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ABSTRACT OF THE DISSERTATION 
Neural Dynamics of Monitoring and Deciding About Cognitive Effort  

by 
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Professor Todd Braver, Chair 

What patterns of brain activity reflect engagement with highly demanding 

cognitive tasks? How do these patterns relate to subjective, phenomenal effort? 

Answering these questions is critical to understanding what causes some people to 

experience cognitive tasks as more effortful than others. Subjective experience, in turn, is 

vital, with trait tendencies to exert effort having been linked to career and academic 

success. High subjective effort, as in schizophrenia and depression, can thus be extremely 

problematic. And yet, poor operational definitions have constrained research into basic 

questions about what neural dynamics track subjective effort. Here, a powerful, new 

behavioral economic operationalization is employed, in combination with fMRI, to 

investigate brain dynamics corresponding to subjectively costly cognitive effort. 

Brain regions varying in activity by working memory load and cognitive control 

demands are strong candidates for tracking subjective effort (Westbrook & Braver, 

2015). To identify such regions, I examined BOLD data, collected while participants 

performed a well-established working memory task (the N-back; Kirchner, 1958) that is 

both subjectively effortful, and for which subjective effort varies as a monotonic function 
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of load (Westbrook et al., 2013). I focused my search within independently-defined 

networks of nodes that co-vary (within-network) across a wide range of brain states. 

Specifically, I examined a subset of a priori “task-positive” networks, as identified by 

Power et al. (2011), which typically show increasing, and a “task-negative” network 

which typically shows decreasing activity with greater load. Importantly, variation was 

examined over N-back loads for which data has never been published, thus the present 

study reveals novel insights about activity-load functions in independently-defined 

functional networks from very low (N = 1) to very high loads (N = 6). 

As expected, all task-positive networks showed robustly greater activity during 

the N-back. However, patterns of variation by load differed by network. While the task-

positive fronto-parietal (FP), dorsal attention (DorAtt), and salience (Sal) networks 

showed inverted-U functions, peaking mid-range (at the 2- or 3-back) and decreasing 

after, the cingulo-opercular network (CO) showed robust activity that did not further vary 

by load. Rather than encoding load per se, the CO simply encoded that a participant was 

performing the N-back. The task-negative default mode network (DMN) was robustly 

and increasingly de-activated across all load levels examined.  

Given that both subjective effort (Westbrook et al., 2013) and DMN deactivation 

are approximately monotonic functions of load, the DMN is a strong candidate for 

tracking variation in subjective effort with load. By contrast, inverted-U functions in the 

FP, Sal, and DorAtt networks do not straightforwardly map to monotonically increasing 

effort. Performance measures instead suggest that inverted-U functions tracked individual 

differences in adaptive strategy shifting. Namely, when participants were divided by 3-

back performance, better performers showed a pronounced inverted-U (over N = 1—3) 
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while worse performers did not. Interestingly, a similar pattern was found when dividing 

participants according subjective effort, providing tentative support to a hypothesis that 

subjective effort acts as a cue to shift strategies adaptively under excessive demands. In 

any case, surprisingly, in none of the networks did load-specific changes in brain activity 

predict load-specific changes in subjective effort. 

Critically, although load-specific patterns of brain activity did not predict 

subjective effort, load-independent brain activity predicted individual differences in 

subjective effort. Namely, higher average brain activity in any of the task-positive 

networks predicted greater subjective effort. At the sub-network level, this was notably 

true for two key regions that have been implicated as core components of a cognitive 

control system, and also hypothesized to track effort costs: the dorsal anterior cingulate 

cortex (dACC) and the dorsolateral prefrontal cortex (dlPFC) (McGuire et al., 2010). 

Importantly, after controlling for performance, the dACC remained a reliable predictor of 

subjective effort, while the dlPFC did not, supporting that the dACC tracks cognitive 

effort apart from task difficulty (while the dlPFC may not). This is consistent with strong 

prior theory implicating the dACC in regulating the intensity of cognitive control in 

response to flagging performance and in proportion to the expected value of doing so 

(Shenhav et al., 2013). The present results begin to answer basic questions about how the 

brain tracks subjective effort. They also lay the foundation for future work addressing 

why subjective effort can be so much greater for some individuals, like those with 

schizophrenia or depression, and also future work developing interventions for promoting 

desirable effort expenditure. 
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Chapter 1: Introduction 
Trait tendency to expend cognitive effort reliably predicts academic and career 

success (Cacioppo, Petty, Feinstein, & Jarvis, 1996; Stumm, Hell, & Chamorro-

Premuzic, 2011). There is also emerging evidence of significant differences in 

willingness to expend cognitive effort between older and younger adults (Hess & Ennis, 

2011) and also between healthy individuals and those with depression (Hammar, 2009) 

and schizophrenia (Culbreth, Westbrook, & Barch, 2016; Gold et al., 2014). Willingness 

to expend cognitive effort may also be linked with more basic constructs including self-

controlled intertemporal choice, proactive over reactive control, and model-based over 

model-free decision-making (Botvinick & Braver, 2015; Kool, McGuire, Wang, & 

Botvinick, 2013; A. R. Otto, Skatova, Madlon-Kay, & Daw, 2015). And yet, despite its 

central importance, we known very little about subjective cognitive effort. For example, 

what task engaged brain states are subjective costly? Or, what states are phenomenally 

effortful? This knowledge gap is critical given that cognitive effort is frequently cited as a 

mediating factor in individual and group differences in physiological dynamics and task 

performance.  

A reliable, precise, and theoretically consistent operational measure is critical to 

investigating cognitive effort (Westbrook & Braver, 2015). Such a measure should map 

closely to subjective experience, and not merely objective quantities of cognitive load, 

motivation, or performance, without resorting to potentially unreliable introspection and 

self-report, or circular reference to physiological outcomes about which effort is being 

inferred in the first place. The recently developed Cognitive Effort Discounting paradigm 
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(COGED) adopts behavioral economic techniques to quantify trade-offs between reward 

and effort costs, and is sensitive to numerous state and trait factors which influence 

subjective effort, and the extent of engagement with cognitively demanding tasks 

(Westbrook, Kester, & Braver, 2013). This dissertation reports the results of behavioral 

and fMRI studies that employ the COGED paradigm to investigate how the brain tracks 

subjective effort costs during engagement with demanding tasks. These results yield new 

insights about how to infer subjective effort from fMRI data, and lay the groundwork for 

future studies that may be aimed at targeted interventions for ameliorating deficient effort 

expenditure, as in psychopathology. 

1.1 Brain Regions Tracking Effort  
Hypotheses abound regarding the activity profiles (e.g. in fMRI BOLD data) of 

brain regions involved in tracking effort. These hypotheses stem chiefly from evidence of 

neural activity scaling with two core dimensions of effort: objective load and incentive 

motivation. The logic is that motivation should be encoded in dynamics that scale with 

effort benefits, while load should be encoded in dynamics scaling with effort costs. Here, 

I consider objective motivation to be the magnitude of an external reward (e.g. dollars), 

and objective load to be working memory demands needed support rule-guided behavior. 

Note that a growing body of work supports that tasks are phenomenally effortful when 

working memory is required for cognitive control (Botvinick, Huffstetler, & McGuire, 

2009; Ewing & Fairclough, 2010; Kool, McGuire, Rosen, & Botvinick, 2010; McGuire 

& Botvinick, 2010; Westbrook et al., 2013). Cognitive control refers top-down signals 

that bias rule-guided behavior during pursuit of goals (Botvinick, Braver, Barch, Carter, 

& Cohen, 2001; E. K. Miller & Cohen, 2001; Ruge, Braver, & Meiran, 2009; Sakai, 
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2008; Yeung, Nystrom, Aronson, & Cohen, 2006). Core functions include updating and 

maintaining goal-relevant task sets thought to bias the mapping of stimuli to goal-

appropriate responses. An example of objective load is N in the N-back task (Kirchner, 

1958). The N-back is a well-studied paradigm in which individuals must identify serially-

presented items repeated after N positions. Hence, purportedly effortful cognitive control 

is required to support the correct rule mapping (pressing “target” for arbitrary items 

repeated after N positions or “non-target” for all other items), and the number of stimuli 

that the individual must hold in working memory to perform this task scales with N.  

 It is important to note that while objective load and incentive motivation covary 

with effort, they should not be taken as synonymous with the construct and are useful 

only in that they can implicate candidate regions for tracking effort. Similarly, 

performance measure (errors and response times) also covary with effort (and load and 

incentive). In fact, by one theory, subjective effort arises from error detection by the 

dorsal anterior cingulate cortex (dACC), which simultaneously recruits resources to up-

regulate control and sends an aversive learning signal in response (Botvinick, 2007). And 

yet, performance variables are also conceptually distinct from effort. For example, two 

individuals who are matched on performance, for the same objective load, in pursuit of 

the same incentive, may still feel differently about the amount of effort involved.  

Regions encoding both incentive motivation and objective load are strong 

candidates for tracking subjective effort. Incentive motivation has wide-ranging effects; 

consequently, by itself it may offer little specificity in terms of the locations of action. 

Recent findings have suggested that encoding of reward magnitude can be found virtually 

throughout the cortex (Vickery, Chun, & Lee, 2011). In contrast, cognitive load, of the 
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kind described above, has somewhat more specific locations of action, particularly in the 

parietal and prefrontal cortices (Esterman, Chiu, Tamber-Rosenau, & Yantis, 2009; Etzel, 

Cole, Zacks, Kay, & Braver, 2015; Kool et al., 2013; McGuire & Botvinick, 2010; 

Miller, 2000). 

The dorsolateral prefrontal (dlPFC) and dorsal anterior cingulate cortex (dACC) 

are two particularly strong candidates for tracking cognitive effort by these criteria 

(Botvinick & Braver, 2015; Pessoa & Engelmann, 2010). Both have been implicated as 

key substrates for cognitive control and working memory. An influential model 

hypothesizes that the dACC monitors for response conflict (e.g. during difficult 

discriminations) and flagging performance, and recruits the dlPFC, in proportion to 

conflict and errors, to broadcast top-down control signals that strengthen lower-level 

perceptuo-motor association pathways (Botvinick et al., 2001; Miller & Cohen, 2001). 

Evidence implicating the dlPFC in working memory and cognitive control 

includes monkey unit recording studies in which task-relevant information, ranging from 

concrete stimulus features to abstract task rules, is reliably encoded in sustained delay 

period activity by dlPFC cells (Dick & Katsuyuki, 2004). Similarly, dlPFC BOLD signals 

increase reliably and parametrically with set size in the N-back in dozens of fMRI studies 

across multiple sensory modalities and stimulus types, reviewed in (Owen, McMillan, 

Laird, & Bullmore, 2005). For example, an early N-back imaging study found that BOLD 

response amplitudes in the dlPFC (Brodmann areas 46/9 and 44/45), increased with N 

over the range (N = 1—3) (Braver et al., 1997).  

There is also evidence that the dlPFC is recruited volitionally: increasing demands 

interact with reward magnitude to predict increasing activity (Kouneiher, Charron, & 
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Koechlin, 2009; Locke & Braver, 2008; Pochon et al., 2002), and both reward and task 

difficulty showed overlapping but independent contributions to dlPFC recruitment during 

task engagement (Krebs, Boehler, Roberts, Song, & Woldorff, 2012). The logic here is 

that independent encoding (or an interaction) of load and incentive is strong evidence for 

volitional recruitment because recruitment should ramp up when an actor perceives 

increasing demands and particularly when they are motivated to perform well.  

There is also evidence that dlPFC recruitment is phenomenally effortful. In one 

particularly relevant study, task-based dlPFC activity covaried with subjective ratings of 

desire to avoid a more demanding over a less demanding version of the task (versions 

differed by frequency of task-switching) (McGuire & Botvinick, 2010). Importantly, the 

relationship with avoidance ratings persisted after controlling for performance (RT and 

error rates), showing that dlPFC recruitment does not merely reflect task difficulty. Of 

course imperfect perception of performance by participants may account for why 

performance did not explain shared variance between subjective aversion and dlPFC 

activity. Or, more intriguingly, the remaining shared variance may reflect non-linear 

translations of dlPFC recruitment into subjective effort across loads and within 

individuals or between-individual differences leading some to experience the response to 

flagging performance as more effortful than others. 

There are also numerous reasons to hypothesize that the dACC tracks subjective 

effort. For one, there are striking neuropsychological accounts linking ACC with 

phenomenal effort. One ACC-lesioned patient reported no phenomenal sense of effort 

during performance of a Stroop paradigm that control subjects reported as effortful, 

despite matching controls’ performance and despite showing intact skin conductance 



 

 6 

response to task engagement (Naccache et al., 2005). Intriguingly, a recent study found 

that direct electrical stimulation of the anterior mid-cingulate cortex induced a 

phenomenal state that participants described as a rising sense of a forthcoming challenge 

and a concomitant “will to persevere” in the face of that effortful challenge (Parvizi, 

Rangarajan, Shirer, Desai, & Greicius, 2013). Convergent evidence comes from an EEG 

study where participants performing a consciously effortful tone discrimination task 

showed individual differences in N1 amplitudes (localized to ACC) scaling with 

subjective ratings of effort (Mulert, Menzinger, Leicht, Pogarell, & Hegerl, 2005). 

Moreover, larger N1 modulation predicted better performance among a group reporting 

that they increased their effort the most when instructed to do so. Neurophysiological and 

neuropsychological data like this are also convergent with theories, like the one described 

above, attributing a role for the dACC in performance monitoring and cognitive control 

regulation. A recent extension of this theory proposes that the dACC, by virtue of a well-

established role in decision-making, regulates the recruitment of cognitive control 

mechanism, like the dlPFC, in proportion to the expected value of exerting that control 

(Shenhav, Botvinick, & Cohen, 2013). Importantly, the dACC should, by this theory, 

track effort costs in the service of determining expected values. Nevertheless, in the 

McGuire and Botvinick (2010) study described above, although the dlPFC was found to 

encode subjective desire to avoid a demanding task even when controlling for 

performance, the dACC was not found to encode that same subjective desire, controlling 

for performance (McGuire & Botvinick, 2010). Hence, whether the dACC tracks effort 

during task engagement remains an open question. 
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Beyond the dlPFC and dACC, objective load and motivation are reflected by 

marked shifts in the physiological dynamics of wider cortical networks and 

neurotransmitter systems. Since the recognition of long-range functional coherence 

spanning the brain (Biswal, Yetkin, Haughton, & Hyde, 1995), considerable evidence has 

supported the existence of stereotyped functional networks that show coherently 

increasing or decreasing activity, depending on task engagement. Networks can be 

categorized broadly as: 1) a “task-positive”  in that are more active during task 

engagement, covering the intraparietal sulcus (IPS), anterior insula (AI), supplementary 

motor area (SMA), and dorsolateral (dlPFC) and dorsomedial prefrontal cortex, and 2) a 

“task-negative” in that they are deactivated by external task engagement, covering the 

medial prefrontal cortex, posterior cingulate cortex / precuneus, and lateral parietal cortex 

(Fox et al., 2005).  

The mean activity level of particular networks corresponds well to the 

phenomenology of effort. For example, among the 13 canonical brain networks defined 

by (Power et al., 2011), the task negative DMN, and the task-positive Fronto-Parietal 

(FP), Dorsal Attention (DorAtt), Salience (Sal), and Cingulo-Opercular (CO) networks, 

in particular, make strong candidates for tracking effort. First, they are modulated by task 

demands: regions within the task-positive FP, Sal, DorAtt and CO networks are more 

active, and within the task-negative DMN are less active with increasing load (e.g. the 2-

back working memory task versus the 0-back) (Krebs et al., 2012; McKiernan, Kaufman, 

Kucera-Thompson, & Binder, 2003; Pyka et al., 2009). Second, task complexity and 

reward may contribute independently to activity in task-positive regions during task 

engagement, supporting a role for volitional recruitment (Krebs et al., 2012). Third, 
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“resting” dynamics following cessation of task engagement is affected by prior task 

complexity, suggesting a form of recovery that might also track effort costs. Specifically, 

DMN regions have been found to be more active after disengagement from more 

demanding tasks (Pyka et al., 2009) and take longer to recover their functional 

architecture (Barnes, Bullmore, & Suckling, 2009). Fourth, the degree of network 

modulation in task-positive regions predicts performance, thus providing a potential 

physiological mechanism linking effort and performance (Kitzbichler, Henson, Smith, 

Nathan, & Bullmore, 2011; Ossandon et al., 2011). Thus, like patterns of activity in the 

dACC and dlPFC, the dynamics of these five networks make them strong a priori 

candidates for tracking subjective effort. 

1.1.1 Limitations of Cognitive Effort Literature 
As indicated above, most studies of effort have focused on physical effort. A rich 

literature on human and animal studies have elucidated a network of regions involved in 

physical effort tracking and decision-making, in great detail. By contrast, only a handful 

of studies have focused on cognitive effort, and there are preliminary indications of both 

overlaps (Schmidt, Lebreton, Cléry-Melin, Daunizeau, & Pessiglione, 2012) and 

distinctions (Hosking, Floresco, & Winstanley, 2014) between the neural substrates 

mediating physical versus cognitive effort. 

Studies investigating dynamics that track cognitive effort are particularly limited. 

Most prior work has implicated regions in effort incidentally in that they scale with 

cognitive load, or incentive motivation, as reviewed in detail in (Westbrook & Braver, 

2015). For example, one study has provided fMRI evidence implicating the ventral 

striatum (VS) as a core hub of cognitive and physical incentive motivation. VS was 
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increasingly active in response to larger incentive cues, it predicted performance in both 

domains of effort, and the it showed different patterns of functional connectivity 

depending on the domain (Schmidt et al., 2012). Subjective effort costs, however, were 

not directly investigated. 

The most direct study of regions tracking subjective cognitive effort, to date, was 

described above in which participants self-reported their desire to avoid a more 

demanding over a less demanding task (involving more frequent versus less frequent task 

switching, respectively) (McGuire & Botvinick, 2010). Self-reported desire-to-avoid 

ratings were then used as a predictor to test what brain activity patterns were related to 

the intensity of the desire to avoid demand. The key advantage of this methodology is 

that it investigates relationships between brain dynamics and subjective, phenomenal 

experience apart from objective load or performance indicators – both of which may 

covary with, but are conceptually distinct from cognitive effort. The chief limitation of 

this study, however, was that it relied on self-report measures that make strong 

assumptions about participants’ ability to introspect and report experience in a way that is 

reliable and consistent across participants. Also, self-report ratings were based on 

categorical ratings of the intensity of desire to avoid a task, and as such may lack the 

precision of a continuous, quantitative measure of cognitive effort.  

The present study builds on the strengths of that core methodology, by 

investigating how brain dynamics during effort expenditure map onto a subjective 

experience. However, as explained in the next section, subjective experience is quantified 

by patterns of decision-making that are potentially more objective and reliable than self-

report. Moreover, this study investigates the relationship between brain dynamics and 
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subjective experience over a wide range of objective working memory loads. This design 

permits within-subject analyses about the way subjective experience changes with load, 

in addition to the between-subjects analyses of how individuals vary in their subjective 

experiences. Finally, the outcome measure of subjective effort used in this study is a 

continuous quantity that potentially affords greater precision than categorical distinctions. 

1.2 Cognitive Effort Discounting (COGED) Paradigm  
A core motivation of this dissertation is to investigate what brain states are 

experienced as subjectively effortful. The question can be framed in economic terms: 

what brain states are subjectively costly and thus discount the value of rewards pursued 

by task engagement? Arguably, subjective costliness is the cardinal feature of effort 

(Westbrook & Braver, 2015) and, as such, any region predicting subjective costliness 

during task engagement is also tracking subjective effort. Given that subjective effort 

likely co-varies with objective load, incentive motivation, and performance, the question 

then amounts to what brain states predict the subjective costliness of task engagement, 

controlling for objective load, incentive magnitude, and task performance.  

Behavioral economists have used reward discounting paradigms to investigate 

subjective costliness of diverse outcomes. For example, risky rewards are subjectively 

less valuable than certain rewards. Discounting has been used by both behavioral- and 

neuro-economists to investigate decision making about risks and also delay and physical 

effort as well (Du, Green, & Myerson, 2002; Frederick, Loewenstein, & O'Donoghue, 

2002; Green & Myerson, 2004; Huettel, Stowe, Gordon, Warner, & Platt, 2006; Jimura et 

al., 2011; Mitchell & Wilson, 2010; Myerson & Green, 1995; Peters & Buchel, 2010; 

Prelec & Loewenstein, 1991; Prévost, Pessiglione, Météreau, Cléry-Melin, & Dreher, 
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2010; Rachlin, Brown, & Cross, 2000; Treadway, Buckholtz, Schwartzman, Lambert, & 

Zald, 2009; Wardle, Treadway, Mayo, Zald, & De Wit, 2011).  

Recently, I adopted this discounting approach by substituting working memory 

load as a cost factor and showed that preferences regarding cognitive effort can be 

measured in terms of subjective values (Westbrook et al., 2013). In the COGED 

paradigm, participants are familiarized with a multiple levels of a demanding cognitive 

task. They are then presented with a series of paired offers to repeat a more demanding 

level for more money or a less demanding level for less money. Offers are titrated until 

participants are indifferent between the offers. Indifference points are critical because 

they indicate psychophysical equivalence between greater reward (e.g. dollars) and 

greater effort, thereby rendering effort in terms of a common metric that can be 

quantified across task features (working memory load), incentive contexts (reward 

magnitudes), and across participants. 

Subjective effort was investigated in this study using the well-studied N-back task 

(Braver et al., 1997; Jaeggi et al., 2003; Kirchner, 1958; Owen et al., 2005). The N-back 

is desirable for a number of reasons including that it has parametrically varying working 

memory load (N) and thus discounting can be quantified as a function of load. Most 

importantly, the N-back was selected because it is phenomenally effortful, and self-

reported effort increases monotonically with N-back load (Ewing & Fairclough, 2010). 

Also, the N-back is a continuous performance task and thus participants select among 

levels because load is varying, not because time-on-task is varying. Controlling for time-

on-task is critical if the intent is to control for the costliness of time when estimating the 

costliness of effort. An important caveat is that while task duration is fixed, the amount of 
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time spent on- versus off-task may vary. For example, a participant may be entirely 

occupied by a demanding 3-back task, but may afford moments of distraction between 

stimuli during the 1-back. Thus, response time will be included as a covariate in analyses 

to further control for load-based and individual differences in time-on-task.  

Discounting functions comprise indifference points observed for multiple offer 

amounts across a range of N-back loads. In the current study, as in prior work, N-back 

levels 2—6 were used as high load conditions, which during decision-making are pitted 

against a low load 1-back condition, which is treated as the baseline (Westbrook et al., 

2013). The indifference point function plotted against load thus describe the costliness of 

engaging in each level of the N-back, and moreover can be used to describe how costly 

participants experience the N-back relative to other participants. An example indifference 

point function is plotted for two hypothetical participants for loads N = 2—4 in Figure 

1.1. Note that indifference points normalized by their base offers are converted into 

subjective value (SV), which ranges from 0 to 1. Also, note that a curve, joining SVs 

across all load levels, describes average discounting. Area under the curve (AUC) thus 

describes mean costliness of the N-back task for a given participant. 
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Figure 1.1 Subjective value bar plots for two hypothetical participants. Area under the curve (AUC) is 
indicated for each participant by color-coded lines. Participant A (light blue) discounts a task more 
shallowly and thus has a higher AUC than Participant B (darker blue), who discounts more steeply. Y-axis 
gives the indifference points (subjective values) and x-axis gives the corresponding N-back task level. 

These between- and within-participant measures of effort costs can then be 

compared to brain activity when participants are engaged with the N-back to determine 

which regions track effort costs. 

1.3 Overview of Study & Predictions 
As described above, this dissertation reports the results of behavioral and fMRI 

studies that employ the COGED paradigm to investigate what brain dynamics track 

subjective effort during the N-back. The strategy to investigate this question was to first 

explore how a priori networks of interest, and sub-network loci (e.g. the dlPFC, dACC, 

and VS) varied as a function of objective load. Given that objective load is a core 

dimension of subjective effort, regions encoding load were implicated as strong 

candidates for tracking effort. Next, these regions were tested for whether their N-back 

activity patterns predicted subjective effort costs (as measured by the COGED paradigm), 

controlling for load and performance. 
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1.3.1 Predictions about regions tracking objective load 
Block-wise N-back BOLD signal was predicted to vary as a function of load in all 

a priori regions of interest, including the dlPFC and dACC, as well as task-positive FP, 

Sal, CO, and DorAtt networks, and the task-negative DMN. The shape of load functions 

in each of these regions, however, was uncertain. At least three types of load functions 

were anticipated from prior literature: monotonically increasing (or decreasing, in the 

case of the DMN) across loads, non-monotonic functions which either asymptote at 

higher load levels, or show bi-directionality (e.g. inverted-U shapes) across loads, and 

load-independent functions, which show non-zero, but flat activity across loads. No prior 

studies have investigated N-back activity functions in a priori functional connectivity 

networks as defined by Power et al. (2011), nor have they investigated N-back load 

functions beyond N = 3. So, the present dataset provides novel information about the 

activity of coherent functional networks, across a novel range of load levels. For 

example, prior evidence suggests that regions overlapping the FP network, particularly in 

the dlPFC, show inverted-U patterns, while CO network regions show monotonic 

increases over the range N = 1—3 (Callicott et al., 1999; Cappell, Gmeindl, & Reuter-

Lorenz, 2010; Jaeggi et al., 2003; 2007). However, it was not clear whether these patterns 

would hold at the network level. Moreover, regions which appeared monotonic across N 

= 1—3 might have asymptoted at higher loads (N = 4—6), and thus proven to be non-

monotonic instead. Preliminary predictions were that all task-positive networks would 

show non-monotonic response profiles across all load levels, with the exception of the 

CO network, which would increase monotonically with load. The task-negative DMN 

was predicted to decrease monotonically with load, cf. (Pyka et al., 2009). 
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The reasons for inverted-U shapes in task-positive regions is unclear, and has 

been interpreted as indicating excessive demands for cognitive capacity (Callicott et al., 

1999; Jaeggi et al., 2003). One hypothesis is that inverted-U shapes in task-positive 

regions reflect adaptive strategy shifts, when demands become excessive. A key piece of 

evidence is that participants showing better 3-back performance had sharper inverted-U 

dlPFC load functions, and thus lower 3-back activity, compared with those showing 

worse 3-back performance (Jaeggi et al., 2007). As described in the Methods section, 

participants were pre-selected in the present study to restrict range on N-back 

performance. Nevertheless, a replication of the prior result was predicted such that a 

median split on 3-back performance would result in a high performing group showing 

sharper inverted-U load functions in task-positive networks (particularly the FP, Sal, and 

DorAtt networks) over N = 1—3, as compared with a low performing group, for whom 

the load function would appear more closely monotonic over the same range. 

1.3.2 Predictions about networks tracking subjective effort 
As described above, regions tracking subjective effort should covary with the 

subjective value (SV) of effort-discounted rewards (and conversely effort costs, as 

measured by the COGED paradigm), controlling for objective load, and performance. For 

a region to track SV, independently of load and performance, BOLD signal should either 

be predicted by a separate main effect of effort costs, or an interaction between effort 

costs and load. Hypothetical effort cost and load effects on BOLD signal are diagrammed 

in two hypothetical regions, one monotonic and another inverted-U, in Figure 1.2. 



 

 16 

 
Figure 1.2 Hypothetical effects of effort costs and N-back load on BOLD signal in two task-positive 
regions. Blue lines correspond to an inverted-U load function and show a main effect of subjective costs on 
brain activity while orange lines correspond to a monotonic function and show a load by effort cost 
interaction. Solid lines indicate low subjective effort costs and dashed lines indicate high subjective effort 
costs. 

 A hypothetical main effect of subjective costs on BOLD signal in an inverted-U 

region is diagrammed by the two blue lines in Figure 1.2. The effect obtains as mean, 

load-independent increases for those experiencing the N-back as more subjectively 

costly. Note that even though SV is a monotonic function of N-back load (Westbrook et 

al., 2013), and activity in an inverted-U region is not, this region can still track (load-

independent) individual differences in subjective task costliness. A hypothetical 

interaction of subjective costs and objective load on BOLD signal is diagrammed by the 

two orange lines. Note that in the example, the interaction is non-linear, reflecting load-

specific changes in SV. The effect is such that activity in the monotonic region increases 

with load, and is does so more steeply as load-specific effort costs increase more steeply 

(e.g. in the middle of the load range). Also note that the assignment of a load-independent 

main effect to an inverted-U region, and a load-specific interaction to a monotonic region 

is arbitrary and for illustrative purposes only. Either type of region could, in principle, 

show either type of effect. 
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Discounting measures afford critical, novel inferential traction regarding the 

relationship between activity dynamics and subjective effort. The idealized predictions 

made in Figure 1.2 are that greater mean activity, or more steeply increasing activity in 

task-positive regions during the N-back will relate to greater subjective effort, as defined 

by COGED AUC. Alternatively, lower activity in task-positive networks among those 

finding the task costlier (for example) would imply that such networks track diminished 

willingness to expend costly effort. As shown in Figure 1.3, individual differences task-

positive network activity can be combined with individual differences in SV to infer the 

meaning of those differences in activity for either motivation or subjective costliness. 

Those results lying across the axis from the upper-left to the lower-right quadrants 

support an inference about individual differences in brain activity being related to 

volition, while those on the axis from lower-left to upper-right support inferences linking 

brain activity to subjective costliness. The current study provided the opportunity to test 

which of these alternatives best describes individual differences in load-related 

activation. 

 

Figure 1.3 Combination of discounting and BOLD signal in task-positive networks for specific inferences 
about the relationship between brain dynamics and subjective motivation for effort, or effort costliness. 
Diagonal arrows indicate the volition and cost axes, respectively. 

High AUC Low AUC 

High 
BOLD 
Signal 

Increased signal reflects 
willingness to recruit 
 

Increased signal reflects 
higher cost of recruitment 

Low 
BOLD 
Signal 

Decreased signal reflects low 
cost of efficient recruitment 

Decreased signal reflects 
unwillingness to recruit 

Benefit / Cost Ratio:    High        Low 

Figure 5. Logic table for inference about a participant’s relative AUC 
and BOLD signal for a hypothetical, task-positive control region.   
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1.3.2 Predictions about subjective effort tracking in the dACC, dlPFC, 
and VS 

At the sub-network scale, the dACC, dlPFC, and VS were also predicted to track 

subjective effort. As discussed above, prior hypotheses include that the dACC monitors 

response conflict and performance and, when these are detected, recruits the dlPFC for 

maintaining task rules and biasing lower-level processing pathways (Botvinick et al., 

2001). Moreover, the dACC is hypothesized to regulate dlPFC recruitment based on the 

expected (and subjective) value of cognitive control, taking into account effort costs 

(Shenhav et al., 2013). In addition to these cortical loci, the VS is also a strong candidate 

for tracking subjective effort. VS activity increases monotonically with load for N-back 

levels N = 0 to N = 2 (Satterthwaite et al., 2012). Monotonic scaling with working 

memory load is consistent with the hypothesis implicating the VS in numerous processes 

including value-learning about states and actions and in value-based gating of items into 

working memory via cortico-striatal loops and the dorsal striatum (Badre & Frank, 2012; 

Chatham, Frank, & Badre, 2014; Frank & Badre, 2012; O’Reilly & Frank, 2006). Studies 

also support cognitive effort costs encoding in the VS: VS activity reflecting receipt of 

reward after a demanding task was attenuated in proportion to prior cognitive task 

demands consistent with the hypothesis that the VS encodes cognitive effort-discounted 

reward values (Botvinick et al., 2009). 

SV is a monotonic function of load, and yet the dlPFC and dACC are part of two 

networks that were predicted to show non-monotonic, inverted-U functions (the FP and 

Sal networks, respectively). Thus, these regions were anticipated to either show load-

specific interactions, or load-independent effects of subjective effort on brain activity (as 

depicted in Figure 1.2). As described above for networks, the direction of the prediction 
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was that higher (load-independent) activity, or steeper (load-specific) changes in activity 

would predict higher subjective effort costs. Load-independent effects, for example, were 

predicted between individuals such that those finding the N-back task costlier would 

show greater activity in the dlPFC and dACC. Predictions about variation in VS signal by 

subjective effort were less certain. One straightforward prediction was that increasing 

objective demands would be encoded in monotonically increasing VS activity (extending 

previous observations over N = 0—2 (Satterthwaite et al., 2012)), reflecting the intensity 

of cortico-striatal working memory gating processes. A further prediction was that the 

monotonically increasing load function would increase more steeply with load-specific 

increases in subjective effort. 

Performance also co-varies with load, thus it was important to test whether these 

regions predict SV, controlling for performance measures. As described above, a prior 

study has shown that dlPFC, but not the dACC tracks subjective effort, controlling for 

performance (McGuire & Botvinick, 2010). Yet, given the hypothesis that dlPFC 

recruitment scales with declining performance, it was instead predicted that shared 

variance between dlPFC activity and SV would be explained away by performance 

measures. Hence, I predicted the opposite result – that the dACC, but not the dlPFC 

would covary with subjective effort after controlling for performance. Regarding the VS, 

one prior study has shown that cues indicating accurate responding during the N-back are 

encoded in increasing VS activity (Satterthwaite et al., 2012). Thus given prior evidence 

that task-engaged activity scales with performance (like in the dlPFC), VS activity was 

not predicted to co-vary with subjective effort apart from performance. 
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Chapter 2: Methods 
2.1 Procedure Overview 

The core procedure of the COGED paradigm involves having participants 

experience multiple levels of the N-back task (Phase 1), and then making COGED 

decisions to estimate SV (and therefore subjective costs) of the task levels they just 

performed (Phase 2; Figure 2.1). After participants make COGED decisions, one of their 

choices is selected, at random, for participants to complete again (“N-back re-do”) in 

exchange for the reward amount selected on that trial (Phase 3).  

 
Figure 2.1 Schematic of the three phases of the COGED paradigm. 

As shown in Figure 2.1, this same core procedure was repeated for all participants 

over three separate sessions (Figure 2.2). 

Phase 1: N-back 
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Figure 2.2 Three session procedure overview schematic. Components completed in the fMRI scanner are 
highlighted in red font. 

