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ABSTRACT OF THE DISSERTATION 

The Molecular and Cellular Basis for Cold Sensation 

By 

Daniel Saul Brenner 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2016 

Professor Robert Gereau, Chairperson 

 

The ability to sense changes in temperature is crucial to surviving harsh environments.  Over the 

last decade several ion channels that have been proposed to be cold sensitive have been 

identified, most notably TRPM8 and TRPA1.  Although these molecules have been extensively 

studied in vitro, their exact roles in cold sensation in vivo are still debated.  This uncertainty is in 

large part due to problems with the standard methods of testing cold sensitivity in vivo, which 

often rely on subjective measures of cold responsiveness. Experiments using these subjective 

measures have been repeated by different groups and have yielded conflicting results, leading to 

this confusion.  To address this issue, I developed a novel method, the cold plantar assay (CPA) 

to objectively assess the cold sensitivity of mice.  Once I characterized the assay, I then used it to 

test the roles of TRPM8 and TRPA1 using genetically modified knockout mice.   

Another aspect of temperature sensation is the ability to adjust to changes in ambient 

temperature. For organisms that live in areas that have seasonal temperature shifts, it is essential 

to maintain sensitivity to small temperature changes even when the environment as a whole has 

been heated or cooled by as much as 40°C.  To detect a 2°C change whether the temperature 
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starts at 45°C or 15°C requires an enormous dynamic range, and sophisticated molecular 

machinery behind it. The molecular mechanisms that may underlie adaptation have been studied 

in vitro, but has not been quantified or tested in vivo.  In order to study how live mice adapt their 

thermal response thresholds to changes in the ambient temperature, I modified the CPA and the 

classical Hargreaves assay to test the temperature sensitivity of mice at different ambient 

temperatures.  Using these assays, I demonstrated that the most important factor for withdrawal 

from thermal stimuli is the temperature change from baseline, and that this baseline can be 

rapidly adjusted.  Furthermore, I utilized our transgenic knockout mice and pharmacological 

agents to demonstrate that phospholipid modulation of TRPM8 is essential for the rapid 

adaptation of cold sensitivity to changing ambient temperatures.  

Finally, the last part of this thesis focuses on the different neuronal populations that 

express those molecules.  While many different populations of nociceptive neurons have been 

identified using immunohistochemical labels, it has been difficult to directly correlate these 

populations with specific functions.  I used a recently developed tool, optogenetics, to activate or 

silence selected neuronal populations while applying nocifensive stimuli. To deliver the light 

necessary for optogenetic modulation, I chronically implanted wireless LED devices to deliver 

the light directly to the axons of the nociceptive neurons. By silencing specific nocifensive 

populations while delivering to cold stimuli, I assessed which subsets of nociceptive neurons are 

necessary for full responses to cold stimuli. 
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Chapter 1 

 

Introduction to pain and temperature sensation 
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Why study pain? 

Pain is one of the strongest driving forces of human and animal behavior.  Clay tablets recording 

pain treatment with opium date back as far as 3400 B.C.E [94], emphasizing the importance of 

pain relief even in the earliest moments of recorded human history.  Even the word pain is 

ancient and ominous, originating from the Latin poena, which refers to the Greek goddess of 

retribution, vengeance, and punisher of murderers. Surprising, having too little pain is also 

notorious in history as the plague of leprosy, which causes loss of pain sensation leading to 

injury and disfigurement leads to effective banishment from society in the Bible.  The historical 

terror of having too much pain and the stigma and consequences of having too little pain makes 

clear the importance of finding the middle ground where there is just enough pain sensitivity to 

encourage recovery from injuries but not so much as to interfere with life. This goal of this work 

is to understand the mechanisms that underlie pain in an effort to help more people find this all-

important middle ground.  

 

One of the results of missing this middle ground is chronic pain, which is relatively common in 

the modern world. An estimated 100 million adults were affected by chronic pain in 2010 and 

the prevalence is only expected to increase [131].  Part of this prevalence is that chronic pain is 

associated with common situations such as post-deployment syndrome [113], diabetes mellitus 

[174], traumatic spinal cord injury [65], cancer [54], chemotherapy [27,55,67,68,75,164], 

multiple sclerosis [177], and strokes [74]. Cold pain and hypersensitivity are present in a 

substantial number of these patients, and this manuscript will focus on the mechanisms 

underlying cold pain and cold hypersensitivity, and will also introduce novel methods of 

modulating pain-sensitive neurons that may be applied to treat chronic pain. 
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What is pain? 

The consensus understanding of what pain is and why it happens has evolved along with the 

ability to assess, understand, and ultimately treat pain [142]. This understanding has evolved 

from Sophocles‟ characterization of pain in the 5
th

 century BCE as a possession of the body 

which „consumed‟ or „devoured‟ the sufferer/victim [167], to the 18
th

 century when pain was 

characterized as a sign of the patient‟s vitality or as a trial sent from God in order to strengthen 

faith and teach self-sacrifice, to the innovation of anesthesia and the view that pain in general 

was to be avoided when possible [132,142]. As set forth by the International Association of Pain, 

the current definition of pain is “an unpleasant sensory and emotional experience associated with 

actual or potential tissue damaged, or described in terms of such damage” [26].  While this term 

describes the patient experience of pain, the broadness of including an emotional component 

makes it difficult to study pain in animals, since the emotional experience of animals is difficult 

to quantify. As such, the majority of animal studies focus instead on nociception, which is 

defined as the “neural process of encoding noxious stimuli,” and lacks the difficult-to-quantify 

emotional element [26]. In the mouse studies, the “nocifensive” behaviors can include measuring 

flicking or licking of an injured limb in reflexive assays, quantifying the writhing or evoked 

muscle contractions in visceral pain models, or measuring the avoidance of an area that has been 

paired with a noxious stimulus in operant conditioning paradigms.  For the purposes of this 

manuscript, I will be using nocifensive behaviors in mice as a proxy for the sensory transduction 

and signaling component of pain in humans. 
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 How do pain and nociception happen?  

Centuries of anatomical and physiological studies have shows that the cell bodies of nocifensive 

neurons are located in the dorsal root ganglia (DRG) that flank the spinal cord.  These neurons, 

which have long axons that stretch from the outer layers of the skin all the way to the spinal cord, 

transduce sensory stimuli of all types into the electrical signals that travel from the periphery to 

the central nervous system.  When a painful stimulus is applied to the skin, the transduction 

process begins at the most superficial levels in the fine nerve endings where the DRG (Figure 1) 

[3,190]. Under baseline conditions, the neurons have a negative membrane potential that is 

Figure 1 Pathways involved in thermal avoidance responses 
A. Cutaneous primary sensory neurons involved in thermosensation (green) include both non-myelinated C fibers and thinly myelinated Aδ fibers. 
The cell bodies of these neurons are located in the dorsal root ganglia (DRGs) and have axons with two branches.  One branch extends towards 
the periphery with free endings in the skin, where thermal information is coded in the form of electrical action potentials.  These action potentials 
propagate to the end of the other axonal branch, which forms synapses in layers I and II (for C fibers) or layers I and V (for Aδ fibers) of the dorsal 
horn.  Activity of both Aδ and C primary sensory fibers drives three distinct neuronal pathways and ensuing responses:  first, motor neurons can 
be activated via spinal interneurons, leading to a rapid withdrawal reflex in response to noxious temperatures (red neurons); second, 
thermosensory information is transmitted via second-order sensory neurons of the ascending spinothalamic tract to the thalamus and further 
relayed to the somatosensory cortex, where the perception of temperature is formed (blue neurons on the coronal section of the human brain); 
and third, thermosensory information is transmitted via lateral parabrachial neurons, which may also receive input from the spinothalamic neurons, 
to the pre-optic area  of the hypothalamus (blue neurons on the central sagittal section of the human brain), where thermoregulatory processes are 
initiated.  Figure adapted with permission from Vriens et. al 2014.   
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generated by an imbalance of sodium and potassium ions across the membrane, generating a 

both an electrical and chemical driving force for their movement through the membrane [86]. 

When a noxious stimulus is applied to the skin, specialized molecules in the skin terminals 

respond by perturbing cell homeostasis.  Many of these responsive molecules are specialized ion 

channels that respond to different stimuli 

including cold [129,153,176], heat 

[28,29,111,139], and mechanical [45,62] 

stimuli that will described in more detail 

below.  Once enough sodium and calcium 

ions pass into the cell through these 

activated channels that the cell membrane 

potential is no longer deeply negative, ion 

channels in the membrane that respond to 

changes in voltage are activated and allow a 

substantial influx of positive sodium and eventually calcium ions into the cell (Figure 2)[10].  

This influx results in a dramatic depolarization of the cell membrane called an action potential, 

which is the signal of neuronal activation [10]. The action potential is terminated when the 

sodium and calcium channels inactivate, and the calcium influx into the cell activates voltage- 

and calcium-sensitive potassium channels that allow potassium influx to return the cell to 

negative membrane potentials [10]. 

These action potentials are conducted from these fine endings into axons which run from the 

peripheral targets to their cell bodies in the dorsal root ganglia and then onward to the spinal cord 

(Figure 1)[3,190,196]. As the action potentials are conducted along the axons, they periodically 

Figure 2: The action potential in human DRG 
Ions enter the cell (a) through ion channels activated by a stimulus 
on the cell (e.g. skin cooling).  Once the membrane voltage reaches 
a threshold (b), voltage-gated sodium channels open to allow 
sodium influx.  As the membrane voltage continues to rise, voltage-
gated calcium channels open and contribute to increasing 
depolarization.  Eventually voltage- and calcium-activated 
potassium channels activate and lead to a repolarization of 
membrane to negative membrane potentials (c).  Figure adapted 
with permission from Bryan Copits. 



 

 6 

need to be regenerated through the activation of voltage-gated ion channels in the axonal 

membrane, which allow the influx of sodium ions that reinforce the action potential. The speed 

of this transit is determined mainly by the diameter of the axons and how thickly the axon is 

layered with myelin, a lipid-rich coating that insulates the axon from current leakage [80].  The 

fast conducting, large diameter, heavily myelinated Aβ- fiber axons tend to carry proprioceptive 

and fine touch signaling, while the slower, smaller, lightly or unmyelinated Aδ- and C- fiber 

axons tend to carry nociceptive information such as heating, cooling, mechanosensation, and 

chemical irritation [3]. 

 

In the spinal cord, the central terminals of the dorsal root ganglia neurons form synapses on 

neurons in the dorsal horn of the spinal cord. Aδ fibers tend to synapse in spinal cord lamina I 

with lesser projections to laminae II0 and V, while C-fibers tend to synapse in spinal cord lamina 

IIo with lesser projections to laminae I (Figure 1) [133,190].  Once the DRG neuron action 

potentials reach the central terminals, they trigger the release of chemical neurotransmitters such 

as glutamate that diffuse across the synapse to neurons in the spinal cord and may cause to action 

potentials.  The spinal dorsal horn neurons that receive input from Aδ- and C-fibers are also 

modulated by input from other neurons in the spinal cord and then send axons which project to 

different parts of the brain via the spinothalamic, spinomesencephalic, spinoreticular, and 

spinoparabrachial tracts of the spinal cord [3,196]. Some of the input from DRG neurons in the 

spinal cord also goes to spinal interneurons which directly synapse on motor neurons in the 

ventral horn of the spinal cord to generate rapid withdrawal reflex arcs (Figure 1) [190]. 
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In the brain, neurons from the spinal cord project to a variety of brain regions known to be 

important for nociceptive processing.  Many neurons that travel in the spinothalamic tract 

synapse in the thalamus, a midline structure that can be divided into several components 

including the ventroposterolateral (VPL), ventroposteromedial (VPM) and vertroposterioinferior 

(VPI) nuclei [3]. These thalamic areas receive synaptic input from different types of spinal cord 

neurons, and then relay the information onwards to the primary and secondary somatosensory 

cortices as well as the anterior cingulate cortex [133].  The primary and somatosensory cortices 

process the nocifensive information forwarded by the thalamus into different intensities, codes 

them temporally, and associates them with learning and memory processes [3].  On the other 

hand, the projections from the thalamus that terminate in the anterior cingulate cortex are thought 

to contribute to the motivational-affective processing of nocifensive stimuli [3]. Another branch 

of the spinothalamic tract is the spinomesencephalic tract, which synapses in the periaqueductal 

grey (PAG), an area around the cerebral aqueduct in the midbrain that is essential for descending 

modulation of pain sensation [133].  The spinomesencephalic tract also synapses in the 

parabrachial area, which is important for the cardiovascular, autonomic, and motivational 

responses to pain and also can relay signals to the amygdala, which is important for the affective 

component of nociception [105,133]. The spinoreticular tract from the spinal cord contains axons 

that project to an area involved in motor control called the precerebellar nucleus, as well as the 

medial pontobulbar reticular formation which is also involved in nociception [3]. The combined 

efforts of these regions of the brain process the nocifensive signals to generate the sensation 

known as pain, and plasticity or modulation of any part of these systems from peripheral 

terminals to somatosensory cortex can lead to hypersensitivity or insensitivity to pain. 
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Why study mice to learn about human pain? 

Most of the data discussed below and the studies discussed in this introduction are based on 

experiments performed using mice to draw conclusions about the function of the nociceptive 

system on a wider basis.  The use of mice as models of experimental pain also has some 

significant advantages over human and primate testing models.  Mice can be bred quickly and 

inexpensively, allowing testing of complicated hypotheses that require large cohorts at relatively 

reasonable costs.  One of the biggest advantages of using mice as experimental models, however, 

is the ability to generate transgenic mouse models that have individual genes removed or 

overexpressed. Zimmermann et al. demonstrate how the utility of this technique can be when 

they show that mice lacking the sodium channel Nav1.8 have impaired responses to noxious cold 

sensation [215]. The opposite experiment where genes are altered to express at higher-than-

normal levels is also extremely useful, such as when Kolber et al. engineered mice to 

overexpress Corticotropin-releasing hormone (CRH) in the forebrain in order to demonstrate the 

role of juvenile CRH concentrations on anxiety and despair [104]. Without transgenic mouse 

models, researchers would have to rely on identifying sporadic mutations in order to study the 

roles of removing or enhancing individual genes in living animals.  Indeed, sporadic individual 

mutations in humans such as congenital insensitivity to pain [46] and in animals such as the 

spontaneous canine model of amyotrophic lateral sclerosis (ALS) [48] or a spontaneous feline 

model of Neimann Pick C disease [172] can cause disease and be valuable for understanding the 

mechanisms of those disease.  However, cases where a single mutation causes an obvious 

phenotype are very rare events, and relying on those rare events to drive the progress of science 

and medicine is impractical.  It is much more efficient and effective to drive scientific progress 

using transgenic models such as mice and then use the naturally occurring sporadic mutations to 
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validate and improve the transgenic work when they are available, as has happened with the 

canine ALS model [48]. 

 

There are also other concerns about using mouse models that are most specific to the pain field.  

Recently there has been significant debate over the whether pain studies done in mice can be 

applied to human studies, and whether the types of behavioral studies that have been favored can 

be applied to the study and treatment of human pain [126,135].  One of the most strident 

objections to the use of mice for pain models is that animal behavioral testing does not include 

the subjective pain experience that shapes the patient experience.  Additionally, the point has 

been made that “rats and mice simply do not have the neuroanatomical pathway to the forebrain 

that is crucial tor pain sensation in humans” [47].  While it is true that some specific pathways 

are not the same, there are a number of similarities between mice and humans that make it 

worthwhile to use them as a model for human nociception.  Structural studies assigning functions 

to different brain areas and spinal cord tracts in animals seem to correlate relatively well with 

human injury case studies, suggesting significant overlap in structure despite obvious differences 

in size and complexity [197].  Like humans, mice have varied responses to nocifensive stimuli 

based on factors including genotype [136], wakefulness [23], social interaction [110], and gender 

interaction [61,173].   

 

Another common criticism of pain research conducted with mice is that in many clinical studies, 

pain measurements are made using the numerical rating systems (NRS) for pain, as well as a 

variety of other validated pain questionnaires such as the McGill checklist [165].  In response to 

these criticisms, researchers have developed tools that attempt to parallel these human 
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questionnaires in mice by assessing pain levels through rodent facial expressions [127], 

voluntary wheel running [42,73], and voluntary movements [36,185].  Despite the prevalence of 

NRS use in clinical pain studies, many studies also utilize quantitative sensory testing designed 

to allow comparison between patients without the confounding element of subjectivity that is 

inherent to patient-reported pain reports [32,50,74,107,177].  While it is difficult to apply NRS-

like protocols to mice, it is relatively simple to devise techniques that parallel the human 

quantitative sensory testing methods, and thereby mimic the human clinical data.  Researchers 

have developed a wide range of these mouse quantitative sensory testing methods to quantify 

thermal and cold sensation, some of which are described below. 

 

Behavioral assays for thermal and cold sensation in rodents 

In order to understand how thermal sensation works in live animals, it is necessary to assess how 

those animals respond to noxious and innocuous thermal stimuli.  Since mice cannot fill out a 

questionnaire to report the extent of their discomfort, behavioral assays try to assess how a 

mouse responds to a consistent warm or cold stimulus, and use that as a correlate for how 

sensitive the mouse is to that stimulus. 

 

One of the oldest and most commonly used assays to measure both heat and cold sensitivity is 

the hot/cold plate test [2,38,59,60,204].  In this assay, mice are placed on a metal plate that is 

heated to 45-55°C or cooled to 0-15°C.  After the mice are place on the plate behaviors that are 

deemed “nocifensive” are measured, including number of jumps, number of paw flinches, 

number of wet-dog shakes, and the latency to first flinch or jump.  Mice that have more vigorous 

or faster responses after being placed to the cold/hot plate are judged as having increased 
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sensitivity, while mice that respond more slowly or less vigorously are judged to have decreased 

sensitivity.  While this method has been a mainstay of studies into the nature and mechanisms of 

thermal sensitivity there are a number of significant limitations.  One major limitation is that the 

cold plate represents a novel environment, and exposure to a novel environment during testing 

can cause stress [170], which has been shown to alter nocifensive responsiveness [146,157]. 

Another limitation is that this technique can only test the responsiveness of mice to a single 

temperature at a time, with no ability to ramp the stimulus in real time.  The most important 

limitation of this technique, however, is the subjective nature of the data interpretation.  When 2 

different groups both use the cold/hot plate assay on the same mice but one group measures the 

number of flinches [102] while the other measures the latency to first flinch [96] the groups can 

yield completely opposing interpretations of the data.  Disagreements of this type have retarded 

progress in understanding the mechanisms of both heat and cold sensation.    

 

Another venerable used behavioral assay for thermal sensitivity is the tail flick test [50,158].  

This method involves heating or cooling the tail of a mouse either by illuminating it with high 

intensity light or dipping it into hot or cold water, and measuring the latency before the mouse 

flicks the tail away from the heat/cold.  The withdrawal latency is correlated to the thermal 

sensitivity, so mice that have longer withdrawal latencies are presumed to be less sensitive.  As 

with the cold/hot plate this method has been a crucial part of the studies of temperature sensation 

over the last 70 years, but has some significant limitations. The biggest limitation to this 

technique is the mice must be handled firmly in order to hold the tails into the water.  This 

handling causes stress, which can profoundly impact how the mice respond to the stimulus [157].   
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The acetone evaporation test is another classical method for measuring the cold sensitivity of 

mice [25,38].  This assay involves acclimating the mice on a wire mesh before a droplet of 

acetone is dabbed onto the underside of the hindpaw.  The acetone evaporates almost 

immediately, which cools the paw. The amount of time that the mouse spends flicking the cooled 

paw is used as a measure of cold sensitivity.  While this assay does remove one of the 

confounding issues of the hot/cold plate test by allowing acclimation of the mice, there are 

several significant problems with the acetone evaporation test.  The responses to acetone 

evaporation are confounded by the wet sensation and the smell of the acetone.  Also, the cold 

stimulus applied can vary based on the amount of acetone applied, which can increase inter-trial 

variability and confound results. Most importantly, wild-type mice without injury have minimal 

responses to acetone at baseline, making it impossible to measure analgesia in the absence of 

hypersensitivity with this tool. 

 

Several variants of hot and cold plate tests have been developed more recently to address some 

of the issues mentioned above.  The thermal gradient assay uses a large peltier plate which is 

divided into 16 zones that vary in temperature from 16°-55°C [139]. The amount of time the 

mouse spends in any given temperature zone is used as a proxy for their temperature sensitivity, 

so a mouse that is hypersensitive to cold will spend less time in the zones under 30°C.  The 2-

plate preference assay uses two connected plates that are heated or cooled to different 

temperatures.  The mouse is allowed move back and forth between the plates, and the amount of 

time that the mouse spends on one plate compared to the other is used as a proxy for temperature 

sensitivity [9]. For example, if one plate is at 30°C and the other is at 15°C a mouse that is 

hypersensitive to cold will spend less time on the 15°C plate than a normal mouse.  While both 
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of these techniques allow the mice to acclimate for significant periods of time on the apparatus, 

they also both represent temperature preference rather than aversion.  This makes it difficult to 

assess whether, for example, mice are truly evading a colder temperature due to hypersensitivity 

or if they simply prefer a warmer temperature after the injury.   

