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ABSTRACT OF THE DISSERTATION
Towards Understanding the Initiation of Plate Tectonic&arth-Like Planets: Insights from
Numerical and Theoretical Analysis of Convection-Indutétospheric Failure
by
Teresa Wong
Doctor of Philosophy in Earth and Planetary Sciences
Washington University in St. Louis, 2016

Professor Slava Solomatov, Chair

Plate tectonics is central to many aspects of the geologyemallition of terrestrial planets,
yet it is only observed on the Earth while all other known plsnare covered with a stagnant
lithosphere. Plate motions on the Earth are mostly drivethbyull of subducting slabs, therefore
understanding the initiation of subduction is crucial talerstanding plate tectonics initiation. On
a one-plate planet which lacks the forces due to plate mgtsome other mechanisms will have to
cause the first episode of subduction to mobilize the surfaablithospheric convection has been
proposed as a possible mechanism that induce stressedithdisphere. The question is whether
these stresses can initiate subduction. We develop sdalivgyfor the criterion of lithospheric
failure from single-cell steady-state convection, whies Imore controlled flow and thus easier to
analyze. We show that these scaling laws are applicablen®-diependent convection. We also
investigate the time-dependent behavior of convectionniwetstand the factors controlling the
timing of lithospheric failure. We find that the variationtiming not only systematically depends
on the physical parameters of the convecting mantle; fovectve systems with the same set of

parameters, small variations in initial conditions resaltifferent structures of the lithosphere.
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This changes the stresses in the lithosphere and give®sriktarent times of lithospheric failure.

This study suggests that it is important to address the mqunest when plate tectonics can initiate
on a planet, in addition to finding favorable conditions fttdspheric failure. We extrapolate the
scaling laws to planetary conditions to assess the fedgibilplate tectonics for terrestrial planets,

and estimate whether plate tectonics can happen in redsquiabetary lifetimes.
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Chapter 1

Introduction

The theory of plate tectonics has provided a framework tdagxphe geology of the Earth. Plate
tectonics is currently understood as a style of convectimolving the cold surface boundary
layer, which manifests itself as rigid plates on the Earth.(dercovici et al. 2000; Schubert et al.
2001). However due to the high viscosity of this thermal tang layer, questions remain on
why this layer can participate in convective motions. Ptatgonics is an efficient heat transport
mechanism which makes the evolution of the Earth distirehfall other known planetary bodies,
on which convection is thought to be in the stagnant lid regahpresent. This does not preclude
the possibility of plate tectonics in the course of plangtaolution, as the surface expressions on
Venus and Mars suggest large-scale deformation in the Ipaistrtay be related to plate-tectonics
processes (e.g., Turcotte 1993; Sleep 1994). The existdmpiate tectonics on exoplanets is also
of interest, motivated by various reasons including thesioaigty of finding an Earth-like planet
and potential for habitability (e.g., Franck et al. 2000riraer et al. 2009).

To evaluate the conditions of a planet to have plate tecspmie consider the problem of how
subduction, which is thought to be the key process for platdans on the Earth (e.g., Mueller

and Phillips 1991), can initiate from a stagnant lid. Sinagpheric convection is one of the likely



mechanism to induce stresses in the lithosphere (ofterreelf¢o as the lid), thus providing the
driving forces to mobilize the lithosphere (e.g., Fowle83® In Chapter 2 we focus on developing
scaling laws of stresses for subduction initiation. Thegiarof the lithospheric stresses comes from
the lid structure resulting from sublithospheric convesstiin particular the thermal thinning of the
lid that generates shear stress large enough to overcomettistress of the lithosphere and cause
large-scale failure. In this chapter we first describe thetesyatic analysis of convective systems
with simple controlled flow to derive scaling laws for the mégde of lithospheric stresses and
the critical yield stress. Our analysis shows that inibatof subduction requires a very weak
lithosphere, thus confirming the difficulty of starting gaectonics on Earth and other planets.
However, we find that the width of the convecting cells playarger role in subduction initiation
than previously thought and speculate that, at least ircimi®, plate tectonics can start if long
cells develop during planetary evolution.

As mantle convection systems are typically chaotic, themgionary pathways are random
and a multitude of outcomes is possible. We explore this pimemon and its implications for plate
tectonics initiation in Chapter 3. We attempt to understidwedvariability of outcomes in terms of
timing of subduction initiation, and provide a theoretioabdel to explain this timing. Our study
demonstrates that the chaotic nature of time-dependewéction gives rise to different outcomes
in terms of the timing of onset of plate tectonics. This hights the importance of addressing
the question of when would plate tectonics initiate, in #iddito searching for favorable physical
conditions.

Having established a theoretical basis for using scaliwg far subduction initiation, we seek
to apply them to terrestrial planets in Chapter 4. To do soegé the applicability of the scal-
ing laws derived from single-cell simulations in Chapter2nore complicated time-dependent
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convection systems. Noting that there are currently mangtetsoof subduction initiation for the
Earth, they will be briefly reviewed in Chapter 4. We also d&cthe implications of lithospheric
stress and critical yield stress estimation for the hypsithef past episodes of plate tectonics on
Venus and Mars, the prevalent surface deformation on Mgreund predictions for exoplanets.
We show that our scaling laws are applicable to more realmstilti-cell time-dependent convec-
tive systems. We extrapolate these scaling laws to telakptanets to estimate the criterion of

lithospheric failure.
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Abstract

The strongly temperature-dependent viscosity of rockddeéa the formation of nearly rigid litho-
spheric plates. Previous studies showed that a very lowl gieéss might be necessary to weaken
and mobilize the plates, for example, due to water. Howdwemagnitude of the yield stress re-

mains poorly understood. While the convective stressesbitle lithosphere are relatively small,
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sublithospheric convection can induce large stresseifitttosphere indirectly, through thermal
thinning of the lithosphere. The magnitude of the thermartimg, the stresses associated with it
and the critical yield stress to initiate subduction dependeveral factors including the viscosity
law, the Rayleigh number and the aspect ratio of the corxeectlls. We conduct a systematic
numerical analysis of lithospheric stresses and otheremiiwe parameters for single steady-state
convection cells. Such cells can be considered as part ofl&ecel, time-dependent convective
system. This allows us a better control of convective sohgiand a relatively simple scaling
analysis. We find that subduction initiation depends mungter on the aspect ratio than in pre-
vious studies and speculate that plate tectonics inihati@y not necessarily require significant
weakening and can, at least in principle, start if a suffityelong cell develops during planetary

evolution.

2.1 Introduction

Plate tectonics is central to many aspects of the geologyanidtion of terrestrial planets. While
Earth is the only planet where plate tectonics is obserntsdjriving mechanism and timing of
initiation are still poorly understood. Subduction is tgbtito be the fundamental process for plate
tectonics initiation, because the slab pull of subductlaly sontributes most to the forces that drive
plate movements. On the Earth, initiation of subductionreagy facilitated by tectonic forces
associated with plate motioméready occurring elsewhere (Mueller and Phillips 1991; Hall et al.
2003)). Various models for subduction initiation has besppsed (e.g., McKenzie 1977; Turcotte
1977; Ogawa 1990; Mueller and Phillips 1991; Kemp and Steerri996; Toth and Gurnis 1998;

Stern 2004; Solomatov 2004b; Ueda et al. 2008; Nikolaevd €04.0), many of which involve



existing plate boundaries or weak zones. Incipient suboluzbnes are often found near transform
faults or fracture zones because of their physical weakigegs Mueller and Phillips 1991; Gurnis
et al. 2004).

On one-plate planets such as Venus and Mars, the absencateft@ttonics is likely to be
due to the difficulty of subduction initiation in the abserafeforces due to plate motions. In
other words the problem of plate tectonics initiation cawviesved as the problem of the very first
occurrence of subduction. Due to the high sensitivity otesty to temperature, the lithosphere
acts as the cold rigid thermal boundary layer that has a vigly strength. On these planets,
mantle convection is likely to be in the stagnant lid regimg(, Morris and Canright 1984; Fowler
1985; Solomatov 1995). One possible mechanism for the uetyefpisode of subduction is due to
the lithospheric stresses generated by mantle conve&igawa 1990; Fowler and O’Brien 2003;
Solomatov 2004b). The magnitude of these stresses issiasmall compared to the lithospheric
strength suggested by laboratory and field observatiogs ¢€ohlstedt et al. 1995; Gurnis et al.
2004) and thus it is usually believed that to initiate sultiduncsome weakening mechanisms must
be present in the lithosphere.

Much effort has been devoted to understand the weakeninganems of the lithosphere. Sev-
eral studies showed that the frictional shear stress mgistibduction at transform faults and frac-
ture zones have to be less than 10 MPa for subduction to o€otlr &nd Gurnis 1998; Hall et al.
2003; Gurnis et al. 2004). Stress drop estimates from eaattes also indicate that fault strength
may be~10 MPa (Kanamori 1994; Kanamori and Brodsky 2004). Modet¢sadnle to describe
global reduction in the lithospheric strength, as well aslzed weak zones such that plate-like
features can be generated from mantle convection in a eeffistent manner (e.g., Trompert and

Hansen 1998; Moresi and Solomatov 1998; Tackley 2000b;d®esicet al. 2001; Branlund et al.
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2001; Regenauer-Lieb et al. 2001; Regenauer-Lieb and KabB;2Regenauer-Lieb et al. 2006;
Korenaga 2007; Landuyt et al. 2008). Various approaches baen used to deal with the creation
of weak zones (Bercovici et al. 2001; Bercovici and Ricar@20anduyt et al. 2008; Branlund
et al. 2001; Regenauer-Lieb and Kohl 2003). The two-phaseada theory with a grain-size de-
pendent rheology was developed to explain the formatione#lnplate boundaries and track the
evolution of deformation (e.g., Bercovici and Ricard 20D&nduyt et al. 2008; Bercovici and Ri-
card 2012). Some studies suggested that water might playgoriant role in the localization of
deformation (Regenauer-Lieb et al. 2001; Regenauer-Lmebkahl 2003; Regenauer-Lieb et al.
2006). Water also weakens the lithosphere by lowering ttiesdion energy (Regenauer-Lieb et al.
2001; Regenauer-Lieb and Yuen 2004; Regenauer-Lieb ed@6)2and increasing the pore fluid
pressure (Kohlstedt et al. 1995).

One approach to quantify the weakening of lithosphere i®t@gield value to the rheology
of the lithosphere to simulate brittle behaviour (Fowle®29Trompert and Hansen 1998; Moresi
and Solomatov 1998; Richards et al. 2001; Tackley 2000a\wld¥ and O’Brien 2003; Solomatov
2004b; Stein et al. 2004; O'Neill et al. 2007; Stein and Harnd@08). The yield stress can be re-
garded as a simplification of mechanisms that describe taegth of the lithosphere. Convection
with yield stress is usually categorized into 3 regimes: iredlnl regime, transitional regime with
some episodic failure, and stagnant lid regime (Moresi asidrBatov 1998; Tackley 2000a; Stein
et al. 2004). Stein and Hansen (2008) further subdividedrtresitional regime into episodically
mobile and stable plate mobilization regimes. To accessdheitions of a planet to have plate
tectonics, some researchers presented regime diagraraamns bf Rayleigh number, viscosity
contrast, and yield stress (e.g., Stein et al. 2004; O’Nitl Lenardic 2007).

A number of studies attempted to derive scaling relatiomsctmvective stresses and vyield
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stress to extrapolate to planetary conditions (e.g., Mares Solomatov 1998; Fowler and O’Brien
2003; Solomatov 2004b,a; O'Neill et al. 2007; Valencia ari@@nell 2009; Korenaga 2010b;

van Heck and Tackley 2011; Stamenkovic and Breuer 2014)théehccurate description of these
convection-induced stresses inside the lithosphere arsthie yield stress is lacking.

This study seeks to understand the stress distributioneo$tiady-state convecting cell with
respect to various convective parameters using the pstagdigrheology as a first step. The goal
of this study is to find a scaling law for the lithospheric st€hereafter referred as lid stress)
and the critical yield stress, which is the highest yieldueaht which the stagnant lid could be
mobilized. Note that an alternative and, perhaps, moreativeuapproach would be to assume that
the yield stress is known and to try to figure out under whatdyic conditions it can be reached.
However, (a) the "normal” yield stress is so high that it isrtg impossible to reach and (b) given
the uncertainties in the weakening mechanisms and thusthal anagnitude of the yield stress, it
should be treated as an unknown.

In this study we first examine the stress structure in stestaly stagnant lid convection, and
explore scaling relationships between convective pararmespecially in relation to aspect ratio to
develop a scaling theory for lid stress and critical yietdss$. We then compare the theoretical scal-
ing laws with numerical results. In addition we investiggie accuracy of the Frank-Kamenetskii

approximation for modeling the initiation of plate tectcsi

2.2 Rheology

Viscous creep governs the flow in the mantle as it has high eeatgres and low stresses. It

can be described by a constitutive relation (Hirth and Kiglls 2003), which is an Arrhenius



function of temperaturé’, activation energy®, pressure’, and activation volumé&” with power
law dependences on stresg¢second invariant of stress tensor), grain sizevater fugacityfy,o,

and an exponential function of melt fractign

(2.1)

§ = ATV exp(—ag) exp( )

~ RT
whereA anda are constantsy is the gas constant, amad, n, » are exponents for grain size, stress,
and water fugacity respectively. Depending on the tempegagrain size, stress, pressure, and
composition, the dominating deformation mechanism in ttamte would be different (Karato
and Wu 1993; Karato et al. 1995; Hirth and Kohlstedt 2003)thilithosphere, the major factor
controlling the viscosity is temperature. Thus the visgo#inction to investigate subduction

initiation is often written as:
E
=A — . 2.2
n exp ( RT) (2.2)

2.2.1 Frank-Kamenetskii approximation

Many numerical studies used use a relatively low viscosigtiast to observe plate behavior,
which has limited applications to realistic planetary aftons. Moresi and Solomatov (1998)
investigated the convective regimes with viscosity cattranging fronB x 10* to 3 x 107, and in
Tackley (2000b) the viscosity contrast was limited €, whereas Richards et al. (2001) and Stein
and Hansen (2008) used viscosity contrast on the ord&d®fThe viscosity contrast across the
terrestrial lithosphere is many orders of magnitude higher

The low viscosity contrast is used because high viscosityrasts are difficult to treat in nu-

merical calculations (Moresi and Solomatov 1995). ThusAireenius function is often approxi-



mated by the Frank-Kamenetskii function, which reducesitbeosity contrast by many orders of
magnitude compared to Arrhenius viscosity function. Thakes the problem of convection with
strongly temperature-dependent viscosity more compuurtalily tractable.

Frank-Kamenetskii approximation originated from the castion theory. Frank-Kamenetskii
pointed out that since the activation energys large, we can consider the rate of reaction only in a
narrow range of temperature around the combustion tempergtrank-Kamenetskii 1969)). The
equation for the rate of reaction is similar to the straie iatthe constitutive relations, which also
has an Arrhenius formxp(—£/RT'). Since convection mostly takes place in the interior of the
cell where the temperature is close to the interior tempeedt;, we use the same approximation
by expanding the exponeht/ RT in the Arrhenius form so that the viscosity can be expressed a

an exponential function of temperature only:
n = Bexp(—T), (2.3)
whereB and~ are constants. In the interior:

NiArr - = Tiexps (2 . 4)
dnz Arr dnl exp
’ = ’ 2.5
( dT )TTi ( dr T=T,; 7 (2.5)

wheren,,, andn.y, are the interior viscosities of the Arrhenius function ahdttof Eq. 2.3

(hereafter referred as exponential viscosity) respdgtivEqs. 2.4 and 2.5 give in terms of
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activation energy and interior temperature:

_FE
= B

o (2.6)

This method of expanding the terms in the exponent preséneemterior viscosity and the
change of viscosity with temperature closeTig where convection actively takes place. Some
studies expanded the terms inside the exponents diffgr@ngl., King 2009). However, itis impor-
tantto use Eq. 2.4 and 2.5 to ensure the asymptotic accuf&egak-Kamenetskii approximation
(Morris 1982; Morris and Canright 1984; Fowler 1985; Frafd&menetskii 1969).

Frank-Kamenetskii approximation was shown to be suffityeatcurate for the interior of the
convective layer with large viscosity contrast (Solomataona Moresi 1996; Ratcliff et al. 1997,
Reese et al. 1999). Recent studies have examined convedtioirrhenius rheology and sug-
gested slightly different scaling laws compared to corneactvith Frank-Kamenetskii viscosity
(Korenaga 2009; Stein and Hansen 2013). Here we assessctira@cof the Frank-Kamenetskii

approximation in predicting the values of critical yieldests.

2.2.2 Pseudoplastic rheology and plastic yielding

The brittle behavior of the lithosphere can be simplifiedwatviscoplastic rheology that causes
yielding when the convective stresses exceed a plastid §isdss,, (Moresi and Solomatov 1998;
Trompert and Hansen 1998; Tackley 2000a; Fowler and O’'B2{@0B). The yield stress can be

defined by Byerlee’s law (Byerlee 1978):

Ty = To + [1pgz, 2.7)
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wherer is the yield stress at the zero hydrostatic pressuis the frictional coefficient, angdgz
is the hydrostatic pressure. Viscous deformation occursrding to Eq. 2.3 when stresses are less
than the yield stress. Above the yield stress, the defoonddtillows a plastic flow law defined by

a non-linear effective viscosity:

T

Net = _.y7 (28)
e

whereé is the second invariant of the strain rate tensor. The yieé$s defines a change on defor-
mation mechanism based on the second invariant of the deciatress tensor, which corresponds
to the Von Mises yield criterion. In this study we considepttypes of yield stress: a constant

yield stress-,, or a depth-dependent yield stress with a constant gradjent

2.3 Formulation of the problem

2.3.1 Equations of thermal convection

The equations of thermal convection of an incompressibld fluBoussinesq approximation and

infinite Prandtl number are:

ou;
L) 2.9
op)  Or;
T — o= 2.1
o1’ o1’ *T’
T gl 2.11
ot " Yiom T oar (2.11)

wherep is density,y’ andT” are pressure and temperature perturbatigris,the gravity vectorgy
is the thermal expansivity, = % is the thermal diffusivityk is the thermal conductivity, angl is

the isobaric specific heat.represents the elements of the stress tensor according tollibwing
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equation:

. 8Ul 8Uj

wherez, j, are indices of the coordinate axes.

