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ABSTRACT OF THE DISSERTATION 

Mass Spectrometry-Based Structural Analysis of Photosynthetic Protein Assemblies 

by 

Yue Lu 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2017 

Professor Robert E. Blankenship, Co-Chair 

Professor Michael L. Gross, Co-Chair 

 

This dissertation focuses on using mass spectrometry-based techniques to study 

photosynthetic protein assemblies. Photosynthesis is a process that converts light energy into 

chemical energy, the basis of most life on Earth. The two most crucial protein machineries 

involved in this process are reaction center and light harvesting complexes.  They are usually 

giant protein complexes with different numbers of co-factors.  In a more expanded sense, 

photosynthesis is not just about the utilization of solar energy, the regulation of light energy is 

also essential as excess light energy is detrimental to photosynthesis organisms. Again, protein 

assemblies play an indispensable role in this process.  The knowledge of the structure and 

function as well as the molecular mechanism of those protein complexes are desired.  

Today, mass spectrometry is being widely used in proteomics studies. Its capabilities include 

but are not limited to the protein primary structure investigation.  The development of MS-based 

footprinting, native MS and membrane protein MS detection platforms largely benefit the study 

of photosynthetic proteins.  The MS-based footprinting technique can investigate protein 

conformational change upon its binding to other molecules or under the stimulus of pH change 

or other factors.  Native MS can investigate the conformation and topology of protein complexes 
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in a near-native environment where the non-covalent interactions are preserved. Membrane 

proteins are notoriously difficult to study. The development of MS-based membrane protein 

detection platforms largely benefits the study of photosynthesis, as reaction center and light-

harvesting complexes are usually membrane proteins.   

In this dissertation, a variety of MS-based techniques were utilized to study reaction center 

proteins, light harvesting proteins and the proteins involved in the photoprotection process. We 

utilized top-down MS to study the components as well the primary structure of LH2 from a 

purple bacterium (Rb. sphaeroides), which reveals a new post-translational modification and 

mutation information. In addition, we developed a MS-based platform to footprint this LH2, 

investigating its topology in a lipid bilayer. The reaction center from another purple bacterium (B. 

viridis) was studied by both bottom-up and top-down MS and lots of unexpected mutations were 

identified. We also conducted a native MS study on this reaction center, and the capabilities of 

retaining the co-factors as well as its collisional cross section in the gas phase are discussed. 

Lastly, we study the orange carotenoid protein (OCP) and the fluorescence recovery protein, two 

major players in the non-photochemical quenching process in cyanobacteria. We utilized MS-

based techniques to probe the conformation and structure of these two proteins and finally 

proposed a mechanism for non-photochemical quenching in cyanobacteria.
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Chapter 1: Introduction 

1.1 Protein machineries involved in photosynthesis 

“Photosynthesis is a process in which light energy is captured and stored by an organism, and 

the stored energy is used to drive energy-requiring cellular processes”1. The energy is stored in 

the form of carbohydrate molecules, and usually oxygen is released as a byproduct. The process 

starts with the absorption of solar light by pigments associated with the photosynthetic antennas, 

delivering the energy to the reaction center where charge separation takes place (Figure 1.1).  

Various photosynthetic antennas and reaction center systems have been developed in plant, 

algae, cyanobacteria and other photosynthetic bacteria. For example, light harvesting complex 2 

(LH2) from purple bacteria is well known to adopt a “ring” structure, composed of heterodimeric 

units——α, β apoprotein pairs that serve as a scaffold to bind bacteriochlorophyll  a and a 

carotenoid for optimal energy transfer2. In cyanobacteria, a giant protein complex called a 

Phycobilisome (PBS) harvests light and supplies energy for both photosystem II (PSII) and 

photosystem I (PSI). This giant antenna protein complex, which is composed of various 

biliproteins and linker bilipeptides, exhibits a “rods and core” structure3-4.  

Although light harvesting antennas execute the capture of solar energy, the primary energy 

conversion in photosynthesis takes place in the reaction center. The reaction center is a protein 

complex that incorporates not only pigments—chlorophyll/bacteriochlorophyll  and 

carotenoids—but  also includes quinones and iron sulfur centers to carry charge. Among all the 

co-factors associated with the reaction center protein scaffold, one unique pair of 

chlorophyll/bacteriochlorophyll located in the hydrophobic core of the reaction center, called the 
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special pair, can be electronically excited and initiate the charge separation1. For example, two 

mega protein complexes, PSI and II, are the reaction center protein complexes in oxygenic 

photosynthetic organisms, and function to convert the light energy into chemical energy. PSII is 

a supramolecular complex embedded in the thylakoid membrane, with a number of protein 

subunits and various cofactors5. The reaction center in most purple bacteria has a comparatively 

simple structure that includes protein subunits H, M and L as well as many co-factors. Reaction 

centers from some purple bacteria like Blastochloris viridis possess an extra bound cytochrome 

subunit6.  

Although utilization of light is the essential activity of the photosynthesis process, quenching 

any excess light energy is also crucial. During periods of excess light energy, excited triplet 

chlorophyll can induce the production of a high-energy form of oxygen, singlet oxygen. Singlet 

oxygen is detrimental to the cells, leading to the damage of proteins, pigments, and lipids7. Thus, 

a strategy for regulation of light utilization is needed for photosynthetic organisms. In plants and 

algae, light harvesting antennas are involved in modulation of light energy—photoprotection8. In 

cyanobacteria, protein machineries, other than light harvesting antennas, are essential to perform 

photoprotection. Orange carotenoid protein (OCP) is a single carotenoid-binding protein that can 

quench the excess energy in the light harvesting antenna phycobilisome (PBS), preventing 

damage of the photosynthetic apparatus by oxidative radicals9-10. The activated OCP (red) can 

accelerate the decay of the excited singlet states of bilin pigments in PBS, affecting the energy 

transfer from PBS to reaction center. Another protein, called fluorescent recovery protein (FRP), 

can recover the fluorescence in PBS, just as its name says, by interacting with the OCP11.  

Above all, delicate protein complexes play indispensable roles in photosynthesis, an essential 

process for almost all life on earth. Tools that can characterize those protein machineries with a 
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high resolution are desired. Spectroscopic techniques have been widely utilized, owning to the 

unique absorption and fluorescence characteristics of photosynthetic proteins. Now, mass 

spectrometry (MS) has quickly developed in protein science and becoming more and more 

popular, owing to its high speed, sensitivity, accuracy, and high dynamic range, for studies of 

amino acids to mega-complexes12-14. In chapter 1, we will discuss the application of mass 

spectrometry to photosynthetic protein machineries.  

 

 

Figure 1.1 Photosynthesis scheme in most photosynthetic organisms. Light blue shapes represent protein assemblies 

involved in photosynthesis process. OCP and FRP are shown as example proteins that are involved in 

photoprotection. 

1.2 Protein primary structure determination  

The information in DNA is encoded by four bases: adenine (A), guanine (G), cytosine (C), 

and thymine (T). This information is passed on to RNA, in preparation for the final step that 
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comprises the central dogma of molecular biology. According to the genetic code, every three 

bases in RNA can be translated into one specific amino acid, subunits composing proteins15. 

Proteins are central parts of all organisms, being essential in cell structure and function. Before 

the wide availability of gene sequencing, chemical or enzyme methods were being used to 

investigate the sequence of protein16. Edman degradation used to be the dominant method in 

sequencing amino acids in proteins. The amino acid is labeled from the N-terminus, followed 

with the releasing of this terminal amino acid derivative to be detected by chromatography, 

electrophoresis or Ultraviolet–visible spectroscopy (UV-Vis). The process can be repeated, and 

the whole sequence of the protein can be deciphered. However, the whole process is tedious, and 

this method is not effective in the presence of a chemically modified N-terminus. Nowadays, the 

MS-based sequencing (fragmentation) approach is replacing Edman degradations and has 

become indispensable in probing the primary structure of photosynthetic proteins. 

Early mass spectrometers coupled with electrospray ionization (ESI) could only perform one 

straightforward function, measuring the molecular weights, while no structural information could 

be obtained17. The development of tandem MS enabled the probing of the primary sequence of 

proteins. The process involves two steps; the first step is the selection of a precursor/parent ion 

and the second step is the activation of the precursor/parent ion followed with MS detection of 

fragmented products. One of the activation methods, known as collisional induced activation 

(CID), is the dominant fragmentation method in probing protein primary structures18. During the 

CID process, the precursor/parent ion is accelerated by an electrical potential to high kinetic 

energy, allowing it to collide with neutral gas molecules. Nitrogen is the most commonly used 

neutral gas, and helium and argon are also widely utilized. The kinetic energy is converted into 

internal energy during this process, leading to chemical bond fragmentation, and partial/complete 
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sequence of the precursor/ion can be obtained by measuring the MW of fragments. The other 

CID method, called higher-energy collisional dissociation (HCD), leads to a shorter activation 

time compared to CID19. The fragmentation spectrum of HCD features a predominance of y-ions 

and b-ions that can be further fragmented into smaller species like a-ions. For HCD, there is no 

low mass cut-off restriction as there is with ion traps and the method, when coupled with an 

orbitrap, provides high mass accuracy in the product-ion (MS/MS) spectrum. Thus, HCD is 

suitable for de novo peptide sequencing20.  

In addition to CID and HCD, another fragmentation method called electron capture 

dissociation (ECD), developed by McLafferty, starts from capturing electrons by multiple 

charged ions in the gas phase21. Unlike CID/HCD, the fragmentation site is not defined by bond 

strength during the ECD process22. Whereas CID/HCD fragmentation occurs by increasing the 

internal energy of peptide/protein ions, it causes protons to move (i.e., mobile proton model),  

electron-capture dissociation (ECD) generally breaks bonds near the location of a protonated site 

that can attract the electrons23. As two complementary fragmentation methods, CID/HCD 

produces b and y series ions whereas ECD produces c and z series ions. Other than CID/HCD 

and ECD, a variety of fragmentation methods, like electron transfer dissociation (ETD) were 

developed and utilized in proteomics, providing complementary sequence/PTM information for a 

certain peptide19. 

Primary structural determination of photosynthetic proteins by MS is centrally important, for 

verifying amino acid sequence, and identifying PTMs and even the isoforms of proteins. Bottom-

up MS proteomics is widely used to identify protein proteolytic digestion products24. MS 

detection in combination with liquid chromatography (LC), the pre-separation before MS 

detection, is a very useful technique that improves enables the ability to sequence peptides in 
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complex mixtures (e.g., protein digests). Numerous studies have utilized this technique to gain 

knowledge of photosynthetic protein primary structure. For example, the MS primary structure 

elucidation of  D1 and D2 proteins from the PS II reaction not only reveals a variety of PTMs, 

but more importantly, the C-terminal sequence of D1 protein is identified25. The C-terminal 

processing on D1 protein was later found to be essential for the function and assembly of PS II25-

26.  

1.3 MS-based Footprinting 

Scientists are not content to know just the primary structure of proteins. MS-based 

footprinting as a biophysical approach is widely utilized to probe protein structure, dynamics, 

and interactions in different macromolecular assemblies. In general, two types of footprinting 

strategies are being developed, non-reversible and reversible labeling of amino acid backbones 

or side chains27-29, respectively. By comparing the labeling level of the target protein at different 

states, regions that are involved in interaction or in structural changes can be identified. Utilizing 

the typical bottom-up approach, we usually measure the labeling extents of two different states 

(e.g., apo vs. holo). Hydrogen deuterium exchange (HDX) monitored by MS can be used to 

investigate protein conformational changes when the protein structure is perturbed by a binding 

partner, pH, denaturation, for example. The targets of an HDX approach are the amide protons of 

the protein backbone that can undergo exchange with the deuterium in the solution. The extent of 

exchange reports on H bonding and solvent accessibility of the backbone30-32. As a “gentle" but 

“universal” approach, HDX is one of the most robust and reliable MS-based footprinting 

methods in probing protein structure. In green-sulfur bacterial, light energy absorbed by 

chlorosome is transferred to the FMO antenna protein through a baseplate protein. The molecular 
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details of how the baseplate is coordinating with FMO antenna protein to transfer the energy 

efficiently were only fully understood. Our group utilized HDX approach to investigate the 

binding face of the FMO antenna protein and the chlorosome CsmA baseplate protein, as the 

interacting region on FMO shows significant decrease of deuterium uptake after CsmA 

binding33.  

Because covalent footprinting by HDX is reversible, efforts have been made to take 

advantage of bottom-up proteomics for footprinting by developing irreversible labeling.  The 

most common examples are hydroxyl radical and GEE labeling in combination with MS 

detection are also widely used in studying photosynthetic proteins. Based on the labeling extent 

on amino acids, structural change of protein assemblies can be deciphered. Oxidative hydroxyl 

radicals can be generated by X-ray beams, electrical discharge and laser photolysis of hydrogen 

peroxide in solution, labeling proteins on millisecond and sub-millisecond timescales. The 

amino-acid site chain reactivity with hydroxyl radicals is broad-based, although the reactivity 

with various amino acid side chains can vary by three orders of magnitude34-37. Another quick 

and simple footprinting approach targeting carboxyl amino acids, is “GEE labeling”, and can 

also be used to footprint proteins29. Carboxyl groups on glutamate (E) and aspartate (D) can be 

labeled, producing a +57 or +71 Da mass shift29. OCP is the essential player during NPQ process 

in cyanobacteria. It has two states, the red active state and the orange inactive state. The red 

active state can burrow into PBS and quench the excess light energy. The structural difference of 

those two states has been an intriguing question. The MS-based footprinting experiments 

(covalent labeling) successfully identify the global and local structural rearrangement of proteins. 

The red state was determined to have an open structure whereas the orange state a compact 

structure. In particular, the hydroxyl radical footprinting method reveal the structural of orange 
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carotenoid protein change up to the residue level upon photoactivation38, whereas the results 

obtained by GEE labeling lead to a similar conclusion with an emphasis on carboxyl amino 

acids39.  

1.4 CROSSLINKING (XL)-MS 

Amino acids pairs that are adjoining in protein complexes can be “snapshotted” by a cross-

linker with a certain length, thus identifying regions of proteins that bind. After proteolytic 

digestion, the cross-linked peptides can be identified by tandem MS. Identification of cross-

linked peptides by MS provides insightful information for modelling of protein-protein 

interactions, protein conformational changes, and protein dynamics40-43. As photosynthetic 

machineries usually contain a variety of protein subunits and co-factors, crosslinking MS (XL-

MS) is widely adopted to investigate the organization or topology of photosynthetic protein 

assemblies during the photosynthesis process, especially in the PSII-centered problems4, 44-49. PS 

II is a giant protein with a complex composition, that is around 20 protein subunits in 

cyanobacteria and plants as well as accessory light-harvesting proteins.  Psb28 is an extrinsic 

protein of PSII and plays an important role in PSII repair50. It protects the RC47 assembly 

intermediate of PSII. Weisz and co-workers46 used XL-MS to investigate the transient interaction 

of Psb28 within PSII, and Psb28 was found to bind to cytochrome b559. XL-MS was also widely 

used to investigate the interaction between OCP and PBS, another giant protein complex. The 

OCP binding site on phycobilisome was probed by several groups using XL-MS to provide 

models for the structure.  Although those models don’t overlap with each other precisely, all of 

them suggest the binding site is located on the APC core of the phycobilisome9.  
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1.5 Top-down MS 

Bottom-up MS approach has been well established and applied in a wide range of proteomics 

studies, especially the primary structure sequencing and MS-based footprinting as mentioned in 

previous paragraphs. In the meanwhile, top-down MS proteomics study is emerging in recent 

years, allowing for the direct molecular weight measurement of intact proteins instead of 

proteolytic digestion51. Usually, fragmentation of intact proteins is carried out during top-down 

analysis to identify protein sequence and PTM. There are several advantages of top-down MS. 

Frist of all, no tedious sample preparation procedures like digestion are needed, which not only 

saves time and effort but also introduces less potential artifacts into the mass spectrometer. 

Secondly, the data processing of top-down MS is very straightforward. Proteolytic digestion 

usually results in a varied number of peptides based on the protein size and sequence, while the 

top-down approach targets only a couple of candidates based on the components of the protein 

complex. Lastly, crucial sequence information that might get lost by using bottom-up MS 

approach could be identified by the complementary MS method, top-down MS approach. The 

very hydrophilic peptides are usually lost during desalting LC and the extremely hydrophobic 

peptides are reluctant to elute during gradient LC. One example is the MS study on chlorosome 

proteins CsmA and CsmE, light harvesting apparatus in green bacteria. The presence of 

truncated versions of CsmA and CsmB were detected by matrix-assisted laser desorption 

ionization (MALDI) mass spectrometry52. In addition, the top-down MS approach has been 

widely utilized to sequence the integral membrane photosynthetic proteins that are resilient to 

digestion. MS studies on membrane proteins are discussed in the last part of this chapter. 



10 

 

An innovative form of top-down MS approach called “Native MS” is becoming popular in 

recent years. The novel aspect of native MS compared to traditional top-down MS is mostly the 

solvent used to solubilize protein complexes. Traditionally, acid and organic solvent are included 

in the analysis to increase the ionization efficiency while the protein is no longer in its native 

state. For native MS analysis, ammonium acetate buffer is used to maintain a neutral pH and a 

certain salt strength, thus the protein complex can be maintained in a near-native state53. This is 

especially beneficial for photosynthetic proteins, as almost all photosynthetic proteins are non-

covalently associated with different co-factors, and photosynthetic protein complexes are usually 

composed by protein subunits non-covalently associated together. Our group has successfully 

utilized native MS to characterize multiple photosynthetic protein complexes. For instance, the 

stoichiometry of pigments in the antenna protein FMO was determined by native MS54.  Native 

MS successfully analyzed the OCP protein complex with its pigment binding and further 

revealed that the OCP undergoes a dimer-to-monomer transition upon light illumination55. Later, 

the concentration effects on oligomerization states of FRP and OCP, two proteins involved in the 

NPQ process in cyanobacteria, was revealed by native MS56 (See chapter 5 for this study). All 

the MS methods that are valuable in studying photosynthetic proteins are shown in Figure 1.2.  
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Figure 1.2 Mass spectrometry tools used to study photosynthetic protein complexes. Green dots represent co-

factor binding to protein scaffold, such as chlorophyll binding. 

 

1.6 Challenges in photosynthetic membrane protein MS study 

The major protein machineries involved in photosynthetic process, reaction center and light 

harvesting antennas complexes, are mostly hydrophobic membrane proteins1. The information of 

membrane proteomics can be readily obtained with the assistance of bottom-up MS approach 

and multi-dimensional separation57. Considering the hydrophobicity of membrane proteins, 

detergent or organic solvent are usually added to increase the accessibility of cleavage site during 

proteolytic digestion56 (Table 1.1). Alternative enzymes that can function at harsh conditions, 
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like CNBr, or addition of MS-compatible detergent have been adopted to improve the coverage 

of intrinsic membrane proteins58-59. However, it is difficult to obtain 100% sequence coverage on 

membrane proteins, especially the hydrophobic regions. As a complementary approach to 

bottom-up MS approach, top-down MS approach is even more popular in studying 

transmembrane photosynthetic machineries, considering the complex composition of 

photosynthetic proteins60-61. Instead of ubiquitously used silica-based reverse phase column, the 

polystyrene/divinylbenzene column was preferred when membrane protein needs to be 

separated62 (Table. 1.1). Though de novo sequencing is not the strong suit of top-down MS, the 

composition of complex protein samples can be quickly evaluated with high confidence by top-

down MS. For example, eleven integral and five peripheral subunits of a 750 kDa PS II complex 

from the eukaryotic red alga has been successfully characterized by top-down MS63. We 

identified a new isoform of β subunit in LH2 from purple bacteria by top-down MS coupled with 

ECD fragmentation (See chapter 2 for this study)64.  

To investigate the structure, conformation and function of photosynthetic membrane protein, 

native MS studies on membrane proteins are desired, though only a few studies have been 

conducted. In the native environment, lipids bilayers are essential to stabilize membrane 

proteins. Detergents are commonly used in membrane proteins study as a mimic of lipid bilayer. 

One of the major challenges lies in the universal usage of those detergents that interface with 

most MS detection techniques. The pioneering native MS work on membrane proteins performed 

by Barrera et al.65 shows that a membrane protein complex can be kept intact in the gas phase of 

a mass spectrometer after shaking off detergent micelles. The optimization of backing pressure 

and desolvation energy was emphasized for membrane protein native MS experiment66. For 

photosynthetic membrane proteins, we successfully observed the intact reaction center 
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complexes from two purple bacteria, Rb. sphaeroides and B. viridis, with all the protein subunits 

as well as several cofactors in the gas phase (See reference 66 and chapter 4). Native MS shows 

that the bacteriochlorophyll dimer at the core is the tightest bound pigment in both two species, 

consistent with other observations67. In addition, we found the reaction center from B. viridis 

inclines to bind more bacteriochlorophylls, the special pair and the peripheral ones.  

MS-based footprinting has successfully been applied on membrane proteins, including HDX, 

oxidative labeling and other covalent labeling methods68-70. The footprinting experiment can be 

carried out in detergent, Nanodisc or nature lipid environment. In chapter 2, we demonstrated 

how to utilize MS-based footprinting to study hydrophobic photosynthetic proteins in a near-

native environment. After reconstituting LH2 in a Nanodisc vehicle, we successfully utilized fast 

photochemical oxidative labeling to investigate the structure and topology of LH2 in a lipid 

bilayer71.  
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Table 1.1 MS-centered strategy for studying membrane proteins 

Technique Strategy for Membrane Protein Study 

Protein clean-up Acetone, chloroform/methanol/water72  

Bottom-up MS  

(Proteolytic digestion) 

Detergent or organic phase added 

Microwave assisted 

Alternative enzymes and chemical like thermolysin, chymotrypsin, 

CNBr and etc59,73 

Bottom-up MS 

(Footprinting) 

Incorporated in Nanodisc71, 74 or dissolved in detergent micelle75 

Top-down MS 

(Denatured) 

Polystyrene/divinylbenzene column for separation62 

Fragmentation schemes: CID, ECD64, 76 

Top-down MS  

(Native MS) 

Increased backing pressure  

Increased desolvation energy66 
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Chapter 2: Top-down Mass Spectrometry 

Analysis of Membrane-bound  

Light-Harvesting Complex 2 from 

Rhodobacter sphaeroides 

This chapter is adapted from the previously peer-reviewed and published first-authored 

manuscript: 

Lu, Y., Zhang, H., Cui, W., Saer, R., Liu, H., Gross, M., and Blankenship, R. Top-Down Mass Spectrometry 

Analysis of Membrane-Bound Light-Harvesting Complex 2 from Rhodobacter sphaeroides. Biochemistry, 2015. 

