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ABSTRACT OF THE DISSERTATION 

Modeling complex patterns of differential DNA methylation that associate  

with gene expression changes 

By 

Christopher Schlosberg 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Systems Biology 

Washington University in St. Louis, 2017 

Assistant Professor John R. Edwards, Chair 

 

Gene expression is driven by specific combinations of transcription factors binding to regulatory 

sequences to define cell type expression profiles. Changes in DNA sequence alter transcription 

factor binding affinities and gene expression, and DNA methylation is an additional source of 

variation that is maintained throughout cellular division.  Numerous genomic studies are 

underway to determine which genes are abnormally regulated by DNA methylation in disease. 

However, we have a poor understanding of how disease-specific methylation variation affects 

expression. Global DNA demethylation agents have been clinically approved for use in cancer, 

which has spurred interest in identifying genes which would be most susceptible for targeted 

demethylation therapies. In this work, I developed multiple tools to increase our knowledge 

about the relationship between methylation and gene expression in both tissue specificity and 

disease. 

I first developed a computational strategy to identify amplifications and deletions from 

restriction enzyme-based methylation datasets. In a model of endocrine therapy resistant breast 



 xi 

cancer, I identify ESR1 as the most amplified genomic region in response to estrogen 

deprivation. I develop a qPCR-based assay to probe the amplification in cell lines, formalin-fixed 

paraffin embedded samples, patient tumors, and xenograft samples. This data is consistent with 

the hypothesis that in a subset of patients, the ESR1 amplification results in increased levels of 

ER. These are produced in response to estrogen deprivation to sensitize breast cancer to low 

available quantities of estrogen for cellular growth. 

Next, to explain specific variation in methylation that associates with expression change in both 

disease and tissue-specificity, I developed an integrative analysis tool, Methylation-based Gene 

Expression Classification (ME-Class). This model captures the complexity of methylation 

changes around a gene promoter. Using whole-genome bisulfite sequencing and RNA-seq 

datasets from different tissue samples, ME-Class significantly outperforms published methods 

using methylation to predict differential gene expression change. To demonstrate its utility, I 

used ME-Class to analyze different hematopoietic cell types, and identified that expression-

associated methylation changes were predominantly found when comparing cells from distantly 

related lineages, implying that changes in the cell’s transcriptional program precede associated 

methylation changes. Training ME-Class on normal-tumor pairs indicated that cancer-specific 

expression-associated methylation changes differ from tissue-specific changes. I further show 

that ME-Class can detect functionally relevant cancer-specific, expression-associated 

methylation changes that are reversed upon the removal of methylation in a model of colon 

cancer.  

Lastly, I extended ME-Class to incorporate 5-hydroxymethylcytosine and uncovered gene 

regulatory logic involving 5hmC and 5mC in mammalian development and disease. As more 

large-scale, genome-wide, differential DNA methylation studies become available, tools such as 



 xii 

ME-class will prove invaluable to understand how specific methylation changes affect 

transcription. Our results show this toolset can identify genes that are dysregulated by 

methylation in disease, and could be used to facilitate the identification of patients who may 

benefit from clinically-approved demethylating therapeutics.  



 1 

Chapter 1. Introduction 
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1.1 Gene Regulation and Epigenetics 

Transcription factors (TFs) control gene expression to determine cell type specificity. For 

transcription to occur, TFs recruit RNA polymerase II, which must be able to access a gene’s 

promoter sequence. DNA is spatially compacted by wrapping around histone octamers called 

nucleosomes. DNA methylation impacts chromatin structure in the contexts of X-inactivation, 

imprinting, and transposable element silencing. However, it is unclear what role DNA 

methylation plays outside these contexts. Multiple international consortiums including the 

Roadmap Epigenome Project and Blueprint Epigenome Project have mapped DNA methylation, 

chromatin modifications, and transcriptional activity in primarily human tissue and tumor 

samples (1, 2). These studies provide a fundamental resource upon which to build tools to 

identify which genes have their expression controlled by DNA methylation. 

 

1.2 DNA Methylation  

DNA methylation is a reversible chemical addition of a methyl group (CH3) occurring at the 5’ 

position in the pyrimidine cytosine. DNA methylation is also commonly referred to as 5mC and 

will be referred to interchangeably throughout this thesis. DNA methylation is heritable and 

stable through progeny, and thought to serve as a form of cellular memory to increase the 

information content of the genome (3). Since mammalian DNA methylation was initially 

discovered in 1948 (4), its function has been frequently debated (5).  

 

In the human genome, DNA methylation primarily exists at the ~28M strand symmetric CG 

dinucleotide sites (CpGs), of which roughly 70% are normally methylated in somatic tissues (6). 

Promoter specific CpG density can also be separated into two distinct classes of having high- or 



 3 

low-CpG density, depending on each promoter’s observed/expected CpG density (7). High CpG 

density regions are commonly referred to as CpG Islands and are bounded by regions of 

decreased CpG density called CpG Island Shores (2-4kb from CpG Island). Adjacent to these 

CpG Island Shores are regions of low CpG density called CpG Island Shelves (>4kb from CpG 

Island) (8). Non-CpG methylation is lowly represented in most differentiated tissues, comprising 

<1% of all methylation. However, non-CpG methylation represents up to ~15% of mammalian 

embryonic stem cell (HSCs) and brain tissue methylation (6). Genome-wide, single base pair 

resolution maps of DNA methylation can be obtained with Whole Genome Bisulfite Sequencing 

(WGBS). In this sequencing technology, unmethylated cytosines are converted to uracils with 

sodium bisulfite while methylated cytosines are protected from conversion and followed by next 

generation high throughput sequencing (6). 

 

Proper establishment of DNA methylation is essential for development, and maintenance of 

these patterns are stable under normal conditions. In mammalian development, primordial germ 

cells undergo a global wave of DNA demethylation (9), resulting in a decrease of 30% of 

somatic methylation levels (10), which are subsequently recovered to endogenous levels by 7W 

in humans and E16.5 in mice (11). De novo methylation at unmethylated CpGs occurs via DNA 

methyltransferases: DNMT3A or DNMT3B (12). Maintenance DNA methyltransferase DMNT1 

binds to CpG hemimethylation and is responsible for proper of establishment of DNA 

methylation patterns after DNA replication (13). DMNT3L is a catalytically inactive enzyme that 

functions to increase the methyltransferase activity of DMNT3A/B (14). As a reader of DNA 

methylation, (methyl-CpG-binding protein 2) MeCP2 is an X-linked enzyme that binds to 

methylated CpGs thought to mediate transcriptional repression involving histone deacetylation 
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(15). In neurons, MeCP2 has been associated with activity and repression in a variety of genomic 

targets (16). MeCP2 is part of a larger family of methyl binding proteins which contain a methyl-

CpG binding domain (MBD). MBD1, MBD2, and MBD4 have been identified to bind with 

methylated DNA and facilitate transcriptional repression (17). 

 

Genetic experiments have elucidated the importance of DNA methylation enzymes. Inactivation 

of both DNA methylation writers DNMT3A/B blocks the enzymes’ inherent de novo 

methylation functionality and results in embryonic lethality (12). DMNT3A KO mice with 

transplanted hematopoietic stem cells (HSCs) demonstrated predisposition to multiple 

hematological malignancies (18), and conditional KO of DMNT1 heavily redistributes HSC fate 

towards the myeloid lineage (19, 20). Introduction of germline mutations of DMNT1 resulted in 

global demethylation and embryonic lethality (21). DMNT1, DMNT3A, and DMNT3B 

knockout experiments in mice demonstrate that establishing DNA methylation patterns in 

embryogenesis is essential.  

 

1.3 DNA Demethylation and 5-hydroxymethylcytosine 

DNA demethylation may occur in a passive or active manner. Passive demethylation 

corresponds with the loss of DNA methylation due to incomplete copying of DNA methylation 

without the maintenance DNA methyltransferase DMNT1 (13). Passive demethylation requires 

at least 2 cell divisions. Active demethylation is an open area of research, however, there exist 

demethylation enzymes that participate in this process. The Ten-Eleven Translocation (TET) 

family (1/2/3) of enzymes are CXXC-domain containing dioxygenases responsible for oxidative 

conversion of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) (22, 23). TET enzymes also 
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can convert 5hmC to intermediates 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), 

however at low detectable levels in the genome (24). 5hmC is not as ubiquitous in mammalian 

tissue types like 5mC, however, it exists in measureable quantities in embryonic stem cells, brain 

tissues (e.g. neurons), and the liver, lung, and placenta (24). These low levels of 5hmC are 

thought to exist because 5hmC is a demethylation intermediate since it is not maintained through 

mitosis. DNA methylation reader MeCP2 can also bind to 5hmC in neurons and associates with 

active gene expression (25). TET1- and TET2-KO mice are viable, although TET1 mice exhibit 

growth inhibition, decreased levels of 5mC, and increased levels of 5hmC (26). TET1-, TET2-, 

TET3-triple KO mice displayed impaired differentiation and embryonic development and 

significant promoter hypermethylation (27). Genome-wide, single base pair resolution maps of 

5hmC can be obtained through either oxBS-seq (oxidative bisulfite sequencing) through the 

oxidation of 5hmC to 5fC via KRuO4 and two bisulfite sequencing experiments or TAB-seq 

(TET1-assisted bisulfite sequencing) by protecting 5hmC groups from TET oxidation through 

glucosylation (28).  

 

1.4 Genomic Organization of DNA Methylation Patterns 

DNA methylation enzymes lay the foundation of DNA methylation patterns throughout the 

genome. Globally, individual CpG DNA methylation levels are highly autocorrelated up to 

distances of 1kb. DNA methylation shares 5-15% similarity to other somatic tissue types and up 

to 20% similarity to germ line samples. Greater similarity between identical tissue samples from 

different individuals than between somatic tissue types (29). Inter-individual human variation of 

DNA methylation is relatively constant at ~80% of CpGs in the genome. Dynamic variation 

exists at approximately ~20% of CpGs mostly surrounding low and intermediate CpG density, 

tissues specific promoters and enhancers (30). 
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DNA methylation levels are highly dependent on their genomic context. Throughout the genome, 

~70-80% of all CpGs are stably methylated in somatic tissues (10). In gene-poor regions, high 

DNA methylation exists in regions of pericentric heterochromatin, which is essential for 

maintaining genomic integrity (31). Low methylated regions called DNA methylation valleys 

(DMVs) ranging from 5-60kb in length that are enriched for early developmental regulatory 

genes (32). Long range hypomethylated domains that are associated with nuclear lamina 

attachment and late replication genes (33). Partially Methylated Domains (PMDs) are large 

contiguous regions of decreased methylation (~70% over ~150kb) often containing 

downregulated genes (6). CpG methylation may also belong to a class of Intermediate 

Methylation (IM), enriched for enhancers, exons and DNaseI hypersensitive sites (34), however, 

it is unclear whether IM sites and PMDs derive from clonal heterogeneity. Enhancers often 

display tissue specific methylation in the mouse (35) and human genome (1). 

 

In genome-wide averages of gene annotations in normal tissues, the transcription start site (TSS) 

is typically unmethylated and there is an increase in gene body methylation throughout the length 

of the gene until the transcription end site (TES), where methylation levels return to intergenic 

levels (1, 36). DNA methylation also exists throughout the gene body, where it is thought to 

decrease the elongation capability of PolII transcriptional machinery (37). 

 

The genomic distribution of 5hmC patterns in the genome is limited due to its relative scarcity in 

differentiated tissues. In mammalian ESCs, 5hmC is enriched within gene bodies and enhancers 

(38). 5hmC has been mapped in murine and human brain development and TET2 is enriched at 
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demethylated CpGs (39). Promoter specific analyses have shown conflicting results as to the 

effect of TET1/2 KOs on 5hmC levels in mouse models (40, 41). 

 

1.5 Histone Modifications 

DNA methylation works in concert with histone modifications to provide accessibility for RNA 

Polymerase II (PolII) necessary for active gene expression (42). Histone modifications also 

interact with the transcriptional machinery to affect expression levels. While there is a lack of 

evidence to suggest a strictly deterministic histone code hypothesis (43, 44), many patterns of 

histone modifications affecting gene expression through chromatin accessibility are well 

characterized. Punctate patterns of H3K4me3 and H3K9ac is characterized to associate with 

active genes. Broad peaks of H3K36me3 in the gene body and near the TES has also been 

associated with active genes. Punctate peaks of H3K27me3 near the TSS is a primary 

characteristic of inactive genes (45). However, when H3K27me3 and H3K4me3 are found in 

combination near the TSS, the gene is known to be in poised or bivalent chromatin 

configuration, lending to either active or inactive gene expression (46).   

 

DNA methylation and H3K9me3 interact by recruiting DMNT3A/B for de novo methylation via 

a relationship mediated by SET domain-containing histone methyltransferase enzymes 

(SUV39H1 and SUV39H2) in silencing satellite DNA sequences (42) or via G9A to silence 

pluripotency genes (47). For active genes, H3K4me3 (at the TSS) and H3K36me3 (in the gene 

body) are mutually exclusive with DMNT3A/B/L binding and unmethylated CpGs near the 

promoter (48).  
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1.6 DNA methylation in normal function 

DNA methylation has well defined roles in silencing of gene expression in imprinted genes (49), 

inactivation of the X chromosome in female mammals (50), and silencing of transposons (51). 

DNA methylation maintains X-inactivation during normal development, where a single copy of 

the female mammalian X chromosome is permanently condensed (52). DNA methylation also 

plays a role in imprinting, such as the parent-of-origin allele specific gene expression of the 

H19/IGF2 locus (49). During hematopoiesis, DNA methylation has been shown to be involved 

in myeloid-lymphoid lineage commitment (53) and characteristic TF binding of GATA1 and 

TAL1 in methylated lymphoid progenitors (54). DNA methylation also serves to silence 

transposable elements (51, 55) and to promote genome stability (56). These observations were 

shown to induce transcription of transpositionally active intracisternal A particles (IAP) upon 

DMNT1 deletions in mouse embryos (51). Alu and L1 retroelements contained within human 

gene promoters were also shown to elevate repeat transcripts upon treatment with demethylating 

agents (57, 58). Recent studies have provided experimental evidence that induced DNA 

methylation (via dCas9-DMNT) can silence expression (59, 60), and also that targeted 

demethylation (via dCas9-TET) of promoters and enhancers can reprogram expression profiles 

(61).  

 

1.7 DNA methylation and disease 

DNA methylation is involved in multiple developmental human diseases. Prader-Willi syndrome 

(PWS) results in severe developmental disabilities due to the loss of paternal expression in the 

PWS region on chromosome 15, which can be detected by abnormal, imprinted methylation 

patterns (62). Beckwith-Wiedemann syndrome occurs when the loss of an imprinting mechanism 
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results in the overexpression of IGF2 on chromosome 11, which leads to dysregulated growth 

(63). Compromised immune ability and chromosomal instability are characteristic features of 

Immunodeficiency–centromeric instability–facial anomalies (ICF) syndrome caused by 

autosomal recessive inheritance of a mutation in the DNA methylation writer DMNT3B (64). 

Rett syndrome is a developmental brain disorder caused by mutations in the X-linked DNA 

methylation reader MECP2 (65).  

