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Plate tectonics is central to many aspects of the geology andevolution of terrestrial planets,

yet it is only observed on the Earth while all other known planets are covered with a stagnant

lithosphere. Plate motions on the Earth are mostly driven bythe pull of subducting slabs, therefore

understanding the initiation of subduction is crucial to understanding plate tectonics initiation. On

a one-plate planet which lacks the forces due to plate motions, some other mechanisms will have to

cause the first episode of subduction to mobilize the surface. Sublithospheric convection has been

proposed as a possible mechanism that induce stresses in thelithosphere. The question is whether

these stresses can initiate subduction. We develop scalinglaws for the criterion of lithospheric

failure from single-cell steady-state convection, which has more controlled flow and thus easier to

analyze. We show that these scaling laws are applicable to time-dependent convection. We also

investigate the time-dependent behavior of convection to understand the factors controlling the

timing of lithospheric failure. We find that the variation intiming not only systematically depends

on the physical parameters of the convecting mantle; for convective systems with the same set of

parameters, small variations in initial conditions resultin different structures of the lithosphere.
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This changes the stresses in the lithosphere and gives rise to different times of lithospheric failure.

This study suggests that it is important to address the question of when plate tectonics can initiate

on a planet, in addition to finding favorable conditions for lithospheric failure. We extrapolate the

scaling laws to planetary conditions to assess the feasibility of plate tectonics for terrestrial planets,

and estimate whether plate tectonics can happen in reasonable planetary lifetimes.
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Chapter 1

Introduction

The theory of plate tectonics has provided a framework to explain the geology of the Earth. Plate

tectonics is currently understood as a style of convection involving the cold surface boundary

layer, which manifests itself as rigid plates on the Earth (e.g., Bercovici et al. 2000; Schubert et al.

2001). However due to the high viscosity of this thermal boundary layer, questions remain on

why this layer can participate in convective motions. Platetectonics is an efficient heat transport

mechanism which makes the evolution of the Earth distinct from all other known planetary bodies,

on which convection is thought to be in the stagnant lid regime at present. This does not preclude

the possibility of plate tectonics in the course of planetary evolution, as the surface expressions on

Venus and Mars suggest large-scale deformation in the past that may be related to plate-tectonics

processes (e.g., Turcotte 1993; Sleep 1994). The existenceof plate tectonics on exoplanets is also

of interest, motivated by various reasons including the possibility of finding an Earth-like planet

and potential for habitability (e.g., Franck et al. 2000; Lammer et al. 2009).

To evaluate the conditions of a planet to have plate tectonics, we consider the problem of how

subduction, which is thought to be the key process for plate motions on the Earth (e.g., Mueller

and Phillips 1991), can initiate from a stagnant lid. Sublithospheric convection is one of the likely
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mechanism to induce stresses in the lithosphere (often referred to as the lid), thus providing the

driving forces to mobilize the lithosphere (e.g., Fowler 1985). In Chapter 2 we focus on developing

scaling laws of stresses for subduction initiation. The origin of the lithospheric stresses comes from

the lid structure resulting from sublithospheric convection, in particular the thermal thinning of the

lid that generates shear stress large enough to overcome theyield stress of the lithosphere and cause

large-scale failure. In this chapter we first describe the systematic analysis of convective systems

with simple controlled flow to derive scaling laws for the magnitude of lithospheric stresses and

the critical yield stress. Our analysis shows that initiation of subduction requires a very weak

lithosphere, thus confirming the difficulty of starting plate tectonics on Earth and other planets.

However, we find that the width of the convecting cells plays alarger role in subduction initiation

than previously thought and speculate that, at least in principle, plate tectonics can start if long

cells develop during planetary evolution.

As mantle convection systems are typically chaotic, their evolutionary pathways are random

and a multitude of outcomes is possible. We explore this phenomenon and its implications for plate

tectonics initiation in Chapter 3. We attempt to understandthe variability of outcomes in terms of

timing of subduction initiation, and provide a theoreticalmodel to explain this timing. Our study

demonstrates that the chaotic nature of time-dependent convection gives rise to different outcomes

in terms of the timing of onset of plate tectonics. This highlights the importance of addressing

the question of when would plate tectonics initiate, in addition to searching for favorable physical

conditions.

Having established a theoretical basis for using scaling laws for subduction initiation, we seek

to apply them to terrestrial planets in Chapter 4. To do so we test the applicability of the scal-

ing laws derived from single-cell simulations in Chapter 2 to more complicated time-dependent
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convection systems. Noting that there are currently many models of subduction initiation for the

Earth, they will be briefly reviewed in Chapter 4. We also discuss the implications of lithospheric

stress and critical yield stress estimation for the hypothesis of past episodes of plate tectonics on

Venus and Mars, the prevalent surface deformation on Mercury, and predictions for exoplanets.

We show that our scaling laws are applicable to more realistic multi-cell time-dependent convec-

tive systems. We extrapolate these scaling laws to terrestrial planets to estimate the criterion of

lithospheric failure.
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Chapter 2

Towards scaling laws for subduction initiation on terrestrial planets:

Constraints from two-dimensional steady-state convection simulations

T. Wong and V. S. Solomatov

An edited version of this chapter was published by SpringerOpen.

c© Copyright 2015 by SpringerOpen

Wong, T. and Solomatov, V. (2015). Towards scaling laws for subduction initiation on terres-

trial planets: constraints from two-dimensional steady-state convection simulations.Progress in

Earth and Planetary Science, 2(1):18, doi:10.1186/s40645-015-0041-x.

Abstract

The strongly temperature-dependent viscosity of rocks leads to the formation of nearly rigid litho-

spheric plates. Previous studies showed that a very low yield stress might be necessary to weaken

and mobilize the plates, for example, due to water. However the magnitude of the yield stress re-

mains poorly understood. While the convective stresses below the lithosphere are relatively small,
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sublithospheric convection can induce large stresses in the lithosphere indirectly, through thermal

thinning of the lithosphere. The magnitude of the thermal thinning, the stresses associated with it

and the critical yield stress to initiate subduction dependon several factors including the viscosity

law, the Rayleigh number and the aspect ratio of the convective cells. We conduct a systematic

numerical analysis of lithospheric stresses and other convective parameters for single steady-state

convection cells. Such cells can be considered as part of a multi-cell, time-dependent convective

system. This allows us a better control of convective solutions and a relatively simple scaling

analysis. We find that subduction initiation depends much stronger on the aspect ratio than in pre-

vious studies and speculate that plate tectonics initiation may not necessarily require significant

weakening and can, at least in principle, start if a sufficiently long cell develops during planetary

evolution.

2.1 Introduction

Plate tectonics is central to many aspects of the geology andevolution of terrestrial planets. While

Earth is the only planet where plate tectonics is observed, its driving mechanism and timing of

initiation are still poorly understood. Subduction is thought to be the fundamental process for plate

tectonics initiation, because the slab pull of subducting slab contributes most to the forces that drive

plate movements. On the Earth, initiation of subduction is greatly facilitated by tectonic forces

associated with plate motionsalready occurring elsewhere (Mueller and Phillips 1991; Hall et al.

2003)). Various models for subduction initiation has been proposed (e.g., McKenzie 1977; Turcotte

1977; Ogawa 1990; Mueller and Phillips 1991; Kemp and Stevenson 1996; Toth and Gurnis 1998;

Stern 2004; Solomatov 2004b; Ueda et al. 2008; Nikolaeva et al. 2010), many of which involve
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existing plate boundaries or weak zones. Incipient subduction zones are often found near transform

faults or fracture zones because of their physical weakness(e.g., Mueller and Phillips 1991; Gurnis

et al. 2004).

On one-plate planets such as Venus and Mars, the absence of plate tectonics is likely to be

due to the difficulty of subduction initiation in the absenceof forces due to plate motions. In

other words the problem of plate tectonics initiation can beviewed as the problem of the very first

occurrence of subduction. Due to the high sensitivity of viscosity to temperature, the lithosphere

acts as the cold rigid thermal boundary layer that has a very high strength. On these planets,

mantle convection is likely to be in the stagnant lid regime (e.g., Morris and Canright 1984; Fowler

1985; Solomatov 1995). One possible mechanism for the very first episode of subduction is due to

the lithospheric stresses generated by mantle convection (Ogawa 1990; Fowler and O’Brien 2003;

Solomatov 2004b). The magnitude of these stresses is relatively small compared to the lithospheric

strength suggested by laboratory and field observations (e.g., Kohlstedt et al. 1995; Gurnis et al.

2004) and thus it is usually believed that to initiate subduction some weakening mechanisms must

be present in the lithosphere.

Much effort has been devoted to understand the weakening mechanisms of the lithosphere. Sev-

eral studies showed that the frictional shear stress resisting subduction at transform faults and frac-

ture zones have to be less than 10 MPa for subduction to occur (Toth and Gurnis 1998; Hall et al.

2003; Gurnis et al. 2004). Stress drop estimates from earthquakes also indicate that fault strength

may be∼10 MPa (Kanamori 1994; Kanamori and Brodsky 2004). Models are able to describe

global reduction in the lithospheric strength, as well as localized weak zones such that plate-like

features can be generated from mantle convection in a self-consistent manner (e.g., Trompert and

Hansen 1998; Moresi and Solomatov 1998; Tackley 2000b; Bercovici et al. 2001; Branlund et al.
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2001; Regenauer-Lieb et al. 2001; Regenauer-Lieb and Kohl 2003; Regenauer-Lieb et al. 2006;

Korenaga 2007; Landuyt et al. 2008). Various approaches have been used to deal with the creation

of weak zones (Bercovici et al. 2001; Bercovici and Ricard 2005; Landuyt et al. 2008; Branlund

et al. 2001; Regenauer-Lieb and Kohl 2003). The two-phase damage theory with a grain-size de-

pendent rheology was developed to explain the formation of weak plate boundaries and track the

evolution of deformation (e.g., Bercovici and Ricard 2005;Landuyt et al. 2008; Bercovici and Ri-

card 2012). Some studies suggested that water might play an important role in the localization of

deformation (Regenauer-Lieb et al. 2001; Regenauer-Lieb and Kohl 2003; Regenauer-Lieb et al.

2006). Water also weakens the lithosphere by lowering the activation energy (Regenauer-Lieb et al.

2001; Regenauer-Lieb and Yuen 2004; Regenauer-Lieb et al. 2006), and increasing the pore fluid

pressure (Kohlstedt et al. 1995).

One approach to quantify the weakening of lithosphere is to set a yield value to the rheology

of the lithosphere to simulate brittle behaviour (Fowler 1993; Trompert and Hansen 1998; Moresi

and Solomatov 1998; Richards et al. 2001; Tackley 2000a,b; Fowler and O’Brien 2003; Solomatov

2004b; Stein et al. 2004; O’Neill et al. 2007; Stein and Hansen 2008). The yield stress can be re-

garded as a simplification of mechanisms that describe the strength of the lithosphere. Convection

with yield stress is usually categorized into 3 regimes: mobile lid regime, transitional regime with

some episodic failure, and stagnant lid regime (Moresi and Solomatov 1998; Tackley 2000a; Stein

et al. 2004). Stein and Hansen (2008) further subdivided thetransitional regime into episodically

mobile and stable plate mobilization regimes. To access theconditions of a planet to have plate

tectonics, some researchers presented regime diagrams in terms of Rayleigh number, viscosity

contrast, and yield stress (e.g., Stein et al. 2004; O’Neilland Lenardic 2007).

A number of studies attempted to derive scaling relations for convective stresses and yield
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stress to extrapolate to planetary conditions (e.g., Moresi and Solomatov 1998; Fowler and O’Brien

2003; Solomatov 2004b,a; O’Neill et al. 2007; Valencia and O’Connell 2009; Korenaga 2010b;

van Heck and Tackley 2011; Stamenkovic and Breuer 2014). Yetthe accurate description of these

convection-induced stresses inside the lithosphere and thus the yield stress is lacking.

This study seeks to understand the stress distribution of the steady-state convecting cell with

respect to various convective parameters using the pseudoplastic rheology as a first step. The goal

of this study is to find a scaling law for the lithospheric stress (hereafter referred as lid stress)

and the critical yield stress, which is the highest yield value at which the stagnant lid could be

mobilized. Note that an alternative and, perhaps, more intuitive approach would be to assume that

the yield stress is known and to try to figure out under what dynamic conditions it can be reached.

However, (a) the ”normal” yield stress is so high that it is nearly impossible to reach and (b) given

the uncertainties in the weakening mechanisms and thus the actual magnitude of the yield stress, it

should be treated as an unknown.

In this study we first examine the stress structure in steady-state stagnant lid convection, and

explore scaling relationships between convective parameters especially in relation to aspect ratio to

develop a scaling theory for lid stress and critical yield stress. We then compare the theoretical scal-

ing laws with numerical results. In addition we investigatethe accuracy of the Frank-Kamenetskii

approximation for modeling the initiation of plate tectonics.

2.2 Rheology

Viscous creep governs the flow in the mantle as it has high temperatures and low stresses. It

can be described by a constitutive relation (Hirth and Kohlstedt 2003), which is an Arrhenius
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function of temperatureT , activation energyE, pressureP , and activation volumeV with power

law dependences on stressτ (second invariant of stress tensor), grain sized, water fugacityfH2O,

and an exponential function of melt fractionφ:

η = Aτ 1−ndmf−r
H2O

exp(−αφ) exp

(

E + PV

RT

)

, (2.1)

whereA andα are constants,R is the gas constant, andm,n, r are exponents for grain size, stress,

and water fugacity respectively. Depending on the temperature, grain size, stress, pressure, and

composition, the dominating deformation mechanism in the mantle would be different (Karato

and Wu 1993; Karato et al. 1995; Hirth and Kohlstedt 2003). Inthe lithosphere, the major factor

controlling the viscosity is temperature. Thus the viscosity function to investigate subduction

initiation is often written as:

η = A′ exp

(

E

RT

)

. (2.2)

2.2.1 Frank-Kamenetskii approximation

Many numerical studies used use a relatively low viscosity contrast to observe plate behavior,

which has limited applications to realistic planetary situations. Moresi and Solomatov (1998)

investigated the convective regimes with viscosity contrast ranging from3× 104 to 3× 107, and in

Tackley (2000b) the viscosity contrast was limited to104, whereas Richards et al. (2001) and Stein

and Hansen (2008) used viscosity contrast on the order of105. The viscosity contrast across the

terrestrial lithosphere is many orders of magnitude higher.

The low viscosity contrast is used because high viscosity contrasts are difficult to treat in nu-

merical calculations (Moresi and Solomatov 1995). Thus theArrhenius function is often approxi-
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mated by the Frank-Kamenetskii function, which reduces theviscosity contrast by many orders of

magnitude compared to Arrhenius viscosity function. This makes the problem of convection with

strongly temperature-dependent viscosity more computationally tractable.

Frank-Kamenetskii approximation originated from the combustion theory. Frank-Kamenetskii

pointed out that since the activation energyE is large, we can consider the rate of reaction only in a

narrow range of temperature around the combustion temperature (Frank-Kamenetskii 1969)). The

equation for the rate of reaction is similar to the strain rate in the constitutive relations, which also

has an Arrhenius formexp(−E/RT ). Since convection mostly takes place in the interior of the

cell where the temperature is close to the interior temperatureTi, we use the same approximation

by expanding the exponentE/RT in the Arrhenius form so that the viscosity can be expressed as

an exponential function of temperature only:

η = B exp(−γT ), (2.3)

whereB andγ are constants. In the interior:

ηi,Arr = ηi,exp, (2.4)
(

dηi,Arr

dT

)

T=Ti

=

(

dηi,exp
dT

)

T=Ti

, (2.5)

whereηArr and ηexp are the interior viscosities of the Arrhenius function and that of Eq. 2.3

(hereafter referred as exponential viscosity) respectively. Eqs. 2.4 and 2.5 giveγ in terms of
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activation energy and interior temperature:

γ =
E

RT 2
i

. (2.6)

This method of expanding the terms in the exponent preservesthe interior viscosity and the

change of viscosity with temperature close toTi, where convection actively takes place. Some

studies expanded the terms inside the exponents differently (e.g., King 2009). However, it is impor-

tant to use Eq. 2.4 and 2.5 to ensure the asymptotic accuracy of Frank-Kamenetskii approximation

(Morris 1982; Morris and Canright 1984; Fowler 1985; Frank-Kamenetskii 1969).

Frank-Kamenetskii approximation was shown to be sufficiently accurate for the interior of the

convective layer with large viscosity contrast (Solomatovand Moresi 1996; Ratcliff et al. 1997;

Reese et al. 1999). Recent studies have examined convectionwith Arrhenius rheology and sug-

gested slightly different scaling laws compared to convection with Frank-Kamenetskii viscosity

(Korenaga 2009; Stein and Hansen 2013). Here we assess the accuracy of the Frank-Kamenetskii

approximation in predicting the values of critical yield stress.

2.2.2 Pseudoplastic rheology and plastic yielding

The brittle behavior of the lithosphere can be simplified with a viscoplastic rheology that causes

yielding when the convective stresses exceed a plastic yield stressτy (Moresi and Solomatov 1998;

Trompert and Hansen 1998; Tackley 2000a; Fowler and O’Brien2003). The yield stress can be

defined by Byerlee’s law (Byerlee 1978):

τy = τ0 + µρgz, (2.7)
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whereτ0 is the yield stress at the zero hydrostatic pressure,µ is the frictional coefficient, andρgz

is the hydrostatic pressure. Viscous deformation occurs according to Eq. 2.3 when stresses are less

than the yield stress. Above the yield stress, the deformation follows a plastic flow law defined by

a non-linear effective viscosity:

ηeff =
τy
ė
, (2.8)

whereė is the second invariant of the strain rate tensor. The yield stress defines a change on defor-

mation mechanism based on the second invariant of the deviatoric stress tensor, which corresponds

to the Von Mises yield criterion. In this study we consider two types of yield stress: a constant

yield stressτy, or a depth-dependent yield stress with a constant gradientτ ′y.