54(49): 7261-7271.  

2.1 Abstract  

We report a top-down proteomic analysis of the membrane-bound peripheral light-harvesting 

complex LH2 isolated from the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides. 

The LH2 complex is coded for by the puc operon. The Rb. sphaeroides genome contains two puc 

operons, designated puc1BAC and puc2BA. Although previous work has shown consistently that 

the LH2 β polypeptide coded by the puc2B gene was assembled into LH2 complexes, there are 

contradictory reports whether the Puc2A polypeptides are incorporated into LH2 complexes. 

Furthermore, post-translational modifications (PTM) of this protein offer the prospect that it 

could coordinate bacteriochlorophyll a (Bchl a) by a modified N-terminal residue. Here we 
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describe the LH2-complex components based on electron-capture dissociation (ECD) 

fragmentation to confirm the identity and sequence of the protein subunits. We found that both 

gene products of the β polypeptides are expressed and assembled in the mature LH2 complex, 

but only the Puc1A-encoded polypeptide α is observed here. The methionine of the Puc2B-

encoded polypeptide is missing, and a carboxyl group is attached to the threonine at the N 

terminus. Surprisingly, one amino acid encoded as an isoleucine in both the puc2B gene and the 

mRNA is found as valine in the mature LH2 complex, suggesting an unexpected and unusual 

post-translational modification or a specific tRNA recoding of this one amino acid.    

2.2 Introduction  

The capture and utilization of solar energy is one of the most fundamental processes on 

Earth. Anoxygenic photosynthesis can occur in the absence of air without producing oxygen1, 77. 

The photosynthetic complexes of purple phototrophic bacteria have a rather simple modular 

construction system that often utilizes two basic types of light-harvesting complexes, called 

light-harvesting complex 1 (LH1) and light-harvesting complex 2 (LH2).  These functions to 

absorb light energy and to transfer that energy rapidly and efficiently to the photochemical 

reaction centers where it is trapped by photochemistry. LH2 is composed of heterodimeric units, 

consisting of α, β apoprotein pairs that serve as a scaffold to bind Bchl a and a carotenoid (Car) 

for optimal energy transfer. Those heterodimers aggregate to produce circular ring structures 

containing eight or nine heterodimeric units. The LH1 complexes have a similar heterodimeric 

building block but are comprised of 15 or 16 units that surround the photochemical reaction 

center complex. The LH1 complex from Rb. sphaeroides contains an LH1 dimer with 28 

heterodimers78. LH2 complexes are adjacent to the LH1-reaction center (RC) core complex, and 

together, the two complexes effectively capture the light energy that sustains growth of the 
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organism. The ratio of LH2 complexes to RC is variable and depends on growth conditions2, 79. 

X-ray crystallography revealed structural data to atomic resolution of two types of LH2 

complexes from Rhodopseudomonas (Rps.) acidophil80 and from Phaeospirillum (Ph.) 

molischianum81. The structure at 100 K of LH2 from Rh. acidophilus was refined to 2.0 Å 

resolution by Papiz et al. 80 The crystal structure of LH2 from Ph. molischianum 81 was 

determined by molecular replacement at 2.4 Å resolution by using x-ray diffraction. In both 

structures, the modular α, β-heterodimers form a circular ring structure.  LH2 from Ph. 

molischianum forms octamers instead of the nonamers observed in the Rh. acidophilus structure. 

Both types of LH2 complexes contain relatively isolated Bchl a molecules parallel to the plane of 

the membrane that absorb light at 800 nm (B800) and closely coupled Bchl a dimers that absorb 

at 850 nm (B850). One of the major differences of the two crystal structures lies in the nature of 

B800 orientation: aspartate is the Mg ligand in Ph. molischianum as opposed to carboxyl-

methionine in Rh. acidophilus.  

Rhodobacter (Rb.) sphaeroides, a member of the α-3 subclass of proteobacteria, is an 

exemplary model organism for the creation and study of novel protein expression systems as its 

genome is sequenced, genetic systems are available, and its metabolism is well characterized82. 

Like many purple phototrophic bacteria, the photosynthetic apparatus of Rb. sphaeroides is 

composed of three multimeric transmembrane protein complexes: the LH2 light-harvesting 

complex, the LH1-reaction-center complex (RC-LH1), and the cytochrome (cyt) bc1 complex83. 

The 3D structure of a dimeric RC-LH1-PufX complex was determined to 8 Å by x-ray 

crystallography, and a model was built78. Although there is no atomic resolution structure of LH2 

from Rb. sphaeroides available to date, a projection map of this LH2 clearly shows the 

nonameric organization of the ring84. This is also observed for LH2 from Rh. acidophilus, but 
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different from the octamer-ring structure of LH2 from Ph. molischianum. Theiler et al.85 

sequenced the apoproteins of LH2 from Rb. sphaeroides in 1984 and found a degree of 

heterogeneity at the N-terminus of β subunit, with some chains starting with threonine and others 

having an additional methionine residue at the N-terminal position. DNA sequence of the 

photosynthesis region of Rhodobacter sphaeroides 2.4.1 is described by Choudhary et al.86 and 

the amino acid sequence predicted by the genome is consistent with the previous protein 

sequencing result. A few years later, a new operon (designated the puc2BA operon), displaying a 

high degree of similarity to the original pucBA genes of Rb. sphaeroides, was identified and 

studied genetically and biochemically by Zeng et al in 200387 (Figure 2.1). Employing genetic 

and biochemical approaches, they obtained evidence that the Puc2B-encoded polypeptide is able 

to enter into LH2 complex formation, but neither the full-length Puc2A-encoded polypeptide nor 

its N-terminal 48-amino-acid derivative is able to enter into LH2 complex formation. In contrast, 

Wang et al.88 isolated LH2 from mutated strains and found Puc2B and both the N-terminal 

version and the intact version of the Puc2A-encoded polypeptides. They suggested that the 

transcription of puc2BA and the assembly of the LH2 complex is independent of the expression 

of puc1BA, and is only dependent upon the expression of pucC.  According to the result from 

SDS-PAGE, either the first 54 amino-acid residues of the N-terminus or the one containing a 251 

residue C-terminal extension of Puc2A encoded polypeptide can be assembled into the LH2 

complex. It is possible that the manipulations of genome affect the assembly of LH2 complex, 

leading to the contradictory results. Later, Woronowicz et al.89 described a proteomic analysis of 

the expression levels of the various Puc1BA and Puc2BA operon-encoded polypeptides in the 

LH2 complexes assembled in Rb. sphaeroides. Surprisingly, the Puc2A polypeptide containing a 

251 residue C-terminal extension is of major abundance. It was also reported that genomes of Rh. 
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acidophilus and Rhodopseudomonas (R.) palustris contain additional, highly homologous copies 

of the puc operon encoding the α, β polypeptides of the LH2 complexes90-91. All five copies of 

the puc operon in R. palustris were expressed and regulated by incident light intensity, whereas 

only two copies of the puc operon products were detected in LH2 complexes from Rh. 

acidophilus. 

 

Figure. 2.1 Sequence alignment of Puc1A- and Puc2A-encoded polypeptides 

 

We applied mass spectrometry (MS) to this problem because MS is now playing a role in 

intrinsic-membrane protein (IMPs) analyses, and high-throughput proteomics technology can 

accelerate the understanding of membrane protein structure/function relationships. Precise 

characterization of whole intrinsic membrane protein (IMPs), however, remains a challenge 

despite their essential roles in cell biology. The hydrophobicity of IMPs makes them difficult to 

be analyzed by traditional bottom-up mass spectrometry owing to its bias toward soluble, 

hydrophilic peptides that are easily recovered during sample processing and chromatography, 

and that ionize and dissociate well during mass spectrometry58. For example, many membrane 



20 

 

proteins are insoluble under the conditions for enzyme digestion, and subsequent steps in 

analysis could further lead to precipitation.  

In this chapter, we report a top-down MS study of the intact LH2 from wide type Rb. 

sphaeroides to identify and sequence this peripheral antenna system.  IMP solubility also 

challenges the “top down” approach in which intact proteins are introduced directly to the mass 

spectrometer. In early work from Whitelegge et al.92, they studied the seven-transmembrane 

helix protein bacteriorhodopsin and the Dl and D2 reaction-center subunits from spinach 

thylakoids and demonstrated the potential of top-down analysis of IMPs. Later, they described 

using top-down high-resolution Fourier transform mass spectrometry with collision-induced 

dissociation (CID) to study post-translationally modified integral membrane proteins with 

polyhelix bundles and transmembrane porin motifs93. Whereas CID fragmentation occurs by 

increasing the internal energy of peptide/protein ions and causing protons to move, electron-

capture dissociation (ECD) generally breaks bonds near the location of a protonated site that can 

attract the electrons21, 51. The top-down analysis on the c-subunit of ATP synthase (AtpH) shows 

that thermal activation concomitant with electron delivery increased coverage in the 

transmembrane domain compared to CID fragmentation94.  

2.3 Material and Methods  

2.3.1 LH2 preparation  

Rb. sphaeroides wild-type strain ATCC 2.4.1 was grown photosynthetically at RT in 1 L 

bottles. The membrane-enriched pellet obtained from ultracentrifugation of the sonicated cells 

was re-suspended in 20 mM Tris (pH = 8.0) to a final concentration of OD (850) = 50, 
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solubilized by the addition of lauryldimethylamine N-oxide (LDAO) to a concentration of 1% 

(w/v), and allowed to incubate for 30 min at room temperature. Solubilization was stopped by 

dilution of the mixture with 20 mM Tris (pH = 8.0) to a final LDAO concentration of 0.1%. This 

mixture was ultracentrifuged once again at 200,000xg for 1 h to remove insoluble debris. The 

supernatant was collected and loaded onto an anion-exchange column (QSHP resin, GE 

Healthcare, Uppsala, Sweden) that had been equilibrated with 20 mM tris-HCl, 0.1% (w/v) 

LDAO (pH = 8.0).  After washing extensively, LH2 was then eluted with a linear gradient from 

100 mM to 500 mM NaCl. Fractions with the highest A850nm:A280nm ratios (greater than 3.0) were 

pooled, and the accumulated sample applied to a HiLoadTM SuperdexTM 200 prep grade column 

(GE Healthcare). The further purified LH2 was precipitated with acetone and then solubilized 

with 20% formic acid before being infused into the MS spectrometer. 

2.3.2 Top-down LC-MS analysis of LH2 

Resins (PLRP/S, 5 µm, 1000 Å) were packed into 100 µm IntegraFrit capillary (Waters Inc., 

Milford, MA). A NanoAcuity UPLC (Waters Inc., Milford, MA) was used to separate protein 

subunits. The gradient was delivered by a NanoAcuity UPLC (0–5 min, 15% solvent B; 5–35 

min, 15–90% solvent B. Solvent A: water, 0.1% formic acid; Solvent B: acetonitrile, 0.1% 

formic acid) at a flow rate 1 μL/min. Two mass spectrometers, a hybrid ion-mobility quadrupole 

ToF (Synapt G2, Waters Inc., Milford, MA) and a 12 T FTICR mass spectrometer (Solarix, 

BrukerDaltonics, Bremen, Germany) were operated under normal ESI conditions (capillary 

voltage 1-2 kV, source temperature ~ 100 °C). The typical ECD pulse length was 0.4 s, ECD 

bias 0.4 V, and ECD lens 10 V. The ECD hollow cathode heater current was 1.6 A. MS 

parameters were slightly modified for each individual sample to obtain an optimized signal. For 

introduction to give ECD fragmentation, an Advion Triversa Nanomate sample robot infused the 
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sample into the 12 T FTICR. Precursor ions were each isolated over a 10 m/z window. Data were 

processed by using Bruker Daltonics BioTools and Protein Prospector (from the University of 

California-San Francisco MS Facility web site). Manual data interpretations combined with 

software tools were adapted to achieve improved sequence coverage. The mass tolerance for 

fragment ions assignment was 0.02 Da. 

2.3.3 puc2B gene identification  

Rb. sphaeroides genomic DNA was extracted by Qiagen® DNeasy Plant Mini Kit. puc2B 

genes were PCR-amplified by left primer GCTCCGAGCCCTGATAGTAG and right primer 

AAGCTGAGCAGAGGGGTCTT. The purified PCR product was cloned and sequenced.  

2.3.4 puc2B mRNA identification 

Rb. sphaeroides genomic RNA was extracted by TRIzol® Reagent (Life Technologies, 

Grand Island, NY). Briefly, the cells were broken by ultrasonification in TRIzol® Reagent. After 

phase separation by chloroform and precipitation by isopropyl alcohol, RNA precipitates were 

washed by 70% ethanol. TURBO DNA-free™ Kit (Life Technologies, Grand Island, NY) was 

used to eliminate any remaining DNA contamination. The first strand cDNA was synthesized by 

RevertAid First Strand cDNA Synthesis Kit (Life Technologies, Grand Island, NY). After 

synthesis of the first-strand, primer-1 and primer-2 were used to PCR-amplify the puc2B 

sequence. The purified PCR product was cloned and sequenced.  

2.3.5 Homology modelling  

Homology models of the two subunits were generated by using the Phyre225 online 

modeling suite. The two subunits were combined, and energy minimization was performed by 
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Phenix.95 The top model was aligned to the crystal structure of LH2 from Rh. acidophilus 80 by 

Pymol (The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.). 

2.4 Results and discussion    

2.4.1 Composition of mature LH2 complexes 

To study the composition of mature LH2 complexes, we purified the whole complex from a 

photosynthetically cultured wild type strain ATCC 2.4.1 of Rb. sphaeroides. There are three 

major protein components as seen in the chromatogram of the denatured LH2 protein; these 

components were later identified as the Puc1B-, Puc2B-, and Puc1A-encoded polypeptides by 

top-down MS (Figure 2.2). The Puc2A α polypeptide was not detected. The reason might either 

be the Puc2A α polypeptide is not present in mature LH2 complex or our platform failed to 

detect Puc2A α polypeptide. The β subunits were eluted earlier than the α subunit as the latter is 

more hydrophobic. Because there is 94% sequence identity of the two β subunits, the elution 

times of the two β copies are nearly identical. This result is in accord with those of Zeng et al.87, 

who also found that only the Puc1A-encoded α subunit exists in the mature LH2 complex. Wang 

et al.88 isolated LH2 from mutated strains and found Puc2B- and both the N-terminal version and 

the intact versions of the Puc2A-encoded polypeptides. Later, Woronowicz et al.89 found that the 

Puc2A-encoded polypeptide containing a 251 residue C-terminal extension is a highly abundant 

protein of the LH2 complex. The large protein fragment they detected does not contain any 

apparent membrane-spanning regions. They suggested that this peptide is not part of the 

functional complex and instead arises from in vivo enzymatic cleavage, representing an 

adventitious co-eluent of CNE and readily detected because mass spectrometers have a bias 

toward detecting soluble peptides. The existence of certain peptides from Puc2A-encoded 
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polypeptide indicates, however, it may have some assembly role in the complex. The differences 

between these results are presently not fully understood. It is possible that the growth conditions 

and the light intensity can affect the expression and assembly of those polypeptides. 

Nevertheless, the Puc2A-encoded polypeptide is not a major component according to our results. 

The experimental MW of each subunit were deconvoluted by Bruker Compass DataAnalysis 

software and shown in Table 2.1. 

 

Figure 2.2. Liquid chromatogram of denatured LH2. 

 

Table 2.1. Molecular weight of each subunit from LH2. 

Subunit Theoretical MW(mono) Experimental MW(mono) 

Puc1A polypeptide 5595.0692 Da 5595.0512 Da 

Puc1B polypeptide 5456.8854 Da  5456.8706 Da 

Puc2B polypeptide 5355.8191 Da 5355.8082 Da 
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 2.4.2 Sequence and post translational modifications 

Natural photosynthetic organisms have developed a large variety of light-harvesting 

strategies that allow them to live nearly everywhere where sunlight can penetrate.96 Most of the 

antenna systems are pigment-containing, integral membrane proteins. Detailed sequence 

information of some of those proteins is still not fully known except when there is a high-

resolution crystal structure available.  Although the MS-based proteomics characterization of the 

Rb. sphaeroides intra-cytoplasmic membrane assembly was reported by several groups,89, 97-98 

the entire sequence was not identified because 100% coverage was not achieved, which is 

usually the case for membrane proteins. Those missing regions may play an important role of the 

function of antenna systems. 

We used top-down mass spectrometry to determine the sequence and post-translational 

modifications (PTM) information of the LH2 complex. Although not every bond of the 

polypeptides fragmented when we submitted the protein to ECD on a 12 T FTICR mass 

spectrometer, we found ~ 70% coverage of the sequence.  Furthermore, many complementary 

ions shown in the spectrum and their accurate mass measurements (within a few ppm) provided 

by the instrument provide high confidence for the results. Unlike CID fragmentation, which 

occurs by increasing the internal energy of peptide/protein ions until peptide-bond cleavage 

occurs, electron-based fragmentation (ECD) breaks different bonds near the sites of positive 

charge where the electron capture occurs, preserving PTM information. The ECD-based top-



26 

 

down sequencing identifies not only the sequence information of the protein but also the location 

of the PTMs. 

The PTM information of LH2 complex has been of interest for some time. Papiz et al.80 

reported the high-resolution crystal structure of Rh. acidophilus, and they found that a carboxyl-

modified Met1 of the α subunit is ligated to Mg2+ of B800. Our top-down MS investigation of the 

structure of LH2 and the possible coordination of B800 BChl-a shows that the experimental 

molecular weight of the α subunit is consistent with that predicted from the gene sequence (3 

ppm accuracy), clearly indicating there is no carboxylation modification on Met in Rb. 

sphaeroides LH2. We observed some oxidation of methionine, and this was probably introduced 

during the sample handling. MS/MS with ECD fragmentation provided further evidence that the 

predicted sequence is correct (Figure 2.3). 
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Figure 2.3. Sequence coverage and ECD product-ion spectrum of Puc1A-encoded polypeptides 

 

The central Mg2+ ion chelation in the core of the Bchl a macrocycle helps preserve the planar 

conformation of the pigment molecule99. In principle, oxygen or nitrogen atoms on amino acid 

side chains (e.g., aspartate, glutamate, asparagine, glutamine, serine, threonine, histidine) or even 

water can interact with this central Mg atom of BChl a.  In the LH2 complex of Rh. acidophilus, 

the ligation of B800 BChl a is accomplished in part by a carboxyl modification on methionine 
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whereas in Ph. molischianum, the corresponding ligand is aspartate (Asp-6). For Rb. 

sphaeroides, there is no modification of the α-Met, indicating that the N-terminal Met is not the 

ligand. To obtain a better understanding of the structure, 52 residues (96% of sequence) were 

modelled with 100% confidence by the single highest scoring template (Figure 2.4A),100 

suggesting that the N terminal region of α subunit of Rb. sphaeroides is quite similar to that of 

Rh. acidophilus (Figure 2.4C). The reason they have similar structures but different coordination 

schemes is not clear. To identify similar regions that may be a consequence of structural 

relationships, we aligned the sequence of Ph. molischianum and Rh. acidophilus from RCSB 

protein data bank to the sequence of Rb. sphaeroides we identified.  From the sequence 

alignment result from ClustalW2, the amino acid in Rb. sphaeroides is Asp-6 whereas in Ph. 

molischianum, it is asparagine; the former is likely the Mg2+ ligand in the LH2 complex (Figure 

2.5). 
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(A) 

 

 

(B) 

 

(C) 
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(D) 

 

Figure 2.4. Homology model of LH2 from Rb. sphaeroides. (A) Sequence alignment to the template (B) LH2 from 

Rb. sphaeroides is shown in green, LH2 from Rh. acidophilus is shown in cyan (C) N-terminus structure of two 

LH2. B800 is coordinated by Carboxyl-Met from Rh. acidophilus. (D) Valine from β subunit of Rb. sphaeroides is 

shown in red.  

 

                  (A) 

 

                   (B) 

 

Figure 2.5. Sequence alignments of LH2. (a) α subunits from different LH2 complexes: (1), Rh. acidophilus (2), Rb. 

sphaeroides (3), Ph. molischianum (b) Puc1B- and Puc2B-encoded polypeptides from Rb. sphaeroides. 

 

Similarly, the molecular weight obtained from the mass spectrum is consistent with the 

theoretical MW predicted from the amino-acid sequence of the Puc1B-encoded peptide without 
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any post-translational modifications (3 ppm accuracy) (Table. 2.1 and Figure 2.6). The MW 

observed for the Puc2B-encoded peptide, however, is 101.0589 Da less than predicted. The mass 

difference doesn’t match a simple modification with or without removal of the N terminal 

methionine. To address this discrepancy, we analyzed the fragmentation patterns and found that 

the methionine on the N terminus is removed and a carboxyl group is attached to threonine. In 

addition, the fourteenth amino acid counting from the N terminus, is a valine instead of the 

isoleucine that is coded in the gene sequence (Figure 2.7). The fragment ions (C13
+, C14

+, Z36
3+) 

displayed on the spectrum confirm this assignment. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Sequence coverage and ECD product-ion spectrum of Puc1B-encoded polypeptides. 
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Figure 2.7 Sequence coverage and ECD product-ion spectrum of Puc2B-encoded polypeptides. 

 

We were surprised to find carboxylation on the threonine residue at the N terminus.  The 

high mass fragments (Figure 2.8) clearly show that losses of OH, COOH, COONH, and then 

threonine from N terminus, consistent with this modification. The simulated isotopic pattern of 

fragments on the N terminus is also consistent with the experimental patterns (Figure 2.9). To 
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verify our interpretation of the dissociation spectrum, we undertook bottom-up sequencing. The 

N terminal peptide has a COOH modification on threonine according to CID (Figure 2.10).  

