enamel rim lost on one side 
or very thin enamel only. 

Secondary dentin 
(moderate to extensive). 

Strong dentin exposure. There is marked crown height reduction. Canine teeth show 
large dentin exposure with crowns about half original height. Incisors now resemble 
canine teeth with an expanding circle of dentin within the dentin strip, due to 
encroachment of attrition on the deep pulp chamber. 

7 Enamel rim lost on two sides 
or remnants of enamel 
remain. 

Crown (enamel) worn 
away on at least one side, 
extensive secondary 
dentin. 

Enamel ring. There may be darkly stained islands of secondary dentin. Canines are 
judged to be at this stage by having circumferential enamel of a width similar to that of 
posterior teeth. Incisors show very strong height reduction with loss of interproximal 
contact and round or oval dentin exposure to a marked degree. 

8 Complete loss of crown, no 
enamel remaining; crown 
surface takes on shapes of 
roots. 

Roots functioning in 
occlusal surface. 

Root involvement. While self-explanatory, this occurs on the labial and buccal side of 
mandibular teeth and on the lingual side of maxillary teeth. 

1 Descriptions are from Smith (1984:45), Molnar (1971:178), and Skinner (1997:681-682). 
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A third scoring system, that of Skinner (1997) is also still used on occasion. Again, this 

system is largely synonymous with the Smith and Molnar systems, differing in the specificity of 

its directions but not in how teeth were scored. The Skinner system was only used for the El 

Sidrón materials used in Chapters 8 and 9 but is included here for completeness. Nonetheless, 

and importantly, all three systems use eight categories and present similar diagrammatic 

and/or written examples of each wear stage. Thus, little translation error exists between the 

systems and in most cases error would not deviate by more than one stage in either direction – 

error that is within inter-observer error rates (Kimmerle et al. 2008). Other scoring systems 

found in the paleoanthropological literature focus on more precise details of molar wear (Scott 

1979), use fewer categories (Broca 1879; Turner et al. 1991), or are close to the 8-stage systems 

(Brothwell 1989) but require some degree of guesswork (and therefore the introduction of 

potential error) to translate scores to  Smith scales. Thus, descriptions using these systems were 

only used as supporting criteria for assigning Smith scores to fossils in the literature that were 

accompanied by accurate image documentation (occlusal photos and/or line drawings). 

 

3. Data from other sources 

Photographs and line drawings can provide accurate depictions of occlusal wear, 

especially when combined with multiple views and/or written descriptions of dental wear. The 

scoring of wear from images is most difficult in the slightly worn teeth (scores 1-2) and more 

heavily worn dentitions (scores 6-8). These stages most often differ between observers when 

examining skeletal material in person (Kimmerle et al. 2008), so it is no surprise that they are 

difficult to score from images. When examining highly worn dentitions it can be difficult to 



 

114 
 

discern between an extremely thin ring or section of enamel and the loss of enamel on one, 

two, or all sides of a crown in some images (particularly black and white images or images on 

non-glossy paper). Similarly, young individuals with faint faceting or the slightest dentin 

exposure (scores 1 and 2) are also difficult to identity from photographs unless resolution is 

particular high.  

The presence of antimeres allows two chances to score a given tooth type from an 

image. Right-left occlusal asymmetry rarely deviates by more than 1 wear category in Late 

Pleistocene samples (Willman, personal observation). Thus, if one antimere can be scored but 

the other cannot the risk of error is small and likely to be off by no more than a half category 

(0.5) after averaging. Due to these difficulties of documenting certain wear scores using images, 

the least worn and most worn teeth/dentitions are less represented than individuals with easily 

scored dentin exposure – particularly scores 3-6 across all tooth types. Scores 1 and 8 are most 

difficult to score from images (Willman, personal observation). In all cases, a conservative 

approach is taken when using images to obtain wear scores. Any tooth proving too difficult to 

document using photographs is omitted. 

 

4. Exclusion of third molars 

Third molars were eliminated because of their highly variable dimensions (Hillson 1996; 

Scott and Turner 2000; Barrett et al. 2012; Willman 2014) in addition to the common 

occurrence of third molar agenesis among recent (Carter and Worthington 2015) and Late 

Pleistocene humans (Hillson 2006; Willman, personal observation). Furthermore, maxillary and 

mandibular M3’s were not considered because they erupt and obtain functional occlusion in 
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early adulthood which would exclude many younger-aged individuals from most comparisons 

of full arcades.  The use of photographs to increase sample size would also be fruitless if third 

molars were included given the difficulties in discerning wear scores affecting only enamel 

(scores 1 or 2).  

 

5. Entire dentitions and partial dentitions were analyzed. 

 The use of partial dentitions for macrowear gradient analysis is not common despite the 

rare occurrence of complete dentitions in the Pleistocene fossils record. However, anterior 

relative to posterior dental wear is possible for any number of teeth as long as at least one 

anterior tooth and one posterior tooth is present. Here, first molars were chosen as the 

posterior tooth and the comparisons with each anterior tooth of the same jaw were performed. 

Three recent studies have made use of this strategy when describing anterior dental wear for 

partial fossil dentitions (Doboş et al. 2010; Willman 2016, 2017). 

 

Exploratory data analysis with bivariate plots 

 Bivariate plots of all anterior versus all posterior teeth (except third molars) are 

presented for each jaw. When examining complete dentitions, third premolars were considered 

anterior teeth in one analysis and posterior in another. Third premolars often co-vary in size 

and morphology with incisors and canines while fourth premolars co-vary with molars (see 

discussion in: Martinón-Torres and Bermúdez de Castro 2016), and meaningful variation in 

occlusal gradients may be masked by categorizing premolars strictly as posterior teeth. The 95% 

confidence intervals (CI) of both y-intercept and slope are provided in tables accompanying 
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each plot. P-values for slope are presented for whether the slope is significantly different from 

zero. Although presented, these P-values are expected to be highly significant but generally 

uninformative due to small sample size. Furthermore, Regression lines are shown but are only 

meant to be used for exploratory, heuristic purposes and not as a means of prediction. The 

general trends are discussed below. 

 

Results 

I1-C versus P3-M2 scaled occlusal wear gradients 

 Figure 5.1 shows the results of maxillary (I1-C versus P3-M2 and I1-P3 versus P4-M2) scaled 

macrowear gradients. The steep slope for the Middle Pleistocene humans is driven by the low 

values for Rabat 1 and a single individual from Sima de los Huesos – the 95% CI of slope and y-

intercept overlap completely with the other samples. The predominant pattern in the maxillary 

dentition is one of similarity in rates of wear (occlusal wear scores are similar), but the 

difference in intercept indicates more tooth volume loss per unit of occlusal wear in archaic 

groups relative to modern humans, albeit with substantial overlap. The Middle Pleistocene and 

Neandertal samples are separated along a size gradient, as would be expected given the 

presence of large dental size and frequency of mass-additive dental traits in those groups. 

Likewise, the intermediate position of the Middle Paleolithic modern human is a product of 

similar rates of dental wear to the other samples and presence of intermediate dental size (and 

frequencies of mass-additive traits) when compared to archaic humans and their Upper 

Paleolithic successors. The Early Upper Paleolithic, Late Upper Paleolithic, and Mesolithic 

groups are largely indistinguishable in overall trends but the Late Upper Paleolithic and 
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Mesolithic groups tend to have a wide range of variability. This fact may be due in part to the 

broad geographic sampling of these groups, but also to the presence of the cultural 

modification on the dentition (i.e., incisor ablation – the intentional removal of healthy teeth) in 

several of the Late Upper Paleolithic groups. There is little difference in overall patterning when 

P3’s are considered anterior teeth – the relative position of each group is unchanged.  

Figure 5.2 provides mandibular (I1-C versus P3-M2 and I1-P3 versus P4-M2) scaled 

macrowear gradients. Scaled macrowear gradients in the mandibular dentition exhibit more 

overlap between samples than seen in the maxillary dentition. The Neandertals stand out again 

as having large dentitions relative to other groups which implies the removal of a greater 

volume of tooth mass per unit of occlusal wear compared to other groups. The Middle 

Paleolithic modern human and Early Upper Paleolithic groups are nearly indistinguishable and 

the one North African Aterian specimen (i.e., Grotte des Contrebandiers) falls on the Middle 

Paleolithic modern human line. Again, there is considerable variation in the Late Upper 

Paleolithic and Mesolithic samples. The lowest rate of anterior versus posterior wear is found in 

the Late Upper Paleolithic sample. This is most likely an artifact of combining samples with 

maxillary incisor ablation – and therefore, less wear on occluding mandibular incisors – with 

Late Upper Paleolithic samples that do not exhibit ablation. Again, including P3’s with the 

anterior dentition does little to disrupt the patterning already documented in incisors and 

canines.  
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Figure 5.1 Maxillary scaled macrowear gradients of full dentitions. 
Top: Anterior (I1-C) versus posterior (P3-M2) dentition. Bottom: Anterior (I1-P3) versus 
posterior (P4-M2). Regression statistics in Table 5.2.  
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Figure 5.2 Mandibular scaled macrowear gradients of full dentitions. 
Top: Anterior (I1-C) versus posterior (P3-M2) dentition. Bottom: Anterior (I1-P3) versus 
posterior (P4-M2). Regression statistics in Table 5.2.  
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Table 5.2 Regression statistics for scaled occlusal wear gradient analyses of full dentitions.  
Group N y-int 95% CI Slope 95% CI r R2 P 

I1-C vs P3-M2 (Fig. 5.1 top) 
Middle Pleistocene 6 2.77 -64.86 – 70.41 0.74 0.26 – 1.22 0.9061 0.8209 0.0128 
Neandertals 12 39.71 19.00 – 60.42 0.51 0.40 – 0.62 0.9027 0.8148 <0.0000 
MPMHa 6 7.33 -1.08 – 15.73 0.61 0.55 – 0.66 0.9811 0.9626 <0.0000 
EUPb 15 4.16 -0.39 –   8.70 0.57 0.54 – 0.60 0.9761 0.9528 <0.0000 
LUPc 37 5.41 -1.94 – 12.76 0.55 0.50 – 0.59 0.8451 0.7141 <0.0000 
Mesolithic  15 10.49 0.05 – 20.92 0.50 0.45 – 0.56 0.8725 0.7612 <0.0000 

I1-P3 vs P4-M2 (Fig. 5.1 bottom) 
Middle Pleistocene 6 -14.89 -94.01 – 64.24 1.46 0.71 – 2.20 0.9388 0.8813 0.0055 
Neandertals 12 45.31 22.69 – 67.93 0.94 0.79 – 1.10 0.9381 0.8800 <0.0000 
MPMH 6 16.34 10.31 – 22.37 1.07 1.02 – 1.12 0.9944 0.9888 <0.0000 
EUP 15 -0.99 -8.81 –   6.83 1.10 1.04 – 1.16 0.9677 0.9365 <0.0000 
LUP 37 -1.14 -11.31 –   9.02 1.04 0.97 – 1.12 0.8601 0.7398 <0.0000 
Mesolithic  15 16.98 4.38 – 29.58 0.92 0.84 – 1.00 0.9007 0.8113 <0.0000 

I1-C vs P3-M2 (Fig. 5.2 top) 
Middle Pleistocene 10 30.86 1.23 – 60.50 0.40 0.15 – 0.64 0.7944 0.6311 0.0060 
Neandertals 21 35.98 21.31 – 50.64 0.49 0.41 – 0.58 0.8739 0.7637 <0.0000 
MPMH 5 14.53 -0.75 – 29.82 0.44 0.34 – 0.55 0.9022 0.8139 <0.0000 
EUP 14 18.01 10.52 – 25.50 0.50 0.45 – 0.55 0.9216 0.8493 <0.0000 
LUP 55 30.38 24.56 – 36.21 0.29 0.26 – 0.33 0.6421 0.4123 <0.0000 
Mesolithic  12 9.32 0.39 – 18.24 0.43 0.38 – 0.48 0.8597 0.7391 <0.0000 

I1-P3 vs P4-M2 (Fig. 5.2 bottom) 
Middle Pleistocene 10 22.87 -25.60 – 71.35 0.85 0.34 – 1.36 0.8045 0.6472 0.0050 
Neandertals 21 48.47 31.60 – 65.34 0.85 0.71 – 0.98 0.8999 0.8098 <0.0000 
MPMH 5 25.01 0.16 – 49.85 0.72 0.50 – 0.93 0.8566 0.7338 <0.0000 
EUP 14 14.58 7.47 – 27.70 0.92 0.84 – 1.00 0.9301 0.8651 <0.0000 
LUP 55 29.08 22.46 – 35.70 0.65 0.60 – 0.70 0.7891 0.6227 <0.0000 
Mesolithic  12 23.49 11.28 – 35.70 0.70 0.61 – 0.80 0.8468 0.7170 <0.0000 

a MPMH (Middle Paleolithic Modern Humans), b EUP (Early Upper Paleolithic), and c LUP (Late Upper Paleolithic) 

 

Individual anterior teeth versus first molars scaled occlusal wear gradients 

 When considered individually, each maxillary anterior tooth exhibits a trend similar to 

that seen among the summed anterior and posterior maxillary teeth (Figure 5.3). Slopes are 

higher among Middle Pleistocene and Neandertal groups as compared to the modern human 

groups. However, the greatest difference can be attributed to the relatively larger anterior 

tooth dimensions among the archaic groups compared to modern human groups. Thus, there is 

a greater loss of anterior tooth volume per unit of occlusal wear in archaic groups versus 
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modern human groups, but the variation among Early Upper Paleolithic, Late Upper Paleolithic, 

and Mesolithic samples is quite extensive with modest overlap across the range of archaic 

human variation.  

 Neandertal mandibular first and second incisor wear is higher with respect to all other 

groups, though mandibular canines differ more in terms of size than rate of wear (Figure 5.3).  

The trends among the Aterian specimens are unclear given the miniscule sample size (N = 2-3). 

Again, the trend among Late Upper Paleolithic I1 and I2 wear shows extremely low rates of 

attrition with respect to M1 wear – a result of pooling samples of individuals with and without 

avulsion. 

Rates of wear among individuals with the greatest degree of anterior occlusal wear are 

quite similar for several Early Upper Paleolithic and Neandertal individuals. The subtle 

differences in the slope of the exploratory regression lines may indicate a greater degree of 

anterior crown volume loss in archaic humans than early modern humans in most instances, 

but the regression lines are fitted to small samples with variably overlapping 95% CI’s. 

Nonetheless, the rates of wear between groups for individual anterior teeth are quite similar to 

that seen in the analyses of the entire arcade. It seems that regardless of initial crown size 

these specimens all continued to actively engage in anterior tooth use until the functional 

occlusal surfaces of crowns were worn to root stubs. Root stubs are absolutely larger in archaic 

humans and the contrast is obvious when examining the relative difference between archaic 

and Late Upper Paleolithic individuals (with comparable small root breaths) toward the right 

ends of the distribution. Notice also that Early Upper Paleolithic and Neandertal specimens 

toward the right sides of the distributions also tend to have similar values – this indicates some 
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overlap in root dimensions per unit of wear as would be expected based on the overlap in root 

morphology described in the literature (Le Cabec et al. 2013; Trinkaus et al. 2013a, 2014). 

 

Differential occlusal wear scores: Individual anterior teeth versus first molars 

The range of variation for the differential wear of individual maxillary and mandibular 

anterior teeth (Figure 5.4 and Table 5.4) versus first molars from the same jaw shows 

substantial overlap between samples. In contrast to the analyses above, these figures express 

differential occlusal wear scores without accounting for crown size – thus, they are similar to 

analyses (Smith 1983a; Kaifu 2000b) outlined at the beginning of this chapter. Both maxillary 

and mandibular I1’s show positive median differential wear values for Middle Pleistocene, 

Neandertal, Middle Paleolithic modern humans, and Early Upper Paleolithic groups. However, 

the second incisor and canine values median values tend to tend to be highest in Middle 

Pleistocene and Neandertal groups and negative or around zero in the Middle Paleolithic and 

Early Upper Paleolithic modern humans.  

The widest range of variation is seen in values of Late Upper Paleolithic humans. The 

Late Upper Paleolithic samples are extremely geographically widespread, and many of the 

groups in the sample practice forms of incisor ablation (i.e., the culturally motivated removal of 

teeth: Chapter 2). It has been suggested that ablation results in increased reliance on the 

postcanine teeth for both non-masticatory, manipulative behaviors in addition to normal 

postcanine mastication of food (Bonfiglioli et al. 2004), which would explain the greater range 

of negative values (lower anterior wear and higher molar wear) in the Late Upper Paleolithic 

sample.  
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Figure 5.3 Maxillary (left side) and mandibular (right side) scaled macrowear gradients.  
Individual I1 versus M1 (top), I2 versus M1 (middle), and C versus M1 (bottom). Descriptive 
statistics are found in Table 5.3. 
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Table 5.3 Regression statistics for scaled occlusal wear gradient analyses of individual 
anterior teeth (I1, I2, or C) against first molar of same jaw.  