The boundary conditions are as follows. For a cell with ordgdheating, the top and bottom
surfaces are isothermal. The temperature of the top sufipeed that of the bottom surfadg.
The temperature differencedsl’ = 177 — Tj,. The vertical boundaries are thermally insulated. All

surfaces are free-slip. The velocity normal to a cell boupndazero.

2.3.2 Non-dimensionalization

The above equations are non-dimensionalized as follows:
T = —, (2.13)

whered is the layer depth, is time, 7, is the reference viscosity (at the bottom of the convective
layer), andAT is the temperature drop across the layer. The Rayleigh nucalpethen be used to

characterize the system:

ATd?
Ra — QP9ATd" (2.14)
linl
The Arrhenius viscosity is non-dimensionalized as:
_ E
EFE=— 2.1
RAT’ (2.15)
E
= Nr Arr s 2.16
n="rA eXpT0+T’ ( )
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while the dimensionless exponential viscosity is:

71 = Tr,exp exp(—0T"), (2.17)

where the pre-factors, ., andn, .., are chosen to ensure that the viscosity is equal to unity at
T' = 1 and the Frank-Kamenetskii paramefés the non-dimensionalized form of the constant
(Eq. 2.6):

0 = yAT. (2.18)

In this case, the viscosity contrast is characterized by oné parameteiy:

An=é, (2.19)
The non-dimensional yield stress is:
Ty = 7o+ T'yZ, (2.20)
where
2
To = d—T() (221)
KT

is the non-dimensional yield stress at the surface and

_ 23
7, = (2.22)

K
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is the non-dimensional yield stress gradient. The dimermsss pseudoplastic viscosity is:

\|q3 I

. (2.23)

o
Il

ﬁeff: =

x|

)

In the following discussion all parameters are assumed twbedimensionalized and the bar

sign will be dropped. The non-dimensional forms of Eqs. 2Bt are:

ou;
- 2.24
RaT’Q—gp +§T” ~ 0, (2.25)
€T T
or  or T
e 2.2
ot “on, T o (2.26)

whereeg; is a unit vector in the direction of gravity.

2.3.3 Matching Arrhenius viscosity and exponential viscasy in non-dimensional form

To compare the two viscosity laws, the Arrhenius viscositygl ghe exponential viscosity are

matched according to Eqgs. 2.4 and 2.5:

E
T e XD 7 Te,exp €XP (—0T5), (2.27)
E E
o !t Arr = 0 r,ex _0,1—‘1 . 2.28
(ﬂ_l_TO)QT],A expj—‘i—f-TQ 77, pexp( ) ( )
Egs. 2.27 and 2.28 would yield:
E
0= ———. 2.29
(T; + Tp)? ( )
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T; differs from the bottom temperatuilg by a rheological temperature differen®d,,, which is
on the order of) .
Equation 2.29 shows that there are various combinatioksarid7; that would give the same

6, and they would result in different Arrhenius viscosity trasts:

ET,
ANppr = €Xp ————. 2.30
Thus the ratio of Arrhenius viscosity contrast to exporediscosity contrastxp 6, is:
AT]Arr E,I‘Z
= _ 2.31

2.4 Steady-state convection

We use the finite element code CITCOM (Moresi and Solomat®b)Y)do simulate convection in
a64a x 64 box, whereu is the aspect ratio. Several high viscosity cases were rdmi@sa x 128
resolution for more accurate results. All cases were ruil i@y reached a steady state at which
the rate of heat loss is equal to that of heat production. Wisider the range of parameters in
which convection is in the stagnant lid regime (Solomato®3)9

The structure of a steady-state convection cell is showrign £1. Due to the temperature-
dependent viscosity, the top part of a convective cell foemstagnant lid and convection only
penetrates into the lid by length &f, — the rheological layer thickness (e.g., Solomatov 1995). A
cold rigid lid, which is often defined by an isotherm, is nally developed in the top part of the
cell sloping downward to the downwelling end. The stresslf(€ig. 2.1, right) shows a stress

boundary layer near the surface. This is consistent witlatiadytical solutions of (Fowler 1985).
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To compare the stresses in exponential and Arrhenius vigcog& choose a range @i, and

calculate their corresponding that gives the samaccording to Eq. 2.29 witid; ~ 1.

2.4.1 Aspectratio

The horizontally averaged profiles (Fig. 2.2) show that tbeHickness slightly depend on the
aspect ratio of the convective cell but the bulk of the terapee and viscosity profile does not
vary much with the aspect ratio. However the stress profignall aspect ratio cells(= 0.25) is
distinctly different from that in larger cella.(= 0.5 to 1).

This difference is more apparent in the 2-D plots (Fig. 28)vider cells the layer with highest
stress (red) is approximately symmetric along the halfthval the cell, increasing in depth towards
both edges and greater towards the downwelling edge. Bélewurface stress boundary layer,
the stresses in the middle of the lid are highest as they draffezted by the free-slip boundary
conditions at the vertical edges. Although surface stresstary layer is obvious in horizontally
averaged stress profiles, the 2-D stress fields reveal thautiace stress are not always greater
than that at depth. Figure 2.3 shows that at mid-width, itassible that the surface stresses are
lower than the interior. The high stress region (orangen@)iroughly correspond to the cold lid
shown in the temperature distribution, both having slopasatds the downwelling edge. In the
narrowest cell however, this high stress slope deviates fhe thermal lid slope. There is a high
stress "core” within the lid where the magnitude of stressedose to that of the surface stress
boundary layer. This implies that steady-state convecdti@mall aspect ratios may be in another
regime of plastic failure where the interior stresses rehelyield stress first, such that the plastic
zone could initiate at depth while the surface may or may eoplastic, depending on the yield

stress.
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For cases with high viscosity contrasts and larger aspécisraconvection is localized to a
small part of the cell, or there could be multiple convectredls (Fig. 2.4). These cases might
belong to the subcritical convective regime (SolomatovZPivhich has a different behaviour
from supercritical convection and therefore not in our gcopstudy. To stabilize one-cell flow,
smaller aspect ratio cases are considered to investigategeipendence of critical yield stress on

aspect ratio.

2.4.2 Rayleigh number

Increasing Ra reduces the lid thickness as well as the lpkglBig. 2.5). The stresses are larger

with higher Ra, as is expected with more vigorous convection

2.4.3 Viscosity contrast

The effects of viscosity contrast on the interior profile #itestrated in the plots in Fig. 2.6. The
conductive lid becomes thicker and the interior tempeeaisicloser with the bottom temperature
with increasing. In the stagnant lid regimé (> 10) the stress boundary layer near the surface is
more pronounced than in the transitional regime.

The interior viscosity, temperature, and stress for Arnieriscosity and exponential viscosity
are close. We investigate a range of different Arrheniusosgy values by varyindy, noting that
at 7o = 2.0 is a rather high surface temperature. Asdecreases, the difference in viscosity
contrasts calculated by the two viscosity laws becomegtarigowever the temperature and the
stress profiles are similar, as shown in the horizontallyayed profiles in Fig. 2.7. There is
only a slight decrease in thickness of the stress boundgey &s the Arrhenius viscosity contrast

increases. The 2-D stress distributions in Fig. 2.8 andéfl&at the small differences in the stress
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distribution as viscosity contrast increases, both in egpdial viscosity and Arrhenius viscosity.
This is contrary to the findings of (Stein and Hansen 2013)clwvbbserved a distinctly thinner
lid in Arrhenius viscosity and slightly different tempeuat and viscosity profiles. The small
difference that we observe may affect the scaling laws fodsation. The vertical variation in
stresses at the downwelling edge may be particularly inaport Although the lid thickness is
about the same, the contrast in stresses at a seems to be greater at Idfy or high viscosity

contrast (Fig. 2.9). Since subduction occurs at the dowlinvgekdge, this may influence the

scaling of yield stress.

2.5 Lid stress scaling theory

Fowler (1985) obtained a polynomial expression for thesstia the lid below the surface stress
boundary layer in large lid slope approximation, which akca comparatively simple scaling re-
lation for stress. In order to solve the equations of congactowler took Ra and to be asymp-
totically large, and assumed the magnitude of lid slope teitier on the order of lid thickness or
rheological sublayer thickness. For the Earth and somelasntatrestrial planets as well as most
numerical simulations, Ra may not be as high as the asyropbaory require and thus some other
theory may be needed for lid stress scaling. Moreover, asnadriithis study, the lid slope does
not follow either of these two end-member cases and thussrneduke scaled based on numerical
simulations.

Fowler also found that the interior flow can be uncoupled ftberrheological sublayer, which
makes the problem setup akin to a viscous lid gravitatigreiting along a slope. We can there-

fore estimate the shear stress in the rigidrig by considering the force balance on the lid (Fig.
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2.1):

d
d—T — Apg,. (2.32)
Yy

For density changes due to temperature variations, thérédscan be integrated from Eq. 2.32:

dT 2
Tid = —QPy——g Sin )\y— + 73, (2.33)
dy 2

wherer; is the stress at the interior temperatiife
There are two assumptions that allow us to simplify Eq. 2.38e first is thatr; is negli-
gible sincer; <« miq. The second is the small lid slope approximation. For srhadin()) is

approximately equal ta. The non-dimensional form of Eq. 2.33 becomes:
Nid = —Ra—=A\. (234)

Thus the lid stress is determined by Rd;/dy, A\, andy, which will be defined in the following

discussion. This scaling is similar to that obtained fromdnalytical solutions of Fowler (1985).

2.5.1 Lid base temperature

The lid base is often defined by an isotherm:
T, =T,—Co! (2.35)

whereC' is a constant. We determine the lid base from velocity pr¢g8lelomatov and Moresi

2000) to find the constardt. We first find the greatest velocity gradient at a specificaticéx
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from the upwelling edge of the cell. This velocity gradiesitiien extended to the depth at which
velocity is zero, as shown in Fig. 2.10. This depth defineslith¢hickness. This process is
repeated for alk (from O toa) to obtain the shape of the lid base across the convectihgldes
velocity gradient-defined lid base is then used to find themtlaélid base defined by Eq. 2.35. The
interior temperaturd’; is found by averaging the temperature in the middle part efiterior to
exclude the boundary effects. The constans determined by matching the lid thickness at mid-
width (z = 0.5a) given byT;, and that defined by the velocity gradient (Fig. 2.11). We cledbe
value at mid-width because in most cases the two lid basedamest around the middle of the cell
for a large lateral extent. In some cases, especially fooner cells, the temperature lid base and
the velocity lid base may not match, so the mid-width sergea eeference point for consistency
in defining the lid base.

Eq. 2.35 allows us to determine the rheological temperalifferenceAT,, = T, — T, =
CH~1. It varies with Rad, and aspect ratio, and the scaling exponents are summaniZedle

2.1.

2.5.2 Lid slope, lid thickness and plume slope

Gravitational sliding requires a downward dipping sloges indicated in Eq. 2.34. In larger aspect
ratio cells, although the lid thickness varies horizogtdhe lid slope is approximately constant in
the middle portion of the cell. This is different for smalt=lls, where the lid base could be some
function of z instead of a straight line (Fig. 2.12). For example, Fomagggests that the lid base
varies withz% (Fowler 1985). For consistency in our scaling analysisjithslope is taken to be
the slope of the thermal lid base at mid-width.

To check whether the lid slope scales with lid thickness @olbgical sublayer thickness
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Fowler (1985), we look at the vertical drap (Fig. 2.1) and define the lid slope as/a. If

the lid slope scales with the lid thickness, thign~ 64 ~ Nu™!, and thus

dx/01a ~ Nudy ~ constant. (2.36)

If the lid slope scales with,;,, thend, ~ d,,. AS 61, /djiq ~ 071, thusd, /dq ~ 671, or

00y /ia ~ Nud,0 ~ constant. (2.37)

We plot N, and NuW, ¢ in Fig. 2.13. Neither combination remains constant withvith Nud,
increases witl? andNud,# decreases witlh. This suggests that the lid slope is somewhere in
between these two extreme cases. Therefore in derivingctiimg laws for stresses, we need to
determine the dependence of lid slope on various convegtivemeters (Table 2.1).

We can limit the aspect ratio of a sub-cell in a multi-cellteys by using theoretical constraints
based on the end member cases for the magnitude of lid sl@siiyle-cell convective box (Fig
2.14). The large lid slope casg { d;q) prohibits the lid slope to exceed 2 1/2/a, Whered;q 1 /2
is the lid thickness taken at mid-width, and the small lipgl@ase X ~ ¢,;,) dictates that the lid
slope should be greater thaf};2/a. These theoretical constraints are based on the assuntipion
both ;4 andd,,, are small enough such that the lid slope can be approximatduese ratios. We
compare the lid slopes in our numerical results and the sadbéained by these two limits in the
single-cell steady-state solutions in Fig. 2.15. We find tha numerically obtained lid slopes are
slightly smaller than the lower theoretical limit given byetrheological sublayet\(~ 26,,/a).

Therefore the theoretical constraints seem to supportrited! $id slope approximation, so the
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aspect ratio is limited by ~ 24,,,/\. Since the\ from 4.y, is still larger than numerically obtained
A, the aspect ratios could be smaller for theoretical comésr¢o hold.

The slope of the sinking plume may be another cause of gtentd sliding (Fig. 2.11). The
errors of linear regression for the power law coefficientarious parameters with the plume slope
are significant that it is difficult to find a scaling law for thime slope (Table 2.1). Therefore we

cannot conclude how much the plume slope contributes tattbsses.

2.5.3 Thermal gradient

The temperature is approximately a linear function of degpitl the thermal gradient in the lid
is about constant with depth. At mid-width (= 0.5a) it is approximately equal to the Nusselt
number, which is the non-dimensional horizontally avedagigrface temperature gradient. Since
we are looking at temperature changes from the interior édotbitom of the lid which includes
the rheological sublayer, we also check the thermal gradtiethe rheological sublayekT;, /6,1
to note any difference in the scaling relations. As before,cwoose the value&T},/d,, at the
mid-width to exclude boundary effects for scaling purposes

In previous theoriesAT,, /AT ~ 671 andé,y,/dyq ~ 671, The determination of” follows
the description in the previous section on lid base tempszaand it is found to be dependent on
aspect ratio and. ThereforeAT,, /AT andd,,/diq Will also have a dependence arandé, and

their scaling relations are summarized in Table 2.1.

2.5.4 Stress scaling

Eq. 2.34 can now be expressed in a non-dimensional form Wwehdefinitions of various pa-

rameters in the previous discussion. At the bottom of thealidl,, from the interior, where the

23



temperature difference 87, the stresses are:

AT‘rh

2. (2.38)
5rh

Mid ~~ Ra

Further into the lid, the non-dimensional temperature igratds the Nusselt number. Therefore

EqQ. 2.34 can be alternatively scaled as:

Tiid ~~ RaNu)\yQ. (239)

As shown in Fig. 2.10, there is a slight difference in the ith&rgradient in the lid and in the rhe-
ological sublayer, therefore Egs. 2.38 and 2.39 may resulightly different scaling exponents.
We check both scaling relations to see whether the stres$ies kd base and those in the lid can
be scaled similarly.

We plot the stress profile according to Egs. 2.38 and 2.39amgare with that from numerical
solutions (Fig. 2.16). The prefactor of the stress as a fonaif y calculated from the thermal
gradient in the rheological sublayeF,(/d,,) is 5.9x10°, whereas that from the Nusselt number
is 9.6x10°. This demonstrates that the theoretical stress profilesimfatrly closely with the
numerical one, and the best fit can be obtained with some swljalkstments in the coefficient.

All the above parameters depend on Ra, aspect taéindf, thus they can be expressed as

Ra’a‘0~ wherep, ¢, anda are scaling exponents. The results are summarized in Tahle 2
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2.6 Convection with yield stress

We use the steady-state solutions as the starting pointeéoafgosing a yield stress to simulate
plastic yielding. For the yield stress gradient, a smallesibn term (surface yield stress) was

introduced to stabilize the solution.

2.6.1 Regimes of convection with constant yield stress ormstant yield stress gradient

When a yield stress is present, the regions with stressesetheh the yield value would have an
approximately constant stress closerjo These plastic zones develop first at the corners of the
cell where the stresses are highest. #\glecreases, the plastic zones extend both in depth and
horizontally, narrowing the width of the high viscosity paf the lid (Fig. 2.17). If yield stress

is too high, the depth of the plastic zone is small or the mlagine is entirely absent, thus the
stagnant lid does not falil. If the yield stress is sufficigihblv, the plastic zone extends sufficiently
deep so that the stagnant lid is mobilized.

We examine the stress and viscosity profiles at variousitotst to see how they change in
the presence of a yield stress (Fig. 2.18 and 2.19). At higldtress or high yield stress gradient,
the plastic zone only occurs at shallow depths and the bulkeo§tress and viscosity profiles are
unaltered from the stagnant lid state. The plastic zonendsteeeper as the yield stress or yield
stress gradient decreases. As the yield stress appro&ehestical value, a small change in yield
stress induces a change in plastic depth that is compamalbtes tchange caused by an order of
magnitude change in yield stress when it is far from critiédthough subduction does not occur,
this implies a change in convection regime from stagnartblisbme sort of transitional regime.