The N-back task was scanned during the second session, and data from that 

session is the focus of this dissertation. Data from a third session was used in a separate 

investigation, reported in Appendix A, of brain activity during cognitive effort-based 

decision-making. The first session was a purely behavioral session designed to identify 

candidates for the two scanning sessions based on two criteria. Participants were selected 

based on 1) high N-back performance at all loads and 2) either steep or shallow effort-

based discounting (specific thresholds are described below). 

2.2 General Task Descriptions 

2.2.1 N-back  
N-back tasks were presented as a series of consonants in 32 point Arial font in a 

color corresponding to the level of the task: namely, black (rgb code [0,0,0]) for 1-back, 

red [240,0,0] for 2-back, blue [0,0,255] for 3-back, purple [95,0,115] for 4-back, green 

[0,110,0] for 5-back, and brown [102,51,0] for 6-back. Tasks were presented in specific 

colors so that, during the decision-making phase, they could be referred to in terms of 

their color rather than the N-back load (e.g., as a choice between performing the red vs. 

black task, rather than 1-back vs. 2-back). This terminology was chosen to minimize 

anchoring effects (Chapman & Johnson, 1999). If, for example, the tasks were referred to 

by their load values (N) during decision-making, this could have biased participants to 
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demand twice as much for the 2-back versus the 1-back (or three times as much for the 3-

back, etc.).  

Each trial run began with a fixation symbol (underscore ‘_’) presented centrally in 

black on a grey screen [200,200,200] for 25 s before each trial run. Next, N-back stimuli 

were presented in the center of the screen for up to 2 s during which participants could 

respond by button press whether each stimulus was a “target” or “non-target”. If 

participants responded in under 2 s, the letter was instantly replaced by the fixation 

symbol for the remainder of the trial before the next stimulus appeared 2 s after the 

previous stimulus first appeared (fixed 2 s ISI). If participants did not respond in 2 s, the 

stimulus was simply replaced by the next item in sequence and the trial was marked as 

incorrect. N-back lists were 64 items long. They contained 16 targets, and a variable 

number of lures, depending on the task level (8 for the 1-back, 6 for the 2-back, 5 for the 

3-back, and 3 for the 4-, 5-, and 6-back, each) where a lure is considered to be any 

stimulus repeated within two positions of the target position. The key reason for reducing 

the number of lures for higher load levels was to attempt to “flatten” performance 

functions – attenuating differences in performance from lower to higher load levels.  

2.1.2 COGED  
COGED trials were presented as a series of offers designed to identify subjective 

indifference points (and therefore SV; Figure 2.1). The COGED paradigm identifies the 

point of subjective indifference between a larger offer for doing a more difficult task, and 

a smaller offer for doing a less difficult task, using a procedure identical to that described 

in Westbrook, Kester, and Braver (2013). That is, indifference points were identified by 

stepwise titration of offers, in which stepwise adjustments were half as large on each 
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subsequent trial for a total of five adjustments for each task-amount pair. In the first 

session (Figure 2.2), base amounts were drawn from the set [$2, $4, $5], depending on 

the particular experimental parameters in which the participant was first run. In the 

second and third sessions, base amounts were [$2, $3, $4], for a total of 3 amounts by 5 

tasks, or 15 task-amount pairs. 5 trials are used to identify indifference points for each 

task-amount pair for a total of 75 decision trials. 

2.2 Participants 
Twenty-five participants were recruited from the Washington University 

community, primarily through Experimetrix. All participants were healthy, young (ages: 

18 – 40), right-handed, neurologically normal, and not taking any psychoactive 

medications. All participants also had normal-to-corrected vision. Participants were 

further selected to fit one of two group profiles: 1) steep discounters (13 participants; 

AUC < 0.55) or 2) shallow discounters (12 participants; AUC > 0.83). AUC cutoffs were 

derived from the distribution of AUC values from prior COGED studies, conducted on 

similar populations (primarily Washington University undergraduates), such that they 

reflect the upper and lower tertiles of the typical AUC distribution. Prior COGED studies 

conducted without AUC-based selection have shown the typical AUC distribution to be 

strongly skewed negatively, with most participants showing relatively shallow effort 

discounting (high AUC values), and a smaller proportion with steep effort discounting 

(low AUC values). Thus it was hoped that pre-selection of an equal number of high and 

low AUC individuals for recruitment into the study would lead to a more symmetric (and 

bimodal) distribution and also afford extreme-groups contrasts. As discussed further 

below, and in Chapter 3, this approach was only partially successful, due to intersession 
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variability in discounting. Subsequent descriptions (e.g. in the Results section) of “high 

AUC / shallow discounters” or “low AUC / steep discounters” refer to participants above 

or below a median split in observed AUC, averaged across all three sessions, rather than 

to the initial selection criteria. 

Note that for the purposes of investigating the encoding of subjective costs, 

discounting was averaged across all three sessions in Figure 2.2 to enhance the reliability 

of SV and AUC as trait measures of subjective effort. The hypothesis that SV and AUC 

reflect trait sensitivity to cognitive effort costs is supported by prior work showing that 

AUC relates to other trait variables including aging, Need for Cognition, and delay 

discounting (Westbrook et al., 2013), and also negative symptoms in schizophrenia 

(Culbreth et al., 2016). 

Participants were further selected for having high levels of performance across all 

levels of the N-back task. Performance was quantified by the discrimination index d’ and 

were based on (arbitrary) thresholds of d’ ≥ 1.0 (6-back), 1.25 (5-back), 1.5 (4-back) and 

1.75 (3-back). The purposes of these thresholds were to ensure that all participants were 

fully engaged with all levels of the N-back task and to restrict performance differences 

between individuals and groups.  

While the selection criteria (participants showing universally high N-back 

performance and either steep or shallow discounting behavior) were artificial, they were 

intended to increase power to demonstrate the principle that individuals could differ in 

terms of subjective effort, while being matched in terms performance. However, the non-

random selection process was, by design, unrepresentative of the wider population, thus 

limiting generalizability of conclusions. 
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It is also important to note that although one of the core questions of this study is 

how brain activity differs among individuals, the number of participants is not powered 

for a single individual differences fMRI study. As mentioned above, this study 

investigates a dataset collected as part of a larger series of three sessions (one behavioral 

and two imaging sessions), that was originally designed to investigate both how the brain 

tracks subjective effort and how it supports cognitive effort-based decision-making. In 

the larger series of studies, the same set of participants participated in all three sessions. 

Thus when examining whether brain activity tracking effort is related to brain activity 

during effort-based decision-making, participants could be compared to themselves 

across sessions. The number of participants was thus optimized for the original design in 

which there would be 75 participant-sessions (3 sessions for 25 participants), and 50 

participant-imaging sessions. Follow-up studies would benefit from a larger sample size 

to increase power to detect individual differences for a single imaging session. 

2.3 Imaging Procedure 
Following consent and screening to ensure MR compatibility, participants were 

stripped of any metal and brought into the scanning room. T1 and T2 anatomical scans 

followed localization and alignment scans. Then participants underwent the first of two 

8.5 min resting state scans (which were not within the scope of the dissertation, and so 

were not analyzed or reported here). Immediately after the first resting state scan, the first 

of six runs devoted to N-back performance were initiated. All blocks of a given N-back 

level were performed within the same scanning run. Each run consisted of alternating N-

back task (64 items × 2 s + 5 sec post-block performance feedback, indicating accuracy 

and RT for a total 133 sec) and resting fixation (30 sec) blocks. Three task blocks and 4 
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fixation blocks were included in each run, for a total run duration of 519 seconds, or 8.65 

min.   

Between each run, participants were reminded about load-specific task 

instructions. N-back tasks were always performed in order of increasing demand so that 

all participants would have the same experience with each level in terms of sequential 

order. Note that fixed task order introduces confounds for between-load comparisons. 

The tradeoff is that fixed order ensures, to the extent possible, that all participants have 

same experience for a given level of the task. This was done so that endogenous 

individual differences were emphasized relative to differences in external features of the 

paradigm including, for example, differences in practice effects or accumulated fatigue 

for a given N-back level. After completing three blocks of each level, a second 8.5 min 

resting scan was conducted, participants were removed from the scanner, and asked to 

complete a round of COGED to establish their indifference points for each of the N-back 

levels for that session. 

2.4 Scanning Parameters 
All fMRI data were collected in a 3 Tesla Siemens Trio scanner. Anatomical T1 

images were collected in 176 frames of 1×1×1 mm voxels using 2.4 s TRs, and spin-echo 

times of 3,080 ms, and an 8 degree flip angle. Anatomical T2 images were also collected 

in 176 frames of 1×1×1 mm voxels using 3.2 s TRs, spin-echo times of 455 ms, and a 

120 degree flip angle. Functional imaging sequences during resting state and task 

engaged state scans were collected in 4×4×4 mm voxels using a 256×256 voxel field of 

view, 2,000 ms TRs, 27 ms spin-echo times, and 90 degree flip angles. For N-back 

imaging runs, 260 volumes were collected for each level of the N-back task.  
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2.5 Image Processing 
All images were processed and statistical analyses conducted using AFNI. Raw 

DICOM images were first converted to NIFTI format using the Freesurfer mri_convert 

function, and the AFNI 3dSkullstrip function was used to mask brain tissue from the 

surrounding skull.  

Functional images were concatenated using 3dTcat, aligned from oblique to 

cardinal orientation using the 3dWarp function, and then upsampled from 4×4×4 mm 

voxels to 3×3×3 mm voxels and aligned across all functional runs to the first run. Next, 

parameters for registration of functional volumes with anatomical T1 images were 

computed for each participant separately. Precise registration was verified visually for 

every participant and cost functions were tailored to optimize registration for each 

participant. Then, parameters for warping participant-specific anatomical images to a 

standard MNI space (MNI152_T1_2009c+tlrc) were computed. All registration and 

warping parameters were concatenated using the cat_matvec function, and applied as a 

single transformation to aligned functional image volumes using the 3dAllineate 

function. Extents masks were computed for each participant as a further check to ensure 

good resulting alignment of the transformed datasets.  

 Following these transformations, functional images intensities were scaled such 

that each voxel had a mean value of 100 and were restricted to the range [0,200]. 

Specifically, after normalizing all time points for a given voxel by 100, step functions 

were multiplied by all values across the time series, thus constraining the products to a 

maximum of 200 and a minimum of 0.  

Next, functional images were smoothed using an 8.0 mm FWHM kernel and the 

3dmerge function. Then, subject brain masks were computed from anatomical images 
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using the 3dmask_tool and dilate and erode parameter values of 5 voxels each, while also 

filling holes. This mask was then correlated with functional image intensities to further 

ensure good alignment. 

General linear models (GLMs) were used to investigate the relationship between 

voxel intensities and task events using the 3dDeconvolve function. Specifically, GLMs 

modeled activity during performance each level of the N-back task as a block design, 

with boxcar functions each spanning the 128 sec duration of a given N-back stimulus list, 

convolved with a gamma function. Note that GLMs incorporated motion censoring with a 

frame displacement threshold of 0.3 mm as well as 6 motion regressors: roll, pitch, yaw, 

and x, y, and z translations. All runs were inspected manually to confirm satisfactorily 

low levels of motion. The mean fraction of censored frames was 5.1% with a median of 

3.1% and a range of 0.5% to 19.1% across 24 participants. GLMs also incorporated 

polynomial regressors to control for low-frequency trends, depending on the duration of a 

particular run. Note that although datasets are concatenated for preprocessing in AFNI, 

separate sets of polynomial regressors are applied for each imaging run. Thus, low-

frequency trends are not confounded with block order or N-back load. 
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Chapter 3: Behavioral Results 
3.1 N-back Performance  

A hallmark feature of the N-back task is that objective load can be varied 

parametrically by N. Thus, performance was predicted to decline with increasing N. 

Specifically, the ability of participants to distinguish targets and non-targets should 

diminish, and participants should respond more slowly as demand rises. Importantly, 

while performance was predicted to vary with N, performance was predicted to be 

unrelated to subjective effort (e.g. as measured by AUC). As described in the Methods, 

participants were intentionally selected to constitute a sample with a wide range in 

discounting variance, but to restrict range on individual differences in performance. 

Although SV, as measured by COGED, has been related to performance when 

participants are selected pseudo-randomly (Westbrook et al., 2013), the intent of this 

study was to demonstrate that differences in subjective effort could exist apart from 

differences in performance. 

N-back performance remained consistently high across all levels of the N-back 

task, yet performance patterns reveal that task load parameter N influenced task demands 

as anticipated. Figure 3.1 shows that the performance measure d’ is both high and 

monotonically decreasing with N. Importantly, High AUC (shallow discounting) and 

Low AUC (steep discounting) participant groups were well matched on performance 

across all task loads in terms of d’. There are no reliable group differences at any of the 

N-back task loads. Formally, a Load x Group ANOVA indicates that d’ varies linearly 

with Load (F1,140 = 204.8, p < 0.01) but does not vary by Group (F1,140 = 0.20, p = 0.66) 
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and there is not a reliable Group x Load interaction (F1,140 = 0.45, p = 0.50). Note that d’ 

measures were adjusted by the log-linear transform to account for extreme hit rate and 

false alarm proportions (Hautus, 1995). This transformation adds small, non-zero 

amounts to every target hit or false alarm when determining hit and false alarm rates so 

that perfect hit rates, or false alarm rates (otherwise equal to 1 and 0, respectively) would 

not equal +/- infinity when converted into the inverse of the cumulative Gaussian 

distribution function. The transform has little effect on d’ scores, except at these limits. 

  

Figure 3.1 Group performance d’ by load and by AUC group for both Session 2. 

While d’ provides a response bias-free measure of performance, performance on 

“lure” trials may be particularly revealing as to strategy (e.g. explicit, phonological loop 

representations of stimuli sequences versus familiarity-based recognition, cf. (Juvina & 

Taatgen, 2007), and such strategy shifts are likely to occur at the high load levels (N ≥ 3) 

used in these experiments. As show in Figure 3.2, the percentage of false alarm lure trials 

(“lure rate”), varies with load (F5,137 = 8.70, p < 0.01), appearing to increase up to N = 3, 

and then remaining constant after. Post-hoc pairwise comparisons reveal that the only 

reliable differences were between a higher lure rate for levels N ≥ 2 as compared with N 

= 1 (p < 0.01). Also, the lure rate is higher for N = 3 than N = 2 (p = 0.03), and the lure 
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rate is trending higher for N = 6 than N = 2 (p = 0.08). Interestingly, though the lure rate 

rises up to N = 3, it does not rise after that, suggesting that participants relied on 

familiarity to the same degree at extremely high load levels. Indeed, overall, lure rates are 

on average very low, across all load levels. Given that a familiarity-based strategy is 

susceptible to lures, low lure rates suggest that participants are not relying solely on 

familiarity to perform the N-back at any level. As noted in the Methods, however, there 

was a confound in that the number of lures decreased (from 8 at N = 1 to 3 by N = 4—6). 

As such, there were fewer opportunities for participants to make lure errors at higher 

loads. This confound prevents strong inferences about the response to lures across loads. 

Importantly, however, as was shown for d’, there is no reliable group difference in lure 

rates (p = 0.27) supporting that participants in both groups relied on familiarity to a 

similar extent. 

The fact that d’ continued to fall at higher loads (N > 3) while the lure rates 

stalled indicates that the falling discrimination index reflects a progressive decrease in 

target hit rates.  

  

Figure 3.2 Lure rates across all loads and both groups for Sessions 2. 
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Response times (RT) analyses (of correct trials) also support that higher load 

levels are more demanding, and also that there were no systematic differences in how 

High and Low AUC groups performed. RT distributions are typically skewed, and thus 

not well described by a Gaussian curve. Ex-Gaussian analyses fit a three parameter model 

to RT distributions, describing the central-tendency with the parameter µRT , the 

variability around that point with σRT, and the magnitude of the right-skewed tail with 

τRT. Critically, while these parameters are sensitive to Load, there were no differences 

by Group. µRT was statistically indistinguishable across Groups (F1,137 = 0.14, p = 0.71). 

This is also true when using the tail of each groups’ RT distribution: τRT, (F1,137 = 1.35, p 

= 0.25). σRT also does not vary by Group (F5,143 = 1.56, p = 0.18).  

 

Figure 3.3 µRT across loads and groups for Session 2. 

To demonstrate that the Ex-Gaussian analysis does not distort the result that 

groups did not differ in terms of response times, the average and standard deviation of 

median response times for every load and both groups is provided in Table 3.1. Mirroring 

the Ex-Gaussian analysis, the groups are also very well matched in terms of median RT 

values. 
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 Average (and SD) of RT Median by N-back Load (s) 
 1-back 2-back 3-back 4-back 5-back 6-back 
Low AUC 0.55 

(0.07) 
0.61 

(0.13) 
0.65 

(0.15) 
0.64 

(0.17) 
0.62 

(0.12) 
0.61 

(0.13) 
High AUC 0.55 

(0.08) 
0.68 

(0.13) 
0.69 

(0.17) 
0.65 

(0.16) 
0.61 

(0.13) 
0.60 

(0.12) 
Table 3.1 Average and standard deviation of median response times by AUC group and by N-back load. 

This dataset successfully demonstrates the principle that subjective effort can be 

decoupled from, and is thus not redundant with, performance. In other words, some find 

the N-back task to be more subjectively costly, even if they perform the task equally well. 

This dissociation of performance and subjective effort was also critical for subsequent 

analyses examining individual differences in brain activity that are associated with 

differential subjective effort, controlling for performance. 

It is important to note, however, that the dissociation of subjective effort and 

performance obtained, in part, because of an artificial selection process maximizing one 

sort of variance (in subjective effort) and minimizing another (in performance). Thus, 

these data do not support the inference that subjective effort and performance are 

generally unrelated in the wider population. Indeed, as noted above, performance and 

subjective effort, as measured by the COGED paradigm, have been related in other 

studies (Westbrook et al., 2013). Also, as discussed in the Introduction, others have 

hypothesized that flagging performance is related to the subjective effort costs because 

the detection of errors and cognitive conflict yields an aversive learning signal that could 

drive learning of an effort cost function (Botvinick, 2007). 

An important question is whether performance changed when participants 

completed “re-do” trials (see Figure 2.1), following COGED decision-making, when they 

were asked to repeat one level of a task based on random selection from among their 



 

 34 

choices. Given that participants were instructed that they would be paid “regardless of 

performance” and that they must simply “maintain their effort” from prior levels, there 

was some chance that participants selected a more demanding level for higher pay simply 

because they did not believe that their effort level would be monitored, and therefore they 

could earn pay without actually exerting effort. This could confound COGED analyses, 

as indifference points would not accurately measure a participants’ actual willingness to 

repeat the N-back for monetary reward. However, participants, on average, performed 

better on re-do trials than they did in the prior practice. On average, d’ increased on re-do 

trials: 0.58 units across the low AUC group, and 0.22 across the high AUC group. 

Performance remained high across all levels that were repeated. Importantly, high and 

low AUC groups did not differ in how their performance shifted between early N-back 

exposure and re-do trials (p = 0.19). This result supports that high AUC individuals took 

re-do performance just as earnestly as low AUC individuals, and contradicts the 

hypothesis that high AUC individuals showed little discounting because they did not 

intend to exert effort on N-back re-do trials. 

3.2 Decision-Making Behavior 
Based on prior studies, three kinds of results were expected: 1) participants would 

discount rewards for performing all higher levels of the N-back (N = 2—6) relative to the 

lowest level (N = 1), 2) the SV of an offer to perform a given level of the N-back to earn 

a reward decreases as load increases, and 3) the SV increases as the base reward amount 

(offered for performing the harder task) increases (Westbrook et al., 2013). As shown in 

Figure 3.4, discounting was reliable and monotonic, such that SV reliably decreases with 

load across all levels of the N-back task. That is, participants discounted monetary 
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rewards at all levels of the N-back (N ≥ 2), relative to the 1-back. Moreover, the decrease 

in SV with load demonstrates that, as expected, participants found increasing N-back 

demands to be increasingly costly. Though the data suggest a small trend of increasing 

SV with larger amounts, the anticipated increase in SV with amounts is not reliable. 

Formally, Load x Amount ANOVAs reveal reliable effects of Load (F4,352 = 50.6, p < 

0.01), but no effects of Amount (F2,352 = 0.37, p = 0.69). Amount effects have been 

documented in other domains like in delay discounting (Estle, Green, Myerson, & Holt, 

2006; Green, Myerson, Oliviera, & Chang, 2013). Amount effects were not reliable, 

however, so discounting rates were collapsed across offer amounts for subsequent 

analyses. 

 

Figure 3.4 Subjective values across N-back task levels and base offer amounts for COGED decision-
making in Session 2. 

AUC quantifies the area under line segments connecting SV across N-back levels, 

and hence provide a single averaged discounting measure for a subject (see Figure 1.1). 

As Figure 3.5 shows, AUC varies across sessions for participants – AUC values do not 

lie on a line with unity slope. However, the AUC of one session was generally predictive 

of the AUC of the next session. A linear model of Session 1 AUC predicting Session 2 
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AUC gives a reliable regression coefficient (B = 0.62, p < 0.01). Likewise, Session 2 

reliably predicts Session 3 AUC (B = 0.57, p < 0.01). The Pearson correlation (including 

all 25 participants) between Session 1 and Session 2 AUC is ρ = 0.61, between Session 2 

and Session 3 is ρ = 0.64, and between Session 1 and Session 3 is ρ = 0.28. The ICC for 

all three sessions is thus 0.47 with 95% CI of [0.23, 0.69]. One interpretation of the 

observation that high AUC participants tend to remain high AUC participants, and low 

AUC participants tend to remain low AUC participants, is that AUC reflects a trait 

measure of subjective effort costliness on the N-back task. However, this trait measure is 

not perfectly predictive; state also influences the extent of a participant’s discounting in a 

particular session. This is not entirely surprising given that at least one study has shown 

that sleep deprivation state can affect cognitive effort discounting (Libedinsky et al. 

2013). Of course it is possible that variability might also reflect measurement noise. To 

my knowledge, cross-session discounting stability in other domains, (e.g. delay 

discounting), has rarely if ever been studied. As such, it is unclear how reliable are 

discounting paradigms. 

 

Figure 3.5 Pairwise COGED AUC plots for Sessions 1 and 2 and Sessions 2 and 3. Color indicates 
membership into High AUC3S (navy) and Low AUC3S (grey) groups. 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Cross−Session AUC

Session 1 AUC

Se
ss

io
n 

2 
AU

C

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Cross−Session AUC

Session 2 AUC

Se
ss

io
n 

3 
AU

C



 

 37 

Interestingly, one hint of state influences on discounting is that discounting was 

reliably shallower (AUC values are higher), across participants, on Session 3 than on 

Session 2 (ppaired < 0.01; other inter-session comparisons are non-significant). Participants 

experienced 2 runs of each N-back level in Session 3 versus 3 runs in Session 2 and 

Session 1. Thus, the observed AUC difference is consistent with past piloting projects 

that have also yielded shallower discounting following more brief, in-session N-back 

exposure, and supports the hypothesis that fatigue may be an important state factor 

influencing discounting behavior in COGED. Given inter-session variability in AUC, and 

to maximize the reliability of AUC as a trait measure, all subsequent analyses averaged 

AUC values across all three sessions (AUC3S), to provide an AUC score for each 

participant, except where explicitly noted (as AUC). Subject assignment to High AUC 

and Low AUC groups depends on whether a participant’s AUC3S falls above or below the 

median AUC3S. Note that in Figure 3.5, final group assignment is color-coded (grey for 

Low AUC3S and navy for High AUC3S).  

Although participants were selected to show either steep or shallow discounting in 

an extreme-groups design, the final distribution (of AUC3S values) was uni- rather than 

bi-modal. Figure 3.6 provides a histogram of the cross-session averaged AUC3S to show 

that the final group distribution was not bimodal as originally intended. Moreover, the 

low AUC group is skewed, with most participants close to the sample median. This does 

suggest some caution in interpreting group analyses based on AUC3S (i.e., high vs. low). 

Consequently, subsequent analyses supplanted group-based designations with 

correlations that treated AUC3S as a continuous variable. 
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Figure 3.6 Averaged 3-session AUC histogram. Blue dashed line indicates the sample median used for high 
/ low AUC split.  

3.4 Summary 
 Selection of participants with a restricted range of (high) performance was 

successful, as demonstrated by high d’ across all levels of the task. More importantly, 

steep (low AUC) and shallow (high AUC) discounters showed practically identical 

performance, ensuring that differences in discounting did not stem from individual 

differences in performance alone. This was true across all measures examined including 

the discrimination index d’, Ex-Gaussian RT parameters, lure rates, etc. This supports the 

assumption that participants vary in discounting because of intrinsic cognitive effort-

related cost functions, and not because of task-performance differences.  

 There is evidence that discounting rates were influenced by both state and trait 

factors, as has been observed previously (Westbrook et al., 2013). Evidence for trait 

effort discounting is seen in the inter-session correlation of individual differences in 

AUC. Steep discounters tend to remain steep discounters across all three sessions. State 

factors influencing discounting include cognitive load and base offer amount (though this 

effect was not reliable), and also, potentially, the number of N-back rounds participants 

completed in a session before engaging in decision-making (fewer rounds yields 

shallower discounting).  
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Either because of state-dependent variation, measurement error in the COGED 

procedure, or both, intersession discounting was not perfectly stable within participants. 

Although steep discounters tended to remain steep discounters, and vice versa, 

fluctuations in session-specific AUC values meant that a clear group distinction between 

steep and shallow discounters were not achieved. To emphasize trait experience of 

subjective effort, given intersession variation in discounting, AUC was averaged across 

all three sessions (as AUC3S) for subsequent analyses. Also, individual difference 

analyses consider AUC3S as a continuous variable rather than defining strict group 

membership. 
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Chapter 4: Brain Regions Tracking 
Cognitive Effort 

The core question of this dissertation was what brain regions track subjective 

cognitive effort, during a demanding working task like the N-back. Brain activity 

tracking effort should vary by load. However, it should also vary by how participants feel 

about performing high load tasks. Here, COGED was used to quantify subjective effort 

costs participants experienced while completing the N-back. Thus, to investigate which 

brain regions track subjective effort is to ask which brain regions track both load and 

discounting while participants are engaged with the task.   

 In this section, whole-brain BOLD data, collected while participants performed 

increasingly demanding N-back loads were fit by GLMs with convolved boxcar 

regressors spanning the duration of each block of N-back stimuli. Separate regressors 

were fitted for each N-back level, such that regression weights (beta parameters) indicate 

the amplitude of tonic activity while participants were engaged in each N-back load level. 

The resulting regression weights were then tested at the group level to investigate regions 

of the brain tracking objective load (varying by N in the N-back), and also discounting 

measures, collected with the COGED task.  

An important concern is whether instrumental, free-choice COGED decision-

making can be informative about patterns of brain activity observed during mandatory N-

back performance. That is, why should subjective effort costs, as measured by COGED, 

be reflected in brain data while participants are performing a non-instrumental, 

mandatory task? The logic of the experimental design is that, given that all participants 
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were required to perform the N-back to the best of their ability, incentives for 

performance are arguably consistent across participants, and only subjective effort costs 

should differentiate participants’ experience. Hence, when presented with instrumental 

COGED decision-making, the subjective costs experienced during the prior N-back 

practice alone would influence participants’ willingness to pursue reward. 

4.1 Brain Regions Varying by Load 
As discussed in the Introduction, a network of “task-positive” regions, especially 

including the dACC, the dlPFC, the AI, and the IPS have been implicated in supporting 

tasks requiring effortful working memory and cognitive control, as reviewed in 

(Westbrook & Braver, 2015). Activity in these regions typically increases with load, and 

their recruitment predicts performance. Hence, they are prime targets for tracking 

cognitive effort. Also, as discussed in the Introduction, decreasing activity in a “default-

mode” network of regions, especially including the vmPFC, and the PCC, has been 

shown for increasing load and decreased activity therein predicts more consistent task 

performance, as reviewed in (Westbrook & Braver, 2015). Hence default mode regions 

may also be prime targets. 

Though task-positive and task-negative regions may vary monotonically with 

load, there is also evidence of non-monotonic, inverted-U functions that reflect supra-

capacity demands, shifting cognitive strategies at excessive loads, or some combination 

of factors (Jaeggi et al., 2003; 2007). Given the limited range of N-back loads tested in 

prior studies (typically N = 0—2 or 3), it is unclear whether inverted-U patterns are 

specific to certain regions, and whether they persist at higher levels. For example, 

(Callicott et al., 1999) found evidence of linearly rising activity in a “pericingulate” area 



 

 42 

roughly corresponding to the preSMA and dACC over N = 1—3, relative to N = 0 

(identifying every instance of a pre-defined target letter, e.g.: “x”), and an inverted-U 

function in the dlPFC over that same range. Although an inverted-U pattern might 

indicate disengagement from an overly effortful task, the steadily rising pericingulate 

activity contradicts this hypothesis. Yet, it is unknown what would have happened at 

higher load levels. A key advantage of the study design is that very high demand levels 

(N = 4—6) have been included, thus giving the opportunity to investigate a wider range 

of load-response functions. If all a priori regions of interest showed inverted-U load 

functions (or U-shaped, in the case of the task-negative regions) across the range such 

that N = 6 activity profiles resembled resting levels of activity, this would support that 

participants are disengaging from the task. 

Another hypothesis is that inverted-U functions reflect adaptive strategy shifts 

(Jaeggi et al., 2007). The key evidence for this hypothesis, as discussed in the 

Introduction, is that participants performing the 3-back better showed a bigger drop in 

activity from the 2-back, in task-positive regions (and thus a sharper inverted-U), than 

those performing the 2-back worse. That is, a more pronounced inverted-U pattern was 

associated with better performance, suggesting the inverted-U reflects an adaptive shift in 

strategies. Evidence for this hypothesis would include 1) a replication of the result that 

better 3-back performers show a more pronounced inverted-U load function over N = 1—

3 and 2) that other regions show either flat or monotonic load functions over the full 

range (N = 1—6). The logic of the second piece of evidence is that patterns of activity 

across N = 1—3 that are maintained across N = 4—6 would suggest equal (or greater) 
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engagement at higher loads, and consequently would contradict the hypothesis of 

disengagement.  

4.1.1 Load Modulation by Network 
In recent years, it has become well-established that the brain can be segmented 

into a canonical set of functionally-coupled networks that coactivate within the network 

and show distinct responses to brain states across networks. By examining patterns of 

underlying functional connectivity – pairwise voxel time series correlations in fMRI data 

– Power et al. (2011), among others, have identified an intrinsic architecture of the brain. 

This architecture can be described by a standard set of nodes that functionally couple to 

varying degrees with strong intra-network connectivity and weak inter-network 

connectivity. Task-positive control and working-memory regions include nodes that 

largely fall within the dorsal attention (DorAtt), fronto-parietal (FP), salience (Sal) and 

cingulo-opercular (CO) networks, while task-negative the default mode (DMN) regions 

comprise their own network.  

The following analysis capitalizes on the intrinsic functional architecture of the 

brain, analyzing load functions first at the level of networks, and then at nodes within 

networks. Nodes are defined from a standard set of 264, with each node represented as a 

12 mm sphere belonging to one of 13 different networks (Power et al., 2011). These 

nodes, and the networks to which they belong, are considered the basic unit of analysis 

rather than individual voxels. The biggest advantages of this approach are that: a) it 

provides a much smaller set of statistical comparisons, for which correction is much less 

exacting than voxel-wise analyses; and b) node selection and network assignment are 

based on independently defined criteria (namely: intrinsic functional connectivity and 
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stereotyped network architecture across a wide range of cognitive states). Moreover, the 

current analyses focuses on a subset of 5 networks hypothesized to track the effort-related 

load: the DMN, DorAtt, FP, CO and Sal networks, further reducing the search space. 

Complementary analyses for all networks can be found in the Appendix.  

The biggest disadvantage of node-based analyses is that the specific extents and 

loci may not coincide with regions defined across the whole brain by the specific design 

of this study, and as such either dilute or miss the strongest local effects. A related 

disadvantage of the network-based analysis is that network membership is defined by 

resting-state time series correlations (Power et al., 2011) rather than mean, task-related 

activity and hence such independently-defined networks may contain nodes with 

differing (block-level activity) load functions. Moreover, networks were not defined with 

regard to the N-back task, in particular. Hence, it is possible that nodes within a network 

could show differing load functions that would cancel each other out when averaged 

across nodes. To address these potential disadvantages, complementary voxel-wise, 

whole-brain analyses were conducted and reported in Appendix C. These complementary 

analyses essentially recapitulate the major findings described in the next section, 

supporting the utility of the node-based approach. 

4.1.1.1 Linear and Non-Linear Load Functions Among Hypothesized Networks  
Among a priori networks of interest, only one appears to vary approximately 

monotonically with load, mirroring monotonic discounting functions. As shown in Figure 

4.1, the DMN appears to decrease monotonically with load. The function is 

approximately monotonic in that only N = 1 shows an obviously smaller response than 

other levels. Nevertheless, a repeated measures ANOVA confirms variation by load over 

N = 2—6 (p < 0.01) and there are pairwise, trending differences with N = 5 and N = 2 (p  
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= 0.08) and N = 5 and N = 3 (p  = 0.05). There is no reliable difference between N = 2—

3 and N = 4—6, however (p = 0.32). It is clear, in any case, that the pattern of activity 

does not support disengagement at high loads as the extent of deactivation at N = 6, for 

example, is equal to, or greater than that at any of the lower loads. The DMN has been 

observed to vary as a decreasing function of load in prior reports (Pyka et al., 2009), cf. 

(Jansma, Ramsey, de Zwart, Van Gelderen, & Duyn, 2007; McKiernan et al., 2003), but 

never at the very high demand levels explored in this study. 

  

Figure 4.1 GLM β weights for each N-back level averaged across nodes in the DMN. Lines indicate SEM. 
Nodes are 12 mm in diameter. 

