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Nuclear magnetic resonance (NMR) has shown its ability to be a very informative analytical

technique due to the ability to measure very small changes in the energy splittings due

to the nuclei’s local environment. However, this ability is hindered by the low sensitivity

of the experiment. Many methods have been postulated and implemented to enhance the

sensitivity of NMR experiments; one of which is optically pumped NMR (OPNMR). In this

dissertation, the usefulness and potential applications of OPNMR are presented. First, a

doubly resonant OPNMR probe was fabricated in order to complete more advanced NMR

techniques while optically pumping the semiconductor sample. OPNMR was then shown

to be very beneficial and accurate for measuring light hole transitions in semiconductors,

which are typically difficult to observe using traditional techniques. The optical pumping

behavior of a sample (CdTe) has been debated, but was measured here in order to obtain

the expected trends and behavior. Discussion of the potential uses of optically oriented

isolated spins pairs is presented and the characterization of such spin pairs is implemented,

which included the first experimental report of a postulated NMR sequence (a version of
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spin echo double resonance). An Al2O3/GaAs interface was studied by OPNMR in order to

observe the properties for the first time and the measured polarization was much higher than

previously reported. Lastly, molecular dynamic and density functional theory calculations

were used collaboratively to provide an accurate model for amorphous alumina.
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Chapter 1

Introduction

Nuclear magnetic resonance (NMR) was discovered in 1938 by I. I. Rabi [1] and has since

become one of the most commonly used analytical techniques. The technique is unique in

that it provides nuclear isotope specific information on the atomic level. While NMR is most

commonly performed on solution samples, solid-state NMR has seen many advancements

which have led to the ability to determine chemical structures, bond distances, motion and

many other molecular properties [2, 3]. However, the signal-to-noise ratio, especially for

the typically broader solid-state NMR lineshapes (some more than 100 times broader than

liquid-state spectra), has limited NMR to bulk samples with at least ≈1017 nuclear spins

(i.e., magnetic moments).

The NMR signal-to-noise ratio is governed by the energy level splitting between nuclear spin

states. Nuclear spin states are separated into different energy levels in a magnetic field based

primarily on the Zeeman interaction. The populations of the these states are dictated by

Boltzmann statistics; because the energy splittings are small (typically 10–900 MHz), the

population difference between the states (and thus the signal-to-noise ratio) is extremely

small.

↑/↓ = e(γh̄B0/kT) (1.1)
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describes the population ratio of two nuclear spin states (↑ and ↓) separated by the Zeeman

interaction where γ is the magnetogyric ratio, B0 is the applied external magnetic field, and

T is the sample temperature [2]. The most common methods of increasing signal is with

manipulation of the Boltzmann polarization by increasing the energy splitting (i.e., higher

magnetic fields) and/or decreasing the sample temperature. The polarization of a spin-1⁄2

nuclei is defined as P = ↑−↓
↑+↓ , where ↑ and ↓ are the populations of the nuclear spins when

they are aligned or counter-aligned with the magnetic field. However, these methods, which

rely on a Boltzmann distribution, have not been able to achieve polarizations in the tens of

percents yet, due to technological limitations.

Many other NMR based techniques have been developed to achieve nuclear spin polarization

values much greater than the Boltzmann polarization, most of which take advantage of the

electron spin states Zeeman splittings which are (typically) much larger than the nuclear spin

state Zeeman splittings. One technique specifically is optically pumped NMR (OPNMR).

OPNMR, which has been implemented in many different nuclear spin systems, relies on laser

excitation of electron states. By taking advantage of the optical selection rules, extremely

high polarizations of the electrons can be achieved on the nuclei through the hyperfine

interaction, allowing for faster NMR detection or detection of fewer nuclear spins (due to

less signal averaging needed and faster growth of the polarization). Optical pumping has

typically been implemented on noble gases and semiconductors [4]. The focus here is on the

optical pumping of electronic states in semiconductors.

OPNMR in semiconductors has been investigated thoroughly since its first discovery in

1968 by George Lampel [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Recently, our lab has focused on attempting to understand the spin physics underlying

OPNMR phenomena by applying the technique to samples which have not yet been studied
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by OPNMR. This dissertation will cover the design and fabrication of the two channel

OPNMR probe used for most of the research presented here. In addition, OPNMR studies

on a GaAs quantum well, a variety of CdTe samples, and an Al2O3-GaAs interface will be

presented and discussed. Lastly, calculations of the NMR parameters for amorphous Al2O3

were completed with potential to be used in future OPNMR studies.
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Chapter 2

Basic Concepts

2.1 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) uses magnetic fields to split degenerate nuclear energy

states into two or more energy levels for nuclear isotopes that have a magnetic moment.

The z−component of the spin states align either parallel or anti-parallel with an external

magnetic field and are then manipulated via radio-frequency (RF) pulses. The resulting

signal contains chemical and physical information about the observed nuclear spin. A brief

overview of the theory of NMR will be covered in this section but for a more in depth review

in NMR, please refer to books by C. P. Slichter and others [2, 3].

2.1.1 Spin Quantum Number

As mentioned, NMR requires the nuclear isotopes of interest to have a magnetic moment.

This magnetic moment, or spin, determines how the nuclear energy levels interact with

magnetic fields via the Zeeman interaction. Nuclei with spin have a non-zero spin quantum
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number, I (which determines the number of nuclear spin states). For a nuclei with spin I,

there will be (2I +1) energy levels in a magnetic field; mI = -I, -I +1, . . . , I -1, I. Each of the

mI spin states have a different energy, where

EmI = −mIh̄γB0 (2.1)

is the energy of the mI spin state due to the Zeeman interaction which depends on the

magnetogyric factor (γ) and the external magnetic field (B0). γ is a constant value which

is nuclear isotope specific. The separation of spin state energy levels due to the (typically)

dominant Zeeman interaction is determined by

∆E = h̄γB0 (2.2)

for the allowed single quantum transitions (i.e., ∆mI = ±1). NMR is able to probe these

energy splittings using RF pulses. Note that quadrupolar nuclei (I > 1/2), will have multiple

allowed transitions, but will all be at the same energy, if only the Zeeman interaction is

considered.

2.1.2 NMR Hamiltonian

If only the Zeeman interaction were considered, we would observe one peak per nuclear iso-

tope, making it difficult to obtain information about the chemical compound. However, there

are many other interactions perturbing the Zeeman interaction which allow the extraction of

more chemical and physical properties. The total NMR Hamiltonian (ĤNMR) is the sum of

multiple, interaction-specific Hamiltonians which shift and sometimes even further split the

nuclear spin energy levels and thus, change the allowed transition energies. The full nuclear
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OPNMR Hamiltonian can be described by

ĤNMR = ĤZ + ĤD + ĤCS + ĤJ + ĤQ + ĤHF + ĤRF . (2.3)

The first term in the full OPNMR Hamiltonian, ĤZ , is the Zeeman interaction responsible

for breaking the degeneracy of the nuclear energy states, as discussed above. It is typically

the dominant interaction present and thus determines the precession frequency, known as

the Larmor frequency. The Zeeman Hamiltonian is [3]

ĤZ = −γh̄B0ÎZ , (2.4)

where ÎZ is the spin operator in the z-direction. The energy resulting from the Zeeman

interactions is thus the same as shown in equation 2.1.

The dipolar Hamiltonian (ĤD) describes the through space magnetic interaction between two

nuclei. When the nuclei are different isotopes, they are denoted I and S. The heteronuclear

(I · S) dipolar interaction Hamiltonian is given by [2],

ĤD =
γIγSh̄

2

r3
(1− 3 cos2 θ)ÎZŜZ (2.5)

to first order, where r is the distance between the two nuclei, γI and γS are the mangetogyric

ratios for isotope I and S (respectively), θ is the orientation of the internuclear axis with

respect to the magnetic field, and IZ and SZ are the spin operator in the z-direction for each

isotope. The strength of the dipolar coupling interaction in rad/ sec is [23]

ωD(θ) = ±γIγSh̄
2r3

(3 cos2 θ − 1). (2.6)
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For the experiments presented here, heteronuclear dipolar coupling will be much stronger

than homonuclear coupling because in our samples, where there are two types of atoms,

the atoms of one type are surrounded by atoms of the other type. Thus the 1/r3 dependence

greatly decreases the strength of the homonuclear dipolar interactions. In the samples studied

by OPNMR here, the heteronuclear dipolar interaction causes a splitting of the energy levels,

and because this interaction is usually the dominant mechanism, the broadening of the NMR

spectra is typically governed by this interaction.

The third term in equation 2.3, ĤCS, describes the chemical shift interaction. A common

way to think about chemical shifts is by the amount of magnetic shielding the electrons

surrounding the nucleus provide based on the molecular surroundings. The shielding due to

the electrons, σ, is a second rank tensor (designated by the use of two bars) and thus leads

to an orientation dependence of the chemical shift interaction with respect to the external

magnetic field. The new effective external magnetic field experienced by the nucleus is [2]

Beff = B0 − σB0. (2.7)

The shielding will have an isotropic and anisotropic portion. If σxx = σyy = σzz as found

in the cubic crystals studied here by OPNMR, the chemical shift anisotropy is zero. The

isotropic portion of the shielding determines the shift in resonance frequency. In OPNMR,

the NMR spectra are typically not referenced since the structure and chemical shifts of the

samples are already well known and are comprised of a single nuclear site.

Similarly, the fourth term, ĤJ , is a second rank tensor and describes the J- (or indirect)

coupling between two nuclear spins. This coupling mechanism occurs through the bonding

electron spins between two nuclei rather than directly through space [2]. The J-coupling
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contains an isotropic and an anisotropic component [24]. The anisotropic portion (also

known as the pseudo-dipolar interaction) has an identical (1 − 3 cos2 θ) angle dependence

to the dipolar interaction, making it difficult to distinguish between these two interactions,

which lead to line splittings. The change in the nuclear spin state energies due to the J

interactions is [25]

∆E =
[
1

3

(
2J⊥ + J‖

)
− 1

3

(
J‖ − J⊥

)(
1− 3 cos2 θ

)]
mSh̄ (2.8)

where mS is the spin state of the J-coupled nuclei, J‖ is the J interaction strength along

the bond, and J⊥ is the J interaction strength perpendicular to the bond. This results in

a splitting of the lineshape that is resolvable if the J-coupling is relatively strong compared

to the other non-Zeeman interactions, which is typically only the case in solution NMR.

J-coupling has proven to be important in one of the systems studied here, and thus will be

discussed with and without optical pumping in chapters 6 and 7.

The fifth term in equation 2.3, ĤQ, corresponds to the quadrupolar interaction for nuclei

with spin I > 1/2. A nuclear quadrupole moment interacts with an electric field gradient

(EFG) according to [26]

ĤQ =
1

3
ωQ{3Î2

Z − I(I + 1)} (2.9)

ωQ =
3

4

e2qQ

2I(2I − 1)h̄
(3 cos2 β − 1 + η sin2 β cos 2α) (2.10)

to first order, where ωQ is the quadrupolar coupling frequency where eQ is the nuclear

specific electric quadrupole moment; eq = VZZ , the largest component of the EFG; η is the

asymmetry of the EFG; and β and α are angles describing the orientation of the EFG with

respect to the magnetic field. For the zincblende structures studied here, VXX = VY Y =

VZZ = 0 for the perfectly symmetric zincblende unit cell. However, any perturbations to the
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cubic crystal structure will result in a non-spherical EFG and thus a non-zero quadrupolar

interaction as discussed in Chapter 8.

ĤHF , the hyperfine interaction, describes the coupling between unpaired electron spins and

nuclear spins. In a perfect semiconductor, all electrons are spin paired, resulting in no

hyperfine interactions. However, when the semiconductor is illuminated with laser light, an

unpaired electron is created in an excited state from which it can couple to nuclei through the

hyperfine interaction. The hyperfine interaction is composed of two parts, a Fermi contact

portion and a through-space dipolar portion. The full Hamiltonian is [12]

ĤHF =
[
− 8π

3
h̄2ν0γIγS|ψ(r)|2I · S

]
+
µ0γIγSh̄

2

4πr3

[
3(I · r)(S · r)

r2
− I · S

]
. (2.11)

The first portion of the equation describes the Fermi contact interaction which depends on

the unit cell volume (ν0) and most importantly, the expectation value of the electron wave

function at the nuclear site (|ψ(r)|2). The second portion of equation 2.11 is the dipolar term

and is similar to that described in equation 2.5. The Fermi-contact hyperfine interaction is

believed to be the dominant interaction for excited electrons in s-orbital-type states while

the dipolar hyperfine interaction is believed to be the dominant mechanism for non-s-type

states [5].

The last interaction in the NMR Hamiltonian is one of the most important since it describes

how the nuclear spins interact with applied RF pulses (ĤRF ). NMR utilizes RF pulses to

perturb the nuclear spin system and acquire the NMR signal. The RF Hamiltonian is [2]

ĤRF = −γIh̄B1e
−iωZtÎZ ÎXe

iωZtÎZ . (2.12)
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The strength of the magnetic field, B1, from the RF pulse will cause the nuclear spins to

precess about the direction of B1 for duration t at a precession frequency of ωZ . This is

typically done on resonance (∆E = h̄ωRF ) to the energy splitting by sending RF pulses

through a wire coil surrounding the sample.

2.1.3 Spin Precession and Detection

According to the vector model of NMR, the magnetic moment vector will rotate about the

effective magnetic field vector it experiences, keeping a constant angle between the two [3].

At equilibrium, the individual magnetic moments sum to create a bulk magnetization (de-

pendent on the number of nuclei and the polarization of the spins), which aligns with the

external magnetic field vector, B0, defined along the z-axis as shown in Figure 2.1. Typically,

strong (with respect to the non-Zeeman interactions) B1 pulses are applied perpendicular

to the magnetic moment in order to rotate the nuclear spin in a single plane (the xyplane);

these pulses are known as 90° pulses. After excitation, when the spins are in the xy-plane,

pulses may be applied along the magnetic moment in order to hold the magnetic moment

in place and thus not precess about weaker fields (known as spin-locking). The applied RF

pulses result in precession of the magnetic moment at a frequency (in Hz) relative to the

effective magnetic field applied, Beff according to [3]

ν0 = −γBeff

2π
, (2.13)

where Beff can be dominated by B0 (in the z-direction) or B1 (xy-plane). The typical NMR

experiment uses an RF pulse resonant with the precession frequency due to B0 (i.e., Larmor

frequency) to cancel B0 and create a large Beff in the xy-plane. Beff will then be in the
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xy-plane and rotate the spin during the pulse length, typically until the bulk magnetization

is rotated 90° into the xy-plane.

Figure 2.1: Basic vector model of NMR illustrating a 90° pulse after reaching equilibrium.
The solid red arrow on the z-axis represents the bulk magnetization at equilibrium. When
an on resonance pulse is applied, the spin precesses about B1 at a constant angle, following
the thin dashed arrow to the dashed red arrow on the x-axis. After the B1 pulse has stopped,
the spins will then precess about B0.

Once the spins are in the xy-plane, the RF pulse is typically stopped (B1 is removed) and

B0 again becomes the dominant magnetic field. The spin will then precess about B0 at

its characteristic frequency (typically tens to hundreds of MHz, depending on the nuclear

isotope and the magnetic field strength given by the Hamiltonian in equation 2.3). The

precession of the magnetic moments in the sample induces a current in the coil surrounding

the sample which is then detected by a spectrometer as a function of time resulting in a

signal known as the free induction decay (FID). The spectrometer mixes the frequency of

the pulse from the FID (in a simplified manner), indicating an on-resonance signal will have a

frequency of 0 Hz. The FID is then Fourier transformed into the frequency domain resulting

in the typical observed NMR spectra.
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2.2 Semiconductors

Semiconductors are materials which lie between conductors and insulators in terms of their

ability to conduct electricity. A materials ability to conduct electricity is dependent on

the structure of the electron energy levels in the sample. An isolated atom has the well

known 1s, 2s, 2p, 3s, . . . electron energy levels. However, when atoms are brought into close

proximity with each other, the well-known energy levels are split due to the Pauli exclusion

principle [27]. When multiple atoms are brought close to each other as in a crystal, the

isolated atomic levels are split/broadened into a continuum of electron energy levels, known

as energy bands. The electrons fill in the energy bands from lowest energy to highest energy

similar to the case of isolated atoms. For semiconductors, this results in a highest occu-

pied electron energy band (similar to the HOMO in molecular orbital theory) and a lowest

unoccupied electron energy band (similar to the LUMO) which are separated by ≈≤ 4 eV,

known as a band gap [27]. The filled band is known as the valence band and the unfilled

band is known as the conduction band. For insulators, the band gap is larger while in metals

(conductors), the conduction band is partially filled.

2.2.1 Charge Carriers

In order to conduct electricity, charge must be able to be moved by particles known as charge

carriers. The most well known charge carrier, the electron, has already been discussed above;

however, there is another charge carrier present in semiconductors known as a hole. A hole

is simply a lack of an electron where an electron should exist if the semiconductor were in

its lowest energy state. Holes act similarly to electrons and both can move throughout the

crystal lattice of the semiconductor. The main difference is a hole has a positive charge rather
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than the negative charge of the electron. Electrons and holes play an important role when

it comes to semiconductor devices as well as in the theory of optical pumping as discussed

in Chapter 3.

Since excitation of electrons has been mentioned previously, it is important to note that

a hole will be created when an electron is excited to a higher energy band. The electron

and hole will remain in the same area of the crystal, coulombically bound to each other as

an exciton, unless additional energy or potentials are applied. Many semiconductor devices

apply voltages to separate the electron and hole and move them through the crystal. In

addition, “hot” electrons (electrons excited with energy greater than the band gap) can

be created. These ”hot” electrons also have momentum, which needs to be considered for

OPNMR research. How these charge carriers move through the crystal is described by

electron energy band diagrams.

2.2.2 Band Diagram

Solid-state physicists have developed the k · p theory to describe energy bands, excitations,

and momentum of the charge carriers as a function of crystal direction. In order to do

so, the Hamiltonian which includes kinetic energy of the charge carriers, a local periodic

crystal potential, and a spin-orbit interaction must be taken into account [28]. The simplest

calculations are completed in k-space (reciprocal space) using wavevectors to derive the

energy of a single band [28]:

En(k) = En(0)− h̄2k2

2meff

, (2.14)

where En(0) is the original energy of band, k is the wavevector, and meff is the effective

mass of the charge carrier. The band energy as a function of k thus forms a parabola which
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depends on the original energy of the band. The curvature of the band is determined by the

effective mass of the charge carrier present in that energy band.

In reality, there are multiple energy bands rather than a single band. The bands typically of

interest are known as the split-off hole band, light-hole band, heavy-hole band, and conduc-

tion band (see Figure 2.2). For the direct-gap semiconductors studied in this dissertation, all

four bands are aligned in k-space at k = 0, also known as the Γ-point of the Brillouin zone in

k-space as shown in Figure 2.2. The valence bands are separated from the conduction band

by the band gap energy and the split-off-hole band is separated from the degenerate heavy-

hole and light-hole bands by the split-off energy. Also, since the light holes have a smaller

effective mass than the heavy holes (due to the spin orbit interactions of the different energy

states), there is a much larger curvature for the light-holes as a function of k. Excitations

of electrons from the valence band into the conduction band away from k = 0 must be from

equal but opposite values of k due to the conservation of momentum (i.e., the “hot” electron

and “hot” hole must have equal amounts of momentum but in opposite directions).

2.2.3 GaAs

In this work, two semiconductors were studied via OPNMR; the first being GaAs. It is

known as a III-V semiconductor due to it’s composition of column III and column V atoms

in the periodic table. GaAs has a cubic zincblende crystal structure with a lattice constant

of 5.65�A and a bond length of 2.45�A. The zincblende structure places both Ga and As in

tetrahedral geometries (≈ 109.5° bond angles), bonded to four of the opposite nuclei.

GaAs is a direct gap semiconductor. At room temperature (300 K), the band gap is 1.42 eV

but increases to 1.52 eV at the temperatures discussed in this work (≈ 6 K) [29]. Split-off

14



Figure 2.2: Band diagram for a direct gap bulk semiconductor. Eg is the band-gap energy
and ESO is the split-off energy.

energy (ESO) is typically ignored for OPNMR experiments due to the much larger photon

energies required to excite from the split-off band (0.34 eV additional energy [30]).

To observe the semiconductors and understand the spin physics governing the optical pump-

ing, the NMR parameters for the isotopes to be studied via NMR will be necessary. The

parameters of interest can be seen in Table 2.1. Notice that 100 % of Ga and As nuclei have

magnetic moments and are thus NMR active. They are also all quadrupolar nuclei, with

75As coupling the strongest to electric field gradients. All the magnetogyric ratios in GaAs

are positive; the largest being 71Ga.
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Table 2.1: GaAs NMR parameters.

Isotope Spin I Abundance (%)
Magnetogyric Ratio, γ Quadrupole Moment, Q

(x10−7 rad/(T s)) (x1028/m2)
69Ga 3/2 60.4 6.4389 0.17
71Ga 3/2 39.6 8.1812 0.11
75As 3/2 100 4.5961 0.29

2.2.4 CdTe

The second semiconductor studied via OPNMR was CdTe. It is composed of column II and

column VI atoms and thus is a II-VI semiconductor. Thus, the bonds in CdTe are more

ionic than those in GaAs. CdTe also has a cubic zincblende crystal structure with a lattice

constant of 6.48�A and a bond length of 2.81�A. Identical to GaAs, the zincblende structure

places each Cd and Te nuclei in a tetrahedral bonding geometry with four of the opposite

nuclei.

CdTe is also a direct gap semiconductor. At room temperature (300 K), the band gap is

1.51 eV and increases to 1.60 eV at our temperatures [29]. The split-off energy (ESO) for

CdTe is 0.93 eV [30].

The NMR parameters of interest in CdTe can be seen in Table 2.2. Notice the small per-

centage of nuclei with a spin. Less than 25 % of Cd and 8 % of Te nuclei are NMR active.

They are also all spin-1⁄2 nuclei and thus do not have a quadrupolar moment. In contrast to

GaAs, all the magnetogyric ratios in CdTe are negative; indicating alignment with the field

in the opposite direction when compared to GaAs.
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Table 2.2: CdTe NMR parameters.

Isotope Spin I Abundance (%)
Magnetogyric Ratio, γ Quadrupole Moment, Q

(x10−7 rad/(T s)) (x1028/m2)
111Cd 1/2 12.6 -5.7046 —
113Cd 1/2 12.3 -5.9609 —
123Te 1/2 0.87 -7.0576 —
125Te 1/2 6.99 -8.5087 —
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Chapter 3

Theory of Optical Pumping in

Semiconductors

With a general understanding of both NMR and semiconductors, we can now discuss the

theory behind the optical pumping of semiconductors. This theory will cover historical

experiments, polarization, optical pumping to create hyperpolarized electrons, and finally

the transfer of polarization to nuclei.