2.3 Formulation of the problem

2.3.1 Equations of thermal convection

The equations of thermal convection of an incompressible fluid in Boussinesq approximation and

infinite Prandtl number are:

∂ui

∂xi
= 0, (2.9)

αρgiT
′ −

∂p′

∂xi
+

∂τij
∂xj

= 0, (2.10)

∂T ′

∂t
+ ui

∂T ′

∂xi
= κ

∂2T ′

∂x2
i

, (2.11)

whereρ is density,p′ andT ′ are pressure and temperature perturbations,gi is the gravity vector,α

is the thermal expansivity,κ = k
ρcp

is the thermal diffusivity,k is the thermal conductivity, andcp is

the isobaric specific heat.τ represents the elements of the stress tensor according to the following
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equation:

τij = η

(

∂ui

∂xj

+
∂uj

∂xi

)

, (2.12)

wherei, j, are indices of the coordinate axes.

The boundary conditions are as follows. For a cell with only base heating, the top and bottom

surfaces are isothermal. The temperature of the top surfaceT0 and that of the bottom surfaceT1.

The temperature difference is∆T = T1 − T0. The vertical boundaries are thermally insulated. All

surfaces are free-slip. The velocity normal to a cell boundary is zero.

2.3.2 Non-dimensionalization

The above equations are non-dimensionalized as follows:

x̄i =
xi

d
, ūi = ui

d

κ
, η̄ =

η

η1
, τ̄ = τ

d2

κη1
, t̄ = t

κ

d2
, T̄ =

T

∆T
, (2.13)

whered is the layer depth,t is time,η1 is the reference viscosity (at the bottom of the convective

layer), and∆T is the temperature drop across the layer. The Rayleigh number can then be used to

characterize the system:

Ra =
αρg∆Td3

κη1
. (2.14)

The Arrhenius viscosity is non-dimensionalized as:

Ē =
E

R∆T
, (2.15)

η̄ = ηr,Arr exp
Ē

T̄0 + T̄ ′
, (2.16)
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while the dimensionless exponential viscosity is:

η̄ = ηr,exp exp(−θT̄ ′), (2.17)

where the pre-factorsηr,Arr andηr,exp are chosen to ensure that the viscosity is equal to unity at

T̄ ′ = 1 and the Frank-Kamenetskii parameterθ is the non-dimensionalized form of the constantγ

(Eq. 2.6):

θ = γ∆T. (2.18)

In this case, the viscosity contrast is characterized by only one parameter (θ):

∆η = eθ, (2.19)

The non-dimensional yield stress is:

τ̄y = τ̄0 + τ̄ ′yz̄, (2.20)

where

τ̄0 =
d2

κη1
τ0 (2.21)

is the non-dimensional yield stress at the surface and

τ̄ ′y =
ρgd3

κη1
µ (2.22)
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is the non-dimensional yield stress gradient. The dimensionless pseudoplastic viscosity is:

η̄eff =
τ̄y
¯̇e
, ¯̇e =

d2

κ
ė. (2.23)

In the following discussion all parameters are assumed to benon-dimensionalized and the bar

sign will be dropped. The non-dimensional forms of Eqs. 2.9-2.11 are:

∂ui

∂xi

= 0, (2.24)

RaT ′ei −
∂p′

∂xi
+

∂τij
∂xj

= 0, (2.25)

∂T ′

∂t
+ ui

∂T ′

∂xi
=

∂2T ′

∂x2
i

. (2.26)

whereei is a unit vector in the direction of gravity.

2.3.3 Matching Arrhenius viscosity and exponential viscosity in non-dimensional form

To compare the two viscosity laws, the Arrhenius viscosity and the exponential viscosity are

matched according to Eqs. 2.4 and 2.5:

ηr,Arr exp
E

Ti + T0
= ηr,exp exp (−θTi), (2.27)

E

(Ti + T0)2
ηr,Arr exp

E

Ti + T0
= θηr,exp exp (−θTi). (2.28)

Eqs. 2.27 and 2.28 would yield:

θ =
E

(Ti + T0)2
. (2.29)
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Ti differs from the bottom temperatureT1 by a rheological temperature difference∆Trh, which is

on the order ofθ−1.

Equation 2.29 shows that there are various combinations ofE andT0 that would give the same

θ, and they would result in different Arrhenius viscosity contrasts:

∆ηArr = exp
ETi

T0(Ti + T0)
. (2.30)

Thus the ratio of Arrhenius viscosity contrast to exponential viscosity contrastexp θ, is:

∆ηArr

exp(θ)
= exp

ETi

T0(Ti + T0)2
. (2.31)

2.4 Steady-state convection

We use the finite element code CITCOM (Moresi and Solomatov 1995)) to simulate convection in

a64a× 64 box, wherea is the aspect ratio. Several high viscosity cases were ran with 128a× 128

resolution for more accurate results. All cases were run until they reached a steady state at which

the rate of heat loss is equal to that of heat production. We consider the range of parameters in

which convection is in the stagnant lid regime (Solomatov 1995).

The structure of a steady-state convection cell is shown in Fig. 2.1. Due to the temperature-

dependent viscosity, the top part of a convective cell formsa stagnant lid and convection only

penetrates into the lid by length ofδrh – the rheological layer thickness (e.g., Solomatov 1995). A

cold rigid lid, which is often defined by an isotherm, is naturally developed in the top part of the

cell sloping downward to the downwelling end. The stress field (Fig. 2.1, right) shows a stress

boundary layer near the surface. This is consistent with theanalytical solutions of (Fowler 1985).
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To compare the stresses in exponential and Arrhenius viscosity, we choose a range ofT0 and

calculate their correspondingE that gives the sameθ according to Eq. 2.29 withTi ≈ 1.

2.4.1 Aspect ratio

The horizontally averaged profiles (Fig. 2.2) show that the lid thickness slightly depend on the

aspect ratio of the convective cell but the bulk of the temperature and viscosity profile does not

vary much with the aspect ratio. However the stress profile insmall aspect ratio cells (a = 0.25) is

distinctly different from that in larger cells (a = 0.5 to 1).

This difference is more apparent in the 2-D plots (Fig. 2.3).In wider cells the layer with highest

stress (red) is approximately symmetric along the half-width of the cell, increasing in depth towards

both edges and greater towards the downwelling edge. Below the surface stress boundary layer,

the stresses in the middle of the lid are highest as they are not affected by the free-slip boundary

conditions at the vertical edges. Although surface stress boundary layer is obvious in horizontally

averaged stress profiles, the 2-D stress fields reveal that the surface stress are not always greater

than that at depth. Figure 2.3 shows that at mid-width, it is possible that the surface stresses are

lower than the interior. The high stress region (orange to lime) roughly correspond to the cold lid

shown in the temperature distribution, both having slopes towards the downwelling edge. In the

narrowest cell however, this high stress slope deviates from the thermal lid slope. There is a high

stress ”core” within the lid where the magnitude of stressesis close to that of the surface stress

boundary layer. This implies that steady-state convectionin small aspect ratios may be in another

regime of plastic failure where the interior stresses reachthe yield stress first, such that the plastic

zone could initiate at depth while the surface may or may not be plastic, depending on the yield

stress.
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For cases with high viscosity contrasts and larger aspect ratios, convection is localized to a

small part of the cell, or there could be multiple convectivecells (Fig. 2.4). These cases might

belong to the subcritical convective regime (Solomatov 2012), which has a different behaviour

from supercritical convection and therefore not in our scope of study. To stabilize one-cell flow,

smaller aspect ratio cases are considered to investigate the dependence of critical yield stress on

aspect ratio.

2.4.2 Rayleigh number

Increasing Ra reduces the lid thickness as well as the lid slope (Fig. 2.5). The stresses are larger

with higher Ra, as is expected with more vigorous convection.

2.4.3 Viscosity contrast

The effects of viscosity contrast on the interior profile areillustrated in the plots in Fig. 2.6. The

conductive lid becomes thicker and the interior temperature is closer with the bottom temperature

with increasingθ. In the stagnant lid regime (θ > 10) the stress boundary layer near the surface is

more pronounced than in the transitional regime.

The interior viscosity, temperature, and stress for Arrhenius viscosity and exponential viscosity

are close. We investigate a range of different Arrhenius viscosity values by varyingT0, noting that

at T0 = 2.0 is a rather high surface temperature. AsT0 decreases, the difference in viscosity

contrasts calculated by the two viscosity laws becomes larger. However the temperature and the

stress profiles are similar, as shown in the horizontally averaged profiles in Fig. 2.7. There is

only a slight decrease in thickness of the stress boundary layer as the Arrhenius viscosity contrast

increases. The 2-D stress distributions in Fig. 2.8 and 2.9 reflect the small differences in the stress
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distribution as viscosity contrast increases, both in exponential viscosity and Arrhenius viscosity.

This is contrary to the findings of (Stein and Hansen 2013), which observed a distinctly thinner

lid in Arrhenius viscosity and slightly different temperature and viscosity profiles. The small

difference that we observe may affect the scaling laws for subduction. The vertical variation in

stresses at the downwelling edge may be particularly important. Although the lid thickness is

about the same, the contrast in stresses atx = a seems to be greater at lowT0 or high viscosity

contrast (Fig. 2.9). Since subduction occurs at the downwelling edge, this may influence the

scaling of yield stress.

2.5 Lid stress scaling theory

Fowler (1985) obtained a polynomial expression for the stress in the lid below the surface stress

boundary layer in large lid slope approximation, which allows a comparatively simple scaling re-

lation for stress. In order to solve the equations of convection, Fowler took Ra andθ to be asymp-

totically large, and assumed the magnitude of lid slope to beeither on the order of lid thickness or

rheological sublayer thickness. For the Earth and some smaller terrestrial planets as well as most

numerical simulations, Ra may not be as high as the asymptotic theory require and thus some other

theory may be needed for lid stress scaling. Moreover, as we find in this study, the lid slope does

not follow either of these two end-member cases and thus needs to be scaled based on numerical

simulations.

Fowler also found that the interior flow can be uncoupled fromthe rheological sublayer, which

makes the problem setup akin to a viscous lid gravitationally sliding along a slope. We can there-

fore estimate the shear stress in the rigid lidτlid by considering the force balance on the lid (Fig.
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2.1):

dτ

dy
= ∆ρgx. (2.32)

For density changes due to temperature variations, the lid stress can be integrated from Eq. 2.32:

τlid = −αρ0
dT

dy
g sin λ

y2

2
+ τi, (2.33)

whereτi is the stress at the interior temperatureTi.

There are two assumptions that allow us to simplify Eq. 2.33.The first is thatτi is negli-

gible sinceτi ≪ τlid. The second is the small lid slope approximation. For smallλ, sin(λ) is

approximately equal toλ. The non-dimensional form of Eq. 2.33 becomes:

τlid = −Ra
dT

dy

y2

2
λ. (2.34)

Thus the lid stress is determined by Ra,dT/dy, λ, andy, which will be defined in the following

discussion. This scaling is similar to that obtained from the analytical solutions of Fowler (1985).

2.5.1 Lid base temperature

The lid base is often defined by an isotherm:

TL = Ti − Cθ−1 (2.35)

whereC is a constant. We determine the lid base from velocity profile(Solomatov and Moresi

2000) to find the constantC. We first find the greatest velocity gradient at a specific distancex
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from the upwelling edge of the cell. This velocity gradient is then extended to the depth at which

velocity is zero, as shown in Fig. 2.10. This depth defines thelid thickness. This process is

repeated for allx (from 0 toa) to obtain the shape of the lid base across the convecting cell. This

velocity gradient-defined lid base is then used to find the thermal lid base defined by Eq. 2.35. The

interior temperatureTi is found by averaging the temperature in the middle part of the interior to

exclude the boundary effects. The constantC is determined by matching the lid thickness at mid-

width (x = 0.5a) given byTL and that defined by the velocity gradient (Fig. 2.11). We choose the

value at mid-width because in most cases the two lid bases areclosest around the middle of the cell

for a large lateral extent. In some cases, especially for narrower cells, the temperature lid base and

the velocity lid base may not match, so the mid-width serves as a reference point for consistency

in defining the lid base.

Eq. 2.35 allows us to determine the rheological temperaturedifference∆Trh = Ti − TL =

Cθ−1. It varies with Ra,θ, and aspect ratio, and the scaling exponents are summarizedin Table

2.1.

2.5.2 Lid slope, lid thickness and plume slope

Gravitational sliding requires a downward dipping slopeλ as indicated in Eq. 2.34. In larger aspect

ratio cells, although the lid thickness varies horizontally, the lid slope is approximately constant in

the middle portion of the cell. This is different for smallercells, where the lid base could be some

function ofx instead of a straight line (Fig. 2.12). For example, Fowler suggests that the lid base

varies withx0.4 (Fowler 1985). For consistency in our scaling analysis, thelid slope is taken to be

the slope of the thermal lid base at mid-width.

To check whether the lid slope scales with lid thickness or rheological sublayer thickness
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Fowler (1985), we look at the vertical dropδx (Fig. 2.1) and define the lid slope asδx/a. If

the lid slope scales with the lid thickness, thenδx ∼ δlid ∼ Nu−1, and thus

δx/δlid ∼ Nuδx ∼ constant. (2.36)

If the lid slope scales withδrh, thenδx ∼ δrh. As δrh/δlid ∼ θ−1, thusδx/δlid ∼ θ−1, or

θδx/δlid ∼ Nuδxθ ∼ constant. (2.37)

We plot Nuδx and Nuδxθ in Fig. 2.13. Neither combination remains constant withθ, with Nuδx

increases withθ andNuδxθ decreases withθ. This suggests that the lid slope is somewhere in

between these two extreme cases. Therefore in deriving the scaling laws for stresses, we need to

determine the dependence of lid slope on various convectiveparameters (Table 2.1).

We can limit the aspect ratio of a sub-cell in a multi-cell system by using theoretical constraints

based on the end member cases for the magnitude of lid slope ina single-cell convective box (Fig

2.14). The large lid slope case (λ ∼ δlid) prohibits the lid slope to exceed 2δlid,1/2/a, whereδlid,1/2

is the lid thickness taken at mid-width, and the small lid slope case (λ ∼ δrh) dictates that the lid

slope should be greater than 2δrh/a. These theoretical constraints are based on the assumptionthat

bothδlid andδrh are small enough such that the lid slope can be approximated by these ratios. We

compare the lid slopes in our numerical results and the values obtained by these two limits in the

single-cell steady-state solutions in Fig. 2.15. We find that the numerically obtained lid slopes are

slightly smaller than the lower theoretical limit given by the rheological sublayer (λ ≈ 2δrh/a).

Therefore the theoretical constraints seem to support the small lid slope approximation, so the
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aspect ratio is limited bya ≈ 2δrh/λ. Since theλ from δrh is still larger than numerically obtained

λ, the aspect ratios could be smaller for theoretical constraints to hold.

The slope of the sinking plume may be another cause of gravitational sliding (Fig. 2.11). The

errors of linear regression for the power law coefficient of various parameters with the plume slope

are significant that it is difficult to find a scaling law for theplume slope (Table 2.1). Therefore we

cannot conclude how much the plume slope contributes to the stresses.

2.5.3 Thermal gradient

The temperature is approximately a linear function of depthand the thermal gradient in the lid

is about constant with depth. At mid-width (x = 0.5a) it is approximately equal to the Nusselt

number, which is the non-dimensional horizontally averaged surface temperature gradient. Since

we are looking at temperature changes from the interior to the bottom of the lid which includes

the rheological sublayer, we also check the thermal gradient in the rheological sublayer∆Trh/δrh

to note any difference in the scaling relations. As before, we choose the values∆Trh/δrh at the

mid-width to exclude boundary effects for scaling purposes.

In previous theories,∆Trh/∆T ∼ θ−1 andδrh/δlid ∼ θ−1. The determination ofC follows

the description in the previous section on lid base temperature, and it is found to be dependent on

aspect ratio andθ. Therefore∆Trh/∆T andδrh/δlid will also have a dependence ona andθ, and

their scaling relations are summarized in Table 2.1.

2.5.4 Stress scaling

Eq. 2.34 can now be expressed in a non-dimensional form with the definitions of various pa-

rameters in the previous discussion. At the bottom of the lidat δrh from the interior, where the
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temperature difference is∆Trh, the stresses are:

τlid ∼ Ra
∆Trh

δrh
λy2. (2.38)

Further into the lid, the non-dimensional temperature gradient is the Nusselt number. Therefore

Eq. 2.34 can be alternatively scaled as:

τlid ∼ RaNuλy2. (2.39)

As shown in Fig. 2.10, there is a slight difference in the thermal gradient in the lid and in the rhe-

ological sublayer, therefore Eqs. 2.38 and 2.39 may result in slightly different scaling exponents.

We check both scaling relations to see whether the stresses at the lid base and those in the lid can

be scaled similarly.

We plot the stress profile according to Eqs. 2.38 and 2.39 and compare with that from numerical

solutions (Fig. 2.16). The prefactor of the stress as a function of y calculated from the thermal

gradient in the rheological sublayer (Trh/δrh) is 5.9×106, whereas that from the Nusselt number

is 9.6×106. This demonstrates that the theoretical stress profiles match fairly closely with the

numerical one, and the best fit can be obtained with some smalladjustments in the coefficient.

All the above parameters depend on Ra, aspect ratioa andθ, thus they can be expressed as

Raβaζθα whereβ, ζ , andα are scaling exponents. The results are summarized in Table 2.2.
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2.6 Convection with yield stress

We use the steady-state solutions as the starting point before imposing a yield stress to simulate

plastic yielding. For the yield stress gradient, a small cohesion term (surface yield stress) was

introduced to stabilize the solution.

2.6.1 Regimes of convection with constant yield stress or constant yield stress gradient

When a yield stress is present, the regions with stresses that reach the yield value would have an

approximately constant stress close toτy. These plastic zones develop first at the corners of the

cell where the stresses are highest. Asτy decreases, the plastic zones extend both in depth and

horizontally, narrowing the width of the high viscosity part of the lid (Fig. 2.17). If yield stress

is too high, the depth of the plastic zone is small or the plastic zone is entirely absent, thus the

stagnant lid does not fail. If the yield stress is sufficiently low, the plastic zone extends sufficiently

deep so that the stagnant lid is mobilized.

