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Abstract of the Dissertation 

The Epigenomics of Cell Fate in Development and Disease  

by 

Rebecca Faith Lowdon 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Genetics & Genomics 

Washington University in St. Louis, 2016 

Professor Ting Wang, Chair 

 
 

Epigenetic features at regulatory elements provide instructive cues for transcriptional regulation 

during development. However, the particular epigenetic alterations necessary for proper cell fate 

acquisition and differentiation are not well understood. This dissertation explores the epigenetic 

dynamics of regulatory elements during development and uses epigenome annotations to 

document inappropriate transcriptional regulation in disease. First, I summarize my contributions 

to developing a new algorithm for detecting differential DNA methylation, M&M. I report the 

application of the M&M algorithm to identify distinct classes of DNA methylation dynamics in 

surface ectoderm (SE) progenitor cells and SE-derived lineages: epigenome alterations, and 

differential DNA methylation in particular, that are present in progenitor cells are transmitted to 

daughter cells and consequently observed in differentiated cells. I exploit this property of DNA 

methylation to characterize DNA methylation dynamics in surface ectoderm embryonic tissue 

and SE-derived cells. Next, I use zebrafish to investigate the biological relevance of the classes 

of DNA methylation dynamics described in the SE context. In zebrafish, I use the pigment cell 

development system to understand the contribution of DNA methylation to a particular cell fate 



xiv 
 

choice: melanocyte or iridophore cell fate. Next, I investigate the consequence of somatic 

mutations in primary liver cancer by utilizing epigenomic annotations of human tissues to 

distinguish putatively functional mutations from passenger mutations. Here I present support for 

the hypothesis that transcriptional regulatory instructions for heterologous cell types are co-opted 

by cancer cells during malignant tumorigenesis. Finally I present a review of the evolution of 

epigenetic regulation over regulatory elements. Altogether, this dissertation advances our 

understanding of epigenetic regulation in cell fate decisions by integrating functional genomics 

with developmental biology and cancer genetics. 



 
 

1 

 

Chapter 1 

Cell Fate and Epigenetics 
 

 

The innovation of cellular differentiation has been key to allowing multicellular organisms to 

exploit new niches. In the context of multicellular organisms, in order for a division of labor to 

be efficient and advantageous, each cell in the organism must “know” it’s role. The process by 

which a cell acquires its terminal characteristics or fate is known as differentiation. As 

development commences with the first cell division of a zygote, each subsequent cell division 

gives rise to daughter cells with increasingly restricted cell fate choices. Cell fate restriction is 

necessary in order to create an organism with all required functionalities.  

How a differentiation program proceeds to produce a variety of cellular phenotypes from a single 

genotype is a major question for developmental genetics. Some genetic regulatory networks that 

mediate specific phenotype specification, commitment, determination, and maintenance have 

been described [1-3]. However, the epigenome is also critical for restricting cell fate choices 

during development [4]. For example, imprinting in mammals is regulated by correct placement 

of 5-methylcytosine residues, and incorrect DNA methylation of imprinted alleles causes 

congenital developmental syndromes [5]. Thus the molecular epigenome is also a mediator of 
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cell type-specific gene regulation.  

Background for this dissertation will begin with a brief review of epigenetics and the molecular 

epigenome features that are the focus of this dissertation. Next is a discussion of what is known 

about the genetic and epigenetic control of cell fate determination, and what happens when these 

mechanisms go awry. Finally, the outline of this dissertation summarizes the outstanding 

questions that are the focus of chapters 2-4. 

1.1 The Molecular Epigenome 
Epigenetics refers to heritable changes in gene expression that are not explained by changes in 

DNA sequence. Conrad Waddington, who coined the term “epigenetic,” provided the first such 

example in the fly Drosophila melanogaster. Waddington used an environmental perturbation, in 

this case, high temperature incubation of pupae, to create a specific wing phenotype (trait). After 

breeding treated flies that displayed the wing phenotype for several generations, the trait 

persisted in new generation without the environmental intervention. Thus the environmentally-

induced phenotypic variation was assimilated into the fly genome [6].  

Since Waddington’s time, the term epigenetics has come to refer to not only the phenomenon of 

inherited gene expression change, but also the (non-DNA) molecular components that influence 

gene expression. The complex of DNA and proteins that pack DNA into the cell nucleus is 

referred to as chromatin. The proteins that package DNA are dynamic and can be chemically 

modified to affect chromatin behavior (see 1.1.2). Similarly, direct chemical modification of 

DNA bases can alter local biochemistry. Both DNA-bound protein modifications and 

modifications of DNA bases are considered molecular epigenetic features. 
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Molecular genetics has enabled scientists to link features of the molecular epigenome to the 

modulation of gene expression and inheritance of gene expression patterns. Immediately after 

fertilization (and again later in primordial germ cell development), the early embryo undergoes 

epigenome reprogramming [5]. Epigenome reprogramming is the process by which the 

epigenome features of the parental genomes are erased. This process allows for proper 

epigenome features to be established in the developing organism, which as we will see, is critical 

for proper development [4]. Imprinting is the phenomenon of parent-of-origin specific gene 

expression and is also critical for proper development. Specific application of epigenetic 

features, in particular DNA methylation (see 1.1.1), ensures proper imprinting is established in 

the early embryo [7]. The epigenome also modifies gene expression by position effect 

variegation – gene silencing due to proximity to condensed chromatin (heterochromatin). For 

example, the white gene is silenced in Drosophila melanogaster when a chromosomal 

rearrangement places white next to a region of heterochromatin that then spreads to shut down 

expression of the white gene [8]. Thus there are many aspects of gene regulation during 

development that require proper regulation by the epigenome. 

The primary focus of this dissertation is the regulation of gene expression by epigenetic 

modification of gene regulatory elements (see 1.2). An example of epi-regulation in mouse is 

emblematic: the Avy allele contains a retrotransposon containing a cryptic promoter inserted 

100Mb upstream of the agouti gene. In the unmethylated state, the cryptic promoter is active and 

drives expression of the agouti gene aberrantly, resulting in a distinct phenotype of yellow hair. 

However when methylated, the agouti gene is properly expressed and the mice have a wildtype 

(brown) coat (Morgan 1999). The agouti epi-alleles exemplify the potential of the epigenome to 

influence gene transcription and phenotype.  
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1.1.1 DNA Methylation 
DNA methylation refers to the addition of a methyl group to the 5’ carbon of a cytosine residue, 

forming 5-methylcytosine [9]. During DNA replication, maintenance DNA methyltransferase 

and the multifunctional Uhrf1 protein detects the hemimethylated state (single strand 

methylation) and methylates the opposite strand accordingly, while de novo methyltransferases 

are targeted to genome loci by cofactors [10]. Conversely, DNA methylation is removed by 

oxidation of 5-methylcytosine followed by base excision repair, or is achieved by the passive 

loss of 5-methylcytosine during DNA replication (via lack of maintenance DNA 

methyltransferase) [11].   

In vertebrate genomes, DNA methylation is predominately found at CG dinucleotides (CpG 

residues) [12,13]. Vertebrate genomes are ubiquitously DNA methylated, although methylation 

level depends on the CpG density of a given DNA fragment [14]. Very CpG dense regions 

(termed CpG islands) tend to remain unmethylated [10], while DNA methylation is enriched in 

vertebrate genomes across repetitive DNA fragments and coding exons [13]. 

The function of DNA methylation is very context-dependent. DNA methylation at promoters 

tends to repress gene transcription [15-18], and methylation of CpG island promoters 

accumulates as development progresses, shutting down inappropriate genes [19,20]. Similarly, 

DNA methylation can enable binding of DNA-binding factors that are sensitive to 5-

methylcytosine: MeCP1 is a transcriptional repressor that binds methylated DNA [21]. 

Conversely, DNA methylation may inhibit binding of transcriptional activators [22]. In 

intragenic regions, DNA methylation has been shown to regulate alternative promoters [23] as 

well as alternative splicing [24]. Finally, DNA methylation is enriched over transposable 

elements across metazoan phyla, repressing transposable element mobilization and mutagenesis 
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[13]. Intergenic regions with variable DNA methylation are indicative of enhancers [25-27] and 

will be the focus of much of this dissertation (see 1.2.2). 

1.1.2 Histone Post-translational Modifications 
The 6 billion base pairs of DNA in a human cell are carefully packaged in the nucleus in such a 

manner as to be compact and also make available for transcription the necessary genes for a 

given cell to carry out its biological functions. DNA is packaged around proteins called 

nucleosomes, and the DNA-nucleosome complex is referred to as chromatin. Eight histone 

subunits comprise the nucleosome, which is wrapped by 146 base pairs of DNA. Nucleosomes 

are subsequently packaged into higher order structures to achieve compaction of DNA.  

However, chemical modifications to the unstructured tails of histone proteins can modify the 

local biochemistry of DNA, modulating the DNA exposure to transcriptional machinery [28]. 

The combination of histone post-translational modifications (PTMs) may work independently or 

in concert to change DNA accessibility and therefore transcription [29]. Acetylation of histones 

along with methylation of specific residues creates “active” chromatin conformations allowing 

for transcriptional machinery to access DNA. For example, methylation of histone 3 lysine 4 

activates promoters and prompts transcriptional elongation [30]. Conversely, compaction of 

chromatin by Polycomb group complexes [31] or chromatin remodeling enzymes [32] creates 

“silent” regions that are not amenable to transcription. Deposition of three methyl groups on 

histone 3 lysine 27 by lysine methyltransferases represses transcription, either by recruiting 

Polycomb group 1 repressor proteins [33] and/or by spreading of H3K27me3 modification due to 

lack of transcription [34]. Thus, the specific and combinatorial chemical modifications of histone 

tails are critical to gene regulation. 
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1.2  Genetic and Epigenetic Control of Cell Fate 
All cells in an organism contain the same genome sequence; however cells in different tissues 

have very different features and functions. Such cell-specific features are a result of cell-specific 

gene expression. Gene expression occurs by a process called transcription. ~200 DNA base pairs 

around the transcription start site of the gene comprise the gene promoter. For a gene to be 

expressed, binding of DNA-binding proteins termed transcription factors activates the gene 

promoter. General transcription factors recruit RNA polymerase, which transcribes DNA by 

synthesizing a messenger RNA molecule as it processes along the length of the gene. One 

mechanism of cell-specific gene expression is binding of transcription factors that confer 

specificity to gene expression. Such cell-specific binding may occur at the gene promoter, or at 

DNA fragments hundreds to millions of base pairs away. 

A regulatory element is any region of DNA that modifies expression of a gene. DNA-binding 

proteins or epigenetic factors, such as those described above, act on regulatory elements to 

influence gene transcription. Regulatory elements that activate gene expression include gene 

promoters and distal regulatory elements (enhancers); insulator elements repress gene 

expression. This dissertation focuses on the epigenetic features and functions at activating 

regulatory elements (promoters and enhancers), so the subsequent discussion will focus on these 

elements.  

Regulatory elements can be detected by sequence conservation [35-37] or by experimental 

methods, such as chromatin-immunoprecipitation followed by high-throughput sequencing 

(ChIP-seq) [38-41]. Of particular relevance to this dissertation are epigenetic features of 

enhancers, long-range regulatory elements that can be hundreds to millions of base pairs away 

from a target gene promoter and act in a distance- and orientation-independent manner to 
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activate gene transcription [42].  

1.2.1 Transcription Factors 
Transcription factors (TFs) are critical to developmental stage- and position-specific gene 

expression. Pioneer factors are TFs that bind DNA and modify local chromatin in order that 

subsequent TFs can bind. By recruiting nucleosome repositioning enzymes or histone modifying 

complexes, or protecting enhancer DNA from DNA methyltransferases, such early-binding 

pioneer factors ensure that an enhancer is available to be bound by downstream trans-activators 

[43]. For example, AP1 recruits chromatin remodeling enzymes that create an open chromatin 

environment in mouse mammary epithelial cells, priming AP1-bound elements for quick 

glucocorticoid receptor binding in response to stimulation by hormone [44]. Similarly, enhancers 

bound by FOXA1 during neuronal differentiation remain hypomethylated and gain histone 3 

lysine 4 methylation (an active histone modification) [45]. TFs binding subsequent to pioneer 

factors may facilitate expression by creating physical contacts with RNA polymerase and other 

general TFs at the promoter, for example via the MEDIATOR protein [43]. Thus pioneer factors 

interact with the epigenome to confer cell specific regulation by chromatin remodeling factors 

and TFs that are constitutively expressed. 

1.2.2 Epigenetic Features of Distal Regulatory Elements 
Enhancers confer much of the cell- and tissue-specificity of gene regulation. For example, 

enhancers embedded the mammalian β-globin locus control region will activate specific globin 

genes in a developmental stage-specific manner [42]. Similarly, specific expression of the 

morphogen SHH in the posterior limb bud is required for proper digit patterning. An enhancer 

1MB away from the SHH transcription start site (TSS) is responsible for limb bud expression of 

SHH, and disruption of this long range enhancer results in preaxial polydactyly [46]. Indeed, 
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disease-associated genetic variants are highly enriched in enhancers [47,48], suggesting that 

modulation of enhancer activity can have adverse effects on an individual. Thus enhancers are 

critical to proper gene regulation during development. 

Enhancers display distinctive epigenetic features. Cell type-specific lowly methylated DNA 

fragments that are intergenic or embedded in transposable elements tend to be enhancers [25,26]. 

Similarly, gain of 5-hydrosymethylcytosine (an oxidized derivative of 5-methylcytosine) is 

associated with TF binding and increased gene expression during differentiation of adipose and 

neuronal cells [49], and this is consistent with the finding that DNA-binding proteins are 

necessary to create lowly methylated regions in mouse embryonic stem cells and neuronal 

progenitor cells [25].  

The DNA fragment that binds transcription factors is often nucleosome-depleted in order that 

DNA-binding TFs may bind the regulatory element [50]. DNaseI hypersensitivity analysis 

reveals nucleosome-depleted regions and DNaseI hypersensitive sites (DHSs) are highly 

correlated with known regulatory elements [42,51]. While the TF-binding fragment is absent of 

nucleosomes, enhancers flanked by nucleosomes are subject to cell type-specific histone post-

translational modifications [50]. The transcriptional activator p300 co-occurs with activating 

histone modifications H3K4me1 and H3K27ac, as well as DNaseI hypersensitive sites, and are 

found at evolutionarily conserved sequences; further, the epigenetic component of these 

enhancer profiles of enhancers are highly cell type-specific [52]. Thus, while evolutionary 

conservation is an important and useful measure to detect enhancers, it does not provide 

information regarding the cell type-specificity that is central to enhancer activity. In addition, 

enhancers are often marked by short, bidirectional transcription, and analysis of short RNA 

molecules can identify enhancers in a cell-specific manner [53]. 
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As development proceeds cell fate choices become increasingly restricted, and epigenetic 

mechanisms coordinate to repress genes for other cell fates [4]. Generally, differentiation is 

correlated with gain of DNA methylation globally, loss of DNA methylation at specific 

enhancers, and site-specific changes of histone PTMs [54,55]. The histone modifying Polycomb 

complex works with de novo DNA methylation to restrict developmental potential by shutting 

down inappropriate gene expression [56]. Meanwhile, histone PTMs and DNA methylation are 

coordinated to drive position-specific gene expression, as exemplified by the precise 

developmental expression patterns of the Hox cluster of genes in the Drosophlia melanogaster 

embryo [57]. Concomitantly, acquisition of DHSs specifically indicates new regulatory elements 

in emerging cell types during development [58].  

Yet, DHSs active in embryonic stem cells persist in derived lineages, an indication of “epigenetic 

memory.” Indeed, elements that are hypomethylated in adult tissues but lack activating histone 

modifications represent “vestigial” elements that were active at an earlier developmental time 

point [59,60]. Such elements may be primed to be reactivated inappropriately in cancer [58], 

which exhibits disruption of gene regulation and a loss of differentiated cell identity. Elucidating 

the features and dynamics of regulatory elements during development is a primary aim of this 

dissertation, which is addressed in chapter 2 and 3. 

In summary, while the patterns of epigenome change over development have been characterized, 

what is not understood are the specific epigenome alterations that are critical for a specific 

developmental outcome. Cell fate acquisition is the developmental context in question here. In 

this regard, we have a general understanding that regulatory elements for critical master 

regulators of cell differentiation need to be activated, but what are the specific changes required 

in a given cell fate decision? Or is the epigenome regulation of cell fate more robust, and it is not 
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specific epi-alterations that are required, but cell fate decisions are made in a rheostat model, 

where only a sufficient number of alternations are required to generate a specific fate outcome. 

1.2.3 Loss of Cellular Differentiation in Cancer 
Stem cells are unique cells that exhibit self-renewal, can contribute to many different cell 

lineages, and have a high capacity for proliferation. Cells of the early embryo display these stem 

cell properties and give rise to hundreds of specialized, differentiated cell types over the course 

of organismal development. Consecutive steps of cell specification, commitment, and 

differentiation produce a specific cell fate. Yet the properties of embryonic stem cells are shared 

by so-called tumor stem cells: cells with a high proliferative capacity, that contribute to any part 

of the tumor, and that can self-renew [61]. Tumor stem cells can arise from progenitor cells that 

are not terminally differentiated, but lineage-restricted. Conversion of these progenitor cells to 

tumor stem cells endows them with the ability to produce cell types they would not normally 

[62,63], thus indicating these tumor cells have lost their original identity as a lineage-progenitor. 

Mechanisms for tumor stem cell instigation include classic cancer mutagenesis targets such as 

chromosomal rearrangements [64] or mutation of known oncogenes [65]. Noncoding mutation 

may also play a role in tumorigenesis: in melanoma, regulatory elements for melanocytes (from 

whish melanoma is derived) were depleted for somatic mutation, while enhancers specific to 

other cell types were enriched for mutations. Depletion of noncoding mutation in melanocyte 

regulatory elements indicates a regulatory architecture of de-differentiated cells, which may 

contribute to tumorigenesis [66], and is consistent with the observation that DHS-marked 

regulatory elements from embryonic stem cells or other lineages are reactivated in cancer [58]. 

Understanding the mechanism of these co-opted regulatory elements is one aim of this 

dissertation, addressed in chapter 4. 
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1.3  Outline 
In Chapter 2, I aimed to determine the relative contribution of tissue environment and 

developmental origin on shaping the epigenome of skin cells. We and other labs have detected 

robust tissue- and cell type-specific signatures of DNA methylation in various tissues. However, 

the skin is unique as a tissue because it is composed of a mixture of cell types derived from 

different embryonic origins and is exposed to the environment. Given these different epigenetic 

inputs, we aimed to determine if there is a skin-specific epigenetic signature; alternatively, we 

hypothesized differentiated skin cells will bear an epigenetic signature common to the cell’s 

specific developmental origin. In this aim, I examined epigenome datasets from three skin cell 

types and similar datasets from other tissues to answer these questions. I used a novel algorithm 

developed by our lab for detecting differentially methylated regions to test the hypothesis that 

developmental origin shapes the epigenomes of differentiated cell types. Bioinformatics analysis 

revealed the function of these different classes of epigenetic elements and elucidated the gene 

regulatory network these elements contributed to.  I found that the dynamics of DNA 

methylation over regulatory elements was hierarchical, with a small set of early-demethylating 

regulatory elements and a larger set of late-demethylating elements. 

In chapter 3, I characterized DNA methylation dynamics and regulation of pigment cell 

development. Based on evidence presented in chapter 2, we hypothesized that early-

demethylating elements are responsible for cell fate regulation, while late-demethylating 

elements are responsible for specific terminal phenotypes. Accordingly, I examined if early-

demethylating regions are responsible for cell fate choice by characterizing methylation 

dynamics in cell fate choice. We used zebrafish pigment cell development to test this question. 

Melanocytes and iridophores are neural crest-derived pigment cells present in the zebrafish 
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embryo. Pigment cells arise from a pigment cell progenitor population, a subset of the neural 

crest, that is present by 24 hours post-fertilization (hpf). We isolated a neural crest GFP-tagged 

population from two early embryo time points, and melanocytes and iridophores from older 

embryos. We then used molecular biology techniques to generate whole methylome libraries for 

each sample type and mRNA-seq libraries for the neural crest samples (We used melanocytes 

and iridophore mRNA-seq published by the Steve Johnson lab [67]). Analysis of these data is 

ongoing, and preliminary analyses show expected dynamics over known pigment cell genes. 

Continuing analysis of methylation dynamics in concert with mRNA-seq data are expected to 

reveal likely regulators of melanocyte/iridophore cell fate choice. 

In chapter 4, I used epigenomic annotation to understand the impact of noncoding cancer somatic 

mutations in primary liver cancer. The majority of somatic mutations in cancer are noncoding 

[68], yet the functional implication of noncoding somatic mutations remains elusive. Separating 

likely functional noncoding mutations from silent “passenger” mutations is a critical goal for 

cancer genomics. Most noncoding mutations of consequence are hypothesized to occur in 

regulatory elements, and evidence for this is accumulating in the literature [69-74]. Additionally, 

we predicted that somatic mutation in cell-type regulators contributes to the deterioration of cell 

identity, as the cell acquires regulatory programs and phenotypes specific to other cell types. I 

tested this hypothesis by using epigenome data from ~100 different primary human cell types to 

functionally annotate noncoding somatic point mutations in liver cancer. Specifically, I 

integrated noncoding somatic variants from COSMIC and TCGA with Roadmap Epigenome 

Project data. I found noncoding point mutations occur primarily in cell-type regulatory elements, 

many of which were not liver-cell regulatory elements. Sequence analysis of the mutated sites 
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predicted gain or loss of TF binding sites, revealing potential downstream gain- or loss-of-TF 

binding events consequential for gene expression and cell phenotype.  

Chapter 5 is a review of the literature of epigenome evolution in the context of transcriptional 

regulatory elements. The concluding chapter provides a synthesis of the projects described in this 

dissertation. 
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Chapter 2 

Regulatory Networks Derived from 
Epigenomes of Surface Ectoderm-Derived 

Cells 
 

 

2.1 Preface: M&M Algorithm for Detecting Differentially 
Methylated Regions 
DNA methylation contributes important information to the genome during development and is 

responsible for important genome biology, including X chromosome inactivation, repression of 

transposable elements, and modulation of tissue-specific gene expression [4]. Cell- and tissue-

specific differentially methylated regions (DMRs) are increasingly associated with cell- or 

tissue-specific gene regulation [19,75,76]. However identifying DMRs with confidence remains 

a challenge for several reasons. Technically it is difficult to isolate pure cell populations in many 

contexts, and DNA methylome data from heterogeneous cell populations can often be difficult to 

interpret. Furthermore, it is unclear at this point what magnitude of DNA methylation level 

change is needed for a biologically relevant effect. To answer this second question, it will help 

the field to have more robust algorithms that can be applied to a wealth of data across biological 

samples. 
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The gold-standard method for DNA methylation analysis is whole genome bisulfite sequencing 

(WGBS). WGBS is still an expensive experiment, requiring many lanes on a sequencing flow 

cell for a single sample, making WGBS prohibitive for many labs or for many samples. 

Conversely, our DNA methylation technologies can accommodate 6-8 samples on a single flow 

cell. Removing the barrier to library sequencing makes obtaining biological replicates much 

easier. Consequently, increasing replicates can increase confidence for calling DNA methylation 

levels and subsequently differentially DNA methylated regions.  

Our method relies on gathering two data types: methylated DNA immunoprecipitation followed 

by sequencing (MeDIP-seq), which queries methylated DNA, and methylation-sensitive 

restriction enzyme digestion and sequencing (MRE-seq), which interrogates unmethylated CpGs 

at single base pair resolution [23,77].  

The data for a given sample are scaled based on the CpG coverage provided by each data type. 

Read counts are then treated as mutually independent Poisson random variables to modeled the 

expected read count values. Next, the algorithm will test the significance of read counts in the 

two samples using a joint distribution of tag counts. The algorithm effectively tests the 

hypothesis that  

H0: µ1 = µ2 versus H1: µ1 ≠ µ2  (Equation 2.1) 

where µ1 is the methylation level for the given window in sample 1 and µ2 is the methylation 

level for the same window in sample 2 [76]. 

Integrating signal for DNA methylation and un-methylation gave our algorithm increased 

sensitivity and specificity compared to competing methods (Figure 2.1). The M&M algorithm 
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performed well when identifying cell- or tissue-specific DMRs (Figure 2.2). Therefore our 

analysis of skin cell type methylomes during developed relied heavily on the M&M algorithm.  

Other cost-saving solutions include only using MeDIP-seq, or using a targeted approach, for 

example, Reduced Representation Bisulfite Sequencing (RRBS) assays. RRBS suffers from a 

lack of genome-wide coverage and focus at promoter regions, and it is therefore often unable to 

detect DNA methylation changes at distal enhancers, which are important site of differential 

methylation [14,25,78]. In addition, by integrating MRE-seq with MeDIP-seq data, M&M 

increases sensitivity for monoallelic or intermediately methylated regions [79].  
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2.1.1 Author Contributions  
Full explanation of the M&M algorithm is presented in the manuscript Bo Zhang1#, Yan Zhou#2, 

Nan Lin3#, Rebecca F. Lowdon1#, Chibo Hong4, Raman P. Nagarajan4, Jeffrey B. Cheng5, 

Daofeng Li1, Michael Stevens1, Hyung Joo Lee1, Xiaoyun Xing1, Jia Zhou1, Vasavi Sundaram1, 

GiNell Elliot1, Junchen Gu1, Philippe Gascard6, Mahvash Sigaroundinia6, Thea D. Tlsty6, 

Theresa Kadlecek7, Artheur Weiss7, Henriette O’Geen8, Peggy J. Farnham9, Cécile L. Marie10, 

Keith L. Ligon10,11, Pamela A.F. Madden12, Angela Tam13, Richard Moore13, Martin Hirst13,14, 

Marco A. Marra13, Baozue Zhang2*, Joseph F. Costello4*, Ting Wang1*. “Functional DNA 

methylation differences between tissues, cell types, and across individuals discovered using the 

M&M algorithm.” Genome Research. 2013;23(9):1522-1540. [78] 
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2.2 Author Contributions 
This chapter is adapted from the published manuscript: Rebecca F. Lowdon1, Bo Zhang1, Misha 
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2.3 Abstract 
Developmental history shapes the epigenome and biological function of differentiated cells. 

Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we 

investigate how developmental origin influences epigenomes. We compare key epigenomes of 

cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and 

myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal 

fibroblasts to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of 

neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells 

than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin 

contributes to DNA methylation patterning, while the shared skin tissue environment has limited 

effect. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. In 

addition, they are enriched for enhancer- and promoter-associated histone modifications in SE-

derived cells, and for binding motifs of transcription factors important in keratinocyte and 

mammary gland biology. Thus, epigenomic analysis of cell types with common developmental 

origin reveals an epigenetic signature that underlies a shared gene regulatory network.  
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2.4 Introduction 
While epigenetic mechanisms are crucial in establishing and maintaining cell identity, the role of 

developmental origin and tissue microenvironment in shaping the epigenome is just beginning to 

be unraveled. Marked epigenomic transitions occur upon directed embryonic stem cell 

differentiation into the three major embryonic lineages [54,55] and over the course of 

development [80]. Differentiated cells and tissues have specific DNA hypomethylation 

signatures, particularly at enhancers [19,78]; however, a subset of hypomethylated enhancers are 

actually dormant in adult tissues and active only in corresponding fetal tissues suggesting that a 

DNA methylation memory of fetal origin may be retained in adult cells [59]. Similarly, DNase I-

hypersensitive patterns in differentiated cells can reflect embryonic lineage and mark a subset of 

embryonic enhancers [58]. Tissue microenvironment influences cell identity and morphogenesis 

[81] and consequently, may affect epigenomes. Accordingly, perturbation of tissue 

microenvironment is associated with epigenomic alteration [82,83]. These studies suggest that 

embryonic origin and tissue environment may influence normal cellular epigenomic states and 

that differentiated cell epigenomes can be utilized to infer epigenomic patterns of precursor 

embryonic cell populations. 

To investigate how developmental origin and tissue environment contribute to cell type-specific 

epigenetic patterns, we utilize skin as a model system. The three most prevalent skin cell types 

are each derived from a different embryonic origin (keratinocytes from surface ectoderm, 

fibroblasts from mesoderm, and melanocytes from neural crest [84]), but exist within a shared 

tissue environment (Figure 2.3). We generate DNA methylation and histone modification 

profiles for these three skin cell types and compared their epigenomes among the skin cell types 

and against breast, blood, and brain tissue epigenomes. The three skin cell types share few 
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regions with common DNA methylation and histone modification states, that were not also 

present in the other tissue samples. Surface-ectoderm derived skin keratinocytes and breast cells 

however, share many common differentially DNA methylated regions (SE-DMRs). SE-DMRs 

are enriched for enhancer- and promoter-associated histone modifications in SE-derived cell 

types and for binding motifs of relevant transcription factors. Reconstruction of the gene 

regulatory network connecting these transcription factors and putative target genes with nearby 

SE-DMRs demarcated epigenetic and regulatory events associated with structural components 

and signaling pathways in SE-derived cell types. Thus, for surface ectoderm-derived cells, their 

shared developmental origin influences their epigenomes to a greater extent than tissue 

environment. Furthermore, a shared gene regulatory network emerged from the SE-DMR 

signature.   

2.5 Results 
2.5.1 Skin Cell Type-Specific Differentially Methylated Regions  
Fibroblasts, melanocytes, and keratinocytes were individually isolated from each of three 

neonatal human foreskins and expanded as short-term primary cultures. From these samples, we 

generated nine high-resolution epigenomes encompassing key histone modifications (H3K4me1, 

H3K4me3, and H3K27ac) and DNA methylation, along with mRNA and miRNA expression 

profiles (Appendix 2: Data 1 and 2). The effects of aging and environmental exposure were 

minimized by utilizing neonatal samples. Since each set of three cell types shares a common 

genome, the effect of genetic variation on epigenetic variability was also minimized. 

We identified 12,892 regions encompassing 193,202 CpGs with a DNA methylation status 

unique to one of the three skin cell types and consistent across all three individuals (Methods, 

Figure 2.2a, Figures 2.5-2.7, 2.8a, Appendix 1: Notes 1-3, Table 2.1). The majority of these 
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skin cell type-specific DMRs were hypomethylated (Figure 2.4a), suggesting potential cell type-

specific regulatory activity at these regions [25,26,78]. 40-46% of the DMRs were intergenic and 

5-9% were associated with RefSeq annotated gene promoters (Figure 2.9); non-CGI promoters 

were enriched among cell type-specific DMRs (Appendix 1: Note 4; Table 2.2). 80-91% of 

hypomethylated cell type-specific DMRs overlapped with regulatory element-associated histone 

modifications in the same cell type (Figure 2.4b). Accordingly, hypomethylation of cell type-

specific DMRs at gene promoters correlated with increased gene expression relative to the other 

two cell types where the DMR was hypermethylated (Figure 2.4c, Tables 2.3-2.5). Gene 

Ontology (GO) analysis using the GREAT [85] tool on hypomethylated cell type-specific DMRs 

showed strong enrichment for biological processes relevant to each cell type (e.g. extracellular 

matrix organization for fibroblasts (P-value=9.05E-45) and pigmentation for melanocytes (P-

value=2.43E-06); Figure 2.4d; Appendix 2: Data 3). These data suggest skin cell type-specific 

DMRs occur primarily at distal enhancers and regulate genes relevant to each cell type. 

2.5.2 Skin Cell Tissue-Specific Epigenomic Features  
We next examined whether the common tissue environment of the three skin cell types would 

impose an identifiable skin tissue epigenetic signature. For comparison, we generated complete 

epigenomes and transcriptomes for a panel of non-skin cell types and tissues (including brain 

tissue and breast and blood cell types) and identified DMRs shared by all three skin cell types 

relative to other tissues (Figure 2.8b, Appendix 1: Note 5). Of the 28,776 total DMRs detected, 

only 8 regions shared the same methylation status in skin cell types and the opposite methylation 

status in all other samples (Figure 2.10a,b). Hierarchical clustering based on methylation levels 

at the 28,776 DMRs reveals that while samples of the same cell type cluster together, the three 

skin cell types do not (Figure 2.3c). These results suggested that skin cell type methylomes did 
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not share many differences compared to breast, brain, and blood cell methylomes and that skin 

tissue lacks a specific and substantive DNA methylation signature. 

To determine whether skin tissue also lacks a shared histone modification signature, we 

identified cell type-specific chromatin states from H3K4me1, H3K4me3, and H3k27ac ChIP-seq 

data for each skin cell type, as well as for breast, brain and blood samples. Among the 259,297 

enhancer-associated H3K4me1 peaks and 55,859 promoter-associated H3K4me3 peaks 

identified in the above samples, only 997 H3K4me1 and 57 H3K4me3 peaks are present in all 

three skin cell types and absent in the other samples (Figures 2.11, 2.12). Only 100 of the 997 

exclusively skin-specific H3K4me1 peaks overlapped with H3K27ac peaks (a combination 

which marks active enhancers) in all three skin cell types (Figure 2.10d). While GO enrichment 

analysis for cell type-specific histone modification patterns showed enrichment for relevant 

terms, analysis for the few exclusively skin tissue shared histone modification peaks did not 

reveal any relevant enrichment (Appendix 2: Data 4). The minimal DNA methylation and 

histone modification commonalities that separate skin cell types from other tissues and the lack 

of functional enrichment for these common shared regions strongly suggest that the shared skin 

tissue environment does not significantly influence its constituent cell type epigenomes at this 

developmental stage. 

2.5.3 Developmental Origin Influences Epigenomes  
In the absence of a strong skin tissue-specific epigenetic signature, we hypothesized that 

developmental origin is a major determinant of skin cell type epigenetic patterns. We explored 

this hypothesis by focusing on skin keratinocytes and breast epithelial cells, which are both 

derived from surface ectoderm [86]. Consistent with their shared developmental origin, neonatal 

skin keratinocytes clustered with adult breast epithelial cell types based on DNA methylation 
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values at the DMRs previously identified in skin and non-skin cell pairwise comparisons (Figure 

2.10c). To specifically define the DNA methylation signature of surface ectoderm, we identified 

DMRs for each of the surface ectodermal cell types in a pairwise manner compared to neonatal 

skin melanocytes and fibroblasts, which are derived from other embryonic germ layers (Figure 

2.8c). There were 1,392 DMRs with the same methylation state exclusively in keratinocyte, 

breast myoepithelial, and breast luminal epithelial cells relative to the two other cell types, which 

we inferred to be surface ectoderm-specific DMRs (SE-DMRs) (Methods, Figure 2.13a). 

Therefore, common developmental origin influences surface ectoderm-derived cell epigenomes 

to a greater extent than does the shared skin tissue environment. 

We examined whether SE-DMRs, like cell type-specific DMRs, possessed regulatory potential. 