Group N y-int 95% CI Slope 95% CI r R2 P 

I1 vs M1 (Fig. 5.3 top left) 
Middle Pleistocene 11 4.26 -8.99 – 17.50 0.75 0.46 – 1.03 0.7970 0.7484 0.0002 
Neandertals  17 12.55 6.92 – 18.18 0.53 0.43 – 0.63 0.8862 0.7853 <0.0000 
MPMHa 7 1.36 -3.23 –   5.95 0.67 0.57 – 0.77 0.9408 0.8852 <0.0000 
EUPb 20 2.22 -0.66 –   5.10 0.63 0.58 – 0.68 0.9087 0.8258 <0.0000 
LUPc 54 3.99 1.16 –   6.82 0.53 0.48 – 0.58 0.7152 0.5115 <0.0000 
Mesolithic  15 4.74 -0.02 –   9.51 0.56 0.48 – 0.63 0.8001 0.6402 <0.0000 

I2 vs M1 (Fig. 5.3 middle left) 
Middle Pleistocene 11 -2.73 -15.02 –   9.56 0.92 0.61 – 1.23 0.9146 0.8365 0.0001 
Neandertals  20 6.02 0.26 – 11.79 0.63 0.52 – 0.74 0.8837 0.7809 <0.0000 
MPMH 9 -0.03 -3.21 –   3.15 0.62 0.55 – 0.69 0.9505 0.9035 <0.0000 
EUP 21 -7.87 -10.12 –  -5.61 0.69 0.65 – 0.73 0.9536 0.9093 <0.0000 
LUP 78 -0.30 -2.40 –   1.79 0.51 0.47 – 0.54 0.7717 0.5955 <0.0000 
Mesolithic  17 -4.02 -1.09 –   1.48 0.60 0.55 – 0.64 0.9085 0.8254 <0.0000 

C vs M1 (Fig. 5.3 bottom left) 
Middle Pleistocene 14 -5.96 -17.26 –  5.34 1.06 0.78 – 1.34 0.9222 0.8504 <0.0000 
Neandertals  25 0.68 -6.35 –   7.71  0.85 0.73 – 0.98 0.8909 0.7937 <0.0000 
MPMH 8 4.16 -0.39 –   8.71 0.67 0.58 – 0.77 0.9352 0.8745 <0.0000 
EUP 27 -2.64 -5.87 –   0.59 0.67 0.62 – 0.73 0.8847 0.7827 <0.0000 
LUP 99 -0.78 -2.81 –   1.27 0.63 0.60 – 0.67 0.8104 0.6568 <0.0000 
Mesolithic  19 -9.73 -15.29 –  -4.19 0.82 0.73 – 0.91 0.8298 0.6885 <0.0000 

I1 vs M1 (Fig. 5.3 top right) 
Middle Pleistocene 15 10.02 -0.36 – 20.40 0.36 0.09 – 0.63 0.6240 0.3894 0.0129 
Neandertals  27 12.03 7.40 – 16.67 0.50 0.40 – 0.60 0.8161 0.6659 <0.0000 
MPMH 6 7.01 2.22 – 11.80 0.36 0.26 – 0.47 0.8375 0.7015 <0.0000 
EUP 17 7.78 4.35 – 11.21 0.41 0.35 – 0.47 0.7870 0.6194 <0.0000 
LUP 66 10.16 7.85 – 12.47 0.24 0.20 – 0.28 0.4618 0.2132 <0.0000 
Mesolithic  12 5.37 1.83 –   8.90 0.36 0.30 – 0.43 0.7693 0.5918 <0.0000 

I2 vs M1 (Fig. 5.3 middle right) 
Middle Pleistocene 19 9.76 2.82 – 16.69 0.42 0.23 – 0.60 0.7518 0.5652 0.0002 
Neandertals  33 9.31 4.94 – 13.68 0.61 0.52 – 0.70 0.8511 0.7245 <0.0000 
MPMH 6 1.75 -3.81 –   7.31 0.48 0.36 – 0.60 0.8685 0.7543 <0.0000 
EUP 22 4.65 1.90 –   7.40 0.48 0.43 – 0.53 0.8513 0.7246 <0.0000 
LUP 79 6.19 4.44 –   7.95 0.33 0.30 – 0.36 0.6652 0.4425 <0.0000 
Mesolithic  13 0.0305 -3.08 –   3.14 0.44 0.38 – 0.49 0.8407 0.7068 <0.0000 

C vs M1 (Fig. 5.3 bottom right) 
Middle Pleistocene 19 5.69 -4.86 – 16.25 0.62 0.34 – 0.91 0.7464 0.5570 0.0002 
Neandertals  35 2.78 -3.13 –   8.69 0.79 0.66 – 0.92 0.8241 0.6792 <0.0000 
MPMH 5 6.24 -0.40 – 12.87 0.42 0.29 – 0.55 0.8418 0.7086 <0.0000 
EUP 25 -3.28 -6.82 –   0.26 0.74 0.67 – 0.80 0.8750 0.7657 <0.0000 
LUP 93 4.06 2.22 –   5.90 0.48 0.45 – 0.52 0.7517 0.5651 <0.0000 
Mesolithic  17 -0.61 -4.76 –   3.53 0.59 0.52 – 0.67 0.8154 0.6649 <0.0000 

a MPMH (Middle Paleolithic Modern Humans), b EUP (Early Upper Paleolithic), and c LUP (Late Upper Paleolithic) 
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Figure 5.4 Maxillary (left side) and mandibular (right side) differential wear scores.  
I1’s (top), I2’s (middle), and C’s (bottom) occlusal wear scores minus M1’s wear score. Box 
and whisker plots show interquartile range. Density plots are transparent. Positive scores 
indicate greater anterior relative to first molar occlusal wear. 
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The range of values in the Late Upper Paleolithic also encompasses several outliers with 

high anterior relative to first molar wear values. These extreme anterior tooth-biased 

differential wear scores for some Late Upper Paleolithic specimens were also evident in the 

scaled occlusal wear analyses, but the much lower values along the x-axis were indicative of the 

small roots functioning as occlusal surfaces in the Late Upper Paleolithic specimens versus 

similarly worn teeth in other groups. Molar size does not vary substantially across groups of 

Late Pleistocene humans (Trinkaus 2004), so it is clear that the main difference in the previous 

analyses are a result of crown and root dimensions. However, the unscaled differential wear 

scores shown here indicate that there is extensive anterior tooth use across all samples, but 

when contrasted with the scaled analyses we can see that there is a meaningful difference in 

the “utility” or “functionality” of a heavily worn archaic (and to some extent Middle Paleolithic 

modern human or Early Upper Paleolithic human) dentition than that of later early modern 

humans – especially those from the Late Upper Paleolithic. Consider the outliers from the Late 

Upper Paleolithic – these individuals have relative low wear scores on their molars indicating 

that the anterior teeth are relegated non-functional early in life compared to archaic and some 

Early Upper Paleolithic humans. Taken as a whole, this indicates a high frequency of anterior 

tooth use among some Late Upper Paleolithic specimens without the benefit of large, wear 

resistant anterior teeth. Put another way, the use-life of anterior teeth among early modern 

humans engaging in substantial non-masticatory behaviors would be considerably shorter than 

that of archaic humans.  
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Table 5.4 Descriptive statistics for maxillary and mandibular differential wear scores. 
I1 relative to M1 wear N Median Mode Min Max Range 

Middle Pleistocene 11 1.0 1.0 0 2.0 2.0 
Neandertals (MIS 7-3) 18 0.5 0, 1.0 -1.0 2.0 3.0 
Middle Paleolithic Modern Humans 8 0 0 0 1.0 1.0 
Early Upper Paleolithic 24 0 0 -1.5 2.0 3.5 
Late Upper Paleolithic 84 0 0 -2.0 4.0 6.0 
Mesolithic 17 0 0, 1.0 -2.0 2.5 4.5 

I2 relative to M1 wear N Median Mode Min Max Range 

Middle Pleistocene 11 1.0 0 0 3.0 3.0 
Neandertals (MIS 7-3) 21 0 0 -1.0 2.0 3.0 
Middle Paleolithic Modern Humans 9 0 0 -0.5 1.0 1.5 
Early Upper Paleolithic 24 0 0 -1.5 1.0 2.5 
Late Upper Paleolithic 109 -1.0 -1.0 -3.0 4.0 7.0 
Mesolithic 20 0 0 -2.0 2.5 4.5 

C1 relative to M1 wear N Median Mode Min Max Range 

Middle Pleistocene 14 0 0 -1.0 1.5 2.5 
Neandertals (MIS 7-3) 26 0 0 -1.0 2.0 3.0 
Middle Paleolithic Modern Humans 8 0 0 0 0.5 0.5 
Early Upper Paleolithic 31 -1.0 -1.0 -2.0 2.0 4.0 
Late Upper Paleolithic 132 -1.0 -1.0 -2.0 2.0 4.0 
Mesolithic 21 -0.5 0 -1.5 2.0 3.5 

I1 relative to M1 wear N Median Mode Min Max Range 

Middle Pleistocene 9 0 0, 0.5 -0.5 1.0 1.5 
Neandertals (MIS 7-3) 10 0.75 0, 1.0  -1.0 2.0 3.0 
Middle Paleolithic Modern Humans 6 0 0 -1.0 1.0 2.0 
Early Upper Paleolithic 18 0 0 -1.0 2.0 3.0 
Late Upper Paleolithic 79 -1.0 0 -4.5 5.0 9.5 
Mesolithic 14 -0.5 -1.0, -0.5, 0 -2.5 1.5 4.0 

I2 relative to M1 wear N Median Mode Min Max Range 

Middle Pleistocene 12 0 0 -1.0 1.0 2.0 
Neandertals (MIS 7-3) 12 0.5 0, 0.5, 1.0 -1.0 2.0 3.0 
Middle Paleolithic Modern Humans 7 0 0 -1.0  1.0 2.0 
Early Upper Paleolithic 19 0 0 -1.5 1.0 2.5 
Late Upper Paleolithic 89 -1.0 -1.0 -3.5 4.0 7.5 
Mesolithic 16 -1.0 -1.0 -2.5 0.5 3.0 

C1 relative to M1 wear N Median Mode Min Max Range 

Middle Pleistocene 11 0 0 -1.0 1.0 2.0 
Neandertals (MIS 7-3) 12 0.25 -1.0, 0.5 -1.0 2.0 3.0 
Middle Paleolithic Modern Humans 6 -0.5 -1.0, 0 -1.0 0 1.0 
Early Upper Paleolithic 24 -1.0 -1.0 -3.0 1.0 4.0 
Late Upper Paleolithic 99 -1.0 -1.0 -3.0 3.0 6.0 
Mesolithic 19 -1.0 -1.0 -2.5 1.0 3.5 
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Summary 

The macrowear analyses presented here broadly support conclusions from other studies 

that emphasize a high degree of anterior relative to posterior occlusal wear among hunter-

gatherers (compared to non-foraging peoples) generally (Molnar 1972; Hinton 1981; Smith 

1983a; Kaifu 2000b; Bermúdez de Castro et al. 2003; Deter 2009; Berbesque et al. 2012; 

Clement and Hillson 2012; Clement et al. 2012; Littleton et al. 2013; Botha and Steyn 2015). 

This pattern suggests that the use of teeth-as-tools for manipulative behaviors is a consistent 

trend among hunting and gathering peoples throughout much of human evolution. Exceptions 

to the rule seem only to exist when cultural factors, such as incisor ablation, shift dietary and 

non-masticatory behaviors to the posterior dentition in some groups.  

The reduction in anterior tooth size across the archaic to modern human morphological 

transition in the Late Pleistocene is well documented, but seemingly at odds with occlusal 

macrowear trends. One benefit of having large anterior teeth is that more volume can be lost 

per unit of occlusal wear (as measured via ordinal or ratio methods), which greatly increases 

the use-life and functionality of anterior teeth late into the lifetime of a given individual. 

However, anterior tooth reduction leads to higher differential wear values in some modern 

humans – thus anterior teeth become largely non-functional earlier in life among hunter-

gatherers with smaller anterior crown dimensions than those with larger anterior teeth. 

However, differential wear is difficult to study due to the postmortem and antemortem loss of 

heavily worn anterior teeth (Willman, personal observation). Even though exceptionally worn, 

many older Neandertals and early modern humans retained their full dentitions until death 

(Trinkaus 2013). By the Late Upper Paleolithic, anterior crown and root dimensions have further 
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reduced and there is a trend toward higher anterior versus posterior wear differentials. Higher 

rates of antemortem tooth loss occur in the Late Upper Paleolithic compared with any other 

preceding period (Lacy 2014), and rates of anterior tooth loss and wear-associated dental 

pathology appear more frequently (Willman, personal observation). Ordinal dental wear scores 

as well as buccolingual dimensions are unaccounted for in cases of antemortem tooth loss. 

Therefore, any antemortem tooth loss related to wear-induced pathology will skew results in 

any macrowear gradient analysis. Future research is planned to integrate pathological loss into 

a wear-scoring system to account for this discrepancy. Given the high rates of oral pathology in 

terminal Pleistocene compared to preceding periods it is likely that these analyses have 

underestimated the degree to which small anterior teeth have been lost due to wear and 

associated pathology.   

These results suggest that anterior dental wear is high across Middle and Late 

Pleistocene groups but that large anterior dentitions are beneficial in maintaining a functional 

dentition throughout the life-course. Reduced dentitions do not necessarily mean less anterior 

tooth-use for manipulative behaviors, but do correspond with decreased functionality of the 

anterior dentition later in life among individuals with smaller dentitions.  

Thus, it is difficult to claim that a shift toward less habitual use of the anterior dentition 

for manipulative purposes leads to anterior dental size reduction among early modern humans 

through some form of relaxed selection on anterior tooth size. If anything, large anterior teeth 

should have been under stabilizing selection among early modern humans as well as archaic 

humans given their similarly heavy reliance on the anterior dentition for manipulative purposes. 

In sum, it does not appear that tooth-use, or lack thereof, was a significant factor influencing 
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the reduction in anterior tooth morphology among early modern humans, and other 

mechanisms are needed to explain tooth reduction in the Late Pleistocene. This will be 

discussed further in Chapter 8.  
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Chapter 6. Antemortem enamel chipping of the anterior teeth 
 

Hypotheses and Predictions 

H0: There will be no observable differences in the frequency of enamel chipping between 

chronologically and morphologically-defined human groups.   

This null hypothesis will be rejected if significant differences in the patterning of enamel 

chipping between groups are found between chronologically and morphologically-defined 

groups. If rejected, the magnitude and direction of the behavioral shifts among Middle and Late 

Pleistocene groups will be assessed. 

  

A brief rationale for analysis 

The maintenance of morphologically and absolutely larger anterior dentitions among 

archaic humans versus a reduction in anterior tooth dimensions and lower frequency of mass-

additive dental traits among early modern humans has been attributed to many causes. The 

massive character of archaic human anterior dentitions has been discussed in terms of 

functional adaptations to heavy attrition, high peak loads, repetitive loading, or some 

combination of these factors. In contrast, socioeconomic and technocultural evolution is 

thought to release early modern humans from the selective pressures that maintained the 

robust anterior dentitions of their archaic predecessors and contemporaries. Occlusal 

macrowear gradients were examined to address the correlation between anterior dental size 

on the degree of cumulative dental wear incurred throughout the lifetime of an individual, and 

the relative importance of anterior versus posterior tooth-use across fossils groups. 
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Instrumental striations, or “cutmarks”, on labial enamel will be examined to document a 

particular forms of manipulative behavior (e.g., “stuff-and-cut” behaviors – Chapter 7). While 

these analyses comment on the repetition of non-masticatory behaviors and resultant 

accumulation of wear, they do little to comment on the magnitude of loads placed on the 

anterior dentition. 

Enamel chipping comments directly on the loads that the anterior teeth are subjected 

to. Occasionally, non-masticatory behaviors involve bite forces that are high enough to induce 

fracture or chipping of enamel. Dental fracture, or catastrophic crown failure in extreme cases, 

poses a serious threat to individual fitness, therefore, it stands to reason that it may be an 

important selective pressure in hominin dental evolution (Chai et al. 2009; Constantino et al. 

2010; Lee et al. 2011; Strait et al. 2013).  

Recent experimental research documents a close relationship between the size of an 

enamel chip dimension on bunodont tooth crowns and the forces required to propagate 

chipping/fracture. Experiments initially relied on ideal glass dome models but were later 

replicated through experiments on extracted human teeth and observations across mammalian 

taxa that share bunodont postcanine dental morphology (e.g., peccaries, sea otters, monkeys, 

apes, and humans) (Chai and Lawn 2007b, a; Lawn and Lee 2009; Lawn et al. 2009; Lee et al. 

2009; Myoung et al. 2009; Chai et al. 2010, 2011; Constantino et al. 2011; Ziscovici et al. 2014). 

These analyses have generated equations to calculate the bite forces necessary to produce an 

individual enamel chip or fracture observed on the postcanine teeth of earlier hominins and 

non-human primates (Constantino et al. 2010, 2012). These equations are specific to bunodont 

crowns, but have shown that bite forces can be reliably predicted from the absolute dimensions 
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of enamel chips. While specific equations for calculating bite forces from chipping on the 

anterior dentition are not available8, the relationship between chip size and the force required 

to propagate enamel fracture in the postcanine dentition is still informative. In this sense, the 

size of an enamel chip on an anterior tooth can provide some evidence of the forces the tooth 

was subjected to in vivo – i.e., larger chips require higher bite forces to propagate.  

Despite the great extent to which anterior bite force production among Neandertals 

relative to early modern humans as inferred from craniofacial moment arms and hypertrophy 

has been discussed in the literature (see Chapter 3), there are obvious limitations to addressing 

bite force production from analyses of cranial fossils. Most obvious is the dearth of complete 

cranial fossils from the Pleistocene. Therefore, a direct analysis of estimated bite forces from 

enamel chipping fracture using abundant dental fossils provides a welcome alternative to 

address relative bite force production across Middle and Late Pleistocene human groups. 

However, bite force production is not the sole interest in collecting data on enamel chipping 

and fracture. For instance, bioarchaeological studies have illustrated the utility of recording 

dental chipping to understand variation in prehistoric human non-masticatory behaviors and 

diet across different samples (Turner and Cadien 1969; Belcastro et al. 2007; P. Molnar 2008; 

Scott and Jolie 2008; Scott and Winn 2011). The chipping and fracture of teeth is occasionally 

commented upon with regard to Pleistocene dental fossils (e.g., Matiegka 1929; Brace et al. 

1981; Puech 1981; Formicola and Repetto 1989; Liu et al. 2010; Janković et al. 2012), but this 

data does not immediately lend itself to quantitative analyses because the absence of 

                                                      
8 The equations for calculated bite force estimates have only been established for bunodont premolar and molar 
teeth. New equations would have to be generated for incisors and canines. 
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chipping/fracture is not explicitly noted in many of these studies. However, the systematic 

documentation of both the presence and absence of dental chipping has become more 

common and allows comparisons of frequency between some studies (Ryan 1980b; Bonfiglioli 

et al. 2004; Lozano et al. 2008, nd; Estalrrich and Rosas 2015).  

In short, dental chipping records past behaviors that involved high enough anterior bite 

force production to cause enamel fracture. As such, dental chipping allows one to comment on 

the degree to which different fossil groups engaged in manipulative behaviors that had the 

potential to damage or destroy a tooth in addition to influencing craniofacial growth and 

remodeling through dental loading. Therefore, variation in enamel chipping, together with the 

scaled macrowear gradient analyses presented previously, has important implications for 

understanding behavioral factors involved in the transition from archaic to modern human 

morphology during the Late Pleistocene.  

 

Materials 

Materials examined include original fossils, high quality epoxy-resin casts, and a subset 

of data derived from the literature (see Chapter 4). Enamel chipping data for the Sima de los 

Huesos archaic humans was published as “present or absent”, and divided into two categories: 

the labial-occlusal edge and the remaining occlusal surface (Lozano 2005; Lozano et al. 2008). 

The Sima de los Huesos data for both categories were combined since the location of chipping 

was not considered in the present study (see below). Sima de los Huesos tooth associations by 

individual are listed in Appendix Table 1. Data from El Sidrón, Hortus, and Spy (Estalrrich and 

Rosas 2015) was published using the ordinal scoring system employed here (see below).  
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 Data will also be presented on postcanine enamel chipping for comparative purposes. 

The data has been presented in part elsewhere (Azar et al. 2015), but is elaborated upon here. 