3.1 History

3.1.1 Optical Pumping in General

Optical pumping (OP) was first defined in 1950 by A. Kastler in reference to production

of non-equilibrium populations (with respect to thermal equilibrium) in atomic states [31].

The definition originated for the atomic absorption of circularly polarized light where the

angular momentum of a photon is encoded into the excited electron. Since then, optical
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pumping has expanded to encompass semiconductors and other samples. The findings from

Kastler, that polarized light allows selective excitation in Zeeman states, resulted in a Nobel

Prize in physics in 1966 [4]. Optical pumping research began to expand into two major

categories (nobel gases and semiconductors), once G. Lampel showed the ability to use

circularly polarized light to create non-Boltzmann populations in silicon in 1968 [32].

3.1.2 Optical Pumping in Semiconductors

Since the first OP experiment on semiconductors, performed by Lampel, further work has

been done to understand the theory and apply it to semiconductors other than silicon.

OPNMR has since been studied on GaAs, GaAs quantum wells, InP, CdS, and CdTe [12].

While semiconductor electron energies are described by bands, two approaches have been

used to understand the optical pumping physics using atomic-like states near the Γ-point

(k=0). The first approach uses excitation into impurity centers due to dopants and other

defects which would capture the spin-oriented electrons in atomic-like states [33]. However,

this method requires an understanding of the defect state(s) and its energy level(s) with

respect to the energy bands. The second approach, which is the focus of this dissertation,

assumes the optical excitation from valence to conduction bands will occur close to the

Γ-point where the bands can be modeled as atom-like states [31]. The results from this

assumption can be seen in Figure 3.1.

By exciting selective transitions and with different transition probabilities, electron spin

polarizations well above the Boltzmann equilibrium can be established. The theory leading

to the polarization will be discussed in Section 3.3.
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Figure 3.1: Atomic state approximation for direct gap GaAs and CdTe. At k=0 of the band
diagram, the conduction band states are approximated as 2S1/2 states and the degenerate
valence band as 2P3/2 states. The blue and red arrow illustrate the ∆mj = ±1 selection rule
of σ (circularly) polarized light.

3.2 Spin Orientation and Polarization

Spin polarization is a description of the orientation of the magnetic moments, and thus

populations of the spin states, with respect to the magnetic field. In order to comprehend

the effect of the optical pumping, an understanding of the unperturbed system must be

established first.

3.2.1 Thermal Polarization

The term “thermal” polarization refers to the nuclear or electron spin polarization matching

Boltzmann statistics at the experimental temperature. At thermal equilibrium (for both
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electron and nuclear spins), the resulting spin state populations are described by [2]

Nβ

Nα

= e
− γh̄B0/kT , (3.1)

where Nβ and Nα refer to the number of spins in the higher and lower Zeeman spin states

(following the allowed ∆ms = ±1 between spin states). The populations of the spin states

are thus modeled by an exponential with more spins in the lower energy spin state(s). Other

interactions in the full OPNMR Hamiltonian (Equation 2.3) are very small compared to the

Zeeman interaction, resulting in negligible changes in the spin state populations with their

inclusion.

Since the Zeeman energy splitting is small in NMR experiments (300 MHz=1.24µeV), kT of

the system will need to be similar in order to reach high polarizations. However, at T = 6 K

for the experiments presented here (≈60 MHz=0.25µeV), kT is still 517µeV. This equates

to the lower energy state having 1.000 48 times the population of the higher energy state (4.8

more spins for every 10,000 spins). The small difference in populations is ultimately one of

the biggest factors limiting the sensitivity of NMR.

In order to make the population differences a single comparable value, polarization must be

defined. Since high polarizations can be achieved via OPNMR, we can not use the stan-

dard “high-temperature approximation” to describe polarization. (The “high-temperature”

approximation assumes a linear distribution for the populations of spin states). Instead,

polarization for a Zeeman dominated interaction will be [34]

P = BI

( h̄ω0

kT

)
, (3.2)

21



where BI is the Brillouin function for spin I. For spin 1/2 electrons and nuclei, B1/2 = tanh x/2

which leads to

P = tanh
( h̄ω0

2kT

)
. (3.3)

For the example given above (T = 6 K and ω0 ≈ 2π60 MHz), the nuclear polarization would

be 0.024 % in a spin-1⁄2 system.

3.2.2 Non-equilibrium Polarization

Nuclear and electron spin polarizations can be perturbed to non-equilibrium distributions.

This deviation from equilibrium can be after any perturbation to the spin system such as an

RF pulse or optical pumping. The spin systems will then approach the thermal equilibrium

with a time constant of T1, known as the spin-lattice relaxation time. No matter the initial

polarization, the z-magnetization (proportional to polarization and number of nuclei) will

recover to equilibrium according to [3]:

MZ(t) = [MZ(0)−M0
Z ]e−

t/T1 +M0
Z . (3.4)

In this equation, MZ(0) is the initial magnetization immediately after perturbing the spin

system and M0
Z is the equilibrium magnetization.

For spin-1⁄2 particles, polarization can be defined as [12]

P =
↑ − ↓
↑ + ↓

(3.5)

where ↑ and ↓ describe the number of spins with such an orientation with respect to the

magnetic field. While Equation 3.5 is convenient, it becomes impossible to use on spins with
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I > 1/2 due the presence of more than two possible spin states. Instead, one approach is to

assume the populations of the 2I+1 energy levels are still described by an exponential with

a nuclear spin temperature, TN , different than that of the sample [35]. TN can then be used

to describe polarization by substituting for T in Equation 3.2. It is important to realize this

approach only describes the average spin polarization of the observed nuclei and fails if the

spin state populations cannot be approximated by an exponential.

3.3 Optical Pumping of Electrons

In optical pumping, electrons are the source of hyperpolarization (polarization above that of

thermal polarization). Thus, understanding the origin of the electron polarization is essential

to understand the resulting nuclear polarization. Basic theory assumes the semiconductor

electron energy bands are atomic-like states at k=0 as shown in Figure 3.1. Thus, for the

samples studied here, the valence band is comprised of mJ=±3/2 and ±1/2 states, while the

conduction band is comprised of mJ = mS = ±1/2 states. Excitation with unpolarized (or

linearly polarized, ∆mj = ±0) laser light between these states will result in equal populations

of spin up and spin down conduction electrons. When the populations are equal, known as

saturation (no bulk magnetization) of the unpaired electrons, it can result in nuclear spin

polarization enhancement via the optical Overhauser effect [6, 31, 32], where the maximum

nuclear polarization enhancement is proportional to γe/γN .
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3.3.1 Excitation with Circularly Polarized Light

While unpolarized light and linearly polarized light result in enhanced signal, the use of

circularly polarized light can achieve higher electron polarizations by taking advantage of

selection rules and transition intensities. Circularly polarized light, σ+ and σ−, carry plus or

minus one unit of angular momentum, respectively. The carried momentum impart selection

rules of ∆mj = +1 for σ+ and ∆mj = −1 for σ− [4, 5, 12, 31].

For example, with σ+ light shown in Figure 3.1, excitations can only occur from the mj =

−3/2 (heavy hole) and −1/2 (light hole) states to the mS = −1/2 and mS = +1/2 states of

the conduction band. However, it is important to note, the heavy hole-to-conduction band

transition has a three times higher transition intensity than the light hole-to-conduction band

transition [5]. The result is three electrons in an mS = −1/2 for every one in an mS = +1/2

state in the conduction band, resulting in −50 % polarization according to Equation 3.5. The

same logic can be applied for σ− light, resulting in 50 % polarization. However, this theory

only works at k=0 and assumes no perturbations to the energy bands such as magnetic field,

quantum confinement, strain, etc.

3.3.2 Electron Polarization

While the transition intensities can provide an estimate of the instantaneous polarization, the

recombination of the electrons with holes and the spin-lattice relaxation of the conduction

electrons must also be considered to determine the steady-state mean electron spin value,
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〈SZ〉σ∓. The expression for the expectation value is [12, 36]

〈SZ〉σ∓ =
〈SZ〉0

1 + τe
T1e

+
S0

1 + T1e

τe

(3.6)

where 〈SZ〉0 is the mean electron spin value after excitation, S0 is the conduction electrons’

mean thermal-equilibrium spin value, τe is the time constant for electron-hole recombination,

and T1e is the conduction electron spin-lattice relaxation time constant. Since electrons are

spin-1⁄2, the polarizations are equal to 2× 〈SZ〉0, 2× 〈SZ〉σ∓, and 2× S0. In addition, 〈SZ〉0

is equal to ±0.25 for σ∓ light using the theory above.

Additional perturbations (such as magnetic field, strain, and more) result in a much more

complicated 〈SZ〉, which can be calculated using sample specific parameters and experimental

conditions, as a function of photon energy. In addition, excitation not at k=0, where the

atomic-like states model is no longer applicable, can also occur and must be accounted for,

leading to a photon-energy dependent 〈SZ〉, as shown previously by our group [22]. The

calculations of 〈SZ〉 are difficult and time consuming due to the inclusion of the magnetic

field induced Landau levels [14] and electron energy band mixing [37]. These calculations

show 〈SZ〉0 is not a constant ±0.25, as predicted by the simple theory for an ideal system

presented earlier. In fact, the electron polarization can be seen to vary between ±100 %

polarization, depending on the sample and experimental parameters [14, 17, 37].

3.4 Nuclear Polarization

Ultimately in OPNMR, we detect the nuclear spins and their polarization dependent signal

intensity. However, thus far, only hyperpolarization of the electrons has been discussed.
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The polarization of the electrons transfer to the nuclei via the hyperfine interaction. Two

different models have been developed to explain the process of polarization transfer between

the hyperfine coupled electron and nuclei [12].

3.4.1 Hyperfine Interaction

The first model relies on donor impurity states, with a shallow well potential, and defects in

the crystal lattice to trap the excited polarized electrons. The electrons thus become localized

and transfer their polarization to the nuclei coupled strongly by the Fermi-contact portion

of the hyperfine interaction (Equation 2.11). The bulk of the semiconductor then becomes

polarized through nuclear spin diffusion and the weaker dipolar portion of the hyperfine

interaction. Due to the slower spin diffusion rate and dipolar coupling strength, the optical

pumping time would be limited by their time constants.

The second model relies on mobile electrons. Since the electrons are mobile, the electron

wavefunction overlaps with a given nuclei for a short period of time, diminishing the strength

of the Fermi-contact portion of the hyperfine interaction. This ultimately leads to a weaker

time-averaged coupling between the polarized conduction electrons and the nuclei and thus,

a slower signal build-up as a function of optical pumping time. This model does not rely on

a second mechanism to transfer the polarization to the semiconductor throughout the irradi-

ated volume since the time-averaged coupling strength would be the same for all irradiated

nuclei.

Both methods are plausible and have been shown to exist in a variety of different samples [12,

38, 39]. The results appear to be sample dependent and potentially a competition between

the two effects; the dominant one being determined by sample parameters.
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3.4.2 OPNMR Profiles

To help understand the spin physics governing the optically pumped enhancement of NMR

signals, integrated NMR signal intensities, for a given laser power, are plotted as a function of

photon energy, known as an “OPNMR profile” [12]. An example OPNMR profile can be seen

for a typical semi-insulating (si, nominal free charge carriers) GaAs semiconductor in Figure

3.2. The two circularly polarized light excitations result in signals opposite in phase due to

the opposite polarization of the electrons illustrated above. At energies below the band gap

energy (Eg), large signal enhancements are observed due to the low absorption coefficients for

excitations at the onset of absorption and to shallow defects. The low absorption coefficient

allows the laser to penetrate fully through the semiconductor and polarize a large number of

nuclei. At the band gap, absorption increases greatly, limiting the penetration depth of the

laser and polarization, resulting in a smaller number of polarized nuclei and a diminished

NMR signal. Above the band gap, oscillations are observed due to the oscillatory absorption

created by Landau levels, where the electrons form cyclotron orbits, affecting their energy

levels [12, 14]. Overall, the OPNMR profile allows for some understanding of the physics

governing the NMR enhancement.
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Figure 3.2: Sample OPNMR profile for a typical semi-insulating (si) GaAs semiconductor
wafer. The red dashed line represents the σ− NMR signal intensity and the blue dash-dot
line represents the σ+ NMR signal intensity. The characteristic trends are discussed in
Section 3.4.2.
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Chapter 4

NMR Hardware and Optical

Equipment

In order to run OPNMR experiments, a large assortment of equipment is necessary. The

entire apparatus for simultaneous OPNMR and ODNMR detection can be seen in Figure

4.1. The laser/optics table, cryostat, NMR magnet, NMR spectrometer and single-channel

OPNMR probe were designed and built by previous graduate students. The optics table,

cryostat, NMR magnet and probe were designed in a single horizontal plane in order for easier

alignment of the laser and collection of photoluminescence from electron-hole recombination.

4.1 Janis Horizontal Cryostat

For optimal OPNMR enhancement, the sample space needs to be cooled to very low tem-

peratures (typically less than 10 K). By doing so, we increase the relaxation times of the

excited electrons and nuclei, as well as “freeze-out” phonon modes. To do this, we employ a

helium recirculating cryostat which allows for continuous experiments without the need for

29



Figure 4.1: Experimental setup for the combined OP/ODNMR apparatus. The optical
control and detection is completed on a non-magnetic aluminum laser table. Measurements
at two magnetic fields are possible via Oxford superconducting magnets. The cryostat and
probe can be moved between the two magnetic fields where a Tecmag spectrometer is able
to control the RF and measure the NMR signals.
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liquid helium. Temperature is regulated during experiments through the use of a Lakeshore

340S temperature controller coupled with a Janis SHI-950 exchange gas cryostat utilizing

a Sumitomo cold-head (RDK-415D, 1.5 W cooling power at 4.2 K). Exchange gas cryostats

work by mounting a sample into a evacuated chamber which is then filled with helium gas to

form a thermal link between the sample/probe and the refrigerator to exchange heat. The

Janis SHI-950 system is connected to a helium compressor via insulated gas lines that run

to the attached cold head on the cryostat, forming a closed loop circuit. The water-cooled

compressor first pressurizes the helium gas, before the cold head expands the gas to cool the

sample space. The expanded gas then returns to the compressor to repeat the process. A

copper strap is attached to both the sample space and the cold head, thermally connecting

the two, allowing the sample space, exchange gas, and thus the sample to reach the desired

temperature.

Temperature stabilization of±0.02 K was routinely achievable at a temperature of 6 K for low

to medium laser powers (Plaser < 200 mW) under continuous-wave irradiation over periods

of tens of minutes and up to hours. The Lakeshore 340S temperature controller employed a

Cernox thin film resistance sensor to detect the temperature, which is unaffected by magnetic

fields and has options to reach down to 100 mK. The temperature controller was capable

of varying the temperature of the sample space (with the NMR probe in place) over a

range of 5.5–300 K through the use of a resistive heater embedded in the side of the probe

chamber. The sample/probe chamber was kept thermally isolated by vacuum chambers and

with metallized biaxially-oriented polyethylene terephthalate (polymer) sheeting to provide

radiation shielding for the cryocooler as described in the Janis product catalog for the SHI-

950 series refrigerator systems.
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The end of the cryostat inserted into the magnet bore was fitted with a series of three windows

to provide optical access to the sample. The innermost window was epoxy-mounted strain-

free in a flange which was clamped with an indium wire seal to the body of the inner chamber.

The middle and outermost windows not in contact with the sample space were mounted using

O-rings, as they were isolated from cryogenic temperatures. A vacuum pressure of less than

30µtorr in the outer vacuum chamber was required to achieve a temperature of 5.5 K. To

obtain these pressures, the system was evacuated using a Varian V-70 turbo molecular pump

backed by a Varian SH-110 oil-free scroll pump.

Cool down of the Janis cryostat requires ∼3 h to attain the desired temperature after evac-

uation in the horizontal orientation. Sample changes were possible while the system was

running, by flowing helium gas over the top of the probe chamber to nominally prevent air

from entering. The internal temperature must be raised to ∼170 K before the probe could

be removed, to prevent solidification of gaseous contaminates on the probe body and in the

sample space. However, re-cooling the system only requires about an hour subsequently.

Occasionally, a small amount of condensation built up on the outer optical window at the

end of the cryostat, from the outer cryostat body conductively cooling over periods of hours.

To prevent this from occurring, a continuous stream of dry compressed air is flowed into the

bore of the magnet aimed at the window whenever the cryostat was in operation.

4.2 Optical Equipment

The optical path originates with a Spectra-Physics Millenia diode laser which outputs 532 nm

light up to 12 W of power. The Millenia is used to pump two separate ring lasers, a Coherent

899-21 Ti:Sapphire laser (used for most experiments here) and a Sirah Matisse DS laser. The
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ring laser used in an experiment is selected by a flipping mirror to direct the laser into one

of the two continuous-wave lasers. A power of 10 W was typically used to pump the two

continuous-wave lasers, resulting in ≈2 W of power for a fully aligned laser. The Coherent

899-21 allowed for a tunable wavelength range of 725–1000 nm with an unlocked linewidth of

30 GHz (not locked to the reference cavity). The Sirah Matisse laser has a wavelength range

of ≈550–1000 nm with and unlocked linewidth of ≈ 20 MHz depending on the dye used in

the laser.

From the two continuous-wave lasers, which are linearly polarized, the laser beam is directed

through a half-wave plate to change the orientation of the linear polarization with respect to

the beam splitter cube the laser beam is directed into. The fraction of linear light polarized in

the vertical direction is directed to a Bristol wavelength meter to determine the energy of the

photons, while the other fraction of linear light polarized in the horizontal direction continues

on towards the sample. The combination of the half-wave plate and beam splitter cube allows

for control of the laser power reaching the semiconductor. The optical path continuing

towards the sample then goes through a focusing lens in order to have an ≈2 mm beam

diameter at the sample. A shutter controlled by TTL pulses from the NMR spectrometer

allow for control of timing for when the laser can optically pump the sample. Lastly, the

linear polarized light passes through a quarter wave plate or a liquid crystal retarder (LCR,

which can be controlled by the spectrometer as well) in order to change the linear polarization

to one of the circular polarizations or an intermediate elliptical polarization.
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4.3 Pre-existing NMR Hardware

Two horizontal-bore magnets (98 mm bore) from Oxford Instruments are used individually

in experiments to probe the external magnetic field dependence (B0) at 3.0 and 4.7 T fields.

The field homogeneity is rated to less than ±10 ppm over a cylinder 80 mm long and 50 mm in

diameter (±3.75 ppm over 80 mm along the field axis). These sizes are much larger than the

samples size (even more so for the irradiation volume) of the semiconductor, and the field is

sufficiently homogeneous using cryogenic shimming. For example, 11B NMR was acquired for

BF3·O(Et)2 (l) in the 4.7 T magnet (Larmor frequency of 64.22 MHz) with this setup and had

a Lorentzian shaped resonance with a full-width half-maximum value of 65.1 Hz (≈1 ppm).

In addition, the magnets are both actively shielded, bringing the “5 Gauss line” (for safety) at

or inside the footprint of the magnets. This allow the other components affected by magnetic

fields (such as the Faraday rotators in lasers and the liquid crystal variable retarder) on the

optical setup to be located much closer to the magnets than without the shielding.

All the NMR hardware was controlled with a Tecmag Apollo spectrometer. The Tecmac

Apollo uses its own software, NTNMR, to communicate with a computer. The spectrometer

is able to control the RF amplifiers, the RF pulses (timing, phase, intensity, and shape), the

helicity of light following the LCR, the laser shutter being open or closed, and the signal

acquisition. A variety of amps (500–1000 W) and RF filters were used depending on the

experiment and nuclei of interest.

A single-channel tank circuit OPNMR probe was originally built for use with the cryostat.

It employed a typical 6–8 turn solenoid coil with a split between the middle turns to allow for

optical access to the sample. The primary limit to B1 power was the breakdown and arcing

of the tunable capacitors in the helium gas atmosphere. These issues could be overcome
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with more robust capacitors, however, B1 fields of ≈35 kHz (greater than necessary for our

typical OPNMR experiments) were able to be reached for the entire range tested of ≈28–

63 MHz. With the probe in place, the cryostat reached a base temperature near 5.5 K in

approximately 3 h and could be operated with a 200 mW laser load at a constant sample

temperature setting of 6.00± 0.02 K for many weeks at a time.

4.4 Two-Channel Probe Design

A two-channel static NMR probe was designed and built for use at cryogenic temperatures

(<6 K) in conjunction with laser irradiation for optically-pumped NMR (OPNMR). Since

the single-channel probe was able to reach the desired temperatures, many of the design

concepts were carried over to the two-channel probe. A single NMR cable will be used to

send the RF down to the doubly resonant circuit in order to limit the thermal connection

to room temperature. Pulse sequences for the two-channel probe were configured to test the

probe performance and in order to take advantage of the polarization from optical pumping

while measuring various NMR spectra. Example two-channel OPNMR experiments include

decoupling and cross polarization on 113Cd and 125Te in a crystalline CdTe wafer.

All of the designs for each piece of the probe can be seen in Appendix A.

4.4.1 Design of Probe Backbone

The top of the two-channel probe was designed using the blank 3” stainless steel sanitary

tube solid end cap to insure a proper seal at the top of the cryostat (Figure 4.2). Four 1
8
”

NPT threaded holes were added in a 1” square for the accommodation of up to 4 tuning rods
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and their respective knobs using Swagelok Ultra-Torr connectors. In the middle of the top

cap, a fifth 1
8
” NPT threaded hole was added for the addition of an optical fiber or electrical

connections for future experiments. One of the outer NPT holes and the middle NPT hole

are closed with NPT plugs since they are not necessary for the circuit presented in this paper

which only requiring three tunable capacitors. Outside of the NPT holes, two hermetically

sealed BNC adapters were added (only one of which is necessary). On the bottom face of the

top cap, four threaded holed were added in a 11
4
” square pattern for the long brass support

rods to screw in.

Brass support rods (1
8
” diameter) were fabricated to reach the “sweet spot” of the magnet.

The brass support rods screw into the top cap. The bottom portion of the rods are also

threaded in order to use nuts to hold the probe head in position (the portion of the probe

with the RF circuit). Due to the small diameter of the brass rod, 4 support rods are included

in the design in order to support the weight.

Six brass baffles were added to prevent the convection of the cold helium gas toward the top

cap and to add support to the probe. All six brass baffles are hard soldered in place above

the cold strap of the cryostat, separated by roughly 3”. Four extra holes and a slot were cut

out to allow passage of the tuning rods, the NMR coaxial cable, and any future additions

that will run the length of the probe. The baffles are rotated with respect to each other

to prevent a straight radiation path to the top cap. Directly below the brass baffles (and

still above the cold strap of the cryostat) is a G10 fiberglass baffle to provide a tighter seal.