A more common load function, however, is quadratic. As shown by others 

investigating load effects of the N-back, regions that correspond with the task-positive 

networks, in particular, show an inverted-U shaped pattern, on average, increasing up to 

approximately N = 3 and then decreasing after. This is most notable in the FP, DorAtt, 

and Sal networks, shown in Figure 4.2.  
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A  

B  

C  

Figure 4.2 Mean GLM β weights for each level of the N-back task averaged across all nodes in the A) FP, 
B) DorAtt, and C) Sal Networks and a map of nodes included in the respective analyses. Lines indicate 
SEM. 
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Finally, the CO network is essentially flat across load levels, with no real change 

across loads with the exception of a dip at N = 5 (mirroring what is found in other 

regions). Unlike the monotonic or inverted-U patterns, the CO network appears to encode 

simply that the participant is engaged in the task, rather than the objective load.  

 

Figure 4.3 Mean GLM β weights for each level of the N-back task averaged across all nodes in the CO 
network, and a map of nodes included in the analysis. Lines indicate SEM. 

One unexpected effect is that activity deviates from the inverted-U or flat load 

patterns for N = 6, increasing from N = 5 for some networks. This may result from some 

interesting, as yet unknown shift in the way participants handle the 6-back (or 5-back), in 

particular, or it may result from something less interesting, like order effects. As 

described in the Methods, participants completed all 6 levels of the N-back in order of 

increasing demand. This method was adopted so that all participants would experience all 

levels of the N-back identically (the 3-back after the 2-back, etc.), enabling better 

controlled comparisons of individual differences in discounting. As discussed in the 

Methods section, the downside of a fixed order, of course, is that load is confounded with 

order. For example, after a long run of N = 1—5, participants may essentially “perk up” 

when they know they are completing the final level (N = 6), due to revival of motivation. 
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Alternatively, participants may engage less than would otherwise be expected on the 5-

back, due to fatigue factors, and the knowledge that an even more demanding load level 

(i.e., 6-back) is left to perform. Unfortunately, the fixed task order precludes resolving 

these questions. 

A formal test of networks showing linear and non-linear effects of load is 

accomplished by multi-level models including both first- and second-order predictors of 

Load, and for which all predictors were further allowed to vary by participant j. Multi-

level models are useful because they can accommodate effects of multiple load levels 

nested within participants, by properly assigning between- and within-individual 

variance. This is also more powerful in that it allows modeling the common and unique 

effects of linear and quadratic trends across participants simultaneously. 

βi = B1j[i] + B2j[i] Load + B3j[i] Load2 + εi      (4.1) 

B1j = γ1,0j + η1j         (4.2) 

B2j = γ2,0j + η2j         (4.3) 

B3j = γ1,0j + η3j         (4.4) 

Given the unexpected bump in recruitment for N = 6, quadratic models may fit 

better for N = 1—5 better than across the entire range of Loads. Thus, for exploratory 

purposes, the same set of analyses was conducted for both N = 1—5 and 1—6. The 

results of these model fits, describing fixed linear and quadratic effects, in particular, are 

given in Table 4.1. Note that a full table of all networks is provided in Appendix C. 
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 Linear effects Quadratic effects 
 B2*10-3 p-value B3*10-3 p-value 
Network Across Loads N = 1—5 
CO -4.1 0.05 -3.0 0.05 
DMN -6.7 0.01 2.4 0.23 
FP 1.7 0.45 -6.6 <0.01 
Sal -1.7 0.40 -4.2 0.02 
DorAtt -2.2 0.34 -4.5 0.01 
 Across Loads N = 1—6 
CO -2.7 0.11 -0.2 0.82 
DMN -4.7 0.01 2.1 0.10 
FP 0.9 0.62 -3.0 <0.01 
Sal -1.3 0.42 -1.3 0.23 
DorAtt -2.2 0.09 -1.7 0.27 
Table 4.1 Linear and quadratic fixed effects of load in networks of interest for N = 1—5 and N = 1—6. 
Shading: light grey for p < 0.10, medium for p < 0.05, and dark for p < 0.01. 

Consistent with an apparent monotonic function in the DMN, a reliable negative 

linear effect of load was observed, regardless of the range considered. Tentative negative 

linear effects were observed in the DorAtt and CO networks, depending on the load 

range. Negative linear effects were not anticipated for any region except the DMN, as a 

function of load alone. These negative linear effects may reflect accommodation, fatigue, 

or any other number of confounds resulting from a fixed task order.  

Riding on top of linear effects are quadratic effects, particularly in the task-

positive, working memory and control-related networks, like the FP network, and for N = 

1—5, the Sal, and DorAtt networks. The fact that most quadratic effects are negative is 

consistent with previously observed inverted-U functions of load observed on the N-back 

across N = 1—3 (Callicott et al., 1999; Jaeggi et al., 2003; 2007). For the Sal and DorAtt 

networks, quadratic effects are attenuated with the inclusion of N = 6. Also, across N = 

1—6, the CO network is a flat function, as described above, with neither linear nor 

quadratic effects of load. 
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Prior studies have not investigated patterns of recruitment of these regions beyond 

N = 3, and so the current study provides novel information about what happens in these 

regions at extremely high load levels. Notably, for example, while dACC (approximated 

by nodes within the Sal and CO networks) was shown to increase monotonically with 

load over lower loads, when examining beyond N = 3, this region was found to show a 

clear inverted-U profile (i.e., for N = 1—6).  The dACC region of interest is best 

characterized through Node #213, which matches closely in anatomic location to prior 

studies examining dACC effects in N-back, cognitive control, and effort-based decision-

making tasks (MNI coordinates -1, 15, 44; see Figure 4.4). Consequently, this node will 

be the primary target of subsequent analyses focused on the dACC. 

 

Figure 4.4 Mean GLM β weights for each level of the N-back in the dACC and the location of the 12 mm 
spherical node on the medial wall of the left hemisphere. 

As mentioned above, an early N-back study identified three load functions at 

lower load levels: N = 1—3, (Callicott et al., 1999), which were characterized as an 

inverted-U pattern in a dlPFC cluster, a flat pattern in a precuneus cluster, and a 

monotonic pattern in a medial pericingulate cluster which rose monotonically up to N = 
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3. The dACC node is a clear example where, if only examined across N = 1—3, it would 

have appeared to be monotonic, but across N = 1—6 proves to be inverted-U.  

An examination of other nodes approximating loci of interest in the early study 

demonstrates that other regions also require updating when examined across the full load 

range. A FP node (#201; x = -42, y = 25, z = 30; 14 mm from the dlPFC cluster center 

reported in Callicott et al.) also shows an inverted-U profile, just as the dlPFC did in the 

earlier study (Figure 4.5).  

 

Figure 4.5 Mean GLM β weights for each level of the N-back in the dlPFC and the location of the 12 mm 
node on the left lateral hemisphere surface. 

The decline, however, only starts at N = 4 in the present dataset. By contrast, a DorAtt 

node approximating the precuneus cluster showing a flat load function (#251; x = 10, y = 

-62, z = 61; 9 mm from the precuneus cluster reported in Callicott et al.) also shows an 

inverted-U profile rather than a flat load function.  
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Figure 4.6 Mean GLM β weights for each level of the N-back in the precuneus. 

The new result may be different because of slight distinctions in location; but it 

could also have to do with the fact that a larger range of load levels were examined in the 

present study. Because the prior study only examined up to N = 3, what looked like a flat 

function in the previous study actually resulted from a range restriction on load. Although 

a flat load function was not observed in the DorAtt node, a flat function was observed in 

other locations. Notably, a CO node approximating the earlier monotonic cluster, medial 

pericingulate cluster (#53; x = 13, y = -1, z = 70; 13 mm away from the region described 

in Callicott et al.) showed a flat load function.  

 

Figure 4.7 Mean GLM β weights for each level of the N-back in the medial pericingulate. 
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That is, rather than showing an unconstrained rise across all load levels (N = 1—6), this 

node showed essentially flat behavior, like the rest of the CO network. Again, what 

looked like monotonic behavior in this region in the early study may have resulted from 

the smaller range of loads examined in that study. 

 It is important to point out that differences in the precise timing or trial sequential 

structure of the N-back stimuli presented in the earlier study, or even differences in 

participant samples could have also led to differences between the results of Callicott et 

al. (1999) and the load functions observed here. This study was not designed to test for a 

precise replication of the load functions observed in the earlier study. Instead, the key 

point was to investigate Callicott et al.’s descriptive load patterns across a wider range of 

loads in independently defined networks. Thus the key results here are that a priori task-

positive networks of interest all show what was originally characterized as inverted-U 

patterns with the exception of the CO network, which showed a flat pattern, while the 

DMN is the only network with an arguably monotonic pattern. 

As described above, one hypothesis about inverted-U load functions is that they 

reflect adaptive strategy shifting. In a key study, participants showing the sharpest 

inverted-U pattern – decreasing most at N = 3 – showed the best performance. Hence 

adaptive strategy shifts are reflected both in better performance and a more pronounced 

inverted-U across N = 1—3 (Jaeggi et al., 2007). Using the same criterion employed to 

divide participants by performance (3-back d’), the current dataset replicates the results 

of Jaeggi et al. (2007). Namely, across N = 1—3, individuals above a median split in 3-

back performance (“high performers”) had a drop in activity in FP and DorAtt networks 

for the 3-back relative to the 2-back, while those below the performance split (“low 
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performers”) showed yet higher activation for the 3-back. That is, high performers 

showed a more pronounced inverted-U pattern across N = 1—3.  

 

Figure 4.8 Load profiles for high (above median 3-back d’ scores) and low performers in FP and DorAtt 
networks. 

Given that both the FP and DorAtt networks have inverted-U load functions at a 

wider load range, both high and low performers show a peak and decline. However, 

because the high performers have a more pronounced inverted-U over the lower range N 

= 1—3, the low performers, by comparison, peak at a higher load. That is, while high 

performers show their peak earlier at N = 2 in these regions, low performers peak later, at 

N = 3.  

The current design, which varied load from N = 1 to N = 6, revealed a pattern of 

extended load functions across brain networks. Given that subjective effort increased 

monotonically with load (i.e., in terms of the COGED discounting pattern; see Figure 

3.6) a network like the DMN, which has monotonically decreasing activity with load, 

may straightforwardly track effort as hypothesized. Monotonic load functions in the 

DMN and flat functions in the CO network support that participants remain engaged at 

very highly demanding levels (N = 4—6). Inverted-U functions, on the other hand are not 

1 2 3 4 5 6

FP Network

N−back N

G
LM

 β
 W

ei
gh

t

0.
00

0.
04

0.
08

Low Perfs.
High Perfs.

1 2 3 4 5 6

DorAtt Network

N−back N
G

LM
 β

 W
ei

gh
t

0.
00

0.
04

0.
08

Low Perfs.
High Perfs.



 

 55 

immediately reconcilable with monotonically increasing effort. It is important to note that 

even if inverted-U shapes reflect shifting strategies, participants may still find the 

strategies to which they shift more subjectively costly, if necessary, to deal with very 

high demands. The problem is that load functions alone do not strictly indicate whether a 

network tracks effort. It is further necessary to ask whether networks vary by an 

operational measure of subjective costs – effort discounting.  

4.2 Do Brain Networks Vary by Load and Discounting?  
A key question is whether networks show patterns of activity that vary as a 

function of subjective sensitivity to cognitive effort. That is, do individuals who vary in 

terms of subjective effort show differences in activity across loads? Do their load 

functions vary systematically? And also, do these effects vary by network? 

To answer these questions, a 3-way Network x Load x AUC3S repeated measures 

ANOVA of N-back β weights (averaged across all nodes in each network), treating Load 

and Network as within-participant variables, and AUC3S as a between-participant 

variable, was computed to test for the influence of critical variables on the hypothesized 

networks. Note that Load is treated as a factor with multiple levels rather than a linear 

predictor (given that multiple networks are already known to show non-linear load 

functions). As described previously, AUC3S is the three session-averaged discounting 

value, capturing participants’ mean sensitivity to effort costs across all N-back levels. 

The results of that test (Table 4.2) demonstrate that there is a reliable effect of AUC3S, 

and that, mirroring the previous analysis, mean activity and load functions both vary by 

network. There does not appear to be a reliable difference in the effect of AUC3S across 

networks, implying that the effect is instead consistent across networks. 
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Effect DF F p  
AUC3S 1, 22 5.71 0.02 * 
Network 4, 88 71.8 <0.01 ** 
Load 5, 110 1.78 0.12  
AUC3S x Network 4, 88 1.57 0.15  
AUC3S x Load 5, 110 1.35 0.25  
Network x Load 20, 440 5.31 <0.01 ** 
AUC3S x Network x Load 20, 440 0.62 0.89  
Table 4.2 Repeated Measures ANOVA in N-back regression weights in the DMN, FP, CO, Sal, and DorAtt 
networks. (**: p < 0.01, *: p < 0.05, .: p < 0.10)  

4.2.1 Specific Networks Predict Discounting 
The previous ANOVA supports investigating the relationship between 

discounting and brain activity further, and also investigating load functions in each 

network separately. To explore activity-discounting relationships, a multi-level model 

was fit to N-back activity levels (reflected in β weights), nested within participants to 

predict SV3S values: one for each participant, at each load level. A multi-level approach 

permits modeling relationships across all participants and loads simultaneously, assigning 

variances appropriately, without resorting to aggregate discounting measures (AUC3S) 

that sacrifice potentially useful (between-load) information. 

Note that to model a fixed effect of β weights, while properly accounting for the 

fact that different participants “experience” different β values, β weights are centered 

within participants (βctr) and treated as a predictor at the load level of the model. This 

predictor describes how SV varies with respect to (load-specific) changes in participants’ 

brain activity (cf. orange lines in Figure 1.2). In addition, another predictor (βavg) 

describes the load-independent effects of individual differences in participants’ mean 

regression weights (cf. blue lines in Figure 1.2). In this model, only the intercept is 

allowed to vary randomly across participants, and βavg is a predictor of this intercept. 

Note that the load-independent predictor βavg describes how a subject’s SV intercept 
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varies, and thus describes a main effect of individual differences in cross-load averaged 

brain activity on mean discounting. βctr, on the other hand, accounts for the way that SV 

is predicted to change as a function of changes in brain activity with load, and thus is akin 

to an interaction of load and brain activity as a predictor of SV, independent of objective 

load. 

SV3Si = B1j[i] + B2j[i] Load + B3i βctr + εi      (4.5) 

B1j = γ10j + γ11j βavg,j + η1j        (4.6) 

The last two columns of Table 4.3 provide the estimated load-specific βctr and 

load-independent βavg fixed effects modeled separately for each a priori network of 

interest.  

 Activity effects *10-1 (p-value) 
Network Load-specific B3 Load-independent γ11 
FP -0.6 (0.93) -16.5 (<0.01) 
Sal 21.1 (0.70) -16.1 (<0.01) 
CO 3.6 (0.63) -15.5 (<0.01) 
DMN 0.7 (0.92) -8.3 (0.21) 
DorAtt 1.6 (0.81) -24.5 (<0.01) 
Table 4.3 Effects of load-dependent and load-independent activation on discounting in selected networks. 
Shading in the table indicates significance level with light grey for p < 0.10, medium for p < 0.05, and dark 
for p < 0.01. 

In none of the networks does the load-specific βctr predict activity when 

controlling for the objective load. Load-independent βavg, on the other hand, predicts 

SV3S in all networks except the DMN. The fact that the load-specific predictor does not 

explain variance in SV3S indicates that there is insufficient information about SV in the 

way that activity changes over task load levels, apart from objective load (N) itself. 

Importantly, for task-positive networks, activity is reliably smaller with increasing 

AUC3S indicating that these networks not only vary with load, but they also vary such 

that steeper discounters recruit most networks more robustly, independently of task level. 
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In other words, individuals that discount cognitive effort more steeply (i.e., for whom the 

task is subjectively costlier) show overall greater activity in the N-back than individuals 

who are shallow discounters. These AUC3S effects are found in all of the task-positive 

(CO, FP, Sal, and DorAtt) networks, but not in the task-negative DMN. Figure 4.9 shows 

an example of the discounting and load effects in the DorAtt network. As is readily 

apparent, lower load-averaged regression weights predict higher AUC3S values while 

regression weights are higher at all load levels for a group with below-median AUC3S 

values than it is for those with above-median AUC3S values.  

A B  

Figure 4.9 AUC3S as a function of network-level individual differences in activity in the DorAtt network 
and activity as a function of load and discounting. A) AUC3S as a function of activity averaged across task 
load levels, with task loads modeled separately. Solid lines give linear regressions, and dashed lines give 
the 95% CI. B) Activity across loads, separated by whether participants have above (Hi AUC) or below (Lo 
AUC) median AUC3S values. Vertical bars give the SEM. 

Aside from the main effect of discounting on activity in the DorAtt network, there 

also appears to be a difference in the shape of load functions for steep and shallow effort 

discounters as shown in Figure 4.9B. Namely, while both steep and shallow discounters 

(those below and above the median AUC3S value, respectively) show an inverted-U 

profile, the profile also appears shifted, such that steep discounters peak at N = 2, while 

shallow discounters peak at N = 3. Further evidence is that the load function is inverted-U 

for the steep discounters over N = 1—3, while it is not for the shallow discounters. A 
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multi-level, variable-intercept model (varying by participants in each of two groups) 

reveals that across N = 1—3, there is a reliable positive linear effect (p = 0.01) and 

negative quadratic effect (p = 0.02) of load for the steep discounters, but not the shallow 

discounters (p = 0.95 and p = 0.89, respectively). Note that this formal test complements 

the visual observations of an inverted-U pattern for steep discounters across N = 1—3, 

and no inverted-U pattern for shallow discounters across this range, although it does not 

demonstrate that one group shows a reliably stronger inverted-U than another.   

Lower mean activity and later peaking (at N = 3 rather than N = 2) among 

shallow discounters support a “neural efficiency” hypothesis (Jaeggi et al., 2007) – that 

some individuals operate more efficiently and do more with less. This corresponds to the 

axis of Figure 1.3 from lower-left to the upper-right quadrant. By this interpretation, 

peaking at higher loads among shallow discounters reflects greater efficiency, allowing 

for still higher activity at N = 3 relative to N = 2 whereas reduced efficiency among steep 

discounters requires them to bring certain resources fully to bear at N = 2. While these 

results are consistent with a neural efficiency hypothesis, the conclusion is tentative, 

being based on comparison of two load levels only. Lower load-independent activity 

among shallow discounters, on the other hand, is a robust effect at all loads and strongly 

contradicts the alternative interpretation (on the upper-left to lower-right axis of Figure 

1.3) that individual differences in mean activity in task-positive are related to volitional 

will to recruit task-positive networks. If that were true, load-independent activity in task-

positive regions would have been higher not lower for those finding the N-back less 

costly. 
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Interestingly, the shifted load function for shallow versus steep discounters 

mirrors the same pattern described above for low versus high 3-back performers, and thus 

is consistent with the hypothesis (Jaeggi et al., 2007) that subjective effort is a cue to shift 

strategies adaptively. Just like those showing worse 3-back performance, shallow 

discounters also show lower activity at lower loads, and peak later (at N = 3). Also, just 

like those showing better 3-back performance, steep discounters show higher activity at 

lower loads, and peak earlier (at N = 2). In other words, higher activity at low loads (N < 

3) and earlier peaking are associated with both greater subjective effort and adaptive 

strategy shifting (that preserves performance for N = 3). This coincidence supports a 

hypothesis, proposed by Jaeggi et al. (2007), that subjective effort is used as a cue that 

adaptive strategy shifting is needed (e.g. to maintain performance). As noted, 

performance is unrelated to discounting in our sample (AUC3S is neither a linear predictor 

of performance at N = 3, p = 0.64 nor N = 2, p =0.57), likely because of the non-random 

way in which participants were selected for this study (restricting range on performance 

while maximizing range on subjective effort). Indeed, I have shown previously that SV 

and performance are related when participants are selected pseudo-randomly, via self-

selection (Westbrook et al., 2013). Thus the current dataset cannot be used to test directly 

whether subjective effort drives adaptive strategy shifting. Moreover, an interpretation 

that two patterns are qualitatively similar because of a shared mechanism of subjective 

effort driving strategy shifting is admittedly post-hoc. Further study is needed to whether 

performance and AUC are related at specific load levels (like the 3-back) due to adaptive 

strategy shifting. 
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Complementary analyses in which the relationships between discounting and 

BOLD signal in all 13 networks defined by Power et al. (2011) are provided in Appendix 

C. For example, one complementary approach examines how AUC3S predicts brain 

activity in multi-level models in which dummy-coded load predicts brain activity, along 

with AUC3S as an intercept predictor. The key result confirms a main effect between 

AUC3S and load-independent BOLD signal in multiple networks (Table C.2, C.3 and 

Figure C.4). Furthermore, when each load-specific dummy code is further allowed to 

vary by AUC3S, AUC3S is never a reliable predictor of the load effect for any load or for 

any network. This result confirms that discounting does not interact with load to predict 

brain activity, consistent with the observation that load-specific changes in brain activity 

do not predict changes in SV3S, independently of objective load. 

While a reliable load-independent effect of activity on subjective effort is both 

intriguing and confirms a prior prediction, the results do not support the prediction that 

load interacts with activity to predict discounting. That is, although subjective effort 

varies by objective load, that variation does not further vary by load-specific changes in 

network activity. It was not the case, for example, that task-positive networks showing 

increasing activity across N = 1—3, increased more steeply for those who find the N-

back costlier (refer to the orange lines, Figure 1.2). Despite some suggestive results (e.g., 

earlier peaking, Figure 4.9B), in no regions was the shape of the load-related activity 

pattern reliably changed as a function of AUC. Put differently, after controlling for the 

objective load level, load-specific brain activity did not explain additional variance in 

discounting. It is important to consider that because this was an unpredicted null result, 

interpretations are necessarily post-hoc and caution is warranted. In particular, the null 



 

 62 

result may have to do with the limited sample size and thus sensitivity to detect load-

specific effects apart from objective load. It may also relate to the fact that block 

regression weights mask underlying dynamics that would differentially predict 

discounting at each load level. Future focus on smaller-scale features of load-specific 

BOLD signal, like trial-wise, event-related (rather than block-wise) N-back activity or 

changes in network properties as a function of load and their relationship to subjective 

effort, for example. These possibilities will be elaborated in the General Discussion. 

4.2.2 Specific Nodes Within Networks Predicting Discounting 
Reliable individual difference effects of discounting were reflected in the activity 

level of task-positive networks, when characterized at the whole network level. It is also 

likely that specific nodes within these networks show particularly strong activity-

discounting relationships. Moreover, as discussed above, a prior study has identified 

specific regions of interest in the dlPFC and dACC that may play particularly important 

roles in encoding subjective effort during engagement with a challenging cognitive task 

(McGuire & Botvinick, 2010). Likewise, other studies have implicated the ventral 

striatum (VS) for encoding effort costs when cued with a reward earned for exerting prior 

cognitive effort (Botvinick et al., 2009), or encoding motivation during (Schmidt et al., 

2012) and prior to (Schouppe, Demanet, Boehler, Ridderinkhof, & Notebaert, 2014; 

Vassena et al., 2014) exertion of a cognitively effortful task. Hence, certain nodes within 

networks might relate to discounting measures particularly strongly, and identifying those 

nodes would afford greater specificity about which brain regions track cognitive effort. 
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The following analysis considers whether activity in specific nodes encodes the 

subjective cost of effort on the N-back among two sets of nodes: first, among a target set 

of a priori nodes identified in prior literature for tracking cognitive motivation or 

subjective cognitive effort or, and second, an exploratory set, including all nodes in the a 

priori networks of interest. A priori nodes include two FP nodes, which are 8 mm and 9 

mm from peak voxels identified by (McGuire & Botvinick, 2010) for encoding subjective 

effort in the lateral PFC, and a medial PFC node, part of the Sal network, which is 5 mm 

from a key loci of interest in the dACC. In addition to these, two VS nodes are also 

included. The nodes were not part of the original 264 node set, since the Power et al. 

(2011) node set does not adequately target subcortical structures.  

As in the network-level models, fitted models describe, for each node, the 

estimated load-specific βctr and load-independent βavg effects on SV. Table 4.4 gives both 

effects for the five a priori nodes of interest.  

   MNI (LPI) Activity effects * 10-1  (p-value) 

Network Node Description 
 

x 
 
y 

 
z 

Load-specific  
B3 

Load-independent 
γ11 

FP 176 l MFG -47 11 23 0.7 (0.87) -6.6 (<0.01) 
 186 r IFG 47 10 33 2.3 (0.66) -7.8 (0.02) 
Sal 213 l dACC -2 15 43 -0.2 (0.97) -7.0 (<0.01) 
Other 265 r VS -12 12 -6 0.1 (0.98) -18.4 (<0.01) 
 266 l VS 12 10 -6 2.6 (0.45) -13.8 (<0.01) 
Table 4.4 Effects of load-dependent and load-independent activation on discounting in a priori nodes of 
interest taken from McGuire et al., 2010 and Botvinick et al. 2009. Significance level indicated light p < 
0.10, medium p < 0.05, and dark shading for p < 0.01. 

In none of the nodes does the load-specific βctr predict activity when controlling 

for the objective load, mirroring the network-level results. Again, this seems to indicate 

that there is insufficient information about SV in the way that activity changes over task 

load levels, apart from objective load (N) itself. Load-independent βavg, on the other hand, 



 

 64 

predicts SV in all a priori nodes – an effect that also mirrors the priori network-level 

analyses. 

Among the a priori nodes, all show reliable negative effects of load-independent 

activity on SV3S. Of particular interest is that both dlPFC and dACC loci identified for 

encoding subjective, self-reported effort in a priori study (McGuire et al., 2010) also 

predict subjective effort in this dataset. In that study, greater activity during performance 

of a cognitively demanding task was related to increased within- and between-subject 

self-reported desire to avoid that task, presumably because participants found the tasks to 

be costlier. Here, we find a concordant between-subjects relationship in all three regions 

(Node #s, 176, 186, and 213) whereby higher, load-independent activity predicts greater 

subjective effort costs. Figure 4.10 highlights the pattern observed in the dACC region, 

indicating a similar profile to what was observed in the DorAtt network, i.e., greater 

overall activity in steeper discounters and a subtle change in the load function (peaking at 

N=2 among steep discounters and N=3 among shallow discounters). 

A B	  

Figure 4.10 Individual differences in activity in an a priori dACC node as a function of AUC3S and load. A) 
AUC3S as a function of activity averaged across task load levels with task loads modeled separately. Solid 
lines give linear regressions, and dashed lines give the 95% CI. B) Activity across loads, separated by 
whether participants have above (Hi AUC) or below (Lo AUC) median AUC3S values. Vertical bars give 
the SEM. Location of the dACC node is also plotted. 
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In addition to the lateral and medial PFC, the bilateral VS nodes also explained 

individual differences in discounting. This result is consistent with other studies showing 

the encoding of effort and, conversely, motivation in the VS (Botvinick et al., 2009; 

Schmidt et al., 2012; Schouppe et al., 2014; Vassena et al., 2014). The direction of the 

effect in these nodes – higher activity among those who found the task more effortful 

(Figure 4.11) – was not necessarily anticipated.  

 

A B  

C  

Figure 4.11 Individual differences in average activity in a priori VS nodes predicts AUC3S. The average 
regression weight predicts AUC3S in both the right (p < 0.01) and left (p = 0.02) VS, negatively. 

In the prior studies, the common finding was that during effort anticipation, 

higher activity was observed when individuals anticipated lower effort. Yet, one study 
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showed that this may depend on whether a participant is engaged in forced-choice or free 

decision-making about task engagement (Schouppe et al., 2014). Moreover, the 

comparison to decision-making studies is complicated by the fact that the present results 

were obtained during task performance itself (rather than during decisions about task 

performance). Two studies have examined objective load encoding in the VS during task 

performance. One of these studies did not find reliable load encoding (Schmidt et al., 

2012), while the other did find load encoding (Satterthwaite et al., 2012), yielding an 

indeterminate conclusion. A more obvious interpretation of the sign observed here is that, 

rather than reflecting motivation, greater VS activity among those finding the N-back to 

be costlier reflects more vigorous task-coordination processes in the striatum that have 

also been linked to cognitive control, such as working memory gating in cortico-striatal 

loops (Frank, Loughry, & O’Reilly, 2001). 

Across all nodes in the DMN, FP, CO, Sal, and DorAtt networks, a larger 

exploratory set show significant load-independent relationships between βavg and SV3S. 

Although this analysis regards nodes within a priori networks that moreover show, in the 

case of task-positive networks, reliable network-level relationships, it is ultimately 

exploratory in nature (among 126 nodes). A False Discovery Rate procedure (Benjamini 

& Hochberg, 1995) is used to limit family-wise error. 49 Nodes surviving a corrected p < 

0.05 threshold are mapped in Figure 4.12. Surviving nodes cluster along the left dlPFC, 

and also the bilateral IPS, dACC, pre-SMA, anterior insula, and vlPFC. In addition to 

these task-positive regions, a specific subset of DMN nodes show reliable relationships to 

SV, particularly in the bilateral vmPFC and right temporal pole. 
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Figure 4.12 Nodes in which load-independent N-back activity predicts subjective effort costs. All nodes 
survive FDR corrected p < 0.05. Colors indicate network membership and sign: negative effects are red for 
DMN, black for Sal, green for DorAtt, and purple for CO; positive effects are dark red for DMN and dark 
yellow for FP. 

Surviving nodes all show greater activity for those with greater subjective effort 

costs, with four exceptions. As indicated by darker colors, three surviving DMN nodes 

(dark red) on the right temporal pole and right supramarginal gyrus, as well as one FP 

node (dark yellow) on the left inferior parietal lobule (IPL) show the reverse effect. In 

these four nodes, load-independent activity is lower for steeper discounters. Closer 

inspection of the three exceptional DMN nodes, however, reveals that they do not have 

reliably non-zero regression weights, unlike the wider DMN, and are thus difficult to 

interpret. Namely, while the network average load function is robustly deactivated, and 

approximately monotonically decreasing across loads, these three DMN nodes do not 

show reliable deactivation at any load level. The only exceptions are that the low AUC 

group alone shows deactivations in the right supramarginal gyrus node at N = 5 (!"#$= -

0.05, p < 0.01) and N = 6 (!"#$ = -0.04, p = 0.01). Given that these three DMN nodes do 
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not reliably deactivate or track load like the rest of the wider network, it is unclear how to 

interpret load-independent variation by AUC3S.  

By contrast, the exceptional FP node showed reliably positive, non-monotonic 

behavior, just like the wider FP network. However, unlike the wider FP network for 

which activity is higher among those for whom the N-back is costlier, in this single node, 

the pattern is reversed and activity is lower among those for whom the N-back is costlier 

(Figure 4.13). Given that this effect obtains in only a single node, it is entirely possible 

that the effect is simply a matter of chance. However, if this node showed a consistently 

opposite result in a replication sample, it would support that the particular left inferior 

parietal lobule node (x = -42, y = -55, z = 45) tracks individual differences in subjective 

effort during the N-back in a unique way. For example, higher load-independent activity 

in this region could reflect greater volition to perform the N-back (rather than greater 

subjective costliness). 

    

Figure 4.13 Individual differences in activity in a left IPL node as a function of AUC3S and load. A) AUC3S 
as a function of activity averaged across task load levels with task loads modeled separately. Solid lines 
give linear regressions, and dashed lines give the 95% CI. B) Activity across loads, separated by whether 
participants have above (Hi AUC) or below (Lo AUC) median AUC3S values. Vertical bars give the SEM. 
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4.2.2.1 Relationships Between Node-Level Activity and Discounting, Controlling for 
Performance 

Activity-discounting relationships support that a node’s activity level relates to 

individual differences in subjective cognitive effort. However, as other authors have 

noted (Kool et al., 2010; McGuire & Botvinick, 2010), demanding tasks are subjectively 

aversive (and thus may engender discounting) for a number of reasons apart from effort 

per se. In particular, performance of demanding tasks is typically associated with slower 

responding and higher error rates. Thus, it is possible that estimates of subjective 

costliness may implicitly factor in these performance variables, and thus reflect a form of 

both delay discounting (longer time for trial completions) and probability discounting 

(lower likelihood of successful performance). Hence is it important to demonstrate 

directly that variance among individual differences in brain response to demanding tasks 

explained by COGED cannot be explained by individual differences in task performance 

metrics.  

To examine this question, the same multi-level modeling approach was used, with 

the addition of two performance predictors: d’ for quantifying accuracy and µRT for 

response time. 

SV3Si = B1j[i] + B2j[i] Load + B3i βctr + B3i µRT + B4i d’ + εi    (4.7) 

B1j = γ10j + γ11j βavg,j + η1j        (4.8) 

   MNI (LPI) Activity effects * 10-1  (p-value) 

Network Node Description 
 

x 
 
y 

 
z 

Load-specific  
B3 

Load-independent 
γ11 

FP 176 l MFG -47 11 23 1.1 (0.70) -6.7 (0.12) 
 186 r IFG 47 10 33 2.2 (0.54) -6.8 (0.28) 
Sal 213 l dACC -2 15 43 0.0 (0.99) -6.6 (0.04) 
Other 265 r VS -12 12 -6 0.1 (0.98) -18.8 (0.02) 
 266 l VS 12 10 -6 2.6 (0.30) -13.1 (0.08) 
Table 4.5 Performance-independent relationship between load-dependent and load-independent activity and 
discounting in select nodes. Five a priori nodes of interest (c.f. McGuire et al., 2010 and Botvinick et al. 
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2009) are reported. Shading in the table indicates significance level with light grey for p < 0.10, medium 
for p < 0.05, and dark for p < 0.01. 

Although reliabilities (p-values) are attenuated, the load-independent predictor 

βavg remained reliable (at p < 0.05) in the right VS node, and also the dACC after the 

inclusion of performance variables. That is, for most of these nodes, performance does 

not explain away the individual differences relationships between mean cross-level 

activity and subsequent discounting. Notably, βavg in the dlPFC nodes are no longer 

reliable predictors. These results stand in contrast with those of McGuire et al. (2010) 

who found the exact opposite: the dlPFC, but not dACC remained reliable predictors of 

subjective experience after controlling for performance. While a role for the dlPFC in 

encoding subjective effort was predicted from a literature linking cognitive control 

processes to cognitive effort, and also, in turn, to dlPFC representation (Botvinick & 

Braver, 2015; Kool et al., 2013; Westbrook & Braver, 2015), the lack of evidence 

implicating the dACC was surprising. In contrast, our results support that the dACC, but 

not the dlPFC best encode subjective cognitive effort, controlling for performance.  