 

In human cancers, DNA methylation has been shown a valuable source of added information as a 

biomarker where single changes of DNA methylation are as frequent, if not are more frequent 

than the number of somatic mutations (66). DNA methylation is primarily involved in silencing 

tumor suppressor genes through targeted promoter hypermethylation (67) in a genomic 

background of global hypomethylation (33, 68). This targeted de novo hypermethylation 

primarily occurs at promoters associated with CpG Islands. CpG Island Shores have been 

implicated in their correlation with gene expression in colon cancer (69). CpG Island Shelves 

show a similar level of correlation with gene expression as CpG Island Shores in chronic 

lymphocytic leukemia (CLL) (70). Demethylating agents have bene created to reactivate tumor 

suppressor genes by removing promoter methylation in tumors (71). Indeed, demethylating 

agents 5-aza-2'-deoxycytidine (Decitabine) and 5-azacitidine (Azacytidine) have been clinically 

approved for the treatment of Myelodysplastic Syndrome (MDS), a precursor to leukemia, and 

Acute Myeloid Leukemia (AML), respectively. Enhancers (as defined by p300 and H3K27ac) 

are also preferentially hypermethylated and correlated gene expression with in colon cancer (33).  

Loss of function and overexpression mutations exist in DNMT3A/B and DNMT1, resulting in 

poor clinical outcomes for patients with AML, MDS, and colorectal cancer (72).  Mutations in 
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TET2 in human breast, liver, lung, pancreatic and prostate cancer samples result in decreased 

TET2 expression and decreased levels of 5hmC (73).  

 

 

1.8 Copy Number Variants 

Many complex phenotypes and human diseases are caused by deletions, amplifications, and 

translocations of genomic DNA.  These Copy Number Variants (CNVs) have lasting 

implications on gene transcription. In a study of HapMap populations, CNVs (17.7%) occur less 

frequently than Single Nucleotide Polymorphisms (SNPs) (83.6%), however, they both have a 

complementary impact on gene expression (74). In cancer, translocations can result in chimeric 

gene products that can have resultant increased expression to aberrantly increase the expression 

of malformed protein products (75). Deletions can result in a dosage loss of important tumor 

suppressors, while amplifications can result in the overproduction of selective oncogenes (76). 

To identify these modifications, array comparative genomic hybridization (aCGH) is a 

longstanding assay technique to detect amplifications and deletion at megabase resolution (77), 

and whole genome sequencing has increased the ability to more precisely detect these 

amplifications with base pair resolution (78, 79).  DNA methylation array (80) and affinity-based 

sequencing (81) assays have been used for the detection of CNVs. DNA methylation data is 

inherently impacted by CNVs and array probes must be corrected for copy number before 

correlation with gene expression (82). However, DNA methylation has been successfully used to 

detect CNVs (83). The coordinated assay of CNVs and DNA methylation is also preferred 

because it would allow us to identify which modification contributes to gene expression change 

(84). In addition, SNPs have been involved in association with gene expression showing high 

expression genes having relatively low methylation, and low expression genes having an 
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increased level of methylation variability (82, 85). The discovery of these modifications has led 

to concerted effort to categorize human genetic and epigenetic variation in normal tissues and 

disease.  

 

1.9 Associations between gene expression change and methylation 

Multiple international collaborations are assaying variation in DNA methylation and chromatin 

modifications over multiple human tissues (Roadmap Epigenomics Project) (1) and differences 

in hematopoietic differentiation (Blueprint Epigenome) (2). These studies characterize 

methylation levels throughout the genome by examining the variation in single samples. Further 

analysis has shown that DNA methylation has tissue specific patterns that are not restricted to 

methylation in CpG islands alone (86).  

 

In a study of 33 normal tissue and cell line WGBS samples, low expressing genes show average 

DNA methylation is predominately characterized by increased methylation at the TSS (~30-

40%) and decreased methylation throughout the gene body (~70-75%). Conversely, high 

expressing genes show decreased methylation at the TSS (~10-20%) and increased methylation 

throughout the gene body (~75-80%) (1). DNA methylation has also been reduced to multiple 

averaged values across annotated gene elements (upstream, exon, intron, and downstream bins) 

to associate with expression levels showing similar results in single samples (87).  While these 

studies summarize DNA methylation levels in individual samples, researchers often examine 

differential methylation, such as the difference between normal and diseased states, and associate 

with expression changes to identify functional differences.  
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Typically, promoters are labeled as either methylated and silenced or unmethylated and 

potentially active (10, 88). Although most analysis techniques rely upon this simple binary 

characterization (89), studies that model methylation using a single window (SW) of ~2kb 

around the promoter region find only modest negative correlations with expression levels (6, 82, 

90, 91).  

 

The most common current approach to associate DNA methylation and expression change is to 

first identify differentially methylated regions (DMRs) and then associate them with nearby 

genes. Numerous statistical tools have been developed to identify DMRs (reviewed in (89)). 

Generally, DMRs are found by segmenting the genome into single CpGs or larger equally spaced 

regions and statistical significance is assigned to each region (89). Biological insight is gained 

when known genomic regulatory elements are associated with DMRs within a certain distance. 

However, DMR methods rely on a set of arbitrarily defined thresholds for the size and number of 

CpGs to include in the DMR. It is often recommended to adjust these parameters for each 

individual dataset, since the choice of these parameters has substantial implications in the 

numbers of DMRs identified and putatively regulated genes. A standard integrated analysis of 

DNA methylation and gene expression starts by first defining the most variable DMR regions. 

These regions are then overlapped with the largest expression changes, and then top candidates 

with an inverse correlation are chosen (92). Indeed, studies often find only weak correlations 

between DMRs near gene promoters and differential gene expression (93-95).  

 

One possible reason both the SW and DMR methods fail to find strong association between 

differential methylation and expression is they reduce DNA methylation to a single differential 
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value without considering the local context of these changes. As a result, more differential 

methylation associations with expression found by DMRs are identified within enhancers rather 

than near promoters (30). Using a discovery approach (96), we have previously shown the 

importance of capturing all methylation changes around the TSS to find patterns of methylation 

change that associate with expression changes in a model of DMNT inhibition in AML (97) and 

cellular senescence (98). As detailed in the explanation of ME-Class in Chapter 3, we 

incorporate all DNA methylation changes within a 10kb centered window of the TSS to make 

minimal assumptions about how methylation changes are predictive of transcriptional changes. 

The purpose of ME-Class is to provide stronger evidence for methylation associated expression 

changes by training from examples of methylation change to set model parameters then predict 

in unseen datasets.  

 

1.10 Research Motivation 

Various international consortiums and individual labs have collected epigenome-wide maps of 

methylation and transcriptional data on multiple cell types and disease states. It is imperative that 

we convert this wealth of resources into fundamental knowledge about DNA methylation 

associated gene expression changes. We hypothesize that complex patterns of DNA methylation 

are necessary to understand the relationship between DNA methylation and gene expression. In 

Chapter 2, we first identified and validated targets of copy number variants using a model of 

endocrine therapy resistant breast cancer and patient xenografts. In Chapter 3, we develop a 

computational tool to classify differential gene expression from genome wide DNA methylation 

patterns. Our tool, ME-Class (Methylation-based Expression Classification), enumerates 

putatively functional patterns of DNA methylation in tissue and cancer samples. Using this tool, 
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we identified that 3’ TSS proximal changes are most important, but not sufficient, for expression 

classification in comparisons of 17 different tissue samples from the Roadmap Epigenomics 

Project. We also validated our method using 32 datasets from different hematopoietic cell types 

from the Blueprint Epigenome project supporting the hypothesis that methylation changes 

precede transcriptional changes in normal blood development. ME-Class was also used to 

identify a subset of genes that were preferentially upregulated upon demethylation in a model of 

colon cancer. In Chapter 4, we extended the capability of ME-Class to include 5hmC in the 

prediction of differential expression classification. We identify frequencies of patterns of 5mC 

and 5hmC corresponding with differential expression classes in a model of mouse brain 

development and of human tissue- and cancer-specificity. In Chapter 5, we outline our hope for 

ME-Class and its future extensions. In the future, we argue that ME-Class can be useful in 

identifying suitable patients for clinically approved demethylating therapeutics.  
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Chapter 2. Endocrine-Therapy-Resistant ESR1 Gene Amplification 

Revealed by Genomic Characterization of Breast-Cancer-Derived 

Xenografts 
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2.1 Introduction 

Breast cancer is the most commonly diagnosed cancer and results in the second highest level of 

cancer mortality in the United States (99). Estrogen Receptor (ER), Progesterone Receptor (PR), 

and HER2 expression are among common molecular markers to subtype breast cancer. 

Subtyping of patients is commonly based these molecular markers to define luminal A 

(ER+/PR+/HER2-), luminal B (ER+/PR+), HER2-enriched (ER-/PR-/HER2+), basal-like  (ER-

/PR-/HER2-), and normal-like (ER+/PR+/HER2-) subtypes (100). Based on this work, the 

PAM50 expression gene signature was developed to identify subtypes of breast cancer (101) and 

help stratify patients according to their clinical outcomes (102, 103) and responses to 

chemotherapy (104). Even though ER+ breast cancer cases comprise ~70% breast cancer 

patients, ER+ breast cancers show a high degree of heterogeneity (105), and almost a third of 

ER+ breast cancer patients experience recurrence after treatment (106). While gene expression 

profile methods have been successful in categorizing patients for treatment regimes, these gene 

expression markers can be improved to better predict response to treatment. The ER protein 

product is encoded by the ESR1 gene. ER functions as a transcription factor and forms a 

homodimer or heterodimer with the protein product of ESR2 (ER) (107). Clinical therapeutics, 

either through ER antagonism (tamoxifen) or aromatase inhibition (letrozole), have been 

developed to inhibit estrogen production and are commonly referred to as estrogen deprivation 

therapy. However, many patients experience resistance after extended exposure to these 

therapies (108). Cell line models have been created to understand long term estrogen deprivation 

(LTED) therapies (109). LTED cell lines re-exposed to estradiol counterintuitively slows cellular 

growth to a state defined as LTED-Recovered (LTED-R). To develop new therapies, we need a 

better understanding of the genetic and epigenetic mechanisms of resistance.  
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Copy number variants (CNVs), such as amplifications and deletions, are inherently common to 

ER+ breast cancer patients and have been shown to be indicative of response to aromatase 

inhibition (110).  Structural variants, such as translocations, have also been identified in breast 

cancer cells (111). Deletions, insertions, translocations can disrupt transcription, while 

amplifications often increase the transcription. Translocations can alter regulatory environments 

and place two distal, functional elements in close proximity if the translocation does not interrupt 

the reading frame (112). While CNVs (~13% of all somatic cancer variation) are less frequent 

than Single Nucleotide Polymorphism (SNPs), SNPs show low commonality between somatic 

cancers and have many private point mutations (113). CNVs often are more indicative of the 

underlying etiology of the disease rather than SNPs (114), and show a higher locus specific 

genome arrangement rate than point mutations (115). In a recent study of somatic CNVs in 

multiple cancers in TCGA, breast cancer patients with normal ploidy displayed focal 

amplifications at a frequency of ~20% and deletions at a frequency of ~15% (116).  In a separate 

study, ERBB2, MYC, FGFR1/ZNF703, CCND1, and ZNF217 were identified as most common 

genes with copy number changes in ER+ breast cancer patients (110). One controversial, low 

frequency amplification surrounds the ESR1 transcript 1 alternative promoter region, which has 

been observed to predict response to estradiol treatment (117). There exists an open debate as to 

the actual frequency of this amplification due to inconsistent technical considerations of the 

methods used for detection, however, estimates vary from ~1-33% of ER+ breast cancer patients 

harboring this CNV (118-121). 
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DNA methylation is also significantly altered in breast cancer and is defined by global 

hypomethylation and targeted promoter hypermethylation (122).  Endocrine therapy resistance is 

often characterized by hypomethylation and oncogene activation. Genome-wide sequencing has 

previously been inhibited by cost. However, Methyl-MAPS, a single base pair resolution 

restriction enzyme based DNA methylation sequencing assay (36), is an advantageous, 

opportunistic solution for the analysis of CNVs during breast cancer models of LTED. Here, we 

conduct a screen for CNVs in multiple models of endocrine therapy resistant breast cancer. To 

effectively model an advanced stage human breast tumor in mice, patient derived xenografts 

(PDXs) or “Washington University Human in Mouse” (WHIM) lines were created. Using PDXs 

and cell line models, we examine our ability to use Methyl-MAPS data for the prediction of 

CNVs and to evaluate the presence of the ESR1 amplification. 

 

2.2 Methods 

2.2.1 Breast Cancer Cell Lines and Patient Samples 

ER+ Parental (no estrogen deprivation), long term estrogen deprived (LTED) cell lines (MCF7, 

T47D, MDA415, HCC1428), and LTED recovered (MCF7 LTED-R) are prepared as described 

in Sanchez et al. (109). The MCF7 LTED-R cell line refers to a MCF7 LTED cells exposed to 

estradiol, which counterintuitively slows cellular growth. Throughout the study, MDA415 

corresponds to cell line MDA-MB-415. Experimental design for patient tumor samples and 

xenografts (WHIMs) are as described in Li et al. (123).  
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2.2.2 Identification of CNVs and SVs from Methyl-MAPS  

We initially mapped cell line data with BWA v0.5.10 with <=2 gaps per read, <=4 total 

mismatches, <=1 gap opening, and a colorspace index to map Methyl-MAPS read pairs. 

Deletions and amplifications are detectable by read depth information, while translocations and 

inversions are often best detected by read pair information (112). To identify amplifications and 

deletions, we developed a sliding window method. This sliding window method consisted of a 

200bp windows overlapping by 50bp across the summed and max-normalized methylated 

(McrBC) and unmethylated (RE) genomic fractions. We then applied a genomic segmentation 

algorithm, Genome Alternation Detection Analysis (GADA) (124), to predict CNVs (with 

parameters “-a 0.8 -T 5 -M 3 -s -0.2 -b 1 -c”). CNVs must overlap by 50bp with Aguilar et al. 

(117) to be counted as shared genomic gains or losses (Supplementary Figure 2.2). We used 

SVDetect (125) to identify structural variants based on strand, order, insert size (400bp), and tile 

filtering and >=2 discordantly mapped reads in the Methyl-MAPS libraries. Structural variants 

were visualized using Circos. We also used Trinity (126) to confirm positive gene fusions from 

translocations predicted by SVDetect from matched RNA-seq data.  

 

2.2.3 RNA-seq analysis 

HTSeq-count was used for count quantification of mapped RNA-seq reads (127). Differentially 

expressed genes were identified with edgeR using FDR-corrected p-value cutoff with =0.05 

(128). 
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2.2.4 Quantitative Real-Time PCR to Determine ESR1 Amplification 

Primers were designed using Primer3 (129) (Supplementary Table 2.1). Assays were optimized 

and run on a Viia 7 Real-Time PCR System (Life Technologies) using 10ng of genomic DNA 

for each sample according to the manufacturer’s instructions. One set of primers was used for 

each of the control genes FAM38B and ASXL2, as described previously (121). FAM38B and 

ASXL2 were used as controls because they are not affected by copy number polymorphisms in 

http://projects.tcag.ca/variation/ nor affected by gains or losses in a breast cancer aCGH 

database. Three primer sets were used to interrogate the amplification at locations 1, 2, and 3 (as 

specified in Figure 2.1). p-values were computed by a one-way ANOVA using Dunnett’s post 

hoc test using R. Three replicates were performed for each qPCR.  

 

2.3 Results  

2.3.1 CNVs identified in LTED models from MethylMAPS data 

We first examined differentially expressed genes between MCF7, T47D, and MDA415 breast 

cancer cell lines and observed little common overlap between either upregulated (9 genes in 

triple intersection) or downregulated genes (7 genes in triple intersection) (Supplementary Figure 

2.1). We sought next to identify concordant expression changes with amplifications or deletions 

in the breast cancer cell lines. To identify CNVs, we developed a sliding window method, max-

normalized to both the methylated (McrBC) and unmethylated (RE) genomic fractions, followed 

by a genomic segmentation (124). We compared our method with a previous study examining 

MCF7-LTED with a microarray based CNV approach (117), however we identified few shared 

genomic amplifications (n=13) and deletions (n=17) upon LTED treatment of MCF7 

(Supplementary Figure 2.2). We observed there were few concordant amplifications with 
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upregulation and deletions with downregulation shared amongst the breast cancer cell lines 

(Supplementary Figure 2.3). This is not unexpected given the lack of overlap in differentially 

expressed genes between the three cell lines (Supplementary Figure 2.1). However, we 

recognized a severe bias in normalized coverage between methylation fractions which raised 

concern over the false positive rate of CNV detection and so we focused our analysis on 

significant amplifications. 