Similar to the brass baffles, the G10 baffle has four holes for the support rods and four holes

for the tuning rods. Instead of a slot, a 1
5
” hole was cleared for any cable or wire passing

through to the probe head.
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Figure 4.2: Designs for the top cap and baffles of the two-channel probe. a. The top of the
top cap. b. The bottom of the top cap. c. The brass baffles. d. The G10 baffle.

The probe head, shown in Figures 4.3 and 4.4, consists of four main parts: a top copper

block, a G10 fiberglass block, a bottom copper block, and a copper can that encases these

blocks. A copper can slides over the entire probe head in order to protect the electronics

and make the probe more robust. Screws are used to clamp the copper can to the top and

bottom copper blocks. The G10 portion is a ring in the probe head to allow capacitors to

float from ground. Another option for the capacitors is in the bottom copper block which

would ground them. The bottom of the sample mount holders are attached by a screw into

the bottom copper block, facing away from the top cap. Each sample mount holder has

two portions (a top and bottom) which are specifically designed to hold our sapphire sample

mounts. The bottom and top portions of the sample mount holder are used to clamp the

sample mount in place. The sample rods are cylindrical on one side and a half cylinder on
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Figure 4.3: Designs for the probe head of the two-channel probe. a. The top copper block.
b. The outer copper can. c. The G10 block. d. The bottom copper block.

the other (to provide a flat surface to mount the sample). These mounts force the sample to

be normal to the magnetic field and laser.

In order to tune the resonance circuit at the bottom of the probe, a variable capacitor with

a tuning knob/rod assembly is necessary. Short brass rods were fabricated to pass through

and be sealed by the Swagelok Ultra-Torr vacuum fittings in the top cap. Small tuning

knobs were added to the top of the brass rods outside of the probe for easier turning of the

capacitor. The bottom of the brass rods are then fastened to the G10 tuning rods using

brass couplers. The couplers are small brass cylinders bored out to fit the short brass rod,

the G10 tuning rods, and the capacitors and are set in place using set screws. Two lengths

of tuning rods are necessary due to the different lengths from the top cap to the G10 and
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Figure 4.4: The full two-channel probe. a. The final design with the parts assembled. Parts
not shown include the capacitor tuning assembly and the sample mounts. b. The finished
product with all components including the circuit.

bottom copper blocks. The tuning rods were made out of G10 fiberglass to help reduce the

cooling load and eliminate a thermal path to room temperature outside the cryostat. The

bottom of the tuning rods were machined to fit into the tuning groove of the Voltronics 2 kV

cryogenic capacitors (1.5–40 pF, NMAT40HVEK) to prevent the capacitor from slipping in

the brass couplers when turning the tuning rods.

The probe head is attached by sandwiching the top and bottom copper blocks with nuts

on the support rods. The copper and G10 blocks are kept apart by plastic spacers on the

support rods. This design is able to reach temperatures below 6 K with the Janis recirculating

cryostat even in the horizontal orientation. The final drawing and probe can be seen in Figure

4.4.

39



Figure 4.5: The two-channel NMR circuit located in the probe head. L1 is the NMR coil and
L2 is the idler coil. The two inductors form LC circuits with their corresponding capacitors.
The LC circuits are capacitively coupled by the C3-C5-C6 network. C4 is the matching
capacitor tapped to the idler coil.

4.4.2 Electronic Circuit

The two-channel circuit (Figure 4.5) is based on a previously reported design[40, 41]. The

circuit has two LC circuits resonant at the higher frequency of the probe. One of the LC

circuits contains the NMR coil (L1) while the other uses an idler coil. The NMR coil is a

≈ 0.5 cm solenoid coil with a ≈ 2.5 mm gap in the middle to allow the laser to pass for a

total length of ≈ 0.75 cm. A variable capacitor (C1) across the NMR coil (L1) was used for

more precise tuning of the higher frequency and to adjust for any changes due to cooling.

The capacitors in the two LC circuits (C1 and C2) are connected through a floating tunable

coupling capacitor section (C3, C5 and C6). The tunable coupling capacitor (C3) in the

C3, C5, C6 section controls the frequency separation of the lower frequency (νhigh − νlow)

resonance. The C5 and C6 capacitors were added to decrease the voltage drop across the more

expensive tunable capacitor. Because the voltage drop across capacitors in series is inversely

proportional to the capacitance, adding a fixed capacitor in series will split the voltage drop

between the capacitors. The fixed capacitor in parallel (C5) is added to increase the net

capacitance of C3 and C5 and increase the voltage drop across C6. The matching capacitor
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(C4) is used in combination with the tap location on the idler coil (L2) to match the two

frequencies. The two floating tunable capacitors (C3 and C4) are thus located on the G10

block while the grounded tunable capacitor (C1) is mounted on the bottom copper block.

One of the main design philosophies was the use of a single coaxial cable to deliver the RF

for both channels. This requires only one of the BNC connections installed in the top cap.

For RF to reach the tank circuit, a thin 50 Ω cable (originally shielded by a magnetic metal

sleeve) was reshielded with a braided non-magnetic metal sleeve and connected to the C4

matching capacitor. The top of the cable is soldered to the bottom of the hermetically sealed

BNC adapter in the top cap of the probe. The cable passes through the six brass baffles, the

G10 baffle, and the top copper block. Along the path of the cable, the braided metal sleeve

is soldered to the six brass baffles and fanned out at the top of the probe head where it is

clamped to the top copper block with a screw and washer. The metal sleeve blocks noise

from reaching the 50 Ω cable by grounding it to the probe body.

In order to setup the circuit for two nuclei, the first step is to make both of the LC circuits

resonant with the desired high frequency. The frequency of these circuits can be measured

with the use of an inductively coupled sniffer loop. Once the two separate LC circuits are

created, the addition of the coupling capacitor section (C3, C5, and C6) and ground, as

described above, should be added. The coupling capacitor section then needs to be tuned in

order to form both the symmetric and anti-symmetric mode of the circuit. The two modes

will have different frequencies which allows for tuning to the lower frequency. At this point,

the circuit is resonant with the two desired frequencies.

The next step is to connect the circuit to the probe and thus allow the user to drive the

circuit with RF. This can be completed by finding a tap position on the idler coil which

provides approximately the same amount of coupling to the two frequencies (unless equal
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coupling of the two frequencies is not desired). This can be difficult as the tap position onto

the idler coil will likely change as a function of temperature. Therefore, a few iterations

may be necessary in order to find the tap position with equal couplings to both frequencies.

The matching capacitor can then be soldered in place between the 50 Ω cable and the idler

tap. The tuning of the matching capacitor is then able to maximize the coupling to the two

frequencies. At this point, the probe can then be used as desired.

When using this two-channel probe design in the typical two-channel setup with two ampli-

fiers, a BNC Tee adapter at the top of the probe can be used to run cables to both amps.

However, this generates a problem of signal possibly going along the other line, away from

the receiver, as well as noise from the secondary amp possibly swamping the signal. We

have found the use of two high power filters on both lines near the probe, a low power filter

after the spectrometer but before the secondary amp, and another low power filter after the

t-box but before the pre-amp removes both of the potential problems. This is especially

necessary when running NMR sequences which require the second channel to be on during

the acquisition, such as during decoupling.

4.4.3 Performance and Testing

This probe design, while simpler and less expensive than published alternatives[42], does not

provide isolation between the RF channels. The isolation is added before the two RF channels

meet at the probe with the use of factory-made high-power and/or home-made coaxial RF

filters. Home-made coaxial filters can be made by using shorted and open coaxial traps

to affect the impedance of one frequency more than the other. In this case, with 113Cd

(44.406 MHz) and 125Te (63.078 MHz), greater than 45 dB of isolation, with less than 2 dB

42



of insertion loss for the other channel, was obtainable using a stack of 2 home-made filters

only.

The use of only external filters carries both pros and cons when it comes to the experiments.

The downside is the necessity of multiple traps and/or filters in each channels’ line. How-

ever, the filters and traps can be inexpensive and homemade if basic isolation is needed.

The amount of isolation required depends on the experiment (i.e., if one uses high-power

decoupling during the acquisition) and the amount of signal. The main problem encountered

with low isolation was saturation of the pre-amp by white noise from the opposite channels’

power amplifier. The performance of this design is very dependent on the voltage rating

of the capacitors (for max power before arcing when cold, which will always be an issue in

He gas atmospheres) and the filters used on the input lines (for max isolation). Larger B1

fields can be reached when operating at room temperature without the He gas atmosphere,

however, it does not mimic the conditions needed for OPNMR. Example probe performance

can be seen below (Figures 4.7 and 4.8) for this probe with appropriate filters for 113Cd and

125Te and 500 V to 2 kV rated capacitors.

two-channel OPNMR Pulse Sequences

Two-channel OPNMR pulse sequences have been designed to demonstrate the performance

of the probe design. OPNMR sequences can be thought of as three separate parts: the

saturation of the nuclear spins, the optical pumping of the nuclear spins, and finally, the

detection of the nuclear spins. The saturation portion relies on an RF pulse comb to fully

destroy any net magnetization of the nuclear spins. The optical pumping portion is governed

by the laser excitation physics of semiconductors and the hyperfine interaction which results

in polarization of the nuclear spins[4, 12]. The pulse-acquire portion has typically used a
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pulse ≤90° or spin echoes (Hahn, quadrupolar, and solid) (Figure 4.6a). The laser has been

left on during the acquisition in some previous experiments, allowing conduction electrons to

affect the line-shape and frequency of the peak(s) as shown in Figure 4.6. For the performance

testing shown here, the light was shuttered during the acquisition period.

The most simple addition to transform a single-channel pulse sequence to a two-channel pulse

sequence is decoupling (Figure 4.6b). Decoupling of the “Y” nuclei with the dominant broad-

ening/splitting can be used during the acquisition on the second channel in order to narrow

the “X” spins being detected. Narrower resonances are ideal when measuring frequency shifts

to reduce the error. Also, “OPNMR profiles” [12] could be obtained faster/more accurately

due to the increased signal to noise ratio. This sequence demonstrates the ability to isolate

the decoupling and acquisition channels with the use of external filters.

The next two-channel sequence implemented was optically pumped cross-polarization (OP-

CP) as seen in Figure 4.6c. After optical pumping, saturation of the observed nuclei is

implemented in order to avoid any effects of CP transferring to an already hyper-polarized

nuclei. A 90° pulse on the non-observed nuclei is then followed by two Hartmann-Hahn

lock pulses on both nuclei to allow the transfer of polarization[43]. We implement spin-

temperature alternation pulse phasing[44] in order to remove potential artifacts. Due to

limited isolation from our filter selection, a z-store pulse sequence (τz−store ≈ 5 ms) was

used to allow recovery of the pre-amp after the long contact pulses on the second channel.

Without the z-store sequence, baseline errors were observed due to the recovery of the

receiving pre-amplifier during the acquisition. This sequence provides enhancements different

from those typically achieved by standard cross polarization, due to the enhancement being

dependent on the non-observed nuclear spin temperature, which is affected by the optical

pumping process. However, since the magnetogyric ratios of nuclei typically observed in

44



Figure 4.6: The a. OP Bloch decay and echo pulse sequence, b. OP Bloch decay/echo with
decoupling sequence, c. OP-CP sequence and d. laser irradiation for all sequences. The
laser filled with a cross stitch pattern represent the option of both full and zero intensity.
The Bloch decay/echo sequences have a vertical dashed line illustrating the optional echo
portion of the sequence. Note: The sequences are not drawn to scale with respect to the
time axis.

OPNMR are similar, and a single nuclear spin temperature will be reached at equilibrium,

the enhancement of the unobserved nuclei would be similar with and without the use of the

CP sequence. Instead, this sequence is more of interest for spectral editing or analyzing CP

curves for sample specific parameters including coupling strength and T1ρ. This sequence

demonstrates the ability to pulse on both channels simultaneously while maintaining the

Hartmann-Hahn condition.
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Experimental

A high resistivity wafer of CdTe was obtained from Marketech. The wafer is approximately

0.5 mm thick and was cut into a 2 mm by 4 mm rectangle. For initialization of the nuclear

states, the sample was optically pumped at 805 nm at 7.0± 0.5 K. The RF powers for both

nuclei (113Cd and 125Te) were adjusted in all experiments to obtain between 7 and 8 µs

90° pulses (∼33 kHz). The 113Cd abundance is 12.26 % and the 125Te abundance is 6.99 %.

All data shown were acquired with the laser only on during the τL period (off during the

acquisition) in order to simplify the experiments in these demonstrations.

Figure 4.7: Normalized 113Cd spectra without (black) and with (red) 125Te ≈10 kHz decou-
pling power. The decoupling removes the line splitting caused by the nearest 125Te isotopes.
No noticeable increase in the noise is observed. The zero of the frequency axis is arbitrary.

CdTe NMR is known to have line splitting due to the coupling of the nearest nuclei[25].

The coupling strength is due to both dipolar and J-coupling interactions. When observing

a single nucleus, such as 113Cd which is tetrahedrally coordinated to four Te neighbors, both
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the dipolar and J-coupled and the weakly dipolar coupled nuclei will be seen, as shown in

Figure 4.7. The central peak is primarily 113Cd directly bonded to only NMR-inactive Te

isotopes (i.e., not 125Te or 123Te), and the satellites are primarily due to 113Cd bonded to one

125Te or 123Te. Of all 113Cd spins, 75 % have no 125Te neighbors, and 22 % have exactly one.

The remaining 3 % of 113Cd sites have 2, 3, or 4 125Te neighbors. When decoupling 125Te

during the acquisition of 113Cd spectra, the splitting is removed, and all nuclei appear to be

uncoupled. As seen in the figure, decoupling can be executed at these strengths (≈10 kHz for

125Te) without a noticeable increase in the noise using this probe with a single high-power

filter on the 113Cd channel (≈45 dB of isolation at the 125Te frequency).

Figure 4.8: 113Cd NMR spectra of bulk CdTe. Black line shows results of typical OPNMR
pulse-acquire sequence. Red line shows results of OP-CP sequence with a τCP value of 1 ms.
The OP-CP sequence with a 1 ms contact time allows for excitation of only the 113Cd/125Te
spin pairs.

Since we are able to spectrally resolve between lone 113Cd site (zero 125Te neighbors) and

113Cd-125Te spin pairs, crystalline CdTe is an excellent test case for showing the benefits of

combined OPNMR and cross-polarization (CP). The transfer rate of polarization in CP is
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dominated by the total coupling strength of the two isotopes. The central 113Cd peak does

not have a nearest 125Te in the first shell, limiting the maximum coupling strength to that

of the next-nearest 125Te. The satellite peaks are separated by ≈ 1000 Hz, correlating to

a much higher coupling strength than that of the central resonance. We can exploit the

difference in coupling strength to observe only the coupled spin pairs as seen in Figure 4.8.

Thus, we can use CP to eventually measure coupling strengths and spectrally edit to observe

specific nuclei. Here, the CP Hartmann-Hahn condition was met at >25 kHz RF power (with

30–80 dB of isolation by the use of traps and high powered filters on each channel). It is

important to note that traditional CP dynamics (using a thermodynamic model) relies on

an abundant spin bath to act as a reservoir, which is not present here.

In conclusion, a relatively inexpensive two-channel probe with the ability for future additions

was designed and constructed for use in OPNMR experiments. The probe can be easily

altered to work in most cryogenic setups at temperatures less than 7 K. The probe itself has

little isolation but isolation can be achieved with in-line filters. The probe is able to complete

decoupling, cross-polarization, and more experiments with the use of standard high-power

filters on each channel. The use of two-channels affords an increase of possible experiments

which will lead to a better understanding of the optical pumping phenomena.
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Chapter 5

Magnetic Field Dependence of Light

Hole Transition via OPNMR

In collaboration with the National High Magnetic Field Laboratory, another OPNMR group

(Dr. Bowers from University of Florida), and a semiconductor band structure theory group

(Dr. Stanton from University of Florida), we attempted to further measure the light-hole

transitions via OPNMR as a function of magnetic field.

5.1 Introduction

The electronic energy band structures of semiconductors is relatively well understood and

has been studied in the past. For semiconductors with a cubic crystal structure, the valence

band has two energy bands (light hole and heavy hole) which are degenerate in energy at

k=0. These two band states have different effective masses, separating the energy bands

when k 6=0. An electron can be excited from valence band states to the conduction band

states by a laser with energy greater than or equal to the energy separation, known as the
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bandgap. These states can be taken advantage of in OPNMR by using allowed transitions

to polarize the electron spins. The electron spins transfer polarization to the nuclei through

a Fermi contact hyperfine interaction. The increased nuclear polarization is then detectable

by solid-state NMR.

Common OPNMR experiments involve recording NMR spectra at different wavelengths (i.e.,

photon energy) of the excitation laser. Each NMR spectrum is then integrated or fit to a

Gaussian in order to calculate the area of the signal, which is proportional to the nuclear spin

polarization and the volume of the polarized nuclei. The signal is plotted against photon

energy to determine the energy of the transition (termed an OPNMR profile as in Figure

3.2). While other factors, such as penetration depth, can affect the total nuclear polarization,

resolved spin oriented transitions can be seen as “peaks” and “valleys” in the overall nuclear

polarization when plotted against laser energy. The “peaks” and “valleys” are dependent

on the band structure of the semiconductor and the allowed transitions between the energy

bands, allowing one to determine the band structure such as Landau levels [4, 14].

Since spin oriented electrons lead to increased nuclear polarization, it is important to un-

derstand the processes behind OPNMR that lead to electron polarization. For bulk GaAs,

two valence bands (heavy hole and light hole) are degenerate in energy at k=0 and have mj

values of ±3
2

and ±1
2
, respectively. The conduction band has an mj value of ±1

2
. When illu-

minating with circular polarized light (σ+ or σ-), each photon carries with it either +1 or -1

unit, respectively, of angular momentum which gives rise to particular interband transitions.

For quantum wells (studied in this experiment), the confinement in the z-direction induces

an energy separation for the heavy and light hole bands at k=0. Therefore, it would take

a higher photon energy to excite from the light hole band to the bottom of the conduction

band than from the heavy hole band, shown schematically in Figure 5.1.
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Figure 5.1: Conduction (CB) and valence band (VB) schematic showing the transitions
from the heavy hole (HH) and light hole (LH) to the bottom of the conduction band using
circularly polarized light. Allowed σ+ light transitions are represented by blue arrows while
σ- is represented by red arrows.
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The polarization of the light determines the allowed transitions from the valence band. The

LH transition for σ- (where the photon carries -1 unit of angular momentum), connects the

LH | +1
2
〉 state to the CB | −1

2
〉 state. Conversely, σ+ light, carrying +1 unit of angular

momentum connects the LH | −1
2
〉 state with the CB | +1

2
〉 state. The resulting electron

polarization when excited from these light hole states is opposite of the heavy hole states if

the circular polarization of the light remains constant.

When a magnetic field is applied, the bands form subband Landau levels which can be de-

tected with OPNMR [37]. Allowed interband (valence band to conduction band) transitions

are now not only limited by ∆mj = ±1 but also by the change in the subband Landau levels.

The allowed interband transitions depend on the orientation of the sample in the field and

the Poynting vector (direction of the energy flux density from the laser). The goal of these

measurements is to further prove OPNMR can measure the light hole-to-conduction band

transition, by performing OPNMR profiles, on the same sample, with completely different

equipment and comparing to previous published data and theory. Polarized photolumines-

cence excitation (PLE) was also performed to corroborate both the newer and older OPNMR

data. Multiple external magnetic fields (B0) were applied to look at the magnetic field de-

pendence of light hole-to-conduction band transition.

5.2 Experimental

OPNMR experiments were performed at both the National High Magnetic Field Lab (NHMFL,

Tallahassee, FL) and Washington University in St. Louis (WUSTL). Polarized photolumi-

nescence excitation (PLE) was performed at Washington University in St. Louis as well. An

identical sample was studied at both locations and was grown on a single crystal bulk GaAs
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Figure 5.2: Quantum well sample for light hole transition measurements. Gray areas indicate
the GaAs portions of the sample. Blue areas indicate Al0.31Ga0.69As barriers. The portion
of the sample studied is the 60 quantum wells between the two superlattice structures.

base substrate using molecular beam epitaxy (MBE) at the Ruhr Universität in Bochum,

Germany. The sample contained 60 GaAs quantum wells separated by Al0.31Ga0.69As bar-

riers. The GaAs quantum wells were 16.9 nm thick with 24.5 nm barriers. The set of 60

quantum wells and barriers were sandwiched between superlattices (alternating quantum

wells/barriers confined to < 5 nm). The sample was topped by a 10 nm GaAs capping layer.

The total sample, including the substrate, was approximately 1 mm thick and can be seen

in Figure 5.2.

At both locations, the sample was mounted to a piece of sapphire to act as a heat sink, using

Apiezon grease. Temperature was monitored using a Lakeshore 340 temperature controller,

and homebuilt single-channel NMR probes were used to acquire the NMR data. The probe

and sample were inserted into a space which was evacuated then back-filled with a small
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amount of helium gas. In both experimental setups, the plane of the quantum well was

perpendicular to the magnetic field, which is parallel to the laser propagation direction.

5.2.1 OPNMR at NHMFL

The National High Magnetic Field Lab (NHMFL) employs a vertical variable superconduct-

ing magnet that can reach up to 17.5 T. The magnet has a sealed cold bore which provides

the cooling to hold the sample space at 4.5± 0.5 K. 71Ga NMR measurements at low mag-

netic fields (51.9–129.8 MHz) were acquired while 69Ga NMR was obtained for the highest

field (120.6 MHz) due to the tuning frequency range of the probe. The NMR spectra were

recorded on a homebuilt spectrometer using a PTS 3200 frequency synthesizer and a CPC

MRI Plus amplifier. Four transients were recorded for each spectrum using a four step phase

cycling (CYCLOPS [3].

A Coherent Verdi laser (at 4 W) was used to pump a Coherent Ti:Sapphire Mira 900 laser

with an approximate linewidth of 0.4 meV at these wavelengths. The beam was focused to

have an approximate 3 mm beam diameter at the sample. The wavelength of the laser was

monitored using a 0.7 m McPherson monochromator with a 600 grooves/mm grating and a

charge-coupled device (CCD) camera. The laser power was held at 200 mW (2.8 W/cm2)

and was measured before entering the bore of the magnet. The power was measured using

an Ophir Nova Power Meter. A quarterwave retarder was used to create circularly polarized

light. The sample was irradiated for 30 s (τL) for each scan.
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5.2.2 OPNMR and Polarized PLE at WUSTL

The Washington University in St. Louis lab employs two horizontal superconducting magnets

with magnetic fields of 3.0 T and 4.7 T. A helium recirculating cryostat made by Janis (SHI

950) is used to keep the sample at 6.0± 0.3 K. The NMR spectra were recorded on a TecMag

Apollo spectrometer. A single transient was acquired at each wavelength used for optical

pumping. 69Ga NMR was obtained for all points.