We examine the stress and viscosity profiles at various locationsx to see how they change in

the presence of a yield stress (Fig. 2.18 and 2.19). At high yield stress or high yield stress gradient,

the plastic zone only occurs at shallow depths and the bulk ofthe stress and viscosity profiles are

unaltered from the stagnant lid state. The plastic zone extends deeper as the yield stress or yield

stress gradient decreases. As the yield stress approaches the critical value, a small change in yield

stress induces a change in plastic depth that is comparable to the change caused by an order of

magnitude change in yield stress when it is far from critical. Although subduction does not occur,

this implies a change in convection regime from stagnant lidto some sort of transitional regime.

In this transitional regime, the yield stress slightly changes the interior dynamics as can be
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seen in various convective parameters of the interior region of the cell. The yield stress increases

the lid slope whereas the lid thickness remains approximately the same. When the yield stress is

slightly above the critical value, these changes caused by yield stress are negligible and convection

remains in the stagnant lid regime. Therefore in deriving the critical yield stress scalings, we refer

to the steady-state structure that has a yield stress just above the critical value, so that the scaling

relations for various convective parameters (Table 2.1) from steady-state stagnant lid convection

can still be used.

2.6.2 Time evolution of lid weakening and failure

When the lid fails, the surface velocity continuously increases and overturn occurs (Fig. 2.20).

Figure 2.21 shows the time sequence of stress structures before and during failure. When the

surface velocity is still low compared to the bottom velocity (Fig. 2.20, left), the variation in stress

structure is not obvious. It is not until the velocity beginsto increase drastically that the plastic

yield zones from the two corners start to connect in the middle of the cell to form a plastic lid. The

weak lid then becomes unstable and starts to subduct.

A possible contribution to the uncertainty in determining the critical yield stress is that at the

vicinity of the critical value, the behavior may be difficultto interpret. In some cases that as the

yield stress gets close to a critical value, the surface velocity increases slowly and it may take more

than105 timesteps to reach a point of overturn, whereas typically ittakes less than104 timesteps to

a drastic increase in surface velocity (Fig. 2.20 right). This may be due to the behavior of dynamic

system near a critical point.
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2.7 Critical depth of plastic failure zone

For subduction to occur, the lithosphere has to be sufficiently weak so that it can be mobilized by

stresses arisen from mantle convection. As seen in Fig. 2.18and 2.19, the lid remains stagnant

if the plastic yield zone is small. Therefore the question ishow deep does this plastic zone have

to penetrate for the lid to be mobilized? Previous theories proposed that the plastic zone has to

penetrate through some critical depthδpl defined by a critical temperatureTc:

δpl
δ0

=
Tc − T0

Ti − T0
, (2.40)

whereδ0 = δlid + δrh. The model of Fowler and O’Brien (2003) predicts thatδpl is defined by the

temperature that gives the interior viscosity. For Newtonian rheology, this means that the plastic

zone has to extend through the base of the lid. Solomatov (1995, 2004b) suggested thatδpl only

has to penetrate to the isotherm at which the viscosity contrast with the interior viscosity ise4(n+1),

wheren is the stress exponent for non-Newtonian viscosity.

To examine these hypotheses, we look at the stress profile at the downwelling edge (x = a)

to determine the depth of the plastic zone, as the stresses atthis edge are the highest and this is

where subduction starts (Fig 2.22). The depth of the plasticzone is defined by extent of the stress

modified by the plastic flow law in Eq. 2.7. The exact value ofδpl and the stress at this depth are

found by the intercept of the stress calculated from linear extrapolation from the top (where stress

is determined by the yield stress) and exponential extrapolation from the creep regime just below

the plastic depth. The values ofδpl for constant yield stress cases and that for constant yield stress

gradient cases are close. It is noted that the stress at depthδpl in constant yield stress gradient cases
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is about twice as much as that in constant yield stress cases.The force on the lid isδplτy,cr for

constant yield stress and0.5δplτ ′y,cr for constant yield stress gradient. This implies that the force

on the lid is about the same for both constant yield stress andyield stress gradient.

As we see from the effects of aspect ratio on steady-state stress distribution, the stresses in the

interior become comparable or even exceed the surface stresses as the aspect ratio and Ra decrease

and viscosity contrast increases. This means that the plastic zone may not propagate from the top

but also develop at depths in the lid, and the plastic zone does not span the whole top part of the

cell. (Fig. 2.23). This may represent another regime of lid failure. These cases are thus excluded

from our scaling analysis.

The depth of the plastic zone is determined from drop in stress by the yield stress. We note

that the zone of reduced viscosity due to the yield stress maycorrespond to the zone of reduced

stress as shown in Fig. 2.22. However this does not always hold, especially for cases with higher

θ. Figure 2.24 shows that the transition of the plastic zone tocreep flow may not correspond to the

sharp change in the viscosity. This means that the viscosityat the plastic depth and the maximum

viscosity are different, since the reduction in viscosity is not only determined by the yield stress

but also by the strain rate.

To find out whether there is a critical viscosity contrast in lithospheric failure, we examine

both the viscosity contrast at plastic depth∆ηpl and the maximum viscosity contrast∆ηmax. The

maximum viscosity needs to be determined by extrapolation as the resolution near the point where

the viscosity is maximum is not high enough to resolve sharp changes in stress and viscosity.

The point of maximum viscosity is found by extrapolating thevalues from both above and below

the maximum point (e.g. Fig. 2.24 right). The viscosity is extrapolated linearly from the two

points above the maximum point, and below the maximum point the viscosity is calculated from
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temperature. The intersection of these two curves determines the maximum viscosity and its depth.

We found that these two viscosity contrasts are mostly within the same order of magnitude. Figure

2.25 shows that the maximum viscosity seems to depend on the original non-yielding viscosity

contrast∆η. For exponential viscosity and Arrhenius viscosity cases at low non-yielding viscosity

contrast, the maximum viscosity contrast∆ηmax increases with non-yielding viscosity contrast.

This may be because they are close to transitional regime. Athigher∆η, the increase in∆ηmax

seems to decline with increasing∆η, but the spread of data prevents us from concluding that∆ηmax

converges towards higher viscosities. As with the maximum viscosity contrast,∆ηpl also does not

display linearity or convergence clearly with either the non-yielding viscosity contrast orθ (Fig.

2.26).

Since the critical viscosity contrast is neither a constantor a function ofθ, we look at the depth

of the plastic zone to derive scaling relations for the yieldstress. We investigate the plastic depth

δpl as a fraction of the lid thickness. For scaling purposes, thelid thickness was previously defined

at the middle of the convecting cell. Here, sinceδpl is defined at the downwelling edge, we have to

determine a lid thickness at the edgeδlid,max. This is done by extrapolating the mid-width lid slope

to the downwelling edge (Fig. 2.10). As shown is Fig. 2.26, the plastic depth is approximately 0.3-

0.5 of the lid thickness. We take approximate values for our scaling relations rather than scaling

these properties with convective parameters because the trends observed in Fig. 2.26 maybe due

to insufficient viscosity contrasts which place convectionon the boundary of transitional regime,

especially forθ = 13 in which the viscosity is reduced to∼ 104 by the critical yield stress.

To find the lid stress atδpl using Eq. 2.34, we also need to determine the distance of the base

of the plastic zone from the convective interiorypl. The lid base is atδrh from the interior, so we

expressypl in terms ofδrh to give a sense of distance in relation to rheological sublayer thickness.
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While there is a general trend of increasing ofypl/δrh with θ, it is difficult to discern a correlation

asypl/δrh fluctuates, thus we takeypl ≈ 3δrh for our scaling relations.

The dependence ofδpl, ypl, and∆ηpl on Ra and aspect ratio are very weak and therefore as-

sumed negligible.

2.8 Scaling for critical yield stress and critical yield stress gradient

2.8.1 Critical yield stress scaling theory

In deriving a theoretical scaling for the critical yield stress, we assume an approximate balance

between the force generated by the shear stresses acting at the base of the lid and the normal stress

acting on the side of the lid and we assume that the latter are largely dominated by the stresses in

the plastic zoneδy (Solomatov 2004b) and Fig. 2.27). Thus we can express the yield stress as:

τy ∼ τlid
a

δy

= Ra
dT

dy
λ
y2pl
2

a

δy
. (2.41)

In the case of a constant yield stress gradient (τy = τ ′yz), τ ′y can be scaled as

τ ′y ∼ τlid
a

δ2y

= Ra
dT

dy
λ
y2pl
2

a

δ2y
. (2.42)

In Eqs. 2.41 and 2.42, the yield stress is treated as the normal stress whereas the lithosphere

stresses are shear stress. However the magnitude of stresses is expressed in second invariant, and
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the yield stress in von Mises criterion also put a limit the second stress invariant. To see which

stress component contributes to the second invariant, we plot the normal stress and shear stress

profiles in Fig. 2.28. Inside the lid where plastic failure occurs normal stress dominates, whereas

shear stress exceeds normal stress below the plastic depth.

The critical yield stress is the stress atδy = δpl. The critical plastic depthδpl is taken to be 0.3

to 0.5δlid, andypl is about 2 to 4δrh.

τlid ∼ C1Ra∆Trhλδrh, (2.43)

τy,cr ∼ C2Ra∆Trhλa
δrh
δlid

, (2.44)

τ ′y,cr ∼ C3Ra∆Trhλa
δrh
δ2lid

. (2.45)

For τlid expressed in terms of Nu (Eq. 2.39), noting that Nu∼ dT/dy ∼ δ−1
lid ,

τlid ∼ C1RaNuλδ
2
rh, (2.46)

τy,cr ∼ C2RaNu
2λaδ2rh, (2.47)

τ ′y,cr ∼ C3RaNu
3λaδ2rh. (2.48)

whereC1, C2, C3 ranges from 4-16, 8-53, and 16-178 respectively.

From the previous sections, since∆Trh/∆T , δrh/d, δlid/d, andλ are all scaled in terms of Ra,

a, andθ with scaling exponents summarized in Table 2.1.τlid, τy,cr, andτ ′y,cr can be scaled in terms

of Ra,a, andθ. The results are listed on Table 2.2.
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2.8.2 Numerical results for critical yield stress and yieldstress gradient: Arrhenius vs ex-

ponential viscosity

Figures 2.29 and 2.30 show that bothτy,cr andτ ′y,cr decrease with increasingθ and total viscosity

contrast and might converge to asymptotic values at high viscosity contrasts, although it is difficult

to tell from our limited data. To estimate the accuracy of Frank-Kamenetskii approximation in

the prediction of critical yield stress, we express the ratio of yield stress for Arrhenius viscosity to

that for exponential viscosityRτ = τy,cr,Arr/τy,cr,exp and similarly for critical yield stress gradient

with Rτ ′ = τ ′y,cr,Arr/τ
′

y,cr,exp to look at the dependence of these ratios onθ (Fig. 2.31 and 2.32).

Both Rτ andRτ ′ increase withθ and the values of yield stress for Arrhenius viscosity and that

for Frank-Kamenetskii approximation get closer as the viscosity contrast increases, assuming that

Rτ < 1 andR′

τ < 1 at all θ.

For the cases tested at resolution that is doubled, we find that the values forRτ andRτ ′ are

within 5% difference. Therefore64 × 64a resolution is sufficient for our single-cell steady-state

convection analysis.

To find the dependence ofRτ andRτ ′ on the Arrhenius viscosity contrast∆ηArr, we consider

ratio of Arrhenius viscosity contrast to exponential viscosity contrast (∆ηArr/ exp θ). This ratio

reflects the difference between Arrhenius viscosity contrast and exponential viscosity contrast: the

larger the ratio, the greater the difference. Figure 2.33 shows that values of the twoτy,cr approach

each other as the Arrhenius viscosity gets closer to the exponential viscosity. It also suggests that

Rτ andRτ ′ are mainly determined by the Frank-Kamenetskii parameterθ but less sensitive to Ra

anda. As the difference between the Arrhenius viscosity and exponential viscosity increases, both

Rτ andRτ ′ appear to approach some asymptotic value.
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We also investigate the dependence of critical yield stressand yield stress gradient on aspect

ratio (Fig. 2.34 and 2.35). The positive power law coefficient (see Table 2.1) implies that with

smaller aspect ratio, the critical yield value is lower and thus more difficult to reach the yielding

criterion. Therefore smaller cells are more stable. This may explain the phenomenon where over-

turning of the cold lid is observed once or a few times but thenstabilized after reconfiguring into

smaller cells.

Figures 2.36 and 2.37 and Table 2.1 show thatτy,cr andτ ′y,cr are approximately proportional

with Ra.

The plots in Figures 2.29, 2.30, and 2.34–2.37 show that the scaling exponents could have

a range of values, and the cases using Arrhenius viscosity may have a bit different values from

those with exponential viscosities. Figure 2.38 shows thatwhile the scaling exponent for Ra and

a for exponential viscosity cases lie between the range obtained from Arrhenius viscosity cases,

the exponent forθ varies with surface temperatureT0, Ra, anda. In general the scaling exponent

of θ increases with the viscosity contrast (i.e. lowerT0), a, and moderately with Ra. This may be

related to the difference in the stress distribution in the lid in Arrhenius cases, especially towards

the downwelling edge, as discussed previously. In the future it will be worthwhile to look in more

detail at the stress variations for the Arrhenius viscosity, and to see if there are any relationships

betweenRτ , Rτ ′ andT0 at even lowerT0 (i.e. at higher viscosity contrasts.)
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2.9 Discussion and conclusion

2.9.1 Comparison with other studies of stress scaling laws

The studies dealing with convective stress scaling often aim to provide an expression for stress

in terms of radius and mass of a planet to predict the likelihood of plate tectonics. They reached

various conclusions (e.g., O’Neill and Lenardic 2007; O’Neill et al. 2007; Valencia and O’Connell

2007, 2009; Korenaga 2010a; van Heck and Tackley 2011; Stamenkovic and Breuer 2014). One

of the main difficulties in deriving convincing scaling lawsfor plate tectonics initiation was a poor

understanding of lid stresses and how they are related to lidfailure. In the present study we have

addressed these issues using two-dimensional steady-state convective cell simulations. This is the

simplest system to analyze and yet even for this system the derivation of scaling laws proved to

be complicated and not well described by the existing asymptotic theories. Below we discuss

some differences between our study and previous studies andsummarize our scaling laws in a

dimensional form.

In some studies (e.g., Moresi and Solomatov 1998; Trompert and Hansen 1998; Tackley 2000a;

Fowler and O’Brien 2003), the authors assumed that subduction occurs when the stresses in the

convective interior exceed the yield stress. This means that subduction begins when not only the lid

but also the interior of the convective cell fails. However,subduction initiation may not necessarily

require the failure of interiors but instead may only require failure of just a small portion of the

lid. The stresses in the lid are several orders of magnitude higher than the stresses in the interior

and also they scale differently. Thus, the assumption regarding what part of the convective cell

must fail in order for subduction to begin is critically important. In this study we have investigated

this assumption quantitatively, based on a detailed analysis of stresses and other parameters in the
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convective cell, and then formulated the critical conditions for subduction initiation.

In agreement with Fowler (1985), we have shown that the lid slope is a key factor the stresses in

the lid. However, our model has several important differences from Fowler (1985). The theoretical

solution in Fowler (1985) is a similarity solution and does not take into the finite horizontal extent

of the lid. Our model has vertical boundaries and thus the structure of the lid in our model is more

complex. Also, the solution in Fowler (1985) is an asymptotic solution requiring very high values

of parameters, such as Ra andθ, and a satisfaction of certain asymptotic conditions, which are not

reached in our simulations and may not necessarily be reached on planets. Thus, our scaling laws

are not asymptotic in this sense. Also, solutions in Fowler (1985) are obtained for two end-member

cases, the large lid slope case and the small lid slope case. We find that the lid slope behaves in a

more complex way between these two end-member cases. We havedetermined a scaling law for

the lid slope numerically and used it to derive the scaling law for the stresses in the lid.

Our analysis suggests that the stresses in the lid increase approximately as a square of the dis-

tance from the bottom of the lid (Eq. 2.34 and Fig. 2.16). Thisagrees with the asymptotic analysis

of Fowler (1985) but is different from the stress distribution in Solomatov (2004b). In Solomatov

(2004b) the stress distribution was more complex because the convective cell was heated from

within rather than from the bottom and the internal heating affected the temperature-induced den-

sity distribution in the lid. At Rayleigh numbers higher than those reached in Solomatov (2004b),

the lid is expected to become sufficiently thin so that the heat production inside the lid would be

negligible compared to the heat flux at the base of the lid. Thus, we expect that for convection with

internal heating the stress distribution in the lid should approach the quadratic distribution that we

observe for convection with bottom heating.

We find that subduction initiation requires that only a part of the lid undergoes plastic failure,
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roughly 0.3 to 0.5 of the total lid thickness. This generallyagrees with the analysis in Solomatov

(2004b) and confirms that the plastic failure does not have toextend all the way to the bottom of

the lid as was assumed in Fowler and O’Brien (2003). However,unlike Solomatov (2004b) we

determine the distance to the boundary of the plastic failure zone by measuring it from the base

of the lid and scaling it in terms of the rheological boundarylayer thickness. We find that such an

approach is more appropriate because the mobility of the lidis largely controlled by the viscosity

contrast between the zone of failure and the convective interior of the cell, which in turn is scaled

with the rheological boundary layer thickness.

2.9.2 Estimates for the Earth

To compare our results with those obtained in Solomatov (2004b,a), we convert the critical yield

stressτy,cr and critical yield stress gradientτ ′y,cr into their dimensional forms (Eqs. 2.20, 2.22) and

estimate the critical yield strength and the critical coefficient of frictionµ for subduction initiation

on the Earth.

The interior viscosity cannot be reliably estimated from the viscosity law alone and is usually

determined from better constrained properties such as lithospheric thickness. Therefore, following

Solomatov (2004b) we use the scaling law forδ0 (Table 2.1) and present the results in terms of the

thickness of the thermal boundary layerδ0 ∼ 100 km instead of the mantle viscosityη1.

The scaling law for the critical yield stress depends strongly on aspect ratioa. Previous studies

have scaled the aspect ratio from half-space cooling of lithosphere (Korenaga 2010b; Stamenkovic

and Breuer 2014) or estimated from numerical simulations (Solomatov 2004b,a)) whereas it was

assumed to be on the order of 1 in Valencia and O’Connell (2009). We use the horizontal width

of the convective cells aslhor = ad ∼100 km as a very rough value to compare our estimates

36



with those in Solomatov (2004b,a). This value was inferred from observational constraints on the

present-day horizontal scale of sublithospheric convective structures (Solomatov 2004b).