 

2.3.2 SVs identified in LTED models from MethylMAPS data 

We next identified SVs by using ambiguously mapped, mate-paired Methyl-MAPS reads within 

MCF-7 Parental (Supplementary Figure 2.4). While this analysis returned many putative 

candidate genes for further analysis, there was a lack of concordance in comparison to a 

published analysis of CNVs and SVs in MCF7 from Hillmer et al. using a long pair-end 

sequencing approached (130). We also sought to confirm gene fusion products with RNA-seq 

reads produced from predicted translocations. We confirmed one fusion gene in BCAS3/BCAS4, 

which was not present in the Hillmer et al. analysis. While there was a large discrepancy between 

Hillmer et al. and our analysis, it is unclear whether this discrepancy can be explained by 

technical variation between using WGS versus Methyl-MAPS or by biological variation from 

genetic drift between each of the MCF-7 cell lines. 
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Figure 2.1 ESR1 is amplified in ER+ cell line models of breast cancer. Shown is 200bp 

resolution sliding window (50bp overlapping) of max-normalized, summed Methyl-MAPS 

fractions.  

 

We identified ESR1 as the largest putative CNV with a ~20x amplification between MCF7-

Parental and -LTED (Figure 2.1). There exists a focal amplification at the upstream ESR1 

alternative promoter region of transcript 1 set within a larger amplified region (~6kb) above the 

background coverage level. HCC1428 also displayed the same focal amplification at the 
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alternative promoter region, but did not show the broader amplification. T47D-Parental, T47D-

LTED, MDA415-Parental, and MDA415-LTED cell lines did not display any ESR1 

amplification, even though all Parental cell lines in the study are ER+. The MCF7 LTED-R cell 

line showed a reduction of the ESR1 amplification to a level similar to MCF7-Parental. These 

gene amplifications were consistent with increased expression in the ESR1 transcript product in 

MCF7 and HCC1428.  

 

2.3.3 ESR1 is most amplified region in LTED model and confirmed in PDX genome  

Upon identifying ESR1 as the most amplified region in the MCF7-LTED and HCC1428-LTED 

genomes, we sought to examine whether this amplification existed in a xenograft model of breast 

cancer. We created a qPCR assay for genomic DNA using separate probes in the affected 

promoter and enhancer region of ESR1 in our cell line models, an advanced stage patient sample, 

and the patient’s mouse-human xenograft (WHIM16) sample. We visualized the gene 

amplification with whole genome sequencing (WGS) data across the ESR1 promoter and coding 

region in WHIM16 (Figure 2.2a).  
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Figure 2.2 ESR1 is a confirmed amplification in ER+ patient tumor and WHIM16 cells. a) 

WHIM16 and the originating tumor harbor amplification of the ESR1 gene that extends from the 

promoter region throughout the coding sequence that was mapped using read counts obtained 

with WGS. b) qPCR on genomic DNA using three separate probes was used to confirm gene 

amplification in WHIM16 cells. The negative control was MCF7-Parental cells and the positive 

control is the MCF7-LTED displaying the ESR1 gene amplification. qPCR results were 

normalized relative to MCF7-Parental. The positions of probes 1, 2, and 3 are displayed in (a). 

Error bars are ±1 SD of the mean relative quantification (RQ); ∗p < 0.05, ∗∗ is p < 0.01. 

 

The ESR1 amplification exists in both patient tumor and WHIM16 corresponds with high levels 

of ERα protein (123). In this experiment, MCF7-parental genomic DNA was used as a 

nonamplified ESR1 control based on Methyl-MAPS (Figure 2.2b). These data suggest that ESR1 

amplification is an adaptation to estrogen deprivation. We examined the effect of being able to 

detect CNVs in formalin-fixed paraffin embedded (FFPE) samples, as patient tumors are often 
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preserved with this method (131). To recapitulate genomic DNA in an FFPE sample, we sheared 

genomic DNA using probe sonication to shear MCF7-LTED data to 10ng. In this experiment, 

T47D genomic DNA was used as a nonamplified ESR1 control, and we still observed the ESR1 

amplification in the sonicated MCF7-LTED samples as well as in WHIM16. (Supplementary 

Figure 2.5) 

 

2.4 Discussion 

We sought to conduct a screen for CNVs from methylation data in endocrine resistant breast 

cancer models, and identified ESR1 as the most amplified genomic region. To obtain a more 

accurate measure of methylation levels, a methylation estimation model could be built for 

Methyl-MAPS data. This model should be tested in normal ploidy samples with WGBS 

validation given the prevalence of whole genome duplication in breast cancer (116). While our 

estimates for CNVs and SVs from methylation data suffer from a high false positive rate, we 

identified a clinically relevant amplification.  

 

We then developed a qPCR assay with proper single copy breast cancer control primers to 

identify this amplification in cell lines and xenograft samples. In WHIM16, this amplified ESR1 

resulted in an increased gene product of ER. This increased level of ER receptor would 

heavily sensitize the breast cancer cells to even low amounts of estrogen after estrogen 

deprivation therapy. The ESR1 amplification was also observed during a 150 day period of 

estrogen deprivation of MCF7 cells in Aguilar et al (117). Interestingly, the MCF7-LTED-R cell 

line shows a reduction in the amplification (Figure 2.1) along with a decrease in cellular growth 

(109). Reintroducing endocrine therapy in advanced ER+ breast cancer patients has been 
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effectively used after endocrine deprivation therapy (132). WHIM16 also demonstrates tumor 

regression after the reintroduction of endocrine therapy, implying that the ESR1 amplification 

could be used as a predictive biomarker for tumor sensitivity to estradiol treatment in advanced 

ER+ breast cancer patients. 

 

The identification of the ESR1 amplification is still an area of active research as to the relative 

frequency of occurrence. The ESR1 amplification is identified in MCF7, HCC1428, and 

WHIM16 and these models respond to endocrine deprivation therapy (fulvestrant). This implies 

that the ESR1 amplification is important for a subset of patients and related to estrogen signaling. 

Initially, this amplification was identified in 20.6% of 2,000 breast cancer patients through a 

screen using an Affymetrix 10K SNP array (119). The large discrepancy between these studies is 

based on the use of the reference gene ESR2, which is often deleted in breast cancers. However, 

using FAM38B and ASXL2 as controls for a qPCR-based assay, only 2.8% breast cancer tumors 

showed copy number gain (121). In a separate study, only 1% of breast cancer tumors identified 

by FISH or aCGH demonstrated the amplification. The low frequency of the ESR1 amplification 

is also evidenced by a large study of ER+ breast cancer patients treated with neoadjuvant 

aromatase inhibitor therapy where the amplification was not identified as a common CNV (110). 

Even though it exists at a low frequency, we detected low levels of the ESR1 amplification 

despite high levels of shearing as observed in FFPE samples. The ESR1 amplification is not as 

frequent as initially reported, however, it was hoped that the amplification could identify a subset 

of patients that would best respond to estrogen deprivation. A recent review has shown 

contradictory results as to whether the ESR1 amplification is predictive of antiestrogen response 

to treatment (133). However, the ESR1 gene amplification in WHIM16 is correlated with 
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estradiol-induced regression and is preserved from the patient tumor sample, implying that PDXs 

faithfully recapitulate CNVs from the originating tumors. The presence of this amplification is 

consistent with ESR1 overexpression providing an adaptive advantage for tumor growth in the 

absence of estrogen. The additional ER may better scavenge for estrogen to directly function as 

a gene regulator of ER gene targets.  

 

Supplementary Table 2.1 Primer sequences for qPCR control and target genes. 

 

 

Control Primers

Gene Target (Region) Forward Reverse

FAM38B 5’-GAA ACC CCC TTC CTA AGC AC-3’ 5’-AGC CTG CGT TCT CCA TAA GA-3’

ASXL2 5’-CAG CTT CTC ACT TGG CCT TC-3’ 5’-GCT CTG CAC AGG ACA GAT CA-3’

Target Primers

Gene Target (Region) Forward Reverse

ESR1 Amplification (Probe 1) 5’-AAA ATG CCT CAG GAC GAT TG-3’ 5’-GCG CCT GAG AAG CTA GAG AA-3’

ESR1 Promoter (Probe 2) 5’-AAG CCC ATG GGA CAT TTC TG-3’ 5’-ACA TAC CCC CAT GGA GAA CA-3’

ESR1 Exon1 (Probe 3) 5’-CCA TGA CCC TCC ACA CC-3’ 5’-CTC GTT CCC TTG GAT CTG A-3’
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Supplemental Figure 2.1 Few shared differentially expressed genes during long term estrogen 

deprivation. Venn diagrams for a) upregulated and b) downregulated differentially expressed 

genes.  

 

 

 

Supplementary Figure 2.2 Few Shared Genomic Amplifications and Deletions upon LTED 

with Aguilar et al (117). MCF7 refers to amplifications and deletions identified in this study.  
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Supplementary Figure 2.3 Few shared concordant differential CNV and expression changes 

during LTED. Identified a) amplifications and b) deletions by overlapping sliding window 

method. 
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Supplementary Figure 2.4 Circos plot showing CNVs and SVs in MCF7-Parental. Outer ring: 

amplifications and deletions. Inner ring: inter- and intra-chromosomal rearrangements.  

 

  



 31 

 

Supplementary Figure 2.5 ESR1 amplification can be identified in simulated FFPE samples. 

qPCR results normalized to T47D-LTED 20ng samples and reference control genes FAM38B 

and ASXL2.  
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Chapter 3. Modeling complex patterns of differential DNA 

methylation that associate with gene expression changes 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is adapted from Schlosberg CE, VanderKraats ND, Edwards JR Modeling complex 

patterns of differential DNA methylation that associate with gene expression changes. Nucleic 

Acids Res. 2017 In press. 
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3.1 ABSTRACT 

Numerous genomic studies are underway to determine which genes are abnormally regulated by 

DNA methylation in disease. However, we have a poor understanding of how disease-specific 

methylation changes affect expression. We thus developed an integrative analysis tool, 

Methylation-based Gene Expression Classification (ME-Class), to explain specific variation in 

methylation that associates with expression change. This model captures the complexity of 

methylation changes around a gene promoter. Using 17 whole-genome bisulfite sequencing and 

RNA-seq datasets from different tissues from the Roadmap Epigenomics Project, ME-Class 

significantly outperforms standard methods using methylation to predict differential gene 

expression change. To demonstrate its utility, we used ME-Class to analyze 32 datasets from 

different hematopoietic cell types from the Blueprint Epigenome project. Expression-associated 

methylation changes were predominantly found when comparing cells from distantly related 

lineages, implying that changes in the cell’s transcriptional program precede associated 

methylation changes. Training ME-Class on normal-tumor pairs from TCGA indicated that 

cancer-specific expression-associated methylation changes differ from tissue-specific changes. 

We further show that ME-Class can detect functionally relevant cancer-specific, expression-

associated methylation changes that are reversed upon the removal of methylation. ME-Class is 

thus a powerful tool to identify genes that are dysregulated by DNA methylation in disease. 
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3.2 INTRODUCTION 

Establishment of specific patterns of DNA methylation at CG dinucleotides (CpGs) is necessary 

for normal development (134, 135), and aberrant methylation is frequently observed in cancer 

(136, 137). CpG rich-regions, often called CpG islands (CGIs), are typically unmethylated and 

associated with ~70% of mammalian gene promoters (6). Hypermethylation of CpG islands 

overlapping the transcription start site (TSS) is hypothesized to downregulate tumor suppressor 

genes, thus promoting tumorigenesis (138, 139). Typically, promoters are labeled as either 

methylated and silenced or unmethylated and potentially active based on the methylation levels 

near the transcription start site (TSS) (10, 88). However, studies that rely upon this simple binary 

characterization (89) to correlate methylation with expression find only modest negative 

correlations with expression levels (70, 93, 95). 

The most common approach to associate DNA methylation and expression change is to first 

identify differentially methylated regions (DMRs) and then associate them with nearby genes. 

Numerous statistical tools have been developed to identify DMRs (89). Generally, DMRs are 

found by segmenting the genome into equally spaced regions and identifying which regions have 

statistically significant differences in methylation. DMRs are then associated with genes or other 

genomic regulatory elements within a certain distance to gain biological insight into their 

potential function. While DMR-based methods have been critically important in identifying 

imprinted loci (140), studies often find only weak correlations between DMRs near gene 

promoters and differential gene expression (93-95).  One drawback of DMR methods is that they 

rely on a set of arbitrarily defined thresholds for the size and number of CpGs to include in the 

DMR. It is often recommended to adjust these parameters for each individual dataset since the 
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choice of these parameters has substantial implications in the numbers of DMRs identified and 

putatively associated genes. 

One possible reason DMR methods fail to find a strong association between differential 

methylation and expression is they reduce DNA methylation to a single differential value 

removed from its local context. Recent work, however, has indicated that a large number of 

methylation patterns associate with differential gene expression (96). For example, methylation 

at CpG island-shores, regions of decreased CpG density flanking CpG islands, correlate with 

differential gene expression in colon cancer (69). Further, long hypomethylated domains in 

cancer often contain down-regulated genes (69). Positive correlations between gene body 

methylation and gene expression have also been frequently observed (141, 142).  

Here, we present a new approach to predict gene expression changes that accounts for all 

methylation changes around the TSS. We have previously shown the importance of capturing 

methylation changes around the TSS to find patterns of methylation change that associate with 

expression changes using an unsupervised approach (96-98). We now build upon these results to 

develop a supervised method called ME-Class (Methylation-based Expression Classification), 

which classifies differential expression using signatures of differential methylation.  

We use ME-Class to investigate alternate representations of DNA methylation and CpG density 

to identify methylation features that are most important in predicting expression change using 

data from the Roadmap Epigenomics Project. We then use ME-Class to examine the role 

methylation associated expression changes play in hematopoiesis using data from the Blueprint 

Epigenome project. Lastly, we demonstrate that ME-Class can identify a set of genes with 



 36 

cancer-specific expression-associated DNA methylation changes that are silenced in tumor cells, 

but that are re-expressed when methylation is removed.  

 

3.3 MATERIALS AND METHODS 

3.3.1 Roadmap Epigenome Project (REP) WGBS and mRNA-seq  

Samples from 17 primary tissues with matched whole genome bisulfite sequencing (WGBS) and 

RNA-seq were obtained from the Roadmap Epigenomics Project (REP, Supplementary Table 

3.1) (1). Fractional methylation (M) is defined as mCG/CG. Differential methylation (M) is 

defined as: ∆𝑀 = 𝑀𝑆2 −𝑀𝑆1, where S1 and S2 correspond to the first and second sample in the 

differential comparison, respectively. We obtained consolidated methylation data, which was 

previously cross-assay standardized and uniformly processed. All CpG sites were filtered for 4x 

coverage or greater and analysis was performed using the hg19 genome assembly according to 

analysis standards established in REP. We used uniformly processed protein-coding gene level 

annotations from Genecode V10 to obtain standardized FPKM values. Each Genecode V10 

annotation was converted to RefSeq annotations using the mygene python package (143). To 

create a standardized gene set with high quality methylation data, we excluded genes with 

ambiguous or incomplete TSS annotations, genes shorter than 5kb, genes with <40 CpGs 

assayed within +/-5kb of the TSS, genes where all CpGs within +/-5kb of the TSS had less than 

0.2 methylation change, and alternative promoters. These filters were used to exclude non-

coding and pseudogenes, genes shorter than the interpolation boundary, genes with low numbers 

of CpGs to reduce bias caused by individual CpGs, and genes with no methylation changes at 

their promoter, respectively. We only included RefSeq genes with cdsStartStat (n= 47637 genes) 



 37 

and cdsEndStat (n= 47621 genes) with ‘cmpl’ according to the UCSC Table Browser. For any 

RefSeq genes with multiple RefSeq IDs corresponding to the same TSS location, we used a 

single RefSeq ID with the lowest accession number and excluded the remainder. This is a 

conservative method to simplify the annotations of genes with alternative promoter annotations. 