The majority (97%) of surface ectoderm DMRs (SE-DMRs) were hypomethylated with 12% 

located in gene promoters and 40% within intergenic regions (Figure 2.14a). Hypomethylated 

SE-DMRs were enriched for promoter- and enhancer-associated histone modifications in both 

keratinocytes and breast myoepithelial cells, and for DNase I-hypersensitive sites in 

keratinocytes (Figure 2.13b, Figure 2.14b). Hypomethylated SE-DMRs were also enriched for 

transcription factor binding motifs including TFAP2 and KLF4 (Figure 2.13c); transcription 

factors that bind to these two motifs function in keratinocyte and mammary epithelium 

development, differentiation, and/or maintenance of cell fate [87-91]. Genes associated with 

hypomethylated SE-DMRs were enriched for functions relevant to the biology of these cell 

types, such as “epidermis development” (P-value=4.35e-15) and “mammary gland epithelium 

development” (P-value=2.10e-9) (Figure 2.13d, Appendix 2: Data 5). DNA hypomethylation 

status of genes with hypomethylated SE-DMRs in their promoter regions correlated with 

increased expression in SE-derived cells relative to non-SE cells (Figure 2.13e, Table 2.6). 
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These annotations suggested that the majority of surface ectoderm-DMRs were at distal enhancer 

or gene promoter elements and regulate genes important for keratinocyte and mammary gland 

development. More generally, these results offer a new and deeper level of interrogating the 

origin and function of adult epigenomes, adding significantly to the recent attribution of 

epigenome signatures to germinal layers[54,55]. 

2.5.4 Epigenome-Derived Surface Ectoderm Regulatory Network  
Given their regulatory element signatures, overlap with DNase I-hypersensitive sites, and 

enrichment for relevant transcription factor binding site (TFBS) motifs, we hypothesized that 

hypomethylated SE-DMRs may be regulatory elements that coordinate expression of genes 

essential for function of surface ectoderm-derived cells. To test this, we sought to connect these 

putative regulatory elements to genes in a surface ectoderm gene network. We associated DMRs 

with nearby putative target genes and queried databases of TF-target genes and gene-gene 

interactions to construct regulatory relationships among these genes (Methods). The result is a 

highly connected network with a statistically significant number of connections (1458 edges, 278 

nodes; P-value=1.25e-4; Methods; Table 2.7), whose distribution follows a power law 

(R2=0.89; Figure 2.15). 

Strikingly, the transcription factors near the top of the inferred SE network were those whose 

motifs were enriched in the hypomethylated SE-DMRs (Figure 2.13c). This observation, along 

with the network connectivity data, suggested that TFAP2a, TFAP2c, and KLF4 may regulate 

many of the downstream genes in this network. To identify biological processes associated with 

each set of hypomethylated DMRs containing either TFAP2 or KLF4 TFBSs, we performed 

GREAT analysis [85]. The network was characterized by two partially overlapping major 

branches (summarized data in Figure 2.16a, Table 2.8). The first branch included the 
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transcription factors TFAP2a and TFAP2c and connected to genes associated with surface 

ectoderm relevant GO terms, e.g. "hemidesmosome assembly" which is a structural complex 

critical for epithelial cells [92] and Notch signaling which functions in mammary cell fate 

commitment [93] and keratinocyte homeostasis [94] (Figure 2.16b). The second branch was 

characterized by KLF4 and associated with mammary gland development and Wnt signaling 

which influences both breast and keratinocyte cell fate decisions [95,96] (Figure 2.16c). Thus, 

we observed a highly structured set of connections between regulatory elements and putative 

target genes that underlie and integrate signaling pathways vital for both keratinocyte and 

mammary gland epithelial cell function.  

Surface ectoderm hypomethylated DMRs were located near the TSS of six genes that encode 

hemidesmosome/epidermal basement membrane zone components, five of which contain the 

TFAP2 TFBS motif (Figure 2.16e). These genes were highly expressed in all surface ectodermal 

cell types (Figure 2.16d). Mutations occur in any one of five of these genes in various forms of 

the inherited epidermolysis bullosa blistering skin diseases [97,98]. These findings suggest SE-

DMRs may coordinately regulate a suite of genes that encode for components of a key structural 

complex in surface ectoderm-derived cells, that when perturbed leads to a clinically relevant 

phenotype.  

Hypomethylated SE-DMRs containing TFAP2 motifs were also identified near the transcription 

start site of two genes, IRF6 and Stratifin, that are highly expressed in surface ectoderm-derived 

cells (Figure 2.17a-d). IRF6 is a transcription factor, known to be regulated by TFAP2a[99], that 

coordinates keratinocyte and breast epithelium proliferation and differentiation [100,101]. 

Stratifin is a member of the 14-3-3 protein family which functions as an adaptor protein and 

binds to phosphorylated proteins mediating diverse cellular processes, such as cell cycle control, 
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apoptosis, and keratinocyte differentiation [102]. Stratifin promoter DNA hypermethylation and 

expression downregulation is found in both breast and skin cancers [103]. Mutations in IRF6 or 

SFN lead to similar phenotypes with limb and craniofacial developmental abnormalities and an 

impaired skin barrier due to defective keratinocyte differentiation [104,105].  

A KLF4 motif containing hypomethylated SE-DMR was noted near the mir-200c/141 locus. 

These two microRNAs promote epithelial cell fate and mir-200c/141 expression is often lost in 

breast cancers [106]. Our findings of mir-200c/141 surface ectoderm-specific expression and 

DNA hypomethylation (Figure 2.17e,f) are consistent with previously demonstrated epigenetic 

regulation of this locus [107]. Thus, SE-DMRs may modulate key genes that regulate 

proliferation, differentiation, and epithelial cell fate maintenance in surface ectoderm-derived 

cells. 

2.5.5 Developmental Dynamics of SE Regulatory Elements 
To explore the developmental dynamics of DNA methylation at SE-DMRs, we obtained whole 

genome bisulfite sequencing data for samples representing early stages in surface ectoderm 

development: H1 embryonic stem cells (ESCs) and ESCs differentiated to represent an early 

ectoderm developmental stage [54]. A majority of hypomethylated SE-DMRs were methylated 

in both early developmental stages, but hypomethylated in keratinocytes and mammary gland 

epithelia (Methods, Figure 2.18a). The few exceptions are transcription factors that are 

upstream in the regulatory hierarchy. For example, the DMR near the TFAP2a promoter was 

demethylated in ES cells, whereas the DMR in KLF4 was methylated in ES cells but 

demethylated in early surface ectoderm differentiated cells. Both genes are most highly 

expressed in keratinocytes (Figure 2.18b-e). The remaining hypomethylated SE-DMRs, many of 

which putatively regulate genes that are TFAP2a, TFAP2c, or KLF4 targets in the network 
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analysis, were lowly methylated in differentiated cells. Accordingly, expression of these genes 

was generally increased in keratinocytes relative to H1 ESCs (Figure 2.18f). Additionally, 

hypomethylated SE-DMRs were highly methylated in fetal brain tissue, which is predominantly 

neuroectoderm-derived, concordant with their specific assignment to surface ectoderm-derived 

cells rather than embryonic ectoderm as a whole (Figure 2.19).  

2.6 Discussion 
Analysis of an increasingly diverse collection of epigenomes has revealed tissue- and cell type-

specific regulatory elements important for cell fate and development [26,41,108-110]. However, 

the developmental origins of these epigenomic features have been less explored. Studies utilizing 

in vitro ESC differentiation systems have uncovered early developmental DNA methylation 

dynamics that are believed to occur with specification of the embryonic germ layers [54,55]. 

There is a growing realization that this developmental lineage-specific information is maintained 

in differentiated cells, as DNA methylation and DNase I hypersensitive site profiles of cell types 

and tissues cluster by their embryonic germ layer of origin [58,59]. The persistence of a subset of 

DNA hypomethylated enhancers, which are active in early development but quiescent in 

adulthood, also suggests a developmental memory is encoded in the epigenome of differentiated 

cells [59]. 

Here we present our analysis of the epigenomic features of human skin cell types and their 

origins. In our experimental design, we used three different skin cell types from the same 

individual, and identified DNA methylation signatures which are consistent for three individuals 

across each cell type, minimizing variables that confound many other study designs including 

genetic background, age, and external environmental exposures. Consistent with findings in 

other cell types, we found many skin cell type-specific DMRs at distal enhancers, enriched for 
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association with cell type-relevant genes, and correlated with expression at hypomethylated 

promoters. Thus we demonstrated that, as expected, the cell types within skin tissue possess 

many regions with cell type-specific epigenomic patterns.   

Next we assessed whether the shared environment within skin tissue imparts common 

epigenomic features upon its constituent cell types to create a skin tissue-specific signature. To 

investigate this question, we developed an approach to identify “shared differences” between 

epigenomes. This approach prioritized specificity and minimized the influence of variation 

between biological replicates. Thus, shared epigenomic signatures should be robust to sources of 

variation and attributable to the common biological factor of the grouped samples, for example, 

the shared tissue environment of skin cell types. Utilizing this approach on the skin cell type 

epigenomes revealed few shared regions compared to epigenomes of other cell types, suggesting 

that skin tissue environment had little uniform impact on the epigenomes of its constituent cell 

types.  

Since tissue environment had minimal effect on skin cell type epigenomes, we hypothesized that 

developmental origin may influence differentiated cell epigenomes and confer features specific 

to their shared origin. We compared the DNA methylomes of surface ectoderm-derived cells, 

epidermal keratinocytes and breast luminal and myoepithelial cells, to methylomes of non-SE-

derived cells to identify “shared differences.” We found that SE-derived cell types share many 

DMRs when compared to non-SE derived cells and that these DMRs possess regulatory 

potential. This suggests that the common developmental origin of these surface ectoderm-derived 

cells impacts their epigenomes, and that this influence is greater than that of tissue environment 

on keratinocyte methylomes.     



 
 

30 

To gain better insight into the SE-DMR signature, which we defined indirectly through adult cell 

epigenomes, we identified target genes putatively regulated by SE-DMRs and then connected 

these genes based on known interactions (Methods). The resulting SE network predicted both 

upstream regulators and co-regulated suites of genes. Transcription factors predicted to bind to 

SE-DMRs (Figure 2.13c) were encoded by genes with the highest number of connections in the 

network (Figure 2.15). The presence of SE-DMRs containing TFAP2 TFBSs near the 

transcription start site of hemidesmosome genes suggests their co-regulation by TFAP2. 

Additionally, TFAP2 TFBS-containing SE-DMRs are found near the TSSs of the cell cycle 

regulators IRF6 and SFN. Given the genetic interaction of these two genes in epidermal 

development [101], TFAP2 may coordinately co-regulate their expression in SE-derived cells. 

These examples of predicted regulatory relationships illustrate the significant value afforded by 

incorporating epigenetically-defined regulatory elements into gene networks. 

A more direct approach to define epigenomic features that arise from a developmental origin 

would involve isolation and profiling of actual human embryonic tissues and their derivatives at 

various time points along a single developmental lineage and comparing their epigenomes and 

transcriptomes. As this type of experiment is not possible for ethical reasons, we selected cell 

types arising from a major germ layer derivative, surface ectoderm, to infer for the first time a 

DNA methylation signature derived from this inaccessible human embryonic cell population. 

Our approach builds upon previous studies that utilized induced differentiation of ESCs to 

elucidate DNA methylation patterns of the three main embryonic germ layers [54,55]. Our SE-

specific signature findings substantially extend the general concept that epigenomes of 

differentiated cell types cluster by their embryonic origin [59,108]. We demonstrate that a gene 

network regulating shared biological processes and functional components can be decoded from 
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DNA methylation profiles of cell types specifically chosen for their common embryonic origin. 

Thus, analysis of differentiated cell types with shared developmental origin may be widely 

applicable for inference of regulatory epigenomic states derived from other inaccessible 

precursor human cell populations.  

2.7 Methods 
2.7.1 Cell Type and Tissue Isolation  
Fibroblasts, keratinocytes, and melanocytes were isolated from neonatal foreskins obtained from 

circumcision using standard techniques [111]. Briefly, epidermis was mechanically separated 

from dermis after overnight incubation at 4 degrees Celsius with dispase solution. The epidermal 

sheet was incubated with trypsin for 15 minutes at 37 degrees Celsius. The disassociated cells 

were then incubated in selective growth media. Keratinocytes were grown in keratinocyte growth 

media (Medium 154CF supplemented with 0.07 mM CaCl2 and Human Keratinocyte Growth 

Supplement (Life Technologies)). Melanocytes were grown in melanocyte growth media 

((Medium 254 with Human Melanocyte Growth Supplement (Life Technologies)). Fibroblasts 

were extracted from the dermis by mincing and digesting with collagenase. The cell suspension 

was plated in Medium 106 supplemented with Low Serum Growth Supplement (Life 

Technologies). All skin cell types were harvested after two passages by snap freezing in liquid 

Nitrogen.  

A pure population of keratinocytes was verified by examination of cell morphology and 

immunofluoresence staining for keratinocyte markers (cytokeratin (acidic), clone AE1, Life 

Technologies,18-0153) and lack of staining for melanocyte markers (HMB45+Mart-

1+Tyrosinase cocktail, Biocare Medical, CM165 or Mel-5, Covance, Sig-38150). A pure 

population of melanocytes was verified by examination of cell morphology and 
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immunofluoresence staining for melanocyte markers and lack of staining for keratinocyte 

markers. A pure population of fibroblasts was verified by examination of cell morphology and 

positive staining for vimentin (Sigma, V6630) and lack of staining for keratinocyte and 

melanocyte markers.  

Breast, blood, and fetal brain samples were isolated as previously described [78]. Briefly, for 

blood cell types, peripheral blood mononuclear cells (PBMCs) were isolated from buffy coat 

using Histopaque 1077 separation medium (Sigma-Aldrich) according to the manufacturer’s 

protocol. CD4 naïve, CD4 memory, and CD8 naïve cells were isolated from PBMCs using the 

following isolation kits: EasySep Human Naive CD4+ T Cell Enrichment Kit, EasySep Human 

Memory CD4+ T Cell Enrichment Kit, and Custom Human Naıve CD8+ T Cell Enrichment Kit 

(Stemcell Technologies). Pure populations of PBMCs and T cell subsets were confirmed by 

staining with the following antibodies (anti-CD3 TRI-COLOR (Invitrogen), anti-CD4 PE (BD 

Biosciences), anti-CD8 FITC (BD Biosciences), anti-CD4 TRI-COLOR (Invitrogen), anti-

CD45RO PE (Invitrogen), anti-CD45RA FITC (BD Biosciences), and anti-CD8 TRI-COLOR 

(Invitrogen)) and FACS analysis. 

Briefly, for breast cell types, breast tissue from disease-free premenopausal women was obtained 

from reduction mammoplasty samples under UCSF CHR protocol #10-01563. Tissue was 

mechanically and enzymatically dissociated with collagenase and hyaluronidase. Cell 

suspensions were serially filtered through 150-um and 40-um nylon mesh to obtain epithelial cell 

enriched clusters (breast cell organoids). To obtain single cell suspensions, organoids were 

further digested with trypsin and dispase and filtered with a 40-um cell strainer followed by 

incubation for 60-90 minutes in MEGM medium (Lonza). The resulting cells were stained and 

sorted by FACS to isolated purified breast myoepithelial and luminal epithelial cells.  For 
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positive selection, a PE-Cy7 labelled anti-CD10 antibody (for myoepithelial cells, BD 

Biosciences, 341092) and a FITC labelled anti-CD227/MUC1 antibody (for luminal epithelial 

cells, BD Biosciences, 559774) were used. For negative selection of hematopoietic, endothelial, 

and leukocyte cells, cells were stained with the following antibodies respectively: anti-CD2, -

CD3, CD16, CD64 (BD Biosciences, 555325, 555338, 555405, and 555526); CD31 (Invitrogen, 

MHCD3115); and CD45, CD140b (BioLegend, 304003 and 323604). 

Briefly, for fetal brain samples, brain tissue was obtained post-mortem from fetuses whose death 

was attributed to environmental/placental etiology, under Partner’s Healthcare/Brigham and 

Women’s. 

2.7.2 Genomic DNA Isolation  
Cells were lysed in extraction buffer (50 mM Tris (pH 8.0), 1 mM EDTA (pH 8.0), 0.5 % SDS, 

and 1 mg/ml proteinase K) at 55 degrees Celsius for 12-16 hours. The lysed cells were incubated 

with 40 ug/ml of RNase A for 1 hour at 37 degrees Celsius to remove RNA. DNA was purified 

by two rounds of phenol/chloroform/isoamyl alcohol extractions and then two rounds of 

chloroform extractions. DNA was precipitated with 1/10 volume of 3 M sodium acetate (pH 5.2) 

and 2.5 volumes of ethanol, washed in 70% ethanol, and resuspended in TE.  

2.7.3 Methylation-sensitive Restriction Enzyme (MRE)-seq  
MRE-seq was performed as in Maunakea, et al. [23] with modifications as detailed below. Five 

parallel restriction enzyme digestions ((HpaII, Bsh1236I, SsiI(AciI) and Hin6I (Fermentas) and 

HpyCH4IV (NEB)) were performed, each using 1 ug of DNA per digest for each of the skin cell 

type samples. Five units of enzyme were initially incubated with DNA for 3 hours and then an 

additional five units of enzyme was added to the digestion for a total of 6 hours of digestion 

time. DNA was purified by phenol/chloroform/isoamyl alcohol extraction, followed by 
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chloroform extraction using phase lock gels. Digested DNA from the different reactions was 

combined and precipitated with 1/10 volume of 3 M sodium acetate (pH 5.2) and 2.5 volumes of 

ethanol. The purified DNA was size selected and purified (50-300 bp) by gel electrophoresis and 

Qiagen MinElute extraction. Library construction was performed as per the Illumina Genomic 

DNA Sample Prep Kit protocol with the following modifications. During the end repair reaction, 

T4 DNA polymerase and T4 PNK were excluded and 1 uL of 1:5 diluted Klenow DNA 

polymerase was utilized. For the adapter ligation reaction, 1 uL of 1:10 diluted PE adapter oligo 

mix was utilized. 10 uL from the 30 uL of purified adapter ligated DNA was utilized for the PCR 

enrichment reaction with PCR PE Primers 1.0 and 2.0. PCR products were size selected and 

purified (170-420 bp) by gel electrophoresis and Qiagen Qiaquick extraction. DNA libraries 

were checked for quality by Nanodrop (Thermo Scientific) and Agilent DNA Bioanalyzer 

(Agilent). 

Reads were aligned to hg19 using BWA, and pre-processed using methylQA (an unpublished C 

program; available at http://methylqa.sourceforge.net/). MRE reads were normalized to account 

for differing enzyme efficiencies, and methylation values were determined by counting reads 

with CpGs at fragment ends [23]. To enable comparison between MRE-seq data from blood, 

brain, and breast samples which utilized three restriction enzymes and skin cell types which 

utilized five restriction enzymes, skin cell type MRE reads that resulted from the use of 

additional restriction enzymes (Bsh1236I and HpyCH4IV) were removed. Detailed library 

construction protocols for MRE-seq, MeDIP-seq, ChIP-seq, RNA-seq, and miRNA-seq are 

publicly available at the NIH Roadmap Epigenomics project website 

http://www.roadmapepigenomics.org/protocols/type/experimental/. 
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2.7.4 Methylated DNA Immunoprecipitation (MeDIP)-seq  
MeDIP-seq was performed as in Maunakea et al. [23]. 5 ug of genomic DNA was sonicated to a 

fragment size of ~100-400 bp using a Bioruptor sonicator (Diagenode). End-repair, addition of 3' 

A bases, and PE adapter ligation with 2 ug of sonicated DNA was performed as per the Illumina 

Genomic DNA Sample Prep Kit protocol. Adapter-ligated DNA fragments were size selected to 

166-366 bp and purified by gel electrophoresis. DNA was heat denatured and then 

immunoprecipitated with 5-Methylcytidine antibody (Eurogentec) (1 ug of antibody per 1 ug of 

DNA) in 500 uL of immunoprecipitation buffer (10 uM sodium phosphate, pH 7.0, 140 mM 

sodium chloride, and 0.05% Triton X-100) overnight at 4 degrees Celsius. Antibody/DNA 

complexes were isolated by addition of 1 uL of rabbit anti-mouse IgG secondary antibody (2.4 

mg/ml, Jackson Immunoresearch) and 100 uL protein A/G agarose beads (Pierce Biotechnology) 

for 2 hours at 4 degrees C. Beads were washed six times with immunoprecipitation buffer and 

then DNA was eluted in TE buffer with 0.25% SDS and 0.25 mg/ml of proteinase K for 2 hours 

at 50 degrees Celsius. DNA was then purified with the Qiagen Qiaquick kit and eluted in 30 uL 

EB buffer. 10 ul of DNA was utilized for a PCR enrichment reaction with PCR PE Primers 1.0 

and 2.0. PCR products were size selected (220-420 bp) and purified by gel electrophoresis. 

Methylated DNA enrichment was confirmed by PCR on known methylated (SNRPN and 

MAGEA1 promoters) and unmethylated (a CpG-less sequence on chromosome 15 and GADPH 

promoter) sequences. DNA libraries were checked for quality by Nanodrop (Thermo Scientific) 

and Agilent DNA Bioanalyzer (Agilent). Reads were aligned to hg19 using BWA, and pre-

processed using methlyQA. 

2.7.5 methylCRF  
Genome-wide DNA methylation value predictions were made using a conditional random field 

model that integrates MRE and MeDIP sequencing data for a given sample. The program was 
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run using default parameters [112], and can be downloaded from http://methylcrf.wustl.edu/. In 

Figure 2.18, methylCRF predicted values were averaged for each DMR.  

2.7.6 Differential DNA Methylation Region Analysis  
The M&M statistical model [78] which integrates MeDIP-seq and MRE-seq data to identify 

differentially methylated regions between two samples was implemented with a window size of 

500 bp and a q-value (FDR corrected p-value) cutoff = 1e-5. Scripts utilized for pair-wise 

comparison are shown in Appendix 1: Note 2. Adjacent 500 bp DMRs were merged into a 

single DMR for further analysis unless otherwise noted. The specific pairwise comparisons 

performed to generate each DMR set are summarized in Supplementary Fig. 4. Additional details 

and discussion of the DMR calling strategy and false discovery rate for M&M analyses are in 

Appendix 1: Notes 1 and 3. Comprehensive lists of identified skin cell type specific DMRs are 

available online (http://epigenome.wustl.edu/SE). 

2.7.7 Whole Genome Bisulfite Sequencing  
1-5 ug of Qubit quantified genomic DNA was utilized for library construction. Unmethylated 

Lambda DNA (Promega) was added to genomic DNA for a 0.1% final concentration. DNA was 

fragmented to ~300 bp using Covaris E series shearing. End-repair, addition of 3' A bases, and 

adapter ligation was performed as per the Illumina PE Genomic DNA Sample Prep Kit protocol 

except methylated cytosine PE adapters were used. After each of the previous steps, DNA was 

purified using Ampure XP beads (Agencourt). Bisulfite conversion of purified adapter ligated 

DNA was performed using the Epitect bisulfite kit (Qiagen) according to manufacturer's 

instructions. The DNA was amplified by PCR enrichment using Kapa HiFi Hot Start 

Uracil+Ready (Kapa Biosystems) for 5 cycles with PCR PE primers 1.0 and 2.0. PCR products 

were purified with the Qiagen Minelute kit and size selected with PAGE gel purification. DNA 
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libraries were checked for quantity by Qubit (Life Technologies) and quality by Agilent DNA 

Bioanalyzer (Agilent). Libraries were sequenced using paired-end 100 nt sequencing chemistry 

on an Illumina HiSeq2000 following manufacturer's protocols (Illumina). 

Raw WGBS sequences were examined for quality, sample swap and reagent contamination using 

custom in house scripts. Sequence reads were directionally aligned to the human genome 

(GRCh37-lite) using Bismark [113] v. 0.7.6) running Bowtie [114] (v. 0.12.5) allowing up to two 

mismatches in the 50 bp seed region (using -n 2 -l 50 parameters). Methylation status for each 

aligned CpG was calculated using Bismark Methylation Extractor (v. 0.7.10) at a minimum of 5x 

coverage per site in a strand-specific manner (run-time parameters: -p, no_overlap, --

comprehensive, --bedGraph, --counts). Overlapping methylation calls from read_1 and read_2 

were scored once.  

All WGBS data was processed using custom scripts to obtain CpG methylation values. CpG 

methylation values were filtered such that only CpGs with 10x coverage were subsequently 

averaged for each DMR in each sample. Lowly methylated regions were called as DMRs for 

which the average CpG methylation values were ≤ 0.3. Averaged values were plotted as in 

Figure 2.18a using the R package pheatmaps. 

2.7.8 ChIP-seq  
Standard operating procedures for ChIP-seq library construction are available at 

http://www.roadmapepigenomics.org/protocols/type/experimental/. ChIP-seq library 

construction involves the following protocols in order: 1) Crosslinking of frozen cell pellet, 2) 

DNA sonication using Sonic Dismembrator 550, and 3) SLX-PET protocol for Illumina sample 

prep. Antibodies used in this study were subjected to rigorous quality assessment to meet 

Reference Epigenome Mapping Quality Standards 
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(http://www.roadmapepigenomics.org/protocols) including western blot of whole cell extracts, 

384 peptide dot blot (Active Motif MODified Histone Peptide Array) and ChIP-seq using control 

cell pellets (HL60). Antibody vendor, catalog number and lot are provided along with ChIP-seq 

library construction details as part of the metadata associated with all ChIP-seq datasets and 

available through GEO and the NCBI epigenomics portals (e.g. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSM669589). Final library distributions 

were calculated using an Agilent Bioanalyzer and quantified by fluorometric quantification 

(Qubit, Life Technologies). Libraries were sequenced using single-end 76 nt sequencing 

chemistry on an Illumina GAiix or HiSeq2000 following manufacturer's protocols (Illumina) as 

either single or multiplexed libraries using custom index adapters added during library 

construction.  

Sequencing reads were aligned to NCBI GRCh37-lite reference using BWA 0.6.2-r126 with 

default parameters. MethylQA (an unpublished C program; available at 

http://methylqa.sourceforge.net/) was used to directionally extend aligned reads to the average 

insert size of DNA fragments (150 bp) and to generate a bigWig file for downstream 

visualization. Reads with BWA mapping quality scores < 10 were discarded and reads that 

aligned to the same genomic coordinate were counted only once. 

2.7.9 Differential ChIP-seq Enrichment Analysis 
Mapped read density was generated from aligned sequencing reads using methlyQA. Read 

density overlapping DMRs and their 5 kb upstream/downstream regions were extracted at 50 bp 

resolution as RPKM values. 

The default parameters were used to apply MACS2 [115] to histone modification ChIP-seq data 

for the identification of peaks at a 1% false discovery rate. A DMR was defined as enriched for 
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histone signal when at least 60% of the DMR overlapped with histone peaks. Skin cell type-

specific histone peaks were identified using the following two criteria: 1) peaks were identified 

in at least two of three biological replicates of a skin cell type and 2) peaks were not identified in 

any of the other two skin cell types or other tissue types (brain, breast, and blood). Skin tissue-

specific histone peaks were identified using the following three criteria: 1) peaks were identified 

in at least two of three biological replicates of a skin cell type, 2) peaks were identified in all 

three skin cell types, and 3) peaks were not identified in any other tissue type (brain, breast, or 

blood). 

2.7.10  Genomic Features  
CpG islands, gene bodies, and RefSeq gene annotations (including 5’ and 3’ UTRs, exons, and 

introns) were downloaded from the UCSC Genome Browser. Promoters were defined as the 3.5 

kb surrounding the TSS (-3 kb/+500 bp) of all RefSeq genes. Intergenic regions were defined as 

all regions outside RefSeq gene bodies and promoters. 

2.7.11  Gene Ontology Enrichment Analysis 
Gene Ontology (GO) analyses for biological processes were performed using the GREAT 

package [85]. Gene regulatory domains were defined by default as the regions spanning 5 kb 

upstream and 1 kb downstream of the TSS (regardless of other nearby genes). Gene regulatory 

domains were extended in both directions to the nearest gene's basal domain but no more than a 

maximum extension in one direction. Only categories that were below a false discovery rate of 

0.05 were reported. 
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2.7.12  Transcription Factor Binding Site Enrichment 
Genome sequences were obtained for hypomethylated SE-DMRs from the hg19 human genome 

assembly. Motif finding analysis was performed using the FIMO tool from the MEME suite and 

default vertebrate databases [116,117],  with a q-value (FDR-corrected p-value) cutoff of 0.04. 

Motif enrichment was calculated as the number of motif instances found in the test data 

compared to the number found genome wide (for hg19), normalized for length, as in equation 

2.2. 

! !"#$% =
!!"#$
!"####
!!!!"

!"########
 (Equation 2.2) 

where nDMRs = number of a given motif found in the hypomethylated SE-DMRs and Nhg19 = 

number of a given motif found in hg19. 820000 = number of base pairs in hypomethylated SE-

DMRs; 3200000000 = number of base pairs in the human genome. 

2.7.13  Regulatory Network Construction 
Regulatory networks were constructed in the following steps. First, genes (nodes) were identified 

as putative targets of regulatory (hypomethylated) SE-DMRs either by their association with 

DMRs that fell in the promoter region of RefSeq genes (-3 kb/+500 bp TSS) or by association as 

distal intergenic regulatory elements. Intergenic DMRs were associated with genes whose TSS 

fell in a window of +/- 35 kb (This window size is chosen based on literature assessing the 

average distance of enhancer-promoter associations [109]). The collection of these promoter- and 

distal enhancer-associated gene lists were then filtered for a gene expression level ≥ 1 RPKM in 

any of the surface ectoderm-derived cell types.  
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To obtain interactions between genes in this list, the gene list was used as nodes in the UCSC 

Interaction Browser [118]. The Interaction Browser queries known databases for connections 

(links) between a given set of genes (nodes). Four pathway collections (GEA_CLR TF-targets 

network; UCSC_Superpathway; UCSC_Superpathway_collapsed; CHEA transcription factors) 

were used to query for interactions between the given genes. For the SE-DMR network, KLF4 

was added to the gene list because its motif was enriched in hypomethylated SE-DMRs (Figure 

2c) and because it is known to be important for keratinocyte differentiation [119]. Klf4 does have 

two hypomethylated SE-DMRs in its second exon, suggesting it is regulated, but the exonic 

location of the Klf4 DMRs excluded it from the stringent method for identifying putatively 

regulated genes, above. Similarly, TFAP2C was added to the gene list because it is known to be 

important in keratinocyte differentiation [87] and its motif (shared with TFAP2A) was enriched 

in our motif analysis (Figure 2.4c). For the network overview presented in Figure 3a, the 

transcription factor p63 was added at the top of the network as it integrates both network 

branches, is a known regulator of the ZNF750–KLF4 transcriptional cascade [120], and interacts 

genetically with TFAP2a/c [121,122]; however, p63 and its edges are not included in the data  or 

network structural analysis (Table 2.7, Figure 2.15). 

We applied the same method for generating links between a set of 374 random genes to obtain an 

expected distribution of links given the number of genes in the test network. This resulted in a 

distribution as described in Table 2.7 with a mean of 958 and variance of 136.5. By a t-test, the 

number of links in the SE network is statistically significant (P-value=1.245e-4). 

To assess the scale-free properties of the SE network, we calculated the number of edges 

assigned to each node and plotted this distribution in Figure 2.15. 
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Figure 2.1. Benchmarking the performance of M&M. (A) The distribution of P-values 

generated by M&M when comparing two H1 ESC biological replicates (blue area) and when 

comparing H1 ESC and fetal neural stem cells (NSC) (red area). At P-value cutoff of less than 
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1x10-10 (green line), M&M predicted 70 DMRs between the two H1 samples, and 16,398 DMRs 

between H1 ESC and fetal NSC. (B) The distribution of P-values generated by MEDIPS for the 

11.162 DMRs between H1 ESC and fetal NSC. (C) Whole-genome bisulfite sequencing 

(WGBS) data were used to validate DMRs predicted by M&M between H1 ESC and fetal NSC. 

DMRs predicted by M&M were ranked according to their P-values, then average DNA 

methylation levels for each of the top 1000 significantly hypermethylated DMRs (red) and the 

top 1000 significantly hypomethylated DMRs (blue) in fetal NSC were computed using WGBS 

data from the same two samples. Distribution of the DNA methylation level differences was 

plotted for hypermethylated DMRs and hypomethylated DMRs separately. The gray area 

represents the distribution of DNA methylation differences in the whole-genome background, 

calculated at 500bp window resolution using the same WGBS data sets. (D) Same as (C), except 

that DMRs were predicted by MEDIPS. (E) DNA methylation differences between H1 ESC and 

fetal NSC were calculated using WGBS data for individual CpGs within the top 500, 1000, 2000, 

5000, and 10,000 hypermethylated and hypomethylated DMRs (predicted by M&M, at varying 

cutoffs). These values were plotted as a boxplot. (F) Same as (E), except that DMRs were 

predicted by MEDIPS. (G) Concordance between M&M (red) or MEDIPS (blue) predicted 

DMRs and differential methylation for these regions calculated from WGBS data. DMRs 

predicted by M&M and MEDIPS were ranked based on their P-values. At different cutoffs, 

DMRs were determined to be concordant with WGBS data (if differences in WGBS data were 

greater than 0.1 and were in the correct direction). (H) Reproducibility of DMR predictions in 

M&M (red) and MEDIPs (blue). DMR discovery was preformed between two cell types from 

the same individual and repeated in a second individual. DMRs identified in each individual 
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were ranked according to their P-values and intersected between the two individuals. The 

percentages of overlapping DMRs at different cutoffs were plotted. 
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Figure 2.2. M&M analyses of DNA methylation differences across multiple tissue types, cell 

types, and individuals. (A) P-value distributions of M&M predictions between tissue types 

(green lines), cell types (blue lines), and individuals (red lines). (B) Biclustering analysis of 

tissue-specific DMRs (left panel) based on RPKM values of MeDIP-seq; (right panel) based on 

RPKM values of MRE-seq.   
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Figure 2.3. Developmental origins of samples. Developmental origins of skin and breast cell 

types utilized in this study. Embryonic surface ectoderm from the vertebrate neurula stage 

embryo (blue) gives rise to keratinocytes in the skin and cells of the mammary gland lumen. 

Embryonic neural crest cells (green) will produce melanocytes that intercalate with epidermal 

keratinocytes, and skin fibroblasts are derived from embryonic mesoderm (red). 