A Spectra-Physics Millenia X laser (at 10 W) was used to pump a Coherent Ti:Sapphire

899-21 ring laser with an approximate linewidth of 30 MHz. The beam was focused to have

an approximate 2 mm beam diameter at the sample. The sample was irradiated for 60 s (τL).

The wavelength of the laser was monitored using a Bristol 521 Wavelength Meter which has

a 0.01 nm resolution. The laser power was held at 100 mW (3.2 W/cm2) for the 4.7 T profile

and 200 mW (6.4 W/cm2) for the 3 T profile. The power was measured before the magnet

bore using a Coherent FieldMate Power Meter. The laser passed through a quarterwave re-

tarder in order to create circularly polarized light. Polarized photoluminescence was collected

by passing through a photoelastic modulator (PEM) (Hinds Instruments PEM-100) and a

beam splitter cube before reaching the monochromator (Acton SpectraPro-2750; 0.75 m path

length) and being detected by an avalanche photodiode (APD) detector. A lock-in amplifier

(Stanford Instruments SR-830) and a low-pass filter (Stanford Instruments SR-640) were

used to lock on to the PEM frequency and measure the total light emission, respectively.

5.2.3 Procedure

The gallium isotope measured by NMR was first saturated using a standard saturation

pulse sequence to destroy any magnetization that has built up between experiments (due
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to relaxation processes). Thus, the recycle delay (1 s) was irrelevant since any recovered

magnetization is destroyed at the start of the experiment. This was followed by a period

of time (τL) where the polarized laser pumped the sample. Even though the two locations

used a different τL time and power density, no affect on the transition energy measurement

is expected. A longer pumping time would not shift electron energy states but will result

in more signal (until saturated). More signal (i.e. greater S⁄N of the NMR spectra) results

in smaller error bars for the points in the OPNMR profile and should have no effect on

the energy levels of the bands. A higher power density increases the number of polarized

electrons in the conduction band which can increase the polarization rate (if not saturated)

and thus require a shorter τL to achieve a certain S⁄N). Both locations used power densities low

enough to avoid sample heating and electron-electron correlation effects which could affect

the energy levels. A π/2 RF pulse (6± 1µs with both setups at all fields) was applied prior to

acquisition. The probes were tuned at each external field and comparable impedance matches

were obtained. This allowed for similar B1 strengths (only dependent on the RF amplifiers

frequency dependency gain curve) and thus a consistent pulse length can be used without

sacrificing signal. The π/2 pulse length was optimized under optical pumping conditions

at the photon energy which provided the largest signal intensity. The optical pumping

conditions polarized the nuclei to a detectable limit. The standard π/2 RF pulse calibration

was completed following the optical pumping for each pulse length acquisition. The pulse

sequence can be seen in Figure 5.3.

A thermally relaxed spectrum was first acquired with an inspection pulse after allowing

the nuclear T1 process to occur for a given amount of time (typically overnight). No laser

was used to optically pump the sample in order to obtain a Boltzmann thermally polarized

spectrum. This spectrum is phased up to be absorptive. The phase angle used for each

OPNMR spectrum was the same phase used to make the thermal signal purely absorptive
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Figure 5.3: Pulse sequence used to obtain OPNMR data. The top RF portion shows a train
of saturation pulses followed by a delay (τL) before the inspection pulse and acquisition. The
bottom laser portion shows the laser is pumping the sample during the τL time period, the
inspection pulse, and acquisition.

at each OPNMR setup. Each 69Ga and 71Ga spectrum was then fit with a Gaussian line

shape in order to extract the area of the peak. We choose to use areas of a fitted function

rather than peak intensity to account for any fluctuations in linewidth. The areas of the

NMR signals were then plotted as a function of photon energy in an OPNMR profile (Figure

5.4).

The apparent deviation in the profile attributed to the light hole transition [18, 37] was then

fit to a Gaussian as a guide to the eye (see Figure 5.4) in order to extract the energy of the

peak maximum for this feature as a function of photon energy. Lorentzian and Gaussian fits

produce similar results and trends. However, Gaussian line shapes fit the data better which

could signify a broadening mechanism at play.

For the polarized PLE experiments at Washington University in St. Louis, photolumines-

cence from the sample was directed through a PEM (at 50 kHz) and a beam splitter cube. The

PEM transformed the circularly polarized light to into either vertically or horizontally polar-

ized light depending on the helicity of the luminescence. In our setup, only the horizontally

polarized light is allowed to pass through the beam splitter cube into the monochromator.

The PEM switches between converting the σ+ and σ- photoluminescence as horizontally

polarized light. The lock-in amplifier uses the PEM frequency of 50 kHz to measures the
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difference between the intensities of σ+ and σ- photoluminescence. The difference can be

normalized by the total photoluminescence measured by the low pass filter resulting in the

percent polarization of the luminescence.

For detecting the PLE, the monochromoator was positioned to the low energy side of the

luminescence feature (i.e., observe the heavy hole). The signal was averaged for 10 s at

multiple excitation energies in order to map out the light hole transition. Similarly to

the OPNMR data, the inverted peak which crosses through zero polarization is fit with a

Gaussian line shape in order to determine the peak maximum.

5.3 Results and Discussion

5.3.1 OPNMR Profiles as a Function of Magnetic Field

OPNMR profiles were obtained for a region of energies around the expected light hole-to-

conduction band transition. The resulting OPNMR profiles notably have resonances with

both positive and negative peak amplitudes and concomitant areas. NMR signals for σ-

were found to be largely positive (“absorptively phased” spectra) except for the region in

which the light hole transition appears. Similarly, all of the σ+ NMR signals were negative

(“emissively phased” peaks) except where the transition occurs. The OPNMR profiles from

the NHMFL measurements at various fields (4–11.8 T) and the fits to the light hole transition

can be seen in Figure 5.4.

In an earlier publication [18], we reported on the inversion through zero intensity and thus

a change in the sign of nuclear magnetization when optically pumping at the light hole
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Figure 5.4: 71Ga and 69Ga OPNMR profiles of AlGaAs/GaAs quantum wells at the magnetic
fields indicated in the legend (4–11.8 T) for (a) σ- laser irradiation and (b) σ+ laser irradia-
tion. All profiles were taken at NHMFL. Profiles are offset for clarity. The black dashed line
shows where 0 NMR signal is for each plot. The superimposed Gaussian peak on each plot
is meant to be a guide to the eye.
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to conduction band transition (hereafter “LH transition”). Through modeling [37], this

assignment was confirmed for B0=4.7 T while other fields (B0=3.0 T) are not yet perfectly

modeled due to band mixing. We have sought to extend our experiments to additional B0

fields in an effort to examine the B0 dependence of this interband transition. The OPNMR

profiles extracted from data recorded at NHMFL are depicted for external magnetic fields

(B0) of 4–11.8 T. Figure 5.4a shows these OPNMR profiles with σ- laser irradiation, and

Figure 5.4b are those with σ+ irradiation. Note the data crossing the black dashed line

which indicates zero signal intensity. Superimposed onto each are Gaussian functions fit to

the peak where signal inversion occurs, meant to be a guide to the eye. As expected, the LH

transition shifts to higher photon energies as B0 is increased, for both helicities of light. For

σ- irradiation at the LH transition, the magnetization of the OPNMR resonance becomes

inverted (or much closer to zero for lower fields), exhibiting negative magnetization. For

σ+, the opposite is true: once the LH transition is irradiated, the signals adopt the opposite

phase, such that the signals exhibit positive magnetization.

In Figure 5.4, the LH transition appears much stronger and thus inverts the nuclei to a

greater degree at higher fields. While not quantitative, this trend is notable since higher fields

increase the splitting between the energy levels. The combination of quantum confinement

(to separate the LH and HH bands) and higher magnetic field could reduce the amount of

HH character in the LH band due to band mixing. The same trend has been observed in

the Washington University in St. Louis data [18, 37].
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5.3.2 Light Hole Transition Field Dependence

Using the peak position of the transition attributed to the LH-to-conduction band, a plot

of that transition energy versus external magnetic field has been constructed, shown in

Figure 5.5. We include data from both WUSTL (OPNMR and PLE) and from the NHMFL

(OPNMR), as indicated in the legend. Notably, data were collected at 4.7 T at both labs,

and the OPNMR data show excellent agreement in the LH transition energy, which lends

confidence that small differences between equipment types and the resulting measurement

have not affected the physical interpretation of the data. Also, both OPNMR and PLE data

was acquired at 3 and 4.7 T at WUSTL. The 3 T PLE/OPNMR data matches very well,

showing both electron and nuclear measurements of the light hole transition energy lead

to the same conclusion. The 4.7 T PLE S⁄N is much smaller, introducing more error in the

determination of the peak maximum.

Circularly polarized light excites transitions only from specific valence band Landau level

subbands to the lowest-lying conduction band Landau level. For the LH-to-conduction band

transition, σ- light would originate from the n = 0 or n = 1 hole Landau level (creating a spin

down conduction electron) while the σ+ light would originate from the n = −1 or n = −2

hole Landau level (creating a spin up conduction electron)in the Faraday geometry [45].

Consequently, the σ+ and σ- transitions will therefore occur at different energies due to

dissimilar initial states. The Zeeman interaction also splits the σ+ and σ- transitions but

in only a linear fashion. More importantly, each transition will also exhibit a dissimilar

dependence on magnetic field.

σ- irradiation shows an approximate linear dependence of the LH transition with respect to

the external magnetic field. Such a linear dependence has been observed for high magnetic
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Figure 5.5: Light hole-to-conduction band transition energies for σ+ (darker circles) and σ-
(lighter squares) polarized light as a function of external magnetic field. Blue points repre-
sent OPNMR data taken at the NHMFL, black/gray points represent OPNMR data from
WUSTL, and red points represents PLE data acquired at WUSTL. Overlapping 4.7 T OP-
NMR data at both locations are shown and demonstrate the consistency of the measurement
even with different setups.
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fields[46, 47], and similar linear trends have been observed before in reports of calculated

and experimental measurements of absorption and photoluminescence data using circularly

polarized light [45, 48, 49]. Similarly, σ+ irradiation also shows a linear dependence at high

external magnetic fields (B0 =6–12 T), but curves to a smaller slope until reaching the zero

field energy.

Spin splitting of the conduction band and valence band (light hole) states is expected, and

is not equivalent for both helicities. For the conduction band, the subband Landau levels

are linear with field, which would not induce any curvature in the transition energy, as it

appears in Figure 5.5. In contrast, the valence subband levels do possess curvature. Similar

results for field-dependent Landau level transitions have been modeled by Broido [46] and

have shown curvature as a function of magnetic field where the onset and sharpness of the

curvature depends on the Landau level of the electron and its spin orientation in the magnetic

field. Since we are looking at the transition from the valence band light hole state to the

conduction band state, we have to take into consideration how the magnetic field affects

both bands in order to know the transition energy.

Furthermore, circularly polarized light can only excite from specific valence band Landau

levels to the lowest lying conduction band Landau level depending on the helicity of the

polarized light and selection rules [45]. Since our final state is the bottom of the conduction

band, the allowed light hole transitions for σ- and σ+ light must originate from different

Landau levels, causing each transition to now have a dissimilar dependence on the magnetic

field.

By plotting the difference in energy of the σ- and σ+ light hole transitions for each field,

a non-linear dependence to the magnetic field can be seen. This can be seen in Figure 5.6
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Figure 5.6: Energy difference between the σ- and σ+ light hole to conduction band transition
as a function of applied magnetic field. The color of the dot represents which set of data
produced the difference.

for all three sets of data. Thus, the separation between the two spin states of the light hole

transition is not split by a pure Zeeman interaction as previously explained.

Previous calculations for the transition energy do not fit well to the data as seen in Figure

5.7. The bands above the line break are the conduction bands while the bands below the line

break are the valence bands. Four valence bands are colored, showing which are the highest

energy valence bands to have dominant LH character at our fields. Two bands originate from

the light hole and thus initially have light hole character and two originate from the heavy

hole and initially have heavy hole character. The bands from the HH and LH end up mixing

between 3–6 T where they swap dominant character (i.e., the bands originating from the HH
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start with HH character before having a more dominant LH character at higher fields). The

allowed transition energies from these valence bands to their respective conduction band can

be seen in Figure 5.7b. While the general shape of the calculated transition energies match

the data, the zero field LH transition energy and slope of the transition energy as a function

of magnetic field are not accurate. Complicated effects, including the Coulombic interaction,

may need to be included into the k·p perturbation theory of band diagrams to fully model

the observed behavior. However, the agreement between three different measurements with

unlike equipment lends confidence to the use of OPNMR as a technique to model transition

energies at multiple fields.

5.4 Conclusions

In conclusion, OPNMR was used to map out the lowest-energy allowed light-hole transition,

resulting in oppositely polarized conduction electrons when compared to other excitation

energies. Previous studies were completed on a single setup at two different fields. We

were able to reproduce the early results on a completely different OPNMR set-up, showing

the robustness of the experiment in measuring transition energies. In addition, a much

larger range of magnetic fields were able to be studied in order to help improve theoretical

calculations. Comparison to calculation results in the observation of band mixing as a

function of magnetic field. The calculations obtain a qualitative match to the shape of the

light-hole transition’s magnetic field dependence but not for the slope or zero field transition.

This can be potentially explained by some perturbation to the band structure not being

included, such as the Coulombic interaction.
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Figure 5.7: Comparison of calculations to the obtained OPNMR and polarized PLE light
hole data. a. Calculations of the band energies for all subbands with the those of interest
colored. The lowest (n = 0) spin split conduction bands are red and magenta. The four
highest energy bands with dominant light hole character for our fields are colored blue,
purple, yellow and green. The blue and purple valence bands can be excited with σ+ to
the n = 0 conduction bands while green and yellow valence bands require σ- light. The
blue and yellow colored valence bands originate from the light hole and thus have light hole
character until mixing with the the green and purple valence bands originating from the
heavy hole. After mixing, the dominant band character is swapped. b. The calculated
transition energies from the valence bands to their respective conduction bands depending
on the helicity of excitation light. The dots represent the OPNMR and polarized PLE data
obtained for comparison.
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Chapter 6

Optically Pumped NMR of CdTe

6.1 Introduction

OPNMR studies of direct gap semiconductors have primarily focused on GaAs [4, 6, 7,

14, 15, 17, 18, 22, 35, 37, 38, 50, 51, 52], with the second most common material being

InP [8, 9, 20, 21, 22, 53, 54]. However, CdTe, a semiconductor of large interest to the

solar cell community, has only been reported to be studied by OPNMR twice with opposing

conclusions [13, 39]. Leung et al. claims to observe maximum signal enhancement just

below the band gap due to direct polarization from the optically oriented electrons. Dong

et al. claims to see consistent enhancements for above bandgap excitation with no laser

helicity (σ+ versus σ−) dependence due to surface spin-dependent recombination. Overall,

the trends and mechanisms provided by the two previous studies are in stark contrast with

each other, leaving a large uncertainty in the optical pumping of CdTe samples. The goal

of this study was to investigate a large variety of CdTe semiconductor samples in order to

determine the most common OPNMR profile trends and potentially make sense of the two

opposing claims.
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6.2 Experimental

6.2.1 CdTe Samples

In total, five different samples of CdTe from two separate manufactures were studied in depth.

All five samples were approximately 1–2 mm thick. From the first manufacturer (Marketech),

a poly-crystalline high-resistivity sample was studied. From the second manufacturer (Uni-

versity Wafer), two single crystal and two poly-crystalline samples were investigated. Of the

two single crystal samples, one was without dopants while the other contained Zn dopants

to form Cd0.931Zn0.069Te. Of the two poly-crystalline samples from the second manufacturer,

one was without dopants while the other contained Zn dopants to form Cd0.94Zn0.06Te. The

selection of samples allows for a wide array of variables to be studied in an attempt to observe

as many possible trends in their OPNMR profiles.

6.2.2 Experimental Methods

While the previous studies primarily focused on the OPNMR profiles and optical pumping

properties, in this work, additional experiments including photoluminescence and thermal

relaxation were conducted in order to observe other potential differences. All experiments

were completed in a magnetic field of 4.7 T with a stable temperature of 6± 1 K.

Photoluminescence measurements provide information on the electron energy levels, includ-

ing dopants and defects. The semiconductors were excited above the band gap where the

electron relaxes to the band edge and trap states through coupling with phonon modes.

Electron-hole recombination releases a photon with energy corresponding to the separation
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in energy of the two charge carriers. The photoluminescence is transmitted to an Acton Spec-

traPro 2750 monochromator (0.75m path length, triple grating). The energy and intensity

of the photons are then measured by an Acton CCD camera.

Nuclear T1 relaxation measurements were completed using traditional saturation-recovery

NMR pulse sequences without the use of the laser. T1, or spin-lattice relaxation, measures

the rate at which perturbed nuclear spin state populations return to their thermal equilibrium

which depends on the lattice temperature. Magnetic field fluctuations, the source of which

can be spin-spin interactions, at the Larmor frequency, result in reordering of the populations

of each energy level, effectively resulting in transitions between spin states [2]. The thermal

equilibrium value of the populations is reached with a time constant of T1. Variations in

T1 will provide insight into potential differences in the physics governing the semiconductor

sample.

The effect of the pumping time (τL) on the NMR signal intensity is studied in order to

determine the optimal laser irradiation length to achieve maximum signal enhancements.

Using the basic OPNMR sequence (similar to those in Figure 4.6a), τL can be varied and the

pulse-acquire signal recorded for each time step. Longer τL times allow the spin system to

approach a steady state, through spin diffusion, where the competing rates of polarization

and relaxation become equivalent.

For the OPNMR profiles, each was obtained for multiple photon energies over a region

covering below and above the band gap. To obtain the signal area, each spectrum was

fit using three Gaussians to account for the splitting in the lineshape due to dipolar and

J-coupling of the nearest neighbors [25].
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6.3 Results and Discussion

6.3.1 Photoluminescence Measurements

Photoluminescence measurements were performed on the five samples: a. polycrystalline

high resistivy CdTe, b. single crystalline CdTe, c. polycrystalline CdTe, d. single crystalline

Zn-doped CdTe, and e. polycrystalline Zn-doped CdTe. Circularly polarized light was used

to illuminate the sample mounted in the cryostat while the luminescence coming out of the

bore of the magnet was reflected into a fiber optic coupler connected to the monochromator.

No differences in the spectra were observed for different laser polarizations with the achieved

resolution. Laser power was ≤ 100 mW in order to avoid heating of the sample. Excitation

energy was ≥ 1.71 eV in order to excite electrons high into the conduction band and eliminate

any chance of observing the excitation laser in the spectra. The resulting photoluminescence

spectra for all five samples can be seen in Figure 6.1.

At liquid helium temperatures, the band gap energy is 1.606 eV. In addition, the binding

energy of an electron-hole pair, or exciton, is known to be 10.1 meV, which can be directly

excited to with an energy of 1.5959 eV [55]. The 1.5959 eV energy corresponds to the expected

photoluminescence peak energy for a perfect CdTe crystal. In addition, LO (longitudinal

optical) phonon modes for CdTe are often observed, with a spacing of 21 meV, which will

further complicate the spectra [56]. For the pure CdTe samples (a.-c.), the majority of

the photoluminescence peaks occur below 1.5959 eV, indicating the presence of donor and

acceptor bound electrons, holes, and excitons as observed previously [56, 57, 58, 59, 60].

Rather than attempt to assign all the peaks in the complicated spectra, comparisons between

the spectra and corresponding samples are made.
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Figure 6.1: Photoluminescence measurements of bulk CdTe samples. The left (b. and d.) are
single crystalline samples and the right (a., c. and e.) are polycrystalline samples. Samples
d. and e. contain Zn dopants.
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The sample with the fewest peaks, a. polycrystalline high-resistivity CdTe, is the only

one from a different manufacturer, indicating a likely purity difference between the two

manufacturing methods. The large peak growing in at lower energies (< 1.5 eV), can be

attributed to the broad defect band observed by others [56, 58] which claim the band to be

due to cadmium and tellurium vacancies in the crystal. The two other pure CdTe samples (b.

and c.) produce photoluminescence spectra much more complicated attributed to the larger

number of peaks. Even though the samples (b. and c.) are from the same manufacturer,

different synthesis methods were used in order to form either the single or polycrystalline

versions.

For the Zn-doped CdTe samples, higher energy luminescence peaks are observed. The band

gap energy increases with the addition of zinc to ≈ 1.64 eV for the dopant levels studied

here [56]. Overall, the shape and relative intensities of the photoluminescence peaks is

near identical between the single and polycrystalline Zn-doped samples. Thus, the primary

difference between the Zn-doped samples appears to only be the crystallinity of the sample;

important to note when interpreting data from the other experiments.

Overall, the photoluminescence data shows a large variation in the defects and electron

energy structure of the CdTe samples. The differences between the manufacturer and syn-

thesis method ultimately result in different photoluminescence spectra which could explain

variation observed in the NMR and OPNMR data discussed below.

6.3.2 Relaxation (T1) and Optical Pumping Rates

Nuclear T1 relaxation in semiconductors is typically governed by multiple interactions [61].

The most common relaxation is through thermally excited electrons and holes. However,
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due to the low temperatures present in these experiments (6 K), very few charge carriers

will be present in the absence of illumination (electrons should be spin-paired in the absence

of laser irradiation). Another relaxation method occurs through a spin-rotation interaction

between nuclei and moving electrons. This mechanism requires population of phonon modes

in the semiconductor which is not present at low temperatures. The dipole-dipole interaction

can also lead to relaxation if modulated by motion which will also be frozen out in these

experiments. Ultimately, relaxation for these semiconductors will be inherently long at 6 K

due to the lack of these mechanisms. The measured relaxation is thus, ultimately, dependent

on the amount of dopants, defects, and impurities and other less-known mechanisms. For

the five samples, the measured T1 relaxation time constants are shown in Table 6.1.

Table 6.1: 113Cd T1 relaxation time constants for CdTe samples at 6 K and 4.7 T.

Sample a. b. c. d. e.

Preparation High Resistivity Standard Standard Zn-doped Zn-doped

Crystallinity Poly Single Poly Single Poly

T1 (min.) 360 1540 3420 820 2950

Error (min.) 20 300 240 30 550

The relaxation times for the samples show interesting behaviors. The high resistivity sample

should be very close to no free electrons or holes, as deemed by the high-resistivity classifi-

cation. However, even without the presence of free electrons and holes, this sample has the

fastest relaxation out of the samples tested. This could be indicative of the dopant used to

correct for the intrinsic defects (interstitial and vacancy sites) or the dominant charge carrier

in the other samples having a weaker coupling to the nuclei, leading to nuclear relaxation.

However, this is difficult to prove as this sample also came from another manufacturer than

the other samples. Another trend shows the addition of Zn dopants leads to faster relax-

ation, even though the dopant would not add charge carriers to the semiconductor. Lastly,
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the polycrystalline samples also experienced longer relaxation time constants, indicating that

the presence of grain boundaries hinders relaxation for these samples.

