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The goal of untargeted metabolomics is to profile metabolism by measuring as many metabolites 

as possible. A major advantage of the untargeted approach is the detection of unexpected or 

unknown metabolites. These metabolites have chemical structures, metabolic pathways, or cellular 

functions that have not been previously described. Hence, they represent exciting opportunities to 

advance our understanding of biology. This beneficial approach, however, also adds considerable 

complexity to the analysis of metabolomics data - an individual signal cannot be readily identified as 

a unique metabolite. As such, a major challenge faced by the untargeted metabolomic workflow is 

extracting the analyte content from a dataset.  Successful applications of metabolomics bypass this 

limitation by throwing away the 99% of the dataset that is not statistically altered between sample 

groups.1 This widely accepted approach to untargeted metabolomics is functional for a very narrow 

set of applications, but critically, it fails to provide a comprehensive view of metabolism. 



 
xiv 

The primary thrust of this dissertation work is to overcome this fundamental barrier in 

metabolomic experiments and extract the unique analyte content from metabolomic datasets. To 

this end, three algorithms were developed.  

(i) We first developed the Warpgroup algorithm to refine the features detected in replicate 

samples. Peak detection performed on replicate samples is highly inconsistent. Warpgroup considers 

all replicates in concert to determine a set of consensus signals or features – integrations that are 

supported by all replicates. This process improves quantitation and significantly reduces the artifact 

content of the dataset.2 

(ii) Mz.unity was then developed so that one can search for any specified mass-peak relationship.   

Features in metabolomic data are highly degenerate and available annotation approaches have been 

limited to a small subset of possible degeneracies. Mz.unity addresses this deficiency. This advance 

enabled the systematic evaluation of complex and cross polarity adducts as well as a context-based 

relationship recovery approach.3 

(iii) The credentialing approach was developed to experimentally filter non-biological features and 

recovers a reproducible set of biological features. While great effort had been undertaken to 

minimize the contribution of contaminants and informatic error to features, it was clear that many 

mistakes were still being made.4 

The developed algorithms were then applied, in concert, to an untargeted analysis of Escherichia 

coli. Together, the application of these algorithms provided the first comprehensive picture of 

metabolomic dataset composition.  Strikingly, the technologies suggest that the tens of thousands of 

signals detected in a typical untargeted metabolomic data set correspond to less than 1,500 analytes – 

a result that has large implications for the design and interpretation of untargeted metabolomic 

experiments.  



 
xv 

This work constitutes a key advance in our understanding of metabolomic science, and the 

contributions enable more robust untargeted analyses of metabolism. Together, these concepts 

establish a clear course for the future development of a comprehensive metabolomic data analysis 

platform and bring the promise of truly untargeted metabolomics into view.
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Chapter 1.  

 

Introduction 

The field of metabolomics encompasses any approach that seeks to assay many metabolite 

analytes in a single experiment.5,6 The term broadly applies to both targeted and untargeted 

techniques. Targeted analyses seek to assay a predetermined set of analytes whose structure and 

characteristic signals are known. In contrast, untargeted analyses seek to assay as many analytes as 

possible, including unexpected or unknown species.  This can encompass components represented 

by tens of thousands of signals.7 The scope of metabolomics varies by practitioner; a commonly 

employed definition limits metabolites to any biochemically produced analyte with mass less than 

1000 Da. This is a rough cutoff, though, as metabolites range in mass; for example cardiolipins reach 

over to 1500 Da. 

Metabolomics employs a variety of instruments, each with distinct strengths.8  Seminal metabolite 

profiling was performed using solution phase Nuclear Magnetic Resonance (NMR) techniques that 

provided concentrations of a small set (about 50) of resolvable analyte signals.9,10 Though lacking in 

sensitivity, NMR is capable of elucidating molecular structure, probing pathway fluxes, and 

determining isotopomer patterns due to its atom-specific information. Mass spectrometry (MS) is 

the primary analyzer applied in metabolomics.11  MS offers high sensitivity and can resolve many 

thousands of analyte species based on their mass-to-charge ratio. MS also offers some structural 
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information with the ability to fragment analytes. This process reveals masses of the fragments that 

provides some insight into the structure of the analyte.  

Prior to analysis by MS it is common to employ a separation technique such as  liquid 

chromatography, gas chromatography, or capillary electrophoresis.12–14  These techniques provide a 

somewhat orthogonal separation to MS and aid in the distinction of isobaric metabolite signals. 

Separation prior to detection also reduces ionization suppression, increasing quantitative accuracy 

and sensitivity. 

Metabolism is the network of enzyme-catalyzed reactions that convert small molecule 

intermediates into the energy and building blocks that enable life.15,16  Each reaction takes several 

reactant metabolites, often two to four and guide them down a reaction path to produce a distinct 

set of product metabolites.17,18 A single metabolite species can participate in many of these reactions 

and, thus, the entire network can be represented by a large, interconnected graph. (Figure 1) The 

Human Metabolome Database (HMDB) currently lists 6302 metabolic reactions, a figure that 

underscores the scope of this network.19 

 
Figure 1.1. An example metabolic network. Nodes represent metabolites or multiple metabolites. Edges represent reactions, most of which are 

enzyme-catalyzed.* 

                                                 
* Image by J3D3 (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons 
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Organisms cope with the demands of survival by controlling fluxes through these pathways.20 

From developing embryos to a sprinting cheetah, organisms must cope with changing energy 

demands, demands for biosynthetic substrate, and waste-product excretion.21 Most of this regulation 

occurs via gene expression and post-translational protein modifications (on timescales ranging from 

seconds to days).22–24 These and similar mechanisms act as control points in the metabolic network 

operating in accordance with the genetic blueprint of the organism.25 These control points allow an 

organism to direct the flow of metabolic flux to satisfy the demands of growth and survival.26,27 In 

this light, metabolism can be viewed as the product of many generations of natural selection that 

have fine-tuned the metabolic program to the organisms niche. 28–31 

In cases where the genetic program becomes damaged, a subset of cells in the organism become 

unable to respond appropriately to the environment – this damage results in disease such as cancer 

or phenylketonuria.  Metabolism is the aggregate output of higher levels of regulation. As such,  

physical phenotypes such as disease are often accompanied by corresponding changes in the 

metabolic network.32  Thus, a quantitative readout of an organism’s metabolic network can be 

strongly predictive of disease states.33 This has proven to be the major application of metabolomics, 

- clinical biomarker discovery and correlating observed phenotypes to metabolic changes.34–36  

Notably, this aggregation of the complex regulatory cascade into a metabolic state makes 

metabolomics an appealing experiment, but this same aggregation limits the application of 

metabolomics to elucidation of mechanism. In general, metabolomics provides hints as to where to 

investigate further, but can only provide an abstract fingerprint left by the complex process.37 

Defining mechanism requires investigation of the upstream effectors employing appropriate 

techniques. 



 
4 

1.1 Challenges to Untargeted Metabolomics 

Untargeted metabolomics seeks to assess as many metabolic intermediates as possible. A major 

advantage of the untargeted approach is the detection of unknown metabolites. Reporting on 

unsuspected signals enables researchers to uncover surprising, unhypothesized metabolic 

interactions and previously unknown metabolic intermediates. This major benefit also adds 

considerable complexity to the analysis of metabolomics data. 

The nature of the techniques used to analyze samples in untargeted metabolomics produces 

immensely complex datasets. Solvent impurities and plastic leachables appear among the metabolite 

signals and artifacts are introduced owing to informatic error. Chromatographic peak shapes are 

often non-ideal, and single analytes can appear as multiple, distinct chromatographic peaks. 

Degeneracy of the detected signals is a major additional source of complexity. Degeneracy refers to 

multiple signals arising from a single analyte. There are many causes of degeneracy including 

fragmentation, analyte adduction with various charge carriers (e.g., a proton, sodium, potassium, 

etc.), and the detection of naturally occurring isotopes (e.g., 13C, 15N, etc.). A final, largely under-

annotated source of degeneracy is the adduction of an analyte with other species present, including 

other analytes and the chemical background. 

A notable implication of untargeted approaches is that an individual signal cannot be readily 

identified.  Similarly an individual signal cannot readily be discerned from the sources of complexity 

detailed above.38,39 In traditional, targeted approaches the problem is sidestepped –precise masses, or 

fragment transitions are known prior to analysis, and that allows for rapid filtering of most or all 

irrelevant features.  Unfortunately, application of targeted filtering removes the unhypothesized and 

unknown metabolites that make metabolomics such a powerful technique. As such a major 

challenge faced by the untargeted metabolomic workflow is extracting the analyte content from a 
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dataset.40,41 This limitation has significantly impeded the interpretation of metabolomic datasets and 

further hindered its wider adoption.  

Successful applications of metabolomics begin by throwing away the 99% of the dataset that is 

not statistically altered between sample groups. This universally accepted approach to untargeted 

metabolomics is functional for a very narrow set of applications but critically, it fails to provide a 

comprehensive view of metabolism.  The primary goal of this dissertation is to overcome this 

fundamental, and key barrier in metabolomic experiments and to extract the unique analyte content 

from metabolomic datasets. 

Feature inflation also causes many detected signals not to be found in metabolomic databases. 

Investigators have interpreted the large number of unidentified signals detected in these datasets to 

imply that there are hundreds to thousands of unknown metabolites in these datasets.42 This has 

varying implications for the experimental design of metabolomics experiments as well as biological 

experiments in general. A secondary goal of this dissertation is to estimate the number of analytes 

detected in an untargeted metabolomic experiment. 

Ultimately, I posit that irrelevant signal and degeneracy in metabolomic datasets account for over 

99% of the signal therein and has significantly impeded metabolomics success.  To address these 

artifacts and degeneracies I develop three algorithms – Warpgroup, Credentialing, and mz.unity. 

Finally I apply the developed algorithms in concert to an analysis of Escherichia coli and produce the 

most comprehensive picture of the composition of a metabolomic dataset to date. These results 

demonstrate a clear path forward for the future of metabolomic analysis. 
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1.2 Experimental Techniques 

In the last section I outlined the goals for metabolomics and the current challenges to those 

goals. In this section I delve into the experimental methodology we employ to perform untargeted 

metabolomics, and how those methods contribute to the aforementioned challenges. 

 

Figure 1.2. A photo of an LC-MS workstation, the components of which are discussed below. (Left) A portion of the Q-Exactive Mass Spectrometer.  

The prominent portion of the instrument is the electrospray source chamber.  Entering the chamber from the top is the nebulizer that contains 

the electrospray needle. (Center) A Dionex Ultra Performance Liquid Chromatograph. Capillaries that carry solvent and analytes can be seen 

bridging between the LC and source.  The bottom is an auto sampler that aspirates and introduces analytes into the sample flow.  Above that is a 

temperature controlled compartment containing the column. At top is the UPLC pump that generates the high pressure gradient. (Right) A 

computer where the informatic processing that is a major component of the workflow takes place. 

1.3 Liquid Chromatography 

Very early chromatographic separations were performed by Schönbein who placed paper slips in 

liquid mixtures, observing the overlapping bands as they traveled at different rates.43 This early 

separation of components formed the basis of modern chromatography. Paper chromatography 
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improved throughout the 20th century eventually inspiring the use of these principles to fractionate 

mixtures.    

Liquid chromatography enables the separation of a mixture into its constituents on the basis of 

their physiochemical characteristics.  A mixture is introduced to the chromatographic system as a 

narrow band. Separation proceeds when each component moves though the system at different 

rates. Key to this separation are the stationary and mobile phases. The stationary phase is employed 

to retain or impede the progress of analytes while the mobile phase is employed to facilitate 

elution.44  

Analytes possess distinct affinities for each the stationary phase and mobile phase. An analyte 

that has a high relative affinity for the stationary phase will spend time partitioned there and elute 

only after long periods of time.  Conversely, an analyte with a high relative affinity for the mobile 

phase will partition there and move more closely to the rate of the mobile phase, eluting after a 

shorter time.  In this way, chromatography leverages the physiochemical characteristics of analytes 

to separate them in time. 

Owing to the wide range of polarities, not all analytes may be practical to elute using a single 

mobile phase.6 Introduction of a gradient in which the mobile phase is altered throughout an 

experiment allows a wider range of polarities to be eluted within a reasonable time frame (see Figure 

1 for a diagram of the partitioning process at two points during a gradient elution.)  As the mobile 

phase composition changes, analytes affinities for the mobile phase will change, altering their 

partitioning and ultimately eluting them. 

Analytical chromatography is a highly refined technique, and different approaches can separate 

structural isomers, regioisomers such as cis and trans double bonds, and even stereoisomers with 

appropriately chosen stationary and mobile phases.45,46 
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Figure 1.3. The basis for gradient chromatographic separations. (Left) Analytes are more attracted to the stationary phase than the mobile phase.  At 

this stage the apolar analyte moves slowly through the column.  (Right) At some later time the mobile phase strength has increased.  The apolar 

analyte partitions into the mobile phase and travels more quickly through the column.  

 

 
Figure 1.4. A diagram of an HPLC instrument. Mobile phase is pumped (left) through a stationary phase containing column (center) and departed 

analytes are detected (left).* 

                                                 
* By WyassineMrabetTalk. [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], 

via Wikimedia Commons 
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The application of chromatography has become highly refined with instruments dedicated to the 

task of producing reproducible gradient and flow rate profiles.  These reproducible techniques have 

enabled the use of retention time as a useful molecular descriptor.  With a specific stationary phase, 

flow rate, and mobile phase gradient profile, multiple labs can analyze an analyte and observe the 

same retention time.  In this way retention time is indicative of the species being observed. 

Depicted is a split loop injection system in which two flow paths can be selected by a switching 

valve.  The sample is loaded into an injection loop that the mobile phase flow is bypassing.  Upon 

injection the valve switches, and the injection loop becomes part of the flow path, washing the 

mixture downstream.  At this point the mobile phase and mixture reaches the column containing the 

stationary phase. Modern columns are manufactured with a variety of substrates, but most 

commonly a porous silica material is derivitized to produce a stationary phase with desired 

properties.  Inside the column, the analytes contained in the mixture are slowed, and begin to 

proceed through the column at varying rates. Ultimately, the components elute from the column at 

varying times and are then detected. When using mass spectrometry as a detector, an ionization 

method is needed; both ionization and mass analysis will be discussed in the following sections. 

 
Figure 1.5. Examples of chromatographic resolution. (Left) The peaks of poorly resolved analytes overlap. (Right) The peaks of well resolved analytes 

do not overlap.  
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Figure 1.6. Effect of mobile phase flow rate on resolution. A Van Deemter Plot describing the efficiency of a chromatographic separation as a 

function of varying mobile phase flow rates. Three terms can be used to model the resolution, each due to a physical process causing peak 

broadening.  The C term increases with flow rate, the B term decreases with flow rate, and the A term is flow rate independent. 

A useful conceptualization of the physical nature of the chromatographic process is summarized 

with a discussion of the efficiency of a separation. In addition to selectivity (the relative partitioning 

of two analytes), a separation must be efficient, producing analyte bands that are narrow enough to 

be distinguished. Described by van Deemter and Zuiderweg47 in 1956, the van Deemter equation 

outlines three terms that correspond to physical non-idealities that impact the efficiency of a 

separation. (Equation 1) Here, H is a measure that is inversely proportional to efficiency (peak 

width) and μ is the linear velocity of the mobile phase (flow rate.)47 

𝐻 = 𝐴 + 𝐵
𝜇

+ 𝐶𝐶  (1) 

The A term in the van Deemter equation is the longitudinal diffusion component, that is inherent 

to the stationary phase.  As analytes travel through the column, they will take different paths, some 

longer and some shorter. Higher quality packings can decrease this term but it is invariant with 

respect to the flow rate.  

The B term represents the longitudinal diffusion of particles in the mobile phase and is 

dependent on the analyte, temperature, and solvent viscosity.  Diffusion of the analyte bands occurs 
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as long as the analytes are dissolved in the mobile phase – as a result, slow flow rates and longer 

analysis times result in more diffusion. 

The C term represents an analyte’s resistance to mass transfer between the mobile and stationary 

phases. As an analyte diffuses in and out of the pores of the mobile phase, they will spend varying 

amounts of time in the pore.  At higher flow rates, this variance in time impacts peak widths more – 

this is because during the time when one particle was not moving, another has moved rapidly. 

The sum of these terms gives the expected efficiency of a separation.  Notably, the only penalty 

for flowing at higher rates is the C term.  Modern columns with very small packings and core shell 

packings have mostly eliminated the flow rate-dependent increase of the C term.  This allows for 

very fast flow rates with little to no efficiency penalty – a major advantage of the small particle size 

packings and corresponding high pressure UPLC technique. 

1.4 Electrospray Ionization 

After elution from a liquid chromatography experiment, analytes exist in the bulk liquid phase.  

All mass spectrometry experiments are performed on ions in the gas phase, as such a requisite step is 

the transfer of analytes from the bulk liquid to the gas phase and imparting a charge to them. The 

coupling of liquid chromatography and mass spectrometry was a challenging goal, the two operating 

under opposite extremes of pressure (liquid vs 10-5 torr in the gas phase.)48 Initial work to this end 

was performed by Dole in 1968 using polystyrene spheres49 – this work was eventually refined by 

Fenn in 1984 into the early electrospray source.50 
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Figure 1.7. A schematic of Electrospray ionization. (Top) A potential difference of several thousand volts is applied between the capillary and mass 

spectrometer inlet.  This high field region induces the Electrospray process. (Bottom) 1. The Taylor cone formed due to charge accumulation 

and surface tension. 2. Droplets shrink due to solvent evaporation and coulombic explosion. 3. Gas phase ions are produced by continued 

evaporation and charge expulsion from the droplets.* 

The modern process of electrospray ionization proceeds by forcing the liquid through a small 

needle into a region with high electrostatic fields. This electrostatic region causes charges to 

concentrate at the surface of the liquid – the surface tension of the liquid, combined with the 

electrostatic repulsion of charges in solution form a cone as described by Taylor in 1964.51  As the 

liquid surface grows small toward the apex of the cone droplets bud off and travel down the 

potential gradient.52 (Figure 1.7) These droplets shrink, both by solvent evaporation and the 

expulsion of smaller charged droplets.  This process continues until individual analytes are 

introduced to the gas phase, some with a charge.53 

The formation of adducts is a key feature of electrospray ionization. The charge imparted to gas-

phase analytes is often the result of the adduction of an analyte with a charge carrier, often a proton 
                                                 

* By Evan MAson (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons 
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(H+) or sodium (Na+).54 Adduction, though is not restricted to small charge carriers and in general 

any present species can adduct with the eluting analytes.  This process gives rise to many degenerate 

ion species that are derivatives of the original analyte – a phenomena that gives rise to much of the 

complexity in untargeted metabolomic datasets.  Addressing and overcoming this complexity is the 

focus of Chapter 4. 

1.5 Mass Spectrometry 

After ionization, analytes must be transferred from the source region at atmospheric pressure to a 

low pressure region of around 10-5 torr.48 This is achieved by a combination of a potential difference 

down the ion path and pressure difference between the two regions.55 The ion plume in the 

atmospheric pressure region is propelled by the electric potential difference towards the inlet of the 

low pressure region.  As ions approach the inlet, the rapid acceleration of the bulk gas because of 

decreasing pressure causes a turbulent flow through the transfer capillary towards the differentially 

pumped regions.  As the gas exits the ion transfer capillary, it rapidly expands into the low pressure 

region. A series of ion funnels, skimmers, and multipoles act to contain the ions as neutrals are 

pumped away. Throughout this process the ions are cooled, and off-axis velocity is dampened by 

electric fields until a beam of ions that is suitable for further analysis by a mass analyzer is 

produced.56 The pressure reached is a function of the type of mass analysis performed – quadrupole-

based analysis operates at pressures around 10-4 torr whereas analyses requiring a long mean free 

path (such as TOF or orbitrap experiments) operate at pressures up to 10-10 torr (a mean free path of 

several kilometers!) 
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Figure 1.8. Resolution’s mass dependence on the Q-Exactive illustrated with three challenging to resolve A1 species. As mass increases instrument 

resolution decreases.  This results in distinct mass peaks becoming more poorly resolved.  (Green) 13C and 2H become indistinguishable at 550 

Da. (Red) 13C and 15N become indistinguishable at 1000 Da.  (Blue) 15N and 2H become indistinguishable at 1300 Da. Based on 

experimentally observed resolutions at 280,000 resolving power. 

1.5.1 The Q Exactive: Quadrupole-Orbitrap Mass Spectrometer 

The Q Exactive (QE) mass spectrometer is a Fourier Transform (FT) based instrument that 

offers ultra-high mass resolving power, high mass accuracy and exquisite sensitivity.  The mass 

spectrometer couples two mass analyzers, a quadrupole and an orbitrap, with a C-trap and collision 

cell intervening.57  The orbitrap is an ion-trapping device, into which a narrow beam of ions is 

injected perpendicular too and off center from a central spindle electrode.58 Ions are confined 

between the central electrode and the outer shell by electric fields, and begin to orbit perpendicular 

to the central electrode due to their initial velocity.  The distribution of initial velocities and positions 

perpendicular to the central electrode cause the ion packet to spread into a ring around the central 
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electrode.  Motion of the ion rings parallel to the central electrode follows naturally owing to the off-

center injection of ions into the potential well.  Ion motion along this parallel axis is dependent on 

the potential well and critically, the mass-to-charge ratio of the ions. (Equation 2)  Thus, ion motion 

is observed as the image current in the two outer detector plates. This time domain signal can be 

transformed into a frequency domain spectrum (with frequency proportional to m/z) by FT.58 

𝜔 = � 𝑘
𝑚/𝑧

   (2) 

Injection of ions into the orbitrap was a considerable design challenge – the initial distribution of 

position and momentum of ions parallel to the central electrode was limiting frequency 

determination.  Focusing of ions in this dimension is achieved by the C-trap, which upon injection 

compresses the ion packet into a narrow ribbon for injection.  As the QE is a trapping instrument, 

observation of the ions occurs in a pulsed manner. Depending on the desired mass resolving power, 

orbitrap analysis can take as long as 1000 ms (for a resolving power of 256,000.)59 To minimize this 

limitation’s effect on duty cycle, ions can be accumulated in the C-trap and fragmented in the 

collision cell with parallel acquisition of an orbitrap spectrum. 

Even still, the orbitrap is inherently charge limited – as charge density in the orbitrap becomes 

too high dephasing of ion packets and saturation of signal amplifiers can occur.  For this reason, 

duty cycle limitations for the QE are most often due to high ion flux rather than ion sampling 

limitations.  This has an interesting practical result relevant to untargeted studies – the limit of 

detection is dependent on the ion flux during a particular scan.  When a particularly abundant group 

of ions elute they occupy a large fraction of the charge capacity of the orbitrap. Thusly, the limit of 

detection for the entire scan is increased because fewer of other species will be accumulated. 

The charge limitations of the orbitrap mass analyzer necessitate a rationing of space in the trap. 

Rationing is accomplished by quadrupole mass filtering prior to ion accumulation. In the low 



 
16 

abundance case, when ion flux is limited, the orbitrap is an exquisitely sensitive instrument, with 

comparable sensitivity to triple-quadrupole type instruments. Similar to the triple quadrupole, the 

QE offers nearly 100% duty cycle when not charge saturated.  Additionally, the QE is able to 

observe ions for an extended amount of time and offers high mass resolving power of possible 

interferences in the monitored fragments.  These factors allow the QE to equal and exceed the triple 

quadrupole in targeted sensitivity. 

 
Figure 1.9. A schematic of the Q-Exactive mass spectrometer.* 

1.5.2 The Quadrupole-Time-of-Flight Mass Spectrometer 

The Quadrupole-Time of Flight Mass Spectrometer (QTOF) is a hybrid instrument coupling a 

quadrupole and collision cell to a time-of-flight mass analyzer.60 Time-of-flight mass analysis is 

achieved by a high voltage pulse accelerating a packet of ions into a drift region.  This pulse imparts 

the same amount of kinetic energy to each ion, but ions with different mass-to-charge ratios will 

travel at different speeds owing to the conservation of momentum.  As such, ions are separated 
                                                 

* Taken from the Q-Exactive user manual, with permission. 
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based on the time it takes them to travel a several meter distance and detected upon impacting a 

detector plate. (Equation 3)  Differences in the initial positions and velocities of the ions contribute 

to peak broadening, this is mitigated by the use of a repulsive electrostatic region that reflects the 

ions back in the direction they came from, focusing each mass packet.61 

𝑡 = 𝑘�𝑚/𝑧 (3) 

The QTOF mass spectrometer is a pulsed instrument, requiring drifting ions to reach the 

detector prior to the next pulse of ions. As such, duty cycle on these instruments is around 10%.  

Improvements to this include using Hammond transforms and overlapped pulses, as well as gating 

of the ions.  As opposed to the QE, the QTOF has a very large charge capacity, and is limited 

primarily by detector saturation. As such, other ions in the spectrum have no impact on the overall 

sensitivity of a scan and the QTOF is suitable for bright ion sources.  

 
Figure 1.10. A schematic of quadrupole-time-of-flight mass spectrometer.* 

  

                                                 
* Taken from the Agilent 6500 QTOF Manual, with permission. 
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1.6 Informatic Techniques 

The metabolomic workflow involves several processing steps. The contributions herein leverage 

the following two informatic techniques to improve upon this workflow. 

1.6.1 Dynamic Time Warping 

Dynamic Time Warping (DTW) is the name of a class of algorithms that find optimal alignment 

between two time series.62 The method takes as input two time series and finds a mapping (warping) 

from time in series A to time in series B.  These algorithms have been applied to a wide variety of 

alignment problems including speech recognition, genetic sequence alignment, and even data that 

has no true time component such as image alignment.63,64 

Given two time series 𝑋 = (𝑥1 … 𝑥𝑁),𝑌 = (𝑦1 … 𝑦𝑀) and some dissimilarity function 𝑑(𝑖, 𝑗) =

𝑓�𝑥𝑖, 𝑦𝑗� ≥ 0, dynamic time warping seeks to find the warp path 𝜙 that minimizes the accumulated 

distortion 𝑑𝜙(𝑋,𝑌) =  ∑ 𝑑 �𝜙𝑥(𝑘),𝜙𝑦(𝑘)� ∗ 𝑚𝜙(𝑘)/𝑀𝜙 𝑇
𝑘=1  between the two timeseries. 

(𝑚𝜙(𝑘)/𝑀𝜙 is a normalization factor such that paths with different numbers of steps have 

comparible distortion values.) The result is a warp path with k steps 𝜙(𝑘) = (𝜙𝑥(𝑘),𝜙𝑦(𝑘)) where 

𝜙𝑥(𝑘) ∈ {1 …𝑁} and 𝜙𝑦(𝑘) ∈ {1 …𝑀}.62 (Figure 12) 

Dynamic time warping approaches are relevant to chromatographic based techniques.65 Between 

chromatographic experiments many sources of variation cause shifts in the elution time of 

components – sample matrix differences, temperatures, pump fluctuations, column cleanliness, and 

even analyte concentrations can impact retention times.66 Prior to statistical analysis of abundances, 

correspondence must be determined to link the same analyte detected in each sample. DTW 
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provides an approach to evaluate and mitigate some of these variances that benefits later 

correspondence determination.  We apply aggressive dynamic time warping in the Warpgroup 

algorithm, which is developed in Chapter 3.2 

 
Figure 1.11. An example of the dynamic time warping alignment of two time series. (Left) Two time series are plotted on the bottom and 

the left.  The optimal alignment which maps time in the reference to time in the query is plotted in the center. (Right) The same time series 

overlaid with the alignment plotted as grey connections between the points. 

1.7 Graph Theory 

Graph theory is the study of pairwise relationships between objects.  It is a broad field that is 

applicable to a range of disciplines from rigorous treatment in discrete mathematics to applications 

in fields such as computer science and biology.67,68   

A graph is comprised of a set of nodes and edges. Edges link exactly two vertices and can be 

directed or undirected.69 Graphs can be used to represent a wide variety of problems, such as 

pathing through a network of roads (edges) and intersections (nodes) or finding relationships (edges) 

between people (nodes) in a social graph.   

In Chapter 5 we utilize graphs to represent additional structure in the mass spectrometry data.  

Particularly interesting is the relationship graph formed by mass spectral peaks (nodes) that are 
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transformations (edges) of a common analyte prior to detection. In general graphs can be used to 

represent many relational data structures.  As such they are a general concept where specific details 

emerge in the context of specific problems. 

As applied in this manuscript graphs are used in two ways.  In Chapter 3, graphs are used to 

represent peaks which could be the same analyte across replicates. Nodes are used to represent 

detected peaks and edges are used to represent pairs of peaks which we posit are the same analyte. 

In this application, sets of well connected nodes are more likely to be the same analyte. Later, in 

Chapter 4, graphs are used to represent the underlying structure in mass spectra. Specifically, nodes 

represent detected mass-to-charge peaks and edges represent putative relationships between these 

peaks.  (Figure 1.12) 

 
Figure 1.12. An example graph plotted from relationships detected in a mass spectrum.  Nodes are the dots. Edges are the lines connecting 

the dots. 

1.8 Raw Data 

Liquid chromatography/mass spectrometry (LC/MS)-based techniques generate a sequential 

series of mass spectra at around 10 Hz. The result is a three dimensional dataset with axes of 

retention time (RT), mass-to-charge ratio, and intensity. A raw, digitized profile dataset on modern 
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instrumentation (e.g. the Q-Exactive) contains 1x107 m/z and intensity pairs per scan (at 140 k 

resolving power). This yields an impressive 1x1010 (ten billion) data points per 30 minute experiment 

(at 3 Hz).  In practice, many points are zero, and peak detection on profile mass spectra is reliably 

performed such that only about 1x106 points are used for the metabolomic analysis. 

The metabolomic workflow’s primary goal is the continuing reduction of raw, abstract data 

points into an entity representing an observed analyte.   

 

 

 

 
Figure 1.13. An example of raw mass spectral data. (Top) and extracted ion chromatogram of mass 415.1728-415.2599. (Middle) The mass 

spectrum at 10.6 minutes. (Bottom) The same mass spectrum zoomed 100x. 

  



 
22 

1.9 Feature Detection 

Analytes elute across multiple scans, and mass peaks appearing in several sequential scans with a 

Gaussian-like profile are termed features.  The first step in the processing of metabolomic data is 

peak detection.  In general peak detection seeks to gather mass peaks produced by a single analyte, 

and observed in sequential scans into a single entity termed a “feature”. A feature is thus a triplet (a 

composite of three values) consisting of the mean retention time, mean m/z, and integrated intensity 

observed.70 

Feature detection is a common challenge and a wide variety of algorithms have been employed.  

One commonly employed feature detection algorithm in metabolomics research is centWave71 - it 

proceeds via two steps. Initially centWave detects regions of interest, which are regions in the m/z 

and RT dimensions with a high density of mass observations – these are putative regions that may 

contain a chromatographic peak shape. The second phase of centWave applies a pattern wavelet 

based peak detection looking for a peak shape in the chromatographic domain. The ion’s retention 

time profile is analyzed after applying a discrete wavelet transform at multiple scales.  Peaks that are 

observed at many scales are initialized, and peak bounds are specified by descending to the nearest 

local minimum.  The detected peaks above a specified signal to noise ratio are then retained. 
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Figure 1.14. Discrete wavelet transformation of a bimodal distribution. (Top) The bimodal distribution which is to be transformed. 

(Bottom)The wavelet transform of this distribution. The scale of the wavelet transform is plotted on the y-axis.  Note that different scales see 

drastically different representations. 

Peak detection achieves two goals. Importantly this process removes a major fraction of the 

signal which does not exhibit a peak shape, and, is therefore, not relevant to the injected sample.  

These signals are often chemical background, or other, slowly eluting compounds. Secondly, peak 

detection determines the integration region of each feature, thus determining the quantitation which 

is later used for statistical analysis and biological inference.  
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Figure 1.15. An example of detected peaks.  (Black) The raw chromatographic trace is plotted for a single mass. (Red) A calculated baseline 

estimate.  (Blue) Detected peaks. 