 

Another commonly used technique to measure heat sensitivity is the Hargreaves assay.  During 

this test, mice are acclimated on a glass plate which is heated to 30°C until they reach a resting 

state.  At that point, a beam of light is focused on the underside of the hindpaw through the glass, 

heating the paw until the mouse moves away from the light source [79]. The light beam 

generates a very consistent warming stimulus that can be intensified if the intensity of the light is 

increased.  The biggest criticisms of this assay are that it measures a spinal reflex and therefore 

does not test nociception that involves supraspinal processing, and that there was no way to use 

this technique to measure cold sensitivity in addition to heat. 

 

Molecular mechanisms of temperature responsiveness 

The field of temperature sensation had made steady progress since early studies assessing the 

analgesic potency of novel compounds, but molecular techniques allowing the identification of 

transient receptor potential or “TRP” channel as transducers of noxious stimuli opened the 

floodgates for novel work identifying and characterizing these channels. TRP channels had been 

studied since 1969, when they were isolated in a Drosophila strain that was functionally blind 

under high light conditions despite being able to navigate a maze under low ambient light [44].  

Furthermore, using electroretinogram recordings follow up studies showed that the mutant flies 

had an transient initial light response which decayed during sustained illumination, which led 
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them to name the mutant for the transient receptor potential (TRP) [134].  It would be ten years 

before the Drosophila gene would be cloned in part,[137] and 4 more years after that before it 

became the first TRP channel cloned and sequenced in its entirety [138,201].   

8 years later, the capsaicin receptor TRPV1 was cloned from a dorsal root ganglion cDNA 

library and identified as a heat-activated, pH-

sensitive vanilloid receptor member of the TRP 

superfamily [30]. Heat-sensitive currents had 

already been identified in dorsal root ganglia 

cultures [34,166], as had capsaicin-induced 

currents [149,203], but cloning of a single 

receptor that was likely responsible for both currents was a transformative moment in the field. 

In vitro, the cloned TRPV1 receptor begins activating roughly at 40°C (Figure 3), and several 

other members of the TRPV family that were potentially heat sensitive were identified soon 

afterwards, including TRPV2 [29],  TRPV3 [154], and TRPV4 [76], although the heat 

responsiveness of TRPV2 is now somewhat controversial [155]. 

 

Since its initial discovery, a great deal of work has been done to understand how TRPV1 

responds to heat. The mechanisms of the temperature-sensitivity of TRPV1 were described with 

a 2-state electrophysiological model, which shows that heating shifts the voltage-dependent 

activation curve of the channel towards more negative potentials, resulting in the channel 

opening at more negative potentials.  Furthermore, they deduce that this shift is due to a decrease 

in the energy of activation of channel opening at higher temperatures, which increases the open 

state probability of the channel when it is heated [147,189].  

Figure 3: Temperature dependence of ion channels 
involved in thermosensation 
a.  Members of the transient receptor potential (TRP) 
channel family function as excitatory cation channels and 
respond to cooling or heating. Figure adapted with 
permission from Vriens et. al 2014 
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The modulation of TRPV1 has also been a heavily researched subject, in part because TRPV1 is 

responsive to a wide variety of stimuli, ligands, and messengers in addition to heat and capsaicin.  

Although it is unclear whether TRPV1 is positively, negatively, or unregulated by 

phosphoinositol 4,5-bisphosphate (PIP2) and other phosphoinositide lipids in the membrane 

[24,120], TRPV1 has been shown to associate with, and be modulated by, the phosphoinositide-

binding protein Pirt [97]. TRPV1 is also activated and sensitized by a wide variety of other 

factors including acidic or basic pH [57,183], the vasodilator anandamide [216], lipoxygenase 

products [89], and oxidized linoleic acid metabolites that are byproducts of tissue heating 

[151,152].   

 

The role of TRPV1 in thermal and inflammatory responsiveness has also been studied using 

transgenic knockout mouse models. Under baseline conditions, mice that lack TRPV1 are less 

sensitive to noxious thermal [111].  Work using these transgenic mice also suggests that 

inflammatory heat hypersensitivity is dependent on TRPV1 activity, as TRPV1-KO mice are less 

sensitive after injection of CFA [28,53]. Additionally, Nerve Growth Factor (NGF) and 

bradykinin, both molecules released during inflammation, have been shown to cause increased 

TRPV1 activation through activation of PLC to hydrolyze PIP2[40] 

 

Due to this important role in nociception and hypersensitivity, pharmaceutical companies have 

attempted to develop analgesic TRPV1 antagonists, but have been stymied in part by the fact that 

these antagonists can also cause significant hyperthermia in humans [202].  Researchers have 

attempted to sidestep this problem by inhibiting the neurons expressing TRPV1 rather than 
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inhibiting the TRPV1 channel itself using a novel lidocaine derivative.  Lidocaine is a neutral 

charged analgesic that diffuses through the cell membrane to bind an intracellular site on 

voltage-gated sodium channels and thereby inhibit them.  The quaternary lidocaine derivative 

QX-314 is positively charged, which prevents it from diffusing through the cell membrane and 

causing analgesia under normal circumstances.  In the presence of a TRPV1 agonist however, 

QX-314 can enter cells that express TRPV1 through the opened pore of the channel, where it 

binds to the voltage-gated sodium channels and inhibits signaling in those cells[17].  This has 

allowed researchers to definitively confirm that TRPV1-expressing neurons are required for heat, 

mechanical and cold hypersensitivity [20]. 

 

While the vanilloid family of TRP receptors is heavily involved in thermal sensation, the 

menthol receptor TRPM8 from the melastatin family was identified as one of the primary 

transducers of cold by two separate group using two different screens [129,153]. In vitro, 

TRPM8 has been shown to activate starting at temperatures below 24°C [153]. As with TRPV1, 

the likely mechanisms that confer cold sensitivity were deduced using a 2-state 

electrophysiological model.  With TRPM8, cooling shifts the voltage-dependent activation curve 

towards more negative potentials, resulting in a channel that is more active under hyperpolarized 

conditions. In contrast with TRPV1, however, the energy of activation of channel opening is 

unchanged [189].  Instead, with TRPM8 the energy of activation of the channel closing is 

increased by cooling, which increases the open-state probability of the channel when it is cooled 

[189]. 
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Although TRPM8 has less promiscuous ligand-binding characteristics than TRPV1, there are 

still a wide range of factors that modulate TRPM8 activity.  In cultured dorsal root ganglion 

neurons, it has been shown that Protein Kinase C-induced dephosphorylation of decreases 

TRPM8 activation [162] and that TRPM8 activation is decreased when it is localized to lipid raft 

microdomains in the cell membrane  [141]. It has also been shown that chronic neurturin 

overexpression in the skin leads to increased expression of TRPM8 and increased cold 

sensitivity, suggesting that the GDNF-family of ligands such as neurturin may play a role in 

regulating temperature sensitivity [191]. Another study showed that TRPM8 is necessary for the 

induction of cold hypersensitivity by Artemin, another member of the GDNF family [117].  The 

regulation of TRPM8 by Phospholipase-C (PLC) and PIP2 is much more straightforward than 

that of TRPV1.  Early studies showed in HEK cells that PIP2 depletion by Ca
2+

-activated PLC 

caused desensitization of the TRPM8 [51,169], while follow up studies showed in both HEK 

cells and dorsal root ganglia cultures that cooling of the ambient temperature led to PIP2 

degradation and TRPM8 desensitization, which allowed the neurons to adjust their response 

threshold to the cooler environment.  Additionally, TRPM8 has also been shown to interact with 

the PIP2 binding protein Pirt, and Pirt knockout mice have decreased cold sensitivity, further 

strengthening the link between PIP2 interaction and TRPM8 sensitivity [179].  

 

The role of TRPM8 in cold sensation has been confirmed using transgenic knockout mice, which 

have impaired cold responses in all cold behavioral tests [43,56]. Additionally, tests using the 2-

plate temperature preference assay show that TRPM8-KO mice have lower preference for 

warmer temperatures, suggesting that pleasantly warm thermal sensations may actually be a 

result of decreased noxious signaling from TRPM8 [159].  Behavioral experiments with these 
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knockout mice have also suggested that TRPM8 is involved in the cold hypersensitivity induced 

by treatment with the chemotherapeutic agent oxaliplatin [69] and in the hypersensitivity that 

develops after the neuropathic Chronic Constriction Injury (CCI) surgery [205]. Finally, studies 

have shown that TRPM8-expressing neurons have a crucial role in cooling-induced analgesia 

after nerve injury [103]. 

 

Although TRPM8 has been widely accepted as a cold-sensitive ion channel, the role of TRPA1 

in cold sensation has been significantly more controversial.  TRPA1 was first cloned after a 

bioinformatics screen suggested that it shared structural and expression pattern characteristics 

with the previously described thermo sensitive TRP channels [176].  In vitro experiments 

suggested that TRPA1 was responsive to more noxious cold temperatures, starting around 17°C 

[176].This initial characterization also suggested that in culture TRPA1 activated in response to 

temperatures below 17°C as well as the cold mimetic icilin [176].  2-state electrophysiological 

modeling suggests that as with TRPV1 and TRPM8, the voltage dependence of TRPA1 

activation is shifted to more negative voltages upon cooling [96].  As with TRPA1, further 

experiments showed that cooling was associated with an increased energy of activation of 

channel closing, which increased the open probability of the channel [96].  Still, the cold 

sensitivity of TRPA1 has remained controversial, as calcium imaging by other groups have 

shown that the channel is not cold-responsive in vitro [102].   

 

Beyond its responsiveness to cold stimuli, TRPA1 has astonishingly promiscuous ligand-binding 

characteristics. TRPA1 can be activated by most electrophilic substances through a reversible 

covalent modification involving cysteine residues in the N-terminus of the channel [85].  This 
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yields an impressive list of ligands which have been shown to activate TRPA1, including 

mustard oil and cannabinoids [92], nicotine [178], the oxidative metabolite 15-delta 

Prostaglandin J2 [49], farnesyl thiosalicylic acid [124], hydrogen sulfide [4], acetaldehyde [7], 

formalin [130], and zinc [88]. As if this list of ligands was not sufficient, TRPA1 activity is also 

modulated by intracellular messengers including membrane PIP2 [95] and local concentrations of 

Ca
2+

 ions [192]. TRPA1 has also been shown to be required for dry skin-induced itch [200], 

oxidative stress-induced itch [118], and for the full expression of chloroquine-induced itch [180]. 

 

Unfortunately, behavioral experiments in TRPA1-KO mice have not yielded conclusive results 

about the role of TRPA1 in cold sensation.   Although these mice have been tested using the 

behavioral assays described above, some groups have found that TRPA1-KO mice are less 

sensitive to noxious cold stimuli [96,108], while others have found that TRPA1-KO mice have 

normal cold responses [9,102].  Additionally, some studies with the TRPA1-TRPM8-double 

knockout (DKO) mice show that there is no difference from the single TRPM8-KO mice, which 

would support the theory that TRPA1 is not involved in cold sensation [102]. Still, there are 

tantalizing hints that TRPA1 may indeed be involved with cold sensation. Treatment of mice 

with ciguatoxins isolated from tropical fish leads to cold hypersensitivity and pain that is 

ultimately caused by TRPA1 hyperactivity [188], and TRPA1 has been implicated in oxaliplatin-

induced cold hypersensitivity [145]. There are even hints that TRPA1 is important for cold 

sensation in humans; single nucleotide polymorphisms in TRPA1 have been identified that are 

associated with cold hypoalgesia [15,98], and a TRPA1 gain-of-function mutations causes a 

familial episodic pain syndrome that is triggered by cold, stress, fasting [107]. 
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Adaptation to changes in environmental temperature The ability to survive in areas with 

seasonal temperature shifts is a significant advantage for survival.  In order to tolerate those 

seasons, it important to adjust the ranges of temperature sensitivity to match the ambient 

environmental temperature.  For example, mice living in seasonal areas must detect cold stimuli 

during both summer and winter, when ambient temperatures can vary by over 100°F and 

approach or evade the cold stimulus when appropriate.  Humans take this ability for granted, 

such as when the water in a swimming pool feels intensely cold immediately after entering, but 

is comfortable after several minutes.  Scientifically, this principle was recognized early on by 

Ernst Heinrich Weber in the early 19
th

 century when he assessed how the cold sensitivity of 

people changed after he had 

submerged their hands in cold water 

for a significant period of time 

[193,194].  Based on those 

experiments he concluded that only 

changes of temperature can lead to the 

sensation of cold or heat, which 

became referred to as the “theory of 

Weber” [83]. However, there was also 

skepticism in this theory based on “the 

experiences of everyday life” which 

suggested that even after long periods 

of temperature stimulation people still 

reported “lasting sensations of 

Figure 4: Cold adaptation in the lingual nerve 
Action potentials were recorded from a fine branch of the lingual nerve when applying 
a constant temperature of 13˚C to the surface of the tongue. A) Start of cooling, B) 
After 30 seconds, C) After 100 seconds, D) During rewarming of the tongue.  After 
sustained administration of the cold stimulus, action potentials decrease in frequency 
and amplitude, representing cold adaptation.  Adapted with permission from Hensel & 
Zotterman et al. 1950. 
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temperature.” [83].  In an effort to test whether cold sensation was based solely on changes of 

temperature, Hensel & Zotterman anesthetized cats and dogs, and recorded action potentials 

from the lingual nerve while applying sustained cold temperatures to tongue [82]. The data from 

these experiments represent one of the first quantified example of cold adaptation, as there was a 

burst of action potentials when the cold probe was applied (Figure 4A) that gradually decreased 

as the stimulus was maintained on the tongue (Figure 4B-D) [83]. Additional studies of 

adaptation in cold sensation have been recorded using microneurography over the years. For 

example in monkeys where during constant cold stimulation “all of the [cutaneous cold 

receptors] soon stopped responding to base temperatures applied” even though they had initially 

responded to the base temperature cooling [109].   

 

While the microneurographical studies suggested that cold adaptation was happening, it was not 

until after the characterization of the TRP channels that transduce the cold sensation into 

electrical potentials that there were hints of what the molecular mechanisms of cold adaptation 

might be.  The first hints came when Rohacs et al. demonstrated using inside-out patches that in 

the absence of PIP2, TRPM8 is less sensitive to cold stimulation [169]. Follow up studies 

demonstrated in heterologous cells that perturbing the PIP2 levels by activating or inhibiting 

endogenous Phospholipase C (PLC) could control the sensitivity of the cells to cold [51].  Cold 

adaptation mediated by TRPM8 in vitro was only recently demonstrated in native dorsal root 

ganglion cells, and this adaptation was dependent on the arginine residue at position 1008 in the 

channel [66].   

 

The functions of individual dorsal root ganglia neurons have been studied with ablation studies 
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While it is essential to understand the molecular transducers of nocifensive stimuli, the 

populations of neurons in which they are expressed is also crucial.   This is demonstrated clearly 

when Han et al. used a transgenic strategy to remove the endogenous TRPV1, and then 

expressed the TRPV1 receptor in neurons that are thought to carry itch signaling.  When those 

mice are treated with capsaicin, instead of nocifensive flinching the mice respond with itching 

behavior [78], showing that the identity of the neurons that are being activated is as crucial as the 

molecular mediators that are transducing the stimulus. 

Many different populations of nociceptive neurons have been identified, which are differentiated 

by their expression of molecular markers including the heat sensor TRPV1 [33], the voltage-

gated sodium channel Nav1.8 [215], the calcium regulated actin-binding protein Advillin [81],  

the Calcitonin gene-related peptide (CGRP) [163], and the ability to bind to the plant lectin IB4 

[163]. These neuronal populations have been studied for decades, yet work investigating their 

individual functions has been mostly limited to ablation studies where those neurons are killed 

through transgenic expression of the diphtheria toxin receptor to selectively kill those neurons. 

Ablating the TRPV1-expressing neurons nearly eliminated temperature sensation between 40-

50°C [159], ablating the Nav1.8-expressing neurons decreased responsiveness to noxious 

mechanical pressure and cold and decreased inflammatory pain responses [1], while ablating the 

CGRP-expressing neurons reduced sensitivity to noxious heat, capsaicin, and itch, and enhanced 

cold responsiveness [128]. While these studies have advanced the understanding of the role of 

these cells, they still involve killing those entire populations, which may prompt significant 

compensatory changes in neuronal architecture and function.  These subtle alterations in coding 

or structure may minimize the effects of the ablation, thus resulting in animals with minimal 

deficits despite the loss of a neuronal population that is crucial under normal circumstances.   
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Novel methods for studying the roles of individual neuronal populations 

In order to prevent these adaptations, it would be preferable to use an approach that transiently 

inactivates the neurons of interest without killing them and changing the neuronal architecture.  

Several approaches capable of inactivating neurons without killing them have been recently 

developed to fill this need.   

One strategy to transiently inactivate neurons utilizes the quaternary lidocaine derivative QX-

314.  The commonly used lidocaine is uncharged and can diffuse across the cell membrane to 

inhibit voltage-gated sodium channels, resulting in analgesia [31]. In contrast, QX-314 is 

charged and therefore unable to diffuse across the cell membrane and has weak analgesic action 

under normal circumstances. Although it cannot diffuse through the membrane, QX-314 has a 

molecular mass of 263 Da and can pass through larger ion channel pores such as that of TRPV1, 

which has been shown to pass molecules as large as 452 Da [17].  When QX-314 is 

coadministered with capsaicin, the compound selectively enters neurons through activated 

TRPV1 channels and inhibits those neurons for roughly 3 hours, far longer than the typical 

duration of lidocaine inhibition [17,20]. This technique has clinical implications for long lasting 

selective regional anesthetic blocks [214], but can also be used to transiently inhibit selected 

neuronal populations without killing the cells and changing the neuronal architecture.  Studies 

utilizing this technique have already demonstrated that TRPV1-expressing neurons are required 

for heat, mechanical and cold hyperalgesia but not cold allodynia [20], and have investigated the 

complicated networks of neuronal populations that underlie sensations of itch [168].  While this 

technique is an excellent way to study the roles of individual neuronal populations without 

ablating cells, there are a few limitations.  Although it has the advantage of not requiring any 
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type of transgenic manipulation, using QX-314 requires that the neurons of interest express an 

ion channel that has a large enough pore to allow entrance of the compound.  This narrows the 

subsets of which neuronal populations can be studied using this technique to those neurons that 

express channels with large pores that can be easily activated.  Additionally the onset of 

inhibition can vary as the QX-314 enters into the cell, and the duration of the inhibition is 

gradual as the QX-314 leaves the cell, which limits its use in experiments with strict timescales.  

Finally, studies using QX-314 can inhibit specific neuronal populations, but using this technique 

there is currently perform the inverse experiment and specifically activate neuronal populations. 

Chemogenetics is another recently developed technique to modulate specific neuronal subsets.  

This technique utilizes designer receptor exclusively activated by a designer drugs (DREADDs), 

which are muscarinic G protein-coupled receptors that have been modified to respond solely to a 

synthetic ligand, clozapine-n-oxide (CNO), and not to any endogenous ligands [5].  The 

DREADD receptors are expressed in the neurons of interest, and when CNO is present the cells 

expressing the DREADD receptors are depolarized, hyperpolarized, or otherwise modulated 

through G proteins which are coupled to the recombinant receptors [5]. While this technique is 

powerful, the utility of DREADDs is somewhat limited by the delivery and clearance of the 

CNO ligand to the receptors.  While CNO is highly bioavailable and can cross the blood-brain 

barrier [11], it still needs to be distributed through blood flow and therefore activation of the 

receptors in different areas may not be simultaneous.  Additionally, the clearance of CNO will 

likewise be variable, and could affect results.  In terms of doing temporally precise behavioral 

experiments, chemogenetics has serious handicaps. 
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Optogenetics is another recently developed technique to directly modulate subsets of neuronal 

populations.  Instead of re-engineering chemoreceptors, optogenetics utilizes light-sensitive ion 

channels to modulate neuronal activity 

[209]. These light-sensitive channels were 

originally isolated from light-responsive 

algae [106,143,144], and then modified to 

generate an arsenal of channels with varied 

spectral, kinetic, and conductive properties 

(Figure 5) [101,114,115,208]. These light-

sensitive channels can be largely divided 

into excitatory cation channels and 

inhibitory channels and pumps that move either chloride or protons. Excitatory channels are 

generally blue-light sensitive, although variants have been engineered to produce channels with 

different properties including higher conductance [116], faster kinetic properties [77], improved 

light sensitivity [14], and red-light sensitivity channels [115].  Inhibitory channels are generally 

orange/green-light sensitive chloride pumps and proton pumps [39,210], although variants have 

been developed that improve the red-light sensitivity of the chloride pumps [41], and blue-light 

sensitive chloride channels have been developed recently as well [13,195]. 