In analyses with the ROI classifier (see below), all genes with less than 4 exons were removed 

from analysis. Differentially expressed genes were defined as genes with ≥2-fold difference 

between samples after an applied floor of 5 FPKM to provide a conservative estimate of 

expression change. These filtering criteria have minimal effect on the fraction of CpG Island 

(CGI) -associated promoters, which went from 65.9% of genes before filtering to 67.3% after. 

CpG Islands were defined based on the CGI track from the UCSC Genome Browser (144). A full 

summary of filtered gene counts is in Supplementary Table 3.2.  

 

3.3.2 Blueprint Epigenome project WGBS and mRNA-seq  

WGBS and RNA-seq from 32 venous and cord blood samples were obtained from the Blueprint 

Epigenome project (2). Genome coordinates from hg38 were converted to hg19 using liftOver 

(144). All other analysis steps were performed identically to the REP data above. 

 

3.3.3 Cancer WGBS and mRNA-seq  

Breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), rectum adenocarcinoma 

(READ), and uterine corpus endometrial carcinoma (UCEC) matched normal-tumor WGBS and 

mRNA-seq samples were obtained from The Cancer Genome Atlas (TCGA) to train a model of 

tumorigenesis. Normal sigmoid colon (E106) WGBS and mRNA-seq data were obtained from 
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REP (1). HCT116 DKO1 (bi-allelic knockout of DNMT1 and DNMT3b) WGBS and mRNA-seq 

data were obtained from Blattler et al (145). All other analysis steps were performed identically 

to the REP data above. 

 

3.3.4 Single Window (SW) 

We computed the average methylation across a single, fixed 1kb window around the TSS of 

each gene (69, 146). We performed logistic regression to predict differential expression from the 

average methylation change around the TSS (Figure 3.1a,b). Logistic regression cross-validation 

was run with 1000 maximum iterations of the optimization algorithm.  

 

3.3.5 Differentially Methylated Regions (DMRs) 

We used DSS-single to compare DMRs between individual samples (147). We identified DMRs 

(p<0.01) and used their size (bp), average differential methylation, and stranded distance (bp) to 

the closest TSS (0 if overlapping by >=1bp) as features for gene expression change classification 

with a Random Forest (RF) classifier with 1001 estimators (Figure 3.1a,b). 

 

3.3.6 Regions of Interest (ROI) 

The Regions of Interest (ROI) classifier reduces DNA methylation to multiple averaged values 

across annotated gene elements (upstream, exon, intron, and downstream bins) as features for a 

Random Forest (RF) to predict expression class (Figure 3.1c). ROI classifier features were 

implemented as described in Lou et al. (87) to predict differential expression class rather than 
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single sample binned expression values. We used a RF classifier with 100 trees as originally 

described. Increasing the number of trees to 1001 increased run time substantially without an 

appreciable increase in performance (Supplementary Figure 3.1). 

 

3.3.7 ME-Class 

Gene signatures were constructed as in VanderKraats et al. with minor modification (96). This 

signature allows the model to incorporate the entire profile of methylation changes across the 

gene’s promoter including any CGI and CGI-shore regions (Figure 3.1a,d). In addition, these 

signatures allow comparison of methylation differences between genes, which have CpGs in 

different locations. We applied a localized z-score normalization of each differential methylation 

value in a 10kb window surrounding the TSS based upon the distribution of methylation values 

in a 100kb surrounding anchor window. We created methylation signatures using a piecewise 

cubic hermite interpolating polynomial (PCHIP) to interpolate a curve of z-score normalized 

differential methylation values in the 10kb window around the TSS for each differentially 

expressed gene. The interpolated curve was then subjected to Gaussian smoothing with a 

bandwidth of 50bp. Since CpG methylation values are highly autocorrelated (29), interpolation 

and smoothing of the data decrease the influence of sequencing error at individual CpGs (96). 

Similar smoothing approaches have shown a marked improvement in the ability to determine 

DMRs (148). To obtain discrete features, we subsampled our interpolated methylation signature 

at 20bp resolution. We then used these features with a RF classifier with 1001 estimators. We 

initially chose a RF classifier since it provides a nonparametric model, has a low number of 

hyperparameters, generates an internal unbiased estimate of testing error, identifies feature 

importance, and typically performs near-optimally with minimal tuning (149).  Logistic 
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Regression (LR) (max_iter = 1001), Gradient Boosted Classification Trees (GBCT) 

(n_estimators=1001), Gaussian Naïve Bayes (NB), L2 distance-based k-Nearest Neighbors 

(kNN) (k=21), and Dynamic Time Warping (DTW) kNN (k=21) were implemented with default 

parameters other than stated modifications. All machine learning methods were implemented 

with scikit-learn and mlpy (DTW only) python packages (150, 151). 

 

3.3.8 Whole Gene Methylation Models 

We also implemented three alternative representations of methylation data to incorporate the full 

profile of methylation changes across the entire gene (Supplementary Figure 3.2a): Whole 

Scaled Gene (WSG), Whole Gene (WG), and Uniform Gene Features (UGF). For each 

representation, we created 125 bins in the regions 5kb upstream of the TSS and downstream of 

the TES (Transcription End Site) (20bp resolution). These regions/features were then added to 

specific features for each representation as follows. The WSG representation is an emerging 

representation in the literature to describe methylation changes by linearly scaling the 

methylation profile across the entire gene (1, 145, 152). To obtain discrete features, we used 500 

bins across the gene (Supplementary Figure 3.2b). For the WG representation, we modeled 

methylation data as a curve (subsampled to 20bp resolution) across the entire length of the gene 

(Supplementary Figure 3.2c). For the UGF approach, we represented each exon with 10 scaled 

bins and each intron with 30 scaled bins. Multiple exons or introns were not averaged together 

(Supplementary Figure 3.2d). For WSG, we used a RF classifier. For both WG and UGF, we 

used curve similarity as defined with DTW (153), and classified expression changes using kNN 

(k=21).  
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3.3.9 Classifier Performance 

To evaluate the amount of data needed to train ME-Class, we divided the 17 REP datasets into 

eight samples that were held out for evaluation and nine samples that were used for training. For 

a given number of training samples (n), nine random permutations of n pairwise comparisons 

were chosen from the training samples and used to train nine ME-Class classifiers. The resulting 

nine classifiers were then evaluated on a fixed set of eight comparisons from the holdout 

evaluation samples (Supplementary Figure 3.10). 

To evaluate each classifier, we implemented a conservative two-stage cross-validation 

framework (Figure 3.1e) to ensure that the model does not overfit to any given sample or 

individual gene. For a given evaluation, we performed the following procedure: 1) Leave-one-

out sample pair cross validation: We divided all differential training samples into a training set 

and an evaluation set. This ensured that no individual sample from the training set appears in the 

evaluation set. 2) 10-fold gene cross validation: We randomly divided the genes from the 

evaluation sample into 10-folds. To evaluate each fold, we first removed examples of all genes in 

the evaluation fold from all samples in the training set prior to training. Thus, if gene A is in the 

evaluation data, no examples of gene A for any tissue are used for training. We then trained on 

the training samples/genes and evaluated the chosen fold of genes in the evaluation samples. We 

then repeated this process 10 times for each fold of the evaluation sample and for each 

differential sample in the dataset. This process helped the classifier generalize across genes and 

samples by ensuring that each evaluation gene does not observe either an example of itself or any 

other genes from its individual sample.  

Average performance based on the accuracy, reject rate, positive predictive value (PPV), and 

negative predictive value (NPV) was reported across all genes treated as a single pool from all 
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samples. Testing accuracy was defined as the number of genes with correctly predicted 

expression divided by total genes returned. Receiver Operator Characteristic (ROC) and 

Precision Recall (PR) curves were averaged to provide a sample-wise level of reporting. RF 

feature importance was estimated as Gini importance. Unless otherwise stated, all statistical 

comparisons were performed using FDR-corrected paired, pairwise Wilcoxon rank sum test in R.  

 

3.3.10 Gene Ontology Analysis 

Gene Ontology analysis was performed by analyzing gene lists with Functional Annotation 

Clustering with default parameters from DAVID (154). Blueprint analysis gene lists were 

identified by any genes with 90% probability of classification in 2 differential samples. Colon 

cancer gene lists were identified by any down-regulated genes with a 90% probability of 

classification by ME-Class (see discussion of reject rate in Results). 

 

3.4 RESULTS 

3.4.1 ME-Class predicts gene expression change from differential methylation in tissue 

samples 

Since the goal of most genome-wide methylation studies is to identify how changes in 

methylation alter expression, we examined the ability of methylation to predict differential 

expression change. We first sought to understand whether a methylation signature approach (i.e. 

modeling the entirety of methylation changes around a gene’s TSS) could outperform current 

DMR, single window, and region of interest (ROI) methods in finding genes with associated 

differential methylation and expression. (Figure 3.1, Table 3.1).  
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Figure 3.1 Models of DNA methylation and validation framework for predicting differential 

gene expression change from differential DNA methylation. a) Heat map indicates methylation 

status at individual CpG sites – red is fully methylated, blue is fully unmethylated – for an 

example gene in two samples (Methyl. 1 and Methyl. 2). Individual points below indicate 

differential DNA methylation (Methyl. 2 – Methyl. 1) across the example gene at individual CpG 

sites. b) Example regions that would be used to calculate the single window (SW) and 

differentially methylated region (DMR) using the data in (a). c) Regions used to calculate 

methylation features for the Region of Interest (ROI) representation of the gene in (a). d) ME-

Class representation of the gene in (a). Each individual point is the differential methylation value 

used as a feature in a Random Forest after interpolation and smoothing. e) Cross-validation 

comparison framework. Evaluation is performed sample-wise across the 17 sample comparisons. 

In the evaluation comparison, genes are split into 10-folds. Prior to training, each evaluation 

gene is removed for all other tissues. Further model details are in Table 3.1. CGI = CpG island. 
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Table 3.1 DNA methylation features and classification methods for each model in Figure 3.1. 

 

 

To compare supervised classifiers, we used whole genome bisulfite sequencing (WGBS) DNA 

methylation and RNA-seq data from the Roadmap Epigenomics Project for 17 tissue samples 

(Supplementary Table 3.1) (1). We implemented a conservative sample-wise and 10-fold gene-

wise cross-validation framework that ensures the genes in the evaluation step have not been seen 

in any tissue during training (Figure 3.1e). Since patterns of differential DNA methylation can be 

very similar between datasets, this evaluation framework tests the strength of the DNA 



 45 

methylation representation and the universality of DNA methylation patterns rather than the 

ability to simply recall an observed gene’s methylation signature.  

Using this framework, ME-Class outperformed all methods by receiver operator characteristic 

(ROC) curve analysis (p < 10-3 for ME-Class compared to each of DMR, SW, and ROI, Figure 

3.2a) and precision-recall (PR) analysis (p < 10-3 for ME-Class compared to each of DMR, SW, 

and ROI, Supplementary Figure 3.3c). In addition, ME-Class performed better than or equal to 

each of the other methods analyzed for any individual comparison based on ROC AUC (area 

under the curve; Figure 3.2c). Interestingly, there was a large variability in the classification 

performance of the differential samples. While in the case of keratinocyte comparisons this could 

likely be explained by poor sequencing coverage (Figure 3.2e,f), this per-sample performance 

difference appeared primarily to be due to fundamental differences in the methylation profiles of 

the expression classes. The ROC AUC was strongly correlated (Figure 3.2d, R2=0.87) with the 

average methylation difference between up- and down-regulated genes in the region +0.5kb to 

+2.5kb relative to the TSS (the most important region for classification, Figure 3.2b). While we 

cannot rule out there is some other technical artifact in the data causing this correlation, it 

appears that most normal tissue methylation-based expression classification derives from TSS 3’ 

proximal methylation changes. 
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Figure 3.2 ME-Class outperforms standard methods for tissue-specific expression classification. 

Methods were evaluated using 17 tissue samples from the REP with the two-stage cross-

validation framework in Figure 3.1e. a) ROC analysis from a combination of all 17 samples 

(ROC AUC: ME-Class, 0.76; ROI, 0.71; DMR, 0.63; SW, 0.66). b) RF feature importance from 

ME-Class trained on all 17 differential comparisons from REP. c) ROC AUC for each of the 17 

samples comparisons. d) Mean z-score normalized methylation difference of the region [+0.5kb, 

+2.5kb] relative to the TSS. e) Average CpG coverage and f) average fraction of CpGs within the 

10kb window around the TSS for each REP sample. S1 and S2 correspond to the first and second 

sample in the evaluation differential comparison. L. Ventr. = Left ventricle, Hippo. = 

Hippocampus, R. Ventr. = Right ventricle, Esoph. = Esophagus, R. Atrium = Right Atrium, 

Keratin. = Keratinocyte, Intest. = Intestine. 
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3.4.2 ME-Class generates a list of genes with associated differential methylation and 

expression 

Transcription can be influenced by multiple factors other than DNA methylation, such as 

transcription factors or chromatin modifications. Thus, the key issue is whether ME-Class can be 

used to identify a subset of genes that have high quality associations between differential 

methylation and expression. For this purpose, we introduced a reject rate into the classifier that 

allows us to control for external factors other than methylation that indicate gene expression. The 

reject rate excluded genes that cannot be reliably predicted (i.e. they likely do not have 

methylation-associated expression changes) using a threshold for the probability of classification 

output by each classifier. In practical terms, the reject rate allows one to set a parameter based on 

the cross-validation evaluation error that can control the false positive rate when running ME-

Class on unseen samples. In Figure 3.3a, we observe that ME-Class outperformed ROI, SW, and 

DMR methods in accuracy and proportion of the genes returned across all rejection rates.  

 

 

Figure 3.3 ME-Class identifies more genes at higher accuracy with expression-associated 

methylation changes in tissue-specific differential comparisons in the REP dataset. a) Classifier 
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accuracy versus 1 - reject rate. b) Accuracy of testing sample at 90% operating probability of 

classification. c) Number of genes identified with expression-associated methylation changes at 

90% operating probability of classification. Points in (b) and (c) indicate the performance of 

individual REP sample comparisons. ** indicates p < 0.005 and *** indicates p < 0.001. All 

other comparisons were not significant for =0.05. 

 

We next set the classification probability at 90% and examined how many genes were returned 

by each method and the accuracy of this list. ME-Class returned significantly more genes than 

the SW and ROI methods (ROI: p=2.9 x 10-3; SW: p=9.2 x 10-4) and was significantly more 

accurate at 90% probability of classification than the DMR method (DMR: p=3.0 x 10-3) (Figure 

3.3b,c). ME-Class returned the largest average number of genes, 217, at the highest level of 

accuracy (93.1%). The ROI and SW methods achieved lower levels of accuracy and returned a 

much lower average number of genes (ROI: 81 genes, 86.9% accuracy; SW: 66 genes, 84.5% 

accuracy). The DMR method returned a similar average number of genes, 207, but at the cost of 

a much lower level of accuracy (83.3%). This implies that the nearest isolated DMR is often 

insufficient to predict the expression class even when tuning the DMR parameters to find optimal 

segmentation parameters.  