 

Figure 2.8. High mass fragments of ECD product-ion spectrum of Puc2B-encoded polypeptides. 
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Figure. 2.9. Comparison of simulated and experimental isotopic pattern of parents and fragment ions on N-teriminus 

of Puc2B-encoded polypeptide 

 

Figure. 2.10 MS/MS fragmentation of  N terminus peptide from Puc2B-encoded subunit 

 

Proteins can carry several PTMs, and some proteins may display large numbers of different 

modifications101. New modifications102 and unexpectedly extensive PTMs103 can occur, and they 

are poorly accounted for in existing databases. There are several reports about PTMs of light-
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harvesting proteins.  The chloroplast grana proteome defined by intact mass measurements from 

liquid chromatography mass spectrometry revealed  gene products with variable post-

translational modifications104. Michael et al.105 found acetylation and phosphorylation on spinach 

light-harvesting chlorophyll protein II aside from the removal of methionine at the N terminus. A 

proteomics study of the green alga Chlamydomonas reinhardtii light-harvesting proteins shows 

the presence of differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a 

threonine residue at the N terminus106. For Rh. acidophilus, the ligation of B800 BChl a is 

accomplished in part by a carboxyl-methionine on the N terminus80. 

Carboxylation generally happens on glutamate residues, which is required for function of 

factors II, VII, IX, and X, protein C, protein S, and some bone proteins107-108. Although our study 

identified the carboxylation of a threonine residue at the N terminus of Puc2B, the functional role 

of this PTM is not clear. The assignments of the N terminal fragments further confirm the 

sequence and PTM information of this polypeptide (Figure 2.8). Zeng et al.87 found that the ratio 

of B800 to B850 of the LH2-2 complex in mutant ∆PUC2BA (pUC2ASPhoA) is greater than 

that of the LH2-1 complex in mutant ∆PUC2BA (0.75 and 0.67, respectively). This result 

suggests that the Bchl a moieties have a slightly altered binding environment in the Puc2B-

encoded complex compared to that of the Puc1B-encoded peptide. For the β subunit, 38 residues 

(75% of sequence) were modelled with 99.9% confidence by the single highest scoring 

template100. The first twelve amino acids are not covered in the homology modeling because 

there is high sequence discrepancy of the N terminal region of β subunit. It is possible, however, 

that the carboxyl group serves to coordinate the Mg of B800 in the LH2 complex, increasing the 

ratio of B800 to B850. 
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2.4.3 Substitution of Valine for Isoleucine 

Initially, we could not match the experimental molecular weight of Puc2B to the molecular 

weight predicted by the genome, even after removal of methionine and attachment of a carboxyl 

group on the N terminal threonine. As discussed above, an analysis of the C and Z ions that are 

produced upon ECD shows that the 14th amino acid from N terminal is valine, not the 

isoleucine predicted from the gene sequence.  The experimental MW matches the theoretical 

value within 2 ppm, confirming this assignment. Interestingly, we observed two polypeptides, 

mostly as the “valine version”, but there is also a small amount of the “isoleucine version” in a 

roughly 10:1 ratio (Figure 2.11). The sequence chemically determined by Theiler et al. 85 

matches the predicted sequence of the Puc1B protein. It is likely that their samples also 

contained the Puc2B protein but did not obtain sequence from it due to the blocked N-terminus. 

 

Figure 2.11. Mass spectrum of parent ions of Puc2B-encoded polypeptides. 

 

The question now arises as to the origin of this isoleucine to valine conversion. The spinach 

chloroplast genome reports a codon for Ser at position 2 whereas Phe was detected at position 2 

of PetL of chloroplast-encoded subunits109. The authors believe there might be either a DNA 



38 

 

sequencing error or a RNA editing event. To eliminate the possibility of a mutation happening 

during culturing of cells over many generations, we sequenced the puc2B gene, and we found it 

to be the same as in the NCBI database (i.e., the 14th codon is ATC, which codes for isoleucine). 

Another possibility to explain the substitution is RNA editing in which the codon is changed 

after transcription but before translation. To study the Puc2B-encoded peptide at the 

transcriptional level, we sequenced the mRNA that is encoded for this region. The result shows 

that there is no variation at the mRNA level, and the mRNA also indicates isoleucine (See Figure 

2.12). Another possibility is a mis-sense error, which results in the substitution of one amino acid 

for another probably by mischarging the isoleucine tRNA with valine. However, all other 

isoleucines in the protein, all of which are coded for by the ATC isoleucine codon, appear to be 

correctly inserted, so the only way that this could be the case is for a context-specific change to 

be made in just this one place. Another possibility is that the amino acid residue is not valine but 

its isomer, norvaline, which is sometimes abundant110-111. It is also likely that it is a PTM process. 

The existence of two forms of the polypeptides also suggests that the demethylation is not 100% 

complete. Thus, we suggest the isoleucine-to-valine conversion is either a posttranslational 

modification in which a methyl group is cleaved from isoleucine or a norvaline substituion.   
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Figure. 2.12. DNA (a) and RNA (b) Puc2B operon sequencing result and trace files around 14 th valine region. 
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Although there are very few protein demethylation cases reported, one well-known example 

is histone demethylation mediated by the nuclear amine oxidase homolog LSD1112. To the best 

of our knowledge, the post-translational demethylation process of isoleucine to valine has not 

been reported previously. The norvaline is usually found in place of leucine instead of 

isoleucine110. According to the homology modelling structure, the valine is located in the loop 

region of the β subunit (Figure 2.4D). The biological significance of this conversion of the 

Puc2B-encoded polypeptide is not clear at this stage, but given the unprecedented nature of this 

substitution, more study is needed. After this conversion, three amino acids on the N terminus 

are different and the rest of the amino acids are the same for the two copies of the β polypeptides.  

Although there are very few protein demethylation cases reported, one well-known example 

is histone demethylation mediated by the nuclear amine oxidase homolog LSD1.41 To the best 

of our knowledge, the post-translational demethylation process of isoleucine to valine has not 

been reported previously. The norvaline is usually found in place of leucine instead of 

isoleucine.42 According to the homology modelling structure, the valine is located in the loop 

region of the β subunit (Fig. 3D). The biological significance of this conversion of the Puc2B-

encoded polypeptide is not clear at this stage, but given the unprecedented nature of this 

substitution, more study is needed. After this conversion, three amino acids on the N terminus 

are different and the rest of the amino acids are the same for the two copies of the β polypeptides  

(Fig. 4B).   
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2.5 Conclusions 

The composition and PTMs of LH2 of purple phototrophic bacteria likely play important 

roles in absorbing light energy effectively and in allowing the organism to adapt to a changing 

environment (i.e., light intensity). In this study, a top-down proteomic analysis of the membrane-

bound peripheral light harvesting complex LH2 isolated from WT Rb. sphaeroides confirms the 

identity and sequence of these protein subunits. We showed that polypeptide encoded by puc1A 

is the sole source of the α subunit in the LH2 complex. Consistent with previous reports, this 

work also shows that both LH2 β polypeptides coded by the puc1B and puc2B gene are 

assembled into LH2 complexes. Overall, the complex has a similar structure to those in other 

purple bacteria. Unusual PTMs occur for this protein.  For example, a carboxyl group is attached 

to the N-terminal Thr along with removal of the Met on the Puc2B-encoded polypeptide. The 

carboxyl group, instead of the carboxyl-methionine in Rh. acidophilus, likely coordinates Bchl a 

in Rb. sphaeroides. The unexpected substitution of valine to isoleucine in Puc2B-encoded 

polypeptide is likely to be a PTM or a norvaline substitution. The biological significance of this 

conversion is currently not clear and will be the subject of future studies. 
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 Chapter 3: Mapping the Topology and 

Conformation of an Intrinsic Membrane 

Protein in a Lipid Bilayer by Fast 

Photochemical Oxidation of Proteins (FPOP) 

  

 This chapter is adapted from the previously peer-reviewed and published first-authored 

manuscript: 

Lu, Y., Zhang, H., Dariusz, M. Niedzwiedki, Jiang, J, Gross, M., and Blankenship, R. Mapping the topology and 

conformation of an intrinsic membrane protein in a lipid bilayer by fast photochemical oxidation of proteins (FPOP). 

Analytical Chemistry. 2016. 88 (17): 8827-8834. 

3.1 Abstract  

Although membrane proteins are crucial participants in photosynthesis and other biological 

processes, many lack high resolution structures.  Prior to achieving a high resolution structure, 

we are investigating whether MS-based footprinting can provide coarse-grained protein structure 

by following structural changes that occur upon ligand binding, pH change, and membrane 

binding. Our platform probes topology and conformation of membrane proteins by combining 

MS-based footprinting, specifically fast photochemical oxidation of proteins (FPOP), and lipid 

Nanodiscs, which more similar to the native membrane environment than are the widely used 

detergent micelles.  We describe here results that show a protein’s outer membrane regions are 
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more heavily footprinted by OH radicals whereas the regions spanning the lipid bilayer remain 

inert to the labeling. Nanodiscs generally exhibit more protection of membrane proteins 

compared to detergent micelles and also less shielding to those protein residues that exist outside 

the membrane. The combination of the two technologies, FPOP and Nanodiscs, is a feasible 

approach to map extra-membrane protein surfaces, even at the amino-acid level, and illuminate 

intrinsic membrane protein topology.  

3.2 Introduction  

Membrane proteins are involved in crucial cellular functions, including photosynthesis1, 

respiration113 and signal transduction114. They represent ~30% of open reading frames115 of many 

genomes, and an increasing number of them are important drug targets116. Membrane proteins 

perform their functions via interaction with other molecules or with themselves to undergo 

conformational changes important in signaling, for example. Membrane proteins are highly 

flexible and dynamic, enabling them to perform different tasks with high efficiency but making 

structure determination difficult. Membrane protein structures are notoriously difficult to resolve 

compared to water-soluble proteins117. Because the membrane proteins are hydrophobic, they are 

less stable in water than in a membrane, and detergent are needed for solubilizing and stabilizing 

them.  Detergents, however, can affect protein conformation and hinder protein interaction with 

other molecules. Compared to the large number of soluble proteins, high-resolution structures of 

membrane proteins are available only for a small fraction of them118. 

Various detergents are used to extract membrane proteins from their native lipid bilayer and 

to solubilize, stabilize and enclose them in micelles119. Unfortunately, detergents are not an ideal 

mimic of cellular environment. The different micelle sizes and curvature restrictions compromise 
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protein stability and, in some cases, proper protein functioning120. In addition, an excess micellar 

phase may interfere with the interaction with other molecules and interfere with analytical 

methods.  To overcome these problems, reconstitution of membrane protein in various 

membranes including monolayers, bicelles, and liposomes have been pursued.  

One approach that provides a better mimic of a native environment and controllable 

stoichiometry of target membrane protein is the lipid-protein Nanodisc121. Here, two membrane 

scaffold proteins (MSP) form a double belt to enclose a lipid bilayer and form a water-soluble 

“disc” into which target membrane proteins can be incorporated. Under self-assembly 

conditions, the oligomeric state of a target protein and the nature of the lipids included in the 

bilayer can be controlled, allowing a membrane protein to be probed from both the cytoplasmic 

and the periplasmic sides of the “membrane”. Thus, a Nanodisc provides a simple and robust 

means for rendering target membrane proteins in aqueous buffer while keeping the protein in a 

native-like bilayer environment122. 

Membrane topology can be viewed as “an important halfway house between the amino-acid 

sequence and the fully folded three-dimensional structure”123. Individual transmembrane helices 

can insert into a lipid bilayer in different ways, and because the proteins are dynamic, they can 

change conformation and position. Various mass spectrometry (MS)-based labeling methods are 

now being widely adopted to study those issues; one of them, cross-linking, has become effective 

in probing protein-protein interactions43. As a complementary approach, MS-based footprinting, 

which includes hydrogen/deuterium exchange (HX) and •OH and other radicals, serve to “label” 

most of the amino acids and illuminate protein-protein, and protein-ligand interactions.124 HX is 

widely used for soluble proteins, and the extent of exchange reports on H bonding and solvent 

accessibility of the protein backbone32, 125.  HX can also be used for membrane proteins in the 
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presence of detergent micelles provided it provides fast isolation, digestion efficiency, and 

solubility69, 126-127. Footprinting, done with the FPOP platform, can label amino acids with OH 

radicals from photolysing hydrogen peroxide. The amino-acid reactivity with hydroxyl radicals 

is broad-based although the reactivity with amino acid side chains can vary by three orders of 

magnitude128-129.  The dominant product is a +16 adduct, but there are other pathways and 

products. FPOP probes solvent accessibility of different regions of proteins in a fraction of a 

second and at the amino acid level130. The labeling is carefully controlled so that every fraction 

or plug of a flowing protein buffer is labeled only once. Compared to the more widely used 

HDX, the irreversible labeling provides flexibility in digestion as there is no concern for back 

exchange and good potential for general membrane protein studies, as lipid removal prior to MS 

analysis is relatively easily accomplished.  

To our knowledge, a few different methodologies regarding oxidatively labelling of 

membrane proteins have been reported previously. Sze et al.131 adopted a Fenton reaction to 

oxidize the outer membrane porins and revealed the voltage gating of porin OmpF in vivo.  

Konermann et al.68 carried out the first FPOP oxidative labeling of a membrane protein, 

bacteriorhodopsin, in a natural lipid bilayer environment. They only detected oxidative 

modification of methionines located in solvent-accessible loops that are highly oxidized 

compared to those located in the transmembrane regions, probably because the protein is rich in 

Met. A subsequent study revealed the conformational change of denatured bacteriorhodopsin in 

SDS compared to the native state132.  

More recently, X-ray radiolytic footprinting was also used to study structural water and 

conformational change of membrane proteins70, 133. For example, rhodopsin was dissolved in 

detergent and radiolysis-produced OH radicals labeled both solvent-accessible and solvent-
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inaccessible regions. The labeling of solvent-inaccessible regions may be due to tightly bound 

structural water molecules that are ionized by the radiation, produce •OH, and label nearby 

residues134, “elucidating in vivo structural dynamics in integral membrane protein by hydroxyl”. 

In this study, we applied MS-based FPOP footprinting to a membrane protein complex in a 

near-native environment. As a model protein, we used the light-harvesting complex 2 (LH2) 

from Rhodobacter (Rb.) sphaeroides, an intrinsic membrane protein with ~18 transmembrane 

helices135. We used Nanodiscs to “house” the LH2 in aqueous buffer prior to and during labeling 

by hydroxyl radicals. The integrated workflow is shown in figure 3.1. We compared the solvent 

accessibility of LH2 from FPOP with that in detergent micelles and identified labeling at the 

residue level. Our results show that Nanodiscs generally provide a better protection of the 

transmembrane core region of protein and less shielding for the outer membrane region. 

 

Figure 3.1. The integrated Nanodisc-FPOP MS workflow. Cells are shown by Lamellar chromatophores in 

Rhodospirillum photometricum136. LH2 is shown by PDB 1NKZ, MSP is shown by PDB 2A01.  
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3.3 Materials and Methods 

3.3.1 LH2 Preparation.  

Rb. sphaeroides wild-type strain ATCC 2.4.1 was grown photosynthetically at room 

temperature (RT) in 1 L bottles, and LH2 was isolated as previously described64. Briefly, 

lauryldimethylamine N-oxide (LDAO, 1.5%) was added to the resuspended membrane pellets 

with stirring for an hour at RT. After centrifugation, the supernatant was loaded onto an anion-

exchange column (QSHP resin, GE Healthcare, Uppsala, Sweden), and a linear gradient elution 

was performed. The fractions containing LH2 were loaded onto HiLoad Superdex 200 prep 

grade column (GE Healthcare). The protein-to-pigment ratio was measured from the absorbances 

at 850 nm (Qy absorption band of bacteriochlorophyll a) and at 280 nm (protein absorption 

band); fraction showing a ratio greater than 3.0 were collected. 

3.3.2 MSP Preparation.  

A pMSP1E3D1 plasmid was purchased from Addgene (Cambridge, MA). Purification was 

performed as previously described.137 Briefly, after breaking the cells by ultra-sonication, the 

supernatant was loaded onto Ni-NTA agarose column (QIAGEN, Valencia, CA). After extensive 

washing and elution, the purity of MSP was confirmed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis.  

 

3.3.3 Self-assembly of Nanodiscs.  

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) dissolved in chloroform (Avanti, 

Alabaster, Alabama) as dispensed into a disposable glass tube and allowed to dry in a fume hood. 

The tube was placed in a vacuum desiccator overnight to remove residual solvent. A buffer 
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containing cholic acid (Affymetrix, Santa Clara, CA) with a concentration twice that of the lipid 

was added to the lipid film followed by sonication and gentle heating to solubilize the lipid. The 

MSP and LH2 were added to the lipid buffer in a 2:1:120 ratio and incubated at room RT for 30 

min. After adding amberlite XAD-2 (Sigma Aldrich, St. Louis, MO), the mixture was gently 

shaken for 2 h at RT until the self-assembly process was complete. Finally, the Nanodisc 

preparation was purified by HPLC with a Superdex 200 prep grade column (GE Healthcare). 

 

3.3.4 Steady-state absorption spectroscopy.  

Steady-state absorption spectra of the LH2 were recorded at RT using a Perkin-Elmer 

Lambda 950 UV-Vis spectrophotometer. Prior to measurements the LH2-Nanodisc sample was 

dissolved in saline buffer (PBS) containing 10 mM phosphate, 140 mM NaCl and 2.3 mM KCl 

(Sigma Aldrich, St. Louis, MO). For comparison, a solution of free LH2s was dissolved in the 

same buffer containing 0.02% n-Dodecyl-β-D-Maltopyranoside (DDM). 

 

3.3.5 Time-resolved fluorescence spectroscopy.  

B850 BChl a fluorescence decay dynamics were measured using time-correlated single 

photon counting (TCSPC) setup based on a stand-alone Simple-Tau 130 system (Becker&Hickl, 

Germany), equipped with a PMC-100-20 detector (GaAs version with full width at half 

maximum of instrument response function <200 ps), PHD-400 high speed Si pin photodiode (as 

triggering module), motorized Oriel Cornerstone 130 1/8 m monochromator with ruled 1200 

l/mm grating blazed at 750 nm (Newport, USA), and a manual filter wheel. Excitation pulses at 

590 nm (Qx band of BChl a) were delivered by ultrafast optical parametric oscillator Inspire100 

(Spectra-Physics, USA) pumped with Mai-Tai, an ultrafast Ti:Sapphire laser (Spectra-Physics, 
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USA), generating ~90 fs laser pulses at 820 nm with a frequency of 80 MHz. The final frequency 

of the excitation beam was set to 8 MHz (125 ns between excitations) by using a 3980 Pulse 

Selector from Spectra-Physics. To avoid polarization effects, the excitation beam was 

depolarized using an achromatic DPU-25 depolarizer (Thorlab, USA). The beam was focused to 

~1 mm circular spot at the sample; to assure annihilation-free conditions, the beam intensity was 

set to ~1010 photons/cm2 per pulse. The signal was collected at right angle to the excitation. The 

sample absorbances at 850 nm were adjusted to ~0.1.  

 

3.3.6 Dynamic light scattering.  

The sample was filtered (0.2 μm filter) prior to analysis by dynamic light scattering using a 

Malvern Zetasizer Nano S/ZS instrument (Worcestershire, UK.) to estimate the diameter of the 

Nanodisc. The diameter of empty-Nanodisc was also measured as a control at 25 °C. Data were 

fitted using the Zetasizer software (Worcestershire, UK) to estimate the diameter of the particles. 

 

3.3.7 Footprinting of Nanodisc-LH2 and detergent micelle-embedded LH2.  

The LH2 concentration was estimated by using the molar absorptivity of B850 

bacteriochlorophyll a138, and the MSP concentration was calculated according to the predicted 

molar absorptivity at 280 nm and used for the following experiments139. The LH2-Nanodisc 

sample was dissolved in PBS buffer to the specifications: 2 µM of Nanodisc-LH2, 350 μM of 

histidine, 5µM of [leu5]-enkephalin (reporter peptide), and 20 mM of H2O2. The LH2 dissolved 

in PBS buffer containing 0.02% DDM, 2µM of LH2, 2µM of MSP, 350 μM histidine, 5µM of 

[leu5]-enkephalin (reporter peptide), and 20 mM H2O2. To minimize any pre-oxidation by H2O2, 

it was added immediately before the laser irradiation. The FPOP experiment was performed as 
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previously described140. The energy of the KrF excimer laser (GAM Laser Inc., Orlando, FL) 

was adjusted to 22.3 mJ, and sample flow rate was 22 μL/min to ensure a 20% exclusion volume. 

After laser-induced labeling, each sample was collected in a vial containing 10 mM catalase and 

20 mM Met to reduce leftover H2O2. Control samples for both Nanodisc- and detergent-LH2 

were handled in the same manner without laser irradiation. All experiments were performed in 

triplicate. For each collection, the buffer was divided into two portions. Formic acid (1%) was 

added to one portion prior to desalting with a Sep pak C18 (Waters Inco., Milford, MA). The 

other portion was precipitated with acetone and dissolved in buffer containing 100 mM Tris, 1 

mM CaCl2, and 0.02% RapiGest SF. Digestion was at 37 °C for 1 h with chymotrypsin (Promega 

Corporation, Madison, WI) and subsequently quenched by FA (1%). 

  

3.3.8 MS analysis 

Peptide mixtures were trapped by a guard column (Acclaim PepMap100, 100 µm × 2 cm, 

C18, 5 µm, 100 Å; Thermo Fisher Scientific, Breda, Netherlands) and then fractionated on a 

custom-packed Magic C18 reversed-phase column. The MS analysis was with a Thermo 

Scientific™ Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher 

Scientific, Bremen Germany). Peptides were eluted with a 85 min, 250 nL/min gradient coupled 

to the nanospray source. A 50 min, 250 nL/min gradient was adopted for the reporter-peptide 

analysis. The default charge state was 2, and the scan range was from m/z 380-1500. Mass 

spectra were obtained at high mass resolving power (70,000, FWHM at m/z 200) and the top 15 

most abundant ions corresponding to eluting peptides per scan were submitted to CID in the ion 

trap, with charge-state rejection of unassigned and >8 ions enabled. Precursor ions were added to 

a dynamic exclusion list for 8 s to ensure good sampling of each elution peak. 
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3.3.9 Data analysis 

      The oxidation extent was calculated with the equation shown below. Briefly, the strategy 

relied on an integrated peak area relation between of un-oxidized and oxidized peptides. The 

integration of peak area was performed by using Xcalibur™ Software. (Thermo Fisher 

Scientific) For consistency, only +16 modifications were considered in this study as the 

abundance of di-oxidized products was either low or below the detection limit of the instrument.  

 

 

 

 

 

 

3.3.10 Sequence alignment, topology prediction and homology modeling 

Sequence alignment of LH2 from different purple bacteria was performed by an online web 

server141. The TOPCONS web server was adopted for prediction of LH2 topology142. Homology 

models of LH2 from Rb. sphaeroides were generated, as previously described64. The heterodimer 

models (α and β ) were based on PDB 1NKZ and processed by Pymol143 (The PyMOL 

Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.). 