Our result confirms the strong prior hypotheses implicating the dACC in tracking 

cognitive effort for the purposes of value-based regulation of cognitive control (Shenhav 

et al., 2013). Our results are also consistent with a well-supported hypothesis about the 

respective roles played by the dlPFC and dACC. According to the hypothesis, the dACC 

monitors performance and recruits dlPFC to support more intensive cognitive control 

when performance is in decline (Botvinick et al., 2001). Thus, shared variance (explained 

away when controlling for performance) between performance measures and mean dlPFC 

activity in our data are consistent with the hypothesis that dlPFC is recruited to support 

cognitive control in proportion to declining performance. It is also possible that we found 
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evidence implicating the dACC, where the earlier study did not for methodological 

reasons. For example, a continuous effort-discounting measure of effort costs may simply 

be more precise than categorical self-report measures used in the previous study. 

Among the wider set of nodes spanning the DMN, CO, FP, Sal, and DorAtt 

networks, many remain reliable predictors at p < 0.05. However, p-values are also 

attenuated when performance predictors are included and none survive FDR correction, 

as a consequence. For exploratory purposes, nodes with significant effects (at p < 0.05, 

uncorrected) are mapped in Figure 4.14. These nodes cluster mostly in the left dACC, 

and the bilateral vlPFC and IPS.  

 

Figure 4.14 Nodes in which load-independent N-back activity predicts subjective effort costs, controlling 
for performance. All nodes are reliable at uncorrected p < 0.05. Colors indicate network membership and 
effect sign: red for DMN, black for Sal, green for DorAtt, and purple for CO, and dark yellow for a FP 
node with a positive load-independent effect on SV3S. 

The exploratory analyses (across all five a priori networks of interest) have 

largely recapitulated the a priori node tests, showing performance-independent effects of 



 

 72 

average activity on subjective effort costs in the dorsal medial PFC, but not the dlPFC. In 

addition to these regions, a set of nodes in the vlPFC, AI and IPS also showed significant 

(if uncorrected) effects, spanning the FP, CO, Sal, and DorAtt networks.  

Although none of the exploratory nodes survived correction after controlling for 

performance, in none of the models were performance variables themselves (d’ or µRT; 

all p’s ≥ 0.22) reliable predictors of SV3S. This suggests that the attenuation of the 

reliability of the predictors of interest stems from the additional complexity of the larger 

models rather than shared variance, per se. In fact, a series of nested model comparisons 

reveals that additional performance predictors do not explain sufficient variance to justify 

the degrees of freedom for any node (all Χ2 p’s ≥ 0.16). Also note that the use of other 

Ex-Gaussian response time parameters (σ or τ) did not fundamentally alter the pattern of 

results. 

4.2.3 Limitations 
As described above, one of the key limitations of the present experimental design 

is that task order was fixed and, as such confounded with load level. This may drive some 

of the unexpected results like the negative linear slopes across load, or the drop in activity 

at N = 5 relative to N = 6 in task-positive networks. Future designs could incorporate load 

order counterbalancing to resolve this confound. Nevertheless, the fixed load order was 

an intended aspect of the design, implemented to reduce between-subject variability 

(unrelated to effort) in the subjective experience of each load. In a counterbalanced 

design, a participant performing the N = 6 load at the very beginning of the session might 

have a different experience than one that performs N = 6 at the very end of the session, 

for reasons that have nothing to do with subjective effort, per se. Hence, fixed order 
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conferred validity benefits as well. Another limitation of this design was the rapid, fixed 

pacing of the N-back stimuli, which limit the ability to resolve event-related neural 

activity to different trial types (lures, targets, and non-targets). Again, however, this was 

also an intended feature of the experiment, which not only simplified the analytic 

approach, but also ensured that the cognitive engagement was maximally constant and 

continuous across each block. Nevertheless, future experiments could explore different 

approaches, such as optimizing the design for event-related analyses (or mixed event-

block designs) and the contrasting of different trial types, by jittering stimulus 

presentation rates.  

4.3 Summary 
The hypothesis that a given region tracks cognitive effort during task engagement 

requires not only that activity in the region scales with objective cognitive load, but also 

that it scales with subjective experience. In this chapter, the encoding of objective load 

and subjective effort during N-back performance was investigated in four task-positive 

networks: the FP, Sal, CO, and DorAtt networks, and the task-negative DMN. 

Across a wide range of loads (N = 1—6), all five networks showed distinct load 

functions, including monotonic decline in the DMN, inverted-U response profiles in the 

FP, Sal, and DorAtt networks, and flat, positive activity in the CO network. This set of 

patterns, especially including a flat function in the CO and decreasing activation in the 

DMN, along with performance statistics, supports the hypothesis that, rather than 

disengaging from very highly demanding loads, participants may have shifted their 

response strategies in an adaptive fashion. Particularly strong evidence against the 

disengagement hypothesis is that those performing the 3-back better have a more 
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pronounced inverted-U load function (across N = 1—3) as compared with those 

performing the 3-back worse, cf. (Jaeggi et al., 2007). The observed pattern of load 

functions also supports the interpretation that the FP, Sal, DorAtt, and DMN networks, in 

particular, track objective load and are thus also candidates for tracking cognitive effort.  

Regarding subjective experience, the FP, Sal, DorAtt, and CO networks all 

showed higher levels of activity, across loads, for steeper discounters. That is, 

participants finding the N-back to be more effortful also showed more activity in these 

networks, regardless of load. However, contrary to the original hypothesis, no networks 

showed activity by load interactions predicting subjective effort. Thus although networks 

vary by load, this variation does not, itself, vary as a function of subjective effort. One 

tentative exception to this null result is that steep effort discounters showed higher 

activity at low loads (N < 3) and earlier peaking (at N = 2 versus N = 3), relative to 

shallow effort discounters. Interestingly, this distinction mirrored the performance 

distinction such that the load profile of steep effort discounters resembled that of better 3-

back performers while shallow effort discounters resembled that of worse 3-back 

performers. This resemblance supports a prior hypothesis that high subjective effort 

constitutes a cue to shift strategies adaptively (thus maintaining performance at the 

demanding 3-back). 

At the sub-network level, higher load-independent activity in a set of five a priori 

nodes of interest, including the dACC, and bilateral dlPFC and VS predicted greater 

subjective effort. This result mirrored the findings in the wider set of a priori networks. 

Interestingly, after controlling for performance, the dACC (along with the bilateral VS) 

remained a reliable predictor of subjective effort, though the dlPFC nodes did not. While 
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this perfectly contradicts a prior study showing effects in the dlPFC but not dACC 

(McGuire & Botvinick, 2010), it is consistent with strong prior hypothesis implicating the 

dACC, in particular, in tracking subjective effort.  

Finally, a wider, exploratory investigation of all nodes across the five networks of 

interest revealed a set of 49 nodes surviving multiple comparisons correction in the left 

dlPFC, and also the bilateral IPS, dACC, pre-SMA, AI, and vlPFC. While load-

independent activity in almost all of these nodes negatively predicted SV3S, it positively 

predicted SV3S in three DMN nodes and one FP node. The positively related DMN nodes 

mostly did not also encode load, and showed almost no reliable task-based deactivation, 

making their relationship with individual differences in subjective effort difficult to 

interpret. The FP node, by contrast, showed the same qualitative pattern as the wider FP 

network, with the particular distinction of showing lower, rather than higher load-

independent activity among the low AUC group. Given that it was the only node showing 

an effect in this direction, stronger conclusions require additional study and replication. 

Finally, a smaller set of nodes, mostly in the vlPFC, IPS, and dACC/pre-SMA showed 

significant (if uncorrected) effects after controlling for performance. 
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Chapter 5: General Discussion 
Cognitive effort is an attribute of everyday experience with important 

consequences for decision-making and action in normal behavior, and also in disorders 

ranging from schizophrenia to depression. Yet, despite its importance, very little is 

understood about what the brain is doing when a cognitive task feels effortful. The 

experiments described here were conducted to fill these gaps, by addressing two broad 

questions: 1) what brain regions track objective working memory load; and 2) what 

regions track subjective effort beyond variation by load.  

To investigate these questions, subjective effort was operationalized in terms of 

effort-based reward discounting (COGED: the COGnitive Effort Discounting task). This 

novel approach conceptualizes effort as a cost that can be tracked during engagement 

with a demanding task. This cost is thought to be cached as an accessible quantity that 

can be recalled when presented with future opportunities to expend effort to earn reward. 

This type of operationalization avoids problems associated with traditional effort 

measures like self-report (which relies on potentially unreliable self-introspection and 

veridical report) or indirect measures like objective load, or physiology (which can only 

be linked to effort circularly; i.e., if one assumes they are linked to effort). The 

operationalization also provides conceptual clarity, so that the questions addressed by this 

work can be asked more precisely, in terms of what pattern of brain activity during N-

back engagement reflects subjective costliness. Below, I briefly recapitulate the key 

results of the study and their implications for our understanding of the neural basis of 

cognitive effort representation. 

5.1 Behavioral Results 
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The behavioral results of the current study confirm what has been observed in 

extensive piloting and two recent publications (Culbreth, Westbrook, Braver, & Barch, 

2015; Westbrook et al., 2013), namely that individuals discount monetary rewards more 

strongly with increasing load in the N-back task. Increased discounting with increasing 

load supports the hypothesis that the experience of cognitive effort is state-dependent: 

some tasks are subjectively more costly than others. The observed cross-session stability 

in the extent to which individuals discount rewards in exchange for completing N-back 

tasks is a finding that supports the hypothesis that subjective experience of effort is also 

trait-like. Some individuals tend to find the tasks more costly than others, and this pattern 

of individual differences appears to be relatively stable across time. However, there was 

also variability in participants’ discounting across sessions suggesting that other state 

factors, along with measurement noise, play a role as well. Though not investigated in the 

current study, the validity of the effort discounting as a trait construct has been supported 

by evidence that individual differences in discounting rates predict negative symptoms in 

schizophrenia (Culbreth et al., 2016), cognitive aging, and Need for Cognition 

(Westbrook et al., 2013). In the current study, the intentional restriction of the variance in 

N-back performance facilitates a clear demonstration that individual differences in 

subjective effort exist apart from differences in N-back performance or ability. 

Performance rates, in terms of d’ and response times were practically identical between 

groups defined by a median split of average discounting rates. As noted above, the 

artificial selection of participants showing uniformly high performance, and also either 

very steep or very shallow discounting enables the current dataset to be used to 

demonstrate that differences in subjective effort can exist apart from differences in 
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performance. Moreover, the artificially selected sample confers the additional benefit for 

imaging analysis by emphasizing differences in brain activity that distinguish steep and 

shallow effort discounters apart from differences in performance. It is important to note, 

however, that the artificiality of the selection process also limits the study’s 

generalizability. Indeed, pseudo-random selection in a prior study (via self-selection 

among undergraduates and older adults) has shown that performance is typically related 

to subjective effort (Westbrook et al., 2013).  

5.2 Regions of the Brain Tracking Cognitive Effort 
A number of regions were hypothesized to track cognitive effort. At the broadest 

level, a set of task-positive networks, including the FP, DorAtt, CO, and Sal networks are 

more active when participants are engaged in a demanding task, while the DMN is less 

active under such conditions (Braver et al., 1997; Callicott et al., 1999; Jaeggi et al., 

2003; 2007; D. C. Park & Reuter-Lorenz, 2009). Moreover, activity in regions of these 

networks have been shown to vary with load (McKiernan et al., 2003; Pyka et al., 2009). 

Within these networks, particular nodes are thought to be especially relevant for tracking 

subjective effort because they have been hypothesized to support cognitive control 

processes (including regulating the intensity of control signals and maintaining task rules 

for biasing behavior), and these cognitive control processes, in turn are thought to be 

subjectively effortful (Westbrook & Braver, 2015). Canonical models of cognitive 

control implicate the dlPFC for working memory maintenance of rules for guiding 

behavior and the dACC for detecting control demands by tracking errors or conflict and 

upregulating control accordingly. Hence, these frontal regions were particularly strong 

candidates for tracking cognitive effort (McGuire & Botvinick, 2010).  
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To assess whether a brain region tracks cognitive effort, the first step was to 

identify regions that responded to task engagement and also varied by objective N-back 

load. Numerous prior studies of N-back activity have identified a core set of load 

functions across N = 0—3 (Owen et al., 2005). As characterized by one early study, these 

include inverted-U shapes, monotonic patterns, and flat functions that reflect task 

engagement but do not vary by load (Callicott et al., 1999). Yet, these load functions 

have never been examined beyond N = 3, nor have they been investigated in a set of 

networks independently defined, by their functional connectivity as in (Power et al., 

2011). So, the present design generated novel data about load functions extended to 

extremely highly demanding load levels in independently-specified functional networks.  

All three kinds of load functions characterized by Callicott et al. (1999) were also 

found in the present dataset, with some differences in the precise dynamics and locations. 

Namely, most task-positive networks showed inverted-U patterns, including the FP, Sal, 

and DorAtt networks, as defined by (Power et al., 2011). These networks span the very 

dlPFC and dACC regions hypothesized to be central to tracking effort. Inverted-U 

patterns in the task-positive networks peaked at N = 3 and so would have appeared as 

monotonic load functions by previous study designs. One caveat is that there was an 

unexpected rise in activity from N = 5 to N = 6 for most task-positive networks. Fixed 

task order precludes careful investigation of this effect, which could have arisen from 

some particular cognitive strategy that participants used to complete the 6-back, or 

something less interesting like rebound from fatigue, or participants’ motivation from 

knowing that the 6-back was the ultimate load level.  
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The CO network, by contrast, showed a flat load function. Activity in this 

network was robustly positive across all levels of the task, but did not vary reliably across 

loads (there were no linear or quadratic trends of load across N = 1—6). This result 

suggests that the CO network simply encodes that a participant is engaged in a task or 

not, rather than cognitive load per se. Finally, approximately monotonically decreasing 

behavior was observed in the DMN. Decreasing activity with load has been observed in 

prior studies of the DMN (McKiernan et al., 2003; Pyka et al., 2009), but never at this 

wide range of loads. The fact that approximately monotonic behavior was observed 

across all levels N = 1—6 in the DMN is striking and implicates the DMN in monotonic 

load functions much more strongly than if only N = 1—3 had been investigated. 

Inverted-U patterns present two complications for interpretation. First, they 

suggest the possibility that participants may be disengaging when task conditions become 

overly demanding. This hypothesis, however, is contradicted by evidence that 

performance remains high across all N-back loads, and also by the monotonic and flat 

load functions observed in the DMN and CO networks, respectively. The fact that 

activity patterns are not diminished at N > 3 in the CO and DMN implies that participants 

are remaining deeply engaged with the task, but instead might be shifting strategies when 

the N-back becomes very demanding. This hypothesis was originally suggested by a prior 

study which found that the highest 3-back performers actually showed a more 

pronounced inverted-U (bigger drop from a peak of activation for the 2-back) as 

compared with the lowest performers (Jaeggi et al., 2007). It was suggested that they 

performed better because they shifted strategies adaptively in a way that resulted in a 

stronger inverted-U pattern. The present dataset replicates this earlier result, supporting 
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that rather than disengaging (at, say N = 3 relative to N = 2), participants shifted 

strategies adaptively, helping them maintain higher 3-back performance. 

The second complication with inverted-U patterns is that they are not readily 

reconcilable with monotonically increasing effort costs (discounting) with load. It is 

entirely possible that even though participants are shifting strategies at higher load levels, 

they still find those high-load strategies more subjectively costly. Nevertheless, strategy 

selection is a degree of freedom that cannot be accounted for by this experimental design. 

The best candidate for tracking effort by load alone, by this criterion, is therefore the 

DMN. The DMN, like SV is also monotonically decreasing as load increases. It is 

possible that subjective, phenomenal effort indexes the degree to which the DMN is 

suppressed while individuals are engaged with external tasks. This hypothesis is 

consistent with the observations that low-effort mind-wandering is associated with 

greater DMN activity (Schooler et al., 2011), and lapses of attention indexed by greater 

response time variability is associated with the extent to which the DMN and task-

positive regions are anti-correlated (Kelly, Uddin, Biswal, Castellanos, & Milham, 2008). 

Variation by load is only one piece of evidence that a region tracks cognitive 

effort; a region should also encode subjective effort beyond objective load. In the current 

study, subjective effort was defined by the extent to which individuals discounted 

rewards for completing N-back tasks. According to this definition, regions in which 

activity co-varies with discounting would be strongly implicated in tracking subjective 

effort. Interestingly, all a priori task-positive networks are good candidates in that their 

load-independent activity encoded SV3S. Namely, greater load-independent activity 

predicted greater subjective effort, as quantified by steeper discounting. While this was 
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true in all task-positive networks, there was no relationship between load-independent 

activity in the DMN and discounting. This result is surprising and not easy to reconcile 

with the interpretation that the approximately monotonic DMN load function otherwise 

makes it a good candidate for tracking effort. That is, a monotonic load function suggests 

the DMN tracks (monotonically increasing) effort, but there is no evidence that the DMN 

tracks individual differences in subjective effort – even though the task-positive networks 

appear to track individual differences. Part of this discrepancy in whether a network 

tracks individual differences may have to do with functional heterogeneity in the DMN. 

While other networks showed consistently negative relationships between activity and 

AUC3S, the DMN showed some nodes with negative, and three statistically reliable nodes 

with positive relationships. Hence, because these effects cancel each other out at the 

network level, the network-wide relationship would be weaker than more homogeneous 

networks.  

One surprising and unpredicted finding of the study was that while load-

independent activity predicted subjective effort, load-dependent changes in activity did 

not, controlling for load. That is, accounting for the relationship between objective load 

and SV3S, no additional variance was explained by load-dependent changes in brain 

activity. This result may reflect insufficient power to detect a load-dependent effect. 

Relatedly, there was no statistically reliable evidence of activity by load 

interactions in discounting. That is, none of the networks of interest evinced steeper (or 

shallower) load functions among those who find the N-back more effortful. Again, the 

lack of evidence for activity by load interactions may reflect insufficient power. Indeed, 

this interpretation is supported by the finding of subtler trends in key networks and 
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regions such as the DorAtt and dACC, for which activity in steep discounters numerically 

peaked at N=2, whereas shallow discounters’ activity peaked at N=3.  

Interestingly, this pattern of steep discounters peaking earlier mirrors the pattern 

of high 3-back performers peaking earlier, and provides tentative support to the 

hypothesis that high subjective effort is a cue to shift strategies adaptively at very high 

cognitive demands. This pattern is also intriguing in light of data on differential dlPFC 

load functions and subjective effort in older adults. Namely, higher load-independent 

activity and earlier peaking among those experiencing greater subjective effort mirrors 

findings that older adults show over-recruitment, at low loads, and under-recruitment at 

high loads, in the lateral PFC during working memory tasks (D. C. Park & Reuter-

Lorenz, 2009; Reuter-Lorenz & Cappell, 2008), and moreover supports the widespread 

assumption older adults experience greater subjective effort for the same cognitive tasks 

(Hess, 2014). There is a striking convergence between the lines of evidence that 1) older 

adults experience the N-back as costlier, as we have shown using the same effort-

discounting paradigm (Westbrook et al., 2013), and 2) that when comparing lateral PFC 

activity during a working memory task across age groups (Cappell et al., 2010) to our FP 

and DorAtt load functions, older adults look like our high-cost group while younger 

adults look like our low-cost group. 

Follow-up studies are needed to investigate the lack of stronger evidence for load 

by activity interactions predicting subjective effort. Also, as mentioned above, it may be 

that the best indices of effort are not univariate block regression weights, but rather 

event-related responses to task events, or some combination of block and event-related 

responses (as probed by “state-item” response models). Additionally, the intensity of 
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engagement / effort may track load-specific changes in multivariate patterns of activity 

that are distinct from mean signal. These possibilities are discussed further under Future 

Directions.  

Although load-dependent changes in brain activity did not relate to subjective 

effort, load-independent activity robustly predicted individual differences in subjective 

effort in all task-positive networks of interest and also the dlPFC and dACC regions of 

interest. Importantly, these findings also place a distinct interpretation on prior results in 

this domain. In particular, a previous, influential study found that self-reported desire to 

avoid demanding tasks measures related to brain activity in both of these regions, but not 

the dACC, when controlling for performance measures (McGuire & Botvinick, 2010). 

The McGuire & Botvinick result was surprising, in that it contradicted strong prior 

hypotheses regarding the role of the dACC in actively tracking control demands. 

Likewise the wealth of evidence regarding dACC and cognitive effort led to a recent, 

influential theoretical account in which the dACC up-regulates control in proportion to 

the expected costs and benefits of doing so (Shenhav et al., 2013). It is particularly 

interesting, therefore, that the present data showed just the opposite of the McGuire & 

Botvinick (2010) finding: here, discounting related to mean activity in the dACC, but not 

dlPFC nodes after controlling for performance. The lack of a relationship with dlPFC 

activity, after controlling for performance, is consistent with a well-supported hypothesis 

that the dlPFC is recruited to support cognitive control in proportion to flagging 

performance (Botvinick et al., 2001). One potential explanation for why we detected a 

performance-independent effect in the dACC when the prior study did not is that the 
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COGED measure might be more reliable or provide more precision for discriminating 

between individuals than categorical self-report ratings. 

Finally, an exploratory analysis reveals a cluster of nodes in the bilateral vlPFC, 

IPS, and dACC / pre-SMA for encoding subjective effort apart from performance 

measures. While these nodes did not survive multiple-comparisons correction, the 

evidence that the performance measures themselves were not significant predictors of 

subjective effort suggests that these nodes did not survive correction chiefly because of 

limited power (for investigating individual differences). That is, it is more likely that the 

addition of performance predictors attenuated p-values for the load-independent activity 

predictor because they consumed degrees of freedom, rather than explaining shared 

covariance with subjective effort. As such, the set of nodes and regions implicated by this 

analysis warrant future studies targeted to investigate the encoding of subjective effort 

therein. 

5.3 Future Directions 
There are a number of future directions to take the question of what brain 

dynamics track subjective effort during task engagement, using the COGED paradigm. 

First, future experimental designs might be optimized to examine event-related responses 

to N-back stimuli rather than a block design. The block design is a reasonable first 

approach to quantifying task engagement, but this approach revealed that most block-

wise load effects are clearly not monotonic in the brain the way they are in discounting 

(i.e., the monotonic COGED functions shown in Figure 3.4). Perhaps event-related 

activity patterns might exhibit monotonic load functions. Alternatively, there might be an 

important link between cognitive effort discounting and the relationship between 



 

 86 

sustained and transient N-back activity, as could be observed in mixed block/event-

related designs, e.g., (Reynolds, West, & Braver, 2009). For example, subjective effort 

may track closely with norepinephrine function, which, according to an influential theory, 

shows a higher ratio of event-related to tonic responses when reward frequency higher 

(Aston-Jones & Cohen, 2005). Event related analyses may also reveal information about 

strategy shifts and thus enrich our understanding of what happens at supra-capacity N-

back loads. For example, shifting to a familiarity-based strategy could result in a 

progressively smaller distinction between event-related responses to lures and targets. 

Controlling for individual differences in strategies applied at a given task level could also 

increase power to detect individual differences in subjective cognitive effort. 

It is also possible that load-specific changes might be more robustly encoded as 

multivariate patterns of activity in key cognitive control and working memory regions 

like the dlPFC, cf. (Etzel et al., 2015). In particular, there is a growing appreciation that 

working memory content related to cognitive control might be more reliably encoded in 

terms of multivariate activity patterns rather than in the mean amplitude of load-related 

activity (Riggall & Postle, 2012). Such multivariate patterns might also relate strongly to 

subjective effort, such that they could be used to decode differences in subjective effort 

between individuals or across loads. Importantly, effort might not be encoded in terms of 

mean activity across a block, but rather might be more sensitively detected as 

multivariate patterns of activity and their load-dependent changes across the block. 

Another future direction involves looking at network connectivity dynamics 

during N-back engagement. For example, network connectivity properties could be used 

to investigate the hypothesis that conscious attention corresponds to a global workspace 
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of dynamically configured network components that are functionally coupled 

(Kitzbichler et al., 2011). As such, measures of increasing functional integration may 

covary with the intensity of focused attention brought to bear on a task, or the objective 

load of the task. These effects may relate to subjective cognitive effort in key ways. Less 

modularity and more global integration may obtain among shallow effort discounters 

who find attentional focus less costly, independent of objective load. Furthermore, given 

evidence that DMN deactivation is monotonically decreasing in load (like SV) and that it 

may reflect individual differences, it is reasonable to suspect that it is not just load-

independent activity in task-positive networks that is costly, but the strength of the anti-

correlation between task-positive and task-negative networks that tracks subjective effort. 

The greater value of the questions investigated in this research lies in 

understanding how effort is tracked and how that information comes to influence 

cognitive motivation. As these are particularly consequential for disorders of anhedonia 

and anergia, another important future direction is to investigate how subjective effort is 

differentially encoded among those with, for example, depression and schizophrenia. A 

greater range in discounting or sharper group differences would afford greater power to 

detect subjectivity effects, while also elucidating the key nodes in the pathway for 

experiencing, learning, and deciding about cognitive effort. More importantly, such work 

could inform hypotheses regarding the neural circuits and pathways that are 

dysfunctional in psychopathology. This may also lead to future interventions to promote 

desirable effort. For example, neurostimulation methodologies such as TMS and tDCS 

might be useful in this domain, as a technique to “trick” the brain into thinking that it is 

experiencing less subjective effort than expected, i.e., by targeting key ROIs such as 
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dACC or AI. Or, another approach might be to focus on dopaminergic receptors that are 

preferentially expressed in the brain regions associated with integrating effort costs into 

action selection (e.g., dACC, DLPFC, VS). Of course, creating targeted interventions of 

this kind will require much more precise information about the how the brain tracks and 

makes decisions about cognitive effort. This dissertation provides an important first step 

in that direction. 
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Appendix A 
The main text described an investigation of brain activity patterns tracking 

subjective effort during task engagement. This is relevant for behavior because, as the 

COGED paradigm itself demonstrates, subjective effort costs influence cognitive 

motivation. That is, subjective effort costs learned during task performance influence the 

subjective value of an external reward and therefore an individual’s drive to pursue the 

reward. In this Appendix, a closely related question is asked: what brain regions support 

effort-based decision-making? To address this broad question, two more focused 

questions are asked. 1) What brain regions are engaged by close offer comparison relative 

to trivial selection, and 2) what regions encode dimensions of choice like subjective value 

and its objective dimensions, reward and load magnitude? 

A.1 Regions Engaged by Effort-Based Decision-Making  
Most effort-based decision-making data comes from animal lesion and unit-

recording studies while animals make decisions about physical effort, and a handful of 

brain-wide imaging studies of physical effort studies among humans. Very few studies 

address the neural mechanisms of cognitive effort-based decision-making directly. While 

caution is warranted in extrapolating results to cognitive effort, there may be considerable 

overlap in the systems mediating either (Schmidt et al., 2012). As suggested in the main 

text, the ACC, and the dorsal region in particular (dACC), appear to play a central role in 

effort-based decision making. Other key regions include the ventral striatum (VS), 

particularly a subregion of the VS known as the nucleus accumbens (NAcc), as well as 

the ventromedial prefrontal cortex (vmPFC, and orbitofrontal cortex), and insular cortex.  
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A diverse array of methodologies, paradigms, and species implicate the ACC in 

effort-based decision-making. One emerging theory is that the ACC is critical for 

selecting and motivating series of effortful actions by maintaining action-outcome 

associations in pursuit of valuable goals (Cowen, Davis, & Nitz, 2012; Holroyd & 

Yeung, 2012; Kennerley, Behrens, & Wallis, 2011; Rushworth, Walton, Kennerley, & 

Bannerman, 2004; Shenhav et al., 2013). Evidence that the ACC supports overcoming a 

prepotent bias against effort includes that ACC lesions have been shown repeatedly, in 

both rats and monkeys, to yield a bias against effort (Floresco & Ghods-Sharifi, 2006; 

Rudebeck, Walton, Smyth, Bannerman, & Rushworth, 2006; Walton et al., 2009; Walton, 

Kennerley, Bannerman, Phillips, & Rushworth, 2006). In a common paradigm, rats 

navigating a T-maze may select either a high reward arm with a large barrier to climb or 

another with a low reward and low barrier, thereby expressing their preference for effort. 

Rats that start with a preference for the high reward / high effort option will switch to the 

low reward / low effort option following ACC lesion. Lesioned rats will also switch back 

if effort is equalized, demonstrating that apparent preference is not the result of 

difficulties in learning, or decrements in perceiving reward value or reward-based 

decision-making, e.g. (Walton, Bannerman, Alterescu, & Rushworth, 2003). Thus the 

ACC appears critical for overcoming a bias against effort. Human fMRI studies also 

provide evidence that the ACC encodes demand during effort-based decision making 

(Croxson, Walton, O'Reilly, Behrens, & Rushworth, 2009; Kurniawan, Guitart-Masip, 

Dayan, & Dolan, 2013; Kurniawan et al., 2010; Prévost et al., 2010). In one study, human 

participants were cued to squeeze a handgrip either with high or low effort for a fixed 

period in order to make them eligible to win a probabilistic reward, or avoid a 
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probabilistic loss (Kurniawan et al., 2013). Critically, activity in the ACC and VS 

signaled anticipation of effort, and did so independently of whether the trial was gain or 

loss. Also, the inclusion of catch trials signaling effort, but not requiring subsequent 

response, enabled the investigators to rule out that the anticipation of effort in the ACC 

reflected motor preparation.  

The dACC also features prominently in cognitive control and thus is likely play 

an important role in effort-based decision-making that involves cognitive control 

demands. An influential theory implicates the dACC in monitoring response conflict and 

up-regulating control signals in the dlPFC to resolve conflict (Botvinick et al., 2001). As 

described in the main text, demands for cognitive control and dlPFC recruitment may be 

closely linked with cognitive effort. Thus, assuming the dACC is responsible for 

regulating the intensity of control, it is well positioned to track the cost of cognitive 

effort. According to a more recent proposal, the dACC plays a more decision-making 

style role in that it selects among task sets based on the expected value of the outcomes of 

those task sets, using inputs from valuation regions like the vmPFC, and integrates the 

cost of control (effort costs) to determine the most valuable task sets (Shenhav et al., 

2013).  

The nucleus accumbens in the ventral striatum (VS) and VS dopamine (DA) may 

also be critical for effort-based decision-making. Phasic DA from midbrain neurons to 

targets in the VS has been hypothesized to encode unexpected rewards and reward cues 

for use in reinforcement learning about optimal behavior (Montague, Dayan, & 

Sejnowski, 1996; Schultz, Dayan, & Montague, 1997). VS activity thus encodes whether 

on-going events are better or worse than expected and the degree to which they are better 
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or worse. VS BOLD signals have correlated with reward value during decision-making 

and at reward receipt in numerous studies, see (Bartra, McGuire, & Kable, 2013) for 

meta-analysis). Also, these signals appear to incorporate costs, responding less 

vigorously to reward cues when costs are high in terms of both physical (Croxson et al., 

2009; Kurniawan et al., 2010; 2013; Schmidt et al., 2012) and cognitive effort (Botvinick 

et al., 2009; Schmidt et al., 2012). For example, VS responses to reward cues were 

smaller following a series of trials with a large amount of task switching (high cognitive 

effort) than after a series of trials with little task switching (low cognitive effort) 

(Botvinick et al., 2009).  

The insular cortex has been identified as component to a network of cortical and 

subcortical regions responsive to aversive stimuli known as the “pain matrix”, and may 

also respond to aversive cognitive effort (Meyniel, Sergent, Rigoux, Daunizeau, & 

Pessiglione, 2013; Prévost et al., 2010; Treadway et al., 2012). A recent conjoint fMRI-

MEG study in which humans were allowed to squeeze a handgrip and rest as they 

pleased, but were rewarded for the duration of squeezing, implicates the insula in effort-

based decisions, and specifically the decision to take a break (Meyniel et al., 2013). The 

investigators found evidence of an accumulating cost signal in the insula with time 

squeezing and that participants would take a break when this signal reached a decision 

bound. They further found that the slope of accumulation was greater when greater force 

was required and less when greater rewards were offered. Finally, they found that the 

duration of voluntary rest periods in between squeezing was impacted by reward 

magnitude, but not by force requirements. 



 

 104 

Apart from these effort-specific hypotheses, there are more general decision-

making regions that likely support cost-benefit decisions as well, especially including the 

vmPFC, the VS, the intraparietal sulcus (IPS) and the posterior cingulate cortex (PCC). 

The vmPFC has been implicated in encoding choice variables during economic decision-

making (Montague, King-Casas, & Cohen, 2006). In the neighboring orbitofrontal cortex, 

neurons has been shown to scale with economic value, for example, integrating 

dimensions of both cost and benefit into a single common currency reflecting value 

during decision making (Padoa-Schioppa & Assad, 2006). A recent meta-analysis of 

human fMRI studies has identified the vmPFC, along with the VS, and PCC as part of a 

core valuation network: a network of regions encoding the subjective value of diverse 

rewards, whether primary, monetary, delayed, physically effortful, risky, etc. (Bartra et 

al., 2013). Finally, the IPS has been implicated in the accumulation of cost-benefit 

difference information (Basten, Biele, Heekeren, & Fiebach, 2010), much as it has 

historically been implicated in the accumulation of stimulus intensity differences during 

perceptual decision-making, suggesting it may play a role in decisions balancing reward 

value against effort. 

A.2 Limitations of prior studies on cognitive effort-
based decision-making 

In the realm of valuation and decision-making there are, as mentioned above, 

numerous neuroeconomic studies that have investigated the brain regions encoding key 

choice dimensions that are components of the valuation process. The subjective value 

(SV) of rewards discounted by costs like delay, risk, and physical effort has been shown 

in meta-analyses to be encoded in a core valuation network encompassing the VS, 
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vmPFC, and PCC in particular (Bartra et al., 2013; Levy & Glimcher, 2012). 

Nevertheless, it is currently unclear whether these same regions will also encode the SV 

of rewards discounted by cognitive effort costs. Regarding cognitive effort, there have 

been studies investigating the encoding of dimensions relevant to SV like cognitive load 

and incentive amount during effort anticipation, e.g. (Vassena et al., 2014), but these data 

do not speak directly to explicit valuation or decision-making.  