As these light-sensitive channels have been developed and refined, they have been applied to a 

variety of fields, including the pain field.  Optogenetic activation of different parts of the locus 

ceruleus in rats was shown to cause analgesia or hypersensitivity, depending on the region 

stimulated [84].  Optogenetic modulation has also been demonstrated on the peripheral side of 

the pain neuraxis, as stimulation of mice expressing channelrhodopsin in Nav1.8-expressing 

Figure 5: Basic properties of some single-component optogenetic tools 
Kinetic and spectral attributes of a selection of optotgenetic tool 
variants. Figure reproduced with permission from Yizhar et al. 2011 
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neurons with a laser on the paw evoked robust nocifensive responses as well as post-stimulation 

hypersensitivity [52], and optogenetic stimulation of mice expressing the inhibitory eNpHR 3.0 

channel in sensory neurons decreases mechanical and heat sensitivity [90].  Optogenetic 

manipulations of the peripheral nervous system has also been demonstrated by optically 

stimulating the axons in the sciatic nerve, although in this case activation of motor neuron axons 

in an ex vivo preparation of the sciatic led to an orderly recruitment of motor units that is superior 

for muscular rehabilitation to electrical stimulation [119]. Subsequent studies using this model 

allowed the activation of motor neurons through axonal stimulation using a fiber optic cable 

headmount that then tunneled subcutaneously to the lateral caudal area and terminated in a cuff 

around the nerve [184].  These studies demonstrate that optogenetic manipulation of the 

peripheral nervous system is capable of modulating mouse behavior with excellent temporal 

control, and without physically destroying the neuronal populations being studied.  

 

Conclusion 

Maintaining cold sensitivity and adaptation is crucial to survival, but cold hypersensitivity is also 

a serious clinical issue.  The balance between these two extremes is delicate and essential to 

survival, yet the mechanisms that underlie it are relatively poorly understood.  In order to explore 

these mechanisms that underlie the maintenance of appropriate cold sensitivity, I have developed 

and validated a novel behavioral assay for cold sensation.   In this manuscript, I use this tool, 

along with a variety of transgenic models and some novel surgical techniques, to investigate the 

molecular mechanisms and cellular pathways that are essential for normal cold sensation and 

adaptation. 
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Introduction 

Cold hypersensitivity is a significant clinical problem which affects a broad subset of patients 

including multiple sclerosis [177], stroke [74], diabetes mellitus [8], post-herpetic neuralgia [8], 

and chemotherapy [67,75,93,198] patients.  This hypersensitivity significantly affects patient 

quality of life, and includes both alterations of cold response threshold (cold allodynia) and of 

the severity of the evoked sensations (cold hyperalgesia) [55,70,74,186]. Treatment of these 

patients is relatively ineffective in part because the molecular mechanisms that lead to the 

changes in cold sensitivity are poorly understood.  Despite the effort to understand these 

mechanisms, limitations in the behavioral assays used in these studies have hampered the rate of 

progress. 

 As discussed above, while there are a wide variety of techniques to measure cold sensitivity in 

mice, these techniques also have a number of serious limitations.  The cold plate assay measure 

the behavioral responses once mice are placed on a precooled surface, but is dependent on 

subjective and unstandardized assessments of response [2] and has extremely high variability. 

The thermal gradient assay and 2-plate temperature preference test both allow testing for a wide 

range of temperatures at once, but it is unclear if the data obtained represent temperature 

aversion or temperature preference [9,139].   The tail flick test measures the latency to 

withdrawal of the tail from cold water, but requires stressful animal handling during the testing 

process which can affect the results [157,158]. The acetone test measures sensitivity of 

acclimated mice to the evaporation of acetone off the hindpaw, but is difficult to standardize and 

can only measure hypersensitivity from baseline [25,38]. 

This chapter introduces the cold plantar assay, a novel method for assessing cold sensitivity in 

mice.  The animals are acclimated on a glass plate, and once a rest a pellet made of compressed 
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dry ice powder is applied the underside of the glass underneath the hindpaw.  The amount of 

time it takes for the mouse to withdraw its paw from the cooling glass can be used as a measure 

of cold sensitivity.  Here I demonstrate that this method delivers a reproducible ramping cold 

stimulus to fully acclimated mice, and that it can assess hypersensitivity and analgesia with 

excellent sensitivity and temporal resolution.   
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Methods 

Animal protocols 

 All mouse protocols were in accordance with National Institutes of Health guidelines and were 

approved by the Animal Studies Committee of the Washington University School of Medicine 

(St. Louis, MO).  Experiments were carried out with 6-9 week old male Swiss Webster mice 

purchased from Jackson Labs (Bar Harbor, ME) unless otherwise noted in the text.  Mice were 

housed on a 12/12-hour light/dark cycles with the light cycle beginning at 6 a.m.  All mice had 

ad libitum access to rodent chow and water except during the behavioral experiments. 

Data analysis  

All data were collated in.xlsx files using Microsoft Excel 2011 and analyzed using Graphpad 

Prism from Graphpad Software (La Jolla, CA).  Unless otherwise noted, data graphed represent 

the mean and the standard error of the mean. 

Behavioral analysis  

All experiments and analyses were performed by an experimenter blinded to treatment.  

Behavioral tests were performed between 12 p.m. and 5 pm. Local time unless experimental 

design required baseline measurements to be assessed in the morning.  All experiments in this 

chapter were performed at room temperature, which was roughly 22°C. 

Cold plantar assay 

1/8‟‟, 3/16‟‟, and 1/4'‟ thick pyrex borosilicate float glass was acquired from Stemmerich Inc (St. 

Louis, MO).  Mice were acclimated on the glass plate in transparent plastic enclosures (4‟‟ x 4‟‟ 

x 11‟‟) and were prevented from seeing each other with opaque black polyvinyl sheets.  The 

lighting was undimmed to maintain the light/dark cycle and a white noise generator was used to 

isolate the behavioral room from hallway noise.   
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To generate the cold 

stimulus, dry ice was 

crushed into a fine 

powder using a hammer 

(Figure 1A).  The top 

was cut off a 3mL BD 

syringe (Franklin 

Lakes, NJ).  In order to 

prevent gas buildup 

inside the syringe body, 

a 21g needle was used 

to make a total of 6 holes in the body of the syringe, 3 holes on opposing sides.  The powdered 

dry ice was scooped into the modified syringe and the open end of the syringe was held against a 

flat surface while pressure was applied to the plunger to compress the dry ice into a flattened, 

dense pellet 1cm in diameter (Figure 1A).  Mice at rest [23] were tested by applying the tip of 

the dry ice pellet to the underside of the glass underneath the mouse hindpaw, using mirrors to 

visualize the target (Figure 1B).  The pellet was applied with light but consistent pressure 

applied to the plunger of the syringe, and the center of the hindpaw was targeted, taking care to 

avoid the distal joints.   

The latency to withdrawal from the cooling was measured using a stopwatch.  Withdrawal was 

defined as any motion that moved the paw away from the cooled glass, whether vertically or 

horizontally.  Animals were allowed to recover for at least 7 minutes between cold plantar 

stimulations on opposite hindpaws, and at least 15 minutes between consecutive stimulations on 

Figure 1.  The Cold Plantar Assay 
A.  Grind dry ice into a fine powder with a hammer (panel 1).  Load the dry ice powder into a 3mL 
syringe and compress against a flat surface until powder cannot be compressed any further (panel 2).  
Using the syringe plunger, push the dry ice pellet 20-30mm past the tip of the syringe (panel 2).  
Gently but firmly apply the flat end of the dry ice pellet to the glass surface underneath the paw of the 
mouse (panel 3) and measure the latency to withdrawal with a stopwatch. 
B.  Schematic of the cold plantar assay apparatus.  Mice are acclimated in plastic enclosures on a 
glass plate.  A mirror is placed underneath the apparatus to facilitate targeting of the dry ice probe. 
Adapted with permission from Brenner et al. 2012 
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any single paw.  For baseline experiments, the withdrawal latency was measured at least 3 times 

per paw per mouse.  When the experimental design limited the time window for testing, 1-2 

measurements were made per timepoint. 

For the experiments in this chapter, a maximum cold stimulus time of 20 seconds was used in 

order to avoid potential tissue damage.  This cutoff time was based on empirical preliminary 

data.  Trials in which the animal did not withdraw from the cold stimulus within 20 seconds were 

repeated.  If the second trial also yielded no withdrawal within the cutoff time, the value was 

recorded as 20 seconds. 

Acetone evaporation test  

The acetone evaporation test was performed as previously described [25,71]. Briefly, the mice 

were acclimated in plastic enclosures separated by opaque black polyvinyl dividers on a wire 

mesh until they were at rest [23].  After acclimation, acetone was drawn into a 1mL BD syringe 

(Franklin Lakes, NJ).  A droplet maintained by surface tension was pushed through the tip of the 

syringe and dabbed onto the plantar surface of the hindpaw.  The first 10 seconds of activity 

were disregarded as a response to the tactile stimulus of the application and the wetness of the 

acetone.  The time spent flicking or licking the paw for 60 seconds afterwards was measured 

with a stopwatch. 

Glass temperature measurements  

The temperature of the glass surface was measured using an IT-24p filament T-type 

thermocouple probe from Physitemp Instruments Inc. (Clifton, NJ) and the temperatures were 

collected once every second using an EA15 Dual-Input data logging thermometer from Extech 

Instruments (Waltham, MA).  The data were output into CSV files that were loaded into 

Microsoft Excel and analyzed using Graphpad Prism from Graphpad Software (La Jolla, CA). 
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To measure the temperature generated between the animal hindpaw and the glass surface, mice 

were lightly anesthetized using a ketamine-xylazine-acepromazine cocktail.  The T-type 

thermocouple filament probe was secured to the glass surface with laboratory tape, with the tip 

of the filament exposed.  The paw of the anesthetized animal was secured on top of the filament, 

with the center of the paw directly over the tip of the filament (Figure 2C). A dry ice pellet was 

then placed against the underside of the glass underneath the tip of the thermocouple for the 

proscribed amount of time while the change in temperature was tracked.  This analysis was 

performed on each of the 3 thicknesses of glass (1/8‟‟, 3/16‟‟, and 1/4'‟).  Temperature 

measurements were also performed using a Hargreaves radiant heat assay apparatus from IITC 

Life Sciences (Woodland Hills, CA) where active intensity was engaged as soon as the light was 

focused onto the paw to avoid premature warming from the resting intensity beam.  The light 

stimulus was applied for the average withdrawal latency with the active intensity of 15% (10 

seconds). 

Morphine injection   

Mice were acclimated as described above, and 3 baseline measurements of cold sensitivity were 

made. Morphine sulfate from Baxter Healthcare (Deerfield, IL) was then diluted in saline and 

injected subcutaneously in the back at a final dosage of 1.5mg/kg to induce short-term analgesia.  

Mice were injected with either morphine or saline vehicle, and the experimenter was blind to the 

contents of each syringe until after data analysis was complete.  Measurements of withdrawal 

latency were taken from the right paw of each animal every 30 minutes until all mice had 

returned to baseline latency values.  No mice were excluded from this analysis.  

Complete Freund’s Adjuvant 
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 20μL of Complete Freund‟s Adjuvant (CFA) from Sigma-Aldrich (St. Louis, MO) or .95% 

Saline from Hospira Inc (Lake Forest, IL) was injected into the right hindpaw of each mouse.  

Mice were acclimated as described above and at least 3 baseline measurements of withdrawal 

latency for each paw were taken for each mouse.  All mice were then injected in the right 

hindpaw with either CFA or saline and the withdrawal latencies on both paws were measured at 

1 hour, 2 hours, and 3 hours post-injection.  4 hours after intraplantar injection, all mice were 

given subcutaneous injections of 1.5mg/kg.  The withdrawal latencies then were measured 4.5, 5, 

and 5.5 hours post intraplantar injection.  Finally, withdrawal latency measurements were also 

made at 24 and 48 hours post-intraplantar injection. The experimenter was blinded to the 

contents of each syringe until after data analysis was completed. No mice were excluded from 

the analysis. 

Spinal Nerve Ligation (SNL)  

The spinal nerve ligation procedure was performed as described previously [100,187].  Baseline 

withdrawal latency and acetone evaporation responses were measured on all mice.  The mice 

were then deeply anesthetized with ketamine/acepromazine/xylazine cocktail and the paraspinal 

muscles were bluntly dissected to expose the left L5 transverse process.  Mice receiving the full 

ligation procedure had the L5 process removed and the left L4 spinal nerve was tightly ligated 

with 6-0 silk suture from Ethicon (Cornelia, GA) and transected distal to the ligation.  Mice 

receiving a sham procedure had the L5 transverse process exposed, but not removed and the 

nerve was untouched.  The cold plantar assay withdrawal latency was then measured 3, 6, and 10 

days after surgery.  The responses to acetone application were measured 2, 5, and 11 days after 

surgery.  After the baseline measurements on days 10/11, on both days the mice were injected 

subcutaneously with 1.5mg/kg morphine and then tested for their cold responsiveness 30, 60, and 
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90 minutes after morphine injection. The experimenter was blinded to the surgical procedure 

received by each mouse until after data analysis was completed. No mice were excluded from 

analysis. 
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Results 

The cold plantar assay (CPA) elicits consistent responses  

To measure the cold response threshold of mice to a cold stimulus, a compressed dry ice pellet is 

applied to the underside of the glass plate underneath the hindpaw (Figure 1).  Condensation 

generally appeared on the glass around the cooled area after the stimulation, but not during.  

Application of the cold stimulus resulted in nocifensive responses including lifting of the paw 

followed by a combination of licking, flicking, or biting of the tested paw lasting 1 second to one 

minute.  The latency to withdrawal from the cooling glass can be used as a measure of the cold 

sensitivity of the animal. 

The withdrawal latency of naïve Swiss Webster mice was measured on 1/8‟‟, 3/16‟‟, and 1/4'‟ 

thick glass.  The latency to hindpaw withdrawal from the glass surface was lowest for the 1/8‟‟ 

plate (3.79s±0.5s), and increased as the thickness increased to 3/16‟‟ (7.29s±0.9s) and then 1/4'‟ 

(11.63s±1.3s) (Figure 2A 1-way ANOVA with Bonferroni post-hoc test ***p<0.0001 for all 

comparisons). The average cold plantar withdrawal latency of C57BL/6 mice was also measured 

on all three thicknesses and found that the latencies were consistent between backgrounds 

(Figure 2B 1/8‟‟=3.83s±0.5s, 3/16‟‟=7.0±1.4s, 1/4'‟=10.4±0.9s, 1-way ANOVA with Bonferroni 

post-hoc test ***p<0.0001 for all comparisons).   
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Consistent drops 

in temperature 

cause CPA 

responses 

 It is important to 

know the 

magnitude of the 

cold stimulus 

being delivered to 

the mouse paw.  

In order to 

measure this 

stimulus, mice 

were anesthetized 

and their paws 

were secured over a filament thermocouple probe on the glass (Figure 2C).  In order to mimic 

the experimental conditions, the cold stimulus was applied underneath the thermocouple for the 

amount of time that would cause an awake mouse to withdraw from the cooled glass (Figure 

2D).  On the 1/8‟‟ thick glass the stimulus ends at 4s, and the temperature between paw and glass 

decreased by 1.3°C (light blue triangles, dotted light blue line).  On the 3/16‟‟ thick glass the 

stimulus ends at 7s, and the temperature between paw and glass decreased by 1.5°C (royal blue 

squares, dotted royal blue line). On the ¼‟‟ thick glass the stimulus ends at 10 seconds, and the 

temperature between paw and glass decreased by 2°C (dark blue circles, dotted dark blue 

Figure 2. The cold plantar assay applies a consistent ramping cold stimulus 
A.  The cold plantar withdrawal latency increases as thicker glass plates are used.  With Swiss Webster 
mice, on the 1/8’’ glass the average latency is 3.79±0.5 seconds, on the 3/16’’ glass the average latency is 
7.29±0.9 seconds, and on the 1/4'’ glass the average latency is 11.63±1.3 seconds.  The average latencies 
on each glass are significantly different (1-way ANOVA with Bonferroni post-hoc test ***p<.0001 between all 
thicknesses; n= 12 mice per glass)   
B.  With C57 mice, on the 1/8’’ glass the average latency is 3.83±0.5 seconds, on the 3/16’’ glass the 
average latency is 7.0±1.4 seconds, and on the 1/4'’ glass the average latency is 10.4±0.9 seconds.  The 
average latencies on each glass are significantly different (1-way ANOVA with Bonferroni post-hoc test 
***p<.0001 between all thicknesses; n= 10 mice per glass) 
C. Schematic showing how the temperature between the paw and the glass was measured. 
D.  Curves representing the change in temperature between the paw and the glass during and shortly after 
dry ice stimulation.   For each curve, the dry ice stimulus begins at x=1, and ends at the colored arrow for 
that thickness (from 2A, 1/8’’: 3.79 seconds, 3/16’’: 7.29 seconds, 1/4'’: 11.63 seconds).  Based on these 
curves, mice withdraw after a 1.3°C (1/8’’), 1.5°C (3/16’’), or 2°C (1/4’’) change in temperature (n= 6 per 
glass thickness).  Adapted with permission from Brenner et al. 2012 
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line).  This temperature measurement analysis was also performed using the conventional 

Hargreaves radiant heat apparatus with a pre-heated glass plate, and after 10 seconds of radiant 

thermal stimulation (the average stimulus capable of causing withdrawal under these conditions) 

the temperature between the glass and the paw increased by 4.3°C (Figure 2C n=6). 

 The CPA requires direct contact between paw and glass surface 

It is important to 

know how 

experimental 

conditions must 

be standardized.  

In order to test 

whether direct 

contact between 

the paw and the 

glass is necessary 

to generate a 

consistent cold 

stimulus, thin 

styrofoam spacers 

were used to 

incrementally 

separate the paw 

and thermocouple from the cooling glass surface (Figure 3A). When the paw is separated from 

Figure 3.  The cold plantar assay requires direct paw-glass contact 
A. Schematic diagramming the experimental design 
B-D. The temperature during cold plantar stimulus underneath the paw was measured on all three glass 
thicknesses under normal conditions, and with styrofoam spacers propping the paw away from the glass 
surface.  In all cases, propping the paw away from the glass caused a dramatic decrease in the cold stimulus 
measured at the paw (n= 6 per glass thickness). 
E. The temperature underneath the paw was measured during Hargreaves radiant heat stimulation with the 
paw propped up with styrofoam.  Unlike the cold plantar assay, the thermal stimulus in the Hargreaves assay is 
largely unaltered when the paw is propped away from the glass (n= 6). Adapted with permission from Brenner 
et al. 2012 
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the glass surface, the cold stimulus from the dry ice probe is dramatically decreased (Figure 3B-

D, n=6).  This analysis was also performed using the Hargreaves apparatus and found that the 

radiant heat stimulus was unaffected by the separation of the paw from the glass (Figure 3E, 

n=6). 