3.4 Results and discussion 

3.4.1 Characterization of the Nanodisc containing LH2 
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The model membrane protein in this study is LH2, a protein complex belonging to the 

photosynthetic antenna family whose primary function is to harvest light and transfer absorbed 

energy. It is important to characterize the protein in Nanodiscs and detergent prior to footprinting 

to insure that our comparisons are valid and that the Nanodisc indeed contains the intact 

complex.  An advantage of using LH2 is the Nanodisc-protein can be convincingly characterized 

by absorption and fluorescence spectroscopies. Ideally, LH2 preparations in Nanodiscs and 

detergent media should show identical absorption spectra with characteristic well-developed and 

resolved electronic absorption bands for bound pigments (i.e., B800 and B850 bands at 800 and 

850 nm associated with bacteriochlorophyll a, and carotenoid (spheroidene) absorption band 

between 480 and 515 nm). This essential analysis shows that the pigment environments are not 

fundamentally altered in the two preparations (Figure 3.2).  

 

Figure 3.2. Steady-state absorption spectrum of LH2 in detergent micelles and Nanodiscs. 

 

In addition, the intact LH2 complex can be probed by time-resolved fluorescence using the 

B850 emission. The B850 fluorescence decay lifetime of this LH2 complex is typically ~ 1 ns144, 

and any significant variation of this value will indicate perturbation of the B850 
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bacteriochlorophyll a array.  Furthermore, different excitonic coupling in the B850 exciton will 

alter the rate of radiative decay. Alternatively, a significant reduction of fluorescence lifetime of 

the Nanodisc-LH2 would indicate that the Nanodisc bundles more than one LH2 complex and 

allows formation of oligomeric LH2 structures.  As shown in Figure 3.3, however, the B850 

fluorescence lifetimes are essentially the same for both preparations and fit the expected time 

range for monomeric and not structurally deficient or altered LH2. To add certainty, we also 

used the A850/A280 ratio as a marker of the LH2 purity. The ratio for LH2 in detergent (3.05) 

should be higher than in in the Nanodiscs (2.34) because the MSP also contributes to the 

absorption at 280 nm and lowers the ratio.  Furthermore, a calculation based on molar 

absorptivity indicates that the “Nanodisc” contains one LH2 complex and a certain percentage of 

“empty” Nanodisc is also present. 

 

Figure 3.3: Time-resolved fluorescence of LH2. Fluorescence decay of (A) detergent and (B) Nanodisc LH2 preps. 

Fluorescence was monitored at maximum of the B850 emission band. The fits (red lines) consist of mono-

exponential decay function convoluted by instrument response function (IRF). Fluorescence decay lifetimes 

obtained from data fitting are indicated in graphs. 
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To complete the characterization of the preparation, we used dynamic light scattering (DLS)  

to characterize rapidly the particle size of the Nanodisc145. The homogeneity of empty- and LH2-

embeded Nanodiscs is revealed by the size distribution (Figure 3.4). The result (~10 nm) is 

consistent with a previous report146 and demonstrates that the nanoidsc-LH2 has a slightly larger 

dimension compared to the empty-Nanodisc.  This perturbation is probably caused by expansion 

of the disc induced by the LH2 residing in its middle, and it is consistent with a previous report 

that shows that addition of target membrane protein into Nanodiscs slightly enlarges their 

dimensions147. 

 

Figure 3.4. Dynamic light scattering of empty-Nanodisc and LH2-Nanodisc 

 

3.4.2 Application of FPOP to membrane proteins 

Fuller advantage of Nanodiscs as a convenient and powerful vehicle for membrane proteins, 

may be achieved by combining the technology with protein footprinting. Now that a variety of 

membrane proteins have been successfully reconstituted into Nanodiscs148-151 and characterized 
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biophysically, we can seek higher resolution structural information to complement data on the 

size and activity of target membrane proteins.  High motivation exists for this goal because no 

crystal structure exists for many membrane proteins including the LH2 of interest here. 

“Footprinting” can be done by NMR and HDX. Stefan et al.152 showed, for example, that 

membrane-protein bond orientations in Nanodiscs can be obtained by measuring residual dipolar 

couplings with the outer membrane protein. Jorgenson, Rand, Engen and coworkers probed the 

conformational analysis of γ-glutamyl carboxylase by HDX, demonstrating the applicability of 

HDX to Nanodiscs153.  Subsequently, Jorgenson and Engen154 investigated binding of γ-glutamyl 

carboxylase to a propeptide, employing good separation and HDX. Recently, Adkins and 

coworkers studied the membrane interactions, ligand-dependent dynamics, and stability of 

cytochrome P450 in Nanodiscs by HDX155. In the HDX studies, it is required to disassemble 

rapidly the Nanodisc and remove the excess lipid from solution prior to MS analysis while 

minimizing back exchange, which can be a nagging problem. We are advocating irreversible 

labeling with the hydroxyl radical to permit, prior to the MS analysis, easier lipid removal such 

as acetone precipitation, chloroform/methanol extraction, and other forms of offline desalting by 

use of reversed-phase cartridges. Indeed, we adopted acetone precipitation, and we could remove 

most of the lipid after processing. Moreover, we could obtain complete coverage (100%) in the 

digestion of the α and β subunits in LH2 (Figure 3.5) and extend the analysis from the peptide to 

the amino-acid residue level in some cases. Our results show that the regions that are likely to be 

in the cytoplasmic or periplasmic space undergo a higher extent of oxidative labeling compared 

to the regions of the protein deeply embedded in the Nanodisc. The MSP proteins that wrap 

around the lipid bilayer also get labeled to different extents for different regions.  
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Figure 3.5. Coverage map of LH2. 

3.4.3 Membrane protein in detergent micelle vs. Nanodisc 

Because both lipids and detergents are prone to oxidative modifications by •OH, we 

measured the hydroxyl radical reactivity in the two environments normalized to the labeling 

yield of a reporter peptide (i.e., the five amino-acid leu enkephalin)156-157.  In this way, we can 

compensate for any differences in protein reactivity introduced by changing from detergent to 

Nanodisc.  We found that the oxidation level of the reporter peptide in Nanodiscs is 1.67 times 

greater than with the DDM micelles under the same experimental conditions (Figure 3.6).  Due 

to the lack of high resolution structure, we then used homology modeling with the known 

structure of LH2 from Rh. acidophilus 64 and obtained a result with the high certainty (99.9%) to 

assist the discussion of the results.  

 

Figure 3.6. Oxidation level of [Leu5]-Enkephalin YGGFL in detergent micelle/Nanodisc environment.  
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Although large amounts of lipids are present in solution when footprinting a protein in 

Nanodiscs, their alkyl tails are embedded and not highly available for reaction with the free 

radicals. Coarse-grain molecular dynamics simulations reveal that the lipids in the Nanodisc 

have higher acyl tail order than lipids in a lamellar bilayer phase158. The detergent, however, 

exists as a monomer at low concentration, and when its concentration is increased above the 

critical micelle concentration (CMC), it self-associates to form non-covalent micelles. Although 

a spherical detergent micelle is often viewed as uniformly packed, they are not, and the octyl 

glucoside micelles contain a distribution of surfactant molecules.  Instead of a static shape as 

usually assumed, those different size micelles fluctuate between spherical and near-ellipsoidal 

shapes159. And not all hydrophobic tails are buried or point toward the center of the micelle; 

rather the micelle surface is rough and heterogeneous. Furthermore, the state of detergent 

micelles and of detergent-protein micelles is relatively dynamic, undergoing rapid exchange of 

detergent and solvent160. Thus, a detergent is more likely to quench •OH than a Nanodisc.  
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Considering now the protein complex in a Nanodisc, we find, as expected, that the solvent-

exposed terminal regions of LH2 undergo greater oxidative modification than the transmembrane 

regions (Figure 3.7).  Although this is the case for both the detergent and the Nanodisc, we 

expect that the hydrophobic regions of a membrane protein will be protected less in a detergent 

micelle than in Nanodiscs, and this is seen for all regions of LH2 where the oxidation level is 

larger in the presence of detergent micelles than of Nanodiscs. Nevertheless, the overall 

reactivity trends are similar, suggesting that detergent micelles do provide a similar environment 

to the lipid bilayer.  A previous study shows that detergent molecules in a globular micelle can 

exchange over hundreds of nanoseconds with detergent molecules in a micelle bound to a 

protein161. For example, the dynamic fluctuations of OmpA protein are 1.5 times greater in the 

micellar environment than in the lipid bilayer, and this increased overall mobility may be 

attributed to the increased diffusion properties and reduced packing of detergent molecules162. 

The differences we observed are in accord with those results, suggesting that membrane proteins 

in detergent micelles have more flexibility and solvent accessibility compared to in a lipid 

Nanodisc. For the methionine residues located in the transmembrane region of LH2, the 

Nanodisc affords even more protection than detergent micelles. This region is embedded in the 

lipid bilayer of a Nanodisc but only closely associated with hydrophobic tails in the detergent 

(Figure 3.8).  
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Figure 3.7a. Oxidation level of peptides from the α subunit. Peptides in detergent are shown in blue, and in 

Nanodiscs are shown in red. The lower panel shows the consensus prediction of membrane protein topology by 

TOPCONS web server. 
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Figure 3.7b. Oxidation level of peptides from β1 subunit. Peptides in detergent are shown in blue, and in Nanodiscs 

are shown in red. The lower panel shows the consensus prediction of membrane protein topology by TOPCONS 

web server. 

 

Figure 3.8. Oxidation level of Met in detergent micelle/Nanodisc environment. Met were labeled in orange and the 

proposed position of Met are shown as orange dots. Proposed N-terminal of β subunit (MTDDLNKVWPSG) is 

shown as red line. Mets in detergent are shown in blue, Nanodisc are shown in red. 
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3.4.4 Methionine as a marker in membrane protein labeling by FPOP 

A previous study of bacteriorhodopsin reports extensive oxidation of methionines located in 

its solvent-accessible loops132. For LH2 in our study, Met is also relatively reactive, but the 

protein reactivity occurs on many residues besides Met. For each heterodimer (α and β) 

composing the ring of LH2, there are three Mets.  One is in the transmembrane region, and the 

other two are near the N-terminus (Figure 3.8). LH2 in a lipid bilayer exhibits higher protection 

for those regions compared to in a detergent micelle. According to the homology modeling, the 

N-terminal Met of the α subunit is not protruding into the outer region of the membrane but 

instead is bent toward the inner region of a lipid bilayer64 where it coordinates the central Mg2+ 

ion of a nearby bacteriochlorophyll a, and preserves the planar conformation of the pigment 

molecule.  

The axial coordination of a central Mg2+ ion is crucial for all the photosynthetic chlorophyll-

proteins, in terms of both structure and function163.  A carboxyl modified Met1 of the α subunit 

from Rhodoblastus (Rh.) acidophilus is ligated to Mg2+ of B80080 whereas for Phaeospirillum 

(Ph.)molischianum 81, the corresponding ligand is Asp6. For both these structures, the N-terminal 

regions of the α subunits exist as a loop structure but are closely associated with the 

transmembrane regions owing to its coordination with B800. In our homology model, the N-

terminal of α subunit of the LH2 from Rb. sphaeroides is also closely associated with the 

transmembrane region (Figure 3.8). The Met located in the transmembrane region of the protein 

shows a similar oxidative modification to the one located on the N-terminal of the α subunit. The 

first few amino acids on the N-terminal end of the β subunit are not covered in the homology 

model (Figure 3.9).  We suggest this Met is pushed out of the membrane and undergoes 
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relatively high oxidative modification. As a reference, the methionine-containing peptides from 

the MSP of the Nanodisc show a 0.15-0.60 range of oxidation. We conclude that the extent of 

oxidative modification of the highly reactive Met is a good marker for the topology of 

transmembrane proteins on the FPOP platform132. 

 

Figure 3.9. Sequence alignments of LH2. α and β subunits from different LH2 complexes: (1), Rb. sphaeroides (2), 

Rh. acidophilus (3), Ph. molischianum  

 

3.4.5 Locating the membrane protein in the lipid bilayer 

Membrane proteins are closely associated with lipid bilayers and integral transmembrane 

domains are more deeply embedded than exterior regions. It is intriguing to probe the interaction 

of lipid bilayer with different domains of membrane proteins. The lipid hydrophobic tails are 

closely associated with the LH2 hydrophobic transmembrane domains, and their lengths 

determine the thickness of the membrane core (typically ~ 3 nm).  The thickness of the polar 

head of lipids on each side is ~ 1.5 nm164-165.  Siuda et al.166 observed that the Nanodisc thickness 

is smaller near the MSP double belt, owing to the perturbation from boundary lipids. The 

average thickness of MSP1E3, which is the MSP we used for the LH2-Nanodisc, obtained by 

applying small-angle X-ray scattering (SAXS), is 4.6 nm. Previous studies showed the Stokes 

diameter of MSP1E3 is 12.1 nm, whereas SAXS gives a value of 12.8 nm121. LH2, mapped by 

atomic force microscopy, shows average center-to-center distances between complexes within 



63 

 

the dimer as 7.7 nm.167 The above values show that although the LH2 has a relatively large 

transmembrane domain, it could be positioned in the middle of the MSP1E3D1 Nanodisc. Those 

values also strongly suggest that only a single LH2 complex can be incorporated into the 

Nanodisc. This fixed stoichiometry of LH2 in the disc is also carefully controlled by using an 

appropriate ratio of LH2 and MSP in the assembly process.  

 

Although an increasing number of high-resolution crystal structures of membrane proteins 

are published every year, it is necessary to picture the topology of membrane protein sitting in 

the dynamic membrane bilayer. To do this, we adopted the TOPCONS web server168 for a 

consensus prediction of the structural and functional features, membrane-inside and outside (i 

and o, respectively). In addition, we used a biological hydrophobicity scale to predict the free 

energy of membrane insertion centered on each position in the sequence142. Experimental data, 

however, are needed to confirm the topology and conformation of membrane proteins. Oxidative 

labeling shows that the terminal ends of the two transmembrane helices are more heavily 

solvent-accessible than are the integral regions. The oxidative modification levels are generally 

in accord with the free-energy trends. For transmembrane regions, little or no oxidative 

modification occurs. Further, LH2 in the Nanodisc shows a lower level of oxidation compared to 

the one in detergent, suggesting better protection of LH2 in a lipid bilayer (Figure 3.7). 

 

The Met in the N-terminal end of the α subunit, as discussed above, is pointed inward to 

coordinate a pigment molecule. Thus, the oxidation level of this Met is not high compared to the 

other Met residues in the protein assembly (Figure 3.8). The C-terminal end of the α subunit is 

highly modified even though no highly reactive methionine is present. This region, as modeled 

http://dict.youdao.com/w/homogeneity/#keyfrom=E2Ctranslation
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with 99.9% confidence to the crystal structure of the LH2 from Rh. acidophilus, and it shows a 

helix-loop structure sticking out of the “ball” structure (Figure 3.7a). This region has an extended 

conformation that passes between the β-chains of the neighboring heterodimers, and the large 

occupancy volume indicates high flexibility80. The extracted ion chromatogram (EIC) of the 

oxidized form (+16) shows one major and two minor peaks (Figure 3.10). The product-ion 

spectra (see Figure 3.11 a-e) reveal that the first two minor peaks represent the peptide with 

oxidatively modified Tyr, Ser and Val and the major peak represents the peptide with an 

oxidized Pro. Because the elution time for peptides containing oxidized Tyr, Ser or Val are 

overlapping, we cannot differentiate the modification extents of those residues in detergent or in 

the Nanodisc. The rate constants of Pro, Ser and Val with •OH are of the same order of 

magnitude but an order of magnitude lower than that for Tyr128. The high oxidative extent of Pro 

and low level of Tyr should be related to the protein conformation of this region. The 2.0 Å 

crystal structure of the LH2 from the template shows that the glucoside head groups of the 

rhodopsin glucoside carotenoid molecule (RG1) are located at the cytoplasmic surface whereas 

the second carotenoid (RG2) is at the periplasmic surface80 (Figure 3.12). Raman scattering, 

however, shows no bands that could be attributed to RG2169. Later, the authors claimed that this 

RG2 site is actually occupied by a mix of BOG and LDAO molecules, owing to incomplete 

detergent exchange. This “RG2” was located adjacent to the Tyr residues, as shown in Figure 6. 

Our results also suggest that this Tyr site is relatively solvent-inaccessible owing to its 

association with detergents/lipids.  The crystal structure shows Pro is facing inward and the other 

residues are either shielded by the detergent/lipid molecules (Tyr-Tyr in PDB 1NKZ, Tyr-Tyr in 

homology model) or adjacent to the C-terminal end of the β subunit (Gly in PDB 1NKZ and Ser 

in the homology model) with the exception of valine (Figure 3.12a-c). We propose that the 
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association of transmembrane helices with detergents/lipids in the “hole” or center of the LH2 

ring complex is different than outside, similar to the lipids adjoining the MSP in the Nanodisc 

where the thickness of the disc is smaller. This may be a result of distorted packing of the lipids 

to minimize any hydrophobic mismatch at the protein-lipid interface166, 170. It is interesting that 

the Pro exhibits lower oxidative modification in Nanodiscs, which is consistent with the behavior 

of other peptides/residues in LH2. Other residues (Tyr, Ser and Val) in this peptide, however, 

exhibit slightly higher levels of oxidation in Nanodiscs than in detergent, suggesting that the 

lipids provide better protection of proline compared to the detergent micelle, while the other 

residues are slightly more exposed in the lipid bilayer (Figure 3.12d). The detergent micelle 

might hinder the solvent accessibility of a number of residues on the surface of the C-terminal 

end of the α subunit, while relatively more regularly packed lipids in the Nanodiscs exhibit lesser 

blocking.  

 

 

 

Figure 3.10. EIC of m/z = 649.3074 (PAYYQGSAAVAAE). The oxidized residues are marked in red. 
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Figure 3.11. MS/MS fragmentation spectrums of different peptides as shown in the picture 
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Figure 3.12. The homology model (panel c) and PDB 1NKZ (panel a and b) were used to present the residues being 

discussed in the paper. The “second carotenoid” (RG2) is shown in yellow as spheres. Pro in both structures are 

shown in orange; Tyr-Try in PDB 1NKZ and the corresponding Tyr-Tyr in homology model are shown in blue; Gly 

and Lys in PDB 1NKZ and the corresponding Ser and Val in homology model are shown in red. Panel d shows the 

oxidation level of proline vs. other residues. Peptides in detergent are shown in blue, and in Nanodiscs are shown in 

red. 

The C-terminal loop domain of the β subunit (AAAATPWLG), does not extend from the 

membrane but more likely exists at a water/lipid interface and bends inward (Figure 3.13), 

considering the low oxidatively labeling (Figure 3.7b). Although Trp, a highly reactive residue 

with •OH, is present in this subunit, no prominent oxidative modification occurs for it (Figure 

3.7b). MS/MS shows only the terminal Pro, Trp and Leu are oxidatively modified (Figure 3.11f-

h) but not Gly, which is inert to FPOP.  
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Figure 3.13. Peptides on the C-terminal of α subunits are shown in red in both the homology model 

(PAYYQGSAAVAAE) and PDB 1NKZ (YWQGGVKKAA). Peptides (PWL) on the C-terminal of β subunits are 

shown in blue in both the homology model and PDB 1NKZ. (Full length C-terminal cannot be shown here because 

it is not covered 100% in the homology model) 

The consensus from TOPCON also indicates that the N-terminal end is much less 

hydrophobic than the C-terminal end. The former contains an N-terminal Met that undergoes the 

highest oxidative modification of all the Mets (Figure 3.7). This Met in the β subunit has higher 

solvent-accessibility than the others. Although this region is not covered in our homology 

model64, it may exist, on the basis of LH2 from Rh. acidophilus80, as an “elongated” peptide 

region attached to the homology model (Figure 3.8).  This region extends beyond the membrane 

and has good solvent accessibility (Figure 3.14). The remaining part of the LH2 is approximately 

5 nm in length (Pymol), a length that is nearly equal to the width of the Nanodisc (4.6 nm)166 

(Figure 3.15).  
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Figure 3.14. Proposed borderline between the solvent accessible domains and the domains that are embedded in 

hydrophobic tails of lipids. The heterodimer is shown by the homology model and the half ring structure is shown 

by PDB 1NKZ. Proposed position of β subunit N-terminal (MTDDLNKVWPSG) is shown in purple in the isolated 

heterodimer, the proline in C-terminal of α subunit is shown in red and the C-terminal of β subunit is shown in blue. 

The perturbed lipids packing inside the ring is presented here as cartoon. 

 

Figure 3.15. Measurement of solvent inaccessible region of LH2 by Pymol. PWL on the C-terminal of β subunit is 

shown in blue, highly oxidized Pro from α subunit is shown in red. 

The final question we want to address is the topology difference of the two β subunits which 

could be crucial for the function of LH287. The function of the second copy of β subunits as 

previously investigated by amplifying and cloning the puc2BA operon of Rb. sphaeroides. The 

resulting LH2 is  spectroscopically distinct from the Puc1BA encoded LH2 with a blue-shifted 

B850 absorption band at 846 nm88. Another study found that Puc2AB-encoded LH2 are 

predominant under high light and in the early stages of acclimation to low light89. To assess the 
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solvent accessibility and topology of the two β subunits, we compared the oxidation levels of the 

N-terminal peptides from the two. We used the longer peptide on the N terminal end for this 

comparison as the signal intensity of the shorter β2 peptide was too low. Because a highly 

reactive Met is present on the N-terminal end of the β1 subunit and not on the β2 end, it is 

difficult to make a fair comparison. No oxidation of Val and Trp occurs for the β1 subunit, 

whereas ~ 10% of oxidized Val or Trp occurs in the β2 subunit (Figure 3.16). This result 

suggests that the regions adjacent to Val and Trp of the β2 subunit are more exposed to the 

cytoplasmic space than is β1. The role of these two copies of β is still not fully understood at this 

stage, and this study provides another perspective. 

 

Figure 3.16. Oxidation level of N-terminal peptides from both β subunit. The oxidized residues are shown in red. 