  

Surface ectoderm 

Mesoderm 

Neural crest 

Fibroblasts 

Melanocytes 
Luminal Epithelia 

Myoepithelia 

Mammary gland lumen Mammalian skin 

Keratinocytes 

Vertebrate neurula embryo 



 
 

47 

 

Figure 2.4. Identification and characterization of skin cell type-specific DMRs. (a) 

Hypomethylation and hypermethylation percentages for each set of skin cell type-specific DMRs 
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defined by comparison against the other two skin cell types. The total number for each set of cell 

type-specific DMRs is listed above the pie chart. DMRs are 500bp windows. (b) Histone 

modification patterns at skin cell type-specific hypomethylated DMRs. (c) Skin cell type RNA 

expression levels for genes with hypomethylated cell type-specific DMRs in their promoter 

regions. Each panel depicts expression values for a set of cell type-specific DMR-associated 

genes. Plotted values are RNA-seq RPKM values over exons, averaged (mean) over three 

biological replicates. For each boxplot, the middle line indicates the median value, top and 

bottom box edges are the third and first quartile boundaries respectively. The upper whisker is 

the highest data value within 1.5 times the interquartile range; the lower whisker indicates the 

lowest value within 1.5 times the interquartile range. The interquartile range is the distance 

between the first and third quartiles. Points indicate data beyond whiskers. Logarithmic scale 

transformations were applied before boxplot statistics were computed. RPKM distributions for a 

given set of cell type-specific DMR-associated genes in the specified cell type compared to other 

cell types were statistically significant (Wilcoxon ranked test, paired, * indicates P-value < 

0.003, Keratinocyte-DMRs n = 602, Fibroblast-DMRs n = 108, Melanocyte-DMRs n = 74; K = 

keratinocytes, F = fibroblasts, M = melanocytes; Supplementary Tables 3-5).  (d) Heat map 

depicting selected gene ontology terms enriched for keratinocyte, fibroblast, and melanocyte 

hypomethylated cell type-specific DMRs. K = keratinocytes, F = fibroblasts, M = melanocytes. 

Color intensity represents the negative log10 transformed p-value of enrichment of a given cell 

type-specific DMR set for association with the listed gene ontology term. Full datasets are in 

Appendix 2: Data 3. 
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Figure 2.5. Skin cell type-specific DMR calling strategy. (a) Illustration of M&M skin cell 

type pairwise comparisons. (b) Illustration of intersection strategy for calling skin cell type-

specific DMRs. Each gray cell represents one comparison by M&M. DMRs called in the same 

direction in each of the indicated comparisons (cells within red, green, or blue outlines) were 

collected as a given cell type-specific DMR set (fibroblast, melanocyte, or keratinocyte, 

respectively). 
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Figure 2.6.  Number of DMRs across M&M q-values. Red line = intra-Fibroblast DMRs 

(Fibroblast 02 vs Fibroblast 03); blue line = inter-cell type DMRs (Fibroblast 03 vs Keratinocyte 

03). 
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Figure 2.7. Illustration of intersection strategy for identifying pseudo-cell type-specific 

DMRs. Each gray cell represents one comparison by M&M. DMRs called in the same direction 

in each of the indicated comparisons (cells within red, blue, or green outlines) were collected as a 

given pseudo-cell type-specific DMR set (A, B, or C, respectively). 
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Figure 2.8: Matrices depicting sample comparisons used to identify differentially DNA 

methylated regions. (a) Matrix depicting pairwise methylome comparisons used to determine 

skin cell type-specific DMR sets. Each gray cell represents one comparison by M&M (Methods). 

DMRs called in the same direction in each of the indicated comparisons (cells within red, green, 

or blue outlines) were collected as a given cell type-specific DMR set (fibroblast, melanocyte, or 

keratinocyte, respectively). (b) Matrix depicting pairwise methylome comparisons used to 
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determine skin tissue-specific DMRs. Each cell represents one M&M pairwise comparison. 

DMRs called in the same direction in all depicted pairwise comparisons (i.e. for each of the 3 

skin cell types compared to non-skin cell types) were called “skin tissue-specific DMRs” (of 

which there were only 8; Figure 2.3a). (c) Matrix depicting pairwise methylome comparisons 

used to determine surface ectoderm-specific DMRs. Each cell represents one M&M pairwise 

comparison. DMRs called in the same direction in all depicted pairwise comparisons (i.e. for 

each of the 3 surface ectoderm cell types) were collected as the surface ectoderm-DMR set. 
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Figure 2.9: Genomic annotation of skin cell type-specific DMRs. Hypomethylated and 

hypermethylated DMRs plotted independently. DMRs are 500 bp windows. Cell types indicated 

by bar color. Genomic annotations described in Methods. 
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Figure 2.10. Skin-tissue level epigenomic features. (a) Venn diagram showing number of 

DMRs for each of the skin cell types compared to non-skin samples (brain, breast, and blood). 8 

DMRs (overlap region) share the same methylation status in the three skin cell types and have 
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the opposite methylation status in all non-skin samples. (b) WashU Epigenome Browser 

screenshot of the 8 DMRs where the three skin cell types share the same methylation status 

and all non-skin cell types have the opposite methylation status. Each column represents a 500bp 

window +/- 2.5 kb except for two columns which represent multiple contiguous 500bp windows 

+/- 2.5 kb. Each row is a MeDIP-seq track for the indicated cell type. Three replicates for each 

skin cell type and two replicates for each non-skin sample are depicted. (c) Clustering 

dendrogram based on average DNA methylation levels (predicted by methylCRF [112]) at 

39,861 DMRs found between skin and brain tissue, breast, and blood cell types. DMRs are 

500bp windows.  (d) Venn diagram showing number of H3K4me1 peaks for each skin cell type 

that are absent in all non-skin samples (brain, breast, and blood), which also have overlapping 

H3K27ac signal. The intersection represents the 100 overlapping regions where H3K4me1 and 

H3K27ac peaks are present in all three skin cell types and H3K4me1 peaks are absent in all non-

skin samples. 
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Figure 2.11. Shared histone modification patterns for skin cell types. (a) Venn diagram 

showing number of H3k4me3 peaks present in each skin cell type that are also absent in all non-

skin samples (brain, breast, and blood). There are 57 overlap regions where H3K4me3 peaks are 

present in all three skin cell types and absent in all non-skin samples. A total of 55,859 

H3K4me3 peaks were detected in all samples. (b) WashU Epigenome Browser screenshot of the 

57 regions where H3K4me3 is present in all three skin cell types and absent in all non-skin cell 

types. Each row is a ChIP-seq track for the indicated cell type. Three replicates for each skin cell 
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type and two replicates for each non-skin sample are depicted. Each column represents one of the 

57 different genomic regions +/- 3 kb. Bottom panel is a close-up of the red-boxed region in top 

panel. (c) Venn diagram showing number of H3k4me1 peaks for each skin cell type that are 

absent in all non-skin samples (brain, breast, and blood). There are 997 overlap regions where 

H3K4me1 peaks are present in all three skin cell types and absent in all non-skin samples. A 

total of 259,297 H3K4me1 peaks were detected in all samples. 
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Figure 2.12. Heat maps of ChIP-seq signal around skin cell type-specific and tissue-specific 

histone modification peaks. (a) ChIP-seq signal for fibroblast-specific H3K4me3 peaks. Each 

heat map row represents a 10kb region centered on a fibroblast-specific H3K4me3 peak divided 

into 200 windows, read density (RPKM) was calculated for each window. Each heat map column 

represents ChIP-seq signal for the labelled cell type. Breast = breast myoepithelial cell, Brain = 

fetal brain tissue, and PBMC = peripheral blood mononuclear cells. 

(b) Similar to (a), but for fibroblast-specific H3K4me1 peaks. (c-d) ChIP-seq signal for 

keratinocyte-specific H3K4me3 peaks (c) and H3K4me1 peaks (d). (e-d) ChIP-seq signal for 

melanocyte-specific H3K4me3 peaks (e) and H3K4me1 peaks (f). (g-h) ChIP-seq signal for skin 

tissue-specific H3K4me3 peaks (g) and H3K4me1 peaks (h). 
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Figure 2.13. Identification and characterization of surface ectoderm-DMRs. (a) Venn 

diagram showing surface ectoderm-specific DMRs, defined as the overlap of keratinocyte, breast 

myoepithelial, and luminal epithelial cell DMRs. (b) Enrichment of H3K4me1, H3K4me3, 

H3K27ac, and DNAse I-hypersensitivity at SE-DMRs. Each heat map column represents histone 

modification ChIP-seq or DNAse-seq signal at 500bp SE-DMRs +/- 5 kb. Each heat map row 

represents a single hypomethylated SE-DMR, ordered by decreasing H3K4me1 signal, then 

increasing H3K4me3 signal. (c) Bar plot of enrichment values for top ten enriched TFBS motifs 

determined by motif scanning of hypomethylated SE-DMRs using FIMO [116] (Methods). 

Enrichment based on hg19 genome background. (d) Selected gene ontology terms enriched for 

hypomethylated surface ectoderm-DMRs. P-value of enrichment calculated by GREAT [85]. 

Full list of enriched GO terms is in Appendix 2: Data 5. (e) Box plots showing RNA expression 

levels for genes with hypomethylated SE-DMRs in promoter regions. Skin cell type RNA-seq 

RPKM values over exons are averages (mean) of three biological replicates; luminal epithelial 

and myoepithelial values are a single biological replicate. The middle line indicates the median 

value, top and bottom box edges are the third and first quartile boundaries respectively. The 
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upper whisker is the highest data value within 1.5 times the interquartile range; the lower 

whisker indicates the lowest value within 1.5 times the interquartile range. The interquartile 

range is the distance between the first and third quartiles. Points indicate data beyond whiskers. 

Logarithmic scale transformation was applied before boxplot statistics were computed. RPKM 

distributions for SE cell type expression levels vs. non-SE cell type expression levels are 

statistically significant (Wilcoxon-ranked test, paired, * indicates P-value < 0.02; n = 150 genes; 

Lum = breast luminal epithelial cells, Myo = breast myoepithelial cells, K= keratinocytes, F = 

fibroblasts, M = melanocytes; Table 2.6). 
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Figure 2.14. Additional SE-DMR characterization. (a) Genomic annotation of SE-DMRs. 

Hypomethylated and hypermethylated DMRs (1392 total) plotted independently. Genomic 

annotations described in Methods. (b) Breast myoepithelial cell histone modification ChIP-seq 

signal at SE-DMRs. Each row represents a 500 bp DMR +/- 5kb (as in Figure 4b). DMRs are 

sorted in descending order of H3K4me1 signal, then increasing H3K4me3 signal. Values plotted 

are RPKM normalized to input. 
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Figure 2.15. Distribution of edges per node in the SE network. Each node is plotted on the x-

axis in order of its degree (total number of edges), the number of edges is the y-axis. The 

distribution fits a power law (black line) with R2=0.88928. Gray and red boxes are individual 

nodes (genes). Genes of interest are highlighted in red and labeled. Genes with the highest 

degree are transcription factors at the top of the SE network (as in Figure 2.16a). 
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Figure 2.16. Surface ectoderm-DMRs are regulatory elements in a gene network. (a) 

Summary of the TF-target gene regulatory network derived from SE-DMR analyses. The 

categories at the bottom of the panel represent enriched biological processes or pathways for 

genes associated with TFAP2 or KLF4 motifs. TFAP2 associated TFs/pathways highlighted in 

blue; KLF4 associated pathways in gray. (b) Functional enrichment for TFAP2 motif containing 

hypomethylated SE-DMRs. (c) Functional enrichment for KLF4 motif containing 

hypomethylated SE-DMRs. (d) RNA expression values for SE-DMR associated 

hemidesmosome/basement membrane genes for SE and non-SE cell types. Skin cell type values 
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are averages (mean) of three biological replicates. Error bars are standard error of the mean 

(s.e.m.). (e) WashU Epigenome Browser screenshot of hemidesmosome/basement membrane 

genes. MeDIP-seq tracks depicted in green, yellow, and blue; all track y-axes heights are 60 

RPKM. DNase-seq track is shown in light blue. Genes depicted as black lines. SE-DMRs 

depicted as red boxes and TFAP2 motifs as maroon lines. 
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Figure 2.17. RNA expression levels and browser screenshots of selected SE-DMR loci. (a) 

Expression values for IRF6 in each cell type as listed on the left. X-axis is expression in RPKM 

(log10 scale) for each cell type. Skin cell type values are averages (mean) of three biological 

replicates (error bars are s.e.m.); luminal epithelial and myoepithelial values are a single 

biological replicate.  (b) Browser screenshot of IRF6 locus and surrounding genomic region. 

MeDIP-seq tracks are shown for the indicated cell types; all track y-axes heights are 60 RPKM. 

Red box = hypomethylated SE-DMR near the IRF6 promoter. (c) Expression for Stratifin (SFN) 

as in (a). (d) Browser screenshot of SFN locus. Tracks as in (b). Red box = hypomethylated SE-

DMR at SFN promoter. (e) Expression values for mir-200c and mir-141 in each cell type as 

listed to the left. X-axis is RPKM (log scale). Keratinocyte value is the average (mean) of three 

biological replicates; fibroblast value is the mean of two biological replicates, (error bars are 
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s.e.m.); melanocyte, luminal epithelial, and myoepithelial values are a single biological replicate. 

(f) Browser screenshot of mir-200c/mir-141 locus and surrounding genomic region. Tracks as in 

(b). Red boxes = hypomethylated SE-DMRs including and adjacent to both miRNA loci. 
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Figure 2.18. DNA methylation dynamics of SE-DMRs across samples from different 

developmental stages. (a) Heatmap and clustering dendrogram based on average CpG DNA 

methylation values of hypomethylated SE-DMRs for different developmental samples. Each row 

represents one of 1307 DMRs for which there are CpGs with ≥ 10x coverage in WGBS data. 

Methylation values for H1 ESCs, ectoderm differentiated ESCs (“EC”), and keratinocyte (“K”) 

are from WGBS; breast luminal (“Lu”) and myoepithelial (“My”) values are the average of 
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single CpG methylCRF predictions in each DMR. MethylCRF predictions are based on MeDIP-

seq and MRE-seq data for these samples (Methods). A value of “1” is fully methylated; “0” is 

completely unmethylated. (b) KLF4 gene body SE-DMR average CpG DNA methylation levels 

across developmental stages. (c) KLF4 RNA expression across developmental stages. Values are 

RPKM over coding exons; error bars for keratinocytes are s.e.m., n = 3. Sample abbreviations as 

in (a). (d) TFAP2A promoter SE-DMR average CpG DNA methylation levels across 

developmental stages. (e) TFAP2A RNA expression across developmental stages. Values are 

RPKM over coding exons; error bars for keratinocytes are s.e.m., n = 3. Sample abbreviations as 

in (a). (f) RNA expression levels in keratinocytes relative to H1 ESCs for selected genes with 

hypomethylated SE-DMRs in their promoters. These SE-DMRs, like the majority of 

hypomethylated SE-DMRs, were methylated in H1 and ectoderm-differentiated ESCs but lowly 

methylated in differentiated SE cell types. Increased expression relative to an earlier 

developmental sample suggests these DMRs are transcriptional regulatory regions for their 

associated genes. 
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Figure 2.19. Heatmap and clustering dendrogram based on methylCRF CpG methylation 

values for hypomethylated SE-DMRs. Each column represents one of 1307 DMRs for which 

there are CpGs with ≥ 10x coverage. Keratinocyte, brain germinal matrix (BGM), H1 ESC, and 

ectoderm-differentiated ESC values from WGBS; breast luminal and myoepithelial values are 

the average of single CpG methylCRF predictions in each DMR. MethylCRF predictions are 

based on MeDIP-seq and MRE-seq data for these samples (Methods). A value of “1” is fully 

methylated; “0” is completely unmethylated. 
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Table 2.1. False discovery rate for calling DMRs across M&M q-values. 

q-value 1.00E-02 1.00E-03 1.00E-05 1.00E-09 1.00E-13 1.00E-15 

FDR 0.071 0.055 0.044 0.033 0.030 0.029 
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Table 2.2. Numbers of CGI and non-CGI promoters in all skin cell type-specific DMRs. χ2 

test p-value < 2.2e-16. 

 

# CGI promoters # non-CGI promoters 

Cell type DMRs 267 974 

Genome-wide 16638 9691 
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Table 2.3. Wilcoxon test for keratinocyte-specific expression analysis. Wilcoxon ranked test, 

paired, P-values for RPKM distributions for Ref Seq genes with keratinocyte-specific 

hypomethylated DMRs at promoters. 

  
Fibroblast expression 

(average, n=3) 
Melanocyte expression 

(average, n=3) 

Keratinocyte expression 
(average, n=3) 

2.20E-16 2.39E-13 

 

Table 2.4. Wilcoxon test for fibroblast-specific expression analysis. Wilcoxon ranked test, 

paired, P-values for RPKM distributions for RefSeq genes with fibroblast-specific 

hypomethylated DMRs at promoters. 

  
Keratinocyte expression 

(average, n=3) 
Melanocyte expression 

(average, n=3) 

Fibroblast expression 
(average, n=3) 

2.59E-09 3.14E-03 

 

Table 2.5. Wilcoxon test for melanocyte-specific expression analysis. Wilcoxon ranked test, 

paired, P-values for RPKM distributions for RefSeq genes with melanocyte-specific 

hypomethylated DMRs at promoters. 

  
Keratinocyte expression 

(average, n=3) 
Fibroblast expression 

(average, n=3) 

Melanocyte expression 
(average, n=3) 

3.65E-09 3.53E-09 
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Table 2.6. Wilcoxon test for surface ectoderm-specific expression analysis. Wilcoxon ranked 

test, paired, P-values for RPKM distributions for RefSeq genes with surface ectoderm-specific 

hypomethylated DMRs at promoters. 

  
Melanocyte expression 

(average, n=3) 
Fibroblast expression 

(average, n=3) 

Keratinocyte expression 
(average, n=3) 

1.00E-05 1.31E-09 

Luminal epithelia expression 1.07E-04 1.18E-07 

Myoepithelia expression 1.51E-02 2.25E-04 
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Table 2.7. Statistics for network analysis. Control datasets and statistics for SE network. 

 Random dataset filenames one two three four five six seven eight nine ten 

Number of random genes 
into the Interaction 
Browser 

374 374 374 374 374 374 374 374 374 374 

Number not found in 
database 

13 16 13 11 8 7 8 11 15 15 

Number of edges 810 841 996 1068 995 890 1015 1193 1034 738 

           
Mean (# edges in random datasets) 958 

        
Standard Deviation (random 
datasets) 

136.54 
        

Number of edges in SE network 1458 
        

P-value (t-test, upper-tail) 1.25E-04 
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Table 2.8. TFBS motif-containing DMRs. Number of hypomethylated SE-DMRs (1353 total) 

which contain TFAP2 and/or KLF4 binding site motifs. 

  Number of SE-DMRs 

Contains TFAP2 motif only 283 

Contains KLF4 motif only 273 

Contains both TFAP2 and KLF4 motifs 283 

No TFAP2 or KLF4 motifs 514 
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2.8 Accession Codes 
Accession codes for keratinocyte skin01 MeDIP-seq, MRE-seq, mRNA-seq, miRNA-seq, 

H3K4me3 ChIP-seq, H3K4me1 ChIP-seq, and input ChIP-seq datasets have been deposited in 

the Gene Expression Omnibus (GEO) database under the accession codes GSM707022, 

GSM707018, GSM751278, GSM817253, GSM669589, GSM669591, and GSM817242 

respectively. Accession codes for keratinocyte skin02 MeDIP-seq, MRE-seq, mRNA-seq, 

miRNA-seq, H3K4me3 ChIP-seq, H3K4me1 ChIP-seq, and input ChIP-seq datasets have been 

deposited in the GEO database under the accession codes GSM941726, GSM941723, 

GSM941745, GSM1127113, GSM941735, GSM941736, and GSM941742 respectively. 

Accession codes for keratinocyte skin03 MeDIP-seq, MRE-seq, mRNA-seq, miRNA-seq, 

WGBS, H3K4me3 ChIP-seq, H3K4me1 ChIP-seq, H3K27ac ChIP-seq, and input ChIP-seq 

datasets have been deposited in the GEO database under the accession codes GSM958180, 

GSM958169, GSM958177, GSM1127111, GSM1127056/GSM1127058, GSM958155, 

GSM958161, GSM958156, and GSM958167 respectively. Accession codes for fibroblast skin01 

MeDIP-seq, MRE-seq, mRNA-seq, miRNA-seq, H3K4me3 ChIP-seq, H3K4me1 ChIP-seq, and 

input ChIP-seq datasets have been deposited in the GEO database under the accession codes 

GSM707021, GSM707017, GSM751277, GSM817252, GSM817235, GSM817234, and 

GSM817246 respectively. Accession codes for fibroblast skin02 MeDIP-seq, MRE-seq, mRNA-

seq, H3K4me3 ChIP-seq, H3K4me1 ChIP-seq, and input ChIP-seq datasets have been deposited 

in the GEO database under the accession codes GSM941725, GSM941722, GSM941744, 

GSM941718, GSM941717, and GSM817247 respectively. Accession codes for fibroblast skin03 

MeDIP-seq, MRE-seq, mRNA-seq, miRNA-seq, H3K4me3 ChIP-seq, H3K4me1 ChIP-seq, 

H3K27ac ChIP-seq, and input ChIP-seq datasets have been deposited in the GEO database under 
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the accession codes GSM958182, GSM958171, GSM958178, GSM1127116, GSM958158, 

GSM958164, GSM958163, and GSM958168 respectively. Accession codes for melanocyte 

skin01 MeDIP-seq, MRE-seq, mRNA-seq, miRNA-seq, H3K4me3 ChIP-seq, H3K4me1 ChIP-

seq, and input ChIP-seq datasets have been deposited in the GEO database under the accession 

codes GSM707020, GSM707016, GSM751276, GSM817251, GSM941719, GSM941728, and 

GSM941740 respectively. Accession codes for melanocyte skin02 MeDIP-seq, MRE-seq, 

mRNA-seq, H3K4me3 ChIP-seq, H3K4me1 ChIP-seq, and input ChIP-seq datasets have been 

deposited in the GEO database under the accession codes GSM941727, GSM941724, 

GSM941743, GSM941731, GSM941730, and GSM941741 respectively. Accession codes for 

melanocyte skin03 MeDIP-seq, MRE-seq, mRNA-seq, H3K4me3 ChIP-seq, H3K4me1 ChIP-

seq, H3K27ac ChIP-seq, and input ChIP-seq datasets have been deposited in the GEO database 

under the accession codes GSM958181, GSM958170, GSM958174, GSM958151, GSM958152, 

GSM958157, and GSM958166 respectively. Accession codes for breast luminal epithelia 

RM071 MeDIP-seq and MRE-seq datasets have been deposited in the GEO database under the 

accession codes GSM1517154 and GSM613826 respectively. Accession codes for breast luminal 

epithelia RM080 mRNA-seq, H3k4me1 ChIP-seq, and input ChIP-seq datasets have been 

deposited in the GEO database under the accession codes GSM669620, GSM669595, and 

GSM959124 respectively. Accession codes for breast myoepithelia RM071 MeDIP-seq and 

MRE-seq datasets have been deposited in the GEO database under the accession codes 

GSM1517153 and GSM613908 respectively. Accession codes for breast myoepithelia RM080 

H3K4me3 ChIP-seq, H3k4me1 ChIP-seq and input ChIP-seq datasets have been deposited in the 

GEO database under the accession codes GSM693277, GSM613885, and GSM613897 

respectively. Accession codes for the Fetal Brain Germinal Matrix HuFGM02 WGBS dataset 
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have been deposited in the GEO database under the accession code GSM941747. Accession 

codes for PBMC TC015 H3K4me3 ChIP-seq, H3k4me1 ChIP-seq, and input ChIP-seq datasets 

have been deposited in the GEO database under the accession codes GSM613811, GSM613814, 

and GSM613816 respectively. Accession codes for CD8 Naïve TC001 H3K4me3 ChIP-seq, 

H3k4me1 ChIP-seq, and input ChIP-seq datasets have been deposited in the GEO database under 

the accession codes GSM1127126, GSM1127143, and GSM1127151 respectively. 
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Chapter 3 

DNA Methylation Dynamics in Zebrafish 
Pigment Cell Development 
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3.2 Background 
Below is a discussion of the developmental genetic and epigenetic control of neural crest 

development in the literature to date. A note on nomenclature: when synthesizing the role of a 

gene across two or more vertebrate systems, the convention for mouse gene nomenclature is 

used. When discussing a result in the context of a specific vertebrate system, the gene 

nomenclature appropriate for that organism is used. 

3.2.1 Neural Crest Specification 
The neural crest is a multipotent, vertebrate-specific tissue with diverse and important biological 

roles, including peripheral nervous system, cranial neurons and glia, cartilage and bones of the 

face, connective tissue, cardiac tissue, and pigment cells [123]. The neural crest is remarkable for 

its generation of a variety of cell types that migrate to all parts of the body. 

The neural crest emerges from the border between neural plate and non-neural ectoderm, where 

instructive cues from the ectoderm and underlying mesoderm signal the neural plate border 

[124]. Intermediate Bmp signal from the ectoderm is necessary, but not sufficient for neural 

border specification. Bmp signal is combined with Wnt and Notch/Delta signaling from the 

ectoderm and Wnt and Fgf signaling from the underlying mesoderm to specify the neural plate 

boarder zone [125]. Hippo signaling induces Pax3 in mouse [126], which along with Zic1 are 

necessary and sufficient to trigger the neural crest developmental program [127]. 

Once the neural plate border is established, Pax3 and Zic1 drive expression of neural crest 

specifier genes [128]. These include Snail1/2, SoxE family transcription factors (notably Sox10), 

and FoxD3 [125]. As is the case with most developmental transcription factors, transcription 

factors involved in neural crest cell development and lineage specification are reused in multiple 

contexts. Besides specifying neural crest, Snail2 is a central regulator of the epithelial-to-
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mesynchymal transition (EMT) [129], a process that is critical to delamination of neural crest 

cells and their migration throughout the developing organism [130]. Indeed, genes important in 

cell migration were found to be upregulated in transcriptomes of cranial neural crest cells [131]. 

In addition, melanocytes and iridophores both need to disperse dorsally and ventrally across the 

developing embryo [132]. Last, the transcriptional repressor FoxD3 drives self-renewal and 

multipotency in pre-migratory NCCs, but later represses ectomesenchymal and melanocyte cell 

fates while promoting neuronal, glial, and iridophore cell fates [133]. Thus the developmental 

genetic network of early neural crest cell specification is fairly well understood. However the 

molecular genetics of NCC-lineage bifurcation is not completely described. 

Myc is also and important neural crest gene, although it is not specific to NCCs. However Myc 

activity in NCCs is critical for NCC self-renewal properties, similar to Myc function in stem cells 

and cancer. Myc is known to be upregulated in melanoma [134]. Therefore the importance of 

Myc in NCC specification and melanogenesis is an important aspect for future study. 

3.2.2 Developmental Genetics of Zebrafish Melanocyte and Iridophore 
Differentiation 
Pigment Cell Ontogeny 
The zebrafish Danio rerio exhibits three types of pigment cells: melanocytes, iridophores, and 

xanthophores. Melanocytes are melanin-containing cells orthologous to human melanocytes. 

Iridophores are guanine-containing cells that produce the iridescent aspect of fish scales. Yellow, 

pteridine-containing xanthophores are the third pigment cell of the zebrafish. All three are neural 

crest-derived cells; however melanocytes and iridophores share a common mitfa+ precursor cell 

population [135,136] (Figure 3.1). Understanding the melanocyte/iridophore cell fate choice is 

the focus of the work in the present chapter. 
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Mitf and Melanocyte Differentiation 
Melanocytes are a conserved, neural crest-derived cell type responsible for the pigmentation 

patterns across many vertebrates. Because of their deep conservation, and because disruption of 

pigment patterns does not confer a detrimental fitness cost in most cases, melanocytes have been 

the subject of developmental genetic investigation for many species and for many years [137]. 

While analyzing the promoter of Tyrosinase, the gene required for melanin synthesis, Mitf was 

discovered as the master regulator of melanocyte fate [138]. 

mitfa is the Danio rerio ortholog that controls melanocyte development in zebrafish [135]. In 

zebrafish, melanocytes may be either direct-developing or regenerative [139]. Most of the 

embryonic melanocyte pigment pattern is derived from direct-developing melanoblasts, although 

a small fraction of the wildtype pattern is contributed by melanocyte stem cells (MSCs) acting in 

a regulative manner to complete the pigment pattern [140]. Direct-developing melanoblasts and 

MSCs share a common mitfa+ precursor [136,141]. mitfa is not required for melanocyte stem 

cell establishment, although presumably it is required for MSC-derived melanocyte 

differentiation [142].  

Because the focus of this project is on a specific cell fate decision – that of melanocyte or 

iridophore cell fate – and because MSCs contribute only a small fraction of mature melanocytes 

in a wildtype embryo, the focus of this project is on direct-developing melanoblasts and 

melanocytes. As discussed below, the direct-developing melanoblast is hypothesized to be the 

melanocyte/iridophore progenitor cell, as shown in Figure 3.1. 

FoxD3 and Neural Crest Diversification 
The genetic control of iridophore fate segregation has been generally less well-studied than that 

of melanocytes, presumably because there is less direct relevance for human biology. However, 
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from the perspective of fate segregation, iridophore development becomes a very attractive 

system, as pigmentation can be perturbed without fitness consequences to the organism (in a lab 

environment). The first comprehensive gene expression analysis of iridophores was recently 

published [67]; however understanding of iridophore differentiation is still incomplete. 

The most important genetic factor known to be involved in iridophore differentiation is foxd3. 

foxd3 is involved in early NCC specification, where it regulates snail2 and sox10 expression in 

premigratory neural crest cells and causes delayed migration of NCCs [143] (see above). Knock 

down of foxd3 caused a reduction of iridophores in morpholino-injected embryos, especially in 

the trunk and tail regions [133], consistent with the noted migration phenotype. Thus foxd3 has 

early roles in NCC establishment but is also required later for pigment cell fate-specification. 

foxd3 is key to melanocyte/iridophore fate segregation. Lineage analysis revealed that both 

pigment cells are derived from a mitfa+ precursor [136,141]. Indeed, foxd3 represses melanocyte 

cell fate specifically by repressing the mitfa promoter [144], and timely down-regulation of foxd3 

is needed for melanocyte differentiation [145]. Similarly, loss of mitfa resulted in a decrease in 

melanocytes and a concomitant increase in iridophores [135]. The reuse of foxd3 – for early 

neural crest specification and later for iridophore cell fate segregation – is a classic example of 

the reuse of developmental genes, particularly transcription factors. 

3.2.3 Epigenome in Dynamics in Zebrafish Development 
The developmental genetic context for pigment cell differentiation in zebrafish has been the 

subject of intense study for almost two decades. However, epigenetic regulation of the zebrafish 

genome has only recently become illuminated with the advent of cost-effective high-throughput 

sequencing technologies. Below is a brief overview of the extent of the current understanding of 
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zebrafish epigenetic regulation, with emphasis given to how epigenetic regulation relates to 

neural crest development in human and other organisms. 

DNA Methylation Dynamics and Machinery in Zebrafish 
Similar to the human genome, the zebrafish genome is highly methylated (~80% globally), 

especially over gene bodies and transposable elements [13]. Most 5-methylcytosine nucleotides 

are found in the CpG context, with very low levels found at CHG and CHH contexts [13], 

consistent with DNA methylation patterns in mammalian genomes. 

The core DNA methylation machinery is conserved between mammals and zebrafish. The 

zebrafish genome contains homologs for both maintenance and de novo DNA methyltransferase 

enzymes [146] and the hemimethylation-binding factor Uhrf1, which is required for maintenance 

DNA methylation [147]. Notably, zebrafish lack a Dnmt3L homolog. Dnmt3L is critical for 

monoallelic methylation of loci at imprinted genes, as well as repression of transposable 

elements (TEs). While zebrafish do not exhibit imprinting, the genome is moderately enriched 

for methylation over transposable elements [13], suggesting an alternate mechanism for DNA 

methylation-mediated repression of TEs in the zebrafish genome. The zebrafish genome also 

contains homologs for other important methyl-binding proteins including Mecp2 and Mdb2 

homologs. Finally, regulation of demethylation occurs in part by a suite of active DNA 

demethylation enzymes [148]. 

Recently, the application of whole genome bisulfite sequencing technologies to zebrafish 

gametes and early embryos has revealed the dynamics of DNA methylation in the few hours 

post-fertilization. Zebrafish oocyte genomes are markedly hypomethylated compared to sperm 

and somatic tissues [149,150]. Zebrafish undergo zygotic genome activation at the mid-blastula 

transition, and by this developmental stage the maternal genome DNA methylation pattern has 
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increased to mirror that of the paternal genome [149,150].  

Epigenetic regulation of developmentally important regulatory elements shares many aspects of 

mammalian transcriptional regulation. As embryogenesis progresses, DNA methylation 

decreases specifically at promoters and distal regulatory elements, which bear marks of enhancer 

elements including H3K4me1 and H3K27ac [27]. Also similar to mammals, zebrafish promoters 

are enriched for H3K4me1/3 and this enrichment is correlated with increased gene expression, 

and H3K4me1 was found to mark enhancers that can drive tissue-specific expression [151]. 

Epigenome Regulation in Neural Crest Cell Differentiation 
Modulation of histone post-translational modifications has been moderately explored in the 

context of neural crest development across vertebrate systems. In human and Xenopus, the 

chromatin remodeler CHD7 is required for neural crest specification, specifically Sox9, Twist, 

and Slug expression (all neural crest specifier genes) and subsequent neural crest cell 

delamination and migration [152]. Subsequently, Snail2 recruits Polycomb remodeling complex 

2 (PRC2) to regulate neural crest development in Xenopus. Knockdown of Ezh2 (the catalytic 

subunit of PRC2) resulted in neural crest migration defects, as Snail2 interacts with PRC2 to 

down-regulate E-cadherin, and is required for the epithelial-to-mesenchymal transition and 

neural crest migration [153]. 

Histone deacetylases 1 and 2 are required for Pax3 and Sox10 expression in mouse, the latter of 

which are master regulators of neural crest [154]. Concomitantly, the histone demethylase 

JUMONJID2A is required for neural crest specifier gene expression, specifically for SOX10 

derepression in chick embryos [155]. Finally, in human, neural crest-specific enhancers are 

marked by active histone marks and the transcription factors TFAP2A and NR2F1/2, and these 

regulatory elements drive expression in the absence of sequence conservation [156]. 
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During pigment cell development, loss of function of hdac1 in zebrafish caused delayed neural 

crest migration and differentiation – similar to the phenotypes of foxd3 loss (reviewed above). In 

addition, hdac1 loss resulted in prolonged expression of foxd3, reduced mitfa expression, and 

resulted in a reduction of melanocytes, suggesting that hdac1 normally acts to repress foxd3 in 

pigment progenitor cells that acquire a melanocyte fate [157]. 
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3.3 Rationale and Hypothesis 
Two decades of work on neural crest biology has yielded a solid understanding of early neural 

crest gene regulatory networks. Recent application of epigenome analysis to model organisms 

has begun to extend our knowledge of how the epigenome regulates gene expression in model 

organisms and of the general principles of the zebrafish epigenome with respect to mammalian 

systems. Evidence that epigenome regulation is crucial to cell fate decisions is evident, 

especially considering the instructive cues of histone demethylases in neural crest specification 

and melanocyte fate, as described above. However, a comprehensive understanding of how 

epigenetic regulation contributes to a specific cell fate decision is still lacking.  