The CPA can quantify rapid changes in nocifensive responsiveness 

An important part of behavioral assays is the ability to detect transient changes in nocifensive 

sensitivity.  In order to show that the CPA can detect rapid changes in nocifensive 

responsiveness, transient analgesia was induced using subcutaneous injections of 1.5 mg/kg 

morphine over the coccyx. Baseline CPA withdrawal latencies were measured, and then latencies 

were measured at 30, 60, and 90 minutes after injection of morphine or a saline control.  The 

latency to withdrawal was significantly increased after 30 minutes for the morphine-injected 

group compared to the saline-injected group (Figure 4A 2-way ANOVA main effect *p<0.05 

with Bonferroni post-hoc test; 30 minutes Morphine=16.4s±1.5s, Saline=12.4s±0.8s  **p<0.01; 

n=12 per group).  By 60 minutes post-morphine, the latency to withdrawal returned to baseline 

levels, consistent with the typical rate of morphine metabolism in mice [212]. 
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It is also 

important to 

show that a 

behavioral 

assay can 

quantify the 

interaction 

between 

hypersensitivity and analgesics.  In order to demonstrate that the CPA is capable of measuring 

this interaction in mice, intraplantar injections of Complete Freund‟s Adjuvant (CFA) were 

administered to cause cold hypersensitivity, and then transiently blocked the hypersensitivity 

with subcutaneous injections of morphine (Figure 4B).  Baseline measurements of cold 

sensitivity were made, and then inflammation was induced with 20μL intraplantar injections of 

CFA or a saline control.  The cold plantar withdrawal latency was measured on both hindpaws 

(injected and contralateral) at 1, 2, and 3 hours after injection.  The withdrawal latency of the 

CFA-injected mice was significantly decreased at 2 and 3 hours post injection, demonstrating 

that the CPA can measure inflammatory cold hypersensitivity (Figure 4B; 2-way ANOVA main 

effect p<0.001 with Bonferroni post-hoc test; 2 hours Saline=11.6s±0.4s, CFA=8.9s±0.7 

Figure 4.  The cold plantar assay can measure analgesia and allodynia 
A.  Mice were given subcutaneous injections of 1.5mg/kg morphine or saline.  Thirty minutes after injection, morphine-
injected mice had significantly higher withdrawal latencies on the 1/4'’ glass, but 60 minutes after injection the morphine 
injected mice had returned to baseline latency values (2-way ANOVA main effect *p<0.05 with Bonferroni post-hoc test; 30 
minutes **p<0.01; n= 12 per group). 
B.  Mice were given intraplantar injections of Complete Freund’s Adjuvant or saline.  2 and 3 hours after injection, CFA-
injected mice had significantly lower withdrawal latencies on the 1/4'’ glass than the saline-injected controls (2-way ANOVA 
main effect p<.0001 with Bonferroni post-hoc test; 120 minutes *p<0.05, 180 minutes **p<0.01 n= 12 per group).   4 hours 
after intraplantar injection, all animals were given subcutaneous injections of 1.5mg/kg morphine.  At 4.5 hours both CFA- 
and Saline-injected animals had significantly increased withdrawal latencies compared to their values at 3 hours (1-way 
ANOVA with Dunnett’s post-hoc test; CFA 3hours vs. CFA 4.5 hours $$$ p<0.0001, Saline 3 hours vs. Saline 4.5 hours 
$$$ p<0.0001).  At 5.5 hours, the CFA-injected mice had significantly lower withdrawal latencies than their saline-injected 
counterparts (2-way ANOVA with Bonferroni post-hoc test; 5.5 hours **p<0.01).  24 hours after intraplantar injection, the 
CFA-injected mice still had significantly lower withdrawal latencies than their saline-injected counterparts, but this 
difference resolved by 48 hours (2-way ANOVA with Bonferroni post-hoc test; 24 hours ** p<0.01, 48 hours p>0.05). 
Adapted with permission from Brenner et al. 2012 
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*p<0.05; 3 hours Saline=11.8s±0.8s, CFA=8.4s±0.8s**p<0.01 n=12 per group).  At 4 hours post 

intraplantar injection, after the cold hypersensitivity had been established, all mice were given 

subcutaneous injections of 1.5mg/kg morphine. 30 minutes after morphine injection, both 

control- and CFA-injected mice had increased withdrawal latencies compared to their pre-

morphine injection latencies (Figure 4B 4.5 hours; 1 way ANOVA with Dunnett‟s post-hoc test; 

Saline 3 hours=11.8s±0.8s, Saline 4.5 hours=16.9s±0.8s $$$p<0.0001; CFA 3 hours=8.4s±0.8s, 

CFA 4.5 hours=14.7s±0.9s $$$p<0.0001; n=12). Once the morphine had been metabolized (5 

hours), neither group was significantly different from the withdrawal latencies at 3 hours (Figure 

4B 5 hours; 1-way ANOVA with Dunnett‟s post-hoc test; CFA and Saline p>0.05).  By 5.5 

hours after intraplantar injection, the inflammatory cold hypersensitivity was again detectable as 

the mice injected with CFA had significantly lower withdrawal latencies than mice injected with 

saline (Figure 4B 2-way ANOVA with Bonferroni post-hoc test; 5.5 hours Saline=12.8s±0.9s, 

CFA=8.6s±0.9s; n=12).  The cold hypersensitivity that was induced by intraplantar CFA was 

maintained for 24 hours (Figure 4B 2-way ANOVA with Bonferroni post-hoc test; 

Saline=13.1s±0.6s, CFA=9.7s±0.5s **p<0.01; n=12), but returned to the same values as the 

saline-injected mice by 48 hours (Figure 4B 2-way ANOVA with Bonferroni post-hoc test; 

p>0.05, n=12).  Contralateral paw withdrawal latencies were measured at all time points, and 

were unchanged by experimental manipulations (data not shown). 

The cold plantar assay can also quantify the interaction between neuropathic injury and 

analgesics. This was demonstrated using the L4 Spinal Nerve Ligation (SNL) procedure.  

Baseline cold sensitivity was assessed using both the cold plantar assay and the acetone 

evaporation test, before the mice were treated with either the SNL procedure or a sham 

procedure.  After the surgical procedures, the amount of time that was spent flicking the injured 



 

 42 

paw after acetone application was significantly increased in SNL mice compared to the shame 

mice (Figure 5B 2-way ANOVA main effect *p<0.05 with Bonferroni post-hoc test; individual 

timepoints not significantly different, Sham n=5, SNL n=6).  When tested with the CPA, the 

SNL mice had significantly decreased withdrawal latency at 3, 6, and 10 days after surgery 

(Figure 5A 2-way ANOVA main effect ***p<0.001 with Bonferroni post-hoc test; 3 days 

Sham=12.6s±0.7s, SNL=7.6s±0.7s ***p<0.001; 6 days Sham=12.5s±1.0s, SNL=8.2s±0.7s 

**p<0.01; 10 days Sham=12.1s±0.1s, SNL=7.4s±0.6s **p<0.01; Sham n=5, SNL n=6).  

Ten days after surgery, cold plantar withdrawal latencies were measured and then 1.5mg/kg 

morphine was injected subcutaneously. Both sham and SNL groups showed increased 

withdrawal latencies 30 minutes after morphine injection (Figure 5A 1-way ANOVA with 

Dunnett‟s post-hoc test; Sham 10d=12.1s±0.1s, 30m=16.2s±0.7s $$p<0.05, CFA 10d=7.4s±0.6s, 

30m=13.5s±2.2s $p<0.05). By 60 minutes post-morphine, the SNL mice were hypersensitive to 

cold plantar stimulus again, while the sham mice had returned to their baseline measurements 

(Figure 5A 2-way ANOVA with Bonferroni post-hoc test; Sham 90m=13.3s±1.3s, SNL 

90m=6.7s±1.6s***p<0.001).  
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Eleven days 

after surgery, 

acetone 

evaporation 

baselines were 

measured and 

then 1.5mg/kg 

morphine was 

injected 

subcutaneously.  There was a significant reduction in the time responding to acetone in the SNL 

group but not in the Sham group (Figure 5B 1-way ANOVA with Dunnett‟s post-hoc test; SNL 

11d=7.1s±2.0s, 30 min=0.9s±0.5s, 60 min=0.4s±0.4 $$p<0.05, Sham p>0.05).   

  

Figure 5: The cold plantar assay can measure L4 spinal nerve ligation induced allodynia 
Mice underwent the spinal nerve ligation (SNL) procedure or a sham procedure on day 0.   
A.  On days 3, 6, and 10 post surgery SNL mice had significantly lower cold plantar withdrawal latencies on the 
1/4'’ glass than sham mice (2-way ANOVA main effect ***p<0.001 with Bonferroni post-hoc test; 3d ***p<0.001, 6d 
**p<0.01, 10d **p<0.01; Sham n=5, SNL n=6).  After baseline measurements on day 10 post surgery, mice were 
injected with 1.5mg/kg morphine.  Thirty minutes after morphine injection, both SNL and sham mice had 
withdrawal latencies that were significantly elevated from their baseline values that day (1-way ANOVA with 
Dunnett’s post-hoc test; Sham $ p<0.05, SNL $$ p<0.01).  By 90 minutes after morphine injection, the SNL mice 
again had significantly decreased withdrawal latencies than the sham mice (2-way ANOVA with Bonferroni post-
hoc test; ***p<0.001). 
B. On days 2, 5, and 11 post surgery SNL mice spent more time flicking after acetone application than sham mice 
(2-way ANOVA main effect *p<0.05 with Bonferroni post-hoc test; 2 days p>0.05, 5 days p>0.05, 11 days p>0.05).  
After baseline measurements on day 11 post surgery, mice were injected with 1.5mg/kg morphine.  There was a 
significant reduction in the time responding to acetone in the SNL group but not in the Sham group (1-way ANOVA 
with Dunnett’s post-hoc test; Sham p>0.05, SNL $$ p<0.01 ).  Adapted with permission from Brenner et al. 2012. 
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Discussion 

In this chapter, we demonstrate that the cold plantar assay applies a focal ramping cold stimulus 

to unrestrained, acclimated mice.  This stimulus is consistent, and can be used to measure both 

cold hypersensitivity and cold analgesia with relatively low variability.  It can also be used to 

quantify the interactions between hypersensitivity and analgesia in ways that were not possible 

using prior techniques such as the acetone evaporation test.  This technique provides a method of 

testing TRPM8-KO and TRPA1-KO knockout mice without relying on subjective interpretations 

of mouse behavior.  

The biggest limitation is that the paw being tested must be fully contacting the glass plate for the 

cold stimulus to be delivered. Since mice that are at rest after acclimation generally has their 

paws in contact with the glass plate this limitation does not present an insurmountable obstacle.  

However, it is important to keep this limitation in mind when testing mice using inflammatory 

and neuropathic injury models, as paw guarding and changes in weight distribution may occur 

after injury.  Still, despite this we have found that consistent measurements of cold sensitivity 

can be made using the CPA even in these injury models (Figures 4, 5). Interestingly, the parallel 

studies using the Hargreaves radiant heat assay show that the Hargreaves stimulus delivered to 

the paw is largely unchanged whether the paw is in contact with the glass or not.   

It is surprising that naïve mice withdraw from temperature drops that range from 1.3-2°C.  Even 

the data using the Hargreaves apparatus show that naïve mice withdraw after an increase of just 

4-5°C, much smaller than the previously recorded values [79]. That such small changes in 

temperature are sufficient to generate a nocifensive response may suggest that the highly 

specialized mechanisms are acting to ensure that sensitivity to small changes in temperature is 

constantly maintained. 
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Chapter 3 

The extended cold plantar assay 
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Introduction 

Results obtained with the cold plantar assay suggest that mice respond to very small decreases in 

temperature.  If mice are acutely sensitive to small temperature shifts, large shifts in ambient 

temperature would overload the mechanisms of cold sensitivity, and the effective dynamic range 

of cold sensitivity would relatively small.  Since mice and other animals have survived in 

seasonal areas for millennia, this suggests that there are mechanisms that allow the shifting of 

cold sensitivity levels to match the environmental conditions.  In order to study these 

mechanisms in vivo, behavioral assays that can measure the effect of altering the environmental 

temperature on cold sensitivity are necessary. 

Previously, the only assay capable of measuring the effect of changing environmental 

temperatures on was the “dynamic cold plate,” [55,206] in which mice are put on a room 

temperature Peltier device which is then rapidly cooled (1°C/min) until it reaches 1°C.  

Behavioral responses such as licking, rearing, and jumping are measured at different temperature 

ranges and used to estimate cold responsiveness.  While this assay can dynamically test the 

responses of animals to cooling it also has some limitations.  It measures how a mouse responds 

to a cooling environment, but does not provide a way to test responsiveness to a discrete cold 

stimulus in the context of environmental cooling.  Like the regular cold plate, the dynamic cold 

plate is also confounded by environmental novelty since the animals are tested on the cold plate 

without the chance to acclimate to the environment unless they are acclimated for significant 

periods before the cooing begins, which increases the amount of time necessary to test each 
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mouse.  It also requires expensive equipment, can only test one mouse at a time, and relies on 

subjective characterizations of mouse behavior during the cooling.   

In order to investigate the factors that lead to withdrawal from cold stimuli, the cold plantar 

assay was extended to test the responses to cold stimuli with different starting temperatures.  

This new assay, the extended Cold Plantar Assay (eCPA) can test the cold responsiveness of 

mice at any ambient temperature range between 5-30°C.  The eCPA provides an easily 

quantified, objective measure of cold responsiveness to a uniform cold stimulus at different 

environmental temperatures.  This modification is a significant improvement for testing cold 

sensitivity under different environmental changes. 
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Methods 

Animal protocols 

All mouse protocols were approved by the Animal Care and Use Committee of the Washington 

University School of Medicine (St. Louis, MO) and were in accordance with National Institutes 

of Health Guide for the Care and Use of Laboratory Animals. Experiments were carried out with 

Swiss Webster mice acquired from Jackson Labs (Bar Harbor, ME) unless otherwise noted.  

Efforts were made to minimize the number of animals used, to minimize suffering.  All mice 

used were male and 6-9 weeks old unless specifically noted. Mice were housed on a 12/12 hour 

light/dark cycle with the light cycle beginning at 6am.  All mice had ad libitum access to rodent 

chow and water.  Cage bedding was changed once a week, always allowing at least 48 hours 

after a bedding change before behavioral testing was carried out.  Mice were allowed at least 3 

days between behavioral testing at any ambient temperature, and were tested first using at room 

temperature, followed by 17°C, 12°C, 5°C, and 30°C. 

 

Behavioral analysis.  

 All behavioral tests and analyses were conducted by an experimenter blinded to treatment.  

Behavioral tests were performed between 12pm and 5pm. 

 

The extended cold plantar assay  (eCPA). 

  .125‟‟, .1875‟‟, and .25‟‟ thick pyrex borosilicate float glass was purchased from Stemmerich 

Inc. (St. Louis, MO).  Transparent plastic enclosures (4‟‟ x 4‟‟ x 11‟‟) separated by opaque black 

dividers were arranged in one line along the center of the plate (Figure 1A-B).  
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The cold probe was 

generated as previously 

described [21].  Briefly, 

powdered dry ice with a 

surface temperature of -

78.5°C was compressed 

against a flat surface in a 

3mL BD syringe (Franklin 

Lakes, NJ) with the top cut 

off until it reached a dense, 

uniform consistency.  

Awake mice were tested by 

extending the tip of the dry 

ice pellet past the end of 

the syringe and pressing it 

against the glass 

underneath the hindpaw 

with light pressure using 

the syringe plunger.  The 

center of the hindpaw was 

targeted, avoiding the distal 

joints, and ensuring that the 

paw itself was touching the 

Figure 1: How to perform the eCPA 
A.  Schematic for performing the Cold Plantar Assay (CPA).  Mice are isolated in plastic 
enclosures with black inserts on a glass plate.  A compressed dry ice pellet is applied to 
the glass underneath the paw using a mirror for targeting 
B. The extended CPA (eCPA) assay.  Aluminum boxes are positioned on both sides of 
the animal enclosures.  A t-type thermocouple attached to a data logger is used to track 
and record the temperature at the center of the glass plate. 
C. The eCPA assay configured for the 30°C condition.  Heated water circulators are 
positioned on either side of the glass plate.  The water circulators pump freshly heated 
water into the aluminum boxes in order to warm the glass.  The water drains out through 
holes in the sides of the aluminum boxes of the side directly into the reservoirs of the 
circulators. Adapted with permission from Brenner et al. 2014 
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glass surface.   

 

The latency to withdrawal of the hindpaw was measured with a stopwatch.   Withdrawal was 

defined as any action to move the paw vertically or horizontally away from the cold glass.  Trials 

on separate paws of the same animal were separated by 7 minutes, and at least 15 minutes 

separated trials on any single paw.  At least 3 trials per paw per mouse were recorded unless 

otherwise noted.  

The glass temperature was monitored with an IT-24P T-type filament thermocouple probe from 

Physitemp Instruments, Inc. (Clifton, NJ) that was secured in the middle of the plate with 

laboratory tape.  Plate temperature data were collected from the thermocouple using an EA15 

Data-Logging Dual Input Thermometer from Extech Instruments (Waltham, MA) (Figure 1A-

B). Dry ice or wet ice was piled on either side of the enclosures to uniformly cool the glass plate.  

The ice was contained either in packets made of heavy-gauge aluminum foil, or in custom-built 

aluminum boxes (Figure 1A-B).  The boxes were the same length as the glass plate, 4.5 inches 

wide and 3 inches tall with a lid.  A drain with a stopcock was installed at the bottom of one 

short end of each box to allow easy drainage. The glass temperature was be adjusted by moving 

the ice containers closer to or further from the plastic enclosures (Figure 2A-B), or by filling the 

container with hot water. After the plate reached the desired temperature, mice were acclimated 

in the enclosures for 3 hours before testing. White noise was used to decrease noise disturbances.  

Due to the CO2 generated when using dry ice, we found that it was essential to have adequate 

ventilation over the apparatus or the mice may enter torpor. With proper ventilation, there were 

no signs of CO2 intoxication in any condition. 
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Testing mice at 30°C 

To warm the glass plate to 30°C, the aluminum boxes were positioned approximately .25‟‟ away 

from the animal enclosures on either side.  A VWR water circulator continually fed water heated 

to between 50-60°C into the aluminum boxes in order to warm the plate up (Figure 1C).  The 

exact temperature of the water circulators was calibrated during each experiment to keep the 

plate at 30°C.  The water exited the aluminum boxes through the drain holes at the bottom of the 

short ends, and flowed directly back into the reservoir of the circulators for reheating. After 

approximately 90 minutes the plate warmed to 30°C and remained at that temperature as long as 

the circulators were active (Figure 2A-B).  

 

Testing mice at 17°C 

 To cool the glass plate to 17°C, the aluminum boxes were positioned approximately .25‟‟ away 

from the animal enclosures on either side, and filled with wet ice (Figure 2A-B).  After 

approximately 60 minutes the plate cooled to 17°C and remained at that temperature as long as 

the boxes were refilled with wet ice roughly every 90 minutes and excess water was drained.   
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Testing mice at 12°C  

To cool the glass plate to 12°C, the aluminum boxes were positioned roughly 1.25‟‟ away from 

the animal enclosures on either side and filled with dry ice pellets (Figure 2A-B).  After 

approximately 20 minutes, the plate cooled to 12°C and remained at that temperature as long as 

the boxes were refilled with dry ice roughly every 90 minutes.   

 

Figure 2: The eCPA can stably generate a wide range of temperatures for cold response testing 
A. The surface temperature of the glass plate was measured during behavioral experiments.  The targeted temperature ranges were 
reproducibly generated using the eCPA apparatus. Each curve is generated by averaging the glass plate temperature during behavioral 
experiments with 6 mice on the plate for the entire course of the measurements.  30°C n=1 experiment, 23°C n=5 experiments averaged, 17°C 
n=7 experiments averaged, 12°C n=7 experiments averaged, and 5°C n=5 experiments averaged. 
B. Schematic illustrating eCPA temperature management.  To generate a surface temperature of 30°C the aluminum boxes are filled with hot 
water as shown in Figure 1C.  To generate a surface temperature of 17°C the aluminum boxes are filled with wet ice and placed ~.25’’ away 
from the animal enclosures.  To generate a surface temperature of 12°C the boxes are filled with dry ice and placed towards the edge of the 
plate, ~1.25’’ away from the enclosures.  To generate a surface temperature of 5°C the boxes are filled with dry ice and placed ~.25’’ away from 
the animal enclosures. Adapted with permission from Brenner et al. 2014 
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Testing mice at 5°C 

 To cool the glass plate to 5°C, the aluminum boxes were positioned roughly .25‟‟ away from the 

animal enclosures on either side and filled with dry ice pellets (Figure 2A-B).  After 

approximately 60 minutes the plate cooled to 5°C and remained at that temperature as long as the 

boxes were refilled with dry ice roughly every 90 minutes.   

 

Testing mice during the dynamic cooling phase 

To measure the cold sensitivity of the mice during the dynamic cooling phase, the mice were 

acclimated in enclosures as described above at room temperature.  Baseline withdrawal latency 

was measured at room temperature.  The aluminum boxes are pre-filled with dry ice and allowed 

to cool before being placed on the glass surface roughly 1.25‟‟ from the animal enclosures on 

either side to cool the plate.  Withdrawal latencies are measured immediately as the plate cools, 

and the temperature of the glass plate was recorded along with every latency.   
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Results 

The cold plantar assay, introduced in Chapter 2, measures the cold sensitivity of mice at room 

temperature.  The testing involves applying a pellet made of compressed dry ice to the underside 

of a glass plate underneath the hindpaw.  Naïve mice generally respond after 11 seconds, which 

corresponds to a temperature decrease of roughly 1.3°C [21]. While the CPA can only test 

responsiveness in a small temperature range close to room temperature, it would be better to test 

cold sensation at a wide range of temperatures. 

To extend the utility of the CPA and enable studies of cold sensation at different ambient 

temperatures, the entire glass testing plate is cooled to a lower starting temperature. From these 

lower starting temperatures, the withdrawal latencies of the animals were measured. Using 2 

custom-built 1/8‟‟ aluminum boxes, the CPA testing glass was warmed to 30°C, left at room 

temperature (23°C), cooled stably to 17°C using wet ice, or cooled stably to 12°C using dry ice 

(Figure 2). Although the experiments in this manuscript test responses using plate temperatures 

of 30°C, 23°C, 17°C, and 12°C, the apparatus has also been used to test cold responses at 

starting temperatures as low as 5°C (Figure 2).  

Glass plate temperatures in the eCPA were stable 

The temperature of the glass surface was monitored constantly throughout the eCPA testing 

using an IT-24p t-type thermocouple probe attached to the center of the plate (Figure 1B). 