The samples closely correspond to the categories and fossils used throughout the entirety of 

this dissertation, but there are subtle differences nonetheless. The “Earlier Neandertal” sample 

is limited to the Krapina (MIS 6/5e) Neandertals. The “Later Neandertal (MIS 4-3)” sample 

overlaps with the sample used for anterior dental wear analyses with the exception of a few 

specimens that are unique to postcanine analyses (they do not have anterior teeth so were not 

analyzed in other analyses). The Late Neandertals are: Amud, Goyet, Kůlna, Malarnaud, 

Monsempron, Le Moustier, Oliviera, Shanidar, Shovakh, Spy, Švédův stůl, and Vindija. The 

“Early Modern Human” sample includes individuals from Barma Grande, Dolní Vĕstonice, 

Miesslingtal, Mladeč, Muierii, Oase, Ohalo II, Ostuni, Abri Pataud, Předmostí, Sunghir, and 

Tianyuan. The two specimens from Ohalo II were considered Late Upper Paleolithic specimens 

in the anterior tooth analyses. However, they are dated to 19,000 BP (Hershkovitz et al. 1995), 

and are frequently included in analyses of pre-Late Glacial Maximum humans.  

 

Methods 

Antemortem versus postmortem chipping 

 Antemortem versus postmortem enamel chipping is often readily discernable when 

studying original fossils on the basis of chip color and morphology of the chip edges (Scott and 

Winn 2011). For instance, postmortem chips – which occur after deposition, excavation, and 

while curated – typically differ in color from the rest of a tooth surface. Specifically, the edge of 

a postmortem chip may exhibit a “fresher” appearance such that the fractured surface color 
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differs from the rest of the enamel surface. If dentin is exposed through occlusal wear it often 

differs in color from dentin exposed through postmortem fracture. In addition, the edge of a 

postmortem chip or fracture is often sharp or jagged whereas the edges of a chip sustained in 

vivo are generally rounded and worn unless they occurred close to the time an individual died. 

Handheld magnification (~10x) and a portable light microscope were used to examine all 

original fossils studied to ensure accurate diagnosis of antemortem versus postmortem 

chipping.  

When dental casts were observed in lieu of original fossils the chip color criteria are no 

longer useful unless color photographs were also available. Instead, edge characteristics of each 

chip were examined under low magnification to confirm natural edge rounding and wear for 

each chip. Chips that were difficult to diagnose on dental casts were examined using SEM which 

allowed higher magnification and depth of field. Antemortem chipping was distinguished from 

other postmortem taphonomic factors based on microscopic surface alterations established in 

the literature (King et al. 1999; Pérez-Pérez et al. 2003; Martínez and Pérez-Pérez 2004). When 

SEM was used, the methods for molding, casting, and preparation of specimens followed the 

methods outlined in Chapter 6. In all cases, a conservative approach was taken and any 

instance of enamel chipping that could not be definitively ascribed to ante- or postmortem 

processes was not considered in the analyses.  

Frequencies of chipping for the sample from Sima de los Huesos could not be calculated 

in the same manner described above, because only the teeth affected by antemortem chipping 

were listed by tooth type and individual in publications (Lozano 2005; Lozano et al. 2008). The 

frequency of postmortem chipping was presented but this was not broken down by tooth type 
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or individual. While individual teeth with significant postmortem damage were removed from 

the calculations of chipping frequencies for the fossils examined directly in this study, this was 

not possible for the Sima de los Huesos fossils. Therefore, the chipping frequencies for the 

Middle Pleistocene archaic human sample in the present study should be viewed with caution, 

since the frequency would be higher if the individuals with postmortem damage could be 

removed from calculations.  

 

Ordinal scoring of enamel chipping 

Chipping was first scored as present or absent based on the criteria mentioned 

previously. Scoring presence or absence allowed the broadest possible comparisons with 

previously published literature. As with labial cutmarks (see Chapter 6) the frequency of teeth 

with chipping counted as “present” may be slightly inflated. This is because a tooth with 

postmortem damage to the occlusal surface, particularly the circumference of the occlusal 

margin where chipping occurs, but no clear evidence of antemortem chipping on undamaged 

areas was not included in frequency counts. However, if a tooth has evidence of antemortem 

chipping, as well as postmortem damage, it was still counted having a chip “present”. While this 

may slightly inflate the number of chips counted as present in this study, the bias is uniform 

across the samples studied here.  

When present, antemortem chips were also scored using an ordinal system for each 

tooth affected. Bonfiglioli and colleagues (2004:449) provided the following criteria for grading 

enamel chipping (Figure 6.1 and Figure 6.2): 
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 Grade 1 – slight crack or fracture (0.5 mm), or larger but superficial enamel flake 

loss. 

 Grade 2 – square irregular lesion (1 mm) with the enamel more deeply involved. 

 Grade 3 – crack bigger than 1 mm involving enamel and dentin or a large, very 

irregular fracture that could destroy the tooth. 

 
Figure 6.1 Examples of ordinal chipping scores on anterior teeth.  
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When assessing ordinal scores, size was considered the most important grading criteria 

for this study. Constantino et al. (2010) employ a minimum cutoff of 0.1 mm when measuring 

enamel chipping in molars and the same cutoff is followed here. If a possible chip of small size 

was uncertain, it was not counted.  

Small chips are extremely frequent along interproximal contact areas on the occlusal 

surface. For this reason, chips were only graded as “present” at an interproximal contact if they 

were on the “large end” of a grade 1 chips (i.e., approaching grade 2 in size). The ubiquity of 

small interproximal chips is one reason to exclude them, but the primary reason to exclude 

them when studying Pleistocene human teeth is due to the high prevalence of subvertical 

grooves on the interproximal facets of archaic human teeth (see Figure 2.3). The furrows of 

subvertical grooves are often visible on the interproximal edge of the occlusal surface (Kaidonis 

et al. 1992) and can be mistaken for small, grade 1 chips (Willman, personal observation). 

Subvertical grooves are particular common in the Pleistocene, and especially among archaic 

humans (Villa and Giacobini 1995a; Villa and Giacobini 1995b; Egocheaga et al. 2004; Estalrrich 

et al. 2011; Brink et al. 2012; Compton and Stringer 2012; Sarig et al. 2016). While not absent, 

they are less commonly found in modern humans (Kaidonis et al. 1992; Ramirez Rozzi et al. 

2009; Willman, personal observation). Thus, counting only larger antemortem chips at 

interproximal surfaces in all fossil groups ensures that no bias from supposedly greater degree 

of subvertical grooves, and by extension misattributed grade 1 chips, in the archaic human 

samples.  
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Figure 6.2 Examples of ordinal chipping scores on molars and measurements taken to 
determine bite force. 
Chipping scores are 1, 2, and 3 from left to right. Chip size (“h”) and tooth diameter (“D”).  
 

The relatively thin enamel of Neandertals versus modern humans could also yield a 

higher degree of dentin involvement when chips are large, and less dentin involvement in the 

more thickly enameled teeth of modern humans. For example, a 1 mm irregular chip (grade 2) 

in a modern human is unlikely to penetrate to dentin, but a similarly sized enamel chip on an 

Neandertal tooth with thinner enamel may actually penetrate through to dentin – this would 

make the Neandertal chip a grade 3 chip despite the similarity in size to the hypothetical grade 

2 chip in a thickly enameled modern human. Therefore, chip dimensions were considered more 

important when assigning an ordinal score to chips that had some dentin involvement. 

Furthermore, chips on relatively unworn teeth are common but rarely penetrate to the level of 

dentin even when they are quite large (grade 2 or 3) due to the relatively thicker enamel of 

cusp tips versus the progressively thinner enamel toward the cementoenamel junction. Using 

chip size, rather than relying on a dentin involvement for chips graded as 2 and 3, ensures that 

the closest approximation of the maximum dimension of a chip is being recorded – size being 

the biomechanically relevant data for calculating proxies for bite forces.  
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 Occlusal wear (Smith 1984) was recorded in addition to enamel chipping on specimens 

directly examined for this study as a means of assessing bias between samples containing 

skewed numbers of teeth in higher of lower wear categories. Chipping on dentin (teeth worn to 

the roots – Smith scores of 8) was given special consideration, because the author had 

observed dentin chipping in pilot studies on Holocene materials. However, other researchers 

choose to record enamel chipping only if two-thirds of the crown remains and/or there is a 

complete occlusal rim (Scott and Winn 2011). Thus some data screening was necessary. Table 

6.1 shows the number of teeth from each sample that had Smith scores of 8. Only 4.0% of the 

total number of teeth with adequate preservation for inclusion in this study were worn to 

roots. However, these teeth were disproportionately observed in Later Neandertal (MIS 4-3) 

maxilla and mandibles, Early Upper Paleolithic mandibles, and Late Upper Paleolithic maxillae. 

Further examination revealed that of all the teeth with Smith scores of 8 (n=31), only one had 

dentin chipping (3.2%). However, chipping was observed on teeth with wear scores up to grade 

7 in the present study and in a previous study of the Sima de los Huesos sample (chipping: 

Lozano 2005; wear scores: Martinón-Torres, et al. 2012; see Appendix Table 1 for tooth 

associations) which further supports the minimum inclusion criteria for the present study. From 

these data screening observations, it was decided that teeth having some enamel remaining to 

be considered in analyses (Smith Scores 1-7). Furthermore, biomechanical analyses of chipping 

are intended for enamel chipping and fracture only (Constantino et al. 2010). Therefore, all 31 

root-worn teeth, initially fitting criteria for inclusion on the basis of preservation, are eliminated 

from further analyses. The results of this study may not be completely comparable to 

previously published bioarchaeological studies that use lesser worn teeth as a minimum 
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requirement for inclusion, but is comparable with concern to the chipping literature concerning 

Pleistocene fossils.  

Table 6.1 Counts and frequencies of anterior teeth with Smith score of “8” before 
removal*. 

 
Middle 

Pleistocene 

Earlier 
Neandertals 

(MIS 7-5) 

Later 
Neandertals 

(MIS 4-3) 

Middle 
Paleolithic 

Modern 
Humans 

Early Upper 
Paleolithic 

Late Upper 
Paleolithic 

Maxilla 0/80 0/59 7/103 0/40 1/69 6/42 
 0.0% 0.0% 6.8% 0.0% 1.4% 14.3% 

Mandible 0/102 0/57 7/74 0/15 10/72 0/59 
 0.0% 0.0% 9.5% 0.0% 13.9% 0.0% 

Smith score of “8” across all samples 
31/772 

4.0% 
  

 
 

Chipped teeth with Smith score of “8” 
across all samples 

1/31 
3.2% 

  
 
 

* Frequency = count/total observations.  
 

 

 The choice of grading chipping by tooth type rather than by individual is used here, since 

using an “individual” can be a major source of bias in comparative analyses (Scott and Winn 

2011). This is also a concern in the analysis of labial cutmarks and will be discussed in more 

detail subsequently (Chapter 7), but the basic premise is that an “individual” represented by 12 

anterior teeth and with a single chipped tooth (1/12 or 8.3% of their anterior teeth) would be 

counted as an “individual” with chipping in a prevalence count by individuals. However, this is 

different from an individual with 12 chipped anterior teeth when issues of chipping severity is 

of interest, and different from counting a single tooth (with or without chipping) as a single 

“individual” (Scott and Winn 2011). This obviously makes for many separate comparisons but it 

is nevertheless an honest way of presenting comparable data when dealing with fragmentary 

fossil dentitions. 
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 The location of a chip on chip tooth was not considered here despite being considered 

elsewhere (Scott and Winn 2011; Estalrrich and Rosas 2015). If more than one chip was present 

on the same tooth, the grade for the largest chip was recorded for severity analyses. The 

presence of multiple chips was not considered separately in this study.    

 Binomial, one proportion confidence limits (95% CL) for presence/absence data were 

calculated in NCSS (Hintze 2012). Cross tabulation and Chi-square tests were used to compare 

frequency differences between groups for the presence/absence data for anterior tooth 

chipping. Exact P-values and Chi-square values were calculated in NCSS (Hintze 2012) using 

count data. Tests yielding P ≤ 0.05 are considered significant. However, more emphasis will be 

placed on tests yielding P ≤ 0.01 in the results and discussion, since it more reliably reduces the 

probability of Type I errors (Chandler 1995; see also Lozano et al. 2008).  

 

Comparisons with posterior dental chipping 

Presence, absence, and ordinal scores were collected for posterior dental chipping using 

the same criteria as detailed for the anterior dentition. Additional data were collected to 

calculate relative chip size, actual bite force (PF) maximum potential bite force (Pmax) from 

premolar and molar chip and crown dimensions (Constantino et al. 2010). Figure 6.2 illustrates 

the measurement of chip size (“h”) and tooth diameter (“D”) from scaled occlusal photographs 

that are then used in calculations to determine bite force estimates (Constantino et al. 2010). 

All measurements were made from scaled photographs using tpsDig11 (Rohlf 2006). As with 

documentation of chips on the anterior teeth, when more than one chip was present on a 

single tooth, the largest chip was measured.  
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Actual bite force (PF) and maximum, potential bite force (Pmax) were calculated from 

the following equations (Constantino et al. 2010):  

Equation 1: PF = T’h3/2 

Equation 2:  Pmax = 0.16T’h3/2 

Actual bite force (PF) is a product of chip dimensions and is therefore an accurate 

reflection of the bite forces produced in vivo on hard foods, dietary (grit) inclusions, or other 

hard objects worked with the postcanine dentition (which on occasion, may be non-masticatory 

but this is not readily apparent from chipping only in most cases). Maximum, potential bite 

force (Pmax) is similar to the bite force estimates generated in biomechanics studies of the 

craniofacial skeleton in that they are an estimate of the maximum bite forces that could be 

produced. Relative chip size was also calculated as h/D. The practical limit of chip size (the ratio, 

0.3) is indicated in resultant plots as a reference point (Constantino et al. 2010). Skewness, 

Kurtosis, and Omnibus tests indicated that PF, Pmax, and relative chip size (h/D) are not normally 

distributed. Significant differences were assessed with ANOVA (Kruskal-Wallis). 

 

Results 

 Figure 6.3 displays percentage and cumulative frequencies of all anterior teeth analyzed 

in the present analysis corresponding to each Smith (1984) wear score (after removing teeth 

with wear scores of 8). Corresponding tooth counts by wear category are found in Table 6.2 

and Table 6.3. The Early Upper Paleolithic maxillary and mandibular samples have high 

numbers of less worn (scores 1-3) teeth compared to other groups. The earlier Neandertal 

sample approaches the Early Upper Paleolithic sample in cumulative total of maxillary teeth 
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worn to stage 1, 2, and 3. The earlier Neandertal sample is dominated by teeth from Krapina – a 

site known for its young age profile (Bocquet-Appel and Arsuaga 1999). Similarly, the Sima de 

los Huesos sample comprises the majority of the Middle Pleistocene sample and also has a 

relatively young age profile (Bocquet-Appel and Arsuaga 1999) – which is reflected in the large 

number of teeth with stage 3 wear (especially in the mandible). The Middle Paleolithic modern 

humans have low sample sizes making any overall trends relatively meaningless. In general, 

there are few less worn (stage 1 and to some degree stage 2) and few heavily worn (stage 6-7) 

across all samples. The majority of anterior teeth sampled are categorized by wear stages 3, 4, 

and 5.  

Table 6.2 Maxillary anterior tooth sample composition (pooled sides and tooth types). 

 Tooth Count by Smith Wear Scores 
 1 2 3 4 5 6 7 Total 

Middle Pleistocene 1 13 18 17 14 10 7 80 

Earlier Neandertals (MIS 7-5) 6 11 16 16 5 5 0 59 

Later Neandertal (MIS 4-3) 5 10 14 24 28 10 5 96 

Middle Paleolithic Modern Human 0 8 3 6 16 7 0 40 

Early Upper Paleolithic 14 12 17 10 8 3 4 68 

Late Upper Paleolithic 1 7 7 8 5 2 6 36 

 
 
Table 6.3 Mandibular anterior tooth sample composition (pooled sides and tooth types). 

 Tooth Count by Smith Wear Scores 
 1 2 3 4 5 6 7 Total 

Middle Pleistocene 0 3 60 28 3 7 1 102 
Earlier Neandertals (MIS 7-5) 2 5 14 12 19 5 0 57 
Later Neandertal (MIS 4-3) 0 8 12 14 22 6 5 67 

Middle Paleolithic Modern Human 1 5 1 5 3 0 0 15 
Early Upper Paleolithic 9 10 20 9 6 6 2 62 
Late Upper Paleolithic 4 8 11 22 11 3 0 59 
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Figure 6.3 Sample composition by Smith (1984) wear scores. 
Tooth types (first and second incisors and canines) and sides (left and right) are pooled for 
each sample. Top graphs: percentage of teeth in each wear category. Bottom graphs: 
cumulative percentage of teeth in each wear category. 
 