Valuation of cognitive effort has been investigated indirectly in a study in which 

participants are cued that they will receive a reward (or not) after performing a high 

(frequent task switching), or low (infrequent switching) demand task (Botvinick et al., 

2009). Interestingly, VS activity, which was higher for cues indicating reward versus no 

reward, was also lower on trials following high versus low cognitive demands. This 

pattern was interpreted as evidence that cognitive effort is encoded as a cost that 

discounts the value of a reward, and this discounted value is represented in the VS. While 

the interpretation is intriguing, it relies on key assumptions regarding the nature of VS 

activity during passive receipt of a reward cue, as opposed to during instrumental 

decision-making. Specifically, it assumes that during passive reward receipt, such reward 

cues evoke implicit valuation processes that incorporate cost information about recently 

exerted effort.  It seems clear that such an assumption needs to be more directly tested 

within the context of cognitive effort-based decision-making 

One study that did examine cognitive effort-based decision-making found 

evidence that striatum may represent both motivation and outcome value with regard to 

cognitive effort (Schouppe et al., 2014). The key finding was that when presented with a 

choice to perform a high- versus a low-effort demanding task, in the absence of external 
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reward, activity was higher in the striatum (and possibly the ACC – though the exact loci 

was ventral and anterior to classic dACC) when participants elected the high demand 

option. On forced choice trials, this pattern reversed, and activity was lower when 

participants were forced to choose the high demand option. The interpretation of this 

pattern is that it reflected high intrinsic motivation when participants freely selected the 

high effort option, but high costs when subjects were forced to select the high effort 

option. While this interpretation is consistent with other literature showing value coding 

in the VS, the lack of external rewards presents a confound in that the participants’ 

motivation state must be inferred from the fact that they chose the high effort option. It is 

equally possible, for example, that high effort selection trials were unrelated to intrinsic 

motivation and yet showed higher VS encoding (under the free-choice condition) because 

they did not carefully consider the costs involved. Without explicit information about 

costs and benefits, it is hard to make strong inferences about what this pattern of VS and 

ACC brain responses represent. 

Only one study, to date, has investigated SV encoding of cognitively effortful 

rewards during effort-based decision-making where the SV is determined independently 

from choice behavior, and used as a regressor during decision-making (Massar, 

Libedinsky, Weiyan, Huettel, & Chee, 2015). In this study, seven small clusters 

correlating positively with SV of discounted reward were identified in locations ranging 

from the cingulate gyrus to the IPL to the IFG. Some of the peak voxels, however, fell in 

white matter regions. More importantly, they did not report whether the clusters were 

encoding the task demands, offer amounts, or both dimensions. Thus it is unclear whether 

the clusters implicated by this study reflect SV or covarying dimensions (e.g. reward 
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amount). Also, during scanning, both offers were presented simultaneously, so it is 

unclear whether the regions identified truly encode SV, or just some combination of 

offers dimensions. As described in the next section, the core methodology of the present 

study follows the approach of Massar et al. (2015) most closely, while making key 

improvements that enhance the reliability of the results and the strength of the inferences 

that can be made. 

A.3 Predictions about regions supporting effort-based 
decision-making 

While participants are evaluating offers in the context of COGED-like decision-

making, the brain should encode key choice features relevant to the computation of 

subjective value. The broader neuroeconomics literature provides a number of predictions 

based on the domain-general encoding of subjective value when evaluating offers, e.g. 

(Bartra et al., 2013; Levy & Glimcher, 2012). In particular, it is hypothesized that a core 

valuation network implicated in representing value in other domains will also support 

valuation process regarding cognitive effort. As such it is predicted that the SV of effort-

discounted rewards will be reflected in activation patterns of the VS, the vmPFC, and the 

PCC (i.e., with activation in these regions tracking trial-by-trial fluctuations in SV).  

During valuation of effortful rewards, there should also be a network of regions 

involved in integrating expected costs that communicates with regions tracking effort 

during effortful engagement to access cached information about expected costs. That is, 

regions identified for encoding subjective costliness during N-back task engagement 

should show some correspondence with regions encoding dimensions of SV (e.g. load) 

during effort-based decision-making. Since it is hypothesized that the ACC and DMN 
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will both track subjective effort monotonically, it is predicted that individual differences 

in mean N-back activity or load functions during N-back engagement in these regions 

will anticipate the encoding of costs during subsequent offer valuation. Specifically, since 

SV is encoded positively in core valuation regions (VS, vmPFC, PCC), stronger N-back 

responses in the ACC and DMN should relate to more negative deflections in valuation-

related activity in the core valuation regions. 

 It is further hypothesized that regions otherwise engaged by negative or aversive 

outcomes (in particular the AI and ACC) will encode the costs of effort for integration 

into a valuation process (Croxson et al., 2009; Kurniawan et al., 2013; Prévost et al., 

2010; Schmidt et al., 2012). According to the hypothesis that the dACC biases the 

selection of effortful rewards in general, and more particularly that the dACC regulates 

the selection and intensity of cognitive control signals in accordance with the expected 

value of control model (Shenhav et al., 2013) the dACC should encode both reward and 

load information during evaluation of effort-demanding rewards. Thus it is predicted that 

the ACC generally will encode cognitive load, but the dACC, in particular, will encode 

reward and load together during offer valuation. 

Finally, apart from the specific encoding of SV during valuation, there should be 

regions specifically engaged in decision-processes that do not explicitly encode SV, but 

nevertheless support decision-making. Based on prior hypotheses that the ACC and IPS 

are involved in close offer comparison and cost-benefit integration, respectively, it is 

predicted that these regions will show more activity during difficult choices (between two 

offers close in value) than easy choices (when one offer is clearly superior). Note that the 

ACC is thus predicted to encode two distinct forms of cognitive load during decision 
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making – higher anticipated N-back effort negatively, and higher decision difficulty 

positively during valuation and decision-making. 

A.4 Methods 

A.4.1 In-scanner COGED trials 
COGED trials were presented either as a series designed to identify subjective 

indifference points (and therefore SV) in all three sessions and also, during scanning in 

the third session, as a series of randomly-ordered trials that orthogonalized the variables: 

base amounts, N-back load level, and proximity to indifference points following 

indifference point identification. This last variable was employed to systematically vary 

the difficulty of the decision, as described further below. 

The COGED procedure was modified during the third session, to include offers 

that varied with specific proximity to indifference points. Specifically, ten proximity 

settings were designed to yield trials in which offers were close to indifference points, or 

far away from indifference points. A proximity parameter defined the percent difference 

between the estimated indifference point and either $0 or the base amount. Proximity 

parameter settings, ranging from -1.0 to 1.0 were {-1, -0.2, -0.2, -0.1, -0.1, 0.4, 0.4, 0.6, 

0.6, 1.0} where 0.0 would represent an offer for the easier 1-back that was equivalent to 

subjective indifference. At the limits, the offer for the easier 1-back task is $0 (proximity 

= -1) or the full base amount (proximity = 1). These settings yield trivial decisions and 

are thus considered “catch” trials as opposed to regular decision trials. Note that regular 

decision trial proximity values are repeated twice each to reflect that these proximity 

settings are used twice as often as each of the catch trial settings. Also, note that regular 

decision trial proximity values are asymmetric with respect to the indifference point (0.0). 
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The decision to use asymmetric proximity values was made in piloting, based on the 

observation that pilot participants showed a bias towards choosing the hard task / large 

amount offer slightly more frequently than expected from their originally estimated 

indifference points. Thus, the positive proximity settings (0.4, 0.6) for which the 1-back 

offers is above indifference, are slightly larger in magnitude relative to the negative 

proximity settings (-0.1, -0.2) for which the 1-back offer is below indifference. 

Asymmetric proximity values were designed as a counter-bias to yield the desired 

proportion of trials in which participants would select the option to which they are being 

counter-biased by the current offer (the easy task / small offer for positive values and the 

hard task / large offer for negative values). Crossing ten proximity settings with 15 task-

amount pairs produced 150 trials in-scanner trials. 

A.4.2 TEMPD Trials 
Temporal discounting (TEMPD) was also conducted with a decision trial 

structure mirroring that used in COGED. The intent of scanning TEMPD trials was to 

provide a baseline for comparison with effort discounting results. Delay discounting is 

much more well studied, and provides a rich prior body of work against which to 

compare effort-based decision-making results.  

Like COGED, three different amounts {$10, $15, $20} were offered in TEMPD 

trials, at five different delays {2 weeks, 1 month, 2 months, 6 months, 1 year} versus cash 

payment today, for a total of 15 delay-amount pairs. In the first session, 5 decision trials 

for each delay-amount pair were presented to estimate each indifference point, for a total 

of 75 decision trials. TEMPD was repeated again in the third session immediately prior to 

scanning, and, like COGED, was also modified for scanning, with 150 decision trials 
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performed in the scanner. As with COGED, these trials were also defined by 10 different 

proximity settings {-1, -0.2, -0.2, -0.1, -0.1, 0.4, 0.4, 0.6, 0.6, 1.0} for each of the 15 

indifference points for 15 delay-amount pairs. A key difference between the paradigms is 

that in COGED participants were paid for repeating a task, based on the instruction that 

they “maintain their effort” (though in reality, all participants were paid for every 

repetition) while in TEMPD participants were either paid immediately with cash (in case 

an immediate choice was randomly selected from among all choices made by the 

participant), or at some delay by Amazon gift card delivered electronically at the 

corresponding delay (in case a delayed choice was randomly selected to be paid). 

A.4.3 In-Scanner Delay- and Effort-Based Decision Trials 
Outside the scanner, participants were given unlimited time to make each choice 

during indifference point identification. In scanner, by contrast, task trials were adapted 

to the constraints of the fMRI design, and to facilitate independent analyses of brain 

activity during key trial phases. Specifically, decision-making was constrained by a 

particular temporal structure designed to separate pure offer evaluation from comparative 

decision-making processes. Namely, each fixed duration (13 sec) trial began with exactly 

6 sec of a “pure evaluation” phase in which only the high effort (or delayed) reward was 

presented (e.g. $4 for the red task or $15 in 6 months). Participants were explicitly 

instructed to consider “how much [they] like the offer by itself”, but not to respond 

otherwise. Next, was a decision-making phase in which the second offer (always the 

easiest 1-back “black” task in COGED, or an immediate payout in TEMPD, for an 

amount specified by the indifference point and proximity parameter for that trial) was 

presented alongside the first offer, for up to 5.25 seconds during which participants 
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selected their preferred choice. After making their response, or at the end of the decision-

making window, participants received feedback either of their choice on that trial in the 

form of a black box surrounding their selection, or text indicating that they missed the 

response window for that trial. Trials in which participants missed the response window 

were not repeated. The non-response rate was very low with a median of 0% all 

participants, and the mean was 1.15% for COGED and a median of 0% and a mean of 

0.37% for TEMPD. 

 

Figure A.1 Decision trial stimulus and stimulus timing for in-scanner decision trials. 

A.4.4 Procedure 
In the third session, participants were re-screened and consented. Then they 

conducted a shortened version of each level of the N-back task outside of the scanner. 

Specifically, they completed two rounds of each N-back level (instead of three) to re-

familiarize them with the task. While still outside the scanner, participants next made a 

series of 75 COGED choices to establish indifference points for 15 task-amount pairs. 

Then participants made a series of 75 TEMPD choices to establish indifference points for 

15 delay-amount pairs. After indifference points were established, participants were 

brought into the scanner. 
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As described above, the third session consisted of 6 scanning runs, broken up into 

a set of 3 COGED and 3 TEMPD runs each, with short duration breaks (minimum 2 

minutes) of rest given between each run (with the exception of the first 9 participants – 

see above for full details). These breaks were either filled with T1 or T2 scans, or rest. 

Across the 6 runs (or 2 runs for the first cohort), 150 COGED trials and 150 TEMPD 

trials were performed, each generated by crossing 15 indifference points with 10 

proximity settings. Although the precise order of scanning runs varied across participants, 

all participants completed COGED trials before performing any TEMPD trials. For the 

main cohort, each of the 6 runs consisted of 345 scans (790 sec; 13.16 min) and 

approximately 50 decision-making trials.  After the session, a single COGED trial was 

randomly selected to identify which task would be repeated for pay. Likewise, a single 

TEMPD trial was randomly selected, identifying at which delay participants would 

receive their reward. 

For COGED and TEMPD imaging runs there were two cohorts that had slightly 

different settings. In an earlier cohort (the first 9 participants) all COGED trials were 

collected in a single run of 1019 volumes, (all TEMPD trials were also collected in a 

single run of 1019 volumes). For the subsequent cohort, a decision was made to break up 

the decision-trials and provide more between trial rest. Consequently, for the subsequent 

cohort (the last 16 participants), decision trials were broken up into three runs for 

COGED and another three runs for TEMPD, for a total of six imaging runs, each of 

which comprised 345 volumes for all remaining participants. 
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A.4.5 Image processing and modeling 
As with the N-back image data, motion censoring was applied prior to modeling 

GLMs. After evaluation motion parameters, one participant was excluded because of 

excessive motion – 40% of their frames exceeded the motion censoring threshold. Mean 

fraction of censored frames was 5.5% across the remaining 24 participants, with a median 

of 5.5%, and a range of 0% to 16.8%. 

For modeling activity during effort-based decision-making, GLMs used stick 

functions designating the onset of three types of events: evaluation phases, decision 

phases, and infrequent text displays of the menu of cost settings that participants might 

encounter, in order of increasing cost (e.g. a list with “black, red, blue …” tasks, or a list 

with “2 weeks, 1 month, 2 months …”). These menu displays were intended to remind 

participants of the potential costs they encounter on subsequent trials and their ordering 

in terms of cost magnitude. Stick functions were variously convolved with a simple 

gamma function, or as finite impulse response (FIR; “tent functions”), and in some 

instances amplitudes of gamma and FIR functions were parametrically modulated using 

the –stim_times_AM2 argument to 3dDeconvolve. The specific GLM modeling 

approaches associated with different analyses are described in the Results section. 

A.5 Behavioral Results 

A.5.1 N-back Behavioral Results 
As shown in Figure A.2, just like in the second session, performance remained 

high, but was monotonically decreasing with N-back load. Also, like the second sessions, 

participants in the high AUC and low AUC groups did not differ in performance. An 

ANOVA reveals that N-back d’ varied linearly by Load (F1,140 = 131.4, p < 0.01) and 

there was a trending difference by Group (F1,140 = 3.23, p = 0.07), but no interaction F1,140 
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= 0.77, p = 0.38). It is worth noting that a Group difference of higher performance for the 

Low AUC group would contradict the hypothesis that individuals discount more because 

they perform more poorly. However, the group difference, while marginally significant 

across loads, was not significant at any single load (all p’s ≥ 0.17). 

 

Figure A.2 Group performance d’ by load and by AUC group for Session 3. 

As show in Figure A.3, the “lure rate” (percentage of false alarm lure trials), does 

vary with load (F5,137 = 5.85, p < 0.01 in Session 3), appearing to increase up to N = 3, 

and then remain constant after. Just as for Session 2, post-hoc pairwise comparisons 

reveal that the only reliable differences are between a higher lure rate for levels N ≥ 2 as 

compared with N = 1 (p < 0.01). Importantly, however, as was shown for d’, there was no 

reliable group difference in lure rates in Session 3 (p = 0.15), supporting that participants 

in both groups rely on familiarity to a similar extent. 
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Figure A.3 Lure rates across all loads and both groups for Session 3. 

Response time (RT – as measured by the central-tendency parameter µRT from 

ex-Gaussian analyses of each participants’ distribution of response times on correct trials) 

is statistically indistinguishable across Groups in Session 3 (F1,137 = 1.91, p = 0.17). This 

is also true when using the tail of each groups’ RT distribution: τRT, (F1,137 = 1.20, p = 

0.27, respectively). Unlike Session 2, µRT was found to vary with load in Session 3 

(F5,137 = 2.32, p < 0.05). This tendency reflects an apparent RT slowing with load up to 

the 3-back, but asymptotically, remaining flat at higher loads. The only reliable pairwise 

differences in Session 3 RT values are between N = 1 and other task loads (all p’s < 

0.01). All other task loads are statistically indistinguishable. 

 

Figure A.4 µRT across loads and groups for Session 3. 
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Participants, on average, performed better on N-back re-do trials (after COGED 

decision-making) than they did in the prior practice in Session 2. In Session 3, however, 

average performance did decrease slightly with a d’ drop of -0.16 units in the low AUC 

group and -0.24 in the high AUC group, however, performance remained high across all 

levels that were repeated. To verify this assertion, performance was compared against the 

d’ cutoffs that were originally used to define inclusion into the study. Across both 

sessions and groups, participants performed re-do trials above these cutoffs in 43 cases, 

and fell below cutoffs in only five cases (in Session 2, two high AUC participants on the 

5-back d’ = 0.92 and d’ = 0.68, and in Session 3, one high AUC participants on the 3-

back d’ = 1.17, and one on the 6-back d’ = 0.94, and one low AUC participant on the 5-

back d’ = 0.47). Importantly, as with Session 2, high and low AUC groups did not differ 

in terms of performance differences between prior exposure and re-do trials (p = 0.70).  

A.5.2 COGED Decision-Making Behavior 
As shown in Figure A.5, discounting was reliable and monotonic, as it was for 

Session 2, such that estimated subjective value reliably decreased with load across all 

levels of the N-back task in Session 3. Formally, Load x Amount ANOVAs reveal 

reliable effects of Load (F4,137 = 31.6, p < 0.01), but no effects of Amount (F2,137 = 1.75, p 

= 0.18). 
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Figure A.5 Indifference points across N-back task levels and base offer amounts for COGED decision-
making in Session 3. 

A.5.3 COGED In-Scanner Decision-Making  
In scanner, participants made a series of choices between variable offers for the 1-

back, and each of the task-base amount pairs, where the variable offers were set 

according to a proximity parameter controlling whether the offer for the easier (1-back) 

task is above or below, and proximity to, subjective indifference between offers over 150 

trials (see Appendix A Methods for full details). Indifference was established by a 

standard COGED procedure, immediately prior to scanning in Session 3. Unexpectedly, 

three participants showed no discounting during indifference point determination, only 

selecting the more demanding option for larger reward. Because this pattern of choice 

behavior is uninterpretable, these three participants were removed, leaving a total of 21 

participants from further analyses of choice behavior and brain imaging analyses for 

Session 3. 

Bias settings were established in piloting to yield two kinds of effects: first, 

proximity parameters should bias participants towards the low or high demand option 

depending on whether it modulates the offer for the 1-back task above, or below 

2 3 4 5 6

$2
$3
$4

Session 3 SV by Task

N−back Level

SV

0.
0

0.
4

0.
8



 

 119 

indifference, respectively. Second, biasing should make decision-making easy or 

difficult, depending on whether the offer for the 1-back is far from, or close to, estimated 

indifference. As shown in Figure A.6, participants showed a consistent and robust effect 

of bias on choice towards or away from the easy offer. When the proximity parameter 

was negative (the offer for the 1-back was below indifference) participants were reliably 

more likely to choose the more demanding option at every parameter value (all p’s < 

0.01). When it was positive, participants were reliably more likely to choose the 1-back 

(all p’s < 0.01). Though bias manipulations were generally effective, when broken down 

further, particular task N-back levels and bias settings were indistinguishable from 50% 

choice frequency. Namely, participants’ choices on the 2- and 3-back were 

indistinguishable from chance at proximity parameter values of +0.4 (both p’s ≥ 0.09) 

and +0.6 (both p’s ≥ 0.07). The same was true of participants’ choices on the 6-back at a 

parameter value of -0.2 (p = 0.09). All other bias and load settings were distinguishable 

from chance (all p’s < 0.05). 

 

Figure A.6 Choice frequency by task load and by choice biasing condition during effort-based decision 
trials. 
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While a robust effect of bias was anticipated, N-back task level was not 

anticipated to affect choice frequency. Surprisingly, however, it did. Formally, a repeated 

measures Level x Bias ANOVA revealed a linear effect of both Level (F1,20 = 24.5, p < 

0.01) and of Bias (F1,20 = 341, p < 0.01), but no interaction between the two factors (F1,20 

= 2.38, p = 0.14). As clearly shown in Figure A.6, the linear effect of Level is that 

participants are less likely to choose the more demanding option, for a given proximity 

parameter setting, as task level increases. For example, at a parameter setting of +0.6, 

participants were reliably more likely to choose the hard task if it was the 2-back, than if 

that hard task was the 6-back (p < 0.01), despite the fact that the bias is exactly 60% 

above the estimated indifference point in both cases. This result was not anticipated and it 

suggests either a systematic decision-making feature that is not adequately controlled for 

in the COGED paradigm, confounding the initial estimation of indifference points, or a 

post-COGED shift in decision strategies. For example, participants may begin to assign 

relatively more weight to differential reward amounts (rather than differential task 

demands) when deciding about lower levels of the harder task (the 2- and 3-back versus 

5- and 6-back). As a consequence, the biasing effect was not as strong for some task 

levels and proximity parameter settings (e.g. +0.6 for the 2-back) as anticipated. 

Nevertheless, over the full range of parameter settings, bias has the desired directional 

effects on choice frequencies (excepting the cases noted above). 

Proximity parameter settings were designed to control not only the direction of 

the bias, but also the strength and therefore the difficulty of the decision. Smaller 

magnitude parameter settings are closer to estimated indifference and constitute 

putatively more difficult choices. At the limit, decision-making is trivial, reducing to 
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simply identifying the 1-back option (when the proximity parameter is +1.0, and the offer 

amounts are equivalent and therefore irrelevant), or selecting the larger amount when the 

amount differential is maximal (the parameter value is -1.0, and $0 are offered for the 1-

back). One measure of choice difficulty is choice frequency itself. At the limits just 

described, participants selected the 1-back 95.3% of the time, on average, when the offer 

amounts were equivalent, and selected the 1-back only 4.8% of the time when $0 were 

offered, supporting that decision-making was trivial at these limits. Choice frequencies 

were much less biased at other proximity parameter settings.  

Another measure of choice difficulty is choice RT. When trials are broken down 

by bias manipulation, and those on which participants’ choice conforms to the bias 

manipulation (pro-bias), and those contradicting it (anti-bias), two distinct patterns 

emerge. First, among pro-bias choices, catch trials remain, on average, faster than regular 

trials (p < 0.01). There is also a numeric pattern by which those bias settings closest to 

indifference (-0.1 and 0.4) are slightly slower than those further from indifference (-0.2 

and 0.6). For example, the average median RT for pro-bias choices at a proximity 

parameter setting of 0.4 is trending (p = 0.06) slower than pro-bias choices at a parameter 

setting of -0.2. Slower decision-making as bias approximates zero also supports that the 

bias manipulation successfully modulated choice difficulty. Another pattern, shown in 

Figure A.7, is that choices participants made in opposition to the bias manipulation, on a 

given trial, are reliably slower (p < 0.01), on average, than those choices conforming to 

the bias manipulation. Finally, as shown in the Supplement, the bias manipulation had 

large effects on RT, while other choice trial parameters (load and amount) did not.  
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Figure A.7 Choice RTs during effort-based decision-making as a function of pro- versus anti-bias choices 
and biasing condition. 

A.5.4 TEMPD In-Scanner Decision-Making 
In addition to COGED trials, participants were also offered 150 TEMPD 

(intertemporal) choices. As shown in Figure A.8, choice patterns again reflect the 

intended influence of delay. That is, participants discounted the value of monetary 

rewards at all delays relative to payment today. Moreover, indifference points decreased 

with increasing delay showing that, as expected, participants find increasing delays to be 

increasingly costly. Also, as was observed with COGED trials, the data suggest a small 

trend of increasing SV with larger amounts, but again the anticipated increase in SV with 

amounts was not reliable. Formally, Delay x Amount ANOVAs reveal reliable effects of 

Delay (F4,308 = 37.4, p < 0.01), but no effect of Amount (F2,308 = 0.37, p = 0.76). 

Consequently, subsequent TEMPD analyses collapse across amounts, except where 

indicated. 
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Figure A.8 TEMPD SV trials for each delay and amount. 

As with in-scanner COGED decisions, in-scanner TEMPD choices were based on 

offers parametrically adjusted to bias participants towards the higher (delayed) or lower 

(immediate) offer, and also by offers that are close to, or far from indifference, based on 

the proximity parameter value. As shown in Figure A.9, participants show a consistent 

and robust effect of bias on choice towards or away from the immediate offer. When the 

proximity parameter was negative (the immediate offer was below indifference) 

participants were reliably more likely to choose the delayed reward at every parameter 

value (all p’s < 0.01). When it was positive, participants were reliably more likely to 

choose the immediate reward (all p’s < 0.01). Though bias manipulations were generally 

effective, when broken down further, particular task delays and bias settings were 

indistinguishable from 50% choice frequency. Namely, participants’ choices for delays of 

2 weeks and 1 month were indistinguishable from chance at proximity parameter values 

of +0.4 (both p’s ≥ 0.20) and +0.6 (p = 0.10 and p = 0.06, respectively). All other bias 

and delay settings were distinguishable from chance (all p’s < 0.05).  
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Figure A.9 Choice frequency by delay and by choice biasing condition during intertemporal decision trials. 

While a robust effect of bias was anticipated, delay (like N-back level) was not 

anticipated to affect choice frequency. A repeated measures Delay x Bias ANOVA 

revealed a trending linear effect of both Delay (F1,20 = 4.07, p = 0.06) and a reliable effect 

of Bias (F1,20 = 1290, p < 0.01), but no interaction between the two factors (F1,20 = 2.57, p 

= 0.12). As clearly shown in Figure A.9, the linear effect of delay occurred because 

participants were less likely to choose the delayed option, for a given proximity 

parameter setting, as delay increased. For example, at a parameter setting of +0.6, 

participants were more likely to choose the delayed reward if it was only delayed by 2 

weeks, than if it were delayed by a year (at trend-level p = 0.06). Again, it is important to 

note that this effect was unexpected because the bias is exactly 60% above the estimated 

indifference point in both cases. Nevertheless, over the full range of parameter settings, 

bias has the desired directional effects on choice frequencies (excepting the cases noted 

above). 

Again, there is evidence that bias modulated decision difficulty as intended, in 

that offers closer to estimated indifference appeared to index more difficult decisions. On 
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catch trials, participant choice patterns were nearly uniform (the proximity parameter 

value is -1.0, and $0 is offered immediately, or the parameter is +1.0 and $10, $15, or $20 

is offered immediately). At these limits, participants selected the immediate reward 

99.6% of the time, on average, when the offer amounts were equivalent, and never 

selected the immediate offer when $0 were offered, supporting that decision-making was 

trivial in catch trials. Choice frequencies were much less strongly biased at other 

proximity parameter settings.  

Also, as with COGED, there is clear evidence that the bias manipulation 

influenced choice difficulty. When choices are broken down into those conforming to the 

bias manipulation (pro-bias), and those contradicting it (anti-bias), two distinct patterns 

emerge. First, among the pro-bias choices, catch trials remain, on average, much faster 

than regular trials. Also, mirroring COGED choices, there is also a numerical pattern 

(that is not statistically significant) by which decisions at those bias settings closest to 

indifference (-0.1 and 0.4) are slightly slower than those further from indifference (-0.2 

and 0.6). Another pattern, shown in Figure A.10, is that choices participants made in 

opposition to the bias manipulation, on a given trial, are reliably slower (p < 0.01), on 

average, than those choices conforming to the bias manipulation.  
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Figure A.10 Choice RTs during intertemporal decision-making as a function of pro- versus anti-bias 
choices and biasing condition. 

A.5.5 COGED Versus TEMPD 
As with COGED, an AUC index can also be computed for temporal discounting 

(AUCTMP). As shown in Figure A.11, there is a strong trend of higher COGED AUC 

predicting higher TEMPD AUC. Including the full dataset (all 25 participants), the effect 

(shown by dashed line) is not statistically significant (p = 0.12). However, prior studies 

have suggested a relationship between the two variables, whereby steep effort 

discounting participants (low COGED AUC) are very likely to be steep delay discounting 

participants (low TEMPD AUC), but shallow effort discounting participants show the full 

range of steep to shallow delay discounting. The current dataset is largely consistent with 

this pattern with the exception of the one participant showing both very steep effort 

discounting and very shallow delay discounting (AUC3S = 0.31, and AUCTMP = 0.87, 

respectively). 
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Figure A.11 Comparison of delay- and effort-based discounting AUC. 

A.6 Neuroimaging Results: Brain Regions Engaged in 
Cost-Benefit Decision-Making 

Two kinds of questions can help ascertain which parts of the brain are engaged 

during economic decision-making, in integrating the costs and benefits of choice options. 

The first asks which regions are specifically engaged by the cognitive processes 

associated with offer comparison, over and above those regions that are involved in offer 

perception, or response mapping and motor planning and execution. The second asks 

where activity encodes critical choice dimensions of costs and of benefits, or both (e.g., 

in terms of SV). This chapter addresses both questions in turn.  

A.6.1 Regions Engaged by Close Offer Comparison  
A first question asks which regions of the brain are engaged by offer comparison, 

over and above perceptuo-motor processes. The answer to this question can be addressed 

by comparing patterns of activity under difficult decision-making (when offers are close 

in subjective value) to trivial identification and indication of a much-preferred alternative. 

As described in the methods and verified by behavioral analyses, the trial structure 

includes decisions in which the offers are approximately close in terms of participants’ 
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subjective values (indifference points) between easier, smaller rewards, and more 

effortful, larger rewards. These close proximity choices are more likely to promote 

involved weighing of costs and benefits. The trial structure also includes decisions in 

which the offers are very far apart such that one offer is clearly superior to the other, 

rendering the decision trivial. These trials were designed both as catch trials, to prevent 

participants from engaging in quick and simple rules (e.g. always selecting the larger 

offer), and also to provide a contrast with regular (close proximity trials). The contrast 

between regular and catch trials provides a means to identify regions that are engaged by 

the presumably cognitively elaborated process of comparing decision options in terms of 

costs and benefits, over and above the simpler processes of offer perception and motor 

execution for response selection. 

As described in the methods, in the 2nd fMRI session, participants made a series of 

decisions in the scanner, between monetary offers contingent on either re-doing N-back 

tasks of a specific level (effortful rewards) or on waiting a specific time (delayed 

rewards). Each trial began with one offer presented in isolation, hereafter referred to as 

the “valuation period”, during which participants were instructed to consider how much 

they like that offer. The valuation period was designed so that choice dimensions of costs 

and benefits could be unambiguously represented (for a single offer). This valuation 

period always featured the larger, more effortful (delayed) reward, and lasted 6 seconds, 

before the smaller, less effortful (immediate) reward was also presented and the 

participant made their choice. The time between the second offer onset and the 

participant response is hereafter referred to as the “decision period”. 
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Activity arising during the decision period (accounting for hemodynamic lag) was 

contrasted across regular and catch trials to determine which regions of the brain are 

engaged by cost-benefit decision-making. Accordingly, GLMs were built for both 

delayed and effortful rewards, coding valuation window onsets and a separate decision 

window onset for each of the two trial types: regular and catch. The GLMs also included 

an onset for the infrequent display of the menu of cost options that may be presented 

prior to any given trial (text lists of the possible N-back levels or delays). For these 

analyses (unlike later ones), stick functions coding each event onset were convolved with 

a canonical (gamma) hemodynamic response function. Regression weights for regular 

and catch trial onsets were then compared via t-test at the group level.  

Prior studies have shown particular engagement during difficult decision making 

of some of the same working memory, attention, and control networks tracking cognitive 

load during the N-back as investigated in the previous section. For example, the IPS in 

the DorAtt network has been implicated in cost-benefit evidence accumulation when 

costs and benefits are well matched (Basten et al., 2010). Similarly, the dACC, part of the 

Sal network, is particularly active during selection among competing offers that are close 

in value (Shenhav, Straccia, Cohen, & Botvinick, 2014). Thus, the contrast of regular and 

catch trials, for both delay and effort-based decision trials, is investigated in the same five 

networks shown to encode load in the previous chapter. The significance of this contrast 

is evaluated with t-tests conducted on the average response function regression weights 

across networks (or alternatively in particular nodes within those networks). A 

complementary whole-brain, voxel-wise analysis is provided in the Supplement. 
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As shown in Table A.1, many of the networks shown to encode load during the 

N-back also show a reliable contrast with greater activity on regular over catch trials in 

both delay and effort-based decision trials. The only network not showing a network-

averaged effect among those tested is the DMN.  

 Effort-Based Delay-Based 
Network t-statistic p-value t-statistic p-value 
DorAtt 4.81 <0.01 2.16 0.04 
CO 4.13 <0.01 1.75 0.09 
Sal 2.96 <0.01 1.78 0.09 
DMN -1.19 0.25 -0.22 0.83 
FP 3.23 <0.01 2.29 0.03 
Table A.1 t-test of hemodynamic response function regression weights on regular versus catch trials in both 
effort-based and delay-based decision trials. Shading indicates p < 0.01 (dark), p < 0.05 (medium), and p < 
0.10 (light). 

These results are mostly consistent with prior literature. The IPS, in particular, 

was previously implicated in integrating costs and benefits during economic decision-

making (Basten et al. 2010) in such a way that activity should be higher for decisions in 

which costs and benefits are more closely balanced. Hence it might also be more active 

closer to indifference, and thus for regular versus catch trials. In fact, nodes most closely 

approximating the loci identified by Basten et al. show particularly strong contrasts of 

regular and catch trials during effort-based decision-making. These are DorAtt node 

#259, 11 mm from Basten et al. center of mass (x = -33, y = -46, z = 47; t = 7.17; p < 

0.01) and DorAtt node #260, 5 mm from Basten et al. center of mass (x = -27, y = -71, z 

= 37; t = 5.62; p < 0.01). The dACC has been shown to positively encoding decision 

difficulty during foraging tasks (Shenhav et al., 2014). The node closest to the peak 

close-choice contrast in the Shenhav et al. study did not, itself show a reliable contrast 

between regular and catch trials: FP node #202 (x = -3, y = 26, z = 44; 9 mm away; t = 

1.40; p = 0.17). However, a nearby CO network node #213, showed a robust regular 
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versus catch trial contrast (x = -1, y = 15, z = 44; 18 mm away; t = 6.30; p < 0.01). This 

result confirms the hypothesis that part of the dACC support decision-making and the 

prediction that it is particularly engaged by close offer comparison. Note that node #213 

was also the focus of subsequent investigation. In particular, this dACC node was also 

investigated for encoding subjective value, as described in a subsequent section. Finally, 

the lateral PFC has been implicated in promoting patient over delayed intertemporal 

choices in a TMS study, indicating that the lateral PFC also supports careful comparison 

of costs and benefits(Figner et al., 2010). Two lateral PFC nodes (left IFG x = -47, y = 

11, z = 23; t = 4.99; p < 0.01 and right IFG x = 47, y = 10, z = 33; t = 6.62; p < 0.01) also 

show stronger activity for regular versus catch trials providing confirmatory evidence that 

these lateral PFC nodes also support close offer comparisons. 