To examine the role of the epigenome in a specific cell fate decision, we examined zebrafish 

pigment cell differentiation. Neural crest cells generate a variety of cell types that contribute to 

ectomesenchymal structures, peripheral nerves, and pigment cells. In zebrafish, the neural crest 

cell population includes a set of melanocyte/iridophore progenitor cells. These progenitor cells 

can give rise to either a melanocyte or iridophore (Figure 3.1). Some genetic regulators of 

pigment cell fates are known (see section 3.2), but how the epigenome acts to specify either fate 

has not been comprehensively examined. We hypothesized that DNA methylation dynamics at 

regulatory elements drive pigment cell fate specification by modulating transcription factor 

binding affinity of key regulatory elements. To investigate this hypothesis we asked three 

questions. First, how do DNA methylation dynamics change over pigment cell development? 

Next, how do DNA methylation dynamics at transcriptional regulatory elements contribute to 

pigment cell fate determination? Finally, how do TF-epigenome interactions drive enhancer 

activity? I addressed these questions by generating genome-wide DNA methylation and 

transcriptome datasets and analyzing the genetic signatures correlated with cell fate-associated 
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DNA methylation changes in the context of pigment cell differentiation.  
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3.4 Experimental Design 
To profile the methylome and transcriptome during pigment cell development, we isolated 

several stages of neural crest cells during the pigment cell differentiation (Figure 3.2). To isolate 

neural crest cell populations, we used the crestinA>GFP transgenic line, which expresses GFP 

in neural crest cells [158] (Methods). A time course experiment determined that the earliest GFP 

expression in this line was observed at approximately the 14-somite stage; therefore, this was the 

earliest time point neural crest cells could be isolated. By 24hpf (prim-5 stage), neural crest cells 

that will give rise to pigment cells are starting to commit to pigment cell fate [159] as they 

migrate dorsally and caudally across the embryo. Thus 24hpf was chosen as our second neural 

crest/pigment cell progenitor sample. By 5dpf, the pigment cell pattern of zebrafish larvae is 

established, so we collected melanocytes and iridophores at this time point. 

After single cell dissociation, target cell types were isolated using fluorescence-activated cell 

sorting (FACS; Methods). For the two early neural crest populations, we collected the GFP- 

population, which represents the non-neural crest cell population. The GFP- control samples 

were used to verify the specificity of our neural crest cell (GFP+) during data analysis.  

All samples were then processed for whole-genome DNA methylation and gene expression 

analysis. We chose to use whole genome bisulfite sequencing (WGBS) for this project for 

several reasons: (1) utilizing low-input protocols in our lab allowed us to gather WGBS data for 

samples that were previously difficult to process; (2) early MeDIP-seq experiments on these 

samples had to be thrown out when a change of antibody vendor introduced dramatic and 

unexpected technical variation into the data; (3) we reasoned that our study would gain more 

credibility by using WGBS, especially as model organism studies often face a high need for 
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relevance to human biology, and WGBS data are more accepted in the community than MeDIP-

seq and MRE-seq technologies. 

For gene expression analysis, we leveraged pigment cell expression data previously published by 

Higdon, 2013 [67]. To complement these data, we generated gene expression data using mRNA-

seq on the neural crest cell samples and their corresponding GFP- controls. We used the TruSeq 

Illumina library kit for mRNA-seq library construction. We note that the pigment cell expression 

data was generated using a different kit (ScriptSeqV2) and that this may introduce technical 

variation into the data. However, preliminary analysis showed differential expression between 

neural crest pigment progenitors and the pigment cell populations that were biologically 

meaningful (see section 3.5). Therefore we conclude that despite technical differences in library 

preparation, our experimental design can recover biologically relevant results. 
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3.5 Preliminary Data Analysis 
3.5.1 Whole Genome Bisulfite Preliminary Analysis 
WGBS Quality Control 
Whole genome bisulfite sequencing (WGBS) libraries were constructed from two biological 

replicates for each sample collected (Methods). Adapter sequences were trimmed using cutadapt 

and reads were aligned using Bismark. CpG read coverage is an important indicator of 

confidence when calling DNA methylation levels. Greater than 10x coverage is considered a 

good standard for calling CpG methylation. Our WGBS libraries had 2-10 million CpGs with 

≥10x coverage. (Figure 3.3) More CpGs (an additional 5.6 – 10 million) had 5-9x read coverage.  

Principal component analysis (PCA) was used to assess the variance among the datasets. The 

methylation values of CpGs covered in all datasets were used for PCA. The first two components 

showed separation of methylomes from differentiated pigment cells from most of the embryonic 

stages (Figure 3.4a), and the first two components explained 81.6% and 4.2% of the variance 

respectively (Figure 3.4c). PC2 and PC3 also stratify samples with respect to developmental 

stages, however the outlier dataset, 24hpf GFP+ replicate 2, became more apparent (Figure 

3.4b). 

Overall, the above quality metrics suggested either deeper sequencing or more complex libraries 

are needed before exhaustive analysis can be done; ideally an average CpG coverage of 10x can 

be obtained for all datasets.  

Differentially Methylated Regions Analysis 
We proceeded to analyze the data on hand to find if the samples show expected DNA 

methylation differences at key loci. We identified differentially methylated regions using DSS 

[160], a software specific for calling differentially methylated regions (DMRs) from WGBS data. 
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To capture high-confidence DMRs, we required a DNA methylation difference of ≥25%. 

Strikingly, most DMRs were hypomethylated in the sample from a “later” developmental time 

point (Figure 3.5a). For example, when comparing 14-somite GFP+ early neural crest samples 

to 24hpf GFP+ pigment progenitor cells, only 68 DMRs were hypomethylated in the 14-somite 

stage compared to 24hpf, but 869 DMRs were hypomethylated in the 24hpf GFP+ methylomes 

compared to 14-somite GFP+ methylomes. Similarly, when comparing the 24hpf GFP+ pigment 

progenitor samples to differentiated melanocytes or iridophores, we found over 10 times as many 

hypomethylated DMRs in the pigment cell than in the progenitor. This trend is in line with the 

observed loci-specific loss of DNA methylation that occurs during embryogenesis [27]. 

We examined select loci to confirm that the expected DNA methylation dynamics were captured 

in our libraries. Two DMRs over the mitfa promoter revealed progressive DNA demethylation 

from neural crest and pigment progenitor stages until the locus is demethylated in melanocytes 

and iridophores. mitfa is not expressed in iridophores – in fact is repressed in order for iridophore 

fate to be established [144]. However, since melanocytes and iridophores share a very recent 

common precursor, and as DNA methylation often bears imprints of the developmental history 

of a cell [58,60], finding that the mitfa promoter is still demethylated in iridophores is not so 

surprising. Instead, it would be interesting to investigate if DNA methylation changes at distal 

enhancers or repressors are responsible for mitfa repression in iridophores, or if another 

epigenetic mechanism is actively repressing mitfa in iridophores, for example, Polycomb-

mediated repression.  

We note that we do observe moderate mitfa expression in iridophores in our data (see Figure 

3.9i). We reason that even a slight melanocyte contamination in our iridophore sample would 

result in very high mitfa expression, given the very high expression of mitfa in melanocytes (note 
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the log scale in Figure 3.9i). More comprehensive expression analysis is needed to verify these 

early results. 

Next we examined the pnp4a locus, an iridophore-specific marker [136]. We find several DMRs 

over a 10kb region centered on the pnp4a promoter. We observe dynamic demethylation of 

regions upstream of the promoter and in pnp4a introns 3 and 4 (Figure 3.5c). In this case, pnp4a 

region DNA methylation is consistent with pnp4a expression patterns we observe (see Figure 

3.9k). 

3.5.2 mRNA-seq Preliminary Analysis 
mRNA-seq Quality Control 
mRNA-seq libraries were generated for the early embryo samples (Methods) and pigment cell 

mRNA-seq fastq files were downloaded from GEO [67]. All libraries were aligned to the 

danRer10 transcriptome assembly with STAR [161]. Uniquely mapped read alignment rates 

ranged from 75% to 92% across all libraries (Figure 3.6). While the libraries for early embryo 

stages were sequenced much more deeply than the pigment cell mRNA-seq libraries, we 

reasoned that the multiple replicates for melanocytes and iridophores will give us power to detect 

differentially expressed genes. Indeed, replicates are important for determining gene expression 

variance in a sample. Therefore, biological replicates were kept separate for statistical analysis. 

Basic quality control analyses include pairwise correlation metrics between biological replicates. 

Expression levels by transcript were determined using the htseq-count Python utility [162], then 

normalized using edgeR [163].  Transcript expression levels were plotted as scatterplots for each 

pairwise comparison within the early embryo stages (Figure 3.7) and pigment cells (Figure 3.8). 

Across the early embryo stages, the Spearman correlation ranged from 0.69 – 0.98. The highest 
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Spearman correlations were between biological replicates (orange boxes), indicating there were 

minimal batch effects during sample preparation and library construction.  

The moderately high correlation between non-biological replicates is not surprising, as most 

genes are expected to be similarly expressed between samples, as core cell biological pathways 

are conserved across cell types. Instead, our analysis aims to find the specifically differentially 

expressed genes between biologically meaningful comparisons (see Figure 3.9), so the results in 

these plots indicate high-quality data. 

Multidimensional scaling (MDS) analysis allows for visualization of the similarity (or 

dissimilarity) of several datasets at once. A quantitative metric is used to determine 

(dis)similarity between datasets. For example, in Figure 3.9a, points represent the Euclidian 

distance separating samples based on the gene expression levels of the top 500 genes in each 

sample. Points that are closer together represent more similar datasets, while those farther apart 

are more dissimilar. The MDS plot in Figure 3.9a shows biological replicates clustering 

together. Further, the x-axis is strongly correlated with the developmental trajectory of the 

samples studied: the 14-somite stages are on the far left, followed by 24hpf samples, and the 

pigment cell samples are to the far right, separated by the y-axis.  

Notably, the 14-somite GFP+ and GFP- samples are clustered together; we find other indicators 

that these mRNA-seq libraries are very similar (see Figure 3.9b). Therefore we are considering 

regenerating these data (see section 3.6). 

Differentially Expressed Genes Analysis 
Next, we called differentially expressed genes (DEGs) using the edgeR package [163]. Because 

we wanted to enrich for high-confidence differentially expressed genes, DEGs were called with 
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an FDR-corrected p-value of ≤ 0.001. Figure 3.9b plots the numbers of DEGs in each pairwise 

comparison. Yellow bars indicate genes that were upregulated in the first sample compared to 

the second: for example, there were 28 genes more highly expressed in the 14-somite GFP+ 

samples than the 24hpf GFP+ samples.  Blue bars indicate the number of genes upregulated in 

the second sample: 3 genes were more highly expressed in 24hpf GFP+ samples than 14-somite 

GFP+ samples. 

We found few DEGs between the early samples. Only the two neural crest cell samples had 

differential expression (14-somite GFP+ vs 24hpf GFP+; Figure 3.9c). It is interesting that the 

GFP- controls did not have differentially expressed genes with their corresponding GFP+ 

samples at the p-value used here. One possible reason for this is if our reporter does not mark 

100% of neural crest cells, some neural crest cells may infiltrate the GFP- population collected 

during FACS. However a more likely explanation for lack of gene expression difference is that 

many developmental genes are reused in different contexts, and it is likely that many of the 

important neural crest genes are also expressed in other parts of the embryo, all of which 

comprise the GFP- control populations. For example, tfap2a is important for establishing the 

neural plate boarder and premigratory neural crest [125], but is also involved in epidermal 

development and required for the establishment of a subset of sensory neurons [164]. Therefore 

tfap2a will not be detected as a DEG. In fact, normalized expression for tfap2a in 14-somite 

GFP- was ~500 reads per million (RPM) in both samples, and ~750 RPM in both GFP+ samples 

(data not shown). Thus, it is reasonable to expect that many early developmental genes will not 

be DEGs. However, we note that lowering the stringency of DEG calling (when FDR-corrected 

p-value is increased to 0.05) does generate DEGs for these samples.  
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We found many DEGs between the melanocyte/iridophore progenitor samples (24hpf GFP+ 

samples) and differentiated pigment cells. We found a total of 2753 DEGs between the 

progenitor population and melanocytes (Figure 3.9d); 2175 DEGs between the progenitor 

population and iridophores (Figure 3.9e); and 1254 DEGs between melanocytes and iridophores. 

The breakdown of up- or down-regulated DEGs is depicted in Figure 3.9b. 

Examination of specific genes involved in neural crest specification and melanogenesis confirms 

that our mRNA-seq libraries captured biologically meaningful expression patterns. Sox10 is 

required for neural crest specification [125] and was expressed in the 14-somite GFP+ samples, 

which represent the premigratory neural crest, as well as in the 24hpf GFP+ samples, 

representing the migratory neural crest and pigment cell progenitors (Figure 3.9f). ErbB3 is 

required for the establishment of direct-developing melanocytes [140], and we observed 

expression in the 24hpf GFP+ pigment cell progenitor population (Figure 3.9g). In zebrafish, kit 

is necessary for melanoblast migration and survival, but not melanocyte differentiation [165]. 

Appropriately, we find elevated kit expression specifically in the 24hpf GFP+ pigment cell 

progenitor population, and both the melanocyte and iridophore samples (Figure 3.9h). mitf is 

required for melanocyte differentiation and maintenance [135]; we observed increased mitfa 

expression in the progenitor pigment cells and in differentiated melanocytes (Figure 3.9i). 

Tyrosinase is the enzyme responsible for melanin formation in melanocytes, and we observed 

elevated tyr expression in pigment progenitor samples as well as melanocytes (Figure 3.9j). 

Lastly, pnp4a is a marker of iridophore development [136] and was specifically elevated in 

iridophore samples (Figure 3.9k). 
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3.6 Future Directions 
3.6.1 Preliminary Conclusions 
Based on the data generated and analyzed so far, we can start to answer some of the questions 

posed above in section 3.3. First, how do DNA methylation dynamics change over pigment cell 

development? First, we observed no dramatic change in global levels of DNA methylation. 

Instead we find locus-specific changes in DNA methylation across the developmental time 

course. These dynamics resulted in a net decrease in loci-specific DNA methylation in each of 

the differentiated pigment cells. To explore this result further, it will be interesting to determine 

how many of these changes are localized to specific classes of regulatory elements, such as 

promoters, enhancers, or insulators.  

Further, it will be important to incorporate other epigenome data into the global and loci-specific 

analyses. ATAC-seq data on these samples is still in preparation, and we anticipate that 

incorporating information about nucleosome dynamics over developmental time will add value 

to the DNA methylation dynamics documented here. For example, we found that the mitfa 

promoter is unmethylated in iridophores (Figure 3.5b) but mitfa is not expressed (Figure 3.9i). 

One explanation is that the mitfa promoter is repressed by an alternate epigenetic mechanism in 

iridophores. If we observe gain of nucleosome occupancy over the mitfa promoter in iridophores 

(e.g. loss of ATAC-seq signal) this would support our hypothesis that nucleosomes at the mitfa 

promoter are rearranged in the absence of promoter-repressive DNA methylation. 

Another global analysis that will integrate WGBS and mRNA-seq data is to examine the DNA 

methylation status and expression of crestin elements. The crestin long terminal repeat (LTR) is 

~1500bp and occurs at ~570 loci in the zebrafish genome. crestin is a marker of neural crest cells 

[158], and about half of annotated crestin elements have evidence of transcription (S. Higdon, 



 
 

100 

unpublished). However the function of crestin in the neural crest is unknown. Our unique dataset 

provides an opportunity to examine the regulation of crestin by DNA methylation. As one of the 

key roles of DNA methylation in vertebrate genomes is repression of transposable elements [13], 

understanding how and why crestin escapes DNA methylation may illuminate the function of 

this element and provide a more comprehensive picture of the neural crest cell epigenome. 

Second, we asked how DNA methylation dynamics contribute to pigment cell fate acquisition. 

Again, we cannot fully answer this question yet. However preliminary analysis yielded some 

encouraging results. Even though, as noted above, pigment cells have a net gain of loci-specific 

DNA methylation, we observed loci exhibiting progressive loss of DNA methylation at 

promoters of key pigment cell genes. mitfa promoter exhibited loss of DNA methylation from 

neural crest cells and pigment progenitors to differentiated melanocytes (Figure 3.6b, Table 

3.1). Similarly, the promoter of purine nucleoside phosphorylase 4a (pnp4a), a marker of 

iridoblasts and iridophores [166], was demethylated specifically in iridophores. It will be 

important to validate our WGBS datasets with more examples like these positive controls. In 

addition, uncovering DNA methylation events that are required for melanocyte or iridophore fate 

specification will be a key analysis to add to this project. 

Last, how does DNA methylation interact with transcription factors to regulate pigment cell fate? 

To answer this question we will first annotate regions of dynamic DNA methylation to identify 

candidate regulatory elements. Loci that exhibit cell type- or tissue-specific demethylation are 

strongly enriched for regulatory elements [25,27,60,78]. Therefore, future analyses should 

include finding more cell-specific DNA methylation patterns, like those in Figure 3.5b-c. Such 

candidate regulatory elements will be analyzed in silico for transcription factor binding site 

motifs. A candidate-approach will prioritize motifs for TFs known to be important in pigment 
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cell development (mitf, foxd3, myc). An unbiased approach to find novel, important factors for 

pigment cell development will query motifs for factors that are expressed in the pigment 

progenitor cell and differentiated pigment cells, but as yet not known to be related to pigment 

cell development. 

3.6.2 Future Data Generation 
In addition to continuing to analyze our first round of data for this project, the quality of some 

datasets may necessitate regeneration or additional biological replicates. Our 24hpf GFP+ 

samples showed high global correlation (Figure 3.7). However, we found ~850 DMRs between 

biological replicates. Closer examination showed that ~75% of these DMRs are in repetitive 

regions. In addition, we found only ~2 million CpGs with ≥ 10x coverage in the 24hpf GFP+ 

replicate 2. These results likely explain why we found relatively few DMRs between the 24hpf 

GFP+ and the 14-somite or 24hpf GFP- methylomes (Figure 3.9a). (For reasonably pure cell 

populations we generally expect thousands of DMRs between samples, rather than hundreds.) 

Therefore it seems worthwhile to generate an additional biological replicate for this sample. 

We also found fewer DMRs between the 14-somite GFP+ and 14-somite GFP- methylomes than 

we would expect for distinct populations (Figure 3.9a). We also found no differentially 

expressed genes between the 14-somite populations. One explanation for this lack of 

differentiation might be the poor fidelity of our crestinA>GFP reporter. During sample 

collection, we noticed over time (years) that GFP expression at the 14-somite stage became 

increasingly diffuse as we continued to breed the same fish to collect embryos for FACS. Loss of 

specificity due to epigenetic changes is known to occur with transgenes over time. A potential 

solution is to use an additional reporter construct to capture early neural crest samples. Our 

collaborator, Charles Kaufman, has generously offered a zebrafish line carrying 
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crestin>mCherry, which we will use to regenerate the 14-somite data after validating proper 

reporter gene expression pattern. 

In addition, we note that while we have many biological replicates of pigment cell expression 

data, the reads counts are very low (Figure 3.6). Accordingly, it will be worthwhile to explore 

other analysis options, including combining the five and 11 iridophore and melanocyte replicates 

in silico to generate two synthetic “biological” replicates with increased read depth.  

Finally, as mentioned above, we are working to generate ATAC-seq data for samples in this 

developmental time course. Josh Jang, a key collaborator on this project, has optimized the 

ATAC-seq protocol for zebrafish FACS-collected cells. ATAC sequencing data is anticipated in 

the coming months.  
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3.7 Methods 
3.7.1 Zebrafish strains 
Embryos used for neural crest cell isolation were transgenic for a construct driving expression of 

EGFP under control of a crestin fragment termed crestinA. Crestin is a retroelement in the 

zebrafish genome expressed specifically in the premigratory and migratory neural crest [158].  

In the Stephen Johnson lab, approximately 1200 base pairs of a crestin element was cloned 

upstream of EGFP in a Tol2 vector. The transgenic fish was created using Tol2 transgenesis 

[167]. Resulting crestinA embryos drive EGFP expression starting at approximately the14 

somite stage and throughout embryogenesis until the onset of melanogenesis. 

5dpf mlpha larvae were used for pigment cell isolation. mlpha is a melanosome dispersion 

mutant that carries a loss-of-function mutation in the melanophilin gene, causing melanocytes to 

have a reduced dispersion of melanosomes [168]. We used the mlpha strain for pigment cell 

isolation for two reasons; (1) the GFP-fluorescence from the reporter line would interfere with 

pigment cell isolation (as described in 3.5.3), and (2) many mlpha fish were available for mating. 

3.7.2 Neural Crest Cell Isolation 
The following pigment cell isolation protocol and flow cytometry strategy was adapted from 

Higdon, 2013 [67]. 

14-somite or prim-25 stage embryos were dechorionated with 20mg/mL Pronase (Sigma) at 

room temperature, then rinsed with egg water and incubated on ice.  

For 14-somite embryos, egg water was decanted and replaced with 100µL deyolking buffer 

(55mM NaCl, 1.8mM KCl, 1.25mM NaHCO3) for every 100 embryos. The egg water/deyolking 

buffer/embryos were spun down gently and the solution aspirated to remove residual egg water. 
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1mL deyolking buffer was added followed by gentle pipetting to generate a single cell 

suspension. 

For prim-25 embryos, egg water was decanted and replaced with 1mL TrypLE Express (Gibco 

TrypLE Exrpress Enzyme (1X) Catalog no. 12604013) enzyme solution and incubated in a 37C 

heat block for 8-10 minutes in a 1.6mL eppendorf tube and inverted 2-3 times to encourage cell 

separation. After 8-10 minutes, the solution was triturated with a micropipette 10-20 times to 

mechanically dissociation remaining intact tissue. 

Once embryos are brought to a single cell suspension, cells were pelleted in a tabletop fixed 

angle centrifuge at 300rcf for 8 minutes at 4C. The pellet was fully resuspended in 800µL cold 

1XPBS + 2% fetal calf serum. The suspension was filtered through a 100µm mesh (Partec 

CellTrics® filters Order No. 04-004-2328) into a 15mL conical, adding buffer to flush all cells 

through the mesh as needed. Cells were pelleted in a fixed angle tabletop centrifuge at 300rcf for 

8 minutes at 4C. Cells were resuspended in 1mL cold 1XPBS + 2% fetal calf serum and kept on 

ice until further processing. If using for FACS, 10µL 7-AAD was added at least 10 minutes 

before flow cytometry. 

Embryonic cell suspensions were separated for GFP+ and GFP- populations using Fluorescence-

Activated Cell Sorting (FACS) (Figure 3.10). The solution was resuspended and filtered one 

more time using a 100µm filter (Partec CellTrics®) immediately prior to sorting on the MoFlo 

cytometer using a 100µm nozzle (with the assistance of the Siteman Cancer Center Flow 

Cytometry Core Facility). Scatter properties were used to remove debris and doublets from the 

population. Cells were excited with a 488nm laser using filters for GFP (FL1) and Phycoerythrin 

(PE; FL2). Cells that were positive for GFP but negative for PE were collected as the GFP+ 
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neural crest cell population. For increased stringency and specificity, the top 2% of the GFP+ 

population was collected as putative neural crest cells. The GFP/PE double negative population 

was collected as a GFP- control. Cells were kept on ice until further processing. 

3.7.3 Pigment Cell Isolation 
The following pigment cell isolation protocol and flow cytometry strategy was adapted from 

Higdon, 2013 [67]. 

5dpf embryos were anesthetized with Tricane and subsequently collected into 50mL conical 

tubes, ~500 embryos per 50mL egg water and stored on ice. Egg water was decanted out of each 

50mL tube and refilled with TrypLE Express. 50mL conicals were then pooled into a 1L 

Erlenmeyer flask containing 500mL TrypLE Express and incubated in a 37C shaking incubator 

for 30 minutes (until larvae eyes could be seen floating in suspension). The larvae suspension 

was poured through a 120µm mesh. The supernatant was kept on ice while dividing into 50mL 

conicals. Cells were pelleted in a swinging bucket rotor (Eppendorf 5810 R) at 500rcf for 10 

minutes at 4C. Pellets were resuspended in isotonic Percoll (1 part 10X PBS : 9 parts 100 Percoll 

(Sigma, Catalog No. P4937), iteratively transferring the resuspended pellet and Percoll to the 

next pellet for resuspsension; after reuspension, ~1mL isotonic Percoll contained all pigment 

cells in a single cell suspension.  

Several 5mL columns of Percoll were pipetted into 15mL conicals. Then, the single cell 

suspension was overlayed on 5mL columns of isotonic Percoll, ~1mL of suspension per 5mL 

column, pipetting carefully. The overlay was spun at 1000rcf for 8 minutes at 4C in a swinging 

bucket rotor to separate cells by density. Pigment cells were contained in the pellet. If there was 

much debris in the pellet, the isotonic Percoll column separation step was repeated a second 

time. 
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The pigment cell pellet was resuspended in 300µL cold 1XPBS + 2% fetal calf serum and 

filtered through a 50µm mesh filter (Partec CellTrics® filters Order No. 04-004-2327) into a 

clean conical containing 500µL 1XPBS + 2% fetal calf serum and kept on ice until further 

processing. 

The single cell suspension of enriched pigment cells was resuspended immediately prior to flow-

cytometry. The MoFlo cytometer (with the assistance of the Siteman Cancer Center Flow 

Cytometry Core Facility) was used for separation of the pigment cell population based on the 

natural iridescent properties of the cells: iridophores reflect all light and autofluoresced when 

subjected to irradiation with the 488nm laser using filters for GFP (FL1) and Phycoerythrin (PE; 

FL2) (Figure 3.11). Therefore the FL1/FL2 double positive population was collected as 

iridophores. Conversely, melanocytes absorb all wavelengths so were located at the bottom left 

corner of the FL1/FL2 scatter plots (for example, see Figure 3.11b). The FL1/FL2 double 

negative population was collected as a melanocyte-enriched population. After collection, cells 

were kept on ice in 1XPBS + 2% fetal calf serum until further processing. 

3.7.4 Genomic DNA Isolation and Whole Genome Bisulfite Sequencing 
Genomic DNA Isolation 
After FACS, cells were pelleted using 500g for 10 minutes and the supernatant was discarded. 

Cells were then resuspended in 300µL of extraction buffer (50mM Tris (pH 8.0), 1mM 0. EDTA 

(pH 8.0), 0.5% SDS, 1mg/mL Proteinase K) was added to cell suspension and immediately 

pipetted with a 1000µL micropipette tip to disrupt cell membranes. The solution was incubated 

12-16 hours in a 55C heat block, then centrifuged in a tabletop fixed angle centrifuge at max 

speed for 10 minutes at 4C. The supernatant was transferred to a 1.5mL Phase Lock Gel tube 

(5PRIME catalog no. 2302800) followed by one phenyl/chloroform:isoamyl alcohol (PCI) 
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extraction. The supernatant was removed and incubated with RNase for 30 minutes at 37C. 

Another PCI extraction was performed to remove RNase, followed by one chloroform-only 

extraction. The top phase was transferred to a fresh eppendorf tube for ethanol precipitation (Add 

1/10 volume sodium acetate, 2.5x volume 100% ethanol, and 1µL of glycogen) overnight at -

20C. The precipitation was spun in a fixed angle tabletop centrifuge at 16000g at 4C for 15 

minutes. The pellet was washed in 70% cold ethanol, then centrifuged again at 16000g for 5 

minutes at 4C. The pellet was air-dried and resuspended in 20-50µL molecular grade water. 

WGBS Library Construction 
WGBS libraries were constructed using the EpiGenome Methyl-Seq Kit (Epicentre; now 

Illumina TruSeq DNA Methylation, Catalog ID EGMK81312). 

3.7.5 mRNA Extraction, cDNA Synthesis, and mRNA-seq Library 
Preparation 
Total RNA Isolation 
Total RNA was extracted using Trizol reagent. 1mL Trizol was added to cell pellet and 

immediately gently pipetted to homogenize. Solution was incubated 5-10 minutes at room 

temperature then spun down at 12000g for 10 minutes at 4C in a tabletop microcentrifuge. 

Supernatant was aspirated to remove debris. 0.2mL chloroform was added and the solution 

shaken for 15 seconds to mix, then incubated 2-3 minutes at room temperature. The suspension 

was spun at 12000g for 15 minutes at 4C. The upper aqueous phase was transferred to a fresh 

eppendorf tube. The 0.2mL chloroform extraction was repeated one more time.  

RNA was precipitated by adding 0.5mL isopropanol to the aqueous phase. The solution was 

mixed by shaking and incubated at -20C for at least one hour. Suspension was spun at 12000g 

for 10 minutes at 4C and the supernatant aspirated. The pellet was washed with 1mL of 75% 

ethanol (made with RNase-free water) and spun at 7500g for 5 minutes at 4C. The wash step was 
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repeated up to twice as need to clean the RNA pellet. All ethanol was aspirated and the RNA 

pellet allowed to air dry at room temperature.  

Cleaned total RNA was treated with TURBO DNase (Ambion, Catalog No. AM1907), according 

to manufacturer instructions. The final DNase-treated sample was resuspended in 30µL RNase-

free water and kept on ice or stored at -20C. 

mRNA-seq Library Construction 
Total RNA was processed with TruSeq RNA library kit (Illumina, Catalog No. RS-122-2001) for 

preparation of mRNA-seq libraries according to manufacturer kit instructions. 

3.7.6 WGBS Analysis 
WGBS libraries were sequenced using NextSeq sequencing machines at the Washington 

University Center for Genome Sciences and Systems Biology Sequencing Center. Adapter 

sequences were trimmed using cutadapt [169], and reads were aligned against danRer10 using 

the Bismark aligner [113] and the following options: -N 1 -L 28 --score_min L,0,-0.2. 

Differentially methylated CpGs and differentially methylated regions were called using the DSS 

package [160] in R 3.3.0. Differentially methylated CpGs (differentially methylated loci or 

DMLs) were called with smoothing, followed by calling DMRs with a dynamic window size and 

requiring a delta value of 0.25 and a p-value threshold of 0.01.  

3.7.7 mRNA-seq Analysis 
mRNA-seq libraries were sequenced using NextSeq sequencing machines at the Washington 

University Center for Genome Sciences and Systems Biology Sequencing Center. mRNA-seq 

reads were aligned against the Ensembl 80 Danio rerio transcriptome build using STAR [161]. 
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Differentially expressed genes were identified using the edgeR package [163] in R 3.3.0. Genes 

with normalized counts ≥10000 or < 2 were removed to eliminate the effect of outliers and 

reduce noise. Pairwise differential expression was determined by using a generalized linear 

model to model gene expression and a quasi-likelihood F-test to determine significant 

expression. Only transcripts with a log-fold-change of ≥ 2 and FDR-corrected p-value of ≤ 0.001 

(by Benjamini-Hochberg) were retained. 

  



 
 

110 

3.8 Data Access 
mRNA-seq data for melanocytes and iridophores from Higdon, 2013 [67] were downloaded 

from GEO accession GSE46387 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46387). 
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Figure 3.1. Pigment cell ontogeny. Early neural crest cells are represented by the green circle; 

melanocyte/iridophore progenitor neural crest cells are represented by the green triangle. The 

black star represents melanocytes and the magenta trapezoid represents iridophores. In our 

experimental design, the early neural crest cell stages were collected as 14-somite GFP+ cells; 

the 24hpf GFP+ population represents a melanocyte/iridophore progenitor-enriched population; 

melanocytes and iridophores were isolated from 5dpf larvae (see Figure 3.2). Arrows depict the 

developmental progression of pigment cells in the zebrafish embryo. In light gray are listed key 

genes expressed at specific stages. foxd3 repression of mitfa is illustrated by the dotted gray line. 
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Figure 3.2. Experimental design. Embryos at the specified time point were collected, 

dissociated and sorted using fluorescence-activated cell sorting (FACS). For neural crest cell 

stages, GFP+ and GFP- control populations were collected. For the 5dpf embryo dissociated 

samples, FL1-/FL2- (FITC/PE channels; see Methods) samples were collected as melanocytes; 

FL1+/FL2+ samples were collected as iridophores (see Methods). Samples were processed for 

whole methylome or transcriptome analysis. The 14 somite and prim-5 embryo stages are 

depicted by an image of crestinA>GFP embryos at the specified stage. The 5dpf larvae image is 

credited to Lizzy Griffiths (http://zebrafishart.blogspot.com).   

  

GFP+ 
Early neural 
crest cells 

GFP+ 
Melanocyte/iridophore 

progenitors 

FL1-/FL2- 
Melanocytes 

FL1+/FL2+ 
Iridophores 

GFP- 
Control 

GFP- 
Control 

DNA Methylation 
Whole Genome Bisulfite 

Sequencing  

Gene Expression 
mRNA-seq  

FACS FACS FACS 

14 somite embryo 
crestinA>EGFP 

prim-5 embryo 
crestinA>EGFP 

5 dpf larvae 
mlpha 



 
 

113 

 

Figure 3.3. WGBS per CpG library coverage. Depth of coverage per CpG by library. Text 

labels state the number of CpGs with the given interval of coverage. 
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Figure 3.4. WGBS quality control. (a) PCA plot with principal components 1 and 2. (b) PCA 

plot with principal components 2 and 3. (c) Percentage of variance explained by each principal 

component. 
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Figure 3.5. WGBS preliminary analysis results. (a) Bar graph of numbers of DMRs between 

pairwise comparisons that are biologically meaningful. The x-axis label refers to the direction of 

methylation change with respect to the first sample listed. (b) DMRs at the mitfa promoter show 
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demethylation dynamics between neural crest stages and pigment cells. Blue bars represent the 

DNA methylation levels at individual CpGs. DMRs that are hypermethylated compared to 

melanocytes are highlighted by yellow backgrounds in the precursor (hypermethylated) samples 

and gray dotted rectangles in the melanocyte sample. Tracks correspond to samples according to 

the cartoon on the left of each track, as depicted in Figure 3.1. DMR loci are listed in Table 3.1. 

(c) The pnp4a locus contains several DMRs in a 10kb region centered on the pnp4a promoter. 

Blue bars represent the DNA methylation levels at individual CpGs. DMRs that are 

hypermethylated compared to iridophores are highlighted by yellow backgrounds in the 

hypermethylated samples and magenta dotted rectangles in the iridophore sample. Tracks are as 

in (b). DNA methylation dynamics reflect the iridophore-specific nature of pnp4a expression 

(see Figure 3.9k). The DMR loci displayed here are listed in Table 3.2. 
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Figure 3.6. mRNA-seq mapping statistics. Total and uniquely mapped reads plotted as bar 

graphs, by sample type, by replicate. Text labels are the uniquely mapping reads rates. 
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Figure 3.7. Gene expression levels pairs plots for early embryo stages. Pairs plot for gene 

expression level of processed mRNAseq libraries for 14-somite and prim-25 stages (labeled as 

24hpf on plot). Filtering out genes with very high (≥10000 normalized read counts in at least one 

sample) or low (< 2 in at least one sample) was applied before plotting and subsequent analysis. 