Temperature recordings of the eCPA glass surface under the 30°C, 23°C, 17°C, 12°C, and 5°C 

conditions showed that the testing surface rapidly cooled/warmed to the desired temperature, and 

that this temperature remained stable for the length of the experiment (Figure 2A).  The 

conditions used to generate these temperature curves are described in depth in the methods 

section and pictured in Figure 2B.  Briefly, the 30°C condition was generated using hot water 
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circulators, the 17°C condition was generated using wet ice, and the 12°C and 5°C conditions 

were generated using dry ice and varying the distance from the enclosure to fine-tune the glass 

surface temperature.  
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Glass plate cooling in the eCPA was uniform across the plate To ensure that the glass was being 

uniformly cooled, behavioral tests were performed using 2 IT-24p thermocouples to 

simultaneously monitor the glass temperature at different locations  (Figure 3). The glass surface 

was cooled to 12°C while measuring both at the center of the glass plate, and in the middle of the 

plate along the far edge.  The temperatures reported at both thermocouples were identical, 

suggesting that the middle of the glass plate is uniformly cooled from edge to edge (Figure 3A). 

It was also hypothesized that the edge of the enclosures, which were closer to the dry ice, would 

be colder than the center of the enclosures.  In order to test this hypothesis, the glass plate was 

cooled to 12°C and the temperature at the center of the testing enclosure was compared to the 

temperature at the edge of the testing enclosure. As expected, a cold gradient was generated on 

the glass surface in the eCPA, with the glass at the edge of the testing enclosures roughly 3°C 

colder than the glass in the middle of the testing enclosures (Figure 3B).  While this variation in 

Figure 3: Temperatures generated are consistent across the glass plate  
A. Thermocouple t1 (black) was placed at the center of the plate.  Thermocouple t2 (red) was placed in the behavioral enclosure closes to the 
right edge of the plate. The temperature tracings and the graph at the far right (t1-t2) show nearly identical temperatures at t1 and t2 
throughout the course of the experiment.  
B. Thermocouple t1 (black) was placed at the center of the plate.  Thermocouple t2 (red) was placed in the central behavioral enclosure, at 
the wall closer to the dry ice-filled aluminum boxes. The temperature tracings and the graph at the far right (t1-t2) show that there is a roughly 
3°C difference between t1 and t2 once the plate has reached a stable temperature. Adapted from Brenner et al. 2014 
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glass temperature is substantial, when the 

plate is cooled to 12°C mice spent most of 

their time in the central area of the enclosure 

where the temperature was more uniform.  

Additionally, the standard deviation for the 

withdrawal latencies measured in this 

condition was quite low, suggesting low 

variability between the mouse responses 

despite the temperature gradient of the plate.  

eCPA withdrawal latencies are consistent 

Despite the variability in temperature across the testing enclosure, the withdrawal latencies 

measured at these temperatures were very consistent.  The withdrawal latencies of adult Swiss 

Webster mice tested at all three temperature ranges had relatively low variability (Figure 4 

12°C=12.8s±0.5, 17°C=13.0s±0.3 23°C=11.7s±0.7, 30°C=12.38s±0.4, n=6 mice tested under 

each temperature condition; 1-way ANOVA with Bonferroni post-hoc test, no significant 

differences between any groups).   

Figure 4: eCPA withdrawal latencies are consistent  
6-9 week old male Swiss Webster mice were tested using the eCPA with the 
glass plate starting at 12°C (latency=12.8s±.5), 17°C (latency=13.0s±.3), 
23°C (latency=11.7s±.7), or 30°C (latency=12.38s±.4).   n=6 for all groups.  
1-way ANOVA with Bonferroni post-hoc test, no significant differences 
between any groups. Adapted with permission from Brenner et al. 2014 
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The withdrawal latencies 

measured as the plate is 

cooling represent cold 

adaptation.  When measured on 

wild-type C57/Bl6 males, these 

latencies were also very 

consistent    (Figure 5 

Baseline=12.8s±0.3, 30 

min=13.67s±0.9, 60 

min=11.03s±1.0; 1-way 

ANOVA with Bonferroni post-

hoc test, no significant 

differences between any 

groups), suggesting that the 

measurements were consistent 

and that under baseline 

conditions, the mice adjust to 

the cold environment faster 

than the eCPA could measure. 

  

Figure 5: The eCPA can measure withdrawal latency as mice adapt to cold ambient 
temperatures 
A. The surface temperature of the glass plate was measured during a behavioral 
experiment.  Baseline withdrawal latencies (red) were measured at room temperature and 
then precooled aluminum boxes containing dry ice were placed on the glass surface.  As 
the glass cooled, withdrawal latencies were measured (light blue), and latencies were also 
measured once the glass had stabilized at 12°C (dark blue). 
B. eCPA withdrawal latencies are unchanged as the glass plate cools.  Adult male C57 
mice were tested as the glass plate cooled, and there was no significant difference 
between any of the timepoints (Baseline=12.8s±.3, 30 min=13.67s±.9, 60 min=11.03s±1.0, 
n=3 mice; 1-way ANOVA with Bonferroni post-hoc test, no significant differences between 
any groups) . Adapted with permission from Brenner et al. 2014 
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Discussion 

The eCPA is a new tool for assessing cold behavior in mice that has low overhead costs, an 

objective behavioral endpoint, and can test cold responsiveness at a wide variety of 

physiologically relevant temperatures. Other behavioral assays for cold such as the cold plate 

[2,38] and tail flick [96,158]) can test animals at these temperature ranges as well, but they 

usually involve rapidly moving the animal from room temperature to the testing temperature 

rather than fully acclimated mice at rest.  In contrast, the eCPA allows the experimenter to 

change the environmental temperature, and then assess how the mice respond to a standardized 

cold stimulus in the context of this cooler environment. This is a significant methodological 

improvement for understanding how mice adjust to long periods at colder ambient temperatures. 

The eCPA can also test mice during the process of adaptation, as the environment is in the 

process of cooling.  The dynamic cold plate is the only other technique that allows the gradual 

changing of the environment [55,206], but even the dynamic cold plate only measures the 

behavioral responses of the mice as the environment cools.  The eCPA allows the measurement 

of cold sensitivity to a standardized cooling stimulus as the environment is in the process of 

cooling, allowing the experimenters to quantify and study the mechanisms of cold adaptation.  
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Chapter 4 

The mechanisms of cold adaptation 
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Introduction 

The ability to adapt to environmental temperature conditions is crucial for survival.  Species that 

live in areas with significant seasonal temperature shifts need to sense threatening or rewarding 

temperature changes across many environmental settings.  For example, mice living in seasonal 

areas must detect cold stimuli during both summer and winter, when ambient temperatures can 

vary by over 100°F, and approach or evade when appropriate. Even humans in the modern era 

need to sense a wide range of temperatures to avoid dangerously cold or hot situations [19,22]. 

Recent work has revealed a crucial role of the Transient Receptor Potential (TRP) family of ion 

channels in transduction and amplification of sensory stimuli.  TRPV1-4 are essential for heat 

responses [29,111,125,139,189], TRPA1 is crucial for full responses to some 

nociceptive[107,108,118,121,130,156,176,180,199,200], pruriceptive [118,180,199,200], and 

possibly cold stimuli [7,96,107,176,189,213], and TRPM8 is important for normal responses to 

cold stimuli[9,43,56,63,70,102,103,123,205].  While much effort has been expended studying 

responses to thermal stimuli at room temperature and in testing precipitous changes in 

temperature, relatively little work has explored how organisms maintain thermal sensitivity when 

environmental temperatures change. 

Early studies recording from cold-responsive fibers in cats showed that cold stimuli initially 

increased the number of action potentials fired, but that this response quickly adapted as the 

stimulus continued [82,83].  These findings were confirmed in primates, and the cold sensitive 

fibers were also identified as Aδ and C-fibers [109,112,160,161,171].  More recent work has 

shown in vitro that phospholipase C (PLC) modulation of phosphoinositol 4,5-bisphosphate 

(PIP2) levels affects TRPM8 activity [51,169], and that dorsal root ganglion neurons isolated 

from TrpM8-KO mice did not adjust their temperature thresholds in response to varied ambient 
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temperatures [66]. The same study also showed that changes in PIP2 concentration affected in 

vitro cold threshold adjustments. Evidence also suggests that the PIP2-binding protein Pirt 

modulates TRPM8 activity, further highlighting a key role for PIP2 in regulating cold sensitivity 

[179] in vitro.  

While temperature adaptation has been characterized in vitro, this effect has been difficult to 

study in vivo.  In this chapter, I use the new eCPA assay to test the cold responses of mice at a 

variety of baseline temperatures to assess how mice adapt to these temperatures. These studies 

demonstrate for the first time in vivo that TRPM8 is required for adaptation to cold stimuli, likely 

via a PIP2-dependent mechanism. 
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Methods 

Animals.  All mouse protocols were approved by the Animal Care and Use Committee of the 

Washington University School of Medicine (St. Louis, MO) and were in accord with National 

Institutes of Health guidelines. Experiments were carried out with in-house bred C57BL/6 mice 

originally acquired from Jackson Labs (Bar Harbor, ME), TrpM8-KO mice on a mixed C57/FVB 

background, TrpA1-KO mice on a pure C57BL/6 background, and TrpA1-TrpM8 dKO mice 

bred on a mixed C57/FVB background in-house from the single knockout strains.  All mice used 

were male and 6-9 weeks old unless specifically noted. Mice were housed on a 12/12-hour 

light/dark cycle with the light cycle beginning at 6am.  All mice had ad libitum access to rodent 

chow and water.  Cage bedding was changed once a week, always allowing at least 48 hours 

after a bedding change before behavioral testing was carried out. 

 

Behavioral analysis.  All behavioral tests and analyses were conducted by an experimenter 

blinded to treatment and/or genotype.  Behavioral tests were performed between 12pm and 5pm. 

 

extended Cold Plantar Assay  (eCPA).  The eCPA is described in detail elsewhere (Brenner et al. 

in submission).  Briefly,  .125‟‟, .1875‟‟, and .25‟‟ thick pyrex borosilicate float glass was 

purchased from Stemmerich Inc. (St. Louis, MO).  Transparent plastic enclosures (4‟‟ x 4‟‟ x 

11‟‟) separated by opaque black dividers were arranged in one line along the center of a glass 

plate. The glass temperature was monitored with an IT-24P T-type filament thermocouple probe 

from Physitemp Instruments, Inc. (Clifton, NJ) that was secured in the middle of the plate with 

laboratory tape.  Plate temperature data were collected from the thermocouple using an EA15 
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Data-Logging Dual Input Thermometer from Extech Instruments (Waltham, MA). Dry ice or wet 

ice was placed in aluminum boxes on either side of the enclosures to uniformly cool the glass 

plate.  The ice was contained either in packets made of heavy-gauge aluminum foil, or in 

custom-built aluminum boxes.  The boxes are the same length as the glass plate, 4.5 inches wide 

and 3 inches tall with a lid. The glass temperature can be adjusted by moving the ice containers 

closer to or further from the plastic enclosures. After the plate reached the desired temperature, 

mice were acclimated in the enclosures for 3 hours before testing.  White noise was used to 

decrease noise disturbances. 

 

To cool the glass plate to 17°C, the aluminum boxes were positioned approximately .25‟‟ away 

from the animal enclosures on either side, and filled with wet ice.  After approximately 60 

minutes the plate cooled to 17°C and remained at that temperature as long as the boxes were 

refilled with wet ice roughly every 90 minutes and excess water was drained.   

 

To cool the glass plate to 12°C, the aluminum boxes were positioned roughly 1.25‟‟ away from 

the animal enclosures on either side and filled with dry ice pellets.  After approximately 20 

minutes, the plate cooled to 12°C and remained at that temperature as long as the boxes were 

refilled with dry ice roughly every 90 minutes.   

 

To warm the glass plate up to 30°C, the aluminum boxes were positioned .125‟‟ away from the 

animal enclosures on either side.  Water circulators set to warm the water to 48°C were 

positioned on either side of the glass plate.  Each circulator emptied hot water into one of the 

aluminum boxes.  Water drained directly back into the circulator reservoir via the side drains to 
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be reheated and pumped back into the boxes.  After approximately 80 minutes, the plate warmed 

to 30°C and remained at that temperature as long as the circulators were active. 

 

The cold probe was generated as we have previously described[21].  Briefly, powdered dry ice 

was compressed against a flat surface in a 3mL BD syringe (Franklin Lakes, NJ) with the top cut 

off until it reached a dense, uniform consistency.  Awake mice were tested by extending the tip 

of the dry ice pellet past the end of the syringe and pressing it against the glass underneath the 

hindpaw with light pressure using the syringe plunger.  The center of the hindpaw was targeted, 

avoiding the distal joints, and ensuring that the paw itself was touching the glass surface.   

 

The latency to withdrawal of the hindpaw was measured with a stopwatch.   Withdrawal was 

defined as any action to move the paw vertically or horizontally away from the cold glass.  Trials 

on separate paws on the same animal were separated by 7 minutes, and at least 15 minutes 

separated trials on any single paw.  At least 3 trials per paw per mouse were recorded unless 

otherwise noted. 

 

Hargreaves radiant heat assay.  Mice were acclimated on a Hargreaves apparatus from IITC 

Life Sciences (Woodland Hills, CA) in transparent plastic enclosures (4‟‟ x 4‟‟ x 11‟‟) separated 

by opaque black dividers for 3 hours.  White noise was used to decrease noise disturbances. The 

heated testing plate of the Hargreaves apparatus was replaced with the pyrex eCPA plate, and the 

cooling protocol was carried out as described above. The Hargreaves apparatus starting 

temperature and active intensity were varied as described in the text below, and the resting 

intensity was set to 2%.  The resting intensity was used to target the beam to the center of the 
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hindpaw while avoiding distal joints and ensuring that the mouse paw was fully in contact with 

the glass surface.  Once the beam was targeted, the active intensity (AI) level was applied and 

the built-in timer was used to measure the withdrawal latency.  Low Intensity is defined as 

AI=12, Moderate Intensity is defined as AI=17, and High Intensity is defined as AI=23.  Unless 

otherwise noted, Moderate Intensity (AI=17) was used for all stimuli. 

 

Glass temperature measurements.  Temperature values between the paw and glass were 

measured using an IT-24P filament T-type thermocouple probe from Physitemp Instruments Inc. 

(Clifton, NJ).   A mouse was anesthetized using a cocktail of Ketamine (Fort Dodge Animal 

Health, Fort Dodge IA), Xylazine (Lloyd Labs Lloyd Labs Shenandoah, IA), Acepromazine 

(Butler Schein Animal Health Dublin, OH).  The filament thermocouple was secured flush to the 

glass surface with the tip exposed.  The anesthetized animal‟s paw was taped to the glass surface 

over the filament thermocouple tip and allowed to reach a stable equilibrium temperature.  An 

eCPA pellet or Hargreaves light stimulus was applied to the secured paw over the thermocouple 

as described below.   

 

During the stimuli described above, data were collected using an EA15 Data-Logging Dual Input 

Thermometer from Extech Instruments (Waltham, MA).  The data were output into CSV files 

that were loaded into Microsoft Excel files and analyzed using Graphpad Prism from Graphpad 

Software (La Jolla, CA). 

 

 

PLC inhibition experiments 
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The PLC inhibitor U73122 and its inactive control U73343 (Tocris Bioscience, UK) were diluted 

in DMSO to a concentration of 320μM.  Aliquots of this stock solution were kept frozen at -

20°C.  On experimental days, baseline eCPA latencies for the right hindpaw were measured 

starting at 11am. Once baseline measurements were concluded, aliquots of the drugs were 

defrosted and diluted with saline to a working concentration of 50μM (final solutions were 80% 

saline, 20%DMSO). 10μL of this solution was injected into the right hindpaw for an effective 

dose of 0.5 nanomoles, a dose that has been used previously to inhibit PLC activity in vivo [211].  

Immediately after the injections, aluminum boxes filled with dry ice were place on the glass plate 

in the configuration shown in Figure 1D labeled “Glass temperature 12°C”. eCPA latencies were 

measured on the right hindpaw between 20-30 minutes after injection, as the glass plate was 

being cooled. 

 

L4 Spinal nerve ligation (SNL) model The L4 spinal nerve ligation surgery was performed as 

described previously[100,187].  For all behavior tests, the experimenter was blinded to the 

surgical procedure that each mouse received.  No mice were excluded from analysis.  Briefly, 

baseline measurements of withdrawal latency in the eCPA were made on all mice at 22°C, 17°C, 

and 12°C.  The mice were then deeply anesthetized with vaporized isofluorane.  In all mice, the 

paraspinal muscles were bluntly dissected to expose the L5 transverse process.  Mice receiving 

the full ligation procedure also had the L5 process removed, the L4 spinal nerve tightly ligated 

with silk suture (6-0, Ethicon; Cornelia, GA) and the nerve was transected distal to the ligation.  

Mice receiving the sham procedure had the L5 transverse process exposed but not removed, and 

the nerve was untouched.  eCPA latencies at 22°C, 17°C, and 12°C were then measured at 2, 4, 

and 6 days after surgery, respectively.   
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Statistical analysis 

All data presented are mean±standard error of the error. Analyses were performed using 

Graphpad Prism (La Jolla, CA) and The R Project for Statistical Computing (http://www.r-

project.org/).  For tests comparing a single group of animals under several conditions, a 1-way 

ANOVA with Bonferroni post-hoc test was used to measure overall effect as well as pairwise 

comparisons.  The only exception for this was in Figure 6, where a Dunnett‟s post-hoc test was 

substituted in order to compare all columns to the baseline condition. 

For experiments comparing more than one group of animals under several conditions, a 2-way 

ANOVA with Bonferroni post-hoc test was used to measure overall effect as well as pairwise 

comparisons.  Statistical significance in each case was denoted as follows * or # p<0.05; ** or ## 

p<0.01; *** or ### p<0.001.   
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Results 

Cold adaptation to environmental 

temperature changes 

The average withdrawal latency of wild-

type mice to the cold plantar assay 

stimulus at room temperature is roughly 

11 seconds.  Surprisingly, this 

withdrawal latency was unchanged by 

major alterations of the starting 

temperature of the plate (Figure 1A, 

30°C = 12.3s±0.4, 23°C=11.5s±0.5, 

17°C=11.5s±0.6, 12°C=11.7°C±0.4, 1-

way ANOVA not significant, n=6 for 

30°C, n=16 for 23°C, 17°C, and 12°C).  

In order to measure the temperatures 

generated at the glass-skin interface, the 

mice were anesthetized and the hind 

paw was secured on top of a filament 

thermocouple attached to the glass 

surface using laboratory tape (Figure 

1B). This arrangement allowed the 

measurement of the temperature 

generated at the glass-skin interface 

Figure 1: Mice adapt to the ambient temperature in the eCPA 
A. The withdrawal latency is unchanged at all 4 starting temperatures (1-way ANOVA with 
Bonferroni post-hoc test, n=6 for 30°C, n=16  for 23°C , 17°C , and 12°C not significant). 
B. Schematic for measuring the cold stimulus on the eCPA.  The paw is secured to the glass 
over a thin filament thermocouple.  The dry ice stimulus is placed on the underside of the glass 
under the paw/thermocouple. 
C.  Temperatures at the glass/hindpaw interface generated by the eCPA at all starting 
temperatures.  The tracings start slightly higher than the overall plate temperature due to local 
plate warming by the mouse paw.  Dotted lines represent average withdrawal latency of mice 
under each condition. n=5 for 30°C, n=6 for the other three conditions. 
D. Temperature at the glass/hindpaw interface average withdrawal latency for each condition 
(marked in 1C at the dotted lines).  The temperature at withdrawal is significantly different in 
each condition (1-way ANOVA main effect p=4.84x10-11 with Bonferroni post hoc test 12°C vs 
17°C p=1.1x10-5, 12°Cvs 23°C p=6.0x10-10, 12°C vs 30°C p<2x10-16, 17°C vs 23°C 
p=2.7x10-7, 17°C vs 30°C p=1.1x10-13, 23°C vs 30°C  p=6.9x10-7,1df n=5 for 30°C, n=6 for 
the other groups) 
E. Temperature change from baseline (TCFB) temperature through the course of the eCPA 
stimulus.  The dotted line indicates the TCFB at the average withdrawal latency for wild-type 
mice under that condition.  n=5 for 30°C , n=6 for other groups.  
F.  TCFB at the average withdrawal latency for each condition (marked in 1E at the dotted line).  
The TCFB at withdrawal is not significantly different between the conditions (1-way ANOVA not 
significant n=5 for 30°C ,n=6 for other groups) 
G. Rate of change (ROTC) of temperature through the course of the eCPA stimulus.  The dotted 
line marks the ROTC at the average withdrawal latency for wild-type mice under that condition. 
n=5 for 30°C , n=6 for other groups. 
H.  ROTC at the average withdrawal latency for each condition (marked in 1G at the dotted line).  
The ROTC at withdrawal is not significantly different between the conditions (1-way ANOVA not 
significant n=5 for 30°C, n=6 for other groups). All data presented are mean±standard error. 
Adapted with permission from Brenner et al. 2014 
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during dry ice.  Although ketamine anesthesia is known to depress core body temperature, 

positioning the anesthetized mice over the thermocouple warmed the baseline glass temperature 

from 22°C to 25°C (Figure 1C), suggesting that it is a reasonable approximation of a mouse at 

rest on the glass surface. As the starting temperature of the plate decreased, the temperature at 

which the mice responded also decreased (Figure 1C, dotted lines represent average withdrawal 

latency of mice under each condition).  The average withdrawal threshold with the glass starting 

at 30°C was 29.2°C±0.3°C while the average thresholds with the glass plate starting at 23°C, 

17°C, and 12°C were, 24.5°C±0.4°C, 17.6°C±0.5°C and 12.7°C±0.3°C, respectively (in some 

cases the average withdrawal temperatures are higher than the overall glass temperature due to 

the body heat of the animals warming the glass underneath the paws, Figure 1D, 1-way ANOVA 

p=4.84x10
-11

 with Bonferroni post hoc test 12°C vs. 17°C p=1.1x10
-5

, 12°Cvs 23°C p=6.0x10
-10

, 

12°C vs. 30°C p<2x10
-16

, 17°C vs. 23°C p=2.7x10
-7

, 17°C vs. 30°C p=1.1x10
-13

,  23°C vs. 30°C  

p=6.9x10
-7

,1df n=5 for 30°C, n=6 for the other groups). This demonstrates that between ambient 

temperatures of 12 and 30°C, murine temperature sensation is dynamic. Although the 

temperature of the dry ice stimulation is constant, the withdrawal threshold is dynamic when the 

ambient temperature is changed. 