In this transitional regime, the yield stress slightly ches the interior dynamics as can be
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seen in various convective parameters of the interior regfdhe cell. The yield stress increases
the lid slope whereas the lid thickness remains approxim#te same. When the yield stress is
slightly above the critical value, these changes causeddhy stress are negligible and convection
remains in the stagnant lid regime. Therefore in derivirggdttical yield stress scalings, we refer
to the steady-state structure that has a yield stress josedhe critical value, so that the scaling
relations for various convective parameters (Table 2dmfsteady-state stagnant lid convection

can still be used.

2.6.2 Time evolution of lid weakening and failure

When the lid fails, the surface velocity continuously irages and overturn occurs (Fig. 2.20).
Figure 2.21 shows the time sequence of stress structuresebafd during failure. When the
surface velocity is still low compared to the bottom velp¢Fig. 2.20, left), the variation in stress
structure is not obvious. It is not until the velocity begtosincrease drastically that the plastic
yield zones from the two corners start to connect in the neiddthe cell to form a plastic lid. The
weak lid then becomes unstable and starts to subduct.

A possible contribution to the uncertainty in determinihg tritical yield stress is that at the
vicinity of the critical value, the behavior may be diffictit interpret. In some cases that as the
yield stress gets close to a critical value, the surfacecitglncreases slowly and it may take more
than10° timesteps to reach a point of overturn, whereas typicathkiés less than0* timesteps to
a drastic increase in surface velocity (Fig. 2.20 right)isThay be due to the behavior of dynamic

system near a critical point.
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2.7 Critical depth of plastic failure zone

For subduction to occur, the lithosphere has to be suffigievgak so that it can be mobilized by

stresses arisen from mantle convection. As seen in Fig. &hii®.19, the lid remains stagnant
if the plastic yield zone is small. Therefore the questiohasy deep does this plastic zone have
to penetrate for the lid to be mobilized? Previous theorirepgsed that the plastic zone has to

penetrate through some critical depthdefined by a critical temperatufg:

5p1 o Tc - TO

= 2.40

whered, = d;q + 6. The model of Fowler and O’Brien (2003) predicts thatis defined by the
temperature that gives the interior viscosity. For Newdorheology, this means that the plastic
zone has to extend through the base of the lid. Solomato\s(1834b) suggested thgs only
has to penetrate to the isotherm at which the viscosity aetivith the interior viscosity ig*™*+1,
wheren is the stress exponent for non-Newtonian viscosity.

To examine these hypotheses, we look at the stress profite atawnwelling edgex( = a)
to determine the depth of the plastic zone, as the stressbs atdge are the highest and this is
where subduction starts (Fig 2.22). The depth of the plastie is defined by extent of the stress
modified by the plastic flow law in Eq. 2.7. The exact valué gfand the stress at this depth are
found by the intercept of the stress calculated from ling#apolation from the top (where stress
is determined by the yield stress) and exponential extedjool from the creep regime just below
the plastic depth. The values &j for constant yield stress cases and that for constant yieddss

gradient cases are close. Itis noted that the stress at ggpiltonstant yield stress gradient cases
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is about twice as much as that in constant yield stress cadesforce on the lid i$, 7, ., for

constant yield stress aridsd,,17, .. for constant yield stress gradient. This implies that thedo

on the lid is about the same for both constant yield stresyehdl stress gradient.

As we see from the effects of aspect ratio on steady-stassstlistribution, the stresses in the
interior become comparable or even exceed the surfacasssras the aspect ratio and Ra decrease
and viscosity contrast increases. This means that the@laste may not propagate from the top
but also develop at depths in the lid, and the plastic zons doespan the whole top part of the
cell. (Fig. 2.23). This may represent another regime ofditlife. These cases are thus excluded
from our scaling analysis.

The depth of the plastic zone is determined from drop in stbgsthe yield stress. We note
that the zone of reduced viscosity due to the yield stresscoagspond to the zone of reduced
stress as shown in Fig. 2.22. However this does not alwayk kBepecially for cases with higher
0. Figure 2.24 shows that the transition of the plastic zoreeep flow may not correspond to the
sharp change in the viscosity. This means that the viscasitye plastic depth and the maximum
viscosity are different, since the reduction in viscosgiynbt only determined by the yield stress
but also by the strain rate.

To find out whether there is a critical viscosity contrastithdspheric failure, we examine
both the viscosity contrast at plastic depth,,, and the maximum viscosity contra&t),,... The
maximum viscosity needs to be determined by extrapolasdharesolution near the point where
the viscosity is maximum is not high enough to resolve sh&gnges in stress and viscosity.
The point of maximum viscosity is found by extrapolating ttadues from both above and below
the maximum point (e.g. Fig. 2.24 right). The viscosity igragolated linearly from the two

points above the maximum point, and below the maximum pbiatviscosity is calculated from

28



temperature. The intersection of these two curves detestire maximum viscosity and its depth.
We found that these two viscosity contrasts are mostly withe same order of magnitude. Figure
2.25 shows that the maximum viscosity seems to depend onrifp@al non-yielding viscosity
contrastAn. For exponential viscosity and Arrhenius viscosity casésvanon-yielding viscosity
contrast, the maximum viscosity contraSt,,., increases with non-yielding viscosity contrast.
This may be because they are close to transitional regiménigher Az, the increase im\7,,.
seems to decline with increasidy;, but the spread of data prevents us from concludingdhgt,.
converges towards higher viscosities. As with the maximisoosity contrastn,, also does not
display linearity or convergence clearly with either thenrygelding viscosity contrast ot (Fig.
2.26).

Since the critical viscosity contrast is neither a constauat function off, we look at the depth
of the plastic zone to derive scaling relations for the ymigss. We investigate the plastic depth
dp1 as a fraction of the lid thickness. For scaling purposesliditaickness was previously defined
at the middle of the convecting cell. Here, sirdgeis defined at the downwelling edge, we have to
determine a lid thickness at the edjg ... This is done by extrapolating the mid-width lid slope
to the downwelling edge (Fig. 2.10). As shown is Fig. 2.26,lastic depth is approximately 0.3-
0.5 of the lid thickness. We take approximate values for cafiisg relations rather than scaling
these properties with convective parameters becauseethéstiobserved in Fig. 2.26 maybe due
to insufficient viscosity contrasts which place convectionthe boundary of transitional regime,
especially fo = 13 in which the viscosity is reduced to 10* by the critical yield stress.

To find the lid stress af, using Eq. 2.34, we also need to determine the distance ofase b
of the plastic zone from the convective interig. The lid base is ad,;, from the interior, so we
expressy,, in terms ofd,;, to give a sense of distance in relation to rheological sudyléyickness.

29



While there is a general trend of increasingygf/ 6., with 6, it is difficult to discern a correlation
asy,1/ o fluctuates, thus we take, ~ 34,;, for our scaling relations.
The dependence af,, y,;, and An, on Ra and aspect ratio are very weak and therefore as-

sumed negligible.

2.8 Scaling for critical yield stress and critical yield stress gradient

2.8.1 Critical yield stress scaling theory

In deriving a theoretical scaling for the critical yieldesds, we assume an approximate balance
between the force generated by the shear stresses actiteglatde of the lid and the normal stress
acting on the side of the lid and we assume that the latteraagelly dominated by the stresses in

the plastic zoné, (Solomatov 2004b) and Fig. 2.27). Thus we can express the stiess as:

Ty ~ Tlid%
- Ra‘;—z %ﬁl(sﬁy (2.41)
In the case of a constant yield stress gradiept{ 7, z), 7, can be scaled as
T; ~ Tlid%
Yy
- Ra% %‘2’1% (2.42)

In Eqs. 2.41 and 2.42, the yield stress is treated as the hatmess whereas the lithosphere

stresses are shear stress. However the magnitude of stregsg@ressed in second invariant, and
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the yield stress in von Mises criterion also put a limit theasw®l stress invariant. To see which
stress component contributes to the second invariant, ot normal stress and shear stress
profiles in Fig. 2.28. Inside the lid where plastic failurecors normal stress dominates, whereas
shear stress exceeds normal stress below the plastic depth.

The critical yield stress is the stresséat= d,,;. The critical plastic depth,, is taken to be 0.3

to 0.5;4, andy,, is about 2 to 4,,.

Tia ~~ C’lRaATrh/\(Srh, (243)
5rh

Tyer ™~ C’QRaATrh/\aé , (2.44)
lid
0

T~ CgRaATrh/\aé%h. (2.45)
lid

For 7,4 expressed in terms of Nu (Eq. 2.39), noting thatNdT/dy ~ 6./,

Tia ~ CiRaNu\d?,, (2.46)

Tyer ™~ CyRaNu?Mad?,, (2.47)

Ty ~ CsRaNu’Xad?,. (2.48)

where(', Cs, C3 ranges from 4-16, 8-53, and 16-178 respectively.
From the previous sections, sindd,, /AT, d,1,/d, dia/d, andX are all scaled in terms of Ra,
a, andd with scaling exponents summarized in Table %, 7, ., andr, .. can be scaled in terms

y,er

of Ra,a, andd. The results are listed on Table 2.2.
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2.8.2 Numerical results for critical yield stress and yieldstress gradient: Arrhenius vs ex-

ponential viscosity

Figures 2.29 and 2.30 show that bath.. andr, .. decrease with increasirtgand total viscosity

contrast and might converge to asymptotic values at higlosgisy contrasts, although it is difficult
to tell from our limited data. To estimate the accuracy offkr&amenetskii approximation in
the prediction of critical yield stress, we express theorafiyield stress for Arrhenius viscosity to
that for exponential viSCOSItiR: = 7, ¢ ar/Ty.crexp @Nd similarly for critical yield stress gradient
With R = 7, ., ar/ T, erexp L0 100K at the dependence of these ratiogdffrig. 2.31 and 2.32).
Both R, and R, increase withy and the values of yield stress for Arrhenius viscosity arat th
for Frank-Kamenetskii approximation get closer as theos#ty contrast increases, assuming that
R. <landR. < 1atallé.

For the cases tested at resolution that is doubled, we firtdtlibavalues forR, and R, are
within 5% difference. Thereforé4 x 64a resolution is sufficient for our single-cell steady-state
convection analysis.

To find the dependence &, and R, on the Arrhenius viscosity contradl, .., we consider
ratio of Arrhenius viscosity contrast to exponential visitp contrast {\n,,,/ exp §). This ratio
reflects the difference between Arrhenius viscosity cat@ad exponential viscosity contrast: the
larger the ratio, the greater the difference. Figure 2.38vstthat values of the twg, .. approach
each other as the Arrhenius viscosity gets closer to therexi@l viscosity. It also suggests that
R, and R, are mainly determined by the Frank-Kamenetskii parantebert less sensitive to Ra

anda. As the difference between the Arrhenius viscosity and agptial viscosity increases, both

R, and R, appear to approach some asymptotic value.
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We also investigate the dependence of critical yield stagskyield stress gradient on aspect
ratio (Fig. 2.34 and 2.35). The positive power law coeffiti@ee Table 2.1) implies that with
smaller aspect ratio, the critical yield value is lower andst more difficult to reach the yielding
criterion. Therefore smaller cells are more stable. Thig Bxlain the phenomenon where over-
turning of the cold lid is observed once or a few times but ti@tilized after reconfiguring into
smaller cells.

Figures 2.36 and 2.37 and Table 2.1 show that andr, .. are approximately proportional

with Ra.

The plots in Figures 2.29, 2.30, and 2.34-2.37 show that ¢héng exponents could have
a range of values, and the cases using Arrhenius viscosgyhane a bit different values from
those with exponential viscosities. Figure 2.38 shows wale the scaling exponent for Ra and
a for exponential viscosity cases lie between the range oétairom Arrhenius viscosity cases,
the exponent fof varies with surface temperatufg, Ra, andz. In general the scaling exponent
of 6 increases with the viscosity contrast (i.e. loWg), ¢, and moderately with Ra. This may be
related to the difference in the stress distribution in tted Arrhenius cases, especially towards
the downwelling edge, as discussed previously. In the éutwill be worthwhile to look in more

detail at the stress variations for the Arrhenius viscosity to see if there are any relationships

betweenR,, R, andTj at even lowefl; (i.e. at higher viscosity contrasts.)
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2.9 Discussion and conclusion

2.9.1 Comparison with other studies of stress scaling laws

The studies dealing with convective stress scaling oftemtai provide an expression for stress
in terms of radius and mass of a planet to predict the likelthof plate tectonics. They reached
various conclusions (e.g., O’'Neill and Lenardic 2007; QINst al. 2007; Valencia and O’'Connell
2007, 2009; Korenaga 2010a; van Heck and Tackley 2011; S$teoaie and Breuer 2014). One
of the main difficulties in deriving convincing scaling lafes plate tectonics initiation was a poor
understanding of lid stresses and how they are related failide. In the present study we have
addressed these issues using two-dimensional stea@yestatective cell simulations. This is the
simplest system to analyze and yet even for this system tingatien of scaling laws proved to
be complicated and not well described by the existing asgtigptheories. Below we discuss
some differences between our study and previous studiesw@andharize our scaling laws in a
dimensional form.

In some studies (e.g., Moresi and Solomatov 1998; Trompertansen 1998; Tackley 2000a;
Fowler and O’Brien 2003), the authors assumed that submucitcurs when the stresses in the
convective interior exceed the yield stress. This meansthaluction begins when not only the lid
but also the interior of the convective cell fails. Howewihduction initiation may not necessarily
require the failure of interiors but instead may only regquailure of just a small portion of the
lid. The stresses in the lid are several orders of magnitigieeh than the stresses in the interior
and also they scale differently. Thus, the assumption dagawhat part of the convective cell
must fail in order for subduction to begin is critically imqp@ant. In this study we have investigated

this assumption quantitatively, based on a detailed aisabystresses and other parameters in the
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convective cell, and then formulated the critical condiidor subduction initiation.

In agreement with Fowler (1985), we have shown that the tigesis a key factor the stresses in
the lid. However, our model has several important diffeesnfcom Fowler (1985). The theoretical
solution in Fowler (1985) is a similarity solution and does take into the finite horizontal extent
of the lid. Our model has vertical boundaries and thus thesgire of the lid in our model is more
complex. Also, the solution in Fowler (1985) is an asymtsblution requiring very high values
of parameters, such as Ra ahand a satisfaction of certain asymptotic conditions, Whie not
reached in our simulations and may not necessarily be rdamhelanets. Thus, our scaling laws
are not asymptotic in this sense. Also, solutions in Fowl88g) are obtained for two end-member
cases, the large lid slope case and the small lid slope casénuhat the lid slope behaves in a
more complex way between these two end-member cases. Wealbgarenined a scaling law for
the lid slope numerically and used it to derive the scalingfiar the stresses in the lid.

Our analysis suggests that the stresses in the lid incrggsexamately as a square of the dis-
tance from the bottom of the lid (Eq. 2.34 and Fig. 2.16). Hgsees with the asymptotic analysis
of Fowler (1985) but is different from the stress distributin Solomatov (2004b). In Solomatov
(2004b) the stress distribution was more complex because&dhvective cell was heated from
within rather than from the bottom and the internal heatiffigcted the temperature-induced den-
sity distribution in the lid. At Rayleigh numbers higher thdnose reached in Solomatov (2004b),
the lid is expected to become sufficiently thin so that the peaduction inside the lid would be
negligible compared to the heat flux at the base of the lid sT¥me expect that for convection with
internal heating the stress distribution in the lid shoydraach the quadratic distribution that we
observe for convection with bottom heating.

We find that subduction initiation requires that only a pdrthe lid undergoes plastic failure,
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roughly 0.3 to 0.5 of the total lid thickness. This generalfyrees with the analysis in Solomatov
(2004b) and confirms that the plastic failure does not hawextend all the way to the bottom of
the lid as was assumed in Fowler and O’Brien (2003). Howawaike Solomatov (2004b) we
determine the distance to the boundary of the plastic faihame by measuring it from the base
of the lid and scaling it in terms of the rheological boundamer thickness. We find that such an
approach is more appropriate because the mobility of this liakrgely controlled by the viscosity
contrast between the zone of failure and the convectiveiamtef the cell, which in turn is scaled

with the rheological boundary layer thickness.

2.9.2 Estimates for the Earth

To compare our results with those obtained in Solomatov4B(H), we convert the critical yield
stressr, .- and critical yield stress gradienf . into their dimensional forms (Egs. 2.20, 2.22) and
estimate the critical yield strength and the critical cagt of friction ., for subduction initiation
on the Earth.

The interior viscosity cannot be reliably estimated from Wscosity law alone and is usually
determined from better constrained properties such asslitheric thickness. Therefore, following
Solomatov (2004b) we use the scaling lawdg(Table 2.1) and present the results in terms of the
thickness of the thermal boundary laygr~ 100 km instead of the mantle viscosity.

The scaling law for the critical yield stress depends stiypog aspect ratia. Previous studies
have scaled the aspect ratio from half-space cooling aidphere (Korenaga 2010b; Stamenkovic
and Breuer 2014) or estimated from numerical simulatiomdof8atov 2004b,a)) whereas it was
assumed to be on the order of 1 in Valencia and O’Connell (RO0& use the horizontal width

of the convective cells ag,, = ad ~100 km as a very rough value to compare our estimates
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with those in Solomatov (2004b,a). This value was inferredifobservational constraints on the
present-day horizontal scale of sublithospheric convediructures (Solomatov 2004b).
Using the results in (Table 2.1), we obtain that the dimaraioritical yield stress for subduc-

tion initiation is

hor

—1.03
Tyer ™ 195apg < ) AT_O'O?’(SO_OAIl1'78d_0'37. (249)

RT?