The convergence of signals from both domains of delay and effort shown in Table 

A.1 imply a domain-general set of networks engaged by close offer comparisons. It is 

important to note, however, that smaller t-statistics indicate weaker effects (though not 

reliably in any of the networks tested: largest domain contrast p = 0.17) on delay relative 

to effort-based trials. Moreover, a complementary voxel-wise approach, described in 

Appendix D, shows greatly attenuated signal in the delay relative to the effort-based 

decision trials. The pattern of results implies that signal-to-noise is relatively diminished 

in the delay-based decision-making dataset. Diminished signal-to-noise may have to do 

with relatively diminished engagement in decision-making during the delay trials. This 

may have to do with the fixed task structure in which delay decision-making always came 

last. Given that participants would have completed refresher N-back practice for all six 

N-back levels, 225 effort-based decision trials, and 75 delay-based decision trials before 
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ever making in-scanner delay-based decisions, it is reasonable to suspect that participants 

were fatigued and not engaged in effortful decision-making during those trials. 

Alternatively, fatigue may have led them to use simplifying heuristics, rendering regular 

trials more like catch trials. Indeed, response times for regular trial, in-scanner delay-

based decisions (median 1.88 s) where reliably faster than regular trial, in-scanner effort-

based decisions (median 1.94 s; p < 0.01).  

Based on the current results, it seems clear that follow-up studies aimed at 

comparing effort- and delay-based decision-making should employ appropriate counter-

balancing. It is worth noting, however, that effort-based decision-making was the focus 

of this investigation and the fixed decision-task order was an intentional feature designed 

to specifically enhance the effort-based decision-making results. Because effort-based 

decision-making is the focus of the current study, subsequent results presented in 

Appendix A will be exclusively focused on analyses related to this component of the 

session. However, for the sake of completeness, the delay-based decision-making results 

are reported in Appendix D.  

A.6.2 Regions Encoding Choice and Bias During Decision-Making 
In addition to the basic contrast presented above of regular and catch trials, 

decision-making trials also varied parametrically on a trial-by-trial basis in terms of 

choice bias. Specifically, the second offer (always for performing the low effort 1-back) 

was designed to bias participant choice by being either slightly above or slightly below 

the indifference point with respect to the first offer. Hence, activity pursuant to the 

decision window may reflect decision biasing. Moreover, because participants commit to 

a decision during this time, it is also possible to probe for activity encoding the actual 
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choice (selection of hard versus easy option). Decision window activity encoding both 

biasing and choice outcome are investigated in this section. 

In this analysis, to enhance sensitivity to subtler trial distinctions of bias and 

choice, and to gain more flexibility to analyze differential responses at particular time 

points, rather than a mean response across that window, trial epochs were modeled as a 

series of impulse response functions (also known as “tent” functions in AFNI). Trial 

epochs are defined as 13 time points from trial onset to 24 seconds after (one time point 

ever TR = 2 seconds). Due of the rapid pacing of decision trials (one every 13 seconds), 

trial analysis epochs thus overlap 2 successive trials. Collinearity of time points are 

avoided however, by the fact that there is a semi-random order biasing (and 

corresponding choice) conditions from one trial to the next. Thus, there is trial-wise 

jittering by trial type that permits resolution of response profiles for one choice / bias 

condition compared to another.  

An impulse response model also affords the flexibility of focusing on the time 

points of interest pursuant to the decision period: 12 to 16 seconds (6—10 seconds after 

second offer onset). Thus, GLMs were constructed including 13 impulse response 

regressors for each 2 second interval from 0 to 24 seconds after trial onset (the trial 

epoch). In the analysis of choice encoding, separate regressors were modeled for hard 

choices and for easy choices. Then, a series of paired t-tests were used to contrast the 

time points of interest corresponding to either set. For example, a paired t-test would 

contrast the modeled response at 12 seconds on a trial in which participants selected the 

hard choice versus 12 seconds when they selected the easy choice.  
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Interestingly, a complementary voxel-wise analysis of time points of in the 

decision window (described in Appendix D) revealed a large cluster in which activity in 

the PCC that was less active on trials in which participants chose the hard option, relative 

to those in which they chose the easy option.  

Given that the PCC is an a priori region of interest for value encoding (Bartra et 

al., 2013), one hypothesis explaining the negative activation for a hard over an easy 

choice is that it reflects a post-decision outcome valuation of greater future costs incurred 

by the decision (a form of regret). This hypothesis would predict negative activation for 

hard over easy choices observed in the PCC, which has been otherwise implicated in 

representing the subjective value of choice outcomes, and in monitoring choice outcomes 

and the need to alter behavior (Pearson, Heilbronner, Barack, Hayden, & Platt, 2011). 

Alternatively, rather than reflecting anticipated outcome costs, the negative activation 

might reflect recognition that the participant made a selection that contradicted their own 

value function. That is, that they made a mistake and the PCC reflects error magnitude. In 

that case, the PCC cluster would be most strongly negative in cases when the participant 

chose against the bias: e.g. they decided against an offer biasing them toward the less 

costly (easier option) and yet they selected the more costly (harder option). 

The caudal portion of PCC reflecting the negative contrast, along with another left 

lateral cluster also identified for showing a negative contrast at the same time point (see 

Appendix), map closely to a functionally coupled network that otherwise co-activates 

with the medial PFC wall, in particular (Leech, Braga, & Sharp, 2012). The set of nodes 

(Nodes #88—92) overlapping the cluster defined by the contrast of hard versus easy 

choice outcomes were used to test these hypotheses. Nodes #88—92 were examined 



 

 135 

more closely for encoding choice and bias across the decision epoch by extracting their 

entire time series, after regressing out motion and slow polynomial regressors (to account 

for scanner drift), and averaging over all trials (and all 5 nodes) according to whether the 

trial was one that the participant selected the easy or hard option (Figure A.12A), and 

whether the second (easy option) offer biased them towards the hard or easy option 

(Figure A.12B).  

A B  

C  
Figure A.12 Averaged time series in the PCC (Nodes #88—92) for trials in which the participant selected 
the hard or easy option, and whether they were biased towards the hard or easier option. The grey shaded 
region indicates the time points of greatest interest for the decision period: 6—10 seconds after decision 
period onset. A) Time series are averaged according to whether the hard or easy option was selected, and * 
indicates a reliable difference between hard and easy outcomes at p < 0.05. B) Time series are averaged 
across all trials based on both biasing and choice and * indicates a reliable difference between hard choice / 
easy bias (purple) trials and easy choice / hard bias (red) trials at p < 0.05. C) Shows the location of the 
caudal PCC nodes. 

As shown in Figure A.12A, activation peaks in the PCC at 12 seconds and is well 

matched whether participants select the hard or easy option. After this point, the function 

0 5 10 15 20 25

−0
.2

0.
0

0.
1

0.
2

PCC

time(s)

BO
LD

 %
 C

ha
ng

e Easy
Hard

0 5 10 15 20 25−0
.1

0
0.

00
0.

10

PCC

time(s)

BO
LD

 %
 C

ha
ng

e

Choice/Bias
Easy/Hard
Easy/Easy
Hard/Hard
Hard/Easy



 

 136 

drops reliably faster for the trials in which the hard option was selected. This result 

suggests that the PCC is indeed processing post-decision outcomes and encoding the 

greater costs of the harder option outcome. When trials are averaged according to both 

choice and offer biasing, there is no time point in which the trials on which participants 

violated their own assumed value function (red and purple trials) are distinct from when 

they followed their value function (cyan and green). Together, these results suggest that 

the PCC is not encoding “errors” in the sense of choice outcomes that do not align with 

internal value functions. Instead, they support that the PCC is encoding anticipated costs 

after a choice has been committed. Interestingly, there is reliably greater activity at 

response peak (12 seconds; Figure A.12B) for trials in which participants selected the 

hard trial, but were biased by the easy offer relative to trials in which they choose the 

easy offer but were biased towards hard (purple > red trials), and this is also true just 

prior to the valuation window. That is, activity is higher at response peak when 

participants select the harder option, and particularly when must overcome an offer bias 

not to. This result suggests that the PCC also carries information about intrinsic 

motivation in decision window activity. 

Note that Nodes #88—92 were all slightly posterior to loci identified by Bartra et 

al. (2013) for positively encoding SV during offer valuation and decision outcome receipt 

(24-33 mm away). However, a node approximating the Bartra loci (Node # 133 – 

discussed subsequently for SV encoding) did not show reliable choice or bias effects 

during the decision-window and so is not discussed here. Beyond the Barta loci, vmPFC 

loci have also been otherwise implicated in encoding SV during decision-making, and do 
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show effects of choice and bias during the decision window. These are discussed in the 

next section. 

A.6.3 Regions Encoding Value Dimensions  
While examination of the decision window revealed a network of regions 

involved in cost-benefit decision-making over and above perceptuo-motor processes, and 

regions (particularly the PCC) encoding choice outcome costs, investigation of the 

valuation window, in which a single (high demand) option is considered in isolation, 

permits unambiguous resolution of brain regions encoding key decision-making cost and 

benefit variables. Note that regions encoding choice variables may not vary in mean 

signal between regular and catch trials, but nevertheless encode dimensions relevant to 

choice in both regular and catch trials.  

A key choice dimension is SV. In the human neuroeconomics literature, a 

standard approach to identifying regions encoding SV is to conduct a parametric analysis 

of regions tracking trial-by-trial variations in SV, e.g. (Kable & Glimcher, 2007; Peters & 

Buchel, 2010; Pine, Shiner, Seymour, & Dolan, 2010). Here, SV is defined as a quantity 

that maps the objective choice dimensions (e.g. amount, delay, risk, and effort) into a 

subjective (individual-specific) quantity that describes each individual’s decision-making 

behavior. This section starts by testing for the encoding of the SV of the first (pure 

valuation) offer by how the amplitude of the hemodynamic response is modulated by the 

SV of the first offer on every trial. In the current study, SV is defined according to the 

participants’ indifference points for each amount-load pairing (relative to the 1-back 

offer), taken from the (out-of-scanner) sessions.   
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As before, to avoid constraining restrictions on the shape of the response function, 

and maximize sensitivity to trial-by-trial variations in SV, valuation (and decision) 

processes are modeled using the impulse response “tent” functions, which provides an 

estimate of signal at each time point in a trial epoch. Unassumed impulse response 

models are consistent with the approach taken elsewhere in the neuroeconomic literature, 

e.g. (Kable & Glimcher, 2007). From a practical standpoint, they are also the best choice 

given the design of the present decision-making paradigm. Rapid pacing and fixed trial 

onsets makes canonical hemodynamic response functions a poor choice for modeling 

valuation as a distinct event (valuation periods are a fixed, 6 second interval, followed 

immediately by the decision window). Though variable response times provide some 

natural jittering between the offset of the decision window, and the onset of the following 

valuation window, there is considerable overlap between valuation and decision 

processes. Namely, the trailing edge of hemodynamics pursuant to response execution 

overlaps ramping activity pursuant to valuation processes. Hence, mean variation in 

valuation processes, as modeled by a canonical HRF, can be obscured by decreasing 

activity from response execution processes on the previous trial. The tent function used to 

model each trial covers 24 s trial epochs (20 s beyond the decision window onset); thus, 

trials were modeled as 13 time points, spaced at 2 seconds each.  

Despite the fact that trial epochs overlap multiple trials (2, to be precise), 

randomized trial ordering effectively jitters trial types (as with choice and bias 

conditions) enabling clear resolution of the degree to which tent functions are modulated 

by key decision variables. Task-amount pairs are assigned random order, hence key 

variables like subjective value (SV), amount, or cost (delay or N-back load), vary trial-to-
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trial in a pseudo-random fashion. Thus, when modeling trial epochs as parametrically 

varying in amplitude by key variables, time points are sufficiently jittered for precise 

estimation of that amplitude modulation.  

Figure A.13A shows the mean response function for an example set of DMN 

nodes used in the previous N-back analysis, while Figure A.13B shows how the 

amplitude of the hemodynamic response function is modulated by SV at each time point 

for these nodes. Note that SV is defined by participant-specific discounting functions in 

the third session, for all task-amount pairs. For example, if a participant is found to be 

indifferent between an offer of $2 for the 2-back and $1.73 for the 1-back, then the raw 

(non-normalized) SV of the offer of $2 for the 2-back, for that participant, is $1.73. Raw 

SV amounts were thus individually-defined and mean-centered for each participant, 

across all 15 reward amount – task load pairs (i.e., 3 reward amount x 5 load levels) to 

form the parametric predictor values. 
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Figure A.13 A) Mean and B) SV amplitude modulation functions for decision trial epoch in three example 
DMN nodes, estimated as a set of impulse responses spaced every 2.0 s TR. Solid lines provide the 
response functions for effort-based, and dashed lines the response functions for delay-based decision trials. 
Valuation windows begin at 0 s, and conclude with the start of the decision window at 6 s. 

As can be clearly seen from the three example nodes in Fig A.13A, the mean 

response is dominated, in the decision epoch, by response-related processes, peaking 

~16-18 seconds after the trial has begun. This dominant function is also reflected in the 

trailing edge that lapses into the valuation window (0-6 seconds) in the three example 

nodes. Not all nodes show this kind of function. Indeed, mean response functions take a 

range of shapes across nodes and networks. All nodes are provided in the Supplement, for 

reference.  

Critically, however, while the mean function reflects the trailing edge of the 

response-related peak through the valuation window, there are very prominent peaks of 

amplitude modulation by SV pursuant to the valuation window (6-8 seconds) in all three 

nodes. Hence, the pseudo-randomized trial order (with respect to task-amount pairs) 

permits clean resolution of amplitude modulation effects apart from the mean response 

function. It is important to note that these amplitude modulation effects reflect the 

response to pure valuation of a single offer, accounting for hemodynamic lag, and are 

unconfounded by the second offer onset since they peak at the same time of the second 

offer onset (and immediately after).  

A number of a priori loci have been identified for SV encoding during economic 

decision-making. In the next section these nodes are tested to determine whether they 

also encoded SV during decision-making about cognitive effort. Although the main 

analysis is focused on a priori loci, a complementary whole brain analysis is provided in 

the Supplement. 
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A.6.3.1 A Priori Nodes Encoding SV 
Two recent meta-analyses implicate a set of nodes that belong to a core valuation 

network: first, Levy and Glimcher (2012) report two key nodes in the vmPFC identified 

through a meta-analysis of consisting of 13 valuation studies of primary and monetary 

rewards. Second, Barta, McGuire, and Kable (2013), report a wider network of 9 regions, 

including the vmPFC, but also the ACC, the dACC, the PCC, the brainstem, and the 

striatum, from a broader meta-analysis of general SV encoding, that included studies of 

hypothetical and real, primary and monetary rewards that were delayed, probabilistic, 

effortful, or in the certain punishment domain. Additionally, they suggest that the dACC 

and anterior insula (AI) may most strongly encode the negative, or cost dimension, of 

SV. While these meta-analyses have focused on general SV encoding, only one study to 

date has investigated the encoding of SV of cognitively effortful rewards. Massar et al 

(2015) report 7 regions that may specifically encode SV during valuation of rewards 

contingent on cognitive effort in particular. The locations of a priori nodes of interest are 

shown in Figure A.14, color-coded by study of origin. Note that some a priori nodes, 

namely the VS nodes, were defined independently of the 264 node set used elsewhere in 

this dissertation. This is critical given that the 264 node set does not map well onto 

subcortical structures like the VS. 
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Figure A.14 A priori nodes of interest for encoding SV. Nodes are color-coded by their study of origin. 
Green and orange nodes are from the meta-analyses of Levy and Glimcher (2012) and Bartra, McGuire, 
and Kable (2013), respectively. Blue nodes are from the study of cognitive effort by Massar et al. (2015). 

To investigate all SV encoding in all a priori nodes, 12 mm nodes centered on all 

loci of interest were tested for significant amplitude modulation 6 to 8 seconds after trial 

(valuation period) onset. This window was selected because it corresponds to the onset of 

the decision period, and should reflect pure valuation of the first offer alone (always the 

harder task for more money), and also because it is consistent with peak SV encoding in 

prior studies (Kable & Glimcher, 2007). Table A.2 shows the results of t-tests for reliable 

amplitude modulation by first offer SV in all 18 a priori nodes. 
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Anatomical Description (x,y,z) t-stat   p-value 
Levy and Glimcher (2012) 
282 – l vmPFC (4,35,-12) 4.65 <0.01 
281 – r vmPFC  (-7,38,-11) 4.04 <0.01 
Bartra, McGuire, and Kable (2013) 
265 – l striatum (-12,12,-6) 3.53 <0.01 
266 – r striatum (12,10,-6) 2.85 <0.01 
267 – vmPFC (2,46,-8) 4.55 <0.01 
268 – l AI (-30,22,-6) 2.30 0.03 
269 – r AI (32,30,-6) 2.44 0.02 
133 – PCC (-2,-35,31) 3.05 <0.01 
271 – Brainstem (-2,-22,-12) 1.78 0.09 
215 – ACC (0,30,27) 4.15 <0.01 
213 – dACC/pre-SMA (-1,15,44) 3.06 <0.01 
Massar, Libedinsky, Weiyan, Huettel, and Chee (2015) 
274 – r supramarg. gyr. (33,-52,32) 0.33 0.74 
275 – l cingulate (-24,-49,36) 0.97 0.34 
276 – l inf. temp. gyr. (-58,-35,-22) 3.10 <0.01 
277 – l IFG (-43,53,-4) 1.48 0.15 
278 – l IPL (-30,-43,43) 1.49 0.14 
279 – I IPL (-41,-55,46) 0.34 0.74 
280 – l postcentral gyr. (34,16,-26) 3.21 <0.01 
Table A.2 t-tests for reliable, trial-wise, parametric amplitude modulation by first offer SV in a priori 
nodes. Shading indicates p < 0.01 (dark), p < 0.05 (medium), and p < 0.10 (light). 

 SV is reliably encoded as positive amplitude modulation in all a priori nodes 

identified for general SV encoding from the two meta-analyses. Most of the nodes 

reported in the single cognitive effort study (Massar et al., 2015), by contrast, did not 

show reliable trial-wise amplitude modulation by SV, with the exception of Node 276 

and 280 in the inferior temporal gyrus and left post-central gyrus, respectively. 

A.6.3.2 Amount and Load Encoding 
For a region to encode SV, it must reflect both benefit and cost magnitude. In our 

effort-based decision trials, that corresponds to encoding both the offer amount and the 

task load in the amount-load pair. It is possible, however, that a priori nodes reflect one 

dimension or another, only. To determine whether the nodes indeed encode both, time 

series were extracted from each node. As before, motion effects were regressed out first 
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prior to analysis. The resulting node-averaged time series were then separated into trials 

and aggregated by trial type: that is, by amount and by N-back task load.  

A series of regressions were conducted to test whether these 18 a priori nodes 

encode SV of cognitively effortful rewards, in particular, and the independent dimensions 

of task load and reward amount. Two types of regressions were conducted for each node, 

each predicting activity averaged across time points 6 and 8 seconds: 1) the first has 

predictors of N-back load and offer amount (of the first offer) centered and 2) the second 

has the ratio of load / amount centered. Alternately separating out and combining the two 

key dimensions of choice allows for tests of whether putative SV nodes show a combined 

representation of dimensions, and also whether they show independent representation of 

dimensions, respectively. Again, variable intercept models are used to account for the 

nesting of trials within participants.  

BOLDlag3-4,i = B1j[i] + B2i (Amount / Load) + εi     (A.1) 

or  

BOLDlag3-4,i =  B1j[i] + B3i Amount + B4i Load + εi       (A.2) 

B1j = γ1,0j + ηj          (A.3) 

As shown in Table A.3, every node identified for positive SV encoding, in the 

two meta-analyses, either significantly or at trend-level, encodes the amount-to-load ratio 

positively. Also, all of the core valuation nodes in the vmPFC and VS show independent 

encoding of both amount and load, as expected. This result constitutes a critical and novel 

finding, as it is the first time that the core valuation network has been shown to encode 

cognitive load as a cost dimension during offer valuation. It also supports the 
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hypothesized cognitive effort discounting patterns observed in the VS during reward 

receipt in a prior study (Botvinick et al., 2009). 

Anatomical Description Amount B3×10-2 
(p-value) 

Load B4×10-2 
(p-value) 

Amt. / Load B2×10-2 
(p-value) 

Levy and Glimcher (2012)  
282 – l vmPFC 2.42  (<0.01) -1.40 (<0.01) 1.83 (<0.01) 
281 – r vmPFC 2.06 (<0.01) -1.53 (<0.01) 1.82 (<0.01) 
Bartra, McGuire, and Kable (2013) 
265 – l striatum 2.83 (<0.01) -1.19 (<0.01) 1.67 (<0.01) 
266 – r striatum 3.06 (<0.01) -1.12 (0.02) 1.82 (0.01) 
267 – vmPFC 2.76 (0.01) -2.12 (<0.01) 2.44 (<0.01) 
268 – l AI 0.43 (0.39) -0.81 (<0.01) 0.79 (0.06) 
269 – r AI 0.46 (0.26) -0.56 (0.02) 0.58 (0.08) 
133 – PCC 1.02 (0.29) -1.46 (<0.01) 2.28 (0.02) 
271 – Brainstem 0.05 (0.91) -1.08 (0.05) 1.91 (0.10) 
215 – ACC 4.42 (0.04) -1.39 (0.01) 1.84 (0.02) 
213 – dACC/pre-SMA 0.02 (0.35) -1.56 (<0.01) 1.54 (0.06) 
Massar, Libedinsky, Weiyan, Huettel, and Chee (2015) 
274 – r supramarg. gyr. 0.05 (0.91) -0.47 (0.07) 0.63 (0.10) 
275 – l cingulate 0.10 (0.78) -0.27 (0.17) 0.44 (0.13) 
276 – l inf. temp. gyr. 0.72 (0.17) -1.10 (<0.01) 1.25 (<0.01) 
277 – l IFG 0.57 (0.55) -1.23 (0.03) 1.62 (0.04) 
278 – l IPL 0.31 (0.54) -0.49 (0.10) 0.58 (0.19) 
279 – I IPL 0.16 (0.85) -0.72 (0.15) 0.82 (0.26) 
280 – l postcentral gyr. 1.94 (0.04) -0.93 (0.08) 0.87 (0.25) 
Table A.3 Amount, load, and amount/load ratio as predictors of activity 6 and 8 seconds after trial onset, 
and also N-back activity as a predictor of SV in a priori SV nodes. Shading reflects p < 0.01 (dark), p < 
0.05 (medium), and p < 0.10 (light). 

Interestingly, Table A.3 also identifies a number of nodes, like the PCC, left AI 

and dACC, that reliably encode load but not amount. This result suggests that SV, per se, 

is not encoded in the PCC, AI or dACC, but instead that cost information is selectively 

encoded, even though cost correlates with SV. By contrast, both the striatum and vmPFC 

nodes show reliable encoding of both dimensions. Also, while these results largely 

recapitulate the effects observed in the metanalyses, they largely fail to replicate 

encoding of SV in loci identified in the Massar et al. (2015) study, with a few exceptions. 

Namely, the left IFG and inferior temporal gyrus both show encoding of load, and, 



 

 146 

thereby the encoding of (correlated) SV. However, none of the loci encode both 

dimensions of load and amount. 

A visual representation of the independent encoding of both load and amount 

dimensions in 4 vmPFC and VS nodes is presented in Figure A.15. As before, these 

figures were made by averaging error time series, after regressing out motion and slow 

polynomial regressors, across all trials of the same first offer amount or load. Also, linear 

effects of load and amount are tested at each time point across all trials. Note the 

temporal specificity of linear load and amount effects are restricted primarily to the time 

window of interest – 6 to 8 seconds after valuation period onset. 

A      B 

 

Figure A.15 Timecourse plots showing effects of A) amount, and B) load on activity in key vmPFC and VS 
nodes. Grey shading indicates the valuation window (6—8 sec after valuation period onset). * Indicates a 
reliable linear effect (at p < 0.05) of amount or load at each time point, according to variable-intercept, 
multi-level models with trials nested within individuals. 

As mentioned above, a number of nodes encode load (negatively) during 

valuation and hence their trial-wise amplitude modulation would correlate with trial-wise 

first offer SV, but on closer analysis were found to not also encode amount. Notably, this 

includes the dACC node of interest. This result is notable in part because the dACC has 
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been hypothesized to select the value of cognitive control task sets based on their 

expected value (benefits minus costs) (Shenhav et al., 2013), and the present data only 

supports the cost side of the equation. Of course there are many reasons why the dACC 

might not report benefits and costs at the level of fMRI BOLD signal. A single unit 

recording study of monkey ACC neurons has shown simultaneous positive and negative 

encoding of offer value (which may thus cancel out at the level of local field potentials) 

(Kennerley et al., 2011). Thus these data do not rule out benefit encoding in the dACC, 

but instead do provide support for cost encoding during valuation.  

The encoding of load in the dACC during valuation is also interesting because the 

same node also showed robust contrast of regular versus catch trials. As shown in Figure 

A.16, averaged trial epoch timecourses from this cluster aggregated, alternately, by trial 

type or by anticipated cognitive load, show greater decision-window activity for regular 

versus catch trials and greater valuation-window activity for lower versus higher load. 

That is, it simultaneously encodes decision load positively and anticipated N-back load 

negatively. Note that while this same node shows reliable effects of load during offer 

valuation, it does not, as indicated above, show reliable effects of reward amount at any 

time point. 
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A B  

C  

Figure A.16 Decision-window and valuation-window activity in the a priori dACC node also identified by 
the contrast of catch and regular decision trials. A) Time series averged by catch and regular decision trials. 
B) Time series averaged by anticipated load of first offer. C) Location of dACC node. * Indicates a reliable 
linear effect, at p < 0.05, of load on activity at the corresponding time point in a multi-level model with 
trials nested within participants. 

A.6.3.3 A Priori SV Nodes Predict Choice 
An important question is whether SV encoding is determinative of choice, or 

merely correlative. While the vmPFC and VS regions clearly encode both choice 

dimensions pursuant to valuation of the first offer, a further question is whether activity 

in a priori regions is also predictive of the subsequent choice that the participant will 

make, regardless of the second offer. This question was examined by coding trials 

according to two factors: 1) the subsequent choice made on that trial, the high-load, 

harder option (the option presented during the valuation period) or the low-load, easier 

option (presented during the decision period); and 2) the bias induced on that trial (to 

choose harder or easier option), based on whether the low-load offer is below or above 
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the estimated indifference point relative to the high-load offer. A priori vmPFC nodes, in 

particular, show a reliable increase in activity, pursuant to first offer valuation on trials in 

which the participant ultimately chooses the harder option when the trial is designed to 

bias them towards the easier option. In other words, valuation-related activity in the 

vmPFC anticipates whether a participant will elect the high demand offer, and even more 

so when that means overcoming a bias not to (similar to what was observed for the PCC 

cluster during the decision window). The mean response across choice and bias 

conditions in the three a priori vmPFC nodes (267, 281, and 282) is shown in Figure A.17 

below.  

Figure A.17 Averaged time series in three vmPFC nodes (267, 281, and 282) encoding SV, for trials 
grouped by whether participants chose the hard (first) or easy (second) offer and also by whether the easy 
offer was designed to bias participants to choose it or the hard offer. Green and orange nodes are from the 
meta-analyses of Levy and Glimcher (2012) and Bartra, McGuire, and Kable (2013), respectively. * 
Indicates a difference (at p < 0.05) by time point of hard choice / easy bias (purple) trials, and easy choice / 
hard bias (red) trials. 

Because only one option is available, and hence participants cannot make a choice 

during the valuation window, the fact that valuation-related activity anticipates 

subsequent choice implicates the vmPFC in calculating a pre-decision quantity of SV, 

rather than passively reflecting the value of the chosen offer. It is also important to note 
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that because this analysis collapses across all amount-load pairs, the orderly result 

implies that the extent to which participants value a given task-amount pair varies 

somewhat independently across trials, and this independent variation plays a role in 

subsequent choice. One interpretation of this pattern is that on some trials the participant 

may encode the high-effort option as being more subjectively valuable than even their 

own mean SV for that amount / load combination, based on endogenous or stochastic 

factors. On those trials, the data suggest that the participant will be more likely to select 

that high-effort option, presumably reflecting its higher relative valuation compared to 

the low-effort option. As described above, this effect mirrors the distinction made in the 

decision-window (at 12 seconds and at 4 seconds, prior to the valuation window) in the 

caudal PCC, implying that the intrinsic motivational state information is shared between 

the two valuation regions. Also, notably, both the caudal PCC and the vmPFC nodes 

appear to show significantly lower activity in the decision window on trials in which the 

hard task was ultimately selected. 

Note that the valuation-window effect of greater activity for hard choice / easy 

bias trials (purple; cf. Figure A.17) relative to easy choice / hard bias trials (red) is also 

observed during the valuation window in four of the nodes encoding load during 

valuation. At 6 seconds, there is a reliably greater activity in hard choice / easy bias trials 

in the left AI (Node #268), and at 4 seconds there is reliably greater activity in the PCC 

(Node #133), the right supramarginal gyrus (Node #274), and (at trend-level p = 0.07) in 

the dACC (Node #213). These results implicate these nodes in encoding both load and 

intrinsic motivation to engage with a demanding task, along with the vmPFC and caudal 

PCC. 
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A.6.3.4 Subjectivity in SV Encoding 
Beyond reward amount and load, a third dimension of SV is subjectivity itself. 

Subjectivity refers to the result that there are idiosyncratic preferences (i.e., high vs. low 

effort discounting) by which individuals vary in their valuation of an offer over and 

above the particular amount and load combination presented on that trial. In general, 

participants who display steep effort discounting must find either the offered rewards to 

be less valuable, the cognitive loads to be more subjectively costly, or both. The net result 

is quantified as reduced SV and AUC. In this section, a priori nodes are tested for 

evidence of subjectivity. 

One way to investigate subjectivity, given that mean activity is positively 

modulated by SV in the a priori nodes, is to test whether mean activity in the SV nodes 

varies by individual differences in discounting. A series of t-tests reveals that in none of 

the a priori nodes encoding SV does mean activity across 6 and 8 seconds vary reliably 

by AUC3S (all p’s ≥ 0.22). However, the pattern of activity in all three vmPFC nodes 

reveals a clear ordinal pattern. As shown in Figure A.18, the mean time course deflection 

is more positive for shallow (AUC3S > 0.8) versus medium (0.6 < AUC3S < 0.8) versus 

steep (AUC3S < 0.6) discounters, across all three vmPFC nodes. Moreover, this pattern 

corresponds to a reliable linear effect of AUC3S on activity at a later time point (12 sec 

after decision period onset) whereby shallower effort discounters have a more positive 

deflection. Although the later time point reflects activity pursuant to decision-making 

rather than pure valuation, the sum of the evidence strongly suggests that subjectivity is 

playing a role in value encoding in the vmPFC.  
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Figure A.18 Averaged time series from the three a priori vmPFC nodes (267, 281, and 282) pursuant to the 
valuation period on effort-based trials, for steep, medium, and shallow discounters. Participants are grouped 
according to their AUC3S. Green and orange nodes are from the meta-analyses of Levy and Glimcher 
(2012) and Bartra, McGuire, and Kable (2013), respectively. * Indicates a reliable linear effect, at p < 0.05, 
of AUC3S on mean activity at a given time point. 

A similar, but more rigorous analysis asks whether, controlling for objective 

factors of load or amount, subjectivity, as captured by AUC3S, explains additional 

variance in activity in the vmPFC cluster. If AUC3S were to explain variance beyond that 

explained by task and load, it would constitute strong evidence for the encoding not just 

of objective, but subjective value in this region. 

A multi-level, multiple regression provides a formal test, in which trial-wise 

average regression weights (across time points 6 and 8 seconds) are explained by fixed 

effect predictors of task load and amount and, simultaneously, with random effects of 

participant-level AUC3S as a subject-level predictor. Here the question is whether there 

are subject-level effects of (average) discounting beyond those fixed effects of amount 

and load on activity in the a priori nodes. 

BOLDi = B1j[i] + B2i Amount + B3i Load + εi       (A.4) 

B1j = γ1,0j + γ1,1j AUC3Sj + ηj        (A.5) 
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While amount and load show effects reflecting those provided above in Table A.2, 

AUC3S explains no additional variance in mean signal (all p’s  ≥ 0.24), controlling for 

these variables. Though this analysis does not support the full hypothesis of subjective 

value coding in a priori nodes, the overall small sample size and restricted variance in 

discounting constitute a low-power, insensitive dataset for addressing the question of 

subjectivity satisfactorily. A rigorous test for subjective coding beyond objective choice 

dimensions during effort-based decision-making requires a larger sample with greater 

variance in effort discounting.  

While the previous analysis does not support the full subjectivity hypothesis, 

another way to test for subjectivity and the relationship with amount and load encoding is 

to test whether inter-individual amount and load effects, during offer valuation, vary by 

discounting themselves. To test this, a series of linear models of effects of amount and 

load on valuation period activity, similar to Eqns. A.2 and A.3, were fit for each subject 

and a priori node separately. Next, models were fit to test whether AUC3S predicts 

individual differences in these subject and node-specific slope terms. Interestingly, while 

AUC3S does not predict load effects in any nodes (all p’s ≥ 0.14), AUC3S does predict the 

slope of the amount effects in the left VS (Node 265: B = 0.15, p = 0.02). Note that the 

relationship holds when excluding the apparent outlier with the very high amount effect 

slope (excluding the participant: B = 0.10, p = 0.01). The positive relationship indicates 

that in shallow effort discounters there is a more positive effect of offer amount on 

response functions in the VS during valuation. These results support subjective variation 
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in the response to amount stimuli, if not load stimuli. 