At 90% probability of classification, ME-Class did not show any bias towards the positive (up-

regulated) or negative (down-regulated) class (Supplementary Figure 3.3a,b). ME-Class matched 

or exceeded the accuracy given the probability of classification, indicating that this probability 

can be used as an estimate of the final classification error in cross-sample comparisons 

(Supplementary Figure 3.3d). This demonstrates that when running ME-Class on new samples, 
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the probability of classification can be used as an estimate of the false discovery rate. 

Meanwhile, the ROI, SW, and DMR approaches all have a lower accuracy than the probability of 

classification at high probabilities indicating that they are likely overfit and do not generalize 

well to other datasets. 

To understand the difference in why ME-Class was highly predictive of some genes and not 

others, we examined metagene plots of the methylation signal at predicted genes subset by the 

probability of prediction. We observed that the highest predicted genes have the greatest 

methylation difference between downregulated and upregulated genes in a [+0.5kb, +2.5kb] 

region around the TSS of each gene, and that this signal decays with decreasing probability 

(Supplementary Figure 3.4). This dampening of the methylation signal can likely be attributed to 

either noise from the WGBS assay or biological noise from cell-type heterogeneity.  

 

3.4.3 3’ proximal and TSS regions are most predictive of differential expression  

We next sought to understand why ME-Class performed better by examining which features are 

most important for classification. We first developed a series of ME-Class classifiers each using 

signatures from 5kb windows centered at varying distances away from the TSS (Figure 3.4a,b). 

Performance peaks for a window centered 2kb downstream of the TSS, indicating that the most 

important features exist downstream of the TSS. There was no substantial difference observed in 

ROC AUC between the entire 10kb window compared for the 2kb downstream centered 5kb 

window (Figure 3.4b). This agrees with our analysis of RF feature importance, which showed 

that the most important features for gene expression classification occur downstream +0.5 to 

+2.5kb of the TSS (Figure 3.2b).  
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Figure 3.4 Importance of DNA methylation changes 3’ proximal to TSS for tissue-specific 

expression classification. Methods were evaluated using 17 REP tissue samples with the two-

stage cross-validation framework in Figure 3.1e. a) ROC AUC and b) 1-reject rate for ME-Class 
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methylation signatures created from fixed 5 kb windows centered at varying distances to the 

TSS. c) ROC AUC and d) 1-reject rate for ME-Class methylation signatures created using 

increasing window widths centered at the TSS. Individual points are the performance of 

individual REP sample comparisons. 

 

We next evaluated the use of a Most Important (MI) window within the [+0.5kb, 2.5kb] region 

around the TSS of each gene in the REP dataset (Supplementary Figure 3.5). Both a SW 

classifier trained on only this region, and a ME-Class classifier using only features from this 

region performed substantially worse than ME-Class given data from the full [-5kb, +5kb] region 

(Supplementary Figure 3.5), underscoring the importance of using all the data around the TSS to 

represent DNA methylation.  

We then designed a series of ME-Class classifiers to examine how the size of the TSS-centered 

window affects performance. Increasing the window size beyond 10kb did not show substantial 

improvements in ROC AUC (Figure 3.4c). However, after the window size increases greater 

than 10 kb there is a decrease in the number of genes returned at 90% probability of 

classification (p=4.5 x 10-3) (Figure 3.4d). Combined, these results indicate that high-resolution 

features across a window of at least 5kb wide and shifted 3’ proximal of the TSS is sufficient to 

capture the complexity of methylation signal around the promoter required for expression 

prediction in the REP samples. 
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3.4.4 Alternative models and features to improve ME-Class 

We next sought to determine whether the underlying model used in ME-Class was sufficient for 

predicting expression. We were inspired from our previous unsupervised analysis (96) to design 

ME-Class to model the changes in methylation levels around the TSS. However, other features, 

including CpG density, the density of methylated CpG sites, and gene body methylation, have 

been described in the literature to have correlations with expression. Thus, we sought to 

understand whether adding these features would improve classification performance.  

 

3.4.5 CpG density does not improve ME-Class but CpG-poor genes are more predictive 

The density of methylated CpGs has been implied as the important feature for why CGI 

methylation affects gene silencing (155, 156). We thus compared gene signatures computed from 

the normalized methylation density (mCG/bp), CpG density, or fractional methylation 

(mCG/CG) to see which feature performed best. ROC and PR analysis, as well as examining the 

relationship between accuracy and reject rate, show no substantial increased effect of using 

mCG/CG rather than mCG/bp. Unsurprisingly, a model based on CpG density alone performs 

nearly equivalent to random guessing (Supplementary Figure 3.6a). While the direct addition of 

CpG density did not improve performance, we found that ME-Class performed worse on CGI-

associated and CpG-rich promoters (Supplementary Figure 3.7). This is in agreement with prior 

findings that there is a stronger correlation between methylation and expression for genes which 

had no CpG island as compared to those with CpG Islands (85). However, since more genes 

contain CGIs, ME-Class identifies a strong association (90% probability of prediction) between 

differential methylation and expression for more CGI-associated genes (mean=135 for REP 

samples) than CGI-poor genes (mean=108). A similar trend is observed for CpG-rich 
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(mean=170) versus CpG-poor (mean=73) promoters. Previously, it has been hypothesized that 

CGI-associated and CpG-rich genes tend to remain unmethylated in normal cell-types 

irrespective of their expression levels (56); however, our analysis suggests that while there are 

better associations between methylation and expression for non-CGI-associated genes, there are 

more CGI-associated genes that show strong associations. 

3.4.6 The addition of gene body methylation changes does not improve ME-Class 

Since gene body methylation has been shown to be positively correlated with gene expression 

(85, 141, 142), we examined if we could improve ME-Class by adding additional gene features 

that modeled methylation changes in the gene body. ME-Class performance was not 

substantially improved by adding features for averaged gene features similar to that of the ROI 

method such as the average methylation of internal exons, introns, and region downstream of the 

gene (Supplementary Figure 3.6b). This was unsurprising, since feature importance analysis of 

the ROI classifier indicated that the most important features for classification were the 

methylation levels of the first exon and first intron, which substantially overlap the region from 

the TSS to +5kb. 

We also investigated whether other gene representations could determine whether methylation 

information from the gene body could improve classification performance. Therefore, we 

implemented three alternative approaches to model DNA methylation throughout a gene: Whole 

Scaled Gene (WSG), Whole Gene (WG), and Uniform Gene Features (UGF) (Supplementary 

Figure 3.2b-d). In the Whole Scaled Gene (WSG) approach, the methylation profile is 

interpolated across the entire gene and then all genes are rescaled to a uniform length. This is a 

common method to visualize genomic trends in genome-wide methylation data (1, 145, 152). 

WG is similar, but the genes are not scaled after interpolation. Lastly, in the UGF approach 
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methylation is interpolated then methylation features are extracted using a uniform number of 

bins for each exon and intron. All alternative approaches include regions -5kb of the TSS and 

+5kb of the TES. Using ROC AUC analysis, the TSS-centric (default ME-Class representation) 

model outperforms the WG (p=3.7 x 10-5) and UGF (p=2.3 x 10-5) approaches (Supplementary 

Figure 3.2e-g). Further, the TSS-centric approach identifies more genes on average (TSS: 178, 

WSG: 112) at a higher average level of accuracy (TSS: 93%, WSG: 89%) than the WSG 

approach.  

All combined, these results suggest that models that incorporate gene body methylation, whether 

through average features or whole gene representations, do not substantially outperform models 

comprising only information from around the TSS. Our results demonstrate that features in the 

gene body and downstream of the TES are minimally important when using differential 

methylation to classify expression change. Thus, even though there are correlations between 

differential gene body methylation and differential expression, there is minimal new information 

in the gene body relative to the information already found in the +/-5kb region around the TSS. 

 

3.4.7 Optimizing ME-Class 

Before using ME-Class to analyze additional samples, we examined whether we could tune ME-

class for better performance. Using the REP dataset, we compared the performance of the RF, 

Logistic Regression, Gradient Boosted Classification Trees (GBCT), Naïve Bayes, and k-NN. 

We also compared the RF-based approach to a method using DTW as a curve similarity metric 

for kNN classification. RF, Logistic Regression and GBCT outperformed the remaining machine 

learning methods by both ROC AUC analysis and examining the relationship between accuracy 
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and reject rate (Supplementary Figure 3.8).  We also found that ME-Class performed similarly 

well as long as smoothing parameters were maintained below 200 bp (Supplementary Figure 

3.9a,b). Interpolation and smoothing serve to decrease inaccuracy of low coverage methylation 

calls, as has been observed in DMR callers (148). Changes in the interpolation method also had 

no substantial effect on performance (Supplementary Figure 3.9c). To assess how much training 

data ME-Class requires for accurate classification, we separated the REP dataset into 9 

differential samples for training held out 8 differential samples for evaluation (see details in 

Materials and Methods). ME-Class was consistent within 0.02 ROC AUC of the full training set 

after using 3 samples (Supplementary Figure 3.10a) and showed minimal increases in obtaining 

consistent gene sets as the full training set when using more than 5 samples (Supplementary 

Figure 3.10b) or 20,000 genes (Supplementary Figure 3.10c). We also observed that the RF 

outperforms the DTW in identifying consistent gene sets as the full training set when using more 

than 2 samples (Supplementary Figure 3.10d). 

 

3.4.8 Myeloid/Lymphoid differential methylation comparisons are most predictive of 

expression change 

We next applied ME-Class to identify methylation-associated expression changes in 

hematopoiesis. We used WGBS and mRNA-seq datasets provided by the Blueprint Epigenome 

project in cord and venous blood composed of 32 isolated samples from 10 cell types. We 

retrained ME-Class using the entire 17 samples from the REP data above and then used this 

model to find methylation-associated expression changes in 469 hematopoietic lineage-wise 

differential comparisons. We found a large variation in the number of genes identified based on 

the cell-types being compared. Comparison of relatively distantly related lymphoid and myeloid 
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lineages resulted in 54-218 genes (mean = 88) returned at 90% probability of classification 

(Figure 3.5a,b). Gene ontology analysis suggests that genes identified in myeloid-lymphoid 

comparisons are enriched for genes involved in T-cell activation, leukocyte differentiation and 

hematopoiesis. Similar performance results were found if we characterize the classifier based on 

ROC AUC (Figure 3.5b). This contrasts with a comparison of closely related myeloid cells such 

as macrophages, monocytes and dendritic cells, which identified between 0 and 55 genes when 

comparing any two cell types (mean = 16 genes; p=2 x 10-16) and demonstrate performance near 

random guessing (ROC AUC = 0.550.04).  Neutrophil samples stood out as particularly poor 

performers in all comparisons suggesting that either there are not methylation-associated 

expression differences in these cells, or that methylation profiles in these cells are fundamentally 

different from that of other tissues (Supplementary Figure 3.11). 
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Figure 3.5 ME-Class performance is higher for cell comparisons between distally related cell 

lineages as opposed to directly related ones. a) Accuracy versus 1- reject rate and b) ROC of 

selected cell-types (ROC AUC: Lymphoid v Myeloid, 0.720.02; Megak. v Other Myeloid, 

0.680.02; Erythrob. v Other Myeloid, 0.680.02; CD4+ v CD8+ T cells, 0.660.02; Other 

Myeloid, 0.550.03). c) ME-Class ROC AUC performance for each sample-wise comparison of 

hematopoiesis samples. Vb = venous blood, cb = cord blood, Erythrob. = Erythroblast, 

Alt_Act_Macrophage = Alternating activated Macrophage, Inflam_Macrophage = Inflammatory 

Macrophage, Mat_Neutrophil = Mature Neutrophil, Megak. = Megakaryocyte. ROC AUC error 

is the standard deviation. 

 

Based on ROC analysis there was an inverse relationship between the relatedness of the cells 

being compared and the ROC AUC from ME-Class (Figure 3.5c). Similar results were also 

obtained using an ME-class model trained a combination of closely- and distantly-related 

hematopoietic cell types (Supplementary Figure 3.12). While other analyses have examined 

associations upon myeloid (157) and B-cell differentiation (158), this analysis demonstrates that 

truly predictive differences in differential DNA methylation primarily reside between the 

myeloid and lymphoid lineages, the two major lineages derived from hematopoietic stem cells.   

 

3.4.9 ME-Class identifies subsets of genes sensitive to demethylation in colon cancer 

We next examined whether ME-Class can accurately identify genes that are hypermethylated and 

silenced in a model of cancer. For this problem, we first trained a cancer-specific ME-Class 

model using WGBS and mRNA-seq data from four different normal-tumor differential 
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comparisons from The Cancer Genome Atlas (TCGA) (BRCA, COAD, READ, and UCEC). We 

then used this cancer-specific ME-Class model to identify methylation-associated changes in 

expression in a colon cancer cell line (HCT116) relative to normal colon tissue (Figure 3.6a).  

 

 

Figure 3.6 ME-Class identifies genes re-expressed after removal of DNA methylation in a model 

of colon cancer. a) Experimental scheme. We first built an ME-class model using WGBS data 

from four tumor-normal pairs from TCGA. We then used this model to identify genes with 

expression-associated methylation changes upon tumorigenesis (HCT116) from normal colon 

(REP) and evaluate the demethylation effect by genetic manipulation (DKO1: bi-allelic knockout 

of DNMT1 and DNMT3b in HCT116). b) Feature importance for the ME-Class training model 

built from four TCGA tumor-normal samples (COAD, BRCA, READ, UCEC). c) Violin plots 

showing the expression fold change in HCT116 DKO1 cells using down regulated differentially 

expressed gene sets identified with (n=187 genes) and without (n=5,370 genes) identified 

methylation signatures. 

 

We observed that the primary peak of feature importance in our trained model shifts from the 

region [+500bp, +2500bp] downstream of the TSS in the REP tissue-specific model to the region 
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[-500bp, +1500bp] overlapping the TSS in the TCGA normal-tumor model (Figure 3.6b). We 

found a severe class imbalance; 187 genes with methylation-associated expression changes were 

identified as down-regulated, but no genes were predicted as up-regulated. Functional annotation 

clustering of gene ontology of the 187 down-regulated, identified genes showed that these genes 

are enriched for C2H2 zinc fingers, previously shown to be hypermethylated and silenced in 

carcinogenesis, and are involved in cell adhesion, whose dysregulation is important for 

tumorigenesis (159). To understand whether the tumor-associated hypermethylation was 

functional, we examined what happened to these genes after removal of methylation by double 

knockout of DNMT1 and 3b (HCT116 DKO1).  Genes with an ME-Class signature showed a 

significant upregulation of expression relative to down-regulated genes not identified by ME-

Class (Figure 3.6c, p=1 x 10-14). These results demonstrate that ME-Class can identify genes 

likely regulated by DNA methylation in human disease and that hypermethylation near the TSS 

plays a primary role in modulating gene activity in a model of colon cancer (56, 160, 161). 

 

3.5 DISCUSSION 

One challenge in the field of DNA methylation analysis has been the difficulty of integrative 

analysis of genome-wide DNA methylation and expression data. While methods exist to 

facilitate this task, they have many parameters that must be set, often with no clear way to make 

intelligent choices for their values. For example, DMR and SW approaches require the user to set 

several parameters (such as minimum window size or a minimum number of CpGs) that can 

drastically change the list of genes with predicted methylation changes. Our results from REP 

analysis show that these methods cannot be used to accurately predict expression from DNA 

methylation, likely because they cannot model the signal complexity necessary to associate 



 60 

methylation and expression change (Figure 3.2). Incorporating the complexity of patterns, rather 

than reducing methylation to a single or even multiple averaged values, is critical for the success 

of ME-Class. Alternative gene representations that incorporate gene body methylation perform 

no better than representations that focus on the region around a gene’s TSS (Supplementary 

Figure 3.6b). Thus, the information obtained from correlations between gene body methylation 

and expression is either too noisy, or it is redundant with information in the promoter region.  In 

the future, it may be possible to improve ME-Class by adding features specific to enhancers, but 

first we need better computational tools and experimental data across multiple cell types to 

connect regulatory units with specific genes.  