Using the results in (Table 2.1), we obtain that the dimensional critical yield stress for subduc-

tion initiation is

τy,cr ∼ 1.95αρg

(

E

RT 2
i

)

−1.03

∆T−0.03δ−0.41
0 l1.78hor d

−0.37. (2.49)

For comparison, Solomatov (2004b,a) give:

τy,cr ∼ 13αρg

(

E

RT 2
i

)

−2

∆T−1lhor. (2.50)

The critical coefficient of frictionµ for subduction initiation is

µ ∼ 89α

(

E

RT 2
i

)

−1.74

∆T−0.74δ−1.55
0 l1.87hor d

−0.32, (2.51)

and in Solomatov (2004b,a):

µ ∼ 50α

(

E

RT 2
i

)

−2

∆T−1δ−1
0 lhor. (2.52)

Using the typical values of various physical parameters (Table 2.3), we estimate that the yield

strength for the Earth is 5 MPa which is of the same order of magnitude as 3 MPa obtained by

Solomatov (2004b,a). To see how variations in various parameters may affect these estimates it is

useful to present the estimates in a different form. Our estimate (Eq. 2.49) can be written as

τy,cr ∼ 5

(

100 km

δ0

)0.41 (
lhor

100 km

)1.78(
500 km

d

)0.37

MPa, (2.53)

37



and the estimate from Solomatov (2004b,a) (Eq. 2.50) is

τy,cr ∼ 3

(

lhor
100 km

)

MPa, (2.54)

from Eq. 2.50.

Our estimates of the critical friction coefficientµ is 8×10−3, which is a factor of 3 larger than

3×10−3 obtained in Solomatov (2004b,a). Our estimate can be written as

µ ∼ 0.008

(

100 km

δ0

)1.55(
lhor

100 km

)1.87(
500 km

d

)0.32

, (2.55)

and the estimate from Solomatov (2004b,a) (Eq. 2.50) is

µ ∼ 0.003

(

lhor
100 km

)(

100 km

δ0

)

. (2.56)

If we take into account the fact that Frank-Kamenetskii approximation that we used to derive

the scaling laws overestimate the critical yield stress andthe critical friction coefficient (Fig. 2.33),

then both ours and the estimates in Solomatov (2004b,a) should be further reduced by a factor of

2 (Fig. 2.33), depending on the values of the viscosity parameters and the Rayleigh number.

One major difference between our scaling laws and the scaling laws obtained in Solomatov

(2004b) is a much stronger dependence of the critical yield stress and critical friction coefficient

on the width of the convecting layerlhor – they scale roughly as∼ l2hor as opposed to the previous

scaling∼ lhor. This means that the critical values of the yield stress and friction coefficient would

increase by 2 to 4 orders of magnitude if the width of the convective cells increased by 1 to 2

orders of magnitude (for example, in the past history of the Earth) and thus, at least in principle,
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could reach the experimentally observed values that are on the order of 1000 MPa forτy,cr and

µ ∼0.6–0.85 (e.g., Byerlee 1978; Goetze and Evans 1979; Kohlstedt et al. 1995; Mei et al. 2010),

and values constrained by loading models with in situ stressmeasurements of Hawaiian Islands

(Zhong and Watts 2013) which are 0.25-0.7 forµ and 100-200 MPa for lithospheric stress. This

implies that the chances of plate tectonics might be higher than we thought before. Time-dependent

calculations and a more realistic formulation of the problem are required to better understand the

implications of these results for plate tectonics initiation.

2.9.3 Uncertainties in stress scaling

The scaling laws derived here are applicable to Newtonian rheology, therefore the activation energy

for diffusion creep is used in our calculations. However it should be noted that dislocation creep

is probably the dominant mechanism in the lithosphere Karato and Wu (1993). For the Earth

wet dislocation creep may be preferable (Solomatov and Moresi 2000), while for other terrestrial

planets such as Venus might have dry lithosphere. To apply ona wider range of planets including

icy bodies, scaling laws based on non-Newtonian rheology will be required.

In previous scaling theories the lid slope is often considered to be small because the lid thick-

ness is assumed to be relatively small. Even in the large lid slope end member case in Fowler’s

theory,δlid is assumed to be small relative to the thickness of the convecting layer. However our

simulation indicates that the slope may be significant, so the derivations may need to be modified

to take this into account.

Free-slip boundary conditions are often used in solving equations for thermal convection, but

this restricts the vertical motion of the surface. Recent studies have used the free-surface boundary

conditions, which is closer to natural surface condition asboth normal and shear stress on the
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surface is reduced to zero (Zhong et al. 1996; Schmeling et al. 2008; Kaus et al. 2010; Crameri

et al. 2012; Kramer et al. 2012). It maybe computationally expensive to implement this for the

time being, but it could be worthwhile to explore its effect on scaling relations for stresses in the

future.

Our numerical results show thatτy,cr of Arrhenius viscosity approaches that of exponential

viscosity as the Frank-Kamenetskii parameterθ increases. This enables us to use exponential

viscosity law to extrapolate to high Arrhenius viscosity contrast conditions. Besides the Frank-

Kamenestskii approximation, the viscosity contrasts can be reduced in other ways, one of which

is to set a cut-off viscosity. The stress structure resulting from the cut-off viscosity will have to be

examined. We can then compare accuracy of these approximations and apply them to extrapolate

the results to planetary parameters.

Our results generally support previous conclusions that inorder for the convective regime on

the terrestrial planets in the inner Solar System to change from stagnant lid convection to plate tec-

tonics, the yield stress of the lithosphere should be much smaller (several MPa) than that predicted

by laboratory experiments on rock deformation (hundreds ofMPa as predicted by Byerlee’s law).

However, our results suggest a much stronger dependence of the critical yield stress on the hori-

zontal width of the convective cells. This opens a possibility of subduction initiation even for the

large, experimentally measured, lithospheric strength provided that a sufficiently long convective

cell forms in a time-dependent mantle convection. In the future it would be important to investigate

the role of initiation conditions and statistical fluctuations of convective cells for the initiation of

subduction in time-dependent convection.
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Figure 2.1 Temperature (left) and stress fields (right) of a steady-state convective cell. Color scale
goes from high (red) to low (blue). The lid is defined by an isothermTL, and the interior tempera-
tureTi is found by averaging the temperature of the convecting interior excluding boundary effects.
For scaling purposes, the lid slopeλ and rheological sublayer thicknessδrh is taken at mid-width,
whereas lid thicknessδlid is extrapolated to the edge from the lid slope in the middle.
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Figure 2.2 Comparison of (a) viscosity (b) temperature (c) stress profiles of exponential viscosities
for θ = 16, Ra = 3 × 107, and varyinga. The somewhat different stress profile ofa = 0.25
suggests that the surface stress boundary layer is not the region with highest stress.
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Figure 2.3 Stress (top row) and temperature fields (bottom row) of convecting cells withRa =
3× 107, θ = 16, and variousa.
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Figure 2.4 Localized convection and multiple subcells in steady-state convection. (a)θ = 19,
T0 = 0.6, a = 1, Ra = 1× 107. (b) θ = 16, T0 = 0.6, Ra = 3× 107.
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Figure 2.5 Stress structure of steady state cases withθ = 16, a = 0.75, T0 = 0.8. (a)Ra = 107 (b)
Ra = 3 × 107 (c) Ra = 108. The area of convecting interior becomes larger as Ra increases and
the thickness of the stagnant lid decreases. Scale shows thevalues oflog τ .
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Figure 2.6 Temperature, viscosity, and stress profiles ofRa = 3 × 107, a = 0.75 and varying
Frank-Kamenetskii parameterθ.
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Figure 2.7 Comparison of temperature, viscosity, and stress profiles of Arrhenius and exponential
viscosities forθ = 16, Ra = 3× 107, a = 0.75 and variousT0.
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Figure 2.8 Stress structure of steady state cases withRa = 3 × 107, T0 = 0.8, a = 0.75. (a)–(d)
Arrhenius viscosity with (a)θ = 22, (b) θ = 19, (c) θ = 16, (d) θ = 13, and (e) exponential
viscosity withθ = 13. Color scale shows the values oflog(τ). White lines represent streamlines.
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Figure 2.9 Stress structure of steady state cases withRa = 3 × 107, θ = 16, a = 0.75. Cases
(a)–(d) use Arrhenius viscosity with (a)T0 = 0.6, (b) T0 = 0.8, (c) T0 = 1.2, (d) T0 = 2.0.
Case (e) uses exponential viscosity. Color scale shows the values oflog(τ). White lines represent
streamlines.
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Figure 2.10 Velocity profile taken at mid-width of the cell (x = 0.5a). Dotted line is the linear
extrapolation of the maximum velocity gradient, and the lidbase is marked at the depth at which
this line intersect with the vertical axis.
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Figure 2.11 Top part of a convective cell showing various definitions of the lid base. The lid base
defined by the velocity gradient is shown in dashed line, and it matches the temperature lid base
defined atTL = Ti − 3.2θ−1 at around the mid-point. The lid slope is estimated at the mid-point.
The lid slope is taken at the slope in the middle, and the plumeslope is taken at the downwelling
end.
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Figure 2.12 The slope of the lid base at various aspect ratios. The lid slope deviates from the linear
approximation as the cell aspect ratio and viscosity contrast increase, therefore a non-constant
value of the lid slope may affect the scalings.
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Figure 2.13 Plots of Nuδx (or δx/δlid) and Nuδxθ (or θδx/δlid) as a function ofθ.
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Figure 2.14 Relationship between the aspect ratio and the lid slope. The lid slope cannot be larger
than 2δlid/a in the large lid slope end member case, and it cannot be largerthan 2δrh/a in the small
lid slope end member case. However it is possible that the lidslope can be smaller than 2δrh/a.
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Figure 2.15 Comparison between lid slopes obtained from numerical solutions (black) and those
from theoretical constraints (red: small lid slope approximationλ ≈ 2δrh/a; green: large lid slope
approximationλ ≈ 2δlid,1/2/a).
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Figure 2.16 Comparison of stress profiles at mid-width obtained from numerical calculations and
theory. Blue line represents the best fit to numerical solutions of stresses. The stress profile is taken
at mid-width, where the stresses in the surface boundary layer is lower than the interior as shown
in the 2-D stress fields.
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Figure 2.17 Stress (top) and viscosity (bottom) fields of case Ra = 3 × 107, θ = 16, a = 0.75,
T0 = 0.8. (a) τy = 6.7 × 105, (b) τy = 7 × 105, (c) τy = ∞. Failure occurs atτy = 6.6 × 105,
while the stagnant lid remains at higherτy. Color bars show logτ values.

57



Figure 2.18 Stress profiles at different widths at various yield stress or yield stress gradient.
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Figure 2.19 Viscosity profiles at different widths at various yield stress or yield stress gradient.
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Figure 2.20 Surface velocities over time forRa = 3 × 107, θ = 16, a = 0.75 (a) T0 = 0.8,
τy = 6.6 × 105 (b) T0 = 0.4, τy = 6.1 × 105, bottom velocity≈ 650. The surface velocity in (b)
increases slowly. Although it has evolved for∼ 25 times as much as the period for (a) to fail, it is
far from reaching the bottom velocity.
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Figure 2.21 Snapshots of stress fields before and at the pointof failure for caseRa = 3 × 107,
θ = 16, a = 0.75, T0 = 0.8, τy = 6.6 × 105. Time sequence goes from left to right and top to
bottom. White arrows show velocities. (a) and (b) are close to beginning of simulation, (c) is at
the mid-point between the start and failure, and (d) to (i) are right before overturning (depicted in
(j) – (l))occurs.
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Figure 2.22 Depth of plastic zone determined by the yield stress (right), and the drop in viscosity
due to the yield stress (right). Profiles taken at the downwelling edge (x = a) of the convecting
cell.
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Figure 2.23 Stress field (left) and stress profile at the downwelling edge.Ra = 3 × 106, a = 0.5,
θ = 19, τy = 3.2× 104, exponential viscosity.
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Figure 2.24 Strain rate, stress, and viscosity profile at theedge withRa = 3 × 106, a = 0.75,
θ = 19, exponential viscosity. The point of maximum viscosity maynot correspond to the brittle-
plastic transition.
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Figure 2.25 Maximum apparent viscosity in the convective cell at the point of lithospheric failure
as a function of the viscosity contrast in the absence of yield stress. Black: exponential viscosity
with constantτy,cr; red: Arrhenius viscosity with constantτy,cr; green: exponential viscosity with
constantτ ′y,cr; blue: Arrhenius viscosity with constantτ ′y,cr.
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Figure 2.26 Viscosity contrast at plastic depth, fraction of lid that experience plastic failure, and the
distance between the interior and plastic depth as a function of θ. Solid symbols represent constant
τy,cr cases, while open symbols are constantτ ′y,cr.
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Figure 2.27 Schematic diagram of surface stresses on the plastic zone in the lid. The shear stress
τlid acting on the base of the lid of horizontal lengtha is balanced by the normal stressτy acting on
the side with depthδy, developed under free-slip boundary conditions.
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Figure 2.28 Horizontally averaged stress components and second invariant of stress as a function
of depth.
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Figure 2.29 Critical yield stressτy,cr as a function of Frank-Kamenetskii parameterθ. The Ar-
rhenius viscosity is calculated with the non-dimensional surface temperatureT0 and the activation
energyE that gives the correspondingθ. LowerT0 gives a higher viscosity contrast∆ηArr.
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Figure 2.30 Critical yield stress gradientτ ′y,cr as a function ofθ.
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Figure 2.31 The ratio of Arrhenius yield stress to exponential yield stressRτ as a function of
Frank-Kamenetskii parameterθ.
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Figure 2.32 The ratio of Arrhenius yield stress gradient to exponential yield stress gradientRτ ′ as
a function ofθ.
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Figure 2.33 Top figures: ratio of yield stress for Arrhenius viscosity to that for exponential viscos-
ity Rτ andRτ ′ as a function of Arrhenius viscosity contrast normalized toexponential viscosity
contrast∆ηArr/ exp(θ). ∆ηArr/ exp(θ) ≥ 1, and it can go up to many orders of magnitude. Bot-
tom figures: ratio of yield stress multiplied byθ. For cases with the sameθ but various Ra anda,
these ratios do not differ much, meaning thatθ is the controlling factor for the difference in yield
stress predicted by Arrhenius viscosity and exponential viscosity. Asymptotically towards high
∆ηArr/ exp(θ), Rτ andR′

τ are approximately proportional toθ.
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Figure 2.34 Critical yield stressτy,cr as a function of aspect ratio. Circles represent Ra=3×107,
squares Ra=107, diamonds Ra=3×106.
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Figure 2.35 Critical yield stress gradientτ ′y,cr as a function of aspect ratio. Legends are the same
as in Fig. 2.34.
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Figure 2.36 Critical yield stressτy,cr as a function of Rayleigh number.
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Figure 2.37 Critical yield stress gradientτ ′y,cr as a function of Rayleigh number.
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Table 2.1 Numerical results of power law coefficients in scalings of different parameters with Ra,
aspect rationa, and Frank-Kamenetskii parameterθ. ∆Trh/∆T andτlid taken at mid-width.

Parameter c in 10c Ra a θ
Nu 0.23± 0.07 0.24± 0.01 -0.17± 0.03 -1.17± 0.05

∆Trh/∆T 0.25± 0.17 0.010± 0.02 0.39± 0.08 -0.84± 0.12
δ0/d -0.26± 0.10 -0.22± 0.01 0.27± 0.04 1.12± 0.06
δlid/d -0.74± 0.06 -0.23± 0.01 0.12± 0.03 1.44± 0.04

δlid,max/d -0.62± 0.07 -0.19± 0.01 0.33± 0.03 1.26± 0.05
δrh/d 0.02± 0.33 -0.20± 0.04 0.60± 0.15 0.34± 0.21

lid slope -0.98± 0.13 -0.07± 0.02 0.14± 0.06 0.63± 0.09
plume slope -0.49± 0.39 0.15± 0.05 -0.01± 0.17 -0.31± 0.25

τlid 0.36± 0.21 0.68± 0.03 0.92± 0.09 -0.15± 0.13
τy,cr 0.40± 0.22 1.09± 0.03 1.67± 0.10 -1.49± 0.14
τ ′y,cr 2.34± 0.32 1.34±0.04 1.45± 0.14 -3.47± 0.21

Table 2.2 Power law coefficients in scalings of different parameters with Ra, aspect rationa, and
Frank-Kamenetskii parameterθ: numerical results versus theory.∆Trh/∆T andτlid taken at mid-
width.

Parameter Ra a θ Method
τlid 0.68± 0.03 0.92± 0.09 -0.15± 0.13 numerical

0.73± 0.09 1.14± 0.29 0.146± 0.42 theory (in terms of∆Trh/δrh)
0.77± 0.12 1.18± 0.39 0.14± 0.56 theory (in terms of Nu)

τy,cr 1.09± 0.03 1.67± 0.10 -1.49± 0.14 numerical
0.94± 0.10 1.81± 0.32 -1.13± 0.47 theory (in terms of∆Trh/δrh)
0.97± 0.13 1.85± 0.42 -1.16± 0.61 theory (in terms of Nu)

τ ′y,cr 1.34±0.04 1.45± 0.14 -3.47±0.21 numerical
1.13± 0.11 1.48±0.35 -2.39± 0.51 theory (in terms of Nu)
1.16± 0.14 1.52±0.45 -2.38± 0.65 theory (in terms of∆Trh/δrh)
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Figure 2.38 Scaling exponents inRaβaζθα for τy (left 3 figures) andτ ′y,cr (right 3 figures) with
varyingT0 in Arrhenius viscosity. The grey stripes represent the value obtained from exponential
viscosity calculations, with the width determined by errorbars.
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Table 2.3 Parameters used to estimateτy,cr andτ ′y,cr for Earth as in Solomatov (2004a, b).
α 3× 10−5

κ 10−6 m2 s−1

δlid 100 km
k 3 W m−1 K−1

E 430 kJ mol−1
d ∼500 km
g 10 m s−2

ρ 3300 kg m−3

T0 300 K
Ti 1700 K
lhor 100 km
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Chapter 3

Variations in timing of plate tectonics initiation on terre strial planets due to

chaotic nature of mantle convection

T. Wong and V. S. Solomatov

An edited version of this chapter has been submitted for publication in Geochem. Geophys.