I hypothesized that withdrawal may be initiated by one of two other parameters: the relative 

change of temperature from baseline (Figure 1E) or the rate of change of temperature (Figure 

1G).  At all three initial glass temperatures, there was a temperature change from baseline 

(TCFB) at withdrawal, suggesting that TCFB could be the factor that prompts withdrawal 

(Figure 1E-F, dotted lines represent average withdrawal latency of mice under each condition, 

12°=-1.1°C±0.1, 17°=-1.4°C±0.1, 23°=-1.0°C±0.1, 30°C=-1.4°C±0.2, 1-way ANOVA not 

significant).  Likewise the rate of temperature change (ROTC) was similar at withdrawal in all 
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three conditions, suggesting that ROTC 

could also be the factor that prompts 

withdrawal from cold stimuli (Figure 1G-

H, dotted lines represent average 

withdrawal latency of mice under each 

condition, 12°=-.3°C/s±0.1, 17°=-

.4°C/s±0.1, 23°=-.3°C/s±0.1, 30°C=-

.5°C/s±0.1, 1-way ANOVA not 

significant). 

To assess whether temperature change 

from baseline (TCFB) or rate of 

temperature change (ROTC) prompts 

withdrawal from cold stimuli, the cold 

ramp delivered by a dry ice pellet was 

measured using 3 thicknesses of glass 

(Figure 2B: .125‟‟, .1875‟‟, and .25‟‟). 

Work described in Chapter 2 has 

demonstrated that the rate of cooling has 

an inverse relationship with the glass 

thickness [21]. Under these conditions the 

withdrawal latency (Figure 2A), the raw 

temperature (Figure 2C-D), the TCFB 

(Figure 2E-F) and the ROTC (Figure 

Figure 2: Withdrawal from cold is dependent on the temperature change from 
baseline  
A.  Withdrawal latency in the CPA using different thicknesses of glass.  Mice on the 
thicker plates have significantly longer withdrawal latencies (1-way ANOVA with 
Bonferroni post hoc test; main effect p<2.8x10-16, .125’’ vs. .1875’’ p=5.3x10-10, 
.125’’ vs. .25’’ p<2.10-16, .1875’’ vs. .25’’ p=2.4x10-12; df=2, n=12 per group) 
B. Schematic for measuring the cold stimulus on the CPA.  The anesthetized mouse 
paw is held to the glass on top of a thin filament thermocouple using laboratory tape.  
The dry ice stimulus is placed on the underside of the glass under the 
paw/thermocouple. 
C.  Temperatures generated by the CPA using .125’’, .1875’’, and .25’’ glass plates. 
Dotted lines mark the temperature at the average withdrawal latency for wild-type 
mice under that condition. n=11 per group. 
D. Glass temperature at the average latency for each glass thickness (marked in 2C 
at the dotted lines). The temperature at withdrawal is not different in each condition 
(1-way ANOVA with Bonferroni post hoc test not significant n=11 per condition) 
E. Temperature change from baseline (TCFB) temperature through the course of the 
CPA stimulus.  The dotted line indicates the TCFB at the average withdrawal latency 
for wild-type mice under that condition.  n=11 per group.  
F.  TCFB at the average withdrawal latency for each condition (marked in 2E at the 
dotted line).  The TCFB at withdrawal is not significantly different between the 
conditions (1-way ANOVA not significant n=11 per condition) 
G. Rate of change (ROTC) of temperature through the course of the CPA stimulus.  
The dotted lines mark the ROTC at the average withdrawal latency for wild-type mice 
under that condition. n=11 per group. 
H.  ROTC at the average withdrawal latency for each condition (marked in 2G at the 
dotted line).  The ROTC at withdrawal is significantly different between the conditions 
(1-way ANOVA main effect *p=0.01 n=1 per condition). All data presented are 
mean±standard error. Adapted with permission from Brenner et al. 2014 
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2G-H) were all measured.  As the glass thickness decreased, the withdrawal latency significantly 

decreased (Figure 2A 1-way ANOVA with Bonferroni post hoc test; main effect p<2.8x10
-16

, 

.125‟‟ vs. .1875‟‟ p=5.3x10
-10

, .125‟‟ vs. .25‟‟ p<2.10
-16

, .1875‟‟ vs. .25‟‟ p=2.4x10
-12

; df=2, 

n=12 per group). The TCFB at withdrawal on the different glass thicknesses is roughly the same, 

suggesting that the mice could be responding to a consistent TCFB (Figure 2E-F dotted lines 

represent average withdrawal latency of mice under each condition, .125‟‟=-1.5°C±0.2, 

.1875‟‟=-1.3°C±0.3, .25‟‟=-1.4°C±0.2, 1-way ANOVA not significant n=11 per condition). In 

contrast, the ROTC at withdrawal on the different glass thicknesses is significantly different 

(Figure 2G-H dotted lines represent average withdrawal latency of mice under each condition, 

.125‟‟=-.9°C/s±0.2, .1875‟‟=-.6°C±0.3, .25‟‟=-.3°C±0.1, 1-way ANOVA main effect *p=0.01 

n=11 per condition).  These results suggest that the temperature change from baseline (TCFB) is 

the determining factor for withdrawal responses to cold stimuli. 

Heat adaptation to environmental temperature changes 
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I hypothesized that adaptation to ambient 

temperatures would also occur with 

responses to heat stimuli.  In order to test 

this hypothesis, the Hargreaves radiant-

heat assay was used to test mice at 

different starting temperatures including 

12°C, 23°C, and 30°(Figure 3A).  In 

contrast to the eCPA, changing the 

starting temperature did have a significant 

effect on the withdrawal latency (Figure 

3A, 12°C=17.2s±1.2 n=6, 

23°C=15.1s±0.9 n=6, 30°C=10.0±0.4 

n=9, 1-way ANOVA with Bonferroni 

post-hoc test; main effect p=0.0007, 12°C 

vs. 30°C p=0.0007, 23°C vs. 30°C 

p=0.005, df=3 n=5).  Compared to Figure 

1A, this suggests that heat withdrawal 

latencies is influenced by ambient 

temperature. 

However, when the heat ramps were 

being applied to the footpads were 

measured, the temperature that induced 

withdrawal still varied significantly 

Figure 3: Mice adapt to ambient temperatures with the Hargreaves radiant heat assay 
A.  Withdrawal latency in the Hargreaves assay with different starting temperatures.  Blue 
(12°C) and Black (23°C) points were performed using the pyrex eCPA glass plate, and 
Red (30°C) were performed using the Hargreaves heated plate. Mice tested at these 
different temperatures have different withdrawal latencies (1-way ANOVA with Bonferroni 
post-hoc test; main effect p=.0007, 12°C vs 30°C p=.0007, RT-pyrex vs. 30°C p=.005; 
**p<0.01, ***p<0.001, df=3 n=5) 
B. Schematic for measuring the heat stimulus temperature on the Hargreaves apparatus.  
The mouse paw is taped to the glass on top of a thin filament thermocouple.  The light 
stimulus is briefly targeted on the paw/thermocouple with the resting intensity before the 
active intensity is triggered. 
C.  Temperatures at the glass/hindpaw interface generated by the Hargreaves with 
different starting temperatures. Dotted lines mark the temperature at the average 
withdrawal latency for wild-type mice under that condition. n=8 for 12°C and 30°C n=7 for 
23°C. 
D. Glass temperature at the average withdrawal latency for thickness (marked in 3C at the 
dotted lines).  The temperature at withdrawal is significantly different in each condition (1-
way ANOVA with Bonferroni post-hoc test; main effect p=8.3x10-10, 12°C vs. 23°C 
p=.002, 12°C vs. 30°C p=1.2x10-9, 23°C vs 30°C p=6.5x10-9; **p<0.01, ***p<0.001, df=2 
n=8 for 12°C and 30°C n=7 for 23°C) 
E. Temperature change from baseline (TCFB) temperature through the course of the 
Hargreaves stimulus.  The dotted lines indicate the TCFB at the average withdrawal 
latency for wild-type mice under that condition.  n=8 for 12°C and 30°C n=7 for 23°C.  
F.  TCFB at the average withdrawal latency for each condition (marked in 3E at the dotted 
lines).  The TCFB at withdrawal is not significantly different between the conditions (1-way 
ANOVA with Bonferroni post-hoc test not significant; n=8 for 12°C and 30°C n=7 for 23°C) 
G. Rate of temperature change (ROTC) of temperature through the course of the 
Hargreaves stimulus.  The dotted lines mark the ROTC at the average withdrawal latency 
for wild-type mice under that condition. n=8 for 12°C and 30°C n=7 for 23°C.  There is no 
significant difference between the ROTC in these conditions, but the peak ROTC is long 
reached long before the average withdrawal (dotted lines). 
H.  ROTC at the average withdrawal latency for each condition (marked in 3G at the dotted 
line).  The ROTC at withdrawal is not significantly different between the conditions (1-way 
ANOVA not significant; n=8 for 12°C and 30°C n=7 for 23°C). All data presented are 
mean±standard error. Adapted with permission from Brenner et al. 2014. 
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between the three starting temperatures (Figure 3C-D, 12°C =23.3°±0.3, 23°C=30.6°±0.3, 

30°C=39.2°±0.3, 1-way ANOVA with Bonferroni post-hoc test; main effect p=8.3x10
-10

 12°C 

vs. 30°C p=0.002, 12°C vs. 23°C p=1.2x10
-9

, 23°C vs. 30°C p=6.5x10
-9

, df=2 n=8 for 12°C and 

30°C n=7 for 23°C).  This suggests that adaptation to environmental conditions occurs with heat 

sensation as well as with cold sensation. 

Since there is not a constant temperature withdrawal threshold to thermal stimuli, I hypothesized 

that either a discrete temperature change from baseline (TCFB) or rate of temperature change 

(ROTC) causes withdrawal responses in the Hargreaves assay. At all three starting temperatures, 

the TCFB was the same at the withdrawal point, suggesting that change in temperature from 

baseline could be the determining response factor (Figure 3E-F, 12°C=7.0°±0.2, 

23°C=6.7°±0.2, 30°C=6.3°±0.2, 1-way ANOVA with Bonferroni post-hoc test not significant, 

n=8 for 12°C and 30°C n=7 for 23°C). At all three starting temperatures, there was a similar rate 

of temperature change (ROTC) at withdrawal (Figure 3G-H, 12°C=0.2°/s±0.1, 

23°C=0.3°/s±0.1, 30°C=0.3°/s±0.1, 1-way ANOVA not significant n=8 for 12°C and 30°C n=7 

for 23°C).  However, the peak ROTC occurs after roughly 2 seconds, while average withdrawal 

latency ranged between 10-17 seconds.  Since withdrawal does not occur at the peak ROTC of 

the stimulus, it is very unlikely that ROTC is the definitive factor that induces withdrawal from 

heat stimuli. 
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To confirm this finding, the temperatures 

generated by a Hargreaves stimulus 

utilizing 3 different active intensities 

(Low, Moderate, and High) were also 

measured, which allows the investigation 

of the effect of changing the rate of 

heating. Under these conditions, the 

withdrawal latency (Figure 4A), the 

temperature of withdrawal (Figure 4C-D), 

the TCFB (Figure 4E-F) and the ROTC 

(Figure 4G-H) were calculated. At all 

three active intensities, the maximal TCFB 

occurred at the respective withdrawal 

points, suggesting that change in 

temperature from baseline could be the 

determining response factor (Figure 4E-

F, Low Intensity=6.2°±0.2, Moderate 

Intensity=6.5°±0.2, High 

Intensity=6.1°±0.1, 1-way ANOVA with 

Bonferroni post-hoc test not significant 

n=5 per condition). The ROTC generated 

by the different active intensities was very 

different, and as before, the peak ROTC 

` 

Figure 4: Heat responses in mice are prompted by an increase in temperature from an 
adjustable baseline 
A.  Withdrawal latency in the Hargreaves assay with different active intensities. Mice 
tested using Low, Moderate, or High active intensities have different withdrawal 
latencies (1-way ANOVA main effect p=9.8x10-15, Low vs. Moderate p=2.1x10-13, 
Low vs. High p<2x10-16, Moderate vs High p=1.1x10-6; ***p<0.001, df=1,  n=9 per 
group) 
B. Schematic for measuring the heat stimulus on the Hargreaves apparatus.  The 
mouse paw is held to the glass on top of a thin filament thermocouple using laboratory 
tape.   
C.  Temperatures generated at the glass/hindpaw interface by the Hargreaves with 
different active intensities.  Dotted lines mark the temperature at the average 
withdrawal latency for wild-type mice under that condition. n=5 per group. 
D. Glass temperature at the average withdrawal latency for the active intensities 
(marked in 4C at the dotted lines).  The temperature at withdrawal is not significantly 
different in each condition (1-way ANOVA with Bonferroni post-hoc test not significant 
n=5 per group) 
E. Temperature change from baseline (TCFB) temperature through the course of the 
Hargreaves stimulus.  The dotted line indicates the TCFB at the average withdrawal 
latency for wild-type mice under that condition.  n=5 per group.  
F.  TCFB at the average withdrawal latency for each condition (marked in 4E at the 
dotted lines).  The TCFB at withdrawal is not significantly different between the 
conditions (1-way ANOVA with Bonferroni post-hoc test not significant n=5 per group) 
G. Rate of temperature change (ROTC) of temperature through the course of the 
Hargreaves stimulus.  The dotted lines mark the ROTC at the average withdrawal 
latency for wild-type mice under that condition. n=5 per group.  There is no significant 
difference between the ROTC in these conditions, but the peak ROTC is reached long 
before the average withdrawal (dotted lines). 
H.  ROTC at the average withdrawal latency for each condition (marked in 4G at the 
dotted lines).  The ROTC at withdrawal is not significantly different between the 
conditions (1-way ANOVA with Bonferroni post hoc test; main effect p=7.7x10-7, Low 
vs. High p=1.3x10-6, Moderate vs. High p=6.0x10-6, df=2, n=5 per condition). All data 
presented are mean±standard error. 
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occurs within the first 2-3 seconds in all conditions, which does not correspond to the average 

withdrawal latencies of the mice under those conditions (Figure 4G-H, Low 

Intensity=0.1°/s±0.03, Moderate Intensity=0.3°/s±0.1, High Intensity=1.6°/s±0.2, 1-way 

ANOVA with Bonferroni post hoc test; main effect p=7.7x10
-7

, Low vs. High p=1.3x10
-6

, 

Moderate vs. High p=6.0x10
-6

, df=2, n=5 per condition).  This confirms the results from Figure 

3, and strongly suggests that responses in the Hargreaves radiant heat assay are provoked by an 

increase of roughly 6.3°C from a dynamic set point.  

 

Environmental temperature adjustment is dependent on TRP channels 

To test the hypothesis that thermo-TRP channels allow mice to adjust the dynamic range of 

temperature sensation, TrpA1-KO, TrpM8-KO, and TrpA1-TrpM8 double KO (dKO) mice were 

tested with the eCPA. 

Male TrpA1-KO had similar withdrawal latencies to wild-type littermates (Figure 5A), while 

female TrpA1-KO had a small but statistically significant increase in withdrawal latency 

compared to their wild-type littermates at all starting temperatures measured (Figure 5B, TrpA1-

KO 23°C=11.2s±0.4, 17°C= 10.9s±0.4, 12°C=12.8s±0.5, WT 23°C=10.2s±0.7, 17°C=10.2s±-

0.4, 12°C=11.7s±0.3; 2-way repeated  

measures ANOVA with Bonferroni post-hoc test, main effect p=0.05, no individual points 

significant; df=1,  n=6 WT and 15 KO). 
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Both male and female TrpM8-KO had significantly increased withdrawal latencies at all 

` 

Figure 5: TRPM8-KO mice have prolonged eCPA withdrawal latencies, while TRPA1-KO mice have normal eCPA latencies 
A. There is no difference between TrpA1-KO and WT male littermates at any of the temperature ranges tested (2-way ANOVA with Bonferroni post-hoc test, not 
significant n=18WT and 15KO) 
B. TRPA1-KO females have slightly but significantly increased withdrawal latencies compared with their WT littermates(2-way repeated measures ANOVA with 
Bonferroni post-hoc test, main effect p=.05, no individual points significant; *p<0.01, df=1,  n=6WT and 15KO) 
C. TRPM8-KO males have significantly increased withdrawal latencies compared with their WT littermates at all starting temperatures (2-way ANOVA with Bonferroni 
post-hoc test, main effect p<2x10-16, 12°C p=1.1x10-9, 17°C p=6.9x10-10, 23°C p=7.38x10-12; ***p<0.001 df=1, n=15WT and 11KO).    TrpM8-KO males exhibit 
shorter withdrawal latencies as the starting temperature of the glass decreases (1-way ANOVA with Bonferroni post-hoc test, main effect p=1.5x10-5, 12°C vs. 23°C 
p=6x10-5, 17°C vs. 23°C p=.004;  ##p<0.01, ###p<0.001 df=1 n=15WT and 11KO) 
D. TRPM8-KO females have significantly increased withdrawal latencies compared with  their WT littermates at all starting temperatures (2-way ANOVA with Bonferroni 
post-hoc test, main effect p<2x10-16, 12°C p=4.2x10-6, 17°C p=4.6x10--8, 23°C p=3.4x10—9; ***p<0.001 df=1, n=18WT and 11KO).    TrpM8-KO males exhibit 
shorter withdrawal latencies as the starting temperature of the glass decreases (1-way ANOVA with Bonferroni post-hoc test, main effect p=3.6x10-5 12°C vs. 23°C 
p=9.25x10-5, 17°C vs. 23°C p=.0005; ###p<0.001 df=1, n=11 males and 11 females) 
E. TRPA1-M8 dKO males have no significant increase in withdrawal latency compared with their WT littermates at all starting temperatures (2-way ANOVA with 
Bonferroni post-hoc test, not signficant).    Both dKO and TRPM8-KO males exhibit shorter withdrawal latencies as the starting temperature the glass decreases (1-way 
ANOVA with Bonferroni post-hoc test, Male TRPM8-KO main effect=2.9x10-7, 12°C vs. 23°C p=1x10-6 17 vs 23°C p=0.0002 df=1 n=10; Male dKO main effect 
p=0.0007, 12°C vs 23°C p=0.003, 17°C vs 23°C p=.04; df=1 n=10  ##p<0.01, ###p<0.001) 
F. TRPA1-M8 dKO females have no significant increase in withdrawal latency compared to their WT littermates at all starting temperatures (2-way ANOVA with 
Bonferroni post-hoc test, not signficant).    Both dKO and TRPM8-KO females exhibit shorter withdrawal latencies as the starting temperature of the glass decreases (1-
way ANOVA with Bonferroni post-hoc test, main effect=.0005, 12°C vs 23°C p=0.002, 17°C vs 23°C p=.01; df=1 n=6; main effect=7.7x10-7, 12°C vs. 17°C p=.03, 12°C 
vs. 23°C p=4.7x10-6, 17°C vs. 23°C p=0.0008; df=1 n=6 ##p<0.01, ###p<0.001). All data presented are mean±standard error. Adapted with permission from Brenner 
et al. 2014. 
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temperature ranges compared to their wild-type littermates (Figure 5C-D Males TrpM8-KO 

23°C=29.4s±1.3, 17°C=24.3s±0.7, 12°C=22.2s±0.9, WT 23°C=12.8s±0.7, 17°C=12.3s±0.9, 

12°C=12.8s±0.5 2-way  

repeated measures ANOVA with Bonferroni post-hoc test main effect p<2x10
-16

, 12°C 

p=1.1x10
-9

, 17°C p=6.9x10
-10

, 23°C p=7.38x10
-12

; df=1, n=15WT and 11KO.   Females TrpM8-

KO 23°C=30.9s±1.0, 17°C=22.8s±1.6, 12°C=21.6s±1.4, WT 23°C=13.6s±1.5, 17°C=12.2s±0.5, 

12°C=13.5s±0.8; 2-way repeated measures ANOVA with Bonferroni post-hoc test main effect 

p<2x10
-16

, 12°C p=4.2x10
-6

, 17°C p=4.6x10
--8

, 23°C p=3.4x10
—9

; df=1, n=18WT and 11KO).  