In this study, we asked whether we could build models of DNA methylation that would 

generalize across different genes and across samples. For this purpose, we established a strict 

evaluation framework to test changes in methylation to identify these most likely affected genes. 

Using a training and evaluation paradigm that consists of both cross-sample and cross-gene 

evaluation, we have shown that ME-Class predictions are not overfit to any given dataset. ME-

Class performs well across high quality datasets without the need for tuning for individual 

datasets. However, there are limits to this generalization. For example, tissue-specific and 

cancer-specific datasets require different models to achieve high performance. Further, even 

though we excluded alternative promoters from this analysis to compare methods across a set of 

high quality reference genes, ME-Class can use isoform-specific promoter locations and 

expression data as input to provide an isoform-level analysis. 

The role of gene-specific DNA methylation changes in development has been debated for many 

years (5). If promoter DNA methylation played a primary role in regulating cell-type specific 

expression changes then one would expect to observe a large fraction of differentially expressed 
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genes with methylation-associated expression changes even amongst closely related cell types. 

However, we do not observe this. On the other hand, if methylation were a consequence of 

expression change, then one would expect to see a large number of methylation-associated 

expression differences in distantly related cell types or tissues, but not in closely related ones.  

Our results from ME-class are consistent with the latter statement. ME-Class identifies on 

average 7.5% (217 genes/sample) of differentially expressed genes from different tissues in REP 

are associated with promoter methylation changes at 90% accuracy, and 2.5% (88 genes/sample) 

of differentially expressed genes for distantly related hematopoietic lineages (myeloid vs 

lymphoid). However, ME-class performs poorly on sample comparisons of closely related 

hematopoietic lineages, often identifying few genes (myeloid vs myeloid; mean = 0.6% or 16 

genes/sample). Our data is thus consistent with a model where transcriptional changes precede 

methylation changes at the promoter during differentiation, and thus, tissue- and cell- specific 

DNA methylation changes are likely a consequence of transcriptional changes. While DNA 

methylation is unlikely to initiate tissue-specific expression, we cannot rule out the possibility 

that these methylation changes at the promoter play a later role in maintaining these 

transcriptional programs. 

In contrast, the reactivation of genes identified by ME-Class as methylated and silenced upon 

removal of DNA methylation is consistent with the hypothesis that methylation changes at the 

promoter in cancer play a direct role in gene regulation. This observation is consistent with our 

recent work showing that an unsupervised analysis of differential methylation data in AML 

could identify a set of genes that were likely to be up-regulated upon treatment with 

demethylating agents (97). We also observe a shift in the most informative region for expression 

associated methylation changes from [+500bp,2.5kbp] in a tissue-specific model to [-500bp, 
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+1.5kbp] in a cancer-specific model. While early studies suggested that tissue-specific and 

cancer-specific expression-associated methylation changes were similar, our results are in 

agreement with more recent studies that use higher resolution methods and larger numbers of 

samples (85, 95, 162, 163). Further, the observation that both windows are shifted downstream 

of the TSS is in agreement with recent studies that have suggested that the transcriptional 

activator p300 can bind downstream of the TSS at unmethylated CpG Islands to increase gene 

expression (85), and that decreases in methylation downstream of the TSS co-occur with 

increases in active H3K4me3 that also shift downstream of the TSS (163, 164). This difference 

in expression-associated methylation changes may explain why methylation appears to play a 

role in gene silencing in cancer, but not in development. In addition, the context dependent 

nature of these models has a profound effect on downstream applications indicating that different 

methylation models may need to be trained for different contexts (i.e. cancer-specific models 

need to be trained to understand expression-associated methylation changes in cancer). Once 

these models are trained, they are applicable across other similar datasets. 

As more large-scale, genome-wide DNA methylation studies of the differences between matched 

normal and tumor samples become available, tools such as ME-class will prove invaluable to 

understand how specific methylation changes affect transcription. In addition, our results show 

that ME-Class is a powerful tool to identify genes that are silenced by methylation in disease and 

could be used to facilitate the identification of patients who may benefit from clinically-approved 

demethylating therapeutics (165). 
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3.6 AVAILABILITY 

ME-Class is publicly available on Github at http://github.com/cschlosberg/me-class 
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Supplementary Table 3.1 Roadmap Epigenomics Project (REP) biological and technical 

replicate counts. 

 

  

ID Tissue Tissue	Short	Name Sources WGBS	 RNA-seq	

E058 Penis	Foreskin	Keratinocyte Keratin. 1 2 3

E065 Aorta Aorta 1 6 2

E066 Adult	Liver Liver 3 2 2

E071 Brain	Hippocampus	Middle Hippo. 2 3 2

E079 Esophagus Esoph. 1 2 2

E094 Gastric Gastric 1 5 3

E095 Left	Ventricle L.	Ventr. 1 4 2

E096 Lung Lung 1 2 2

E097 Ovary Ovary 1 2 1

E098 Pancreas Pancreas 1 2 2

E100 Psoas	Muscle Psoas 2 3 3

E104 Right	Atrium R.	Atrium 1 3 1

E105 Right	Ventricle R.	Ventr. 2 5 2

E106 Sigmoid	Colon Colon 2 2 3

E109 Small	Intestine Intest. 2 4 3

E112 Thymus Thymus 1 2 1

E113 Spleen Spleen 1 3 3

Technical	Replicates
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Supplementary Table 3.2 Differentially expressed and ME-Class interpolated gene counts from 

Roadmap Epigenomics Project (REP). 
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Supplementary Figure 3.1 Increasing the number of RF estimators from 100 to 1000 for the 

ROI classifier does not substantially increase performance as evaluated by: a) accuracy versus 1-

reject rate, b) precision versus recall (PR AUC; 100 estimators: 0.70, 1000 estimators: 0.71), and 

c) ROC curve (ROC AUC; 100 estimators: 0.72, 1000 estimators: 0.73). 
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Supplementary Figure 3.2 Alternative full-gene methylation representations do not outperform 

TSS-centric representations. a) Heat map indicates methylation status at individual CpG sites – 

red is fully methylated, blue is fully unmethylated – for an example gene in two samples 

(Methyl. 1 and Methyl. 2). Individual points below indicate differential DNA methylation 

(Methyl. 2 – Methyl. 1) across the example gene at individual CpG sites. b) Whole Scaled Gene 

(WSG), c) Whole Gene (WG) and d) Uniform Gene Features (UGF) representation of the gene 

in (a). See additional description of each method in the Materials and Methods. Performance 

plots of TSS, WSG, WG, and UGF as reported by: e) accuracy versus 1-reject, f) ROC curve 
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(ROC AUC; TSS: 0.76, WSG: 0.75, WG: 0.70, UGF: 0.65), and g) precision versus recall (PR 

AUC; TSS: 0.75, WSG: 0.74, WG: 0.69, UGF: 0.65). CGI = CpG island. 

 

 

Supplementary Figure 3.3 Additional evaluation metrics for each method using 17 REP tissue 

differential samples: a) positive predictive value (PPV) versus 1- reject rate, b) negative 

predictive value (NPV) versus 1- reject rate, c) precision versus recall (PR AUC; ME-Class: 

0.75, ROI: 0.70, DMR: 0.63, SW: 0.66) and d) accuracy versus the classifier’s probability of 

prediction. 
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Supplementary Figure 3.4 Metagene plots of genes identified by ME-Class in REP data at 

different probabilities of prediction p. Blue curves represent the average Z-score normalized 

methylation difference between each sample for downregulated genes while red curves represent 

the average for upregulated genes.  

  



 70 

 

Supplementary Figure 3.5 ME-Class outperforms classifiers using REP data based on only the 

most important methylation features, [+0.5kb, +2.5kb] around the TSS, as evaluated by: a) 

accuracy versus 1-reject rate, and b) ROC curve (ROC AUC; ME-Class: 0.76, RF-Most Imp. 

Feat.: 0.74, SW: 0.67, SW-Most Imp. Feat.: 0.64). RF-Most Imp. Feature is an ME-Class like 

classifier built using features from only the region [+0.5kb, +2.5kb] around the TSS. SW-Most 

Imp. Feat. is similar to the SW approach, but only using methylation from [+0.5kb, +2.5kb] 

around the TSS. 
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Supplementary Figure 3.6 The addition of methylated CpG density and gene body features 

(GF) does not increase ME-Class performance. a) Performance plots of ME-Class altered to use 

either mCG/CG, mCG/bp, or CpG density (200bp resolution, CG/bp) as input. (PR AUC; 

mCG/CG: 0.75, mCG/bp: 0.75, CG/bp: 0.50; ROC AUC; mCG/CG: 0.75, mCG/bp: 0.75, 

CG/bp: 0.50) b) Performance plots of ME-Class with and without adding gene body features 

(GF) from the ROI classifier including average internal exons, introns, and downstream features. 

ROI features are in Fig. 1d. (PR AUC; ME-Class: 0.75, ME-Class+GF: 0.76, ROI: 0.70; ROC 

AUC; ME-Class: 0.76, ME-Class+GF: 0.76, ROI: 0.72). 
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Supplementary Figure 3.7 CpG-poor genes are more predictive of expression classification. 

ME-Class performance for genes overlapping a CpG Island (CGI) by >=1bp is reported as: a) 

accuracy versus 1-rejection rate and b) ROC curve analysis (ROC AUC: No-CGI: 0.79; CGI: 

0.75) c) Histogram of all genes with complete start and stop annotation according to RefSeq 

(n=19,175). Low CpG density genes comprise 26.0% (4,977 genes) while high CpG density 

genes comprise 74.0% (14,198 genes). d) Histogram of differentially expressed RefSeq genes 

(n=12,064 genes), where low CpG density genes comprise 18.8% (2,265 genes) while high CpG 

density genes comprise 81.2% (9,799 genes). e) Histogram of differentially expressed, 

interpolated RefSeq genes (n=10,524 genes) after applying our filtering parameters (see 

Materials and Methods). Low CpG density genes comprise 17.5% (1,842 genes) while high CpG 

density genes comprise 82.5% (8,681 genes). ME-Class performance is reported as: f) accuracy 

versus 1-rejection rate and g) ROC curve analysis (ROC AUC: CpG-poor: 0.8; CpG-rich: 0.75) 
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Cutoff between low and high CpG density genes at 0.35 observed/expected normalized CpGs +/-

1500bp of TSS. ME-Class performance with or without added feature of observed/expected 

normalized CpG density +/-1500bp of TSS is reported as h) accuracy versus 1-rejection rate and 

i) ROC curve analysis (ROC AUC: ME-Class: 0.76; ME-Class, CpG Density: 0.76). 

 

 

 

Supplementary Figure 3.8 Random Forest classifier performs similarly or outperforms 

alternatives based on classification performance as measured by a) ROC curve (ROC AUC; RF: 

0.76, LR: 0.76, GBCT: 0.76, DTW-kNN: 0.73, L2-kNN: 0.73, Naïve Bayes: 0.71) and b) 

accuracy versus 1-reject rate. LR = Logistic Regression, GBCT= Gradient Boosted Classification 

Trees, DTW-kNN = Dynamic Time Warping based k-Nearest Neighbor, L2-kNN = Euclidean 

distance (L2) based k-Nearest Neighbor.  
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Supplementary Figure 3.9 Effect on ME-Class performance of tuning parameters for 

smoothing, bin resolution, and interpolation. Performance is reported as: accuracy versus 1-

reject, precision versus recall, and ROC curve. a) Relationship between ME-Class performance 

and sigma for Gaussian smoothing with a constant bin resolution of 20bp. b) Relationship 

between ME-Class performance and the size of the bin resolution at a constant sigma of 50bp. c) 

Relationship between ME-Class performance and alternative interpolation method (PR AUC; 

PCHIP: 0.76, Linear: 0.76; ROC AUC; PCHIP: 0.76, Linear: 0.76).  
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Supplementary Figure 3.10 Number of training samples and genes determine ME-Class 

performance. The testing ROC AUC as a function of a) the number of training samples. The 

fraction of correctly identified genes using ME-Class with 9 evaluation samples as a function of 

b) the number of training samples and c) the total number of training genes from the training 

samples. In (a) and (b), each point indicates the performance across all genes in an individual 

sample comparison. In (c), each point indicates the number of training genes and fraction of 

genes returned for an individual sample comparison and set of training samples. Training genes 

in (c) is defined as the number of genes summed across all training samples. d) Fraction of 

correctly identified genes with 9 samples using ME-Class (DTW-kNN) versus ME-Class (RF). A 

gene can be counted multiple times if it shows up in multiple samples, although it will likely 

have different methylation profiles and expression values in each comparison. Permuted sets of 

all differential training samples (n=8) and a fixed set of differential evaluation samples (n=9) are 

randomly chosen from the REP dataset.  

 



 76 

 

Supplementary Figure 3.11 Performance of Blueprint Epigenome samples using a similar 

leave-one-out differential sample evaluation cross-validation framework as used for the REP 

data (see Fig. 3.1e). The performance of ME-Class trained and evaluated solely using Blueprint 

samples is similar to that of a ME-class model trained from the REP dataset. Shown are ROC 

AUC of differential comparisons of randomly chosen single samples of each of the 14 cell types 

from Blueprint dataset.   
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Supplementary Figure 3.12 Performance of Blueprint neutrophil samples in comparison to 

other hematopoietic cell types. ME-Class is trained from the full REP dataset and performance is 

reported as: a) accuracy versus 1- reject rate and b) ROC curve analysis (ROC AUC; Lymphoid: 

0.65, Megakayrocyte: 0.63, Erythoblast: 0.62, Other Myeloid: 0.55). 
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Chapter 4. Complex patterns of 5-methylcytosine and 5-

hydroxymethylcytosine associate with gene expression changes in 

mammalian development and disease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter consists of a manuscript in preparation with Manoj Singh and John R. Edwards.  
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4.1 Introduction 

Endogenous human levels of 5-hydroxymethylcytosine (5hmC) have been detected in embryonic 

stem cells, neurons, liver, breast, testis, and placenta tissues at measurable global levels (~5-10% 

of CpGs) (166). Ten-eleven twelve (TET) enzymes have recently been found to be responsible 

for the oxidation of 5mC into 5hmC (22). TET enzymes further convert 5hmC to 5-

formylcytosine (5fC) and 5-carboxylcytosine (5-caC). 5caC is thought to be removed though 

either thymine DNA glycosylase (TDG) in base excision repair (BER) or by decarboxylation 

(167). While 5mC is thought to passively be lost through incomplete copying of DNA 

methyltransferase 1 (DMNT1), TET enzymes imply a potential source of active demethylation. 

The deletion of TET enzymes result in viable murine offspring; however, progeny display varied 

developmental and epigenetic abnormalities. Murine TET1/2 double KOs (DKOs) show global 

decreased levels of 5hmC and increased levels of 5mC (26). TET1/2/3 triple KOs (TKOs) 

showed similar global levels of 5hmC depletion as well as poor differentiation into embryoid 

bodies and teratomas (27). TET2 mutations and deletions have been identified as early genetic 

modifications in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) (168), 

and these aberrations correspond with adverse clinical outcomes (169).  

 

Single base pair resolution of 5hmC is unattainable through a standard 5mC assay of whole 

genome bisulfite sequencing (WGBS), since it unable to distinguish 5hmC from 5mC (170). 

Oxidative bisultifite sequencing (oxBS-seq) and Tet assisted bisulfite sequencing (TAB-seq) 

have been developed to assay 5hmC for single base-pair resolution quantification of 5hmC (28). 