In the upper panel scatterplots, each point in the scatterplots represents the expression levels of 
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one transcript in the two samples being compared. X- and y-axes are normalized read counts. In 

the lower panels, the decimal is the Spearman correlation between the two samples. Biological 

replicates are highlighted in orange boxes. 
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Figure 3.8. Gene expression levels pairs plots for pigment cells. Pairs plot for gene expression 

level of processed mRNAseq libraries for melanocytes and iridophores. Data processing, panels 

and axes are as in Figure 3.7. Biological replicates are grouped in orange boxes.   
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Figure 3.9. mRNAseq analysis summary. (a) MDS plot of mRNA-seq samples. (b) Number of 

differentially expressed genes between biologically meaningful sample comparisons. Yellow 
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bars represent the number of genes up-regulated in the first listed sample; blue bars are genes up-

regulated in the second sample in the comparison. (c) Smear plot for differentially expressed 

genes between 14-somite GFP+ vs. 24hpf GFP+. Red dots are differentially expressed genes at a 

p-value cutoff of ≤ 0.001. (d) Smear plot for melanocytes vs. 24hpf GFP+. Red dots are 

differentially expressed genes. (e) Smear plot for Iridophores vs. 24hpf GFP+. Red dots are 

differentially expressed genes. (f-k) Expression of key genes in pigment cell differentiation. 

Legend is as in (a); y-axes are normalized read counts, log scale where indicated. (f) Expression 

of sox10 in each mRNA-seq sample. (g) Expression of erbb3. (h) Expression of kita. (i) 

Expression of mitfa. (j) Expression of tyr. (k) Expression of pnp4a. 
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Figure 3.10. FACS separation of embryonic neural crest cells. (a) Representative FACS plot 

of wildtype control dissociated embryonic cells. X-axis is forward scatter, y-axis is FITC (GFP) 

fluoresence. (b) Final FACS plot of crestinA>GFP dissociated embryonic cells. The bottom gate 

is the GFP- control collected cells; the upper gate is the GFP+ collected cells. Axes are as in (a). 

(c) Merged brightfield and FITC fluorescence channels for GFP- cell sample (e.g. the bottom 

gate in (b)). (d) Merged brightfield and FITC fluorescence channels for GFP+ cell sample (e.g. 

top gate in (b)). White signal indicates GFP fluorescence.  

a b 
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Figure 3.11. FACS separation of pigment cells. (a) Merged FITC and brightfield images of 

pigment cell isolation, before FACS. Melanocytes are the black cells; iridophores are seen as the 

reflective white cells in the FITC channel (white). (b) FACS plot of pigment cell suspension. 

FL1 is fluorescence in the GFP channel; FL2 is fluorescence in the Phycoerythrin  (PE) channel. 

Melanocytes absorb all light and are FL1-/FL2- (R3 on plot). Iridophores reflect all light and are 

collected as the FL1+/FL2+ population (R4). 
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Table 3.1. DMRs at mitfa locus. DMR results using DSS software to identify DMRs at a 

dynamic window size. Regions are called DMRs between both replicates in each sample. In 

parentheses is the average DNA methylation level for both replicates. Num. CpGs = number of 

CpGs contained the DMR. Delta = the difference between the average DNA methylation levels 

at the given DMR in the samples being compared (sample 1 – sample 2). These loci are depicted 

in Figure 3.9b. 

Locus Num. 
CpGs Sample 1 Sample 2 

Delta 
(S1 –S2) 

chr6:43428599-43429908 18 
14-somite GFP+ 

(0.938) 
Melanocytes 

(0.360) 
0.578 

chr6:43428599-43429908 18 
24hpf GFP+ 

(0.851) 
Melanocytes 

(0.361) 
0.491 

chr6:43430101-43430245 9 
14-somite GFP+ 

(0.951) 
Melanocytes 

(0.527) 
0.424 

chr6:43430101-43430245 9 
24hpf GFP+ 

(0.965) 
Melanocytes 

(0.527) 
0.437 
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Table 3.2. DMRs at pnp4a locus. DMR results using DSS software to identify DMRs at a 

dynamic window size. Regions are called DMRs between both replicates in each sample. In 

parentheses is the average DNA methylation level for both replicates. Num. CpGs = number of 

CpGs contained the DMR. Delta = the difference between the average DNA methylation levels 

at the given DMR in the samples being compared (sample 1 – sample 2). These loci are depicted 

in Figure 3.9c. 

Locus Num. 
CpGs Sample 1 Sample 2 

Delta 
(S1 –S2) 

chr11:24047238-24049228 16 
24hpf GFP+ 

(0.923) 
Iridophores 

(0.154) 
0.769 

chr11:24051398-24051658 6 
14-somite GFP+ 

(0.960) 
Iridophores 

(0.194) 
0.767 

chr11:24051398-24051658 6 
24hpf GFP+ 

(0.40) 
Iridophores 

(0.184) 
0.746 

chr11:24051398-24051716 7 
Melanocytes 

(0.872) 
Iridophores 

(0.194) 
0.677 

chr11:24054844-24056209 20 
14-somite GFP+ 

(0.952) 
Iridophores 

(0.286) 
0.666 

chr11: 24054844-24056209 20 
24hpf GFP+ 

(0.907) 
Iridophores 

(0.286) 
0.621 

chr11:24056862-24059392 35 
24hpf GFP+ 

(0.943) 
Iridophores 

(0.383) 
0.560 

chr11: 24056862-24057138 14 
Melanocytes 

(0.913) 
Iridophores 

(0.482) 
0.431 
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Chapter 4 

Epigenomic Annotation of Noncoding 
Mutations Identifies Mutated Pathways in 

Primary Liver Cancer 
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4.2 Abstract 
Evidence that noncoding mutations can result in cancer driver events is mounting. However, it is 

more difficult to assign molecular biological consequences to noncoding mutations than to 

coding mutations, and a typical cancer genome contains many more noncoding mutations than 

protein-coding mutations. Accordingly, parsing functional noncoding mutation signals from 

noise remains an important challenge. Here we use an empirical approach to identify putatively 

functional noncoding somatic single nucleotide variants (SNVs) from liver cancer genomes. 

Annotation of candidate variants using publically available epigenome datasets finds that 40.5% 

of SNVs fall in regulatory elements. When assigned to specific regulatory elements, we find that 

the distribution of regulatory element mutation mirrors that of non-synonymous coding mutation, 

where few regulatory elements are recurrently mutated in a patient population but many are 

singly mutated. We find potential gain-of-binding site events among candidate SNVs, suggesting 

a mechanism of action for these variants. When aggregating noncoding somatic mutation in 

promoters, we find that genes in the ERBB signaling and MAPK signaling pathways are 

significantly enriched for promoter mutations. Altogether, our results suggest that functional 

somatic SNVs in cancer are sporadic, but occasionally occur in regulatory elements and may 

affect phenotype by creating binding sites for transcriptional regulators. Accordingly, we 

propose that noncoding mutations should be formally accounted for when determining gene- and 

pathway-mutation burden in cancer.  
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4.3 Author Summary 
Cancer develops after multiple mutations to a cell’s genome confer a growth advantage on that 

cell, enabling it to outcompete other cells. Only about 1.5% of the DNA in our genome codes for 

proteins, the molecules that carry out biological functions in the cell. 50 years of genetics 

research has focused on understanding the molecular nature of this 1.5% of our genome, and the 

consequences that occur when protein-coding DNA fragments are mutated. The remaining ~98% 

of the genome is the “noncoding” genome, and our understanding of mutations in noncoding 

DNA is less mature. Yet anecdotal reports suggest that noncoding mutations can initiate a variety 

of cancer diseases, including melanoma, glioma, and liver cancer. Here we identify regions of 

noncoding mutation that may be important in primary liver cancer by utilizing recent advances 

that map the functions of the noncoding genome. Notably, we find that noncoding mutations 

accumulate at promoters (the “on” switch) of genes known to be involved in liver cancer. Our 

results suggest that mutations in the noncoding genome provide a more complete picture of 

altered biology in cancer and accordingly should be accounted for in patient diagnosis and 

therapy.  
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4.4 Introduction 
Cancer genomics suffers from a dramatic signal to noise problem, where the majority of somatic 

mutations are not expected to cause cancer phenotypes, but to be passenger mutations that do not 

contribute to selective growth advantage [170-172]. The challenge of identifying mutations that 

change cancer phenotype is especially difficult in the noncoding genome: whereas over 50 years 

of molecular genetics research has given cancer investigators a toolkit for understanding the 

deleteriousness of coding mutation, the same code book does not exist for noncoding mutations. 

Instead, anecdotal instances of oncogenic noncoding mutations in the cancer literature include a 

variety of mechanisms, including transcription factor binding site creation (or deletion) by point 

mutation [69-71,173,174], enhancer hijacking by structural rearrangements [72,175], or 

abrogation of chromatin neighborhoods by disruption of cohesion binding sites [176]. 

Considering this mechanistic diversity, we aim to increase our sensitivity for recovering 

functional noncoding mutations by focusing our analyses on point mutations that may 

appropriate regulatory elements from heterologous cell types by creation of transcription factor 

binding sites. 

As the importance of regulatory variation has become illuminated [41,177] several tools for 

detecting deleterious noncoding mutation have been developed in recent years. These tools 

implement empirical scoring algorithms and machine learning approaches to determining 

functional noncoding variants. These algorithms use a combination of negative selection 

[178,179], mutation recurrence [178], and/or functional element annotation data [179-182] (e.g. 

from the ENCODE Project [41]) to predict noncoding variant significance [183]. In the study 

presented here, we expand noncoding variant annotation to include the wealth of epigenomic 

data, now publically available, by resources such as the Roadmap Epigenomics Project 
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[177,184]. Epigenome annotation data allow us to investigate the hypothesis that somatic 

mutations might activate transcriptional regulatory programs not native to the tumor cell type of 

origin. 

One model of regulatory element-mediated oncogenesis in the literature is the cancer enhancer 

model (Figure 4.1). In the cancer enhancer model, coding mutations can have oncogenic effects 

by mis-regulation of the epigenome. For example, mutation of chromatin modifier genes (for 

example, mixed lineage leukemia (MLL) family genes) may adjust the affinity of transcriptional 

activators for cognate enhancers, driving over-expression of a proto-oncogene [185]. Alternately, 

in a tumor suppressor context, mutated chromatin modifiers may reduce affinity of trans-

activators for enhancers, in either case leading to tumor progression [185]. 

Analogously, we propose the cis-cancer enhancer model, whereby somatic mutation of 

regulatory elements changes their regulatory potential (Figure 4.1). The cis-cancer enhancer 

model predicts that functional noncoding mutation may activate transcriptional regulatory 

programs intrinsic to heterologous cells. In our model, noncoding somatic mutation might 

change the regulatory potential of an element by creating a binding site for a DNA-binding 

protein, subsequently allowing the protein to bind DNA and recruit other chromatin modifiers. 

Such activity is reminiscent of pioneer factor action, as has been demonstrated to occur in the 

context of breast cancer mutations that modulate FOXA1 binding [173].  

Accordingly, here we use epigenomic annotation from diverse cells and tissues to test the 

hypothesis that noncoding mutation activates regulatory elements used in heterologous cells. We 

find that after filtering, approximately 40.5% of noncoding variants fall in transcriptional 

regulatory elements. Subsequently, we find widespread potential gain or loss of transcription 
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factor binding sites, suggesting specific mechanisms by which noncoding mutation may 

influence cancer phenotype and progression. Lastly, we find that noncoding regulatory mutations 

in primary liver cancer (PLC) accumulate in promoters for genes involved in transcriptional 

misregulation in cancer, ERBB signaling, and MAPK signaling pathways.  

Genome-wide studies of regulatory mutation in cancer have analyzed noncoding mutation from a 

pan-cancer perspective [186-188]. These studies have found repeatedly a limited set of candidate 

noncoding variants that are responsible for phenotype in the pan-cancer context. Fewer have 

queried the effect of noncoding mutation in cancer on a single disease basis [68,73,189-193]. In 

the present study, we aimed to increase our specificity by focusing on a single disease. We chose 

to study PLC for two reasons: first, normal liver tissue is relatively homogeneous, making 

determination of regulatory elements easier. Second, there are many publically available liver 

cancer samples, and a large sample size is necessary in order to detect rare events.  
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4.5 Results 
4.5.1 Isolating Putatively Functional Noncoding SNVs 
The Catalog of Somatic Mutations in Cancer (COSMIC) project houses publically available 

cancer genetics data [194]. The repository includes data from a variety of diseases and various 

assay types (e.g. whole genome resequencing, ExomeSeq). For the present work, we used the 

noncoding variants dataset from the COSMIC Genomes project. 

To isolate putatively functional noncoding SNVs in the COSMIC dataset, we took a stringent 

filtering approach (Figure 4.2.a; Methods). After isolating noncoding SNVs from primary liver 

cancer (PLC) samples, we removed variants at positions of known population variants and kept 

only variants that were confirmed somatic (e.g. not observed in the matched normal genome) and 

that were discovered from whole genome resequencing (WGS) (Methods). We focused our 

analysis on WGS-derived variants because we wanted an unbiased interrogation of somatically 

mutated genome-wide regulatory elements.  

Next, we determined the distribution of noncoding SNVs per sample ID in COSMIC. 

Hypermutator phenotypes occur when DNA repair genes have been inactivated and DNA 

mutation occurs unchecked [195]. To remove noise due to hypermutation, variants from samples 

with the top 2.5% of SNVs/sample were removed (7 samples with 79817 total SNVs; Figure 

4.3a; Methods). This noncoding SNV filtering strategy resulted in 7893 noncoding SNVs from 

235 unique liver cancer samples in the COSMIC database. 

The same strategy applied to ExomeSeq noncoding variants returned 1,477,249 noncoding SNVs 

from 789 unique liver cancer samples (Figure 4.3b-c). 
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All analyses were run on filtered WGS and ExomeSeq SNV sets separately; however all results 

are for WGS-SNVs unless otherwise noted. 

4.5.2 Genome Feature Annotation of Noncoding SNVs in Liver Cancer 
Annotating noncoding SNVs by the UCSC known genes annotation set revealed that noncoding 

somatic mutations were markedly enriched in UTRs and promoters (Figure. 4.2b). Promoters 

and UTRs are sites with a high density of regulatory elements. Thus, noncoding SNVs that 

passed our filtering strategy were likely enriched in genome regions that host regulatory features.  

4.5.3 Epigenomic Annotation of Noncoding SNVs in Liver Cancer 
The Roadmap Epigenome Project generated reference epigenomic datasets for 111 primary 

human cell types and tissues [177]. Among the data generated were chromatin 

immunoprecipitation-sequencing (ChIP-seq) for various histone modifications. Histone ChIP-seq 

data for each tissue were then synthesized by the ChromHMM algorithm to produce a genome-

wide annotation of epigenomic status [177]. Other experiments included DNaseI-hypersensitivity 

sequencing and were conducted on a subset of tissues. 

DNaseI hypersensitive regions are enriched for transcriptional regulatory elements such as 

enhancers and promoters [51]. To validate that noncoding SNVs delivered by our algorithm were 

likely to be regulatory, we analyzed the SNV locations in the context of the Roadmap DNaseI 

hypersensitivity site (DHS) data. The catalog of DHS regions was collected from the 39 

Roadmap Epigenomes for which data were available, and the ChromHMM promoter or enhancer 

status of these DHS positions was queried in all 111 Roadmap Epigenome primary cell types. 

Notably, the single primary liver sample in the Roadmap Project did not have DNaseI 

hypersensitivity in the pan-Roadmap DHS site catalog. However, we wanted to determine if non-

liver regulatory element accumulated PLC noncoding mutations. Therefore, we partitioned the 
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DHSs into cell type-shared or cell type-restricted regions, as determined by the Roadmap Project 

analysis of DHS data (Methods). Then we assigned each SNV location to a DHS if it fell in a 

DHS peak as called by the Roadmap Project (Methods).  

Noncoding somatic PLC SNVs that passed filtering were found in DHSs were annotated as 

promoters more often than random expectation (Figure 4.2c). Both cell type-shared and cell 

type-restricted DNaseI-promoters were somatically mutated more than expected (2.06- and 1.88-

fold over expectation based on background, respectively). The enrichment for SNVs in cell type-

restricted DNaseI-promoters indicates that promoters not specific to liver sustain regulatory 

mutations in PLC. Enrichment of cell type-shared promoters reflects mutation of promoters for 

genes that are constitutively expressed. On the other hand, both cell type shared and cell type 

restricted DNaseI-enhancers were slightly depleted for somatic mutations (0.62-fold and 0.84-

fold compared to background expectation respectively). It is likely that the low fold enrichment 

for DNaseI-enhancers was due to the large expected value, as DNaseI-annotated enhancers 

accounted for a large percentage of genome base pairs.  

4.5.4 PLC SNVs are Enriched in Bivalent Chromatin Features 
We suspected analyzing enhancer chromatin states in finer detail would provide a more nuanced 

picture of the patterns of somatic regulatory mutation. Thus, we analyzed the filtered noncoding 

PLC SNVs in the context of the ChromHMM-18 state model for Roadmap Epigenome Project 

primary tissues. We tabulated the occurrence of liver cancer SNVs in each ChromHMM-18 state 

in each of the 78 cells and tissues for which data were available and compared this value to the 

expected number of SNVs, assuming a random mutation distribution (Figure 4.2d; Methods). 

Strikingly, we found elevated observed/expected values across most tissues analyzed in 

regulatory ChromHMM states, including active promoters (1_TssA), flanking promoter regions 
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(2_TssFlnk, 3_TssFlnkU, 4_TssFlnkD), genic enhancers (7_EnhG1, 8_EnhG2), and bivalent 

states (14_TssBiv, 15_EnhBiv), which have regulatory potential. Surprisingly, active enhancer 

states (9_EnhA1, 10_EnhA2) did not have elevated observed/expected values across most cell 

types. Again, this was likely because these enhancer states occupied a large fraction of the 

genome (34% of merged epigenome base pairs were annotated as potential enhancer state 

(active, weak, genic, and bivalent enhancer states) versus 8.4% annotated as potential promoter 

(active, flanking, and bivalent) (Methods).  

Specifically in liver annotations, we found elevated observed/expected values in active and 

flanking promoters states, genic enhancers, and bivalent states. The strongest enrichment was for 

the bivalent transcription start site (TSS) and bivalent enhancer states. Bivalent chromatin is best 

understood in the embryonic stem cell context, where simultaneous modification of nucleosomes 

by activating (H3K4me3) and Polycomb-repressive (H3K27me3) histone modifications is 

thought to keep promoters in a “poised” state until the cell further differentiates [196]. The 

function of bivalent domains in differentiated cells is less understood, but may enable the cell to 

respond quickly to environmental stimuli [197,198].  

Finding elevated SNVs at bivalent enhancers and promoters prompts the hypothesis that these 

liable regulatory sites may be central to transcriptional mis-regulation in PLC. For example, 

dysregulation of bivalent promoters has been shown to lead to oncogene activation in colorectal 

tumors [199]. Indeed, dysregulation of bivalent domains is a reported phenomenon in cancer 

genomes [200]. In a process called “epigenome switching,” the Polycomb-deposited repressive 

histone modification (histone 4 lysine 27 trimethylation) is aberrantly replaced by DNA 

methylation, which is relatively more stable [201]. It would be interesting to explore if the 
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accumulation of SNVs in bivalent domains is mechanistically linked to recruitment of DNA 

methyltransferases to these regions in cancer.  

Altogether, we find that 40.5% (3200/7893) of SNVs were found in regulatory elements from 78 

cell types and tissues genome-wide. Thus, analysis of candidate somatic noncoding mutations in 

epigenetically defined regulatory elements supports our hypothesis that noncoding somatic 

mutation may influence cancer phenotype by modulating regulatory elements. 

4.5.5 Patterns of Noncoding Somatic Mutation in Regulatory Elements 
Mirrors that of Coding Mutations in Genes 
Coding mutations in cancer display a stereotypic distribution across genes, where a few genes 

are recurrently mutated across patients, while a long tail of genes is rarely mutated [171]. This is 

true for most cancer types, even though the identity of the highly or lowly-mutated genes varies 

depending on the disease [186,202]. We hypothesized that the distribution of putatively 

functional regulatory element mutations might mirror the pattern of coding mutation. Indeed, 

plotting the number of candidate somatic mutations from the COSMIC PLC samples for each 

regulatory element mapped revealed a striking distribution: one regulatory element is mutated in 

16 patients, two regulatory elements are mutated in 7 patients each, and a long tail of individual 

elements are mutated in 1, 2, or 3 patients (Table 4.1). The most-mutated regulatory element is 

the TERT promoter, which was mutated 16 times at the same position in the ETS binding site, as 

has been previously reported in the literature [203].  

We sought to connect the candidate noncoding liver mutations to putative target genes. First we 

assigned the candidate SNVs to regulatory elements, epigenetically defined by the Roadmap 

Project (Methods). Next we assigned each SNV-containing regulatory element to putative target 

gene promoters (using a +/-35kb window [109]; Methods). Based on these target gene 
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assignments, we asked if some target genes have an elevated rate of mutated regulatory elements. 

We queried the collection of target gene regulatory elements -- their promoters and putative 

distal enhancers -- and tabulated the number of somatically mutated regulatory elements 

associated with each gene (Table 4.2). The distribution is qualitatively similar to that of coding 

mutations in cancer, where in a patient population, a few genes have several noncoding somatic 

mutations in their regulatory elements, while a long tail of genes have only one mutated 

regulatory element. 

Three genes had three putative regulatory elements with noncoding somatic mutations. One of 

these was C1orf61 (Figure 4.2e), which has been characterized as a tumor activator in 

hepatocellular carcinoma [204]. C1orf61 is located on 1q22, which experiences copy number 

amplifications in several cancers including hepatocellular carcinoma [204]. Investigation of the 

effect of upregulation of C1orf61 revealed that it was correlated with liver disease and HCC 

progression, and ectopic expression of C1ORF61 promoted cell proliferation, metastasis, and 

EMT [204].  

In our analysis, each of the three somatically mutated C1orf61 regulatory elements was found in 

three unique samples. Importantly, these samples were not recorded with 1q22 amplifications in 

the COSMIC database, indicating that noncoding regulatory mutation may upregulate C1orf61 in 

hepatocellular carcinoma in a similar tumorigenic manner as copy number amplification. We 

examined The Cancer Genome Atlas expression data for PLC samples and matched normal 

tissue [188] and found that C1orf61 expression was elevated in a subset of tumors (Figure 4.2f). 

Epithelial splicing regulatory protein 1 (ESRP1) also had three SNV-containing putative 

regulatory elements (Figure 4.2g). ESRP1 can promote the epithelial-to-mesenchymal transition 
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(EMT) by regulating alternative splicing of CD44 [205]. Knockdown of ESRP1 activity in breast 

cancer cells restored the non-EMT-inducing isoform of CD44 and suppressed metastasis [206], 

evidence that ESRP1 acts as an oncogene. ESRP1 acts as a master regulator of EMT in 

melanoma [207] and somatotroph adenomas [208]. However, upregulation of ESRP1 is 

correlated with fewer metastasis and better prognosis in pancreatic ductal adenocarcinoma [209], 

and acts a tumor suppressor in colorectal cancer [210], reflecting the cell type-specific nature of 

cancer genes [202]. 

The filtered PLC SNVs contained three mutations in regulatory elements whose putative target 

was ESRP1. TCGA expression data from PLC and matched normal samples showed that 27% of 

tumors had elevated expression of ESRP1 (Figure 4.2h). 

The gene with the most somatically mutated regulatory elements was MAP2K1, part of the 

mitogen-activated signaling pathway, which is a central regulator of cell growth. The five 

MAP2K1 regulatory elements found mutated in our data set contained seven unique mutated 

positions in seven samples. At time of writing, MAP2K1 has not been directly implicated in liver 

cancer; however the MAPK signaling pathway has been identified as important for PLC 

[211,212]. MAP2K1 has been identified as an occasional driver in non-small cell lung cancer 

[213], and sustained gain-of-function mutations in melanoma [214]. Variation among genes in 

the MAPK pathway predisposes to colon and rectal cancer, including susceptibility variants in 

MAP2K1 [215]. 

4.5.6 Regulatory Element-Annotated SNVs Cause Gain-of-Binding Site 
Events Upstream of Known Oncogenes 
Since our hypothesis was that noncoding somatic mutations might activate transcriptional 

regulatory programs from heterologous cell types, we predicted that functional noncoding 



 
 

140 

mutations in regulatory elements should result in gain-of-function genetic events. Such events 

may be evident as gain-of-binding site motifs for transcriptional trans-activators.  

To test this prediction, we conducted a systematic analysis of somatic SNVs in regulatory 

elements to look for gain-of-binding site events. First, we queried the COSMIC Cancer Gene 

Census for transcription factors (termed CGC-TFs), of which there were 93. For these factors, 

we searched the JASPAR and TRANSFAC motif databases for motifs that are bound by the 

cognate CGC-TFs; 106 motif position weight matrices (PWMs) were found, including motifs for 

heterodimers. Finally, for each of the 106 motif PWMs we constructed a position-specific 

scoring matrix (PSSM) and determined the threshold PSSM value for a false-positive rate of 

0.001 (Figure 4.4a; Methods).  

We then analyzed each SNV from the filtered COSMIC noncoding variant set that occurred in a 

regulatory element for its ability to modulate the motif PSSM score. For each SNV, we 

generated in silico wildtype and mutant alleles, using hg19 as the reference (wildtype) allele. 

Each pair of alleles was scored against each CGC-TF PSSM to obtain a log-odds ratio score 

compared to a background of genomic nucleotide frequencies; only scores passing the CGC-TF-

specific threshold were retained.  

We determined the delta value for each pair of PSSM scores by subtracting the mutant allele 

score from the wildtype score (Figure 4.5a,b). To enrich our dataset for events with high effect 

size, we kept only pairs of CGC-TF motif scores where at least one score (wildtype or mutant) 

was log odds score over background ≥ 2. The resulting distribution reveals that 1234 pairs of 

wildtype-mutant alleles from whole genome-resequenced samples create potential gain-of-

binding site events, in which the mutant allele score is higher than the wildtype allele score for a 
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particular CGC-TF (Figure 4.4b; Figure 4.5c). 1393 allele pairs represent potential loss-of-

binding events, where the wildtype allele score was greater than the mutant allele score. Allele 

pairs residing in promoter regions from ExomeSeq samples resulted in 25600 and 29410 gain 

and loss of binding sites, respectively. Thus we find a substantial number of potential gain-of-

binding site events from candidate noncoding somatic mutations. 

We examined the gain-of-binding site candidates for evidence of oncogenic events. The mutation 

event with the highest effect size in our dataset was a noncoding mutation in the last intron of 

ZFAS1 lncRNA (Figure 4.6a). The ZFAS1 mutated position is annotated as a genic enhancer in 

human Mammary epithelial cells (vHMEC) cells by ChromHMM. This T>G mutation creates a 

strong JUND binding site where the reference sequence is less likely than background to bind 

JUND (wildtype allele = -0.12; mutant allele = 14.75). Importantly, ZFAS1 is known to promote 

metastasis in hepatocellular carcinoma [216,217]. ZFAS1 is a regulator of normal mammary 

gland development, where it inhibits miR-150, which in turn inhibits ZEB1 [216], a regulator 

EMT [218]. When ZFAS1 is upregulated in HCC, it acts as a sponge to decrease the 

concentration of miR-150, thereby upregulating ZEB1, which induces tumor cell invasion and 

metastasis in in vitro and animal models [217]. 

Since many SNVs from whole genome-resequenced PLC samples did fall in promoter regions, 

and promoters are often captured in ExomeSeq data, we expanded the motif mutation analysis to 

promoter ExomeSeq variants from COSMIC PLC samples. Among the ExomeSeq SNVs, we 

find a COSMIC patient sample with an A>T mutation in the FGF5 promoter that creates a MYC 

binding site (Figure 4.6b). The somatic mutation creates a binding site where the reference 

sequence is slightly less likely than background to bind MYC (wildtype allele = -0.2; mutant 
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allele = 12.9). FGF5 is a known oncogene in glioblastoma where it promotes proliferation and 

inhibits apoptosis [219]. 

Thus, at least two known oncogenes were recovered in our gain-of-binding candidate somatic 

mutations. These events suggest that noncoding mutation may mimic oncogenic coding 

mutations by upr-egulating proto-oncogenes. Importantly, such gain-of-function mutations may 

occur at regulatory elements not annotated in the cancer tissue-of-origin (in this case liver) but in 

regulatory elements active in other cell types (for example, ZFAS1 in breast tissue). 

4.5.7 Noncoding Mutations Add to Pathway Level Mutation Burden 
An important aspect of cancer genomics is that deleterious mutations can inactivate a pathway at 

several points [202]. For example, in colorectal cancer, BRAF mutations are mutually exclusive 

with mutations in KRAS [220], indicating that a single alteration of the activity of a pathway 

member is sufficient to induce misregulation of that pathway. We suggest that the positions of 

deleterious somatic mutation can be used to probe pathways affected by somatic mutation. When 

considering the noncoding genome, we hypothesized that accumulation of noncoding somatic 

mutation in the transcriptional regulatory regions of genes belonging to a single pathway may 

indicate pathways with a significant noncoding mutation load in a population of liver cancer 

patients. 

To identify pathways with significant noncoding mutation burden, we first obtained cancer-

related pathways as reported in the pan-cancer literature [202] and in liver cancer-specific reports 

[211,221]. For each pathway, gene lists were collected from publically available databases [222-

224]. We then used SNVs assigned to promoters to tabulate the genes hit by somatic regulatory 

mutation in liver cancer, and identified pathways with a significant noncoding regulatory 

mutation load in the population of samples tested (Figure 4.7; Methods). 
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In the ExomeSeq data, the most significantly hit pathway was “Transcriptional misregulation in 

cancer” (KEGG; p-value = 2.67e-11) (Figure 4.7, blue box), a positive result. The next most 

significant pathway hit was MAPK signaling (p-value = 3.81e-6) (Figure 4.7, purple box; 

Figure 4.8). This result was consistent with the finding that five MAP2K1 regulatory elements 

were mutated (see above). Additionally, the MAPK pathway is a central regulator of cell growth, 

so mis-regulation of the MAPK pathway in cancer is not surprising: our data suggest that 

noncoding mutation may impact MAPK pathway function. Last, the ERBB signaling pathway 

was significantly mutated (p-value = 1.14e-4) (Figure 4.7, green box; Figure 4.9).  

SNVs from whole genome resequenced PLC samples had fewer pathways significant hit, as the 

sample size was much smaller. However pathway hits were consistent with the larger, ExomeSeq 

SNV set. The MTOR signaling pathway was the most significant pathway mutated in this sample 

set (p = 8.10e-4) (Figure 4.7, gold box). This pathway shares several gene members with the 

ERBB pathway. Additionally, the ERBB signaling pathway was just under the threshold for 

significance for the WGS SNV set, after correcting for multiple-testing. We anticipate that more 

samples would replicate the ERBB enrichment result seen for the ExomeSeq SNV set. 
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4.6 Discussion 
Cancer is initiated by sequential somatic mutation until a cell acquires a selective growth 

advantage and becomes malignant [170,172,225]. Most characterized somatic mutation is to 

coding genes, either activating proto-oncogenes or inactivating tumor suppressor genes, and is 

readily identified by sequence-based methods that detect changes to open reading frames. 

However, the majority of somatic mutation occurs in noncoding regions [68,171]. Identifying the 

small fraction of noncoding somatic mutation that has a phenotypic effect remains a challenge, 

as changes to noncoding regulatory DNA are less straightforward to interpret. 

While difficult to detect, mounting evidence suggests that noncoding somatic mutations can act 

as cancer drivers. Amplification of a locus hosting a proto-oncogene is a common oncogenic 

mechanism: the ERBB2 locus is amplified in breast cancer [226] and EGFR in glioma 

multiforme [227,228]. Similarly, amplification of a super-enhancer drives overexpression of 

oncogenes such as MYC and KLF4 in epithelial cancers [229]. Other structural rearrangements 

place an enhancer near novel oncogenes, such as GFI1 and GFI1b in subtypes of 

medulloblastoma [72]. Point mutations can also be detrimental, especially in solid tumors [202]. 

Point mutations that abrogate cohesion binding sites disrupted chromatin neighborhoods, 

resulting in mis-regulation of proto-oncogenes by enhancers in neighboring chromatin 

neighborhoods in T-ALL [176]. In addition, point mutations may create transcription factor 

binding sites near oncogenes, as has been well-documented at the TERT promoter in melanoma, 

breast cancer, liver cancer, and other diseases [69,71,230-232]. 

Here we describe an algorithm for filtering noncoding somatic mutation data to arrive at 

potentially functional SNVs. Our algorithm relies on an empirical measure of hypermutation to 

remove extremely noisy cancer genomes. Subsequently, epigenomic annotation of variants 



 
 

145 

informed which variants had the potential to modulate transcriptional regulatory states: we found 

40.5% of filtered variants occurred in regulatory states in one of the 78 Roadmap Project primary 

cell and tissue types analyzed. SNVs in liver cancer kept from our filtering method were 

enriched in regulatory states, especially active promoter states, genic enhancers, and bivalent 

enhancers and promoters. 

The distribution of functional coding mutations per gene in a population tend to be highest in a 

few, specific genes that vary by disease, while many genes will be infrequently mutated in a 

population [186,233]. Genes highly recurrently mutated in a disease population are expected to 

be potent cancer drivers. Alternately, low-frequency recurrently mutated genes are thought to 

drive cancer by mitigating specific pathways; that is, a single pathway may be mutated in several 

different ways (by mutation of different genes) across individual patients [170,234]. We 

hypothesized that noncoding mutation may follow a similar pattern.  

We were not surprised that the TERT promoter mutation remained the strongest signal in terms 

of mutation recurrence. However, by continuing to probe the publically PLC samples, we were 

able to find new, moderately strong signals, including recurrent regulatory mutations for 

C1orf61, ESRP1, and MAP2K1. By assigning SNV-containing regulatory elements to putative 

target genes, we showed that the distribution of noncoding mutations in regulatory elements for 

specific genes qualitatively mirrors that of coding mutations.  

Pathway level analysis is increasingly an important way to interpret cancer mutations 

[171,189,202,235]. Genes with a low frequency of coding mutations in a population can still 

have a functional effect in an individual, and aggregating these low-frequency mutated genes has 

been used to identify pathways deregulated in hepatocellular carcinoma [212,221,236-238]. To 
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ask if noncoding mutations accumulated across samples at regulatory elements for genes of 

specific pathways, we examined somatically mutated promoters in the context of cancer-

involved biological pathways. We found significant involvement of mutated promoters for 

MAPK signaling, ERBB signaling, MTOR signaling, and transcriptional mis-regulation in 

cancer pathways.  

The result of our pathway analysis is consistent with literature that reports MTOR and MAPK 

pathway activation in HCC [237]. Hepatocyte proliferation is spurred in cirrhotic liver cells by 

activation of the MAPK pathway via transforming growth factor-α or insulin-like growth factor-

2 [239]. ExomeSeq studies of HCC samples have also identified the mTOR and MAPK 

pathways as significantly enriched for coding mutations [212,221,236]. Indeed, both the mTOR 

and MAPK pathways are well known to be involved in several cancers via coding mutation 

[171,202]. 

Our analysis suggests noncoding mutations might burden the same pathways as coding 

mutations. In the future, it will be important to explore new, unanticipated pathways that have a 

high somatic noncoding mutation load. Additionally, including distal enhancers in this analysis 

can increase the sensitivity and specificity of analyzing regulatory element mutation burden 

effects at a pathway level; however more robust and reliable distal regulatory element to target 

promoter assignment is needed for the analysis to have a reasonable signal to noise. 