Chipping frequencies by tooth type and jaw are presented graphically in Figure 6.4, but 

the raw data on counts should be referenced in Table 6.4 and Table 6.5 since sample size varies 

dramatically between some samples. This is particularly telling when examining the binomial, 
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one proportion 95% confidence limits (95% CL) presented for each tooth type. The 95% CL’s are 

broad with extensive overlapping across groups at each tooth type (Table 6.4 and Table 6.5)  

 
Figure 6.4 Percentage of chipped teeth by tooth, jaw, and side. 
Maxillary teeth (top) and mandibular teeth (bottom).  
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Table 6.4 Anterior dental chipping frequency by maxillary tooth, side, and jaw. 
Group LC1 LI2 LI1 RI1 RI2 RC1 Χ2 P 

Middle Pleistocene 
14.3 25.0 41.2 41.7 25.0 30.8   
2/14 3/12 7/17 5/12 3/12 4/13 3.72 0.5897 

17.8 – 42.8 5.49 – 57.2 18.4 – 67.1 15.2 – 72.3 5.5 – 57.2 9.1 – 61.4   

Earlier Neandertal (MIS 7-5) 
62.5 71.4 55.6 75.0 80.0 50.0   
5/8 5/7 5/9 9/12 12/15 7/14 3.92 0.5608 

24.5 – 91.5 29.0 – 96.3 21.2 – 86.3 42.8 – 94.5 51.9 – 95.7 23.0 – 77.0   

Later Neandertal (MIS 4-3) 
47.4 88.2 79.2 80.0 82.6 68.0   
9/19 15/17 19/24 16/20 19/23 17/25 10.91 0.0532 

24.5 – 71.1 63.6 – 98.5 57.9 – 92.9 56.3 – 94.3 61.2 – 95.1 46.5 – 85.1   

Middle Paleolithic Modern Humans 
37.5 40.0 75.0 62.5 75.0 40.0   
3/8 2/5 3/4 5/8 3/4 2/5 3.29 0.6548 

8.5 – 75.5 5.3 – 85.3 19.4 – 99.4 24.5 – 91.5 19.4 – 99.4 5.3 – 85.3   

Early Upper Paleolithic 
25.0 0.0 35.7 10.0 22.2 15.4   
3/12 0/11 5/14 1/10 2/9 2/13 6.14 0.2930 

5.49 – 57.2 0.0 – 28.5 12.7 – 64.8 2.5 – 44.5 2.8 – 60.0 1.9 – 45.5   

European Late Upper Paleolithic 
60.0 60.0 71.4 33.3 40.0 50.0   
6/10 3/5 5/7 1/3 4/10 4/8 2.42 0.7883 

26.2 – 87.8 14.6 – 94.7 29.4 – 96.3 8.4 – 90.6 12.2 – 73.8 15.7 – 84.3   

Each group and tooth type has three row values. Top: percent chipped teeth; middle: chipped teeth/total; bottom: binomial, one proportion 
confidence limits (95% CL) for percentage calculation. 
Χ2 and P-values for the H0 of equal proportions of chipping across tooth types within each group. Bold value indicate rejection of H0 for 
equivalent proportions at P ≤ 0.05. df = 5. 
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Table 6.5 Anterior dental chipping frequency by mandibular tooth type. 
Group LC1 LI2 LI1

 RI1
 RI2 RC1 Χ2 P 

Middle Pleistocene 
5.9 25.0 29.4 31.3 18.8 25.0   

1/17 5/20 5/17 5/16 3/16 4/16 4.11 0.5334 
1.5 – 28.7 8.7 – 49.1 10.3 – 56.0 11.0 – 58.7 4.1 – 45.7 7.3 – 52.4   

Earlier Neandertal (MIS 7-5) 
77.8 27.3 87.5 77.8 88.9 54.5   
7/9 3/11 7/8 7/9 8/9 6/11 12.97 0.0365 

40.0 – 97.2 6.0 – 61.0 47.4 – 99.7 40.0 – 97.2 51.8 – 99.7 23.4 – 83.3   

Later Neandertal (MIS 4-3) 
66.7 68.4 63.6 81.3 60.0 58.8   

14/21 13/19 7/11 13/16 12/20 10/17 2.46 0.7829 
43.0 – 85.4 43.5 – 87.4 30.8 – 89.1 54.4 – 96.0 36.1 – 80.9 32.9 – 81.6   

Middle Paleolithic Modern Humans 
0.0 50.0 50.0 50.0 50.0 20.0   
0/2 1/2 1/2 1/2 1/2 1/5 2.40 0.7915 

0.0 – 84.2 1.3 – 98.7 1.3 – 98.7 1.3 – 98.7 1.3 – 98.7 0.5 – 71.6   

Early Upper Paleolithic 
8.3 16.7 14.3 20.0 0.0 6.7   

1/12 2/12 1/7 2/10 0/12 1/15 3.31 0.6524 
2.1 – 38.5 2.1 – 48.4 3.6 – 57.9 2.5 – 55.6 0.0 – 26.5 1.7 – 32.0   

European Late Upper Paleolithic 
30.8 60.0 37.5 62.5 60.0 50.0   
4/13 6/10 3/8 5/8 6/10 5/10 3.71 0.5923 

9.1 – 61.4 26.2 – 87.8 8.5 – 75.5 24.5 – 91.5 26.2 – 87.8 18.7 – 81.3   

Each group and tooth type has three row values. Top: percent chipped teeth; middle: chipped teeth/total; bottom: binomial, one 
proportion confidence limits (95% CL) for percentage calculation. 
Χ2 and P-values for the H0 of equal proportions of chipping across tooth types within each group. Bold value indicate rejection of H0 for 
equivalent proportions at P ≤ 0.05. df = 5. 

 
 

 

 

 



 

150 
 

The null hypothesis that there are no differences in the proportion of chipping across 

maxillary anterior tooth types is rejected only for Later Neandertals, but the result is barely 

significant (P = 0.0532) and would not be considered significant if a more conservative 

significance level (P ≤ 0.01) is used (Table 6.4 and Figure 6.4). The null hypothesis that there are 

no differences in the proportion of chipping across mandibular anterior tooth types is rejected 

only for Earlier Neandertals, but the result (P = 0.0365) would not be considered significant if a 

more conservative significance level (P ≤ 0.01) is used. The low number of left I2 chipping is the 

strongest influence on a lack of equivalence between maxillary tooth types among the Earlier 

Neandertals (Figure 6.4 and Table 6.5).  

When tooth types (I1, I2, and C) are pooled by right or left side some groups exhibit 

more than 20% right-left asymmetry (Table 6.6 and Figure 6.5). However, there is extensive 

overlap in 95% CL’s and the null hypothesis of equivalent proportion of chipping across left and 

right sides was not rejected for any group regardless of whether maxillary or mandibular teeth 

wear examined (Table 6.6).  
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Figure 6.5 Percentage of chipped anterior teeth by side.  
I1, I2, and C teeth are pooled for each side.  
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Table 6.6 Percentage of chipped teeth by side. 
 Maxilla  Mandible 

 Left Right Χ2 P  Left Right Χ2 P 

Middle Pleistocene 
27.9 32.4    20.4 25.0   

12/43 12/37 0.19 0.6597  11/54 12/48 0.31 0.5765 
15.3 – 43.7 18.0 – 49.8    10.6 – 33.5 13.6 – 39.6   

Earlier Neandertal (MIS 7-5) 
62.5 68.3    60.7 72.4   

15/24 28/41 0.23 0.6339  17/28 21/29 0.88 0.3489 
40.6 – 81.2 51.9 – 81.9    40.6 – 78.5 52.8 – 87.3   

Later Neandertal (MIS 4-3) 
71.7 76.4    66.7 66.0   

43/60 52/68 0.38 0.5352  34/51 35/53 0.00 0.9459 
58.6 – 82.6 64.6 – 85.9    66.7 – 79.2 51.7 – 78.48   

Middle Paleolithic Modern Humans 
47.1 58.8    33.3 33.3   
8/17 10/17 0.47 0.4920  2/6 3/9 0.00 1.0000 

23.0 – 72.2 32.9 – 81.6    4.3 – 77.7 7.5 – 70.1   

Early Upper Paleolithic 
21.6 15.6    12.9 8.1   
8/37 5/32 0.40 0.5253  4/31 3/37 0.42 0.5169 

9.8 – 38.2 5.3 – 32.8    3.6 – 29.8 1.7 – 21.9   

European Late Upper Paleolithic 
63.6 42.9    41.9 57.1   

14/22 9/21 1.86 0.1721  13/31 16/28 1.36 0.2433 
40.7 – 82.8 21.8 – 66.0    24.6 – 60.9 37.2 – 75.5   

Each group and tooth type has three row values. Top: percent chipped teeth; middle: chipped teeth/total; bottom: binomial, one 
proportion confidence limits (95% CL) for percentage calculation. 
Χ2 and P-values for the H0 of equal proportions of chipping across left and right sides of a given jaw by group. Bold value indicate 
rejection of H0 for equivalent proportions at P ≤ 0.05. df = 2. 
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 When all teeth are pooled by jaw significant differences between samples are found 

(Figure 6.6 and Table 6.7). There is a risk of over counting individuals represented by more than 

one (and up to 6 total) anterior teeth by jaw – i.e., it is more likely for an individual with a chip 

on one tooth to have a chip on another tooth. Nonetheless, the Middle Pleistocene sample has 

relatively low chipping frequencies as does the Early Upper Paleolithic sample (albeit the Early 

Upper Paleolithic sample has a wide 95% CL). Both of these samples are also characterized by 

low occlusal wear scores (Figure 6.3, Table 6.2, and Table 6.3). However, the low Middle 

Pleistocene values may also be due to interobserver error, since the sample is overwhelmingly 

from Sima de los Huesos individuals and that data was taken from the literature.  

 The null hypothesis of equivalent proportions between groups is rejected for both 

maxilla and mandible (Table 6.7). The relative Chi-square contribution of each group shows that 

Middle Pleistocene, Later Neandertal, and Early Upper Paleolithic proportions were the 

strongest contributors to the total Chi-square result (Χ2 = 76.41, P ≤ 0.000, df = 5: Table 6.7). 

Assuming independence, chipping was lower than expected for the Middle Pleistocene and 

Early Upper Paleolithic groups but higher than expected for the Later Neandertals (Table 6.7). 

For the mandible, there were large relative Chi-square contributions from the Middle 

Pleistocene, Earlier and Later Neandertals, and Early Upper Paleolithic human groups to the 

overall Chi-square result (Χ2 = 84.79, P ≤ 0.000, df = 5: Table 6.7). Again, chipping in the Middle 

Pleistocene and Early Upper Paleolithic groups was lower than expected under an assumption 

of independence, whereas it was higher than expected in the Earlier and Later Neandertal 

groups (Table 6.7). 
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Figure 6.6 Percentage of total chipped teeth by jaw. 
Samples are composed of pooled left and right I1, I2, and C for each group. Maxilla: top; 
mandible: bottom. 
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Table 6.7 Percentage and cross tabulation results for anterior enamel chipping by jaw. 

 Maxilla  Mandible 

 Percent Present Absent Total Χ2  Percent Present Absent Total Χ2 

Middle Pleistocene 
30.0 24 (-) 56   22.6 23 (-) 79  

20.3 – 41.3 7.21 7.67 14.88  14.9 – 31.9 9.82 7.36 17.18 

Earlier Neandertal 
(MIS 7-5) 

66.2 43 (+) 22   66.7 38 (+) 19  
53.4 – 77.4 2.69 2.86 5.55  52.9 – 78.6 7.54 5.65 13.19 

Later Neandertal 
(MIS 4-3) 

74.2 95 (+) 33   66.4 69 (+) 35  
65.7 – 81.5 12.76 13.57 26.33  56.4 – 66.4 13.39 10.04 23.43 

Middle Paleolithic 
Modern Humans 

52.9 18 (+) 16   55.6 5 (+) 4  
35.1 – 70.2 0.01 0.01 0.02  21.2 – 86.3 0.34 0.25 0.59 

Early Upper 
Paleolithic 

18.8 13 (-) 56   10.3 7 (-) 61  
10.4 – 30.1 14.32 15.24 29.56  4.2 – 20.1 16.82 12.62 29.44 

European Late 
Upper Paleolithic 

53.5 23 (-) 20   49.2 29 (+) 30  
37.7 – 68.8  0.03 0.03 0.06  35.9 – 62.5 0.55 0.41 0.96 

Total 
51.6 216 203 76.41*  42.9 171 228 84.79* 

46.7 – 56.4     37.9 – 47.9    
Percent columns for maxilla and mandible have two rows for each group. Top: percent chipped teeth. Bottom: binomial, one proportion 
confidence limits (95% CL) for percentage calculation. 
Present/Absent columns for maxilla and mandible have two rows for each group. Top: number of teeth. Bottom: Χ2 contribution of present or 
absent counts to total Χ2. Expected counts assuming independence: (-) = less than expected; (+) = more than expected.  
Total Χ2 column: each group’s contribution to “Total” row at bottom of table. 
* Significant at P ≤ 0.0000. Reject H0 of equal proportions of chipping across groups in maxilla or mandible across groups. df = 5. 
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The calculation of relative chip size (h/D), actual bite force (PF) and maximum potential 

bite force (Pmax) for postcanine teeth are provided in Figure 6.7 and Table 6.8. Overall, these 

values show extensive overlap between modern and archaic human groups, and the values are 

considerably lower than those calculated for early fossil hominins and non-human primates 

using the same methods (e.g., Constantino et al. 2010, 2012). Relative chip size is particularly 

informative given how short the values for each fossil sample fall in relation to the practical 

chip limit (dashed line with 0.3 value in Figure 6.7). Similarly, the actual bite force values 

measured from chip dimensions (PF) do not overlap at all with the values produced for the 

maximum potential bite force (Pmax). These values only calculate posterior bite forces in the 

sample but chip size is a good indicator of bite force. Variation in postcanine chipping variables 

was not normally distributed so Kruskal-Wallis one-way ANOVA was used to determine whether 

significant differences in medians exist between groups. No significant differences were found 

between groups for relative chip size (h/D), actual bite force (PF) and maximum potential bite 

force (Pmax) (Table 6.8).  

Table 6.8 Values for relative chip size (h/D) actual bite force (PF) and maximum, potential 
bite force (Pmax) for postcanine teeth by fossil sample. 

      Kruskal-Wallisa 
 Group N Mean SD 95% CI Χ2 P 

h/D 
Early Modern Human 40 0.060 0.028 0.056 – 0.064 1.86 0.3941 
Neandertal (MIS 4-3) 73 0.056 0.029 0.052 – 0.060   

Krapina (MIS 6/5e) 15 0.071 0.038 0.057 – 0.085   

P
F
 

Early Modern Human 31 130.40 94.90 117.17 – 143.63 1.59 0.4522 
Neandertal (MIS 4-3) 54 131.60 108.86 117.10 – 146.10   

Krapina (MIS 6/5e) 15 169.50 140.62 116.99 – 222.00   

P
max

 
Early Modern Human 40 1435.66 419.68 1377.14 – 1494.18 1.06 0.5874 
Neandertal (MIS 4-3) 70 1472.61 421.11 1416.52 – 1528.69   

Krapina (MIS 6/5e) 15 1353.53 335.16 1228.38 – 1478.68   
a df = 2 
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Figure 6.7 Graphs of relative chip size (h/D), PF, and Pmasx for the postcanine dentition.  
Note: the samples used for posterior dental chipping differ slightly from those of other 
analyses in this thesis. See Chapter 6 Methods. 

 



 

158 
 

Comparisons of ordinal chipping score frequencies for anterior and posterior chipping 

gives a relative indicator of actual bite force production for the anterior teeth (Figure 6.8 and 

Table 6.9) despite the inability to directly calculate bite force estimates for anterior teeth. 

Chipping scores are numerous but small (score 1) across the anterior dentition (Figure 6.8 and 

Table 6.9). Larger chips are found in the maxillary anterior teeth more frequently than the 

mandibular teeth. There are few large (grade 3) chips across the samples in the anterior teeth. 

Larger chips (grades 2 and 3) are found in relatively equal amounts across the posterior teeth as 

is to be expected from the calculations of bite force based on chip size. Samples sizes are rather 

small and 95% CL’s overlap considerably across anterior and posterior teeth in both jaws. The 

number of chipped teeth is small and when categorized by ordinal score the samples are 

smaller yet. Therefore, some caution in interpreting the frequency plots (Figure 6.8) is advised.  
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Figure 6.8 Frequency of enamel chips in each ordinal size category for anterior and 
posterior dentitions. Frequencies are based on the total number of chips across all tooth 
types and sides. Some bias is expected. Note: anterior and postcanine teeth consist of slightly 
different sample groupings.  
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Table 6.9 Comparison of ordinal score frequencies for each chipped anterior and posterior tooth.  
 

Earlier Neandertal  
(MIS 7-5 or Krapina 

MIS6/5e) 
Later Neandertal (MIS 4-3) 

Middle 
Paleolithic 

Modern 
Human 

Early Upper Paleolithic 
(“Early Modern Human”) 

Late Upper 
Paleolithic 

 

Maxillary Teeth 
Chip 
Score 

Anterior N Posterior N Anterior N Posterior N Anterior N Anterior N Posterior N Anterior N  

1 34.1 14 22.2 2 47.4 45 37.5 6 63.2 12 33.3 4 35.1 13 25.0 6  
2 39.0 16 55.6 5 35.8 34 43.8 7 21.1 4 33.3 4 37.8 14 54.2 13  
3 26.8 11 22.2 2 16.8 16 18.8 3 15.8 3 33.3 4 27.0 10 20.8 5  

                  
Mandibular Teeth 
Chip 
Score 

Anterior N Posterior N Anterior N Posterior N Anterior N Anterior N Posterior N Anterior N 
 

1 39.4 13 50.0 3 63.8 44 40.0 8 66.7 4 42.9 3 26.2 11 48.3 14  
2 45.5 15 16.7 1 30.4 21 35.0 7 16.7 1 57.1 4 33.3 14 41.4 12  
3 15.2 5 33.3 2 5.8 4 25.0 5 16.7 1 0.0 0 40.5 17 10.3 3  
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Conclusions 

Some significant differences in chipping frequencies were found, but differences 

between archaic and early modern humans are not as starkly contrasted as might be expected 

given the propensity to emphasis anterior tooth-use among archaic humans in the literature. 

For instance, the cross-tabulation results do show significant differences in the total chipping by 

jaw across samples. Earlier and Later Neandertals tend to have a higher proportion of anterior 

dental chipping in both jaws, but it is interesting that Middle Pleistocene anterior dental 

chipping is lower than expected in both jaws (as was the Early Upper Paleolithic). The contrast 

is particular interesting because both Middle Pleistocene and Neandertal groups are 

characterized by large anterior teeth, but the former exhibits less evidence of engaging in 

behaviors that chip enamel. Part of the low frequency among the Middle Pleistocene and Early 

Upper Paleolithic samples may be due to the younger age (inferred through the relatively low 

degree of occlusal wear) in the samples. In contrast, the frequency of anterior dental chipping is 

quite high among the Middle Paleolithic and Late Upper Paleolithic modern humans. The latter 

group also exhibits the smallest anterior tooth size on average among the samples examined. 

Thus, anterior dental chipping does not exhibit a clear chronological or morphological trend 

across the human groups examined here.  

 Posterior dental chipping shows that archaic and modern human groups do not differ 

significantly in estimates of maximum potential posterior bite force or in terms of actual bite 

forces produced. This result coincides well with data on postcanine dental size trends in the 

Middle and Late Pleistocene – there is relatively little change in overall dimensions across the 

Late Pleistocene archaic to modern human morphological transition (Trinkaus 2004).  
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Furthermore, enamel chipping of small, medium, and large sizes are found among the teeth of 

each fossil group examined in the present study. This indicates that individuals in each group 

engaged in anterior tooth-using behaviors that required a range of bite forces.  

Chipping cannot account for all manipulative behaviors (especially those involving biting 

down on more pliant materials), but enamel chipping does provide another insight into non-

masticatory behavior that analyses of degree (wear gradients) or type (cutmark analysis) cannot 

provide in isolation. Some biases have been pointed out in terms of sample composition (e.g., 

young age of Middle Pleistocene and Early Upper Paleolithic samples; and the very small 

sample of Middle Paleolithic modern humans). However, the biases inherent in the analysis of 

small fossil samples helps to an illustrate an important point: we cannot make sweeping 

generalizations about archaic versus modern human anterior tooth-use in fossil human groups 

on the basis a single variable. Results do not follow clear chronological trends or have clearly 

delineated patterns across morphologically defined groups. 
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Chapter 7. Instrumental cutmarks on the labial enamel surfaces of 

anterior teeth 
 

 
Hypotheses and Predictions 

H0: There will be no difference in the frequency of central maxillary incisors with labial surface 

instrumental striations between chronologically and morphologically-defined human groups.   

This null hypothesis will be rejected if significant differences in the frequency of 

instrumental striations are found between chronologically and morphologically-defined groups.  

If rejected, the magnitude and direction of the behavioral shifts among Middle and Late 

Pleistocene groups will be assessed. 