For comparison, Solomatov (2004b,a) give:

B\ 2
Tyer ~ 130pg (W) AT o (2.50)

The critical coefficient of frictionu for subduction initiation is

—1.74
i~ 89« (RT?) AT 0T 155187 =032 (2.51)
and in Solomatov (2004b,a):
E —2
oo~ 50 (W) AT_l(So_llhor. (252)

Using the typical values of various physical parameterbl@a.3), we estimate that the yield
strength for the Earth is 5 MPa which is of the same order ofmitade as 3 MPa obtained by
Solomatov (2004b,a). To see how variations in various patera may affect these estimates it is

useful to present the estimates in a different form. Ounes® (Eq. 2.49) can be written as

100 km \ ** /' Ior \"™® /500 km\ ¥
~ MP 2.
Tyer 5( 5 ) (100 km) ( d ) & (2.53)
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and the estimate from Solomatov (2004b,a) (Eg. 2.50) is

lhor
~ MP 2.54
Tyer 3 (100 km) b (2.54)

from Eq. 2.50.
Our estimates of the critical friction coefficientis 8x 102, which is a factor of 3 larger than

3x 1073 obtained in Solomatov (2004b,a). Our estimate can be \writte

1 k 1.55 1.87 k 0.32
1~ 0,008 (100 Km Do 200 km ) (2.55)
3 100 km d

and the estimate from Solomatov (2004b,a) (Eqg. 2.50) is

lhor 100 km
~ 0. . 2.56
o~ 0.003 (100 km) ( 5 ) (2.36)

If we take into account the fact that Frank-Kamenetskii agpnation that we used to derive
the scaling laws overestimate the critical yield stressthadritical friction coefficient (Fig. 2.33),
then both ours and the estimates in Solomatov (2004b,a)dbeuurther reduced by a factor of
2 (Fig. 2.33), depending on the values of the viscosity patars and the Rayleigh number.

One major difference between our scaling laws and the gr#iws obtained in Solomatov
(2004b) is a much stronger dependence of the critical yiess and critical friction coefficient
on the width of the convecting layér,, — they scale roughly as /% . as opposed to the previous
scaling~ l,,,,. This means that the critical values of the yield stress antidn coefficient would
increase by 2 to 4 orders of magnitude if the width of the cotive cells increased by 1 to 2

orders of magnitude (for example, in the past history of tagt and thus, at least in principle,
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could reach the experimentally observed values that aré@worder of 1000 MPa for, ., and

1 ~0.6-0.85 (e.g., Byerlee 1978; Goetze and Evans 1979; Kahlst al. 1995; Mei et al. 2010),
and values constrained by loading models with in situ stresasurements of Hawaiian Islands
(Zzhong and Watts 2013) which are 0.25-0.7 foand 100-200 MPa for lithospheric stress. This
implies that the chances of plate tectonics might be hidteer tve thought before. Time-dependent
calculations and a more realistic formulation of the prablEre required to better understand the

implications of these results for plate tectonics initati

2.9.3 Uncertainties in stress scaling

The scaling laws derived here are applicable to Newtoniaaldgy, therefore the activation energy
for diffusion creep is used in our calculations. Howevelhibgld be noted that dislocation creep
is probably the dominant mechanism in the lithosphere Kasatd Wu (1993). For the Earth
wet dislocation creep may be preferable (Solomatov and M@&@00), while for other terrestrial
planets such as Venus might have dry lithosphere. To appéywider range of planets including
icy bodies, scaling laws based on non-Newtonian rheolodjybeirequired.

In previous scaling theories the lid slope is often congddo be small because the lid thick-
ness is assumed to be relatively small. Even in the largddigesend member case in Fowler’s
theory,d;;q iIs assumed to be small relative to the thickness of the coimgelayer. However our
simulation indicates that the slope may be significant, sa#rivations may need to be modified
to take this into account.

Free-slip boundary conditions are often used in solvingagqas for thermal convection, but
this restricts the vertical motion of the surface. Recamdisis have used the free-surface boundary

conditions, which is closer to natural surface conditiorbath normal and shear stress on the
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surface is reduced to zero (Zhong et al. 1996; Schmeling. &088; Kaus et al. 2010; Crameri
et al. 2012; Kramer et al. 2012). It maybe computationallgemsive to implement this for the
time being, but it could be worthwhile to explore its effect gcaling relations for stresses in the
future.

Our numerical results show thaf ., of Arrhenius viscosity approaches that of exponential
viscosity as the Frank-Kamenetskii parametancreases. This enables us to use exponential
viscosity law to extrapolate to high Arrhenius viscosityntrast conditions. Besides the Frank-
Kamenestskii approximation, the viscosity contrasts cameouced in other ways, one of which
is to set a cut-off viscosity. The stress structure resgfiiom the cut-off viscosity will have to be
examined. We can then compare accuracy of these approgimsatind apply them to extrapolate
the results to planetary parameters.

Our results generally support previous conclusions tharder for the convective regime on
the terrestrial planets in the inner Solar System to charoge $tagnant lid convection to plate tec-
tonics, the yield stress of the lithosphere should be mudilen(several MPa) than that predicted
by laboratory experiments on rock deformation (hundred€Bé as predicted by Byerlee’s law).
However, our results suggest a much stronger dependenbe ofitical yield stress on the hori-
zontal width of the convective cells. This opens a possybdf subduction initiation even for the
large, experimentally measured, lithospheric strengtivided that a sufficiently long convective
cell forms in a time-dependent mantle convection. In therkitt would be important to investigate
the role of initiation conditions and statistical fluctwats of convective cells for the initiation of

subduction in time-dependent convection.
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Figure 2.1 Temperature (left) and stress fields (right) deady-state convective cell. Color scale
goes from high (red) to low (blue). The lid is defined by anl&otn77;,, and the interior tempera-
tureT; is found by averaging the temperature of the convectingiortexcluding boundary effects.
For scaling purposes, the lid slopeand rheological sublayer thicknegsg is taken at mid-width,
whereas lid thickness,q is extrapolated to the edge from the lid slope in the middle.
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Figure 2.2 Comparison of (a) viscosity (b) temperature {f&ss profiles of exponential viscosities
for 9 = 16, Ra = 3 x 107, and varyinga. The somewhat different stress profileof= 0.25
suggests that the surface stress boundary layer is notgtummeith highest stress.
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Figure 2.3 Stress (top row) and temperature fields (bottom) of convecting cells withRa =
3 x 107, = 16, and various:.
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Figure 2.4 Localized convection and multiple subcells madly-state convection. (&) = 19,
To=06,a=1,Ra=1x10". (b)§ =16, Ty = 0.6, Ra = 3 x 107.
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Figure 2.5 Stress structure of steady state caseswith6, a = 0.75, T, = 0.8. () Ra = 107 (b)
Ra = 3 x 107 (c) Ra = 10%. The area of convecting interior becomes larger as Ra iseseand
the thickness of the stagnant lid decreases. Scale showalthes oflog 7.
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Figure 2.6 Temperature, viscosity, and stress profileBof= 3 x 107, a = 0.75 and varying
Frank-Kamenetskii parameter
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Figure 2.7 Comparison of temperature, viscosity, and sipesfiles of Arrhenius and exponential
viscosities for¥ = 16, Ra = 3 x 107, a = 0.75 and variousl}.
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Figure 2.8 Stress structure of steady state casesRvith- 3 x 107, Ty = 0.8, a = 0.75. (a)—(d)
Arrhenius viscosity with (ap = 22, (b) 0 = 19, (c) 0 = 16, (d) & = 13, and (e) exponential
viscosity withd = 13. Color scale shows the valueslo§(7). White lines represent streamlines.
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Figure 2.9 Stress structure of steady state casesRvith= 3 x 107, § = 16, a = 0.75. Cases
(a)—(d) use Arrhenius viscosity with (g}, = 0.6, (b) 7, = 0.8, (c) T, = 1.2, (d) Ty = 2.0.
Case (e) uses exponential viscosity. Color scale showsalves oflog(7). White lines represent

streamlines.
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Figure 2.10 Velocity profile taken at mid-width of the cell & 0.5a). Dotted line is the linear
extrapolation of the maximum velocity gradient, and theblasse is marked at the depth at which
this line intersect with the vertical axis.
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Figure 2.11 Top part of a convective cell showing variousrdedins of the lid base. The lid base
defined by the velocity gradient is shown in dashed line, amdkitches the temperature lid base
defined atl';, = T; — 3.20~! at around the mid-point. The lid slope is estimated at the-poidht.
The lid slope is taken at the slope in the middle, and the plsimge is taken at the downwelling
end.
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Figure 2.12 The slope of the lid base at various aspect rafitos lid slope deviates from the linear
approximation as the cell aspect ratio and viscosity cshircrease, therefore a non-constant
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value of the lid slope may affect the scalings.
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Figure 2.13 Plots of Nay (or d/diq) and N, 6 (or 6o, /diiq) as a function of).
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Figure 2.14 Relationship between the aspect ratio anddistdpe. The lid slope cannot be larger
than 2,4 /a in the large lid slope end member case, and it cannot be [drge1,;,/a in the small
lid slope end member case. However it is possible that thadige can be smaller than,2/a.
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Figure 2.15 Comparison between lid slopes obtained fromemigal solutions (black) and those
from theoretical constraints (red: small lid slope appneaiion\ ~ 24,;,/a; green: large lid slope
approximation\ ~ 26q,1/2/a).
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Figure 2.16 Comparison of stress profiles at mid-width aietdifrom numerical calculations and
theory. Blue line represents the best fit to numerical sohstof stresses. The stress profile is taken

at mid-width, where the stresses in the surface boundagy layjower than the interior as shown
in the 2-D stress fields.
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Figure 2.17 Stress (top) and viscosity (bottom) fields oedas = 3 x 107, § = 16, a = 0.75,
Ty = 0.8. (@)1, = 6.7 x 10°, (b) 7, = 7 x 10%, (c) 7, = oo. Failure occurs at, = 6.6 x 105,
while the stagnant lid remains at highgr Color bars show logvalues.
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Figure 2.18 Stress profiles at different widths at varioeddystress or yield stress gradient.
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Figure 2.19 Viscosity profiles at different widths at vasoueld stress or yield stress gradient.
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Figure 2.20 Surface velocities over time fBn = 3 x 107, § = 16, a = 0.75 (@) Ty = 0.8,

7, = 6.6 x 10° (b) Ty = 0.4, 7, = 6.1 x 10°, bottom velocity~ 650. The surface velocity in (b)
increases slowly. Although it has evolved for25 times as much as the period for (a) to fail, it is
far from reaching the bottom velocity.
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Figure 2.21 Snapshots of stress fields before and at the gfailure for caseRa = 3 x 107,
6 = 16,a = 0.75, Ty = 0.8, 7, = 6.6 x 10°. Time sequence goes from left to right and top to

bottom. White arrows show velocities. (a) and (b) are claskdginning of simulation, (c) is at
the mid-point between the start and failure, and (d) to @)raght before overturning (depicted in

() — (h)occurs.
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Figure 2.22 Depth of plastic zone determined by the yielesst(right), and the drop in viscosity
due to the yield stress (right). Profiles taken at the dowimgeedge ¢ = a) of the convecting
cell.
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Figure 2.23 Stress field (left) and stress profile at the dosliivg edge.Ra = 3 x 10°, a = 0.5,
6 =19, 7, = 3.2 x 10%, exponential viscosity.
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Figure 2.24 Strain rate, stress, and viscosity profile atthge withRa = 3 x 10°, a = 0.75,
0 = 19, exponential viscosity. The point of maximum viscosity nmy correspond to the brittle-
plastic transition.
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Figure 2.25 Maximum apparent viscosity in the convectiveateghe point of lithospheric failure
as a function of the viscosity contrast in the absence otlys&less. Black: exponential viscosity
with constant, .,.; red: Arrhenius viscosity with constanf .,; green: exponential viscosity with
constantr, ,; blue: Arrhenius viscosity with constan ..
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Figure 2.27 Schematic diagram of surface stresses on thggqaane in the lid. The shear stress
Tiiq acting on the base of the lid of horizontal lengtls balanced by the normal stressacting on
the side with deptla,, developed under free-slip boundary conditions.
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Figure 2.29 Critical yield stress, ., as a function of Frank-Kamenetskii parameterThe Ar-
rhenius viscosity is calculated with the non-dimensionaiece temperaturé, and the activation
energyE that gives the correspondiig Lower T, gives a higher viscosity contradt ..
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Figure 2.31 The ratio of Arrhenius yield stress to exporantield stressk, as a function of
Frank-Kamenetskii parameter
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Figure 2.33 Top figures: ratio of yield stress for Arrheniiscesity to that for exponential viscos-
ity R, and R,» as a function of Arrhenius viscosity contrast normalize@xponential viscosity
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Table 2.1 Numerical results of power law coefficients in g of different parameters with Ra,
aspect ratior, and Frank-Kamenetskii parameterAT,, /AT andr;q taken at mid-width.

Parameter  cin 10¢ Ra a 0
Nu 0.23+0.07 0.24£0.01 -0.17+0.03 -1.17+0.05
AT,,/AT 0.25+0.17 0.010+0.02 0.39+0.08 -0.84+0.12
do/d -0.26+ 0.10 -0.22+-0.01 0.274+0.04 1.12+0.06
dtia/d -0.74+0.06 -0.23-0.01 0.12+-0.03 1.44+0.04
Oidmax/d  -0.624+0.07 -0.19+£0.01 0.33:0.03 1.26+ 0.05
Om/d 0.024+0.33 -0.20+0.04 0.60+0.15 0.34+0.21
lid slope  -0.98+ 0.13 -0.07+0.02 0.14+0.06 0.63+0.09
plume slope -0.4%0.39 0.15+0.05 -0.01+0.17 -0.31+0.25
Tid 0.36+0.21 0.68+0.03 0.92+0.09 -0.15+0.13
Ty.cr 0.40+0.22 1.09+0.03 1.67+0.10 -1.49+0.14
7! 2.34+0.32 1.34:0.04 1.45+0.14 -3.47t£0.21

Yy.cr

Table 2.2 Power law coefficients in scalings of differentgpaeters with Ra, aspect ratianand
Frank-Kamenetskii parametér numerical results versus theokT,, /AT andn;y taken at mid-
width.

Parameter Ra a 0 Method

Thid 0.68+0.03 0.92+0.09 -0.15£0.13 numerical
0.73+0.09 1.14+ 0.29 0.146+ 0.42 theory (in terms AT, /6,4)
0.77+0.12 1.18+0.39 0.14+ 0.56 theory (in terms of Nu)

Ty.cr 1.094+0.03 1.67-0.10 -1.49+0.14 numerical
0.94+0.10 1.81+0.32 -1.13+0.47 theory (interms aAT,,/d,4)
0.97+0.13 1.85+0.42 -1.16£0.61 theory (in terms of Nu)

Ty er 1.34+0.04 1.45+0.14 -3.47+0.21 numerical
1.13+0.11 1.48+0.35 -2.39%+0.51 theory (in terms of Nu)
1.16+ 0.14 1.52+0.45 -2.38+0.65 theory (interms oAT,,/d,1)
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Figure 2.38 Scaling exponents im?a¢0* for 7, (left 3 figures) andr, .. (right 3 figures) with
varying 7y in Arrhenius viscosity. The grey stripes represent theevalbtained from exponential
viscosity calculations, with the width determined by eioars.
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Table 2.3 Parameters used to estimgte andr, . for Earth as in Solomatov (20044, b).

,CT

« 3x107°

kK 107°m?s!
5lid 100 km

E 3WmlK!
E  430kJmot1
d ~500 km
g 10ms?

p  3300kgnt3
1o 300 K

T; 1700 K
lhor 100 km
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Chapter 3

Variations in timing of plate tectonics initiation on terre strial planets due to

chaotic nature of mantle convection

T. Wong and V. S. Solomatov

An edited version of this chapter has been submitted foripatibn in Geochem. Geophys.

Geosyst. of the American Geophysical Union.

Abstract

Subduction is thought to be the fundamental process foe gkttonics initiation. One major
difficulty in subduction initiation is the high viscosity dfie cold top layer that prevents it from
failure. The viscosity of this layer can be reduced due tcettystress, which is a simplification of
the weakening mechanisms in the lithosphere. If the yie&bstis sufficiently low, stresses induced
in the lid by sublithospheric convection may overcome tleddystress and cause the lid to fail. At
high Rayleigh numbers, convection is strongly time-depemnénd chaotic which adds a random
component to the timing of subduction initiation. Even i ttonvective stresses in the lid are not

high enough to cause subduction right away, the convectile may evolve to a configuration in
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which the lid stresses are sufficiently large to overcomeyiblel stress. Alternatively, subduction
can be prevented by cell reconfiguration that reduces lessés. We inspect these fluctuations
of convective flow and their effects on convective stressék. observe that for a given set of
parameters, including the yield stress, the time of lidufalis different for different statistically
steady-state solutions. Some insights into what conth@giming of lid failure is gained from
treating subduction as a type of Rayleigh-Taylor instapill his study suggests that it is important
to address not only the question of whether plate tectorinsoccur on a planet but also when it

would occur if conditions are favorable.