Complicating this task are several sources of variation.  From scan-to-scan a single mass-to-

charge value is measured with only finite precision. As such, mass error on the order of 1-10 ppm 

complicates region of interest determination. The intensity of an ion signal as it is sampled also 

includes significant variance (consider the complex ionization process described above), thus, a 

chromatographic trace often fluctuates non-monotonically, complicating chromatographic feature 

detection.  Finally, it is common in complex mixtures that eluting analytes are not fully, 

chromatographically resolved.  Defining peak bounds for poorly resolved components is challenging 

even when performed manually.  

The peak detection process reduces the initial 1x106 mass peaks to around 2x104 features.  The 

output is a list of features and their corresponding m/z, RT, and intensity.  This peak list is used for 
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further analysis.  Chapter 3 in this dissertation deals with refinements to the peak detection process 

while Chapter 4 details a method for further consolidating these peaks into unique analyte groups. 



 
26 

Chapter 2.  

 

A Roadmap for the XCMS Family of Software Solutions in 

Metabolomics* 

Global profiling of metabolites in biological samples by liquid chromatography/mass 

spectrometry results in datasets too large to evaluate manually.  Fortunately, a variety of software 

programs are now available to automate the data analysis.  Selection of the appropriate processing 

solution is dependent upon experimental design.  Most metabolomic studies a decade ago had a 

relatively simple experimental design in which the intensities of compounds were compared between 

only two sample groups.  More recently, however, increasingly sophisticated applications have been 

pursued.  Examples include comparing compound intensities between multiple sample groups and 

unbiasedly tracking the fate of specific isotopic labels.  The latter types of applications have 

necessitated the development of new software programs, which have introduced additional 

functionalities that facilitate data analysis.  The objective of this review is to provide an overview of 

the freely available bioinformatic solutions that are either based upon or are compatible with the 

algorithms in XCMS, which we broadly refer to here as the “XCMS family” of software.  These 

include CAMERA, credentialing, Warpgroup, metaXCMS, X13CMS, and XCMS Online.  Together, 

                                                 
* This work is based on the following publication: “A roadmap for the XCMS family of software solutions in metabolomics”. NG Mahieu, JL 

Genenbacher, GJ Patti, Current opinion in chemical biology, 2016. NGM provided the overview of processing algorithms, analysis of retention time 
drift, the credentialing algorithm and the warpgroup algorithm. 
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these informatic technologies can accommodate most cutting-edge metabolomic applications and 

offer some advantages when compared to the original XCMS program. 

2.1 Introduction 

In the last chapter I outlined the techniques applied in LC/MS-based metabolomics.  In this 

chapter we provide a more in depth explanation of the informatic workflow with specific detail 

regarding application of the XCMS software package.  XCMS is the most well-known, open-source 

metabolomics software and makes applying several algorithmic steps easy.  The algorithms 

developed in chapters 3, 4, and 5 either refine or extend this functionality but are independent of 

XCMS.  Overviews of the algorithms developed in chapters 3 and 5 are provided in sections 2.7 and 

2.6, respectively. Finally, the algorithm developed in chapter 4 supersedes CAMERA, which is 

described in section 2.5. 

 

Data from liquid chromatography/mass spectrometry (LC/MS)-based untargeted metabolomic 

experiments are highly complex.  Therefore, bioinformatic software is typically required for 

processing of the results.  At this time, there are many reliable software solutions available.72–80 It is 

not the purpose of this review to comprehensively detail each, nor is it our intent to provide any 

type of comparative evaluation.  Rather, we will exclusively focus on a selection of freely available 

software solutions that are interoperable with the XCMS program.  Some of these software solutions 

bear variants of the XCMS name, while others do not.  We broadly refer to the class as a whole as 

the “XCMS family”.   
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2.2 Defining the Needs: A General Bioinformatic Workflow 

Historically, the bioinformatic workflow for processing untargeted metabolomic data has 

involved three general steps: feature detection, correspondence determination, and context-

dependent analysis of the resulting measured values (Figure 1).81,82 Each is briefly described below.   

1. The first and perhaps most important step is feature detection (also known as peak detection 

or peak picking).  The purpose of this step is to extract from the dataset signals that arise from real 

compounds, while attempting to exclude signals resulting from various noise sources.83 Extracted 

signals with a unique mass-to-charge ratio and retention time are recorded as features. (Figure 2A)   

2. The second step in the workflow is establishing correspondence between the features detected 

from different sample runs.  Correspondence refers to establishing those features from different 

analytical runs that “correspond” to the same analyte.  Establishing correspondence is arguably the 

most challenging step in the processing of untargeted metabolomic data.82 Although the same 

analyte may be detected in multiple experimental runs, the measured mass-to-charge ratio and 

retention time of the analyte can vary in each run owing to factors such as temperature fluctuation 

and column degradation (Figure 3A).  Importantly, many drift factors are compound specific and, 

therefore, global-alignment techniques cannot be used for correction (Figure 3B).84     

In practice, the majority of investigators performing LC/MS-based metabolomics currently assert 

correspondence by aligning the time domains of each run with time-warping techniques. (Figure 2B)  

The objective is to correct for drift factors so that features can be grouped between samples by 

direct matching of retention time.  Although the alignment approach for establishing 

correspondence has enabled many laboratories to analyze untargeted metabolomic data successfully, 

there remains a great need for robust correspondence determination algorithms, and this remains an 

active area of research interest.82   
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Figure 2.1. The bioinformatic workflow for processing untargeted metabolomic data with XCMS.  The workflow has three general steps: 1. Feature 

detection, 2. Correspondence determination, and 3. Additional context-dependent analysis.  These steps are numbered in red on the schematic.  

After acquisition of LC/MS profiling data, feature detection is performed on the raw data to generate a peaks table (step 1).  Next, retention time 

drift is corrected (step 2a).  The OBI-warp algorithm implemented within XCMS operates on the raw data to determine retention time drift.  

This produces a retention-time correction map that, together with the peaks table, is used to establish correspondence and generate a groups 

table (step 2b).  The peaks table and the groups table are the input for a variety of further analyses.  The third step is dependent upon 

experimental objectives.  In the standard XCMS analysis, step 3 is statistical analysis.  The other programs listed use the peaks table and groups 

table to achieve different aims such as adduct and artifact annotation, multiple-factor analysis, and isotopic label tacking. 

 

 
Figure 2.2. Schematic of the centWave and OBI-warp algorithms as implemented within XCMS.  A. The first step in centWave is to find consecutive 

scans in which peaks are detected within a specific mass error (top). These are referred to as regions of interest (ROIs) Two such ROIs are 

displayed here and boxed in red.  Second, extracted ion chromatograms are created for each ROI (bottom).  Extracted ion chromatograms that 

display a peak shape are then added to the peaks table, as illustrated by the green checkmark and arrow.  B.  OBI-warp aligns a query sample to a 

reference sample.  Here we illustrate a representative example in which two features are shifted in the query sample compared to the reference 

sample.  Application of the correction curve to the query (bottom) brings the samples into alignment. 
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3. The last step of the workflow is context dependent.  Analyses diverge, depending on 

experimental goals.  In the simple cases when the objective is to compare sample classes, this step 

amounts to performing statistical analysis on the intensities of detected features.  For more advanced 

objectives such as isotope tracing or tandem mass spectral analysis, additional algorithms are 

required.   

2.3 Introducing XCMS 

In 2006, the XCMS software was published as one of the first programs to provide a complete 

solution to the bioinformatic workflow outlined above for processing untargeted metabolomic 

data.81  The “X” in the XCMS acronym is used to denote that the software can be applied to any 

form of chromatography.  To date, however, XCMS has been predominantly used to process 

LC/MS-based metabolomic data.  The original XCMS software used the matchedFilter algorithm to 

accomplish feature detection, the retcor.peakgroups algorithm to perform alignment (an application 

of LOESS regression to well-behaved peak groups), and the group.density algorithm to group 

aligned features across samples on the basis of m/z bins.  In recent years, a new algorithm for 

feature detection called centWave and a new algorithm for alignment called OBI-warp have been 

implemented within XCMS.65,71 It is worth noting that whereas these algorithms have led to better 

overall XCMS performance, there is still great opportunity for improvement.  It is exciting to 

consider, for example, that there are hundreds of published algorithms for peak detection and 

correspondence determination that have not yet been implemented within XCMS for comparative 

evaluation.82,85     
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Figure 2.3. Illustrating the correspondence problem.  A. Extracted ion chromatograms of citrate from three samples show that its retention time and 

its measured mass-to-charge values vary between three samples run back to back.  B. Uncorrected retention time drift of all features detected in 

sample 2 as compared to sample 1 (top). Uncorrected drift remaining after OBI-warp correction. (bottom). Note that though correction reduced 

the overall drift, there is no global correction which will perfectly align all peaks due to multiple, compound-specific drifts occurring at a single 

retention time. 

Applying the centWave, OBI-warp, and group.density algorithms within XCMS results in what 

are known as the peaks table and the groups table (Figure 1).  In the standard application of XCMS, 

the peaks table and the groups table are then used to create a diffreport.  The diffreport provides 

statistics on feature groups that have altered intensities between sample groups.86 When the original 

XCMS software was published in 2006, generating such a diffreport in the programming language R 

was considered cutting edge.  From the diffreport, investigators can count the number of features 

detected from a sample to crudely compare metabolomic workflows.87,88 More importantly, 

researchers can use the determined p-values and fold changes to find features with statistically 

significant changes in intensity between two sample groups.  However, the XCMS diffreport also 
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has some serious limitations.  It does not provide metabolite identifications, which generally require 

matching tandem mass spectra from the research sample to the tandem mass spectra of authentic 

standards.89 Additionally, the diffreport does not provide a reliable approximation of metabolites 

detected as adducts, isotopes, fragments, and artifacts.4,90 Indeed, depending on experimental 

conditions, more than 50% of the features on a diffreport can be fragments and artifacts.91 As the 

field of metabolomics has evolved over the last decade, there has been a major push to better 

annotate the XCMS diffreport.  Multiple bioinformatic strategies that are interoperable with the 

XCMS program have now emerged to enable identification of adducts, isotopes, artifacts, and in 

some cases even structures.92 A selection of these resources is detailed in the sections that follow.    

Also note that the XCMS diffreport was designed for evaluating features with altered intensities 

between only two sample classes.  Yet, there are a growing number of applications with more 

sophisticated experimental designs involving multifactorial analysis and stable isotope labeling.  

These types of applications require that step 3 of the bioinformatic workflow shown in Figure 1 

diverge from that of the standard XCMS program.  Thus, new software solutions have been 

developed that operate on the peaks table and the groups table with unique algorithms (examples 

highlighted below.)    

2.4 A Clarification on Terminology 

As multiple programs have emerged with variants of the XCMS name, it may be confusing for 

new investigators to distinguish which software is appropriate to use for specific applications.  As an 

example, XCMS2 was the first program to be related in name to the original XCMS software.93  

Sometimes the program’s name is written as XCMS2, which may suggest that it implements a new 

generation of algorithms for the core functionalities of XCMS.  However, XCMS2 only differs from 
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XCMS in its ability to process tandem mass spectral data.  We will not discuss XCMS2 further in 

this review.  Processing of tandem mass spectral data will be covered in our discussion of XCMS 

Online.   

Below, we highlight software programs that are interoperable with XCMS and provide key 

solutions to some common challenges in untargeted metabolomics.  Most of these programs use the 

XCMS peaks table and/or groups table as their inputs.  Therefore, collectively, we refer to them as 

the XCMS family of software.   

2.5 CAMERA: Annotating Isotopologues, Adducts, Clusters, and Fragments 

When a metabolite is analyzed by electrospray ionization-mass spectrometry (ESI-MS), it is 

usually detected as more than a single ion species in the same mass spectrum owing to the presence 

of isotopologues, adducts, clusters, and in-source fragments.94 Because these ion species have 

different mass-to-charge values, XCMS reports each as a unique feature.5 This increases the 

complexity of the XCMS diffreport and complicates statistical analysis as well as compound 

identification.    

Given that adducts, clusters, and fragments are generally formed at the source in ESI-MS, they 

share the same retention time as the parent compound.  Similarly, isotopes usually do not influence 

retention.86 Thus, a strategy widely employed to group these types of related features is evaluation of 

chromatographic peak shape similarity.95 The approach has been used by several software programs, 

but here we describe CAMERA because it was designed for postprocessing of the XCMS output.86 

Like XCMS, CAMERA is freely available from the Bioconductor repository.   

In addition to grouping related features, CAMERA also attempts to annotate ion species by 

applying a rule table.  The rule table works for identifying isotopes, frequent adducts such as sodium 
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and chloride, and common neutral losses or cluster-ions.  Users also have the option to combine 

LC/MS data from positive and negative modes to improve the reliability of ion annotations.   

2.6 Credentialing: Annotating Artifacts 

In a conventional LC/MS-based metabolomic experiment, the XCMS diffreport includes a large 

number of “artifactual” features.  These features significantly complicate interpretation of the data 

because they are not directly associated with the sample but rather arise from contaminants 

introduced during analysis or from chemical noise, bioinformatic noise, etc.4 Unfortunately, 

information in the XCMS diffreport is insufficient to discriminate artifactual features from biological 

features.  Artifacts are particularly problematic when attempting to interpret metabolomic data at the 

comprehensive level.  When evaluating different analytical methods to compare metabolome 

coverage, for example, we demonstrated that higher feature numbers do not necessarily correlate 

with more detected metabolites.4 In part, this is because artifacts are highly variable and change as a 

function of extraction procedure, separation technology, mobile phase, instrumentation, and mass 

spectrometer settings.   

Currently, approaches to identify artifacts in metabolomic data rely upon stable isotopes.4,90  

Although these strategies have proven effective, we should point out that their application is limited 

to samples that can be cultured with labels (clinical specimens remain a challenge). One approach for 

removing artifacts, known as credentialing, was designed to be interoperable with the XCMS 

software.4 In the credentialing scheme, artifactual features are distinguished by growing cells on 

heavy isotopic carbon and mixing them with natural-abundance samples at defined ratios. Notably, 

only features of cellular origin will have appropriate isotopic partners at the appropriate ratios.  

Thus, without structurally identifying every feature, artifacts can be filtered from the dataset 
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computationally by using the credentialing software algorithms.  With this platform, the number of 

“credentialed features” can be used (instead of total features) as a more reliable metric to benchmark 

analytical performance.   

2.7 Warpgroup 

The standard XCMS workflow employs the centWave and group.density algorithms to detect 

peaks in each sample independently.  In this scheme, the information used to group peaks is only 

the average m/z and retention time from all samples analyzed.  Further, as each sample’s raw data 

are treated in isolation, differences in integration regions between samples contribute to increased 

variance in the processed dataset.  We developed Warpgroup as an XCMS compatible package that 

addresses these limitations with consensus integration bound analysis.2 Warpgroup applies dynamic 

time warping and graph analysis to improve the precision of metabolomic data processing.  

Warpgroup improvements include: correspondence determination that leverages the local extracted 

ion chromatogram topography; detection and grouping of peak subregions; selection of similar 

integration bounds for each group; intelligent missing value filling; and reporting of several 

parameters which allow the filtering of bioinformatic noise. 

The benefits of Warpgroup are the retrospective combination of several independent rounds of 

peak detection.  For an E. coli dataset, as an example, application of Warpgroup resulted in an 

increase in the number of unique detected analytes by 26% and halved the mean coefficient of 

variation of all analytes (compared to the XCMS algorithms alone).2 Warpgroup is implemented in a 

general manner and is applicable to all time series data, including metabolomic data from other 

software packages.  
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2.8 metaXCMS: Finding Shared Alterations Among Multiple Sample Classes 

The original XCMS algorithms were designed to compare the intensities of features from only 

two sample groups.  The challenge of applying simple pairwise comparisons is that knocking out a 

single protein can lead to hundreds or thousands of changes in feature intensities because the related 

pathways are interconnected.96  For instance, knocking out a protein may decrease the product of 

that protein.  However, decreased levels of the protein’s product may then itself lead to a cascade of 

other context-dependent metabolic alterations.  Determining those metabolites that are altered 

directly as a result of knocking out a protein from those that are altered indirectly is challenging.  

Thus, it has become increasingly common in metabolomics to look for dysregulation shared among 

multiple sample groups as a strategy for data reduction.  metaXCMS enables such multiple-factor 

comparisons by operating on XCMS diffreports.97,98   

The power of assessing shared metabolic differences among multiple sample groups is perhaps 

best demonstrated by an example.  When control C. elegans worms were compared to long-lived C. 

elegans worms in which the germ line had been removed by glp-1 mutation, ~44% of the total 

detected features (13639) were altered with a p-value <0.05 and a fold change >2.96  From these data 

alone, features directly associated with increased life span could not be distinguished from those 

features that were altered from glp-1 mutation but that did not affect life span.  Because germ-line-

induced extensions in life span are dependent upon the FOXO transcription factor DAF-16, double 

mutant daf-16;glp-1 worms are short lived.  Thus, a comparison of long-lived glp-1 worms to both 

wildtype worms and short-lived daf-16;glp-1 worms with metaXCMS revealed shared features that 

were uniquely altered in glp-1 induced longevity. By performing similar analyses of other long-lived 

worms with metaXCMS, the number of features directly associated with longevity was ultimately 

reduced to six.96    
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2.9 X13CMS: Unbiased Mapping of Isotopic Fates  

Although the intensities of thousands of features are measured by LC/MS-based untargeted 

metabolomics, these data provide only a static snapshot of cellular metabolism and do not generally 

capture the complex dynamics of biochemical pathways.99 To quantitate metabolic fluxes and to 

determine the contribution of specific nutrients to metabolite/macromolecular synthesis, 

investigators typically use isotope-labeled tracers.100 A number of robust approaches, such as 

metabolic flux analysis, are well established for these types of studies.72 Most of the approaches use 

mass spectrometry or NMR to measure isotopic labeling in a targeted set of compounds.   

In recent years, there has been a growing interest to integrate untargeted metabolomic 

technologies with stable isotopic tracers.  One potential advantage of such an experimental design is 

the unbiased and comprehensive tracking of metabolite fates.101,102 By following the metabolism of a 

labeled compound fed to a biological system comprehensively as a function of time by using 

LC/MS-based metabolomic approaches, new metabolite transformations may be discovered.  

Additionally, by comparing labeling patterns between different phenotypes using global 

metabolomic technologies, it is possible to identify relative changes in flux distributions.103  

The XCMS software is not currently designed to support experiments involving isotopic labels. 

Although analysis of isotopic labels can be accomplished by using XCMS together with CAMERA, 

the X13CMS software was recently developed specifically to support experimental designs based on 

stable isotopes.86,103 To use X13CMS, LC/MS data acquired from samples with and without isotopic 

label are first processed by XCMS. The XCMS results are then forwarded to X13CMS, which 

identifies isotopologue groups corresponding to isotopically labeled compounds. Grouping of 

isotopologues is performed without any a priori knowledge except input of isotopic label(s) used, 

instrument mass accuracy, and chromatographic drift tolerance. The labeling pattern of each 
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compound determined to be isotopically enriched can be quantitatively compared from multiple 

sample groups by using the getIsoDiffReport algorithm implemented within X13CMS.  

2.10 XCMS Online: Metabolomics on the Cloud 

The bioinformatic resources discussed up to this point are distributed as R packages and operated 

through a command-line interface or customized scripts. One major advantage of this format is 

flexibility.  Researchers can modify the XCMS algorithms to suit their own specific needs. The 

modular nature of the original XCMS software has made it interoperable with new generations of 

programs for untargeted metabolomics and enabled multiple research laboratories to improve upon 

the original XCMS algorithms.65,71,104,105  

A limitation of distributing XCMS as an R package is that many users do not have the 

programming expertise to use a command-line interface. This can be particularly problematic for 

clinical and biological laboratories.  In response to this issue, an intuitive graphical interface was 

developed to process untargeted metabolomic data; this interface implements many of the 

algorithms described in this review including those in XCMS, CAMERA, metaXCMS, as well as 

others. The platform, called XCMS Online, is cloud based.106 Investigators upload untargeted 

metabolomic data by simply dragging and dropping their files into the program.  Parameters are then 

selected and processing occurs on the cloud. Researches receive an e-mail notifying them when 

processing is complete. Results can then be viewed online, or downloaded for later use. An 

advantage unique to XCMS Online is that data are directly searched against the METLIN metabolite 

database.107 When users upload both MS and MS/MS data, the matching can be performed on the 

basis of accurate mass and fragmentation patterns.92 Thus, within XCMS Online, features on the 

diffreport can be annotated as possible isotopes, adducts, or structures.  
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2.11 Concluding Remarks 

There are many reliable bioinformatic solutions for processing untargeted metabolomic data.  

The XCMS software is one platform-agnostic solution that is widely used.  The success of XCMS is 

related to it being open source and highly modular.  This has enabled multiple laboratories to 

contribute to its development with algorithms such as centWave and OBI-warp.  There are a 

multitude of additional algorithms available that are relevant to the processing of untargeted 

metabolomic data, and it is recommended that their potential to improve XCMS performance be 

evaluated in the future.  Given that XCMS is open source and modular, it is also interoperable with 

new generations of metabolomic software implemented within R and aimed at achieving advanced 

functionalities (e.g., better annotation of features, multifactorial analysis, unbiased tracking of 

isotopic labels, etc.).  Consequently, the core algorithms within XCMS have become an important 

piece of many bioinformatic pipelines.  Hopefully the roadmap for these pipelines that we have 

provided here will be useful in helping researchers chose a software platform most compatible with 

their experimental objectives.   
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Chapter 3.  

 

Warpgroup: Increased Precision of Metabolomic Data Processing by 

Consensus Integration Bound Analysis* 

Motivation: Current informatic techniques for processing raw, chromatography/mass 

spectrometry data break down under several common, non-ideal conditions. Importantly, 

hydrophilic liquid interaction chromatography (a key separation technology for metabolomics) 

produces data that are especially challenging to process.    We identify three critical points of failure 

in current informatic workflows: compound specific drift, integration region variance, and naive 

missing value imputation.  We implement the Warpgroup algorithm to address these challenges. 

Results: Warpgroup adds peak subregion detection, consensus integration bound detection, and 

intelligent missing value imputation steps to the conventional informatic workflow. When compared 

to the conventional workflow, Warpgroup made major improvements to the processed data. The 

coefficient of variation for replicate injections of a complex Escherichia Coli extract were halved (a 

reduction of 19%). Integration regions across samples were much more robust. Additionally, many 

signals lost by the conventional workflow were “rescued” by the Warpgroup refinement, thereby 

resulting in greater analyte coverage in the processed data.  

                                                 
* This work is based on the following publication: “Warpgroup: increased precision of metabolomic data processing 

by consensus integration bound analysis”. NG Mahieu, JL Spalding, GJ Patti, Bioinformatics, 2015. NGM developed 
and evaluated the Warpgroup algorithm, and ran all LC/MS experiments. JLS provided an initial, poorly aligned data. 
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Availability and Implementation: Warpgroup is an open source R package available on GitHub at 

github.com/nathaniel-mahieu/warpgroup. The package includes example data and XCMS 

compatibility wrappers for ease of use. 

3.1 Introduction 

In the previous chapter an overview of the informatic tasks in metabolomics was provided.  In 

this chapter we take a deeper look at the peak detection process and develop Warpgroup, an 

algorithm that refines the results of peak detection in individual files by combining the results and 

computing consensus peak integrations – peak integrations that are supported by all replicates. 

 

Omics-scale separation/mass spectrometry approaches (e.g., LC/MS, GC/MS, CE/MS, etc.) 

generate large, three-dimensional data sets consisting of elution time (rt), mass-to-charge ratio (m/z), 

and signal intensity information.107 Analytes are separated by their chemical characteristics prior to 

being introduced into the mass spectrometer (yielding rt).  The mass spectrometer acts as a second 

dimension of separation and a detector, providing information on the accurate mass (m/z) and 

amount of each analyte (signal intensity). Each sample run can generate gigabytes of data 

representing tens of thousands of distinct analytes.108 The processing of raw data is a significant 

challenge and the conventional workflow consists of several steps. These steps include mass trace 

detection, chromatographic feature detection, inter-sample retention time drift correction, inter-

sample grouping of common features (correspondence determination), and statistical analysis of 

feature groups.5 A feature in this context refers to signal that displays a peak shape in both m/z and 

rt domains. The result of this data processing is quantification of all unique analytes detected across 

multiple sample runs.   
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Historically, most chromatography/mass spectrometry experiments have been performed with 

reversed-phase chromatography.  This well-established separation technique commonly generates 

Gaussian peak shapes and exhibits highly reproducible retention times.  A simple retention 

mechanism based primarily on compound polarity also minimizes compound specific drift.109 One 

drawback to reversed-phase separation is a lack of retention for the highly polar compounds such as 

sugars and organic acids commonly of interest to metabolomic studies.  As a result, many new 

separation chemistries have emerged under the umbrella term hydrophilic interaction liquid 

chromatography (HILIC), which aim to achieve separation of polar molecules.110 Unfortunately, 

analytes measured by HILIC separation exhibit a wide range of non-Gaussian peak shapes as well as 

larger, compound-specific retention time drift.111 Current informatic approaches were primarily 

developed by using reversed-phase C18 chromatography, and even today most new advances are 

benchmarked solely on reversed-phase datasets.71 Thus, the performance of these algorithms 

degrades when applied to HILIC datasets.  

Detection of features and selection of integration regions is an initial and critical step of the 

informatic workflow.112 In cases where peak shapes are simple and peaks exhibit large signal-to-noise 

ratios, the detection and integration of peaks is reproducible.  Complex metabolomic datasets, 

however, contain a high proportion of poorly resolved and low-abundance peaks.113 Additionally, 

the non-Gaussian peak shapes exhibited by a large portion of HILIC features impede the robust 

selection of integration bounds.  These factors complicate peak detection and result in undetected 

features as well as integration bounds which describe different regions of a peak in each sample. 

(Figure 1, A and B) 

The second major informatic step is determination of correspondence. Current feature grouping 

techniques rely on the reproducible elution of compounds across multiple experimental runs.  The 
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elution time of m/z-rt pairs (i.e., features) is the key information used to associate the same 

compound detected in different runs.114 In practice, elution times vary from sample to sample due to 

many factors. 114 This necessitates correction of retention time drift prior to grouping. Most 

techniques assume that drift is a function of retention time alone and thus generate a global 

correction curve f(rtA)=rtB.66 This critical assumption is overly simplistic.  In practice, retention time 

drift is compound dependent (Appendix 1.1 and 1.2).82 Additionally, residual drift becomes greater 

when using more vagarious separation strategies such as HILIC, as larger groups of samples are 

aligned, and as research studies begin to incorporate inter-laboratory comparisons.115 

Given the global correction assumption, most alignment techniques minimize only the average 

drift between samples considering all analytes equally.65 (Appendix 1.1 is an optimistic example 

displaying the residual drift of technical replicates run over the course of 9 hours.) As such, the 

inherent compound-specific drift results in many unaligned peak remaining after correction – 

moreover many compounds move even further out of alignment upon global correction. (Appendix 

1.2)  This poor feature alignment causes major challenges for current peak grouping algorithms.  

The density method employed by XCMS, for example, can only group peaks if their maximum 

residual drift is less than the distance to the nearest group. (Figure 1C is an example of this failure.)84 

Further complexity is added by samples in which a feature is undetected, or when spurious noise is 

detected as a feature. 

These failings of the current informatic workflow motivated our development of the Warpgroup 

algorithm. Warpgroup is an algorithm that utilizes dynamic time warping (DTW) and network graph 

decomposition.  Herein we achieve five goals: (i.) accurate grouping of features between samples 

even in the case of deviation from the global retention time drift, (ii.) splitting of peak subregions 

into distinct groups, (iii.) determination of consensus integration bounds within each group such 
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that each group represents a similar chromatographic region, (iv.) detection of the appropriate 

integration region in samples where no peak was detected, and (v.) reporting of several parameters 

that allow filtering of noise groups. 

 
Figure 3.1. (A) Determination of integration bounds is a challenging computational problem.  Independent peak detection introduces sample-to-

sample variance in the integration regions (top). Peak bounds after Warpgroup (bottom).  (B) Peak detection often misses peaks in some samples 

(top).  Warpgroup detects the appropriate regions in each sample to integrate (bottom).  (C) Conventional methods are unable to accurately 

group peaks when retention time varies more than the separation between peaks (left).  Warpgroup successfully groups challenging peaks (right).  

(D) An extreme example in which two peaks have merged to varying degrees and peak detection identified different portions of the peak in 

different samples (left).  Warpgroup correctly identifies the three corresponding regions in each sample (right). All examples are included in the 

Warpgroup R package for demonstration. 

 

The Warpgroup algorithm establishes a correspondence between the time domains of each 

feature’s extracted ion chromatogram (EIC) trace, utilizing dynamic time warping by default.116,117 

Based on this correspondence, Warpgroup evaluates whether all supplied peak bounds represent a 

similar chromatographic region using graph community detection.69 Subsequently, it determines 
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“consensus integration regions” for each sample and selects the appropriate integration region for 

samples with no detected peak.  During the time warping and graph analysis, several descriptors of 

each group are generated and reported for use in filtering unreliable and noise-containing groups. 

3.2 Methods 

3.2.1 Overview of the Warpgroup Algorithm 

The Warpgroup algorithm is applied after feature detection has been performed. It augments the 

conventional retention time correction and feature grouping steps with the addition of group 

splitting and consensus bound determination.  The benefits of Warpgroup are derived from the 

combination of several peak finding rounds through the independently determined alignment 

between chromatograms.  

The Warpgroup algorithm utilizes two pieces of information. The first is one EIC trace per 

sample that includes all of the masses contributing to the peak group.  This trace could contain a 

single detected peak, or multiple peaks per sample depending on the experimental retention time 

drift and mass drift. These traces are used to determine the pairwise alignment between each 

sample’s time domain for this putative group of compounds.  The second piece of information is a 

list of peak bounds detected in the EIC traces. These must have been determined previously by a 

peak detection step for at least one sample. The Warpgroup algorithm will use these bounds and the 

aligned sample traces to split the detected peak list into groups, each of which represent a distinct 

chromatographic region.   
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The key assumption made by the Warpgroup approach is that the sample EIC traces exhibit 

similar topography.  Though not strictly true, this is the common assumption made in current 

retention time alignment techniques82 and has been shown here to be a robust basis for Warpgroup 

analysis. Under this assumption, we use established methods to warp (shift, expand, and contract) 

the time domain of the sample EIC trace such that the difference between two sample traces is 

minimized.  In this way we establish a relationship between the two time domains, equating the 

scans in one sample to the scans in a second for a specific group of compounds (i.e., 

𝑓𝑚,𝑛(𝑠𝑠𝑠𝑠 𝑖𝑠 𝑠𝑠𝑚𝑠𝑠𝑠 𝑚) = 𝑠𝑠𝑠𝑠 𝑖𝑠 𝑠𝑠𝑚𝑠𝑠𝑠 𝑠. This warping function is taken as the true 

correspondence between scans in each sample trace and is used to establish relationships between 

the detected peaks as well as to determine the proper integration region in samples where a peak was 

not detected. 

To this end, the alignment between each sample scan is used to evaluate whether the supplied 

peak bounds delineate similar or distinct chromatographic regions of their EIC traces.  Peak bounds 

which describe similar chromatographic regions should overlap upon transformation into a second 

sample’s time domain.  We ask, for each peak, if the transformed bounds agree. These yes/no 

answers are expressed as linkages between detected peaks (nodes) creating a graph structure. This 

graph is split using the walktrap community detection method118 and the resulting communities are 

taken as peak groups (i.e., groups of peaks that describe similar chromatographic regions). 

For each resulting peak group, the full set of transformed peak bounds is then filtered for outliers 

that do not describe a chromatographic region similar to that of the majority of detected peaks. The 

mean of the 75th percentile of the remaining, transformed peak bounds for each sample is taken as 

the “group-consensus peak bound” for each sample.   
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Finally, integration bounds must be determined for samples which have no detected peak 

remaining in the group.  It is common for features to be detected in some but not all samples, 

especially in cases where compounds are of low abundance.  Each group’s consensus peak bounds 

are transformed into the missing sample's time domain and the median of these transformed 

consensus peak bounds is taken as the integration region for the missing sample. 

In this way Warpgroup has assured that each peak group contains a region from every sample, 

each peak group describes a unique chromatographic region, and all peaks in that group describe a 

similar chromatographic region (Figure 1). 