One way noncoding mutation can influence phenotype is by altering transcriptional regulation, 

for example, by modulating transcription factor binding site affinities. We found that 15.6% of 

whole genome resequenced candidate SNVs created putative gain-of-binding site events while 

17.6% resulting in potential loss-of-binding site events. Thus, once a stringent algorithm was 
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applied to noncoding mutation, a significant amount of noncoding mutation had a potential effect 

on transcriptional regulation. Our method recovered transcriptional regulatory alterations at 

known oncogenes (FGF5) and at cell biological pathway genes that are important for tumor cell 

biology (ZFAS1 and tumor cell invasion). 

As we gain a better understanding of how noncoding somatic mutation alters transcriptional 

regulation, it will be important to incorporate noncoding somatic mutation information into 

algorithms that predict network-level mutation burden [240]. Eventually, such information might 

better inform differential diagnosis and therapeutic recommendations. 
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4.7 Methods 
4.7.1 Filtering COSMIC Noncoding Variants 
COSMIC v77 noncoding variants file <CosmicWGS_NCV.tsv.gz> and the sample metadata file 

<CosmicWGS_SamplesExport.tsv.gz> were downloaded from the COSMIC database 

(http://cancer.sanger.ac.uk/cosmic) (13 July 2015) [194]. Noncoding SNVs were then parsed as 

follows (see also Figure 4.1a): 

1. Using custom python code, filter variants for: 

1.1. Variant’s sample ID had primary site metadata for as “liver” 

1.2. Variant not annotated as known variant position in (e.g. in dbSNP or 1000 

Genomes; see ref. [194]) 

1.3. Variant is a confirmed somatic mutation (e.g. was not observed in matched 

normal sample) 

1.4. Variant is from a whole genome resequenced sample 

2. Then find the distribution of variants per sample. Based on the distribution: 

2.1. Define hypermutated samples as those above the percentile on the ordered set of 

SNVs / sample where the rate of change between percentiles is the greatest (0.5% 

resolution). This was the top 2.5% samples. 

2.2. Remove variants from hypermutated samples. 

A similar strategy was used for filtering ExomeSeq derived variants by modifying step 1.4 above 

(Fig. 3b-c). 

4.7.2 ChromHMM-18 Enrichment 
ChromHMM-18 Segmentation Data 
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ChromHMM-18 segmentations by the Roadmap Project on hg19 were downloaded from the 

Roadmap Project data repository 

(http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state; mnemonics 

bedfiles archive). Each of the 78 (non-ENCODE cell lines) mnemonics bed files were parsed 

using custom python code for each EID and each ChromHMM-18 state. 

Calculating observed, expected values of filtered noncoding SNVs in ChromHMM-18 
segmentations 
For the set of 78 EIDs’ ChromHMM-18 bedfiles, bedops annotateBed function was used to 

determine the overlap of filtered noncoding SNVs with each ChromHMM-18 state. The total 

expected SNVs in state m in cell type (EID) n was calculated using custom R code as in Equation 

4.1. 

!!,! =  !"!#$ !"#$ × !"!#$ !!!"#$%% !""#$!$%& !" !"# !"#"$ ! !" !"## !"#$ !
!"!#$ !!!"#$%% !""#$!$%& !" !" !"## !"#$ !   (Equation 4.1) 

Then the total observed SNVs in state m in cell type n was tabulated and compared to 

expectation to create plot in Figure 4.1d. 

4.7.3 DNaseI Shared Versus Restricted Regulatory Elements 
Delineation of DNaseI-accessible regulatory regions” data were downloaded from the Roadmap 

Epigenome Project data repository 

(http://egg2.wustl.edu/roadmap/web_portal/DNase_reg.html#delieation; RData files (hg19 

coordinates)). Shared or restricted determination for each DNaseI region was made using the k-

centroid clustering algorithm results provided by Roadmap (text files for order of modules at the 

same URL). Overlap of filtered COSMIC noncoding SNVs with regions in each DNaseI cluster 

was done in R using GRanges package and custom R code. 
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4.7.4 Regulatory Element Annotation 
Cosmic noncoding SNVs kept after filtering were annotated using the UCSC Known Genes track 

and the GenomicFeatures R package functions and custom R code. 

4.7.5 Assigning Noncoding Regulatory SNVs to Target Gene Promoters 
SNV-to-regulatory element assignment 
First we constructed a merged regulatory epigenome: The merge of all 78 ChromHMM-18 states 

was compiled (for autosomes only). For each 200bp window in the ChromHMM-18 annotations, 

a regulatory classification of enhancer, promoter, transcribed, or inert was given based on 

observations in the 78 ChroMHMM-18 annotations. Priority was as follows: assignment to 

enhancer states (states 7,8,9,10,11, and 15); promoter state (states 1,2,3,4, and 14); transcribed 

states (states 5 and 6); inert states (states 12,13,16,17, and 18). Filtered SNVs were assigned to 

overlapping ChromHMM-18 state regulatory element annotations (enhancer and promoter state 

regions only) using bedtools. Adjacent regulatory elements were merged and the total number of 

Cosmic noncoding SNVs / full-length element counted using a custom python script. Regulatory 

elements multiply mutated in the same sample ID were counted as mutated twice, except in the 

case of adjacent SNVs, which were counted a single nucleotide mutation. 

Regulatory element-to-target gene assignment 
The TxDb.Hsapiens.UCSC.hg19.knownGenes R package was used to construct a transcript 

database (TxDb) of UCSC known genes. Filtered PLC SNVs were assigned regulatory elements 

using custom python code. SNV-regulatory elements assignments were read into into R as 

GRanges object. The start and end of the regulatory elements’ intervals were extended by +/-

35kb [109] and overlap with UCSC known promoters was found using the GenomicRanges 

package mergeByOverlaps function. 
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4.7.6 Motif Mutation Analysis 
Identifying cancer-related TFs and their motifs 
Searched PUBMED for transcription factors using the search terms “("transcriptional activator" 

OR "transcriptional repressor") AND ("transcription factor") AND ("DNA-binding") AND 

"Homo sapiens"[porgn:__txid9606]”. The resulting list of transcription factor genes was cross-

listed the PUBMED-TF set with Cancer Gene Census list [194]. The resulting CGC-TFs list was 

queried to against JASPAR [241] and TRANSFAC [242] databases to find any motif that is 

bound by CGC-TFs (106 motifs including heterodimers). For each CGC-TF motif, the position-

specific scoring matrix (PSSM) was determined using Biopython tools [243], and threshold 

PSSM was determined at FPR = 0.001. 

Motif scanning on wildtype and mutated allele sequences 
Sequences were generated for wildtype (hg19 reference) and tumor alleles using custom python 

code and Biopython modules. For each allele, and for each CGC-TF motif, the log-odds PSSM 

score that the allele creates the given motif site compared to background nucleotide frequencies 

was determined using Biopython tools and custom python code. Only PSSM scores above the 

CGC-TF-specific FPR threshold were kept. 

Data were then curated to keep only predicted motif-altering instances with a reasonable effect 

size: pairs of alleles must have had a PSSM log-odds score >= 2 in at least one allele. The delta 

value was computed for each pair of wildtype-mutant alleles where delta = mutant allele score – 

wildtype allele score. 

4.7.7 Pathway Analysis 
For each set of SNVs (WG resequenced or ExomeSeq derived), SNVs were filtered to retain 

only those in UCSC Known Gene promoter regions (-2000bp, +500bp from TSS). Gene names 

of these promoters were retained. List of pathway gene members was downloaded from the 
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Molecular Signatures database (MsigDB) [224] (v5.1); pathways selected were from the KEGG 

[222] or Amigo [223] databases. The retained genes list was intersected with each pathway gene 

list, and the number of overlapping genes were counted as “hits”. 

4.7.8 Binomal Test 
A one-sided binomial test was conducted using R for each pathway overlap hits count, where k = 

number of overlapping genes, n = number of promoters hit by SNV set, p = corrected length of 

pathway gene list / promoters for UCSC Known Genes (“corrected” as some of the gene symbols 

in the downloaded pathway gene lists were not present in the UCSC Known Genes track). 

Bonferroni-correction was used to determine significant p-values. 
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Figure 4.1. Models for regulatory element involvement in cancer. In the trans-model of 

cancer enhancers, somatic mutation to a chromatin modifier gene, here MLL3/4 (red pentagon), 

results in that chromatin modifier binding more tightly to a DNA-bound transcription factor 

(yellow oval) and aberrantly creates a persistently open chromatin state, up-regulating the target 

gene. In the cis-model of cancer enhancers, a somatic mutation to a noncoding regulatory 

element (orange bar) creates the same open chromatin state, perhaps by creating a binding site 

for a transcription factor that is recruited to the locus and facilitates opening local chromatin.  
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Figure 4.2. PLC SNVs occur more often than expected in heterologous cell type-specific 

regulatory elements. (a) Filtering strategy for SNVs from whole genome resequenced samples 
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in COSMIC. (b) Annotation of filtered SNVs by UCSC known genes. (c) SNVs in cell type 

restricted or shared DNaseI promoters or enhancers. Y-axis is fold observed over expected, 

based on background distribution of cell type restricted or shared DHSs. (d) Observed versus 

expected SNVs in each ChromHMM-18 state in each of the 78 Roadmap cells and tissues with 

available data. Orange dot is primary liver sample (Roadmap E066); gray dots are the other 77 

Roadmap samples; black line is 1. (e) Browser view of C1orf61 locus and three regulatory 

elements mutated in three unique samples. The top track is the Epilogos track 

(http://compbio.mit.edu/epilogos/), which provides a visualization of the chromatin state models 

for several cell types at once. The presented track depicts the ChromHMM-18 state model 127 

Roadmap cell types (primary and cell lines) at a 200bp resolution. Red and orange colors 

represent active promoter annotations; light green and yellow colors represent genic enhancers 

and enhancers, respectively; pink and beige are bivalent states; grays are repressed Polycomb 

states. Middle track: Positions of PLC WGS SNVs (red lines) on a yellow background. Bottom 

track: RefSeq genes track. (f) Expression from TCGA PLC tumor and matched normal samples 

for C1orf61. Red line = median expression for normal samples. (g) Browser view for ESRP1 and 

three regulatory elements mutated in three unique samples. Tracks are as in (e). (h) Expression as 

in (f) for ESRP1.  
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Figure 4.3. Data filtering strategy. (a) Top: For COSMIC PLC samples with whole genome 

resequenced data, each percentile (x-axis) was plotted against the number of SNVs (y-axis). 

Bottom: Samples ordered from fewest to largest number of SNVs. Red line = cutoff at the 

greatest rate of change between percentiles. (b) Filtering strategy for COSMIC PLC samples 

with ExomeSeq data. (c) Same as (a) but for SNVs from PLC samples with ExomeSeq-derived 

SNVs. 
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Figure 4.4. Systematic motif detection identifies oncogenic TFBS gain-of-binding events. (a) 

Analysis pipeline for detecting motifs from wildtype and mutant allele sequences. (b) Histogram 

of delta values for WGS SNV allele pairs after filtering to keep only allele pairs with at least one 

motif score of absolute value ≥ 2. 
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Figure 4.5. Delta values from systematic motif detection. (a) Delta values (mutant allele log-

odds score – wildtype allele log-odds score) for WGS SNVs before applying threshold criteria. 

a 

b

c

Supplemental Figure S2 
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(b) Same as (a) but for ExomeSeq SNVs. (c) ExomeSeq SNVs after applying threshold criteria 

(at least one score ≥ 2 log-odds over background). 
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Figure 4.6. Gain-of-binding site events at known oncogenes. (a) ZFAS1 locus. SNV occurs in 

the last intron creating a JUND binding site. (b) FGF5 locus. SNV in the promoter creates a 

MYC binding site.   
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Figure 4.7. Liver cancer SNV pathway enrichment. Right: Heat map of 25 pathways tested. 

Color intensity represents the significance of enrichment (–log10(P-value)) for PLC SNVs in 

promoters that are found in genes for each pathway. WGS = whole genome resequencing-

derived PLC SNVs; ExomeSeq = ExomeSeq-derived PLC SNVs. Left: Colored boxes depict a 

sample of top hits from significantly enriched pathways. Genes listed have the most recurrently 

hit promoters for the given pathway. Green box = ERBB signaling pathway; blue box = 

transcriptional misregulation in cancer; purple box = MAPK signaling pathway; gold box = 

MTOR signaling pathway. 
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Figure 4.8. KEGG pathway map for MAPK signaling pathway (hsa04010). Red boxes are 

genes that have SNV promoter mutations in PLC data. Constructed using Pathway Painter [244]. 
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Figure 4.9. KEGG pathway map for ERBB signaling pathway (hsa04012). Red boxes are 

genes that have SNV promoter mutations in PLC data. Constructed using Pathway Painter [244]. 
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Table 4.1. Number of SNVs per regulatory element. 

Number SNVs per element 
Number of regulatory 

elements 
1 3035 
2 43 
3 6 
4 2 
5 1 
7 2 
16 1 
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Table 4.2. Number of genes with SNV-containing putative regulatory elements. 

Number SNV-containing 
regulatory element per gene 

Number of genes 

1 1031 

2 52 

3 3 

5 1 

 

  



 
 

166 

4.8 Datasets and URLs 
 
Dataset Description Filename URL Version 

Download 
Date Ref. 

COSMIC 
Whole 
Genomes  

Noncoding 
variants 

CosmicWGS_
NCV.tsv.gz 

http://cancer.sanger.ac.
uk/cosmic 

v77 13-Jun-16 [194] 

COSMIC 
Whole 
Genomes  

Sample 
metadata 

CosmicWGS_S
amplesExport.t
sv.gz 

http://cancer.sanger.ac.
uk/cosmic 

v77 14-Jun-16 [194] 

ChromHMM-
18 
segmentation 

Mnemonics bed 
files 

mnemonics.bed http://egg2.wustl.edu/r
oadmap/web_portal/ch
r_state_learning.html#
exp_18state 

ChromH
MM-18 

10-Mar-16 [177] 

ChromHMM-
18 
segmentation 

State by line 
files 

all.statesByLin
e.tgz 

http://egg2.wustl.edu/r
oadmap/web_portal/ch
r_state_learning.html#
exp_18state 

ChromH
MM-18 

10-Mar-16 [177] 

DNaseI 
delineation 

Promoter state 
calls 

state_calls_pro
m.RData 

http://egg2.wustl.edu/r
oadmap/web_portal/D
Nase_reg.html#delieat
ion 

 4-Apr-16 [177] 

DNaseI 
delineation 

Enhancer state 
calls 

state_calls_enh.
RData 

http://egg2.wustl.edu/r
oadmap/web_portal/D
Nase_reg.html#delieat
ion 

 4-Apr-16 [177] 

Cancer Gene 
Census 

Cancer-related 
genes 

CosmicCGC.cs
v 

http://cancer.sanger.ac.
uk/census 

v77 13-Apr-16 [194] 

JASPAR Nonredundant 
vertebate 
JASPAR 
CORE motifs 

jaspar_vertebrat
es_nonredudnta
nt.pfm 

http://jaspar.genereg.n
et 

JASAPR 
2016 

21-Mar-16 [241] 

TRANSFAC Transcription 
factor motifs 

TRANSFAC.ta
r 

http://www.gene-
regulation.com/pub/da
tabases.html 

 11-Oct-06 [242] 

MSigDB 
Collections 

Selected KEGG 
and Amigo 
pathways 

various http://software.broadin
stitute.org/gsea/msigd
b/collections.jsp 

v5.1 8-Jul-16 [222-
224] 

TCGA Gene 
expression 

Gene 
expression 
quantification 
for Liver 
hepatocellular 
carcinoma 
samples and 
matched 
normal 

c035a280-e2be-
4844-8ef8-
6340746a8c91.t
ar 

https://tcga-
data.nci.nih.gov/docs/
publications/tcga/ 

 28-Apr-16 [188] 

Human 
Genome 
Reference 
Consoritum 

Assembly 
statistics for 
hGRC37 

n/a http://www.ncbi.nlm.n
ih.gov/projects/genom
e/assembly/grc/human
/data/ 

hGRC37.
p13 

n/a  
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Chapter 5 

Evolution of Epigenetic Regulation in 
Vertebrate Genomes 
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5.2 Abstract 
Empirical models of sequence evolution have spurred progress in the field of evolutionary 

genetics for decades. We are now realizing the importance and complexity of the eukaryotic 

epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes 

to human, comparative analyses are still relatively few, and computational algorithms to quantify 

epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution 

remains to be established. Here we review the comparative epigenomics literature and synthesize 

its overarching themes. We also suggest one mechanism, transcription factor binding site 

turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we 

propose a framework for how the field can move forward to build a coherent quantitative model 

of epigenome evolution.  
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5.3 Comparative Epigenomics as a Tool to Explore 
Epigenome Evolution 
The epigenome is an integral part of genome biology, comprised of DNA modifications, most 

notably 5-methylcytosine (DNA methylation), histone post-translational modifications, and 

nucleosome positioning (Figure 1). The epigenome is crucial for proper gene regulation [246], 

genome integrity [247], dosage compensation [248,249], and proper development [4] across 

eukaryotic phyla. Nevertheless, an empirical model of epigenome evolution has yet to be 

established. Decades of interrogating the chromatin remodeling of specific loci over 

development and across species provide early examples of comparative epigenomics, defined 

here as the comparison of epigenetic status between syntenic regions.  

Comparative epigenomics is based on determining epigenetic conservation: two homologous 

sequences that host similar epigenetic modifications in homologous cell types (Figure 5.2). The 

homologous loci may be orthologous in distantly related species or paralogs in the same genome. 

It follows that epigenome comparison requires determination of sequence homology, epigenetic 

status, and biological homology between two species [250]. 

This review focuses on what comparative epigenomics has taught us about vertebrate epigenome 

evolution, although comparisons with invertebrate and plant epigenomes have been invaluable to 

build a full picture of epigenetic regulation [251-253]. Additionally, the focus is confined to the 

use of comparative epigenetics, which can reveal epigenetic regulatory features by identifying 

regions of conserved and divergent epigenetic status across phyla, to understand gene regulation. 

Lastly, the scope of this review is constrained by the scope of comparative epigenomics studies 

in existing literature. Figure 5.1 outlines common epigenetic marks and related assays that are 
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covered in this review, along with a representative example of the data and the interpretation of 

the epigenetic situation in a cartoon. 

The arrival of high-throughput sequencing (HTS) technologies and genome-wide biochemistry 

experiments has moved the study of the epigenome into the ‘omics’ era. With HTS tools and 

databases of thousands of epigenome mapping experiments across thousands of eukaryotes 

[254], the field can begin to create models of epigenome conservation and divergence and 

interpret the biological meaning behind these signals.  
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5.4 Epigenome Evolution at Orthologs 
Rooted in a strong theoretical foundation [255], comparative genomics enables the identification 

of conserved sequences, elucidating functional genomic elements [35,256]. However, not all 

functional genome regions are conserved [36,257] suggesting other genomic features are 

responsible for adaptive gene regulation [258,259]. Two possible explanations for non-conserved 

functional elements are the limitation of sequence alignment algorithms [260] or that these non-

conserved regions can serve as genuine species- or lineage-specific (a genetic or epigenetic 

feature specific to an evolutionary lineage) regulatory elements [1,258,261]. Accordingly, 

experimental approaches have shown many non-conserved sequence elements are gene 

regulatory [2,39,262].  

Pioneering work in comparative epigenetics detail the structure and function of chromatin and 

epigenetic modifications at orthologous loci across model organisms. Well-studied 

developmental loci including the insulin-like growth factor 2 receptor locus, macrophage colony-

stimulating factor, and the beta-globin locus, exhibit conserved epigenetic status [42,263,264], 

transcription factor regulation [42,264-266], and function [42,266,267] across species. Taken 

together, analysis of the sequence and epigenetic conservation at these loci suggests that 

epigenome comparison is a viable method for identifying elements modulating gene regulation. 

From the above observations, it can be postulated that epigenetic features are correlated with 

underlying sequence features (Figure 5.2). This review presents evidence both for and against 

this hypothesis in an effort to establish a framework for epigenome evolutionary studies. 
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5.4.1 Vignette: Locus-Specific Example of Epigenome Evolution: the c-FMS 
Locus 
Macrophage colony stimulating factor receptor (c-FMS) expression marks hematopoietic 

commitment to the myeloid fate. Alternate first exons accompany transcripts in placental 

trophoblasts, and c-FMS is also an oncogene. Accordingly, c-FMS is subject to specific 

transcriptional regulation. The c-FMS locus in human and mouse have high sequence identity, 

especially at each alternative promoter and two intronic enhancers [264,268]. Despite high 

sequence conservation, c-FMS regulatory regions are bound by the same ensemble of TFs, but in 

different arrangements, along with some species-specific TFs [264]. However, the TF ensembles 

recruit the same chromatin remodeling factors in each species (Brg-1, HDAC) and drive the 

same transcriptional output in a cell-type and developmental- specific manner [264]. This 

example supports the hypothesis that evolutionarily conserved regulation may be driven by 

evolutionarily conserved regulatory element sequence and transcriptional programs, although 

there exists inter-species variability in the execution of such a program. 

5.4.2 Relative DNA Methylation Conservation Across Sequence Contexts 
Analysis of epigenetic marks at paralogs allows for studying epigenetic evolution without the 

confounding environmental variability that exists in inter-species comparisons [269]. In the 

human genome, 78% of paralogous CpGs had an absolute DNA methylation difference of 20% 

or less [269]. Thus duplicons tend to retain their DNA methylation signature, supporting the 

hypothesis that epigenetic features are correlated with underlying sequence (Figure 2). 

When comparing genome wide DNA methylation levels between species, 70-74% and 80-82% 

similarity was found in peripheral blood and prefrontal cortex, respectively in the great ape 

somatic tissues [270,271]. Correlation coefficients from inter-species pairwise comparisons of 

whole genome bisulfite sequencing (WGBS) data from primate blood samples show agreement 
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with species phylogeny [271], suggesting DNA methylation variation is related to sequence 

variation. 

However, pairwise correlations of DNA methylation levels between species showed only 

moderate concordance at individual CpGs. For example, examination of primate peripheral 

blood samples using the Illumina Methylation450 array showed 22% of probes covering 

orthologous CpGs were not significantly different among human, chimp, bonobo, gorilla, and 

orangutan (mean beta-value difference of < 0.1) [270]. What accounts for individual CpG 

methylation level variance between species? 

To test how DNA methylation status varies with sequence, regions of incomplete lineage sorting 

(ILS), where the sequence genealogy is different from the known species phylogeny were used 

[271]. An example of an ILS would be an orthologous region in humans that is more similar in 

sequence to gorilla than chimp. The authors isolated 360,000 CpGs in ILS regions from human, 

chimp, gorilla, and orangutan. Strikingly, DNA methylation patterns over ILS regions followed 

the sequence relationships, suggesting a physical dependence of DNA methylation status at ILS 

regions on sequence variation [271]. Additionally, most of the 570 human-specifically 

methylated regions were distal to transcription start sites (TSS) and showed accumulation of 

nucleotide substitutions [271], suggesting that methylome evolution may be coupled to sequence 

evolution at regulatory elements.  

5.4.3 Relationships between Histone Post-Translational Modification 
Conservation and Sequence Conservation  
Comparative studies of histone posttranslational modifications (PTM) show that not all orthologs 

have conserved epi-mark status. Comparative analysis of H3K4me2 chromatin 

immunopreciptation (ChIP) followed by microarray (ChIP-chip) over two orthologous loci in 
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mouse and human lung fibroblasts showed that functional conservation of histone methylation 

did not correlate with elevated sequence conservation [31]. Unlike in species-specific DNA 

methylated regions, human cortex-specific gains of H3K27ac or H3K4me2 did not have 

concomitant accelerated sequence evolution compared to rhesus macaque and mouse brain 

cortex samples [272]. 

The first study to calculate epigenetic conservation explicitly in the context of sequence 

evolution analyzed a panel of epigenomic features in human, mouse, and pig embryonic stem 

cells (ESCs) [273]. The authors quantified epigenetic conservation between two species for a 

given epigenetic mark as the ratio of observed orthologous nucleotides conserved for that epi-

mark over expectation. They then calculated the epigenetic conservation score for each 

modification over a range of binned PhyloP scores, a proxy for nucleotide substitution rate [274]. 

It was found that regardless of species being compared, epigenetic score profiles fell into three 

distinct patterns. First, subsets of epi-marks (Polycomb deposited H3K27me3 and promoter-

associated H3K4me3) were conserved more often than expected at orthologous regions with low 

substitution rates, agreeing with the hypothesis that epigenetic conservation is correlated with 

genetic conservation. Second, three marks (DNA methylation, gene body-associated H3K36me3, 

and enhancer-associated H3K27ac) were enriched for conserved nucleotides over orthologous 

sequences with reduced substitution rate and sequences with an accelerated substitution rate in 

the human genome. The remainder of interrogated epi-marks (H3K9me3, H3K4me1, H3K4me2, 

and H2A.Z) had a uniform level of epigenetic conservation regardless of sequence evolution. 

Accordingly, fast-diverging orthologous sequences are more conserved than expected for DNA 

methylation, H3K36me3, and H3K27ac [273] (Figure 5.2), another example that sequence 

conservation is not required for conserved epi-mark status. The authors suggest that epi-
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conserved but genetically non-conserved regions may buffer against genetic mutations and 

provide functional stability to fast-evolving genome regions [273]. 

Sequence conservation is not always required for epi-conservation [275]. Instead, some epi-

marks (DNA methylation, H3K36me3, and H3K27ac) may be conserved over orthologs whose 

sequence is under purifying selection. Understanding what features cause fast-evolving DNA 

fragments to undergo divergent epigenetic evolution is an important area of future study (Figure 

5.4). 
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5.5 Epi-mark Influence on Conserved or Divergent Gene 
Regulation  
The promoter is the regulatory DNA sequences surrounding a gene TSS and is responsible for 

transcription initiation. Epigenetic modifications at vertebrate promoters are well-studied, and 

epi-marks common to active promoters are depicted in Figure 5.1. 

5.5.1 Epigenetic Conservation at Promoters 
DNA Methylation Conservation Status at Promoters 
CpG islands (CGI) have long been recognized as non-methylated regions associated with 

protein-coding gene promoters [276]. Isolation of non-methylated DNA fragments is achieved 

via affinity purification with biotinylated CxxC (Bio-CAP), which preferentially binds non-

methylated DNA (Figure 5.1). Genome-wide Bio-CAP experiments followed by massively 

parallel sequencing in seven vertebrate genomes revealed that non-methylated islands (NMI) are 

a conserved feature of orthologous promoters, as well as distal regulatory elements [277].  

Methylation of CpGs in promoters is negatively correlated with gene expression [278,279], and 

some vertebrate CGIs are tissue-specifically methylated [19,277,280].  Array-based analysis of 

DNA methylation at ~27k CpG loci at proximal promoters in heart, liver, and kidney samples 

from human and chimp found that 18-26% of tissue-specific differentially methylated regions 

(tsDMRs) were conserved between human and chimp (varying by tissue). Conserved tsDMRs 

were enriched for negative correlations between methylation level and the associated gene’s 

expression level (72% negative correlation values, regardless of species) [280]. Additionally, 

promoters with conserved tsDMRs were enriched for genes annotated as developmental process 

genes. Thus epigenetically-mediated tissue-specific regulation over core developmental genes 

tends to be conserved between human and chimp [280]. 
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A similar study queried the DNA methylation status of ~326k probes shared between human, 

chimpanzees, bonobos, gorillas, and orangutan peripheral blood. Inter-species differentially 

methylated CpGs were depleted from proximal promoters and CpG islands (CGIs), suggesting 

broad conservation of promoter methylation status between primates [270]. However, there are 

promoters with inter-species differential DNA methylation, which explained 12-18% of gene 

expression level differences between primates [280]. Thus species-differential DNA methylation 

at promoters can mediate species-differential gene expression. What sequence features underlie 

conserved or divergently methylated promoters? 

CpG methylation status varies by CpG density, where denser CpG regions, such as CGIs, tend to 

be lowly-methylated, while regions of sparse or intermediate CpG density are variably 

methylated [10,18,281]. However, comparative analysis suggests that CpG density does not fully 

explain DNA methylation status at promoters [282] or predict DNA methylation divergence 

between paralogs [269,283]. Indeed, sequence analysis of experimentally-determined NMIs 

revealed that the ratio of observed over expected CpGs and GC content of NMIs varies in a 

species-dependent manner [277]. Therefore, while NMIs are a common feature of vertebrate 

genomes and central to promoter regulation, the specific underlying sequence characteristics 

driving this conserved epigenetic feature may vary between species. Instead, transcription factor 

binding site (TFBS) motifs at methylation determining regions [282] were found to be sufficient 

for proper methylation status at promoters [282-286]. In summary, while sequence features 

cannot fully predict DNA methylation status, transcription factors can alter DNA methylation 

patterns at promoters and drive promoter function. Comparative epigenome analysis 

incorporating multiple species is needed to understand how sequence evolution and motif 

turnover drive DNA methylation status at promoters (Figure 5.3).  
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Histone Post-translational Modification Conservation  
H3K4me3 defines active gene promoters [49]. Comparative analysis of ChIP for H3K4me3 and 

H3K27ac followed by sequencing (ChIP-seq) in liver samples from 20 mammals demonstrated 

that the basic regulatory landscape was very similar between species, including an average of 

~12500 active promoter elements [287]. Similarly, H3K4me3 enrichment was conserved in a cell 

type-specific manner between mouse and human, where ~80% of queried promoters were 

conserved in four homologous cell types [51]. Genome wide, the magnitude of H3K4me3 

promoter conservation increases in more closely related phylogenies: 16% of human liver 

promoters are conserved for H3K4me3 ChIP-seq signal across 20 mammals [287], while ~36% 

of orthologous promoters were conserved for H3K4me3 ChIP-seq between human, chimp, and 

rhesus macaque lymphoblastoid cell lines [52].  

Species-differential promoter histone modification can also indicate species-specific gene 

expression [275]: up to 7% of differentially expressed genes between human and chimpanzee 

were explained by H3K4me3 distinctions [52]. These studies reveal that H3K4me3 and 

H3K27ac are features of highly expressed genes across mammals, and quantify how homologous 

cell types utilize orthologous genes for shared or species-specific functions. What sequence 

features drive conserved histone promoter marks, or mediate their turnover, remain to be 

investigated.  

5.5.2 Gene Body Epi-mark Conservation 
The “gene body” is the collection of introns and exons in the open reading frame of a gene. An 

archetypical vertebrate gene body epi-modifications is depicted in Figure 5.1. 

Differential DNA Methylation over the Intron-Exon Junction  
Seminal surveys of eukaryotic methylomes determined that CpG methylation over gene bodies is 

a conserved feature of eukaryotic genomes [13,288]. Internal exons typically display 6-20% 
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elevated CG methylation compared to flanking introns [13], and gene body CpG methylation is 

conserved at 70-76% in human and chimp prefrontal cortex samples [58]. In both human and 

mouse genomes, recently duplicated genes retain conserved methylation patterns at gene body 

regions [283,289], suggesting that there is an overarching epigenetic mechanism that can identify 

duplicated fragments and properly methylate them.  In most somatic tissues, high gene body 

methylation correlates with intermediate expression levels [288], with the exception of primate 

brain samples where gene body CpG methylation decreased linearly with increasing levels of 

gene expression [290].  

Mammalian placenta are remarkable for their conserved global hypomethylation compared to 

somatic tissues (less than 66% genome-wide methylation level by MethylC-seq in human, rhesus 

macaque, squirrel monkey, mouse, dog, horse, and cow placentas, as well as opossum 

extraembryonic membrane [291]). One exception to placental hypomethylation was that gene 

bodies displayed elevated methylation across all species. As in somatic tissues, high methylation 

over gene bodies in the placenta correlated with intermediate gene expression level, while genes 

with low gene body methylation were less likely to be expressed [291]. Additionally, high 

placental gene body methylation was conserved across species over genes with similar gene 

ontologies, including genes involved in cell cycle, protein localization, and chromatin 

modification [291]. Gene body methylation is a conserved feature of eukaryotic genomes, and 

methylation level has a parabolic relationship to gene expression level in most eukaryotic 

somatic tissues and placenta, although the mechanistic links between genic DNA methylation 

and expression level are still unclear. 

Histone Post-translational Modifications over Exons 
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Exon-specific H3K36me3 modifications are conserved across eukaryotes [292,293] and are 

associated with exon inclusion [292]. Indeed, in exons, ChIP-seq signals of H3K36me3, and to a 

lesser extent, H3K79me1, H4K20me1, and H2BK5me1 were found to increase as gene 

expression level increased [293]. However, histone modification enrichments could be a 

downstream result of differential nucleosome occupancy over exons and introns, where introns 

tend to be nucleosome-depleted. Emerging evidence for the role of H3K36me3 in gene splicing 

[294] or mismatch repair [295] may help resolve the functional importance of H3K36me3 

modification over exons.   

Furthermore, co-localization of H3K27me3 and H3K36me3 over gene exons is associated with 

monoallelic gene expression, and this signal was conserved in human and mouse [296]. This 

signature is conserved over genes important for embryonic development and cell surface protein 

genes. Notably, monoallelic expression and the genes’ corresponding epigenetic signature were 

lineage-specific and maintained in differentiated tissues [296], suggesting that 

H3K36me3/H3K27me3 modifications may play a role in maintaining monoallelic expression 

and expression regulation in general [296]. 

5.5.3 Evolution of Epigenetic Regulation at Vertebrate Enhancers  
Epigenetic modifications are often have complimentary functions and are studied together to 

explore specific genetic elements. Enhancers display a characteristic histone modification profile 

of H3K4me1 and H3K27ac, usually in association with p300 [52,297], are usually 

hypomethylated [25], and are responsible for regulating cell type-appropriate gene expression 

[298]. While characterization of novel enhancers are improving through advances in profiling 

techniques and computational models [299], our understanding of enhancer evolution is still 

unfolding.  
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Comparative studies analyzing histone PTM ChIP-seq signals between human and mouse 

developing heart [300], limb [275], and adipogenesis [301], and human and chimp cranial neural 

crest [302], and between developmental stages in distantly related zebrafish and medaka [303] 

reveal both shared and lineage-specific epi-marks. One study found that human neural crest cell 

(NCC) enhancers, defined by co-localization of H3K27ac and H3K4me3, showed strong 

enrichment of H3K27ac in the chicken orthologs and conserved TFAP2A binding in both species 

[156], suggesting these are conserved NCC enhancers. This study validated several of these 

predicted enhancers to have gene regulatory capabilities by reporter assays in zebrafish, and 

demonstrated that TFAP2A binding was necessary for specific enhancer activity [156]. Such 

multi-species analysis of cell type enhancer elements shows histone modification can be a strong 

indicator of conserved, functional enhancers. 