Peptides in detergent are shown in blue, and in Nanodiscs are shown in red. 
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3.5 Conclusions 

We describe here an MS-based platform to map the topology and conformation of an 

intrinsic membrane protein complex. To the best of our knowledge, this is the largest 

transmembrane assembly that has been successfully inserted into Nanodiscs. Although this large 

protein complex has overall ~18 transmembrane helices and most are embedded in the lipid 

bilayer, there is only one transmembrane helix for each subunit. As the outer-membrane structure 

is short, it has little higher order structure, affording an opportunity to understand, for example, 

steric shielding at the interface of lipid/water. We probed the LH2 topology and conformation in 

both lipid Nanodics and detergent micelles. On the basis of the oxidative-modification extents of 

peptides/residues, we conclude that Nanodiscs generally provide better protection for LH2 than 

do detergent micelles. For the residues that are located at the membrane interface, there is also 

less shielding in the Nanodisc system. Nevertheless, Met shows high modification propensity 

and may be a good marker for comparing solvent accessibility of different regions. Sample 

handling can be more considered with FPOP footprinting than with HDX.  Lipid Nanodiscs offer 

an environment with accessibility from both sides of the membrane and the opportunity to assess 

topology and conformation of membrane protein in a near native-state.  Thus, we think the 

FPOP-Nanodisc platform is a promising experimental tool for studying membrane protein 

topology. It opens the door for studying membrane protein interactions with other molecules, for 

determining the conformational changes induced by various factors, and investigating the lipid 

influence on membrane proteins. 
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Chapter 4: Mass Spectrometry 

characterization of reaction center  

from Blastochloris viridis——the first 

integral membrane protein complex  

determined by X-ray crystallography 

4.1 Abstract 

The reaction center from Blastochloris viridis is the first integral membrane protein complex 

determined by X-ray crystallography and has been studied extensively since then. It is composed 

of four protein subunits, H, M, L and cytochrome as well as co-factors, including 

bacteriopheophytin, bacteriochlorophyll, menaquinone, ubiquone-9, carotenoid and Fe. In this 

study, we utilized mass spectrometry to study this reaction center protein via bottom-up 

sequencing to top-down ligand-binding analysis. The results show a series of mutations on this 

protein complex and the unusual alteration and extension on the C-terminus of the M-subunit. 

This reaction center exhibits not only a strong ability to bind the special pair but also a tendency 

to preserve the two peripheral bacteriochlorophylls as shown by the native MS result. 
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4.2 Introduction 

Membrane proteins play essential roles in various cellular process. Thirty percent of naturally 

occurred proteins are predicted to be membrane proteins.  However, membrane proteins are not 

friendly to most of the characterization techniques owing to their hydrophobic properties171-172.  

In early years, researchers worked on predicting the structure of membrane proteins based on 

their own unique sequences, an algorithms analysis173. Nowadays, those tools are easily 

accessible on the internet and is being routinely used for membrane protein structure 

prediction142. However, experimental results on membrane protein structures are still desired. 

The first membrane protein structure revealed by its X-ray crystal structure at atomic resolution 

is the reaction center from Blastochloris viridis174. 

With the development of genomics and proteomics, up to date, more than 600 unique 

membrane protein structures are solved by X-ray crystallography175. Crystallography is still 

the primary method in providing detailed information for the structure of membrane proteins 

and their important ligand binding. The selection and purity of detergent molecules are 

crucial for obtaining those atomic resolution structures176. Although mass spectrometry (MS) 

cannot provide an atomic resolution structure, it is generally applicable to all membrane 

proteins. It is especially useful in determining the isoforms of membrane proteins as crystal 

structure determinations usually deliver structures of only one form of the membrane 

proteins. Thus, MS has been widely utilized to study membrane proteins and their protein 

constituents to obtain the sequence information. For example, our group successfully utilized 

MS-based techniques to extract the components and PTM information of an integral 

membrane protein, light harvesting complex 2 from purple bacteria64.  
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In recent years, the emergence of native MS endowed the mass spectrometer with the 

power to decipher the topology, structure and dynamics of membrane proteins66, 177-178. After 

using collisional events to shake off the detergent micelles around a membrane protein 

complex, the intact membrane protein complex can be detected with a quadrupole time-of-

flight (Q-TOF) MS66. In this experiment, the membrane proteins are dissolved in ammonium 

acetate buffer to which has been added a MS-friendly detergent. Then the membrane protein 

solution can be directly introduced into the electrospray source of the mass spectrometer66. 

The protocol maintains the integrity of the membrane protein complex after shaking off the 

detergent micelles.  In the photosynthetic protein area, this native MS technique is especially 

desired, as reaction centers and light harvesting complexes, the two-major players in 

photosynthesis process, are mostly transmembrane protein complexes with many cofactors 

non-covalently interacting with the protein scaffold. Our team has demonstrated an example 

using this technique to characterize the reaction center from Rhodobacter sphaeroides in 

lauryl-β-D-maltoside (DDM) micelles67. 

As mentioned in the first paragraph, the reaction center from Blastochloris viridis is the 

first membrane protein obtained with an atomic resolution structure,174 and 30 X-ray 

crystallographic structures of this reaction center have now been published. This protein has 

been a well-accepted model membrane protein to evaluate new crystallographic 

techniques179-181. Here, we describe the use of MS to study this model membrane protein for 

two purposes. Firstly, we want to verify the components and PTM/mutation information of 

this protein complex. Secondly, we want to evaluate the native MS platform for studying 

photosynthetic reaction centers, probing the topology as well as the co-factor binding, laying 

groundwork for future studies on transmembrane photosynthetic membrane proteins. 
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Unexpectedly, we identified an unusual extension on the C-terminal of M subunit as well as 

a series of mutations on all four subunits. In addition, we observed the intact reaction center 

in the gas phase and showed that increasing the collisional energy gradually striped off the 

co-factors associated with this protein complex until four bacteriochlorophylls remained, 

exhibiting a strong binding ability to the protein scaffold. 

4.3 Materials and Methods 

4.3.1 Cell culture and reaction center preparation 

B. viridis strain DSM 133 cells were grown anaerobically in 1:1 YPS/RCV media and 

harvested182. A Branson 450 sonifier was used to break the cells. After sonication, the sample 

was centrifuged at 10 000 × g for 1 h at 4 °C using a Sorvall SS-34 rotor to pellet the cell debris. 

The supernatant was spun at 450 000 × rpm for 4 h at 4 °C using a Beckman Type 70 Ti (BT) 

rotor. After pelleting the membranes, 30% (v/v) lauryldimethylamine N-oxide (LDAO, Sigma) 

was added to the membrane pellets resuspension. The resuspension was stirred at 1.5% (v/v) 

final LDAO concentration at room temperature for ∼1 hr followed by centrifugation (450 000 × 

rpm for 1 h at 4 °C using a Beckman Type 70 Ti (BT) rotor). The supernatant was kept and 

loaded on to HiTrap Q HP anion-exchange column (GE Healthcare) and eluted with a gradient of 

NaCl-containing buffer (20mM Tris). The separation was further elaborated by elution from a 

Sephacryl S-200 (GE Healthcare) gel filtration column previously equilibrated with a buffer 

containing 100 mM NaCl (20mM Tris).  

 

4.3.2 Top-down LC-MS 

For intact protein MS analysis, the experiment was conducted by using the protocol 

described in a previous pulication64. Briefly, the purified reaction center was precipitated by 
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acetone, and the pellet was solubilized in 40% formic acid right before the analysis. After 

separation on custom-packed capillary column (PLRP/S, 5 µm, 1000 Å, ~10cm) (Waters Inc., 

Milford, MA), a hybrid ion-mobility quadrupole TOF (Synapt G2, Waters Inc., Milford, MA) 

was used to analyze the molecular weight of protein subunits.   

4.3.3 Bottom-up LC-MS 

Cyanogen bromide (CNBr) cleavage of reaction center was performed following a published 

protocol93. The product was vacuum dried and then dissolved in 10 µL 8 M urea in preparation 

for following enzymatic digestion. Peptide mixtures were trapped by a guard column (Acclaim 

PepMap100, 100 µm × 2 cm, C18, 5 µm, 100 Å; Thermo Fisher Scientific, Breda, Netherlands) 

and then fractionated on a ACQUITY UPLC Peptide BEH C18 Column (10 K psi, 130 Å, 1.7 

µm, 75 µm X 100 mm, Waters Corporation, Milford, MA). The MS analysis was with a Thermo 

Scientific™ Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher 

Scientific, Bremen Germany). Peptides were eluted with a 120 min, 250 nL/min gradient coupled 

to the nanospray source. The default charge state chosen for the MS was 3, and the scan range 

was from m/z 380-1500. Mass spectra were obtained at high mass resolving power (70,000, 

FWHM at m/z 200) and the top 15 most abundant ions corresponding to eluting peptides per scan 

were submitted to CID in the ion trap, with charge-state rejection of unassigned and > 8 ions 

enabled. Precursor ions were added to a dynamic exclusion list for 8 s to ensure good sampling 

of each elution peak. 
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4.3.4 Native MS analysis of reactions center 

Buffer exchange assisted by a 100 kDa MWCO filter (Millipore Amicon Centrifugal Filters, 

Billerica, USA) was conducted on the purified reaction centers.  After 5 cycles of concentration-

dilution, 10 μL of the mixture was loaded into an offline electrospray capillary (GlassTip 2 μm 

ID, New Objective, Woburn, USA). The sample solution was injected to a hybrid ion mobility 

quadrupole time-of flight mass spectrometer (Q-IM-TOF, SYNAPT G2 HDMS, Waters Inc., 

Milford, MA). The instrument was operated in the sensitive mode under gentle ESI conditions 

(ES387, Hudson, New Hampshire, Thermo Scientific, source temperature 37 °C). The sampling 

cone and extraction cone voltages were adjusted to reach the best signal for protein complexes. 

The pressure of the vacuum/backing region was 5-6 mbar. The instrument was externally 

calibrated up to 10000 m/z with a NaI solution. The peak picking and data processing was 

performed in Masslynx (v 4.2, Water Inc, Milford, MA). For IM experiments, the gas flow rate 

was 50 mL/min, the ion mobility separation (IMS) wave height was 40 V, and the IMS wave 

velocity was 700 m/s.  

4.3.5 MS data processing 

The top-down MS raw data file was combined and smoothed in Masslynx (v 4.2, Water Inc, 

Milford, MA). The mass list with intensities was exported and saved as a txt file for re-plotting 

and data analysis. Massign software package was used to assign peaks in reaction center mass 

spectra183. The bottom-up MS data were processed by PEAKS software and searched against the 

B. viridis proteomics database. For ion mobility MS experiment, the drift-time information from 

native MS ion-mobility experiments was converted into CCS by considering the molecular 

weight and charge state of the protein assemblies184-185. 
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4.4 Results and discussion 

4.4.1 Top-down MS analysis of denatured reaction center 

Although more than a dozen crystallographic structures of this reaction center are available, 

we still want to examine the components by top-down MS, to remove any concerns about 

contaminants during the purification process as well as to examine the possible existence of 

isoforms. We observed a total of four protein components by top-down LC-MS. All four protein 

subunits from the reaction center, H, M, L and cytochrome exhibit a discrepancies of the 

experimental MW to the theoretical one (Figure 4.1) (the calculated MW based on the genome186 

and experimental MWs are listed in Table 4.1). The MW discrepancies on H, L and cytochrome 

may be ascribed to mutations or the presence of PTMs. Such do not readily explain the more 

than 600 Da MW discrepancy on the M subunit. Thus, we decided to use bottom-up MS to 

decipher the unusually large MW discrepancy on the M subunit.  

 

Figure 4.1. Mass spectra of the four subunits from reaction center (B. viridis) 
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Table 4.1. Comparison of molecular weights (MW) determined by top-down MS and genomic sequence 

 

4.4.2 Bottom-up MS analysis of reaction center 

To map those MW discrepancies on amino acid sequence, we utilized a combination of 

chemical and enzyme-cleavage reagents, CNBr and trypsin, to locate any possible PTMs and 

mutations. Many mutations are located on all four subunits, and unexpectedly, the C terminal 

alteration and extension was identified on the M subunit. Rosak and co-worker187 reported the 

intraspecies evolution of reaction center over the 14 years in the laboratory from the same strain 

that we studied. They identified a total of 16 amino acid mutations by comparing the genome 

sequence of the current active strain and the glycerol stock strain from 14 years ago. In this 

work, we identified more than 20 mutations by MS sequencing (Table 4.2). One of the typical 

mutation types is “methylation/demethylation” as seen by the alteration between D and E, and V 

and L. The reason for those alterations are not clear; it could be the evolution of genome in the 

laboratory, or a change of codon after transcription but before translation during the RNA 

editing.  
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Table 4.2. List of mutations that we identified on the four subunits of reaction center. For example, the forty-fourth 

amino acid on H subunits is shown as H44. 

Position H44 H55 H126 H128 H158 H163 H186 H215 H216 H252 L66 L152 L187 L250 

Predicted V D A V V V L S E E S S A A 

Experimental L E D L L L F A D D A A D S 

 

Position M4 M7 M27 M30 M36 C64 C68 C180 C192 C196 C199 C331 

Predicted Y I N S S N A T I M N R 

Experimental W V E L L D P Q V R T Q 

 

The most surprising finding is not the large number of mutations, but the seven-amino acid 

alteration plus seven-amino acid extension on the C-terminus of the M subunit (Figure 4.2). 

When we identified the large MW discrepancy of M subunit by top-down approach, we posited 

that PTMs to be the most likely reason. Owing to the hydrophobicity of the M subunit, we first 

used CNBr to cut the protein into large sections and then used trypsin to cleave those long 

peptides into smaller pieces. In addition, we considered the report that dilute acid can cleave at 

aspartic acid188. Because of these cleavage processes, we could observe several peptides mapping 

the whole region of this C-terminal extension (Figure 4.2, See Figure 4.3 for product-ion 

(MS/MS) spectra). 
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(A) 

 

(B) 

Figure 4.2 (A) C-terminal sequence on the M subunit identified by MS (B) Sequence coverage on the C-terminus of 

the M subunit. 

 

(A) 
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(B) 

 

(C) 
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(D) 
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(H) 

Figure 4.3 Product-ion (MS/MS) spectra of peptides on the C-terminus of the M subunit. The fragment ion 

assignment is performed by PEAKS software189. 

The core subunit D1 in reaction center (PSII) from cyanobacteria is firstly synthesized with a 

C-terminal extension and must be processed by a C-terminal peptidase before incorporation into 

PSII and final assembly. In higher plants, this core subunit D1 is essential not only for the PSII 

assembly but also for the formation of supercomplexes26. Here, we also found the extension of 

C-terminal on the reaction center from purple bacteria. The evolutionary relationship of reaction 

center among cyanobacteria, higher plants and purple bacteria could be an intriguing topic for 

future studies190. 
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4.4.3 Native MS analysis of reaction center 

Native MS analysis on intrinsic membrane proteins is an emerging and quickly developing 

field177, 191. Native MS enables us to analyze the reaction center in near-native state191. The 

reaction center is dissolved in ammonium acetate buffer with the addition of DDM. The mass 

spectra show that the intact RC can be observed in the gas phase with/without co-factors (Figure 

4.4). Under medium collisional energy, we can “shake off” the detergent micelles and observe a 

series of peaks corresponding to intact reaction center protein scaffold binding to different 

number of co-factors (See spectrum in Figure 4.4A). Owing to the mild analysis conditions, 

various numbers of water or ammonium can remain with the reaction center, causing small 

increases in the experimental MW compared to the theoretical one. Increasing the collisional 

energy in the Trap region of the mass spectrometer leads to the gradual loss of co-factors (Figure 

4.5). Under the most vigorous conditions, the reaction center can be completely striped of co-

factors, leaving only the protein scaffold (Figure 4.4B). In addition, we found that the reaction 

center protein scaffold with four bacteriochlorophylls comprises a stable complex in the gas 

phase, producing the most intense peaks during medium collisional energy and remaining during 

application of the largest collisional energy available on the instrument (Figure 4.4).  
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(A) 

 

(B) 

Figure 4.4 Native mass spectrum of reaction center under (A) medium collisional energy (The first peak series 

represents the RC protein binding to the special pair) (B) the highest collision energy that can be achieved 
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Our previous analysis on a different reaction center from Rb. sphaeroides shows that reaction 

centers can be observed in the gas phase in a near-native state, and they have a strong tendency 

to preserve the bacteriochlorophyll special pair192. Here, we observed that the reaction-center 

protein from B. viridis also strongly binds to the special pair as shown fig 4.4a. This new reaction 

center investigated here, however, tends to preserve more co-factors, four bacteriochlorophylls, 

including the special pair and some peripheral ones (Figure 4.4, 4.5). Those two reaction centers 

must adopt a similar overall architecture and protein-pigment interactions193. The different 

results obtained by native MS analysis might be attributed to the extra cytochrome in the reaction 

center from B. viridis, which stabilizes and protects the co-factors in the protein complex.  

Unfolded protein complex ions undergo more collisions with the neutral gas in an ion 

mobility chamber and, therefore, exhibit a larger collisional cross section (CCS) than the 

theoretical one36. Here, we observed the ion mobility-MS (IM-MS) measurements of CCS on 

reaction center proteins are larger than the theoretical one. In addition, the measurement exhibit a 

linear relationship between charge state and protein size, indicating the partial unfolding of the 

reaction center complex in the gas phase (Figure 4.6). A linear relationship between charge state 

and CCS has been confirmed by multiple studies194-196. In brief, the reaction center we observed 

in the gas phase might be partially unfolded regarding its crystal structure. 
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Figure 4.5.  Loss of the peripheral pigments, carotenoid, quinone, and Bacteriopheophytin. The highlighted peak 

represents the intact RC carrying four bacteriochlorophylls. The four bacteriochlorophylls bound to the protein 

remain as the most abundant component under these conditions. 
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Figure 4.6 Ion mobility MS measurement of CCS of reaction center at different charge states. 

4.5 Conclusions 

The reaction center from B. viridis is one of the most well-studied intrinsic membrane 

proteins, and it has been utilized as a model membrane protein in the development of new 

analytical approaches. We found that this membrane protein, however, might not behave exactly 

as we expected. Many mutations were located on the proteins, including alteration between 

valine and leucine, aspartic acid and glutamic acid and so forth.  In addition, the unusual 

alteration and extension on the C-terminus of the M subunit occurs, including a total of 14 amino 

acids. This result is not consistent with the reported crystallographic structures, and the reason 

for the discrepancy is not clear at this stage. In addition, this reaction center can also be observed 

in the gas phase at near-native state just like the one from Rb. sphaeroidses, exhibiting a 

tendency of preserving all four bacteriochlorophyll molecules as a “special quartet”. 
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Chapter 5: Native mass spectrometry 

analysis of oligomerization states of FRP and 

OCP: Two proteins involved in the 

cyanobacterial photoprotection cycle 

This chapter is adapted from the previously peer-reviewed and published first-authored 

manuscript: 

Lu, Y., Liu, H., Saer, R., Zhang, H., Meyer, C., Li, V., Shi, L., King, J., Gross, M., and Blankenship, R. Native mass 

spectrometry analysis of oligomerization states of FRP and OCP: Two proteins involved in the cyanobacterial 

photoprotection cycle. Biochemistry. 2017. 56 (1): 160–166. 

5.1 Abstract 

The orange carotenoid protein (OCP) and fluorescence recovery protein (FRP) are present in 

many cyanobacteria, and regulate the essential photoprotection cycle in an antagonistic manner 

as a function of light intensity. We characterized the oligomerization states of OCP and FRP by 

using native mass spectrometry, a technique that has the capability of studying native proteins 

under a wide range of protein concentrations and molecular masses. We found that dimeric FRP 

(dFRP) is the predominant state at protein concentrations ranging from 3 μM to 180 μM, and that 

higher order oligomers gradually appeared at protein concentrations above this range. The OCP, 

however, demonstrates significantly different oligomerization behavior. Monomeric OCP 
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(mOCP) dominates at low protein concentrations, with an observable population of dimeric OCP 

(dOCP).  The ratio of dOCP to mOCP, however, increases proportionally with the protein 

concentration. Higher order OCP oligomers form at protein concentrations beyond 10 µM. 

Additionally, native mass spectrometry coupled with ion mobility analysis allowed us to measure 

protein collisional cross sections (CCS) and interrogate the unfolding of different FRP and OCP 

oligomers. We found that monomeric FRP exhibits a roughly one-stage unfolding process, in 

accord with its C-terminal bent crystal structure. The structural domain compositions of FRP and 

OCP are compared and discussed. 

5.2 Introduction 

Oligomerization of proteins is a common phenomenon; 35% or more of the proteins in a cell 

are oligomeric197. This behavior is advantageous for protein evolution because it opens 

opportunities for new function and control. The strength and duration of association depend on 

the nature of the protein and various experimental variable (e.g., T, pH, and concentration)198. 

Oligomerization also occurs for photosynthetic proteins, which are involved in solar energy 

capture and storage. An example is chlorophyll a-chlorophyll c2-peridinin-protein (apcPC), one 

of the major light harvesting complexes in the dinoflagellate Symbiodinium. Size exclusion 

chromatography (SEC), blue native gel electrophoresis (BN-PAGE), and native mass 

spectrometry (MS) all demonstrate that it exists as a trimer199. Nondenaturing electrophoresis of 

light-harvesting complex 2 from a purple bacterium revealed the presence of dimers, trimers, and 

even supercomplexes200. These examples provide valuable insights into the higher-order 

assemblies of and interactions among the different components of a photosynthetic apparatus. 

The oligomerization states of many photosynthetic proteins, whether they be monomers, 

oligomers, or co-exist as multi-oligomeric states, however, still remain largely unclear.  
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Photosynthesis starts with light-energy absorption by pigment-protein antenna complexes 

and continues with transfer to reaction centers for photochemistry. The regulation of energy 

transfer is crucial for sustainable photosynthesis because excess energy, if not properly 

dissipated, may damage the photosynthetic machinery and lead to photoinhibition and cell 

death201.  

In many cyanobacteria, the excess excitation energy absorbed by phycobilisome (PBSs) 

antennae is dissipated through a nonradiative pathway. This pathway starts from the absorption 

of blue light by the orange carotenoid protein (OCP) to induce a color and conformational 

change of the OCP from an orange (OCPO) to a red form (OCPR)202. The OCPR is competent for 

PBS binding, forming a PBS-OCPR quenching complex. Quenching is terminated by the action 

of a fluorescence recovery protein (FRP), which facilitates the conversion of OCPR back to 

OCPO, thereby expelling OCP from the PBS. The OCP is the first photoactive protein identified 

to use a carotenoid as the photoresponsive chromophore203. The crystal structure of OCP reveals 

an antiparallel homodimer204-205. Each monomer is composed of two domains that encompass a 

keto-carotenoid: an α-helical N-terminal domain (NTD) and an α helix/β sheet C-terminal 

domain (CTD). Although dimerization of OCP may be an artifact of crystallization205, native 

MS, which does not require protein crystallization, reveals the existence of both dimeric and 

monomeric OCP55.  