3.1 Introduction

Plate tectonics has been recognized as the unifying theomhé geology of the Earth, yet there
are still unanswered questions regarding the initiatinghmaism (e.g., McKenzie 1977; Turcotte
1977; Mueller and Phillips 1991; Kemp and Stevenson 1996) &od Gurnis 1998; Regenauer-
Lieb et al. 2001; Stern 2004; Hansen 2007; Ueda et al. 200&l&Bva et al. 2010; Burov and
Cloetingh 2010; Dymkova and Gerya 2013; Lu et al. 2015). Timeng of its initiation is also
an unresolved issue (e.g., Stern 2007; Korenaga 2013, terémees therein). A major difficulty
in plate tectonics initiation is the strength of the lithbepe. Due to the strongly temperature-
dependent viscosity, the cold lithosphere is resistantefordhation. Many attempts have been
made to quantify the yield strength of Earth’s lithosphere anderstanding the weakening mech-
anisms responsible for its magnitude (e.g., Kanamori 1884|stedt et al. 1995; Hirth and Kohlst-
edt 1996; Toth and Gurnis 1998; Solomatov 2004b; BercovidiRicard 2005).

Previous studies to simulate plate tectonics took two wiffeapproaches. One is to impose
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deformation that produces plate-like behavior. This isedby applying velocity boundary con-
ditions (Davies 1988; Lithgow-Bertelloni and Richards %9%r by prescribing a plate structure
that has weak zones (Gurnis 1988; Davies 1989; Zhong andiss1886). In this approach the
plate motion or geometry are specified beforehand, and heseth priori conditions emerged is
beyond the scope of this approach.

An alternative method is to adopt a rheological model thabisstrained by laboratory exper-
iments and can generate plate-like motions and features finantle convection. This approach
might allow us to address a more fundamental question of vengilate tectonics can occur in
the first place. The temperature-dependent nature of vtgaesults in a large viscosity towards
the surface such that a thick, rigid boundary layer is dgyadocand it does not actively participate
in convection. Convection below this rigid layer occurs e tstagnant lid regime (Morris and
Canright 1984; Fowler 1985; Solomatov 1995).

To mobilize the stagnant lid, a plastic yield stress can breduced to simulate brittle and duc-
tile failure so that subduction can occur (Fowler 1985, 1998mpert and Hansen 1998; Moresi
and Solomatov 1998; Richards et al. 2001; Tackley 2000a\wld¥ and O’Brien 2003; Solomatov
2004b; Stein et al. 2004; O’Neill et al. 2007; Stein and Hara@08). Various rheologies such as
temperature-, pressure-, and grain-size dependent itis¢Btegman et al. 2002; Stein et al. 2004,
Stein and Hansen 2008; Korenaga 2010b; Bercovici and RR@08; Landuyt et al. 2008) have
also been explored. One limitation in these studies is tigt set a relatively low viscosity con-
trast to observe plate behavior. The viscosity contrast usaally ranges from 10*-10 (Moresi
and Solomatov 1998; Tackley 2000b; Richards et al. 2001n &ted Hansen 2008), with the help
of Frank-Kamenetskii approximation or some limiting mawim viscosities. The temperature-
dependent viscosity across terrestrial lithosphere coelchuch higher, and in the original Arrhe-
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nius form it could be tens of orders of magnitude larger. Bzhean asymptotic stress distribution
in the lid and obtain asymptotic scaling laws for subductionation, it is important that the vis-
cosity contrasts in the lid are significantly higher thanseathat are barely sufficient to form the
stagnant lid (which are around?®).

Recent models implement free-surface boundary condiisropposed to the free-slip bound-
ary conditions typically used in numerical studies. Theselefs are able to simulate more realis-
tic phenomena such as single-sided subduction (Crameki 2012; Crameri and Tackley 2015).
However these calculations are computationally experssidetherefore systematic analysis using
free-surface boundary conditions are yet to be conducted.

Many studies aimed to understand the conditions that woellid\orable for the emergence of
plate tectonics. In developing a failure criterion for titedsphere, there are mainly two ways to
obtain scaling relations between various physical pararaseOne is to fix a yield stress and vary
the parameters of a convective system, such as Rayleigheruamnid viscosity contrast between
the top and the bottom of the convecting layer, and find at whkiadues of these parameters the
lithosphere can be mobilized (e.g., O’'Neill and Lenardi©20 They tried to define regimes of
convection such that given a combination of parametersptiveirrence of lithospheric failure
could be predicted. Another approach is to treat the yiglkekstas a variable, and search for a
critical value of yield stress for given sets of parametera convective system so that subduction
initiation is possible (e.g., Solomatov 2004b). One reasounse the latter approach is that the
yield stress is poorly constrained and is usually much Idhan the value suggested by laboratory
experiments. Thus, it should be treated as an unknown. Agno#ason is that it is much more
accurate and faster to determine the conditions for lithesp failure by varying the yield stress
while keeping all other parameters constant than the otlagramound. From the perspective of
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finding scaling laws, the two approaches are completelyatgnt.

Given favorable conditions, an important question thatasgystematically studied is when
subduction occurs. The factors controlling the time ofdgpheric failure are not well understood.
Foley et al. (2014) conducted a scaling analysis for the wisubduction initiation based on
damage theory and concluded that early Earth conditiommipsubduction. The occurrence of
subduction may also be contingent on the time evolution hadhitial conditions of the convective
systems, both of which are random. It is possible for coneactystems with the same set of
parameters or physical properties, the systems may haesatif flow structures due to different
initial conditions, and they may evolve in different pattysauch that the lithosphere may fail at
different times, or failure may not happen at all. Here weestigate the variability of the timing
of subduction initiation due to these random factors.

This study is organized as follows. First we summarize tisalts of our previous analysis
on the stress distribution of the lithosphere to establiblasis for examining the stress changes
in the lid over time. We then conduct numerical simulatiomslétermine the timing of failure.
We investigate the parameters that affect the time it tatethe lithosphere to become unstable,
and provide a preliminary theoretical interpretation lobse Rayleigh-Taylor instability model for

lithospheric failure.
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3.2 Governing equations and numerical methods

The equations of thermal convection in Boussinesq appratkxam and infinite Prandtl number are

V-u = 0, (3.1)

apgTmn —Vp' +V x7 = 0, (3.2)
T/

a&t +u-VT' = kV*T, (3.3)

whereu is the velocity vectory is the coefficient of thermal expansion,is density,g is the
acceleration due to gravity andis a unit vector in the direction of gravity, and7” are pressure
and temperature perturbations= ﬁ is the thermal diffusivityk is the thermal conductivity, and

¢, Is the isobaric specific heat, ang is a component of the stress tensor

Tij = 2ney (3.4)
« = ((%j + 8@) ’ (3.5)

wheren is the viscosity¢;; is a component of the strain rate tensoand j are indices of the
coordinate axes. The viscosity is strongly temperatupeddent and it assumes an exponential
form:

n = Aexp(—T) (3.6)
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whereA is a constant, angl = E/RT?, E is the activation energy? is the gas constant, affd is

the interior temperature. The non-dimensional formy @ the Frank-Kamenetskii parameter:
0 = ~yAT. (3.7)

The brittle behavior of the lithosphere can be simplifiedwaitpseudoplastic rheology (Moresi
and Solomatov 1998; Trompert and Hansen 1998; Tackley 2(a®aler and O’Brien 2003).
Viscous deformation occurs according to Eq. 3.6 when steease less than the yield stregs
Above the yield stress, deformation follows a plastic flow ldefined by an effective viscosity
determined by a plastic yield stregs which is taken to be a constant in this study, and the second

invariant of the strain rate tensér

T

Net = _y (38)
e

We use the finite element code CITCOM (Moresi and Solomat®b)1® solve Egs. 3.1-3.3
for a 2D convection system with a fixed temperature diffeeeh@ = 77 — T, between the top
and the bottom and free-slip boundary conditions. The ¢aficins are performed with @4 64

resolution, where is the aspect ratio.

3.3 Stress distribution in the lithosphere and critical yidd stress

Although stresses in the convecting interior are low dubéotarm temperatures, stresses induced
in the conductive lid could be large and may be sufficient iesedarge-scale lid failure (Fowler
1985). To establish a theoretical basis for the magnitudgtrekses required to destabilize the

lid, Wong and Solomatov (2015) considered the process déiidre as gravitational sliding. The
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concept of lid slope providing the downward force resembiesfinite amplitude perturbation in
McKenzie’s theory, which suggested that a self-sustaisiiggduction requires a certain combina-
tion of the length and dip angle of the underthrusting slalck®hzie 1977). The gravitational
sliding model can also be considered as a simplification obeersophisticated Fowler’s (1985)
model. In the gravitational sliding model, the lid slopettdas toward the downwelling plume
provides the gravitational force that drives the lid motiémom the force balance on the lid, the
lid stress is

T2
al/\y_7

Tid = —aﬂogd—y 9 (3.9)

wherep, is the reference density,is the slope of the lid base which is assumed to be small, and
y is the vertical distance from the convecting interior todgathe top of the lid (Fig. 3.1). In the
non-dimensional formg;, is a function of Rayleigh number Ra, thermal gradi€fif dy, lid slope

A andy. In the vicinity of the surface the stresses increase dbtidue to huge normal stresses
developed from the free-slip boundary conditions and Egn8.longer holds.

Fowler (1985) suggested that with the introduction of ad/&tess, plastic yielding occurs in
the parts of the lid where the stresses are high. If the yie#bs is lower, a larger part of the lid
is weakened by the yield stress. If a sufficiently large pathe lid has yielded plastically, the lid
can be mobilized. To determine the critical yield stresspeed to know the extent of weakening
that is just necessary to destabilize the lid. This requirederstanding of the stress distribution
in the lid. Wong and Solomatov (2015) carried out a detailedlysis of the stresses in the lid
affected by a yield stress right above the critical valuewhich subduction does not occur but
would have if the yield stress is slightly decreased. Asitheslstagnant at the yield stress slightly

above the critical value, the dynamics of the system renstgedy and so the time-dependence of
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the various parameters can be neglected in the analysis.

In previous studies of failure criterion, it is often assuhtieat the plastically yielded depth has
to extend through the bottom of the lid to initiate failureg(e Fowler and O’Brien 2003; van Heck
and Tackley 2011). On the other hand, Solomatov (2004b)gsegbthat failure can occur if the lid
is weakened to the point at which viscosity contrast hastaakivalue ofe*™*+1, wheren is the
stress exponent for non-Newtonian viscosity. Wong andi8atov (2015) found that the depth of
the plastic zoné,, (Fig. 3.1) does not have to reach the bottom of the lid. Howéwe critical
viscosity contrast af, is not constant as assumed by Solomatov (2004b). It incseaik the
viscosity contrast due to temperature alofey(,.,), which is related to the Frank-Kamenetskii
parametep. It seems to converge with highn,.,, yet no discernable scaling relationship was
found. Although the failure criterion could not be definedagertain critical viscosity contrast,
dp1 at the critical yield stress seems to occupy 1/3-1/2 of thehickness.

To find out the lid stress at the plastic depgh the distance of, from the base of the thermal
boundary layey,, has to be determined (Fig. 3.1). Wong and Solomatov (2015)dahat at the
critical yield stress, this distanceys, ~ 34, whered,, is the rheological sublayer thickness.

The scaling laws for critical yield stress and critical vietress gradient are derived by con-

sidering the force balance on the yielded plastic zone, @/leagent (dictating,,; andy,,) is deter-
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mined by numerical solutions:

a
T, X Tid—
y,cr i
5

dT V% a
~ — I\ 3.10
a
TICT ~ Thd—l
v, 551
dT y21 a
~ — 2 3.11
APog A 5 (3.11)

Egs. 3.10 and 3.11 show that the critical yield strgss and the critical yield stress gradierit,,
depend on both the aspect ratio and the lid slope. This ispiiat convective cells with longer
widths and steeper lid base have higher critical yield steesl yield stress gradient, and thus are
more likely to initiate subduction. As other parameters qsE3.10 and 3.11 such as the thermal
gradienty,,;, andd,,; also scale with the aspect ratio, the critical yield stregkaitical yield stress

gradient depend strongly on the aspect ratio.

3.4 Strongly time-dependent convection with yield stress

In the regime of higher Ra with larger aspect ratio convecbexes, the convective system is
strongly time-dependent. We examine the behavior of thestesis when they are subjected to a
yield stress that is low enough to cause lid failure.

The snapshots in Figs. 3.2 illustrates the initiation didgpheric failure for a statistically
steady-state solution with bottom Rayleigh numbes Ra 3 x 10%,An = 10%,a = 4, and
7, = 7 x 10° There are multiple regions in the stagnant lid that hashedhe yield stress,

indicated by the pink color in the snapshots. These yieldgtbns change in size as the system
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evolves, and they disappear and reappear throughout tioel péevolution before failure initiates.

The topography of the lid base (white line in between coldebid and hot red interior) remains
relatively stable, while both the upwelling and downwadliplumes in the interior continually fluc-

tuate (snapshots (a)—(d) in both figures). One of the yietdgtbns continues to grow in size as
the system approaches the time of failure, and the dowmggtliume further curves the lid slope
of that sub-cell (snapshots e). The downwelling plume thases failure can be in the middle of
the stagnant lid (Fig. 3.2f), or, more often, at the edge efabnvective box which is forced down

by the free-slip boundary condition (Fig. 3.3f).

3.4.1 Non-uniqueness of statistically steady-state solahs

For strongly time-dependent convection in long boxes, bHoghnitial conditions and the evolution
of the dynamics in the system are random factors that prodifiegent statistically steady-state
convective structures (such as those shown in Figs. 3.2 &)d Bhese structures can undergo
subduction at different values of the yield stress, or sabdn can happen at drastically different
times.

To generate different solutions, we use different init@hditions and run the calculations until
convection is statistically steady. As shown in Fig. 3.4 lild structure and even the average lid
thickness are slightly different among the solutions. Wethese different statistically steady-state

solutions as the starting point of simulation with yieldess.
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3.4.2 Time of failure
3.4.2.1 Dependence onyield stress

Figure 3.5 shows that the time of failure seems to dependreq@lly on the yield stress. Note
that it is difficult to determine the exact value of the caligield stress for strongly time-dependent
cases. When the yield stress is high, there is a possithlgydur simulations were not run long
enough to reach lid failure. Therefore if simulations are mdefinitely, the value of the critical

yield stress may be pushed higher.

3.4.2.2 Variability in the timing of subduction initiation due to non-uniqueness of convective

solutions

We take one set of parameters for a convection system witbrbdRayleigh number Ra= 3x 108,
An = 10%, a = 4, and generate slightly different solutions by using d#ferinitial conditions.
In each case, we allow the system to reach a statisticalygtstate without yield stress. Then
we introduce (“turn on”) a yield stress and observe how thetesy evolves after that. As seen
from Fig. 3.5, the yield stresses and failure times varyificantly among these cases. For cases
with similar times of failure, the yield stress can differ &y much as a factor of 5. This is due to
variations in the lid structures among these cases, evditlifese case have the same controlling
parameters and all are in statistical steady states.

We compare the times of failure for convective systems withgame yield stress and other
controlling parameters but corresponding to differertistiaally steady states. The times of failure
can vary by orders of magnitude (Fig. 3.6). Thus convectysgtesns characterized by the same

controlling parameters but differing from each other bsesaf the non-uniqueness of the solutions
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give rise to a broad range of outcomes. However we can stilkeme systematic difference in the
time of failure with different values of yield stress. As debed in the previous section, for each
case with the same statistically steady state, the timeiloféaincreases with the yield stress. In
other words, at lower yield stresses, more cases experighieglure within a certain time. This
can be seen from Fig. 3.6: within a dimensionless time ofyuait but one of the cases in our
numerical experiment underwent lid failureigt= 6 x 10°, but only 4 of them were successful
in having lid failure atr, = 9 x 10° while the rest of these cases may or may not have lid failure
at longer times. Therefore the yield stress is a key comigpfparameter for the probability of lid
failure within a specific period of time.

Interestingly, for cases in which the yield stress is “tutio®” at different times of the same
statistically steady system (generated from the samaliratinditions), the failure time varies
randomly as well and the spread of failure times varies wigldystress. As shown in Fig. 3.7, the
spread in failure time increases with This suggests that the similar lid structure resultingrfro
the same statistically steady system did not change mutinvfte time range in which the yield
stress was turned on. As yield stress increases, more tineeded for the lid to become unstable,
which also means that the system has more time to evolve tecaatale flow configuration for

subduction initiation, allowing a larger range of failunmés.

3.5 Time of failure in single-cell steady-state convection

Time-dependent convection is chaotic, thus it is difficalabalyze and computationally challeng-
ing to study. To understand the factors controlling the tohéailure, we examine the solutions

of single-cell simulation with a fixed cell width. The flow insangle cell is better controlled and
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therefore allowing a relatively simple scaling analysissingle-cell simulations there is only one
solution for the problem of subduction initiation with a fikgield stress, as opposed to the multi-
ple solutions with the same set of parameters in stronglg-tiependent convection. These single
cells can be considered as part of the multi-cell system atsdant (Fig. 3.8). The stress state of
a sub-cell can be used to predict whether subduction carr attlhie multi-cell system and even

which part of the multi-cell system will undergo subduction

3.5.1 Numerical results: time of failure with varying yield stress, Rayleigh number, viscos-

ity contrast, and aspect ratio

We slowly decrease the yield stress from its critical valo®l the time of failure becomes compa-
rable to the timescale of sublithospheric instabilitibg, $hortest characteristic time in the system.
As we reduce the yield stress below the critical value, thgimam viscosity in the lid grad-
ually decreases and the plastic zone propagates downaumpiint at which the surface velocity
of the lid increases drastically indicating that the lid tses mobile (Fig. 3.9). The maximum
VISCOSityn,.x IS determined by the method described in Wong and Soloma@is). The glitches
on the plots ofy,,.x and depth of the plastic zordg with time in Fig. 3.9 are due to insufficient
resolution. Throughout most of the system’s evolution,glastic zone is maintained at approxi-
mately the same depth and the maximum viscosity remain®iadme order of magnitude. When
max drops below some value, botl andn,,.x changes rapidly as the lid fails. This transitional
Nmax,» Which can be estimated approximately from the sharp changee viscosity-time plot in
Fig. 3.9, differs by about an order of magnitude when thedysttess varies by about 25%. It
also increases with the Frank-Kamenetskii paramgtehich determines the viscosity contrast in

the absence of the yield stresSr( = exp 6). As the yield stress approaches the critical value, a
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slight increase in yield stress gives a much longer timeiafrawhile §,,, andn,,,.x do not change
significantly.