 

Figure A.19 Amount effects in the left VS (Node 265) during valuation positively predicted by participant 
AUC3S. Inset provides coronal slice with left and right VS nodes in red. Green crosshairs are centered at the 
left VS node location (radiological convention; MNI x = -12, y = 12, z = 6). 

A.6.4 Integrating Effort-Tracking Information into Valuation 
A central question of this research is to investigate whether there are brain regions 

involved in tracking cognitive effort during task engagement that communicate this 

information to valuation regions at the time of effort-based decision-making. As revealed 

in the main text, a number of regions show features that make them good candidates for 

tracking effort for this purpose. Task-positive networks, in particular, showed negative 

relationships between mean, load-independent signal and discounting. The task-negative 

DMN did not show reliable individual difference relationships with discounting. 

However, it did show approximately monotonic decline in activity with load, thus 

mirroring robust within-individual variation in SV. Hence the pattern of activity in these 

networks during the N-back may anticipate subsequent dynamics in the valuation period 

in a priori SV nodes. In this section, the relationship between patterns of activity in the N-

back are tested for predicting patterns of activity in a priori SV nodes during offer 

valuation. 
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A.6.4.1 Does load-independent N-back activity predict valuation activity? 
A first test examines whether individual differences in mean, load-independent N-

back activity in the networks of interest (CO, FP, Sal, DorAtt, and DMN) predicts 

valuation period activity in the a priori SV nodes. Specifically, subject-averaged 

regression weights (across all loads) were used as a measure of cognitive effort during the 

N-back, and these subject-averaged regression weights were tested for predicting 

valuation period activity (6—8 seconds after valuation period onset). In only one a priori 

SV node (identified by Massar et al.) does load-independent N-back activity in task-

positive networks predict (at p < 0.05) valuation period activity (Node #279 - l IPL). 

Activity in this node is predicted positively by mean N-back activity in the FP (B = 0.90; 

p = 0.03) and Sal networks (B = 0.75; p = 0.05). Incidentally, this node is virtually 

overlapping (Euclidean distance = 2 mm from) a FP node. Thus, the finding indicates that 

higher mean activity during the N-back in the FP network appears to predict higher 

valuation period activity in a specific FP node (the left IPL) during valuation. This may 

indicate a key node for effort tracking, but the sign of the relationship complicates this 

hypothesis since higher activity during valuation should correspond to higher SV, while 

higher load-independent activity in the N-back corresponds to lower SV. Moreover, Node 

279 did not show reliable relationships with load, amount, or SV during valuation. Thus 

the evidence for this region caching load information for the purposes of offer valuation 

is not particularly strong. 

By contrast with the task-positive networks, individual differences in load-

averaged N-back activity in the DMN appears to reliably correlate with averaged 

valuation period activity in multiple a priori SV nodes. Table A.4 provides a list of all of 

the nodes where this relationship is significant (p < 0.05) or trending (p < 0.10). 
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Intriguingly, these nodes are primarily overlapping the set of nodes showing load (if not 

amount) effects during the valuation period. That is, these nodes show negative encoding 

of load during valuation, and also are positively predicted by load-independent activation 

in the DMN during the N-back. 

Anatomical Description B (p-value) 
Bartra, McGuire, and Kable (2013) 
268 – l AI 0.66 (0.04) 
269 – r AI 0.49 (0.04) 
271 – Brainstem 0.81 (0.06) 
215 – ACC 0.90 (0.06) 
213 – dACC/pre-SMA 1.18 (0.06) 
Massar, Libedinsky, Weiyan, Huettel, and Chee (2015) 
277 – l IFG 0.63 (0.10) 
Table A.4 A priori SV nodes in which valuation period activity is predicted by average N-back β weights in 
the DMN. Shading reflects p < 0.01 (dark), p < 0.05 (medium), and p < 0.10 (light). 

The monotonically decreasing load function in the DMN makes it, in particular, a 

strong candidate for predicting load effects during valuation. The sign of the effects in 

Table A.4 indicate that more deactivation in the DMN during the N-back predicts more 

deactivation in these nodes during offer valuation. 
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C  

Figure A.20 DMN N-back activity predicts valuation period activity in two AI nodes. A) Node 268 – l AI 
and B) Node 269 – r AI. C) Left and right node locations. Dashed lines give 95% C.I. 

A positive relationship between DMN activity during N-back performance, and 

SV node activity during offer valuation is sensible, given that the DMN during the N-

back and the SV nodes during offer valuation both negatively encode load. The SV node-

DMN relationship results from the fact that individuals with less N-back deactivation in 

the DMN also find the N-back less costly, and hence they show greater valuation period 

activity than those with more N-back deactivation. This interpretation implicates both 

DMN N-back activity and load encoding of load in these SV nodes during offer valuation 

in the subjective effort cost encoding. It is also possible that the correlation has nothing to 

do with valuation. An alternative interpretation implicates a connection between the 

extent to which individuals’ Sal networks (largely overlapping those nodes showing a 

relationship with DMN N-back activity) deactivate during offer valuation, and the way 

that their DMN responded to working memory tasks (systematic differences in session 

signal-to-noise, e.g.). Under the alternative interpretation, the fact that both the DMN and 

these SV nodes encode load negatively, during the N-back and valuation respectively, is 

incidental (i.e., it would be expected in any task context, not just during N-back and 

valuation). 

It is important to note that the prior result linking individual differences in DMN 

N-back activity to valuation period activity is also complicated by the fact that the DMN 
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was the only network not showing an individual difference relationship with discounting. 

Thus, it is not clear why individual differences in activity should be predictive of 

valuation activity but not explicit valuation. One potential explanation has to do with the 

nature of the link between DMN deactivation and subjective effort. It is possible, for 

example, that the DMN needs to be deactivated to a fixed degree to perform an effortful 

task appropriately, at a given level of load (i.e., attenuating between-subjects variability), 

but that some participants find it more subjectively costly to do so. Hence, individual 

differences in discounting may not be directly reflected in individual differences in N-

back DMN deactivation, even if valuation period activity during valuation is related to 

both. 

A.6.4.2 Do DMN load effects during the N-back predict load effects during 
valuation? 

Another analysis that could provide strong evidence implicating DMN 

deactivation in valuation-related activity is one that focuses directly on the effects of load 

in both contexts. Given that both SV and DMN N-back activity exhibit negative linear 

load effects, individual differences in the load-related linear slope of DMN deactivation 

might also predict linear load slope effects in a priori nodes during valuation. 

Importantly, this constitutes a stronger test of integration than the previous one, given 

that the previous one focused on load-independent (i.e., mean activity) individual 

differences, whereas this one focuses on load-dependent (i.e., the steepness of load slope 

effects). To test this, separate models for each participant were fit to describe the linear 

effect of load (i.e., load slope) on DMN N-back activity, and also in the a priori nodes, 

the linear effect of load slope on valuation period activity (6—8 seconds after trial onset). 

Next, the N-back load slope effects were used in a model predicting valuation period load 
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effects. The results, shown in Table A.5, indicate a positive relationship in multiple a 

priori SV nodes. Critically, this analysis constitutes a stronger test of integration than the 

prior one, in that the previous analysis focused only on individual differences load-

independent (i.e., mean) activity in the DMN, whereas this one focused on load-

dependent activity – linking individual differences in the way load affects DMN 

deactivation during N-back task engagement to the way load is encoded when 

prospectively considering load during valuation. The prior result may be explained by a 

more uninteresting link between DMN deactivation during both N-back and decision-

making tasks. Indeed, vmPFC nodes of interest are part of the DMN itself and some 

participants may just have stronger DMN deactivation responses across diverse kinds of 

tasks. However, the results presented in Table A.5 avoid that possibility since it links the 

result specifically to how a given participant’s a priori SV nodes encode prospective load. 

Anatomical Description B (p-value) 
Levy and Glimcher (2012) 
281 – r vmPFC 0.95 (0.03) 
Bartra, McGuire, and Kable (2013) 
133 – PCC 1.71 (0.03) 
271 – Brainstem 1.42 (0.03) 
215 – ACC 1.22 (0.07) 
Massar, Libedinsky, Weiyan, Huettel, and Chee (2015) 
279 – l IPL 1.32 (0.09) 
Table A.5 A priori SV nodes for which N-back load effects in the DMN predict load effects during the 
valuation period. Shading reflects p < 0.01 (dark), p < 0.05 (medium), and p < 0.10 (light). 

The positive sign in these relationships indicates that individuals with steeper load 

slope effects in the DMN during the N-back task also have steeper load slope effects in 

this network of a priori SV nodes during valuation. This result supports the hypothesis 

that the DMN tracks subjective costs as a function of load during task performance. It 

also supports the hypothesis that the cost information is integrated into valuation 

processes via a priori valuation nodes (and the vmPFC, PCC, brainstem, ACC, and IPL in 
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particular). Finally, it constitutes additional evidence for subjective encoding of effort 

costs, given that the relationship is based on individual differences. Thus, the finding 

supports the intriguing hypothesis that deactivation of the DMN tracks subjective 

cognitive effort and that this deactivation informs effort anticipation during valuation and 

decision-making. 

A.6.4.3. Do nodes encoding load during valuation also encode load during the N-
back? 

A final link between effort cost valuation and effort tracking during task 

engagement may be found in the a priori nodes themselves. If nodes encoding load 

during valuation also encode effort costs during N-back performance, it would support 

the hypothesis that these valuation nodes themselves cache effort information (i.e., 

extracted during N-back performance) for subsequent decision-making. To investigate 

this hypothesis, activity in the a priori nodes shown to encode load during valuation is 

tested for encoding discounting (SV3S) during the N-back. Formally, the same modeling 

approach used in the main text (Eqns. 4.5—4.6), is used again to test the effects of 

participant-centered, load-dependent effects of brain activity (βctr) and also load-

independent (βavg) effects, during the N-back, on subsequent discounting in each of the a 

priori SV nodes. Mirroring the results of the main text chapter, none of the a priori SV 

nodes showed load-dependent effects, while many of them showed load-independent 

effects. Those effects and their p-values are included in Table A.6.  
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 Activity effects *10-1 (p-value) 
Anatomical Description Load-specific B3 Load-independent γ11 
Levy and Glimcher (2012)  
282 – l vmPFC 1.87 (0.38) -1.94 (0.54) 
281 – r vmPFC 1.57 (0.39) -1.98 (0.60) 
Bartra, McGuire, and Kable (2013) 
265 – l striatum 0.08 (0.98) -18.40 (<0.01) 
266 – r striatum 2.65 (0.45) -12.76 (<0.01) 
267 – vmPFC 1.50 (0.44) -4.97 (<0.01) 
268 – l AI -3.54 (0.58) -16.97 (<0.01) 
269 – r AI 2.53 (0.76) -2.06 (0.72) 
133 – PCC 1.32 (0.80) -13.88 (<0.01) 
271 – Brainstem -0.90 (0.85) -7.69 (0.02) 
215 – ACC 0.20 (0.97) -9.15 (<0.01) 
213 – dACC/pre-SMA 0.79 (0.85) -7.30 (<0.01) 
Massar, Libedinsky, Weiyan, Huettel, and Chee (2015) 
274 – r supramarg. gyr. 0.51 (0.97) -17.15 (<0.01) 
276 – l inf. temp. gyr. 0.63 (0.88) 2.47 (0.62) 
277 – l IFG -1.80 (0.63) -8.25 (0.02) 
280 – l postcentral gyr. 1.58 (0.65) 1.50 (0.63) 
Table A.6 Load-specific and load-independent N-back activity. Shading reflects p < 0.01 (dark), p < 0.05 
(medium), and p < 0.10 (light). 

Strikingly, nearly all of the SV nodes anticipated by the meta-analysis of Bartra, 

McGuire, and Kable (2013) show both negative effects of load during offer valuation and 

also negative encoding of averaged N-back activity on discounting. That is, during N-

back task performance, these nodes show sensitivity to individual differences, in that they 

exhibit greater activity in those individuals that are steep cognitive effort discounters (i.e., 

low AUC individuals). Though it is striking these many of these nodes encode load 

negatively during valuation and higher subjective effort positively (as load-independent 

activation) during the N-back, the opposing signs complicate interpretation. In other 

words, if these regions signaled high cognitive effort during the N-back (greater activity 

in individuals that subjectively experience greater cognitive effort), then one might also 

expect a positive encoding of cognitive effort during valuation (i.e., greater activation on 
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decision trials associated with a high-load / high-effort option). But instead all of these 

regions negatively encode cognitive effort during valuation (i.e., indexing it as a cost or 

discount factor that reduces the value of the option), with activity reducing as the 

signaled effort associated with that option goes up. Although the exact reasons for the 

sign changes in the effects observed in these nodes is unclear, the encoding of both types 

of effects does raise the possibility that any one (or all) of these a priori SV nodes may 

play critical roles in tracking effort costs during engagement with a demanding task for 

the purposes of integrating that cost information during effort-based decision-making. 

A.6 Discussion 
In this chapter, two broad questions were asked about brain activity during effort-

based offer valuation and decision-making: 1) which regions are involved in active 

decision-making beyond non-decision processing of response execution and 2) which 

regions are involved in encoding key choice dimensions during valuation. 

During decision-making, task-positive showed stronger activity on close offer 

comparisons (on regular versus catch trials) confirming their role in supporting 

demanding offer comparison and decision-making in addition to their role in supporting 

demanding N-back performance. Nodes of interest in these networks, especially 

including the dACC and IPS, showed particularly strong effects of choice difficulty. 

Encoding of choice difficulty was considerably more robust for effort-based than delay-

based decision trials. This likely reflected the accumulated fatigue that was much greater 

for delay-based trials, which always came at the end of a long protocol. Unfortunately, 

this also precludes rigorous comparison of delay and effort-based decision-making 
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activity patterns, which although not the primary focus, was a secondary goal of the 

study.   

In addition to choice difficulty, the encoding of choice and biasing conditions was 

investigated during the decision window. Most notably, the caudal PCC was found to 

play a key role in encoding choice of hard task > easy task approximately 8-12 seconds 

after both offers were made available. On closer inspection this reflected timecourses 

which were initially indistinguishable on hard choice versus easy choices, but then 

dropped significantly faster for hard choice versus easy choice trials later in the trial 

epoch. One interpretation is that this region encodes a form of “outcome regret” that 

associated with committing to higher costs. When time series were further broken down 

by biasing condition, a more complex pattern was revealed, indicating this region peaked 

in activity at 6 seconds after offer period onset and was greatest when participants chose 

the hard task relative to the easy task, particularly when overcoming an offer bias towards 

the easy task. Hence, the caudal PCC, which is otherwise implicated in valuation 

processes, appears to carry information both about intrinsic motivational state, and also 

post-decision cost encoding. Note that this region was close to loci identified in the meta-

analysis of Barta et al. (2013) for SV encoding during valuation and during choice 

outcome receipt. Node #133, best approximating the loci of Barta et al., did not encode 

choice and bias like the more caudal PCC cluster identified in this dataset. However, it 

did encode task load during the valuation window (6 to 8 seconds) and thus negatively 

correlated with trial-wise variation in first-offer SV. Moreover, it was one of the nodes in 

which N-back load effects in the DMN predicted load effects during valuation. 



 

 164 

The encoding of key decision variables was investigated in a series of a priori 

nodes heretofore implicated in encoding either domain-general SV or effort-based SV. 

Consistent with meta-analyses implicating the vmPFC and VS in representing SV during 

decision-making, nodes in both regions positively encoded the SV of effortful rewards, 

by amplitude modulation of the hemodynamic response, 6 to 8 seconds after participants 

were presented with a single offer. Furthermore, averaged time courses from the VS and 

the vmPFC revealed encoding of both reward amount (positively) and task load 

(negatively), providing evidence that the VS and vmPFC encode anticipated cognitive 

load as a cost during effort-based offer valuation. To my knowledge, this finding is the 

first unambiguous demonstration that the VS and vmPFC incorporate information related 

to cognitive effort as a unique cost factor that discounts the subjective value of an offer 

during decision-making. Furthermore, single offer valuation-related activity in this region 

was predictive of subsequent choice in a manner suggesting a causal role in decision-

making and overcoming offer biases. Prior to this study, there has been indirect evidence 

suggesting that the VS might encode the cost of cognitive effort. Botvinick et al. (2009) 

showed that the VS was less active when processing a reward cue immediately after 

disengaging from a highly demanding cognitive task versus a less demanding task. While 

this may have reflected, as the authors claim, “cognitive effort discounting” in the VS, it 

may have also reflected some other (non-cognitive) response in the striatum following 

vigorous activity immediately prior. Similarly, Schmidt et al. (2012) have shown that VS 

activity scaled with reward and also performance, during task engagement, that suggested 

it might encode cognitive motivation. However, this is also indirect in the sense that it 

may have only encoded reward and not cost information. Hence, the direct encoding of 
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cognitive cost during pure valuation is a an important and novel finding, implicating the 

VS in encoding a critical dimension of cognitive motivation.  

While the vmPFC and VS showed reliable encoding of both choice dimensions of 

reward and amount, most other a priori nodes encoded SV, but only because they 

negatively encoded load and not amount (with the exception of the more ventral/anterior 

ACC node – #215 – which encoded both dimensions). This result was interesting for a 

number of reasons including that load encoding was so widespread and robust across a 

wide range of nodes, and also because reward magnitude has elsewhere been shown to 

have such widespread and robust effects (Vickery et al., 2011). The widespread encoding 

of load was also interesting because it suggested a number of loci for the integration of 

effort costs during effort-based valuation and decision-making. 

Although the vmPFC showed encoding of both load and amount dimensions, it 

showed only somewhat limited evidence for subjective encoding of these dimensions. 

Although there were ordinal differences in activity of this region that sensibly tracked 

individual differences in effort discounters (higher activity in shallow discounters 

compared to steep discounters), the only reliable statistical evidence that discounting 

predicted vmPFC activity obtained late in the time course, during the decision rather than 

the valuation window. This pattern of results suggests that limited sample size and likely 

limited power to detect individual differences at this level of analysis. 

Intriguingly, though evidence of subjectivity was limited in the vmPFC, there is 

evidence of subjectivity elsewhere. In particular, discounting (AUC3S) predicted 

individual differences in the slope of the linear amount effect in the left VS, positively, 

such that shallower discounters had stronger amount effects. Additionally, novel but 
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tentative evidence was observed for the subjective encoding of effort costs in other 

valuation nodes.  Specifically, in the subset of nodes that encoded load but not reward 

amount (e.g., AI, dACC), mean valuation period activity was positively correlated with 

mean N-back activity in the DMN. One exciting possibility is that the brain tracks effort 

by the degree of DMN deactivation during task engagement (which deepens with 

increasing load), and this information is integrated into valuation processes via SV nodes 

(which also show decreasing activation with increasing load) during offer valuation. 

Again, the fact that mean DMN activity load effects did not vary with individual 

differences in cognitive effort discounting limits stronger inferences about evidence for 

subjectivity in cost encoding. On the other hand, another particularly intriguing finding 

was that individual differences in the linear slope of load effects (i.e., increasing 

deactivation with load) in the DMN during the N-back predicted the linear slope of load 

effects during valuation (again increasing deactivation with load) in multiple a priori SV 

nodes. This result supports the hypothesis that subjective effort is tracked by DMN 

deactivation and is integrated via cost encoding in the PCC, ACC, vmPFC, IPL, and 

brainstem during effort-based valuation and decision-making. 

Chief limitations of this experimental design include a sample size that was 

somewhat small for a focus on individual differences, and may not have been sufficiently 

powerful enough to detect subtle patterns reflecting subjectivity effects in amount and 

load encoding. Another limitation was that the delay-based decision trials always 

occurred at the end of a long experimental session, and so may have been confounded 

with increased fatigue and disengagement during this part of the session. Evidence of 

disengagement included faster response times during delay relative to effort-based 
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decision trials, and a key consequence is that choice dimensions were weakly encoded. 

The fixed experimental order was designed intentionally to strengthen results on effort-

based decision trials, which were the primary focus of the experiment. However, 

differential signal-to-noise confounded cross-domain comparisons of effort and delay. 

Proper comparisons can be achieved in future studies with counterbalanced order. 

Finally, the rapid pacing and fixed trial-to-trial interval were not optimal for detecting 

parametric variation by trial parameters. Jittering by trial type enabled resolution of key 

parameters of interest, but future designs that incorporate greater variability in inter-trial 

intervals would potentially yield greater resolution and effect estimation. These 

modifications may make decoding of subjectivity easier to detect.  Additional, more 

general issues that could be addressed in follow-up studies are discussed next in the final 

chapter.   

A.7 General Discussion 

A.7.1 Decision-making Behavior 
Discounting procedures like COGED are assumed to yield subjective indifference 

points that quantify effort costs, and the present results support this assumption. They 

typically proceed by stepwise titration of offers until a point of subjective equivalence is 

reached, i.e., when participants are indifferent between higher demand task for more 

money and lower demand task for less money. The titration procedure is a common one 

for finding indifference points in the more extensive risk and delay based discounting 

literatures. And yet, few studies have verified that indifference points established in this 

way are stable and meaningful. Here, indifference point stability was confirmed by the 

pattern of choices observed in the final imaging session. During that session, offers for 
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the 1-back were designed to be slightly (or largely) above or below indifference points 

measured for each participant and each N-back level, earlier in the same session. Choice 

frequency plots demonstrated that, across levels, the participants were reliably more 

likely to choose the 1-back when the offer was higher than indifference, and more likely 

to choose the harder task when the offer was lower than indifference. Indifference point 

precision was confirmed by response time analyses. These results showed that decisions 

made about offers very far from indifference (when one option is clearly superior to 

another) were relatively fast, while decision times slowed as offers were made in closer 

proximity to indifference. This pattern of results was as strong, if not stronger, than that 

observed in the delay discounting data, for which procedures are much more well-

established (Green & Myerson, 2004). As such, the particular discounting procedure and 

assumptions about indifference point stability and precision were validated generally. 

More immediately, strong inferences are supported regarding precise and reliable 

measurement of subjective costs in performing various levels of the N-back task and 

across various participants. 

 The lack of a correlation between COGED and TEMPD AUC in this dataset was 

not anticipated. However, the general trend of the data was consistent with prior 

observations (Westbrook et al., 2013). In the prior study, discounting of the two domains 

was positively related because steep effort discounting participants were exclusively 

steep delay discounters, while shallow effort discounters showed a range of delay 

discounting. The current dataset follows the same general pattern, with the exception of a 

single participant who was a steep effort discounter but also a shallow delay discounter. 

Given the small sample size, it is difficult to draw any strong conclusions about 
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individual differences. Nevertheless, the current data are not fundamentally inconsistent 

with prior observations. 

A.7.2 Brain Regions Engaged in Effort-Based Decision-Making 
A vast neuroeconomics literature investigating decision-making regarding diverse 

cost dimensions including delay, risk, and physical effort has implicated a canonical and 

purportedly domain-general network of regions that encode SV or are involved in offer 

comparison. Regions representing SV include the vmPFC, VS, and PCC, while the 

dACC, dlPFC, and IPS have been particularly implicated in decision-making on difficult 

choice trials, i.e., when offers are close in SV (Bartra et al., 2013; Basten et al., 2010; 

Kahnt, Heinzle, Park, & Haynes, 2011; Levy & Glimcher, 2012; Shenhav et al., 2014). 

As described, only a handful of studies have examined cognitive effort value encoding 

directly (Botvinick et al., 2009; Massar et al., 2015; T. Otto, Zijlstra, & Goebel, 2014; 

Schmidt et al., 2012; Schouppe et al., 2014; Vassena et al., 2014). Studies in the domain 

of cognitive effort have implicated a network of regions encoding cognitive motivation 

(as during effort anticipation or performance) that is very similar to the network 

implicated in decision-making generally, particularly including the ACC and the striatum. 

This is consistent with the aforementioned role hypothesized for the dACC in value-

based regulation of cognitive control (Shenhav et al., 2013), and for the ventral striatum 

in general value-learning about states and actions, reviewed in (Niv, 2009). So far, 

however, only one study has examined activity encoding choice dimensions during 

cognitive effort-based decision-making (Massar et al., 2015). Hence, there is very little 

data about regions supporting this critical class of decisions. 
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 Two sorts of questions were asked of the present dataset: 1) what is the brain 

doing during active offer comparison apart from more basic perceptuo-motor processes 

associated with indicating a trivially better option? and 2) where does the brain encode 

choice dimensions during effort-based decision-making? The design of the in-scanner 

decision trials permits asking both questions cleanly.  

Scanner decision trials included offers that were close to and far from each 

participants’ indifference points for every task load. At the limit, when offers are very far 

from indifference, decision-making amounts to trivially identifying the obviously 

superior offer. These catch trials provide a good contrast against those trials in which 

offers are close to indifference and offers must be compared carefully. Catch trials 

engage, and therefore provide a good control for those perceptuo-motor “non-decision” 

processes like response mapping and execution. A contrast of catch and regular decision 

trials has revealed multiple loci including the dACC, the IPS, and the dlPFC, all of which 

have otherwise been implicated in comparison of close offers (Basten et al., 2010; Pine et 

al., 2009; Shenhav et al., 2014). This result validates that the network of regions observed 

for supporting close decisions in other domains extends to decisions about cognitive 

effort as well. It also validates a key assumption of the COGED paradigm: that it 

precisely estimates subjective indifference so that offers close to indifference are actually 

close to indifference. Interestingly, a dACC node that showed a robust regular versus 

catch trial contrast, and was thus more active for difficult decision trials, was also shown 

to encode anticipated cognitive load negatively during offer valuation. This implicates 

dACC in concurrently tracking cognitive effort during decision-making in both a 

prospective manner (in terms of the effort associated with the choice) and as it unfolds, 
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during the decision-making process itself. Interestingly, these two forms of demand were 

encoded in opposite directions and at different stages of the trial: as a load-related 

deactivation during the valuation window, and as choice-difficulty related activation 

during the decision window. A key implication for future research is that the dACC 

appears to encode both ongoing and prospective effort simultaneously. As such, future 

studies investigating the role of the dACC in effort expenditure and decision-making 

should be designed to clearly resolve both influences. 

In addition to difficulty, choice and bias were also encoded during decision-

making. Of particular note, a set of caudal PCC nodes were reliably less active 8—12 

seconds after decision widow onset on trials in which participants selected the more 

demanding over the less demanding option. One interpretation is that the caudal PCC 

encodes greater costs associated with committing to the more demanding option. This 

interpretation is consistent with the hypothesis that the PCC tracks action outcomes to 

drive adaptive changes in behavior (Pearson et al., 2011). Prior to this, at 6 seconds after 

decision window onset, activity peaks in these caudal PCC nodes and is reliably higher 

on trials in which the hard option is selected overcoming an easy offer bias relative to 

when the easy option is selected despite that offer being below subjective indifference. 

This suggests that the caudal PCC, like the vmPFC (and supramarginal gyrus, AI, and 

dACC) encodes state intrinsic motivation during effort-based valuation and decision-

making. 

The second kind of question addressed by this paradigm is which brain regions 

encode choice dimensions. The experimental design includes a valuation period, during 

which participants have the opportunity to consider a single offer in isolation. This design 
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contrasts with most other decision-making studies that have considered valuation effects 

during a time window in which both offers are available. The advantages of the current 

design is that it allows for a pure analysis of whether various decision variables, such as 

amount and load, are encoded for this offer, without the associated complication and 

confounds of distinguishing multiple offers and the associated decision period. 

All a priori regions of interest identified for encoding SV in previous meta-

analyses, including the vmPFC, VS, AI, PCC, brainstem, and ACC showed positive 

encoding of SV pursuant to single offer valuation. Interestingly, several of these regions 

– the dACC, PCC, and AI in particular – showed reliable encoding of load (negatively) 

but not reward amount. Hence, they evinced positive SV encoding, but only because they 

encoded load negatively. This result is also interesting given that the AI, in particular, has 

elsewhere been implicated as part of a “pain matrix” encoding aversive stimuli, and 

responding robustly, in terms of increased activation, both to punishments and to physical 

and cognitive effort (Craig, 2002; T. Otto et al., 2014; Prévost et al., 2010; Treadway et 

al., 2012). The negative sign of load encoding observed in the AI during the current study 

is thus not straightforwardly predicted by this prior literature. Nevertheless, positive 

encoding of both rewards and punishments have been observed in the AI (and the 

striatum as well) (Bartra et al., 2013), supporting that this region plays some as yet 

unidentified role in incorporating cost and penalty information into cost-benefit valuation 

processes. The VS, for its part, has been shown to encode the selection of high cognitive 

load positively (in case a participant freely selects higher load) or negatively (in case the 

participant is forced to select higher load) suggesting that more complex underlying 

decision-making processes can yield either sign at the level of local field potentials and 
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BOLD signal (Schouppe et al., 2014). Thus, it is not straightforward to predict the sign of 

the effect; the important result is that load is encoded. The most direct interpretation of 

the current result is that many of these valuation regions are negatively encoding costs 

and positively encoding benefits towards a single common currency of SV during single 

offer valuation. In the COGED paradigm, the cognitive load of the N-back associated 

with an offer factors in as a cost variable that causes participants to discount the value of 

that offer. As such, load (and concomitant effort costs) should be negatively encoded in 

an SV region. 

Although a number of regions were found to encode load and amount as 

anticipated, there was less robust evidence that the encoding reflected the subjective 

dimension of valuation, at least in terms of individual differences in effort discounting. In 

particular, load effects and amount effects were not found vary with individual 

differences in discounting rate. One notable exception is that a left VS node was shown to 

have an amount effect that reliably increased with AUC3S. This does provides some 

support for the idea that reward amount, if not cognitive load, is reflected in the 

subjective encoding of value in the VS. It is possible that further subjectivity effects were 

not detected because the limited sample size provided insufficient power to detect 

relatively subtle individual differences. Also, subjectivity is likely to be a weaker effect 

to the extent that state factors introduce variability in subjective value encoding (e.g. with 

intrinsic motivation, from one trial to the next). 

Intriguingly, however, there was some evidence of subjective encoding of load 

with respect to individual difference covariation between DMN activity during N-back 

performance and activity in left and right AI during single offer valuation. Specifically, 
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during the N-back, the DMN negatively and monotonically varied with load, while 

during valuation, the AI nodes negatively and monotonically varied with load. Critically, 

these effects correlate (for both nodes) across participants such that those individuals 

exhibiting stronger load-independent DMN deactivation in the N-back also showed 

stronger average AI deactivation during offer valuation. This result provides evidence in 

support of two hypotheses: 1) that subjective, phenomenal effort reflects the extent to 

which individuals suppress activity in the DMN while they perform demanding tasks and 

2) that such cost information becomes integrated into subjective cost-benefit valuation 

via the AI. 

Even more intriguingly, individual differences in the steepness of load functions 

in the DMN predicted steepness of load effects during the valuation period in several a 

priori SV nodes. Again, this result supports the hypothesis that DMN deactivation tracks 

subjective effort during task engagement, and cost information is incorporated into 

valuation processes through the vmPFC, PCC, IPL, ACC and brainstem in particular. 

In sum, the present data set has provided strong and novel evidence for encoding 

of anticipated cognitive load as a cost during valuation and decision-making, and 

preliminary evidence for subjectivity in representations of effort costliness and reward 

desirability in a core valuation and decision network. In addition, this data has yielded 

multiple lines of evidence suggesting that effort costs are tracked by DMN deactivation 

and also the particular loci by which this effort cost information becomes integrated into 

a valuation process. 
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A.7.3 Future Directions 
Regarding decision-making, an obvious future direction is to examine functional 

connectivity among the many regions of interest. To the extent that the AI nodes track 

costs that become integrated with benefits in the vmPFC, for example, we should expect 

not only trial wise correlation with offer SV, but also greater functional connectivity 

between these regions during the valuation period. During the decision period, to the 

extent that the IPS is involved in cost-benefit comparison, it may also show greater 

functional connectivity with the vmPFC on regular trials relative to catch trials. Also, 

aside from the intriguing individual differences correlation between the DMN during the 

N-back and the nodes including the AI, PCC, ACC, and vmPFC during offer valuation, 

functional connectivity analyses could be used to examine the linkages between specific 

regions implicated in tracking effort, like particular DMN nodes, and regions integrating 

effort cost information like the AI or vmPFC. Dynamic causal modeling may also prove 

particularly informative about how cost information is conveyed to valuation regions 

during valuation, as one would predict directed transfer from a tracking region to a 

valuation region under that condition. 

 

 

  



 

 176 

Appendix B 
B.1 Response times for effort-based decision trials  

As described in Appendix A, COGED decision difficulty was successfully 

manipulated by modulating the bias parameter. This was demonstrated by examining 

both choice probabilities and RTs. As shown in Figure B.1, median RTs were faster at the 

limits, and slower for smaller magnitude proximity parameter settings (note that these 

same data were presented, broken out by biasing condition in Appendix A, but here 

collapse across that variable for comparison purposes). This supports that proximity 

parameter settings of -1.0 and 1.0 are treated as trivial decisions (referred to as “catch 

trials”) and those closer to indifference as more difficult, as intended.  

 

Figure B.1 Median effort-based decision RTs by proximity parameter. 

The large effect in median RT values by proximity parameter values contrasts 

with the very small effect of other decision trial parameters: base amount, and task level. 

As shown in Figure B.2, the effects of either of these parameter variations are relatively 

small in terms of median RTs. Moreover, there are no pairwise differences in median RTs 

among base amount, or among task level parameter settings.  

−1 −.2 −.1 .4 .6 1

Median RT by Bias

Proximity Parameter Value

M
ed

ia
n 

RT
 (s

ec
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5



 

 177 

 

Figure B.2 Median effort-based decision RTs by base amount and N-back Task Level. 

B.2 Response times for delay-based decision trials  
RT patterns also provide evidence that bias influenced TEMPD decision difficulty 

as anticipated. As shown in Figure B.3 (again these are the same data presented in 

Appendix A, but here collapsed across bias condition), median RTs were faster at the 

limits, and slower for smaller magnitude proximity parameter settings. The large 

difference in median response times reported in the main text supports that the 

participants robustly treat decision trials at the limits differently than they do decision 

trials closer to indifference. 