3.2.2 Description of the Warpgroup Algorithm 

Input 

The algorithm takes two pieces of information.  A sample × scan sample-trace-matrix (Figure 1, 

traces) and a matrix of peak bounds including the peak start, and peak end, and sample index (Figure 

1, dots). 

Sample Trace Preprocessing  

Optionally, each sample trace is smoothed, padded with 0's equal to 10% of the length of the 

trace, and normalized to a maximum intensity of 1.0. 

Pairwise Sample Warping Matrix Generation 

Each pair of sample traces is used to generate a sample × sample warping-matrix (W). Each 

matrix entry is a step function 𝑊𝑚,𝑛 = 𝑓(𝑚,𝑛)(𝑥) such that 𝑓𝑚,𝑛(𝑠𝑠𝑠𝑠 𝑖𝑠 𝑠𝑠𝑚𝑠𝑠𝑠 𝑚) =
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𝑠𝑠𝑠𝑠 𝑖𝑠 𝑠𝑠𝑚𝑠𝑠𝑠 𝑠. (Appendix 1.4) The notation 𝑊𝑖,𝑗 represents the step function converting scans 

from the sample in which peak j was detected into the sample in which peak i was detected. 

The warp matrices for this work are generated using dynamic time warping to determine the 

optimal warp path. Other techniques such as parametric time warping (PTW) have recently been 

applied to the correction of retention time drift119 and in general any technique which establishes 

alignment between the scans in each sample can be used.  

Establishing relationships between the supplied peaks 

The supplied peak bounds are transformed from the originating sample’s elution space into each 

of the other sample's elution space via the previously determined warping-matrix. Peaks which 

delineate the same chromatographic regions will share bounds when transformed from their time 

domain into the other samples time domain. 

Each pair of peak bounds is compared to populate a peak × peak match-matrix (P).  Pairs which 

differ by less than the settable cut-off sc.aligned.lim are filled as true. 

𝑃𝑖,𝑗 = �𝑏𝑏𝑏𝑠𝑑𝑠𝑝𝑝𝑝𝑘 𝑖 − 𝑊𝑖,𝑗�𝑏𝑏𝑏𝑠𝑑𝑠𝑝𝑝𝑝𝑘 𝑗�� < 𝑠𝑠.𝑠𝑠𝑖𝑎𝑠𝑠𝑎𝑑. 𝑠𝑖𝑚 

Splitting the supplied peaks into groups which describe distinct chromatographic regions 

Matrix P is represented as a graph structure where matrix indices are the nodes and matrix 

elements containing a true value are the edges. (Appendix 1.4)  The nodes of this graph are split into 

communities using the walktrap community detection method.118  

Each of the resulting communities contains one or more detected features.  Within each 

community (i.e., group), all detected features are taken to represent the same analyte.  

Determination of consensus peak bounds for each group 
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All detected peaks within each group contribute to the consensus peak bounds such that each 

peak represents the same chromatographic region.  Grouped peak pairs are transformed into each 

sample’s time domain to create a peak × peak transformed matrix (C).  

𝐶𝑖,𝑗 = 𝑊𝑖,𝑗(𝑏𝑏𝑏𝑠𝑑𝑠𝑝𝑝𝑝𝑘 𝑗) 
The mean of the 75th percentile of each column is taken as the consensus peak bounds for the 

jth peak. 

Determination of integration region for samples without a detected peak 

For samples in which there was no detected peak remaining in a group, the consensus peak 

bounds are projected into that sample’s time domain.   

𝐶𝑖,𝑗 = 𝑊𝑖,𝑗(𝑠𝑏𝑠𝑠𝑠𝑠𝑠𝑏𝑠 𝑏𝑏𝑏𝑠𝑑𝑠𝑝𝑝𝑝𝑘 𝑗) 

The median of these transformed bounds are taken as the missing sample’s peak bounds. 

3.2.3 Output 

The output of the algorithm is a list, each entry representing one peak group.  A group entry is a 

matrix with a set of consensus peak bounds for each sample as well as descriptors of the alignment 

and grouping process.  This output can be used for peak integration, filtering, and statistics.  

3.2.4 XCMS Implementation 

Warpgroup was developed as a standalone algorithm and as such it can be applied to any suitable 

chromatographic data.  For convenience, the Warpgroup package includes integration with XCMS 

type objects.  These functions allow application of the Warpgroup algorithm in the conventional 

XCMS manner by calling group.warpgroup().  The returned object is an xcmsSet object with peak 
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bounds and groups generated by the Warpgroup algorithm.  This resulting xcmsSet does not need 

any further fillPeaks() and is ready for statistical analysis, either manually or with XCMS’s 

diffreport() function.  Further information can be found in Appendix 1.5.  

3.2.5 Datasets 

Raw Data 

We experimentally generated two datasets on which to benchmark Warpgrouping.  To evaluate 

performance under a relevant set of conditions, we chose to generate one dataset with reversed-

phase C18 chromatography and the second with amino propyl HILIC.120 Each dataset contained 

eleven LC/MS runs of Escherichia coli (E. coli) strain K12, MG1655 metabolic extract.  This design 

allowed us to inspect the standard error of quantitation on both ideal (C18) and non-ideal (HILIC) 

datasets while also observing the algorithms performance as dataset quality degrades at longer times. 

Metabolic extract was generated as described previously.4 Briefly, two cultures of E. coli were 

grown, one on natural-abundance glucose and a second on uniformly labeled 13C-glucose as the sole 

carbon source.  E. coli was harvested by pelleting 10 mL of culture at OD600 = 1.0.  Pellets were 

extracted using 1 mL of 2:2:1 methanol:acetonitrile:water, and reconstituted in 100 μL of 1:1 

acetonitrile:water.   

Datasets were generated on the Thermo Q-Exactive Plus mass spectrometer interfaced with an 

Agilent 1260 capillary liquid chromatography system.  Spectra were collected in negative ion mode 

with the following HESI II source settings: aux. gas, 15; sheath gas, 30; counter gas, 0; capillary 

temperature, 310 ℃; sheath gas temperature, 200 ℃; spray voltage, 3.2 kV; needle diameter, 34 ga; 
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s-lens, 65 V; mass range, 85-1165 Da; resolution 140,000; microscans, 1; max inj. time; 200 ms; AGC 

target: 3e6. 

HILIC was performed as described previously120 using the Phenomenex Luna NH2 (1.0 mm x 

150 mm x 3 um) column and a flow rate of 50 μL/minute.  Solvents were: A, 95% water + 20 mM 

ammonium hydroxide + 20 mM ammonium acetate; B, 100% acetonitrile.  An injection volume of 1 

μL was used with a gradient of (minutes, %A): 0, 5; 40, 100; 50; 100; 50.5, 40; 54.5, 15; 55, 5; 65, 5. 

Reversed-phase chromatography was performed as described previously 120 using the Agilent 

Zorbax C18 (0.5 mm x 150 mm x 3 μm) column and a flow rate of 30 μL/minute.  Solvents were: 

A, water + 0.1% (v/v) formic acid; B, acetonitrile + 0.1% (v/v) formic acid.  An injection volume of 

1 μL was used with a gradient of (minutes, %A): 0, 95; 45, 0; 55; 0; 56, 95; 65, 95. 

Preprocessing 

The Warpgroup algorithm implements peak subregion detection, consensus/missing peak 

integration bound determination, and group filtering.  These steps come after peak detection has 

been performed and putative correspondence has been determined.   To generate data for 

comparisons, peak detection for each of the C18 and HILIC datasets was performed by the 

centWave algorithm as implemented in the XCMS R package.71,84,121 Parameters were: C18, 

ppm=2.5, peakwidth=c(8,120), HILIC: ppm=2.5, peakwidth=c(8,120). This set of detected peaks 

was used as the basis for both the conventional and Warpgroup workflows as described below. 

Conventional Workflow 

The conventional workflow as referred to here consists of the following listed analysis steps and 

parameters taken from XCMS Online recommendations for the Q-Exactive Plus.122 Global retention 

time correction is performed with the OBI-warp algorithm (profStep=1, center=1).  Features are 
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then grouped between samples with the density method (mzwid=0.015). Finally, missing peaks are 

filled by integrating the range of m/z and retention times in the group using fillPeaks().  The 

resulting filled peak groups contain at minimum one intensity value per sample, but in many 

instances include multiple intensity values per sample.  When performing statistics, the groupval() 

function applies a filter to select a value which will represent each sample.  By default this selects the 

peak which is closest to the median retention time of the group.  All calculations are based on this 

groupval() output to make results consistent with diffreport() output as used in the conventional 

workflow by XCMS Online. 

Warpgroup Workflow 

The Warpgroup workflow consists of the following steps.  Global retention time correction is 

performed with the OBI-warp algorithm (profStep=1, center=1).  A rough grouping of features is 

established by grouping all features within 3 ppm and 25 scans. In our data sets this rough grouping 

ensured that all peaks which could possibly be the same analyte across samples remained in the same 

group – this also caused some groups to contain multiple peaks.  Here, these rough groups were 

refined with the Warpgroup algorithm by a call to group.warpgroup (rt.max.drift = 20, 

ppm.max.drift = 3, rt.aligned.lim = 7). The resulting dataset contained one peak per sample in every 

group, all of which described the same region. This output xcmsSet was used for all further statistics 

and assessment of the Warpgroup algorithm. 

Selecting Peak Groups for Comparison 

The Warpgroup analysis assumes each detected peak represents a legitimate peak region.  Upon 

Warpgroup analysis of these regions, a single group in the conventional workflow often results in 

multiple warp groups. (Table 2) To make a fair comparison between quantitation of the 
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conventional and Warpgroup methods, a selection of groups had to be made. “Shared” peaks 

consist of any groups which contain six or more peaks in common between the two workflows. It is 

worth noting that the “shared” group subset masks the benefits that Warpgroup provides in low 

abundance peak detection and peak sub region detection.  

3.2.6 Performance Evaluation 

A major goal of the Warpgroup algorithm is the reduction of variance introduced by data 

processing.  We identified several points in the conventional bioinformatic workflow for processing 

untargeted metabolomic data where small errors were being introduced.  These small errors were 

compounded in each downstream step, resulting in a significant decrease in dataset quality. We 

evaluated the impact of Warpgrouping on the two primary errors we noticed: integration bound 

selection and peak grouping. 

Peak Quantitation 

Peak quantitation performance of each workflow was assessed by comparing the coefficient of 

variation (CV) across 11 replicate injections.  This metric provides an assessment of the entire 

workflow. Warpgroup often divides conventional groups into multiple sub-groups, and thus there is 

not a one–to-one correspondence between warpgroups and conventional groups.  To assess similar 

peak groups in both methods, only groups sharing more than 6 of the 11 centWave detected peaks 

were included in the coefficient of variation analysis.  This ensures a one-to-one correspondence 

between groups from both methods but obscures the benefit of any additional, true groups 

recovered by Warpgroup. 
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Figure 3.2. Standard error of peak quantitation comparison. The coefficient of variation for all peak groups which shared more than 6 centWave peaks 

from 11 replicate injections was monitored before (pink) and after (blue) warpgroup.  The conventional workflow generates a large number of 

high variance peak groups for various reasons; upon warpgrouping these are corrected, resulting in a much lower CV for the replicates. 

Grouping Quality 

 The quality of peak grouping was evaluated for both workflows by manually annotating the 

resulting groups. Automated rating of group quality is complex and remains beyond the ability of 

current techniques. To generate a metric for the quality of resulting groups we examined 500 groups 

generated by each workflow, scoring them for uniformity of included peaks.  The scoring system 

employed was: 4, identical integration regions for every peak in the group; 3, some minor variation 

in the integration regions; 2, major variation in the integration regions; 1, multiple distinct peaks 

included in the group; 0, a noise group with no discernable correct integration.  Scores were 

summarized for comparison of the conventional and Warpgroup workflows. 

 Further, the number of additional, distinct chromatographic regions the Warpgroup algorithm 

detected was quantified. We manually annotated each Warpgroup as redundant, noise, or unique; 
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Groups that shared more than 75% of their major chromatographic region, or differed in only the 

tails of the peak were annotated as redundant.  In some cases, a peak was split into sub regions but 

also reported in its entirety. (Figure 1D) We considered this desired behavior and annotated all three 

as unique groups. 

3.3  Results 

3.3.1 Standard error of replicate injections 

Peak picking in the conventional workflow is performed on each sample independently, causing 

the integration region for each peak to vary slightly from sample to sample.  By considering the peak 

bounds detected in each sample together, we ensure that the similar integration region is selected for 

each peak.  In addition, the Warpgroup approach reduces errors in grouping which can contribute to 

inaccurate quantitation and statistics.  Analysis of 11 replicate injections with two chromatographies 

demonstrated the improvement in data processing quality using the Warpgroup method (Figure 2). 

The mean CV was halved (a decrease of 13% in the HILIC case and 17% in the C18 case).  Pairwise 

comparison of each group before and after Warpgroup revealed that, in most but not all cases, the 

CV decreased with the application of Warpgroup.  (Appendix 1.6) 

Quality of resulting groups 

Grouping in the conventional workflow is based solely on the assumption that common peaks 

will cluster in retention time.  As seen in Appendix 1.1 and 1.2, this assumption is not strictly true 

and in many cases (such as shown in Figure 1C) groups will include two or more distinct peaks due 

to residual drift. We sought to evaluate the quality of peak groups returned by the Warpgroup 
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algorithm as compared to the conventional workflow by rating groups on a scale of 0 to 4. As seen 

in Figure 3, the Warpgroup algorithm results in a striking increase in peak group quality.   

Notably, ratings of 1 correspond to groups which contained multiple, distinct peaks.  The 

correction of these cases represents an increase in dataset coverage, as the additional groups 

“rescued” by Warpgroup represent newly quantified unique signals. 

 
Figure 3.3. Group quality and consistency comparison. The conventional XCMS approach without Warpgroup was compared to the XCMS approach 

with Warpgroup. Quality of generated groups was assessed.  Groups were manually inspected and rated on a scale of 0-4.  Zero scores 

corresponded to noise groups with no discernable correct integration.  The remaining scores ranged from 1 (integration regions incorporating 

different peaks across samples) to 4 (identical integration regions across all samples). Warpgroup (right) showed a major improvement in group 

quality as compared to the conventional workflow (left).  Warpgroup also showed an expected increase in noise groups. 

Given that Warpgroup splits peak groups into distinct regions, there is a tradeoff between the 

number of truly unique chromatographic regions and the number of redundant chromatographic 

regions that are represented.  This tradeoff is controlled by the variable sc.aligned.lim, the only user-

settable parameter in our algorithm. This parameter specifies the similarity two sets of peak bounds 

must have to be called the same peak. A smaller sc.aligned.lim results in more sensitive peak 
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subregion detection but more orphan peaks and a larger number of redundant groups.  In practice, 

orphaned and redundant peaks are easily filtered by removing all peak groups generated by one or a 

few of the originally detected peak bounds.   

We evaluated the redundancy of the Warpgroups and the increase in unique signals detected by 

manually annotating redundant and noise-only Warpgroups in the HILIC dataset (Table 2).  The 

conventional workflow’s 18,341 peak groups resulted in 40,719 peak groups after Warpgrouping.  

Of these Warpgroups, we manually annotated 33% as redundant and 10% as noise.  Considering 

these redundancies and noise, the Warpgroup approach resulted in 23,209 unique signals.  The 

increase in peak groups by 23% represents distinct chromatographic regions that were added to the 

dataset and otherwise would have been lost or poorly quantified.  

 

Table 3.1. Coefficient of variation comparisons 

 

 
A final, more restrictive search for rescued groups was performed.  Cases such as that shown in 

Figure 1C were identified by searching for conventional groups in which two distinct peaks were 

incorrectly combined by conventional grouping due to residual drift.  In these cases, peak finding 

detected both peaks in most samples but the conventional grouping was unable to properly separate 

them.  This search yielded 611 peak groups in the HILIC dataset and 1,246 peak groups in the C18 

dataset that were successfully rescued by Warpgroup. 
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Table 3.1. Group quality comparisons 

 

3.4 Discussion 

The exact use cases of Warpgroup are dependent on the data and the problem at hand.  We 

imagine four distinct goals in the next section and summarize appropriate inputs and expected 

outputs. Warpgroup operates optimally after inter-sample peak correspondence has been 

established. Though it is possible to supply ungrouped data to the Warpgroup algorithm, there are 

several drawbacks to this approach. First, processing time for the dynamic time warping algorithm 

scales with the square of the input length.  Second, if a feature is present in one sample but missing 

from the others, this dissimilar topography can result in incorrect alignments.  Finally, establishing 

correspondence is a complex challenge for which many more sophisticated solutions have been 

suggested.82 These should be used in conjunction with the Warpgroup refinements. 

While Warpgroup is not intended to determine peak correspondence, it does make a less 

restrictive assumption for peak alignment.  Current algorithms assume that peak elution order 

remains monotonic across all masses.  Warpgroup assumes only that peaks of indistinguishable mass 

retain their elution order.  This more relaxed assumption allows for rudimentary correspondence to 

be established in more complex cases such as that shown in Figure 1C and is a major improvement 

to the XCMS-based workflow.123 
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3.4.1 Use Cases 

There are four modes we consider for the application of Warpgroup. 

Consensus bound determination. 

In cases where the peak was detected in all samples, only the peak integration region with a small 

number of surrounding scans need be included in the EIC matrix.  A large value for sc.aligned.lim 

can be supplied to avoid splitting of the group into sub regions.  When operated in this manner, 

Warpgroup is relatively fast.  The returned bounds are the consensus integration bounds for that 

group. (Figure 1A) 

Peak subregion detection. 

This use case is identical to case one except an appropriately small value for sc.aligned.lim is 

selected, allowing for subregion splitting.  This use case is also relatively fast.  The returned bounds 

will be a list of distinct chromatographic regions. (Figure 1D) 

Imputation of integration bounds for samples in which no peak was detected. 

In this case, both the undetected and detected peak traces must be included in the EIC matrix.  

Because the feature was not detected in at least one sample, the necessary scan range will be 

dependent on the expected range in which the undetected peak could fall (i.e., the observed drift).  A 

large value for the argument sc.aligned.lim should be supplied to avoid splitting the detected peaks 

into sub groups.  The peak bounds for each missing sample are then returned. (Figure 1B) 
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Grouping of peaks which deviate from the global retention time drift. 

 Warpgroup’s “grouping” of peaks is a result of the subregion detection and splitting.  In this 

mode, the EIC region supplied to Warpgroup will envelop multiple peak groups and thus take 

longer than the above modes. (Figure 1C top)  A small value for sc.aligned.lim is supplied if peak 

subregion detection is desired, or a larger value if the goal is to distinguish two well separated peaks.  

The result will contain a group for each detected peak group. 

3.4.2 Output Considerations 

One major advantage of the Warpgroup workflow is the ability to detect noise groups.  The 

warpgroup algorithm includes several peak descriptors for each group after analysis.  It is important 

to note that Warpgroup output is dependent on the input and contains all resulting groups, including 

noise.  Due to the splitting approach, this can result in a large increase in group number - many of 

which may be redundant.  Further, as noise regions have an under-determined warp path, these 

regions are often split into distinct regions.   

Two descriptors generated by the algorithm can be used to detect and filter these cases.  These 

descriptors provide a type of quality measurement of the group.  The first descriptor is “n” – the 

number of peaks originally detected which contribute to this group.  This parameter is featured in 

the conventional workflow, but Warpgroup provides a more refined metric.  Rather than n 

representing all features eluting near each other, here n represents the detected features which 

describe similar subregions of the chromatogram thus, the metric is much more reliable. In cases of 

high n, feature detection agreed upon the region of the chromatogram to call a peak.  In cases of low 

n, the peak detection did not robustly detect the region and it is likely noise. 
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The second descriptor is “warp.consistency”. This metric measures how much the bounds shift 

when projected into each time-domain and back. Chromatograms with a well-defined and conserved 

topography will generate highly reproducible warp paths.  When bounds are projected through these 

warp paths, any introduced shift will be small and this metric will be low.  When bounds are shifted 

through a poorly defined region, shifts will be greater and this metric will be high.  It is 

recommended to monitor and filter peak groups based on these parameters prior to further analysis.   

3.4.3 Challenges 

A drawback of the Warpgroup approach is speed.  As described in Prince et al., “warping 

function… [scaling]… is bounded by computational complexity (the more segmented the warp 

function the more computation required.)”82 Warpgroup segments every distinct mass trace and, as 

such, the computational demand is high. The dynamic time warping algorithm employed scales with 

the length of the input as O(n2).  Thus, as correspondence confidence decreases, the length of the 

EIC supplied to Warpgroup increases and processing time lengthens rapidly. Conversely, in cases 

where correspondence confidence is high or the goal is simply consensus peak bound and subregion 

detection for well-grouped peaks, the algorithm remains very fast.  Accordingly, the incorporation of 

mass and retention time drift correction as well as the establishment of correspondence prior to 

Warpgroup is recommended. 

Prince et al. raise several limitations of current correspondence methods.82 Though not intended 

as a correspondence algorithm, Warpgroup does address some of the challenges these methods face.  

Most importantly, Warpgroup makes more realistic assumptions about the component-specific drift 

expected in these datasets.  Further, as a single reference sample is not used for alignment, 
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Warpgroup remains symmetric and robust. The algorithm is easily implemented in most workflows 

as it relies on only one required user settable parameter. 

3.4.4 Future Directions 

Improving the scaling with sample number is an important goal.  While the current 

implementation is sufficient for many published metabolomic studies, the analysis of larger datasets 

remains a priority.  Computation can be minimized by several strategies. For many peak groups, 

refinement with Warpgroup will be unnecessary, making minor or no modification to the 

predetermined group.  In these cases, Warpgroup can be omitted for all but the most complex 

groups.  The major computational step is the establishment of a warp path between each sample.  

To reduce computation, the DTW algorithm can be replaced with faster warping algorithms such as 

PTW if the data allow.  Finally, this implementation calculates the full sample x sample warping 

matrix.  However, implementation of a sparse matrix approach could be explored. 

Although Warpgroup was presented here in the context of LC/MS data, the input and output of 

the algorithm are of a general form (multiple time series and regions within those time-series.)  As 

such, the method is generalizable and can find consensus regions within any time-series data. An 

example of Warpgrouping on echocardiogram data124,125 can be found in Appendix 1.8. 

The Warpgroup algorithm as presented addresses several major drawbacks of the current 

informatic workflow. Still, current processing techniques leave significant room for improvement. 

The development of more effective correspondence algorithms is a critical step for the advancement 

of the field.82 Additionally, we see promise in leveraging the information embedded in the 

component-specific drift observed in these datasets.  For example, the drift data may be used to 

cluster ions into composite spectra and to inform further identification.  
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3.5 Conclusion 

In summary, we have found Warpgroup to be an important refinement step for current 

integration and correspondence methods. With Warpgroup refinement in place, data processing 

results remain robust across a wide range of experimental conditions. Major advantages have been 

noted in coverage as well as quantitation, especially in low abundance signals.  Further, Warpgroup 

output includes additional descriptors which can be used to filter noise and unreliable groups from 

the final datasets.  Overall we expect the addition of a Warpgrouping step to the informatic 

workflow to improve the quality and reliability of untargeted metabolomic analyses. 

3.6 Supporting Data 

The LC/MS datasets used in benchmarking of the Warpgroup algorithm can be found on our 

laboratory website at http://pattilab.wustl.edu/software/warpgroup/.  Additional information can 

be found in Appendix 1. 
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Chapter 4.  

 

Defining and Detecting Complex Peak Relationships in Mass 

Spectral Data: The mz.unity Algorithm* 

Analysis of a single analyte by mass spectrometry can result in the detection of more than one 

hundred degenerate peaks. These degenerate peaks complicate spectral interpretation and are 

challenging to annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated 

false discovery rates, datasets containing an order of magnitude more features than analytes, and an 

inefficient use of resources during data analysis. Although software has been introduced to annotate 

spectral degeneracy, current approaches are unable to represent several important classes of peak 

relationships. These include heterodimers and higher complex adducts, distal fragments, 

relationships between peaks in different polarities, and complex adducts between features and 

background peaks. Here we outline sources of peak degeneracy in mass spectra that are not 

annotated by current approaches and introduce a software package called mz.unity to detect these 

relationships in accurate mass data. Using mz.unity, we find that datasets contain many more 

complex relationships than we anticipated. Examples include the adduct of glutamate and NAD, 

fragments of NAD detected in the same or opposite polarities, and the adduct of glutamate and a 

background peak. Further, the complex relationships we identify show that several assumptions 

                                                 
* This work is based on the following publication: “Defining and Detecting Complex Peak Relationships in Mass Spectral Data: The Mz. unity 

Algorithm”. NG Mahieu, JL Spalding, SJ Gelman, GJ Patti, Analytical Chemistry, 2016. NGM developed the conceptualization of complex adduction 
and developed and evaluated the mz.unity algorithm, and ran all MS experiments. JLS and SJG provided additional data and insight during the writing 
process. 
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commonly made when interpreting mass spectral degeneracy do not hold in general.  These 

contributions provide new tools and insight to aid in the annotation of complex spectral 

relationships and provide a foundation for improved dataset annotation.  Mz.unity is an R package 

and is freely available at https://github.com/nathaniel-mahieu/mz.unity as well as our laboratory 

Web site http://pattilab.wustl.edu/software/. 

4.1 Introduction 

In the last chapter we refined the results of peak detection. In this chapter we investigate the 

nature of the detected peaks.  Specifically we attempt to recover relationships between the detected 

peaks such that we can consolidate degeneracy and remove uninformative signals. 

 

Adduction, fragmentation, and the natural abundance of heavy isotopes can cause a single analyte 

to generate more than one hundred spectral peaks in mass spectrometry-based datasets.  This is 

referred to as peak degeneracy and it is a major source of the complexity that confounds data 

interpretation.  Spectral peak degeneracy is challenging to annotate and its complexity can exceed the 

ability of manual annotation in some cases.  More recently, automated solutions have been 

developed to aid in the annotation of mass spectral data.86,117,126–129 However, current annotation 

approaches fail to account for the full gamut of possible peak relationships. Further, several 

common assumptions made in these annotation approaches do not hold in general. Here we present 

mz-sum, a complete framework for describing complex peak relationships in mass spectrometry 

data, and mz.unity, an R package that enables the search and exploration of these relationships. 
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4.1.1 Sources of Degeneracy 

  
Figure 4.1. An illustration of analyte transformations resulting in degeneracy in detected, spectral peaks. Only two analytes are present, but they 

contribute to a total of 6 peaks. 

The exact conditions under which a mass spectrum is collected have a strong influence on the 

peaks and types of peak relationships observed. The majority of spectral degeneracy is generated 

during ionization, which is the process by which analytes are converted from bulk-phase, neutral 

species to gas phase ions.  Electrospray ionization (ESI) is one commonly employed ionization 

technique.  Here we focus on the peak relationships associated with ESI for clarity, but these 

approaches can be tailored to any ionization technique.  

During ESI, analytes undergo various transformations before being detected as mass spectral 

peaks (Figure 1).  The set of possible transformations provide the scope of the peak annotation 

problem.  ESI involves the spray of analyte solution through a charged needle generating gas phase 
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droplets that evaporate until charged gas-phase compounds remain.50 Two general types of analyte 

transformations are produced in this process, adduction and fragmentation.   

Multiple chemical species that remain non-covalently bound after droplet evaporation are called 

an adduct.  The adduct is a single gas phase ion and will give rise to a single peak, but its formula is 

the combination of multiple distinct species. In the simplest case, the second chemical species is a 

proton but others such as sodium and solvent adducts can also be formed. In general, any species 

present during ionization can adduct with any other species (this includes other analytes).  

In contrast, fragmentation is the breakage of bonds prior to MS detection. Often only one of the 

portions liberated during a single bond cleavage event is detected, but in some cases both are present 

in the resulting mass spectrum.130 Bond cleavages can occur at various locations in a molecule and 

therefore a single structure can generate many fragment species. 

An important contrast between the annotation of adducts and fragments is the constraint on 

possible relationships.  For adduction, the space of possible relationships is limited by the species 

present at the time of ionization. Because a mass spectrum provides an exceptional record of present 

species, we can reasonably limit our search to those species. In contrast, fragment relationships are 

limited only to subformula of the parent and are therefore more challenging to annotate.95,131 In this 

work, we use mz.unity to putatively annotate two specific subsets of fragments discussed below. 

Isotopes are a third source of degeneracy that are independent of the ionization process.  

Elements such as carbon are found in nature with varying numbers of neutrons (e.g., 12C and 13C).  

This natural abundance of heavy isotopes causes a single chemical formula to give rise to multiple 

masses, each corresponding to various numbers of heavy elements. Each of these heavy forms will 

be detected as a distinct mass peak. 

  



 
68 

4.1.2 Definitions 

Analyte: the chemical species which is of interest in the analysis. Often a metabolite species but 

can include other molecules such as environmental exposures (e.g., pesticides). 

Peak: a mass-to-charge ratio and intensity pair found in a mass spectrum. 

Feature: a peak which has a Gaussian like shape (a signal which rises and falls smoothly around a 

local maximum) in the chromatographic time domain. 

Background Peak: a peak which does not have a Gaussian like shape in the chromatographic time 

domain. 

Mer: an adduct between two analytes. This includes homodimers, heterodimers, and higher n-

mers. 

Distal Fragment: a fragment whose corresponding neutral loss also appears as a peak in the mass 

spectrum. 

Granular-mz: mass and charge pairs supplied by the user to the mz.unity algorithm. These 

represent specific analyte transformations that combine to make peak relationships. 

Complex Relationships: mass spectral peak relationships between three or more detected peaks 

or relationships between peaks having multiple polarities (i.e., positive ions, negative ions, or neutral 

masses). 

4.1.3 Motivation 

Interpretation of a mass spectrum necessitates the annotation of degenerate peak relationships 

such as isotopes, adducts, and fragments.  Critical to the field of metabolomics in particular is the 

annotation and removal of these degenerate peaks while preserving those that correspond to unique 
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metabolites. Annotation has many benefits for metabolomics: (i) redundant features can be 

removed, reducing the size of the dataset by more than an order of magnitude; (ii) the concomitant 

reduction in statistical tests performed allows for a less stringent multiple hypothesis testing 

correction; (iii) confidence in the validity of a detected peak is increased when degenerate peaks are 

also detected; (iv) annotated relationships can inform metabolite identification steps; and (v) 

investigative efforts can be directed to unique analytes. Although we will focus on examples of peak 

degeneracy in metabolite mass spectra in this work, we point out that annotation is also important to 

other fields in addition to metabolomics.  In proteomics, for example, annotation prior to selection 

of ions for MS/MS may reduce instrument cycles spent on degenerate peaks and therefore increase 

proteome coverage.132–134 In trace impurity analysis, annotation can explain unknown peaks.  In 

approaches that rely on feature counting, such as the evaluation of organic compound diversity on 

meteorites, annotation is critical to obtain realistic estimates of the total number of unique analytes 

detected.42  

Current annotation tools utilize rule tables to describe possible peak relationships.86,135 A rule 

table is a list of transformations that neutral analytes may undergo prior to detection.  Rules are 

applied to spectral peaks and a relationship is asserted if two rule-peak pairs predict the same neutral 

mass.  Unfortunately, this approach can only represent a subset of peak relationships.  Limitations 

arise because many spectral peaks do not correspond to a single, underlying neutral mass.  Thus, 

relationships between three or more peaks (as is the case for fragments and multiple-analyte-

adducts) cannot be expressed or searched.  Current rule tables are also not charge-aware and 

therefore can only annotate relationships of the same polarity.  The limited scope of rule tables 

precludes the annotation of many putative peak relationships and, therefore, invites a more 

comprehensive approach to annotation. 
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To enable comprehensive spectral annotation, we detail two contributions here: mz-sum and 

mz.unity.  Mz-sum is the simple concept that all peak relationships can be described as gain and/or 

loss of charged formulae.  Mz.unity builds on this concept to enumerate all possible peak 

relationships in a charge-aware manner.  Mz.unity is a software package implementing the peak 

relationship search and tools to plot and explore putative annotations. Together, mz-sum and 

mz.unity enable the detection of additional complex relationships (e.g., the adduct of glutamate and 

nicotinamide adenine dinucleotide (NAD), fragments of NAD, and peaks detected in different 

polarities) that are not annotated by current approaches. The purpose of mz.unity is to return all 

putative peak relationships within a specified mass error.  While mz.unity is a functional tool for 

exploring spectra and programmatically evaluating relationships within them, we note that it is not 

an automated annotation solution and assessment of confidence in any specific peak relationship 

requires information beyond mass and charge.  However, this contribution provides the groundwork 

necessary to enable automated annotation solutions to be developed in the future.  