 
A brief rationale for analysis 

 
The methods used to identify instrumental striations (Figure 7.1) on the labial surfaces 

of anterior teeth vary greatly between studies. Many researchers have noted obvious cutmarks 

on anterior teeth (most commonly maxillary central incisors) that are often visible 

macroscopically or with low magnification such as the Neandertals from Angles sur l’Anglin, 

Cova Negra, Hortus, La Quina, Saint-Brais, and Shanidar (Martin 1923; Koby 1956; Patte 1960; 

de Lumley 1973; Trinkaus 1983; Arsuaga et al. 1989). Other studies rely on higher magnification 

through the use of standard light microscopy, stereomicroscopy, SEM, or a combination of 

microscopic methods to identity and/or quantify labial cutmark frequency, metric variation, and 

orientation (Koby 1956; Bermúdez de Castro et al. 1988; Arsuaga et al. 1989; Lalueza-Fox 1992; 

Lalueza-Fox et al. 1993; Lalueza-Fox and Pérez-Pérez 1994; Lalueza-Fox and Frayer 1997; Lozano 
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et al. 2004, 2008, 2009, nd; Frayer et al. 2010, 2012; Hillson et al. 2010; Volpato et al. 2012; 

Estalrrich and Rosas 2013, 2015; Fiore et al. 2015; Sarig et al. 2016; Willman 2017). A new 

method using 3D microscopy produces incredibly high-resolution metric data (Hillson et al. 

2010), but access to this technology is not widespread. However, it is difficult to compare 

metric data on striations when using different microscopic techniques (but see Estalrrich and 

Rosas 2015 for an example of combined SEM and light microscopy), and it is even more difficult 

to rely on published metric data without knowing the taphonomic status of each tooth 

analyzed.  

 
Figure 7.1 SEM micrographs of cutmarks of the left I1 of Dolní Vĕstonice 13.  

 

Labial cutmarks are frequently studied to determine handedness of fossil hominins as an 

indirect assessment of hemispheric dominance given the apparent association between 

handedness, hemispheric dominance, and a capacity for language (Frayer et al. 2010, 2012; 



 

165 
 

Volpato et al. 2012; Fiore et al. 2015). Other studies are more concerned with frequency, metric 

variation, and orientation of labial cutmarks as a source of information on a non-masticatory 

behavior (Lalueza-Fox 1992; Lalueza-Fox and Pérez-Pérez 1994; Lalueza-Fox and Frayer 1997; 

Lozano et al. 2008, 2015; Hillson et al. 2010; Estalrrich and Rosas 2013, 2015; Willman 2016, 

2017). The different interpretive goals of each type of study are often accompanied by different 

data presentation (e.g., comparisons by tooth type, pooling data for all teeth in the dentition of 

a single individual, or pooling all data for all individuals in an entire sample or “population”). 

Thus, a lack of standardized data presentation, in addition to methodological differences, 

creates major discrepancies in the presentation of continuous cutmark data in the literature. 

This makes it particularly difficult to compare the results of different studies, irrespective of 

what methods are used to obtain continuous data (Willman 2016, 2017).  

In contrast to studies concerned with cutmark frequency, metric variation, and 

orientation much can be gained from studies that only consider cutmark prevalence. It is 

relatively easy to identify instrumental striations that originate from non-masticatory, “stuff-

and-cut” behaviors (see Methods) regardless of the microscopic technique used. However, 

some behavioral resolution is lost when continuous data are abandoned for larger sample size 

and more control over data when using cutmark prevalence. For instance, detailed data on 

cutmark metric variation and striation orientation may specify some degree of skill, dexterity, 

type of tool used for stuff-and-cut behaviors, or the type of processing behavior habitually 

engaged in. However, postmortem modification of enamel surfaces already prevents the 

collection of continuous data in many cases. For instance, the Sima de las Palomas Neandertal 

dental sample is replete with postmortem taphonomic damage (e.g., glue, enamel spalling, 
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brecciated surfaces, etc.) that lead to the publication of data on a tooth-by-tooth basis 

(Willman 2017). Some teeth could not be scored at all, the collection of presence/absence data 

for some wear features was possible for some, and the collection of partial or complete 

continuous data was possible for the remainder of the sample. While the degree of data 

salvaged from collections with extensive postmortem modification can still reveal a great deal 

of information regarding manipulative behavior, there is no guarantee that the studies from the 

literature, that provide some form of comparative data, used the same or similar taphonomic 

criteria to determine which specimens were included or excluded from each type of analysis.  

The identification of cutmarks (and other dental wear features) as present or absent is 

far more standardized than the measurement of continuous variables between studies despite 

some loss of behavioral resolution. Thus, one can have far greater confidence in using presence 

and absence data culled from the literature. This approach has proved particularly useful when 

comparing different fossil or taxonomic groups. An example is provided by Bruner, Lozano, and 

colleagues (Bruner and Lozano 2014b, 2015; Bruner and Iriki 2016; Bruner et al. 2016) where 

they provide prevalence data on labial cutmarks for groups of “Homo antecessor”, “Homo 

heidelbergensis”, Neandertals, and recent modern humans to comment on possible cognitive 

differences and similarities across the sample groups. The primary critique of such approaches 

is in how the frequency of presence or absence is calculated. In the above cases, prevalence is 

calculated for each individual regardless of how many teeth were present for that individual. 

For example, an individual with only two mandibular canines (or any other combination of 

missing and present teeth) would be considered equivalent to an individual with all 12 maxillary 

and mandibular anterior teeth.  
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Tooth type is also an important consideration since central and lateral incisors are more 

frequently cutmarked than canines (Lalueza-Fox and Frayer 1997; Lozano et al. 2008), and wear 

patterns tend to differ between maxillary and mandibular dentitions (Volpato et al. 2012; Fiore 

et al. 2015). One must also ask whether it is appropriate to compare individuals with deciduous 

incisors and canines with samples of permanent teeth. Even better, if sample size permits, 

would be to compare by tooth type and occlusal wear scores to have a coarse control over age 

and the amount of crown remaining.  

 Another problem with prevalence data is that cutmarks are typically noted in fossil 

descriptions when present, but the absence of cutmarks is not typically noted in fossil 

descriptions. However, the absence of cutmarks by tooth or individual is noted when the focus 

of a particular study is on the patterning of instrumental striations within or between samples 

(e.g., Lalueza-Fox and Pérez-Pérez 1994; Lalueza-Fox and Frayer 1997; Lozano et al. 2008; 

Bruner and Lozano 2014b). This situation may contribute toward an inflated frequency of 

cutmarks in the literature for archaic humans. Interestingly, there is now only one publication 

on instrumental striations on early modern human teeth (Willman, 2016). Holocene samples, 

although not explicitly stated as such, are used as a proxy for early modern humans (Bruner and 

Lozano 2014b, 2015; Bruner and Iriki 2016; Bruner et al. 2016) for comparisons with archaic 

humans. However, very few samples of recent (Holocene) humans have been studied and the 

methods used vary (Lalueza-Fox and Pérez-Pérez 1994; Bax and Ungar 1999; Lozano et al. 2008, 

2015; Dinnis et al. 2014). 

 This analysis therefore identifies and quantifies the frequencies of labial cutmarks 

among archaic and early modern humans using standardized sample selection criteria. Thus, 
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there is no assumption of equivalence between individuals with variably complete dentitions. 

This is accomplished by considering only teeth of the same type. In this case, data will only be 

considered for maxillary central incisors. Idiosyncratic variation related to the ways in which 

tools contacted the dentition (i.e., the width and length of the striations, and orientation of 

striations indicative of the motion of hand and tool) are not considered here, but have been 

presented for two new samples elsewhere (Willman 2016, 2017). The criteria and methods of 

analysis are explored further below.  

 

Materials 

Scanning electron microscopy (SEM) was used to identify cutmarks on labial surfaces of 

most specimens described in this chapter. A smaller subset of the sample was examined using a 

portable light microscope when molding and casting of the original fossils was not possible. 

Materials include original fossils examined and/or molded and cast by the author, high-

resolution dental casts provided by colleagues, and data obtained from the literature.  

 

Methods 

Taphonomic considerations 

Taphonomic alterations of enamel surfaces (e.g., chemical erosion, root-etching, 

abrasion, adhering breccia or glue, etc.) are distinguished from in vivo wear processes using 

criteria based on microscopic surface attributes (King et al. 1999; Pérez-Pérez et al. 2003; 

Martínez and Pérez-Pérez 2004; Willman 2017). Teeth with enamel surfaces heavily altered by 

postmortem taphonomic processes would not be considered in quantitative analyses 

concerned with cutmark length, width, and orientation. However, this analysis is concerned 
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only with presence or absence of cutmarks so certain exceptions are made. If an area of a labial 

surface is partially obscured by any number of localized, postmortem features (e.g., glue, 

enamel spalls, breccia, etc.) the tooth could still be counted as having cutmarks “present” if 

there are undisputable, antemortem cutmarks present on another area of the same tooth. In 

contrast, it is much more difficult to make an argument that a tooth with extensive postmortem 

damage has an absence of cutmarks if all of the enamel is not clearly visible. Therefore, heavily 

damaged teeth with no cutmark data do not contribute to frequency calculations.  

It is acknowledged here that the above sampling practice may introduce potential for 

error, but the criteria for inclusion or exclusion of a tooth is consistent across fossils samples 

analyzed here which suggests that any bias would be evenly distributed across samples. Fossil 

descriptions frequently discuss the presence of labial cutmarks when obvious, but there is no 

trend in noting their absence. Thus, any sample inflation that the taphonomic 

inclusion/exclusion criteria introduces to this study are merely contributing to a bias already 

present in the literature – i.e., the frequency of individuals with cutmarked teeth is artificially 

inflated.  

 

Identifying cutmarks of cultural origin 

Following taphonomic assessments, striations were categorized as cutmarks of 

cultural/instrumental origin or as dietary striations. The width and morphology of striations 

caused by in vivo behaviors are particularly useful for elucidating dietary or non-masticatory 

behavioral origins for each feature. Dietary striations are usually less than 5 µm wide, whereas 

cutmarks are as small as ~10 µm, commonly range between 20-40 µm, and can occasionally 
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exceed 100 µm (Bermúdez de Castro et al. 1988; Lalueza-Fox and Pérez-Pérez 1994; Lalueza-Fox 

and Frayer 1997). Enamel cutmarks can also be identified from their characteristic 

micromorphology that includes microstriations within the borders of a cutmark, hertzian cone 

fractures along the striation edge, and V-shaped cross-sections – all of which are seen in 

experimental replications of cutmarks on bone and enamel (Bromage and Boyde 1984; 

Bermúdez de Castro et al. 1988; Bromage et al. 1991; Lozano et al. 2004; Frayer et al. 2010; 

Estalrrich and Rosas 2013). However, as Frayer and colleagues (2010) noted, cutmark 

micromorphology is often worn away in-vivo through dietary abrasion as well as through the 

repetition of non-masticatory behaviors. Thus, striation depth, width, and length are often 

needed to distinguish relatively worn (i.e., earlier occurring) instrumental striations from other 

wear features. In any case, a conservative approach is adopted, and the presence of labial 

cutmarks is not assigned to a tooth unless it is highly consistent with an instrumental origin.  

 

The use of data from the literature   

Labial cutmark data for several samples was culled from the literature. The permanent 

teeth from Sima de los Huesos required more extensive preparation for inclusion. Presence or 

absence of cutmarks for each tooth was compiled using data from Lozano and colleagues 

(Lozano 2005; Lozano et al. 2008), and occlusal wear scores as well as individual tooth 

associations for each Sima de los Huesos individual were obtained from the supplemental 

material published by Martinón-Torres et al. (2012). The teeth associated with each individual 

(Martinón-Torres, et al. 2012) were double-checked against previously published attributions 

(Lozano 2005; Lozano et al. 2008) for discrepancies between studies. A few teeth that were 
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“not assigned” to a Sima de los Huesos individual in earlier studies (Lozano 2005; Lozano et al. 

2008) have since been associated with an individual dentition in the more recent morphological 

description (Martinón-Torres et al. 2012). These more recent associations are used in the 

present analysis. Specific points of departure between the assignment of each tooth to an 

individual dentition in the non-masticatory dental wear studies (Lozano 2005; Lozano et al. 

2008) and the morphological study (Martinón-Torres et al. 2012) are addressed in the footnotes 

of Appendix Table 1.  

 

Results 

 All maxillary central incisors analyzed in the present study exhibit labial cutmarks 

irrespective of the group being analyzed (Table 7.1). Furthermore, the current analysis is an 

understatement of the number of individual archaic humans exhibiting labial cutmarks, since a 

large number of teeth other than I1’s were documented in previous analyses. However, the goal 

was to compare equivalent data by only using the most frequently cutmarked tooth type. 

The most important consideration to come from this analysis is that Middle and Upper 

Paleolithic early modern human groups (Figure 7.2) also exhibit cutmarks on permanent teeth 

to the same extent as archaic humans. Therefore, a high prevalence of cutmarked teeth is not a 

unique feature of archaic humans. Instead it provides a physical manifestation of a habitual, 

manipulative behavior that is shared across Middle and Late Pleistocene human groups 

regardless of morphologically defined group affiliations.  
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Implications for differential archaic and modern visuospatial integration 

A final note on anterior tooth use relates to the opening comments in this dissertation 

with respect to making broad generalizations about prehistoric behavior, cognition, and 

competitive advantage (among other topics) between Nenadertals and early modern humans. 

The major issue being the use of Holocene or ethnohistoric comparative collections as proxies 

for early modern humans (Chapter 1).  

Table 7.1 Comparison of curtmark counts and frequencies on I1’s across samples.  

Group 
Individuals with cutmarks on 

right and/or left I1 
present/total Frequency 

Sima de los Huesos 
SH I, SH II, SH V, SH VII, SH XVI, SH XVIII, SH XX, SH XXI, 
SH XXXI, AT-8, AT-54, AT-280, AT-1943, AT-1958, AT-
3885, AT-198/199 

16/16 100% 

Earlier Neandertal 
(MIS 7-5) 

KDP 4, 5, 6, 17, 18, 29, 30, 35, Q; Tabun C1, B-Series III 11/11 100% 

Later Neandertals 
(MIS 4-3) 

Spy I; Vindija 290; Combe Grenal Vl Angles Sur l’Anglin; 
Arcy Hyène B7IV66/D4IV66; Hortus VII, VIII, IX, X; La 
Quina 5; Saint-Césaire; Neandertal N66; Cova Negra 
7856; Sidrón Adult 1, 2, 3, 4, 5, 6, Adolescent 2, 3, and 
Juvenile 1; Palomas 19/73/79, 59/90; Zafarraya 23; 
Saint-Brais; Shanidar 2 

28/28 100% 

Middle Paleolithic 
Modern Humans 

Skhul 2, 4; Qafzeh 5, 6, 7, 9, 11 7/7 100% 

Early Upper 
Paleolithic 

Ishango 22295-24; Brassempouy 1046, 2206; Buran 
Kaya 135, 136, 137; Les Rois w/#, 5, 45; Dolní 
Vĕstonice 3, 13; Pavlov 1; Arene Candide IP; Barma 
Grande 3, 4; Ostuni 1 

16/16 100% 

Late Upper 
Paleolithic 

Riparo Fredian 6, Gough’s Cave,   2/2 100% 
 

 

Instrumental cutmarks on the labial surfaces of anterior teeth were recently used to 

support a hypothesis of differential, or mismatched, visuospatial integration and extended 

cognition among archaic humans compared to Homo sapiens (Bruner and Lozano 2014b, 2015; 

Bruner et al. 2016). This hypothesis requires one to accept that parietal lobe expansion is 

characteristic of Neandertals and that the morphological differences in the brain correspond to 

functional/cognitive differences between morphologically differentiated groups (Bruner 2010, 
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2014; Bruner and Lozano 2014b, 2015; Bruner and Iriki 2016; Bruner et al. 2016). The frequency 

of instrumental striations on the anterior teeth by individual was thought to be a representative 

behavioral signal for refined (Homo sapiens: low frequency of instrumental striations) or 

impaired (Archaic Homo including the Neandertals: high frequency of instrumental striations) 

visuospatial integration among fossil groups. 

Using previously publishing data on instrumental cutmarks from Sima de los Huesos 

fossils, a collection of Australian Aborigines (Lozano et al. 2008), and data on Neandertals 

available in the literature; Bruner and Lozano (Bruner and Lozano 2014b) suggest that cutmarks 

on archaic human teeth occur among 100% of archaic humans, but occur to a lesser degree 

(46%) in a comparative sample of Australian Aboriginal individuals. Furthermore, the low 

frequency of cutmarks among the Gran Dolina hominins is used to suggest that Middle 

Pleistocene archaic Homo and the Neandertals are behaviorally derived (and this behavior is 

assumed to be phylogenetically controlled through neurological function) with respect to their 

extensive use of the mouth for manipulative behavior compared to the ancestral condition and 

that of later Homo sapiens (Bruner and Lozano 2014b, 2015; Bruner et al. 2016). Unfortunately, 

the Gran Dolina sample was not addressed here as the criteria for inclusion in the present study 

required the presence of maxillary central incisors for which Gran Dolina has none (Bermúdez 

de Castro et al. 1999, 2006, 2008).  
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Figure 7.2 Examples of cutmarks on various early modern human maxillary central incisors. 
(A) Les Rois w/# right I1, (B) Les Rois 45 left I1 (C) Ostuni left I1, (D) Buran Kaya left I1, (E) 
Barma Grande 3 left I1, (F) Qafzeh 6 left I1. Scale bar = 1 mm. 

 

Thus, archaic humans are suggested to rely on their bodies, and more specifically their 

mouths, for manipulative behaviors than modern humans: “Our hypothesis is based on a naïve 
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but reasonable assumption: mouth is to eat, hand is to handle (Bruner and Lozano 2014a:303).” 

This is attributed this to a “mismatch between cultural and neural complexity” (Bruner and 

Lozano 2014b:276) among archaic humans compared to Homo sapiens. However, the study 

makes a comparison between a group of hunter-gatherers (Australian Aboriginals) that are over 

40,000 years removed from the early modern human groups of biological relevance to the 

hypothesis. An examination of maxillary central incisors from Middle and Upper Paleolithic 

modern humans in the present study shows that 100% of individuals had labial cutmarks on 

their anterior dentitions. Thus, any inferiority in visuospatial integration that is present among 

archaic humans is also present in early modern humans on the basis of this instrumental 

striation data.  

Furthermore, there is rich ethnographic documentation of the use of teeth-as-tools in 

the form of both literature and film that documents the use of teeth-as-tools among Australian 

Aboriginal hunter-gatherers (Gould 1968, 1969; Barrett 1977; Hayden 1979; Brown and Molnar 

1990; Dunlop and Martin-Jones 2011 [1967]). Thus, even if Australian Aboriginal hunter-

gatherers did not engage in stuff-and-cut behaviors as frequently as archaic humans (or early 

modern humans) it is evidence that they still relied on a suite of other non-masticatory 

behaviors for manipulative behaviors. The cutting instruments used by ethnohistoric Australian 

aborigines may also have played a role in the low instrumental striation frequency. Glass and 

metal was quickly adopted by Australian Aboriginals following European colonization of 

Australia (Head and Fullagar 1997; Cooper and Bowdler 1998; Harrison 2002; Dunlop and 

Martin-Jones 2011 [1967]). Metal cutting edges are highly efficient but metal is also softer than 

stone. It can be hypothesized that the less efficient cutting edges of Pleistocene lithic 
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implements compared to glass or metal instruments used by Australian Aboriginals could 

account for some of the discrepancies in frequencies of individuals with instrumental striations 

between groups.  