Leveraging epigenomic data from multiple organisms can identify species-specific enhancer 

elements [275,300,304,305]. DNaseI footprints are identified from DNaseI-seq datasets where 

the cleavage pattern of DNaseI digested fragments is abrogated by a DNA binding protein, such 

as a transcription factor, occupying the DNA [306]. DNaseI footprinting analyses in human and 

mouse revealed that while 65% of DNaseI footprints in mouse have an orthologous sequence in 

human, only 22% of those orthologs also showed DNaseI footprinting signal, suggesting that 

there has been a large scale turnover of TF binding since the human-rodent split [304,307-310]. 

An assessment of DNaseI hypersensitive sites (DHSs) in human, chimp, and macaque skin 

fibroblasts and lymphoblastoid cell lines showed that most DHSs are conserved across species, 

as pairwise comparison of genome-wide DHS signals were highly correlated [311]. However, 

several hundred DHSs were gained or lost in each of the human and chimp lineages, particularly 

at distal enhancers and introns [311].  
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Conversely, regulatory element conservation decreases when increasing the number of 

epigenomes compared. ChIP-seq in liver samples from 20 mammals showed that while 

enhancers were more common than promoters, only 1% of human liver enhancers had conserved 

H3K27ac signal at the orthologous sequence in at least 10 other mammalian genomes [287].  

Species-specific enhancers are clearly common, but are they functional? Human DHS gains in 

skin and lymphoblastoid cells significantly overlapped with ChIP-seq signals for enhancer-

associated chromatin marks H3K4me1 (~80% overlap), H3K4me2 (~80%), and H3K27ac 

(~70%) [311]. Lineage-specific epi-marks were enriched near tissue-relevant genes and genes 

associated with lineage-specific marks were discordantly expressed between species 

[275,287,301,302]. While more conserved than genomic background, human limb-specific 

enhancers were found to have less sequence conservation than limb enhancers shared with rhesus 

macaque and mouse [275]. In addition, human liver DHS gains/losses had stronger signal of 

positive selection on the human lineage, suggesting these regions are likely functional and may 

contribute to specific-specific gene regulation [311]. The high rate of lineage-specific enhancer 

turnover may be driven by transcription factor binding site (TFBS) turnover  (Figure 5.3; See 

TFBS turnover as a mechanism for epigenome evolution section) [300,301,311].   
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5.6 Transcription Factor Occupancy at Orthologs 
With the publication of the Mouse ENCODE Project, genome wide large-scale comparative 

analysis between mouse and human transcription factor (TF) ChIP-seq data is now available 

[76]. Since a comprehensive review of the genetics of TF occupancy across species has been 

published elsewhere [77], in this review, we highlight what has been learned about the epigenetic 

context of TF binding to human-mouse orthologous regulatory regions from the Mouse 

ENCODE Project. 

Cis-regulatory sequences in mouse are enriched for conserved sequences: ~67% of both DNaseI 

hypersensitivity sites and TF ChIP-seq peaks had homologs in human, while ~79% of both 

chromatin-based promoter and enhancer predictions had homologs in human [312]. However, a 

smaller fraction of the human orthologs of predicted regulatory sequences in mouse were also 

predicted to be promoters (44%) or enhancers (40%) in human [312], suggesting that regulatory 

element conservation does not always track with sequence similarity [305,313]. How did 

species-specific regulatory elements evolve? The authors found that 89% of histone-defined 

mouse-specific promoters and 85% of mouse-specific enhancers overlap transposable elements 

(TEs) or mobile elements and were enriched for specific TE classes [312], suggesting that DNA 

derived from transposable elements may be responsible for a large fraction of species-specific 

gene regulation [308].  

In order to examine TF ChIP-seq binding peaks in a cell type specific manner, the binding 

profiles of 32 TFs in two human and mouse homologous cell types: erythroid progenitors (mouse 

MEL; human K562) and lymphoblastoid cells (mouse CH12; human GM12878) were examined 

[307]. The TFs queried included Pol2, CTCF, and other general and cell type-specific 

transcription activators. Conservation of TF occupancy for an orthologous site varied in a TF-
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specific manner, and conservation was highest at proximal promoter regions (even after 

controlling for elevated sequence conservation at promoters), with the exception of CTCF [307]. 

Epigenetic modification mimicked TF binding occupancy across species: DNA methylation 

levels were low in both species over orthologs with occupancy-conserved binding, but DNA 

methylation increased over unbound orthologs. In aggregate, bound fragments show elevated 

evolutionary constraint, but ~50% of bound regions in one species were not alignable in the 

other, representing species-specific binding events that may be mediated in some instances by 

transposable elements [307]. 

In the vertebrate genome, repetitive sequences and transposable elements (TEs) contribute ~6-

60% of total sequence content [314]. However, TE sequences are thought to be silenced through 

epigenetic defense mechanisms since transposition events can be deleterious [315]. Interestingly, 

the dynamic epigenetic silencing of transposon elements during development is conserved 

among vertebrates although numerous TEs are known to be species-specific. Furthermore, TEs 

are hypothesized to shape gene regulatory networks through exaptation [316]. Exaptation 

describes the process where the TEs evolved to acquire new function in the genome, such as 

novel TFBS, that provided some fitness benefits in the host [316]. There are two models of TE 

exaptation: 1) surplus of TE insertions in the genome provided raw sequence material that can be 

mutated into novel TFBS and 2) TEs with functional TFBS transposed throughout the genome 

until a functional gain that led to a fitness benefit and fixation [317].  

Recent work revealed that transposable elements contributed 2-40% of TF binding events in 

human or mouse, depending on the TF and cell type [308]. Yet only 2% of human TE-derived 

TF binding sites and 1% of mouse TE-derived sites were occupied by the same TF at a syntenic 

site in the opposite genome. Furthermore, 99% of human and 98% of mouse TE-derived binding 
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sites were species-specific, suggesting either the host TE amplified after the primate-rodent split, 

or that the TE ancestor accumulated too many mutations to be recognized as a TE sequence in 

the other genome [308] (Figure 5.2). Regardless, this comparative analysis supports the 

hypothesis that TEs may rewire gene regulatory networks in a species-specific manner [1,261]. 
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5.7 TFBS Turnover as a Mechanism for Epigenome 
Evolution 
TFBS turnover can explain species-specific TF binding events [307,308,310,318,319]. For 

example, across 4000 orthologous promoters between mouse and human, 41-89% of liver 

transcription factor binding locations were species-specific [309], suggesting a high amount of 

TFBS turnover since the last mouse-human common ancestor [304,320].  

Formation of novel TFBS can disrupt and shift methylation patterns in the promoter region 

[282,284,321]. For example, one study described methylation determining regions that direct the 

DNA methylation status of promoter proximal CpGs during differentiation [282]. TFBS sites, 

including SP1, CTCF, and Rfx, were required for proper methylation [282]. Moreover, RE1-

Silencing transcription factor (REST)-bound lowly methylated regions (LMRs) showed 

increased DNA methylation in Rest knock-out ESCs, indicating that REST is required for proper 

demethylation of LMRs [285]. Thus, evidence is mounting the DNA sequence polymorphisms in 

TFBSs may modulate DNA methylation status. 

Accordingly, TFBS turnover events have been found to explain paralogs- or lineage-specific 

differential DNA methylation [269,307,308,322,323], DNase hypersensitivity [311], histone 

post-translational modifications [300,302], and TF binding events [2,304,307,308,324]. 

Comparison of orthologous CpGs in the primate lineage revealed that human-specific DMRs 

genome-wide were enriched for nucleotide substitutions in TFBSs, suggesting a close 

relationship between TFBS and DNA methylation patterns during human evolution [271]. 

Similarly, motifs for chromatin regulators or TFs associated with a particular chromatin state 

(such as SP1 and CTCF respectively) were enriched in epigenetically divergent paralogs [269]. 

Analysis of binding sites of pluripotency transcription factors in human, mouse, and pig ESCs 
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demonstrated that inter-species epigenetic differences explain species-differential binding and 

expression better than sequence differences [273]. Overall, examination of binding site turnover 

events and their epigenetic context supports the hypothesis that DNA sequence changes in the 

form of TFBS turnover events drive epigenetic variation that may regulate gene expression 

(Figure 5.3). 

Specific TFBS motifs may also mediate epigenome conservation [324]. Preservation of DNA 

methylation patterns over duplicated genes was associated with the SP1 motif at paralogous 

promoters [283]. TFBS also mark regulatory elements with DNA methylation (Zhou, 

unpublished) or histone modification conservation between species [287] (Figure 5.3B). In each 

case, TFBS turnover might be a mechanism for canalization, codifying epigenetic modifications 

into genetic knowledge and ensuring robustness of a phenotype [323,325] (Figure 5.4).  
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5.8 Concluding Remarks 
5.8.1 Challenges and Limitations for Comparative Epigenomics 
Because epigenetic status varies with cell type, matching homologous tissues or cell types 

between species is required for rigorous epigenome comparison. However, matching 

homologous cell types between species is a non-trivial task [250,326], especially when 

developmental stage and environment may also need to be matched. One complication is how to 

determine identity by descent when differentiated cell types must be specified every generation 

[327]. This might be achieved by comparative molecular cell biology, as has been shown in the 

case of retinal cell evolution [326]. The comparative molecular biology approach analyzes 

expression of orthologous genes to identify homologus cell types. However the issue is made 

more complex by the realization that homologous genes may not direct development of 

homologous structures [327]. Instead, it has been proposed that conserved gene regulatory 

networks (GRNs) may control the development of homologous structures, and these GRNs may 

be comprised of non-orthologous genes [327]. By taking into account the nuances involved in 

determining biological homology when designing experiments [250], comparative epigenomics 

may determine how conserved (or species-specific) epigenomic features of homologous cell 

types regulate GRNs.  

Between distantly related species, establishing homology becomes increasingly challenging. 

Thus the evolutionary history we can recover using comparative epigenomics is limited. Other 

technical challenges remain, which include variable genome build qualities and the accuracy of 

multiple genome sequence alignments [260]. As all Next-Generation Sequencing (NGS)-based 

assays are subject to batch effects, systematic biases in experimental design should be limited or 

corrected for as much as possible, as the combination with the technical limitations of inter-
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species analysis could hinder the interpretability of results. Lastly, given the challenges for 

multi-species sequence alignment, how do we go about aligning the epigenome? Nucleotide 

bases are the units of the genome sequence; what are the units of the epigenome?  

5.8.2 Future Directions for Epigenome Evolution Research  
To efficiently benefit from comparative epigenome research, a model of epigenome evolution 

needs to be established. Epigenome analysis is a quickly maturing field, and the combination of 

epigenomics and computational modeling with classic technologies can make inroads on 

previously intractable questions of epigenetic gene regulation.  

To build a model of epigenome evolution, the field must first answer basic questions about how 

epigenetic conservation relates to sequence evolution (Figure 5.4). For example, what kinds of 

epi-modifications occur at slowly evolving DNA sequences compared to fast evolving 

sequences? At slowly evolving sequences, we suggest the null hypothesis is that orthologs 

should display conserved epigenetic modifications; the alternate hypothesis is DNA-conserved 

orthologs have epi-divergent status. In this case support for the alternate hypothesis is evidence 

of regulatory innovation driven by epigenetic novelty. At quickly evolving DNA loci the 

hypotheses are flipped: the null hypothesis is that epi-marks will be different, but the alternate 

hypothesis is that they would be conserved. Evidence of the alternate hypothesis in this case 

would be a signature of epigenetic buffering [273,323].  

Few studies have quantified the magnitude of epigenetic divergence or conservation with respect 

to sequence evolution. As a result, it is not yet clear how sequence evolution influences 

epigenome evolution (Figure 5.2). To ameliorate this knowledge gap, the table in the center of 

the proposed framework (Figure 5.4) should be populated with comparative epigenome studies 

that take into account sequence evolution as well as inter-species epigenetic differences.  First, 
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conservation of three epi-marks (DNA methylation, H3K36me3, and H3K27ac) in mammal 

ESCs is independent of DNA sequence evolution [273], so regulatory elements identified in ref 

34 fulfill both the null hypothesis (H0) for slowly evolving sequence and the alternate hypothesis 

(Halt) for fast evolving sequence. On the other hand, ample evidence exists that gene body epi-

marks are conserved, and since most gene bodies are slowly evolving [328], the conservation of 

gene body epigenetic regulation is evidence for the null hypothesis of epigenome evolution over 

slowly evolving sequences (Figure 5.4). 

Beyond evidence for each hypothesis, this framework prompts other questions such as what 

features distinguish divergent vs. conserved epi-marks at fast evolving DNA? How and at what 

rate can a regulatory element transition from a slow DNA-evolving/epigenetically-divergent 

status to a fast DNA-evolving/epigenetically-conserved status? What mechanisms mediate 

genetic assimilation of stable epigenetic regulatory architectures to be genetically encoded?  

We view genetic evolution (the evolution of networks and pathways) as subsequent to epigenetic 

evolution. We note that comparative analysis of genetic networks has found that conservation of 

regulatory motifs and network topologies between mouse and human is much higher than 

conservation of individual TF binding sites [58]. Thus we suggest that evolution on the 

epigenome level is what mediates the flexibility of TF binding sites and thus innovation or 

stability of gene regulatory networks. 

In the Outstanding Questions section, key areas of research are proposed that will help to fill in 

the proposed framework with empirical data. Lastly, rigorous mathematical models must 

accompany a mature model of epigenome evolution that quantitatively assess epigenome 
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conservation or divergence based on data, similar to the Jukes-Cantor model for sequence 

evolution.  

5.8.3 Outstanding Questions  
Hybrid cell culture systems can be used to study lineage-specific epigenome features. Cells 

harboring chromosomes from different species may help disentangle the environmental, trans-, 

or cis- effects on epigenome status. 

Genomic editing technologies make genome editing feasible in any species, and can identify 

drivers of conserved and divergent epigenetic programs. Targets in homologous cell models may 

be altered in order to understand how the cis-landscape impacts epigenome state in different 

species. Similarly, analyzing epigenome status after knockout of tissue-specific transcription 

factors or chromatin modifiers may point to epigenetic effects that are conserved or species-

specific, revealing mechanisms of the evolution of complex tissues and organs. 

Applying single-cell technologies to comparative epigenomics can identify cell-type specific and 

temporal differences at higher resolution, elucidating how epi-modifications depend on sequence 

in an allele-specific manner. 

While the determinants of nucleosome positioning in eukaryotic cells are similar, quantitative, 

comparative studies of nucleosome positioning is best explored in yeast. Some comparative 

analyses between phyla exist, but comparative nucleosome positioning in vertebrate genomes is 

a promising an area for future research. 

Hi-C technology permits comparative analysis of chromatin architecture and nuclear territories. 

3D fluorescent in situ hybridization experiments demonstrated that chromosome territories in the 

nucleus are largely conserved across primates. Comparative analyses of chromosome 
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conformation can reveal how genome organization evolved and how nuclear architecture 

contributes to gene regulation. 

Both tumor cells and induced pluripotent stem cells (iPSC) undergo epigenetic reprogramming. 

Oncogenic transformation may model epigenome evolution on an accelerated time scale. iPSC-

cancer cell comparative epigenomics can expose how epigenetic mis-regulation contributes to 

oncogenesis. 
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5.1. Dynamic epigenetic interactions. Innovation in sequence resolution and identification of 

novel DNA-modifying mechanisms have provided novel opportunities to develop intricate 

techniques to explore epigenetic interactions. This review focuses on four unique, but usually 

complementary, epigenetic modifications that are universally shared across vertebrates. Different 

types of modifications can have processive function, allowing expression of genes, or recessive 

function, hindering gene expression, or an intermediate poised state that has potential to go either 

direction. The biological function of individual epigenetic marks has been widely studied but the 

combinatorial interactions across epigenetic modifications have still yet to be fully defined and 

understood. Here, we diagram simplified models to illustrate how results of epigenetics assays 

can be interpreted in the resolution of DNA-context and chromatin-context [23,329-332]. 

  

Epigenetic 
Mechanisms 

Modification 
Types* 

Assay 
Examples 

Simplified Diagrams 

DNA 
Methylation 

Low 
Intermediate 
High 
  

Chemical-based 
Bisulfite-treatment# [329] 
RRBS[330] 
Enrichment-based 
MeDIP# [23] 
Bio-CAP# [331] 
Enzyme digest-based 
MRE# [23] 

Histone 
PTM 

H3K4me1 
H3K4me2 
H3K4me3 
H3K9me3 
H3K27ac 
H3K27me3 
H3K36me3 

Enrichment-based 
Histone-specific ChIP# 
[332] 

Nucleosome 
Occupancy 

DNase I 
Hypersensitive 
sites 
(DHS)  

Enzyme digest-based 
DNase I# [51] 
 

Enhancer Promoter Gene Body 

---CGTGTGTTGTGTGCCGATCGCGAGCCGCGCGTCCATTGTTTGGTGCGTTGTACGGCCGGACTCACGCGTACGCTCCGCACGGTATCG---	
---TGTGTGTTGTGTGCCGATCGCGAGCCGCGCGTCCATCGTTTGGTGCGCTGTACGGCCGGACTCACGCGTACGTTCCGCACGGTATCG---	
---CGTGTGTTGTGTGTCGATCGCGAGCCGCGCGTCCATCGTTTGGTGCGTTGTACGGCCGGACTCACGCGTACGCTCCGTACGGTATCG---	
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Enhancer Promoter Gene Body 

* = Red and blue terms correspond to repressive and processive state, respectively. 
#  = These assays can be quantified by numerous techniques including, but not limited to, gel-imaging, targeted sequencing, RT-qPCR, microarrays and high-throughput sequencing.  
[99] = Reference 

C
hI

P 
si

gn
al

 
Enhancer Promoter Gene Body 

D
N

as
eI

 d
ig

es
t 

si
gn

al
 

Nucleosome 
Histone Tail 

DHS 



 
 

194 

 

5.2. Genetic and epigenetic conservation correlation. The degree of sequence or epigenetic 

similarity between syntenic loci each run on a continuum. Here we define epigenetic similarity 

as having the same epigenetic signal at orthologous loci between the two species. While there are 

many degrees of variation within each of these four possibilities, we offer this general 

framework and examples from the literature for each combination of extremes. (a) Loci with low 

sequence identity and low epigenetic similarity may represent lineage-specific loci and include 

Increasing sequence identity  

In
cr
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 e
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tic
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•  DNA methylation at 78% of duplicons in the 
human genome (Prendergast, 2013) 

•  HoxA and HoxD histone mark regulation across 
mouse cell types (Lonfat) 

•  cFMS locus (Fellows) between human and mouse 
•  DNA methylation at ~22% of genome CpGs 

genome-wide across primates (Hernando-
Herraez, 2015) 

 

High sequence identity 
High epigenetic conservation 

•  ~10% of TAD & LAD boundaries  between 
human and mouse (Chambers, 2013) 

High sequence identity 
Low epigenetic conservation 

•  Some (how much?) 5mC, 
H3K36me3, and H3K27ac loci 
between human, mouse, pig ESCs 
(Xiao, 2012) 

Low sequence identity 
High epigenetic conservation 

Low sequence identity 
Low epigenetic conservation 

Species 1 
 
 
 
Species 2 

•  Species-specific TE-bound TFs 
(Sundaram, 2014; Cheng, 2014) 

Species 1 
 
 
 
Species 2 

Species 1 
 
 
 
Species 2 

Species 1 
 
 
 
Species 2 

(a) (b) 

(c) (d) 
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non-orthologous regions. (b) A minority of orthologs demonstrate faster epi-mark divergence 

than sequence divergence. (c) Orthologs where the genome sequence is diverging faster than the 

epigenetic state represent loci that experienced enhancer turnover. Additionally, some marks are 

found in both fast and slowing evolving sequences, suggesting a mechanism for buffering 

genetic variation. (d) The majority of examples we can categorize exhibit both sequence 

conservation and epigenetic conservation. This is the status for most orthologs (inter- and intra-

species) and represents the null hypothesis. Legend as in Figure 5.1; the intensity of shading of 

DNA strands represents the degree of sequence conservation. 
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5.3. TFBS turnover models and examples. Understanding TFBS turnover during evolution has 

been a non-trivial challenge. Since TFBS turnover is coupled with epigenetic changes, a null 

hypothesis that TFBS turnover is also associated with epigenetic evolution across species can be 

proposed. Although numerous examples of TFBS turnover has been documented, we propose 

two simple but powerful scenarios that can capture the process of TFBS turnover by comparing 

Species 1 

Species 2 

Species 3 

Scenario 1 Scenario 2 

GATCA	

GAGCA	 GATTA	

GATCA	

GATCA	 GATCA	

GATCA	 GATCA	

Processive PTM 
Repressive PTM Promoter 

Gene Body 
Enhancer 
Transcription Factor 

(a) 

(b) (c) 

Erg motif 
turnover event 

Fli1 motif 
turnover event 
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epigenetic signal across orthologous regions across species. The diagram illustrates an 

orthologous gene region across three species. This can be interpreted differently by varying the 

window size or synteny. First scenario represents loss-gain TFBS turnover where species 1 had a 

TFBS but species 2 lost the TFBS by a single mutation in the binding site. However, in species 

3, another genomic region was mutated to recover the lost TFBS and become the new enhancer. 

The second scenario is a competitive model where species 2 gained a mutation that generated 

another TFBS that competed with the species 1 enhancer. After selection or mutation, the species 

1 enhancer is lost and the novel enhancer becomes the sole cis-regulator for the gene in species 

3. This mechanism may mediate lineage-specific epigenetic marks [2,304,307,308,310] or 

conserve epigenetic features as in (b) and (c) [283]. (b) and (c) are representative examples of 

TFBS turnover events mediating a conserved tissue-specific DNA hypomethylated regions (pink 

shaded boxes) between rat, mouse, and human (adapted from Zhou, unpublished). Tracks in blue 

are single-CpG DNA methylation levels from the given tissue in each species. In (b) the Erg 

motif is found at the same position in rat and mouse, but shifted by 84bp in human. The Erg 

motif conserved the blood-specific DMR at this locus and is an example of senario 1 depicted in 

(a). In (c), The Fli1 motif is in a slightly different position in the conserved blood-specific DMR 

in rat and mouse, but absent in human. Instead the Fli1 motif is found in a nearby blood-specific 

DMR in human. Importantly, the conserved DMRs in these examples show low sequence 

conservation, evidence that conserved DNA hypomethylated regions do not depend on sequence 

conservation. 
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5.4. Model for building a theory of epigenome evolution. (a) Determining the rate of sequence 

evolution is now a straightforward process. (b) The expectation for epigenome evolution is 

different depending on the sequence evolution context. Completing this contingency table with 

specific examples is a challenge for the field. (c) Epigenetic gene regulation that is adaptive is 

genetically assimilated into the genome, codifying gene regulation and driving genetic evolution. 

Slow                          Neutral                       Fast (a) Sequence 
evolution 

Environmental effects  

Slow sequence 
evolution 

Fast sequence 
evolution 

H0 
Epigenetically 

conserved 
Epigenetically non-

conserved 

Halt 
Epigenetically non-

conserved 
Epigenetically 

conserved 

(b) Epigenome 
evolution 

Canalization 
 (c) Genetic 

evolution 

(d) Phenotype 
evolution 

•  Regulator-gene relationships 
•  Networks 
•  Pathways 

•  Metabolism 
•  Cellular differentiation & motility 
•  Development & organogenesis 
•  Behavior 

Mechanism? 
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(d) Genetic networks drive phenotypic evolution, all of which is motivated by environmental 

inputs. 
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Chapter 6 

Synthesis 
 

 

6.1 Detecting Differential DNA Methylation During 
Development 
Somatic genomes are highly methylated, but where they vary DNA methylation differences are 

biologically important [19,25,75,333,334]. Specifically, DNA methylation differences can direct 

differential gene regulation with important consequences. Epigenome and gene expression 

studies of twins discordant for disease provide valuable evidence in this regard [335-337]. For 

example, analysis of white blood cell DNA methylation in twins discordant for systemic lupus 

erythematosus (SLE) displayed differential methylation at 49 genes when compared to non-SLE 

co-twins and healthy controls, including SLE markers including interferon gamma receptor 2 

(IFGNR2) [337]. Thus differential DNA methylation can have important consequences for 

human disease. 

DNA methylation differences tend to occur at regulated promoters with low to intermediate CpG 

density and distal, cell-specific enhancers [14,25,54,55,108]. Importantly, active regulatory 

elements tend to be demethylated [27,78], so detecting signal of lack of methylation is an 

important factor when modeling the effect of DNA methylation on gene expression. 
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Our algorithm excels where others cannot provide data, namely, by integrating DNA methylation 

signal with DNA un-methylation signal. Our algorithm combines two data types, methylated 

DNA immuneprecipitation and sequencing (MeDIP-seq) and methylation-sensitive restriction 

enzyme digest and sequencing (MRE-seq), which query DNA methylation and single nucleotide 

unmethylated CpGs respectively [23,77].  

The M&M algorithm dynamics scales sequencing data based on the number of covered CpGs in 

the MRE and MeDIP datasets. The algorithm then treats read counts for a specified non-

overlapping window length as mutually independent Poisson random variables. M&M then 

models the expected values using a joint distribution of tag counts to test the hypothesis that  

H0: µ1 = µ2 versus H1: µ1 ≠ µ2  (Equation 6.1) 

where µ1 is the methylation level for the given window in sample 1 and µ2 is the methylation 

level for the same window in sample 2 (Zhang, 2013). 

Our algorithm was subject to rigorous testing and in several biological contexts. We compared 

biological replicates of H1 ESC datasets and H1 ESC to fetal neural stem cell data (Zhang, 

2013). We found that M&M performs with higher sensitivity and specificity than other published 

methods and is better able to discriminate cell- and tissue-specific DMRs.  

Because the M&M method was robust for identifying cell- and tissue type-specific DMRs, we 

employed MeDIP-seq & MRE-seq and M&M to the analysis of skin cell type epigenome. We 

compared skin cell type-specific methylomes to find skin cell type-specific and tissue-level 

DMRs [60]. Differential DNA methylation modifications are passed on to daughter cells and 

observed in differentiated tissues. Thus our particular samples allowed for a novel analysis 
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strategy: identifying DMRs specific to a developmental tissue, in this case, surface ectoderm. We 

achieved this by analyzing the cell type methylomes of skin and other surface ectoderm-derived 

cells to find the DMRs shared only by surface ectoderm-derived cell types. 

Finally, we applied the M&M algorithm to DNA methylomes for several developmental times 

points in zebrafish embryogenesis. Zebrafish is an important developmental system as the 

embryo can be manipulated much more readily than human tissues at orthologous stages. We 

found thousands of DMRs between early developmental stages, many of which were validated in 

zebrafish reporter assays [27]. The findings in Lee, H.J., et al. validate that the M&M algorithm 

works appropriately on the zebrafish methylome. More importantly, this paper reiterated the 

literature on human data that describes dynamic DNA methylation over cell- and tissue-

enhancers. Thus, we were encouraged to pursue experiments in zebrafish on specific 

subpopulations to understand dynamic DNA methylation in cell fate determination. 

6.2 Validation of Developmental DMR Classes found in 
Human Skin Epigenome Analysis with Zebrafish Neural 
Crest Cell Experiments  
In human, distinct genetic and epigenetic differences between developmental-stage regulatory 

elements have been observed. Genes involved early in lineage-specification, tend to be CG-dense 

and primarily regulated by H3K27me3 Polycomb deposited PTM, rather than DNA methylation 

[14,55,56]. 

Late-stage lineage-specific promoters tend to be less CG-dense and primarily repressed by DNA 

methylation [14,55]. However, distal enhancers undergo a transition from high DNA methylation 

to H3K27me3 in a lineage-specific fashion [54,55,338]. For example, increase of H3K27me3 

coincided with FOXA2 pioneer factor binding in the ESC-differentiated endoderm sample [54]. 
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A similar pattern was observed in cardiomyocyte differentiation in a zebrafish model [338]. 

The developmental dynamics analysis presented in chapter 2 agreed with the above 

characterization of chromatin and DNA methylation dynamics at enhancers. I found that DNA 

methylation dynamics over transcription factor binding sites in hypomethylated DMRs shared 

among surface ectoderm-derived cell types (SE-DMRs) separated into two classes. Class II 

contained most of the SE-DMRs, which were methylated in a model of early ectoderm-

differentiated cells (dEC; hESCs differentiated into early ectoderm cells, Gifford 2013), but 

demethylated in the surface ectoderm-derived differentiated cell types, epidermal keratinocytes 

and mammary gland epithelial cells (called late-demethylated). Class I DMRs contained SE-

DMRs that were lowly methylated in the dEC cells (called early-demethylated). 

My analysis took the observation of individual enhancer epigenetic dynamics one step further. 

By assigning hypomethylated SE-DMRs to putative target genes, network analysis revealed that 

the early-demethylated class of SE-DMRs were predicted to regulate the genes of the cognate 

transcriptions factors for the motifs contained in the late-demethylated class of SE-DMRs. These 

regions were demethylated in a progenitor cell type represented by the dEC model (Figure 

2.18a).  

The pigment cell development project discussed in chapter 3 allowed an opportunity to validate 

the findings from chapter 2 in an independent system. Further, the zebrafish has the advantage 

that we can directly access progenitor cell populations, unlike in human, where instead we rely 

on cell-differentiation models for cell populations in early development. The zebrafish 

crestinA>GFP transgenic allowed us to isolate neural crest cells specifically at various 

developmental stages. The 24hpf GFP+ cell population represented a melanocyte/iridophore 
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progenitor-enriched population of neural crest cells. Thus in this project we can directly 

determine the DNA methylation dynamics of a progenitor cell population, rather than the indirect 

determination of surface ectoderm-differentially methylated regions described in chapter 2. 

Our preliminary findings presented in chapter 3 are encouraging that we will observe similar 

progenitor-specific differentially methylated regions at sites of important regulatory elements in 

the 24hpf GFP+ cell population. One validation of our surface ectoderm work will be validating 

the class I and class II DMRs (as described in 6.1 above). As validation of class I DMRs, we 

anticipate finding a few regions that are DNA de-methylated in the 24hpf GFP+ population 

compared to earlier stages (14-somites) and non-neural crest cells (24hpf GFP-), but that remain 

lowly methylated in differentiated pigment cells. Class II DMRs will be observed as regions that 

are specifically hypomethlyated in melanocytes or iridophores compared to the 24hpf GFP+ 

progenitor population. Further, we hypothesize that class I DMRs occur at regulatory elements 

that control expression of key pigment cell genes, for example, mitfa, a marker of melanoblast 

and iridoblasts [136] (Figure 3.9b). Class II DMRs will be those that control melanocyte- or 

idirophore-specific genes, for example, the DMR just upstream of the pnp4a promoter (Figure 

3.9c). Lastly, we will examine these class I and class II DMRs for enrichment of transcription 

factor binding site motifs. As demonstrated in chapter 2, sequence analysis of DMRs can reveal 

important transcriptional regulators in development. Thus, epigenomic analysis of pigment cell 

differentiation in zebrafish should validate and illuminate DNA methylation dynamics that we 

observed in human development. 

6.3 Enhancer Dysregulation in Cancer  
Chapter 4 takes a different approach to understanding the role of the epigenome in development 

and disease. While chapters 2 and 3 focus on DNA methylation (and to a lesser extend histone 
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modification) dynamics as instructive cues for cell fate decisions, in chapter 4 we utilize 

epigenomic data to annotate genetic variation in a specific disease. We chose to focus on primary 

liver cancer (PLC) for two reasons: (1) there is an abundance of somatic mutation data available 

for PLC, and (2) the relatively homogenous nature of normal liver tissue makes identifying 

epigenetically-defined regulatory elements in liver more straightforward and specific. In this 

project we hypothesized that annotating mutated fragments with epigenomic data could reveal 

the function of somatic mutations in PLC. Further, we are particularly interested in the control of 

cell fate and how cell identity deteriorates in cancer. It has long been noted that loss of 

differentiation occurs during malignant tumorigenesis [339]. We had previously observed that 

epigenomic alterations in cancer samples had the effect of down-regulating genes expressed in 

the normal tissue, but up-regulating genes for heterologous cell types [340]. Thus in chapter 6 we 

proposed that loss of differentiation might coincide with appropriation of transcriptional 

regulatory regimes from heterologous cells. 

To investigate our hypothesis, we examined PLC somatic mutations in the context of normal 

epigenome annotations for normal liver and 77 heterologous cell or tissue types. We found 

elevated somatic mutation rates in DNaseI-defined promoters as well as enhancer and promoter 

elements as defined by histone modification integration and segmentation algorithms (Figure 

4.2c-d). We further characterize the potential mechanism of regulatory element somatic 

mutations by examining gain or loss of transcription factor binding sites. We identified 

widespread gain-of-binding site events, some of which occurred in promoters of proto-

oncogenes, activating regulatory elements native to other cell types, but not normal liver (Figure 

4.4). Thus we consider the evidence presented in chapter 4 as support for our hypothesis that 
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transcriptional regulatory instructions for heterologous cell types are co-opted during malignant 

tumorigenesis.  

The analysis presented in chapter 5 is related to the previous chapter insofar as all the projects in 

this dissertation are concerned with the establishment and activity of regulatory elements in 

development. Chapters 2 and 3 examine the normal establishment of regulatory elements and 

their epigenomic dynamics in two distinct developmental contexts. Chapter 4 examines the 

consequences of disrupting regulatory element function, in this case by somatic mutation. Other 

work that I contributed to during the course of my dissertation examines the consequences for 

cell fate and cancer when regulatory elements are disrupted by epigenomic alteration [340]. Thus 

altogether, this dissertation has pushed the field of functional genomics and developmental 

biology in several ways: (1) by establishing novel algorithms for detecting differentially 

methylated regions [78]; (2) by developing new analysis approaches to detecting DNA 

methylation dynamics for an early embryonic tissue [60]; (3) by pioneering application of DNA 

methylome technologies to specific embryonic cell populations; (4) by presenting evidence that 

transcriptional regulatory instructions are re-directed in malignant cancer cells such that cancer 

cells acquire regulatory cues native to heterologous cells. 
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Appendix 1 

Notes for Chapter 2 
 

 

Note 1.  Skin Cell Type-Specific DMR Calling Strategy  
The specific skin cell type pairwise comparisons processed by M&M are as shown in Figure 

2.S1a. Each of the 3 skin cell type datasets from 3 different individuals is compared against 

every other skin cell type dataset, for a total of 36 pairwise comparisons. Pairwise comparisons 

between two different cell types are inter-cell type comparisons (27 total, gray boxes), while 

M&M comparisons between two of the same cell type datasets are intra-cell type comparisons (9 

comparisons, 3 per cell type, blue boxes). 