Figure 3.10 shows the relationships between the time afraénd the ratio of yield stress to
critical yield stress, /7, ... At a lower range of,, the time of failure increases approximately ex-
ponential withr,. Whenr, gets close to, ., the time of failure increases rapidly. The exponential
part resembles the relationships that we observed in tepemdent calculations (Fig. 3.5. This
resemblance suggest that the mechanisms controllingrtreedf failure are similar. Compared
to the time-dependent cases in Fig. 3.5, the exponentatioakhip between the time of failure
and yield stress is much smoother, and the rapid increasmeto infinity is clear as the ratio
7,/ Ty.cr @pproaches 1. The slope of these exponential curves vaitlesRa, viscosity contrast,
and aspect ratios. The difference is most pronounced wityingaspect ratio (right column of
Fig. 3.10): the time of failure may increase by as much as derasf magnitude for the same
value ofr, /7, .. as the aspect ratio doubles. In contrast, an order of mamibange in viscosity
contrast (middle column of Fig. 3.10) does not cause significhange in the time of failure, and
the times of failure converge ag/7, .. — 1. Varying Ra (left column of Fig. 3.10) has still a
smaller effect, changing the time of failure only slighthyhégherr, /7, ... However the spread due
to the variation of these parameters is not large: the diffee in smaller, /7, ., range is about an
order of magnitude, and the time of failure increases tosvanfinity as it approaches= 1 atr,
approaching,, ...

The fluctuations in the time-yield stress relationshipmngtdependent cases in Fig. 3.5 are due
to the random evolution of the lid structure such that theselbwith favorable properties for lid
failure such as long width and large lid slope varies in lmegtas illustrated in Figs. 3.2 and 3.3.
In other words, the sub-cell with the highest critical yistdess may switch location, whereas in
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single-cell cases subduction is bound to occur at one doWingedge. The jumps in the curves
in Fig. 3.5 may correspond to a switch of the subducting slb-@herefore the question of lid
failure in time-dependent systems may be whether a sulwaéllhigh critical yield stress can be
maintained for a sufficiently long time until failure initess, and analysis of the changes in the
properties of a single convective cell with time will sheghi on this aspect.

Our results show that a large range of time of failure is gmesf~ 1073-1) and that the
transition from instantaneous subduction to no subducditmurs over a small range of: below
approximately 1/2, ., subduction occurs immediately after the yield stressusn&d on”, and

abover, ., it does not occur.

3.5.2 Model for lithospheric instability

To interpret the numerical results, we consider the subolugirocess as a Rayleigh-Taylor in-
stability. Canright and Morris (1993) considered Raylei@ylor instability of two layers with
different viscosities, which can be approximately appliedsubduction initiation. During sub-
duction, thermal diffusion is unimportant because it is $tmw compared to the subducting plate
and thus subduction is akin to the Rayleigh-Taylor instghih a chemically stratified layer. We
approximate the convective system by a two-layer model: I&, c®nse layer lying on top of a
hot convecting interior, each having a characteristicosgy (Fig. 3.11a). The timescale of the

growth of the instability is:

_ l Neft
5 Apgoua’

(3.12)

wheren.g is the effective viscosity of the top layer, afdds the non-dimensional growth rate.

Since the density difference between the two layers is drlwe temperature, the top layer
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is defined by the isotherm of the bottom of the lid, using thehoé described in Wong and
Solomatov (2015). The lid includes both the plastic zonetargarts below which deform by the
creep flow law. The yield stress reduces the viscosity witénlid, with a maximum at aroung,
(Fig. 3.1), causing the greatest viscosity contrast wjthWe take this maximum viscosity to be
the effective viscosity).s of the lid.

The growth rates depends on the regime of Rayleigh-Taylor instability (F§11b). The
controlling parameters are the viscosity contrast betvieertop and bottom layer&n = neg /7;,
the ratio of the depth of the interior to the lid thickness= (d — d;,q) /014, and the normalized
wavenumberk which depends on the perturbation wavelengsras X' = 2(27/\,)d0uq. In our
single-cell steady-state cases, the lid slope dips towtaeldownwelling edge so the lid thickness
varies laterally. At large® and small Rayleigh numbers,, is comparable to the depth of the
interior. We take the averag®e,, which is approximately the lid thickness at the middle df th
cell. It ranges from around 0.2 to around 0.5, around 4 and approaches 1 as lid thickness
approaches 0.5. The range of viscosity contrast is detewbgr.¢, which is taken to be- 10—
10° (Fig. 3.9). The perturbation wavelength in our cases iseawlie width of the cell{ = 0.5 to
1). This givesk on the order of 10 to 100. Fgr — 1, K — 3°° and(An)~! — 57, placing our
cases in the regime éf= 1/K (the shaded area in Fig. 3.11b). In the limit of very thin that
boundary layer and large viscosity contrasts, which may beenrelevant to planetary conditions,
> landK < 1, thuss can be in the regime ¢f = 1/4.

We can relate the effective viscosify; in EQ. 3.12 to the yield stress. The yield stress deter-
mines the depth of the plastic zone from the force balapeg ~ aniq. The effective viscosity

Nefr 1S given by the temperature at this degily, which can be found from the thermal gradient
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dT/dy:

dr

o3

=
I

=2

dT Tid
—_—a—.
dy T,

Eq. 3.12 thus becomes

¢ _ lexp(_VTeH)
’ 5 Apgdiq
1 1 dT Tlid)
= = exp | —v—a— ). 3.13
S Apgdnq P ( " dy T, ( )

In addition, there must exist a critical effective viscgsjt, such that, — oo whenn — 7. Thus

we introduce a threshold term fgr, to Eq. 3.12:

1 1 1\ !
ts = —~ - . 3.14
Apgdias (77eff ncr) ( )

The non-dimensional form of Eq. 3.14 is:

= Teg) — T.)] ! A
= Rz (O Tor) — exp(0T:)] (3.15)

where Ra is the surface Rayleigh number afd in this equation is non-dimensionalized by the
depth of convecting layet. The temperature at is related to the depth of the plastic zone.

Expressing the ratio, /7, .. asR..,, the temperature af is:

dTaﬂR;C}. (3.16)

T = —
ft dy Tyer
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Eq. 3.15 can be rewritten to relate the timescale of ingtglgfowth andR,. by grouping all the

Ter

other terms, noting that Nu is the non-dimensional formBf dy:

ty = Clexp(C'R;') —expC']7, (3.17)
c o= 1 (3.18)
n R‘(lo(shd§’ '

' = Nua 4 (3.19)

Ty,cr

Note thatC' andC” are not constants for several reasons: (1) The lid thickhiggand thus Nu
which scales as- 4;,{) is not an independent variable. It depends on convectitenpeters and
can be expressed with some power law relationships with Ragsity contrast, and aspect ratio
(Wong and Solomatov 2015). ffis in the 1/4 regime, both' andC’” depend on;4; in the 1K
regime,C' could be independent af,4, but Nu remains irC’. (2) The lid stressyq refers to the
shear stress at the plastic depghas a consequence of force balance on the plastic zone, and thi
may vary in a complex way in the lid depending &n As mentioned in the previous sectioy,
is roughly at a distancg,; ~ 39, from the interior at the critical yield stress. However fgmot
too close tor, .., as shown in Fig. 3.9;;q changes by-50% with a~25% variation inr,. Also as
Thd ~ ygl, andy, changes with,;, ;s may be a function of,,. Sincern;q is inside the exponent,
even a small variation in;g may lead to a great changedi, which is the slope of the exponential
curve. This may also explain why the aspect ratio changesldpe of these exponential curves
substantially as;;y depends on the aspect ratio. A complete scaling law witmdC” would be
too cumbersome as each of these coefficients depends oaldaetors, and a small error would
result in a huge difference especially with inside the exponent. Interestingly the spread in time

of failure is relatively small, suggesting that extrapwigtto planetary conditions from these curves
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would yield estimates that are not far from the numericasiyablished range.

To see how well Eq. 3.17 describes the evolution of lithosigtiailure, we apply this equation
to one case with Ra= 107, a = 1, andd = 19. Fig. 3.12 shows that the values 6fand C’
determined from the fit are close to the valueg'cdndC’ estimated directly from Eqgs. 3.18 and
3.19. For this cased ~ 1.4, (An)~! = e =~ 1078, andK = 2mdyq =~ 2.6. Therefore it is in the
regime ofs = 1/K, andC = 36. Nu can be found from numerical results and itd< until the
instant when failure occurs. The lid stregs in this case may be tricky to estimate because of the
range of yield stress and therefore differéntandy,,;. From the curve fitting in Fig. 3.18i4/7, .
is about 1/6. From the force balangg /7, ., ~ 0,1/d1a =~ 0.4, which is on the same order. Thus

Rayleigh-Taylor instability seems to be an appropriaterimtetation of lithospheric failure.

3.6 Conclusions

Due to the variability in time-dependent convection sana$, a large range of subduction time
is possible for a given set of parameters of a convectiveesystin time-dependent convection,
which is chaotic in nature, the behavior of the convectiveey depends on the initial conditions,
such that systems with the same convective parameterselddiriess may experience lithospheric
failure at different times during their evolution. We foutfét for a given set of parameters with the
same yield stress but different convective solutions, itihhe of failure can vary by several orders
of magnitude. Thus the time of subduction initiation is echtastic property controlled by initial

conditions and tiny variations in the convective systene &halytical solutions of Rayleigh-Taylor

provide an explanation for the relationship between thé&lyséress and the time of lithospheric

failure. The problem of subduction and thus plate tectomdgation is not only whether the
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lithosphere has a sufficiently low yield strength, but aldeetther lithospheric failure would occur
on a geologic time scale.

More work needs to be done to understand the timing of platenes initiation. While pseu-
doplastic rheology has been successful at producing fithexsc failure with plate-like behavior,
it is often criticized for not being able to record the histaf weakening as the materials are
weakened instantaneously when the yield stress is apmtl. physical and numerical models of
subduction evolution demonstrated that subduction zouaklgnitiate on pre-existing weak zones,
suggesting that the memory of deformation can be a key fafttine process (e.g., Shemenda
1992; Gurnis et al. 2000). To model with history-dependegibdnation, Tackley (2000b) em-
ployed a strain weakening rheology, and Bercovici and aglles developed the damage theory
that captures changes in rheology from energy considesatiBercovici et al. 2001; Bercovici
and Ricard 2005; Landuyt et al. 2008; Bercovici and Ricarti2)0 These models were able to
produce plate-like behaviors with localized weak zones thsemble plate boundaries. Perhaps
a connection between the yield stress simplification ancermomplicated rheologies such as the
one described by the damage theory would be the variatioretaf gtress with time. The history-
dependent nature of deformation may be expressed as a épesrdent yield stress, as it has been
shown that the evolution pathway of the yield stress inflesrithe regimes of convection (Lenardic
and Crowley 2012; Weller and Lenardic 2012). The analysiisgusonstant yield stress or yield
stress gradient can constrain the time required for thedpghere to be sufficiently destabilized.
The yield stress approach in combination with theories ¢aatures the inheritance of deforma-
tion will be able to give a better understanding of streseestad weakening mechanisms in the

lithosphere.
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Figure 3.1 Left: Thermal structure of a steady-state camwecell (red is hot, blue is cold); is
the vertical distance from the bottom of the thermal bounttarer. Middle: depth of plastic zone
dp1 andy at this depthy,) determined by the yield stress at the downwelling edge: (@) of the
convecting cell. Right: the corresponding viscosity pefilhe viscosity is limited by the yield
stress such that there is a maximum value at approximajely
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Figure 3.2 Snapshots for the case Ra3 x 10%, a = 4, An = 108, 7, = 7 x 10°. Pink color
represents yielded areas. The time on the figures are dioréess.
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Figure 3.3 Snapshots for the case Ra 3 x 10%, a = 4, Ap = 108, 7, = 7 x 10°. Note that
although the parameters are the same as in Fig. 3.2, theateveolution is different.
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Figure 3.4 Topography of the lid base for different solus@orresponding to the same set of

controlling parameters (Ra= 3 x 10, Anp = 108, a = 4). The lid base is inferred from surface

heat flow variations horizontally. Bottom graph: averagdhiickness over time. The lid thickness
is relatively steady with time.
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sented by different colors) corresponding to Ra3 x 103, An = 108, a = 4.

106



Ty:6X106 T = 7xl(§
‘ \
104.3,
g 2 -
° S
= 103.87 g
3 g :
& &
=] J 5
(%] 0
163 »‘ “”[ \H N{'“’ HWH‘ b bl “ i” w‘ H*\W(u ﬁlﬂm |
= WMM\ I \u i Wv i, iy v
| | L |
10* 10° ) 10 10" 10* 10 _10’ 10" 10
time time
1 =8x10° t =9ox1d
y y
B‘ 104,37 _ B‘ 104,37 |
= =
o o
g g
o 103.87 10 103.87 |
2 2
162 Mt il 1B Sl i
YRR tng B i
Vi Rl
| | | | | |
10* 10° ~10° 10" 10* 10° 10° 10
time time

Figure 3.6 The spread in the time of failure for the cases withsame yield stress and other
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do not show the velocity spikes, failure did not happen withie simulation runtime, which could
be continued for longer period with the possibility of ohseg failure.
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Figure 3.7 Time of failure with different values of yield e&s for cases with different times of
“turning on” the yield stress in a convective system oparatn a statistically steady state. The
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failure is not observed even when the simulation is run owr-dimensional time approaching
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Figure 3.8 Sub-cell (in the black rectangular box) inxaldconvective box.
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3x10°, a = 0.75, An = '6. All axes are dimensionless.
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cell cases.
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Figure 3.11 (a) Conceptual model of subduction as Rayl@mfter instability. (b) Regime dia-
gram for the growth rat@ for 2-D Rayleigh-Taylor instability, after (Canright andadvtis 1993).
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Chapter 4

Constraints on plate tectonics initiation from scaling laws for single-cell

convection

T. Wong and V. S. Solomatov

An edited version of this chapter has been submitted foripatidn in Phys. Earth and Planet.

Inter. of Elsevier.

Abstract

The Earth is the only planet known to have plate tectonicslewdiher planets are thought to be
covered with a stagnant lid. On the Earth, the initiation whduction, which is thought to be
the fundamental process for plate tectonics initiatiogaissed not only by the negative buoyancy
of the lithosphere but also by the compressional forces fptate motions. However for plan-
ets which do not have plate tectonics, very first episodetioddipheric failure has to be caused
by forces other than plate motions. Sublithospheric canmedas been proposed as a possible
mechanism that provides lithospheric instability throuigdhucing stresses in the lithosphere, and

lithospheric failure can occur when the yield stress is wedccritical value. We test the applica-
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bility of scaling laws for the critical yield stress obtathen single-cell convection simulations to
strongly time-dependent multi-cell systems. We show th#t an appropriate choice of charac-
teristic aspect ratio for the convective system, the sgdhws from single-cell simulations can be
used to evaluate the conditions on the terrestrial plandtss inner Solar System for plate tecton-
ics to exist. The estimated values for critical yield strasd coefficient of friction are much lower
than the observed values for the Earth’s lithosphere. Fou¥eMars, and Mercury, a very small

yield stress is required for plate tectonics to initiate.

4.1 Introduction

The diversity of terrestrial planets, both inside and @éshe Solar System, have posed interesting
guestions their evolution, surface expression, and mtetructures. One factor that contributes
to the variety is the convective styles of the mantles ingh@anets. Plate tectonics is currently
understood as a mode of convection that operates on the, Eaatting it distinct from all other
known planets where mantle convection, if existing, islifke be in the stagnant lid regime. The
presence of plate tectonics has implications on the plasetface history and interior dynamics,
which are closely related to the atmospheric compositiahsanface conditions, and ultimately
linked to the origin of life (e.g., Franck et al. 2000). There the origin of plate tectonics on the
Earth, whether plate tectonics could have occurred on giaeets, and the conditions favorable
for Earth-like planets to have plate tectonics are actipectoof research.

There has been many studies on how plate tectonics couldenagasged on a planet. A poten-
tial mechanism to initiate subduction, which may be the keycpss to start plate tectonics on a

one-plate planet, is sublithospheric convection (e.gau@g1990; Fowler and O’Brien 2003; Solo-
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matov 2004b). A major difficulty for this mechanism is the Inigfrength of the lithosphere that
prevents it from failing. In numerical studies the strengtbften reduced with a yield stress, which
is a simplification of the weakening mechanisms in the ligiese (e.g., Fowler 1993; Trompert
and Hansen 1998; Moresi and Solomatov 1998; Tackley 200@haRIs et al. 2001; Solomatov
2004b; Stein et al. 2004; O’Neill et al. 2007; Wong and Soltow2015). Obtaining scaling rela-
tions of the yield stress and physical parameters can halpratanding the conditions favorable
for plate tectonics.