Similarly, the optical pumping cross-relaxation rate is governed primarily by the hyperfine

interaction and subsequent spin diffusion [12]. The Fermi-contact interaction is believed to

be the primary interaction, especially for electrons which become localized as discussed in

Section 3.4. Ultimately, faster optical pumping rates are ideal in order to acquire more scans

in the same amount of time when implementing OPNMR as a technique for NMR signal

enhancement.

Table 6.2: 113Cd Optical pumping time constants for CdTe samples at 6 K and 4.7 T.

Sample a. b. c. d. e.

Preparation High Resistivity Standard Standard Zn-doped Zn-doped

Crystallinity Poly Single Poly Single Poly

T1 (min.) 9.5 — 267.4 525.0 —

Error (min.) 0.6 — 25.5 36.8 —

In all cases, the optical pumping timescale is much faster than T1. This indicates efficient

polarization transfer between the electrons and many of the nuclei. Of interest, is that

the optical pumping cross-relaxation and spin-lattice relaxation rates do not have the same

trends, indicating different mechanisms leading to thermal and optical relaxation. This is

not surprising since the optical pumping process creates the charge carriers necessary for

many of the relaxation mechanisms mentioned above. The optical pumping time constant

was not able to be measured accurately for the standard single crystalline or the Zn-doped

polycrystalline CdTe samples due to long optical pumping times needed in order to no longer

have a linear dependence.
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6.3.3 OPNMR Profile Variability Between Samples

The premise of this experiment was originally to determine which of the OPNMR profiles

and mechanisms were the most common in CdTe samples. In order to do this, OPNMR

profiles need to be completed on the five samples studied above. However, due to the

large variation in optical pumping rates, each sample was optically pumped for different

amounts of time (τL). While both the standard single crystal and Zn-doped polycrystalline

CdTe samples were still in the linear regimes for the optical pumping time, the Zn-doped

samples also exhibited a lower signal-to-noise ratio for a reason not understood. This made

obtaining a profile for sample e. (polycrystalline Zn-doped CdTe) impossible to measure in

a reasonable amount of time. Potentially, the Zn dopants could be hindering the maximum

electron polarization, resulting in poorer signal-to-noise ratios. The profiles for the other

four samples can be seen in Figure 6.2. The spline fits in the figure are meant to be guides

to the eye.

For the experiment, the high resistivity sample (a.) was pumped for the shortest time per

scan at 4 min. The two other standard CdTe samples (b. and c.) were optically pumped

for 30 min. The single crystal Zn-doped sample was optically pumped for 120 min per scan,

limiting the amount of points to be acquired. Two samples, a. polycrystalline high resistivity

CdTe and c. polycrystalline CdTe, show a clear laser helicity dependent signal intensity while

the other two samples, b. single crystalline CdTe and d. single crystalline Zn-doped CdTe,

see very little helicity depence on the NMR signal. The polycrystalline samples having a

larger helcitiy dependence may be a coincidence, or may be due to grain boundaries present

in the polycrystalline sample localizing the electrons and/or affecting the recombination rate

of the electrons. In addition, the enhancement for the Zn-doped CdTe shifts to higher energy,

likely due to the larger bandgap.
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Figure 6.2: OPNMR profiles of bulk CdTe samples. The left are single crystal samples and
the right are polycrystalline samples. Samples d. and e. contain Zn dopants. Sample e. was
unable to be acquired due to poor signal-to-noise for reasonable optical pumping times.
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Of note, all of the acquired profiles show an enhancement peak near the bandgap energy.

This is in line with the observations by Leung, et al. [39] but not Dong, et al. [13], where

the enhancement was constant above the bandgap energy. However, differences in signal

intensity based on the helicity of excitation light are observed in some samples and not

in others, indicating the both Leung and Dong were correct about certain aspects of the

enhancement profiles.

6.3.4 OPNMR Profile Asymmetries and Enhancements

In order to make more quantitative comparisons between these samples and the previous

results, two more complex values will be obtained from the profiles [38]. The first values is

the profile asymmetry, A, between the maximum (or minimum) enhancement between the

two helicities of light, defined as Iσ+− Iσ−. A value of 0, where the maximum enhancements

are identical in intensity and sign, signifies no helicity dependence on the enhancement,

likely indicative of an Overhauser type enhancement [12]. In order to compare between

samples with different signal-to-noise ratios, number of scans, irradiation time, and more,

the value will be normalized by the smallest signal intensity value. The second value, the

offset value (B), is defined as (Iσ+ + Iσ−)/2 and will also be taken from the maximum signal

enhancements. A larger offset value indicates a larger Overhauser effect, but also needs to

be normalized as mentioned above, in hope to compare the samples. These values can be

seen in Table 6.3.

One of the main observations from the A and B parameters is the wide range in the values.

This could potentially be from using the lowest intensity OP signal, Imin, for normalization,

which can introduce errors due to experimental differences. Thus, calculating the percent of
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Table 6.3: 113Cd OPNMR profile parameters for CdTe samples at 6 K and 4.7 T.

Sample Amax Bmax Imin Norm. A Norm. B % A

Leung [39] 0.97 1.51 0.06 16.2 25.2 39%

Dong [13] 0.00 3.29 1.55 0.00 2.12 0.0%

a. High Resistivity Polycrystalline 1.81 3.95 2.30 0.79 1.72 31%

b. Standard Single Crystal 0.58 9.35 1.58 0.37 5.92 5.9%

c. Standard Polycrystalline 3.10 8.28 1.61 1.93 4.29 31%

d. Zn-doped Single Crystal 1.75 8.65 1.62 1.10 5.34 20%

enhancement due to the A parameter will be a more accurate way to compare the samples.

To understand the two values, the steady-state electron polarization equation (Equation 3.6)

must be interpreted using these parameters. Once again, the expression for the steady-state

expectation value (proportional to signal enhancement) is [12, 36]

〈SZ〉σ∓ =
〈SZ〉0

1 + τe
T1e

+
S0

1 + T1e

τe

. (6.1)

The A parameter is related to the difference between the helicities of the light which requires

long T1e values to be dominant, to maintain the instantaneous polarization from the opti-

cal excitement, as shown in the first part of the equation. The B parameter is related to

saturation of the electrons, leading to an Overhauser type enhancement, which requires the

excited electrons to approach their thermal equilibrium quickly compared to the recombina-

tion time, τe, as shown in the second portion of the equation. By comparing the percent of

the A parameter leading to enhancment between the samples, it is clear the samples studied

here best represent the work completed by Leung, et al. [39].

78



6.4 Conclusions

A variety of CdTe samples were studied with OPNMR in an attempt to understand the

dominant mechanisms leading to enhancement. Two previous studies had been completed

on CdTe via OPNMR, resulting in contradicting data. By comparison, the shape of the

OPNMR profiles obtained matched the data obtained by Leung, et al. [39], who explained

the results using the standard OPNMR theory with maximum enhancements near the band

gap energy as discussed in Chapter 3. In addition, analysis of the enhancement profile

asymmetry and offsets indicate a competing mechanism between optical orientation and

saturation of electron spins, with saturation being slightly more favored. This would indicate

an electron relaxation rate and electron-hole recombination rate of similar time scales. Even

small changes in the rates would produce rather large changes in the percent of enhancement

from electron orientation versus saturation. However, even extreme changes in these time

scales is not expected to produce constant above gap enhancement as observed by Dong,

et al. [13] due to the changing laser penetration depth as a function of photon energy.

Dong claims their differing results to be due to “spin-dependent recombination via shallow

paramagnetic centers near the sample surface” which may be due to poor sample growths

and surface treatments.
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Chapter 7

Characterization of Isolated

113Cd–125Te Nuclear Spin Pairs in

CdTe Using Optical Pumping

A continuation of the CdTe studies of the previous chapter, lead to the observation of inter-

esting spin dynamics in CdTe. The results were obtained on the the high resistivity sample

due to the faster optical pumping time constants and the larger signal-to-noise ratio, allow-

ing more complex experiments to be completed for the first time on CdTe. In collaboration

with the postdoctoral associate partially on the optically-pumped NMR projects (Dr. Zayd

Ma), the spin dynamics of isolated spin pair under optical pumping conditions were studied.

7.1 Introduction

Quantum information processing is ultimately limited by fluctuations perturbing carefully

prepared quantum states, and efforts are underway to find a system with long relaxation
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times [62]. Electrons in semiconductors are attractive because the states are easily prepared,

manipulated, and detected via optics and electron spin resonance [63, 64]. However, the

relaxation times are prohibitively short for excited electrons, and schemes have been devised

to use long-lived nuclear spins to process information instead [65, 66, 67]. Nuclear spin

states have much longer relaxation times than that of electron spins (usually ≥3 orders

of magnitude [31]), but can be much more difficult to access, prepare, and observe. In

addition, A. Goto, et al. [68] have claimed to observe incident photons at or near the bad

gap of having the ability to tune nuclear-nuclear coupling strengths in GaAs via OPNMR and

cross-polarization dynamics, making OP of interest to the quantum computing community.

Optically-pumped NMR of semiconductors [12] can overcome many of these issues. This

technique results in a highly polarized nuclear spin bath with the nuclear spin orientation

selected optically. OPNMR is typically performed at temperatures of 4–10 K which, depend-

ing on the system, can push nuclear spin-lattice relaxation time constants to well over tens

of minutes to multiple hours. The longer spin-lattice relaxation times at these temperatures,

while beneficial to quantum computing, require the use of OPNMR to quickly initialize and

polarize the nuclear spin system.

The physical properties that can shift or broaden an NMR signal are diverse [69], but

the mechanisms most relevant to this experiment are nuclear spin-spin scalar J-couplings,

anisotropic J-couplings (i.e., pseudo-dipolar), and through-space dipolar couplings. If a

113Cd has a 125Te isotope directly bonded to it, the 113Cd NMR resonance frequency will be

affected by both dipolar and J-coupling interactions to this 125Te. The resultant change to

the 113Cd resonance can be to either a higher or lower frequency depending on whether the

125Te magnetic moment (S = 1/2) is aligned parallel or anti-parallel to the applied magnetic

field. In solid samples, even without quadrupolar broadening, the NMR splitting due to
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J-coupling is typically unresolvable because the dispersion in local magnetic fields due to

randomly oriented dipole-coupled nuclei in close proximity (dipolar disorder) will dominate

all other broadening mechanisms. However, 113Cd, 111Cd, and 125Te are relatively rare iso-

topes (12.26 %, 12.75 %, and 6.99 %, respectively), making the spin bath dilute enough for

narrow NMR resonances, allowing the coupling between 113Cd and 125Te nuclei in 113Cd-125Te

spin pairs to be resolved.

The spin-spin coupling between a 113Cd and 125Te will shift the 113Cd NMR resonance fre-

quency by [25]

∆ν = [Jiso + (D − Janiso)
(
1− 3cos2θ

)
]Sz, (7.1)

where D = (µ0/8π
2) × (γCdγTeh̄/r

3) is the direct dipole coupling, θ is the angle between

B0 and the internuclear axis, and Jiso and Janiso are the indirect (through-bond) scalar

and anisotropic interactions, respectively [25]. The through-space dipolar interaction is due

to direct dipole-dipole coupling to both nearby homonuclear and heteronuclear magnetic

moments, while J-couplings (both scalar and anisotropic) are due to hyperfine coupling

of bonding electrons and nuclei [70]. In CdTe, the 113Cd-125Te dipolar and J-couplings

have been measured previously [25] with results in good agreement with the data presented

here. The previously reported values also demonstrated that the two contributions to the

observed total spin-spin coupling (dipolar coupling and J-coupling) can be of the same order,

depending on crystal orientation, and therefore, neither can be neglected.

Even with resolvable spin-spin coupling, the 113Cd NMR signal is complex since all 113Cd

nuclei, including those with only NMR-inactive (nuclear spin, S=0) neighbors, are excited.

To select (“filter”) only the contribution from directly-bonded 113Cd-125Te spin pairs, we

used the well-established technique of static (without sample spinning) cross-polarization

(CP) [71]. Heteronuclear CP is induced by applying simultaneous B1 fields (radio-frequency

82



excitation magnetic fields) at the Larmor frequency of each isotope, with the magnitude of

each B1 field set so the nutation frequency of each is identical, the Hartmann-Hahn matching

condition [72] (γ
(1)
N B

(1)
1 = γ

(2)
N B

(2)
1 ). Matching the nutation frequencies allows energy to

exchange between spins that are coupled and resuls in a transfer of magnetization from one

spin to the other. The focus of the measurements presented in this article are on the CP

dynamics of isolated spin pairs of 125Te and 113Cd and the opportunity to probe such pairs

in relative isolation, owing to the low abundance of these isotopes (as discussed below).

Cross-polarization dynamics in solids have been studied extensively [73] which typically

assumes abundant spin reservoir for energy to transfer from, when using a thermodynamic

approach. Oscillations in CP dynamics were first observed in 1969 [74]. The oscillations occur

as the spin coherence between the spins oscillates in a two-spin system, where the oscillation

frequency is set by the magnitude of the spin-spin coupling strength. In a truly isolated spin

pair, the oscillations would persist indefinitely [43]. However, in real world systems studied

to date, the oscillations decay due to spin diffusion [43, 75], molecular diffusion [76], and

averaging over different crystal orientations (for non-scalar interactions) [23, 77].

The use of heteronuclear scalar spin-spin coupling (J-coupling) in cadmium telluride has

been proposed for use as a quantum gate by Shimizu et al. [78]. However, there has been no

experimental demonstration of Cd↔Te couplings under optical pumping conditions, whereas

changes in couplings have been observed in GaAs, previously [68]. In this chapter, the ability

to directly excite and monitor the dynamics of “isolated” spin-pairs in CdTe with optical

pumping at 6 K is demonstrated. In addition, the spin-pairs are characterized in order to

determine their ability to be used in spintronic and quantum computing applications.
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7.2 Experimental

Experiments were performed on crystalline CdTe purchased from Marketech International,

designated as high resistivity. The sample has 99.999 % purity and was grown by the Bridge-

man method with a Cd reservoir. X-ray diffraction has shown the crystal to be primarily

biphasic with two domains: the surface normal vector is along the [111] growth direction,

and the two domains are related by a rotation about this surface normal vector.

The sample was irradiated with a continuous wave irradiation at λ =805 nm (photon energy,

Eph =1.540 eV) from a Ti:Sapphire ring laser (Coherent 899-21) pumped by a 10 W solid-

state diode laser (Spectra Physics Millenia X). The Eph =1.540 eV pumping light was chosen

to be slightly less than the bandgap energy, Eg [12], as it gives the maximum enhanced NMR

signal and also penetrates the sample deeply (so as to irradiate spins throughout the entire

sample) [39]. The spectral linewidth of the Ti:Sapphire laser is ≈30 MHz (not frequency

locked) with a spot diameter of ≈2 mm. Output of the laser is linearly polarized, and was

converted to circularly polarization with a λ⁄4 plate centered at 790 nm as the final optical

element before the cryostat window. The output power of the laser was adjusted with a λ⁄2

plate followed by a beam splitter cube. Laser access to the sample was controlled with a

mechanical shutter (rise/fall time of 2 ms) synchronized to the NMR pulses with TTL pulses

from the NMR spectrometer.

Nuclear spin excitation and detection was performed on a home-built doubly resonant (113Cd

at 44.406 MHz and 125Te at 63.077 MHz) NMR probe (Section 4.4). The probe was housed

in a helium recirculating Janis cryostat (Janis-SHI 950), and NMR data were acquired with

an Apollo (Tecmag) spectrometer. The sample chamber temperature was maintained with
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a Lakeshore temperature controller at 6 K. Nuclear excitation magnetic field (B1) strengths

ranged from 15–25 kHz.

Figure 7.1: OPNMR pulse sequences used to study the CdTe sample. The x-axis is time
(not to scale). Saturation pulse trains are shown with the middle pulses in the train denoted
by ellipses (· · ·). In each, the laser pumping time (τL) is shown, after the initial saturation
and before the NMR sequences for the light-off experiments. (a.) The standard optically
pumped NMR sequence implementing a Bloch decay sequence. (b.) Optically-pumped-
cross-polarization (OP-CP) pulse sequence for static cross-polarization (CP) from 125Te to
113Cd. The 113Cd are cross-polarized from the 125Te nuclei for a time of τCP and are then
stored along the the external magnetic field for a period of τz−store. (c.) OP-CP SEDOR
sequence (τ = 100 µs shown here) using XY-8 (xyxy yxyx x̄ȳx̄ȳ ȳx̄ȳx̄) phase cycling for the
coincident π pulses, leading to accurate measurement of the spin pair coupling strengths.
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A standard OPNMR sequence employs a Bloch decay pulse sequence and can be seen in

Figure 7.1(a.). The sequence begins with a saturation comb on nuclei of interest before laser

polarization occurs for a period of τL. τL was 15 minutes for all OP experiments in this

chapter. The excited electrons can then relax back to the valence band with the light off

starting 1 s before acquisition. Figure 7.1(b.) shows the pulse sequence (optically-pumped-

cross-polarization, OP-CP) used to optically pump and cross-polarize only the directly-

bonded nuclear spin pairs. A typical cross-polarization sequence using the Hartmann-Hahn

matching condition was inserted where the tipping pulse is a 90° pulse (on 125Te) and the

contact time (τCP ) can be varied. The spins were stored along the z-axis (“z-store”) for

15 ms to allow the preamplifier electronics to recover from the high-power and relatively long

contact pulses. The T1 of the sample was ≈6 h at these experimental conditions, making

the effect of the z-store delay negligible. After cross-polarization, the 113Cd magnetization is

detected with a Bloch decay sequence or a spin-echo double resonance (SEDOR) echo train.

In Figure 7.1(c.), a variant of a SEDOR experiment is shown, using a CPMG train during

the acquisition [79]. For this experiment, a 200µs delay between the coincident 180° pulses

and XY-8 phase cycling [80] were implemented on both the 113Cd and 125Te channels. The

ωRF ’s of the two channels are separated by an approximate 3 kHz with a FWHM ≈ 700 Hz

matching condition. It is important to note that due to the coincident refocusing pulses,

transient Hartmann-Hahn CP matches may occur during pulse build-up and decay, but is

unlikely to noticeably change the results due to the short contact times and narrow matching

condition.
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7.3 Results and Discussion

7.3.1 OPNMR Cross Polarization

Direct detection of 113Cd after optical pumping can be performed to detect all 113Cd present,

not just those close to 125Te. This is achieved by an OPNMR sequence with Bloch decay

detection of the 113Cd as often employed [12]. In the resulting spectrum, we observe a

central resonance flanked by two satellite peaks (Figure 7.2, black). Conventional NMR

without optical pumping yields no signal at 6 K owing to the need to signal average and

the prohibitively long T1 times. The resulting spectra from the 125Te → 113Cd OP-CP pulse

sequence (contact time, τCP = 1 ms) can be seen in blue. The spectrum is plotted in Hz

to display the size of the splittings. Only the satellite peaks are detected using the OP-CP

sequence at this (shorter) contact time. By transferring the magnetization from 125Te to

113Cd and observing the 113Cd, we have selected only those 113Cd nuclei in 113Cd-125Te spin

pairs. Furthermore, these spin pairs are highly isolated from other pairs since only 22.5 %

of the 12.3 % naturally abundant 113Cd atoms are in a 125Te-113Cd spin pairs (74.8 % of the

Cd atoms do not have a single 125Te neighbor). While the T1ρ of 125Te was not explicitly

measured, it is likely longer than 25 ms since no signal decay is observed of the satellite

intensities in the CP curve (discussed later). The RF amplifiers limit the pulse lengths

obtainable, setting a maximum on spin-lock length possible in a T1ρ measurement, making

it impossible to measure T1ρ and make any comparisons to T1.

Such 125Te-113Cd pairs are at an average distance of ≈13.4�A from one another in the

zincblende structure – a long distance compared to the Cd-Te bond length of 2.8�A. The
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Figure 7.2: 113Cd OPNMR Bloch decay spectrum (black), and 113Cd-125Te OP-CP (blue)
spectrum. The OP-CP spectrum was recorded for τCP =1 ms. Laser irradiation for the τL

period was with σ+ light for 15 min for both. 0 Hz is on resonance with the 113Cd pulses.

average separation of the spin pairs was calculated by dividing the total volume of an ex-

panded “unit cell” (of 100 Te and 100 Cd atoms, 680 nm3) by the expected 2.8 113Cd atoms1

in a 125Te-113Cd spin pair to find the average volume and therefore average separation dis-

tance of these 113Cd-125Te spin pairs. If the lone 113Cd and 125Te atoms could be decoupled

efficiently, the remaining spin system will primarily be isolated, strongly-coupled spin pairs.

At short contact times, only the 113Cd that are closely coupled to 125Te are apparent, since

the strong coupling between the two nuclei results in a fast CP build-up. At longer contact

times, contributions from farther 125Te can possibly be seen. The Bloch decay spectrum in

1P = ( n!
k!n−k! )p

k
125Te(1− p125Te)

(n−k) ∗ p113Cd where n=4 bonded atoms, pX is the natural abundance of

isotope X, and k=1 for a single 125Te neighbor out of the 4 directly bonded atoms, (i.e., a spin pair).
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Figure 7.2 is a combination therefore of both 125Te-split species and unsplit 113Cd that is

more distant from the 125Te spins.

Figure 7.3: 113Cd OP-CP NMR data with contact time along the vertical axis and NMR
frequency along the horizontal axis. 0 Hz is on resonance with the 113Cd pulses, and contours
denote the intensity of the signal. The horizontal white line corresponds to the blue OP-CP
spectrum in Figure 7.2. The vertical white lines correspond to slices shown in Figure 7.5.

In order to probe that coupling between 113Cd and 125Te, the contact time can be incremented

in the OP-CP experiment. Figure 7.3 is a contour plot of the 113Cd OP-CP NMR plotted as

contact time versus frequency (0 Hz indicates “on resonance” with the 113Cd pulses). Due to

the spectrally-resolvable splittings due to dipolar and J-couplings in CdTe, we observe several

complete oscillations of cadmium directly bonded to tellurium. The J-coupled satellite peaks

are centered at approximately ±500 Hz, and a 1-dimensional horizontal slice at τCP =1 ms is

the spectrum shown in Figure 7.2 (in blue). The central peak, denoting ‘lone’ 113Cd, has a
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much slower CP build-up as seen in contour plot, indicating a much weaker coupling strength

to 125Te atoms as expected. The shape of the growth does not match current CP build-up

models and contains multiple features. The initial rate of the central peak growth has a

time constant of 1.85 ms as shown in Figure 7.4. This is likely due to the weaker coupled

125Te-113Cd spin pair as discussed later and in Figure 7.6. However, a sharp rise in the area

of the central peak occurs at ≈15 ms, which is not able to be modeled.