Geosyst. of the American Geophysical Union.

Abstract

Subduction is thought to be the fundamental process for plate tectonics initiation. One major

difficulty in subduction initiation is the high viscosity ofthe cold top layer that prevents it from

failure. The viscosity of this layer can be reduced due to a yield stress, which is a simplification of

the weakening mechanisms in the lithosphere. If the yield stress is sufficiently low, stresses induced

in the lid by sublithospheric convection may overcome the yield stress and cause the lid to fail. At

high Rayleigh numbers, convection is strongly time-dependent and chaotic which adds a random

component to the timing of subduction initiation. Even if the convective stresses in the lid are not

high enough to cause subduction right away, the convective cells may evolve to a configuration in
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which the lid stresses are sufficiently large to overcome theyield stress. Alternatively, subduction

can be prevented by cell reconfiguration that reduces lid stresses. We inspect these fluctuations

of convective flow and their effects on convective stresses.We observe that for a given set of

parameters, including the yield stress, the time of lid failure is different for different statistically

steady-state solutions. Some insights into what controls the timing of lid failure is gained from

treating subduction as a type of Rayleigh-Taylor instability. This study suggests that it is important

to address not only the question of whether plate tectonics can occur on a planet but also when it

would occur if conditions are favorable.

3.1 Introduction

Plate tectonics has been recognized as the unifying theory for the geology of the Earth, yet there

are still unanswered questions regarding the initiating mechanism (e.g., McKenzie 1977; Turcotte

1977; Mueller and Phillips 1991; Kemp and Stevenson 1996; Toth and Gurnis 1998; Regenauer-

Lieb et al. 2001; Stern 2004; Hansen 2007; Ueda et al. 2008; Nikolaeva et al. 2010; Burov and

Cloetingh 2010; Dymkova and Gerya 2013; Lu et al. 2015). The timing of its initiation is also

an unresolved issue (e.g., Stern 2007; Korenaga 2013, and references therein). A major difficulty

in plate tectonics initiation is the strength of the lithosphere. Due to the strongly temperature-

dependent viscosity, the cold lithosphere is resistant to deformation. Many attempts have been

made to quantify the yield strength of Earth’s lithosphere and understanding the weakening mech-

anisms responsible for its magnitude (e.g., Kanamori 1994;Kohlstedt et al. 1995; Hirth and Kohlst-

edt 1996; Toth and Gurnis 1998; Solomatov 2004b; Bercovici and Ricard 2005).

Previous studies to simulate plate tectonics took two different approaches. One is to impose
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deformation that produces plate-like behavior. This is done by applying velocity boundary con-

ditions (Davies 1988; Lithgow-Bertelloni and Richards 1995), or by prescribing a plate structure

that has weak zones (Gurnis 1988; Davies 1989; Zhong and Gurnis 1996). In this approach the

plate motion or geometry are specified beforehand, and how these a priori conditions emerged is

beyond the scope of this approach.

An alternative method is to adopt a rheological model that isconstrained by laboratory exper-

iments and can generate plate-like motions and features from mantle convection. This approach

might allow us to address a more fundamental question of whether plate tectonics can occur in

the first place. The temperature-dependent nature of viscosity results in a large viscosity towards

the surface such that a thick, rigid boundary layer is developed and it does not actively participate

in convection. Convection below this rigid layer occurs in the stagnant lid regime (Morris and

Canright 1984; Fowler 1985; Solomatov 1995).

To mobilize the stagnant lid, a plastic yield stress can be introduced to simulate brittle and duc-

tile failure so that subduction can occur (Fowler 1985, 1993; Trompert and Hansen 1998; Moresi

and Solomatov 1998; Richards et al. 2001; Tackley 2000a,b; Fowler and O’Brien 2003; Solomatov

2004b; Stein et al. 2004; O’Neill et al. 2007; Stein and Hansen 2008). Various rheologies such as

temperature-, pressure-, and grain-size dependent viscosity (Stegman et al. 2002; Stein et al. 2004;

Stein and Hansen 2008; Korenaga 2010b; Bercovici and Ricard2005; Landuyt et al. 2008) have

also been explored. One limitation in these studies is that they set a relatively low viscosity con-

trast to observe plate behavior. The viscosity contrast used usually ranges from∼ 104–107 (Moresi

and Solomatov 1998; Tackley 2000b; Richards et al. 2001; Stein and Hansen 2008), with the help

of Frank-Kamenetskii approximation or some limiting maximum viscosities. The temperature-

dependent viscosity across terrestrial lithosphere couldbe much higher, and in the original Arrhe-
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nius form it could be tens of orders of magnitude larger. To reach an asymptotic stress distribution

in the lid and obtain asymptotic scaling laws for subductioninitiation, it is important that the vis-

cosity contrasts in the lid are significantly higher than those that are barely sufficient to form the

stagnant lid (which are around105).

Recent models implement free-surface boundary conditionsas opposed to the free-slip bound-

ary conditions typically used in numerical studies. These models are able to simulate more realis-

tic phenomena such as single-sided subduction (Crameri et al. 2012; Crameri and Tackley 2015).

However these calculations are computationally expensiveand therefore systematic analysis using

free-surface boundary conditions are yet to be conducted.

Many studies aimed to understand the conditions that would be favorable for the emergence of

plate tectonics. In developing a failure criterion for the lithosphere, there are mainly two ways to

obtain scaling relations between various physical parameters. One is to fix a yield stress and vary

the parameters of a convective system, such as Rayleigh number and viscosity contrast between

the top and the bottom of the convecting layer, and find at which values of these parameters the

lithosphere can be mobilized (e.g., O’Neill and Lenardic 2007). They tried to define regimes of

convection such that given a combination of parameters, theoccurrence of lithospheric failure

could be predicted. Another approach is to treat the yield stress as a variable, and search for a

critical value of yield stress for given sets of parameters in a convective system so that subduction

initiation is possible (e.g., Solomatov 2004b). One reasonto use the latter approach is that the

yield stress is poorly constrained and is usually much lowerthan the value suggested by laboratory

experiments. Thus, it should be treated as an unknown. Another reason is that it is much more

accurate and faster to determine the conditions for lithospheric failure by varying the yield stress

while keeping all other parameters constant than the other way around. From the perspective of
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finding scaling laws, the two approaches are completely equivalent.

Given favorable conditions, an important question that is not systematically studied is when

subduction occurs. The factors controlling the time of lithospheric failure are not well understood.

Foley et al. (2014) conducted a scaling analysis for the timeof subduction initiation based on

damage theory and concluded that early Earth conditions permit subduction. The occurrence of

subduction may also be contingent on the time evolution and the initial conditions of the convective

systems, both of which are random. It is possible for convection systems with the same set of

parameters or physical properties, the systems may have different flow structures due to different

initial conditions, and they may evolve in different pathways such that the lithosphere may fail at

different times, or failure may not happen at all. Here we investigate the variability of the timing

of subduction initiation due to these random factors.

This study is organized as follows. First we summarize the results of our previous analysis

on the stress distribution of the lithosphere to establish abasis for examining the stress changes

in the lid over time. We then conduct numerical simulations to determine the timing of failure.

We investigate the parameters that affect the time it takes for the lithosphere to become unstable,

and provide a preliminary theoretical interpretation based on Rayleigh-Taylor instability model for

lithospheric failure.
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3.2 Governing equations and numerical methods

The equations of thermal convection in Boussinesq approximation and infinite Prandtl number are

∇ · u = 0, (3.1)

αρgT ′
n−∇p′ +∇× ¯̄τ = 0, (3.2)

∂T ′

∂t
+ u · ∇T ′ = κ∇2T ′, (3.3)

whereu is the velocity vector,α is the coefficient of thermal expansion,ρ is density,g is the

acceleration due to gravity andn is a unit vector in the direction of gravity,p′ andT ′ are pressure

and temperature perturbations,κ = k
ρcp

is the thermal diffusivity,k is the thermal conductivity, and

cp is the isobaric specific heat, andτij is a component of the stress tensor¯̄τ :

τij = 2ηėij (3.4)

ė = η

(

∂ui

∂xj
+

∂uj

∂xi

)

, (3.5)

whereη is the viscosity,ėij is a component of the strain rate tensor,i and j are indices of the

coordinate axes. The viscosity is strongly temperature-dependent and it assumes an exponential

form:

η = A exp(−γT ) (3.6)
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whereA is a constant, andγ = E/RT 2
i , E is the activation energy,R is the gas constant, andTi is

the interior temperature. The non-dimensional form ofγ is the Frank-Kamenetskii parameter:

θ = γ∆T. (3.7)

The brittle behavior of the lithosphere can be simplified with a pseudoplastic rheology (Moresi

and Solomatov 1998; Trompert and Hansen 1998; Tackley 2000a; Fowler and O’Brien 2003).

Viscous deformation occurs according to Eq. 3.6 when stresses are less than the yield stressτy.

Above the yield stress, deformation follows a plastic flow law defined by an effective viscosity

determined by a plastic yield stressτy, which is taken to be a constant in this study, and the second

invariant of the strain rate tensorė:

ηeff =
τy
ė
. (3.8)

We use the finite element code CITCOM (Moresi and Solomatov 1995) to solve Eqs. 3.1–3.3

for a 2D convection system with a fixed temperature difference ∆T = T1 − T0 between the top

and the bottom and free-slip boundary conditions. The calculations are performed with 64a×64

resolution, wherea is the aspect ratio.

3.3 Stress distribution in the lithosphere and critical yield stress

Although stresses in the convecting interior are low due to the warm temperatures, stresses induced

in the conductive lid could be large and may be sufficient to cause large-scale lid failure (Fowler

1985). To establish a theoretical basis for the magnitude ofstresses required to destabilize the

lid, Wong and Solomatov (2015) considered the process of lidfailure as gravitational sliding. The
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concept of lid slope providing the downward force resemblesthe finite amplitude perturbation in

McKenzie’s theory, which suggested that a self-sustainingsubduction requires a certain combina-

tion of the length and dip angle of the underthrusting slab (McKenzie 1977). The gravitational

sliding model can also be considered as a simplification of a more sophisticated Fowler’s (1985)

model. In the gravitational sliding model, the lid slope that dips toward the downwelling plume

provides the gravitational force that drives the lid motion. From the force balance on the lid, the

lid stress is

τlid = −αρ0g
dT

dy
λ
y2

2
, (3.9)

whereρ0 is the reference density,λ is the slope of the lid base which is assumed to be small, and

y is the vertical distance from the convecting interior towards the top of the lid (Fig. 3.1). In the

non-dimensional form,τlid is a function of Rayleigh number Ra, thermal gradientdT/dy, lid slope

λ andy. In the vicinity of the surface the stresses increase drastically due to huge normal stresses

developed from the free-slip boundary conditions and Eq. 3.9 no longer holds.

Fowler (1985) suggested that with the introduction of a yield stress, plastic yielding occurs in

the parts of the lid where the stresses are high. If the yield stress is lower, a larger part of the lid

is weakened by the yield stress. If a sufficiently large part of the lid has yielded plastically, the lid

can be mobilized. To determine the critical yield stress, weneed to know the extent of weakening

that is just necessary to destabilize the lid. This requiresunderstanding of the stress distribution

in the lid. Wong and Solomatov (2015) carried out a detailed analysis of the stresses in the lid

affected by a yield stress right above the critical value, atwhich subduction does not occur but

would have if the yield stress is slightly decreased. As the lid is stagnant at the yield stress slightly

above the critical value, the dynamics of the system remainssteady and so the time-dependence of
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the various parameters can be neglected in the analysis.

In previous studies of failure criterion, it is often assumed that the plastically yielded depth has

to extend through the bottom of the lid to initiate failure (e.g., Fowler and O’Brien 2003; van Heck

and Tackley 2011). On the other hand, Solomatov (2004b) proposed that failure can occur if the lid

is weakened to the point at which viscosity contrast has a critical value ofe4(n+1), wheren is the

stress exponent for non-Newtonian viscosity. Wong and Solomatov (2015) found that the depth of

the plastic zoneδpl (Fig. 3.1) does not have to reach the bottom of the lid. However the critical

viscosity contrast atδpl is not constant as assumed by Solomatov (2004b). It increases with the

viscosity contrast due to temperature alone (∆ηlayer), which is related to the Frank-Kamenetskii

parameterθ. It seems to converge with high∆ηlayer, yet no discernable scaling relationship was

found. Although the failure criterion could not be defined bya certain critical viscosity contrast,

δpl at the critical yield stress seems to occupy 1/3–1/2 of the lid thickness.

To find out the lid stress at the plastic depthδpl, the distance ofδpl from the base of the thermal

boundary layerypl has to be determined (Fig. 3.1). Wong and Solomatov (2015) found that at the

critical yield stress, this distance isypl ≈ 3δrh, whereδrh is the rheological sublayer thickness.

The scaling laws for critical yield stress and critical yield stress gradient are derived by con-

sidering the force balance on the yielded plastic zone, whose extent (dictatingδpl andypl) is deter-
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mined by numerical solutions:

τy,cr ≈ τlid
a

δpl

≈ −αρ0g
dT

dy
λ
y2pl
2

a

δpl
, (3.10)

τ ′y,cr ≈ τlid
a

δ2pl
1

≈ −αρ0g
dT

dy
λ
y2pl
2

a

δ2pl
. (3.11)

Eqs. 3.10 and 3.11 show that the critical yield stressτy,cr and the critical yield stress gradientτ ′y,cr

depend on both the aspect ratio and the lid slope. This implies that convective cells with longer

widths and steeper lid base have higher critical yield stress and yield stress gradient, and thus are

more likely to initiate subduction. As other parameters in Eqs. 3.10 and 3.11 such as the thermal

gradient,ypl, andδpl also scale with the aspect ratio, the critical yield stress and critical yield stress

gradient depend strongly on the aspect ratio.

3.4 Strongly time-dependent convection with yield stress

In the regime of higher Ra with larger aspect ratio convective boxes, the convective system is

strongly time-dependent. We examine the behavior of these systems when they are subjected to a

yield stress that is low enough to cause lid failure.

The snapshots in Figs. 3.2 illustrates the initiation of lithospheric failure for a statistically

steady-state solution with bottom Rayleigh number Ra1 = 3 × 108,∆η = 108, a = 4, and

τy = 7 × 106. There are multiple regions in the stagnant lid that has reached the yield stress,

indicated by the pink color in the snapshots. These yielded regions change in size as the system
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evolves, and they disappear and reappear throughout the period of evolution before failure initiates.

The topography of the lid base (white line in between cold blue lid and hot red interior) remains

relatively stable, while both the upwelling and downwelling plumes in the interior continually fluc-

tuate (snapshots (a)–(d) in both figures). One of the yieldedregions continues to grow in size as

the system approaches the time of failure, and the downwelling plume further curves the lid slope

of that sub-cell (snapshots e). The downwelling plume that causes failure can be in the middle of

the stagnant lid (Fig. 3.2f), or, more often, at the edge of the convective box which is forced down

by the free-slip boundary condition (Fig. 3.3f).

3.4.1 Non-uniqueness of statistically steady-state solutions

For strongly time-dependent convection in long boxes, boththe initial conditions and the evolution

of the dynamics in the system are random factors that producedifferent statistically steady-state

convective structures (such as those shown in Figs. 3.2 and 3.3). These structures can undergo

subduction at different values of the yield stress, or subduction can happen at drastically different

times.

To generate different solutions, we use different initial conditions and run the calculations until

convection is statistically steady. As shown in Fig. 3.4, the lid structure and even the average lid

thickness are slightly different among the solutions. We use these different statistically steady-state

solutions as the starting point of simulation with yield stress.
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3.4.2 Time of failure

3.4.2.1 Dependence on yield stress

Figure 3.5 shows that the time of failure seems to depend exponentially on the yield stress. Note

that it is difficult to determine the exact value of the critical yield stress for strongly time-dependent

cases. When the yield stress is high, there is a possibility that our simulations were not run long

enough to reach lid failure. Therefore if simulations are run indefinitely, the value of the critical

yield stress may be pushed higher.

3.4.2.2 Variability in the timing of subduction initiation due to non-uniqueness of convective

solutions

We take one set of parameters for a convection system with bottom Rayleigh number Ra1 = 3×108,

∆η = 108, a = 4, and generate slightly different solutions by using different initial conditions.

In each case, we allow the system to reach a statistically steady state without yield stress. Then

we introduce (“turn on”) a yield stress and observe how the system evolves after that. As seen

from Fig. 3.5, the yield stresses and failure times vary significantly among these cases. For cases

with similar times of failure, the yield stress can differ byas much as a factor of 5. This is due to

variations in the lid structures among these cases, even if all these case have the same controlling

parameters and all are in statistical steady states.

We compare the times of failure for convective systems with the same yield stress and other

controlling parameters but corresponding to different statistically steady states. The times of failure

can vary by orders of magnitude (Fig. 3.6). Thus convective systems characterized by the same

controlling parameters but differing from each other because of the non-uniqueness of the solutions
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give rise to a broad range of outcomes. However we can still see some systematic difference in the

time of failure with different values of yield stress. As described in the previous section, for each

case with the same statistically steady state, the time of failure increases with the yield stress. In

other words, at lower yield stresses, more cases experiencelid failure within a certain time. This

can be seen from Fig. 3.6: within a dimensionless time of unity, all but one of the cases in our

numerical experiment underwent lid failure atτy = 6 × 106, but only 4 of them were successful

in having lid failure atτy = 9 × 106 while the rest of these cases may or may not have lid failure

at longer times. Therefore the yield stress is a key controlling parameter for the probability of lid

failure within a specific period of time.

Interestingly, for cases in which the yield stress is “turned on” at different times of the same

statistically steady system (generated from the same initial conditions), the failure time varies

randomly as well and the spread of failure times varies with yield stress. As shown in Fig. 3.7, the

spread in failure time increases withτy. This suggests that the similar lid structure resulting from

the same statistically steady system did not change much within the time range in which the yield

stress was turned on. As yield stress increases, more time isneeded for the lid to become unstable,

which also means that the system has more time to evolve to a favorable flow configuration for

subduction initiation, allowing a larger range of failure times.