Thus, there is no support from instrumental striations for deficient visuospatial 

integration and impoverished extended cognition among archaic humans based on the 

presence or absence of instrumental striations. This analysis urges caution in sampling 

strategies for comparative studies assessing the role of particular behaviors to explain the 

demise of Neandertals. It is of the utmost necessity to look at temporospatially relevant groups 

(i.e., early modern humans) rather than using one or a few comparative samples from the 

Holocene or ethnographic present as proxies for the behavioral repertoire of all Homo sapiens. 
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Chapter 8. Discussion 
 

H0: There are no significant differences in anterior tooth-use between archaic Homo and 

Neandertals compared to early modern humans. 

And three main sets of questions will be addressed in relation to the null hypothesis:  

(1) Are differences in anterior tooth use for manipulative behavior evident across 

morphologically defined or temporally partitioned groups of Middle and Late 

Pleistocene humans? If so, what is the magnitude or degree of change in the 

behavioral shift?   

(2) To what degree can anterior dental morphology be attributed to functional 

adaptations to the high magnitude and/or repetitive loading of the dentition 

through non-masticatory behaviors? 

(3) To what extant does the presence of labial cutmarks on the anterior dentition 

differ across morphologically defined and temporally partitioned groups of 

Middle and Late Pleistocene humans?  

 

Introduction 

 The results of this dissertation largely highlight similarities rather than differences in the 

use of the anterior dentition for manipulative behaviors among Middle and Late Pleistocene 

humans. The overall trend is largely a hunter-gatherer trend: the anterior dentition is 

disproportionately worn when compared to the posterior dentition. This trend is related to a 

palimpsest of dietary and manipulative behaviors. Since, some non-masticatory behaviors (e.g., 
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“stuff-and-cut”, peeling of tubers, etc.) are also related to the preparation of foodstuffs the line 

between dietary and non-masticatory behaviors are further blurred. Thus, the use of the 

anterior dentition for manipulative behavior is common in degree (scaled occlusal wear 

gradients), magnitude (anterior dental chipping), and type of behavior (labial cutmarks on the 

anterior dentition) across the human groups considered in the present study. The main 

difference relates to structural reduction in both mass-additive traits and overall dimensions of 

the anterior dentition among early modern humans – an apparent paradox if one accepts that 

morphology reflects adaptation to function (i.e., habitual use). In terms of these results one 

might ask: How is it that modern human anterior teeth underwent structural reduction without 

a clear reduction in anterior tooth-use for dietary and manipulative behaviors?     

 

Scaled occlusal macrowear gradients 

Macrowear analyses show substantial overlap between archaic and early modern 

human groups. A high degree of anterior dental wear is commonly associated with hunter-

gatherers from Pleistocene, Holocene, and ethnographic contexts (Molnar 1972; Hinton 1981; 

Smith 1983a; Kaifu 2000b; Bermúdez de Castro et al. 2003; Deter 2009; Berbesque et al. 2012; 

Clement and Hillson 2012; Clement et al. 2012; Littleton et al. 2013; Botha and Steyn 2015; 

Willman 2016, 2017), and the results shown here are in agreement. However, there is a 

particularly meaningful distinction in the degree of anterior dental wear when archaic and 

modern human anterior tooth crown dimensions are considered in conjunction with occlusal 

wear.   
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Clement and colleagues (2012) used an innovative technique to examine occlusal 

macrowear across Neandertal, early modern, and recent human groups that took into account 

biologically meaningful differences in the timing of dental eruption and tooth size. However, 

their use of dentin to enamel exposure ratios may not be an appropriate method when 

comparing human groups with grossly different tooth sizes (Willman 2016). The present study 

shows that the most meaningful variable related to dental wear gradients is in fact, anterior 

tooth size. The unscaled occlusal wear differentials scores were similar across archaic and 

modern human groups (particularly for maxillary and mandibular central incisors). On the other 

hand, macrowear gradients scaled to tooth size consistently show a grade shift between archaic 

humans from modern human variability, albeit with modest overlap. The use of “scale free” 

dentin exposure ratios removes the biologically relevant variable (crown size) that contrasts 

archaic and modern human groups. In fact, Clement et al. (2012) show extensive overlap 

between archaic and modern human samples (in some cases more so than the unscaled 

differential wear used here), including some modern human outliers that have occlusal wear 

well above the range found in their Neandertal sample. However, the use of occlusal wear 

scores as a scaling factor in the present study ensures that variation in dental size is being 

compared between individuals exhibiting similar degrees of occlusal wear. In this respect, the 

functional occlusal surface area is emphasized – a larger tooth is more resistant to cumulative 

dental wear. Scale-free analyses largely treat all teeth as if they are the same size, eliminating 

this important metric distinction. 

A major exception to the general trend in high rates of anterior relative to postcanine 

dental wear was found in the Late Upper Paleolithic. Incisor ablation was present in many of 
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the regional samples of Late Upper Paleolithic individuals. Ablation is well-documented among 

Late Upper Paleolithic hunter-gatherers and relates to aspects of individual and group-level 

social identity (Stojanowski et al. 2014, 2016; Willman et al. 2016). However, the removal of 

incisors through ablation promotes increased focus on the postcanine teeth for both dietary 

and non-masticatory behaviors (Bonfiglioli et al. 2004). Furthermore, in cases of maxillary 

incisor ablation, the mandibular teeth have no opposition, and little occlusal wear as a result. 

Thus, anterior dental wear can be low, whereas postcanine wear is elevated – the opposite of 

what typically characterizes hunter-gatherer dental macrowear. These factors help explain the 

wide range of variation in Late Upper Paleolithic macrowear gradients.   

The tempo and mode of dental reduction from the Middle to the Late Pleistocene has 

been substantially refined in recent years, and the once clear trends relating tooth-use and 

function are no longer valid (Trinkaus 2004). The large anterior teeth of Neandertals, regularly 

associated with functional adaptation to non-masticatory behaviors (Brace 1967; Brace and 

Mahler 1971; Wolpoff 1979; Stefan and Trinkaus 1998; Hillson and Trinkaus 2002), are now 

known to be the ancestral characteristics of earlier archaic Homo (Trinkaus 2004; Smith 2013). 

Thus, the Neandertals maintained large anterior dentitions which benefit non-masticatory 

behaviors by increasing the surface area available for manipulative behaviors and provide 

resistance in the face of cumulative wear. Large anterior tooth roots would provide many of the 

same functional benefits as large crowns in terms of wear resistance, and are also thought to be 

an ancestral trait of archaic Homo (Smith and Paquette 1989; Le Cabec 2013), albeit with some 

overlap with early modern humans (Le Cabec et al. 2013; Trinkaus et al. 2013a; Trinkaus et al. 

2014). Long roots are especially significant when one considers the normal process of 
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supereruption that teeth undergo with increasing occlusal wear, thus promoting use-life long 

after the root becomes the functional occlusal surface.   

Given the apparent advantages of large and robust anterior dental crowns and roots 

among archaic Homo we are left with a paradox: why do anterior dental crown (and root) 

dimensions reduce among early modern humans without a correlated reduction in anterior 

dental wear? This question will be returned to at the end of this discussion.  

 

Dental enamel chipping 

It has been suggested that the large anterior teeth and faces of Neandertals, and archaic 

humans more generally, are related to the functional demands placed on the anterior dentition 

related to the use of teeth-as-tools. The anterior dental loading hypothesis (ADLH) posits that 

high and/or repeated loading of the anterior dentition provided a significant adaptive pressure 

on Middle and Late Pleistocene craniodental remains whereby high functional demands on the 

anterior teeth selected for robust morphology in archaic Homo while the reduced robusticity of 

craniodental traits among Homo sapiens is evidence of relaxed selection largely attributed to 

technological change (Smith 1983b; Rak 1986; Demes 1987; Trinkaus 1987; Smith and Paquette 

1989; Spencer and Demes 1993; Brace 1995; Le Cabec et al. 2013). However, the production of 

high magnitude and efficient anterior bite forces is now thought to have been no more possible 

among Neandertals than early modern humans (Antón 1990, 1994, 1996; Couture 1993; 

Dobson and Trinkaus 2002; O'Connor et al. 2005; Clement et al. 2012). Data from dental 

enamel chipping also supports this conclusion.  
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Studies of bite force production on the posterior dentition across a wide variety of 

bunodont mammals and primates, including hominins, shows a strong relationship between the 

size of individual enamel fractures and chips with bite force production (Constantino et al. 

2010, 2012; Lee et al. 2011; Lawn et al. 2013; Strait et al. 2013). The prerequisite for postcanine 

fracture is that bite forces are produced on hard-objects. It is clear from the prevalence of 

chipping in the anterior teeth considered in the present study that forceful biting on hard-

objects with the anterior dentition occurred with regularity among Middle and Late Pleistocene 

humans. While some significant differences were found with respect to chipping frequencies 

across groups, the differences were not strictly contrasted across morphologically-defined 

(archaic versus anatomically modern) or by chronology. Furthermore, all three chip sizes were 

found on the anterior teeth of each chronologically and morphologically defined group. This 

suggests a general similarity in the frequency and magnitude of bite forces produced on hard-

objects with the anterior teeth across archaic and early modern human groups in this study. 

Equations for the calculation of actual (PF) and maximum potential (Pmax) bite force are not 

available for the anterior teeth but the size and frequency of chips suggests a general similarity. 

Bite force from enamel chipping has been calculated for postcanine teeth from Krapina, a 

sample of later Neandertals (MIS 4-3), and early modern humans which shows complete 

overlap between premolar and molar bite force production between groups (previously noted 

by Azar et al. 2015). Enamel chipping results provide physical evidence for the production of 

bite forces capable of spalling enamel in vitro, which is a welcome addition to biomechanical 

analyses that provide evidence of potential maximum bite force production. Thus, the enamel 

chipping data presented here support the conclusions of biomechanical analyses of archaic and 
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modern human craniofacial morphology both in that anterior (and posterior) bite force 

production was not likely to have been higher in magnitude among archaic Homo than among 

early modern humans.  

 

Instrumental striations on the labial enamel of maxillary central incisors 

 Labial striation analyses showed that some striations were present on the maxillary 

central incisors of all groups examined in the present study. This is an important conclusion 

since only one other study using methods comparable to those used to study archaic humans 

has been completed to date that focused exclusively on early modern humans (Willman 2016). 

Other studies have documented instrumental striations on the anterior teeth of recent modern 

humans, notable Australian Aboriginal hunter-gatherers (e.g., Lozano et al. 2008), but the 

extent to which the use of ethnographic samples are representative proxies for the behaviors of 

Late Pleistocene early modern humans is greatly challenged by the instrumental striation data 

presented here. The universality of instrumental striations on archaic and early modern human 

teeth examined in this study refutes the hypothesis of differential visuospatial integration 

among archaic and modern humans (Bruner and Lozano 2014a, b, 2015; Bruner and Iriki 2016; 

Bruner et al. 2016).  

 In terms of non-masticatory behaviors, instrumental striations document the used of 

the anterior dentition in clamping and grasping behaviors while a tool is used close to the 

mouth to manipulate the materials being held between the teeth. The most common behavior 

attributed to the formation of instrumental striations in the literature is the “stuff-and-cut” 

behavior. However, Willman (2016) has shown that clamping materials between the teeth 
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while performing scraping tasks may account for the predominant patterns of vertical striations 

on the anterior teeth of early modern humans from Dolní Vĕstonice II. However, oblique 

striations are far more frequently documented among archaic humans (reviewed in Willman 

2016, 2017). One can therefore suggest that the documentation of presence/absence data on 

instrumental striations is greatly limiting our view of how tooth-using behaviors varied 

throughout the Pleistocene – especially among early modern humans for which much less is 

known. Meaning distinctions may still be found in terms of variation in striation length, width, 

orientation, frequency, and/or patterning across additional tooth types in future studies. 

Studies focusing on these details may be able to reveal behavioral differentiation that contrasts 

archaic and modern groups to a degree that presence/absence analyses do not reveal. The data 

from Dolní Vĕstonice II (Willman 2016) is a step in this direction.  

However, the presence of these striations among both archaic and anatomically modern 

human groups, like enamel chipping, at the very least suggests that a similar range of anterior 

tooth-using behaviors were being used by Pleistocene humans regardless morphological 

distinctions or chronology. Again, given the range of similarity in behaviors, and a generalized 

“hunter-gatherer” trend in anterior versus posterior macrowear gradients, trends in anterior 

dental reduction among early modern humans are difficult to explain in terms of the changing 

patterns of use or disuse of the teeth-as-tools during the Pleistocene.  

  

The paradox of dental structural reduction and tooth-use 

Research on craniofacial biomechanics has been used to suggest that explanations for 

craniofacial evolution and differentiation among archaic and early modern humans are unlikely 
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to be explained by the Anterior Dental Loading Hypothesis alone. Instead, neutral evolutionary 

processes (e.g., gene flow and genetic drift), climatic adaptation, energetic, developmental, or 

some combination of factors may better explain the evolution of the unique suite of 

craniofacial traits that differentiate archaic and modern human groups (Antón 1994; Maureille 

and Houêt 1998; Hublin 2002, 2009; Franciscus 2003; O'Connor et al. 2005; Weaver et al. 2007; 

Holton and Franciscus 2008; Cartmill and Smith 2009; Weaver 2009; Holton et al. 2011; Rae et 

al. 2011a; Smith 2015). However, the large and robust anterior dentitions of archaic Homo can 

still be viewed as an advantage when one considers the degree to which the hunter-gatherers 

engage in non-masticatory behaviors with their anterior dentitions. Thus, it remains interesting 

and paradoxical that the ancestral condition of large anterior dental crowns should be 

maintained among late archaic Neandertals, but reduced among early modern humans since it 

is clear that early modern humans also engaged in extensive use of their anterior teeth-as-

tools. Thus, the primary contrast between archaic and modern humans appears to be one that 

would relate to the functionality of the anterior dentition for manipulative tasks in old-aged 

individuals. The difficulty remains as to how to explain this difference in terms of reproductive 

fitness advantages among archaic or early modern humans.  

Dental reduction has long interested paleoanthropologists and bioarchaeologists and 

many hypotheses have been put forth in attempts to explain trends in crown reduction during 

human evolution (see review in: Pinhasi and Meiklejohn 2011). Particularly relevant hypothesis 

to the present discussion is that of the “Probable Mutation Effect” first put forth by Brace 

(1963) and expanded upon by Brace others (Brace 1964a, 1979, 1995, 2005; Wolpoff 1969, 

1975; Brace and Mahler 1971; Brose and Wolpoff 1971). In short, the Probable Mutation Effect 
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posits that under conditions of relaxed selection (usually associated with archaeological 

evidence for technocultural sophistication through time) there will be an accumulation of 

random mutations that would otherwise be removed through natural selection. The 

accumulation of mutations will ultimately result in the reduction of structural integrity – the 

relevant example here being the size or complexity of anterior dental crowns. However, Frayer 

(1977, 1978) has shown that dental reduction in the European Upper Paleolithic was not 

uniform through time – it was more marked between the Early and Late Upper Paleolithic than 

from the Late Upper Paleolithic to Mesolithic. In addition, variation in crown size decreased 

over time from Early to Late Upper Paleolithic to Mesolithic (Frayer 1977, 1978). Taken as a 

whole, Frayer (1977, 1978) suggests that the evidence better supports directional selection 

related to diachronic changes in technocultural complexes during the Upper Paleolithic and 

Early Holocene rather than neutral processes favored under the Probable Mutation Effect.  

Importantly, Frayer (1978) also acknowledges:  

“[T]he rate of change in tooth dimensions is very low when measured in 
millennia or generations. Because of this, it is inherently difficult to 
demonstrate the precise factors conferring higher fitness on smaller-
toothed individuals.” – Frayer 1978:134 
 

The results of Frayer’s (1977, 1978) research have been refined through greater chronological 

control in recent analyses (Trinkaus 2004; Pinhasi and Meiklejohn 2011), with the important 

conclusion gained is that:  

“[T]he magnitude and nature of these changes need to be addressed on a 
case-to-case geographical basis, before it is possible to draw conclusions 
about universal evolutionary trends.” – Pinhasi and Meiklejohn 2011:471 
 

Smith (1977a, b) challenged the views of Middle to Late Pleistocene shifts in functional 

demand on the dentition as a correlate of changing technological and behavioral strategies 
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(see: Brace 1962a, b, 1964, 1967; Brose and Wolpoff 1971) by examining both dental size and 

attrition. Smith (1977a, b) concluded that:  

“Similarly the observed reduction in tooth size was not associated with any 
concomitant reduction in functional demands made on the dentition, but appears 
to have outstripped them, as demonstrated by the increased severity of attrition 
found in the later smaller-toothed groups.” – Smith (1977b) 
 

Despite the relatively small sample size and a lack of chronological refinement at the time of 

the study, Smith’s (1977a, b) overall conclusions that dental reduction occurred without a 

concomitant shift in the dis/use of the dentition is largely supported by the work in this thesis. 

Thus, anterior dental reduction does not necessarily mean less anterior tooth-use for 

manipulative behaviors, but it would be associated with less functionality in old age for 

individuals with smaller dentitions. In this respect, the issue of anterior dental reduction 

despite high levels of anterior dental wear among early modern humans becomes even more 

complicated as a selective advantage of having small anterior teeth is not readily apparent 

among hunter-gatherer groups engaging in high levels of non-masticatory behaviors.  

Thus, given little change in the use or function of anterior teeth in Paleolithic hunter-gatherers, 

how do demonstrably smaller anterior teeth become more frequent in early modern humans 

compared to Archaic Homo?   

The literature on anterior tooth-use occasionally calls such behaviors maladaptive or 

“risky” because objects such as stone tools come into contact with enamel (e.g., Bruner and 

Lozano 2014b; Bruner et al. 2016), indeed cutmarks on the labial root surfaces of some archaic 

human teeth indicate a certain amount of oral health risk is involved (Hillson et al. 2010; Sarig 

et al. 2016), but the relationship between the use of teeth-as-tools and oral pathology is better 
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documented in Holocene humans (Molnar 2008, 2011) than in Pleistocene contexts. However, 

Lalueza-Fox and Frayer (1997:148) provide a comment worth quoting at length:  

“If cutting objects with stone tools was the activity which left these marks on the 
anterior teeth, the Neanderthals must have had sufficient dexterity and manual 
control to avoid oral tissue damage. Alternatively, Neanderthals had bloodied lips 
and gums from recklessly dragging knives across oral tissues. The precise action 
which produced these scratches is unknown, but any activity executed on the 
labial face of the incisors and canines must have required some skill and fine 
control of movement to avoid soft tissue damage.”  
 