 

Figure B.3 Median delay-based decision RTs by proximity parameter value. 
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Again, as with COGED, the large effect in median RT values by bias settings 

contrasts with the very small effect of other decision trial parameters: base amount, and 

delay. As shown in Figure B.4, the effects of either of these parameter variations are 

relatively small in terms of median RTs. Moreover, there are no pairwise differences in 

median RTs among base amount, or among task level parameter settings (all p’s ≥ 0.26).  

  

B.4 Median delay-based decision trial RTs by base amount and delay. 
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Appendix C 
C.1 Regions tracking effort during the N-back 

C.1.1 Whole-brain voxel-wise load functions 
One of the questions explored in the main text is how brain regions vary as a 

function of N-back load. An analysis of a priori task-positive networks and the DMN 

revealed a set of linear and quadratic functions in each network. To complement these 

results, voxel-wise whole-brain t-tests were conducted using linear contrasts of block 

regression weights to test for linear effects of load, and polynomial contrasts of block 

regression weights to test for quadratic (inverted-U) effects of load. These t-tests were 

then thresholded at each voxel at p < 0.005, and cluster corrected to p < 0.01 (cluster 

extent ≥ 97 voxels). Given the unexpected dip, in most task-positive networks, at the 5-

back, linear and quadratic effects were tested both over the range N = 1—5 and N = 1—

6. Figure C.1 gives both of these results for the whole brain. 

 

A – Linear, N = 1—5    B – Inverted-U, N = 1—5 

 

C – Linear, N = 1—6    D – Inverted-U, N = 1—6 
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C.1 t-tests of linear (A,C) and negative quadratic (inverted-U; B,D) across load levels N = 1—5 (A,B) and 
N = 1—6 (C,D). Linear and quadratic effects are predominantly negative acros both ranges. 

As shown in Figure C.1A and C.1C, linear effects are predominantly negative and 

also largely within the DMN – in particular, the medial PFC wall, the mid-cingulate 

cortex and the anterior lateral PFC show negative effects of load, as expected for the 

DMN. As shown in Figure C.1B and C.1D, the quadratic tests reveal strong inverted-U 

(negative quadratic) load functions in the dlPFC, vlPFC, dACC/preSMA, IPL and IPS. 

These results, therefore, confirm (negative) linear effects in the DMN, and inverted-U 

load functions in the FP, Sal, and DorAtt networks, in particular.  

C.1.2 Network load functions 
By investigating the change in regression weights across loads in each of the 13 

intrinsic networks of the brain, as identified by Power et al. (2011), various patterns 

emerged, including flat, monotonic, and inverted-U functions. A formal test of these 

functions for each network was accomplished by multi-level models with variable 

intercepts as described by equations 4.1—4 in the main text. The result of those multi-

level models for all 13 networks are provided in the following table. Note that because of 

the unexpected jump in activity at N = 6, relative to N = 5, linear and quadratic models 

are fit to both ranges N = 1—5 and N = 1—6, for exploratory purposes.   
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 Linear effects Quadratic effects 
 B2*10-3 p-value B3*10-3 p-value 

Network Across Loads N = 1—5 
Unc -4.5 0.11 -1.5 0.46 
SmtSn -5.3 0.05 0.7 0.64 
CO -4.1 0.05 -3.0 0.05 
Aud -5.6 0.03 1.3 0.35 
DMN -6.7 0.01 2.4 0.23 
MmRtr -2.5 0.39 -1.7 0.42 
VntAtt -6.6 <0.01 -1.4 0.31 
Vis -7.1 <0.01 0.2 0.92 
FP 1.7 0.45 -6.6 <0.01 
Sal -1.7 0.40 -4.2 0.02 
SubC -2.0 0.45 -3.5 0.08 
Crblr -4.8 0.08 -2.6 0.10 
DorAtt -2.2 0.34 -4.5 0.01 

 Across Loads N = 1—6 
Unc -2.3 0.23 0.8 0.50 
SmtSn -2.9 0.11 1.8 0.13 
CO -2.7 0.11 -0.2 0.82 
Aud -2.8 0.12 2.2 0.03 
DMN -4.7 0.01 2.1 0.10 
MmRtr -1.6 0.38 0.01 0.96 
VntAtt -3.9 0.02 1.2 0.16 
Vis -3.9 0.03 2.1 0.06 
FP 0.9 0.62 -3.0 <0.01 
Sal -1.3 0.42 -1.3 0.23 
SubC -1.8 0.40 -1.2 0.31 
Crblr -2.9 0.12 0.2 0.88 
DorAtt -2.2 0.09 -1.7 0.27 
Table C.1 Linear and quadratic fixed effects of load in all 13 networks for N = 1—5 and N = 1—6. 
Shading: light grey for p < 0.10, medium for p < 0.05, and dark for p < 0.01. Network labels are 
abbreviated: Unc for Uncertain, SmtSn for Somatosensory, CO for Cingulo-Opercular, Aud for Auditory, 
DMN for Default Mode Network, MmRtr for Memory retrieval, VntAtt for Ventral Attention, Vis for 
Visual, FP for Frontal-Parietal Task Control, Sal for Salience, SubC for Sub-cortical, Crblr for Cerebellar, 
and DorAtt for Dorsal Attention. 

A full set of boxplots across load levels for all networks is provided in Figure C.2. 
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Figure C.2 Mean recruitment within each of 13 networks across N-back levels N = 1—6.  

C.1.3 What is the relationship between discounting and activity at each 
load and in each network?  

As described in the main text, separate multi-level models of N-back regression 

weights were computed for each network with predictors of AUC3S and dummy codes 

indicating Load (1-back as the baseline for contrast – thus making no assumptions about 

the shape of the load function), along with the interaction of AUC3S and each load level, 

all nested within participants. The general form of each multi-level model is given by: 
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βi = B1j[i] + B2j[i] 2back + B3j[i] 3back + B4j[i] 4back + B5j[i] 5back + B6j[i] 6back  

+ εi            (C.1) 

B1j = γ1,0j + γ1,1jAUC3Sj + η1j        (C.2) 

B2—6j = γx,0j + ηxj         (C.3) 

where β is the network-averaged regression weight being predicted by an intercept term 

B1, and B2—B6 referring to dummy codes for the 2-back—6-back, respectively. Note 

that all predictors are subscripted to indicate the nesting of load level i, within participant 

j. Note also that AUC3S is included as a predictor at the participant level of the model for 

the intercept, but not as a predictor of Load effects (no cross-level interactions between 

Load and AUC3S). A full model in which AUC3S was included as a predictor of dummy-

coded Load effects was found to explain insufficient variance to justify the additional 

degrees of freedom in nested model comparisons, in all networks. Thus, the simpler 

models are presented here. This also means that model fits do not support cross-level 

Load x AUC3S interactions. The results for all 13 models (one for each network) are 

provided in Table C.2 below.  
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 Fixed Effects Estimates*10-2 (p-values): 
Network AUC3S 

γ1,1 
2-back 
γ2,0 

3-back 
γ3,0 

4-back 
γ4,0 

5-back 
γ5,0 

6-back 
γ6,0 

Unc -4.8  
(0.09) 

-0.60 
(0.58) 

0.24 
(0.82) 

-0.14 
(0.23) 

-0.18 
(0.10) 

-0.57 
(0.60) 

SmtSn -5.3 
(0.02) 

-1.7 
(0.07) 

-1.1 
(0.22) 

-2.0 
(0.05) 

-2.5 
(<0.0) 

-1.4 
(0.15) 

CO -8.5 
(<0.01) 

-0.04 
(0.97) 

0.42 
(0.70) 

-0.37 
(0.75) 

-1.9 
(0.07) 

-0.59 
(0.57) 

Aud -3.4 
(0.14) 

-1.4 
(0.10) 

-1.5 
(0.11) 

-2.2 
(0.03) 

-2.4 
(0.01) 

-1.2 
(0.19) 

DMN -1.0 
(0.68) 

-2.2 
(0.04) 

-2.1 
(0.04) 

-2.9 
(0.02) 

-3.0 
(<0.0) 

-2.7 
(<0.01) 

MmRtr -7.4 
(<0.01) 

-0.04 
(0.97) 

0.07 
(0.95) 

-0.13 
(0.92) 

-1.2 
(0.23) 

-0.39 
(0.72) 

VntAtt -4.6 
(0.04) 

0.03 
(0.97) 

-0.59 
(0.53) 

-1.8 
(0.05) 

-2.4 
(<0.0) 

-0.99 
(0.25) 

Vis -6.9 
(<0.01) 

-1.4 
(0.13) 

-1.3 
(0.20) 

-2.3 
(0.03) 

-3.1 
(<0.0) 

-1.5 
(0.17) 

FP -7.2 
(<0.01) 

2.5 
(0.02) 

3.4 
(<0.0) 

2.1 
(0.07) 

1.0 
(0.32) 

1.8 
(0.11) 

Sal -8.6 
(<0.01) 

0.80 
(0.48) 

1.5 
(0.20) 

0.57 
(0.64) 

-0.74 
(0.51) 

0.17 
(0.86) 

SubC -7.9 
(<0.01) 

0.33 
(0.80) 

1.3 
(0.36) 

0.18 
(0.90) 

-0.91 
(0.49) 

-0.28 
(0.80) 

Crblr -12. 
(<0.01) 

-0.10 
(0.93) 

0.28 
(0.81) 

0.84 
(0.44) 

-2.0 
(0.06) 

-0.70 
(0.56) 

DorAtt -9.7 
(<0.01) 

1.6 
(0.11) 

1.6 
(0.07) 

0.44 
(0.70) 

-0.53 
(0.59) 

-0.00 
(0.99) 

Table C.2 Fixed main effects (and p-values) of multi-level model of N-back regression weights predicted 
by AUC and Load. Shading in the table indicates significance level with light grey for p < 0.10, medium 
for p < 0.05, and dark for p < 0.01. 

While nearly all networks show some evidence of negatively encoding AUC3S, it 

is possible that such diffuse encoding reflects the outsized influence of a single outlier. 

Closer inspection of the AUC3S effects reveals the outsized influence of a single 

participant (SU1514, AUC3S = 0.31) driving negative associations between discounting 

and BOLD signal in multiple networks. An exemplary figure highlighting the influence 

of this particular participant for the VntAtt network is given in Figure C.3.  
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Figure C.3 Network-level individual differences activity across VntAtt nodes by AUC3S, suggests that data 
from SU1514 is driving the negative relationships in this network. The solid line gives the linear 
regression, and dashed lines give the 95% CI. 

Upon removal of the influential participant, and subsequent re-analysis, multiple 

regions no longer show reliable AUC3S effects. In fact, only two networks show AUC3S 

effects after removal: the DorAtt and Crblr network, as shown in Table C.3. All other 

AUC3S effects are no longer reliable (all p’s ≥ 0.14). As noted in the main text, this result 

does not mean that COGED does not relate to activity in a wider set of networks. Indeed, 

there is little sampling below AUC3S < 0.5, and SU1514 may accurately reflect the 

tendency of this (sparsely sampled) underlying population of steep discounters. 

Moreover, when considering data from all task-positive networks together, the aggregate 

set of networks has a reliable effect of βavg weights predicting SV3S (γ11 = -6.2×10-1; p < 

0.01), even excluding SU1514. In that case, there is a wider encoding of discounting 

across task-positive networks. This result does, however, suggest additional caution in 

inferring COGED effects across a wider range of networks. Conversely, it indicates that 

the COGED relationships observed in the DorAtt network are particularly robust. 
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 Main Effects Estimates*10-2 (p-values): 
Network AUC3S 

γ1,1 
2-back 
γ2,0 

3-back 
γ3,0 

4-back 
γ4,0 

5-back 
γ5,0 

6-back 
γ6,0 

Crblr -9.7  
(<0.01) 

3.0 
(<0.01) 

3.5 
(<0.01) 

1.9 
(0.05) 

0.1 
(0.33) 

2.3 
(0.04) 

DorAtt -6.8 
(0.03) 

5.4 
(<0.01) 

5.5 
(<0.01) 

3.9 
(<0.01) 

3.1 
(<0.01) 

3.7 
(<0.01) 

Table C.3 Fixed main effects (and p-values) of multi-level model of N-back regression weights predicted 
by AUC and Load, excluding data from SU1514. Only networks with a significant AUC3S effect are 
shown, for brevity. Shading in the table indicates significance level with light grey for p < 0.10, medium 
for p < 0.05, and dark for p < 0.01. 

A visual representation of the AUC3S effects in the DorAtt and Crblr networks, by 

contrast, are provided in Figure C.4. Note that and there is a clear effect of AUC3S on 

BOLD signal such that shallower discounters recruit the Crblr and DorAtt nodes less 

vigorously. 

 

Figure C.4 Network-level individual differences activity across DorAtt and Crblr networks by load-specific 
A) AUC3S, averaged across task load levels or B) SV3S with task loads modeled separately, showing a clear 
effect of discounting on activity. Solid lines give linear regressions, and dashed lines give the 95% CI. 

C.1.4 Does the relationship between activity and discounting hold when 
controlling for performance differences?  

Activity-discounting relationships support that a network’s activity level relates to 

individual differences in subjective cognitive effort. However, as described in the main 

text, it important to show that variance among individual differences in brain response to 

demanding tasks explained by COGED is not better explained by individual differences 
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in task performance metrics. To test for this, multiple regression models were fit for each 

level N = 2—6, for those networks showing AUC3S effects, including not only AUC3S, 

but also measures of response time (ex-Gaussian µRT) and performance (d’) at each level 

included as covariates. Note that ex-Gaussian τRT was also used as an alternative 

predictor to µRT and fit approximately as well, but the results for the AUC3S effect were 

the same either way. Also note that exclusion of SU1514 resulted in slightly larger p 

values for most regions and nodes, but did not fundamentally alter the pattern of results. 

β = B1 + B2 AUC3S + B3 µRT + B4 d’      (C.4) 

Table C.4 gives the effect, B2, describing the relationship between AUC3S and the 

network-averaged regression weight for each level of the N-back, controlling for 

performance measures. As shown, networks particularly including the CO, MmRtr, FP, 

Sal, Crblr, and DorAtt show relationships to discounting, independent of individual 

differences in task performance. This supports that these networks track effort per se, and 

not simply delay or probabilistic discounting associated with N-back task performance. It 

is important to note, though, that for many regions, inclusion of performance measures 

reduces the effects to trend-level, with the exception of the MmRtr and DorAtt networks. 

It is also notable that, again, the most reliable effects are restricted to the 4-back, as 

shown for the SV analysis above. This suggests that the strongest diagnosticity regarding 

individual differences in subjective effort might be under the 4-back load. 
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 AUC3S Effect, B2*10-2 (p-value), Controlling for Performance, by Load: 
Network 1-back 2-back 3-back 4-back 5-back 6-back 
Unc -7.6 

(0.20) 
-4.9 

(0.36) 
0.7 

(0.89) 
-13.6 
(0.02) 

-3.8 
(0.41) 

-2.0 
(0.67) 

CO -10.4 
(0.08) 

-7.2 
(0.18) 

-5.0 
(0.38) 

-12.0 
(0.05) 

-4.8 
(0.33) 

-7.2 
(0.18) 

MmRtr -7.9 
(0.20) 

-9.9 
(0.03) 

-6.4 
(0.24) 

-21.5 
(<0.01) 

-11.1 
(0.03) 

-8.9 
(0.09) 

Vis -9.4 
(0.07) 

-4.5 
(0.29) 

2.4 
(0.62) 

-0.10 
(0.08) 

-3.8 
(0.35) 

-2.1 
(0.70) 

FP -9.7 
(0.06) 

-10.0 
(0.07) 

-1.1 
(0.82) 

-14.8 
(0.02) 

-6.1 
(0.25) 

-9.9 
(0.12) 

Sal -9.5 
(0.11) 

-9.7 
(0.09) 

-4.1 
(0.48) 

-15.3 
(0.01) 

-6.9 
(0.19) 

-9.4 
(0.12) 

SubC -9.1 
(0.15) 

-5.8 
(0.36) 

-3.9 
(0.60) 

-18.7 
(0.01) 

-7.8 
(0.18) 

-7.6 
(0.21) 

Crblr -13.5 
(0.01) 

-9.4 
(0.15) 

-3.0 
(0.59) 

-17.3 
(<0.01) 

-10.0 
(0.06) 

-8.5 
(0.17) 

DorAtt -9.9 
(0.07) 

-12.7 
(0.01) 

-8.3 
(0.04) 

-18.3 
(<0.01) 

-11.1 
(0.04) 

-10.0 
(0.09) 

Table C.4 AUC3S effects (and p-values) on individual differences in averaged recruitment of each N-back 
level, for each network, controlling for individual differences in performance. Shading in the table indicates 
significance level with light grey for p < 0.10, medium for p < 0.05, and dark for p < 0.01. 

C.1.5 Do non-linear load functions interact with AUC to predict 
activity?  

Hypothesized Load x AUC3S interactions were not observed in N-back BOLD 

data. Such interactions would strongly implicate a region in tracking effort during task 

engagement. Although no interactions have been observed by previous analyses that 

assume linear load effects, potential non-linear effects of load may harbor Load x AUC3S 

interactions that were not observed in prior analyses because they only considered load as 

a linear predictor of recruitment. To investigate this possibility, the random effects (one 

per subject) from the models fit for Eqns. 4.1—4.4 were further tested for their 

relationship with AUC3S. Specifically, multiple regressions were fit to test whether linear 

or quadratic random effects predict AUC3S, for each network showing either a linear or 

quadratic fixed effect of load.  
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AUC3Sj = B1 + B2 Linear Random Effectj + B3 Quadratic Random Effectj  (C.5) 

Table C.5 shows the resulting regression weights (corresponding to Eqn. C.5) for 

those regressions that were significant or trending. As with the nodal analysis above, 

these results are not corrected for multiple comparisons, and are considered exploratory.  

 Linear effects Quadratic effects 
 B2 p-value B3 p-value 
Network Across Loads N = 1—5 
CO 40.1 0.08 66.5 0.09 
FP 36.2 0.07 101.7 0.05 
Crblr -4.9 0.38 98.8 0.02 
 Across Loads N = 1—6 
Crblr -52.8 0.03 -168.4 0.02 
DorAtt -113.0 <0.01 -12.9 0.15 
Table C.5 Significant relationships between the linear or quadratic random effects and AUC3S. Shading: 
light grey for p < 0.10, medium for p < 0.05, and dark for p < 0.01. 

Across N = 1—5, the most reliable effects include that in the FP and Crblr 

networks, which showed reliable (or trending) inverted-U (negative quadratic) fixed 

effects, more positive (effectively, less negative), quadratic terms predict higher AUC3S. 

That is, their inverted-U is shallower than those with lower AUC3S values. A visual 

depiction of this effect is given in Figure C.5. As can be seen, those with lower AUC3S 

values (darker red) tend to have sharper inverted-U profiles across N = 1—5 than those 

with higher values (lighter yellow). This pattern of sharper inverted-U functions for those 

with lower AUC3S values is mirrored by trend-level effects in the CO. The inclusion of N 

= 6, for which there was a noticeable increase in activity at N = 6 erased this pattern for 

the FP network and CO networks, and actually reversed it for the Crblr network for 

which smaller AUC3S participants show an upright-pattern (consistent with a uptick in 

activity at N = 6). 
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Figure C.5 N-back regression weights across N = 1—5 in the FP and Crblr networks for individual 
participants as modeled by fixed effects (solid black line) and subject-specific random effects. Fixed and 
random effects are averaged across three categories of participants, for ease of visualization, according to 
AUC3S: low (AUC3S < 0.65), medium (0.65 < AUC3S < 0.85), and high (AUC3S > 0.85). 

Another reliable effect observed across N = 1—6 is a robust negative linear effect 

for the DorAtt network. Given that the fixed effect is negative, a negative relationship 

between linear random effects and AUC3S means that there are stronger negative slopes 

for those participants with larger AUC3S values (lighter yellow). This effect is depicted in 

Figure C.6. 
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Figure C.6 N-back regression weights across N = 1—6 in the DorAtt and Crblr networks for individual 
participants as modeled by fixed effects (solid black line) and subject-specific random effects. Fixed and 
random effects are averaged across three categories of participants, for ease of visualization, according to 
AUC3S: low (AUC3S < 0.65), medium (0.65 < AUC3S < 0.85), and high (AUC3S > 0.85). 

Though these analyses are exploratory, the results suggest that steep and shallow 

discounters follow different load functions over the range of loads observed here – be it a 

larger linear decline in the DorAtt network for shallower discounters, or sharper inverted-

U functions in the FP and Crblr networks for steeper discounters. A confirmation of any 

of these patterns in a follow-up study would provide evidence of an effective AUC x 

Load interaction, and thereby further implicate the networks in question in tracking 

cognitive effort. 
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Appendix D 
D.1 Whole-Brain Analyses of Regions Involved in 
Decision-Making 
D.1.1 Voxel-wise Analyses of Regular Versus Catch Trials 

As shown in Figure D.1, a canonical working memory and cognitive control 

network was found to be robustly more active for cognitive effort decision-making in 

regular compared to catch trials. This network included the bilateral IPS, dACC, pre-

SMA, and also the left inferior frontal gyrus and left mid-insula. Other regions more 

active for regular than catch trials include the bilateral brainstem, lateral occipital lobe, 

thalamus, and parahippocampal gyrus, and also the left caudal putamen and left 

cerebellum. Only three regions were less active for regular than catch trials: two clusters 

in bilateral, ventral inferior frontal gyrus, and one in the left IPL. 

 

Figure D.1 t-test of regions in contrast of regular and catch effort-based decision trials. Clusters shown 
were voxelwise corrected p < 0.005, and cluster thresholded to p < 0.05.  

In addition to the loci discussed in the main text, the left lPFC has been implicated 

in working memory processes supporting intertemporal choice, e.g. (Figner et al., 2010); 

its activity here suggests it supports cost domain-general (both effort and delay-based) 

decision-making. Left lateral motor cortex engagement reflects the fact that the right 
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hand was used for responding, and may reflect longer response times and more involved 

planning when one response must be inhibited relative to another during regular trials. 

Greater occipital cortex activity may straightforwardly reflect greater visual activity 

associated with more looking back and forth between two (closer) options. 

Also, as shown in the following Figure, the dACC cluster reflecting a robust 

regular versus catch contrast in effort-based decision trials encompasses the a priori node 

of interest for encoding SV (Node # 213) described in the main text. 

 

Figure D.2 dACC node overlaid with the medial PFC cluster defined by the contrast of regular versus catch 
trials. 

The same contrast in delay-based decision-making reveals a similar, but much 

less robust network of regions. In particular, the left motor cortex and left occipital lobe 

as well as small clusters in bilateral brainstem and IPS were also more active for regular 

versus catch trials in delay-based decision-making, as shown in Figure D.3. All of these 

regions mirror effort-based decisions. The contrasts were considerably weaker, however, 

with obviously smaller cluster sizes, and a peak t-stat of 4.93 for delay-based compared 

to 9.07 for effort-based decisions. Few other regions show differences between the delay-

based decision trial types, with potential exceptions in the vmPFC, posterior medial 

parietal cortex and, and caudate showing decreased rather than increased activity in 

regular versus catch trials. While these regions were distinct from those identified for 

effort-based decisions, the extent and position of these clusters makes them suspect, since 
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they are lie mostly along edges, ventricles, and in white matter (corpus callosum for the 

vmPFC cluster).  

 

 

Figure D.3 t-test of regular versus catch trials during decision window for delay-based decisions. Voxel 
thresholded at p < 0.005, cluster corrected to p < 0.05. 

D.1.2 Voxel-wise Analysis of Choice and Bias Encoding During the 
Decision Window 

As shown in Figure D.4, the decision to engage in a hard task over an easy task 

corresponded with lesser activity, 10 seconds in to the decision window, in bilateral PCC 

and the angular / superior temporal gyrus on the left. This contrast was derived from 

impulse response functions modeled across the entire decision trial epoch, separately for 

trials in which the participant selected the hard choice or selected the easy choice. Then, 

the time point-wise contrasts of the two impulse response functions were tested at each 

time point in the decision window. The cluster shown below survived correction for the 

time point 10 seconds in to the decision window. 
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Figure D.4 Clusters showing lesser activity 10 seconds after decision period onset for trials in which 
participants select the harder over the easier task. A pair-wise t-test of trial types at that time point was 
voxel-wise thresholded at p < 0.005 and cluster corrected to p < 0.05 at the whole brain level. Two clusters 
obtain A) 227 voxels, cent. of mass: (-1,-51,27), peak t-stat: -4.93 and B) 102 voxels, cent. of mass: (-48,-
62,33), peak t-stat = -4.51. 

D.1.3 Node-based Analyses of Regions Encoding SV 
Using amplitude-modulated tent functions spanning an entire trial epoch, it is 

possible to test for amplitude modulation by SV across the whole brain. Specifically, 

after fitting GLMs, 26 predictors of interest are generated (13 mean impulse responses 

and 13 amplitude modulation responses per trial) corresponding to 13 time points (2 

second TRs). Plots of these predictors in all 264 nodes of Power et al. (2011) follows. 

Note that the plots show the impulse response functions for both effort-based (solid) and 

delay-based (dashed) decision trials. Also, note that the first set of 264 plots corresponds 

to the mean response function (Figure D.5), and the second set of 264 plots corresponds 

to their trial-wise amplitude modulation by SV of the first offer (Figure D.6). As shown 

in the first set of plots, the impulse response functions for delay and effort-based decision 

trials are very similar in all nodes, whereas the second set of plots reveal much attenuated 

amplitude modulation in the delay-based decision trials. 
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Figure D.5 Mean impulse response function for 13 time points (spanning 24 seconds) across 264 nodes 
defined by Power et al. (2011). Solid lines reflect effort-based and dashed lines reflect delay-based decision 
trials. x-axes gives the time point, y-axes give regression weight. Vertical dotted lines show the decision 
window onset. 
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Figure D.6 Amplitude modulation of impulse response function for 13 time points (spanning 24 seconds) 
across 264 nodes defined by Power et al. (2011). Solid lines reflect effort-based and dashed lines reflect 
delay-based decision trials. x-axes gives the time point, y-axes give regression weight. Vertical dotted lines 
show the decision window onset. 
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D.1.4 Voxel-wise Analysis of Regions Encoding SV 

D.1.4.1 Regions Encoding SV During Effort-based Valuation  
Using amplitude modulated tent functions spanning an entire trial epoch, it is 

possible to test for amplitude modulation by SV across the whole brain, rather than just in 

specific nodes as described in the main text. Specifically, after fitting GLMs with 26 

predictors of interest (13 mean impulse responses and 13 amplitude modulation responses 

per trial), a group level contrast between the amplitude modulation response of the 

valuation window (time points 6 and 8 seconds) is tested against zero. Figure D.7 shows 

the cluster-corrected result of this contrast for an amplitude modulator of SV. 

 

Figure D.7 t-stat map of amplitude modulation by SV pursuant to valuation. Voxel-wise thresholded at p < 
0.001, and cluster corrected to p < 0.05. The single cluster is 265 voxels, with a peak t-stat of 6.32, and a 
center of mass: x = 1.3, y = 42.6, z = -3.3 MNI space, LPI convention. 

As shown in Figure D.7, the contrast reveals a robust positive deflection in 

activity, in a single large cluster spanning the vmPFC, as a function of offer SV during 

effort-based decision making. This cluster overlaps the a priori vmPFC nodes 

investigated in the main text.  

Many of a priori nodes, by contrast, lie outside the vmPFC cluster, so it may seem 

somewhat surprising that they were not also identified as distinct clusters in the prior 

whole brain analysis. This may relate to multiple comparisons correction associated with 

whole brain voxel-wise analyses as the a priori regions did not survive a stringent whole 
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brain cluster correction. This fact is made clear by a subsequent whole-brain analysis 

utilizing in an uncorrected p < 0.05 threshold, which reveals the dACC, PCC, AI, and 

brainstem all showing positive amplitude modulation by SV. Hence, the lack of distinct 

clusters beyond the vmPFC likely reflects a Type II error stemming from low power. The 

voxel-wise analysis here thus provides additional evidence that SV encoding is 

particularly strong in this region relative to other regions.  

Figure D.8 shows the averaged time series for each of the $2, $3, and $4 offers, 

and also the averaged time series for each of the 2-back through the 6-back. Note that for 

the time points of interest (shaded in grey), there is a clear pattern reflecting both 

modulation by amount such that larger amounts correspond to more positive time series 

and modulation by load such that larger loads correspond to more negative time series. 

Hence, this region encodes both dimensions of choice contributing to SV. 

A B  

Figure D.8 Averaged time series from vmPFC cluster encoding SV pursuant to valuation for each amount 
and load condition. The grey region corresponds to time points 6 and 8, during which significant amplitude 
modulation by SV was observed. * Indicates linear effect at p < 0.05, by time point, of amount in A and 
load in B as determined by multi-level model nesting observations within participants. 
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D.1.4.2 Independent Encoding of Offer Amount and Load During Effort-Based 
Valuation  

As described in the main text, a region encoding SV during effort-based 

decision—making should independently encode both load and amount. The experimental 

paradigm included orthogonalized (fully-crossed) task load and amount regressors, 

allowing this hypothesis to be specifically tested.  

Whole brain analyses were conducted by fitting GLMs where amplitude 

modulation of tent functions was predicted by parametric variation in centered amount, 

or, alternately, task load rather than SV. Next, group level contrasts of the amplitude 

modulation predictors at time points 6 and 8 seconds were tested against zero, and the 

resulting t-maps were thresholded (at voxel-wise p < 0.001), and cluster corrected (to p < 

0.05). Table D.1 reports cluster sizes, locations, and peak t-stat values associated with 

each of these analyses.  

As anticipated by the original analysis that revealed a vmPFC cluster when testing 

for SV effects which combine both amount and load, a largely overlapping vmPFC 

region was identified in both the amount and load analyses when conducted 

independently (Figure D.9). These new analyses thus confirm and corroborate the 

original analyses in demonstrating that the vmPFC robustly encodes both objective 

dimensions that are thought to be integrated in SV.    
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Figure D.9 Group-level t-stat map of activity parametrically modulated by first offer amount (left) and task 
load (right) at time points 6 and 8 seconds after trial onset. Cluster corrected at p < 0.05.  

Intriguingly, the results also reveal a novel cluster of activity in the right dorsal 

anterior PFC that is robustly, and negatively modulated by task load but not by amount. 

This cluster was not predicted a priori. One possibility is that this region, which is also 

part of the DMN, plays a role in cognitive effort-based decision-making by representing 

expected cognitive load and conveying this information to the vmPFC where it is 

integrated with reward magnitude for calculating SV.  

 Size 
(voxels) 

Center of Mass Peak 
t-stat Anatomical Description x y z 

Amplitude modulated by offer amount 
vmPFC 257 6.4 40.7 -2.9 5.78 
Amplitude modulated by task load 
vmPFC 320 0.0 40.4 -4.4 -6.36 
raPFC 183 20.7 40.0 44.9 -6.19 
Table D.1 Anatomical description, extent, location, and peak voxel t-stat for amplitude modulation by 
either task load or amount of first offer at 6 and 8 seconds. 

Again, it is possible to test the hypothesis of subjective encoding of effort costs in 

the regions modulated task load by testing whether the load effects during valuation in 

these regions correlates with AUC3S. In neither region modulated by load, however, is the 

relationship between the slope of the load effects and AUC3S significant (vmPFC: B = -

1.64×10-2, p = 0.42; raPFC: B = -4.33×10-2, p = 0.12). Hence, this analysis does not 

support subjective encoding of effort in either cluster. 

D.1.4.3 Regions involved in encoding SV variables during delay-based valuation 
Unlike effort-based decisions described previously, no clusters survived 

correction for encoding SV during the evaluation window for delay-based decisions. This 

result was unexpected given the well-established encoding of SV in, among other 

regions, the very same vmPFC region identified for effort-based decision-making. The 
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lack of robust SV encoding again suggests diminished signal-to-noise in delay-based 

decisions. Nevertheless, by using the vmPFC cluster defined for effort-based decision-

making as a mask, it is possible to ask whether the same region also encodes choice 

dimensions during evaluation on delay trials. 

As shown in Figure D.10, it appears that there is weak encoding of both amount 

and delay during the evaluation window of delay-based trials. Interestingly, in both cases, 

the most pronounced encoding appears to occur earlier than it did with for effort-based 

decision trials: at 4 seconds after trial onset. This earlier encoding is consistent with the 

faster reaction times observed for delay trials and the tentative hypothesis that 

participants shifted decision strategies to a simpler heuristics for these trials. 

A B  

Figure D.10 Averaged time series of all voxels within the cluster defined as encoding SV during effort-
based decision trials, for delay-based decision trials. . Indicates a linear effect, a p < 0.10 of amount in A 
and delay in B, at each time point. 

As with effort-based decision trials, there is also evidence that activity in the 

vmPFC region pursuant to evaluation during delay-based decision trials can also predict 

subsequent choice, taking into account biasing. Figure D.11 shows that activity is greater, 

at time points 8 and 10 seconds after trial onset, when participants ultimately select the 
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delayed reward, and particularly relative to the case when they select the immediate 

reward but were biased towards choosing the delayed reward.  

 

Figure D.11 Averaged time series in the vmPFC cluster encoding SV on effort trials, for delay trials 
grouped by whether participants chose the delayed (first) or immediate (second) offer, and also by whether 
the immediate offer was designed to bias participants to choose it, or choose the delayed offer, with respect 
to each participants’ own subjective indifference points. * Indicates a difference (at p < 0.05) by time point 
of delayed choice / immediate bias trials, and immediate choice / delayed bias trials. 

Though the encoding of choice dimensions is weaker for delay than for effort-

based decision trials, the similar patterns across trial types supports the broader 

hypothesis that the vmPFC region identified for encoding SV during effort-based 

decision trials supports domain-general encoding of SV, across both delayed and effortful 

rewards. The fact that activity in this region, pursuant to single-offer evaluation, is 

predictive of subsequent choice, and that prediction interacts with subsequent decision-

bias supports the hypothesis that SV, computed in the vmPFC, drives subsequent choice 

rather than passively encoding a post-evaluative variable. 
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