The oligomerization of FRP, like that of OCP, is also not well understood. Most of the FRP 

sequences in cyanobacterial strains contain 106 to 111 amino acids. In Synechocystis sp. PCC 

6803, the first Met (GTG) encoded by slr1964 gene can be considered as the first Met of the FRP 

and the fourth Met coincides with the first Met of most of the homologs. Using a series of 

Synechocystis mutants, Gwizdala et al.206 compared “shorter” and “longer” versions of FRP. The 
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results suggest that the longer version FRP (beginning at Met1) synthesized in Synechocystis is 

less active than the shorter version, and that the starting Met for the shorter version is Met26. 

Remarkably, FRP exists in two different oligomeric states in the same crystal unit: dimeric and 

tetrameric, and the dimer is in two different conformations. Based on co-immunoprecipitation 

and docking simulation results, one dimeric FRP (dFRP) appears to be the active form whereas 

the tetrameric form may be inactive207.  

Thus, the oligomeric states of OCP and FRP remain an open question. Here we report the use 

of native MS to probe the oligomeric state of FRP and OCP in solution, and to investigate further 

how concentration affects the oligomeric states of those proteins. Native MS is emerging for the 

characterization of proteins, especially large protein assemblies that are recalcitrant to 

crystallization53, 208. Although native MS does not provide resolution at the atomic level, its 

broad mass range and ability to analyze multiple species simultaneously makes it a powerful tool 

for interrogating protein and cofactor stoichiometries, protein topologies, and ligand-protein 

interactions209.   

One classical example is the characterization of the 4-oxalocrotonate tautomerase protein, 

which was originally reported as a pentamer210. A hexamer, however, was later observed with X-

ray crystallography211, consistent with native MS212. Determination of protein oligomeric states 

by native MS, however, is challenging to interpret when oligomers dissociate during desolvation 

or form as non-specific adducts in the spray213. The former possibility can be avoided by 

carefully optimizing sample cone and collisional voltages to maintain the complex intact. For the 

latter, protein concentration seems to be an important factor. For example, native MS identified 

urease as an (αβ)12 assembly that readily disassembles into (αβ)3 subunits, supporting an ((αβ)3)4 

architecture, in accord with the crystal structure, which revealed an (αβ)12 assembly. At higher 
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concentrations, urease forms 24-, 36-, and even 48-mers in the gas phase, probably as non-

specific adducts without any biological relevance214. Insulin, for example, not only forms well-

defined oligomers in its native state, but also aggregates and gives amyloid fibril215. Native MS 

shows that association of insulin is concentration-dependent whereas HDX shows the rapid 

equilibrium between higher order oligomers and monomers216.  

Additionally, native MS can be coupled with ion mobility (IM) to separate ions based on 

their size and shape and provide collisional cross section (CCS) to be compared with those from 

the crystal structure and from theory217-218. Increasing the collisional voltage causes protein 

unfolding as seen by an increase in the CCS; thus, native MS and IM can provide insights in 

conformational dynamics of protein higher order structures219-220. Our goal in this work is to 

utilize native MS and IM to probe the oligomerization state of FRP and OCP in their native 

states.  

5.3 Materials and Methods 

5.3.1 Expression of FRP in E. coli 

The full-length version of FRP (Slr1964) without its stop codon was amplified by using the 

primers (FRPndeIF and FRPEcoRIR, Table 5.1) from genomic DNA of Synechocystis sp. PCC 

6803 and cloned into the pET21a vector. The insertion sites are NdeI and EcoRI as indicated by 

the primer names. The truncated (short) version of FRP starting from the second open reading 

frame (i.e., MLQTAEA) was generated by using primers (FRPSF and FRPSR, Table S1). Cell 

culture and protein induction were performed according to previously reported methods207. 
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Table 5.1. Primers used in the construction of full length and truncated version of FRP in 

pET21a 

Name Sequence (5’-3’) 

FRPndeIF AGC TGG CAT ATG GTC ATG ATA ATT ACA AAT C 

FRPEcoRIR GCA AAT GAA TTC TCA GTG ATG GTG ATG GTG ATG CAG CCG TGC 
CAG GGC CTT AA 

FRPSF GTT TAA CTT TAA GAA GGA GAT ATA CAT ATG TTA CAA ACC GCC 
GAA GCA CC 

FRPSR GGT GCT TCG GCG GTT TGT AAC ATA TGT ATA TCT CCT TCT TAA 

AGT TAA AC 

 

5.3.2 FRP purification  

E. coli cells were lysed by sonication in 20 mM Tris buffer (pH 7.5) buffer A supplemented 

with protease inhibitor cocktail and DNase (Sigma, St. Louis, MO) and 200 mM NaCl. The cell 

lysate was clarified by centrifugation at 25,000 x g, and the supernatant was loaded onto a 

HisTrap HP column (GE healthcare, Marlborough, MA). The His6-tagged FRP was eluted with 

buffer A containing 300 mM imidazole, and further purified by gel filtration chromatography by 

using a HiPrep Sephacryl S-200 HR (GE healthcare, Marlborough, MA) column and an isocratic 

flow of buffer A. The purity of FRP was confirmed by SDS–PAGE by using a precast gradient 

gel (Any kDTM Mini-PROTEAN, Bio-Rad, CA). The concentration of FRP was determined by 

280 nm absorption on a NanoDrop spectrophotometer (Thermo Scientific, MA, USA).  

5.3.3 OCP purification  

OCP was isolated from Synechocystis sp. PCC 6803 using the procedure of Zhang et al.55.  

5.3.4 Native MS and IM-MS Analysis of FRP  

The purified FRP sample was washed with 400 mM ammonium acetate (pH 8.0) in a 10 kDa 

molecular weight cut off filter (Vivspin, Goettingen, Germany). The original buffer and salts 

were removed after 10 cycles of washing. The FRP sample was introduced into the ESI source of 
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a Waters Synapt G2 mass ESI-TOF (Electrospray ionization-quadrupole time of flight, Waters 

Corporation, Milford, MA) mass spectrometer by using commercial borosilicate emitters with 

extra coating. (ES387, Hudson, New Hampshire, Thermo Scientific). To investigate the effects 

of concentration on the oligomeric state of FRP, the concentrations of the introduced FRP were 

varied. The backing pressure was adjusted to 5 mBar for transferring large protein ions. The 

sample cone voltage was 20 V. The collisional energy for the trap region was manipulated to 

observe the dissociation of FRP. For IM experiments, the gas flow rate was 35 mL/min, the ion 

mobility separation (IMS) wave height was 20 V, and the IMS wave velocity was 500 m/s. The 

data were output from MassLynx (Waters Corporation, Milford, MA) and plotted by Origin 

(OriginLab Corporation, Northampton, MA).  The IM experiment was calibrated with protein 

standards (ubiquitin and myoglobin) by using published protocols. The drift-time information 

from native MS ion-mobility experiments was converted into CCS by considering the molecular 

weight and charge state of the protein assemblies184-185.  

5.3.5 Native MS of OCP 

OCP was analyzed on the same instrument with the same parameters as mentioned above. 

The samples were washed with 400 mM ammonium acetate solution (pH 8.0) and analyzed at a 

series of different concentrations. To be consistent with FRP analysis, the pH value of the buffer 

was adjusted to be 8.0 instead of 6.8 as our previous study55. Because the dimer to monomer 

ratio can vary slightly depending on the instrument conditions; this concentration analysis was 

conducted in rapid succession. 
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5.4 Results and discussion 

5.4.1 The oligomeric state of FRP 

To probe the oligomeric state of FRP, we performed a native MS experiment by using one 

stock FRP sample diluted in series to concentrations of 3, 5, 10, 40, and 180 µM. (Figure 5.1). 

Considering the estimated pI (isoelectric point) of FRP is approximately 6.49 from amino acid 

component analysis221, we adjusted the pH of NH4Ac buffer to 8.0 to avoid precipitation.  

 

Figure 5.1. Native mass spectrum of FRP diluted in series to concentrations of 3, 5, 10, 40, and 180 µM. 

 

The foundation of native MS is that ionization of protein complexes from aqueous solution, 

preserves the native structure, at least for the time scale of MS. The sample in the capillary is 

held at high electric potentials, and droplets containing high charge are drawn out to form the 

“Taylor cone”222. The droplet size is reduced by a potential gradient, aided by the nebulizing gas, 

until the “Rayleigh limit” is reached223. When the protein concentration is high, a significant 
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number of droplets will contain more than one protein or protein complexes. Adopting low 

concentrations of proteins for native MS analysis avoids the formation of non-specific adducts. A 

calculation, based on “18 nm” average droplet size, shows that most droplets are empty and a 

few contain one protein when the protein concentration is 50 µM223. In this study, the lowest 

concentration we used is 3 µM, as lower concentrations lead to a low signal-to-noise spectrum 

(data not shown) and a less confident interpretation. A distribution of dFRP carrying different 

charges was identified at all concentrations. (m/z = 2199.65 at +12, m/z = 2399.74 at +11, m/z 

=2639.57 at +10, m/z = 2932.73 at +9 and m/z = 3299.0881 at +8 (experimental MW = 26,385.23 

Da).  The peak representing the +12 charge state is slightly higher, however, than the +11 charge 

state of dimeric FRP at 3 µM, inconsistent with a Gaussian distribution of charge states. This 

suggests the presence of small amounts of monomeric FRP (Figure 5.1) because the peaks 

representing dFRP carrying +12 charge and monomeric FRP (mFRP) carrying +6 charge 

overlap. This trace amount of monomer is likely generated during desolvation and transmission 

to the mass spectrometer, as we could observe no prominent peaks representing mFRP when we 

decreased the protein concentration. Furthermore, peaks representing mFRP increased when we 

increased the collisional voltage, confirming that the small amount of mFRP can be generated in 

the transmission process (Figure 5.2). 
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Figure 5.2. Collision induced dissociation of dimeric FRP. 

 

We found that dFRP is consistently the dominant state in native MS at all protein 

concentrations, and the charge states appear as a Gaussian distribution. Trimeric and tetrameric 

FRP forms gradually appeared in the spectrum when the concentration increased. Furthermore, 

higher order oligomers—up to octamers—form at 180 µM (Figure 5.3).  Aside from the peaks 

representing mFRP and dFRP, those for the higher order protein oligomers decease in relative 

abundance as the oligomer increases in size; tetrameric FRP is no exception. In other words, no 

special behavior was observed for tetrameric FRP. Although X-ray crystallography favors the 

tetramer207, that species is unlikely to be of any biological relevance. Instead, it is concentration-

driven and forms more readily at high concentration. 
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Figure 5.3. High order oligomeric FRP detected at 180 µM. 

 

The MW of the protein complex in the native state, from a calibration curve of SEC, shows 

FRP exist as a trimer11; however, this was later revised to a dimer207. Another study on 

concentration effects on the oligomeric state of FRP suggests partial dissociation of dimeric FRP 

at low concentration224. The discrepancies may be due to the proteins (calibrants or the sample) 

existing in various conformation, as protein shapes do not necessarily correlation linearly with 

MW225. The FRP crystal structure showed that two conformations exist as dimer and one as a 

tetramer207. 
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5.4.2 Oligomeric states of OCP 

Although a dimer is revealed by crystallography, OCP elutes as a monomer by SEC in both 

its active (red) and inactive (orange) states38, 205, and the dimerization of OCP may not be 

biologically relevant, considering the energy of binding and the number of conserved residues.205 

Because determining protein oligomeric states under native conditions can be challenging 

especially in vitro and biases can be introduced by different techniques (e.g., band broadening 

during SEC) we compared the oligomeric state of  OCP at various protein concentrations to that 

of FRP, as a reference point and follow-up to our previous report55. We found Gaussian 

distributions of mOCP (+9, +10 and +11) and dOCP (+14, +15 and +16), in agreement with our 

previous report55. Moreover, the relative abundance of dOCP to mOCP increased proportionally 

to the concentration, as shown in Figure 5.4. This result suggests that the dimerization of OCP 

(also revealed by crystallography) could be the consequence of the high concentrations of protein 

sample required for protein crystallography38, 204 and also for some native mass spectrometry 

experiments55.  
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Figure 5.4. Native mass spectrum of OCP diluted in series to concentrations of 3 µM, 5 µM, 10 µM, 40 µM, and 

180M. 

 

Thus, OCP has a high tendency to dimerize, depending on the protein concentration in vitro, 

and perhaps in vivo. Of note is that OCP can form higher order oligomers just as FRP (Figure 

5.5). In our previous report, we found the dimer to monomer ratio is different for the red and 

orange states of the protein55. Whether the functional form of OCP is a monomer or a dimer still 

remains unclear. In our first report in which we used native MS, we could detect a monomer-to-

dimer transition. How this phenomenon is related to physiological function, and how the dimer-

monomer transition could benefit biosensor designs are questions for future studies. 
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Figure 5.5. High order oligomeric OCP detected at 180 µM. 

 

5.4.3 Ion mobility of FRP 

Unfolded or large protein complex ions undergo more collisions with the neutral gas in an 

IM chamber and, therefore, exhibit a larger CCS than folded or small protein complex ions36. To 

look for folded or unfolded conformers in the gas phase, we calibrated the ion mobility 

instrument with denatured protein standards according to previous reports (calibration curve is 

shown in Figure 5.6)184-185. We then calculated theoretical CCS values by a projection 

approximation (PA) method. This method calculates the averaged projected area, ignoring the 

scattering and long-range interactions between the neutral gas and the ions226. Whereas the 

resulting CCS is usually underestimated by this method227, an empirically scaled PA, proposed 

by Ruotolo and Robinson, can correct for this. Its accuracy in predicting protein CCS was 

previously verified228-229. The CCS values for FRP as analyzed by IM-MS in this study, and the 
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scaled PA values of FRP (PDB 4JDX), along with the measured ones, are listed in Table 5.2. 

The predicted CCS agree generally with the measured values. It is worth noting that the 

calculated E/F chain (comprising the tetrameric FRP in PDB 4JDX) dimer is only 0.5% different 

from the measured one.  

 

Figure 5.6. Calibration curve CCS vs. New Td. 

 

Table. 5.2. Theoretical (scaled PA) CCS value and experimental CCS value are listed in the table. Experimental 

CCS value are adopted at 10% peak height. 
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5.4.4 Gas-phase unfolding of FRP under collisional activation 

Although the measured CCS agrees well with the theoretical CCS, FRP clearly exhibits an 

inverse relationship between charge state and CCS, especially for the monomer and dimer 

(Figure 5.7). When FRP carries extra charges, the protein partially unfolds, and this “enlarged 

CCS effect” is more obvious for mFRP and dFRP, as a relatively high percentage of domains are 

affected compared to higher order FRP oligomers. Multiple studies support a linear relationship 

between charge state and CCS194-196, which is in agreement with our results.  

Robinson and co-workers using IM-MS230 reported experimental evidence of long-lived, 

unfolded non-covalent complexes. The intermediates in the dissociation pathway can be 

correlated with increases in CCS indicating that the protein complex undergoes both high order 

structure refolding and monomer unfolding prior to dissociation. Thus, the unfolding heat map 

can provide information on the stability and flexibility of protein complex. Here we observed 

stable unfolding intermediates of all the oligomeric FRP samples in the gas phase of the mass 

spectrometer (Figure 5.7 and Figure 5.8). 

Interestingly, monomeric FRP exhibits a roughly one-stage unfolding process, whereas the 

dimer undergoes a two-stage process, and the trimer and tetramer a three-stage unfolding 

process. Usually, the more complex the protein domains are, the more diversified the 

conformations it can assume before reaching a Coulombic repulsion limit. We propose the one-

step unfolding of mFRP to be in the C-terminal region, which is “bent” toward the center chain 

in the crystal structure. The two-step unfolding process of dFRP then reflects the unfolding of 

individual FRP C-terminal domains, while maintaining the interface between two subunits. 

Proteins that fold via a two-state kinetics pathway usually evolve toward a dimer form231. This is 

in accord with our results, as this unfolding process could be viewed as the folding process 
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performed in reverse. The dramatic change of CCS for different charge states (Figure 5.7) is as 

large as the intermediates observed during the increasing of collisional voltage (Figure 5.8) and 

suggests that dFRP retains highly flexible and multiple conformations during the unfolding 

process.  

 

 

(A) 
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(B) 

Figure 5.7. CCS of FRP (a) monomer and dimer (b) trimer and tetramer at different charge states. 
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(d) 

Figure 5.8.Unfolding heat map of FRP (a) monomer at +4 charge state, (b) dimer at +11 charge state, (c) trimer at 

+13 charge state, (d) tetramer at +15 charge state. 

 

The unfolding heat maps of pentameric, hexameric, heptameric, and octameric FRP (Figure 

5.9) show that as the complexity of interacting domains is increased, fewer intermediate states 

exist. Specifically, heptameric and octameric FRP exhibit rather rigid structures in the gas phase. 

Dimeric state FRP was proposed to be the functional state207; thus, any form of higher order FRP 

in the native environment, if present in vivo, would require some structural flexibility to 

dissociate into the active dimer. Thus, these higher order FRP oligomers cannot re-dissociate into 

dimeric FRP owing to the rigid structure. This reinforces our proposal that the higher order 

oligomers of FRP are artifacts of a high protein concentration.  
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(d) 

Figure 5.9. Unfolding heat map of FRP (a) pentamer at +16 charge state, (b) hexamer at +19 charge state, (c) 

heptamer at +21 charge state, (d) octamer at +21 charge state 

 

 



116 

 

5.5 Conclusions 

Protein oligomerization plays important roles in their conformation, function and stability. In 

this report, we analyzed the structure and oligomeric state of two proteins, OCP and FRP, which 

are crucial participants in the cyanobacterial photoprotection cycle. FRP is a non-chromophore 

protein, but its oligomeric state and active form remained largely enigmatic until a crystal 

structure was determined. Up to three conformations, however, exist in the crystal structure: two 

separate dimers and a tetramer. In the meantime, the native state of OCP, whether monomeric or 

dimeric, has also been controversial.  

In this study, we used native MS to characterize FRP and OCP and found FRP to be 

predominantly dimeric independent of the protein concentration, although a small fraction of 

higher order oligomers forms at higher protein concentration. We analyzed the oligomeric state 

of OCP in the same manner and observed, in contrast to FRP, that OCP exists as both monomer 

and dimer, and the relative abundance of dOCP increases with protein concentration. Moreover, 

the unfolding heat map revealed by IM-MS shows a one-step unfolding process for mFRP, a 

two-step for dFRP and a three-step for trimeric and tetrameric FRP. The high order FRP 

oligomers retain a rather rigid structure, strongly suggesting they are of little relevance in vivo. 

This study offers new insights into the biological assemblies of FRP and OCP, especially in 

terms of their oligomeric states, providing the groundwork for future structure-function analyses 

of this important photoprotection mechanism. 
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Chapter 6: A Molecular Mechanism for 

Non-Photochemical Quenching in 

Cyanobacteria 

Manuscript in preparation: 

 

Lu, Y., Liu, H., Saer, R., Zhang, H., Gross, M., and Blankenship, R. A molecular mechanism for non-photochemical 

quenching in cyanobacteria. Manuscript submitted. 

 

6.1 Abstract 

The cyanobacterial Orange Carotenoid Protein (OCP) protects photosynthetic cyanobacteria 

from photodamage by dissipating excess excitation energy collected by phycobilisomes (PBS) as 

heat. Dissociation of the PBS-OCP complex in vivo is facilitated by another protein known as the 

Fluorescence Recovery Protein (FRP), which primarily exists as a dimeric complex. We used a 

range of mass spectrometry-based techniques to investigate the molecular mechanism of this 

FRP-mediated process. FRP in the dimeric state (dFRP) retains high affinity to the C-terminal 

domain (CTD) of OCP in the red state (OCPr). The site-directed mutagenesis and native MS 

results suggest the head region on FRP could be a binding candidate to OCP. After attachment to 

CTD, the conformational changes of dFRP enable dFRP to bridge the two domains together, 

which facilitates the reversion of OCPr into the orange state (OCPo) accompanied with the 
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structural rearrangement of dFRP. Interestingly, we found a mutual response between FRP and 

OCP: FRP and OCPr destabilize each other, whereas FRP and OCPo stabilize each other. A 

detailed mechanism of FRP function is proposed based on the experimental results. 

6.2 Introduction 

Solar energy is utilized by photosynthetic organisms to perform photosynthesis, a process 

that produces and stores chemical energy, later to be used to power cellular processes. Excess 

light energy is detrimental, however, to photosynthetic organism, resulting in oxidative stress, 

and ultimately leading to the damage of photosynthetic apparatus or even the death of the cell. 

Light regulation strategies, therefore, are necessary for balancing the absorption and utilization 

of light energy. One of the most important protection mechanisms is called non-photochemical 

quenching (NPQ), during which excited-state chlorophylls or other pigments are quenched, and 

excess excitation energy is dissipated as heat232. In plants and algae, NPQ is carried out by light-

harvesting antennas, a process mediated by a ΔpH across the thylakoid membrane. NPQ is also 

related to the xanthophyll cycle, which plays an important role in the protection of plants and 

algae against oxidative stress232-233. In cyanobacteria, the major light-harvesting complex is the 

phycobilisome (PBS), a soluble complex attached to the surface of the membrane, unlike the 

integral membrane light-harvesting complexes in plants and algae. Thus, a distinct 

photoprotection mechanism has evolved in cyanobacteria. The orange carotenoid protein (OCP), 

a single carotenoid-binding protein, functions both as a light sensor and a photoprotective entity9, 

202, 234. 