4.2 Experimental Methods 

4.2.1 Notation and the Mz-sum Framework 

Chemical species having mass “m” and charge “z” are denoted [m]z.  For clarity, a mass can be 

referred to by a chemical formula or a compound name. When names are used the neutral, 

monoisotopic mass is implied.  Thus, the following are equivalent: [146.0459]1-, [C5H8NO4]
1-, and 

[Glutamate - H]1-.  Brackets used to denote chemical species can represent either detected mass 

spectral peaks or any additional formulae.  Each set of brackets represents a distinct species. 
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Conversions may be noted within brackets that describe the nature of the species.  In the case of 

[Glu-H2O-H]1- , we are referring to a glutamate species after water loss and deprotonation. 

Annotation seeks to find relationships between detected mass and charge species. Relationships 

are represented by equations of brackets that balance the mass and charge on each side. These 

equations describe one or more [m]z peaks in terms of gained and lost mass and charge. From the 

gained masses and charges, specific transformations can be inferred. For example, the description of 

a glutamate-acetate adduct can be written as the following equation: [C5H8NO4 - H]1- + [CH4CO2 - 

H]1- + [H]1+ = [C6H12NO6– H]1-.  Mz-sum is the basic assertion that any valid peak relationship will 

satisfy mass and charge balance and can be represented by such an equation. With this groundwork 

in place, it is now possible to define a search for all peak relationships. 

4.2.2 Description of the Mz.unity Algorithm 

Given a list of species with masses and charges [m]z, mz.unity searches for combinations of peaks 

that satisfy mass and charge balance (a description of the search problem can be found in Appendix 

2.1). Additional parameters specify the combinatorial depth with which to search the supplied [m]z 

and the acceptable mass error. As follows from the discussion of mz-sum above, this search pattern 

is general enough to find any type of peak relationship. Below are examples of the general 

relationship types detected by mz.unity.  Notably, each of these lies beyond the scope of previous 

annotation software. Though compound names are written for clarity, the actual search is performed 

by using accurate mass. 

Complex Adducts:  [Glutamate – H]1- + [NAD-H]1- + [H]1+ = [Glutamate + NAD - H]1- 

Distal Fragments:  [Fragment 123.0453]1+ + [Fragment 540.0536]1- - [H]1+ = [NAD-H]1- 

Isotopes:   [Glutamate - H]1- - [14N]0 + [15N]0 = [15N1-Glutamate - H]1- 
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The mz.unity search can be tailored to a specific set of relationships by supplying “granular-mz” 

to the search.  These user supplied granular-mz represent undetected species which relate spectral 

peaks. In the case of adduction, many species present in solution will not be represented in the mass 

spectrum. This is because spectra have low and high mass cutoffs and only record ionizable species.  

Such granular-mz in the case of adduction would include small ions such as [H]1+, additives such as 

[Acetate]0, and solvents such as [Acetonitrile]0. In the adduction and fragmentation examples above, 

[H]1+ was a supplied granular-mz. 

The most general relationship search would include granular-mz corresponding to the atoms C, 

H, N, O, P, and S, as well as an electron.  This set of species would be sufficient to link every peak 

to every other peak but in almost all cases these relationships would be arbitrary, linking unrelated 

analytes.  By limiting the set of granular-mz, the mz.unity search can be limited to a specific 

condition or relationship type.  In the case of ESI spectra, we seek to relate peaks that are 

degenerate.  This leads to the use of granular-mz that represent transformations occurring during the 

analysis process. 

Many fragments cannot be detected by mz.unity because fragmentation is unique to each analyte 

and challenging to predict. There are two cases in which mz.unity can detect fragments.  When a 

molecule has two distal charge-sites and fragmentation occurs between them, both portions of the 

molecule will be detected. This is especially true when spectra from both polarities are included as 

demonstrated below. In this case, the relationship can be detected by mz.unity, even across polarities 

(see the fragmentation example above). The second set of detectable fragments is those which occur 

often under the experimental conditions employed (i.e., common fragments).  Common fragments 

can be supplied as granular-mz and searched like any other relationship.   
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4.2.3 Output of the Mz.unity Algorithm 

The output of an mz.unity search is a matrix (Table 1). Cells reference the supplied [m]z pairs 

involved in the relationship. Each row represents a relationship. Within each row, columns prefixed 

with “B.” and “M.” correspond to the peaks and granular-mz that sum to the peak referenced in 

column “A”.  The mass error associated with each relationship is also reported. A convenient 

visualization of this output is a graph structure (Figure 2).  In this representation, nodes are peaks 

and edges are the detected relationships. 

 

Table 4.1. The output of mz.unity. Row 1 contains the column headers. Cells contain references to supplied mz values. Row 2 represents 

a dimer relationship, this is the adduction of two glutamate monomers (1) and a proton (11) to result in the dimer (12). Row 3 represents 

glutamate’s (1)  loss of sodium (29) and gain of a proton (11) to produce (29).   

 

4.2.4 Availability and Implementation 

The mz.unity project is written in R and is available at http://github.com/nathaniel-

mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/. Installation 

instructions, usage examples, data, and analyses presented in this paper can be found in the 

repository.  
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4.2.5 Limitations of Mz-sum and Mz.unity 

Two limitations of mass- and charge-based annotation are mass measurement error and 

relationships that have multiple interpretations.  Overcoming these limitations requires additional 

information beyond mass and charge. 

 Imperfect Mass Information 

As described above, the search for appropriately summing masses and charges is a proxy for 

finding sets of peaks that represent equivalent formulae. Ideally, this search would be performed by 

using a peak’s underlying formula but in practice this is not possible. All empirical mass 

measurements are made with imperfect accuracy, preventing a one-to-one mapping of mass to 

formula.136 Thus, a single mass can represent many possible formulae and this leads to relationships 

implied by formula mass that do not actually have equivalent formulae. As mass error increases, the 

number of false positive relationships will also increase. Similarly, the number of combinations of 

peaks increases rapidly as the number of peaks increases. The combinatorial explosion can quickly 

overwhelm the specificity offered by accurate masses. This limitation makes annotation of direct 

infusion data and spectra with over 5,000 peaks challenging.137,138 

Relationship Ambiguity 

Even with perfect formula information, some peak relationships have multiple interpretations 

that cannot be resolved without additional information.  Common neutral losses such as a [H2O]0 

loss could relate either a fragment analyte pair or two distinct analytes.  Consider the following two 

interpretations of a relationship between peaks [133.0142]1- and [115.0037]1-. 

A. [Malate - H]- - [H2O]0 = [Malate - H2O]-   
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B. [Malate - H]- - [H2O]0 = [Fumarate - H]-   

In case A, the smaller peak is a fragment and the two peaks are degenerate, while in case B both 

peaks are distinct analytes.  The two interpretations of this relationship are identical in terms of mass 

and charge, and additional information is required to determine which is true.  

Similarly, fragments and adducts are challenging to discriminate on the basis of mass and charge 

alone. In both cases, two formulae sum to a third. Consider the relationship [163.0401]1- + [NH3]
0 = 

[180.0666]1-. This could represent a fragment of tyrosine, in which case the [180.0666]1- peak would 

be relevant.  Alternatively, this could be an ammonium adduct of coumaric acid, in which case the 

[163.0401]1- peak would be relevant.  This ambiguity is true of all distal fragment and mer 

relationships.  The two competing interpretations imply the relevance of different peaks: 

fragmentation events imply the heavier peak’s relevance, while mer relationships imply the relevance 

of the two lighter peaks. 

4.2.6 Dataset Generation 

For evaluation of mz.unity, we experimentally generated spectra in positive and negative polarity 

by using the Q-Exactive Plus mass spectrometer and the HESI-II ion source coupled to an Agilent 

1260 capillary flow liquid chromatography system.  Spectra were collected with the following 

settings: aux gas, 15; sheath gas, 30; counter gas, 0; capillary temperature, 310 ℃; sheath gas 

temperature, 200 ℃; spray voltage, 3.2 kV; needle diameter, 34 ga; s-lens, 65 V; mass range, 85–1165 

Da; resolution 140,000; micro scans, 1; max injection time; 200 ms; automatic gain control target: 

3e6.   Hydrophilic interaction liquid chromatography (HILIC) was performed as described 

previously with the Phenomenex Luna NH2 (1.0mm  150 mm 3 mm) column and a flow rate of 50 
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μL/min.122 Spectra were collected in negative and positive ion mode during two different injections. 

Solvents were: A, 95% water + 20 mM ammonium hydroxide + 20 mM ammonium acetate; B, 

100% acetonitrile. An injection volume of 1 μL was used with a linear gradient of (minutes, %A): 0, 

5; 40, 100; 50, 100; 50.5, 40; 54.5, 15; 55, 5; 65, 5. 

Spectra were taken from a dataset of Escherichia coli (E. coli) strain K12, MG1655 metabolic 

extract. This design allowed us to inspect real-world data, including co-elution and background ions.  

Metabolic extract was generated as described previously.88 Briefly, cultures of E. coli were harvested 

by pelleting 10 ml of culture at OD600 = 1.0. Pellets were extracted by using 1 ml of 2:2:1 

methanol:acetonitrile:water, and reconstituted in 100 μL of 1:1 acetonitrile:water. 

Liquid chromatography/mass spectrometry (LC/MS)-based techniques generate a series of mass 

spectra.  Peaks that appear in several sequential scans with a Gaussian like profile are termed 

features (peaks whose intensity rises and falls around a regional maximum over chromatographic 

time).  Chromatographic feature detection was performed on the dataset by using the centWave 

algorithm.71 Features eluting from 21 to 22 minutes were used as a test set (FG).  This included 

features from both positive and negative analyses.  The set of background peaks (BG) was obtained 

by retaining all mass spectral peaks appearing in 80% of the scans within this range, regardless of 

peak shape. Peak lists used for annotation can be found in Appendix 2.2-6 and a spectrum can be 

found in Appendix 2.7. 

Standards of glutamate and NAD were analyzed by direct infusion to validate the detected 

relationships.  A solution of NAD and glutamate both at 50 μg/mL in buffer A was infused at 10  

μL/min and spectra were collected at a resolving power of 280,000 in both positive and negative 

mode. 
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4.2.7 Dataset Annotation 

Mass spectra from an LC/MS analysis of E. coli metabolic extract were searched for relationships 

by using mz.unity.  Several mz.unity searches were performed, each for different relationship types.  

In brief, the following relationships were searched by altering the supplied granular formulae and 

search depth: isotopes, charge carriers, neutral gains, cross polarity, common fragments, distal 

fragments, and mers.   Isotopes were detected and omitted from later searches. Charge states were 

assumed to be to 1 unless carbon isotope support for a higher charge state existed. Searches were 

performed with a ppm error limit of 2 ppm per observed mass. Exact parameters for each search, 

including supplied granular formulae and search depth, can be found in Appendix 2.7-8. Putative 

relationships detected by mz.unity were visualized as graphs and spectral graphs (Figure 3) by using 

built-in plotting functionality. The graph of relationships was parsed to reveal sets of peaks 

generated by a single analyte. From the relationship graph, fine isotopic patterns were extracted.  
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4.3 Results and Discussion 

  
Figure 4.2. A. Output of mz.unity represented as a graph structure. Edges represent peak relationships.  The modification relating the peaks is noted as 

text on each edge. Nodes represent detected m/z peaks.  The identity of each is noted with grey text by each node. Nodes are colored by polarity: 

positive (green) and negative (red).  Edges are colored by relationship type: charge carrier (yellow), cross-polarity (grey), self-mer (purple), 

isotopic (green), and heteromer (red). B. The graph structure in Figure 1 superimposed on the mass spectrum of the relevant peaks.  Intensity in 

this graph is scaled as I0.3 so small peaks are visible. 
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4.3.1  Annotation of a Spectrum Containing Glutamate and NAD 

We demonstrate mz.unity, our charge-aware framework for detecting and exploring peak 

relationships, with a set of peaks observed from the LC/ESI/MS analysis of an E. coli extract.  The 

extract was a complex mixture of small molecule analytes that gave rise to approximately 46,000 

total features when analyzed in both positive and negative polarities. The spectrum used to evaluate 

mz.unity was a composite taken from the time range 21 to 22 minutes consisting of 454 features 

(peaks with a Gaussian like shape in the chromatographic domain) and 2,212 background peaks. 

This spectrum was annotated with incremental relationship searches covering various relationship 

types.  

Two groups of peaks were considered, features and background peaks.  In LC/MS techniques, all 

detected analytes of interest appear as features and therefore annotation typically seeks to remove 

redundancy from the set of peaks that are features. Still, to fully annotate the features, background 

peaks must be considered as participants in adduct formation.  The chromatographic domain was 

used only to classify mass peaks as features or background peaks, and mz.unity analysis relied only 

on the mass and charge of the classified peaks. 

We consider three general types of relationships in this discussion of results.  Simple annotations 

relate two detected peaks through supplied, granular-mz. Distal fragment and mer relationships 

relate three or more detected peaks and some number of granular-mz. Finally, background 

relationships are mers formed between features and the background peaks. All relationships were 

searched, combining both positive and negative polarities. 

Simple Annotations 
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Isotope searches detected 64 monoisotopic features having isotopic support. This isotopic 

support consisted of 101 isotopic features identified in 141 relationships.  The remaining 289 

features lacked isotopes, indicating low abundance or various types of detector noise. Fine isotopic 

structure of analytes could be annotated below ~300 Da where resolution permitted.   

Charge-aware search, as implemented in mz.unity, allowed for relationships between positive and 

negative mode ions to be detected simply. These included relationships like [Glu-2H+K]1- + [2H]2+ 

= [Glu + K]1+.  The charge-aware search also enabled the inclusion of a neutral mass, [Glutamate]0, 

in the search and easy retrieval of all transformations of this specific mass.  In targeted mining 

approaches, the annotation search can be seeded with relevant analyte neutral masses for simple 

compound spectra generation. Charge carrier searches between the 64 monoisotopic features with 

isotopic support detected 104 relationships, 52 of which were cross-polarity relationships. (Figure 

3A) 

Ambiguous relationships have two interpretations that are indistinguishable by mass and charge 

alone.  These relationships can be drawn between two distinct analytes as well as analyte-fragment or 

analyte-adduct pairs. We detected 91 ambiguous neutral losses corresponding to loss of [NH3]
0 and 

[H2O]0.  Manual review of these ambiguous relationships suggested that each of these were true 

neutral losses and not distinct analytes. Review consisted of evaluating chromatographic peak shape 

and the elution time of the possible derivative analytes as well as fragmentation spectra of the 

putative parent. An example confirmation was the relationship [Glu - H]1- - [H2O]0 = [128.0351]1-, 

which was confirmed by using the fragmentation spectrum of a glutamate standard as seen in 

Appendix 2.10. The automated resolution of ambiguous relationships is one of the challenges that 

remains to be addressed by an automated annotation solution. 
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Table 4.1. Breakdown of types of relationships detected 

 

 
Table 4.1. Breakdown of common neutral losses detected 

 
Unambiguous simple relationships included additional neutral losses and several adducts 

common to this chromatography such as [CH3CN]0 and [SiO3H2]
0.  These relationships are 

unambiguous as the fragments are rare and the related formulae are unlikely to coelute. Within the 

454 features, 193 additional neutral relationships were detected. A breakdown of these neutral 

relationships can be found in Table 2. This annotation of simple relationships reduced the 64 

isotopically supported features to 34 feature groups. 

Annotation thus far is similar to annotations provided by traditional rule tables.  The only 

extension we have provided at this point is the inclusion of charge-awareness that enabled the 
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linkage of analytes from positive and negative mode as well as neutrals.  We extend annotation 

beyond the traditional annotation scope in the next section. 

Mer and Distal Fragment Annotations 

A novel set of annotated relationships included mers and distal fragments. Both of these 

relationship types follow the same pattern relating three or more detected features (i.e., represent 

complex relationships). This contrasts with approaches based on rule tables that are limited to two 

detected features.  The distinction between mer and distal fragment is in the interpretation, distal 

fragments imply that the heavier feature is the original analyte while mers imply that the lighter 

features are the original analyte.  In the absence of tools to classify relationships as mers or 

fragments, we have presented summaries of these searches. 

Searching for analyte-analyte complex relationships asserted 420 relationships between 263 

analyte peaks (analyte peaks include peaks from features and background). Examining these, 

examples of both distal fragmentation and analyte-analyte adduction were seen. For example, a distal 

fragment pair of NAD was found: [123.0553]1+ + [540.0536]1- - [H]1+ = [NAD-H]1- and confirmed 

by MS/MS.  The analyte-analyte adduct [Glutamate – H]1- + [NAD-H]1- + [H]1+ = [Glutamate + 

NAD - H]1- was also detected (Figure 3B).   The reduction of complex relationships into analyte 

groups relies on classification of the relationship as mer or distal fragment. Accordingly, we cannot 

present known analyte groups.  

As described above, mass measurement error contributes to false positive peak relationships.  

Combinatorial searching for peak relationships can rapidly exceed the specificity offered by the mass 

accuracy of the technique.  Ultimately, a solution to probabilistically evaluate each putative 

relationship is needed for automated annotation.  In the absence of this solution, we have manually 

evaluated a portion of putative relationships to control for the possibility of false positives. Known 
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constituents of the spectrum were checked for incorrect relationships. If the search produced a 

significant number of false positive relationships, we expected to find these peaks implicated in 

incorrect relationships. The peaks corresponding to glutamate and NAD had no false positive 

relationships, indicating that in general these results are valid. 

 
Figure 4.3. Visualizing the subset of peaks derived from analytes glutamate and NAD. A. After annotation of simple relationships. B. After annotation 

of complex relationships. Peaks derived from the GluNAD heteromer are shown in the blue area.  Each node is an m/z peak and each edge is a 

detected relationship.  This plot includes isotopes, heteromers, homomers, charge carriers, and neutral losses but omits fragments and 

background mers. C. The spectral graph of B. 
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Similarly, mers between analytes and background peaks were searched.  Ideally, this search 

should exclude the possibility of fragment relationships because fragments would appear as features. 

In practice, some fragment features are detected but not recorded as features and thus enter the 

background pool.  For this reason, we again omit the generation of analyte groups.  A search of 

relationships with background peaks resulted in 474 relationships between 373 peaks.  Of those 373 

peaks, 129 were background peaks and 244 were features.  We show an example of a background 

mer relationship later. A summary of the detected relationships is shown in Table 3.  

Fragment Annotations 

To examine the ability of mz.unity to detect fragments, we collected the targeted fragmentation 

spectrum of a neat NAD standard (Appendix 2.9). This obviates the possibility of mer formation 

because only the NAD precursor m/z was experimentally selected by the quadrupole for 

fragmentation. Fragment annotation is enabled by mz.unity’s charge-aware complex relationship 

searches.  Spectra from a variety of collision energies and both positive and negative polarity were 

de-isotoped and combined into a composite spectrum consisting of 283 peaks (two of which were 

the protonated and deprotonated parent peaks).  Fragment relationships were detected within this 

composite spectrum. 

Mz.unity detected 404 pairs of fragmentation relationships (Figure 4A-B).  These are pairs of 

detected fragments that correspond to the two liberated portions of the parent ion (Figure 4A). 

Interestingly, mz.unity’s charge-aware annotation is a major advantage for this type of search. In 250 

of the detected fragment relationships, one fragment portion was detected in positive mode while 

the second fragment portion was detected in negative mode (Figure 4C). We also evaluated how 

intensity impacted the probability of finding both fragment halves.  As expected, more intense 
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fragments were more likely to result in a detected pair (Figure 4D).  This implies that the number of 

annotated fragments will be dependent on the sensitivity of the instrument. 

 
Figure 4.4. Distal fragment searches. A. Schematic of NAD fragmentation resulting in two distal fragments. B. The fragmentation spectrum of NAD 

and the pairs of distal fragments that sum to the positive and negative molecular ions. C. The number of fragment pairs detected in each polarity. 

Most fragments were detected by combining positive and negative polarities. D. The portion of peaks with detected distal fragments at varying 

intensity. 

We supplemented the distal fragment search with several common fragments that were unable to 

be detected on our mass spectrometer due to their low mass. In their neutral form, these were 

[H2O]0, [NH3]
0, [CO2]

0, and [CO]0. The possibility of ambiguous relationships was excluded because 



 
86 

this was a targeted MS/MS experiment omitting other analyte species.  These common neutral 

losses resulted in the annotation of 86 additional fragmentation relationships. 

Of the original 283 peaks in the fragmentation spectrum of NAD, a combination of common 

neutral loss and distal fragment annotation included 171 peaks (60% of all detected fragments).  The 

remaining fragments were both not in our list of common fragments and lacked a detectable distal 

second half.  Annotation of this type of fragment remains an open challenge to future annotation 

techniques. 

Annotation Summary 

This work represents the most thorough annotation of a complex LC/ESI/MS spectrum to date 

and has important implications for the analysis of metabolomic data. We show that commonly 

occurring complex spectral relationships lie beyond the scope of previous annotation approaches. 

Consequently, the amount of spectral degeneracy in mass spectrometry-based datasets has been 

underestimated.  The two analytes in this spectrum provide a somewhat contrasting picture of this 

degeneracy.  Both glutamate and NAD were of relatively high abundance with intensities of 1x109 

and 3x108, respectively.  Although they were present at similar intensities, glutamate produced 98 

peaks and NAD only produced 23.  The results presented here underscore the need for thorough 

analysis of metabolomic datasets to ensure that the myriad of redundant peaks and noise sources do 

not obscure relevant analytes.   

4.3.2 Application to 2-Hydroxyglutarate Metabolism 

Mz.unity enables the most complete annotation of metabolomic features to date.  Although 

additional work is required to implement mz.unity as an automated annotation solution on a 
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comprehensive scale, even in its current form mz.unity provides a powerful resource for interpreting 

LC/MS-based untargeted metabolomic data.  In this section, we provide one brief example 

application to highlight the utility of our mz.unity software package in processing untargeted 

metabolomic results.   

The metabolite 2-hydroxyglutarate (2HG) is known to accumulate in several types of cancer due 

to gain-of-function mutations in isocitrate dehydrogenase 1 and 2.139–141 However, the biochemical 

effects of 2HG accumulation are incompletely understood.  We were interested in testing the 

hypothesis that cancer pathogenesis might be at least partially mediated by the downstream 

metabolism of 2HG.   

 We first needed to determine if 2HG is transformed into downstream products in cells.  This 

was accomplished by comprehensively tracking the transformation of uniformly labeled 13C 2HG 

(U-13C 2HG) into downstream metabolites.142,143 From the thousands of features we screened by 

untargeted metabolomics, we found 10 features that were greater than fivefold enriched with 13C 

carbon compared to natural-abundance samples.   

To investigate the identity of these 10 enriched features, we first analyzed the data with the rule-

table based annotation package, CAMERA.86 CAMERA indicated that 6 of the 10 features were 

adducts of 2HG, leaving 4 of the 10 features to represent biochemical transformations of 2HG.  

Importantly, this result seemed to support the metabolism of 2HG into downstream products. 

Therefore, we applied the conventional untargeted metabolomic workflow to identify these features 

as unique metabolites.  When the accurate mass and MS2 data did not match those in databases, we 

began to explore the exciting possibility that these features might represent novel “unknown” 

metabolites.  Fortunately, before committing to this path, we further analyzed the data with mz.unity 

to search for complex relationships and fragments.  With mz.unity, we discovered that the remaining 
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4 features were indeed complex adducts and fragments of 2HG (Appendix 2.11).  The mz.unity 

result fundamentally altered the conclusion of our experiment, showing that 2HG is not readily 

metabolized in the cells we tested. This brief example illustrates how the mz.unity software package 

can be used in untargeted metabolomic workflows to analyze and refine lists of potentially 

interesting features. 

4.3.3 Observed Failures of Current Annotation Assumptions 

In-depth analysis of the aforementioned datasets revealed several assumptions made by current 

annotation approaches that do not hold in practice.  The application of these assumptions therefore 

prevents the annotation of several relationships in our datasets.  

EIC Correlation 

Analytes detected by LC/MS techniques elute over sequential spectra with a Gaussian like 

profile.  A common assumption made by current annotation approaches is that related features will 

have similar peak shapes.  This similarity is commonly measured as the Pearson product moment 

correlation (Pearson’s r) between the extracted ion chromatograms (EICs) of the two peaks. 10 Two 

risks exist: high correlation and assertion of a relationship between unrelated peaks, and low 

correlation and segregation of related peaks.  We find both of these cases to be common in our 

datasets. We present two cases in which related peaks exhibit low correlation.   

Figure 5A shows three salt adducts of glutamate (Glu) that were annotated by mz.unity in our 

dataset: [Glu-H]1-, [Glu-2H+Na]1-, and [Glu-2H+K]1- corresponding to m/z 146.0455, 168.0276, and 

184.0015 respectively.  The EIC of the deprotonated form exhibits a smooth peak shape typical of 

our chromatography, but the EICs of both salt adducts exhibit a strikingly different profile. Each 
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initially rise in tandem with the elution of the deprotonated form but quickly plateau. It is clear that 

each of these salt adducts is related to the [Glu-H]1- peak, yet their correlation is far below useful 

cutoffs (r of 0.59 and 0.53, respectively).144 

 
Figure 4.5. Surprising annotation examples.  A. The sodiated (middle) and potassiated (bottom) forms of glutamate exhibit different peak shapes than 

the deprotonated form (top) (Pearson’s r of 0.59 and 0.53). B. Overlapping peaks glutamate and NAD (top) adduct to form a glutamate-NAD 

mer (bottom).  C. An artifactual peak (bottom) is formed from the adduction of glutamate (top) and a background peak that lacks a 

chromatographic peak shape (middle). D. A single m/z peak with two charge states and two formulae. The base peak at 662 is comprised of 

[NAD-H]- and [2NAD-2H]2- as evidenced by the annotated isotopic packet. 

 A second example of poor EIC correlation between related peaks occurs when two adducting 

species elute at different times.  This is the case in the adduction of glutamate and NAD to form the 

GluNAD adduct. As can be seen in Figure 5B, glutamate and NAD have a very low correlation (r of 

0.09) yet, these two ions are related through the glutamate-NAD mer (GluNAD).  The heterodimer 

GluNAD also does not correlate well with either of its parent species (r of 0.34 and 0.78, 
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respectively). Interestingly, the convolution of the glutamate and NAD EIC traces exhibits strong 

correlation with that of the mer (r of 0.97), suggesting a possible improvement to this test. 

Importantly, when EIC correlation is used to group detected features prior to relationship detection, 

the identification of relationships such as these is precluded. 

Background Ions 

Peaks lacking a chromatographic peak shape (i.e., background peaks) represent chemical species 

that can be involved in the ionization process. Current annotation approaches consider only ions 

displaying a chromatographic peak shape and in doing so they fail to annotate relationships that 

involve background ions.  Background ions have various sources including column bleed, previously 

eluted compounds washing off the column, solvent impurities, and other contaminants. It is 

important to emphasize that background ions contribute to detected features with chromatographic 

peak shapes. As shown in Figure 5C, the adduction of a bonafide feature with a background ion 

results in a feature with a peak shape. With current annotation approaches, this background-derived 

artifact would be confused as an additional analyte during later processing. Annotation of this 

feature is only possible when background peaks are considered during the annotation process. 

The adducts in figure A and the background ion in figure C demonstrate characteristics of ion 

suppression. This general term refers to the reduction in the intensity of a signal due to the presence 

of other species.  It is interesting to note that reduction in the signal of the background ion is not 

necessarily due to the mechanisms traditionally thought to underlie ion suppression. Rather than 

competition for charge or alteration of droplet dynamics an additional source of “suppression” 

could be the scavenging of the monomer signal by other adduct signals.  The result being that the 

same number of species are ionized and detected, but the distribution of signal among masses is 

altered.  This is clearly visible in the background trace in which the signal of the mer necessarily 
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takes signal from the background peak; notably this phenomena may also contribute to non-linearity 

as peaks reach high intensities. The complexity of this type of ion suppression is further indicated by 

the adducts in figure A.  Adduct formation during droplet shrinkage is a dynamic chemical process 

involving multiple species. As concentrations change over the course of analyte elution rates and 

equilibria will also be altered.  In the case of the salt adducts above it is possible that glutamate 

sequestered all available salt or alternatively dimer formation became more favorable than the 

monomer production. The link between adduct formation and ion suppression is worthy of further 

study.   

Charge-States Assignment 

A mass spectral peak is generally taken to represent a single species. Figure 5D demonstrates that 

this is not true in general but rather, it is possible to detect a single m/z peak which corresponds to 

two distinct formulae.  This is common in the case of multiply charged dimers. In the spectrum of 

NAD found in Figure 5D, two distinct isotopic envelopes can be seen.  The major pattern is the 

result of [NAD-H]1-.  The second pattern has spacing of (13C-12C)/2, representing a compound of 

charge state 2-.  This pattern is produced by the ion [2NAD – 2H]2-.  The m/z of these two ions is 

identical, 662.1020, but both species have a different charge state, different formulae, and therefore 

different mass.  The assignment of a single charge state can only explain one of the isotopic 

envelopes.  Full annotation requires the consideration of multiple charge states. 

4.3.4 Future Directions 

Increases in the mass accuracy and resolving power of mass spectrometers have enabled more 

thorough analyses of metabolomic datasets. The tools described here, mz-sum and mz.unity, 
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leverage these advances to provide a comprehensive list of possible spectral relationships. Still, 

several relationship classes require information beyond mass and charge to make definitive 

annotation assignments. Both ambiguous relationships and fragment/mer relationships have 

multiple interpretations that cannot be distinguished based on mass and charge alone. 

We see four distinct challenges remaining for an automated annotation solution: (i) 

discrimination between distal fragments and adducts; (ii) discrimination between fragments and 

distinct analytes; (iii) annotation of rare, non-distal fragments; and (iv) evaluation of confidence in 

each asserted relationship. Metabolomic datasets offer many rich sources of information to tackle 

these challenges.  Peak intensity, chromatographic profile, mass decomposition, isotope pattern, 

convolution of adduct constituent’s isotopic patterns, and the web of putative relationships are all 

expected to offer predictive power in the context of these problems. Network based optimization 

problems and probabilistic assessments have addressed similar problems like fragmentation tree 

calculation and analyte identification with much success.126,131,145 

A challenge distinct from annotation is the prediction of underlying neutral masses that give rise 

to the spectrum.  The web of annotated relationships and additional information sources can be 

combined to assert the masses and identities of the untransformed analytes. These untransformed 

masses are of interest for metabolite identification and data interpretation in the context of 

biochemistry.  Ultimately, an automated annotation solution will allow faster and more robust 

metabolomic data analysis while also enabling reliable analyte identification. 

4.4 Conclusions 

Current approaches fail to annotate a significant fraction of relationships in mass spectrometry-

based datasets. We have shown that metabolites such as glutamate produce 100 or more spectral 
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peaks, yet current approaches annotate only a fraction of these. This resulting peak degeneracy is a 

major challenge to the further analysis of MS data, requiring time intensive manual curation and 

increasing the number of false positive and misleading hits.  Here we have presented mz-sum and 

mz.unity, which provide a novel framework for assessing these complex mass spectral relationships 

and enable identification of degenerate peaks that would not be found with current annotation 

approaches. 

Referring to relationships as mz-sums accurately represents any possible analyte transformation, 

including complex and cross polarity relationships. Consideration of all possible analyte 

transformations is critical to building thorough and robust dataset annotation tools for several fields, 

including metabolomics.42 Here we have expanded upon the relationship approaches based on rule 

tables by developing the mz.unity R package.  While current annotation approaches are based on 

common and universal transformations, the true set of possible relationships searched for by 

mz.unity is much broader, encompassing both complex adducts and distal fragments.  Mz.unity is 

both a convenient tool for manual annotation and interpretation of mass spectra as well as a step 

towards automated annotation of omic scale datasets.  
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Chapter 5.  