At 12°C or 17°C starting temperatures, TrpM8-KO mice withdrew significantly more quickly 

compared with the 23°C starting temperature, but still had significantly increased withdrawal 

latencies compared with their wild-type littermates. (Figure 5C-D, 1-way repeated measures 

ANOVA with Bonferroni post-hoc test; males main effect p=1.5x10
-5

, 12°C vs. 23°C p=6x10
-5

, 

17°C vs. 23°C p=0.004; females main effect p=3.6x10
-5

 12°C vs. 23°C p=9.25x10
-5

, 17°C vs. 

23°C p=0.0005; df=1, n=11 males and 11 females). 

Since studies suggest that TRPA1 activates at lower temperatures than TRPM8, it is possible that 

intact TRPM8 signaling could mask a phenotype in the TrpA1-KO mice.  To address this issue, 

TrpA1-TrpM8 double knockout were tested along with their single TrpM8-KO littermates.  For 

both male and female mice, the withdrawal latencies were not significantly different between 

dKO mice and TrpM8-KO mice (Figure 5E-F Males TrpA1-M8 dKO 23°C=36.5s±2.0, 

17°C=29.9s±2.9, 12°C=24.4s±1.3, TrpM8-KO 23°C=33.5s±1.9, 17°C=24.8s±0.9, 

12°C=20.9s±0.9; 2-way repeated measures ANOVA with Bonferroni post-hoc test; Females 

TrpA1-M8 dKO 23°C=34.2s±1.9, 17°C=24.8s±1.9, 12°C=20.2s±1.1, TrpM8-KO 

23°C=32.6s±2.9, 17°C=22.3s±1.5, 12°C=19.9s±0.8; 2-way repeated measures ANOVA with 
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Bonferroni post-hoc test). As seen in previous experiments, both the single TrpM8-KO and the 

TrpA1-TrpM8 dKO mice had lower withdrawal latencies at colder starting temperatures, 

suggesting impaired environmental adaptation (Figure 5E-F, 1-way repeated measures ANOVA 

with Bonferroni post-hoc test Male TrpM8-KO main effect=2.9x10
-7

, 12°C vs. 23°C p=1x10
-6

, 

17 vs. 23°C p=0.0002, df=1 n=10; Male dKO main effect p=0.0007, 12°C vs. 23°C p=0.003, 

17°C vs. 23°C p=0.04, df=1 n=10; Female TrpM8-KO main effect=0.0005, 12°C vs. 23°C 

p=0.002, 17°C vs. 23°C p=0.01, df=1 n=6; Female dKO main effect=7.7x10
-7

, 12°C vs. 17°C 

p=0.03, 12°C vs. 23°C p=4.7x10
-6

, 17°C vs. 23°C p=0.0008, df=1 n=6).  These results suggest 

that TRPA1 may not play a central role in baseline cold responsiveness or adaptation, and that 

TRPM8 is crucial to both normal cold responsiveness and cold adaptation. 

 

Environmental temperature adjustment requires PLC activity 

Previous work in vitro has suggested that depletion of membrane PIP2 by Ca
2+

-activated 

phospholipase C δ (PLCδ) leads to decreased TRPM8 sensitivity, and that this process is critical 

in adaptation of cold temperature responses [51,66,169]. To test whether this hypothesis is 

supported in vivo, the eCPA procedure was modified to allow testing of cold thresholds during 

the adaptation process, as the plate was cooling. Briefly, mice were acclimated and withdrawal 

latencies were tested at room temperature (Figure 6A).  After the baseline measurements, the dry 

ice-filled aluminum containers were placed on the glass and withdrawal latencies were measured 

as the glass cools in order to assess cold responsiveness as cold adaptation is occurring. Under 

normal conditions, mice adapted to the cooling ambient temperature of the eCPA faster than 

could be measured with this protocol, showing no change in withdrawal latency as the plate 
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cooled (Figure 6B, 0 min=12.13s±0.8, 30 min=12.1s±1.6, 60 min=13.2s±1.1, 90 min=10.8s±1.2 

1-way ANOVA with Bonferroni post hoc test p>0.05, n=6). 

 Then, to assess whether PLC activity was required for rapid adaptation to cooling ambient 

temperature, the PLC inhibitor U73122, or an inactive analog U73343 was injected into the 

hindpaw while the glass was cooling.  This concentration of U73122 has previously been used to 

locally inhibit intraplantar PLC in vivo [211].  
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The intraplantar injections of U73122 or U73343 were administered before the ambient 

temperature was cooled in order to inhibit the local PLC before the cold-induced hydrolysis of 

PIP2 began (Figure 6C). Once the glass plate cooling was started, the eCPA withdrawal latency 

was frequently measured in order to assess whether inhibiting intraplantar PLC would affect cold 

adaptation as it happened (Figure 6D).  The mice that were given intraplantar injections of 0.5 

nmol U73122 had significantly lower withdrawal latencies at the 30min timepoint compared 

` 

Figure 6: PLC inhibition transiently inhibits cold adaptation 
A-B. Mice were acclimated and tested at room temperature, the glass plate was cooled, and withdrawal latencies were assessed as the 
plate cooled 
C. Mice were acclimated at room temperature, and baseline withdrawal latency was measured on the right hindpaw.  At t=0 min, either 
.5nmol U73122 (PLC inhibitor) or .5nmol  U73343 (inactive control) was injected into the right hindpaw.  Immediately after injections, dry ice 
was added to the glass plate and eCPA latencies were measured as the glass cooled. 
D. Mice injected with U73122 (square markers) have significantly decreased withdrawal latencies at 30min compared to baseline or later 
timepoint (baseline=11.3s±.5s, 30min =8.1s±.1.2s; 1-way ANOVA with Dunnett’s post-hoc test, main effect p=0.02, individual baseline vs. 
30min p=.02; df=1 n=9).  Mice injected with U73343 (circle markers) had unchanged latencies at 30 minutes compared to baseline or any 
other timepoint (baseline=11.6s±.6s, 30min=12.2±1.4s; 1-way ANOVA with Dunnett’s post-hoc test, no main effect n=7). All data presented 
are mean±standard error. Adapted with permission from Brenner et al. 2014. 
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with baseline, suggesting impairment of the adaptation process (Figure 6D, 

baseline=11.29s±0.53s, 30min=8.09s±1.17s; 1-way ANOVA with Dunnett‟s post-hoc test, main 

effect p=0.02, individual baseline vs. 30min p=0.02; df=1, n=9).  In contrast, mice that received 

intraplantar injections of the control compound U73343 had no change in withdrawal latency at 

30min (Figure 6D, baseline=11.56s±0.62s, 30min=12.242±1.40s; 1-wav ANOVA with 

Dunnett‟s post-hoc test, no main effect n=7).  Taken together, these data suggest that TrpM8-

dependent cold adaptation in vivo is at least partially dependent on PLC activity.  

 

Spinal nerve ligation (SNL)-induced cold hypersensitivity does not affect cold adaptation 

The mechanisms of cold hypersensitivity are not fully understood.  One possibility is that 

neuropathic injuries such as the Spinal Nerve Ligation (SNL) procedure compromise the ability 

to adapt to changes in ambient temperatures, resulting in increased cold sensitivity during cold 

stimuli.  To test this hypothesis, the eCPA withdrawal latencies were measured at three 

temperatures (12°C, 17°C, 23°C) before and after performing the spinal nerve ligation (SNL) 

procedure.  Animals that underwent the sham procedure had no change in withdrawal latency 

between the contralateral and ipsilateral paws (Figure 7A, 2-way ANOVA with Bonferroni post-

hoc test 12°C Ipsi=1.1±0.08 Contra=0.99±0.09, 17°C Ipsi=1.03±0.09 Contra=0.96±0.02, 23°C 

Ipsi=1.0±0.08 Contra=1.1±0.08).  Animals that underwent the SNL procedure had decreased 

withdrawal latencies on the SNL paw compared to the contralateral paw (Figure 7B, 2-way 

ANOVA with Bonferroni post-hoc test main effect ***p=0.0003, 12°C Ipsi=0.75±0.04 

Contra=1.07±0.14 *p<0.05, 17°C Ipsi=0.68±0.06 Contra=1.03±0.04 *p<0.05, 23°C 

Ipsi=0.66±0.09 Contra=0.86±0.05 p>0.05).  Although robust cold hypersensitivity was observed 

after the SNL procedure, there was no effect of changing the ambient temperature on the cold 
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hypersensitivity (Figure 7B, 2-way ANOVA, p>0.05 for glass plate temperature).  This suggests 

that SNL-induced cold hypersensitivity does not affect the ability to adapt to cold ambient 

temperatures.   

  

` 
Figure 7: SNL hypersensitivity is unaffected by changes in ambient temperature 
A. Mice were tested at 12°C, 17°C, and 23°C before and after the sham procedure. Post-surgical withdrawal latencies were normalized to the 
baseline values. There was no significant change in withdrawal latency for either ipsilateral or contralateral paws after the sham surgical procedure 
(2-way ANOVA with Bonferroni post-hoc test, n=6 per group) 
B. Mice were tested at 12°C, 17°C, and 23°C before and after the SNL procedure. Post-surgical withdrawal latencies were normalized to the 
baseline values. The ipsilateral paws had significantly lower withdrawal latencies than the contralateral paws (2-way ANOVA with Bonferroni post-
hoc test main effect ***p=0.0003, 12°C Ipsi=.75±.04 Contra=1.07±.14 *p<0.05, 17°C Ipsi=.68±.06 Contra=1.03±.04 *p<0.05, 23°C Ipsi=.66±.09 
Contra=.86±.05 p>0.05).  Changing the starting temperature of the glass plate had no impact on the withdrawal latency of either the ipsilateral or 
contralateral paws (2-way ANOVA with Bonferroni post-hoc test, main effect p>0.05). 
C. Direct comparison of the ipsilateral paws of mice that received Sham or SNL procedures. Mice were tested at 12°C, 17°C, and 23°C before and 
after the surgical procedure. Post-surgical withdrawal latencies were normalized to the baseline values. The SNL mice had significantly lower 
withdrawal latencies than the Sham mice (2-way ANOVA with Bonferroni post-hoc test main effect ***p<0.0001, 12°C Sham=1.1±.08 SNL=.75±.04 
**p<0.01, 17°C Sham=1.03±.09 SNL=.68±.06 *p<0.05, 23°C Sham=1.0±.08 SNL=.66±.09 p>0.05).  Changing the starting temperature of the glass 
plate had no impact on the withdrawal latency of either the sham or SNL mice (2-way ANOVA with Bonferroni post-hoc test, main effect p>0.05). 
All data presented are mean±standard error. Adapted with permission from Brenner et al. 2014. 
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Discussion  

Temperature adaptation is a necessary daily function for mammals.  Mice in the wild need to 

sense cold stimuli in a variety of environmental settings, so as to be able to seek out cooler areas 

in the hot summer and to avoid dangerously colder areas in the winter.  While climate control has 

made this less of a struggle of life and death for humans, aberrant temperature adaptation could 

lead to inappropriate thermal pain or an inability to detect dangerous thermal stimuli and death 

by heat stroke or hypothermia [19,22].  

Wild-type mice quickly adapt their response latency to cold stimuli when environmental 

temperature changes.  This finding is consistent with early microneurography studies, which 

showed that sustained cold stimuli provoked a rapid burst of activity followed by quick 

adaptation and decreased firing [82,83,109,160,161].  In our efforts to further characterize this 

phenomenon, I found that mouse responses to both warm and cold stimuli depend on changes 

from a dynamic temperature „set-point‟.  Animals are able to adjust this „set-point‟ in response to 

changes in the ambient temperature, which maintains their ability to detect subtle changes in 

temperature across a wide range of conditions. This is one of the first demonstrations and 

quantifications in vivo that thermal response thresholds are not based on a specific temperatures, 

despite early hints that this might be the case [181,182].    Regarding heat sensation, there is 

strong evidence that mice respond to an increase of roughly 6.3°C from this dynamic „set-point‟.  

With regard to cold sensation mice respond to a 1.2°C decrease from a dynamic „set-point‟ 

which can be modulated by environmental conditions.   These results are also consistent with 

recent work by Hoon et al. suggesting that temperature responsiveness is reliant on aversive and 

attractive cues from both warm- and cold-sensitive neurons [159].  Modulating the dynamic „set-
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points‟ of each population separately or in tandem may be essential to maintaining the balance 

between the populations and preserving thermal sensitivity and adaptability. 

Previous work has demonstrated that TRPM8 is essential for adaptation of cold-induced currents 

in dissociated dorsal root ganglion cultures [66]. These findings demonstrate for the first time in 

vivo that TRPM8 is essential for full adaptation to colder ambient conditions.  Both male and 

female TrpM8-KO mice showed a significantly impaired ability to adjust their cold response 

thresholds in response to environmental temperature changes.  Despite the obvious deficits in 

both cold sensation and adaptation to environmental stimuli, TrpM8-KO and TrpA1-TrpM8 dKO 

mice had consistent and robust responses to the eCPA stimuli in all conditions.  This suggests the 

existence of other, possibly non-TRP channel mediators of cold responsiveness.   

There have been conflicting reports on the role of TRPA1 in cold sensation in the literature 

[9,96,102,176].  Interestingly, male TrpA1-KO mice show no deficit in cold responses at any 

ambient temperature range, while the female TrpA1-KO mice exhibit a small but significant 

increase in withdrawal latency at all temperature ranges.  This is consistent with some previous 

findings that female but not male TrpA1-KO mice had more significant deficits in cold 

responsiveness to the acetone test [108] compared to male TrpA1-KO mice, although other 

reports have found no sex-dependent difference [9]. 

Neither the male nor female TrpA1-TrpM8 dKO mice had significantly higher withdrawal 

latencies than their TrpM8-KO littermates at any ambient temperature condition. Given the small 

but significant trend in the TrpA1-KO females, it is difficult to make definitive conclusions on 

the role of TrpA1 in cold sensation based on these data.  However, the TrpA1-TrpM8 dKO mice 

also show impaired cold adaptation as was seen with TrpM8-KO mice, confirming that TRPM8 

plays an essential role in this process. 
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Previous work in vitro has suggested that the hydrolysis of PIP2 during cold adaptation leads to 

changes in TRPM8 activity [51,66,169].  The findings in this study suggest that PLC activity is 

important for the modulation of this dynamic set point in vivo that governs adaptation to 

environmental cold responses.  Although U73122 has been shown to have non-PLC mediated 

effects [87], the results of this study are consistent with the in vitro model that this set-point is 

controlled through PIP2 modulation of TRPM8. Although additional adaptation of cold 

responsiveness may occur through molecules that control the excitability of cold-sensitive 

neurons such as TASK-3 [140], or during processing in spinal or supra-spinal processing, these 

results are the first in vivo evidence that as the ambient temperature decreases, PLC-mediated 

hydrolysis of membrane PIP2 modulates cold responsiveness in DRG neurons [51,66].  
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Chapter 5 

Optogenetic inhibition of the peripheral nervous system 
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Introduction  

The studies in Chapters 2-4 show a clear role for TRPM8 in the sensitivity and adaptation to cold 

stimuli, but do not determine which nociceptive neurons are necessary for normal cold 

sensitivity.  As discussed in Chapter 1, many distinct populations of nociceptive neurons have 

been identified.  These populations can be identified by their expression of molecular markers 

including the heat sensor TRPV1 [33], the voltage-gated sodium channel Nav1.8 [215], and the 

calcium regulated actin-binding protein Advillin [81]. Ablating these neurons has demonstrated 

some of their functions, as ablating the TRPV1-expressing neurons nearly eliminated 

temperature sensation between 40-50°C [159], ablating the Nav1.8-expressing neurons decreased 

responsiveness to noxious mechanical pressure and cold and decreased inflammatory pain 

responses [1], while ablating the peptidergic CGRP-expressing neurons reduced sensitivity to 

noxious heat, capsaicin, and itch, and enhanced cold responsiveness [128]. While these studies 

demonstrate crucial roles for these neurons they involve killing those entire populations, which 

may prompt significant compensatory changes in remaining neurons and lead to inaccurate 

conclusions. 

As previously discussed, optogenetics utilizes light-sensitive ion channels to modulate neuronal 

activity without permanently changing the neuronal architecture [209].  These channels can be 

used to activate or inhibit specific populations of nociceptive neurons, as was demonstrated when 

stimulation of mice expressing channelrhodopsin in Nav1.8-expressing neurons with a laser 

evoked robust nocifensive responses as well as post-stimulation hypersensitivity [52], and 

optogenetic stimulation of mice expressing the inhibitory eNpHR 3.0 channel in sensory neurons 

decreased mechanical and heat sensitivity [90].  Optogenetic manipulation of the peripheral 

nervous system has also been demonstrated by optically stimulating the axons in an ex vivo 

preparation of the sciatic nerve, although in this case activation of motor neuron axons in the 
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sciatic led to an orderly recruitment of motor units that is superior for muscular rehabilitation to 

electrical stimulation [119]. Subsequent studies using this model allowed the activation of motor 

neurons through axonal stimulation using a fiber optic cable headmount that then tunneled 

subcutaneously to the lateral caudal area and terminated in a cuff around the sciatic nerve [184].  

Taken together, these studies show that both control of the peripheral nociceptors and stimulation 

of the axons in the sciatic nerve is possible.  Still, studies utilizing a fully wireless implantable 

light source to control the axons of peripheral nociceptors have not been demonstrated.  In this 

chapter, I will describe a novel scheme to modulate the activity of peripheral nociceptive neurons 

using biocompatible light-emitting diode (LED) devices.  These devices are implanted without a 

tether connecting to an external power source, which allows long-term stimulation in a variety of 

behavioral paradigms.  These implantable LED devices are designed and fabricated by the 

Rogers lab at the University of Illinois Urbana-Champaign based on novel technology to 

generate interconnected arrays of ultrathin organic light-emitting diodes on flexible water-

resistant sheets of plastic [99]. In brief, the semiconductor materials for the LED are printed onto 

a temporary coated-glass substrate to for the electrical connections between the harvester and the 

LEDs.  The coated-glass substrate is dissolved with acid to release the interconnected 

semiconductor collection which is then transfer-printed onto a plastic substrate for encapsulation 

and passivation [99,150]. The inorganic LEDs that are used can vary in size and shape from 

larger commercial diodes to 100μM x 100μM μLEDs, and can be layered to increase light 

intensity as necessary [99,150]. The devices are powered utilizing new radiofrequency (RF) 

harvesting technology that allows long-distance wireless power transmission developed by Sung-

Il Park in the Rogers lab.  In this chapter I use these wireless LED devices to stimulate and 
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inhibit peripheral nociception through optogenetic modulation of axons in the sciatic nerve, in 

order to demonstrate which subsets of nociceptors are necessary for normal cold sensitivity. 
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Methods 

Animals.  All mouse protocols were approved by the Animal Care and Use Committee of the 

Washington University School of Medicine (St. Louis, MO)  and were in accord with National 

Institutes of Health guidelines. ai32 (flox-stop-flox Rosa26-ChR2-EYFP) or ai35 (flox-stop-flox 

Rosa26-Arch3.0-GFP) mice described previously (Figure 1) [122] were crossbred with mice 

expressing the Cre recombinase enzyme in cells expressing Advillin [81], TRPV1 [159], or 

Nav1.8 [175].  These mice were all on a C57BL/6 background and originally acquired from 

Jackson Labs (Bar Harbor, ME). Mice were housed on a 12/12-hour light/dark cycle with the 

light cycle beginning at 6am.  All mice had ad libitum access to rodent chow and water.  Cage 

bedding was changed once a week, always allowing at least 48 hours after a bedding change 

before behavioral testing was carried out.  