An initial differential analysis of 5mC and 5hmC in murine brain development using TAB-seq 

showed that TET2 activity is involved in marking active regulatory regions for demethylation 
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(39).  It is unclear whether 5hmC is a transient mark in active demethylation, and global levels of 

5hmC decrease quickly upon tissue culture which makes measurement of the modification reliant 

upon primary samples. While assayed samples of 5hmC are sparsely available in human tissues, 

Li et al. has recently compared matched normal and tumor samples of liver and lung (171). This 

study shows that 5hmC is observed as a marker of active transcription and associated with 

H3K4me1 at CpG island shores. However, experiments performed with genetic modifications of 

TET enzymes show conflicting results as to the effect on promoter 5hmC levels. Huang et al. 

show decreased 5hmC enrichment relative to normal mESCs for Tet1 KDs, while Tet2 KDs 

show a punctate increase of 5hmC 3’ proximal to the TSS (40). Hon et al. shows decreased of 

5hmC levels for both Tet1/2 deletions at H3K4me3 promoters (41).  

 

We hypothesize that tissue- and cancer-specific patterns of promoter 5hmC and 5mC can be 

categorized according to their contribution to expression change. We previously developed ME-

Class to identify genes with a high probability of association between 5mC and gene expression 

(172). Here, we extend its functionality to incorporate 5hmC. We categorize highly predictive 

genes to elucidate similarly expressed gene signatures of promoter 5hmC and 5mC. This 

integrated analysis of promoter 5hmC and 5mC provides necessary information to understand the 

relationship of promoter 5hmC and 5mC to gene expression in mammalian development and 

disease.  
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4.2 Methods 

4.2.1 TAB-seq, oxBS-seq, and RNA-seq 

Mapped sequence reads for TAB-seq and RNA-seq in liver and lung tumor and matched normal 

samples were obtained from Li et al. (171). oxBS-seq and RNA-seq fetal and 6 week mouse 

brain samples were obtained from Lister et al. (39). 

 

4.2.2 Estimation of 5mC and 5hmC levels  

5mC and 5hmC levels were estimated using maximum likelihood methylation levels (MLML) 

(173) from either TAB-seq or oxBS-seq. MLML provides a simultaneous maximum likelihood 

based on binomial estimates of 5hmC and 5mC.  Overshoot CpG sites refer to when 

combinations of oxBS-seq/TAB-seq and WGBS result in naïve estimates exceeding 0% or 

100%. Conflict CpG sites correspond to sites where 5hmC and 5mC fall greatly outside their 

binomial confidence intervals. We used MLML with a significance level of =0.05 for the 

binomial test at each CpG site and an expectation maximization convergence threshold of 1e-10.  

Counts of individual CpGs with estimated 5hmC and 5mC in all samples can be found in 

Supplementary Table 4.1. 

 

4.2.3 Differential Expression from RNA-seq 

We used featureCounts (174) to estimate feature counts over RefSeq reads. Differential 

comparisons were performed as defining differentially expressed genes as (log2(fold change) 

>=2). To create a standardized gene set with high quality methylation data, we excluded genes 

with ambiguous or incomplete TSS annotations, genes shorter than 5kb, genes with <40 CpGs 

assayed within +/-5kb of the TSS, genes where all CpGs within +/-5kb of the TSS had less than 
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0.2 methylation change, and alternative promoters. These filters were used to exclude non-

coding and pseudogenes, genes shorter than the interpolation boundary, genes with low numbers 

of CpGs to reduce bias caused by individual CpGs, and genes with no methylation changes at 

their promoter, respectively. We only included RefSeq genes with cdsStartStat and cdsEndStat 

with ‘cmpl’ according to the UCSC Table Browser. For any RefSeq genes with multiple RefSeq 

IDs corresponding to the same TSS location, we used a single RefSeq ID with the lowest 

accession number and excluded the remainder. This is a conservative method to simplify the 

annotations of genes with alternative promoter annotations. A full summary of differentially 

expressed filtered gene counts can be found in Supplementary Table 4.2. 

 

4.2.4 5hmC incorporation in ME-Class  

MLML produces an estimate of 5hmC and 5hmC for each CpG site. ME-Class was extended to 

independently interpolate 5mC and 5hmC data using PCHIP interpolation and Gaussian 

smoothing (50bp bandwidth) as described in Schlosberg et al. (172). 5hmC/CG and 5mC/CG 

interpolated curves were subset to 20bp to create feature vectors for classification. 5mC/CG 

corresponds to the 5mC feature vector and 5hmC/CG corresponds to the 5hmC feature vector.  

5mC/CG+5hmC/CG corresponds to using both the 5mC and 5hmC feature vectors for the 

classification.  

 

4.2.6 Evaluation Framework 

All evaluation frameworks are established as described in Schlosberg et al. (172) with the 

following exceptions. The fetal-6 week comparison of mouse brain development used an intra-

sample 10-fold cross validation as this is currently the only sample in mouse with single base 



 83 

pair resolution of 5hmC and 5mC. The normal liver-lung comparisons kept examples of the same 

tissue type, but still excluded the testing genes from each fold of the evaluation set because this 

dataset represents the only single base pair resolution dataset in human.  

 

4.2.5 Unsupervised Clustering of 5hmC and 5mC 

Unsupervised hierarchical agglomerative clustering (complete linkage) was performed on 

5mC/CG and 5hmC/CG in the region [+0.5kb,+2.5kb] for the TSS for correctly predicted 

genes from ME-Class. Subsetting our predictions required setting a working threshold for the 

probability of prediction. The sample size of differentially expressed genes in this study is 

smaller than used in Schlosberg et al. (172). Therefore, we set the following range of 

probabilities of prediction for each experiment: [0.7,1.0] fetal-6wk mouse, [0.8,1.0] normal liver-

tumor, [0.7,1.0] normal-tumor liver and lung. In the metagene plots of unsupervised results 

5mC/CG+5hmC/CG corresponds to the summation of curves.  

 

4.3 Results 

4.3.1 ME-Class identifies 5hmC and 5mC signatures in mouse brain development 

ME-Class was extended to interrogate the added information that 5hmC provides to predict 

differential gene expression change between fetal and 6-week mouse brain development. We 

demonstrate good performance to predict gene expression change from 10-fold cross validation 

(Figure 4.1a: ROC AUC: 5mC/CG; 5hmC/CG: 0.73, 5mC/CG: 0.70, 5hmC/CG: 0.67). In 

mammalian brain development, 5hmC increases the accuracy of ME-Class as a function of the 

rejection rate (Figure 4.1b). We sought to understand what patterns of 5hmC and 5mC contribute 

to this increase in ME-Class performance. 
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We conduct a post-hoc unsupervised clustering analysis of identified signatures of 5hmC and 

5mC that associate with expression change. We observe three distinct classes of differential 

5hmC and 5mC signatures and provide gene examples of each pattern in Supplementary Figure 

4.2. In Figure 4.1c, we observe a net decrease in methylation 3’ proximal to the TSS and a 

corresponding increase in expression, which is an observable signature in ME-Class with only 

5mC information. The converse is shown in Figure 4.1d, where there is a net increase in 3’ 

proximal TSS methylation and a decrease in expression. We obtain added knowledge in Figure 

4.1e, where we show a net neutral change in 5mC/CG+5hmC/CG 3’ proximal to the TSS with 

a decrease in expression. This cluster of 5hmC and 5mC gene signature implies that during 

conversion from 5mC to 5hmC the gene is preferentially downregulated. Increased ME-Class 

performance from using 5mC/CG+5hmC/CG versus 5mC/CG alone is most likely due to 

subtle combinations of 5hmC and 5mC.  
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Figure 4.1 ME-Class identifies 5hmC and 5mC signatures in mouse brain development. a) ROC 

AUC analysis: 5mC/CG; 5hmC/CG: 0.73, 5mC/CG: 0.70, 5hmC/CG: 0.67 b) accuracy 

versus 1-reject rate. Metagene plots for cluster of genes with: c) increased expression with 

corresponding decreased TSS 3’ proximal 5mC (n=140), d) decreased expression with increased 

TSS 3’ proximal 5mC (n=38), and e) decreased expression with coordinated TSS 3’proximal 

decrease in 5mC and increase in 5hmC (n=21). Shading in metagene plots indicates the 68% 

bootstrapped confidence interval. 

 

4.3.2 Human tissue-specific patterns of 5hmC and 5mC 

We next sought to determine whether murine, tissue-specific model perform similarly to those 

trained in human samples of liver and lung. We examined differential comparisons between 

human liver and lung and evaluated using leave-one-sample-out framework, and show that both 

upregulated and downregulated genes are similarly represented (Supplementary Table 4.2). ROC 

AUC analysis indicated that 5mC and 5hmC information only marginally increases the ability to 

predict differential expression class (Figure 4.2a; ROC AUC: 5mC;5hmC: 0.84, 5mC: 0.83, 

5hmC: 0.7). Differential human tissue-specific comparisons also show a large difference in 

performance of the predictive ability between 5mC and 5hmC. We also demonstrate equivalent 

performance using both 5hmC and 5mC as using only 5mC alone by examining the accuracy 

versus the rejection rate (Figure 4.2b). 

 

To understand why 5hmC does not contribute to increasing ME-Class performance in these 

human tissues, we performed an unsupervised analysis of highly predicted genes. In Figure 4.2c, 

we observe a large cluster of hypermethylated genes with decreased expression (n=1,333). Genes 
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with increased expression were more difficult to predict, however, we identified a sizeable 

cluster of TSS 3’ proximal hypomethylated genes with increased expression (Figure 4.2d, 

n=276). We did not observe a cluster of 5mC to 5hmC conversion as we did in the model of 

mouse development. The pattern of differential 5hmC and 5mC closely follows that of 5mC 

alone. Also, the overall of performance of ME-Class with 5hmC and 5mC is not increased using 

5hmC. This implies that since 5hmC exists at relatively low levels in liver (2.27%-5.68%) and 

lung (1.94-3.04%) (171), 5hmC might not play as important a role as it does in brain 

development (17.2%) (39). 
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Figure 4.2 ME-Class performance in human tissue-specific model (normal liver-lung). a) ROC 

AUC analysis: 5mC/CG; 5hmC/CG: 0.84, 5mC/CG 0.83, 5hmC/CG: 0.7 b) accuracy versus 1-

reject rate. Metagene plots for c) cluster of hypermethylated genes with decreased expression 

(n=1,333) and d) cluster of TSS 3’ proximal hypomethylated genes with increased expression 

(n=276). Shading in metagene plots indicates the 68% bootstrapped confidence interval. 

 

4.3.3 Diversity of human cancer-specific patterns of 5hmC and 5mC 

We next sought out to compare how these patterns of 5hmC change in tumorigenesis. We 

compared differential comparisons of liver and lung cancer versus their normal controls in a 

leave-one-sample-out framework. We observe that differentially expressed genes are 

preferentially downregulated in normal versus tumor samples (Supplementary Table 4.2). We 

show moderate performance averaged over the five differential samples examined (Figure 4.3a: 

ROC AUC: 5mC/CG; 5hmC/CG: 0.72, 5mC/CG: 0.72, 5hmC/CG: 0.59). There exists a 

large difference in predictive ability between 5mC and 5hmC, implying that 5hmC is insufficient 

to alone predict expression change in cancer-specific samples. A similar behavior was also 

observed when examining the curve of accuracy versus 1-reject rate (Figure 4.3b). However, we 

observe that two samples (lung normal-tumors samples 1,2) perform significantly worse than the 

remaining samples (Supplementary Figure 4.2).  

 

Unsupervised clustering of highly predicted cancer-specific genes uncovers a diversity of 5hmC 

and 5mC patterns. We observe a cluster of TSS 3’ proximally demethylated genes set within a 

larger hypomethylation region with an increase in expression (Figure 4.3c, n=414 genes). There 

exists a cluster of TSS 3’ proximal methylated genes with a decrease in expression (Figure 4.3d, 
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n=229 genes). We also notice a cluster of downregulated, TSS methylated genes (Figure 4.3e, 

n=319).  In each of these patterns, the summation of 5hmC and 5mC closely follows the 5mC 

pattern, and 5hmC is primarily constant throughout. These patterns resemble those found in 

cancer cell lines (96). This implies that promoter 5mC rather than 5hmC is primarily associated 

with gene expression change in cancer, which is consistent with a decrease in 5hmC from normal 

liver (2.27%-5.68%) and lung (1.94-3.04%) to tumorigenic liver (0.7-2.07%) and lung (0.65-

1.07%), respectively (171).  

 

Figure 4.3 ME-Class performance and pattern diversity of 5hmC and 5mC in human cancer-

specific model. a) ROC AUC analysis: 5mC/CG; 5hmC/CG: 0.72, 5mC/CG: 0.72, 5hmC/CG: 

0.59 b) accuracy versus 1-reject rate. Metagene plots for: c) cluster of TSS 3’ proximally 

demethylated genes with an increase in expression (n=414 genes) d) cluster of TSS 3’ proximal 

methylated genes with a decrease in expression (n=229 genes) e) cluster of TSS methylated 
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genes with a decrease in expression (n=319). Shading in metagene plots indicates the 68% 

bootstrapped confidence interval. 

 

4.4 Discussion 

We successfully extended ME-Class to predict gene expression classification from both 5hmC 

and 5mC. We observe similar levels of performance in both tissue- and cancer-specific 

differential comparisons for the combination of 5hmC and 5mC as we do to using 5mC alone. 

We also identify a class of conversion between 5mC and 5hmC in a model of mouse brain 

development corresponding to a downregulation in gene expression. This observation in a highly 

predictive subset of the differentially expressed genes is contrary to observations by examining 

all genes as reported in Lister et al. (39). In this study, 5hmC is shown to be enriched in the gene 

body and primarily associated with genes of high expression. We identify that conversion of 

5mC to 5hmC primarily is associated with the downregulation of gene expression, which we 

speculate could be due to the recruitment of additional silencing factors. We also observe that 

promoter 5hmC and 5mC patterns are unique in brain development but not in difference between 

the liver and lung or cancer and normal. 5hmC could be a possible source of gene regulation by 

increasing the plasticity of gene expression in brain tissue. However, these observations are 

confounded by potential sources of clonal heterogeneity since these are bulk tissue samples. We 

would propose to confirm this novel class of 5mC conversion through cell sorted populations of 

neurons, astrocytes, and oligodendrocytes.   

 

In the quantification of 5hmC and 5mC, MLML estimated lower overshoot and conflict CpGs 

from TAB-seq than from oxBS-seq. This most likely occurs because oxBS-seq requires two 
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bisulfite sequencing experiments while TAB-seq only requires one, therefore, increasing the 

probability of error (173). One limitation of current work is the lack of high resolution 5hmC 

datasets poses a significant problem for the establishment of proper training and testing 

paradigms to evaluate genes with associations between 5hmC, 5mC, and gene expression. We 

made conservative assumptions in this study to exclude identical genes, but we could not exclude 

samples of the same tissue type in all comparisons. Prior work from Chapter 3 indicates that we 

need three differential samples to improve performance. However, we do not feel these models 

are overfit since we are not comparing to identical tissue samples.  

 

Another difficulty in the analysis of 5hmC is the relative timescale at which 5hmC is assayed. 

5hmC is an intermediate cytosine modification which is not replicated over mitosis. Lack of gene 

expression correlating 5hmC patterns in normal lung and liver may be because these are non-

senescent tissue samples as compared to neuronal tissue in mouse development. The relative 

scarcity of 5hmC in the genome relative to 5mC might also explain its lack of predictive ability 

for expression class change. We encourage increasing the number of high resolution 5hmC and 

5mC datasets to study the relationship between 5hmC, 5mC, and gene expression in each tissue 

where 5hmC is measurable and especially in brain tissue subtypes.  