Figure 7.4: 113Cd OP-CP NMR vertical slices of data at the frequency of the central peaks
as a function of contact time with 125Te.

The satellites oscillate in intensity with respect to contact time. The intensities are best

viewed as vertical slices (plotted in Figure 7.5), and oscillate with respect to contact time

with a period of 534± 6 Hz, when fit with an exponentially-decaying sine wave. The 113Cd

magnetization oscillates during the CP contact time with one-half the difference in frequency

between the J-coupled peaks, and the oscillations die out due to the coupling of the spin
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pair to neighboring nuclei with non-zero spin. However, the oscillations persist much longer

(decay to equilibrium around 10 ms) than in other solid materials, where the longest found

was 113In-31P in InP with oscillations decaying to equilibrium around 4 ms under decoupling

and magic-angle spinning conditions [81]. For this present CdTe experiment, the predomi-

nant mechanism contributing to decay of the signal is coupling to spins outside the directly

bonded spin pair. The oscillations decay as a function of contact time to a value ≈ 1/2 of the

maximum amplitude, contrary to many dipolar oscillation results in the literature that treat

CP dynamics to include spin diffusion [73] to a spin bath with infinite temperature. This

likely indicates the polarization is still present in the spin pairs, but becomes evenly split be-

tween the 113Cd and 125Te, rather than oscillating between the two nuclei. The convergence

of the oscillations on the value of ≈ 1/2 is also consistent with calculations of an isolated spin

pair on a molecule which does not have enough time to exchange its energy with the lattice

(in the model, undergoing restricted diffusion) [76].

The satellite peak splitting and the frequency of the oscillations depend on the net coupling

strength between the two nuclei. As shown by Nolle [25], the net heteronuclear coupling

strength in CdTe is comprised of dipolar (D), isotropic J (scalar), and anisotropic (pseudo-

dipolar) J-couplings (which have the same angular dependence as dipolar interactions).

Equation 7.1 shows that both the dipolar and anisotropic terms depend on the angle between

the internuclear axis and the external magnetic field (B0). Since CdTe has a zincblende

crystalline structure (confirmed by x-ray diffraction on the sample), and we know the growth

direction of our semiconductor, the various angles θ between B0 and the Cd-Te internuclear

axes can be calculated (Figure 7.6).

B0 is aligned with the crystal growth direction, and the magnetic field vector is aligned with

one of the bonds and splits the other three internuclear axes at an angle of 70.53°. Given
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Figure 7.5: 113Cd OP-CP NMR vertical slices of data at the frequency of the satellite peaks
as a function of contact time with 125Te (shown as vertical white lines in Figure 7.3). Black
squares correspond to the lower frequency satellite peak while the red circles are the higher
frequency satellite peak.

the orientation-dependent splitting reported previously for Jiso (655± 60 Hz) and D−Janiso

(490± 50 Hz) [25], the calculated splittings are 960 Hz for the 3 pairs at 70.53° and −320 Hz

for the Cd-Te pair at 180° (Equation 7.1). Therefore, the 3 bonds trisected produce the

observed satellite peaks, while the bond aligned along the field, with one quarter of the total

satellite intensity, would appear near 0 Hz. The peaks at ±480 Hz are clearly observable in

the OP-CP experiments, and while peaks at ±160 Hz would be expected, they are likely

not observable in the short contact time cross-polarization experiments due to being only

one out of every four 113Cd-125Te spin pairs and the three times weaker coupling strength

(slower CP build-up). The first maximum of the central peak (≈3 ms) aligns well with the

first maximum of the satellite peaks (≈1 ms), for a three times weaker coupling strength,

and thus, corresponding to the 125Te-113Cd spin pairs oriented along the magnetic field.
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Figure 7.6: CdTe structure with important angles noted. B0 is oriented along the [111]
crystal axis. Cadmium atoms are colored white and tellurium atoms are orange. Each
cadmium and tellurium are tetrahedrally coordinated with all interatomic angles at 109.47°.
Each cadmium is coordinated to four telluriums, three at 70.53° with respect to B0 and one
at 180°.

7.3.2 OPNMR SEDOR Experiments

To confirm the cross-polarization measurements, two 113Cd-125Te time-domain OP SEDOR

NMR sequences (one which uses cross-polarization between 125Te and 113Cd nuclei) were

performed as a second independent measurement of the 125Te-113Cd coupling strength. The

sequence implemented a variant of SEDOR employing a CPMG pulse train separated by

acquisitions, as proposed by C. P. Slichter in 1996 [79], rather than the conventional incre-

menting of the echo time on the S-spins developed by E. L. Hahn [82]. This experiment

has not been experimentally reported, to the best of our knowledge, likely due to the fact

that it is extremely rare to find systems with observable isolated spin pairs probed in static

conditions. SEDOR compares two different nuclear precession signals (S and S0) where the

only difference between them is to reintroduce the heteronuclear spin-spin interactions (here
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the dipolar and J-interactions, including the pseudo-dipolar), with 180° pulses on the unob-

served nuclei simultaneously with the 180° pulses of the CPMG train of the observed nuclei

for the S signal. Here, we have implemented a series of 180° pulses with the transverse 113Cd

magnetization recorded between each pulse [79]. For suitably isolated spin pairs, the dipolar

dephasing will be apparent in this “echo train”.

Figure 7.1(c.) shows the more complicated pulse sequence used (with CP), with the more

simple version using a 90° pulse instead of the cross polarization portion of the sequence.

The data is acquired over the CPMG train and plotted along the x-axis as a function of

time. A time of 0µs corresponds to the end of the 90° pulse or τCP period. The data in

Figure 7.7(a.) and (b.) represent the echo train - gaps between the echoes are the locations

of the CPMG pulses. The echo train therefore traces out the time-dependent S and S0

curves, depending on if the 180° pulses are on the S-channel. In contrast to the typical

1-echo acquisition SEDOR sequence, much less time is required to acquire the full SEDOR

dephasing curve since the echo time does not need to be incremented to obtain the S and S0

curves. Here, we observe, in Figure 7.7(a.) and (b.), a typical CPMG signal for S0 (black)

and an oscillatory S curve (red). The oscillation occurs due to the total dephasing strength

for the observed nuclei. In Figure 7.7(a.), all three peaks are being observed, leading to

multiple dephasing strengths being observed (i.e., the “isolated” 113Cd and paired 113Cd will

have different coupling strengths to the nearest 125Te). In Figure 7.7(b.), we can overcome

this issue by selectively exciting the paired 113Cd by the use of CP. Of note, the signal

intensity passes through zero and inverts in phase, as the nuclei precess about the dephasing

nuclei.

The resulting SEDOR curves are plotted as ∆S/S0, which is the difference between the SEDOR

experiments with and without the 180° pulses on the S-channel (∆S), divided by the S0
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Figure 7.7: OP SEDOR data of 113Cd-125Te spin pairs. (a.) OP SEDOR S (red) and S0

(black) curves. (b.) OP-CP SEDOR S (red) and S0 (black) curves. (c.) and (d.) are the
resulting SEDOR curves, represented by black circles. The typical analytical SEDOR fit [23]
for a powder/amorphous sample is shown in blue and an exponentially damped sine curve
(red).

SEDOR experiment (without the S-channel 180° pulses). For the OP SEDOR sequence

without CP, neither the typical analytical model or exponentially damped sine curves fit

the data well, likely due to the multiple contributions to the dephasing. The resulting data

for the CP-SEDOR was also fit by a damped sine curve (red line), as expected for nearly

isolated pairs of 125Te-113Cd nuclei, similar to that seen in other single crystals [83]. No clear

signal originates from the 180° orientated Cd-Te bond with the weaker coupling, likely due
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to the short (1 ms) contact time used for the CP portion of the experiment. The function

here results in an amplitude of 1.01± 0.02, a decay time constant of 1.63± 0.05 ms, and

a coupling strength of 946± 5 Hz for the parameters of interest, which agree well with the

satellite oscillations in Figure 7.5. Note the damped-sine curve fit is offset by a value of 1,

indicating the dephasing in the S echo train occurs fully before the S0 echo train, typical of

SEDOR experiments [23].

Using the OP-CP SEDOR sequence, we measured the 113Cd-125Te coupling strength with

and without the laser irradiation left on during the pulses and acquisition with no discernible

difference for CdTe (within 1 Hz of each other). Therefore, the effect observed by A. Goto,

et al. [68] of incident photons at or near the bad gap tuning nuclear-nuclear coupling (i.e. an

electron density of states tunable nuclear coupling) is either unique to their sample or too

weak in CdTe to be observed in the directly bonded spin pairs.

7.4 Conclusions

We have shown the ability to selectively excite 113Cd-125Te spin pairs in CdTe. In addition,

the coupling strength and dephasing time of the spin pairs was analyzed by CP build-up

times and SEDOR methods. In future experiments, INEPT (insensitive nuclei enhanced

by polarization transfer) can be used instead of CP in order to take advantage of the J-

coupling for the polarization transfer, rather than the total coupling strength used in the CP

experiments presented here. An alternative method of SEDOR was implemented for faster

acquisition, making this the first time this experiment was proven to work experimentally. In

addition, we were able to complete SEDOR from an optically initialized nuclear spin system

for the first time. In contrast to previous results on GaAs [68], no observation of tunable
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coupling strengths via optical irradiation was found in CdTe. This is the first experimental

step towards using pseudo-isolated spins and spin pairs in CdTe with conventional NMR

techniques and nuclear initialization with optical pumping in spintronic and quantum com-

puting applications. Future experiments could investigate the placement of the dephasing

pulses on the Te channel as well as rotation of the sample to accurately separate the isotropic

and anisotropic coupling strengths. In addition, the use of continuous wave amplifiers would

allow for measurement of the longer time dynamics present in the spin pairs. The use of

other decoupling and refocusing sequences can also be tested to compare techniques.
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Chapter 8

OPNMR Investigation of an

Al2O3-GaAs Interface

Through a collaboration with groups from Oregon State University (Professor John Conley,

atomic layer deposition) and Washington University in St. Louis (Professor Parag Banerjee,

finite element method), the interface of a GaAs-Al2O3 sample was analyzed via OPNMR.

The sample exhibits interface specific signals, only clearly observable only by OPNMR. In

addition, the spectral features allowed for multiple ways to measure extremely high polar-

izations, yet to be seen in OPNMR experiments. Some of the results and discussions in this

chapter has been published in Reference [84].

8.1 Introduction

Semiconductors are often layered in solid-state electronic devices using materials with dis-

similar band gap energies [85]. To create higher performing electronic devices, a better

understanding of the chemical structure/electronic property relationship of the interface is
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necessary. The specific sample studied here (Al2O3/GaAs) has been proposed for many ap-

plications including MOSFETs [86, 87], MOS capacitors [87], and as a passivation layer for

GaAs [86, 87, 88, 89]. By determining the interfacial structure, we may be able to manip-

ulate growth and adjust synthetic procedures to change interface structure and reduce the

number of defects that affect the electronic performance of devices.

Solid-state nuclear magnetic resonance (ssNMR) has been used to study inorganic semi-

conductors [90]; however, conventional NMR techniques are usually incapable of measuring

spectra from interfaces due to the extremely small number of spins present and the large

number of spins needed for NMR detection (≈ 1016) [8, 91, 92]. Hyperpolarization allows a

lower detection threshold for NMR spectroscopy of samples with rare nuclear spins, including

surfaces, interfaces, and those with low isotopic abundance.

Optical pumping relies on the use of laser excitation to form unpaired polarized electron

spins. Optical pumping creates non-equilibrium spin states by taking advantage of optical

transitions and their respective relaxation rates to hyperpolarize the electrons, which, in

turn, transfer polarization to the nuclear spins to which the electrons are coupled.

Optically-pumped NMR (OPNMR) [11, 12] is a technique which combines optical pumping

of electrons in semiconductors and detection of the nuclear magnetization (i.e. nuclear spin

state populations) with traditional radio-frequency NMR methods. The OPNMR signals are

photon energy dependent, and vary as a function of the laser penetration depth since the

laser-excited electrons are the origin of the hyperpolarization [51]. Thus, the laser intensity

and spatial distribution throughout the sample, determines the portion of the sample being

enhanced, and therefore the portion of the sample detected.
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The nuclear isotope studied in this chapter is quadrupolar, 75As (nuclear spin quantum

number, I = 3/2), which means the nuclear spins also couple to any electric field gradient

(EFG) present, resulting in a splitting of the NMR resonance [93, 94]. For nuclei in highly

symmetric environments, there resulting quadrupolar splitting will be zero. However, since

stress can perturb a structure away from perfect cubic symmetry through bond distortions,

lattice strain can be detected from the amount a quadrupolar resonance is split [95, 96,

97]. Strain in GaAs has been studied previously by OPNMR (and ODNMR) methods to

determine nuclear spin temperatures [35], bandstructure effects [17], spatial inhomogeneities

of strain in a quantum well [97], and dominant polarization mechanisms in different spatial

regions [15, 50, 52].

8.2 Experimental

8.2.1 Al2O3-GaAs Interface Sample

A 400µm bulk semi-insulating single crystal of GaAs (ITME, grown along [100], lot 2137,

polished on one side) was used as a substrate. A thin film of amorphous alumina, hereafter

denoted “Al2O3”, was deposited using atomic layer deposition (ALD) on the polished side

of the GaAs . The deposition temperature was 300 ◦C. Four pulses of tri-methyl aluminum

were used to remove the native oxides on the surface of the GaAs substrate [88, 89] prior to

ALD growth. The final thickness of the Al2O3 film was 11.2 nm and is shown schematically

in Figure 8.1.
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Figure 8.1: The sample configuration in the OPNMR experiment showing the orientation
of the laser Poynting vector and the external magnetic field vector (B0) with respect to the
sample. The laser passes through the Al2O3 film and into the GaAs where it is absorbed.

8.2.2 OPNMR Methods and Sequences

The experimental procedures for OPNMR have been described previously, with critical pa-

rameters for the observation of the interface listed here: [12, 18] external magnetic field (B0)

of 4.7 T, B1 excitation strengths were ≈20 kHz, circularly polarized light was used with the

laser power (measured at the cryostat window) held constant at 100 mW, sample irradi-

ated for a time period of τL (90 s) after the saturation sequence, a short period of time

(τD) was inserted where the laser was shuttered (≈1 s), and the NMR spectra were then

acquired by a quadrupolar echo [98] pulse sequence (using 55° pulses) while the laser was

shuttered (Figure 8.2). For the observation of the interface signals, 55° tip angles were used

in order to observe the asymmetry of the satellites and refocus the dipolar and quadrupolar
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interactions[99, 100, 101]. The 90°−τ−64° pulse sequence [99, 100] results in symmetric

satellites, which does not properly depict the spin temperature. The 55°−τ−55° sequence

represents the best (approximate) tradeoff between optimal refocusing of the central transi-

tion and the satellites for a spin-3/2 nucleus [101]. The polarization measurement sequences

instead implemented a single <10° pulse to accurately measure the polarization in 4.7 T and

3.0 T external fields.

Figure 8.2: Optically-pumped quadrupolar echo pulse sequence used to acquire the interface
spectra (not polarization measurements). 75As polarization is first destroyed by a saturation
train. The GaAs is then optically pumped with σ+/− for a period of τL (1.5 min with
σ+ polarized light used for interface spectra). The laser is then shuttered for 1 s before a
quadrupolar echo sequence is used to observe the spins. θ is the radio-frequency flip angle,
here 55°. (Not scaled proportionally with respect to time.)

Since polarization originates from the optically-excited conduction electrons [38], the spatial

regions where the light is absorbed determine the portion of the sample that can be observed.

The size of such regions is governed by the beam diameter, the position of the laser on the

sample, and the penetration depth of the light. Absorption coefficients and the resulting

penetration depth of the laser have been used to previously model the photon energy depen-

dence of OPNMR spectra [51]. In this study, all photon energies used were much smaller

than the band gap of the ALD-deposited Al2O3 (at ≈ 9 eV [102]), allowing the laser to pass

through the ALD film to the GaAs substrate underneath. The laser intensity then decays

exponentially with depth [12] into the GaAs. At high optical absorption values (αopt(E)), the

laser excites conduction electrons in only the topmost GaAs layers located in the interfacial

region, where strain induced by the Al2O3 layer is present as discussed below. The minimal
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penetration depth of the laser (estimated as <275 nm [103]) in the OPNMR experiments

relegates the observable signal to the top portions (interface region) of the GaAs. At lower

photon energies, the laser will penetrate deeper into the sample, and thus observe a large

fraction of the bulk (≈ 400 µm thick) GaAs crystal away from the interface.

8.2.3 Thermal Strain

Due to the ALD deposition parameters (i.e., temperature and surface pretreatment), the

resulting Al2O3 film is amorphous, reducing most of the strain which would be due to the

lattice mismatch of the two structures. (GaAs has a zincblende cubic unit cell with a lattice

constant of 5.65�A, and Al2O3 a hexagonal unit cell with lattice constants a =4.79�A and

c =12.99�A.) However, since the growth of the ALD film occurs at higher temperatures,

thermal strain can develop when the sample cools, and the materials compress according to

their thermal expansion coefficients. The thermal strain, ε, resulting from differing thermal

coefficients of the film and substrate is expressed as [104]:

ε = (αfilm − αsubstrate)× (Ti − Tf ) (8.1)

where α is the thermal expansion coefficients, and T the temperatures of the growth (Ti =

573 K) and final temperature (Tf = 6 K). The difference in thermal expansion coeffi-

cients is 1.3× 10−6/K [105]. The resulting thermal strain expected for our experiments

is 7.37× 10−4 (dimensionless units), leading to changes in the crystal structure dimensions

which will be most intense at the interface, and dissipate linearly with distance from the

interface [106].
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8.2.4 Strain Induced Quadrupolar Splitting

The strain at 6 K will create an electric field gradient (EFG) and results in splitting into a

quadrupolar lineshape. Since the 75As electric quadrupole moment (Q = 0.29× 1028 m2) is

comparatively large, small amounts of strain will result in splitting of the signal. Deeper into

the GaAs bulk crystal, the strain diminishes until the nuclear spin environment is a single

unsplit resonance owing to the cubic symmetry (zincblende crystal structure) of the lattice.

Through the continuing use of finite element methods, the dependence of the strain as

a function of depth in the sample can be modeled [107, 108]. The results show a linear

dependence with depth for reasonable optical penetration depths (>5000 nm). If the strain

has a linear dependence, without additional factors, this would indicate the satellites to be

approximately flat rectangular peaks from the maximum strain (interface) to minimum strain

values (bulk) present in the sample. However, additional factors, including laser intensity,

must be included to the strain calculation to accurately model the expected lineshapes.

Through a continued use of finite element methods, we hope to correlate the NMR signals

to depths in the sample in order to help elucidate effects present at or near the interface.

8.3 Results and Discussion

8.3.1 OPNMR Signal From a Buried Interface

Interface signals are difficult to measure by NMR due to the large variety of bonding environ-

ments, defects, strain, and their non-crystallinity resulting in larger dispersion of observable

frequencies. The atoms at the interface (i.e., bonded directly to Al2O3) are essentially a
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monolayer and their NMR-active nuclear spins (75As, 71Ga, 69Ga) would be shifted in fre-

quency with respect to the bulk signal owing to the distinct chemical environment. As these

are all quadrupolar spins (nuclear spin quantum number I = 3
2

for all), both the chemi-

cal environment and strain would create a large electric field gradient (EFG), resulting in

splitting from the quadrupolar interaction. The other nuclear spins in the interfacial region

are nuclei which experience an effect from the interface without being directly bonded to

the Al2O3. These nuclei would remain unshifted in frequency (to first order) but the strain

would still be present, creating an EFG around the nuclei and therefore a splitting. As depth

into the sample increases, the strain diminishes until the nuclear spin environment is iden-

tical to the bulk GaAs sample with cubic symmetry. The nuclear spins at the interface and

in the near-interface strained region have a very limited number of spins, and their signals

would be hidden by the large bulk signal when detected conventionally. The use of optical

pumping overcomes this issue by limiting signal to the penetration depth of the laser and by

hyperpolarizing the nuclear spins present in the top layers of the GaAs, where the absorption

occurs.

Coated and Uncoated Spectra Comparison

For standard NMR, what appears to be a single peak is observed as seen in Figure 8.3

(black dashed line). However, instead of the expected Gaussian peak for the static crystal,

tails are present in the peak, resembling a Lorentzian shaped line. This is likely due to the

strain present in the sample which results in multiple peaks from the nuclei with different

quadrupolar splittings because they are experiencing different values of strain in the sample.

As one can see, no clear information is obtainable due to the appearance of a single peak.
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Figure 8.3: 75As NMR (black dashed line) and OPNMR (blue dot-dash and red solid lines) of
GaAs. Comparison of the conventional spectrum of the coated GaAs (black) to an optically
pumped spectra of “bare” GaAs with its native oxide present (blue) and the OPNMR spectra
of the Al2O3-coated GaAs (red). The optically pumped NMR spectra were recorded at a
wavelength of 819.3 nm. The spectra have been normalized.

Optically-pumped NMR of the Al2O3-coated GaAs sample (shown in red, 8.3), using pho-

ton energies in excess of the excitonic absorption (≈ 1.517 eV), can then be compared to

that of the “bare” GaAs. OPNMR of the Al2O3-coated GaAs produces three peaks; the

two outer peaks are the quadrupolar satellites, while the middle peak is predominantly2

from the central transition. The satellite intensities are asymmetric, indicating high levels

of nuclear polarization [35] – evidence of spin cooling below that of the “high temperature

approximation” [34]. With the large polarization present, the populations are best repre-

sented by an exponential distribution (assuming a single spin temperature) which leads to

2The central peak would be the combination of the central transition of the quadrupolar split spectrum
and signal from any unsplit bulk GaAs being polarized.
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larger population differences, and thus larger transition intensities, for transitions at lower

(for positive spin temperature) or higher (for negative spin temperature) frequencies. The

clear resolution of the peaks between the satellites and central transition confirm that we

are observing only nuclei with enough strain to distinguish their satellites from the central

transition.

To prove the satellites and tails are due to strain, we can perform OPNMR on an identical

GaAs wafer, which did not have the ALD film placed on top. The results can be seen

in Figure 8.3 (blue, dashed-dot line), where the spectrum only contains one peak with a

Gaussian shape.