3.5 Time of failure in single-cell steady-state convection

Time-dependent convection is chaotic, thus it is difficult to analyze and computationally challeng-

ing to study. To understand the factors controlling the timeof failure, we examine the solutions

of single-cell simulation with a fixed cell width. The flow in asingle cell is better controlled and
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therefore allowing a relatively simple scaling analysis. In single-cell simulations there is only one

solution for the problem of subduction initiation with a fixed yield stress, as opposed to the multi-

ple solutions with the same set of parameters in strongly time-dependent convection. These single

cells can be considered as part of the multi-cell system at aninstant (Fig. 3.8). The stress state of

a sub-cell can be used to predict whether subduction can occur in the multi-cell system and even

which part of the multi-cell system will undergo subduction.

3.5.1 Numerical results: time of failure with varying yield stress, Rayleigh number, viscos-

ity contrast, and aspect ratio

We slowly decrease the yield stress from its critical value until the time of failure becomes compa-

rable to the timescale of sublithospheric instabilities, the shortest characteristic time in the system.

As we reduce the yield stress below the critical value, the maximum viscosity in the lid grad-

ually decreases and the plastic zone propagates down, untila point at which the surface velocity

of the lid increases drastically indicating that the lid becomes mobile (Fig. 3.9). The maximum

viscosityηmax is determined by the method described in Wong and Solomatov (2015). The glitches

on the plots ofηmax and depth of the plastic zoneδpl with time in Fig. 3.9 are due to insufficient

resolution. Throughout most of the system’s evolution, theplastic zone is maintained at approxi-

mately the same depth and the maximum viscosity remains in the same order of magnitude. When

ηmax drops below some value, bothδpl andηmax changes rapidly as the lid fails. This transitional

ηmax, which can be estimated approximately from the sharp changein the viscosity-time plot in

Fig. 3.9, differs by about an order of magnitude when the yield stress varies by about 25%. It

also increases with the Frank-Kamenetskii parameterθ, which determines the viscosity contrast in

the absence of the yield stress (∆η = exp θ). As the yield stress approaches the critical value, a

94



slight increase in yield stress gives a much longer time of failure whileδpl andηmax do not change

significantly.

Figure 3.10 shows the relationships between the time of failure and the ratio of yield stress to

critical yield stressτy/τy,cr. At a lower range ofτy the time of failure increases approximately ex-

ponential withτy. Whenτy gets close toτy,cr the time of failure increases rapidly. The exponential

part resembles the relationships that we observed in time-dependent calculations (Fig. 3.5. This

resemblance suggest that the mechanisms controlling the time of failure are similar. Compared

to the time-dependent cases in Fig. 3.5, the exponential relationship between the time of failure

and yield stress is much smoother, and the rapid increase in time to infinity is clear as the ratio

τy/τy,cr approaches 1. The slope of these exponential curves varies with Ra, viscosity contrast,

and aspect ratios. The difference is most pronounced with varying aspect ratio (right column of

Fig. 3.10): the time of failure may increase by as much as an order of magnitude for the same

value ofτy/τy,cr as the aspect ratio doubles. In contrast, an order of magnitude change in viscosity

contrast (middle column of Fig. 3.10) does not cause significant change in the time of failure, and

the times of failure converge asτy/τy,cr → 1. Varying Ra (left column of Fig. 3.10) has still a

smaller effect, changing the time of failure only slightly at higherτy/τy,cr. However the spread due

to the variation of these parameters is not large: the difference in smallerτy/τy,cr range is about an

order of magnitude, and the time of failure increases towards infinity as it approachest = 1 at τy

approachingτy,cr.

The fluctuations in the time-yield stress relationship in time-dependent cases in Fig. 3.5 are due

to the random evolution of the lid structure such that the sub-cell with favorable properties for lid

failure such as long width and large lid slope varies in location, as illustrated in Figs. 3.2 and 3.3.

In other words, the sub-cell with the highest critical yieldstress may switch location, whereas in
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single-cell cases subduction is bound to occur at one downwelling edge. The jumps in the curves

in Fig. 3.5 may correspond to a switch of the subducting sub-cell. Therefore the question of lid

failure in time-dependent systems may be whether a sub-cellwith high critical yield stress can be

maintained for a sufficiently long time until failure initiates, and analysis of the changes in the

properties of a single convective cell with time will shed light on this aspect.

Our results show that a large range of time of failure is possible (∼ 10−3–1) and that the

transition from instantaneous subduction to no subductionoccurs over a small range ofτy: below

approximately 1/2τy,cr, subduction occurs immediately after the yield stress is “turned on”, and

aboveτy,cr it does not occur.

3.5.2 Model for lithospheric instability

To interpret the numerical results, we consider the subduction process as a Rayleigh-Taylor in-

stability. Canright and Morris (1993) considered Rayleigh-Taylor instability of two layers with

different viscosities, which can be approximately appliedto subduction initiation. During sub-

duction, thermal diffusion is unimportant because it is tooslow compared to the subducting plate

and thus subduction is akin to the Rayleigh-Taylor instability in a chemically stratified layer. We

approximate the convective system by a two-layer model: a cold, dense layer lying on top of a

hot convecting interior, each having a characteristic viscosity (Fig. 3.11a). The timescale of the

growth of the instability is:

ts =
1

s̃

ηeff
∆ρgδlid

, (3.12)

whereηeff is the effective viscosity of the top layer, ands̃ is the non-dimensional growth rate.

Since the density difference between the two layers is driven by temperature, the top layer
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is defined by the isotherm of the bottom of the lid, using the method described in Wong and

Solomatov (2015). The lid includes both the plastic zone andthe parts below which deform by the

creep flow law. The yield stress reduces the viscosity withinthe lid, with a maximum at aroundδpl

(Fig. 3.1), causing the greatest viscosity contrast withηi. We take this maximum viscosity to be

the effective viscosityηeff of the lid.

The growth ratẽs depends on the regime of Rayleigh-Taylor instability (Fig.3.11b). The

controlling parameters are the viscosity contrast betweenthe top and bottom layers∆η = ηeff/ηi,

the ratio of the depth of the interior to the lid thicknessβ = (d − δlid)/δlid, and the normalized

wavenumberK which depends on the perturbation wavelengthλp asK = 2(2π/λp)δlid. In our

single-cell steady-state cases, the lid slope dips towardsthe downwelling edge so the lid thickness

varies laterally. At largeθ and small Rayleigh numbers,δlid is comparable to the depth of the

interior. We take the averageδlid, which is approximately the lid thickness at the middle of the

cell. It ranges from around 0.2 to around 0.5, soβ is around 4 and approaches 1 as lid thickness

approaches 0.5. The range of viscosity contrast is determined byηeff , which is taken to be∼ 104–

106 (Fig. 3.9). The perturbation wavelength in our cases is twice the width of the cell (a = 0.5 to

1). This givesK on the order of 10 to 100. Forβ → 1, K → β∞ and(∆η)−1 → β−∞, placing our

cases in the regime of̃s = 1/K (the shaded area in Fig. 3.11b). In the limit of very thin thermal

boundary layer and large viscosity contrasts, which may be more relevant to planetary conditions,

β ≫ 1 andK < 1, thuss̃ can be in the regime of̃s = 1/4.

We can relate the effective viscosityηeff in Eq. 3.12 to the yield stress. The yield stress deter-

mines the depth of the plastic zone from the force balanceδplτy ∼ aτlid. The effective viscosity

ηeff is given by the temperature at this depthTeff , which can be found from the thermal gradient
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dT/dy:

Teff =
dT

dy
δpl

=
dT

dy
a
τlid
τy

.

Eq. 3.12 thus becomes

ts =
1

s̃

exp(−γTeff)

∆ρgδlid

=
1

s̃

1

∆ρgδlid
exp

(

−γ
dT

dy
a
τlid
τy

)

. (3.13)

In addition, there must exist a critical effective viscosity ηcr such thatts → ∞ whenη → ηcr. Thus

we introduce a threshold term forηcr to Eq. 3.12:

ts =
1

∆ρgδlids̃

(

1

ηeff
−

1

ηcr

)

−1

. (3.14)

The non-dimensional form of Eq. 3.14 is:

ts =
1

Ra0δlids̃
[exp(θTeff)− exp(θTcr)]

−1, (3.15)

where Ra0 is the surface Rayleigh number andδlid in this equation is non-dimensionalized by the

depth of convecting layerd. The temperature atηeff is related to the depth of the plastic zone.

Expressing the ratioτy/τy,cr asRτcr , the temperature atηeff is:

Teff =
dT

dy
a
τlid
τy,cr

R−1
τcr . (3.16)
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Eq. 3.15 can be rewritten to relate the timescale of instability growth andRτcr by grouping all the

other terms, noting that Nu is the non-dimensional form ofdT/dy:

ts = C[exp(C ′R−1
τcr )− expC ′]−1, (3.17)

C =
1

Ra0δlids̃
, (3.18)

C ′ = θNua
τlid
τy,cr

. (3.19)

Note thatC andC ′ are not constants for several reasons: (1) The lid thicknessδlid (and thus Nu

which scales as∼ δ−1
lid ) is not an independent variable. It depends on convective parameters and

can be expressed with some power law relationships with Ra, viscosity contrast, and aspect ratio

(Wong and Solomatov 2015). If̃s is in the 1/4 regime, bothC andC ′ depend onδlid; in the 1/K

regime,C could be independent ofδlid, but Nu remains inC ′. (2) The lid stressτlid refers to the

shear stress at the plastic depthδpl as a consequence of force balance on the plastic zone, and this

may vary in a complex way in the lid depending onδpl. As mentioned in the previous section,δpl

is roughly at a distanceypl ≈ 3δrh from the interior at the critical yield stress. However forτy not

too close toτy,cr, as shown in Fig. 3.9,δlid changes by∼50% with a∼25% variation inτy. Also as

τlid ∼ y2pl, andypl changes withδpl, τlid may be a function ofτy. Sinceτlid is inside the exponent,

even a small variation inτlid may lead to a great change inC ′, which is the slope of the exponential

curve. This may also explain why the aspect ratio changes theslope of these exponential curves

substantially asτlid depends on the aspect ratio. A complete scaling law withC andC ′ would be

too cumbersome as each of these coefficients depends on several factors, and a small error would

result in a huge difference especially withC ′ inside the exponent. Interestingly the spread in time

of failure is relatively small, suggesting that extrapolating to planetary conditions from these curves
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would yield estimates that are not far from the numerically established range.

To see how well Eq. 3.17 describes the evolution of lithospheric failure, we apply this equation

to one case with Ra1 = 107, a = 1, andθ = 19. Fig. 3.12 shows that the values ofC andC ′

determined from the fit are close to the values ofC andC ′ estimated directly from Eqs. 3.18 and

3.19. For this case,β ≈ 1.4, (∆η)−1 = e−19 ≈ 10−8, andK = 2πδlid ≈ 2.6. Therefore it is in the

regime ofs̃ = 1/K, andC = 36. Nu can be found from numerical results and it is≈ 2 until the

instant when failure occurs. The lid stressτlid in this case may be tricky to estimate because of the

range of yield stress and therefore differentδpl andypl. From the curve fitting in Fig. 3.12τlid/τy,cr

is about 1/6. From the force balanceτlid/τy,cr ∼ δpl/δlid ≈ 0.4, which is on the same order. Thus

Rayleigh-Taylor instability seems to be an appropriate interpretation of lithospheric failure.

3.6 Conclusions

Due to the variability in time-dependent convection solutions, a large range of subduction time

is possible for a given set of parameters of a convective system. In time-dependent convection,

which is chaotic in nature, the behavior of the convective system depends on the initial conditions,

such that systems with the same convective parameters and yield stress may experience lithospheric

failure at different times during their evolution. We foundthat for a given set of parameters with the

same yield stress but different convective solutions, the time of failure can vary by several orders

of magnitude. Thus the time of subduction initiation is a stochastic property controlled by initial

conditions and tiny variations in the convective system. The analytical solutions of Rayleigh-Taylor

provide an explanation for the relationship between the yield stress and the time of lithospheric

failure. The problem of subduction and thus plate tectonicsinitiation is not only whether the
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lithosphere has a sufficiently low yield strength, but also whether lithospheric failure would occur

on a geologic time scale.

More work needs to be done to understand the timing of plate tectonics initiation. While pseu-

doplastic rheology has been successful at producing lithospheric failure with plate-like behavior,

it is often criticized for not being able to record the history of weakening as the materials are

weakened instantaneously when the yield stress is applied.Both physical and numerical models of

subduction evolution demonstrated that subduction zone could initiate on pre-existing weak zones,

suggesting that the memory of deformation can be a key factorof the process (e.g., Shemenda

1992; Gurnis et al. 2000). To model with history-dependent deformation, Tackley (2000b) em-

ployed a strain weakening rheology, and Bercovici and colleagues developed the damage theory

that captures changes in rheology from energy considerations (Bercovici et al. 2001; Bercovici

and Ricard 2005; Landuyt et al. 2008; Bercovici and Ricard 2012). These models were able to

produce plate-like behaviors with localized weak zones that resemble plate boundaries. Perhaps

a connection between the yield stress simplification and more complicated rheologies such as the

one described by the damage theory would be the variation of yield stress with time. The history-

dependent nature of deformation may be expressed as a time-dependent yield stress, as it has been

shown that the evolution pathway of the yield stress influences the regimes of convection (Lenardic

and Crowley 2012; Weller and Lenardic 2012). The analysis using constant yield stress or yield

stress gradient can constrain the time required for the lithosphere to be sufficiently destabilized.

The yield stress approach in combination with theories thatcaptures the inheritance of deforma-

tion will be able to give a better understanding of stress state and weakening mechanisms in the

lithosphere.
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Figure 3.1 Left: Thermal structure of a steady-state convective cell (red is hot, blue is cold);y is
the vertical distance from the bottom of the thermal boundary layer. Middle: depth of plastic zone
δpl andy at this depth (ypl) determined by the yield stress at the downwelling edge (x = a) of the
convecting cell. Right: the corresponding viscosity profile. The viscosity is limited by the yield
stress such that there is a maximum value at approximatelyδpl.
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Figure 3.2 Snapshots for the case Ra1 = 3 × 108, a = 4, ∆η = 108, τy = 7 × 106. Pink color
represents yielded areas. The time on the figures are dimensionless.
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Figure 3.3 Snapshots for the case Ra1 = 3 × 108, a = 4, ∆η = 108, τy = 7 × 106. Note that
although the parameters are the same as in Fig. 3.2, the convective solution is different.
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Figure 3.4 Topography of the lid base for different solutions corresponding to the same set of
controlling parameters (Ra1 = 3 × 108, ∆η = 108, a = 4). The lid base is inferred from surface
heat flow variations horizontally. Bottom graph: average lid thickness over time. The lid thickness
is relatively steady with time.
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Figure 3.5 Time of failure as a function of yield stress for different convective solutions (repre-
sented by different colors) corresponding to Ra1 = 3× 108, ∆η = 108, a = 4.
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Figure 3.6 The spread in the time of failure for the cases withthe same yield stress and other
controlling parameters (Ra1 = 3 × 108, a = 4, ∆η = 108) but different convective solutions
represented by different colors. The spikes in surface velocity means that the lithosphere is no
longer stable and starts to move, which indicates the initiation of lid failure. For the cases which
do not show the velocity spikes, failure did not happen within the simulation runtime, which could
be continued for longer period with the possibility of observing failure.
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Figure 3.7 Time of failure with different values of yield stress for cases with different times of
“turning on” the yield stress in a convective system operating in a statistically steady state. The
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Figure 3.8 Sub-cell (in the black rectangular box) in a 4×1 convective box.
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Figure 3.9 Depth of plastic zone, and maximum viscosity, andsurface velocity over time. Ra1 =
3×107, a = 0.75, ∆η = e16. All axes are dimensionless.
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Figure 3.10 Time of failure as a function of the ratio of yieldstress to critical yield stress in single-
cell cases.
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Chapter 4

Constraints on plate tectonics initiation from scaling laws for single-cell

convection

T. Wong and V. S. Solomatov

An edited version of this chapter has been submitted for publication in Phys. Earth and Planet.

Inter. of Elsevier.

Abstract

The Earth is the only planet known to have plate tectonics, while other planets are thought to be

covered with a stagnant lid. On the Earth, the initiation of subduction, which is thought to be

the fundamental process for plate tectonics initiation, iscaused not only by the negative buoyancy

of the lithosphere but also by the compressional forces fromplate motions. However for plan-

ets which do not have plate tectonics, very first episode of lithospheric failure has to be caused

by forces other than plate motions. Sublithospheric convection has been proposed as a possible

mechanism that provides lithospheric instability throughinducing stresses in the lithosphere, and

lithospheric failure can occur when the yield stress is below a critical value. We test the applica-
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bility of scaling laws for the critical yield stress obtained in single-cell convection simulations to

strongly time-dependent multi-cell systems. We show that with an appropriate choice of charac-

teristic aspect ratio for the convective system, the scaling laws from single-cell simulations can be

used to evaluate the conditions on the terrestrial planets in the inner Solar System for plate tecton-

ics to exist. The estimated values for critical yield stressand coefficient of friction are much lower

than the observed values for the Earth’s lithosphere. For Venus, Mars, and Mercury, a very small

yield stress is required for plate tectonics to initiate.

4.1 Introduction

The diversity of terrestrial planets, both inside and outside the Solar System, have posed interesting

questions their evolution, surface expression, and interior structures. One factor that contributes

to the variety is the convective styles of the mantles in these planets. Plate tectonics is currently

understood as a mode of convection that operates on the Earth, making it distinct from all other

known planets where mantle convection, if existing, is likely to be in the stagnant lid regime. The

presence of plate tectonics has implications on the planets’ surface history and interior dynamics,

which are closely related to the atmospheric composition and surface conditions, and ultimately

linked to the origin of life (e.g., Franck et al. 2000). Therefore the origin of plate tectonics on the

Earth, whether plate tectonics could have occurred on otherplanets, and the conditions favorable

for Earth-like planets to have plate tectonics are active topics of research.