The OCP is composed of an α-helical N-terminal domain (NTD), an α-helix/β-sheet C-terminal 

domain (CTD), and a flexible linker region that joins them. A keto-carotenoid spans both 



119 

 

domains and is encapsulated by the protein scaffold with almost no solvent exposure. The OCP 

forms a compact globular structure by a strong interaction between the NTD and CTD via salt 

bridges as well as by hydrogen bonds. Under high-intensity illumination, these bonds are broken, 

which leads to the solvent exposure of the major NTD-CTD interface, accompanied by a 12 Å 

carotenoid translocation; this process converts orange OCP (OCPo) into its active quenching 

(red) state (OCPr) 7, 38, 204-205, 235-237. It is generally accepted that OCPr quenches energy and 

fluorescence via its interaction with the core of the PBS. Efforts have been made to locate the 

specific binding site on PBS, and several models have been proposed1, 55, 238-240. FRP is able to 

recover the fluorescence from the PBS by interacting with OCPr. The active OCPr is metastable, 

and reverts back to the inactive orange state in the dark. FRP greatly accelerates this reversion 

process by interacting with the CTD206-207. The FRP crystal structure reveals three 

conformational states: two in the dimeric form and one in the tetrameric form. The dimeric form 

was proposed to be the functional state207, and it was found to be the dominant state in solution56, 

207, 224. The study on OCP apoprotein suggests FRP functions as a general scaffold protein for 

OCP maturation237. The recent model proposed by Thurotte et al.241 demonstrates that FRP has 

two distinct activities during the fluorescence recovery process: it first accelerates OCPr 

detachment from phycobilisomes242 and then assist OCPr relaxation into OCPo. The detailed 

molecular mechanism of how FRP mediates the fluorescence recovery process in cyanobacteria 

is still elusive.  

We have chosen mass spectrometry (MS) to investigate this problem.  MS is now being 

widely used to study protein conformation, structure, dynamics, and protein-protein or protein-

ligand interactions43, 209, 243-245. Native MS, in particular, allows for the detection and analysis of 

intact protein complexes in their near-native states53, 246. Cross-linking complements native MS 
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because it can reveal amino acid pairs that are positioned in close proximity by linking protein 

partners constrained by the effect length of the linker40. A medium-resolution interaction model 

can be obtained by mapping the adjacent residues on protein complexes43. MS-based isotopic 

cross-linking can provide quantitative information on protein interactions, giving insights into 

the binding sites as well as conformation changes41. MS-based protein footprinting techniques 

can further provide detailed information on protein solvent accessibility13, 29, 34, 247. All in all, an 

integrative MS-based tool kit can provide complementary information of protein structures in 

complexes to afford a more complete description of interaction model. 

In this work, we utilized a variety of techniques, especially MS-based ones, to investigate the 

molecular mechanism of the FRP-mediated OCPr to OCPo conversion process. We found that 

FRP accelerates OCPr to OCPo conversion through several distinct steps. A dramatic 

conformational change of FRP occurs upon interacting with OCP in both the red and orange 

states. In addition, the head domain on FRP could play an essential role during its binding to 

OCP.  Our study provides novel insights into the FRP-mediated OCPr to OCPo process, and a 

working model is proposed based on the experimental results. 

6.3 Materials and Methods 

6.3.1 Expression and mutagenesis of FRP 

The expression of WT FRP (SGL_RS10235) was performed as previously reported56. Site-

directed mutants of FRP were constructed by using complementary mutagenic PCR primers. A 

list of all the primers used is shown in Table S1. Each mutagenic PCR reaction consisted of ~50 

ng of plasmid DNA, 10 pmol of each primer, 10 nmol of dNTPs, 0.5 µL of a high-fidelity DNA 
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polymerase (Phusion, Thermo Fisher Scientific, Waltham MA), and 10 µL of a 5x PCR reaction 

buffer (Phusion HF buffer, Thermo Fisher Scientific) in a 50 µL reaction. The PCR reaction 

consisted of an initial denaturation step at 98 °C for 15 sec, followed by 18 cycles of 98 °C for 

15 sec, 50 °C for 20 sec, and 72 °C for 20 sec. Because the length of the SGL_RS10235 gene is 

short, a final extension step was not included in the PCR reaction. Following the mutagenic PCR 

reaction, 1 µL of DpnI restriction enzyme (New England Biolabs, Ipswich, MA) was added to 

each reaction in order to digest the original template DNA. Five microliters of this reaction were 

used to transform chemically competent E. coli DH10B cells. Plasmids extracted from the 

transformants were confirmed by DNA sequencing prior to a subsequent transformation of the 

closed circular plasmid into E. Coli BL21(DE3) cells for protein expression.  

Table. 6.1 

Forward primers used to construct site-directed mutants of the SGL_RS10235 gene (reverse primers are the reverse 

complements of the forward primers) 

Mutant Forward primer sequence (5’-3’) 

R60L GAAACTCCATGATTTTTTGAGTGCAAAACTGCACGAAATTGATGGC

AAGTACG 

D64A GTGCAAAACGCCACGAAATTGCCGGCAAGTACGACGATCGCC 

G65D GTGCAAAACGCCACGAAATTGATGATAAGTACGACGATCGCCAGTC 

R70D GAAATTGATGGCAAGTACGACGATGATCAGTCGGTGATTATTTTTG

TTTTTGC 

F76D CGATCGCCAGTCGGTGATTATTGATGTTTTTGCCCAACTGCTCAAGG 

K102D TAGCCGCCGATAAGCAATCTGATATTAAGGCCCTGGCCCGG 

 

 

6.3.2 FRP and OCP purification  
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The isolation of OCP, FRP and FRP mutants were performed by using published protocols55-

56. The OCPr partial digestion was carried out as previously described248.  

6.3.3 Native MS and IM-MS Analysis of NTD, CTD and FRP complex  

The NTD/CTD mixture obtained after OCPr partial digestion and FRP samples were 

separately washed with 400 mM ammonium acetate at pH = 8.0 (09689, Sigma-Aldrich, 

Missouri, USA) in a 5 kDa molecular weight cut off filter (Vivaspin, Goettingen, Germany). The 

original buffer and salts were removed by10 cycles of washing. The NTD/CTD and FRP were 

mixed in 4:1 and 1:4 ratios, respectively, and introduced into the ESI source of a Waters Synapt 

G2 ESI Q-TOF (Electrospray ionization-quadrupole time of flight, Waters Corporation, Milford, 

MA) mass spectrometer by using commercial borosilicate emitters with extra coating (ES387, 

Hudson, New Hampshire, Thermo Scientific). The backing pressure was adjusted to 5 mBar for 

transferring the large protein ions. All the mutant FRP proteins were mixed with the NTD/CTD 

in a 2:1 ratio, respectively, and analyzed in the same manner. As a reference, intact OCP was 

also mixed with FRP in a 1:2 ratio to investigate the affinity of FRP to OCPo. The IM-MS 

experiment and data processing were carried out as previously described56. 

6.3.4 Activity assays 

The OCP was previously photoconverted to the red form by 10 min illumination with 2,000 

μmol photons m−2s−1 white light at 8 °C. The OCPr to OCPo reversion processes in the 

absence/presence of FRP WT/mutants were monitored in a Lambda 950 (Perkin Elmer UV 

WinLab) spectrophotometer at 8 °C. One point was recorded per second by monitoring the 

absorption at 550 nm for 30 min.  
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6.3.5 Cross-linking and LC-MS 

All the cross-linking experiments were carried out in triplicate at 4 °C for 2 h. Illumination 

with 2,000 μmol photons m−2s−1 white light was kept constant during the cross-linking process 

for OCPr-included samples. The cross-linker, disuccinimidyl suberate (DSS-d0, Cross-linking 

reagent without any deuterium atoms, ProteoChem, UT, USA), was added to FRP (reference 1), 

OCPo and OCPr-FRP samples. DSS-d4 (Cross-linking reagent with 4 deuterium atoms that 

provide a 4 Dalton mas shift, ProteoChem, UT, USA) was added to FRP (reference 2), OCPr and 

OCPo-FRP samples. OCPr-FRPd4 and OCPo-FRPd0; FRPd4, OCPo, d4 and OCPo-FRPd0; FRPd0, 

OCPr, d0 and OCPr-FRPd4 were mixed, respectively, in equimolar quantities to investigate the 

structural changes and interacting regions of these proteins. (See Figure 6.1 for a flow chart). The 

molecular weight of cross-linked complexes was analyzed by SDS-PAGE. Peptides from the 

digest of cross-linked samples were prepared by acetone precipitation and enzymatic digestion as 

previously described249. Sep Pak cartridges (Waters Corporation, Milford, MA) were used to 

desalt the sample. An LC-MS experiment was done, as previously described, with some 

adjustments71. Peptide mixtures were trapped by a guard column (nanoACQUITY Trap Column, 

Waters Corporation, Milford, MA) and then fractionated on an ACQUITY UPLC Peptide BEH 

C18 Column (10 K psi, 130 Å, 1.7 µm, 75 µm X 100 mm, Waters Corporation, Milford, MA). 

The MS analysis was performed with a Thermo Scientific™ Q Exactive™ hybrid quadrupole-

Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen Germany). Peptides were eluted 

with a 120 min, 250 nL/min gradient coupled to the nanospray source. The default charge state 

was 3, and the scan range was from m/z 380-1500. Mass spectra were obtained at high mass 

resolving power (70,000, FWHM at m/z 200), and the top 15 most abundant ions corresponding 

to eluting peptides per scan were submitted to collision-induced dissociation (CID) in the ion 
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trap, with charge-state rejection of unassigned, +1, +2 and >8 ions enabled. Precursor ions were 

added to a dynamic exclusion list for 8 s to ensure a good sampling of each elution peak.  

 

Figure 6.1. Flow chart of isotopic cross-linking experiments on FRP and OCP. 

 

6.3.6 GEE Labeling 

The FRP protein was mixed with OCPr and OCPo respectively in a 2:1 ratio. The 

modification reaction was carried out for a time course up to 2 h under either dark or light 

conditions at 4 °C, using freshly prepared 1.5 M GEE (Sigma, St. Louis, MO) and 0.5 M EDC 

(Pierce, Rockford, IL) stock solutions. (10 mM PBS, pH 8.0) The reaction was quenched by 

adding a 1/10 volume of 1 M Tris–HCl (pH 8.0) followed by buffer-exchange using a Zeba™ 

desalting spin column (Thermo Scientific, Rockford, IL) according to the manufacture's 

protocol. The FRP-only sample was also labeled by GEE on the same platform as the control. 

Preparing the peptides and conducting the LC/MS experiments were performed in the same way 

as for the cross-linked samples39. 
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6.3.7 MS data analysis 

Byonics250 and Protein Prospector online server (Baker, P.R. and Clauser, K.R. 

http://prospector.ucsf.edu) were utilized to identify DSS- and GEE-labeled peptides. The searching 

parameters were set as follow: Peptide tolerance: 10 ppm, MS/MS tolerance: 0.02 Da, Mass type: 

Monoisotopic, 13C isotope ions: Yes, Enzyme: Trypsin, Missed cleavages: 2. 

6.4 Results and Discussion  

6.4.1 FPR accelerates the OCPr to OCPo relaxation by bridging NTD and 

CTD  

The OCP is a unique protein that functions as a light sensor, a signal propagator, and an 

energy quencher. The NTD is a chromophore-containing domain that can burrow into the PBS 

and thermally dissipate excess excitation energy in the PBS, whereas the CTD can regulate the 

accessibility of OCP, and hence the activity of the PBS-binding NTD240, 251-252. The spontaneous 

reversion from the red to orange state of OCP is significantly accelerated in the presence of 

FRP11, 207, 242. Under light irradiation, the most exposed cleavage sites for trypsin are located on 

the linker region of OCP owing to complete domain dissociation38. Thus, fragments of the CTD 

(186-310) and NTD (10-170) can be obtained by partial proteolysis, whereas parts of the linker 

region and N-terminal arm (flexible loop region located on the N- termini) are missing248.        

Immunoprecipitation, size-exclusion chromatography (SEC), native-gel electrophoresis, and 

molecular modelling results all suggest that the CTD is the domain that interacts with FRP207, 239, 

253. Our previous native MS study shows that FRP primarily exists as a dimer56, although two 

different oligomeric states were identified by crystallography207. In this study, FRP was mixed 

http://prospector.ucsf.edu/
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with NTD/CTD partial digestion fragments in 4:1 and 1:4 ratios and subjected to native MS 

analysis. The electrospray ionized protein complex in the gas phase carries a series of charges 

which usually exhibit a Gaussian distribution. All the peak assignment was determined both 

manually and by Massign software183. The results indicate that a high abundance of the dFRP-

CTD complex is formed (Figure 6.2), which is convincing evidence of the high affinity of the 

CTD to dFRP. Collisional induced dissociation (CID) of this protein complex produces 

monomeric FRP-CTD (mFRP), suggesting a strong interaction between one FRP monomer and 

the CTD (Figure 6.3A). A previous ion mobility (IM)-MS analysis shows one intermediate state 

in the unfolding process of dFRP56, and none in the unfolding process of the CTD owing to its 

compact structure248. Here, two intermediate states occur during the unfolding process of CTD-

dFRP, driven by the higher order structure refolding, suggesting high stability of this complex 

(Figure 6.4). 

Surprisingly, protein complexes containing components of the NTD, dFRP, and CTD were 

found to co-exist with the CTD-dFRP complex. NTD fragments (sequences from 10-168 and 10-

170 with and without carotenoid, respectively) are binding partners to the dFRP-CTD (Figure 

6.2A). We then carried out tandem MS to investigate the topology of those protein complexes. 

When protein complex ions are accelerated to high kinetic energy it usually results in ejection of 

a single protein subunit254. After those ejection events, complexes including the dFRP-NTD and 

mFRP-NTD remain, giving evidence for the existence of a binding face between FRP and the 

NTD (Figure 6.3B). Interestingly, no such complexes were detected during an MS1 analysis, 

when no MS/MS activation was applied. The previous study on FRP and NTD mixture also 

shows FRP doesn’t bind to NTD253. It appears that the binding of the CTD to dFRP initiates a 

conformational change of dFRP, facilitating its binding to the NTD. In another word, the 
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determining step of OCPr binding to dFRP event is the attachment of CTD to dFRP. An interface 

between CTD and NTD might also exist in protein complex CTD-dFRP-NTD, but the interaction 

is likely to be weak since no NTD-CTD complex can be observed with or without CID.  

 

Figure 6.2. Native mass spectra of FRP and the NTD/CTD mixture in a (A) 4:1 or (B) 1:4 ratio. Complexes include 

the dCTD-dFRP-NTD, CTD-dFRP-NTD, dCTD-dFRP and CTD-dFRP. The inset in A shows the binding of the 

NTD fragments to the dFRP-CTD. 

 

 



128 

 

Figure 6.3. (A) Product-ion (MS/MS) spectrum of the CTD-dFRP ion obtained at 58 V collisional voltage. The 

resolved complex of the CTD-mFRP suggests a primary binding face exists on one of the FRP subunits. (B) 

Product-ion (MS/MS) spectra of CTD-dFRP-NTD recorded at 58 V and 108 V collisional voltage. The resolved 

complexes of NTD-dFRP and NTD-mFRP after CID suggest that a binding interface exists between the NTD and 

FRP. 

 

Figure 6.4. IM-MS unfolding heat map of CTD-dFRP complex. 

 

We also observed the formation of complexes consisting of the dCTD-dFRP-NTD and 

dCTD-dFRP (Figure 6.2). To investigate whether the CTD can form a dimer by itself, the 

NTD/CTD mixture was submitted to native MS at concentrations ranging from 5 µM to 200 µM. 

The analysis revealed a noticeable level of dimeric CTD (dCTD), even at low concentrations 

(Figure 6.5), which is in accord with the previous SEC results253. Thus, a complex of dCTD-

dFRP is formed owing to the binding of dCTD to dFRP. These results suggest that different 

regions of the CTD are involved in binding to the other CTD and FRP. Similarly, the NTD could 

bind to this dCTD-dFRP complex forming dCTD-dFRP-NTD. When the NTD/CTD is in excess, 

more dCTD-dFRP-NTD complexes are formed (Figure 6.2B). 
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Figure 6.5. Native MS analysis of NTD/CTD mixture ranging from 5 µM to 200 µM. 

To describe better the interaction between FRP and OCP, an isotopic cross-linking strategy 

was adopted to compare quantitatively their interactions under dark or illuminated conditions41. 

SDS-PAGE analysis revealed bands corresponding to the molecular weights of one FRP and one 

OCP, and two FRPs and one OCP in the red state, while the corresponding bands in the orange 

state were barely visible (Figure 6.6). It appears that mFRP-OCP is more abundant than dFRP-

OCP on the gel image, but we don’t see that as a direct evidence of dFRP monomerization. 

Usually only a very small fraction of interacting protein complex can be cross-linked. In order to 

observe dFRP-OCP, mFRP needs to be cross-linked to the other mFRP and OCP needs to be 

cross-linked to mFRP which lower the chance of obtaining them. Nevertheless, among all the 

lysine-NH2 groups in OCP (twelve) and FRP (eight), and the N-termini of the two proteins, we 

identified six cross-links by LC/MS out of the 117 potential cross-links (Figure 6.7A). A residue 

located at the CTD (K249) was found to be linked to K23 on FRP, further proving the adjacency 

of CTD to FRP. The linker region and the N-terminal arm of OCP were also found to be cross-

linked to FRP (Figure 6.7A, product-ion (MS/MS) spectra are shown in Figure 6.8). Mapping the 
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cross-linked residues on the FRP and OCP crystal structures, we notice that those residues are 

located near the interface of two terminal domains (Figure 6.7B, C, D).  

 

Figure 6.6. SDS-PAGE analysis of cross-linked samples. The content of sample is labeled on top of each lane. 
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Figure 6.7. (A) Cross-links identified between OCPr and FRP. The corresponding positions are mapped on the 

cartoon representations of the OCP NTD (B, PDB 4XB5235) and CTD (D, PDB 3MG1205, sequence 170-311) crystal 

structures. (C) Model of the OCP-FRP interaction from crosslinking data. The missing loop regions in the crystal 

structure were generated by software available at UCSF255. Each mFRP unit is shown by yellow rhombus. 
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(C) 

 

(D) 
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(E) 

 

(F) 

Figure 6.8. MS/MS ion-product spectra of cross-linked peptides. 

 

6.4.2 Binding domain on FRP to CTD 

To locate the binding site of FRP, we generated a series of FRP site-directed mutants based 

on conservation analysis207 and analyzed them with the same native MS platform. The existence 

of both FRP and NTD/CTD including complexes is seen as direct evidence of the binding 

affinity between mutant FRP and the NTD/CTD. The peak series (+11, +12 and +13) 
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representing dFRP-CTD complex dropped to different degree in all mutant samples (Figure 

6.10C and Figure 6.11). Thus, the peak series representing the free dFRP (+9 and +10) increased 

in the two mutant samples mentioned above (Figure 6.10C and Figure 6.11A). The F76D mutant 

exhibits the most striking decrease in interaction, and the binding of the K102D mutant to the 

NTD/CTD is also severely affected. Overlapping of the three crystallographic conformation 

states207 shows that FRP is composed conservatively of an extended α-helical domain, a small 

helical cap, while the chain regions are folded in a slightly different way. F76 and K102 are 

located on the conserved helical cap (“head” region) in all three conformations (Figure 6.9A). 

Based on the affinity analysis of CTD to dFRP, we propose that this head domain could be the 

binding face of FRP to the CTD. To be certain of the binding face on FRP, however, more 

experiments need to be carried out, such like construction of different mutations on the head 

region.  

 

 

 

 

 

 

http://dict.youdao.com/w/eng/conservatively/#keyfrom=dict.basic.relword
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(A) 

 

(B) 

Figure 6.9. (A) Alignment of FRP residues 72-106 on chain A/C (cyan), chain B/D (green) and chain E/F (yellow) 

from PDB 4JDX143, 207. F76 and K102 are colored in red. (B) Chain A/C (cyan), chain B/D (green) and chain E/F 

(yellow) from PDB 4JDX143, 207. The residues being cross-linked are shown in red. K59 and K66 in E/F dimer 

cannot be labeled because they are located in the missing loop structures.  

CTD shows a negatively charged interface that is hidden in the orange state (Figure 6.12A, 

B), while the binding domain of FRP is positively charged (Figure 6.13A, B). In previous 

mutagenesis studies on OCP, the “catalytic” ability of FRP was found to be affected by the 

mutations on the surface of the inter-domain cavity256. One proposal is that the positively 

charged head domain of FRP interacts with the negatively charged interface on the CTD. In 

addition, the other side of the head, which is originally embedded between the head and chain of 

FRP, is negatively charged (Figure 6.13D, F). The NTD interface that is hidden in the orange 

state reveals a positively charged surface (Figure 6.12C, D). One possibility is that, upon binding 
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of the positively charged head domain of FRP to the negatively charged CTD interface, the head 

domain on FRP unfolds, exposing the originally embedded negative face that interacts with the 

positively charged interface on the NTD. In brief, one assumption from the molecular modelling 

and surface electrostatic analysis is OCP and FRP interacts via an unfolding and bridging 

mechanism. After the head domain attaching to the CTD, the head domain unfolds and the 

original hidden face on the head domain attach to the NTD.  
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Figure 6.10. Map of residues identified by native MS, cross-linking, and GEE labeling on the FRP head region (A) 

and dimer-interacting region (B) of chains B/D; structure from PDB 4JDX.207 (C) Native mass spectra of the 

NTD/CTD in the presence of WT or F76D FRP. The binding affinity of F76D mutant to NTD/CTD is greatly 

diminished. (D) A bar graph showing the changing of mono-link extent on FRP in the presence of OCPr or OCPo. 