Next, we would like to estimate the strength of the quadrupolar interactions (and thus strain)

in our system. The first order quadrupolar splitting (for an ηQ = 0) [94], given by:

νQ =
3eQVzz

8I(2I − 1)h
(3cos2θ − 1) (8.2)

relates the magnitude of the EFG and the orientation of the EFG tensor with respect to the

magnetic field. In the equation, eQ is nuclear electric quadrupole moment, Vzz is the largest

component of the EFG tensor, and θ is the angle between the Vzz component of the EFG

and the external magnetic field. For a single quadrupolar interaction, we would expect the

satellite peaks to have Gaussian lineshapes. The satellite peaks do not fit to perfect Gaussian

lineshapes as they have asymmetric “tails” distributed away from the central transition

(Figure 8.4); this spectral feature is attributable to a distribution of EFG’s (and therefore

νQ’s) arising from the perturbative effects of the interface, detecting different amounts of

strain, likely as a function of distance from the top of the sample. Modeling this type of

continuum of interaction strengths has not been done before, and is not trivial.
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Figure 8.4: 75As OPNMR of the alumina-coated GaAs showing the deconvolution of spec-
trum using Gaussian peaks with a linewidth fixed to that of the “bare” 75As OPNMR. The
blue dashed lines are the individual Gaussian peaks which comprise the red fit. The spectrum
was recorded using 819.3 nm light.

In order to estimate the quadrupolar interaction strengths in the sample, the two asymmetrically-

shaped quadrupolar lineshapes, have been deconvoluted into a series of quadrupolar satel-

lites, whose width is constrained to that of the single-crystal resonance in the ‘’bare” GaAs

spectrum (FWHM ≈ 1.5 kHz). Four such peaks effectively fit each quadrupolar lineshape,

each split symmetrically about the central transition (with a linear offset, the cause of which

is unknown). Table 8.1 lists the relative intensities and splittings of the satellites. While a

sum of many Gaussians (representing a continuum) could effectively fit the data, here we

have selected the minimum number to provide a straightforward picture of the degree of

splitting and the different fractions of the sample with similar strain.

Since the theoretical peak intensities in a quadrupolar, I = 3
2
, spectrum is 3:4:3 using small

tip angles [109], the percent of signal due to the strained nuclei can be calculated. Thus,
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Table 8.1: Satellite peak parameters acquired by deconvolution of Figure 8.4. The intensities
are relative to that of the central peak intensity, set to a value of 10.0.

Satellite

Pairs

4νQ

(kHz)

Relative

Intensity

Contribution to

Central Transition

A 4.08 6.44 4
6
6.44 = 4.30

B 6.68 4.83 4
6
4.83 = 3.22

C 9.65 1.80 4
6
1.8 = 1.20

D 13.55 0.69 4
6
0.69 = 0.46∑
=9.18±0.51

the ratio of central to satellite intensity should be 4:6. However, assumptions must be made

for the intensity of the strained central transition using Figure 8.4. Conservatively, if an

estimate is made from the average of the two satellites’ integrated areas [110] and using the

4:6 ratio, 91.8 ± 5.1% (area = 9.18) of the observed nuclei are strained as seen in Table

8.1. We ascribe this extra 8.2 % intensity in the central transition from unstrained 75As

atoms being optically pumped. In addition, the quadrupolar splitting of even the outermost

Gaussian peak corresponds to a strain of 3.4× 10−5 [17], which is less than the expected

strain (7.37× 10−4 , see Equation 8.1), indicating the observed satellite peaks correspond

to areas deeper in the sample where strain has been partially relaxed. The observed NMR

signal decays to the baseline at ≈ ±15 kHz, corresponding to a maximum observed strain of

7.53× 10−5, also much smaller than expected. This is suggestive of the inability to detect

the nuclei with larger strain. Potentially, the absence of larger strain could be indicative

of either a depletion zone[52] or other interactions which reduce the electron and nuclear

polarization at the interface.
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Optical Excitation Wavelength Dependence on Interface Signal

The effect of laser penetration depth, governed by the optical absorption coefficient, can be

seen from the OPNMR spectra recorded as a function of photon energy, and the resulting

75As lineshapes are plotted in Figure 8.5. The vertical lines in the figure correspond to the

(theoretical) wavelengths for the excitonic and band gap transition energies at 0 K [111],

for reference. Since our experiments were performed at a temperature of 6 K, the precise

photon energies for the transitions should be shifted slightly left to a higher wavelength

(lower energy). The spectrum at 821.3 nm (below Eg, the band gap energy) shows a lineshape

dominated by the central peak which masks the satellite peaks due to the deeper penetration

of the laser (to tens or hundreds of µm). We do observe broadening at the base similar to

that seen by conventional NMR (though with slightly asymmetric phasing)3. The spectrum

pumped at 818.3 nm, is polarized by laser excitation of a bound exciton [28], which results in

a very shallow penetration depth because of the intense absorption at this wavelength [51].

Notably, it is at this photon energy (wavelength) where the quadrupolar satellites are first

clearly resolved. For the spectrum with an optical pumping wavelength of 815.3 nm (also

above Eg), the polarization remains relatively the same. Due to the large increase in the

absorption coefficient at and above the band-gap energy, all the spectra above the band gap

originate from areas of strain while the spectra below the band gap cannot be deconvoluted

due to the large contribution of the unstrained GaAs.

Other recent studies in OPNMR of strained GaAs have shown evidence of quadrupolar

splitting, reporting on a significant dependence with laser power [15, 50, 52]. Sub-bandgap

irradiation was used in their experiments [15, 50, 52], revealing both a positive spin tem-

perature at low laser power (ascribed to quadrupolar relaxation close to defect sites) and

3As documented previously [38], we use the “system phase” for all experiments.
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Figure 8.5: Intensity normalized 75As OPNMR spectra at various photon ener-
gies/wavelengths. The spectra (from left to right) are in order of decreasing wavelength
(increasing photon energy) with the central transition positioned over the corresponding op-
tical excitation wavelength. Theoretical positions of the band gap and exciton absorption
energies are shown as dashed lines.

a resolved quadrupolar splitting attributed to strain throughout the sample, exhibited only

with high laser power arising from hyperfine relaxation (and negative spin temperature) for

σ+ light. With similar conditions (high laser power and sub-bandgap irradiation), we only

observe indistinct quadrupolar splitting with a lineshape dominated by the central transi-

tion. These results illustrate different strain environments. The experiments in this chapter

only have strain concentrated at the near surface accessed by high photon energy, while other

studies [50] have strain throughout accessed by low photon energy.
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Laser Helicity Dependence

σ+ light carries + 1 unit of angular momentum and thus creates conduction electrons primar-

ily in the ms = −1
2

state, opposite in sign to that of thermal equilibrium. As the hyperfine

interaction allows the total conduction electron energy to equilibrate with the total nuclear

spin energy, the nuclear spins also become polarized (populated) toward non-equilibrium mI

spin states. If the polarization is high enough, the initial population would be primarily in

the mI = −3
2

state. Since the helicity of light determines the direction the nuclear spins are

optically pumped, using σ− light should initialize the nuclear spins in the mI = +3
2

state.

The population transfer due to a B1 pulse would then start from that initial state, and follow

the expected transition of ∆m = −1. An example spectra for both helicities of light can be

seen in Figure 8.6. Since the flip angle is less than a 90° pulse, we will primarily observe the

transitions from the initial spin state and the central transition.

8.3.2 OPNMR Hyperpolarization at an Interface

Satellite intensities have been used previously to calculate the polarization of the observed

nuclei [35, 112]. Because quadrupolar splitting creates transitions at three different frequen-

cies and the phase correlates to the sign of ∆m, the peak intensities can be used to describe

the population differences between the states. However, the central peak may be convoluted

by unstrained signal, therefore it will not be used in the calculation for the spin state popula-

tions. If we were to assume an exponential population toward the ±3
2

spin states (depending

on the helicity of light), the ratio of the two satellite intensities would be:

I− 1/2→− 3/2

I3/2→1/2

= exp
(−2h̄γIB0

kTn

)
(8.3)
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Figure 8.6: 75As OPNMR spectra for σ+ (black, bottom) and σ− (red,top) laser at 817.3 nm
(100 mW). The spectra were recorded at 4.7 T for an optical pumping time of 1.5 minutes.
The spectra are phased with respect to a conventional thermally polarized spectrum (pos-
itively phased). The pulse is roughly a 55° pulse in order to obtain more signal while still
having an idea of the polarization (before the satellite begins to nutate).

where γI is the gyromagnetic ratio of the observed nuclei, B0 is the external magnetic field,

and Tn is the local average nuclear spin temperature. It is important to note, a single spin

temperature is unlikely to represent all of the nuclei due to the laser irradiation volume not

incorporating the entire sample and the equilibration of the nuclei only occurring at longer

times. The local average nuclear spin temperature can then be solved for by rearranging

Equation 8.3:

Tn =
−2h̄γIB0

k ln
(
I − 1/2→ − 3/2

I3/2→1/2

) (8.4)
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The local average nuclear spin temperature can then provide insight into the polarization of

the observed quadrupolar split nuclear spins, assuming an exponential population distribu-

tion.

To calculate polarization, the expectation value for the nuclear spin projection on the z -axis,

〈Iz〉, is needed. 〈Iz〉 can be calculated from the spin temperature for a spin-3⁄2 nucleus by [35]:

〈Iz〉 =
1

2
tanh

(
h̄γIB0

2kTn

)
+ tanh

(
h̄γIB0

kTn

)
(8.5)

For 75As, where I = 3
2
, the maximum expectation value for 〈Iz〉 is ±3

2
and would correspond

to all observed nuclear spin states in one of the mI = ±3
2

states. This would equate to 100 %

polarization according to:

Polarization(%) =
〈Iz〉
Iz
× 100 (8.6)

Using Equations 8.4-8.6, we can now use the satellite intensities to calculate the nuclear spin

polarization near the interface.

However, we would like to note that most of these measurements will be before an equilibrium

spin temperature is reached. There is likely to be areas of higher and lower polarization in

the sample due to the polarization transfer from the conduction electrons. If that is the case,

what we are measuring is a distribution of spin temperatures and modeling their sum as a

single average local spin temperature. It is important to realize this, as the populations are

unlikely to be perfectly exponentially distributed between the spin states, especially at short

times. The inability to use the central transition population difference as mentioned above

prevents the use of three points to describe the exponential distribution and thus we are

unable to provide insight into the validity of the exponential assumption, until a complete

model is formed.
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To study the polarization as a function of various parameters, small tip angle (≈ 8°) pulses

were used in order to not greatly perturb the system from the initial polarization after optical

pumping. This is critical as seen in the nutation (Figure 8.7) where during the length of

the NMR pulse, population is constantly changing which would lead to different measured

polarizations.

OPNMR Nutation Dependence

Nutation with optical pumping changes the initial population distribution of the nuclear spin

states. A horizontal slice from the σ− nutation is compared to the same pulse width from

the σ+ nutation in Figure 8.6 to show the initial population distribution. Therefore, we

observe a negatively phased ω0 + 2ωQ resonance for σ+ irradiation while a positively phased

ω0 − 2ωQ is observed for σ- irradiation based on the energy level diagram in Figure 8.7(a.).

The optically pumping behavior is further proof the observed splitting is due to straining

the quadrupolar nuclei near the interface.

As mentioned earlier, nutation experiments study the population transfer between spins

states as a function of irradiation length (B1 pulse width). Thermally relaxed spins will

possess a Boltzmann distribution of populations among the I = 3/2 energy levels (3/2, 1/2,

−1/2, −3/2), with spin states lower in energy having more spins. When the B1 pulse starts,

spin population transfer can occur for all ∆m = ±1 transitions. For the thermally polarized

case, the spins would all follow the ∆m = −1 transition due the lower states having more

population. In the strained portions of the thermally polarized sample, all three transitions

would be observable at all times during the pulse since the lower energy spins states have

more population than the spins state higher in energy. The peaks will also be approximately
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the same in intensity since the signal is proportional to the population difference between

the spin states and ω0 � ωQ.

Figure 8.7: (a.) 75As energy level diagram, and (b.) quadrupolar nutation under OPNMR
at 4.7 T for 1.5 minutes of σ+ light (100 mW, 817.3 nm). (a.) Energy diagram of the nuclear
spin states for the 75As without (cubic) and with quadrupolar splitting. The gray arrows
represent the transition frequencies of the allowed NMR transitions. Colored arrows denote
the 6 possible transitions referred to in the text. (b.) Contour nutation plot of the 75As
OPNMR spectra using the Bloch decay sequence as a function of the pulse width. Horizontal
slices are typical 1-dimensional OPNMR spectra. The numbered white circles correspond to
the colored arrow transitions in part (a.).

In order to follow the nutation in the interface region, we need enhancement from he OPNMR,

meaning we do not start with a thermal distribution of populations. We can then follow

an initial σ+ polarized population (mI = −3
2
) as it nutates through the quadrupolar split

energy levels as seen in Figure 8.7 (b.). Starting primarily in the mI = −3
2

state, the only

allowed transition with a population difference is the transition to the mI = −1
2

state at

a frequency of ω0 + 2ωQ, represented by transition “1” (red) in Figure 8.7. The signal
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phase is negative since the sign of ∆m (positive) is opposite of the thermal distribution ∆m

(negative). The population continues to move with ∆m = +1 as it moves to the mI = +1
2

(transition “2”, orange) and mI = +3
2

(transition “3”, yellow) states at a frequency of ω0 and

ω0 − 2ωQ, respectively. Here, transition “2” (orange) is convoluted with the ω0 transitions

of the unstrained bulk signal. Once the spins are in the mI = +3
2

state, the spins are fully

inverted with respect to the magnetic field and the observable transitions are ∆m = −1, in

phase with thermal equilibrium. The population will then move back towards the mI = −3
2

state going through transitions “4”, “5”, and “6” which are all positively phased. This cycle

would then repeat again as seen in the top of Figure 8.7 (b.) where transition “1” is starting

to appear again. This was able to be modeled in Mathematica using the density matrix

formalism as shown in Figure 8.8 using only the RF Hamiltonian.

Through modeling, we can confirm the observed nutation behavior is due to the very high

polarizations present from the optical pumping of the nuclear spin states. The acquired

nutation aligns very well to a −2 mK spin temperature, or a −58 % polarization, without

fully optimizing all available parameters (again, under the assumption of an exponential

population distribution described by a single temperature). In order to determine the max-

imum polarization able to be achieved with our experimental setup, additional parameters

including wavelength, magnetic field, helicity of light, and optical pumping time will need

to be varied.

Polarization Dependence on Multiple Parameters

The 75As NMR satellite intensities and line-shapes were studied as a function of photon

energy as seen in Figure 8.9. Photon energy affects which transitions are excited and the

penetration depth of the laser into the GaAs. Exciting different transitions will result in
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Figure 8.8: Model for nutation of a hyperpolarized weakly-quadrupolar-split interface signal.
(a.)Expected nutation for the three satellites in a system where ωRF >> ωQ. The satellite
intensities are degenerate for the entire nutation. (b.) and (c.) are models for a −4 mK
spin temperature and −100 % polarized nutation, respectively. (d.) and (e.) compare the
amplitude of the satellite peaks to various spin temperatures for the high and low frequency
satellites, respectively. (f.) Comparison to the best match spin temperature for the satellite
nutation.

different electron polarizations due to differing amounts of light hole and heavy hole character

in the valence bands [17, 37]. Since the absorption coefficient, which is a function of photon

energy, changes the penetration depth of the laser, the number of nuclear spins being optically

pumped will change as a function of wavelength as well. We can then infer three different

regions for the wavelengths we measured based on the spectra which are marked by the
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Figure 8.9: Normalized 75As OPNMR spectra for 100 mW σ+ laser at various photon ener-
gies/wavelengths. The spectra were taken at 3.0 T for a optical pumping time of 1.5 minutes.
The spectra are phased 180° out of phase with respect to a positive thermally polarized spec-
trum in order to have them positively phased and easier to compare by eye. The pulse is
roughly a 55° pulse in order to obtain more signal while still having an idea of the polariza-
tion. The spectra (from left to right) are in order of decreasing wavelength and increasing
energy with the central transition positioned over the corresponding excitation energy.

vertical dashed lines in Figure 8.9. Similar to the other plot (Figure 8.6), the lines correspond

to the 0 K wavelengths for the excitonic and band gap transition energies and since our

experiments were performed at a temperature of 6 K, the lines should be shifted slightly

left (to a higher wavelength and lower energy). The two spectra at wavelengths greater

than 820 nm show a line-shape dominated by the central peak which swamps the satellite

peaks. We do observe some broadening of the base similar to that seen in the thermally

polarized spectra. We would also like to note the slight phase twist in these two spectra,

when phased with respect to thermal, for which the cause is currently unknown. The next
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set of spectra, 820 nm to 817 nm, is polarized by laser excitation to a bound exciton and

the quadrupolar satellites become observable. This is due to the much larger absorption

coefficient for the material at this energy and thus less unstrained bulk signal being optically

pumped. Polarization then increases as energy increases until the polarization reaches a

maximum around the band gap energy. For spectra with optical pumping wavelengths less

than 817 nm, the polarization and penetration depth remains relatively the same for the

wavelengths we studied. From this data, we can confirm laser excitation, with an energy

near the band gap, achieves the largest polarizations for this sample.

Next, several parameters (helicity of light, optical pumping time, and magnetic field) were

varied in order to determine how they affect the polarization. We begin with the base

set of experimental parameters used σ+ light for 10 minutes in a 3.0 T magnetic field (one

of the data points in Figure 8.10). These parameters result in a relatively large negative

polarization. By switching the helicity of light to σ−, the polarization becomes positive

and roughly half of the σ+ data. The polarization is now positive since the nuclear spins

are pumped the same direction as thermal equilibrium. The polarization being half as

large, corresponds well to the asymmetry observed in the intensity of the OPNMR signals

previously reported [12], lending to the asymmetry being due to different polarizations of

the nuclear spins. If we increase the magnetic field to 4.7 T (while going back to σ+ light),

our polarization is negative as we would assume for σ+ light but the polarization decreases

to approximately 75 % of the 3.0 T data. The decrease in polarization could be due to

the magnetic field dependence of the optical pumping phenomena [6, 53] or the increased

mixing of the states at higher fields [17, 37]. The last parameter to be studied was the

length of the optical pumping time and the results can be seen in Figure 8.10. The time

dependent polarization data was obtained by only varying the pumping time of the base set

of parameters.
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Figure 8.10: Local polarization of 75As nuclei near the interface for 100 mW 817.9 nm σ+
laser at various optical pumping times. The spectra were taken at 3.0 T. The pulse is roughly
a 8° pulse in order to not perturb the population/polarization of the observed quadrupolar
split nuclei. The blue line is a fit to the data but plotted as guides to the eye. The inset
shows the growth and fit to the shorter time points.

The time dependence of the optical pumping time showed a maximum polarization of ≈85 %

at ≈0.5 minute. The polarization then decayed to an equilibrium of approximately 25 %

for the near interface 75As nuclei. This behavior can be well represented by a competing

fast exponential growth and slow exponential decay, similar to a cross polarization buildup

curve, as seen by the blue line fit in Figure 8.10, meant as a guide to the eye. The only other

similar results, achieved a polarization of ≈30 % [35], have shown the inability for traditional

spin diffusion equations to quantitatively model the time dependence in this curves. Thus,

quantitative modeling of the polarization dependence remains to be understood. However,
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this result is very promising due to the large maximum polarization observed, indicating the

potential use for further analyzing interfaces.

Many OPNMR studies have used a simplified theory [12, 19] for electronic polarization

which leads to a maximum polarization of 50 % due to the inter-band optical transition

probabilities as described in Chapter 3 [31]. The theory though relies on the light-hole and

heavy-hole bands being degenerate and only optically exciting at the band gap. This is

inaccurate for OPNMR studies since the bands are perturbed by the magnetic field [14,

17], are optically pumped at multiple wavelengths, and, in this case, perturbed by strain

effects [17]. Instead, the individual transitions and resulting 〈Sz〉 will need to be calculated

for the perturbed bands [37, 113]. Thus, if a narrow laser is used, we can selectively excite

transitions dominated by the heavy-hole or light-hole to obtain polarizations of 100 %, if spin

relaxation is neglected.

8.4 Conclusions

We were able to obtain NMR spectra of near interface 75As nuclei in a Al2O3-GaAs sample

which exhibited signs of strain induced quadrupolar splitting at cryogenic temperatures.

The strain is due to the lattice mismatch between GaAs and Al2O3. The use of optically

pumping was required in order to observe this smaller number of spins by NMR. Polarization

was measured for various conditions in order to determine the best parameters to achieve

the highest polarization. With the use of optical pumping, nuclear polarization of the near

interface atoms was measured at values >90 %. The realization of highly polarized nuclei

near the surface of a semiconductor via OPNMR lends to possible transfer of this polarization

to materials on the surface.
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Chapter 9

CASTEP Calculations of NMR

Parameters in Amorphous Alumina

As a side project and through a collaboration with Dr. Murat Aykol and Dr. Kristin Pers-

son (Lawrence Berkely National Laboratory, molecular dynamics simulations), an attempt

to model amorphous alumina was made. Many NMR studies have looked at spectra of pre-

cursors, their change as a function of annealing through amorphous phases, and the resulting

crystalline alumina phases. The results have provided some information about the amor-

phous coordination and the observed trends with respect to annealing temperature; however,

no atomic structural information has been derived. The combination of molecular dynamics,

CASTEP calculations, and NMR spectra modeling have been combined and compared to

experimental data to achieve an average structure representative of bulk amorphous alumina

at different temperatures.
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9.1 Introduction

Aluminum oxide is a model, complex polymorphic system with a wide range of stable and

metastable crystalline phases such as α, γ, κ, η, β, θ and χ-alumina, and a competing

amorphous phase [114]. The interest in amorphous Al2O3 beyond being a precursor for

crystalline phases was in fact sparked by the discovery of spontaneous formation of such

disordered films on aluminum metal at low temperatures, which gives it a natural corrosion

protection [115, 116, 117]. Technological applications of amorphous alumina, am-Al2O3,

range from electronics [118] to protective coatings [119], where the properties are controlled

by the local atomic structure.