 

Credentialed Features: A Platform to Benchmark and Optimize 

Untargeted Metabolomic Methods* 

The aim of untargeted metabolomics is to profile as many metabolites as possible, yet a major 

challenge is comparing experimental method performance on the basis of metabolome coverage. To 

date, most published approaches have compared experimental methods by counting the total 

number of features detected. Due to artifactual interference, however, this number is highly variable 

and therefore is a poor metric for comparing metabolomic methods. Here we introduce an 

alternative approach to benchmarking metabolome coverage which relies on mixed Escherichia coli 

extracts from cells cultured in regular and 13C-enriched media. After mass spectrometry-based 

metabolomic analysis of these extracts, we “credential” features arising from E. coli metabolites on 

the basis of isotope spacing and intensity. This credentialing platform enables us to accurately 

compare the number of nonartifactual features yielded by different experimental approaches. We 

highlight the value of our platform by reoptimizing a published untargeted metabolomic method for 

XCMS data processing. Compared to the published parameters, the new XCMS parameters decrease 

the total number of features by 15% (a reduction in noise features) while increasing the number of 

true metabolites detected and grouped by 20%. Our credentialing platform relies on easily generated 

E. coli samples and a simple software algorithm that is freely available on our laboratory Web site 
                                                 

* This work is based on the following publication: “Credentialing features: a platform to benchmark and optimize untargeted metabolomic 
methods”. NG Mahieu, X Huang, YJ Chen, GJ Patti, Analytical chemistry, 2014. NGM developed and evaluated the credentialing algorithm and ran 
all LC/MS experiments. XJH and YJC provided data and insight during the development process. 



 
95 

(http://pattilab.wustl.edu/software/credential/). We have validated the credentialing platform with 

reversed-phase and hydrophilic interaction liquid chromatography as well as Agilent, Thermo 

Scientific, AB SCIEX, and LECO mass spectrometers. Thus, the credentialing platform can readily 

be applied by any laboratory to optimize their untargeted metabolomic pipeline for metabolite 

extraction, chromatographic separation, mass spectrometric detection, and bioinformatic processing. 

5.1 Introduction 

In the last chapter we attempted to understand the context of detected signals in order to remove 

degenerate signal.  This process, though, is unable to discern between analytes derived from the 

sample under investigation and contaminants. In this chapter we implement the credentialing 

algorithm, a strong experimental filter which removes contaminants and noise. 

 

The objective of untargeted metabolite profiling is to assay as many endogenous small molecules 

in a biological sample as possible.5 Mass spectrometry-based metabolomics represents an established 

analytical platform that has been widely applied toward this goal and has already yielded many 

fundamental biological insights.146–149 Nevertheless, experimental strategies to maximize the number 

of metabolites profiled are still being developed.120,150,151 A major challenge in optimizing 

metabolomic methodologies has been the difficulty in comparing the number of metabolites 

profiled in each. Given that the size and identity of the complete metabolome is unknown, it is 

currently not possible to assess metabolome coverage directly. Consequently, the most common 

metric used to compare different experimental approaches has been the number of features detected 

in a sample.87,88,120,152,153 
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We show here that a method detecting a maximal number of features does not necessarily 

provide the greatest metabolome coverage. We present a solution for the evaluation of untargeted 

metabolomic method performance that enables us to distinguish between two types of features: 

artifactual features and biologically derived features. Artifactual features are peaks in metabolomic 

data that arise from contaminants, chemical noise, and bioinformatic noise. In contrast, biologically 

derived features are peaks that arise from metabolites in the biological sample being analyzed. We 

refer to the process of distinguishing artifactual features from features of biological origin as 

“credentialing”. In the credentialing workflow (Figure 1), standard samples are prepared from 

Escherichia coli grown in either natural-abundance media or uniformly 13C (U-13C) enriched media. 

After performing metabolomic experiments utilizing the methods to be compared, our algorithm 

finds and credentials features based on expected isotope-intensity ratios. This number of 

credentialed features represents a more reliable metric of metabolome coverage than total feature 

count because credentialed features are known to be of biological origin and hence are 

representative of true metabolites. Upon optimizing our bioinformatic workflow by counting 

credentialed features, we reduce noise features by 15% and increase properly detected and grouped 

features by 20%. Further, we select several biological features for tandem mass spectrometry 

(MS/MS) analysis without any prior knowledge of their identity or physiological significance. It is 

important to emphasize that the credentialing platform described herein is not intended to identify 

differences between various biological phenotypes (discovery profiling). Rather, the credentialing 

platform is designed only to compare the performance of different untargeted metabolomic 

methods. We provide a step-by-step protocol for performing credentialing with E. coli. While other 

cell types could potentially be used, E. coli is a simple model system whose optimized results will be 

applicable to the vast majority of metabolomic optimizations. 
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Figure 5.1. Overview of the feature credentialing process. A sample is generated from two cultures of E. coli grown in parallel, one grown on natural-

abundance glucose and a second grown on 13C-glucose as the sole carbon source. These two cultures are mixed in distinct ratios prior to 

harvesting, here 1:1 and 1:2. Extraction and LC/MS analysis is then performed on the standard samples. The resulting data are searched for pairs 

of coeluting peaks which satisfy the following requirements: (i) the intensities of the peaks must reflect the mixing ratio, (ii) the U-13C peak must 

predict a feasible number of carbons for the mass in question, and (iii) the exact masses of the peaks must predict an integer number of carbons. 

These requirements define a “credentialed space” in which the apex of a second peak must be found to qualify as an acceptable isotope. These 

candidate peaks are then aligned and grouped between the two samples. Each peak pair is compared across samples and a second, stricter 

intensity check is performed. This requires that the ratios of each sample (Ia12/Ia13 and Ib12/Ib13) are proportional to the mixed ratios of each 

sample. Peaks that pass these filters are considered credentialed. 
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5.2 Background 

Metabolomic studies are complex, multistep experiments with a large number of parameters to 

optimize. The choice of sample extraction, chromatography, and ionization method strongly 

influences which metabolites are detected. Establishing protocols which survey the broadest number 

of metabolites during untargeted profiling has received detailed attention in recent years.88,120,154–156 

Previous studies have explored a multitude of experimental variations to improve global 

metabolome coverage that include the addition of ammonium fluoride and ion-pairing reagents to 

chromatographic mobile phases, separation strategies ranging from reversed-phase to hydrophilic 

interaction liquid chromatography (HILIC), different mass analyzers such as time-of-flight and the 

Orbitrap, and various informatic software solutions for subsequent data processing.84,88,156–158 The 

extensive list of mutually exclusive experimental possibilities is confounding, particularly to scientists 

just entering the field of untargeted metabolomics. Yet, to date, comparisons of different methods 

have been impractical because there is no robust metric for performance evaluation. 

Most published comparisons of mass spectrometry-based, untargeted metabolomic methods are 

evaluated by counting the total number of features detected. A feature is defined as a peak in the 

metabolomic data set with a unique retention time and mass-to-charge ratio. The number of features 

detected depends on numerous factors including sample type, metabolite extraction protocols, 

analyte separation, mass analyzer, and bioinformatic processing. For liquid chromatography/mass 

spectrometry (LC/MS)-based metabolomics, it is common to detect thousands of features from a 

biological sample. Importantly, a single metabolite often leads to many features159 due to: (i) isotopic 

peaks from naturally occurring 13C, (ii) adduct formation such as hydrogen, ammonium, and 

sodium adducts, (iii) neutral-loss fragments (loss of a hydroxyl group as water or a carboxylate as 

carbon dioxide), (iv) other fragmentation (breakage at labile bonds such as esters), (v) multiple-



 
99 

charge states, and (vi) chromatographic effects which result in a single metabolite eluting at more 

than one retention time. 

Informatic solutions have been established to annotate isotopes, adducts, and neutral losses in 

untargeted metabolomic data sets86,157,160 Although these approaches are effective, they cannot 

distinguish signals as endogenous or artifactual. Thus, even after data reduction, a subset of the 

remaining features are likely the result of contaminants introduced during sample preparation, 

carryover from previous experiments, chemical noise, or bioinformatic error. These highly variable 

artifactual signals found in untargeted metabolomic data sets make it challenging to estimate the 

number of true biologically derived metabolites that are assayed by a particular untargeted LC/MS-

based metabolomic experiment. There is therefore a great need to develop a robust metric to the 

evaluate performance of untargeted metabolomic methods. 

5.3 Experimental Section 

Our filtering process relies on the generation of standard samples derived from a mixture of E. 

coli grown on 100% natural-abundance glucose and E. coli grown on 100% U-13C-glucose as the 

sole carbon source. Two standard samples are required for the filtering process; these are generated 

by mixing natural-abundance E. coli cultures and U-13C-glucose E. coli cultures at either 5 mL/5 mL 

or 3 mL/6 mL ratios, respectively. The mixed E. coli samples are then extracted, yielding a standard 

sample for analysis and optimization. 

5.3.1 Materials 
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U-13C-d-Glucose was purchased from Cambridge Isotope Laboratories Inc. (Andover, MA). E. 

coli strain K12, MG1655 was purchased from ATCC (Manassas, VA). Lennox LB broth powder, 5× 

M9 salts, and all LC/MS-grade solvents were purchased from Sigma-Aldrich (St. Louis, MO). Cell 

culture was performed with ultrapure water provided by a Milli-Q system (Millipore). 

5.3.2 Growth of E. coli Standards 

Cultures were grown in a rotary shaker at 37 °C and 250 rpm. A preculture of E. coli was grown 

in LB broth for 16 h. Prior to inoculation, 3 mL of preculture was pelleted and resuspended to 

OD600 = 0.6 in M9 salts. M9 salts were prepared with the following concentrations in sterile 

Erlenmeyer flasks: 6.8 g/L Na2HPO4·7H2O; 3 g/L KH2PO4; 1 g/L NH4Cl; 0.5 g/L NaCl; 240 

mg/L MgSO4; 11 mg/L CaCl2. Salts were divided into two 100 mL aliquots, and to each aliquot, 2 

mL of 20% glucose was added with a fresh-filtered syringe. The filter was rinsed with 2 mL of 

ultrapure water to ensure complete transfer of glucose. One aliquot received U-13C-glucose and the 

second received natural-abundance glucose. The M9 media was then inoculated with 1 mL of the 

resuspended preculture per 100 mL of media. Cultures were grown to OD600 = 0.6, at which point 

they were harvested as described below. 

5.3.3 Harvesting of E. coli Standards 

Upon reaching OD600 = 0.6, flasks were removed from the shaker and placed on ice. Appropriate 

volumes of the 12C and 13C cultures were pipetted together into 15 mL centrifuge tubes, also on ice, 

generating samples with ratios of 1/1 of 1/2 12C/13C culture. These mixtures established two distinct 

ratios of 12C to 13C feature intensities that could then be used in our credentialing algorithm, 
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described below. Cells were pelleted by centrifugation at 2000g for 10 min at 4 °C. The supernatant 

was removed via pipet, and the cell pellets were snap-frozen in liquid nitrogen. In addition to the 

mixed 12C and 13C cultures, natural-abundance (12C) cultures were used as controls. We refer to the 

mixed samples as “labeled” and the natural-abundance extracts alone as “unlabeled.” 

5.3.4 Metabolite Extraction 

The mixed E. coli pellets were extracted as previously described.120 Briefly, cells were lysed by 

three freeze–thaw cycles in 2/2/1 methanol/acetonitrile/water along with sonication and vortexing. 

The soluble portion was then vacuum concentrated and reconstituted in 100 μL of 1/1 

acetonitrile/water for LC/MS analysis. 

5.3.5 LC/MS Analysis 

The data shown herein were obtained from an Agilent 6540 UHD QTOF interfaced with an 

Agilent 1260 Capillary LC. The column used for separation was a Phenomenex Luna NH2 (150 mm 

× 1 mm, 3 μm). HILIC solvents were A, 95% water in acetonitrile with 10 mM ammonium 

acetate/10 mM ammonium hydroxide (pH 9.8), and B, 95% acetonitrile in water. HILIC was 

performed at 45 μL/min with the following linear gradient (minutes, %B): 0, 100%; 5, 100%; 45, 

0%; 50, 0%; 51, 100%; 60, 100%. For all experiments, 5 μL of extract was injected. MS parameters 

were as follows: gas, 300 °C 9 L/min; nebulizer, 35 psi 1000 V; sheath gas, 350 °C 11 L/min; 

capillary, 3500 V; fragmentor, 175 V; scan rate, 1 scan/s. 

To demonstrate the wide applicability of our credentialing approach to other metabolomic 

platforms, we also analyzed our samples and subsequently validated correct credentialing with 
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multiple chromatographic and mass spectrometric technologies. In addition to the Agilent QTOF, 

we credentialed data from the Thermo QE, the AB SCIEX TripleTOF, and the LECO Pegasus GC-

HRT. Chromatographic methods we credentialed include reversed-phase LC and HILIC. Effective 

parameters for credentialing each of these experimental platforms are listed in the Appendix 3.2. 

5.3.6 Data Analysis 

Analysis was performed with a custom filtering script that utilizes the XCMS84 and CAMERA86 

R121 packages as well as the METLIN161 database. The script is available on our laboratory Web site 

at http://pattilab.wustl.edu/software/credential/. The algorithm identifies features of biological 

origin through two rounds of data filtering, as depicted in Figure 1. Prior to filtering, features are 

detected from the MS raw data with the XCMS findPeaks.centWave algorithm. In the first round of 

filtering, coeluting peaks within a single sample are assessed for potential isotopologue pairs 

differing by [(n)1.003355/z] Da in mass, where n is a whole number, z is the ion’s charge, and the 

constant is the mass difference between 12C and 13C. Upper and lower bounds of n for each m/z in 

question were calculated from the distribution of mass per carbon number from the compounds in 

ECMDB162 (E. coli Metabolome Database,  Appendix 3.1). The ratios of the putative 12C and 13C 

peak intensities are then evaluated. Each measured ratio that is not within a set percentage of the 

mixture ratio of the 12C and 13C culture is disqualified. For credentialing, the default value of 400% is 

effective. 

The two filtered samples with distinct mixture ratios of 12C and 13C are then taken together for a 

final round of filtering. Peaks from each sample are aligned and grouped. Surviving features found in 

both samples are evaluated such that 
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where xi is the 12C/13C mixing ratio of the ith sample, ri is intensity ratio (I12C/I13C) of the ith 

sample, and e (ratio_tol) sets the acceptable tolerance for the intensity ratio relative to the mixing 

ratio. This two-round intensity filter allows for features with varying 12C and 13C intensity ratios (due 

to the kinetic isotope effect or carbon fixation of atmospheric CO2) to pass the relaxed first round 

and stricter second round as long as their intensities vary systematically between samples. All passing 

features are termed credentialed. Credentialed features are output as a summary table that includes 

all U-12C peaks determined to be of biological origin. 

5.4 Results and Discussion 

Each step of the untargeted metabolomic workflow can introduce artifactual signals that are not 

endogenous to the biological sample being analyzed. It is generally not possible to discriminate 

features of biological origin from artifactual features a priori, and thus, artifactual signals significantly 

complicate interpretation of untargeted metabolomic results. These artifactual signals can arise from 

sample contamination during metabolite extraction, carryover from previous experiments, 

background noise detected by the MS, or misannotation of data during bioinformatic processing. 

While efforts are made to minimize artifactual signals, it is not possible to completely eliminate them 

from the features list. We therefore attempted to filter out artifactual signals by using isotopic 

signatures of cellular metabolism that are easily identified by informatic analysis. We utilized the 

widely available and extensively characterized E. coli strain K12 to generate isotopically enriched 

biological extracts. Two cultures were prepared in parallel, one containing 12C (natural-abundance) 

glucose and the other containing 13C glucose as the sole carbon source in M9 minimal media. The 
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cultures were mixed in defined ratios and processed through the metabolomic workflow together. 

By searching the resulting features list for pairs of unlabeled and fully labeled isotopologues and 

comparing their intensities to the values expected from the culture volume ratios, signals of 

biological origin can be distinguished from artifactual ones. The output of the approach is a list of 

credentialed features arising from the biological sample of interest. These features reflect the extent 

to which the methodology employed was able to capture the metabolome. 

The power of stable isotope labeling in conjunction with mass spectrometry has long been 

leveraged to improve quantitative measurements. Mixing labeled and unlabeled samples has proven 

to be an effective approach to perform quantitation in proteomics,163–165 and similar approaches have 

recently been extended to metabolomics.166 Mashego et al. developed “mass isotopomer ratio 

analysis of U-13C labeled extracts” (MIRACLE) in which U-13C labeled metabolites obtained from 

yeast grown in defined culture medium are mixed with unlabeled sample extracts to improve 

quantitation.167 More recently, an innovative variation of 12C–13C metabolite mixing was developed in 

which cells are grown in either 5% or 95% randomly enriched 13C glucose. This experimental 

strategy, termed isotopic ratio outlier analysis or IROA, leads to a diagnostic isotopic pattern for 

naturally occurring compounds that can be used for quantitation and metabolite identification 

during untargeted profiling.90,168 Here, we introduce another experimental approach which involves 

mixing 12C and 13C metabolic extracts. We then use the unique isotopic signals that result from the 

metabolic transformation of the label as a mechanism to identify features of biological origin. 

5.4.1 Contrasting the Credentialing and IROA Platforms 

It is worth distinguishing IROA from our credentialing approach. Fundamental to the distinction 

is that mixing a natural-abundance sample with a U-13C labeled sample in a single ratio does not 
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provide a specific enough signature to effectively discriminate features of biological origin from 

artifactual features. IROA introduces additional specificity to the isotopic pattern by enriching one 

sample with 5% 13C and a second sample with 95% 13C, instead of using natural-abundance and U-

13C samples. In contrast, credentialing introduces additional specificity to the isotopic pattern by 

mixing different ratios of natural-abundance and U-13C samples. In credentialing, one sample is 

made by mixing natural-abundance and U-13C cells at a ratio of 1/1 and a second sample is made by 

mixing natural-abundance and U-13C cells at a ratio of 1/2. There are experimental benefits of each 

approach that make the platforms better suited for each of their unique experimental applications. 

IROA has been used to identify and quantitate differences between biological phenotypes during 

untargeted profiling. Given that the relative ratio of any given peak between biological phenotypes is 

unknown during untargeted profiling, the credentialing strategy based on defined ratios is 

incompatible with this type of discovery analysis. The objective of credentialing, on the other hand, 

is to identify features of biological origin exclusively from standard E. coli samples. While IROA 

could be used for this purpose in principle, the credentialing platform is not constrained by the aim 

of discovery analysis and therefore offers several advantages. First, media needed to produce labeled 

E. coli samples for credentialing is easily synthesized in any laboratory, whereas IROA media can 

only be obtained commercially. Second, the credentialing platform is better suited to identify low-

intensity features of biological origin. In IROA, the signal intensity of any given metabolite is shifted 

away from the U-12C peak and the U-13C peak as a function of carbon number. For a metabolite 

with 10 carbons, as an example, 50% of the signal intensity is lost from the U-12C peak or the U-

13C peak. This decrease in signal intensity prevents low-abundance E. coli derived metabolites that 

are detected in unlabeled samples from being detected with IROA. Because the credentialing 

platform only uses natural-abundance and U-13C samples, it is not subject to this limitation. Indeed, 
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detection of low-abundance metabolites is of particular importance when optimizing metabolomic 

methods as these compounds are the most challenging to measure, but can be of great biological 

importance. Finally, because credentialing only uses E. coli samples, the analysis of the resulting 

isotopic data can exploit the known relationship between mass and carbon number derived from 

ECMDB (Appendix 3.1). 

5.4.2 Parameters for Credentialing 

To accomplish the filtering of artifactual signals, we created a simple R package. The core 

function, credential(), has several adjustable parameters allowing various chromatographic and 

instrumental platforms to be credentialed. These parameters include (i) iso_ppm, the ppm tolerance 

when searching for 13C isotopes, (ii) iso_rt, the retention-time window in which a peak and its 

isotope must elute, (iii) mix_tol, the tolerance for the intensity ratio of the 12C and 13C peak, (iv) 

ratio_tol, the tolerance for the ratio of the intensity ratios between two samples, and (v) mpc_tol, the 

tolerance for compounds with unusually high or low mass compared to the number of carbons they 

contain. (Details concerning the calculation of mass per carbon based on the ECMDB can be found 

in Appendix 3.1.) 

We have determined effective parameters for reversed-phase and hydrophilic interaction liquid 

chromatography as well as for the Agilent QTOF, Thermo QE, AB SCIEX TripleTOF 5600+, and 

the LECO Pegasus GC-HRT. These parameters have been experimentally validated and are listed in 

the Appendix 3.2. 

Evaluation of the filtering effectiveness was accomplished by comparing the number of 

credentialed features found in unlabeled and labeled extracts. In addition to the labeled extracts, 

natural-abundance (unlabeled) extracts were generated as controls. An unlabeled extract should have 
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no credentialed features if it is not mixed with a labeled extract. Therefore, the number of passing 

features in an unlabeled extract represents the false positive rate. Initial experiments indicated that 

filtering based on a single mixed-extract sample was not sufficiently selective to remove the majority 

of artifactual peaks. We found that a two-sample, relative-intensity filter was most effective. As 

shown in Table 1, this filtering process is selective. The process credentialed only 0.6% of the 

negative-control features, whereas 9% of the 12C/13C mixture features were credentialed. 

 

Table 5.1. A summary of the results of the credentialing process after being applied to several different data sets. The rows labeled “no 

injection” and “extraction blanks” represent credentialed peaks due to carryover from previous credentialing runs. Natural-abundance E. 

coli is a negative control that estimates the false positive rate of the credentialing process. 

 

 
To further validate the filtering process, we examined the natural isotopic peaks that were 

credentialed in our 12C/13C sample. Consider that in a 12C sample many peaks will contain a 

natural-abundance M + 1 peak which by definition satisfies the mass requirement to be an isotope. 

The filtering process credentials some of these natural isotopes along with the monoisotopic peak. 

These are easily detected and removed by established deisotoping methods, but these peaks allowed 

us to assess how often an M + 1 is credentialed when the M + 0 is not. If this occurs often, it would 

indicate that the algorithm is inappropriately disqualifying features. We detected 385 credentialed 

natural isotopes in our mixture sample. Out of the 385 credentialed, natural isotopes only one did 

not have a corresponding U-12C in the final credentialed features list. This indicates the filtering 

approach is performing reliably. 
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5.4.3 Application: Reoptimization of a Previously Published XCMS Method 

With an established method to credential features as biological in origin and exclude various 

noise sources, we set out to optimize our XCMS-based informatic workflow. XCMS is a widely used 

informatic package suited for the analysis of untargeted LC/MS data sets. The general XCMS 

workflow involves peak finding, peak grouping across samples, and retention-time alignment. 

Settings for each step in this process affect the quality of features returned and therefore the overall 

performance of the untargeted metabolomic workflow. For example, we found that settings for peak 

picking that cause the annotation of spurious noise peaks as features lower the quality of peak 

grouping and retention-time alignment (data not shown). Further, using poor grouping parameters 

can lead to XCMS splitting a single peak into multiple groups, thereby resulting in erroneous 

statistics. 

To generate data for XCMS optimization, a previously published method was replicated.120 The 

same LC/MS system, extraction method, and chromatography protocols were utilized as published 

and described in the Experimental Section. When processing the data, however, we varied several 

parameters of the XCMS functions findPeaks.centWave(), group(), and retcor(). As the filtering 

depends on each of these functions, the final number of credentialed features is representative of the 

quality of XCMS data processing. Previous approaches to optimizing untargeted metabolomic 

parameters such as these have relied on counting the total number of features detected. Here, we 

applied our filtering approach to instead count the number of credentialed features and use this as a 

benchmark for parameter optimization. Our results show that the published method parameters 

based on total number of features are suboptimal (Table 2). The published parameters do return a 

greater number of total features, but the number of features of biological origin accurately detected 

and grouped is substantially lower with these settings. These data highlight that a larger feature 
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number does not necessarily indicate better metabolome coverage and therefore an improved 

untargeted metabolomic method. 

 

Table 5.1. Parameters used and the results of each step in the optimization process are shown. Published parameters were taken from a 

previously published method. The column labeled “with optimized peak finding” shows results for the optimization of 

findPeaks.centWave(). 

 

 
Reoptimization of XCMS parameters resulted in a substantial improvement. Our XCMS 

parameters led to an increase of 20% in credentialed features (an increase of 342 features), while 

reducing the total number of features by 15% (a decrease of 4750 features). Parameters for 

findPeaks.centWave() were determined to be the most critical to the analysis, while further 

optimization of group and retcor qualified only an additional 41 peaks. It is notable that, prior to 

optimizing findPeaks.centWave(), optimization of group() parameters increased the number of 

credentialed features, partially overcoming the negative impact of artifactual signals. 

5.4.4 Characterizing Features in Untargeted Metabolomic Data Sets 

To translate metabolomic data into biochemical insight, the features generated in a typical 

untargeted experiment must first be structurally characterized. The standard workflow for 

structurally characterizing features requires matching MS/MS data of the features of interest to the 
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MS/MS data of authentic standards. Identifying features is the most time-demanding step of the 

untargeted metabolomic workflow and is generally performed in a targeted manner. That is, MS/MS 

data are only acquired and interpreted for a handful of features determined to be interesting, usually 

on the basis of statistical thresholds. While this worfklow is often applied to identify tens of 

metabolites in a metabolomic study, attempting to identify each of the thousands of features 

detected in a typical sample with this approach is impractical. New technologies to reduce the time 

required to establish metabolite identifications are an active area of research, but high-throughput 

methods to structurally characterize metabolites are not widely available. Moreover, many of the 

MS/MS data are challenging to interpret. When the MS/MS pattern of a feature does not match any 

of the MS/MS patterns in metabolite databases, it is difficult to determine if the MS/MS data 

correspond to an unknown metabolite or merely MS/MS data from an artifactual feature. 

The feature credentialing approach offers a mechanism to rapidly filter features that should not 

be pursued for identification, namely, those features that do not correspond to signals of biological 

origin. When we applied credentialing to E. coli extract, we reduced the number of features that 

represent candidates for MS/MS from 23 567 to 2192. The resulting subset of credentialed features 

can be targeted for MS/MS analysis with standard workflows. As an example, we performed 

targeted MS/MS on 250 compounds in a single experimental run. These data illustrate that MS/MS 

experiments could be performed on every feature of biological origin over a minimal and feasible 

number of analytical runs. Select data are presented in Figure 2A–C. The MS/MS data collected on 

these features were matched to the METLIN metabolite database and resulted in the identification 

of three metabolites: uracil, ADP (adenosine diphosphate), and UDP-GlcA (uridine diphosphate 

glucuronic acid). MS1 spectra and chromatograms for these compounds can be found in Appendix 

3.3. 
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Figure 5.2. MS/MS spectra from six representative credentialed features. MS/MS spectra were collected at four collision energies (0, 10, 20, and 40 V) 

on six credentialed ions. Three of these ions (A) uracil, (B) ADP, and (C) UDP-GlcA were identified based on accurate mass, carbon number, 

and METLIN database hits. These identifications were confirmed by comparing the experimental MS/MS spectra to the METLIN MS/MS 

reference spectra as shown. The upper spectrum of each plot is the experimental data, and the lower spectrum is the METLIN reference data. 

Unmatched peaks are depicted in red. The second three ions (D) 578.0093, (E) 1169.3011, and (F) 848.7473 were classified as unknowns as they 

did not match any METLIN database entries as either a fragment or parent mass. The MS/MS spectrum of each ion is displayed as normalized 

intensity at the same four collision energies. 

In addition to generating MS/MS data for metabolites included in databases, it is possible to 

reliably generate MS/MS data on biological peaks which currently cannot be annotated by 

metabolomic databases. Because credentialed features have passed our filtering rounds, we know 

that they are true metabolites of biological origin even if they do not return any database hits. Of the 

1827 credentialed features, 392 were not found in METLIN or the METLIN fragment databases. 

Three such example features are seen in Figure 2D–F. Previously these features may have been 

discarded as artifacts, but the credentialing platform provides confidence in their authenticity such 

that they can be reported and referenced in future experiments. 
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5.5 Conclusion 

The feature credentialing strategy presented here is a powerful platform to discriminate biological 

features from the various noise sources prevalent in untargeted metabolomic data. The process is 

experimentally straightforward and can be easily implemented in any metabolomic laboratory. 

Feature credentialing reliably removes artifactual features such as those arising from chemical and 

informatic noise, thereby resulting in a valuable list of features of biological origin. These 

credentialed features address many of the drawbacks associated with feature counting in comparing 

method performance on the basis of metabolome coverage. As such, counting credentialed features 

can be used in the development and optimization of untargeted metabolomic approaches as 

demonstrated by the reoptimization of XCMS parameters. Credentialing features is also an effective 

data reduction strategy for untargeted metabolomic results such that a smaller number of peaks can 

be targeted for MS/MS analysis. In summary, the feature credentialing platform introduced here 

represents a step toward defining optimal untargeted metabolomic platforms and provides a 

standard metric to facilitate collaboration between different metabolomic laboratories. 
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Chapter 6.  

 

Contextual Annotation of Metabolomics Data Reduces 25,000 

Features to Less than 1,300 Metabolites* 

When using liquid chromatography/mass spectrometry (LC/MS) to perform untargeted 

metabolomics, it is now routine to detect tens of thousands of features from biological samples. 

Poor understanding of the data, however, has complicated interpretation and masked the number of 

unique metabolites actually being measured in an experiment. Here we place an upper bound on the 

number of unique metabolites detected in Escherichia coli samples analyzed with one untargeted 

metabolomic method. We first group multiple features arising from the same analyte, which we call 

“degenerate features”, using a new contextual annotation approach. Surprisingly, this analysis 

revealed thousands of unexpected degeneracies that reduced the number of unique analytes to 

~2,961. We then applied an orthogonal approach to remove non-biological features from the data 

by using the 13C-based credentialing technology. This further reduced the number of unique analytes 

to < 1,000. Accurate mass, retention time, and MS/MS fragmentation data as well as annotations of 

credentialed features can be freely browsed and downloaded from the creDBle database 

(http://creDBle.wustl.edu).  

  

                                                 
* NGM ran all LC/MS experiments, extended mz.unity to full datasets, developed the creDBle database, and 

catologued credentialed features. 
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6.1 Introduction 

It has become increasingly popular to perform untargeted metabolomics by using liquid 

chromatography/mass spectrometry (LC/MS). This is at least in part due to the large number of 

signals or features that are typically detected from most biological samples.169–171 While it is often 

assumed that these tens of thousands of detected signals provide "global" coverage of the 

metabolome, the exact number of metabolites being measured in an experiment has not been 

rigorously assessed. The major barrier preventing this type of analysis has been the challenge of 

identifying metabolites40. To date, the overwhelming majority of the detected signals in any one 

untargeted metabolomics experiment have not been named. Even comprehensive efforts to identify 

as many metabolites as possible in a data set by using the most advanced informatic resources 

currently available have resulted in relatively small percentages of the total number of signals being 

identified.92,172,173 Thus, the basic question of how many unique metabolites are being profiled in an 

untargeted metabolomics experiment has remained outstanding.  

It is important to note that uncertainties related to experimental coverage have not prevented the 

widespread application of the untargeted metabolomics technology. Improvements in 

instrumentation and software have made performing untargeted metabolomics with LC/MS 

relatively routine.1 Accordingly, the number of research cores offering LC/MS untargeted 

metabolomics services has increased dramatically over the last decade.174 The conventional 

workflows used by most research facilities, however, essentially sidestep the issue of experimental 

coverage.175 Their experimental output is a long list of signals or features, without thorough 

annotation. The data sets are either mined in a targeted fashion for specific metabolites with known 

retention times and fragmentation patterns, or only the small subset of signals that have a statistically 

significant difference between sample classes are further investigated.98 For many of these signals 
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altered between sample classes, further investigation does not lead to identification because their 

accurate mass and fragmentation patterns do not match the accurate mass and fragmentation 

patterns of any known reference standard in metabolomic databases.113 Although it is common to 

refer to these unmatched signals as "unknowns", rarely is such a designation justified. Signals 

associated with contaminants, artifacts, and many adducts also do not return matches from 

metabolomic databases. These possibilities and others must be ruled out before gaining confidence 

that a signal is a bonafide, unique metabolite with an unknown structure.  