 

Supplementary Table 4.1 Single sample CpG counts with MLML estimated CpGs. T=tumor, 

N=matched normal. 
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Supplementary Table 4.2 Differentially expressed gene counts for 5hmC datasets 

 

 

 

Design

Study 5hmC	assay Organism Sample Overshoot Conflicts Accepted	CpGs CpG	Coverage

Li	et	al.	Genome	Res	2016 oxBS-seq Human Liver_N1 7483717 45698 23373853 0.828347517

oxBS-seq Human Liver_N2 7779952 35689 23281047 0.82505856

oxBS-seq Human Liver_N3 8830879 63528 23395102 0.829100562

oxBS-seq Human Liver_T1 8706959 56985 23027265 0.816064762

oxBS-seq Human Liver_T2 9048391 63705 24285424 0.860652742

oxBS-seq Human Liver_T3 9388948 71465 23380024 0.828566212

oxBS-seq Human Lung_N1 9487853 64312 24490004 0.867902866

oxBS-seq Human Lung_N2 8515568 53325 23425058 0.830162175

oxBS-seq Human Lung_N3 8184630 28879 23159840 0.820763097

oxBS-seq Human Lung_T1 10236654 94104 24675947 0.874492513

oxBS-seq Human Lung_T2 9656229 84745 23617849 0.836994508

oxBS-seq Human Lung_T3 9529502 47862 23186713 0.821715451

Lister	et	al.	Science 	2013 TAB-seq Mouse Fetal_Brain 250772 1 19634599 0.919964499

TAB-seq Mouse 6wk_Brain 242633 5 19875929 0.931271837

MLML	Statistics

Organism Sample 1 Sample 2 Genes (FC<=-2,FC>=2) Genes (FC<=-2) Genes (FC>=2) Genes Down (%) Genes Up (%)

Human Liver_N1 Lung_N1 3456 1554 1902 44.97% 55.03%

Human Liver_N1 Lung_N2 3677 1567 2110 42.62% 57.38%

Human Liver_N1 Lung_N3 3562 1622 1940 45.54% 54.46%

Human Liver_N2 Lung_N1 2771 1242 1529 44.82% 55.18%

Human Liver_N2 Lung_N2 3275 1494 1781 45.62% 54.38%

Human Liver_N2 Lung_N3 3077 1541 1536 50.08% 49.92%

Human Liver_N3 Lung_N1 2179 1150 1029 52.78% 47.22%

Human Liver_N3 Lung_N2 2542 1224 1318 48.15% 51.85%

Human Liver_N3 Lung_N3 2544 1339 1205 52.63% 47.37%

Human Liver_N1 Liver_T1 1855 1061 794 57.20% 42.80%

Human Liver_N2 Liver_T2 2550 1926 624 75.53% 24.47%

Human Lung_N1 Lung_T1 2196 1270 926 57.83% 42.17%

Human Lung_N2 Lung_T2 403 250 153 62.03% 37.97%

Human Lung_N3 Lung_T3 2767 1559 1208 56.34% 43.66%

Mouse Fetal_Brain 6wk_Brain 3654 2063 1591 56.46% 43.54%
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Supplementary Figure 4.1 ME-Class results identifies unique classes of 5hmC and 5mC in 

mammalian brain development. Differential 5hmC and 5mC signatures of genes with: a) 

increased expression with corresponding decreased 5mC (see Figure 4.1c for metagene), b) 

decreased expression with increased 5mC (see Figure 4.1d for metagene), and c) decreased 

expression with coordinated decrease in 5mC and increase in 5hmC (see Figure 4.1e for 

metagene8).  
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Supplemental Figure 4.2 Tumor-normal human liver and lung differential comparison 

performance. Plotted is accuracy of gene results versus the prediction of probability for a) 

average of all five tumor-normal samples, b) liver_T1-liver_N1, c) liver_T2-liver_N2, d) 

lung_T1-lung_N1, e) lung_T2-lung_N2 f) lung_T3-lung_N3. T=tumor, N=matched normal. 
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Chapter 5. Conclusions and Future Directions 
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Cell type specific expression profiles are defined by sequence modifications that affect 

transcription factor binding. DNA methylation is a heritable modification that increases the 

content of sequence information. However, its role as a regulator of gene expression has 

primarily been attributed to X-inactivation, silencing of transposable elements, and imprinting. 

The goal of this dissertation is to identify the contribution that DNA methylation contributes to 

gene expression in the context of development and disease. From genome-wide methylation data, 

we provide a straightforward method to identify amplifications and deletions and biologically 

confirm the existence of a large amplification in both in vitro and in vivo models. We then 

developed a comprehensive, alternative approach (ME-Class) to provide a standard integrated 

analysis of DNA methylation and gene expression changes and to identify putatively functional 

genes. These studies provide stronger evidence for differential methylation to define tissue- and 

cancer-specific transcriptional changes. 

 

5.1 DNA Methylation and Copy Number Variation 

We used DNA methylation data to screen multiple breast cancer cell lines to determine if CNVs 

could serve as biomarkers for response to a model of long term estrogen deprivation therapy. We 

identified ESR1 as the most amplified region in a model of LTED in breast cancer and it is 

associated with poor clinical outcomes. This implies that ER receptor is amplified to scavenge 

for estrogen in an estrogen deprived environment, as observed in common breast cancer 

therapies. We also observe a decrease in this amplification upon the recovered state. There also 

exists a paradoxical effect of estradiol as a late-stage endocrine therapy in advanced ER+ breast 

cancers. A primary difficulty in the CNV analysis was the lack of high resolution genomic data, 

such as whole genome sequencing, from which to estimate a background distribution for 
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normalization (124). The Methyl-MAPS analysis pipeline (36), which relies on read frequencies 

from both methylated and unmethylated sequencing compartments, could be improved to include 

Bayesian probabilities for single base pair methylation estimates to account for biases in each 

compartment before normalization. With better estimation of CNVs, DNA methylation could 

also be used as a marker of genetic drift for cell line analysis in comparison to PDX models for 

tracking changes relative to reference tumor genomes (123). However, the plummeting cost of 

sequencing and the high false negative rate of our approach makes it advantageous to pursue 

established methods of CNV identification through whole genome sequencing and genome 

segmentation algorithms.  

 

5.2 DNA Methylation and Differential Expression 

We provide a systematic model, training, and evaluation scheme to assess the ability of using 

differential WGBS methylation data to predict differential expression. The ability to understand 

the contribution that differential methylation plays in expression change is vital to predicting the 

functional effects of induced methylation changes. Induced methylation and demethylation 

experiments through DMNT- or TET-based zinc fingers proteins or CRISPR technologies have 

proved invaluable to demonstrating that methylation patterns are functional (59-61). However, 

these experiments have not assumed any specific correlation between methylation and gene 

expression. I hypothesize that disease states with heterogeneous endogenous chromatin 

environments will respond differently to induced methylation and demethylation. I propose that 

DNA methylation acts differently in each context. In normal tissues, inactive lamin associated 

domains (LADs) and large organized chromatin lysine modifications (LOCKs) exist in 

heterochromatin. DNA methylation changes might not have much effect on expression changes 
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since LADs and LOCKs exist in closed chromatin environments. In active transcriptional 

factories and gene-dense topologically associated domains (TADs), chromatin is accessible and 

DNA methylation is likely to affect gene expression change. Bivalent, poised chromatin regions 

(marked by H3K4me3 and H3K27me3) also exist with accessible chromatin regions, and 

induced DNA methylation changes would also be likely to affect gene expression. ME-Class 

predictions would be particularly interesting to test induced methylation technologies in cancer 

where LOCKs are commonly disrupted and functional DNA methylation-induced gene silencing 

has been observed (175). In the analysis of REP datasets, ME-Class also identifies CpG-poor (or 

no CpG Island) genes as more predictive than CpG-rich (with CpG Island) genes. CpG-poor 

genes might be a more likely target for induced methylation changes. For example, induced, 

targeted DNA methylation of oncogenes with no associated CpG-island such as KRAS or TLR4 

might have a greater effect on expression than a CpG-island associated oncogene like MYC or 

VEGF. If we can identify which genes are like to have their expression changed by DNA 

methylation, this opens the door to specifically targeted methylation therapies as an alternative to 

the current clinically approved global demethylation agents.   

 

The difference in the average differential methylation signatures between expression classes in 

the [+0.5kb,+2.5kb] region of the TSS shows a clear correlation with the performance of ME-

Class. Each of the samples that we used to test ME-Class is obtained from a bulk average of 

individual cells. In addition, complex tissues such as the brain consists of multiple classes of 

cells (neurons, astrocytes, and oligodendrocytes), each of which are thought to have cell type 

specific DNA methylation patterns (176). In a single cell, DNA methylation exists as a binary 

signal and CpG hemimethylation is rare. Therefore, we cannot exclude cell population 
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heterogeneity as a source of this correlation in the 3’ proximal region. Single cell sequencing will 

be a useful tool in understanding the significance of these putative methylation patterns (177), 

however, these methods are currently limited by reduced library complexity (178). However, 

there are emerging technologies to create bulk sample WGBS libraries from lower input 

quantities (179).  

 

Differential TSS 3’ proximal methylation is consistent with a previously proposed model where 

p300 binds at downstream unmethylated CpG Islands (85), thus increasing expression of the 

corresponding genes. Previous studies have also observed decreased downstream methylation 

correlating with increases in the H3K4me3 active mark that skew downstream of the TSS (163, 

164). Both observations are consistent with the hypothesis that this downstream region is 

important for prediction of differential gene expression. 

 

DNA methylation is proposed to have a role not only in transcriptional regulation but also in 

alternative splicing, regulated through at a subset of exons either through CTCF and MeCP2, 

which adjusts the elongation rate of PolII, or HP1, which recruits splicing factors (180).  It is 

possible to use ME-Class (without modification) to examine alternative promoters and isoforms 

using isoform level RNA-seq data. However, there are technical challenges to this analysis. 

Isoform level analyses still display high levels of noise, especially for low levels of expression 

(181). This could be alleviated by predicting isoform expression rank rather than absolute 

expression levels. Another difficulty would be to manage observing overlapping copies of 

isoforms that originate from the same DNA methylation signature for a given gene. This could 
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be mitigated by binning and scaling transcripts according to length, and adhering to the training, 

testing, evaluation framework that we have established in ME-Class.    

 

5.3 DNA Methylation and Enhancers 

Transcription factors coordinately bind to enhancers to modulate gene expression. DNA 

methylation can alter transcription factor binding affinities, thus impacting gene expression 

(182). Enhancer regions with variable methylation have been identified to correlate methylation 

with gene expression (30). However, the relative importance of promoter versus enhancer 

methylation information is unclear. A previous study concluded that enhancer methylation is 

most important for association with gene expression in cancer from ChromHMM annotations of 

enhancer sites (183). I hypothesize that a comprehensive model of DNA methylation at a given 

gene’s promoter and enhancer regions would lead to a predictive understanding of how DNA 

methylation controls gene expression. A requirement for this analysis would be to ascribe 

specific enhancers to promoters, however, this task is an open area of research (184). Enhancers 

primarily act in a cis-regulatory mechanism within 100kb of the gene’s TSS. Therefore, DNA 

methylation surrounding all experimentally verified enhancer regions, as verified by the Vista 

Enhancer Browser (185), within 100kb of a given gene’s TSS can be transformed into a feature 

vector of average enhancer differential methylation. This feature vector can then be used as input 

for classification or regression of differential gene expression. This analysis would be useful to 

examine the relative impact of TSS proximal methylation changes versus those at enhancers 

using feature importance.  
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5.4 DNA Methylation and Histone Modifications 

DNA methylation is a stable covalent modification which adds further information to sequence 

to provide information about gene expression. In FFPE samples, histone modifications and RNA 

are rapidly degraded by proteases and ribonucleases, and therefore cannot be used transcriptional 

profiles of disease states. In hematopoiesis, ME-Class identified that DNA methylation-based 

changes are more predictive of expression change in differences between the early myeloid and 

lymphoid lineages. This is consistent with a hypothesis that these predictive DNA methylation 

changes occur early in blood development (20). DNA methylation changes have also been 

observed to regulate CpG dense genes early in development through constitutive promoter 

hypomethylation (186). These observations imply that in normal development, DNA methylation 

acts as a lock on predetermined transcriptional events. Histone modifications have been used to 

predict gene expression in single samples (187, 188). In normal development, histone 

modifications provide genes more fine-tuned control over gene expression than DNA 

methylation (42). The presence of substantially more histone modifications than DNA 

methylation provides for a theoretical increase in the combinatorial information that exists in 

histone modifications.   

 

5.5 DNA Methylation Representation 

We observe a shift in the feature importance of our classifier from [+0.5kb,+2.5kb] in differences 

between tissues (REP) to [-0.5kb,+1.5kb] in cancer (TCGA). This suggests that DNA 

methylation signatures are fundamentally different with respect to tissue- versus cancer-specific 

expression changes. To confirm this hypothesis, I would assay tumor-normal paired WGBS and 

RNA-seq datasets and perform post hoc unsupervised clustering on ME-Class predicted genes in 
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comparison to REP genes. I would anticipate an increase in the ratio of genes with TSS-centric 

patterns in cancer relative to 3’ proximal patterns in the REP dataset.  

 

As machine learning grows in popularity in biology, proper establishment of training and testing 

paradigms will be vital given that biological data is often limited in sample size due to the high 

price of obtaining quality data. Even observing patterns of differential DNA methylation can be 

prone to memorization and overfitting. A prior examined testing framework used a leave-one-

differential-sample-out cross validation by comparing H1 hESC to each of the normal tissues in 

the Roadmap Epigenomics Project. Unsurprisingly, we observed nearly perfect classification 

accuracy since methylation patterns across differentiated tissues are remarkably similar. This 

experiment reinforced the importance of excluding any data from any observed samples in the 

training set. We also commonly observe that the nearest neighbor of the testing differential 

methylation curve was often the same gene in a different training sample, which stresses the 

importance of excluding any examples of the same gene from the training dataset.  

 

ME-Class also observed that lower resolution bins (up to 200bp) can accurately capture the 

complexity of the methylation signal in the 10kb region around the TSS. This implies that there 

is a simpler representation of differential methylation which can be constructed to predict gene 

expression change. However, this lower resolution representation is still more sufficient for 

encoding DNA methylation information than a single or even multiple bins. ME-Class is in 

contrast to first defining the most variable DMR regions and then overlapping these with the 

largest expression changes (89). Often these studies do not find a strong correlation between 

methylation and expression, but instead choose the top candidates with an inverse correlation and 
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discuss those without justification for parameter selection, even though there will be examples of 

an inverse correlation by random chance. This hypothesis is also supported by single sample 

DNA methylation methods of deconstructing the methylation curve into a feature representation 

(189).  

 

5.6 DNA Methylation and Hydroxymethylation 

ME-Class demonstrates that 5hmC is insufficient for the prediction of gene expression change 

apart from a minor class of conversion between 5mC to 5hmC. This small relative change in 

predictive performance is consistent with the relative scarcity of 5hmC in the genome. This small 

contribution might also be attributed to a relatively small, measurable change in 5hmC, and 

continuing development of single cell single base pair resolution 5hmC assays would help to 

understand the kinetics of active demethylation (190). ME-Class has identified a class 

5mC/5hmC patterns that show the conversion from 5mC to 5hmC in the 3’ proximal region of 

the promoter in a model of murine brain development. This class of 5mC conversion, however, is 

not found in a comparison of human tissue- or cancer-specific 5mC and 5hmC signatures. I 

hypothesize that these patterns of 5mC and 5hmC are in coordination with specific TF that co-

occur with TET enzymes in a context-specific manner. We can take advantage of a proposed 

model for the relationship between transcription factor (TF) binding affinities and DNA 

methylation near the TSS (191). We can extend this model to identify these patterns by 

subsetting TFs that are both methylation- and hydroxymethylation-sensitive and insensitive 

(192).  
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