This study aims to apply scaling laws developed for rel&tisenple and controlled convection
systems to more variable time-dependent convection sgstgpical in planetary mantles. Our
goal is to assess whether conditions on terrestrial plandtse inner Solar System allow plate
tectonics to exist. These planets have more constraintsdk@ilable observational data, and there
have been different views on past and present episodesteftpletonics which will be reviewed

here.

4.2 Plate tectonics on terrestrial planets in the inner SolaSystem

4.2.1 Subduction initiation on the Earth

Plate tectonics on the Earth is thought to be driven by ridggh@and slab pull forces. The origin
of these forces comes from the movements of Earth’s surfeateate already occurring, but it is
not clear how they first emerge. Calculations show that sidbagcounts for~~90% of the driv-
ing forces (Lithgow-Bertelloni and Richards 1995), therefto start plate tectonics, subduction
initiation may be the key to mobilize the surface.

There are two main physical models for subduction initratieechanisms on Earth: by gravita-
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tional instability (termed by Stern (2004) as spontaneawsaation of subduction zones) (Turcotte
1977; Stern and Bloomer 1992; Kemp and Stevenson 1996; 3déd), or by continued compres-
sion due to trench congestion or plate reorganization @aduwucleation of subduction zones)
(McKenzie 1977; Mueller and Phillips 1991; Toth and Gurr@®8; Hall et al. 2003; Gurnis et al.

2004).

Spontaneous nucleation of subduction zones refers tcsfitheric failure due to vertical force
of gravity such that the denser plate thrusts under the lessedplate at passive margins, along
transform faults, or fracture zones. This type of modelsallgtinvolves tensile failure, as the
tensile strength is lower than the compressive strengtitOiie 1977; Kemp and Stevenson 1996).
Passive margin failure could be aided by sedimentary lap{@oetingh et al. 1989) with the help
of wet rheology (Regenauer-Lieb et al. 2001) and/or lowgerature plasticity (Branlund et al.
2001).

Induced nucleation involves horizontal compressionatder which could be found in sites
such as intraoceanic subduction zones, transform faassiye margins, and spreading centers. A
number of experimental, numerical, and analytical studiesved that without the help of com-
pressional forces, it is difficult for ridge push alone to mane the forces that resist lithospheric
rupture (e.g., McKenzie 1977; Mueller and Phillips 1991e®lenda 1992; Gurnis et al. 2004). In
his estimates, McKenzie took the frictional shear resistan be 1-10 MPa from seismic studies,
while Mueller and Phillips used experimental results otkrdeformation to obtain values on the
order of102-10% MPa. Toth and Gurnis (1998) presented numerical modelsestigg that the
frictional resistance of the fault has to be as low as a few MRader for subduction to initiate
with ridge push forces, which is one or two orders of magretlaiver than the value predicted by
experiments (Byerlee 1978).

117



Although the spontaneous nucleation and induced nucleatiodels differ in the source of
forces that initiate subduction, both predict that subiduictones nucleate along preexisting weak
zones or transform boundary. Therefore much effort has Heeated to understand the mecha-
nisms of deformation localization to create weak zones,(Bgrcovici et al. 2001; Branlund et al.

2001; Regenauer-Lieb and Kohl 2003).

4.2.2 Possible plate tectonics on Venus

Plate tectonics is not thought to be currently active on ¥efine random distribution of craters on
Venus suggests that the planet has a young surface of lesg@bdva (Arkani-Hamed et al. 1993;
Herrick 1994; Turcotte et al. 1999). Although Venus has @halea of tectonic features including
coronae and chasmata, plate-boundary signatures resgrttindise on the Earth such as subduction
zones and spreading centers are not obvious (e.g., Smrekhr29010). Venus has a unimodal
hypsometry while the Earth has very distinctly differerdwgtions between the continents and the
ocean basins, implying that plate tectonics processeseokdith are not present on Venus (e.g.,
McGill et al. 2010).

The young age of the surface is believed to be due to a cgpastnesurface event that occurred
~500-1000 Ma (e.g., McKinnon et al. 1997). The process ofréssrfacing event is not clear, as
the main source of observational data for this event conoas ératering records. Two major mod-
els for the nature of the resurfacing event were proposede pectonics or plume/magmatic activ-
ity. Magmatic resurfacing is probably the most direct casan from observations of widespread
volcanic landforms (e.g. Phillips and Hansen 1998; Stofaal.€2005; Reese et al. 2007). For the
tectonic resurfacing model, geologic features have beemtifted as localized subduction zones,

which may have triggered the catastrophic resurfacingBer and Sandwell 1995), although
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these features might have other non-plate-boundary argiich as diapirs (Hansen and Phillips
1993).

If the resurfacing event has tectonic origins, the end of évient may represent the cessation
of Venusian plate tectonics (Arkani-Hamed et al. 1993; ldkri994), or it may be a quiescent
period in between episodes of subduction (Parmentier arsd H@92; Turcotte 1993; Weinstein
1996; Fowler and O’Brien 1996; Schubert et al. 1997; Moradi&olomatov 1998). The transition
to a one-plate planet may be caused by mantle cooling (Het884) and thus a decline in the
vigor of mantle convection (Arkani-Hamed et al. 1993; Scodbav and Moresi 1996). Mantle
cooling can make the lithosphere positively buoyant (H&rii994), and the decline in convection
also decreases the stresses in the lithosphere that migbtdto mobilize the surface (Solomatov
and Moresi 1996). However, without an efficient heat losshmatsm such as plate tectonics, the
mantle temperature would increase and the planet may umagigodic subduction to lose heat
(Turcotte 1995).

One reason for the lack of plate tectonics on Venus may begtsdurface temperature. The
hot surface evaporates water away so the dry lithosphera hagher yield strength, making sub-
duction more difficult on Venus than on Earth (e.g., Kaulad,9ackwell et al. 1998). The high
temperatures also favor grain growth, which hinders de&tion localization and therefore fail-
ing to produce plate boundary and subduction zones (Larehg/Bercovici 2009). The positive
buoyancy of both the crust and the depleted mantle residabihits subduction (Parmentier and
Hess 1992), but the thickness of the crust is debated (SdinaiveeSchubert 1992; Phillips 1994;

Orth and Solomatov 2012).
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4.2.3 Possible plate tectonics on early Mars

Mars poses a different set of problems for plate tectonias tduts intermediate size and cold
surface. Plate tectonics has been suggested for diffemmads in Mars’ history. Early plate
tectonics on Mars was proposed as the origin of the globalotiaemy. From the lateral extent of
the thin crust of the northern lowlands, Sleep (1994) hypsitted that the northern lowlands were
formed from seafloor spreading. However crater densitigdssémictural features in the northern
plains show that the area does not conform to this platenesaonodel of formation (Pruis and
Tanaka 1995; Frey 2004).

Another line of evidence for early Martian plate tectonicsnes from magnetic field data.
The magnetic lineations observed by Mars Global Surveydhénsouthern hemisphere (Acuna
et al. 1999) have been interpreted as a signature for platenies processes such as seafloor
spreading (Connerney et al. 1999) and accretion of terr@fasen et al. 2002). Based on the
magnitude of magnetic field in the magnetic lineations indbwethern highlands, there might have
been an active dynamo in early Mars (Acuna et al. 1999). Thmacho demands a large core
heat flux, which may require early plate tectonics to driveeamooling (Nimmo and Stevenson
2000), and plate tectonics could efficiently cool the planetvoid early massive melting (Hauck
and Phillips 2002). However other non-plate tectonics raadms for magnetic lineations such
as dike intrusion could be possible (Nimmo 2000). The Martdgnamo can also be driven by an
initially hot core without plate tectonics (Breuer and Sp@®03). Further evidence against early
plate tectonics includes the isotopic heterogeneity ofetdy mantle from Martian meteorites,
which indicates that the mantle had not undergone much liagy@Ibarede et al. 2000; Halliday

et al. 2001).
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Plate tectonics occurring at a later period of Mars’ histoag also been proposed. Mapping
of the Valles Marineris interpreted the feature as a lagggesstrike-slip fault that could be a plate
boundary, suggesting some form of plate tectonics in the Easperian and Amazonian (Yin
2012). However, the small displacementl60 km) on this fault and the lack of such features
anywhere else on the planet makes this argument rather Weagesses other than plate tectonics

could be responsible for the formation of this feature.

4.2.4 Stress state of Mercury’s surface

Although plate tectonics is ruled out as a cooling mechari@nMercury, recent mapping anal-
ysis by Byrne et al. (2014) raised questions on the stress stahe surface as it might be more
deformable than previously thought. The observations fidaniner 10 and the MESSENGER
spacecraft revealed a heavily cratered surface with tecfeatures on Mercury, which indicate
that this could be a one-plate planet undergoing globalraotion (e.g., King 2008; Watters et al.
2009; Byrne et al. 2014). Other causes for the distributiah arientation of lobate scarps and
wrinkle ridges include tidal despinning and convectiorgais (e.g., Melosh and McKinnon 1988;
King 2008; Padovan et al. 2014, Klimczak et al. 2015; Watétra. 2015).

There has been a longstanding debate on whether Mercuryifiaria currently convecting.
Since Mariner 10 only had three flybys that had limited cogeraf the planet, earlier simulations
of mantle convection of Mercury tested a range of paramé&bethermal evolution. Their findings
indicate that existence of convection depends on sevectriaincluding the concentration of
radiogenic elements in the mantle, the core heat flux, andlendmeology (Hauck et al. 2004;
Redmond and King 2007). MESSENGER provided surface meamuns of radiogenic elements

that constrain the heat production and thus the thermairyisft Mercury (Peplowski et al. 2011),
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and the geophysical observations constrained the thiskofebe silicate layer to be in the range
of 300—600 km (Smith et al. 2012; Hauck et al. 2013). Therefbconvection exists it is likely to
be in the stagnant lid regime due to the small Rayleigh nurf®&omatov 1995). Using different
models of core cooling, Tosi et al. (2013) and Michel et ab1(?) reached opposing conclusions
on whether convection is occurring. However due to unaeties in interior structure, such as
the existence and thickness of a solid FeS layer at the cargkenboundary, these models do not
exclude the possibility of mantle convection. Estimatihg tontribution of stresses induced by
convection on Mercury’s lithosphere has implications for existence of convection and thus the

thermal evolution on Mercury.

4.2.5 Possibility of plate tectonics on Earth-like exoplaets

Various theories have been proposed for the conditionsagflarets to have plate tectonics based
on different assumptions (e.g., O’'Neill and Lenardic 20@&lencia and O’Connell 2007, 2009;
Korenaga 2010a; Karato 2011; van Heck and Tackley 2011yfeilal. 2012; Stamenkovic and
Breuer 2014). The different rheologies such as temperatpressure- and stress-dependent rhe-
ology, addition of water, internal heating, and the use ohage theory are considered in the
scaling of mass and radius to conclude whether plate texdasilikely to occur on exoplanets.
The high pressure in the interior of larger-sized planetg b@aa major influence on their structure
and evolution (e.g., Valencia et al. 2007; Wagner et al. 2&tdmenkovic et al. 2012). It affects
various properties including density, thermal expangiaitd conductivity (van Heck and Tackley
2011; Tachinami et al. 2014), deformation mechanism and@hansitions (Karato 2011; Stein
et al. 2011; Tackley et al. 2013), and enthalpy changes (K&@11; Stamenkovic et al. 2011).

The compressibility of the mantle fluids would be relevarttigh pressure conditions. Miyagoshi
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et al. (2014, 2015) modeled convection of compressibledlaitd concluded that adiabatic com-
pression suppresses convection thus does not favor ptataies. The effects of pressure on the

rheology require further experimental and theoreticapsup

4.3 Critical yield stress approach and scaling laws

One way of studying the criterion of failure for differentaplets is to develop scaling relations
between the yield stress of planetary lithospheres andwsphysical parameters. The yield stress
is a physical property that is determined experimentalliymn geophysical observations. Due to
uncertainties in assumptions and complications in extedipm, these observed values of yield
stress are not well constrained and are usually too highéolithosphere to fail. For these reasons
we obtained scaling laws using the critical yield stressagagh: the yield stress is a variable that is
adjusted to the point at which the lithosphere becomes biestahile the other parameters of the
convective system are held constant (Solomatov 2004b; \@oddsolomatov 2015). This process
is repeated for different sets of convective parameters.

To examine how the yield stress affects the stress disioibwf the lithosphere, Wong and
Solomatov (2015) carried out an analysis of the spatiabtiamn in magnitude of stresses induced
in the lithosphere by sublithospheric convection. Theynfibthat the process of subduction can
be approximately described by the gravitational slidingdeion which the stresses are caused by
the variations of the lid base topography, in particulardipping of the lid slope that provides the
instability. To find out the extent of weakening needed ferlithosphere to become unstable, they
determined the depth of region affected by the yield stresmged the depth of the plastic zof)g

Fig. 4.1). Contrary to previous belief that this depth istcolted by the viscosity of the mantle
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(e.g., Fowler and O'Brien 2003; van Heck and Tackley 2011)her viscosity contrast for the
mobilization of the stagnant lid (Solomatov 2004b), thettey the plastic zone is approximately
1/2-1/3 of the lithospheric thickness, even if the visgositntrast at this depth is as high-asl07.

Wong and Solomatov (2015) thus obtained the following esgitns for the critical yield stress

7. and critical yield stress gradieﬁlcr:

dT v a
Tyer = —apogd—y 7@(5_17 (41)
p
dT’ y21 a
' _apyg it L 4.2
Tyyc’f‘ O[pog dy 2 51:2)17 ( )

wherey,, is the distance from the interior 1§, respectively (Fig. 4.1), and other parameters are
defined in Table 4.1. Egs. 4.1 and 4.2 imply that these crwiglaes depend on the topography of
the bottom of the lithosphere: the aspect ratio and the tigeslas well as other factors including
the thermal gradient which also depends on the aspect ratio.

Following the dimensional form in Wong and Solomatov (2QE&)er combining the terms in

Eqg. 4.1 and 4.2, the scaling laws for critical yield stress and friction coefficient.., are:

EATY 108 /5 N\ 041

Tyer ~ 1.95apgATd <W) <EO) at™, (4.3)
EATN 1™ /g \ ~155

o~ 89aAT ( RT-Z) (EO) a'®. (4.4)

The above scaling laws were derived from single-cell stestdie convective solutions, which
have more controlled flows and therefore permit relativetypte scaling analysis. In the following
sections we describe our approach to test this analysiagtescell solutions for the strongly time-

dependent convection. These systems are more complexféoditio analyze, but they are more
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realistic representations of mantle convection on teinedgilanets. By establishing the relevance
of these scaling laws to time-dependent convection, theyeaused for extrapolation to planetary

conditions.

4.4 Numerical methods

We use the finite element code CITCOM (Moresi and Solomat®b)1 % solve the equations of
thermal convection in 2D with a fixed temperature differed¢e = 77 — T, between the top and
the bottom with free-slip boundary conditions. The equaiof thermal convection in Boussinesq

approximation and infinite Prandtl number are

V-u = 0, (4.5)

apgTn —Vp' +V x7 = 0, (4.6)
/

aaz; +u-VT' = kV*T, (4.7)

where notations are defined in Table 4.1. The stress ténsas components;:
7 = n(Vu+{Vu}’), (4.8)

wherer is the viscosity{ } 7 is the transpose operator.

The viscosity strongly depends on the temperature andunass an Arrhenius form:

E

n= Aexp(W) (4.9)
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whereA is a constant. The viscosity is often approximated by theegptial form:
n = Bexp(—T) (4.10)

where B is another constant, and= FE/RT?, which in non-dimensional form is known as the
Frank-Kamenetskii parameter:

0 = yAT. (4.11)

To simulate brittle failure of the lithosphere, we use a pegliastic rheology with a yield stress
that takes the form of either a constanf)(or a constant gradient with depth, although it is often
a combination of both as defined by Byerlee’s law (Byerlee8)9This approach is commonly
used in numerical studies that investigate mobile or epis@gjimes of convection and plate-like
behaviors (e.g., Moresi and Solomatov 1998; Trompert antskla 1998; Tackley 2000a; Fowler
and O’Brien 2003). Plastic yielding occurs when convectiresses exceed the yield value and

deformation follows a plastic flow law defined by an effectwgcosity:

Neft = (4.12)

wheree is the second invariant of the strain rate tensor. Whenssteeare less than the yield stress,
deformation occurs in the Newtonian creep as in Eq. 4.10.

The numerical calculations were performed withla x 128 mesh as strongly time-dependent
convection in the regime of high Rayleigh number and largeeetsratio ¢ = 4) requires higher

resolution.
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4.5 Comparison between theoretical and numerical criticayield stress and

yield stress gradient: matching aspect ratios

To see how well the scaling theories developed from singlesteady-state solutions apply to

strongly time-dependent systems, we determjneandr, .. from numerical experiments of con-

vective systems in the regime of higher Ra with longer aspsads. We then compare these
numerically observed values of .. andr, .. with theoretical predictions using the power law co-
efficients for the scaling laws in Table 4.3. To do so we neefihtba characteristic aspect ratio
to use in the scaling laws, as the long convective box is cftdrivided into smaller aspect ratio
cells with widths varying continually in time-dependenteection (Fig. 4.2). This variability in
aspect ratio gives an uncertainty in determining the @itygeld stress and yield stress gradient.