The number of signals or features in an LC/MS-based metabolomics data set that result from the 

combination of contaminants, artifacts, and degeneracies (such as complex adduct formation) has 

not been comprehensively evaluated. We speculated that these may represent an underestimated 

portion of signals in untargeted metabolomics data. The goal of the current study was to quantitate 

contaminants, artifacts, and degeneracies in order to get an upper estimate of the number of unique 

metabolites detected in a representative LC/MS-based metabolomics experiment. For the purposes 

of this work, contaminant refers to a detected signal that does not originate from the biological 

sample being measured (e.g., solvent impurities and plastic leechables). Artifacts refer to features 

detected due to informatic error. As an example, artifacts can be caused by baseline fluctuations and 

poorly resolved components.176,177 Finally, degeneracy refers to multiple signals arising from a single 

analyte. There are many causes of degeneracy including: fragmentation, analyte adduction with 

various charge carriers (e.g., a proton, sodium, potassium, etc.), and the detection of naturally 

occurring isotopes (e.g., 13C, 15N, etc.)3 A final, largely under-annotated source of degeneracy is the 

adduction of an analyte with other species present, including other analytes or the chemical 

background. 
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Although some degenerate relationships are well known and commonly annotated, the 

prevalence of many degenerate relationships has not been previously estimated.86 Here we introduce 

and apply an approach that recovers relationships implied by the experimental data, rather than 

relying on a hypothetical predetermined list. The approach allows for more comprehensive 

annotation, especially in the case of under-annotated adducts that may be specific to a single 

laboratory or experiment. To the best of our knowledge, the algorithms introduced below are the 

first to assess these degeneracies.  

In this work, we have focused on Escherichia coli cells that were extracted and analyzed with a 

representative untargeted metabolomics method. In positive-ion mode, we detected 25,230 high-

quality metabolomic signals or features. Strikingly, we found that more than 90% of these detected 

signals were due to contaminants, artifacts, and degeneracy. These results have important 

implications for the experimental coverage of untargeted metabolomics, which influence the design 

and interpretation of discovery profiling experiments. Our data indicate that caution should be 

employed when evaluating unidentified features from metabolomic data sets at the systems level. 

6.2 Results and Discussion 

6.2.1 Generating a representative untargeted metabolomic data set 

In untargeted metabolomics, signals are often referred to as features, a convention we will follow 

here. A feature is a detected ion with a peak shape, unique m/z, and retention time. To estimate the 

number of unique analytes detected in a representative untargeted metabolomics data set, we set out 

to annotate three types of features: (i) degenerate features, (ii) contaminant features, and (iii) 
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artifactual features. We annotated degenerate features by using mz.unity and a new contextual 

approach to find degeneracies implied by the data. We annotated contaminant features and 

artifactual features by using the credentialing approach (Mahieu et al., 2014). A requirement of the 

credentialing approach is uniform 13C-labeling. Given that there are convenient and well-established 

methods to culture E. coli on a uniformly labeled carbon source, we chose to focus our work on E. 

coli.  

Metabolites from E. coli cells were extracted and analyzed with an LC/MS-based untargeted 

metabolomics platform, as detailed in Methods. In brief, metabolite extraction was achieved by 

using a combination of methanol, acetonitrile, and water. Extracted metabolites were separated with 

reversed-phase chromatography prior to being analyzed in positive polarity by a Q Exactive Plus 

mass spectrometer. These experimental methods (or variations thereof) are commonly applied in 

untargeted metabolomics.178–180,120 To process the resulting LC/MS data, we employed a custom 

informatic workflow (Figure 1). The workflow used an iterative, two-phase peak detection process. 

An in-house model-based feature detection algorithm was run on each of five individual replicates. 

Many of the resulting features are inconsistent between replicates due to subtle differences in the 

chromatograms from each file. It is common for some peaks to go undetected, or some peaks to be 

integrated differently between runs.2 These errors make further analysis challenging because a one-

to-one feature grouping cannot be specified between replicates, and the established groups contain 

artificial variation in feature areas. To refine the features detected in the five replicates, we utilized 

the Warpgroup algorithm.2 Warpgroup considers all files in concert to identify “consensus features”, 

a set of feature integrations supported by all replicates. The result is a near one-to-one matching of 

features between samples (Figure 2A-B) and decreased variation introduced by informatic 

processing (Figure 2C-D). The Warpgroup refined feature detection is highly sensitive, allowing the 
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recovery of features that, when processed in isolation, would be challenging to detect (Figure 2E). 

Here, we retained only features with a signal-to-noise ratio >5 and a coefficient of variation <0.5 

after Warpgrouping. This resulted in 25,230 high-quality features in our representative data set.  

 

Figure 6.1. Our informatic workflow. Raw data were processed with in-house algorithms to first identify high-quality, consensus features (i.e., 

recurring features between replicates) and discriminate against processing artifacts. This consensus data set was further characterized by mz.unity 

(to estimate signal degeneracy) and credentialing (to estimate contaminants and artifacts). The resulting annotated data set was catalogued in the 

creDBle database. 
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.  

 
Figure 6.2. An overview of the consensus data set. (A) The base peak chromatogram of a representative run. The number of features detected during 

each second is overlaid. (B) The number of features detected in each group before (pink) and after (green) Warpgroup. Inconsistencies are 

resolved by Warpgroup. (C) The within group CVs of peak areas is decreased by Warpgroup. (D) The within group CVs of peak width are 

decreased by Warpgroup. (E) Several representative features detected by the informatic workflow. The estimated baseline is plotted in red. 
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We note that there is no universally accepted experimental platform for untargeted metabolomics 

at this time. The extraction techniques, chromatography, mass spectrometers, and peak detection 

algorithms used vary between laboratories and are often multiplexed.181,182 However, it is routine to 

detect tens of thousands of signals from a biological sample in most LC/MS experiments.77,183 Our 

detection of 25,230 consensus features from five replicates resulted in a data set with complexity 

that is typical of an untargeted metabolomics experiment. 

6.2.2 Simple annotations 

As a first step to place an upper bound on the number of unique metabolites detected in our 

experiment, we performed a background subtraction. Specifically, we filtered features that were not 

at least two-fold higher than the signal detected in extraction blanks. These features represent 

contaminants or artifacts that are introduced during the sample extraction or data-processing steps. 

This reduced our list of 25,230 features to 12,797 (Figure 3A).  

Next, we set out to annotate degenerate features (i.e., those features arising from the same 

analyte). We started our analysis by identifying simple relationships that are already commonly 

annotated in untargeted metabolomics.86,126,184,185 This included degeneracy due to carbon and other 

isotopes as well as common adducts and neutral losses. Annotations were made by using mz.unity, 

and degenerate features were grouped together.3 Because features within the same group arise from 

the same analyte, the number of “feature groups” provides a much better estimate of the maximum 

number of unique analytes detected in an experiment than the number of total features (Table 1 and 

Figure 3 B-C). In our subsequent descriptions, we will therefore transition from counting features to 

counting feature groups. A feature for which no degeneracy has been identified constitutes its own 

feature group, which we refer to as a singlet. Figure 3B shows the progressive decrease in the 
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number of feature groups as isotopes, common charge carriers, and common neutral losses are 

annotated.  

Table 6.1. A breakdown of the analyte number observed after each annotation step.   

 Groups with more than one feature Singlets 
Stage All Features Credentialed 

Features 
All Features Credentialed 

Features 
Blank Subtracted 0 0 12797 2462 

Isotopes 3986 1066 5071 1326 
Charge Carriers 3620 1137 4384 992 
Neutral Losses 3640 1174 3678 790 

Multimers 3400 1117 3381 712 
Commons n>200 2809 1063 2472 495 
Commons n>50 2149 864 1620 353 

Background 1673 659 1288 233 
 

When isotopes, common charge carriers, and neutral losses are annotated, the number of feature 

groups decreases from 12,797 to 7,318. We note that currently employed annotation approaches end 

here with the identification of simple relationships (see vertical line in Figure 3B). These results 

might suggest that there are as many as 7,318 unique analytes detected in the sample, but two 

observations suggested that much degeneracy still remained unannotated in our E. coli data set. 

First, about 50% of our feature groups still contain only a single feature (i.e., singlets with no 

detected relationships). Although in some cases singlets result from low-abundance analytes with no 

natural isotopes detected above noise level, the prevalence of singlets suggested that additional 

relationships remained unannotated. Second, we also know that the set of relationships annotated 

thus far are only a small subset of the possible degeneracies. A recent targeted study of glutamate 

demonstrated that many additional, complex sources of degeneracy can exist in LC/MS-based 

metabolomics.3 Glutamate was found to produce over 100 spectral peaks and exhibited complex 

adduct formation. Our objective was to comprehensively characterize these additional sources of 

degeneracy within our E. coli data set.  
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Figure 6.3. Plotting the maximum number of unique analytes detected throughout the steps of our annotation process. (A) Removal of features 

occurring in the blank. (B) Features are grouped as additional relationships are annotated. This reduces the maximum number of unique analytes. 

When a feature group contains multiple features, it is shown in green. When a feature group contains only a single feature (i.e., is a singlet), then 

it is shown in pink. Relationships from left to right: no relationships; isotopes; charge carriers; neutral losses; complex dimers (homo and hetero); 

frequent intrinsic relationships; situational adducts (background). (C) Similar annotation of features that were credentialed. 
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6.2.3 Homo and hetero multimers 

We then expanded our search for degenerate relationships to complex adducts (i.e., two or more 

species non-covalently bound to one another, such as dimers, trimers, etc.). Our search included 

analytes adducted with themselves (homo-relationships), as well as analytes adducted with different 

analytes (hetero-relationships). We considered all coeluting features as potential multimer partners 

evaluating all [m, z] values as possible adduct formers. The charge state was specified based on 

observed isotopes, or assumed to be a charge state of 1. As our conditions generally form ions with 

a single charge, we balance the +2 charge from the observed ions with the loss of a proton [1.00783, 

+1] for each multimer. Thus, a complex hetero-relationship between three detected features will 

satisfy: [m1, z1] + [m2, z2] – [1.00783, 1] = [m3, z3]. Grouping these detected complex adducts 

reduced the number of feature groups in our data set to 3,400 (see “multimers” bar in Figure 3B-C). 

Frequent intrinsic relationships show previously unannotated degeneracy 

All current annotation approaches in untargeted metabolomics face the major challenge of 

determining the specific relationships to search for. While some relationships are well known and 

occur ubiquitously (such as the commonly annotated sodium or potassium adducts), constraining 

annotation to only these is significantly limiting. Other degenerate relationships are specific to 

experimental methodologies or the materials and reagents used during the analysis. Since there is no 

way to determine these relationships a priori, they have gone unannotated to date. Here we 

introduce an informatic approach to find data set wide, experimentally unique relationships that are 

implied by their context in the data. We then estimate their prevalence within our E. coli data set. 

Common adducts and fragments will always coelute with the original analyte and will occur 

multiple times throughout the run.3 We leverage this fact and recover “frequent intrinsic 

relationships” by performing a frequency analysis of mass differences between all pairs of features 
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eluting within one second of each other. Unrelated but coeluting analytes will exhibit mass spacing 

that is random and, as such, will not be enriched in the frequency distribution. Thus, frequently 

occurring mass differences represent probable degenerate relationships. Mass differences were 

calculated assuming a charge state of 1, a simplification that limits the analysis to relationships that 

do not include a charge-state conversion. A Gaussian kernel density estimation was performed on 

the observed mass differences with a bandwidth of 0.00001 Da (our observed scan-to-scan mass 

error) (Figure 4A). The heights of the local maxima represent the frequency and mass dispersion of 

each mass difference. Mass differences that are frequent and similar in mass will have large density 

estimates. The 24 most frequently observed mass differences are listed in Table 2. 

 

Table 6.2. Recovered frequent intrinsic relationships. Not all recovered relationships shown were used in the annotation. The local 

maxima of the density ordered by number of occurrences. These frequently occurring differences are good candidates for peak 

relationships.  Several well-known relationships are present, including alternative charge carriers at the top of the list. 

Δ Mass Δ Charge Density Known Species 
21.9820 0 60.4 gain:H+ loss:Na+ 
4.9554 0 55.2 gain:NH4+ loss:Na+ 

23.0760 0 33.6  
18.0107 0 32.5 loss:H2O 
17.0266 0 30.5 loss:NH3 
28.0314 0 26.7 C2H4 
45.0580 0 23.4 C2H7N 
14.0157 0 23.2 CH2 
65.1230 0 19.6  
87.1046 0 18.2 C5H13N 
42.0470 0 16.6 C3H6 
44.0262 0 15.3 C2H4O 
39.9926 0 13.3 C2O 
7.1020 0 13.1  

15.9740 0 13.0 gain:K+ loss:Na+ 
70.0783 0 12.5  
29.0518 0 11.6  
36.0713 0 11.3  
15.9949 0 10.1  
1.9967 0 9.3 gain:k41 loss:k39 

56.0627 0 9.3  
12.9952 0 8.7  
35.0373 0 8.7  
20.9292 0 8.5 gain:NH4+ loss:K+ 
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Figure 6.4. Detection of frequent intrinsic relationships. (A) The Gaussian kernel density of all pairwise peak relationships in the data set. Inset is a 

zoomed-in section around 14 Da. Known relationships are labeled with a formula. Unknown relationships are labeled with mass and charge 

transitions [m, z]. (B) Peak pairs of the recovered frequent intrinsic relationship [23.0760, 0] plotted in mass/charge and retention time (points). 

Line segments connect pairs with the specified spacing. 
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The effectiveness of the approach was confirmed by the recovery of two commonly known 

relationships as the most frequent relationships in our data set: the exchange of H+ and Na+ and the 

exchange of Na+ and NH4
+. This result indicated that the analysis of frequent intrinsic relationships 

offers novel insight into the nature of features detected in metabolomic data sets.  Notably, the 

approach returned a multitude of relationships that had not been included in our prior searches. 

These commonly occurring relationships are likely adducts or fragments, and may be specific to our 

sample or experimental equipment/materials. Figure 4B shows the peak pairs observed with mass 

difference [23.0760, 0] throughout the data set. 

We recognize that the recovery of frequent intrinsic relationships can also return relationships 

between commonly coeluting, non-degenerate analyte pairs. Fully saturated and partially unsaturated 

lipids, for example, commonly coelute and have a mass difference of [2.0156, 0] (H2) (Han et al., 

2012). We observed 176 occurrences of such a mass difference in our experiment. To minimize the 

risk of grouping unrelated features, we removed relationships with mass differences smaller than 15 

Da and we applied two frequency cutoffs to illustrate the possible range of degeneracy. The 

conservative cutoff annotated and grouped frequent intrinsic relationships occurring more than 200 

times (see bar labeled “commons n>200” in Figure 3B-C), while the aggressive cutoff annotated and 

grouped frequent intrinsic relationships occurring more than 50 times (see bar labeled “commons 

n>50” in Figure 3B-C). The inclusion of frequent intrinsic relationships in our data set annotation 

reduced the number of feature groups to 5,281 or 3,769, depending on the cutoff.  

6.2.4 Situational adducts due to background ions contribute significantly to degeneracy 

To further expand the scope of our annotation, we considered a source of adduct ions that are 

present throughout the run: the chemical background. These ions lack a chromatographic peak 
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shape, but they are detected throughout the experiment due to the ionization of solvents, their 

additives, or any contaminants present. Because the background ions coelute with every feature, it is 

reasonable to expect that they will produce many adducts. We refer to adducts between analytes and 

other presently observed species (such as background ions) as “situational adducts”.  

A low-mass spectrum was collected, deisotoped, and background ions appearing at intensities 

higher than 200,000 were used as potential participants in situational adduct formation (Figure 5). 

Annotation of the identified situational adducts reduced our number of feature groups to 2,961 (see 

bar labeled “background” in Figure 3B-C). This significant reduction in feature groups indicates that 

background ions are indeed a major source of feature inflation in our experiment. We also note that 

annotation of situational adducts reduced the number of feature groups containing only a single 

feature (i.e., singlets) to 1,288. 

6.2.5 Background ions give rise to some frequent intrinsic relationships 

Some frequent intrinsic relationships that we detected are indicative of novel adduction or 

fragmentation phenomena in our untargeted metabolomic data set, and we were interested in the 

origin of these unknown relationships. We speculated that some of the frequent intrinsic 

relationships that we discovered were the result of analyte adduction with the chemical background 

described above. In the simplest of cases, we found that some frequently occurring mass-to-charge 

differences between features corresponded to the mass-to-charge values of background ions. In 

more complex cases, however, a single analyte formed adducts with multiple background ions 

(Figure 5 and Figure 6) and therefore multiple situational adducts were detected for the same 

analyte. As the spacings between the background ions fix the spacings in the situational adduct 

features, we expect these repeatedly occurring spacings to be returned as frequent intrinsic 
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relationships. Inspecting the returned frequent intrinsic relationships, we found several mass 

differences that also appear in the chemical background. This result is an additional confirmation of 

the effectiveness of frequent intrinsic relationship discovery and suggests that chemical background 

is a large source of feature inflation.   

 
Figure 6.5. Situational adducts. (A) The persistent background spectrum observed in this experiment. The three indicated background peaks have mass 

spacings that correspond to a methylene group. These are likely an alkyl amine series with carbon numbers 5, 6, and 7. When these background 

species adduct with an analyte, situational adducts are formed. (B) An example of a situational adduct forming between background ion 102.1280 

(a six carbon alkyl amine) and an eluting analyte. This process likely occurs with all three alkyl amine species throughout the run, giving rise to the 

frequent intrinsic relationships of mass 14.0157 (see Table 2, Row 8). 

 
Figure 6.6. Schematic showing how background ions give rise to frequent intrinsic relationships. Analyte A is detected as an adduct of each 

background ion (B1 and B2). The spacing between the adducts (A+B1-H and A+B2-H) is equal to the spacing between the background ions. 
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We also performed formula decomposition on the frequent intrinsic relationships to further 

elucidate their origins. Interestingly, chemical formula CH2, C2H4, and C3H6 were found in the 

frequent intrinsic relationships exhibited by the chemical background. Additional analysis of the 

background ions indicated that they were an alkyl amine series. These species are known to form 

strong adducts and are commonly found as contaminants in alcohol solvents.94 We note that our 

laboratory has never performed ion-pairing experiments and the source of these reagents was 

solvent impurity as indicated by the series rather than sole presence of triethylamine. In developing 

our methods, we attempted to find solvents with the lowest possible levels of chemical background 

(Burdick & Jackson brand purchased from Honeywell). Unfortunately, alkyl amines seem to be 

ubiquitous in methanol and isopropanol LC/MS solvents.  

6.2.6 Removing artifacts and contaminants by credentialing 

The degenerate relationships that we annotated above led to a striking reduction in the number 

of feature groups, indicating that fewer than 15% of the total 25,230 features that were detected in 

E. coli correspond to unique analytes. Even after this extensive annotation process, however, two 

sources of feature inflation remained in artifacts and contaminants. We applied an alternative 

experimental approach called credentialing to filter these features associated with artifacts and 

contaminants. The credentialing process introduces an isotopic signature into biological analytes 

during E. coli growth.4 Features in our data set displaying this isotopic signature are deemed 

“credentialed”, as they are known to be of E. coli origin. In contrast, features that do not display this 

isotopic signature are annotated as artifacts or contaminants. Credentialing does not rely on any of 

the relationship annotation approaches that we described above, and is thus an orthogonal and 

highly complementary approach to data analysis.    
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We first filtered non-credentialed features from the raw data set on the basis of isotopic 

signatures. The resulting set of features is free of artifacts, noise, and contaminants. This process 

returned 2,462 high-quality, credentialed features. We then took these credentialed features through 

the same annotation process as the full data set to remove degeneracy. Annotation of degeneracy 

reduced the estimated number of unique E. coli analytes being measured to 832 (Figure 3C).  

6.2.7 creDBle: a database for thoroughly annotated reference data sets 

An alternative approach to each investigator having to identify the relatively small number of 

features corresponding to unique, bona fide metabolites from every experiment is to create 

thoroughly annotated reference data sets. Reference data sets have been shown to be effective in 

other profiling sciences, such as genomics (for example, during the EST collection era of gene 

identification in the 1990's).186,187 The idea is for one laboratory to first identify all of the unique 

metabolites that can be detected from a given sample with a given experimental methodology. Then, 

other laboratories performing the same experiment benefit by having to target only these reference 

analytes in their subsequent experiments. Of course, the major challenge of this strategy is that there 

are a multitude of experimental methods currently being used in untargeted metabolomics, each of 

which will have to be annotated for different sample types.181  

There may also be other benefits to having a repository of thoroughly annotated data sets. 

Knowing the comprehensive list of unique metabolites that can be detected with specific 

experimental protocols, for example, will be invaluable to designing LC/MS-based metabolomic 

experiments. Although the number of detected features is often used as an indicator of experimental 

coverage, our work suggests that this is an unreliable metric. 87,88 Instead, it would be preferred if 

researchers based their experimental design on the numbers of unique metabolites known to be 
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detected. Additionally, even if the sample of interest has not been annotated, researchers might be 

able to use annotated data from other sample types (e.g., E. coli) as a touchstone to evaluate data 

from their experiments and to compare it to others.  

As a first step in establishing a repository for thoroughly annotated reference data sets, we have 

created the creDBle database. All credentialed features for the reference E. coli data set described 

here have been deposited in creDBle. Degeneracy annotations as well as accurate mass, retention 

times, and fragmentation patterns are included. creDBle is freely available on the Web at 

http://creDBle.wustl.edu/ and provides a convenient companion resource for credentialed E. coli 

standards (Figure 7). All data within creDBle (including fragmentation patterns for identified 

metabolites) can be freely downloaded.  

The addition of more analyses to creDBle will greatly expand its applicability. Our first goal is to 

repeat the annotation processes above for credentialed E. coli samples analyzed with different 

methods (e.g., different extraction protocols, chromatography, mass spectrometers, etc.). Notably, 

identification of metabolites from these annotated experiments will provide a readily available set of 

complex standards. As the number of credentialed E. coli experiments within creDBle increases, we 

hope that it will eventually provide a common reference point with enough observations in each 

experiment to model and normalize some of the variation that has historically prevented cross-

laboratory data comparisons. This, in turn, would make data sets present in repositories, when run 

with a credentialed standard extract, more amenable to reprocessing and meta-analysis. 
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Figure 6.7. Screenshots from the creDBle database. (A) The list of credentialed features showing m/z, retention time, polarity, grouping, and intensity. 

(B) A credentialed features page showing the extracted ion chromatogram, credentialed isotopes, and fragmentation data. 
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6.3 Conclusion 

Detecting tens of thousands of LC/MS features from biological samples is typical in untargeted 

metabolomics, however, to date it has been unclear how many unique metabolites are actually being 

profiled. Our work here evaluated one representative untargeted metabolomics data set from E. coli 

to set an upper bound on the number of unique metabolites being measured. By using a new 

context-driven approach to identify degenerate features arising from the same metabolite, we 

determined that the ~25,000 features detected in our experiment corresponded to fewer than 2,961 

unique analytes. An orthogonal and complimentary approach using credentialing isotope signatures 

to identify artifacts and contaminants similarly reduced the number of unique analytes detected. Out 

of the total ~25,000 features detected, only 832 passed both our degeneracy and credentialing filters. 

Accurate masses, retention times, fragmentation patterns, and degeneracy annotations for these 832 

features have been deposited in the creDBle database.  

We wish to emphasize that our work is unrelated to the size of the E. coli metabolome and 

should not be interpreted as an indication of the total number of intracellular metabolites present. 

There are certainly more than 832 E. coli metabolites.188 The purpose of our work was only to assess 

how many unique metabolites are being measured in a representative untargeted metabolomics 

experiment. Additionally, we note that our context-driven analysis of degeneracy is not exhaustive. 

Relationships that are uncommon and not indicated by background ions remain unannotated and 

may further reduce the number of unique analytes detected. Notwithstanding, our results suggest 

that there are an order of magnitude more features than unique metabolites in untargeted 

metabolomics experiments. This has important implications for designing untargeted metabolomics 

experiments and influences strategies for interpreting the data produced before establishing 

metabolite identifications. 
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6.4 Methods 

6.4.1 Materials 

U-13C-D-glucose was purchased from Cambridge Isotope Laboratories Inc. (Andover, MA). E. 

coli strain K12, MG1655 was purchased from ATCC (Manassas, VA). Lennox LB broth powder and 

5x M9 salts were purchased from Sigma-Aldrich (St. Louis, MO). Cell culture was performed with 

ultrapure water provided by a Milli-Q system (Millipore). LC/MS grade, Burdick & Jackson brand 

water, acetonitrile, methanol, and isopropanol were purchased from Honeywell (Morris Plains, NJ).  

Cortecs T3 reversed phase UPLC columns and column guards were purchased from Waters 

Corporation (Milford, MA). 

6.4.2 Generating credentialed samples 

E. coli was grown in a rotary shaker at 37 ⁰C and 300 rpm as previously described (Mahieu et al., 

2014). M9 minimal media was used with a glucose concentration of 2 g/L.  Two cultures were 

grown in parallel, one using natural abundance glucose and a second using U-13C-glucose as the only 

carbon source.  Cultures were grown to OD600 = 0.7, at which point they were harvested. 

For harvest, flasks were removed from the shaker and placed on ice.  The contents of each flask 

were pipetted into 50 mL conical tubes and centrifuged at 3200 g for 10 minutes. The supernatant 

was decanted and remaining media was gently rinsed off the top of the pellet with 0.5 mL of water.  

Conical tubes were then placed in liquid nitrogen and lyophilized for 24 hours, or until dry. This 

powdered, credentialed E. coli standard was then extracted to generate samples for untargeted 

metabolomic analysis. 
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Several replicate extractions were performed in parallel by using a previously described method.4 

Briefly, five 2.5 mg samples of each 12C and 13C material were weighed out, while two empty tubes 

were included as extraction blanks. To these, 1,000 μL of 2:2:1 methanol:acetonitrile:water was 

added, followed by three freeze-thaw cycles with sonication and vortexing. After centrifugation, the 

supernatant was vacuum concentrated and reconstituted in 100 μL of 1:1 acetonitrile:water with 

internal standards. From these extracts, three samples were aliquoted for LC/MS analysis: natural 

abundance extract, a mix of 1:1 natural abundance extract and 13C extract, and the blank extract. 

6.4.3 Data set generation 

Each sample was analyzed five times as analytical replicates. The untargeted LC/MS data set was 

generated in positive polarity on a Q Exactive Plus mass spectrometer with a HESI II source 

coupled to a Dionex 3000RSLC. The data set was collected with the following settings: aux gas, 5; 

sheath gas, 35; sweep gas, 2; capillary temperature, 300 ºC; aux gas temperature, 200 ºC; spray 

voltage, 3.5 kV; needle diameter, 34 ga; s-lens, 75 V; mass range, 100–1500 Da; resolution 70,000; 

micro scans, 1; max injection time; 100 ms; automatic gain control target: 1e6. Reversed-phase 

chromatography was performed with the Waters Cortecs T3 (2.1mm x 50mm, 1.6um) column at a 

flow rate of 300 μL/min and a column temperature of 50 ºC. Solvents were: A, water + 5mM 

ammonium acetate + 5uM ammonium phosphate; B, 9:1 isopropanol:methanol + 5mM ammonium 

acetate + 5um ammonium phosphate. An injection volume of 2 μL was used with a linear gradient 

of (minutes, %A): 0, 100; 28, 0; 30, 0; 30, 100; 35, 100. 

Chromatographic features were detected by using a set of in-house algorithms. Mass traces were 

retained if they were longer than 10 scans, excluding missing peaks. Baselines for each mass trace 

were calculated by using the iterative restricted least squares method from the baseline R package. 
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Model based peak detection was performed by using the skew normal distribution as a model peak 

distribution. This process resulted in a set of features detected in each replicate run. Features were 

grouped by mass and retention time using a density based method. Retention time drift and mass 

drift were corrected by fitting a loess curve of degree 2 to the distance from the mean value of each 

group against the mean retention time of each group. 

Subtle variations from run to run cause many features to be integrated differently and sometimes 

not integrated in each file. Further, closely eluting peaks often lead to incorrectly grouped features. 

To refine the individual datasets and get a set of detected peaks consistent with all replicate runs, we 

applied the Warpgroup algorithm.2 Warpgroup is available at https://github.com/nathaniel-

mahieu/warpgroup. Warpgroup takes as input the raw data and each file’s detected features 

combining them to output a set of consensus features. Parameters: sc.aligned.lim, 9; pct.pad, 0.1; 

min.peaks, 3.  

This consensus data set set is the standard output of an untargeted metabolomics experiment.  As 

such, it was taken as a representative dataset for annotation of detected signals. 

6.4.4 Mz.unity based annotation 

Mz.unity was applied to the dataset to detect mass and charge ([m, z]) relationships between 

eluting signals derived from a single analyte.3 We use [m, z] to denote the mass and charge of a 

species, where both are specified as opposed to m/z where the two are convolved. These searches 

find sets of features that have [m,z]s differing by a specific amount.  Differences are specific to 

relationships, for example, loss of 12C and gain of 13C ([+1.003355, 0]), or loss of water ([-18.01057, 

0]). 
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Searches were first performed for the following relationships: isotopes, common charge carriers, 

common neutral losses, and common adducts. We then searched for dimers between coeluting 

features.  The dimer search posits each eluting [m, z] as a possible adduct former. The charge state 

was specified based on observed isotopes, or assumed to be a charge of 1.  As dimers are normally 

formed with a charge from only one constituent, we also assumed the loss of a proton [1.00783, +1] 

for each pair.  

Mz.unity is available at https://github.com/nathaniel-mahieu/mz.unity. 

6.4.5 Frequent intrinsic relationships 

Groups of features eluting within 1 second of each other were taken, and their pairwise [m, z] 

differences were calculated after assuming a charge state of 1. A Gaussian kernel density estimation 

was performed on the mass differences with a bandwidth of 0.00001 Da (our observed scan-to-scan 

mass error).  Local maxima of the density estimate were detected along with the estimated density at 

those locations.  The heights of the local maxima represent the frequency and mass dispersion of 

each mass difference. Mass differences that are more frequent and more similar in mass will have 

larger density estimates.  

We took enriched mass differences larger than 15 Da and occurring more than 50 times 

throughout the dataset into the mz.unity search. 

6.4.6 Situational adducts 

Background ions that lack a chromatographic peak shape are an ever-present set of species that 

often form adducts with eluting analytes. These situational adducts are then detected as features 
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having a chromatographic peak shape.  A low mass background spectrum was collected, containing 

detected ions above 50 Da. This spectrum was deisotoped and background species appearing at 

higher than 200,000 intensity were used to seed possible adduct relationships. The [m, z]s of each 

background peak were included in the dimer search, as above after specifying the charge state based 

on observed isotopes or assuming a charge of 1.  

6.4.7 Credentialing 

A high-confidence set of features were recovered from the 12+13C dataset by applying version 3.0 

of the credentialing algorithm, which is available at https://github.com/pattilab/credential. 

Credentialing searches for pairs of peaks that have precise isotopic spacing expected from U-12C and 

U-13C analytes.4  This provides a filter against many forms of noise, contaminants, and artifact 

features.  Credentialing was run with the parameters: ppmwid, 8; rtwid, 1.2; cd, 1.00335; mpc, c(12, 

120); ratio, 1; ratio.lim, 0.1; maxnmer, 4.  Credentialed features from the 12+13C data set were then 

matched to the 12C dataset by applying retention time and mass correction as above before grouping. 

6.4.8 Credentialed feature characterization 

The set of credentialed features were further characterized for deposition in the creDBle 

database. Targeted MS/MS was performed on the credentialed features with a 0.4 Da window width 

and a stepped collision energy of 10, 30, and 90 V. Annotations and feature groupings of the 

credentialed features were taken from the previously performed mz.unity annotations.  

6.4.9 The creDBle database 
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Characterization of all credentialed features from this data set was deposited in the creDBle 

database. The data are freely available at http://credble.wustl.edu/ and easily downloadable in JSON 

format via the REST API.  This includes m/z, retention time, annotation grouping, MS/MS spectra, 

credentialed isotopes, and extracted ion chromatograms.   
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Chapter 7.  

 

Concluding Remarks 

Metabolomics remains a rapidly expanding field even 20 years after its inception. Still, the 

exceptional promise of untargeted analysis remains impeded by complex variance and massive 

dataset degeneracy.189  Warpgroup, mz.unity, credentialing and creDBle address these critical needs 

and chart a course to truly systems-level metabolomics. 