There has been many studies on how plate tectonics could haveemerged on a planet. A poten-

tial mechanism to initiate subduction, which may be the key process to start plate tectonics on a

one-plate planet, is sublithospheric convection (e.g., Ogawa 1990; Fowler and O’Brien 2003; Solo-
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matov 2004b). A major difficulty for this mechanism is the high strength of the lithosphere that

prevents it from failing. In numerical studies the strengthis often reduced with a yield stress, which

is a simplification of the weakening mechanisms in the lithosphere (e.g., Fowler 1993; Trompert

and Hansen 1998; Moresi and Solomatov 1998; Tackley 2000a; Richards et al. 2001; Solomatov

2004b; Stein et al. 2004; O’Neill et al. 2007; Wong and Solomatov 2015). Obtaining scaling rela-

tions of the yield stress and physical parameters can help understanding the conditions favorable

for plate tectonics.

This study aims to apply scaling laws developed for relatively simple and controlled convection

systems to more variable time-dependent convection systems typical in planetary mantles. Our

goal is to assess whether conditions on terrestrial planetsin the inner Solar System allow plate

tectonics to exist. These planets have more constraints from available observational data, and there

have been different views on past and present episodes of plate tectonics which will be reviewed

here.

4.2 Plate tectonics on terrestrial planets in the inner Solar System

4.2.1 Subduction initiation on the Earth

Plate tectonics on the Earth is thought to be driven by ridge push and slab pull forces. The origin

of these forces comes from the movements of Earth’s surface that are already occurring, but it is

not clear how they first emerge. Calculations show that slab pull accounts for∼90% of the driv-

ing forces (Lithgow-Bertelloni and Richards 1995), therefore to start plate tectonics, subduction

initiation may be the key to mobilize the surface.

There are two main physical models for subduction initiation mechanisms on Earth: by gravita-
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tional instability (termed by Stern (2004) as spontaneous nucleation of subduction zones) (Turcotte

1977; Stern and Bloomer 1992; Kemp and Stevenson 1996; Stern2004), or by continued compres-

sion due to trench congestion or plate reorganization (induced nucleation of subduction zones)

(McKenzie 1977; Mueller and Phillips 1991; Toth and Gurnis 1998; Hall et al. 2003; Gurnis et al.

2004).

Spontaneous nucleation of subduction zones refers to lithospheric failure due to vertical force

of gravity such that the denser plate thrusts under the less dense plate at passive margins, along

transform faults, or fracture zones. This type of models usually involves tensile failure, as the

tensile strength is lower than the compressive strength (Turcotte 1977; Kemp and Stevenson 1996).

Passive margin failure could be aided by sedimentary loading (Cloetingh et al. 1989) with the help

of wet rheology (Regenauer-Lieb et al. 2001) and/or low-temperature plasticity (Branlund et al.

2001).

Induced nucleation involves horizontal compressional forces, which could be found in sites

such as intraoceanic subduction zones, transform faults, passive margins, and spreading centers. A

number of experimental, numerical, and analytical studiesshowed that without the help of com-

pressional forces, it is difficult for ridge push alone to overcome the forces that resist lithospheric

rupture (e.g., McKenzie 1977; Mueller and Phillips 1991; Shemenda 1992; Gurnis et al. 2004). In

his estimates, McKenzie took the frictional shear resistance to be 1–10 MPa from seismic studies,

while Mueller and Phillips used experimental results of rock deformation to obtain values on the

order of102–103 MPa. Toth and Gurnis (1998) presented numerical models suggesting that the

frictional resistance of the fault has to be as low as a few MPain order for subduction to initiate

with ridge push forces, which is one or two orders of magnitude lower than the value predicted by

experiments (Byerlee 1978).
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Although the spontaneous nucleation and induced nucleation models differ in the source of

forces that initiate subduction, both predict that subduction zones nucleate along preexisting weak

zones or transform boundary. Therefore much effort has beendevoted to understand the mecha-

nisms of deformation localization to create weak zones (e.g., Bercovici et al. 2001; Branlund et al.

2001; Regenauer-Lieb and Kohl 2003).

4.2.2 Possible plate tectonics on Venus

Plate tectonics is not thought to be currently active on Venus. The random distribution of craters on

Venus suggests that the planet has a young surface of less than 700 Ma (Arkani-Hamed et al. 1993;

Herrick 1994; Turcotte et al. 1999). Although Venus has a plethora of tectonic features including

coronae and chasmata, plate-boundary signatures resembling those on the Earth such as subduction

zones and spreading centers are not obvious (e.g., Smrekar et al. 2010). Venus has a unimodal

hypsometry while the Earth has very distinctly different elevations between the continents and the

ocean basins, implying that plate tectonics processes on the Earth are not present on Venus (e.g.,

McGill et al. 2010).

The young age of the surface is believed to be due to a catastrophic resurface event that occurred

∼500–1000 Ma (e.g., McKinnon et al. 1997). The process of thisresurfacing event is not clear, as

the main source of observational data for this event comes from cratering records. Two major mod-

els for the nature of the resurfacing event were proposed: plate tectonics or plume/magmatic activ-

ity. Magmatic resurfacing is probably the most direct conclusion from observations of widespread

volcanic landforms (e.g. Phillips and Hansen 1998; Stofan et al. 2005; Reese et al. 2007). For the

tectonic resurfacing model, geologic features have been identified as localized subduction zones,

which may have triggered the catastrophic resurfacing (Schubert and Sandwell 1995), although
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these features might have other non-plate-boundary origins such as diapirs (Hansen and Phillips

1993).

If the resurfacing event has tectonic origins, the end of this event may represent the cessation

of Venusian plate tectonics (Arkani-Hamed et al. 1993; Herrick 1994), or it may be a quiescent

period in between episodes of subduction (Parmentier and Hess 1992; Turcotte 1993; Weinstein

1996; Fowler and O’Brien 1996; Schubert et al. 1997; Moresi and Solomatov 1998). The transition

to a one-plate planet may be caused by mantle cooling (Herrick 1994) and thus a decline in the

vigor of mantle convection (Arkani-Hamed et al. 1993; Solomatov and Moresi 1996). Mantle

cooling can make the lithosphere positively buoyant (Herrick 1994), and the decline in convection

also decreases the stresses in the lithosphere that might beable to mobilize the surface (Solomatov

and Moresi 1996). However, without an efficient heat loss mechanism such as plate tectonics, the

mantle temperature would increase and the planet may undergo episodic subduction to lose heat

(Turcotte 1995).

One reason for the lack of plate tectonics on Venus may be its high surface temperature. The

hot surface evaporates water away so the dry lithosphere hasa higher yield strength, making sub-

duction more difficult on Venus than on Earth (e.g., Kaula 1994; Mackwell et al. 1998). The high

temperatures also favor grain growth, which hinders deformation localization and therefore fail-

ing to produce plate boundary and subduction zones (Landuytand Bercovici 2009). The positive

buoyancy of both the crust and the depleted mantle residuum inhibits subduction (Parmentier and

Hess 1992), but the thickness of the crust is debated (Sandwell and Schubert 1992; Phillips 1994;

Orth and Solomatov 2012).
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4.2.3 Possible plate tectonics on early Mars

Mars poses a different set of problems for plate tectonics due to its intermediate size and cold

surface. Plate tectonics has been suggested for different periods in Mars’ history. Early plate

tectonics on Mars was proposed as the origin of the global dichotomy. From the lateral extent of

the thin crust of the northern lowlands, Sleep (1994) hypothesized that the northern lowlands were

formed from seafloor spreading. However crater densities and structural features in the northern

plains show that the area does not conform to this plate tectonics model of formation (Pruis and

Tanaka 1995; Frey 2004).

Another line of evidence for early Martian plate tectonics comes from magnetic field data.

The magnetic lineations observed by Mars Global Surveyor inthe southern hemisphere (Acuna

et al. 1999) have been interpreted as a signature for plate tectonics processes such as seafloor

spreading (Connerney et al. 1999) and accretion of terranes(Fairen et al. 2002). Based on the

magnitude of magnetic field in the magnetic lineations in thesouthern highlands, there might have

been an active dynamo in early Mars (Acuna et al. 1999). This dynamo demands a large core

heat flux, which may require early plate tectonics to drive core cooling (Nimmo and Stevenson

2000), and plate tectonics could efficiently cool the planetto avoid early massive melting (Hauck

and Phillips 2002). However other non-plate tectonics mechanisms for magnetic lineations such

as dike intrusion could be possible (Nimmo 2000). The Martian dynamo can also be driven by an

initially hot core without plate tectonics (Breuer and Spohn 2003). Further evidence against early

plate tectonics includes the isotopic heterogeneity of theearly mantle from Martian meteorites,

which indicates that the mantle had not undergone much recycling (Albarede et al. 2000; Halliday

et al. 2001).
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Plate tectonics occurring at a later period of Mars’ historyhas also been proposed. Mapping

of the Valles Marineris interpreted the feature as a large-scale strike-slip fault that could be a plate

boundary, suggesting some form of plate tectonics in the Late Hesperian and Amazonian (Yin

2012). However, the small displacement (∼160 km) on this fault and the lack of such features

anywhere else on the planet makes this argument rather weak.Processes other than plate tectonics

could be responsible for the formation of this feature.

4.2.4 Stress state of Mercury’s surface

Although plate tectonics is ruled out as a cooling mechanismfor Mercury, recent mapping anal-

ysis by Byrne et al. (2014) raised questions on the stress state of the surface as it might be more

deformable than previously thought. The observations fromMariner 10 and the MESSENGER

spacecraft revealed a heavily cratered surface with tectonic features on Mercury, which indicate

that this could be a one-plate planet undergoing global contraction (e.g., King 2008; Watters et al.

2009; Byrne et al. 2014). Other causes for the distribution and orientation of lobate scarps and

wrinkle ridges include tidal despinning and convection patterns (e.g., Melosh and McKinnon 1988;

King 2008; Padovan et al. 2014; Klimczak et al. 2015; Watterset al. 2015).

There has been a longstanding debate on whether Mercury’s mantle is currently convecting.

Since Mariner 10 only had three flybys that had limited coverage of the planet, earlier simulations

of mantle convection of Mercury tested a range of parametersfor thermal evolution. Their findings

indicate that existence of convection depends on several factors including the concentration of

radiogenic elements in the mantle, the core heat flux, and mantle rheology (Hauck et al. 2004;

Redmond and King 2007). MESSENGER provided surface measurements of radiogenic elements

that constrain the heat production and thus the thermal history of Mercury (Peplowski et al. 2011),
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and the geophysical observations constrained the thickness of the silicate layer to be in the range

of 300–600 km (Smith et al. 2012; Hauck et al. 2013). Therefore if convection exists it is likely to

be in the stagnant lid regime due to the small Rayleigh number(Solomatov 1995). Using different

models of core cooling, Tosi et al. (2013) and Michel et al. (2013) reached opposing conclusions

on whether convection is occurring. However due to uncertainties in interior structure, such as

the existence and thickness of a solid FeS layer at the core-mantle boundary, these models do not

exclude the possibility of mantle convection. Estimating the contribution of stresses induced by

convection on Mercury’s lithosphere has implications for the existence of convection and thus the

thermal evolution on Mercury.

4.2.5 Possibility of plate tectonics on Earth-like exoplanets

Various theories have been proposed for the conditions of exoplanets to have plate tectonics based

on different assumptions (e.g., O’Neill and Lenardic 2007;Valencia and O’Connell 2007, 2009;

Korenaga 2010a; Karato 2011; van Heck and Tackley 2011; Foley et al. 2012; Stamenkovic and

Breuer 2014). The different rheologies such as temperature-, pressure- and stress-dependent rhe-

ology, addition of water, internal heating, and the use of damage theory are considered in the

scaling of mass and radius to conclude whether plate tectonics is likely to occur on exoplanets.

The high pressure in the interior of larger-sized planets may be a major influence on their structure

and evolution (e.g., Valencia et al. 2007; Wagner et al. 2011; Stamenkovic et al. 2012). It affects

various properties including density, thermal expansivity and conductivity (van Heck and Tackley

2011; Tachinami et al. 2014), deformation mechanism and phase transitions (Karato 2011; Stein

et al. 2011; Tackley et al. 2013), and enthalpy changes (Karato 2011; Stamenkovic et al. 2011).

The compressibility of the mantle fluids would be relevant tohigh pressure conditions. Miyagoshi
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et al. (2014, 2015) modeled convection of compressible fluids and concluded that adiabatic com-

pression suppresses convection thus does not favor plate tectonics. The effects of pressure on the

rheology require further experimental and theoretical support.

4.3 Critical yield stress approach and scaling laws

One way of studying the criterion of failure for different planets is to develop scaling relations

between the yield stress of planetary lithospheres and various physical parameters. The yield stress

is a physical property that is determined experimentally orfrom geophysical observations. Due to

uncertainties in assumptions and complications in extrapolation, these observed values of yield

stress are not well constrained and are usually too high for the lithosphere to fail. For these reasons

we obtained scaling laws using the critical yield stress approach: the yield stress is a variable that is

adjusted to the point at which the lithosphere becomes unstable, while the other parameters of the

convective system are held constant (Solomatov 2004b; Wongand Solomatov 2015). This process

is repeated for different sets of convective parameters.

To examine how the yield stress affects the stress distribution of the lithosphere, Wong and

Solomatov (2015) carried out an analysis of the spatial variation in magnitude of stresses induced

in the lithosphere by sublithospheric convection. They found that the process of subduction can

be approximately described by the gravitational sliding model in which the stresses are caused by

the variations of the lid base topography, in particular thedipping of the lid slope that provides the

instability. To find out the extent of weakening needed for the lithosphere to become unstable, they

determined the depth of region affected by the yield stress (termed the depth of the plastic zoneδpl,

Fig. 4.1). Contrary to previous belief that this depth is controlled by the viscosity of the mantle
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(e.g., Fowler and O’Brien 2003; van Heck and Tackley 2011) orthe viscosity contrast for the

mobilization of the stagnant lid (Solomatov 2004b), the depth of the plastic zone is approximately

1/2–1/3 of the lithospheric thickness, even if the viscosity contrast at this depth is as high as∼ 107.

Wong and Solomatov (2015) thus obtained the following expressions for the critical yield stress

τy,cr and critical yield stress gradientτ ′y,cr:

τy,cr = −αρ0g
dT

dy
λ
y2pl
2

a

δpl
, (4.1)

τ ′y,cr = −αρ0g
dT

dy
λ
y2pl
2

a

δ2pl
, (4.2)

whereypl is the distance from the interior toδpl respectively (Fig. 4.1), and other parameters are

defined in Table 4.1. Eqs. 4.1 and 4.2 imply that these critical values depend on the topography of

the bottom of the lithosphere: the aspect ratio and the lid slope, as well as other factors including

the thermal gradient which also depends on the aspect ratio.

Following the dimensional form in Wong and Solomatov (2015), after combining the terms in

Eq. 4.1 and 4.2, the scaling laws for critical yield stressτy,cr and friction coefficientµcr are:

τy,cr ∼ 1.95αρg∆Td

(

E∆T

RT 2
i

)

−1.03(
δ0
d

)

−0.41

a1.78, (4.3)

µ ∼ 89α∆T

(

E∆T

RT 2
i

)

−1.74(
δ0
d

)

−1.55

a1.87. (4.4)

The above scaling laws were derived from single-cell steady-state convective solutions, which

have more controlled flows and therefore permit relatively simple scaling analysis. In the following

sections we describe our approach to test this analysis of single-cell solutions for the strongly time-

dependent convection. These systems are more complex and difficult to analyze, but they are more
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realistic representations of mantle convection on terrestrial planets. By establishing the relevance

of these scaling laws to time-dependent convection, they can be used for extrapolation to planetary

conditions.

4.4 Numerical methods

We use the finite element code CITCOM (Moresi and Solomatov 1995) to solve the equations of

thermal convection in 2D with a fixed temperature difference∆T = T1 − T0 between the top and

the bottom with free-slip boundary conditions. The equations of thermal convection in Boussinesq

approximation and infinite Prandtl number are

∇ · u = 0, (4.5)

αρgT ′
n−∇p′ +∇× ¯̄τ = 0, (4.6)

∂T ′

∂t
+ u · ∇T ′ = κ∇2T ′, (4.7)

where notations are defined in Table 4.1. The stress tensor¯̄τ has componentsτij :

τij = η(∇u+ {∇u}T ), (4.8)

whereη is the viscosity,{}T is the transpose operator.

The viscosity strongly depends on the temperature and it assumes an Arrhenius form:

η = A exp

(

E

RT

)

(4.9)
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whereA is a constant. The viscosity is often approximated by the exponential form:

η = B exp(−γT ) (4.10)

whereB is another constant, andγ = E/RT 2
i , which in non-dimensional form is known as the

Frank-Kamenetskii parameter:

θ = γ∆T. (4.11)

To simulate brittle failure of the lithosphere, we use a pseudoplastic rheology with a yield stress

that takes the form of either a constant (τy) or a constant gradient with depthτ ′y, although it is often

a combination of both as defined by Byerlee’s law (Byerlee 1978). This approach is commonly

used in numerical studies that investigate mobile or episodic regimes of convection and plate-like

behaviors (e.g., Moresi and Solomatov 1998; Trompert and Hansen 1998; Tackley 2000a; Fowler

and O’Brien 2003). Plastic yielding occurs when convectivestresses exceed the yield value and

deformation follows a plastic flow law defined by an effectiveviscosity:

ηeff =
τy
ė
, (4.12)

whereė is the second invariant of the strain rate tensor. When stresses are less than the yield stress,

deformation occurs in the Newtonian creep as in Eq. 4.10.

The numerical calculations were performed with a512×128 mesh as strongly time-dependent

convection in the regime of high Rayleigh number and large aspect ratio (a = 4) requires higher

resolution.
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4.5 Comparison between theoretical and numerical criticalyield stress and

yield stress gradient: matching aspect ratios

To see how well the scaling theories developed from single-cell steady-state solutions apply to

strongly time-dependent systems, we determineτy,cr andτ ′y,cr from numerical experiments of con-

vective systems in the regime of higher Ra with longer aspectratios. We then compare these

numerically observed values ofτy,cr andτ ′y,cr with theoretical predictions using the power law co-

efficients for the scaling laws in Table 4.3. To do so we need tofind a characteristic aspect ratio

to use in the scaling laws, as the long convective box is oftensubdivided into smaller aspect ratio

cells with widths varying continually in time-dependent convection (Fig. 4.2). This variability in

aspect ratio gives an uncertainty in determining the critical yield stress and yield stress gradient.