Previous studies obtained scaling laws for the aspectsrhtiestimating the number of down-
welling plumes in the convective system (Parmentier anth&&00; Solomatov 2004b). However
as described in the previous section, the lateral variaifahe lid base is a key factor in initia-
tion of lid failure, therefore a general value of the aspetiordetermined for the whole system
from scaling laws may not be appropriate. If the scaling l&/em single-cell simulations can be
applied to multi-cell convective systems, the charadiersspect ratio can be inferred from the
critical yield stress or critical yield stress gradientngsthe scaling laws (with scaling exponents
in Table 4.3) as:

a; ~ 107%%7)¢ Ra 70", (4.13)

y,cr

ap ~ 107970 Ra” 96", (4.14)

y,cr
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This aspect ratio is referred to as the inverted aspect ratio

To see if this inverted aspect ratio has any correlation thighaspect ratios from the numerical
solutions, we choose an aspect ratio that can be represerdbthe different sizes of the sub-cells
in the multi-cell system. The size of the sub-cells are defimg the topography of the lid base.
For the problem of subduction initiation, we look at the pafrthe convective box that is most
prone to lid failure (Fig. 4.2). The scaling laws in Eq. 4.31&4 suggest that sub-cells with large
aspect ratios have higher critical yield stresses and caafts of friction, so we find the maximum
possible aspect ratio of sub-cell in the convective systéawever the maximum aspect ratio may
not be a good predictor of the critical yield stress as thermf#ictors such as lid slope also vary,
therefore in addition to finding the maximum aspect ratio,als® determine the average aspect
ratio of sub-cells.

For each set of convective parameters (same Ra and viscositsast), we check the maxi-
mum and average sub-cell width in a large yield stress (F@left) or yield stress gradient (Fig.
4.3 right) case in which convection is in the stagnant lidmeg The shape of lid base, which
determines the widths of sub-cells, can be inferred fronvé@tion in surface heat flux horizon-
tally. As shown in Wong and Solomatov (view), the variatiarcell width is more or less stable
when lithospheric failure does not occur, and this widthinsilar to the cell width before failure
in cases with lower yield stress or yield stress gradiene miaximum and average aspect ratios
from numerical simulations are listed in Table 4.2.

These numerically observed maximum and average aspeus (agreafter referred to as nu-
merical aspect ratios) are compared with the inverted aspgos. From Fig. 4.3 and Table 4.2
the inverted aspect ratios mostly fall between the maximapeet ratios and the average aspect

ratios found from numerical solutions, except for a few saséh high Ra. The average aspect
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ratio seems to show a better correlation with the invertpeeisratio, so it may be a more suitable
predictor ofr, ., andr, .. for a multi-cell time-dependent convection system. By ipiytng the
numerical average aspect ratio with a correction factoxdf4, the numerically observed criti-
cal yield stress will be consistent with theoretical prédits, so the scaling laws from single-cell

solutions can be used to estimate the critical yield stresksyg&eld stress gradients in strongly

time-dependent convection.

4.6 Application to terrestrial planets

4.6.1 Physical parameters for terrestrial planets

Tables 4.1 and 4.4 suggest the values of physical parantesgrare applicable for conditions
of Earth, Venus, Mars, and Mercury. The interior tempegfliris taken to be~1700 K. At
temperatures slightly below this value convection ceashge at temperatures slightly above this
value the mantle rocks begin to melt (Solomatov 2004b; Kager2010b). Since the scaling laws
used in this paper are derived from calculations using Neiatorheology, we use the activation
energy of diffusion for olivine which is about 375 kJ/mol (Hi and Kohlstedt 2003). The melting
temperature and the activation energy for wet olivine gitiesnterior viscosity that is close to the
mantle viscosity, thus we take the mantle viscosity as tfexeace viscosity. Here we consider a
typical value of interior viscosity0'? (e.g., Schubert et al. 2001) in our extrapolation. Note that
while the interior viscosity is uncertain, the critical idestress is not very sensitive to this value
but is most sensitive to the thermal structure of the lid. Tit@spheric thickness is needed to
estimate the friction coefficient, and it is inferred fromahdux estimates. For the Earth where

plate tectonics processes contribute to the large avetatpes heat flow, we take the value typical
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for oceanic lithosphere, which is about 40 mW/(a.g., Solomatov and Moresi 2000).

4.6.2 Depth of convecting layer

The depth of convecting layer is required for the dimendisnaling ofr, .. and.,. Due to the
exponential dependence of viscosity on pressure, therhgdtot of the mantle is very viscous and
thus sluggish. Therefore convection does not span thesafgpth of the mantle and is restricted
to the top part of the mantle (e.g., Christensen 1985), ahijatviscosity contrasts the convective
system breaks into smaller sub-cells (Khaleque et al. 200&) the Earth, it is believed that
small-scale convection is active in the upper mantle (Righter and McKenzie 1981; Solomatov
and Moresi 2000; van Hunen et al. 2003). As the effects ofgureson convection is not well
understood, for our scaling purposes we assume that theuypeaeduces the depth to an effective
depth of the actively convective layer. We use a range farafiective depth which goes from half
to the whole of the depth of the convecting mantle. For Eantth @enus this is about 350-700
km. For smaller planets such as Mars and Mercury which haverlpressures, we take the entire

mantle depth as the upper limit.

4.6.3 Aspect ratio

Since the aspect ratio of strongly time-dependent cormedivariable as discussed in the previous
section, we estimate the range of critical yield stress aedficient of friction with limiting values

of aspect ratios. The aspect ratios observed from numesicallations range from about 0.2—
0.5 (Table 4.2). The fit between the inverted aspect ratiothachumerical aspect ratio in Fig.
4.3 suggests that the average aspect ratio can be used icatirggdaws when multiplied with a

coefficient of~1-2. Therefore we take the aspect ratio to be between 0.2-1.
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4.6.4 Critical yield stress and critical coefficient of fricion

The critical yield stress and critical yield stress gratlfenvarious planets can be estimated from
Eq. 4.3 and 4.4 using the parameters in Table 4.1 and 4.4 haydare listed in Table 4.5. We
estimater, ., and p.., with higher and lower end values of aspect ratios, and thgeran the
magnitudes of,, .. andy.. come from the depth range of the convective layer.

In the comparison between the Arrhenius viscosity and Fkaakenetskii approximation,
Wong and Solomatov (2015) found that the scaling laws ddrfivem calculations using expo-
nential viscosity (Eq. 4.10) predict a slightly largey.. than that of Arrhenius viscosity (Eq.

4.9) by ~20-50%. This difference with exponential viscosity is geedor 7, .., which could

,cr

be ~40% higher to almost 5 times larger than that with the Arrbeniiscosity. They found
that as the difference between Arrhenius viscosity andatsesponding exponential viscosity

increases, the ratio of the two yield valuesg & /7y crexp @and 7,

ver. AH/ngmexp) decreases to

some asymptotic values that depend mostlydrig. 4.4). For the Earth and Mars which has
0 ~ 22 and where the surface temperature is low, the differeet@den Arrhenius and expo-

nential viscosity is greatXna../¢’ > 10%). Referring to Fig. 4.4, the actual .. and7/ . for

y,er

these planets are in the asymptotic regime which are bet@&e+®.8 and 0.6-0.7 of their cor-
responding values from exponential viscosity. Venus'fitsgrface temperature yields a smaller
6 of about 15 and its viscosity difference between the two laws,./c’ ~ 10°, which gives

~ 0.47/

TyerAre ~ 0.6Ty crexp @aNd T, verexpe Mercury hasd =~ 20 and viscosity difference

y,cr,Arr

~ 0.57/

Y,CT,exp’

~ 10, giviNg 7y crarr = 0.77y crexp @ANAT) 0 0y
We can make some remarks on the critical yield stress artbfricoefficient for super-Earths

based on the dimensional scaling laws. As the mass and sizase, the pressure inside the planet
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also increases. Besides increasing gravitational aatelar the pressure also affects the depth of
the convecting layer. The pressure may reach a criticakvaishallower depths that the viscosity
becomes too high for the lower part of the mantle to partieipa active convection. Therefore
even if gravitational acceleration increases with presstire depth of convecting layer may be

smaller; according to Eq. 4.3, these two properties may bawgensating effects.

4.6.5 Uncertainties in extrapolation

One source of uncertainty is in the values of physical priog®rThe uncertainty in mantle viscos-
ity gives Ra values with 3 orders of magnitude, causing thgdst range in extrapolation from our
scaling laws. For the estimates of critical yield stres$is study we use the activation energy for
diffusion creep, as the scaling laws were derived with Newaio rheology. In previous estimates
the value for dislocation creep was used, which yield a lovadue of critical yield stress than the
ones obtained in this study (e.g., Solomatov 2004b; WongSaomatov 2015).

The uncertainties in the scaling exponents in Table 4.3 duriimerical errors can result in
about an order of magnitude difference from the theordyigakdicted values.

As mentioned before and also in Wong and Solomatov (2016)béhavior of the nonlinear
system near the critical value may be difficult to predict] @may depend on the model runtime
to observe lid failure. This also contributes to the undetyan determining the critical yield stress

and yield stress gradient.

132



4.7 Discussion and conclusion

We have showed that the scaling laws derived from singliesteddy-state convection simulations
can be applied to multi-cell time-dependent convectiore Glmaracteristic aspect ratio for a multi-
cell time-dependent system can be obtained by determihm@terage aspect ratio of sub-cells
in a convective box with large aspect ratio and modifying thalue with a factor of~1-2. This
aspect ratio can be used in the scaling laws to predict theadryield stress and friction coefficient
in strongly time-dependent convection.

In general, a very low yield stress and/or a small coefficadfiction is required for a stagnant
lid planet to initiate plate tectonics. This agrees withvoras theoretical estimates (e.g., Toth and
Gurnis 1998), but much smaller than experimental values, (Blueller and Phillips 1991). Water
may be a key factor contributing to the low yield stress of Hagth'’s lithosphere (e.g., Kohlstedt
et al. 1995), differentiating the Earth’s evolution fronatlof Venus. As it is difficult for one-plate
planets to have plate tectonics, other possibilities sschmgpact (Hansen 2007; Ruiz 2011) or
transition from magma ocean convection (Solomatov 2004keyret al. 2014; Solomatov 2015)
may be viable candidates for the origin plate tectonics.

The properties affecting the critical yield stress andiic coefficient change with time. One
of them is internal heating, which decays with time and cleartge interior temperature. The criti-
cal yield stress can also be related with the change in rggaelith time through more complicated
models such the damage theory (e.g., Bercovici and Ricat@)2Mh the future it might be helpful
to investigate the connection between the parameters idadhmge theory and the critical yield

stress, such that at some point during the planet’s histdsgligction initiation could be easier.
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Figure 4.2 Incipient subduction in the sub-cell that is npyenhe to subduction in a long convective
box. The cold blue lid starts to subduct into the hot intemared color. The magenta color in the
lid represent parts that have reached the yield stress.
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Figure 4.4 Ratio of yield stress for Arrhenius viscosity batt for exponential viscosityr, =
Ty.erArr/ Tyerexp @A Ry = 7, a0 /Ty 0 e @S @ function of Arrhenius viscosity contrast normal-
ized to exponential viscosity contradtn,,,/ exp(f). The ratioAna,,/exp(f) depends on the
surface temperaturg,, and it can go up to many orders of magnitudé&fis low. Asymptotically
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Wong and Solomatov (2015).

Table 4.1 Model Parameters

Parameter Notation Value
Thermal expansion coefficient a 3x107°
Reference density £0
Temperature T
Lid slope A
Aspect ratio a
Depth of convecting layer d
Thickness of lithosphere 0o
Thermal diffusivity K 107 m? st
Reference viscosity o 10 Pas
Thermal conductivity k SWmtK!
Activation energy (diffusion creep) F 375 kJ mot!
Gas constant R
Interior temperature T; 1700 K
Velocity vector u
Unit vector n
Pressure perturbations 2
Temperature perturbations T’
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Table 4.2 Comparison between critical yield stress prediftom theory and that obtained from numerical experimfamtsme depen-
dent cases with = 4. The characteristic aspect ratio of sub-cells in numeggakriments are calculated inversely from the observed
Ty.er ANAT,

y,er®

constant, constantr,

Ry An max.a Ty.cr avg.a Ty.cr max.a Ty er avg.a Ty er method
108 10° 1.46 1.39x107 0.64 353 x10° 1.35 4.09x10® 0.67 1.47 x 10® theoretical
0.79 5 x10° 0.77 1.8 x10® numerical
108 10" 0.88 4.76x10° 0.43 1.46 x 108 1.0 1.57 x 108 0.44 4.83 x 10" theoretical
0.66 3 x10° 0.63 8x 10" numerical
108 108 1.2 6.71x105 0.8 3.39x105 149 1.79x10% 0.8 7.22x107 theoretical
0.92 4.25 x 108 0.93 9x10" numerical
3x10% 105 0.742 1.49x 10" 0.34 3.94 x 108 1.45 1.98 x 10° 0.35 2.45 x 10® theoretical
0.59 107 0.64 6x10® numerical
3x10% 10" 0.86 1.53x 10" 0.35 341 x10° 0.86 5.5 x 108 0.36 1.58 x 10® theoretical
0.67 107 0.69 4.5x10® numerical
3x10% 108 0.422 3.85x10% 0.26 1.67x10° 0.34 923x10° 0.25 5.81x 107 theoretical
0.42 3.8 x 10° 0.39 1.1 x10® numerical
10 106 0.398 1.95x 10" 0.19 5.51 x 108 1.47 1.01 x 10 0.23 6.74 x 10® theoretical
0.43 2.2 x 107 0.45 1.8 x10° numerical
10° 10" 0.351 1.27 x 107 0.2 495x10° 0.35 7.54x 108 0.2 3.32x10% theoretical
0.32 1.1 x107 0.4 9x10®  numerical
10° 108 0.656 2.99 x 107 0.22 4.89x10° 0.41 6.08x 10® 0.22 2.46 x 10® theoretical
0.4 1.3 x107 0.41 6x10® numerical




Table 4.3 Power law coefficients in scalings of differentgmaeters with Ra, aspect ratiapnand
Frank-Kamenetskii parametéfrom Wong and Solomatov (2015)

Parameter c¢in 10¢ Ra a 0
0o -0.26+-0.10 -0.22+0.01 0.27£0.04 1.12+0.06
Ty,er 0.40+0.22 1.09+£0.03 1.67£0.09 -1.49+0.14
T 2.34+0.32 1.34+£0.04 1.45+0.14 -3.47+0.21

y,cr

Table 4.4 Parameters for terrestrial planets

Earth Venus Mars Mercury
Depth of convective layerj km 350-700 350-700 850-1700 350-660
Gravitational acceleratiory m/s’ 9.8 8.9 3.7 3.8
Density o) kgP 3300 3300 3500 3500
Surface temperaturdy) K 300 733 270 442
Surface heat fluxg) mwW/m? 40 20 30 30

Table 4.5 Estimates of critical yield stress.. and friction coefficieny.,, for terrestrial planets.

Ty.er (MPQ)
a=0.2 a=1
Earth 3.7-9.8 65-170
\Venus 29-7.7 51 -140
Mars 29-7.8 52 -140
Mercury 0.9-2.2 16 -39
Her

Earth 0.005-0.016 0.11-0.32

Venus 0.006-0.016 0.11-0.33

Mars  0.002-0.006 0.043-0.13
Mercury 0.001-0.004 0.027-0.072
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Chapter 5

Conclusions and future directions

Initiation of plate tectonics on a planet operating in tregsiant lid convection regime is difficult.
Although sublithospheric convection is capable of indgdarge stresses in the lithosphere, es-
pecially towards the surface, to mobilize the lithosphdestrc yielding has to penetrate through
some depths into the lid. To do so a very low yield stress isired since the stresses at depth
are small. We quantify the extent of this depth by examiniregdtress distribution in the stagnant
lid. Our scaling laws indicate that the physical conditiamsthe terrestrial planets in the inner
Solar System gives a small value of critical yield stressiclvimeans that the existence of plate
tectonics is not favored as the yield stress of the lithospiseoften too high for these planets. This
further confirms previous theories (e.g., Solomatov 20044 the natural state of a planet is to be
covered with a stagnant lid.

Plate tectonics initiation may also depend on chance. Guoulations have shown that even
if the physical parameters are in the range that allow sarfaobilization, the timing is a vari-
able outcome depending on the initial conditions and elaiudf the system. As the evolution
of the convection system is sensitive to the initial comaii, the timing of subduction initiation

is a random property of chaotic convective systems. Altthoing scaling laws provide insights
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into favorable physical conditions for the initiation ofapé tectonics from stagnant lid convec-
tion, the occurrence of plate tectonics may be unpredietablthe range of subduction initiation
time resulting from the chaotic nature of strongly time-elegent convection can exceed planetary
lifetimes.

The problem of plate tectonics initiation is far from beirmdv@d. Here we are only considering
one possible scenario: initiation from a sub-solidius st lid planet. We mentioned in the
previous chapter the possible exogenic origins such asdmspar transition from magma ocean
convection. We still do not understand one of the most bassstipons: why does the Earth have
plate tectonics? There are also other obstacles to platates as well, such as the compositional
buoyancy that hinders plate motions (e.g., Sleep and Wiri#182). In the problem of lithospheric
strength addressed here, there are still complexitiegirh#ology, such as dependencies on stress,
grain size, and pressure, that need to be taken into accduns work presents a theoretical
approach to analyze the mechanics of the lithosphere inecbion systems. This can be applied
to investigate more realistic rheologies, which will beekelnt to both terrestrial lithospheres and
planetary bodies with different materials. For example, ttheoretical analysis can provide an
assessment for the recent hypothesis of subduction on &E{kKgitenhorn and Prockter 2014),
the potential of subduction zones developing on Venus itufea such as coronae and rifts (e.qg.,
Schubert and Sandwell 1995), and studying pressure effgéittse pertinent to understanding the

evolution and the possibility of plate tectonics on supartks.
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