7.1 The Big Picture 

When attempting to comprehensively understand metabolomic datasets it became apparent that 

preprocessing steps were critically important to downstream analysis.  In particular the peak 

detection process preceded all feature-dependent analysis and as such any interpretation of 

individual features relies on accurate peak detection.  Warpgroup was developed to improve the 

reproducibility of peak detection and decrease noise – these advances made the later steps including 

credentialing and mz.unity annotation tractable problems. 

While forming a contextual understanding of features in metabolomic datasets it became 

apparent that current approaches were limited to only the simplest relationship types.  Exploration 

of complex adducts and distal fragments required a more flexible search approach.  To this end 

mz.unity was developed in a manner that allows one to search for any specified relationship.  This 
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advance allowed the systematic evaluation of complex and cross polarity adducts and contextual 

relationship recovery – two major contributions to dataset annotation. 

Finally, it was clear that though great effort had been undertaken to minimize the contribution of 

contaminants and informatic error to features, many mistakes were still being made.  As such the 

credentialing methodology was introduced to recover reproducible sets of biological features. 

In concert these developments enabled the first unbiased catalog of analyte features from an 

untargeted dataset - creDBle.  Additionally the combined application of these algorithms have 

provided insight into the analyte content and degeneracy of metabolomic datasets – a result that will 

guide the design of next generation metabolomic experiments. 

7.2 Future Work 

Though these contributions represent major conceptual advances to the metabolomic workflow, 

many challenges remain in the field. 

Relationship annotation is the most promising approach developed herein.  Current applications 

of mz.unity take a conservative approach in order to minimize false positive annotations.  Truly 

comprehensive relationship annotations necessitate a statistically driven evaluation of each putative 

relationship.  The likelihood of a relationship can be conditioned on many observations – expected 

mass error, prior knowledge of the likelihood of occurrence, intensities of the involved species, 

gradient conditions, source conditions, and other observed relationships all contribute information 

relevant to putative relationships.  The problem of evaluating putative relationships can be stated as 

finding the optimum graph subsets which describe the observed signals, minimizing some measure 

of over-aggregation while maximizing some relationship based score. Further, evaluating self versus 

non-self-relationships and predicting the original analyte mass based on the observed signals are 
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additional goals amenable to this framework. The development of mz.unity into a comprehensive, 

easy to use algorithm will certainly improve our ability to compute on metabolomic datasets. 

Additionally, Warpgroup offers one solution to the isolated peak detection problem. It would be 

ideal to improve the peak detection problem in a prospective manner.  To this end incorporating 

additional information into the peak detection step will have a major impact.  The relationship 

search as described above offers a major unused constraint on the peak detection process.  Base 

peaks have been used to predict and reinforce isotopic peaks during peak detection for example.  

This should be extended to encompass the entire relationship graph – sodium adducts, dimers, even 

across polarities.  The detection of peaks and the annotation of relationships are interdependent, and 

can be co-optimized to maximize the robustness of both steps. 

Current approaches treat each experiment with identical chromatographies but different polarities 

or ionization types as independent (ESI +/- and APCI +/-  for example).  This results in another 

large form of degeneracy that is yet to be annotated.  The mz.unity approach offers the ability to 

search for relationships between these disparate datasets, and unifying peak detection across 

polarities and ionization types is only feasible with annotation driven peak detection. 

Ultimately, improved computational comprehension of metabolomic datasets will enable the full 

power of the technology.  Currently datasets are redundant and challenging to interpret.  

Incorporating the relationship graph and peak detection will allow an abstract representation of 

metabolomic datasets including the context of all detected signals.  The resulting dataset will be 

computable, offer a strong foundation to train machine learning models for analysis, and allow for 

rapid extraction of biologically relevant information from these datasets. The future of 

metabolomics is bright. 
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Appendix 1.  

 

Warpgroup: increased precision of metabolomic data processing by 

consensus integration bound analysis 
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Appendix 1.1. The residual drift before and after retention time correction. 

Retention time drift before (A) and after obiwarp (B) for sample numbers 3, 4, 5 and 15 from the HILIC dataset.  
Samples were aligned with sample 1 as the reference.  It is clear that global retention time correction does shift the 
average drift towards zero (A and B).  Importantly, even after retention time correction many peak retention times still 
present considerable drift. Figure C displays the change in residual drift for each peak, negative values represent a move 
further away from alignment while positive numbers are a shift towards alignment.  

A.                   B.  

   

C. 
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Appendix 1.2. The retention time drift of all samples in the data set. 

Retention time drift of 16 samples including samples which were run to monitor equilibration of the LC system before 
(A) and after (B) Obiwarp alignment to sample 3.  

 

A.       B. 
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Appendix 1.3. Visualization of dynamic time warping inputs and output 

A visualization of the input and output of dynamic time warping for a simple case.  The two time series supplied as 
inputs are displayed on the X and Y axes.  Dynamic time warping was performed on these, traces resulting the in “warp 
path” drawn as a line plot.  This warp path relates the time domain of each series.  Drawn arrows represent the 
projection of hypothetical peak bounds in the query series into the time domain of the reference series. 
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Appendix 1.4. Walktrap community detection on an example graph structure   

In this graph structure peaks are drawn as nodes. Edges are drawn between peaks when they are 

determined to describe the same chromatographic region between samples.  This is based on the 

agreement of transformed peak bounds across multiple sample pairs.  Two edges are drawn per 

sample pair (one for A → B and a second for B → A) as DTW is not a symmetric technique.  This 

graph structure is subjected to walktrap analysis to find communities of detected peaks which 

describe similar chromatographic regions. 
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Appendix 1.5. XCMS Integration 

A prerequisite task to group.warpgroup() is the rough grouping of features between samples, 

such that all features which could possibly represent the same signal reside in a single group (as 

recorded in @grouped).  This initial grouping should err on the side of inclusion, allowing the 

warpgroup algorithm to divide the rough groups into the appropriate sub-regions.  This can be 

achieved with the default XCMS approach group.density(), but in cases of high retention time 

variance or small m/z drift a hard cutoff may be more appropriate. 

The provided group.warpgroup() function iterates over each group in the xcmsSet and performs 

an initial setup before calling the algorithm.  This setup includes the generation of an EIC trace for 

each sample based on the detected peak bounds and masses in that group.  The EIC traces and 

detected peaks are then supplied to the warpgroup algorithm for processing. Returned groups are 

reintegrated and used to repopulate the xcmsSet.  

The XMCS implementation uses the foreach package to handle parallelization.  In the presence 

of a registered parallel backend (Eg. doRedis, doParallel) the warpgroup algorithm will be 

parallelized, each thread handling one warpgrouping.  The generation of EIC matrices is performed 

in the parent thread to minimize the amount data to be transferred.  When no parallel backend is 

registered the processing continues single threaded with a warning message. 

  



 
[160] 

Appendix 1.6. Pairwise comparison of CV before and after warpgroup 

The CV of each group before and after warping was compared for each dataset by taking the 

difference (CVbefore – CVafter). The red line indicates no change in CV while positive values indicate a 

decrease in CV.  In most cases the CV was decreased by the warpgroup algorithm. 
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Appendix 1.7. An overview of differences between workflow outputs for the HILIC dataset 

with various group subsets 

Subset of Peaks All Shared Filtered 5 > n > 13 
Workflow Traditional Warpgroup Traditional Warpgroup Warpgroup 
Mean CV 39% 24% 31% 18% 20% 

90th Percentile CV 79% 50% 63% 33% 38% 
Number of 
Groups 

18,341 38,658 7,846 7,846 10,383 
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Appendix 1.8. Warpgroup of general timeseries data in the form of ecocardiograms 

 

 

 



 
[163] 

  



 
[164] 

Appendix 2.  

 

Defining and Detecting Complex Peak Relationships in Mass 

Spectral Data: The mz.unity Algorithm 
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Appendix 2.1. Description of the combinatorial search problem for complex peak 

relationships. 

Let O be the set of all observed <m,z>. Let M be a user supplied set of <m,z>. Find multisets R 

and S that satisfy: 

 

𝑅, 𝑆 ⊂ 𝑂 ∪𝑀 

𝑅, 𝑆 ⊄ 𝑀 

𝑅 ∩ 𝑆 = ∅ 

�𝑥𝑚
𝑥∈𝑅

−�𝑥𝑚
𝑥∈𝑆

< 𝛿 

�𝑥𝑧
𝑥∈𝑅

−�𝑥𝑧
𝑥∈𝑆

= 0 

𝛿 =
𝜀

1𝐸6
∗ �

𝑥𝑚
|𝑥𝑧|

𝑥∈𝑅,𝑆∩𝑂

 

Given a set of <m,z> pairs where m and z are positive or negative real numbers, find two sub-

multisets whose summed mass is within error δ and whose summed charge is equal. Exclude pairs of 

multisets which share a member. 

In broader terms, we have found a set of mass and charge transformations (corresponding to 

deprotonation, adduction, etc.) which convert a detected <m,z> value to a second <m, z> value. 

Thus this search ensures that the transformations of each <m,z> as described by members of each 

multiset results in an equal mass and charge. 
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Appendix 2.2. Features from negative mode included in the composite spectrum 

mz maxo source mz maxo source 
-146.046 2.76E+09 Psn -400.134 1216220 psn 
-128.035 3.52E+08 Psn -188.002 1182428 psn 
-102.056 3.12E+08 Psn -665.11 1176081 psn 
-147.049 1.64E+08 Psn -542.059 1156010 psn 
-662.102 1.37E+08 Psn -189.088 1126616 psn 
-231.098 1.15E+08 psn -246.118 1123492 psn 
-132.03 58812040 psn -540.039 1110298 psn 
-331.055 44957360 psn -269.054 1099994 psn 
-809.155 35751240 psn -848.114 1090830 psn 
-663.105 32867860 psn -335.055 952685.8 psn 
-540.054 31911818 psn -206.012 938092.4 psn 
-348.087 30048056 psn -301.065 923233.9 psn 
-293.099 29273104 psn -516.063 921326.4 psn 
-315.081 28147298 psn -894.207 886170.4 psn 
-148.05 24049586 psn -500.09 873459.1 psn 
-129.038 20168718 psn -232.096 835217.1 psn 
-103.059 15625474 psn -345.178 834453.8 psn 
-147.043 12138567 psn -450.11 815158.2 psn 
-283.068 11558971 psn -456.246 809889.1 psn 
-232.102 11044240 psn -994.657 808162.4 psn 
-245.114 10539088 psn -881.311 808151.8 psn 
-810.158 9959694 psn -572.344 790534.1 psn 
-664.108 6937656 psn -134.034 789540.4 psn 
-541.057 5288482 psn -100.04 785416.2 psn 
-662.603 5039852 psn -187.109 781978.1 psn 
-332.058 4757833 psn -115.003 758465.8 psn 
-306.077 4592574 psn -456.166 758344.9 psn 
-758.09 4585383 psn -832.14 720119.6 psn 
-88.0403 4487963 psn -333.059 683614.1 psn 
-168.028 3955738 psn -875.176 680699.4 psn 
-357.087 3907644 psn -687.107 673873.8 psn 
-129.019 3892937 psn -337.063 672261.3 psn 
-333.053 3772248 psn -598.36 661826.6 psn 
-294.102 3454026 psn 
-320.011 3302731 psn 
-847.11 3277035 psn 
-184.001 3091660 psn 
-349.09 3036758 psn 
-316.084 2891467 psn 
-133.033 2886159 psn 
-148.052 2825622 psn 
-811.16 2595229 psn 
-358.118 2563522 psn 
-228.049 2491125 psn 
-244.023 2471267 psn 
-146.025 2384161 psn 
-416.108 2370798 psn 
-993.655 2345890 psn 
-831.137 2325020 psn 
-760.078 2294203 psn 
-353.037 2244784 psn 
-130.039 2227558 psn 
-874.173 2207934 psn 
-146.104 2033520 psn 
-151.062 1948270 psn 
-378.152 1836020 psn 
-994.157 1833876 psn 
-317.039 1619828 psn 
-146.071 1601470 psn 
-146.02 1589578 psn 
-129.032 1572900 psn 
-244.119 1561877 psn 
-104.06 1533376 psn 
-103.053 1487027 psn 
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-369.011 1482860 psn 
-744.105 1443245 psn 
-284.072 1440297 psn 
-149.053 1427846 psn 
-759.093 1331007 psn 
-350.083 1323925 psn 
-346.021 1306265 psn 
-233.103 1248925 psn 
-436.095 1239505 psn 
-397.988 1222801 psn 

Appendix 2.3. Features from positive mode included in the composite spectrum 

mz maxo source          
148.06 1.81E+09 psp 170.0422 3883824 psp 465.3215 1884285 psp 173.0919 1058835 psp 
130.0498 3.02E+08 psp 424.2588 3865671 psp 463.306 1875812 psp 425.2428 1038059 psp 
233.2447 2.6E+08 psp 341.222 3865225 psp 230.1976 1848160 psp 196.1556 1034444 psp 
664.1172 1.96E+08 psp 481.3163 3849028 psp 318.2982 1844858 psp 380.0776 1032436 psp 
233.113 1.22E+08 psp 159.1603 3844951 psp 207.9982 1824690 psp 352.1902 1021926 psp 
149.0633 91513336 psp 240.172 3813592 psp 438.2743 1823870 psp 246.2419 1021253 psp 
102.0548 61472984 psp 243.2291 3693398 psp 308.1639 1808380 psp 393.2531 1016436 psp 
123.0554 54190284 psp 261.276 3614619 psp 205.6433 1763577 psp 192.0241 1013983 psp 
665.1202 50223776 psp 124.0587 3491213 psp 241.2133 1737384 psp 85.02834 1011348 psp 
245.2447 48069948 psp 226.1565 3441997 psp 150.0665 1731420 psp 253.2133 1004417 psp 
190.2025 28252376 psp 234.1538 3437938 psp 267.1369 1702268 psp 299.1636 1002699 psp 
234.2479 26949514 psp 235.1617 3252422 psp 359.1025 1688196 psp 368.1851 1000992 psp 
271.0688 21521252 psp 231.2293 3219105 psp 153.0405 1673078 psp 201.1903 991107.1 psp 
276.2871 20748364 psp 383.2324 3199432 psp 346.1889 1665952 psp 289.2712 978187 psp 
427.306 19735338 psp 702.0733 3124695 psp 483.2956 1661078 psp 350.1212 962097.6 psp 
157.1447 18880884 psp 171.0762 3102233 psp 117.1263 1638529 psp 327.2175 961277.2 psp 
257.2446 18655262 psp 248.1696 3073251 psp 369.2168 1625681 psp 234.1102 956079.1 psp 
131.0531 17018116 psp 226.0376 2991801 psp 142.1339 1621513 psp 305.696 948127.1 psp 
350.102 15073590 psp 283.132 2975036 psp 435.311 1610065 psp 260.6854 946392.5 psp 
453.3216 15012519 psp 116.1184 2972269 psp 228.1819 1591366 psp 442.1668 945906.9 psp 
247.1287 14912596 psp 493.3163 2965840 psp 232.1567 1547727 psp 323.215 943317.6 psp 
150.0642 14645601 psp 269.2447 2952662 psp 432.1362 1543830 psp 422.2795 942465.8 psp 
227.1644 13957159 psp 131.0338 2910072 psp 203.1866 1531236 psp 507.3319 936827.4 psp 
191.1865 13730655 psp 103.0582 2891140 psp 273.0669 1513754 psp 225.1486 928799.9 psp 
234.1163 12932350 psp 428.3099 2856149 psp 485.3112 1481398 psp 511.3267 928654.2 psp 
265.0503 10756661 psp 451.306 2814969 psp 285.2398 1461184 psp 191.1024 925484.1 psp 
666.1227 10674766 psp 477.3215 2653451 psp 222.1541 1426840 psp 996.1745 923613.8 psp 
200.1869 10418991 psp 175.1553 2644349 psp 132.1131 1426403 psp 319.3297 923008.4 psp 
295.1138 10269037 psp 686.0993 2641257 psp 667.1254 1425935 psp 412.2589 920321.3 psp 
259.2604 8838102 psp 277.2905 2631271 psp 241.1616 1415203 psp 675.1086 918688 psp 
304.1618 8177553 psp 450.2744 2600441 psp 440.2537 1412062 psp 289.2347 901264.7 psp 
147.1604 7950535 psp 229.2137 2572000 psp 223.9721 1405962 psp 497.3113 896755.7 psp 
214.2025 7811584 psp 234.2288 2559343 psp 304.2823 1398901 psp 176.0737 893954.2 psp 
349.1181 7632175 psp 426.2745 2514821 psp 296.1167 1398888 psp 1014.651 888278.3 psp 
314.2092 7174908 psp 379.2011 2492418 psp 271.224 1397299 psp 410.2432 887668.1 psp 
434.2795 6942368 psp 99.0916 2480767 psp 235.2513 1393120 psp 427.2585 883956.6 psp 
255.0949 6566525 psp 397.2115 2450742 psp 355.2012 1372936 psp 150.647 883463.1 psp 
134.0447 6280206 psp 136.0618 2449351 psp 408.2639 1360118 psp 454.2693 877597.7 psp 
251.0346 6058636 psp 191.2058 2432413 psp 158.1481 1357751 psp 495.2955 870804.2 psp 
436.295 6045015 psp 601.3956 2407377 psp 496.3636 1350771 psp 256.1209 866752.1 psp 
104.1181 5943378 psp 454.3255 2396598 psp 155.129 1348961 psp 489.3215 863220.1 psp 
275.2555 5848210 psp 210.1713 2380743 psp 285.0829 1342086 psp 273.276 862540.6 psp 
469.3164 5828522 psp 271.2604 2371772 psp 422.2432 1319220 psp 215.1024 861544.3 psp 
261.2396 5793045 psp 495.3319 2369524 psp 353.2219 1308334 psp 392.2689 854450.4 psp 
467.3007 5786659 psp 443.3009 2356544 psp 360.1324 1293417 psp 372.0838 849048 psp 
234.242 5718033 psp 365.2218 2339415 psp 287.2555 1280357 psp 396.2639 846665.8 psp 
410.2795 5668431 psp 323.0393 2321906 psp 335.7307 1272806 psp 267.0483 837923.8 psp 
246.2481 5659415 psp 411.2635 2312104 psp 163.1552 1251915 psp 398.2431 837573.2 psp 
149.0573 5610463 psp 233.1645 2304944 psp 333.0643 1236596 psp 703.077 835253.9 psp 
202.2025 5554419 psp 455.3009 2298684 psp 235.1172 1228381 psp 440.29 828606.9 psp 
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288.2871 5536289 psp 326.1748 2271483 psp 192.19 1226547 psp 256.167 827247.1 psp 
332.5624 5531230 psp 218.1975 2269794 psp 227.1979 1225753 psp 120.613 826322.6 psp 
255.229 5406180 psp 258.2481 2242889 psp 129.1261 1218545 psp 151.0674 824307.5 psp 
298.1796 5280998 psp 479.337 2236099 psp 310.1796 1211365 psp 342.1219 822430.4 psp 
354.1695 5181576 psp 314.7111 2185420 psp 186.1713 1206633 psp 505.3164 815663.2 psp 
269.1162 5132939 psp 594.4002 2179335 psp 436.2588 1201589 psp 286.1317 798008.8 psp 
374.148 5068381 psp 388.1456 2168571 psp 143.1292 1200430 psp 556.3486 795780.7 psp 
128.0707 5005582 psp 217.6432 2141469 psp 228.2184 1197925 psp 460.295 794064.2 psp 
385.2481 4837042 psp 108.6127 2123574 psp 226.6486 1191097 psp 151.6549 793066.4 psp 
384.2641 4743927 psp 272.0722 2101159 psp 131.0469 1184284 psp 239.1977 791010.1 psp 
85.04767 4690118 psp 247.1618 2075201 psp 185.1761 1183860 psp 780.2363 789338.8 psp 
218.6511 4430709 psp 138.6471 2071239 psp 183.1604 1172474 psp 1006.664 781422.4 psp 
439.306 4337509 psp 388.0578 2069616 psp 483.332 1158942 psp 317.0835 781141.6 psp 
320.1642 4316508 psp 132.0541 2067111 psp 153.0768 1157504 psp 242.1696 780253.4 psp 
186.0162 4303773 psp 406.2483 2063521 psp 247.2239 1154023 psp 298.2719 780054.4 psp 
322.1798 4289709 psp 468.2848 2022243 psp 995.6728 1127385 psp 148.0006 779222.2 psp 
452.29 4236093 psp 351.1054 2003873 psp 285.0848 1110661 psp 406.1561 777100.1 psp 
340.1903 4202912 psp 509.3111 1973029 psp 448.2951 1108775 psp 542.0681 770435.9 psp 
239.1642 4089331 psp 226.2026 1969459 psp 351.2062 1105669 psp 121.6208 769528.5 psp 
367.2375 4082911 psp 409.2954 1941976 psp 431.1876 1081482 psp 402.2345 767691.8 psp 
198.1713 4067356 psp 100.0994 1925514 psp 395.2321 1076854 psp 418.2846 764103.7 psp 
273.2396 4020422 psp 409.2477 1907389 psp 339.2062 1075096 psp 214.0916 763270.1 psp 
216.2183 3967400 psp 322.207 1892691 psp 356.1375 1073961 psp 475.2136 759841.3 psp 
248.2318 3908586 psp 248.1321 1892027 psp 269.1107 1062688 psp 304.0153 756906.7 psp 
595.4037 753921.4 psp 
428.2903 752444.6 psp 
375.1518 751830 psp 
266.0537 749370.5 psp 
375.1989 749054.3 psp 
256.2324 740162.6 psp 
440.31 734644.9 psp 
335.2148 721214.6 psp 
352.0979 718792.9 psp 
411.2806 717596.1 psp 
687.1026 709065.9 psp 
341.1378 705273.1 psp 
152.1182 695237.9 psp 
411.2273 691263.7 psp 
148.0339 689500.3 psp 
264.1827 684786.1 psp 
203.206 678903.4 psp 
322.7088 663479.8 psp 
309.1479 649027.9 psp 
269.6907 638324.9 psp 
356.1851 623756.9 psp 
394.0932 618761.9 psp 
385.2679 615982.9 psp 
531.2981 614656.4 psp 
325.1431 606670.4 psp 
582.3642 606210.6 psp 
148.1637 593393 psp 
1015.153 591243.8 psp 
298.1513 589913.8 psp 
386.252 586079.9 psp 
314.1745 568435.3 psp 
271.1318 568325.4 psp 
481.2799 561573.8 psp 
238.1104 553831.4 psp 
404.1949 543094.6 psp 
189.1791 538244.8 psp 
235.245 531464.8 psp 
120.1133 530622.3 psp 
399.2272 530437.9 psp 
395.1958 520012.8 psp 
293.1164 515396.7 psp 
355.1735 509952.2 psp 
277.2846 505453.8 psp 
527.3216 500390 psp 
290.0722 491646 psp 



 
[169] 

252.1722 487311.1 psp 
270.1196 474292.3 psp 
341.9714 469674.1 psp 
212.6328 468559.9 psp 
   

 