It is also well established that chipping and fracture can destroy a tooth (Bonfiglioli et al. 2004; 

Lee et al. 2011; Scott and Winn 2011); but estimates of bite force production are similar across 

Pleistocene humans, and there is little evidence to suggest that the severity of chipping differed 

between groups (Chapter 6). Resistance to a lifetime accumulation of occlusal wear has 

generally been cited as an important factor for primate and mammalian longevity (Logan and 

Sanson 2002; Bermúdez de Castro et al. 2003; DeGusta et al. 2003; King et al. 2005, 2012; 

Cuozzo and Sauther 2006), and dental size would be an important characteristic of resistance to 

wear (as are enamel tissue mechanical properties – see Chapter 2). However, there is little 

evidence for differential mortality profiles among archaic and early modern humans (Trinkaus 

2011), and both Neandertals and early modern humans (excluding the Late Upper Paleolithic) 

tend to maintain their full dentitions until death – and in many cases, crowns are completely 

worn away and roots are functioning as the occlusal surfaces (Trinkaus 2013; Willman 2016). 

Furthermore, pulp exposure through attrition (or fracture) can occur through extreme rates of 

attrition (Calcagno and Gibson 1991; Larsen 2015), and smaller teeth would be more 

susceptible to this factor. However, were rates of wear extreme enough to expose a pulp 
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chamber early enough in life to affect individual reproductive fitness and therefore selection for 

anterior tooth size?  

The extent to which anterior dental size confers a functional advantage that translates 

to increased reproductive fitness is difficult to prove. Similarly, any co-variation between tooth 

size, wear, and oral health would have obvious effects on physiological fitness (morbidity), but 

the extent to which these relationships contribute to differential reproductive fitness between 

archaic and early modern humans is questionable given that oral health decline has a clear 

relationship with aging. Furthermore, poor oral health is not widespread in the Pleistocene until 

the Late Upper Paleolithic/terminal Pleistocene (Da-Gloria and Larsen 2014; Humphrey et al. 

2014; Lacy 2014; Willman et al. 2016). Smith (2013, 2015) has suggested that the large teeth 

and the structures supporting them are developmentally expensive tissues, and while maxillary 

growth trajectories are derived in modern humans relative to archaic Homo (Maureille and Bar 

1999; Lacruz et al. 2015), it is unclear whether these aspects of growth have significantly 

different developmental “costs”. However, evidence for a difference in the degree of 

developmental stress associated with Neandertals relative to early modern humans is not 

necessarily supportive of clear differences between the groups. Instead it appears that growing 

up in the Pleistocene was generally difficult regardless of group-level morphological affinity 

(Ogilvie et al. 1989; Trinkaus et al. 2001; Guatelli-Steinberg et al. 2004, 2013, 2014; Barrett et al. 

2012; Willman 2014; Cowgill et al. 2015).  

This review of issues surrounding anterior dental reduction in Neandertals versus early 

modern humans suggests that it is extremely difficult to pinpoint a causative relationship 

between anterior tooth-use and crown reduction among early modern humans. However, 
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evolutionary models aimed at explaining dental reduction are often impossible or extremely 

difficult test (Pinhasi and Meiklejohn 2011). Furthermore, the view of Late Pleistocene human 

population dynamics being developed through recent advances in ancient DNA as well as 

traditional analyses of skeletal morphometrics are painting an increasingly complex scenario of 

human population dynamics (Crevecoeur 2008; Holt and Formicola 2008; Doboş et al. 2010; , 

2014Trinkaus et al. 2013a; Brewster et al. 2014; Demeter et al. 2015; Fu et al. 2015, 2016; Jones 

et al. 2015; Liu et al. 2015; Tryon et al. 2015; Crevecoeur et al. 2016). The mosaic of archaic and 

derived dental morphology in some early modern human fossils may be illustrative of local 

archaic contributions to the gene pool through assimilation (Smith et al. 1989, 2005; Trinkaus 

and Zilhão 2002; Trinkaus 2005, 2013; see also: Ackermann et al. 2016). Explaining the 

continued trend toward decreasing crown size despite high levels of anterior dental wear in 

later early modern human groups is still difficult to explain. How small changes in crown size in 

earlier versus later early modern humans confers a reproductive fitness advantage in the latter 

group remains largely unknown (Frayer 1978).  

An interesting comparison can be made with the shift to food producing economies in 

later prehistory. The transition to food production in many parts of the world is associated with 

poor physiological fitness – or high morbidity – among food producing peoples compared to 

their hunter-gatherer predecessors (for review see: Larsen 2015). However, these same groups 

also have higher reproductive fitness than the preceding populations of hunter-gatherers in the 

same region (Lambert 2009; Page et al. 2016). As Lambert (2009:607) suggests:  

“Health decline could have been a costly by-product of an economic 
system that enhanced fertility and led to population growth. As long as it 
did not affect reproductive rate, declining health may have wielded little 
influence on how people chose to make a living.” 
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The widespread evidence for poor oral health among hunter-gatherers during the Terminal 

Pleistocene and Early Holocene compared to preceding periods (Frayer 1989; Brennan 1991; 

Holt and Formicola 2008; Da-Gloria and Larsen 2014; Humphrey et al. 2014; Lacy 2014; Willman 

et al. 2016) may also be interpreted through this scenario of trade-offs between physiological 

fitness and reproductive fitness. The archaeological record of the Upper Paleolithic is frequently 

viewed as a feedback loop between cultural factors promoting socioeconomic innovation and 

intensification and population growth: 

“[T]he European [Upper Paleolithic] would show – with hiccups and 
setbacks caused by catastrophic events or adverse environmental change 
– the operation of an exponential process of population pressure: 
adaptive success, reflected in demographic expansion, triggered by and 
leading to technological innovation or economic intensification, in turn 
bringing about further population growth.” – Zilhão 2014:1778  

 
Thus, Upper Paleolithic cultural shifts may have enhanced reproductive fitness in much the 

same way as regional transitions to food production did, and while diachronic changes in Upper 

Paleolithic morbidity occurred they did not seem to influence reproductive fitness greatly.  

The above analogy offers a way to explain how anterior tooth reduction could occur 

despite little evidence for change in the use of the dentition as a tool among Late Pleistocene 

hunter-gatherers – and especially between the Early and Late Upper Paleolithic samples. As a 

whole, the data and discussion presented has indicated that large anterior teeth are 

advantageous to hunter-gatherers due to the intensive use of teeth for dietary and non-

masticatory behaviors. This observation is not new and is especially evident when contrasting 

archaic human anterior dental dimensions with those of modern humans. However, a 

consistent trend showing high levels of anterior versus posterior dental wear and similar 
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patterning of dental wear features (i.e., chipping and instrumental striations) persists among 

early modern humans despite diachronic shifts in crown size during the Late Pleistocene. At 

first glance, this may appear to support views of directional selection for smaller teeth (e.g., 

Frayer 1977, 1978), or relaxed selection on crown size others (e.g., Brace 1964a, 1979, 1995, 

2005; Wolpoff 1969, 1975; Brace and Mahler 1971; Brose and Wolpoff 1971) through shifts in 

technocultural sophistication during the Pleistocene. But, and importantly, if anterior dental 

size in humans is indicative of the amount of anterior tooth-use for dietary and non-masticatory 

behaviors the expectation is that less anterior dental wear would be present in small-toothed 

hunter-gatherers. While wear is certainly less in terms of volume loss (scaled macrowear 

analyses: Chapter 6), the degree of anterior dental wear is still high (see differential wear 

analysis in Chapter 6 and Clement et al. 2012) in samples with smaller anterior tooth 

dimensions. Although not directly analyzed in the present study, antemortem anterior tooth 

loss is certainly higher in Late Upper Paleolithic samples than any preceding period (Willman, 

personal observation). Together, all of these trends highlight a co-occurrence between 

increasing morbidity – as evident through oral pathology – and anterior dental reduction. A 

morphological shift that results in higher morbidity is difficult to explain in terms of functional 

adaptation to a specific behavior like the use of teeth-as-tools. Thus, selection appears to be 

acting on cultural behaviors promoting an increase in fertility and/or fecundity among early 

modern humans, whereas the shift toward smaller anterior teeth and an associated increase in 

oral pathology/morbidity may have come about through stochastic evolutionary processes 

(e.g., gene flow and genetic drift). This scenario provides a possible mechanism whereby 

socioeconomic innovation and intensification is an indirect influence on spatiotemporal 
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variation in dental size without invoking directional selection on crown size related to non-

masticatory manipulative behavior.  

To summarize, it is difficult to distinguish any clear causative relationship between the 

structural reduction of the anterior teeth and tooth-use among early modern humans. In fact, 

there is a paradoxical relationship between the high rate of anterior tooth-use and concomitant 

crown reduction among early modern humans. Neandertals maintained the ancestral condition 

of having large and robust anterior dentitions from their Middle Pleistocene predecessors, and 

it is obviously from this study and many others that Neandertals and their predecessors 

frequently engaged in non-masticatory behaviors with their anterior dentition. However, it is 

extremely difficult to establish a causative relationship between form (anterior tooth 

morphology/size) and function (non-masticatory behaviors) when evidence from early modern 

humans is also considered. It is proposed that selection (whether “relaxed” or directional) was 

not the most parsimonious causative explanation for dental reduction among early modern 

humans. Instead, small anterior teeth have shorter “use-lives” and a greater association with 

high morbidity in later life. Thus, we can view small anterior dentitions as a mismatch between 

morphology and behavior (non-masticatory behavior) among early modern humans as 

compared to their archaic neighbors. An explanation invoking stochastic evolutionary processes 

combined selection for cultural behaviors that enhanced reproductive fitness through shifts in 

fertility/fecundity may better explain the how small anterior teeth came to be the dominant 

form in the Upper Paleolithic. Finally, it is worth repeating here that the Neandertals and their 

archaic predecessors are less in need of explanation than the early modern humans are in 

terms of morphology. As stated by Trinkaus (2006a:607): 
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“When these data on probable trait polarities are combined and one 
appropriately uses the available data from the entire skeleton and 
dentition, it is not the Neandertals who appear unusual, special, derived, 
autapomorphous. It is we.” 

 

Final conclusions 

This thesis set out to bridge gaps in our understanding of non-masticatory uses of the 

anterior dentition among Middle and Late Pleistocene humans to illustrate how group-level 

similarities and differences in non-masticatory behaviors relate to broader patterns of 

biocultural change during the Pleistocene. In particular, this study addresses the degree to 

which the body or technocultural solutions to manipulative behavior are relied upon during a 

period of extensive technological and social change. Many of the research gaps that were 

addressed have persisted despite recent methodological advances in the study of non-

masticatory dental wear. This is largely due to the nature of comparisons with early and recent 

modern humans or lack of comparisons altogether. We know a great deal about archaic human 

behaviors in the Pleistocene, especially that of the Neandertals. However, there has been 

remarkably little research on the paleobiology the earliest modern humans until quite recently. 

Thus, there was much to be gained by in-depth coverage of early modern human fossils using 

approaches that were broadly comparable with previously published data on archaic humans. 

Importantly, comparisons were made between the groups of greatest paleobiological relevance 

to the issues of interest in the Middle and Late Pleistocene and avoiding the frequent problems 

associated with the comparison of recent human skeletal and behavioral variation  

Three complimentary analyses of anterior dental wear were used in this thesis. Analyses 

ranged from scale-sensitive analyses of anterior versus posterior dental wear gradients to 
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analyses of individual dental wear features by tooth type using enamel chipping and 

instrumental striation analyses. This multifaceted approach allowed greater coverage of a 

fragmentary fossil records and use of previously published data for comparative purposes. 

Furthermore, each analysis was able to comment on different aspects of non-masticatory 

tooth-use. Anterior versus posterior scaled macrowear gradients were informative of degree of 

anterior tooth use and how crown size influenced graded differences across groups. Dental 

chipping comments on the magnitude of anterior tooth loading as well as the repetition of 

those loads. Finally, analyses of instrumental cutmarks gave insights into a form of non-

masticatory behavior largely associated with archaic humans but unknown among early 

modern humans.  

The results of analyses show that there is some difference in the degree to which 

archaic and modern humans used their anterior dentitions, but this is largely an artifact of 

tooth dimensions – the anterior teeth of many modern humans were worn down to similar a 

degree as that of Neandertals, but early modern humans anterior teeth became non-functional 

at a faster rate due to their smaller average size. Dental chipping revealed little difference in 

anterior tooth use between fossil groups and there was little evidence to indicate that anterior 

or posterior teeth were used to produce higher magnitude forces on average between archaic 

and modern human groups. Likewise, the evidence from central incisor labial cutmarks shows 

no differences between archaic and early modern humans in terms of presence or absence.  

 The historical use of recent human samples as a proxy for early modern human behavior 

have been somewhat misleading. A degree of difference between archaic and modern humans 

in terms of non-masticatory behavior does exist, but it is modest or absent depending on which 
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behavior and corresponding paleobiological indicator is examined. The historical focus on the 

use of the anterior teeth-as-tools as a significant selective force in Late Pleistocene craniofacial 

evolution is probably overstated based on previous biomechanical approaches to the topic, 

rather than on the thorough documentation of the actual traces of non-masticatory behavior 

left behind as dental wear. Approaches addressing developmental or neutral evolutionary 

processes may yield insights into the evolution of Neandertal and early modern human 

craniodental morphology that functional and behavioral studies have not yet been able to 

ascertain. 

 Finally, future studies aimed at understanding the behavioral differences between 

Neandertals and early modern humans should focus on direct comparisons between fossil 

groups. Our understanding of regional variation in Neandertal non-masticatory behavior is far 

more complete than it is for early modern humans. Furthermore, only one study now shows 

that the early modern humans from Dolní Vĕstonice II exhibit the same types of non-

masticatory wear features as seen in many groups of archaic Homo, but that the patterning of 

these features is quite distinct from those seen among archaic Homo (Willman 2016). High-

resolution analyses of wear features that go beyond presence/absence documentation are 

likely to reveal meaningful variation across chronologically and morphologically-defined groups 

of Pleistocene humans.  
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Appendix 
 

Appendix Table 1. Tooth associations by Sima de los Huesos individual used in analyses.  
Specimen LI1 LI2 LC1 RI1 RI2 RC1 LI1 LI2 LC1 RI1 RI2 RC1 

SH I AT-
3194 

AT-
1754 

 AT-
3193 

AT-
283 

 AT-
1460 

AT-
1464 

AT-
276 

AT-
609 

AT-
275 

AT-
60 

SH II AT-
27 

AT-
2279 

  AT-
42 

   AT-
1472 

AT-
597 

AT-
578 

AT-
162 

AT-
55 

AT-2 

SH III         AT-
104 

AT-
103 

AT-
67 

 AT-
1726 

AT-
1952 

SH V AT-
2765 

AT-
3257 

    AT-
2759 

        

SH VII AT-
554 

 AT-
163 

AT-
553 

 AT-
144 

AT-
555 

AT-
195 

AT-
145 

AT-
1469 

AT-5 AT-
591 

SH X               AT-
1951 

SH XI          AT-
167a 

AT-
161 

 AT-
723a 

  

SH XII AT-
560b 

AT-
53a 

           AT-
300 

AT-
300 

SH XV         AT-
1762 

AT-
1753 

AT-
1755 

 AT-
1461 

AT-
2394 

SH XVI AT-
2752 

AT-
2772 

AT-
2392 

AT-
2786 

AT-
27-
69 

  AT-
3252 

 AT-
2778 

 AT-
3256 

AT-
2784 

SH XVIII AT-
1143 

AT-
1124 

AT-
2151 

AT-
2395 

AT-
2280 

AT-
2207 

AT-
2390 

AT-
2066 

AT-
410 

AT-
2195 

AT-
957 

AT-
2165 

SH XX AT-
953 

AT-
820 

AT-
955 

AT-
954 

AT-
962 

AT-
558 

AT-
2730 

 AT-
808 

 AT-
1123 

AT-
2783 

SH XXI AT-
2773 

     AT-
3192 

AT-
3258 

AT-
3251 

      

SH XXII  AT-
961a 

   AT-
3195 

AT-
3191 

AT-
3199 

AT-
3198 

  AT-
3250 

AT-
2753 

AT-
2766 

SH XXIII          AT-
607 

AT-
607 

AT-
595 

AT-
594 

AT-
593 

SH XXIV       AT-
2388 

 AT-
2391 

AT-
2438 

AT-
596 

AT-
281 

  

SH XXV         AT-
3882 

AT-
3937 

AT-
3938 

AT-
3883 

AT-
3884 

AT-
3886 

SH XXVII   AT-
3075 

  AT-
3255 

        

SH XXVIIIc AT-
165 

AT-
3196 

AT-
818 

AT-
814 

 AT-
219 

AT-
2775 

AT-
2776d 

AT-
2762 

AT-
3253 

   

Not 
assigned 

AT-
198 

  AT-
199 

        

Not 
assigned 

   AT-
54 

        

Not 
assigned 

AT-
1958 

           

Not 
assigned 

AT-
280 
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Appendix Table 1. Continued 
Specimen LI1 LI2 LC1 RI1 RI2 RC1 LI1 LI2 LC1 RI1 RI2 RC1 
Not 
assigned 

AT-
1943 

           

Not 
assigned 

AT-
3885 

           

Not 
assigned 

AT-8            

Not 
assigned 

    AT-
29 

       

Not 
assigned 

    AT-
2274 

       

Not 
assigned 

    AT-
1844 

       

Not 
assigned 

    AT-
1444 

       

Not 
assigned 

 AT-
1953 

  AT-
1962  

       

Not 
assigned 

 AT-7           

Not 
assigned 

     AT-
44 

      

Not 
assigned 

     AT-
1475 

      

Not 
assigned 

     AT-
1758 

      

Not 
assigned 

  AT-
958 

         

Not 
assigned 

  AT-
1757 

         

Not 
assigned 

  AT-6          

Not 
assigned 

  AT-
1942 

         

Not 
assigned 

         AT-
2397 

  

Not 
assigned 

         AT-
956 

  

Not 
assigned 

      AT-
1474 

  AT-
166 

  

Not 
assigned 

      AT-
3241 

  AT-4   

Not 
assigned 

      AT-
3242 

  AT-
2384 

  

Not 
assigned 

          AT-
592 

 

Not 
assigned 

       AT-
608 

  AT-
282 

 

Not 
assigned 

       AT-
2278 

    

Not 
assigned 

           AT-
1960 
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Appendix Table 1. Continued 

Specimen LI1 LI2 LC1 RI1 RI2 RC1 LI1 LI2 LC1 RI1 RI2 RC1 
Not 
assigned 

           AT-
1144 

Not 
assigned 

        AT-
567 

   

Not 
assigned 

        AT-
164 

   

Not 
assigned 

AT-
126e 

           

a Previously “not assigned” to an individual (Lozano 2005; Lozano et al. 2008). New assignment based on 
Martinón-Torres et al. (2012).  
b Previously “not assigned” to an individual (Lozano 2005; Lozano et al. 2008). New assignment based on 
Martinón-Torres et al. (2012). No data on cutmarks but there is an antemortem enamel chip. 
c Previously referred to as SH XXXI (Lozano 2005; Lozano et al. 2008), but now referred to as SH XXVIII 
following Martinón-Torres et al. (2012). 
d Previously assigned to SH XXVII (Lozano 2005; Lozano et al. 2008), but now assigned to as SH XXVIII 
following Martinón-Torres et al. (2012). 
e This tooth appears in Lozano (2005) where it is listed as having an antemortem chip on the labial-occlusal 
edge. However, the tooth is not listed in Lozano et al. (2008) or the supplement in Martinón-Torres et al. 
(2012). The absence of this tooth in the latter publications was cause for excluding it from analyses here.  
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Appendix Table 2. Sources of buccolingual metrics and macrowear for each fossil used in macrowear gradient analyses.  
 Geographic Area Site Buccolingual Metrics Macrowear Notes 

      
Late Early Pleistocene to Middle Pleistocene 
 Africa – Morocco Rabat (Thomas 

Quarry) 
Original fossils Original fossils  

 Africa – Zambia Broken Hill  Original fossils Original fossils  
 East Asia – China Chaoxian (He 2000) (He 2000)  
 East Asia – China Jinnushan (He 2000) (He 2000)  
 Europe – Germany Mauer E. Trinkaus High-resolution casts (A. 