Atomic structure of am-Al2O3 has been studied extensively with diffraction, microscopy,

nuclear magnetic resonance (NMR) experiments [120, 121, 122, 123, 124, 125, 126] and with

molecular simulations [127, 128, 129, 130, 131]. The chemical environment in this material

is known to consist of a mixture of n =3, 4, 5 and 6-fold coordinated Al-centered AlOn poly-

hedra, but there are significant discrepancies in different reports of the relative amounts of

such AlOn units [130]. Using reverse Monte Carlo Simulation (RMC) of X-ray and neutron

diffraction spectra, Lamparter and Kniep [120] reported 20 %, 56 % and 22 % for 3, 4 and 5-

fold coordinated Al, which was later contradicted by many experimental and computational

studies. Using magic-angle spinning (MAS) 27Al NMR spectroscopy, Dupree et al. [125]

showed that more than 30 % 5-fold coordination may exist in the amorphous films, depend-

ing on the sample preparation route, but they were not able to distinguish that possibility

from an equal split to 4- and 6-fold coordination with much less 5-fold coordination. Using

the same technique, Kunath-Fandrei et al. [124] suggested the fraction of AlO5 is as small

as 7 %. More recent NMR experiments by Lee et al. [121, 122] on deposited Al2O3 films

showed AlO5 fractions around 40 %, with the rest being mostly 4-fold Al-O coordinations.
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Using classical interatomic potentials in molecular dynamics (MD) simulations, Gutierrez

and Johansson [132] reported a mostly 4-fold dominated structure with ≈20 % 5-fold coordi-

nation, whereas Jahn and Madden [133], and Hoang [129] reported approximately 5:4 ratio

for of 4- and 5-fold polyhedra dominating the structure. Based on structures derived from

ab-initio MD (AIMD), Davis and Gutierrez [134] also reported similar ratios; approximately

50 %, 40 % and 10 % for 4, 5 and 6 fold Al-O polyhedra, respectively. Calculating X-ray

photoemission (XPS) spectra and NMR shifts using first-principles, Lizarraga et al. [130]

showed the amount of AlO5 increases as density increases (within the range of ≈40–60 %),

along with AlO6, in expense of AlO4. Overall, there exists a strong dependence of local

coordination environment in am-Al2O3 on the synthesis route and characterization tech-

nique in experiments, and on the description of interatomic forces (e.g. classical potential

vs. first-principles) and structure generation pathways in computational studies.

NMR studies [135, 136] are very sensitive to local environments and have been completed

on Al2O3 crystalline phases and precursors, as well as the spectral dependence on anneal-

ing temperature before reaching the stable phases. However, for the amorphous annealing

temperature regions, few have attempted to understand the changes, observable by NMR,

occurring in the local atomic structure or to model the local atomic structures which affect

the quality of the films. Lizarraga et al. [130] attempted to use Density Functional Theory

(DFT) to calculate NMR parameters for amorphous alumina using MD simulated structures

for the first time; however, only the chemical shift was compared to experimental data for

am-Al2O3. The accuracy of their method depends on the number of nuclei used in the cal-

culation, since each nucleus is weighted equally. However, most NMR spectra for disordered

quadrupolar solids are simulated by the Czjzek model [137] which has been extended [138] to

provide information on the distributions of electric field gradients (EFGs). In this chapter,

we investigate the changes in the NMR parameters and local environment of amorphous
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Al2O3 as a function of the annealing, by applying the extended Czjzek model and AIMD

simulations. In addition, further proof for the combined use of MD and DFT to model

amorphous alumina and other materials, besides the commonly done glasses, is presented.

9.2 Experimental

9.2.1 Molecular Dynamic Simulations of Structures

MD simulations were completed by the collaborators at Lawrence Berkely National Labo-

ratory. They followed a melt-and-quench route to generate amorphous alumina. They first

created a constrained random packed configuration of 40 Al and 60 O atoms with pack-

mol [139] in a cubic box at a density approximately 20 % larger than corundum (α-Al2O3).

This initial configuration was equilibrated as liquid Al2O3 at 3000 K and cooled down in

a step-wise procedure using canonical (NVT) AIMD as implemented in Vienna Ab-initio

Simulation Package (VASP) [140, 141] using Perdew-Burke-Ernezerhof (PBE) [142] formula-

tion of generalized gradient approximation and a plane-wave kinetic energy cutoff of 400 eV,

and Γ-point only. During cooling, isothermal MD runs at selected temperatures of 2500 K,

2000 K, 1773 K, 1573 K, 1373 K, 1223 K and 1073 K were performed. To ensure a near equi-

librium density was obtained at each temperature, cell volume was dynamically modified

every 4 ps until the average pressure dropped below 5 kbar, which was followed by a 10 ps

long isothermal production run. Temperature transitions were done in a continuous cooling

period of 4 ps. A time-step of 2 fs was used in all AIMD simulations. A 5-point Savitzky–

Golay filter was applied to radial distribution functions (RDFs) and bond angle distribution

functions (BDFs) to obtain a slightly smoother form.
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9.2.2 CASTEP Simulations of NMR Parameters

NMR resonances for each Al nucleus were calculated using CAmbridge Serial Total Energy

Package (CASTEP) [143] as implemented by Materials Studio 2016. CASTEP is a DFT

code which implements the gauge including projected augmented wave (GIPAW) method

to simulate the all-electron wavefunction in the presence of a magnetic field, found in NMR

experiments. The PBE functional was used with geometry relaxation of each MD derived

structure to the ground state with a planewave cutoff energy of 630 eV. Ultrasoft pseudopo-

tentials were used to describe the core-valence interactions. The calculations were allowed

to run until the energy converged within 5× 10−6 eV/atom.

To emulate the variations in local environment with the degree of relaxation of the amorphous

phase, we quenched 10 configurations to 0 K using DFT relaxation of all geometrical degrees

of freedom in CASTEP from two different temperatures of the AIMD cooling; namely, 1373 K

and 1073 K. A maximum heteronuclear bond length of 2.45�A was applied (value obtained

from MD calculated RDFs to limit homonuclear bonds). Each nuclear resonance was then

separated into 4-, 5-, or 6-coordinate Al species. The NMR parameters of each coordination

environment were averaged together for each MD snapshot and then averaged for all the

snapshots obtained from a given MD temperature. These values can then be used to obtain

a calculated lineshape using the Dmfit [144] program which requires, for each coordination

environment and temperature, the average percent signal intensity, average isotropic chemical

shift, the standard deviation of the Gaussian chemical shift distribution, and the peak value

of the quadrupolar coupling.

127



9.2.3 Synthesis and NMR Acquisition of Al2O3 Thin Films

The NMR data which we compare our results were adapted from Hammann et al. [145] where

experimental specifics can be found. An overview of the synthesis and NMR acquisition of

the Al2O3 thin films is presented here briefly. Thin films of Al2O3 are deposited on 100µm

thick, polished silicon wafers by spin casting from molecular clusters [146]. The molecular

clusters are passed through 2µm filters and soft-baked until ten layers are formed for a film

thickness of ≈380 nm. Each film was then further annealed in a furnace under ambient

conditions at different temperatures up to 1100 ◦C which had a final thickness of ≈270 nm.

The silicon wafer coated with the am−alumina was then crushed to a coarse powder using

mortar and pestle with the film still attached to the wafer as shown previously by scanning

electron microscopy [145]. For NMR, The coarse powder was loaded into a 3.2 mm rotor

and spun at the magic angle at 22.5 kHz. 27Al (I =5⁄2) was acquired in a 19.96 T mag-

net with a resonance frequency of 221.41 MHz. The spectra were referenced with respect

to 1 M Al(NO3)3 at 0 ppm. The spectra were acquired using a 90°-τ -180° rotor synchro-

nized quadrupolar echo [98] with a central selective 90° pulse length of 2.25µs. The spectra

were collected using 5400 transients with a 1 s recycle delay. The probe background was

subtracted, and the resulting spectra are shown in Figure 9.1. The two lowest annealing

temperatures, 200 ◦C and 300 ◦C, contain many impurities (primarily water and nitrates)

left over from the synthesis method and thus would not be described by our modeling of

pure Al2O3. The two highest annealing temperatures, 950 ◦C and 1100 ◦C, correspond to

crystalline phases of alumina. The 400 ◦C to 800 ◦C spectra are, thus, the amorphous region

we are modeling.
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Figure 9.1: 27Al MAS NMR spectra acquired using a rotor synchronized selective quadrupo-
lar echo pulse sequence as a function of annealing temperature. Three distinct peaks are
observable, corresponding to 4-, 5-, and 6-coordinate Al in red, blue and green, respectively.

9.3 Results and Discussion

9.3.1 Amorphous Structures of Aluminum Oxide

The AIMD-based melt-and-quench route to obtaining amorphous materials follows a phys-

ically plausible path analogous to an experimental cooling process from the liquid phase.

While the cooling rate is still much higher than typical rates in experiments, we expect the

method to capture the prevailing short-range order in amorphous Al2O3 much better than

a stochastic generation method.
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Figure 9.2: Partial RDFs of Al2O3 as a function of temperature upon cooling down the melt
from 2500 K, along with the averages of snapshots quenched to 0 K by DFT relaxation (0 K
– relax). Panels (a), (b), and (c) show RDFs of Al-Al, Al-O and O-O pairs. g(r) is shifted
by +1 incrementally for each temperature step above 0 K.
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The partial RDFs of alumina as it is cooled down from the liquid are shown in Figure 9.2.

The positions of first peaks (average distance to closest corresponding nucleus) of Al-Al, Al-O

and O-O do not change considerably with temperature, and are in excellent agreement with

the experimental reports for liquid and amorphous Al2O3 [120, 147]. The only noticeable

changes are that the first peak of Al-O pairs becomes significantly sharper, and all peaks

become slightly narrower and shift towards smaller interatomic separations, as expected from

densification at lower temperatures. This is also consistent with the BDFs shown in Figure

9.3, where the intensity of the peak around 90° of O-Al-O bonds increases as the temperature

is lowered, hinting at the relaxation from lower to higher coordinated AlOn polyhedra.

Figure 9.3: Bond angle distribution functions of triplets in liquid and amorphous Al2O3.
Starting from 0 K DFT–relaxed snapshots, functions are shifted upwards with the same
increments for each temperature step. For comparison, major bond angles in α and γ−Al2O3

are also shown as downward and upward arrows, respectively.
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9.3.2 NMR Parameters of Amorphous Structures

The NMR parameters are expected to be sensitive to the degree of local order established

in the am−Al2O3. Therefore, we focus on atomic configurations from AIMD simulations

at two distinct temperatures (1073 K and 1373 K), which exhibit slightly different degrees

of relaxations in the Al-O local environment. The resulting average values of the NMR

parameters for the full (geometry and energy) optimization of the 10 MD simulations per

temperature can be seen in Table 9.1. The structures obtained from the lower temperature

MD simulation may have slightly more 4- and 6-coordinate Al than those obtained from the

higher temperature MD simulation (uncertainty too large to fully make claim), which trends

towards that of the pure γ–Al2O3 crystal structure which exhibits only 4- and 6- coordinate

Al [136]. In addition, the standard deviation of the NMR parameters decreases for the lower

MD temperature, indicating a more ordered structure.

The only other attempt in calculating amorphous alumina from MD and further DFT cal-

culations, only used the nuclei present in the unit cell [130]. In this work, by implementing

a known model, which describes an infinite distribution of amorphous quadrupolar nuclei,

the expected lineshape for an infinitely large unit cell can be calculated from the sets of

calculations. This method, while faster than calculating a much larger unit cell, should also

be more accurate as it minimizes the effect of nuclei near the edge of the unit cell, which

can cause some unexpected results.

The NMR parameters obtained for the three coordination environments in the Czjzek model

include percent, δiso, FWHM of δiso, |Cq|, as well as δaniso, ηCS, and ηQ. Percent is the

percentage of nuclei in all the snap shots for a given MD simulation temperature which have

the corresponding coordination number. δiso is the average isotropic chemical shift from the
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Table 9.1: CASTEP NMR parameters results for 4-, 5-, and 6-coordinate Al for the amor-
phous Al2O3 structures obtained from two selected MD simulation temperatures. The first
four columns of results are those used to model the Czjzek NMR lineshapes. The values
given are the average of 10 snapshots for each temperature. The error shown is the standard
deviation between the 10 results.

MD Sim. Percent δiso FWHM |Cq| δaniso
ηCS ηQ

Temp. (%) (ppm) δiso (ppm) (MHz) (ppm)

1073 K

[4] 44± 2 64± 1 7.4± 0.6 9.6± 0.1 44± 2 0.55± 0.02 0.53± 0.06

[5] 45± 3 40± 1 6.9± 0.5 9.8± 0.2 62± 1 0.61± 0.02 0.61± 0.04

[6] 12± 1 18± 1 5.4± 0.6 10.7± 1.0 26± 3 0.66± 0.11 0.59± 0.09

1373 K

[4] 43± 4 68± 1 7.2± 0.9 10.8± 0.6 46± 4 0.58± 0.07 0.58± 0.08

[5] 48± 4 43± 1 6.1± 0.8 9.3± 0.5 58± 4 0.58± 0.09 0.59± 0.05

[6] 9± 3 18± 2 6.4± 3.3 8.5± 1.7 24± 7 0.61± 0.08 0.59± 0.16

average chemical shift of each of the ten snapshots. The position of the peak and thus the

splitting between the different coordination peaks is determined by δiso. The FWHM of δiso is

the average of the FWHM of the isotropic chemical shift distributions in each snapshot and is

a Gaussian broadening mechanism. |Cq| is the average/most common quadrupolar coupling

constant from all of the snapshots and describes the length of the tail in the Czjzek model.

The last three parameters are not used in the Czjzek model but are informative values that

can be calculated. δaniso is the average anisotropic portion of the chemical shift from all the

snapshots, which is not of interest here due to the magic angle spinning to remove it. ηCS is

the chemical shift asymmetry parameter and ηQ is the quadrupolar asymmetry parameter,

which are averaged over all the snapshots as well.

Using the first four columns of NMR parameters in Table 9.1, a calculated lineshape can

be constructed for the amorphous alumina assuming the distributions of quadrupolar pa-

rameters fit the Gaussian Isotropic Model (GIM) for a Czjzek distribution. By assuming
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a Czjzek distribution, which has been used to fit many amorphous quadrupolar NMR sig-

nals [137, 148], a smooth continuum for the lineshape can be reached without the need for

large unit cells. The resulting spectra for the structures obtained from two different MD

temperatures result in slightly different lineshapes as seen in Figure 9.4. It is important to

note, NMR is very sensitive to the local structure, allowing for observable changes in the

spectra, which is not as noticeable in the table of resulting parameters.

9.3.3 Comparison of Calculated and Experimental NMR Line-

shapes

In order to confirm accurate computational modeling of the local atomic structure in am-

alumina, comparison of the calculated and experimental data must be made. The two

resulting Czjzek models were compared to experimental spectra from the five annealing

temperatures of interest for amorphous alumina. For each comparison, the 5-coordinate

calculation and 5-coordinate experimental chemical shifts were overlapped to reference the

calculations since the 5-coordinate peaks are the most intense, and thus, most accurately

known. During this referencing, the separation of the 4-, 5-, and 6- coordinate Al isotropic

chemical shifts were kept constant. The two MD simulation temperatures resulted in better

matches with two separate experimental annealing temperatures, indicating this method

may be able to model the small changes as the amorphous structure rearranges to become

crystalline. The best match between experimental and calculation can be seen in Figure 9.5.

The 1373 K calculated lineshape best matches the 400 ◦C annealing temperature (Figure

9.5(a.)). The two main differences between calculation and experimental is the smaller

calculated chemical shift separations between the different coordinations in the calculate
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Figure 9.4: Resulting geometry optimized Czjzek lineshapes from the calculated NMR pa-
rameters for the two molecular dynamics simulations. The 4-, 5-, and 6-coordinate (red,
blue, and green, respectively) are shown as well as the sum (black).
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Figure 9.5: Best matches between experimental and calculated results. The multiple lines
for the calculated spectra represents the expected spectrum within one standard deviation
for each variable. (a.) Comparison of 400 ◦C experimental data to the two temperature cal-
culation results illustrating the match between 400 ◦C experimental and 1373 K (blue) cal-
culations. (b.) Comparison of 700 ◦C experimental data to the two temperature calculation
results illustrating the match between 700 ◦C experimental and 1073 K (red) calculations.
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spectrum and the lack of a tail to lower ppm values for the experimental 6-coordinate alu-

minum in the experimental spectrum. The smaller chemical shift separations could be due

to inappropriate energy levels of the electron orbitals present, similar to that observed in Ca

glasses [149], leading to errors in chemical shifts or due to a non-ideal correlation of shielding

and chemical shift as observed in many other systems [143, 149, 150]. The lack of the typical

Czjzek tail for the 6-coordinate experimental resonance could be due to incomplete removal

of the water and nitrates used in the synthetic procedure, which is not taken account in

these simulations.

The 1073 K calculated lineshape best matches the 700 ◦C annealing temperature (Figure

9.5(b.)). A similar discrepancy in the chemical shifts is also observed; however, the tail

for the 6-coordinate aluminum resonance matches well. Instead, the 4-coordinate resonance

height is slightly higher than the experimental and a small lack of intensity between the

4- and 5-coordinate resonances appears. This could be an under calculation of resonance

width by CASTEP calculations or could be indicative of a better match with an annealing

temperature between those measured here where the 4-coordinate aluminum would have

slightly different NMR parameters.

The inverse relationship between MD simulation temperature and annealing temperature can

be understood considering the nature of the simulations and experiments, which approach

the more locally-ordered structures from different directions on the temperature scale. The

MD simulation method used here, starts with a liquid phase of Al2O3 and slowly cools the

structure to a relatively high temperature before a faster quench. Thus, a higher quenching

temperature would lead to more disorder in the structure while a lower temperature quench

would have allowed further relaxation and a more ordered local structure. The annealing

process raises the temperature to a higher temperature to allow for mobility of the nuclei
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before cooling back to room temperature. The higher the temperature, the more motion the

nuclei are allowed to undergo before a slow cooling process to form the film. More motion

will allow the sample to overcome thermodynamic barriers until it ultimately reaches the

lowest energy crystal structure. Ultimately, this indicates the formation of short range order,

such as micro-crystallites, forming in the simulated spectra, as expected for the temperatures

near the transition to a crystalline phase.

Figure 9.6: Quadrupolar asymmetry parameter (ηQ) distributions from the resulting
MD/CASTEP unit cells for the (a.) 1373 K and (b.) 1073 K amorphous alumina simu-
lations. The solid lines represent fits to the distributions using the standard Czjzek model.
The dashed lines represent fits to the distributions using the extended Czjzek model.
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To confirm the use of the Gaussian Isotropic Czjzek Model lineshapes, an extension [138, 148]

of the Czjzek model was used to analyze the MD-simulated, CASTEP-optimized structures.

The extended model does not assume an isotropic Gaussian distribution of the quadrupolar

tensor which allows for structural information of the sample to be obtained. The comparison

of the two models for the distribution of the ηQ parameter for every nuclei (from all ten

snapshots, for a given temperature) can be seen in Figure 9.6. For the 1373 K simulation, the

GIM and extended model are almost identical. This is indicative of a truly amorphous and

random structure. However, for the 1073 K simulations, the distribution of ηQ can no longer

be simply modeled with a GIM Czjzek model, especially for the 6-coordinate aluminum.

This indicates the 6-coordinate Al resonances are dominated by local contributions rather

than the global isotropic contribution of the GIM [148], for these simulated structures. This

is indicative of a transition to a more ordered structure.

One of the ten example structures obtained for the two temperatures can be seen in Figure

9.7. The structural change between the two is hard to see by eye. However, additional

6-coordinate is observed in these representative structures in addition to the formation of

some tetrahedral shaped polyhedra (rather than highly distorted four coordinate Al) in the

1073 K (b.) simulation. This corresponds well to the larger percentage of 6-coordinate Al

and the narrowing of the 4-coordinate Al species observed in the NMR spectrum simulation

and in the higher annealing temperature experimental NMR data. As can be seen, NMR is

very sensitive to these geometries as shown in the calculated and experimental lineshapes.
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Figure 9.7: Representative structures of the amorphous Al2O3 at MD quenching temper-
atures of (a.) 1373 K and (b.) 1073 K. The white lines are the oxygen atom bonds and
the red, blue, and green polyhedra are for the 4-, 5-, and 6-coordinate aluminum atoms,
respectively.

9.4 Conclusions

MD simulations have been used to create large amorphous unit cell structures of Al2O3

while using the quench temperature to control the disorder. DFT relaxation to the lowest

local energy minimum and subsequent NMR simulations were completed via CASTEP for

two of the MD quench temperatures believed to be the most similar to the amorphous

structure of alumina. The calculated NMR parameters were used to obtain lineshapes for

the expected Czjzek model (assuming a Gaussian isotropic distribution of nuclear sites). The

temperature of the MD quenched simulated spectra were inversely related to the annealing

temperature of the experimental amorphous alumina NMR spectra. This correlates well

with the expected order and crystallinity for both calculation and experiment. In addition,

comparison to the extended Czjzek model shows local order becoming dominant in the lower

temperature MD quenches, especially for the six coordinate aluminum nuclei. The correlates

well to the expected growth of micro-crystallites for nucleation as expected for the annealing

140



temperatures approaching the crystallization temperature. Ultimately, an excellent match

to the NMR spectra and expected short range order is obtained.
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Chapter 10

Conclusions and Future Directions

10.1 Conclusions

OPNMR has proven to be of interest with respect to fundamental science and for advancing

the understanding of spin physics. The basic understanding of OPNMR was advanced by

the design and fabrication of an affordable and simple two-channel OPNMR probe which

is able to perform as needed, even in the non-ideal horizontal orientation of the cryostat.

In addition, a better understanding of the optical pumping phenomena in CdTe was made

more clear after the two previous research studies produced strongly contradicting data. Of

note, is the first measurements of optically pumped nuclear polarizations reaching ≈90 %,

much greater than the previous measurements hovering around a maximum of ≈35 %.

The use of the hyperpolarization from optical pumping as an application for analytical

experiments in other fields has been rather limited. However, through my work as a graduate

student, many examples of applications for OPNMR are now available. Using OPNMR, one

can now accurately measure the energy to excite to the lowest level light-hole state which is

difficult to measure by traditional optical means. In addition, OPNMR has been proven to be
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a technique for accurate measurements of couplings and the effect of laser excitation on said

couplings for spintronics and quantum computing applications. The accuracy of optically

pumped SEDOR (with and without cross polarization) will be imperative in measuring the

couplings in these systems reliably, especially for monitoring minor changes. The proven

ability to now measure effects near the interface will be imperative to allow for analysis of

interface properties by NMR. This will allow for advancements in electronic devices and the

ability to study other buried interfaces.

10.2 Future Directions

With the advancements of potential applications for OPNMR, a large amount of studies

can now be completed. For instance, how would the presence of a crystalline film affect

the strain and thus polarization? Or, can the amount of strain relaxation be tuned by

film deposition parameters to optimize and provide the most accurate depth information?

And, how can one achieve the highest polarization at the interface for very accurate interface

information? Many of the methods presented in this dissertation will help make the necessary

advancements in order to make OPNMR a useful analytical technique. In addition, modeling

of the strain as a function of depth can provide insight into the depth dependence of the

polarization. One could then model the polarization as a function of depth and thus observe

how the polarization changes as a function of time at various depths. However, further

understanding of the mechanisms leading to the shape of these satellites (besides strain as

a function of depth) will need to be understood. Ultimately, once a clear understanding

of the polarization at and near the interface is better understood, a different (ideally, a

spin-1/2) semiconducting substrate can used to transfer the polarization to surface bound
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films/ligands. The transfer of the polarization has been one of the most sought after goals

for OPNMR to become an imperative analytical technique.
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Appendix A

2 Channel Probe Drawings

Complete probe and individual part designs used for the fabrication of the two channel probe

are on the following pages.
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