To maximize the specificity of our DMR prediction, we took advantage of the presence of three 

biological replicates for each cell type, and required that the same DMR call was reproduced in 

all analogous pair-wise comparisons. Therefore, to call cell type-specific DMRs, we took the 

intersection of all comparisons involving the three replicates of a given cell type, and required 

that a 500bp window be called significantly differentially methylated (in the same direction) by 

our M&M statistic in each of 18 pairwise comparisons. Our intersection strategy is illustrated in 

Figure 2.S1b. 
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Note 2.  M&M Command Line and Output Description 
R scripts used to generate pairwise comparisons using the methylMnM R package 

(http://epigenome.wustl.edu/MnM/). The compare.pv.R script contains the functions to perform 

the actual pairwise comparison that generates p-values for each 500bp window (MnM.test() 

function). The qv.DMR.R script calculates q-values for every window (MnM.qvalue()) and 

selects significant windows based on a user-given q-value threshold (MnM.selectDMR()). 

compare.pv.R 

library(methylMnM) 

cpgbin <- 'num500_cpgbin.bed' 

mrecpgbin <- 'num500_Five_mre_cpg.bed' 

medip.list = read.table('skin_medip.list') 

mre.list = read.table('skin_mre.list') 

c_s <- NULL 

 

for  (i in 1:length(medip.list[,1])) { 

        medipfile1 <- paste('num500_',medip.list[i,1],sep='') 

        mrefile1 <- paste('num500_',mre.list[i,1],sep='') 

        name <- paste(medip.list[i,1]) 

        first <- 
paste(strsplit(name,"_")[[1]][1],strsplit(name,"_")[[1]][2],sep="") 

         

        for (j in (i+1):length(medip.list[,1])) { 

                medipfile2 <- paste('num500_',medip.list[j,1],sep='') 

                mrefile2 <- paste('num500_',mre.list[j,1],sep='') 

                name <- paste(medip.list[j,1]) 

                second <- 
paste(strsplit(name,"_")[[1]][1],strsplit(name,"_")[[1]][2],sep="") 

                dataset <- c(medipfile1, medipfile2, mrefile1, mrefile2) 
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                w_f <- paste('pv_',first,"_",second,".bed",sep="") 

                r_f <- paste('pv_',first,"_",second,".report",sep="") 

                MnM.test(file.dataset=dataset, chrstring=c_s, 
file.cpgbin=cpgbin, file.mrecpgbin=mrecpgbin, writefile=w_f, 
reportfile=r_f, mreratio=3/7, method='XXYY', psd=2, mkadded=1, a=1e-
20, cut=100, top=500) 

        } 

} 

 

qv.DMR.R 

library(methylMnM) 

qv.list = read.table('skin_qv_files.list') 

 

for  (i in 1:length(qv.list[,1])) { 

        name <- paste(qv.list[i,1]) 

     qval_f <- paste('qv_',name,sep='') 

        r_f <- paste('qv_',strsplit(name,".bed")[[1]][1],".report",sep="") 

        MnM.qvalue(pval_f, writefile=qval_f, reportfile=r_f) 

        frames <- read.table(qval_f, header=TRUE, sep="\t", as.is=TRUE)  

        DMR <- MnM.selectDMR(frames=frames, up=2, down=1/2, 
q.value=1e-5, cutoff="q-value", quant=0.9)      

        fname <- paste(qval_f,sep="") 

        sname <-strsplit(fname,"pv")[[1]][2] 

        writeDMRfile <- paste('DMR_q1e-5',sname,sep="") 

        write.table(DMR, writeDMRfile, sep="\t", quote=FALSE, 
row.names=FALSE) 

} 

 

The output of M&M pairwise comparisons were p-value and q-value measurements for the 

likelihood that the methylation levels of the two samples were different for each 500bp window 
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across the genome. Note that q-value is the false discovery rate analogue of the p-value. The 

genome-wide false discovery rate (FDR) was controlled using the previously described Group 

Benjamini-Hochberg method. We then chose a q-value cutoff to call differentially methylated 

regions. All of our analyses used a q-value cutoff of 1e-5.  
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Note 3.  Estimation of M&M and Cell Type-Specific DMR 
FDR  
To estimate the false discovery rate of DMRs called by M&M, we chose a pairwise comparison 

as a test case: Fibroblast skin 03 vs Keratinocyte skin 03. These results were compared to the 

M&M results from a within-cell type comparison: Fibroblast skin 02 vs Fibroblast skin 03, 

which are biological replicates (i.e. the same cell type from two different newborn males). For 

these pairwise comparisons, we examined the number of DMRs called at varying q-value 

cutoffs. As seen in Figure 2.S2, the number of DMRs in both cases decreased with decreasing q-

value cutoff. As expected, the numbers of DMRs found between biological replicates is very 

small. Thus, our pairwise DMR false discovery rate is very low (Table 2.S1). We used M&M q-

values of 1e-5 throughout, which by this analysis had a FDR of 0.044. FDR calculations using 

other within-cell type comparisons yielded similar results. 

To assay the false discovery rate of our skin cell type-specific DMR calling strategy, we 

performed a permutation experiment to empirically estimate this value. In this experiment, we 

randomly shuffled our datasets by labeling them as three “pseudo” cell types (A, B, and C) with 

three replicates each (01, 02, and 03).  Because we have already performed all possible pair-wise 

comparisons using the M&M algorithm, we called pseudo-cell type specific-DMRs by the same 

criteria as in Note 1.1 (above), i.e. that a window must be called differentially methylated 18/18 

times to be a DMR in any pseudo-cell type at a q-value cutoff of 1e-5. The strategy is illustrated 

in Figure 2.S3. We repeated this process of shuffling, assigning pseudo-cell type names, and 

finding DMRs 10 times. Each time the analysis of the pseudo-cell types returned zero windows 

called as pseudo-cell type-specific DMRs. Thus, our cell type-specific DMRs are very far from 

the random expectation for these data. 
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Note 4.  Analysis of CpG Islands in Cell Type-Specific DMRs  
It is known that approximately 70% of all gene promoters are associated with a CpG island 

(CGI). We defined a CGI promoter as any promoter that has ≥ 0.05% of a given CGI contained 

in it and found 16638 RefSeq gene promoters (or 63.2%) were CGI promoters. Then we counted 

the numbers of CGI promoters and non-CGI promoters in each DMR class and tested the null 

hypothesis that the percentage of promoters that contain CGIs for each DMR class is similar to 

the CGI promoter distribution found across the genome. We found that across our DMR sets, the 

numbers of CGI promoters in DMRs are significantly depleted relative to their genome-wide 

distribution, while non-CGI promoters are significantly enriched (Table 2.S2). In general, the 

majority of DMRs at promoters were within non-CGI promoters, which is consistent with the 

concept that non-CGI promoters are involved in tissue and cell type specificity. 
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Note 5.  Skin Tissue-Specific DMR Calling Strategy  
We sought to identify the unique DNA methylation signature that the skin environment might 

contribute to its resident cell types. Therefore, we asked what shared regions of the skin 

fibroblast, keratinocyte, and melanocyte methylomes were differentially methylated compared to 

cell types of other tissues. To do this, we compared skin cell type methylomes to those of non-

skin cell types and tissues (including brain tissue and breast and blood cell types) to identify 

DMRs in a pairwise manner. 28,776 total DMRs were identified in these pair-wise comparisons. 

Compared to the non-skin samples, keratinocytes, fibroblasts, and melanocytes each possessed 

623, 763, and 402 consensus DMRs respectively.  We then took the intersection of these three 

DMR sets to identify the shared differences between skin cell types and cell types residing in a 

different tissue environment (i.e. the same methylation status in all skin cell types and the 

opposite methylation status in all non-skin cell types). The result was, surprisingly, a very small 

set of only 8 regions. To be clear, we do expect much of the methylome for the three skin cell 

types is similar, but the shared methylome signature that is unique to the skin is very small.   

Identification of skin tissue-specific DMRs follows the exact same logic as that of cell type-

specific DMRs (for which FDR and reproducibility are documented above in Note 1.3). Both 

M&M and our DMR identification strategy are designed to optimize specificity. We use the 

same M&M q-value threshold for our tissue-specific analysis as for the cell type-specific 

analysis. 
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Note 6.  Supplementary Methods for Chapter 2 
RNA isolation 

Total RNA was extracted from cells using Trizol reagent (Life Technologies) following the 

manufacturer’s instructions. 

RNA-seq 

Standard operating procedures for RNA-seq library construction are available at 

http://www.roadmapepigenomics.org/protocols/type/experimental/. RNA-seq library 

construction involves the following protocols in order: 1) Purification of polyA+ mRNA and 

mRNA(-) Flow-Through Total RNA using MultiMACS 96 separation unit, 2) Strand specific 96 

Well cDNA Synthesis, and 3) Strand specific 96-well library construction for Illumina 

sequencing. Briefly, polyA+ RNA was purified using the MACS mRNA isolation kit (Miltenyi 

Biotec) from 2-10 ug of total RNA with a RIN>=7 (Agilent Bioanalyzer) as per the 

manufacturer's instructions. The process included on-column DNase I treatment (Invitrogen). 

Double stranded cDNA was synthesized from the purified polyA+ RNA using the Superscript II 

Double-Stranded cDNA Synthesis kit (Invitrogen) and 200 ng of random hexamers. After first 

strand synthesis, dNTPs were removed using 2 volumes of AMPure XP beads (Beckman 

Genomics). GeneAmp 12.5mM dNTPs blend (Invitrogen) was used in the second strand 

synthesis mixture in the presence of 2 ug of Actinomycin D. Double stranded cDNA was 

purified using 2 volumes of Ampure XP beads, fragmented using Covaris E series shearing (20% 

duty cycle, Intensity 5, 55 seconds), and used for paired-end sequencing library preparation 

(Illumina). Prior to library amplification, uridine digestion was performed at 37 degrees Celsius 

for 30 minutes, followed by a 10 minute incubation at 95 degrees Celsius in Qiagen Elution 

buffer (10mM Tris-Cl, pH 8.5) with 5 units of Uracil-N-Glycosylase (UNG: AmpErase). The 
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resulting single stranded sequencing library was amplified by PCR (10-13 cycles) to add 

Illumina P5 and P7 sequences for cluster generation. PCR products were purified on Qiaquick 

MinElute columns (Qiagen) and assessed and quantified using an Agilent DNA 1000 series II 

assay and Qubit fluorometer (Invitrogen) respectively. Libraries were sequenced using paired-

end 76 nt sequencing chemistry on a cBot and Illumina GAiix or HiSeq2000 following 

manufacturer's protocols (Illumina).   

RNA-seq pair-end reads were aligned to a transcriptome reference consisting of the reference 

genome extended by the annotated exon-exon junctions17. To generate a transcriptome 

reference, we used the JAGuaR v 1.7.6 pipeline 

(http://www.bcgsc.ca/platform/bioinfo/software/jaguar) which is specifically developed to allow 

for a single read to span multiple exons. Reads aligned to a custom transcriptome reference 

(build from NCBI GRCh37-lite reference and Ensembl v65 (GenCode v10) annotations) are then 

“repositioned” onto genomic coordinates, transforming reads spanning exon-exon junctions into 

large-gapped alignment. Using repositioned reads, we generated genome wide coverage profiles 

(wiggled files) using BMA2WIG java program for further analysis and visualization in genome 

browsers. To generate profiles we included pairs that are marked as duplicated as well as pairs 

mapped in multiple genomic locations. 

A custom RNA-seq QC and analysis pipeline was applied to the generated profiles and a number 

of QC metrics were calculated to assess the quality of RNA-seq libraries such as intron-exon 

ratio, intergenic reads fraction, strand specificity, 3’-5’ bias, GC bias, and RPKM discovery rate. 

To quantify exon and gene expression we calculated modified RPKM metrics4. For the 

normalization factor in RPKM calculations, we used the total number of reads aligned into 

coding exons and excluded reads from the mitochondrial genome, that fall within genes encoding 
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ribosomal proteins, or that fall into the top 0.5% expressed exons. RPKM for a gene was 

calculated using total number of reads aligned into all its merged exons normalized by total 

exonic length. All mRNA-seq analyses used a pseudocount of 1. 

miRNA-seq 

Standard operating procedures for miRNA-seq library construction are available at 

http://www.roadmapepigenomics.org/protocols/type/experimental/. miRNA-seq library 

construction involves the following protocols in order: 1) purification of polyA+ mRNA and 

mRNA(-) Flow-Through Total RNA using MultiMACS 96 separation unit, 2) strand specific 96 

Well cDNA Synthesis, and 3) strand specific 96-well library construction for Illumina 

sequencing. A more detailed description of miRNA-seq library construction and data processing 

in Gascard, P. et al. (submitted REMC companion paper).   
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Appendix 2 

Supplementary Data for Chapter 2 
 

 
 

Data 1.  Samples and Datasets.  
GEO accessions for data generated in this project. 
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Data 2.  Library Statistics.  
Library statistics for MeDIP-seq, MRE-seq, and ChIP-seq data generated in this study. 

Data 2.1  MeDIP-seq library statistics. 

Sample Donor GEO Accession Mapped Reads High quality, unique reads Used reads rate 
Fibroblast Skin01 GSM707021 103695039 60652204 58.49% 
Keratinocyte Skin01 GSM707022 123896883 69591154 56.17% 
Melanocyte Skin01 GSM707020 98450409 56665014 57.56% 
Fibroblast Skin02 GSM941725 239981572 123090682 51.29% 
Keratinocyte Skin02 GSM941726 236055826 114217107 48.39% 
Melanocyte Skin02 GSM941727 224042936 116271310 51.90% 
Fibroblast Skin03 GSM958182 220904929 125936493 57.01% 
Keratinocyte Skin03 GSM958180 238516753 128371876 53.82% 
Melanocyte Skin03 GSM958181 202789509 115465059 56.94% 

 

Data 2.2  MRE-seq library statistics. 

Sample Donor 
GEO 

Accession Mapped Reads 

High quality, 
MRE 

filtered 
reads 

Used reads 
rate 

Sampled CpG 
sites 

Fibroblast Skin01 GSM707017 67639307 44762753 66.18% 2185568 
Keratinocyte Skin01 GSM707018 70299709 48172559 68.52% 1878071 
Melanocyte Skin01 GSM707016 65093003 43554308 66.91% 1972108 
Fibroblast Skin02 GSM941722 200635751 107286642 53.47% 2580687 
Keratinocyte Skin02 GSM941723 199621155 126235449 63.24% 2188999 
Melanocyte Skin02 GSM941724 260071399 107200110 41.22% 1382622 
Fibroblast Skin03 GSM958171 66391182 27560887 41.51% 1660293 
Keratinocyte Skin03 GSM958169 67559889 20181816 29.87% 1269026 
Melanocyte Skin03 GSM958170  64504135 24268667 37.62% 1506660 
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Data 2.3  ChIP-seq library statistics. 

H3K4me1 
    Sample Donor GEO accession mapped reads unique reads 

Keratinocyte  Skin01 GSM669591 40128416 27543090 
Keratinocyte  Skin02 GSM941736 44725534 34462102 
Keratinocyte  Skin03 GSM958161 106681834 83793791 
Fibroblast Skin01 GSM817234 52729214 32248772 
Fibroblast Skin02 GSM941717 103855713 78219051 
Fibroblast Skin03 GSM958164 102832408 74623773 
Melanocyte Skin01 GSM941728 41428106 23826872 
Melanocyte Skin02 GSM941730 54054254 45881462 
Melanocyte Skin03 GSM958152 72311326 58158457 
Breast Lumimal epithelia RM080 GSM669595 36920574 7217943 
Breast Myoepithelia RM066 GSM613870 27419931 19460712 
Breast Myoepithelia RM080 GSM613885 39884011 24760406 
Fetal Brain Tissue HuFNSC01 GSM806942 33409083 22225887 
Fetal Brain Tissue HuFNSC02 GSM806934 34528219 29546991 
CD8 Naïve TC001 GSM613814 32253632 21499085 
PBMC TC015 GSM1127143 27420488 20697125 

 

H3K4me3 
    Sample Donor GEO accession mapped reads unique reads 

Keratinocyte  Skin01 GSM669589 26301506 17040581 
Keratinocyte  Skin02 GSM941735 111420479 26005875 
Keratinocyte  Skin03 GSM958155 89072108 37175759 
Fibroblast Skin01 GSM817235 35872336 29602160 
Fibroblast Skin02 GSM941718 81594474 54134847 
Fibroblast Skin03 GSM958158 121459804 68806151 
Melanocyte Skin01 GSM941719 50258524 23705505 
Melanocyte Skin02 GSM941731 61379885 29826357 
Melanocyte Skin03 GSM958151 85101010 35039322 
Breast Myoepithelia RM066 GSM613869 30075469 7313255 
Breast Myoepithelia RM080 GSM693277 36627300 9743144 
Fetal Brain Tissue HuFNSC01 GSM806943 34776884 22443075 
Fetal Brain Tissue HuFNSC02 GSM806935 33348651 25099253 
CD8 Naïve TC001 GSM613811 30715940 12682909 
PBMC TC015 GSM1127126 32660152 18423440 
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H3K27ac 

    Sample Donor GEO accession mapped reads unique reads 
Keratinocyte  Skin03 GSM958156 90088926 73780386 
Fibroblast Skin03 GSM958163 85996616 70420493 
Melanocyte Skin03 GSM958157 60175730 41969129 

 

Input 
    Sample Donor GEO accession mapped reads unique reads 

Keratinocyte  Skin01 GSM817242 43100255 24274329 
Keratinocyte  Skin02 GSM941742 23721661 17575551 
Keratinocyte  Skin03 GSM958167 63756790 44519558 
Fibroblast Skin01 GSM817246 72737986 50480503 
Fibroblast Skin02 GSM817247 70434054 51294727 
Fibroblast Skin03 GSM958168 46473822 31420011 
Melanocyte Skin01 GSM941740 30804003 20723138 
Melanocyte Skin02 GSM941741 35981661 26012467 
Melanocyte Skin03 GSM958166 72601148 60068291 
Breast Lumimal epithelia RM080 GSM959124 14417625 8605267 
Breast Myoepithelia RM066 GSM613891 27014513 20218185 
Breast Myoepithelia RM080 GSM613897 32030813 22049938 
Fetal Brain Tissue HuFNSC01 GSM806948 33227925 21625397 
Fetal Brain Tissue HuFNSC02 GSM817243 16558529 10508213 
CD8 Naïve TC001 GSM613816 36016608 25937704 
PBMC TC015 GSM1127151 29092457 24043241 
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Data 3.  Gene Ontology Enrichment Results I 
GO term enrichment from GREAT for skin cell type-specific hypomethylated DMRs. 

Data 3.1  Fibroblast hypomethylated DMR GREAT enrichment. 

Fibroblast hypomethylated DMRs  
Term Name   Binomial P-Value  
negative regulation of glycolysis 3.20E-56 
osteoblast differentiation 2.67E-49 
negative regulation of osteoblast differentiation 1.39E-48 
extracellular matrix organization 9.05E-45 
ossification 6.73E-44 
chordate embryonic development 2.87E-42 
negative regulation of cellular carbohydrate metabolic process 4.02E-42 
embryonic cranial skeleton morphogenesis 2.03E-41 
embryonic skeletal system development 2.25E-41 
embryo development ending in birth or egg hatching 1.91E-40 
skeletal system development 2.30E-37 
osteoblast development 1.25E-35 
skeletal system morphogenesis 2.67E-35 
negative regulation of transcription from RNA polymerase II promoter 6.28E-35 
regulation of generation of precursor metabolites and energy 3.27E-32 
tooth mineralization 3.31E-32 
response to retinoic acid 7.28E-29 
intramembranous ossification 4.54E-28 
response to vitamin 8.26E-27 
regulation of osteoblast differentiation 3.48E-26 
embryonic organ development 6.36E-26 
cellular response to external stimulus 9.91E-26 
negative regulation of muscle cell differentiation 2.15E-25 
cellular response to nutrient levels 3.55E-25 
response to vitamin A 6.63E-25 
cellular response to extracellular stimulus 9.98E-25 
negative regulation of cell differentiation 1.41E-24 
cellular response to retinoic acid 2.19E-24 
endochondral ossification 2.34E-24 
cellular response to vitamin A 3.06E-24 
regulation of ossification 4.64E-24 
regulation of cardiac muscle contraction 7.43E-23 
embryonic organ morphogenesis 8.51E-23 
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positive regulation of cell morphogenesis involved in differentiation 2.32E-22 
response to extracellular stimulus 3.32E-22 
response to nutrient levels 6.87E-22 
regulation of striated muscle contraction 8.04E-22 
cellular response to vitamin 1.04E-21 
regulation of glucose metabolic process 2.62E-21 
response to nutrient 3.49E-21 

 

Data 3.2  Keratinocyte hypomethylated DMR GREAT enrichment. 

Keratinocyte hypomethylated DMRs  
Term Name   Binomial P-Value  
epidermis development 6.32E-70 
epithelial cell differentiation 1.15E-43 
skin development 9.32E-42 
response to retinoic acid 1.03E-39 
response to vitamin 4.29E-39 
induction of apoptosis by extracellular signals 4.47E-37 
hair follicle development 8.76E-37 
hair cycle 2.40E-36 
mammary gland epithelium development 3.16E-35 
response to vitamin A 1.76E-32 
lens fiber cell differentiation 2.22E-32 
cell-substrate junction assembly 8.68E-30 
inner ear development 1.38E-29 
negative regulation of sequence-specific DNA binding transcription factor activity 9.75E-29 
stem cell development 2.11E-28 
negative regulation of neurogenesis 1.75E-26 
placenta development 2.11E-26 
stem cell differentiation 6.28E-26 
stem cell maintenance 5.33E-25 
positive regulation of Rho GTPase activity 7.06E-25 
regulation of lipid biosynthetic process 2.04E-24 
negative regulation of cell development 2.74E-24 
morphogenesis of a polarized epithelium 3.73E-24 
cellular response to extracellular stimulus 1.59E-23 
hemidesmosome assembly 2.09E-23 
negative regulation of osteoblast differentiation 1.16E-20 
neuronal stem cell maintenance 2.46E-20 
negative regulation of phosphate metabolic process 9.66E-20 
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regulation of protein kinase B signaling cascade 2.06E-19 
regulation of morphogenesis of a branching structure 4.61E-19 
negative regulation of glial cell proliferation 3.52E-18 
somatic stem cell maintenance 6.19E-18 
osteoblast development 1.24E-17 
response to vitamin D 1.33E-17 
negative regulation of gliogenesis 1.67E-17 
digestive tract morphogenesis 1.18E-16 
exocrine system development 1.34E-16 
negative regulation of phosphorylation 4.21E-16 
mammary gland duct morphogenesis 4.99E-16 
establishment of tissue polarity 3.97E-15 

 

Data 3.3  Melanocyte hypomethylated DMR GREAT enrichment. 

Melanocyte hypomethylated DMRs  
Term Name   Binomial P-Value  
regulation of cardioblast proliferation 1.73E-16 
negative regulation of muscle cell differentiation 7.41E-15 
negative regulation of developmental process 1.30E-14 
negative regulation of cell differentiation 2.01E-13 
regionalization 1.99E-12 
regulation of muscle cell differentiation 7.17E-09 
segmentation 8.16E-09 
negative regulation of osteoblast differentiation 2.03E-08 
mammary gland epithelium development 3.31E-08 
in utero embryonic development 1.23E-07 
positive regulation of Ras GTPase activity 1.89E-07 
stem cell maintenance 5.92E-07 
stem cell differentiation 1.09E-06 
stem cell development 2.39E-06 
pigmentation 2.43E-06 
cell proliferation in forebrain 2.53E-06 
positive regulation of neuroblast proliferation 4.20E-06 
anterior/posterior pattern specification 4.34E-06 
regulation of neural precursor cell proliferation 6.48E-06 
positive regulation of neural precursor cell proliferation 1.13E-05 
mesoderm morphogenesis 1.14E-05 
lymph vessel development 1.33E-05 
myelination 4.42E-05 
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embryonic limb morphogenesis 4.79E-05 
cellular response to lipid 4.97E-05 
cardiac chamber development 5.80E-05 
axon ensheathment 6.04E-05 
negative regulation of cell development 9.52E-05 
cardiac ventricle development 9.98E-05 
cardiac chamber morphogenesis 1.26E-04 
regulation of muscle organ development 1.77E-04 
regulation of action potential in neuron 1.79E-04 
negative regulation of gliogenesis 2.01E-04 
negative regulation of neurogenesis 2.28E-04 
organ growth 2.48E-04 
somatic stem cell maintenance 2.54E-04 
hindbrain development 2.67E-04 
regulation of astrocyte differentiation 3.69E-04 
proximal/distal pattern formation 4.78E-04 
amine transport 5.22E-04 
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Data 4.  Gene Ontology Enrichment Results II 
GO term enrichment from GREAT for skin cell type- or tissue-specific histone modification 

ChIP-seq peaks. 

Data 4.1  Fibroblast H3K4me1 + H3K27ac peaks GREAT enrichment. 

GO Biological Process Binomial P-
value 

platelet-derived growth factor binding 5.83E-22 
SMAD binding 6.34E-12 
collagen binding 1.79E-08 
negative regulation of transforming growth factor beta receptor signaling pathway by extracellular 
sequestering of TGFbeta 

2.94E-20 

extracellular matrix organization 1.29E-19 
response to oxygen levels 9.80E-18 
protein heterotrimerization 1.93E-17 
extracellular matrix part 2.56E-43 
proteinaceous extracellular matrix 7.69E-38 
extracellular matrix 1.35E-37 
collagen 7.39E-30 
extracellular region part 2.36E-29 
fibrillar collagen 4.39E-21 
basement membrane 5.19E-17 
collagen type VI 5.78E-17 
 

Data 4.2  Keratinocyte H3K4me1 + H3K27ac peaks GREAT enrichment 

GO Biological Process Binomial P-value 
keratinocyte differentiation 2.41E-13 
keratinization 5.18E-13 
epidermis development 1.45E-12 
epidermal cell differentiation 2.80E-12 
epithelial cell differentiation 7.82E-10 
positive regulation of MAPKKK cascade 3.45E-07 
branch elongation of an epithelium 7.40E-07 
axis elongation 2.02E-06 
ear development 4.18E-06 
inner ear development 4.98E-06 
ear morphogenesis 6.88E-06 
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limb morphogenesis 8.78E-06 
uterus development 1.14E-05 
metanephric mesenchyme morphogenesis 2.23E-05 
embryonic limb morphogenesis 2.28E-05 
response to transforming growth factor beta stimulus 2.62E-05 
limb development 4.39E-05 
cellular response to transforming growth factor beta stimulus 1.14E-04 
regulation of fibroblast growth factor receptor signaling pathway 2.57E-04 
embryonic forelimb morphogenesis 3.85E-04 
cornified envelope 2.11E-08 
desmosome 9.63E-05 

 

Data 4.3  Melanocyte H3K4me1 + H3K27ac peaks GREAT enrichment 

GO Biological Process Binomial P-value 
developmental pigmentation 1.20E-27 
Ocular albinism 7.77E-29 
Reduced iris pigmentation 2.50E-24 
Abnormality of the iris 1.39E-15 

 

Data 4.4  Fibroblast H3K4me3 peaks GREAT enrichment 

 
GO Molecular Function 

Binomial P-value 

platelet-derived growth factor binding 1.05E-51 
growth factor binding 5.68E-26 
integrin binding 4.80E-08 
SMAD binding 8.85E-08 
insulin receptor binding 2.84E-07 
collagen binding 4.98E-07 
  
  
GO Biological Process  
extracellular matrix organization 1.91E-41 
collagen biosynthetic process 3.41E-27 
collagen fibril organization 1.37E-24 
cellular response to acid 2.03E-24 
collagen metabolic process 1.76E-22 
multicellular organismal macromolecule metabolic process 2.47E-22 
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Human Phenotype  
Joint laxity 4.22E-42 
Soft skin 1.22E-34 
Joint hypermobility 1.48E-34 
Blue sclerae 2.27E-29 
Abnormality of the sclera 1.47E-26 
Molluscoid pseudotumors 1.49E-26 
Mitral valve prolapse 2.51E-26 
  
  
GO Cellular Component  
extracellular matrix part 1.29E-30 
fibrillar collagen 5.23E-27 
collagen 6.84E-27 
actin cytoskeleton 3.14E-20 
basement membrane 1.16E-19 
actomyosin 1.35E-16 
focal adhesion 6.39E-12 
actin filament bundle 2.80E-11 
stress fiber 2.98E-11 
cell-substrate adherens junction 5.65E-11 
cell-substrate junction 5.99E-10 
extrinsic to internal side of plasma membrane 2.19E-05 

 

Data 4.5  Keratinocyte H3K4me3 peaks GREAT enrichment 

GO Molecular Function Binomial P-value 
Ras guanyl-nucleotide exchange factor activity 1.70E-06 
  
  
GO Biological Process  
epidermis development 3.53E-13 
hair follicle development 2.12E-08 
hair cycle 2.48E-08 
epithelial cell differentiation 7.18E-08 
skin development 8.21E-08 
establishment of planar polarity 9.02E-08 
establishment of tissue polarity 1.17E-07 
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morphogenesis of a polarized epithelium 7.42E-07 
lateral sprouting from an epithelium 9.10E-07 
negative regulation of epidermis development 1.41E-06 
response to ionizing radiation 2.73E-06 
prostate glandular acinus development 4.18E-06 
regulation of Rho protein signal transduction 4.89E-06 
response to radiation 4.90E-06 
ectoderm development 1.50E-05 
response to light stimulus 5.49E-05 
positive regulation of DNA replication 9.38E-05 
digestive tract morphogenesis 1.20E-04 
positive regulation of DNA metabolic process 1.63E-04 
prostate gland epithelium morphogenesis 1.96E-04 
  
  
GO Cellular Component  
cell-cell junction 4.23E-10 
desmosome 4.59E-07 
anchoring junction 5.43E-06 
gap junction 8.24E-05 
cell-cell adherens junction 2.58E-04 

 

Data 4.6  Melanocyte H3K4me3 peaks GREAT enrichment 

GO Biological Process Binomial P-value 
developmental pigmentation 1.19E-09 
melanin biosynthetic process 1.93E-09 
melanin metabolic process 7.53E-09 
regulation of Rap GTPase activity 7.79E-06 
cell proliferation in forebrain 5.45E-05 
protein autophosphorylation 4.06E-04 
  
  
GO Cellular Component  
melanosome 1.12E-18 
melanosome membrane 4.88E-09 
  
  
Human Phenotype  
Abnormality of hair pigmentation 4.45E-14 
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Hypopigmentation of the skin 5.86E-14 
Reduced iris pigmentation 1.04E-13 
Hypopigmentation of hair 1.91E-13 
Abnormality of the iris 1.05E-11 
Abnormality of the uvea 2.82E-11 
Albinism 4.32E-10 
Abnormality of the musculature of the limbs 6.67E-10 
Ocular albinism 1.37E-09 
Generalized hypopigmentation 3.64E-09 

 

Data 4.7  Skin cell type shared H3K4me1 peaks GREAT enrichment 

GO Biological Process Binomial P-value 
regulation of cell adhesion 3.83E-09 
positive regulation of cell adhesion 2.33E-08 
cytoplasmic mRNA processing body assembly 5.37E-05 
positive regulation of branching involved in ureteric bud morphogenesis 1.07E-04 
positive regulation of cell-substrate adhesion 1.15E-04 
metanephric renal vesicle morphogenesis 2.16E-04 
renal vesicle development 2.81E-04 
renal vesicle morphogenesis 3.18E-04 
metanephric nephron morphogenesis 3.25E-04 
organ induction 3.48E-04 
kidney epithelium development 3.72E-04 
metanephros morphogenesis 5.87E-04 
regulation of interleukin-17 production 8.45E-04 
regulation of embryonic development 1.04E-03 
metanephric nephron development 1.33E-03 
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Data 5.  Gene Ontology Enrichment Results III 
GO term enrichment from GREAT for hypomethylated surface ectoderm-DMRs. 

Term Name  Binomial P-Value 
epidermis development 4.35E-15 
skin development 4.03E-13 
response to extracellular stimulus 8.72E-12 
induction of apoptosis 2.73E-10 
response to vitamin 4.38E-10 
transforming growth factor beta receptor signaling pathway 1.30E-09 
mammary gland epithelium development 2.01E-09 
response to nutrient 2.24E-09 
signal transduction by p53 class mediator resulting in induction of apoptosis 3.03E-09 
positive regulation of protein serine/threonine kinase activity 3.28E-09 
response to retinoic acid 3.66E-09 
regulation of fibroblast proliferation 8.51E-09 
hair follicle development 1.90E-08 
hair cycle 2.31E-08 
cellular response to external stimulus 2.51E-08 
positive regulation of fibroblast proliferation 3.42E-08 
regulation of MAP kinase activity 4.92E-08 
induction of apoptosis by extracellular signals 7.78E-08 
sterol metabolic process 9.52E-08 
stem cell development 1.00E-07 
cellular response to extracellular stimulus 1.21E-07 
stem cell maintenance 1.39E-07 
induction of apoptosis by intracellular signals 1.72E-07 
regulation of organ morphogenesis 1.76E-07 
negative regulation of osteoblast differentiation 1.91E-07 
cell-substrate junction assembly 2.12E-07 
regulation of morphogenesis of a branching structure 2.50E-07 
cholesterol metabolic process 3.60E-07 
neuronal stem cell maintenance 6.68E-07 
hemidesmosome assembly 1.18E-06 
lung-associated mesenchyme development 2.02E-06 
Ras protein signal transduction 2.47E-06 
regulation of leukocyte degranulation 3.66E-06 
regulation of osteoblast differentiation 3.95E-06 
negative regulation of glial cell proliferation 3.96E-06 
regulation of myeloid leukocyte mediated immunity 4.22E-06 
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stem cell differentiation 1.06E-05 
positive regulation of mesenchymal cell proliferation 1.07E-05 
regulation of mesenchymal cell proliferation 1.23E-05 
cell volume homeostasis 1.87E-05 
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Epigenetic features at regulatory elements provide instructive cues for transcriptional regulation 

during development. However, the particular epigenetic alterations necessary for proper cell fate 

acquisition and differentiation are not well understood. This dissertation explores the epigenetic 

dynamics of regulatory elements during development and uses epigenome annotations to 

document inappropriate transcriptional regulation in disease. First, I summarize my contributions 

to developing a new algorithm for detecting differential DNA methylation, M&M. I report the 

application of the M&M algorithm to identify distinct classes of DNA methylation dynamics in 

surface ectoderm (SE) progenitor cells and SE-derived lineages: epigenome alterations, and 

differential DNA methylation in particular, that are present in progenitor cells are transmitted to 

daughter cells and consequently observed in differentiated cells. I exploit this property of DNA 

methylation to characterize DNA methylation dynamics in surface ectoderm embryonic tissue 

and SE-derived cells. Next, I use zebrafish to investigate the biological relevance of the classes 

of DNA methylation dynamics described in the SE context. In zebrafish, I use the pigment cell 

development system to understand the contribution of DNA methylation to a particular cell fate 
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choice: melanocyte or iridophore cell fate. Next, I investigate the consequence of somatic 

mutations in primary liver cancer by utilizing epigenomic annotations of human tissues to 

distinguish putatively functional mutations from passenger mutations. Here I present support for 

the hypothesis that transcriptional regulatory instructions for heterologous cell types are co-opted 

by cancer cells during malignant tumorigenesis. Finally I present a review of the evolution of 

epigenetic regulation over regulatory elements. Altogether, this dissertation advances our 

understanding of epigenetic regulation in cell fate decisions by integrating functional genomics 

with developmental biology and cancer genetics. 
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