Pérez-Pérez) 
 

 Europe – Italy Fontana Ranuccio (Rubini et al. 2014) (Rubini et al. 2014) FR1R, FR1L, and FR2 are considered the 
same individual. 

 Europe – Spain Atapuerca – Gran 
Dolina 

(Bermúdez de Castro et al. 
1999) 

(Bermúdez de Castro et al. 
1999) 

 

 Europe – Spain Atapuerca – Sima 
del los Huesos 

(Martinón-Torres et al. 2012) (Martinón-Torres et al. 2012)* *Molnar (1971) scores which were 
assumed to be equivalent to Smith (1984) 

      
Earlier Neandertals (MIS 7-5) 
 Europe – Belgium Scladina (Toussaint 2014) (Toussaint 2014)* * Line drawings, photographs, and 

description. 
 Europe – Croatia Krapina (Wolpoff 1979) High-resolution casts (E. 

Trinkaus) 
 

 Europe – France Biache-Saint-
Vaast 

(Rougier 2003) (Rougier 2003)* *Line drawings, photographs, and 
description. 

 Europe – France La Chaise (Abri 
Bourgeois-
Delaunay) 

(Condemi 2001) (Condemi 2001)* *Line drawings and photographs 

 Europe – France Montgaudier (Mann and Vandermeersch 
1997) 

(Mann and Vandermeersch 
1997)* 

*Line drawings, photographs, and 
description. 

 Europe – Germany Erhingsdorf (Vlček 1993) Original fossils  
 Europe – Italy Fate (de Lumley and Giacobini 

2013b) 
(de Lumley and Giacobini 
2013b)* 

*Photographs 

 Europe – Italy Saccopastore (Condemi 1992) (Condemi 1992)*, high-
resolution casts (E. Trinkaus)  

*Photographs 
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Appendix Table 2. Continued 

 Geographic Area Site Buccolingual Metrics Macrowear Notes 
Earlier Neandertals (MIS 7-5) Continued 
 Europe – United 

Kingdom 
Pontnewydd  (Compton and Stringer 2012) (Compton and Stringer 2012) *Photographs, and description. 

 West Asia – Israel Tabun C2 E. Trinkaus High-resolution casts and 
photos (E. Trinkaus) 

 

 West Asia – Israel Tabun C1 Original fossils Original fossils  
 West Asia – Israel Tabun B-series E. Trinkaus High-resolution casts and 

photos (E. Trinkaus) 
 

 West Asia – Israel Tabun BC7 (Coppa et al. 2005) (Coppa et al. 2005)* *Photographs 
      
Later Neandertals (MIS 4-3) 
 Europe – Belgium Goyet Original fossils Original fossils  
 Europe – Belgium Spy Original fossils Original fossils  
 Europe – Croatia Vindija Original fossils Original fossils  
 Europe – Czech 

Republic 
Kůlna Original fossils Original fossils  

 Europe – Czech 
Republic 

Švédův stůl Original fossils Original fossils  

 Europe – France Arcy-sur-Cure 
(Grotte du Bison) 

(David et al. 2009; Tillier et al. 
2013) 

(David et al. 2009; Tillier et al. 
2013)* 

*Photographs and description 

 Europe – France Arcy-sur-Cure 
(Grotte de 
l’Hyène) 

(E. Trinkaus) Color photographs and high-
resolutioncasts (E. Trinkaus); 
(Leroi-Gourhan 1958)* 

*Line drawings 

 Europe – France La Ferrassie High-resolution epoxy-resin 
casts (E. Trinkaus); 

Color photographs and high-
resolution casts (E. Trinkaus); 

 

 Europe – France Hortus (de Lumley 1973) (de Lumley 1973)* *Photographs and line drawings 
 Europe – France Genay  (de Lumley 1987) (de Lumley 1987)* *Photographs 
 Europe – France Monsempron Original fossils Original fossils  
 Europe – France Le Moustier Original fossils Original fossils  
 Europe – France Petit-Puymoyen Original fossils Original fossils  
 Europe – France Les Pradelles 

(Marillac) 
(Mussini 2011)* (Mussini 2011)** *Literature (RP3-M3) and published 

photographs (RC1).  Measurement of the 
canine was attained using scaled 
photograph (Mussini 2011:137) and tpsDig 
(Rohlf 2006). An average of 
measurements taken in occlusal (10.0 



 

 

2
5

0 

mm), mesial (9.8 mm), and distal (9.8 mm) 
view is the value used in this analysis. 
**Occlusal photographs and descriptions. 
Wear translated to Smith (1984) scores 
from Murphy (1959b) and Molnar (1971) 
scores.    

Appendix Table 2. Continued 

 Geographic Area Site Buccolingual Metrics Macrowear Notes 
Later Neandertals (MIS 4-3) Continued 
 Europe – France La Quina E. Trinkaus High-resolution casts and 

research grade casts (E. 
Trinkaus) 

 

 Europe – France Regourdou (Maureille et al. 2001) High-resolution casts and 
research grade casts (E. 
Trinkaus) 

 

 Europe – France  Saint-Césaire E. Trinkaus High-resolution casts (A. 
Pérez-Pérez), photographs (E. 
Trinkaus) 

 

 Europe – Germany Neandertal Original fossils Original fossils  
 Europe – Hungary Subalyuk (Pap et al. 1996) Research grade cast (E. 

Trinkaus); (Pap et al. 1996)* 
*Photographs 

 Europe – Italy Guattari (Mallegni 1995) High resolution casts (E. 
Trinkaus; (Mallegni 1995)* 

*Photographs 

 Europe – Spain Banyoles (de Lumley 1973) (de Lumley 1973; Alcázar de 
Velasco et al. 2011)* 

*Photographs and line drawings 

 Europe – Spain Cova Foradá (Campillo et al. 2002; Lozano 
et al. 2013) 

High-resolution casts (A. 
Pérez-Pérez); (Campillo et al. 
2002; Lozano et al. 2013)* 

*Photographs 

 Europe – Spain Sima de las 
Palomas 

Original fossils Original fossils  

 Europe – Spain Valdegoba  (Quam et al. 2001) (Quam et al. 2001)* *Photographs and description 
 Europe – Spain Zafarraya E. Trinkaus high-resolution casts (A. 

Pérez-Pérez), research grade 
cast E. Trinkaus  

(Barroso-Ruız et al. 2003) 

 Europe – United 
Kingdom 

La Cotte de Saint 
Brelade 

(Stringer and Currant 1986) (Stringer and Currant 1986)* *Photographs 

 West Asia – Iraq Shanidar (Trinkaus 1983) Photographs and high-
resolution casts (E. Trinkaus) 
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Appendix Table 2. Continued 
 Geographic Area Site Buccolingual Metrics Macrowear Notes 
Later Neandertals (MIS 4-3) Continued 
 West Asia – Israel Amud Original fossils Original fossils  
 West Asia – Israel Kebara Original fossils Original fossils  
 West Asia – Republic 

of Georgia 
Sakijia No data (Moncel et al. 2015)* *Photographs 

 West Asia – 
Uzbekistan 

Teshik-Tash (Wolpoff 1971a) (Schwartz and Tattersall 
2002)* 

*Photographs 

      
Middle Paleolithic Modern Humans 
 West Asia - Israel Skhul E. Trinkaus High-resolution casts (E. 

Trinkaus) 
 

 West Asia - Israel Qafzeh E. Trinkaus; original fossils Original fossils; high-
resolution casts (E. Trinkaus) 

 

      
North African Aterian/South African Middle Stone Age 
 Africa – Morocco Dar es Soltane II (Hublin et al. 2012) (Hublin et al. 2012)* *Photographs 
 Africa – Morocco Grotte des 

Contrebandiers 
(Hublin et al. 2012) (Hublin et al. 2012)* *Photographs 

      
Early Upper Paleolithic 
 Africa – Democratic 

Republic of Congo 
Ishango Original fossils Original fossils  

 Africa – Egypt  Nazlet Khater Original fossils Original fossils  
 Africa – Egypt  Wadi Kubbaniya No data (Angel and Kelley 1986)* *Photographs 
 East Asia – China Liujiang F. Demeter* Photographs**  *Personal communication 

**Photograph 
(http://www.chinapage.com/archeology/L
iujiang.htm) 

 East Asia – China  Tianyuan 1 (Shang and Trinkaus 2010)* (Shang and Trinkaus 2010)* 
and research grade cast** 

*Photographs 
**provided by E. Trinkaus 

 East Asia – China  Zhoukoudian 
Upper Cave 

E. Trinkaus (Kaifu 2000b)  

 Europe – Austria  Miesslingtal 1 Original fossils Original fossils  
 Europe – Czech 

Republic 
Brno II 
(Francouzská) 

Original fossils Original fossils  
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Appendix Table 2. Continued 

 Geographic Area Site Buccolingual Metrics Macrowear Notes 
Early Upper Paleolithic Continued 
 Europe – Czech 

Republic 
Brno III (Matiegka 1929) (Matiegka 1929; Kaifu 

2000b)* 
*Photographs, descriptions, and published 
wear scores 

 Europe – Czech 
Republic 

Dolní Vĕstonice 3, 
13, 14, 15, & 16 

Original fossils Original fossils  

 Europe – Czech 
Republic 

Mladeč 8 & 9 Original fossils Original fossils  

 Europe – Czech 
Republic 

Pavlov 1 & 3 Original fossils Original fossils  

 Europe – Czech 
Republic 

Předmostí 1, 3, 4, 
7, 9, 10, 14, & 18 

(Matiegka 1934) (Velemínská and Brůžek 
2008)* 

*Photographs 

 Europe – France  Abri Pataud (Legoux 1975; Villotte et al. 
2015) 

(Legoux 1975; Villotte et al. 
2015)* 

*Photographs and wear scores 

 Europe – France  Les Rois (Ramirez Rozzi et al. 2009) Original fossils  
 Europe – Italy Arene Candide IP High-resolution cast (A. Pérez-

Pérez) 
High-resolution cast (A. Pérez-
Pérez) 

 

 Europe – Italy Barma Grande 2-4 Original fossils Original fossils  
 Europe – Italy Ostuni 1 Original fossils Original fossils  
 Europe – Romania Muierii 1 Original fossils;  (Doboş et al. 

2010)* 
Original fossils; (Doboş et al. 
2010)* 

*Published measurements and 
photographs used for right M1-M2 only. 

 Europe – Russia Kostenki 14 
(Markina Gora) 

E. Trinkaus (Haeussler 1995; Haeussler 
1996)* 

*Photographs and descriptions 

 Europe – Russia  Sunghir 1, 2, & 3 (Trinkaus et al. 2014) (Trinkaus et al. 2014)  
 Europe – United 

Kingdom 
Kent’s Cavern KC4 (Higham et al. 2011) Original fossils  

 Southeast Asia – 
Indonesia 

Wajak Original fossils Original fossils  

 Southeast Asia – 
Laos 

Tam Pa Ling 1 (Demeter et al. 2012) Photograph (D. Demeter)  

 West Asia – Israel  Nahal Ein Gev Original fossils Original fossils  
      
Late Upper Paleolithic 
 Africa – Algeria  Afalou Bou 

Rhummel 
(Voisin et al. 2012) Original fossils  

 Africa – Morocco  Taforalt (Voisin et al. 2012) Original fossils  
 Africa – Sudan  Jebel Sahaba No data Original fossils  
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Appendix Table 2. Continued 

 Geographic Area Site Buccolingual Metrics Macrowear Notes 
Late Upper Paleolithic Continued 
 East Asia – Japan Minatogawa (Hanihara and Ueda 1982) (Hanihara and Ueda 1982; 

Kaifu et al. 2011)* 
*Photographs 

 Europe – Czech 
Republic  

Konĕprusy (Zlatý 
Kůň) 

(Voisin et al. 2012) Original fossils  

 Europe – France Bruniquel (Abri 
Lafaye) 

(Genet-Varcin and Miquel 
1967) 

(Genet-Varcin and Miquel 
1967)* 

*Photographs and descriptions 

 Europe – France  Cap Blanc (Frayer 1978) (von Bonin 1935; Dahlberg 
and Carbonell 1961)* 

*Photographs and descriptions 

 Europe – France Farincourt Oringinal fossils Original fossils  
 Europe – France Lafaye Original fossils Original fossils  
 Europe – France Laugerie-Basse B. H. Smith* B. H. Smith* *personal communication 
 Europe – France  Roc-de-Cave (Bresson 2000) (Bresson 2000)  
 Europe – France Rocher de la 

Peine 
Original fossils Original fossils  

 Europe – France  Rond-du-Barry 8 High-resolution cast (A. Pérez-
Pérez) 

High-resolution cast (A. Pérez-
Pérez) 

 

 Europe – France Saint-Germaine-
la-Rivière 

(Blanchard et al. 1972) (Blanchard et al. 1972)* *Photographs 

 Europe – Germany Bonn-Obercassel Original fossils Original fossils  
 Europe – Germany Brillenhöhle Original fossils Original fossils  
 Europe – Italy  Arene Candide (Frayer 1978) (Paoli et al. 1980)* *Photographs 
 Europe – Italy Maritza  Original fossils Original fossils  
 Europe – Italy Ortucchio Original fossils Original fossils  
 Europe – Italy La Punta Original fossils Original fossils  
 Europe – Italy Riparo Fredian Original fossils Original fossils  
 Europe – Italy Romanelli Original fossils Original fossils  
 Europe – Italy Romito (Fabbri and Mallegni 1988) (Fabbri and Mallegni 1988)* *Molnar (1971) scores which were 

assumed to be equivalent to Smith (1984) 
 Europe – Italy San Teodoro (Fabbri 1995) (Fabbri 1995) *Molnar (1971) scores which were 

assumed to be equivalent to Smith (1984) 
 Europe – Italy Villabruna  (Alciati et al. 1993) (Alciati et al. 1993)  
 Europe – Romania Climente II Original fossils Original fossils  
 Europe – Spain Balma Guilanyà  (Lalueza-Fox 1996) (Lalueza-Fox 1996)  
 Europe – Spain  El-Miron (Carretero et al. 2015) (Carretero et al. 2015; Sarchet 

2015)* 
*Photographs, wear score for LC1 from 

photo in Sarchet 2015 



 

 

2
5

4 

Appendix Table 2. Continued 

 Geographic Area Site Buccolingual Metrics Macrowear Notes 
 
Late Upper Paleolithic Continued 
 Europe – Spain  Nerja (Lalueza-Fox 1995) (Lalueza-Fox 1995)  
 Europe – 

Switzerland 
Le Bichon Original fossils Original fossils  

 Europe – United 
Kingdom  

Gough’s Cave Original fossils Original fossils  

 Southeast Australia Cohuna P. Brown* (Macintosh 1952b)** *Personal communication; **Photographs 
and line drawings 

 Southeast Australia Coobool Creek (Brown 1989) P. Brown* *Line drawings provided via personal 
communication 

 Southeast Australia Kow Swamp P. Brown*; (Thorne and 
Macumber 1972; Thorne 
1975) 

(Thorne and Macumber 1972; 
Thorne 1975)** 

*Kow Swamp 2 and 15; **photographs 

 Southeast Australia Talgai P. Brown* (Smith 1918; Hellman 1934; 
Macintosh 1952a)* 

*Photographs and line drawings 

 Southeast Asia – 
Indonesia  

Liang Lemdubu (Bulbeck 2006) (Bulbeck 2006; Bulbeck and 
O’Connor 2011)* 

*Photographs, line drawings, and 
description 

 Southeast Asia – 
Laos  

Tam Hang  Original fossils Original fossils  

 Southeast Asia – 
Malaysia  

Perak Man (Gua 
Gunung Ruhtuh) 

(Sai 2004) (Matsumura and Zuraina 
1995; Matsumura and Zuraina 
2005)* 

*Photographs and description 

 Southeast Asia – 
Papua New Guinea 

Watinglo (Bulbeck and O’Connor 2011) (Bulbeck and O’Connor 2011)  

 Southeast Asia – 
Vietnam 

Hang Cho (Matsumura et al. 2008) (Matsumura et al. 2008)  

 West Asia – Israel Ein Mallaha 
(Eynan) 

Original fossils Original fossils  

 West Asia – Israel Erq El-Ahmar Original fossils Original fossils  
 West Asia – Israel Hayonim Original fossils Original fossils  
 West Asia – Israel Nahal Oren Original fossils Original fossils  
 West Asia – Israel Ohalo II Original fossils Original fossils  
 West Asia – Jordan  Wadi Hammeh (Webb and Edwards 2002) (Webb and Edwards 2002)* *Photographs 
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Appendix Table 2. Continued 

 Geographic Area Site Buccolingual Metrics Macrowear Notes 
Mesolithic  
 Europe – France  Baume de 

Montclus 
Original fossils*; (Frayer 
1978)** 

Original fossils*; (Ferembach 
1974b; Frayer 1978)*** 

*Mandible only; **maxilla; ***published 
photographs 

 Europe – France  Combe Capelle Original fossils Original fossils  
 Europe – France Hoëdic 1, 4, 6, 8, 

& 9 
B. H. Smith* B. H. Smith* *Personal communication 

 Europe – France  Rochereil 1 (Frayer 1978) (Ferembach 1974a; Vallois 
and de Félice 1977)* 

*Photographs 

 Europe – France  Téviec 11 & 13 (Frayer 1978) (Péquart et al. 1937)* *Photographs 
 Europe – Italy  Mondeval de Sora 

1 
(Alciati et al. 1995) (Alciati et al. 1995)* *Molar wear scores were determined 

from written description and published 
photographs. 

 Europe – Romania  Schela Cladovei  Original fossils Original fossils  
 Europe – Spain  Braña-Arintero No data (Prada Marcos 2010; Ruiz et 

al. 2010; Villotte and Prada 
Marcos 2010)* 

*Photographs 

 Europe – United 
Kingdom 

Gough’s Cave  Original fossils Original fossils  
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