Previous studies obtained scaling laws for the aspect ratios by estimating the number of down-

welling plumes in the convective system (Parmentier and Sotin 2000; Solomatov 2004b). However

as described in the previous section, the lateral variationof the lid base is a key factor in initia-

tion of lid failure, therefore a general value of the aspect ratio determined for the whole system

from scaling laws may not be appropriate. If the scaling lawsfrom single-cell simulations can be

applied to multi-cell convective systems, the characteristic aspect ratio can be inferred from the

critical yield stress or critical yield stress gradient using the scaling laws (with scaling exponents

in Table 4.3) as:

aτ ∼ 10−0.2τ 0.6y,crRa
−0.7θ0.9, (4.13)

aτ ′ ∼ 10−1.6τ ′0.7y,crRa
−0.9θ2.4. (4.14)
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This aspect ratio is referred to as the inverted aspect ratio.

To see if this inverted aspect ratio has any correlation withthe aspect ratios from the numerical

solutions, we choose an aspect ratio that can be representative of the different sizes of the sub-cells

in the multi-cell system. The size of the sub-cells are defined by the topography of the lid base.

For the problem of subduction initiation, we look at the partof the convective box that is most

prone to lid failure (Fig. 4.2). The scaling laws in Eq. 4.3 and 4.4 suggest that sub-cells with large

aspect ratios have higher critical yield stresses and coefficients of friction, so we find the maximum

possible aspect ratio of sub-cell in the convective system.However the maximum aspect ratio may

not be a good predictor of the critical yield stress as the other factors such as lid slope also vary,

therefore in addition to finding the maximum aspect ratio, wealso determine the average aspect

ratio of sub-cells.

For each set of convective parameters (same Ra and viscositycontrast), we check the maxi-

mum and average sub-cell width in a large yield stress (Fig. 4.3 left) or yield stress gradient (Fig.

4.3 right) case in which convection is in the stagnant lid regime. The shape of lid base, which

determines the widths of sub-cells, can be inferred from thevariation in surface heat flux horizon-

tally. As shown in Wong and Solomatov (view), the variation in cell width is more or less stable

when lithospheric failure does not occur, and this width is similar to the cell width before failure

in cases with lower yield stress or yield stress gradient. The maximum and average aspect ratios

from numerical simulations are listed in Table 4.2.

These numerically observed maximum and average aspect ratios (hereafter referred to as nu-

merical aspect ratios) are compared with the inverted aspect ratios. From Fig. 4.3 and Table 4.2

the inverted aspect ratios mostly fall between the maximum aspect ratios and the average aspect

ratios found from numerical solutions, except for a few cases with high Ra. The average aspect
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ratio seems to show a better correlation with the inverted aspect ratio, so it may be a more suitable

predictor ofτy,cr andτ ′y,cr for a multi-cell time-dependent convection system. By multiplying the

numerical average aspect ratio with a correction factor of∼1.4, the numerically observed criti-

cal yield stress will be consistent with theoretical predictions, so the scaling laws from single-cell

solutions can be used to estimate the critical yield stress and yield stress gradients in strongly

time-dependent convection.

4.6 Application to terrestrial planets

4.6.1 Physical parameters for terrestrial planets

Tables 4.1 and 4.4 suggest the values of physical parametersthat are applicable for conditions

of Earth, Venus, Mars, and Mercury. The interior temperature Ti is taken to be∼1700 K. At

temperatures slightly below this value convection ceases,while at temperatures slightly above this

value the mantle rocks begin to melt (Solomatov 2004b; Korenaga 2010b). Since the scaling laws

used in this paper are derived from calculations using Newtonian rheology, we use the activation

energy of diffusion for olivine which is about 375 kJ/mol (Hirth and Kohlstedt 2003). The melting

temperature and the activation energy for wet olivine givesthe interior viscosity that is close to the

mantle viscosity, thus we take the mantle viscosity as the reference viscosity. Here we consider a

typical value of interior viscosity1019 (e.g., Schubert et al. 2001) in our extrapolation. Note that

while the interior viscosity is uncertain, the critical yield stress is not very sensitive to this value

but is most sensitive to the thermal structure of the lid. Thelithospheric thickness is needed to

estimate the friction coefficient, and it is inferred from heat flux estimates. For the Earth where

plate tectonics processes contribute to the large average surface heat flow, we take the value typical
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for oceanic lithosphere, which is about 40 mW/m2 (e.g., Solomatov and Moresi 2000).

4.6.2 Depth of convecting layer

The depth of convecting layer is required for the dimensional scaling ofτy,cr andµcr. Due to the

exponential dependence of viscosity on pressure, the bottom part of the mantle is very viscous and

thus sluggish. Therefore convection does not span the entire depth of the mantle and is restricted

to the top part of the mantle (e.g., Christensen 1985), and athigh viscosity contrasts the convective

system breaks into smaller sub-cells (Khaleque et al. 2015). On the Earth, it is believed that

small-scale convection is active in the upper mantle (e.g.,Richter and McKenzie 1981; Solomatov

and Moresi 2000; van Hunen et al. 2003). As the effects of pressure on convection is not well

understood, for our scaling purposes we assume that the pressure reduces the depth to an effective

depth of the actively convective layer. We use a range for this effective depth which goes from half

to the whole of the depth of the convecting mantle. For Earth and Venus this is about 350–700

km. For smaller planets such as Mars and Mercury which have lower pressures, we take the entire

mantle depth as the upper limit.

4.6.3 Aspect ratio

Since the aspect ratio of strongly time-dependent convection is variable as discussed in the previous

section, we estimate the range of critical yield stress and coefficient of friction with limiting values

of aspect ratios. The aspect ratios observed from numericalsimulations range from about 0.2–

0.5 (Table 4.2). The fit between the inverted aspect ratio andthe numerical aspect ratio in Fig.

4.3 suggests that the average aspect ratio can be used in the scaling laws when multiplied with a

coefficient of∼1–2. Therefore we take the aspect ratio to be between 0.2–1.
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4.6.4 Critical yield stress and critical coefficient of friction

The critical yield stress and critical yield stress gradient for various planets can be estimated from

Eq. 4.3 and 4.4 using the parameters in Table 4.1 and 4.4, and they are listed in Table 4.5. We

estimateτy,cr andµcr with higher and lower end values of aspect ratios, and the range in the

magnitudes ofτy,cr andµcr come from the depth range of the convective layer.

In the comparison between the Arrhenius viscosity and Frank-Kamenetskii approximation,

Wong and Solomatov (2015) found that the scaling laws derived from calculations using expo-

nential viscosity (Eq. 4.10) predict a slightly largerτy,cr than that of Arrhenius viscosity (Eq.

4.9) by∼20–50%. This difference with exponential viscosity is greater for τ ′y,cr, which could

be ∼40% higher to almost 5 times larger than that with the Arrhenius viscosity. They found

that as the difference between Arrhenius viscosity and its corresponding exponential viscosity

increases, the ratio of the two yield values (τy,cr,Arr/τy,cr,exp and τ ′y,cr,Arr/τ
′

y,cr,exp) decreases to

some asymptotic values that depend mostly onθ (Fig. 4.4). For the Earth and Mars which has

θ ≈ 22 and where the surface temperature is low, the difference between Arrhenius and expo-

nential viscosity is great (∆ηArr/e
θ ≫ 1030). Referring to Fig. 4.4, the actualτy,cr andτ ′y,cr for

these planets are in the asymptotic regime which are between0.7–0.8 and 0.6–0.7 of their cor-

responding values from exponential viscosity. Venus’s high surface temperature yields a smaller

θ of about 15 and its viscosity difference between the two laws∆ηArr/e
θ ≈ 109, which gives

τy,cr,Arr ≈ 0.6τy,cr,exp andτ ′y,cr,Arr ≈ 0.4τ ′y,cr,exp. Mercury hasθ ≈ 20 and viscosity difference

≈ 1024, giving τy,cr,Arr ≈ 0.7τy,cr,exp andτ ′y,cr,Arr ≈ 0.5τ ′y,cr,exp.

We can make some remarks on the critical yield stress and friction coefficient for super-Earths

based on the dimensional scaling laws. As the mass and size increase, the pressure inside the planet
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also increases. Besides increasing gravitational acceleration, the pressure also affects the depth of

the convecting layer. The pressure may reach a critical value at shallower depths that the viscosity

becomes too high for the lower part of the mantle to participate in active convection. Therefore

even if gravitational acceleration increases with pressure, the depth of convecting layer may be

smaller; according to Eq. 4.3, these two properties may havecompensating effects.

4.6.5 Uncertainties in extrapolation

One source of uncertainty is in the values of physical properties. The uncertainty in mantle viscos-

ity gives Ra values with 3 orders of magnitude, causing the biggest range in extrapolation from our

scaling laws. For the estimates of critical yield stress in this study we use the activation energy for

diffusion creep, as the scaling laws were derived with Newtonian rheology. In previous estimates

the value for dislocation creep was used, which yield a lowervalue of critical yield stress than the

ones obtained in this study (e.g., Solomatov 2004b; Wong andSolomatov 2015).

The uncertainties in the scaling exponents in Table 4.3 due to numerical errors can result in

about an order of magnitude difference from the theoretically predicted values.

As mentioned before and also in Wong and Solomatov (2015), the behavior of the nonlinear

system near the critical value may be difficult to predict, and it may depend on the model runtime

to observe lid failure. This also contributes to the uncertainty in determining the critical yield stress

and yield stress gradient.

132



4.7 Discussion and conclusion

We have showed that the scaling laws derived from single-cell steady-state convection simulations

can be applied to multi-cell time-dependent convection. The characteristic aspect ratio for a multi-

cell time-dependent system can be obtained by determining the average aspect ratio of sub-cells

in a convective box with large aspect ratio and modifying this value with a factor of∼1–2. This

aspect ratio can be used in the scaling laws to predict the critical yield stress and friction coefficient

in strongly time-dependent convection.

In general, a very low yield stress and/or a small coefficientof friction is required for a stagnant

lid planet to initiate plate tectonics. This agrees with previous theoretical estimates (e.g., Toth and

Gurnis 1998), but much smaller than experimental values (e.g., Mueller and Phillips 1991). Water

may be a key factor contributing to the low yield stress of theEarth’s lithosphere (e.g., Kohlstedt

et al. 1995), differentiating the Earth’s evolution from that of Venus. As it is difficult for one-plate

planets to have plate tectonics, other possibilities such as impact (Hansen 2007; Ruiz 2011) or

transition from magma ocean convection (Solomatov 2004b; Foley et al. 2014; Solomatov 2015)

may be viable candidates for the origin plate tectonics.

The properties affecting the critical yield stress and friction coefficient change with time. One

of them is internal heating, which decays with time and changes the interior temperature. The criti-

cal yield stress can also be related with the change in rheology with time through more complicated

models such the damage theory (e.g., Bercovici and Ricard 2012). In the future it might be helpful

to investigate the connection between the parameters in thedamage theory and the critical yield

stress, such that at some point during the planet’s history subduction initiation could be easier.
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Figure 4.2 Incipient subduction in the sub-cell that is mostprone to subduction in a long convective
box. The cold blue lid starts to subduct into the hot interiorin red color. The magenta color in the
lid represent parts that have reached the yield stress.
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Figure 4.4 Ratio of yield stress for Arrhenius viscosity to that for exponential viscosityRτ =
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′
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surface temperatureT0, and it can go up to many orders of magnitude ifT0 is low. Asymptotically
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Wong and Solomatov (2015).

Table 4.1 Model Parameters
Parameter Notation Value

Thermal expansion coefficient α 3× 10−5

Reference density ρ0
Temperature T

Lid slope λ
Aspect ratio a

Depth of convecting layer d
Thickness of lithosphere δ0

Thermal diffusivity κ 10−6 m2 s−1

Reference viscosity η0 1019 Pa s
Thermal conductivity k 3 W m−1 K−1

Activation energy (diffusion creep) E 375 kJ mol−1

Gas constant R
Interior temperature Ti 1700 K

Velocity vector u

Unit vector n

Pressure perturbations p′

Temperature perturbations T ′
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Table 4.2 Comparison between critical yield stress predicted from theory and that obtained from numerical experimentsfor time depen-
dent cases witha = 4. The characteristic aspect ratio of sub-cells in numericalexperiments are calculated inversely from the observed
τy,cr andτ ′y,cr.

constantτy constantτ ′y
Ra1 ∆η max.a τy,cr avg.a τy,cr max.a τ ′y,cr avg.a τ ′y,cr method
108 106 1.46 1.39× 107 0.64 3.53× 106 1.35 4.09× 108 0.67 1.47× 108 theoretical

0.79 5× 106 0.77 1.8× 108 numerical
108 107 0.88 4.76× 106 0.43 1.46× 106 1.0 1.57× 108 0.44 4.83× 107 theoretical

0.66 3× 106 0.63 8× 107 numerical
108 108 1.2 6.71× 106 0.8 3.39× 106 1.49 1.79× 108 0.8 7.22× 107 theoretical

0.92 4.25× 106 0.93 9× 107 numerical
3× 108 106 0.742 1.49× 107 0.34 3.94× 106 1.45 1.98× 109 0.35 2.45× 108 theoretical

0.59 107 0.64 6× 108 numerical
3× 108 107 0.86 1.53× 107 0.35 3.41× 106 0.86 5.5× 108 0.36 1.58× 108 theoretical

0.67 107 0.69 4.5× 108 numerical
3× 108 108 0.422 3.85× 106 0.26 1.67× 106 0.34 9.23× 107 0.25 5.81× 107 theoretical

0.42 3.8× 106 0.39 1.1× 108 numerical
109 106 0.398 1.95× 107 0.19 5.51× 106 1.47 1.01× 1010 0.23 6.74× 108 theoretical

0.43 2.2× 107 0.45 1.8× 109 numerical
109 107 0.351 1.27× 107 0.2 4.95× 106 0.35 7.54× 108 0.2 3.32× 108 theoretical

0.32 1.1× 107 0.4 9× 108 numerical
109 108 0.656 2.99× 107 0.22 4.89× 106 0.41 6.08× 108 0.22 2.46× 108 theoretical

0.4 1.3× 107 0.41 6× 108 numerical

1
3

8



Table 4.3 Power law coefficients in scalings of different parameters with Ra, aspect rationa, and
Frank-Kamenetskii parameterθ from Wong and Solomatov (2015)

Parameter c in 10c Ra a θ
δ0 -0.26± -0.10 -0.22± 0.01 0.27± 0.04 1.12± 0.06
τy,cr 0.40± 0.22 1.09± 0.03 1.67± 0.09 -1.49± 0.14
τ ′y,cr 2.34± 0.32 1.34± 0.04 1.45± 0.14 -3.47± 0.21

Table 4.4 Parameters for terrestrial planets
Earth Venus Mars Mercury

Depth of convective layer (d) km 350 – 700 350 – 700 850 – 1700 350 – 660
Gravitational acceleration (g) m/s2 9.8 8.9 3.7 3.8

Density (ρ) kg/3 3300 3300 3500 3500
Surface temperature (T0) K 300 733 270 442

Surface heat flux (q) mW/m2 40 20 30 30

Table 4.5 Estimates of critical yield stressτy,cr and friction coefficientµcr for terrestrial planets.
τy,cr (MPa)
a = 0.2 a = 1

Earth 3.7 – 9.8 65 – 170
Venus 2.9 – 7.7 51 – 140
Mars 2.9 – 7.8 52 – 140

Mercury 0.9 – 2.2 16 – 39
µcr

Earth 0.005 – 0.016 0.11 – 0.32
Venus 0.006 – 0.016 0.11 – 0.33
Mars 0.002 – 0.006 0.043 – 0.13

Mercury 0.001 – 0.004 0.027 – 0.072
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Chapter 5

Conclusions and future directions

Initiation of plate tectonics on a planet operating in the stagnant lid convection regime is difficult.

Although sublithospheric convection is capable of inducing large stresses in the lithosphere, es-

pecially towards the surface, to mobilize the lithosphere plastic yielding has to penetrate through

some depths into the lid. To do so a very low yield stress is required since the stresses at depth

are small. We quantify the extent of this depth by examining the stress distribution in the stagnant

lid. Our scaling laws indicate that the physical conditionson the terrestrial planets in the inner

Solar System gives a small value of critical yield stress, which means that the existence of plate

tectonics is not favored as the yield stress of the lithosphere is often too high for these planets. This

further confirms previous theories (e.g., Solomatov 2004b)that the natural state of a planet is to be

covered with a stagnant lid.

Plate tectonics initiation may also depend on chance. Our simulations have shown that even

if the physical parameters are in the range that allow surface mobilization, the timing is a vari-

able outcome depending on the initial conditions and evolution of the system. As the evolution

of the convection system is sensitive to the initial conditions, the timing of subduction initiation

is a random property of chaotic convective systems. Although the scaling laws provide insights
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into favorable physical conditions for the initiation of plate tectonics from stagnant lid convec-

tion, the occurrence of plate tectonics may be unpredictable as the range of subduction initiation

time resulting from the chaotic nature of strongly time-dependent convection can exceed planetary

lifetimes.

The problem of plate tectonics initiation is far from being solved. Here we are only considering

one possible scenario: initiation from a sub-solidius stagnant lid planet. We mentioned in the

previous chapter the possible exogenic origins such as impacts, or transition from magma ocean

convection. We still do not understand one of the most basic questions: why does the Earth have

plate tectonics? There are also other obstacles to plate tectonics as well, such as the compositional

buoyancy that hinders plate motions (e.g., Sleep and Windley 1982). In the problem of lithospheric

strength addressed here, there are still complexities in the rheology, such as dependencies on stress,

grain size, and pressure, that need to be taken into account.This work presents a theoretical

approach to analyze the mechanics of the lithosphere in convection systems. This can be applied

to investigate more realistic rheologies, which will be relevant to both terrestrial lithospheres and

planetary bodies with different materials. For example, the theoretical analysis can provide an

assessment for the recent hypothesis of subduction on Europa (Kattenhorn and Prockter 2014),

the potential of subduction zones developing on Venus in features such as coronae and rifts (e.g.,

Schubert and Sandwell 1995), and studying pressure effectswill be pertinent to understanding the

evolution and the possibility of plate tectonics on super-Earths.
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