R =
Abundance of FRP monolink upon FRP interacting with OCP

Abundance of FRP monolink for FRP only sample
 (E) Bar graph showing the change in solvent accessibility of 

FRP residues, as probed by GEE labeling. 
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(A) 

 

(B) 
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(C) 

 

(D) 

 

(E) 

Figure 6.11. Native mass spectra of mutant FRP in the presence of NTD/CTD partial digestion fragments (Red). The 

native MS spectra of WT FRP are shown in black. 
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Figure 6.12. The surface electrostatic analysis by APBS (Adaptive Poisson-Boltzmann Solver) shows negatively 

charged CTD interface (A, the corresponding cartoon structure is shown in B) and positively charged NTD interface 

(C, the corresponding cartoon structure is shown in D).  
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Figure 6.13. The surface electrostatic analysis by APBS shows negatively charged head domains and positively 

charged chain domain of BD (A) and AC (B) dimer from PDB 4JDX. Chain B (cyan) is aligned to the “unfolded” 

chain B (Green) as shown in C and D, and the corresponding surface electrostatic analysis of the “unfolded” chain B 

are shown in E and F.  The positively charged binding region is highlighted with blue circle, and the negatively 

charged region, which in hidden in original state, is highlighted with red circle. The modified structure of chain B 

(Green) was generated by using the structure building and energy minimization tools in Chimera software255. The 

dihedral angles in the loop region from AA 68-73 (DDRQSV) were modified. Then the produced geometry was 

energy minimized by applying 1000 steepest descent steps with a step size of 0.02 angstrom (C, D, E, F). 
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6.4.3 Regions influence FRP function 

To evaluate the residues that influence the function of FRP, and not just its binding affinity, 

we performed a kinetic analysis on the OCPr to OCPo relaxation process by monitoring changes 

in the absorption at 550 nm in the presence of different FRP mutants. The F76D and R60L 

mutations were found to lose their ability to accelerate OCPr conversion, and the G65D mutation 

also greatly affects the FRP function (Figure 6.14). A previous study also demonstrates that the 

R60L mutant loses its acceleration ability on OCPr relaxation207. The result with the F76D 

mutant is not surprising, as this mutant loses its affinity to interact with the NTD/CTD, as 

discussed in the previous section. The R60L mutant can still bind to the NTD/CTD to some 

degree (Figure 6.11E), although no acceleration capability on OCPr relaxation is retained (Figure 

6.14). We propose that the binding and the acceleration of OCPr relaxation processes can be 

decoupled because different amino acids are involved. Native MS analysis is essentially a 

snapshot of the interaction between the FRP and OCPr (without the linker region and N-terminal 

arm), whereas the kinetic analysis requires the FRP to perform its function fully by converting 

OCPr into OCPo. R60 is not located in the binding face on FRP; thus, the binding affinity of FRP 

is not affected upon mutation. Thurotte and co-workers241 found that the R60L mutant can still 

detach OCP from the PBS, but it is unable to accelerate the conversion to the orange state. Both 

results indicate that the acceleration process can be decoupled into several stages. In addition, the 

R60L mutant FRP can still perform a conformation change upon binding with the CTD, as the 

dFRP-CTD-NTD complex was also observed during native MS analysis (data not shown).  It is 

likely that R60 is the crucial residue in the later conformational change, when the two domains 

are already attaching to FRP.  
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Figure 6.14. Kinetics of the conversion of OCPr to OCPo as monitored through changes 550 nm 

absorption. OCP was either incubated alone, in the presence of WT FRP, or with the FRP 

mutants R70D, D64A, K102D, G65D, F76D, R60L. 

6.4.4 Substantial conformational changes of dFRP after bridging the two 

domains  

To investigate the possible conformational changes that take place upon bringing the two 

domains together, we utilized intra-molecular cross-links on FRP to evaluate the structural 

change upon its interaction with OCP. When FRP interacts with OCPr, the intensity of intra-

molecular links increase by several folds, whereas a decrease of intra-molecular cross-link 

intensity occurs when FRP was incubated with OCPo (Figure 6.15). The cross-links identified 

here can either arise from one individual chain, or two subunits of dFRP, although the abundance 

of cross-linked dFRP is much lower than intra-linked mFRP, as observed by SDS-PAGE (Figure 

6.6). The measured distance of the cross-linked amino acid pairs within chains A/C, B/D, and 
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E/F, as well as dimeric AC, BD and EF (Figure 6.9B) are listed in Table S2.  Although the 

spacer length of DSS is 11.4 Å, a distance constraint of 26–30 Å between Cα atoms is considered 

to be possible owing to native-state protein dynamics42. AC and BD dimers have a higher chance 

to form the intra-molecular links than the EF dimer when considering the distance constraints. 

Nevertheless, a substantial structural rearrangement of FRP takes place upon interaction with 

OCP, especially when OCP is in the red state. 

 

Figure 6.15. Bar graph showing the changes in intra-FRP cross-links in the presence of OCPr or OCPo. The numbers 

on x axis correspond to the position of amino acid residues on FRP.                                           

 R =
Abundance of intra−FRP crosslink upon FRP interacting with OCP

Abundance of intra−FRP crosslink for FRP only sample
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Table. 6.2 

Distances of cross-linked lysine/N-termini residues measured by Xwalk server257 in PDB 4JDX207 Cross-links 

involving M1 are not covered in analysis due to the missing N-terminal loop in PDB file.207 (A) A/C chain (B) B/D 

chain (C) E/F chain (D) AC dimer (E) BD dimer (F) EF dimer 

                                                                         (A) 

Residue 

1 

Residue 

2 

Euclidean 

Distance 

(Å) 

SAS 

Distance 

(Å) 

K23 59 18.4 27.5 

K23 66 13.6 26.4 

K23 104 18.2 27.6 

K59 66 9.7 12.6 

K59 104 25.5 34.2 

K66 104 19.3 33.1 

 

                                                                         (B) 

Residue 

1 

Residue 

2 

Euclidean 

Distance 

(Å) 

SAS 

Distance 

(Å) 

K23 59 19.2 28.4 

K23 66 14.8 28.8 

K23 104 18.4 28.0 

K59 66 10.2 12.9 

K59 104 26.5 34.1 

K66 104 19.6 32.3 
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                                                                         (C) 

Residue 

1 

Residue 

2 

Euclidean 

Distance 

(Å) 

SAS 

Distance 

(Å) 

K23 59 57.6 68.4 

K23 66 54.9 61.3 

K23 104 43.2 48.6 

K59 66 9.2 10.8 

K59 104 27.9 48.9 

K66 104 23.8 38.0 

 

                                                                         (D) 

Residue 

1 

Residue 

2 

Euclidean 

Distance 

(Å) 

SAS 

Distance 

(Å) 

K23 59 14.1 16.1 

K23 66 13.6 30.3 

K23 104 15.8 35.1 

K59 66 9.7 12.6 

K59 104 19.0 19.3 

K66 104 18.7 35.4 

 

                                                                         (E) 

Residue 

1 

Residue 

2 

Euclidean 

Distance 

(Å) 

SAS 

Distance 

(Å) 

23 59 18.7 28.7 

23 66 13.9 26.3 

23 104 18.4 28.0 

59 66 10.2 12.9 

59 104 26.0 34.4 

66 104 19.6 32.3 
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(F) 

Residue 

1 

Residue 

2 

Euclidean 

Distance 

(Å) 

SAS 

Distance 

(Å) 

23 59 23.7 31.2 

23 66 16.3 22.9 

23 104 19.5 27.2 

59 66 9.2 10.8 

59 104 27.9 52.4 

66 104 23.8 45.1 

 

Interestingly, we identified cross-links between two mFRP subunits: M1 to M1 and K23 to 

K23. We also found an increased number of M1-M1 cross-links when FRP interacts with OCPr 

and, vice versa, when FRP interacts with OCPo (Figure 6.16B).  In addition, the frequency of 

K23-K23 cross-linking also drops when FRP interacts with OCPo (Figure 6.16B). One possibility 

is that the flexible N-terminal loop on each mFRP approaches each other when dFRP interacts 

with OCPr, and vice versa when dFRP interacts with OCPo; the region containing K23 on each 

mFRP dissociates from each other when dFRP interacts with OCPo. The other possibility is FRP 

unfolds into a long alpha helix and thus causes an increase of solvent accessibility. In this new 

conformation, the N-terminus of each mFRP gets closer compared to the original structure. 
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Figure 6.16. (A) Distances between the corresponding residues in PDB 4JDX (A/C chain, B/D chain and E/F chain) 

are measured by using Pymol software143. (B) The bar graph shows the change of inter-mFRP cross-link in the 

presence of OCPr or OCPo. 

To investigate further the conformational change of FRP upon interaction with OCP, we 

probed the solvent accessibility of the protein by evaluating the intensity change of DSS mono-

links and GEE-labeled residues in a carboxyl (GEE) footprinting experiment. When FRP 

interacts with OCPr, all the mono-links show an increased intensity except for K99, which is 

located on the binding domain of FRP (Figure 6.10D). To get a more comprehensive or higher 

resolution picture of solvent accessibility under different conditions, we adopted GEE to 

footprint carboxyl groups on the amino-acid residues. The reactivity of a carboxyl group on D 

and E amino-acid side chains is proportionally related to the solvent-accessible surface area of it 

and the adjacent regions29. Similar to that of most of the lysine residues, the solvent accessibility 

of all the D and E residues on FRP increase dramatically upon interacting with OCPr (Figure 

6.10E) These results strongly support the idea that FRP undergoes a dramatic conformational 

change during its interaction with OCPr. The most dramatic change is located on D54, followed 

by on D68 and D69 (Figure 6.10E). The mutagenesis analysis shows that the amino acids that 

form a network of hydrogen bonds between the two mFRP chains (R60, W50 and D54) are 

essential for the enhancement of OCPr to OCPo conversion207. In addition, two of the previous 
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studies suggests that FRP monomerizes when interacting with OCP analogs224, 237. In this study, 

a protein complex including mFRP, CTD and NTD was observed after MS/MS dissociation 

(Figure 6.3B). Thus, the dramatic solvent accessibility change on D54 may be caused by a 

structural rearrangement of two FRP subunits—perhaps a monomerization of dFRP. However, 

the increased amount of inter-mFRP M1-M1 cross-links contradicts the monomerization idea of 

dFRP during its interaction with OCPr. It is worth mentioning that OCPr is under constant 

illumination at low temperature during the labeling process, and the samples including OCPr still 

exhibit a red color upon quenching of the reaction. Thus, the FRP hasn’t reached the end of its 

journey of converting the OCPr into orange. After dFRP attaching to the two domains, the 

leaving mFRP could be in equilibrium with both the bound mFRP and free mFRP in solution 

(Figure 6.7C). It is likely that the increasing dynamic motion facilitates the forming of inter-

mFRP and intra-FRP cross-links (Figure 6.15, Figure 6.16B). The other possibility is FRP 

unfolds into long alpha helix and thus causing the increasing of solvent accessibility. And in this 

new conformation, the N-terminal on each mFRP gets closer compared to the original structure. 

6.4.5 Response of OCPr to FRP  

In this part of the study, we identified multiple cross-links between OCPr-K167, -K170, and -

P2 to FRP, suggesting the adjacency of the N-terminal arm and linker region during its 

interaction with FRP (Figure 6.7). In addition, both domains can attach to FRP, despite the CTD 

being the major target of FRP, as discussed in the previous section. The two domains of OCP are 

fully dissociated upon photoactivation, whereas an unstructured loop (the linker region) 

connecting the two domains becomes significantly exposed38. That the OCP photo-activation is 

not reversible after partial enzymatic digestion indicates that this unstructured loop is crucial for 
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the conversion of active OCPr to inactive OCPo. The N-terminal arm is also a crucial coordinator 

in the OCP conversion process; this arm not only dissociates from the CTD but becomes 

disordered during the activation38-39. Moreover, the absence of the N-terminal arm largely 

facilitates the action of FRP on OCPr and accelerates the detachment of the OCPr from the 

PBS258. Those previously published findings reinforce our conclusion that the linker-region, N-

terminal arm and CTD on OCPr could be adjacent to the regions that are interacting with FRP. 

The extent of both DSS mono-linking and GEE-labeling on OCPr exhibits no obvious 

changes in the presence or absence of FRP. An exception is residue E311, which is located at the 

C-terminal loop of OCP (Figure 6.7D); its decrease in solvent accessibility suggests that E311 

could be the binding residue to FRP (Figure 6.17A). The C-terminal loop of OCP is not fully 

seen in the crystal structures, likely owing to its flexibility204-205. Our previous GEE-labeling 

study shows, upon photoactivation, a marked increase in the extent of E311 labeling39 as well as 

a > 2-fold decrease in the labeling of P309/K310 in OCPr relative to the corresponding amino 

acids in OCPo 38. Both results suggest a movement or structural rearrangement of the C-terminus 

upon photoactivation. In this study, we found that the C-terminal loop plays a role in the FRP-

mediated OCPr to OCPo conversion process. In addition, that the FRP burrows into the inter-

cavity of the two OCP domains may further separate them, exposing the linker region to a larger 

extent (increased labeling extent on K167) and slightly increasing the solvent accessibility of 

K249 on the CTD interface (Figure 6.17C). 
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6.4.6 Response of OCPo to FRP  

That FRP prevents OCPo from photoactivation11, 224 suggests two possible mechanisms: one 

is that FRP associates with OCPo and hinders its activation, and the other is that FRP 

immediately converts OCPr to OCPo, preventing the detection of OCPr. OCPo was proposed to be 

weakly or not attached at all to FRP by an immuno-precipitation study11, and a similar study on 

the NTD/CTD reveals that only the CTD can bind FRP207. The results obtained by Sluchanko et 

al.224  suggest a transient interaction between FRP and OCPo. In this study, we confirmed the 

interaction between FRP and OCPo, and found that the linker region is in adjacency with  FRP 

during interaction.  

A cross-link was found between the linker region and FRP. Unlike for OCPr, only one cross-

link between OCPo and FRP could be identified (Figure 6.17D). The intensity of the signal 

representing this cross-link is much lower compared to that for the red state, suggesting a much 

smaller interface or binding affinity. The only residues exhibiting a noticeable decrease of 

solvent accessibility upon binding to FRP are D35 (from GEE labeling) and T15 (from DSS 

cross-linking) (Figure 6.17B, C). These results suggest that the NTD in the orange state 

associates with the FRP to some degree.  

In addition, the abundance of signals representing intra-molecular links on FRP all decreased 

when interacting with OCPo (Figure 6.15). This could be due to the anchoring of dFRP on OCPo, 

preventing dynamic motions or transition into other states of FRP. In addition, the formation of 

OCP-dFRP is barely detectable by native MS (Figure 6.18), and the corresponding bands on 

SDS-PAGE are barely visible (Figure 6.6). Thus, the interaction between OCPo and FRP is 

significantly weaker compared to OCPr and FRP. 
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Figure 6.17. (A) GEE labeling extents of OCPr amino-acid residues in the presence or absence of FRP. (B) GEE 

labeling level of OCPo amino acid residues in the presence or absence of FRP. 

 GEE labeling level =
Peak area of labled peptide

Peak area of labled peptide + Peak area of unlabled peptide
 (C) A bar graph showing the changes in 

OCP mono-links in the presence FRP. R =
Abundance of monolink upon interacting with FRP

Abundance of monolink for OCP only sample
 (D) An isotope-encoded mass 

spectrum of crosslinked OCP-FRP showing the K167(OCP)-M1(FRP) cross-link in the orange state is less abundant 

than in the red state. 
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Figure 6.18. Native MS spectra showing the weak association between OCPo and dFRP. The collisional energy is 

increased from bottom to top. 

6.5 Conclusion 

We propose that FRP performs its function through several independent steps, involving 

various amino acids in the process. The accelerated conversion process starts with dFRP binding 

to the CTD on OCPr as suggested by native MS results. The preliminary results obtained by 

native MS, site-directed mutagenesis (F76, K102) and mono-crosslink (K99) suggest the initial 

binding domain on FRP to the CTD. The structural rearrangement of dFRP upon binding with 

the CTD enables its binding to the NTD. To the best of our knowledge, this is the first 

experimental evidence showing the interaction between the NTD on OCPr and dFRP.  

Considering the cross-links found between two domains of OCP and FRP, we can propose a 

bridging mechanism. This is in accordance with previous molecular modeling results239. In that 
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model, the CTD interacts with both head and chain domains of the FRP, while the NTD is in 

contact only with the head domain. We also here propose that the head domain interacts with the 

two domains on OCP. This proposal also explains the low affinity of OCPo to FRP; that is, the 

binding face is hidden owing to the compact structure of the orange state. Besides, the previous 

publication suggests the N-terminal arm on OCP could interfere with the interaction with FRP49. 

The cross-linking results suggest the adjacency of N-terminal arm to FRP, which reinforces this 

view. To reset OCPr into a compact structure, the FRP interaction must bring the two domains 

back together, preparing for the translocation of carotenoid. Native MS results provide the direct 

evidence that NTD, CTD and dFRP can form a stable complex. The cross-linking results suggest 

the adjacency of the interface on NTD and CTD to FRP. Either the monomerization of dFRP or 

dFRP unfolds into a long alpha helix is likely to happen after dFRP bridges the two domains 

together, enabled by the crucial role of residue R60 in this conformational change. The linker 

region or N-terminal arm of OCP might be crucial in inducing the structural rearrangement of 

dFRP. In the orange state, the linker region is associated with dFRP to a lesser degree and the 

NTD also possibly retains an affinity to dFRP (Fig. 9). In addition, we found an interesting 

mutual response between FRP and OCP. FRP destabilize OCPr by accelerating its conversion to 

orange state, while FRP itself is also “destabilized”. FRP can “lock” OCPo in orange state, while 

FRP itself is also “stabilized” by OCPo. Thus, we propose a “stiff” structure when FRP 

interacting with OCPo and a dynamic structure when FRP interacting with OCPr. This study 

offers new insights into the interaction between FRP and OCP, laying the groundwork for further 

investigations into the energy-transfer regulation mechanisms of cyanobacterial NPQ. 
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Figure 6.19. Proposed model of the interaction between FRP and OCP. FRP is shown as a rectangle with different 

colors corresponding to different states; the OCP NTD is shown as a red ball in the red state and an orange ball in 

the orange state; the OCP CTD is shown as a wheat-colored ball; the APC core from the PBS is shown as three 

green circles. In the first step, dimeric FRP approaches and binds the CTD, inducing a conformational change in 

FRP (likely unfolding of the head region) and enabling its binding to the NTD. dFRP forms a stable complex with 

OCPr by bridging the two domains. At the stage, OCPr can be detached from PBS by FRP. The cooperative action of 

the linker region and the N-terminal arm facilitates the dissociation of the FRP dimer. Monomeric FRP is more 

flexible and effectively facilitates the closing-up of the two OCP domains. Finally, the accelerated conversion 

process finishes, and dFRP weakly associates with OCPo around the linker region. The “capped” N-terminal arm on 

the CTD inhibits the dFRP from entering the cavity. 
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Chapter 7: Conclusions and Perspective 

Photosynthesis is one of the most important biological processes, supplying energy for 

almost all life on Earth. Solar energy is stored as chemical energy, and the oxygen content of 

the atmosphere is produced and maintained by photosynthesis. Understanding the molecular 

mechanism of photosynthesis is crucial; however, some important details of the molecular 

processes are still missing. For example, one of the biggest concerns in photosynthesis is the 

water-splitting process at the oxygen evolution center. Even more noteworthy is that although 

a variety of protein machineries play critical roles in this process, how those machineries 

coordinate the photosynthesis process remains an unanswered and intriguing question. To 

continue to elaborate the details of photosynthesis, protein chemistry must be addressed, and  

mass spectrometry now plays a central and indispensable role in protein science.  

In chapter 2, we utilized the top-down MS and ECD fragmentation to identify the 

PTM/mutation on LH2, an intrinsic membrane protein. We identified the isoforms of α and β 

subunit as well as a new PTM and an unexpected mutation. Although the 100% identification 

of membrane protein structure by MS is usually difficult, especially via bottom-up approaches, 

the top-down sequencing of photosynthetic membrane proteins is a promising platform, as the 

issue of low accessibility for enzymatic digestion is avoided, and the advance of different 

fragmentation methods largely increase the capability of top-down MS. Especially given the 

fact that many photosynthetic proteins are encoded with more one copy of operon, whether the 

proteins encoded with those operons are expressed and incorporated into the protein complexes 

is an intriguing question. 
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We developed a MS-based membrane protein footprinting platform, using LH2 as a model 

membrane protein and Nanodiscs as a vehicle to carry this membrane protein, as described in 

chapter 3. The results indicate that the outer membrane part has a larger solvent accessibility 

while the regions spanning the membrane have a lower solvent accessibility. This study lays 

the foundation for future studies of other photosynthetic membrane proteins where the 

experimentalist can focus on protein-protein interactions, protein-pigment interactions and 

protein-lipid interactions. For example, whether the properties of lipids influence the topology, 

and whether the intrinsic lipid binding regions exist on the protein pigment complex. 

Chapter 4 describes a combination of MS-based methods to study the reaction center from 

B. viridis, the first membrane protein structure obtained with an atomic resolution structure. 

The results contradict a crystallographic study. A 7-amino acid alteration plus a 7-amino acid 

extension were identified on the M subunit of this reaction center. The native MS results show 

that this reaction center can maintain its integrity in the gas phase, even to the point to preserve 

four non-covalent bacteriochlorophylls that are contained as part of its higher order structure. 

We think it is a good example showing that it is necessary to conduct MS analysis on proteins 

even with the crystal structure available, providing complementary information and even 

contradictory results.  

In chapter 5, we utilized the native MS to investigate the oligomeric state of FRP and OCP 

proteins, as the oligomeric state of these two proteins has been controversial. We observed that 

OCP exhibits concentration-dependent behavior in terms of oligomeric state whereas FRP 

exhibits a dimeric structure consistently. In addition, ion mobility MS reveals the high 

flexibility of the FRP protein. 
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Chapter 6 shows how a combination of MS-based methods, including XL-MS, footprinting 

and native MS, as well as mutagenesis and kinetic studies can reveal the molecular mechanism 

of non-photochemical quenching in cyanobacteria. FRP functions like an enzyme, “catalyzes” 

the relaxation of OCP and interacts with both states of OCP. This study lays the ground work 

for the future study of the three-player system in the cyanobacterial NPQ process. That system 

includes OCP, FRP and PBS. As OCP burrows into PBS to quench the excess energy, FRP 

may work as an inducer of conformational change of OCP or as a stronger binder than PBS 

and, thus, drag the OCP away from PBS. It will be intriguing to draw the global picture as well 

as the local detail of mechanism in this process. 

MS has been routinely used to conduct proteomics analysis, for example, evaluating the 

proteomics in different cell fractions. This is especially useful for photosynthetic proteins, as 

the composition is complex, many of them are expressed with PTMs, and more than one 

isoform may be expressed. Now, mass spectrometers can be employed to achieve different 

goals: deciphering the structure, dynamics and function of proteins.  These advances are 

beginning to benefit the study of photosynthesis.  

We foresee a broad utilization of mass spectrometry to study protein-pigment interactions, 

reaction center/light harvesting complex dynamics, and structure. For example, the protein 

subunit organization of PSII is being probed by XL-MS, as shown in collaborative work 

between the Pakrasi and Gross labs46, underscoring the utility of crosslinking in the future. In 

addition, the development of membrane protein MS techniques in recent years also benefits the 

study of photosynthetic membrane proteins. Our MS-based footprinting platform on membrane 

proteins lays ground for future membrane protein studies: membrane protein-ligand 
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interaction, influence of lipids on membrane protein, influence of pH on membrane protein and 

so forth. One promising direction is the native MS interrogation of photosynthetic proteins 

incorporated in a Nanodisc. The most native structure of photosynthetic membrane proteins 

may be probed and protein-lipid and even pigment-lipid interaction can be investigated. 
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