Appendix 2.4. Background peaks from postive mode 

85.07597, 86.05996, 86.07934, 87.05958, 87.09155, 88.02144, 88.07563, 89.07086, 89.10725, 90.05492, 91.05417, 
92.03683, 93.12071, 94.06508, 95.0603, 96.08069, 96.99513, 97.07597, 98.07123, 98.08307, 98.98, 99.05523, 99.09154, 
100.07561, 100.08836, 100.09939, 100.11199, 101.05966, 101.07089, 101.079, 101.10728, 102.09128, 102.10251, 
103.08651, 104.01614, 104.07051, 104.11812, 104.99225, 105.10219, 105.12099, 107.07019, 108.61268, 109.11416, 
111.01075, 111.05527, 111.09161, 111.11676, 112.08948, 112.09863, 113.07085, 113.10723, 114.09157, 114.10279, 
114.11087, 114.61299, 115.0212, 115.09201, 115.10702, 116.07081, 116.11841, 117.00044, 117.06609, 117.10243, 
117.12156, 117.12624, 118.03207, 118.06534, 118.08644, 118.09768, 118.13401, 119.01608, 119.08167, 120.0113, 
120.06568, 120.11322, 120.61293, 121.01186, 121.62073, 122.00814, 122.07141, 123.09179, 123.12619, 124.08704, 
125.03632, 125.07104, 125.10743, 125.12361, 126.10266, 127.08668, 127.10709, 128.08193, 128.09011, 128.11828, 
128.61031, 129.06721, 129.07548, 129.10231, 129.12098, 129.12615, 130.0863, 130.09756, 130.1339, 130.15906, 
131.01594, 131.08153, 131.11858, 131.13906, 132.11315, 133.03156, 134.02723, 135.0108, 135.07242, 135.10157, 
135.12607, 136.0118, 136.02156, 136.08691, 136.13386, 136.94014, 137.00786, 137.02641, 137.04574, 137.12346, 
137.6393, 138.1025, 138.6471, 139.08654, 139.1229, 139.1485, 140.00183, 140.08176, 140.11816, 141.10215, 141.11338, 
141.12131, 141.12599, 142.03375, 142.09748, 142.13386, 143.08149, 143.12002, 143.12912, 143.14067, 143.58723, 
144.0475, 144.11311, 144.64713, 145.0315, 145.09713, 145.1178, 145.14376, 146.0268, 146.10048, 146.12877, 147.04714, 
147.10153, 147.11277, 147.16038, 148.14423, 148.16268, 149.02329, 149.02641, 149.12245, 150.02785, 150.10252, 
150.64706, 151.02325, 151.09657, 151.65489, 152.11815, 152.12807, 153.1134, 154.03181, 154.09741, 154.13378, 
155.11813, 155.12903, 155.15419, 156.04746, 156.11312, 156.1495, 157.09714, 157.11936, 157.14472, 158.02675, 
158.03935, 158.12874, 158.14175, 158.14875, 159.04713, 159.11274, 159.16035, 160.04238, 160.04885, 160.10796, 
160.14435, 160.16328, 160.16815, 161.04393, 161.06277, 161.092, 161.176, 162.1236, 163.04201, 163.13277, 163.15523, 
164.13632, 165.05087, 165.11229, 166.13327, 167.03699, 167.12907, 168.11308, 168.13219, 168.14949, 169.14469, 
170.09636, 170.12872, 170.14839, 171.11272, 171.12396, 171.14912, 171.16031, 172.04236, 172.10797, 172.14434, 
172.15241, 172.16302, 173.06283, 173.0808, 173.13967, 173.17604, 174.12368, 174.12769, 174.16006, 174.1794, 
175.11884, 175.1553, 176.07364, 176.15865, 177.05769, 178.05941, 179.05017, 179.11939, 179.12908, 180.08658, 
180.15934, 181.02837, 181.14467, 182.12883, 182.14002, 182.16519, 183.12404, 183.16042, 184.10809, 184.14445, 
184.1572, 185.13968, 185.17607, 186.12371, 186.14282, 186.16008, 186.1713, 187.10771, 187.12666, 187.15532, 
187.63268, 188.13934, 188.15886, 188.1757, 188.18692, 189.14256, 189.17097, 189.17909, 190.17403, 190.20248, 
191.07326, 191.15016, 191.18648, 191.19955, 191.20588, 192.0729, 192.07663, 192.12287, 192.13817, 192.18369, 192.19, 
192.63546, 193.07023, 193.07803, 193.14406, 194.08424, 194.14, 195.16039, 196.00386, 196.14419, 196.15638, 
197.13006, 197.13962, 197.17604, 198.12368, 198.16005, 198.17127, 199.1553, 199.17315, 199.18045, 199.19166, 
199.6326, 200.07372, 200.13934, 200.15872, 200.17577, 200.1869, 200.64022, 201.13444, 201.17093, 201.18341, 
201.19028, 202.15464, 202.20253, 203.15027, 203.18662, 203.20595, 204.06863, 204.13407, 204.17066, 204.18185, 
204.18999, 204.63545, 205.16596, 205.18971, 205.64328, 206.14122, 206.1975, 207.18149, 207.20089, 208.09998, 
208.15572, 209.13001, 209.1396, 209.15261, 209.17605, 210.13803, 210.17129, 210.63581, 211.15529, 211.17424, 
211.1916, 211.64323, 212.0948, 212.13945, 212.15023, 212.1869, 212.63283, 213.07879, 213.09428, 213.09817, 
213.13451, 213.14873, 213.15972, 213.17084, 213.17876, 213.19025, 213.6406, 214.09161, 214.09928, 214.1565, 
214.16874, 214.20251, 214.65799, 215.15217, 215.15837, 215.18661, 215.19963, 215.20594, 216.1427, 216.17067, 
216.18184, 216.21823, 216.63547, 217.05013, 217.10706, 217.16596, 217.17918, 217.20226, 217.22087, 217.64327, 
218.08436, 218.1396, 218.14574, 218.15914, 218.19751, 218.23386, 218.65107, 219.15206, 219.18127, 219.2009, 
219.64064, 219.65049, 220.15656, 220.65807, 221.14953, 222.15401, 222.17124, 222.19245, 222.65578, 223.09661, 
223.16716, 223.6432, 224.18692, 224.63293, 224.65101, 225.11225, 225.14906, 225.17085, 225.18178, 225.64072, 
225.65032, 226.11058, 226.15659, 226.16604, 226.20263, 226.64862, 226.65824, 227.09452, 227.11292, 227.15022, 
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227.16439, 227.18729, 227.1979, 227.20615, 227.65944, 227.66625, 228.15422, 228.16232, 228.16944, 228.18196, 
228.21841, 228.23212, 228.65962, 229.16609, 229.18622, 229.20254, 229.21365, 230.10557, 230.15002, 230.19766, 
230.21678, 230.65119, 231.1491, 231.18175, 231.20077, 231.22928, 231.65925, 232.15681, 232.2133, 232.23184, 
232.65825, 233.02438, 233.14719, 233.16457, 233.1987, 233.24464, 233.65661, 233.66631, 234.13359, 234.15387, 
234.19217, 234.22883, 234.24205, 234.24782, 234.64771, 234.65561, 234.66968, 235.06063, 235.1516, 235.16193, 
235.16631, 235.25076, 235.66326, 235.67739, 236.06246, 236.161, 236.16874, 236.17908, 236.18658, 237.02412, 
237.05862, 237.1484, 237.18179, 238.11043, 238.15628, 238.20249, 238.6484, 238.65809, 239.16419, 239.18626, 
239.19773, 239.6572, 239.66609, 240.08975, 240.12591, 240.15383, 240.16149, 240.17197, 240.18179, 240.21804, 
240.61737, 240.65967, 240.67344, 241.16165, 241.16814, 241.17952, 241.21326, 241.22154, 241.66313, 241.67752, 
242.1515, 242.16956, 242.19738, 242.21646, 242.23385, 242.66819, 243.15933, 243.18127, 243.19275, 243.20078, 
243.2291, 244.12101, 244.15676, 244.17684, 244.21309, 244.23191, 245.12302, 245.16367, 245.1972, 245.20831, 
245.24465, 246.07904, 246.15394, 246.1722, 246.19239, 246.22886, 246.24187, 246.24802, 246.65695, 246.67097, 
247.16184, 247.17743, 247.21256, 247.2239, 247.2497, 247.26028, 247.66341, 247.67756, 248.15147, 248.1696, 
248.17926, 248.208, 248.23172, 248.67112, 248.68535, 249.07634, 249.15932, 249.18051, 249.18775, 249.2395, 
250.07828, 250.24198, 251.03464, 251.07009, 251.17476, 251.19762, 252.03428, 252.03791, 252.17217, 252.18178, 
252.21818, 252.67116, 253.03279, 253.12126, 253.16164, 253.17849, 253.21334, 253.62562, 253.67786, 254.10541, 
254.15149, 254.16949, 254.19757, 254.21688, 254.23396, 254.66789, 254.68532, 255.13691, 255.1592, 255.178, 
255.18947, 255.22754, 255.66094, 255.67412, 256.12099, 256.139, 256.16712, 256.17692, 256.21303, 256.23087, 
256.6827, 257.1337, 257.17442, 257.18369, 257.19763, 257.20824, 257.21646, 257.24454, 258.15903, 258.19237, 
258.22875, 258.2421, 258.24801, 259.16665, 259.22411, 259.26029, 259.67765, 260.16949, 260.20795, 260.23153, 
260.26289, 260.68543, 261.17771, 261.18764, 261.23959, 261.27593, 261.67401, 261.69311, 262.16712, 262.24226, 
262.27937, 262.66465, 262.68286, 263.10568, 263.15769, 263.17417, 263.21891, 263.67206, 264.16438, 264.18269, 
264.22663, 264.6814, 265.05028, 265.12126, 265.21334, 265.23449, 266.05218, 266.15301, 266.6855, 267.0489, 
267.13697, 267.22803, 268.18746, 268.21301, 268.23164, 268.68285, 269.05054, 269.11622, 269.18161, 269.19864, 
269.20832, 269.24466, 269.6907, 270.10021, 270.11834, 270.18269, 270.19228, 270.20799, 270.22869, 270.24805, 
271.13185, 271.16881, 271.20036, 271.22372, 271.26031, 272.18013, 272.208, 272.22993, 272.26132, 273.19008, 
273.23956, 273.27596, 274.22367, 274.24223, 274.27119, 275.10568, 275.25545, 275.27423, 275.29182, 275.69085, 
276.19087, 276.25893, 276.28701, 276.68058, 277.12175, 277.17784, 277.19065, 277.19658, 277.23478, 277.2711, 
277.28455, 277.29038, 277.68872, 278.04575, 278.20763, 278.29251, 279.13714, 279.15919, 279.18826, 279.2293, 
279.6801, 280.13942, 280.18132, 281.13399, 281.15278, 281.20842, 282.1004, 282.1522, 282.15616, 282.22891, 
283.13207, 283.14966, 283.2238, 283.26055, 284.13545, 284.20813, 284.2603, 285.1892, 285.23981, 285.27617, 
286.13173, 286.19616, 286.22381, 286.24295, 286.27138, 287.21911, 287.25545, 288.19299, 288.20311, 288.23948, 
288.25883, 288.28703, 289.23469, 289.27108, 289.29033, 290.07215, 290.23877, 290.26774, 291.25037, 291.27357, 
292.19599, 292.2819, 292.68804, 293.1165, 293.18868, 293.28532, 293.66857, 295.13235, 295.22421, 295.26085, 
296.11647, 296.1319, 296.13571, 296.16399, 297.14801, 297.23985, 297.27643, 298.15044, 298.17961, 298.22406, 
298.24315, 298.27011, 299.16372, 299.18176, 299.25581, 300.17708, 300.19364, 300.25913, 300.2873, 300.6861, 
301.2015, 301.27133, 301.29058, 301.69359, 301.70335, 302.18203, 302.20197, 302.26839, 302.30293, 302.67416, 
303.25057, 303.30628, 304.25034, 304.2822, 304.31861, 304.68828, 305.66894, 305.69622, 306.14833, 306.19876, 
306.67689, 306.68611, 307.16889, 307.20153, 307.24562, 307.28186, 307.70341, 308.09127, 308.16379, 308.18148, 
308.19084, 309.14789, 309.16736, 309.1989, 309.70074, 310.17951, 310.20666, 310.70853, 311.16358, 311.18733, 
311.25577, 312.15867, 312.19332, 312.28727, 313.14302, 313.20142, 313.2713, 313.69346, 313.70296, 314.17439, 
314.18194, 314.2092, 314.26678, 314.30291, 314.67399, 314.70108, 314.71105, 315.19019, 315.19959, 315.21086, 
315.25084, 315.68219, 315.69183, 316.18951, 316.20709, 316.25407, 316.28247, 317.19663, 317.26647, 317.31416, 
318.14863, 318.20389, 318.29814, 319.20172, 319.23441, 319.28218, 319.32977, 320.05693, 320.16417, 320.2096, 
320.21849, 321.14835, 321.16778, 321.19018, 321.19918, 321.25022, 321.6912, 321.70101, 322.16119, 322.17983, 
322.20698, 322.70887, 322.72279, 323.16393, 323.18237, 323.18767, 323.2142, 323.22119, 323.67975, 323.71705, 
324.15917, 324.19546, 324.69705, 325.14315, 325.17973, 325.1945, 325.19885, 326.17475, 326.20948, 326.30326, 
327.00869, 327.17815, 327.19026, 327.21742, 327.71923, 328.19805, 328.20704, 328.28252, 328.69965, 328.72269, 
329.00663, 329.18776, 329.19673, 329.21426, 330.20296, 330.29815, 330.72025, 331.00281, 331.21213, 331.24577, 
331.28213, 331.32975, 332.16414, 332.19279, 332.27733, 333.08845, 333.2978, 333.309, 334.07234, 334.1798, 334.20708, 
334.72284, 335.09852, 335.18775, 335.32462, 335.71669, 335.73065, 336.1591, 336.19703, 336.23243, 337.18957, 
337.20292, 337.21229, 338.17472, 338.22004, 339.15872, 339.17831, 339.20624, 340.15386, 340.17151, 340.19029, 
341.19309, 341.22192, 342.20607, 342.22592, 342.29807, 342.72012, 343.02814, 343.21227, 343.72801, 344.19293, 
344.22943, 344.24364, 344.73619, 345.20032, 345.25045, 345.34531, 346.17987, 346.18881, 347.19201, 348.19553, 
348.73844, 349.0833, 349.18939, 350.17466, 350.211, 350.32421, 351.20642, 351.22876, 351.72668, 352.19029, 
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352.20907, 353.22188, 354.16954, 355.17206, 355.20119, 356.18535, 357.21686, 357.25161, 360.23312, 361.19064, 
363.20625, 363.26064, 363.30825, 364.19033, 364.20989, 364.29225, 365.203, 365.22181, 366.20627, 366.23014, 
366.72957, 367.12423, 367.20101, 367.23746, 368.22159, 368.24103, 369.21678, 373.24082, 373.25648, 373.74263, 
375.20629, 375.23839, 375.30818, 377.2218, 379.20112, 379.2384, 379.73293, 381.21674, 381.23821, 382.2008, 
382.22053, 382.24831, 383.23237, 384.23631, 384.26402, 385.24804, 385.26783, 386.18444, 386.2518, 387.18835, 
387.24164, 388.1457, 388.24618, 388.74791, 389.14928, 389.22694, 389.24916, 389.72823, 390.20586, 391.20105, 
391.23749, 391.28463, 392.23269, 392.24087, 392.28794, 393.21673, 393.25309, 394.24766, 395.19604, 395.23213, 
396.22764, 396.24207, 396.26389, 397.21157, 397.24791, 397.75289, 398.23216, 398.24313, 399.2273, 400.25888, 
401.24325, 401.25386, 401.75569, 402.23447, 402.73608, 404.23273, 405.21667, 405.31864, 406.15618, 406.24828, 
407.23231, 407.25198, 407.3343, 408.23749, 408.2639, 409.2115, 409.24766, 409.26746, 409.76712, 410.23236, 410.2432, 
410.25131, 410.25929, 410.27954, 411.22731, 411.2398, 411.26359, 411.28318, 411.74113, 412.25884, 412.26691, 
412.27764, 413.24277, 413.26161, 418.24827, 419.2319, 419.33428, 420.22767, 420.26391, 421.21161, 421.24809, 
421.2676, 422.24322, 422.27955, 423.22728, 423.24676, 423.26356, 423.27829, 424.25881, 425.24284, 425.2628, 
425.29049, 426.24728, 426.27447, 427.2585, 427.27851, 427.30596, 428.29021, 428.30985, 429.22642, 429.30278, 
429.31082, 430.23021, 431.18772, 432.26379, 433.24782, 433.26747, 434.243, 434.2794, 435.28324, 436.25882, 
436.27694, 437.24273, 437.2793, 437.29881, 438.23799, 438.27432, 438.2918, 438.31071, 439.22204, 439.25847, 
439.27804, 439.30598, 440.25366, 440.28999, 440.30989, 441.23763, 441.27397, 441.28809, 442.2692, 442.2931, 
443.30094, 444.26372, 446.27942, 447.27787, 448.25868, 449.26204, 449.29015, 449.29839, 450.27437, 450.29362, 
451.27811, 451.30594, 452.25366, 452.28996, 452.30965, 453.29065, 453.32153, 454.26929, 454.28784, 454.306, 
454.32544, 455.24204, 455.30091, 455.31787, 455.32696, 455.33688, 456.30446, 456.32158, 457.20331, 458.2793, 
459.27452, 459.29583, 460.25853, 461.29022, 461.29846, 462.14658, 462.27433, 462.29332, 462.31062, 463.26962, 
463.30604, 464.25352, 464.28986, 464.30948, 465.2855, 465.32144, 466.26917, 466.28819, 466.30552, 467.30071, 
468.30445, 468.3323, 469.2982, 469.31632, 470.32027, 470.34799, 471.29586, 471.31291, 471.32169, 471.3514, 
472.26841, 473.2527, 473.29007, 474.2297, 474.27361, 474.31057, 475.2137, 475.2694, 475.2908, 475.30566, 475.7919, 
476.27121, 476.28973, 476.309, 476.32616, 477.32141, 478.26913, 478.30556, 479.3007, 479.33703, 480.22821, 
480.32115, 480.34088, 481.27995, 481.31629, 481.35256, 482.26392, 482.30048, 482.3202, 482.34784, 483.29564, 
483.33191, 484.27959, 484.29799, 484.31619, 484.3358, 485.27629, 485.3112, 486.34274, 487.30603, 488.20891, 
489.3214, 491.30058, 491.33696, 492.30386, 492.33185, 493.28016, 493.31629, 494.30048, 494.32014, 494.34787, 
495.29589, 495.3319, 496.29817, 496.31614, 496.3359, 496.36353, 497.31127, 497.34764, 497.36724, 498.2841, 
498.34273, 499.28905, 499.32682, 501.32141, 501.34254, 503.30054, 503.33694, 505.28239, 505.31629, 505.35266, 
506.2437, 507.29554, 507.3318, 508.31601, 508.32754, 508.36339, 509.31109, 509.34742, 510.34264, 511.32669, 
512.25818, 512.33022, 512.35825, 513.34237, 514.27939, 515.31041, 516.24001, 517.31606, 519.33175, 520.36342, 
521.31104, 521.34741, 522.34262, 522.37908, 523.29034, 523.32663, 524.35818, 525.30601, 525.34231, 526.33748, 
527.32162, 527.35798, 531.29806, 534.3424, 535.32666, 536.35808, 537.34231, 538.37389, 539.35803, 541.3261, 
541.3372, 547.29117, 551.32165, 552.35308, 557.26712, 557.36905, 558.35315, 559.33731, 559.3563, 561.2985, 
569.36916, 584.33241, 584.3689, 585.37255, 586.33019, 598.34821, 599.37975, 600.30936, 600.36385, 601.39536, 
602.39869, 603.35673, 608.36893, 610.33068, 613.39597, 614.39928, 617.39086, 619.40672, 623.37891, 625.39606, 
626.38008, 627.41167, 628.34136, 629.37316, 629.39054, 639.41166, 641.3909, 643.35214, 643.40674, 644.4098, 
644.43824, 645.36803, 645.42242, 653.42756, 655.40663, 659.40167, 669.42247, 670.4539, 671.38357, 776.48833, 
777.44678, 801.50109, 125.09311, 132.10192, 146.08126, 203.62768, 228.08982, 232.64885, 238.16619, 241.14351, 
251.1615, 255.67603, 262.1905, 267.69313, 268.08485, 275.67271, 276.6987, 280.17136, 299.21931, 326.19219, 
329.17434, 329.71163, 330.15849, 336.72069, 344.22006, 353.19859, 354.20606, 356.73598, 370.22028, 383.21353, 
384.21719, 389.22104, 394.20079, 435.26357, 446.24197, 447.237, 459.28054, 460.29332, 468.28477, 469.28837, 
470.30066, 473.27211, 480.30437, 488.26101, 488.29839, 501.30612, 506.31955, 516.31375, 539.3216, 553.33726, 
194.11754, 210.13356, 285.14773, 294.14819, 307.13258, 320.71048, 321.16349, 327.25083, 437.26234, 455.27324, 
602.37937, 336.22246, 449.19828, 283.1687, 350.12131, 
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-86.02469, -87.00343, -87.00867, -87.04507, -88.01205, -88.04032, -89.02437, -90.01876, -90.02772, -91.05041, -
92.03252, -93.0345, -94.02978, -94.98056, -95.02504, -95.98015, -96.9764, -97.1843, -98.0247, -99.00797, -99.01997, -
100.04037, -101.00628, -101.02429, -101.06069, -102.02006, -103.03999, -105.01917, -108.04543, -109.02929, -
109.04053, -110.03587, -111.01982, -112.04024, -112.98545, -113.02427, -113.03553, -113.98874, -114.01943, -
114.05585, -115.03989, -115.05112, -115.07627, -116.03591, -116.07154, -116.07965, -116.92839, -117.00118, -
117.01918, -117.05557, -118.05084, -119.0168, -119.03478, -120.0179, -121.01363, -121.02934, -122.02458, -122.03272, -
123.01176, -125.03549, -127.00114, -129.05563, -129.092, -130.08719, -130.99242, -131.03483, -131.07123, -132.01212, -
132.99615, -133.01221, -133.05136, -134.02951, -134.0471, -134.97547, -135.02998, -136.93661, -136.99104, -137.02751, 
-137.03553, -138.01956, -139.04313, -140.9861, -141.01683, -141.06691, -141.09202, -142.02012, -142.05082, -142.97531, 
-143.02082, -143.03483, -143.04608, -143.07124, -143.10763, -144.03011, -144.11102, -144.99172, -145.05053, -
145.06175, -145.08693, -145.09814, -146.02087, -146.0264, -148.9524, -149.0494, -151.04001, -152.03532, -154.06219, -
154.94736, -155.00166, -155.10771, -155.94691, -156.00217, -156.94384, -156.95105, -156.99069, -156.99769, -
157.00577, -157.03231, -157.06157, -157.08685, -157.1232, -157.99403, -158.04569, -158.09299, -158.1266, -158.98943, -
159.07732, -159.10249, -159.99224, -160.04107, -161.02743, -161.04546, -163.06114, -165.02228, -165.04029, -165.979, -
169.08703, -171.07752, -171.10274, -171.13907, -172.14253, -172.95785, -173.95753, -174.05915, -174.9543, -174.95981, 
-174.96711, -175.00939, -175.01731, -175.04301, -175.06107, -175.07071, -175.07691, -175.11895, -176.04273, -
176.04619, -176.05593, -177.02231, -177.03986, -177.0474, -178.04317, -178.04919, -178.98346, -179.038, -179.05593, -
180.0395, -180.05927, -180.9893, -180.99922, -181.07165, -183.03289, -185.05668, -185.07729, -185.09301, -185.11815, -
185.1546, -187.04309, -187.0975, -188.03835, -189.02245, -189.05875, -189.08799, -190.01796, -190.05406, -192.03341, -
192.06975, -193.0536, -193.0713, -194.05329, -194.05698, -194.06678, -194.08211, -194.98854, -195.03294, -195.05075, -
195.05819, -196.99423, -197.01137, -197.04857, -197.99386, -199.13395, -199.1703, -200.17371, -201.02549, -202.05413, 
-203.05369, -203.05753, -204.03309, -204.05087, -205.05372, -205.15971, -206.05013, -206.0571, -207.03308, -207.0512, 
-207.06926, -208.0543, -208.06469, -208.07119, -208.93454, -209.06727, -209.07609, -210.04381, -210.06975, -210.9733, 
-211.06427, -211.13386, -212.06385, -212.06763, -213.06115, -213.186, -215.0328, -215.06739, -216.06963, -217.00295, -
217.02977, -217.1013, -218.08584, -218.11449, -218.96332, -219.04441, -219.17532, -220.06463, -221.03029, -221.06356, 
-221.06777, -222.06144, -223.01999, -223.0643, -223.0823, -225.01701, -225.04366, -225.08002, -226.08247, -227.20173, 
-229.0304, -230.98613, -231.97848, -232.06469, -232.9247, -232.97913, -233.09839, -233.15469, -233.92427, -233.97953, 
-234.08034, -234.15807, -234.92133, -234.97716, -235.03943, -235.0644, -235.07781, -235.11199, -235.95363, -236.05968, 
-236.09602, -237.06157, -238.07533, -238.09329, -238.99375, -239.05944, -239.07732, -240.0807, -241.02088, -241.21743, 
-242.0519, -243.08058, -244.9855, -245.09639, -247.04109, -247.17036, -248.04282, -248.09606, -249.03817, -249.08015, 
-249.09137, -249.14974, -250.07565, -251.10697, -253.02069, -253.21744, -254.02174, -254.07427, -254.07842, -
254.22083, -254.9612, -254.96809, -255.01766, -255.07209, -255.23308, -256.04958, -256.23648, -256.96118, -257.01576, 
-257.04655, -257.07002, -257.23982, -258.0717, -259.11186, -260.97409, -261.05594, -261.12776, -262.07538, -262.13042, 
-263.05382, -263.07809, -263.10705, -264.10945, -264.16072, -265.08649, -265.14807, -266.07057, -266.10669, -
266.15146, -267.07243, -267.09078, -267.23316, -267.94553, -268.06653, -268.08679, -268.23652, -269.21248, -
269.24885, -270.04732, -270.1017, -270.93524, -271.03145, -271.08563, -271.10453, -271.28679, -272.08778, -273.02044, 
-273.08129, -273.08973, -274.05255, -274.0602, -274.0872, -275.062, -275.10727, -276.04892, -276.05874, -276.09093, -
276.10941, -277.05697, -277.12257, -277.18095, -278.15424, -279.13834, -280.08596, -280.98312, -281.06996, -
281.11765, -281.24872, -282.06701, -282.25215, -283.2644, -284.08087, -284.26774, -285.047, -285.10121, -286.04808, -
286.10335, -287.04319, -287.09973, -287.22015, -288.07586, -289.0781, -289.08631, -289.12237, -290.05224, -291.10201, 
-291.13837, -292.10163, -292.10538, -292.89169, -293.11773, -293.17765, -294.14929, -294.18017, -294.98231, -
295.06749, -295.09927, -295.13312, -296.08079, -297.24355, -298.09645, -299.08043, -300.0826, -300.1386, -301.07062, -
301.0961, -302.07329, -302.09839, -303.02103, -304.07074, -304.16995, -305.11795, -306.07672, -306.14923, -307.24649, 
-308.06295, -309.04698, -309.08325, -309.11255, -310.09946, -310.90227, -311.12828, -311.16887, -311.90183, -
312.11231, -312.98764, -313.04196, -313.0963, -313.14389, -314.0987, -314.928, -315.08899, -315.1119, -315.25413, -
316.10925, -317.09203, -318.14913, -319.13087, -320.09226, -321.09565, -321.11248, -321.19645, -323.24134, -
325.01848, -325.05738, -325.18445, -326.09143, -327.12312, -329.23355, -330.90194, -330.95627, -330.9981, -331.08171, 
-331.99836, -333.2622, -334.14424, -335.12832, -335.14774, -336.15997, -337.14398, -337.19158, -339.03404, -339.07288, 
-339.12296, -339.15934, -340.10699, -340.16263, -341.11007, -341.13863, -342.12266, -343.08126, -344.11321, -
344.97917, -345.01363, -345.06802, -345.08916, -347.21215, -347.24136, -348.15986, -349.06296, -349.10739, -
349.19145, -349.25703, -350.10989, -350.28868, -351.09376, -351.12309, -352.03752, -352.08199, -352.15473, -
353.08961, -353.13878, -354.12278, -354.14212, -355.15443, -356.11337, -356.18609, -358.12899, -361.01066, -361.1916, 
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-363.0788, -363.20726, -364.2389, -365.10937, -365.13865, -365.2226, -365.28819, -366.05303, -366.15903, -367.11801, -
367.15427, -368.10189, -368.12021, -368.91205, -369.06256, -369.10447, -369.13355, -370.12876, -370.86888, -
372.10812, -373.11142, -374.12378, -376.16619, -377.18648, -378.1704, -379.20204, -380.18607, -381.13375, -381.21771, 
-382.20174, -383.12017, -383.14937, -383.2334, -384.16984, -384.18108, -385.17951, -386.12395, -386.13115, -387.15579, 
-388.13152, -390.25458, -391.23858, -392.2334, -393.1523, -394.97591, -395.19685, -396.18086, -397.12857, -398.19652, 
-399.15547, -399.22816, -400.13929, -401.17105, -404.23363, -405.12561, -406.24931, -407.28095, -408.87925, -
409.20138, -410.1967, -411.0074, -411.16263, -412.01076, -412.17595, -414.25445, -415.15063, -416.27024, -418.24949, -
419.14138, -419.28114, -420.22878, -421.21262, -422.2444, -423.22844, -423.27605, -424.17609, -424.2601, -425.24413, -
425.29172, -426.19177, -426.24761, -427.21183, -427.22302, -429.16902, -433.29656, -434.30039, -435.27589, -
437.20749, -438.23916, -439.22315, -440.17078, -441.23883, -441.28643, -442.19777, -442.27047, -443.25448, -
444.19098, -445.29664, -446.15226, -446.22906, -447.13629, -447.27601, -448.26002, -449.12792, -449.29164, -
450.32321, -451.25969, -451.30724, -453.23898, -453.28656, -454.27065, -455.21828, -457.2815, -458.19278, -459.31254, 
-461.15203, -461.29174, -461.31234, -463.27133, -463.30744, -465.23864, -465.28629, -466.27032, -467.25432, -
467.30207, -468.12112, -468.2496, -468.28597, -469.2336, -469.27009, -469.28982, -471.26045, -475.30713, -476.33871, -
477.28648, -478.27046, -479.30208, -480.24969, -480.28613, -481.28133, -481.318, -482.26539, -483.29698, -484.28104, -
485.23973, -485.31263, -486.31657, -487.23317, -487.30891, -488.28718, -489.29062, -491.30228, -492.28619, -
493.28981, -493.31789, -494.26564, -494.30184, -495.2607, -495.3059, -496.2811, -497.27721, -497.31273, -498.2604, -
498.2793, -498.31662, -499.29203, -499.32839, -501.30769, -502.31151, -506.30158, -507.29669, -508.28085, -509.31246, 
-510.29652, -511.32797, -512.27599, -512.33185, -513.27078, -513.30734, -513.33215, -514.30247, -516.28166, -
517.30229, -520.31728, -521.3124, -522.29656, -523.29116, -523.32816, -524.27597, -524.31243, -525.30737, -525.34382, 
-526.29153, -526.31155, -527.32307, -528.28181, -528.32704, -529.26652, -529.30199, -529.35814, -530.29732, -
533.31242, -535.32825, -537.30753, -537.34393, -538.29166, -538.32805, -538.34774, -539.28608, -539.32317, -
540.31819, -540.32756, -541.30242, -541.33875, -542.29721, -543.31812, -544.34962, -549.3075, -551.32329, -553.30243, 
-553.33896, -554.34209, -554.37026, -555.31794, -555.37388, -556.31253, -556.33844, -565.30083, -565.33867, -
567.31776, -568.34924, -569.33378, -571.34938, -580.38617, -581.3338, -581.37019, -599.38092, -601.34236, -607.38605, 
-611.38059, -615.37571, -617.39142, -625.39646, -627.35787, -641.39147, -642.42304, -643.40719, -659.40216, -
662.37677, -671.4022, -675.39678, -685.41758, -686.42072, -687.37903, -688.39221, -701.4125, -773.4698, -775.43115, -
102.04053, -201.11324, -209.98953, -226.047, -231.08067, -292.94611, -293.89124, -312.89892, -351.221, -357.09883, -
499.25605, -554.29749, -252.09103, -310.95664 
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Appendix 2.6. Composite spectrum from 21-22 minutes of a HILIC analysis of E. coli extract 
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Appendix 2.7. List of granular formula used 

Isotopes: M.iso 

 
m z d 

C12-13 1.003355 0 1 
N14-15 0.997035 0 1 
O16-18 2.004245 0 1 
S32-33 0.999387 0 1 
S32-34 1.995796 0 1 
Cl35-37 1.99705 0 1 
Br79-81 1.997953 0 1 
Si28-29 0.999568 0 1 
Si28-30 1.996843 0 1 
K41-39 1.998119 0 1 

 

Charge Carriers: M.z 

 
z m d 

H+ 1 1.007825 0 
Na+ 1 22.98977 0 
K+ 1 38.96371 0 
Cl- -1 34.96885 0 
Br- -1 78.91834 0 
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Neutral Formula: M.n 

 
z m d 

-H2O 0 -18.0106 1 
-CO2 0 -43.9898 1 
-NH3 0 -17.0265 1 
+HCOOH 0 46.00548 1 
+CH3COOH 0 60.02113 1 
+CF3COOH 0 113.9929 1 
+CH3CN 0 41.02655 1 
+CH3OH 0 32.02622 1 
-CO 0 -27.9949 1 
+H3PO4 0 97.9769 1 
+SiO3H2 0 77.97732 1 
+SiO4H4 0 95.98789 1 
+SiC2H6O 0 74.01879 1 
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Appendix 2.8. Mz.unity parameters used for annotation of the composite spectrum 

The code used to annotate this spectrum can be found online in the repository referenced in the 

main text.  A summary of the annotation workflow is listed here. 

Find peaks with isotope support for higher charge states 

All peaks in the spectrum were searched with proposal charge 𝑧 =  2 ∗ 𝑠𝑖𝑎𝑠(𝑚/𝑧) and mass 

𝑚 =  𝑠𝑏𝑠(𝑚/𝑧)  ∗  2.  Any isotopes found support the higher charge state assignment. Search was 

performed on peaks of both polarities. 

• M = M.iso, ppm = 1, BM.limits = cbind(M.min = c(1), M.max = c(1), B.n = c(1)) 

Find peaks with isotope support for charge state z = 1 

All peaks in the spectrum were searched with proposal charge 𝑧 =  1 ∗ 𝑠𝑖𝑎𝑠(𝑚/𝑧) and mass 

𝑚 =  𝑠𝑏𝑠(𝑚/𝑧)  ∗  2.  Any isotopes found support the higher charge state. Search was performed 

on peaks of both polarities. 

• M = M.iso, ppm = 1, BM.limits = cbind(M.min = c(1), M.max = c(1), B.n = c(1)) 

Annotate simple relationships 

Peaks with a isotope support for charge state 2 were included along with all peaks for charge state 

1. Search was performed on peaks of both polarities. 

• Cross Polarity: M = M.z, ppm = 10, BM.limits = cbind(M.min = c(2), M.max = c(2), B.n = c(1) 
• Single Charge Carriers: M = M.z, ppm = 2, BM.limits = cbind(M.min = c(1), M.max = c(1), B.n = c(1) 
• Neutral losses and adducts: M = M.n, ppm = 2, BM.limits = cbind(M.min = c(1), M.max = c(1), B.n = c(1) 
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Annotate analyte-analyte mers and distal fragments 

Peaks with a isotope support for charge state 2 were included along with all peaks for charge state 

1. Search was performed sequentially first for negative and then for positive mode. 

• M = M.z (only H+), ppm = 2, BM.limits = cbind(M.min = c(1), M.max = c(1), B.n = c(2) 

Annotate analyte-analyte mers and distal fragments across polarities 

Peaks with a isotope support for charge state 2 were included along with all peaks for charge state 

1. Search was performed on peaks of both polarities. 

• M = M.z (only H+), ppm = 2, BM.limits = cbind(M.min = c(1), M.max = c(1), B.n = c(2) 

Annotate background mers 

Peaks with a isotope support for charge state 2 were included along with all peaks for charge state 

1. Features and mers were included in this search. 

• M = M.z (only H+), ppm = 2, BM.limits = cbind(M.min = c(1), M.max = c(1), B.n = c(2) 
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Appendix 2.9. Fragmentation spectrum of NAD 

Spectra taken at collision energies 0, 10, 20, 40, 60, 90, and 120 were averaged from both positive 

and negative mode.  The composite spectrum is shown below. 
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Appendix 2.10. Fragmentation spectrum of glutamate 

Spectra taken at collision energies 0, 10, 20, 40, 60, 90, and 120 were averaged from both positive 

and negative mode.  The composite spectrum is shown below. 
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Appendix 2.11. Annotation of 2-hydroxyglutarate Metabolic Products 

2-Hydroxyglutarate (2HG) corresponds to the node with a thick black border. Large nodes are 

features. Small nodes are relationships.  Red nodes were detected as enriched by X13CMS.  Grey 

nodes were not detected as enriched by X13CMS. 

Analysis by mz.unity revealed that all enriched features were transformations of 2HG. This 

indicates that 2HG is not significantly metabolized in colorectal cancer cells.14  

 

 

(14)  Gelman, S. J.; Mahieu, N. G.; Cho, K.; Llufrio, E. M.; Wencewicz, T. A.; Patti, G. J. Cancer 

Metab. 2015, 3 (1), 1.  
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Appendix 2.12. Intensitites, Masses, and Retention Times of Adducts 

Maximum intensities from each chromatogram are inset.  Retention times are in seconds.  Masses 

from top to bottom and left to right: A, 146.0455, 168.0273, 184.0012; B, 146.0455, 662.1015, 

809.1547; C, 146.0455, 98.0246, 436.0948. 
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Appendix 3.  

 

Credentialing Features: A Benchmarking Platform to Optimize 

Untargeted Metabolomic Methods 
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Appendix 3.1. Calculation of Mass Per Carbon (mpc) From ECMDB. 

A histogram of mass in Daltons divided by carbon number (mpc) are shown below. The mass of a methylene (CH2, 14 
Da) unit is a logical lower bound for mass per carbon.  ECMDB contains four compounds which have an mpc lower 
than 14, all of which are more reduced (contain more rings and double bonds).  An mpc of 141 is the largest in ECMDB 
and corresponds to carbamoyl phosphate. The most common mass per carbon is 18-19 Da/C with 850 compounds 
falling in this range.  Based on the data, a carbon number dependent limit is placed on the mass range in which to search 
for isotopes.  This is depicted in the lower plots.  
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Appendix 3.2.  Suggested Parameters for Various Instrumentation Platforms.  

The credentialing technique is flexible and can be applied to many types of instrumentation and chromatography.  Below 
are suggested values for different instrumentation that have been shown to be effective experimentally. 
 
 

Parameter Suggested Defaults Explanation 

iso_ppm Time of Flight*:  4 
Orbitrap**:   1 
FT-ICR:   0.1 

This is the mass error allowed when considering the difference 
between a 12C and 13C peak.  This should be set according to the 
intra-scan mass error, rather than the absolute mass error of the 
instrument. 

mix_tol 4 This is a coarse filter that ensures the 12C peak and 13C peak are of 
comparable intensity to their mixed ratios. This should allow a large 
error as many effects cause the U12C and U13C peaks to vary in 
intensity.  A stricter filter is applied in the second round. 

ratio_tol 1.8 This is a fine filter which ensures the intensity ratio between the two 
samples approaches the ratio of mixing (See Data Analysis). This is 
the most sensitive parameter and can be set according to the user’s 
needs. Values approach 1 are more selective.  1.8 offers a false 
positive rate of approximately 0.6% 

iso_rt HILIC:  0.1 x (peak fwhm) 
C18:  0.05 x (peak fwhm) 

This is the acceptable tolerance (in seconds) when matching a U12C 
peak to a U13C peak.  Ideally the peaks have an identical retention 
times but in some cases poor peak shape causes the detected 
retention time to vary between isotopes.  For chromatography 
which generates consistant peak shapes this can be lowered. 

mpc_tol 1 Mass per carbon (mpc) is calculated as described above in 
Supplement S-2.  The mpc_tol parameter is useful if a user is 
attempting to credential peaks with extremely large masses per 
number of carbons such as highly phosphorylated or metal 
containing compounds. 

*Agilent QTOF, AB SCIEX TripleTOF, LECO Pegasus 
**Thermo QE 
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Appendix 3.3. Raw Data Credentialed Features 

Mass spectra and extracted ion chromatograms are shown for the three knowns targeted for MS/MS.  The 
labeling pattern exhibited by credentialed features can be seen in the inset. (A) Uracil, (B) ADP, (C) UDP-
GlcA.  Inset mass spectra are averaged over the highlighted region of each chromatogram. 
 

A. Uracil, 4.8 minutes, 4 carbons 

 
B. ADP, 48.5 minutes, 10 carbons 

 
C. UDP-5’-GlcA, 43.8 minutes, 15 carbons 
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