 

Quadriceps motor response (QMR) testing A mouse expressing ChR2-EYFP in TRPV1-

expressing cells was deeply anesthetized using isofluorane and the eyes were covered with 

Altalube ointment (Altaire Pharmaceuticals, Riverhead, NY) to prevent corneal drying 

anesthetized. A small incision was made on the left flank and blunt dissection was used to 

separate the gluteus maximus and biceps femoris muscles to expose the sciatic nerve.  The sciatic 

Figure 1: Cre recombinase mediated expression of Channelrhodopsin 2 (ChR2) or Archaerhodopsin (Arch) 
Under baseline conditions, a stop codon located between the pCAG promoter and the channel prevents transcription.  When cre 
recombinase is present in the cell, the stop codon is cleaved out of the sequence, and transcription of the channel proceeds. The above 
mice were bred to mice expressing cre-recombinase in either advillin-, TRPV1-, or Nav1.8-expressing cells. Figure adapted with 
permission from Madisen et al. 2012. 
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incision was then covered with mineral oil and parafilm to prevent tissue drying.  Another small 

incision was made on the left thigh of the mouse, and two galvanized silver electrodes were 

inserted into the quadriceps to measure the electromyelographic (EMG) waveform generated 

during muscle activation.  This incision was also covered with parafilm to prevent drying. The 

isofluorane level was then gradually lowered until the mouse was still unconscious but reliably 

responded to toe pinches with nocifensive flinches.  At this point, the sciatic nerve was re-

exposed in the left flank incision, and a laser was applied directly to the nerve at a variety of 

intensities, or to the overlying muscle.  The EMG waveform generated during this stimulation 

was recorded and analyzed using the Windaq software package.  

Surgical implantation of stretchable cable μLED devices These devices have an LED at the tip of 

the device.  There is also an anchor t-bar roughly 3mm from the tip of the device (Figure 2B) 

designed to keep the tip of the device inside the muscle pocket near the sciatic nerve.  From the t-

bar, the stretchable cable measures roughly 6.5cm before the terminal pins that connect to a 

wireless radiofrequency harvester (Figure 3A). 

` 

Figure 2: Devices are anchored over the sciatic by closing the muscle pocket around an anchor 
A. The sciatic nerve is exposed by making a small incision on the flank.  The fascia connecting the overlying gluteus maximus to the 
underlying biceps femoris is separated, and the overlying muscle is pulled to the side to expose the nerve 
B. The LED is at the tip of the device.  3mm from the tip, there is a 3mm plastic ―anchor‖ that extends to either side.  This anchor is 
designed to hold the device inside the narrow muscle pocket. 
C. An LED device in the muscle pocket.  The LED tip is over the sciatic nerve inside the muscle pocket, and the anchor is inside the 
pocket, level with the overlying muscle.  Sutures were tied on either side of the device on the outside of the pocket, holding the anchor 
and the tip of the device inside the muscle pocket. 
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The surgical procedure to implant these devices was 

modified from the Chronic Constriction Injury 

procedure [12].  Briefly, the animal was anesthetized 

with using isofluorane and the eyes were covered 

with Altalube ointment (Altaire Pharmaceuticals, 

Riverhead, NY) to prevent corneal drying. A small 

skin incision was made over the greater trochanter of 

the femur on the left flank of the animals. The fascia 

connecting the biceps femoris and the gluteus 

maximus was blunt dissected apart to open a plane 

between the muscles, in which the sciatic nerve was 

clearly accessible (Figure 2A).  Another small skin 

incision was made vertically over the cranium and the 

periosteum was removed using #6 sharp curved 

forceps.  A subcutaneous tunnel between the cranial 

incision and the left flank incision was created using 

a blunt 1/8‟‟ trochar to separate the skin from 

underlying muscle moving from cranial to left flank.  

The cable implant was then attached to the trochar 

and fed through the subcutaneous tunnel until the 

LED portion emerged from the flank incision and the 

harvester pins were at the entrance to the cranial incision, at which point the trochar was 

detached.  The gluteus maximus was pulled caudally to expose the sciatic nerve, and the tip of 

` 

Figure 3: Surgical placement of stretchable cable LED 
devices 
A. The devices include an antenna and RF harvester 
connected to an LED tip by a highly distensible cable. 
B. During implantation, cable portion is tunnel 
subcutaneously until the LED tip is threaded into the 
muscle pocket as demonstrated in Figure 4. 
C-D. Stretchable cable device before (C), immediately 
after (D), and 6 days after (E) surgery.  D-E 
demonstrate the dental cement headcap used to anchor 
the connector for the harvester to the skull. 
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the device containing the LED was placed over the nerve.  The gluteus maximus fold was then 

pulled over the tip of the device, and resorbable 6-0 vicryl suture from Ethicon (Cornelia, GA) 

was used to reconnect the overlying gluteus maximus to the underlying biceps femoris, restoring 

the original muscle architecture as well as securing the tip of the LED device inside the muscle 

pocket (Figures 2C, 3B).  The mouse was then moved to an adjacent Kopf Model 900 

stereotaxic instrument (Tujunga, CA), where a hole was drilled with a Kopf Model 1911 

stereotaxic drilling unit using a Kemmer Prazision SM 32103303952C drill bit (Dusseldorf, 

Germany) and an anchor screw (CMA Microdialysis 7431021, Holliston, MA) was threaded into 

the hole in the cranium.  The connector for the RF harvester was then secured to the anchor 

screw using Jet dental cement (Lang Dental, Wheeling, IL), and any loose skin stretched by the 

subcutaneous tunneling was sutured tight to the edges of the dental cement headcap using 

Ethicon 6-0 nylon monofilament suture.  The left flank incision was also sutured closed with 6-0 

nylon monofilament suture (Figure 3D).  Both incisions were then coated with antibiotic cream 

(Actavis Pharmaceuticals, Parsippany, NJ) before the mouse was allowed to recover from 

anesthesia in a warmed chamber.  
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Surgical implantation of fully wireless μLED devices These devices have an LED at the tip of the 

device.  There is also an anchor t-bar roughly 3mm from the tip of the device (Figure 2B) 

designed to keep the tip of the device inside the muscle pocket near the sciatic nerve.  From the t-

bar, there is a 2-3 mm cable leading to the 8mm x 8mm main body of the device that contains a 

fully passivated antenna and harvester (Figure 4A). 

The surgical procedure to implant these devices was modified from the Chronic Constriction 

Injury procedure [12].  Briefly, the animal was anesthetized with isofluorane and the eyes were 

covered with Altalube ointment to prevent corneal drying. A small skin incision was made over 

the greater trochanter of the femur on the left flank of the animals. The fascia connecting the 

biceps femoris and the gluteus maximus was blunt dissected apart to open a plane between the 

muscles, in which the sciatic nerve was clearly accessible (Figure 2A). The fascia connecting the 

skin to the underlying muscle in the area directly rostral to the incision was blunt dissected apart 

` 

Figure 4: Surgical placement of fully implantable LED devices 
A. The fully implantable devices include an LED tip and a fully passivated antenna and RF harvester. 
B. During implantation, the body of the device is positioned subcutaneously, while the LED tip is threaded into the muscle pocket as 
demonstrated in Figure 4 
C-D. Fully implantable device before (C), immediately after (D), and 9 days after (E) surgery 
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using needle driver forceps. The body of the device was inserted under the skin into this 

subcutaneous pocket. The gluteus maximus was then pulled caudally to expose the sciatic nerve, 

and the LED tip of the device was folded under the gluteus and placed over the nerve.  The 

gluteus maximus was pulled over the tip of the device, and resorbable Ethicon 6-0 vicryl suture 

was used to reconnect the overlying gluteus maximus to the underlying biceps femoris around 

the anchor tip, restoring the original muscle architecture as well as securing the LED tip over the 

nerve (Figure 4D).  The incision over the left flank was sutured closed and the mouse was 

allowed to recover from anesthesia in a warmed chamber (Figure 4D). 

Immunohistochemistry 

Mice were deeply anesthetized with a ketamine/xylazine/acepromazine cocktail. The footpads 

were removed and preserved in Zamboni‟s fixative (Picric acid in paraformaldehyde). The heart 

was exposed and the mice were transcardially perfused with warm phosphate buffered saline 

(PBS) and then with 4% paraformaldehyde (PFA) in PBS.  After fixation, the sciatic nerve, L3-

L5 dorsal root ganglia, and spinal cords were dissected and soaked in 30% sucrose for 1 week 

before being frozen and sectioned in Tissue Tek solution from Sakura Technology (Torrence, 

CA). Slide were then stained using IB4-555 (Invitrogen, Grand Island, NY) and imaged using an 

inverted DMI400 CSQ confocal microscope from Leica Microsystems (Buffalo Grove, IL).  

Spontaneous blue LED activation 

Stretchable cable devices were implanted in mice as described in Figure 3. Once they recovered 

from surgery the next day, mice were briefly restrained to attach the wireless harvester to the 

headcap connector, and then were acclimated in plastic enclosures on 1/4'‟ thick pyrex 

borosilicate float glass acquired from Stemmerich Inc (St. Louis, MO). The lighting was 

undimmed to maintain the light/dark cycle and a white noise generator was used to isolate the 
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behavioral room from hallway noise.  After the mice reached a resting state, the LED devices 

were activated using RF power transmission around the 2.4GHz spectrum using an Agilent 

N5181A analog signal generator (Santa Clara, CA), two Agilent U8031A DC power supplies, 

and an Empower 1189-BBM3K5KKO amplifier (Inglewood, CA). The antenna was held parallel 

to the harvester of the device, between 1-4 feet away.  

Green LED-induced cold analgesia 

Stretchable cable devices were implanted in mice as described in Figure 3. Mice were 

acclimated on the CPA glass plate in transparent plastic enclosures (4‟‟ x 4‟‟ x 11‟‟) and were 

prevented from seeing each other with opaque black polyvinyl sheets.  The lighting was 

undimmed to maintain the light/dark cycle and a white noise generator was used to isolate the 

behavioral room from hallway noise.   

To generate the cold stimulus, dry ice was crushed into a fine powder using a hammer.  The top 

was cut off a 3mL BD syringe (Franklin Lakes, NJ).  In order to prevent gas buildup inside the 

syringe body, a 21g needle was used to make a total of 6 holes in the body of the syringe, 3 holes 

on opposing sides.  The powdered dry ice was scooped into the modified syringe and the open 

end of the syringe was held against a flat surface while pressure was applied to the plunger to 

compress the dry ice into a flattened, dense pellet 1cm in diameter.  Mice at rest [23] were tested 

by applying the tip of the dry ice pellet to the underside of the glass underneath the mouse 

hindpaw, using mirrors to visualize the target.  The pellet was applied with light but consistent 

pressure applied to the plunger of the syringe, and the center of the hindpaw was targeted, taking 

care to avoid the distal joints.   

The latency to withdrawal from the cooling was measured using a stopwatch.  Withdrawal was 

defined as any motion that moved the paw away from the cooled glass, whether vertically or 
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horizontally.  For baseline experiments, the withdrawal latency was measured at least 3 times per 

paw per mouse.   

After acclimation, the baseline latency was measured.  The LED devices were then activated, 

and the cold plantar withdrawal latency was measured while the LED was active.  Afterwards, 

the cold plantar withdrawal latency without LED activation was measured again to assess for 

longer-term changes caused by LED activation.  

Real time place aversion (RPA) Fully implantable blue LED devices were implanted in mice as 

described in Figure 4. Mice were acclimated to the testing room in their home cages for 2 hours. 

Each mouse was then placed in the middle of a large plastic box divided into two 10.5‟‟ x 10.5‟‟ 

x 11‟‟ chambers.  Each trial lasted 20 minutes. The LED device was activated using an antenna 

underneath the testing apparatus when the mice spent time in one of the chambers, but not the 

other.  The mice were recorded from above as they explored both chambers of the box.  The 

amount of time spent in the chamber with the LED on compared to the amount with the LED off 

was used as a measure of the severity of the aversive stimulus of LED activation. 
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Results 

Optogenetic channels are present on 

all levels of the pain neuraxis 

Although the transgenic ai32 (ChR2-

EYFP) mice had previously been 

used to generate nocifensive 

responses after hindpaw illumination 

[52], it was essential to ensure that 

these mice were expressing the 

optogenetic channels in all relevant 

tissues.  ai32 (ChR2-EYFP) mice 

crossed with either the advillin-cre 

or the TRPV1-cre mice were 

sacrificed, and sections of spinal 

cord, sciatic nerve (cut across and 

longitudinally), and footpad were 

imaged (Figure 5).  The slides were 

counterstained with Isolectin B4 

(IB4), which binds to the versican 

present on the membranes of many non-peptidergic nociceptive neurons [18].  In all tissues 

imaged, mice expressing cre recombinase had robust ChR2-EYFP fluorescence in a subset of 

neurons while their littermate siblings lacking cre recombinase expression had negligible EYFP 

fluorescence. 

Laser stimulation of the sciatic nerve generates nocifensive responses 

` 

Figure 5: ai32 mice express ChR2 in all parts of DRG neurons 
In all examples, pictures on the right are from ai32 mice expressing cre-
recombinase while pictures on the left are from wild-type flox/stop/flox 
littermates.  Green ChR2-EYFP fluoresence is visible in the spinal cord (A), 
sciatic nerve (B-C), and footpad (D) of ai32 mice that express cre-recombinase. 
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Although stimulation of motor axons in the sciatic nerve has been demonstrated in the literature 

[119,184], optogenetic modulation of the sensory axons has not. In order to demonstrate that 

optogenetic stimulation of sensory axons could modulate nocifensive responses, a mouse 

expressing ChR2 in TRPV1-expressing neurons was anesthetized, and the sciatic nerve was 

exposed (Figure 6A). The nerve was directly illuminated with a laser while the 

electromyelographic (EMG) response of the quadriceps muscle was recorded (Figure 6). When 

the nerve was exposed to laser pulsed at 10Hz, the quadriceps consistently contracted in a way 

consistent with nociceptive responses (Figure 6B).  The magnitude of the EMG response was 

positively correlated with the intensity of the laser illumination, suggesting that more intense 

optogenetic stimulation led to a more intense nocifensive flinching response. However, when the 

laser was focused on the overlying gluteus maximus instead of directly on the nerve there was no 

flinching response in the quadriceps, suggesting that the nocifensive response was dependent on 

activity evoked in the nerve itself and not the surrounding muscle (Figure 6B-C). 

Blue LED stimulation of the sciatic nerve induces spontaneous nocifensive responses in vivo 

In order to test whether optogenetic activation of nociceptive axons in the sciatic nerve could 

cause nociceptive responses, mice that expressed ChR2-EYFP in the majority of sensory neurons 

Figure 6: Activating TRPV1-expressing axons in the sciatic nerve evokes nocifensive responses 
A. A mouse was anesthetized with isofluorane. Electromyography (EMG) electrodes were inserted in quadreceps and the sciatic nerve was 
exposed.  
B. A  473nm laser was pulsed at 10Hz directly on the exposed sciatic nerve at various intensities (3, 8, or 13mW/mm2) or on the muscle 
overlying the nerve (muscle illumination control) 
C. Summed area under the curve of EMG responses to laser stimulation of the sciatic nerve 
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(Advillin-cre/ai32) were bred.  These mice had blue stretchable cable devices implanted running 

from the sciatic nerve to a dental cement headcap as described above (Figure 3).  One day after 

implantation, these devices were extremely bright, 

easily visible from the exterior under normal 

ambient light (Figure 7A).  In order to assess 

whether blue LED activation could generate 

nocifensive behaviors, these mice were acclimated 

in behavioral enclosures with the wireless 

harvesters already connected.   Once the mice were 

at rest, the LED devices were pulsed between 5Hz 

and 20Hz using RF power transmission.  Pulsing 

blue light over the sciatic nerve generated 

significantly more spontaneous nocifensive 

flinching responses than when the mouse was 

stimulated with the same RF power without the RF 

harvester attached (Figure 7B; LED on=17.5±1.8 

flinches/30 seconds vs. LED off=1.2±0.7 flinches/30 seconds; unpaired t-test ***p<0.0001 n=6 

trials).   

Green LED stimulation of the sciatic nerve reduces nocifensive responsiveness in vivo 

In order to test whether optogenetic hyperpolarization of nociceptive axons in the sciatic nerve 

could cause nociceptive responses, mice that expressed Arch-GFP in two separate large subsets 

of sensory neurons (either Advillin-cre/ai35 or TRPV1-cre/ai35) were bred.  These mice had 

green stretchable cable devices implanted running from the sciatic nerve to a dental cement 

Figure 7: Blue LED activation increases spontaneous 
nocifensive behavior 
A. Activated blue LED device is visible from the exterior 
B. Activating blue stretchable cable devices over the 
sciatic nerve significantly increases the number of 
nocifensive flicks per 30 second period(t-test, 
***p<0.0001; n=6 trials) 
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headcap as described above (Figure 3).  One day after implantation, these devices were 
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extremely bright, easily visible from the exterior under normal ambient light (Figure 8A).  In 
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order to assess whether green LED activation reduced nocifensive responsiveness, these mice 
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were acclimated in behavioral enclosures with the wireless harvesters already connected and then 

baseline measurements of CPA withdrawal 

were made.  Once these baseline measurements 

were made, the LED devices were pulsed at 

20Hz using RF power transmission and the 

CPA stimulus was applied immediately after the 

LED illumination started.  Pulsing green light 

over the sciatic nerve during CPA stimulation 

dramatically increased the withdrawal latency 

of the mice compared to baseline (Figure 8B; 

1-way repeated measures ANOVA main effect 

**p<0.01; with Bonferroni post-hoc test, 

Baseline=1±0.0 vs. Green LED 

activation=3.5±0.2, *p<0.05), suggesting that 

the cold responsiveness was decreased by green 

light stimulation of the sciatic.  When the LED 

was deactivated, the CPA withdrawal latency 

returned to roughly baseline levels (Figure 8B; 

1-way repeated measures ANOVA main effect 

**p<0.01; with Bonferroni post hoc test, Green 

LED activation=3.5±0.2 vs. Post LED=1.1±0.2, 

*p<0.05), suggesting that cessation of the light 

restored normal cold responsiveness. 

Figure 8: Green LED activation decreases nocifensive 
responsiveness 
Activated green (A) devices are visible from the 
exterior 
B. Activating green stretchable cable devices over the 
sciatic nerve reversibly increases withdrawal latency in 
the CPA. 1-way ANOVA with Bonferroni post-hoc test, 
main effect **p<0.01, Baseline vs. LED and LED vs. 
Post LED *p<0.05; n=2. 
C. A sample trace from a single mouse with a green 
LED device.  When the LED is activated, the 
withdrawal latency increases dramatically.  Once the 
LED is turned off, the latency decreases back to 
baseline levels. 
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Figure 8C details the changes in cold responsiveness caused by LED activation in a single 

TRPV1-cre/ai35 (Arch-EGFP+) mouse, demonstrating how rapidly changes in nocifensive 

responsiveness occur upon activation or deactivation of the green LED.   

Blue LED stimulation of the sciatic nerve is an aversive stimulus  In order to test whether 

optogenetic activation of axons in the sciatic nerve can generate non-reflexive evasive responses, 

fully implantable blue LED devices were implanted in mice expressing ChR2 in either TRPV1- 

or Nav1.8-positive neurons.  6 weeks after surgery, each mouse was placed in a 2-chamber 

apparatus and allowed to explore for 20 minutes (Figure 9A). During this testing period, the 

fully implantable devices were activated when the mouse was in one chamber, but not in the 

other.  Mice that were expressing ChR2 and had devices that could be reliably activated spent 

significantly less time in the “LED-on” chamber than their wild-type littermates (Figure 9B; 

Cre+=34%±0.0 in LED-on vs.  Cre-=47%±0.0 in LED-on; Unpaired t-test **p<0.01 n=2 per 

group).  Additionally, a Cre+ mouse with a non-functional device implanted showed negligible 

aversion to the LED-on box (Figure 9B; 46% of time spent in LED-on box), suggesting that the 

evasion responses require both ChR2 expression and a functional LED device illuminating the 

sciatic nerve. 

  

Figure 9: Fully implantable blue LED devices cause evasion behavior in mice expressing ChR2 
A. Schematic of the testing apparatus.  Mice are placed in a 2-chamber apparatus.  The LED devices are activated when the mice are 
in Chamber 1 but not Chamber 2, and the amount of time spent in each chamber was measured. 
B. Scatterplot of chamber evasion.  Mice that are expressing ChR2 and have LED devices that activate more than 50% of the time 
spend significantly less time in the chamber with the LED activated. 
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Discussion 

In this chapter I introduce novel implantable LED devices that can activate or inhibit the axons in 

the sciatic nerve.  These devices can generate robust spontaneous nocifensive responses, non-

reflexive evasive responses, and significant analgesia.  I utilize them to demonstrate that 

Advillin-, TRPV1-, and Nav1.8-expressing neurons are all sufficient to generate spontaneous 

nocifensive responses, and that TRPV1- and Nav1.8-expressing neurons are sufficient to cause 

significant real time evasive behavior.  Additionally, by silencing different subpopulations of 

nociceptors while applying a cold stimulus, I demonstrate that both Advillin-expressing and 

TRPV1-lineage neurons are necessary for normal responsiveness to cold stimuli.  

These devices, combined with the ever-growing array of optogenetic channels available for use 

have the potential to be a powerful tool for exploring the mechanisms of nociception.  While 

other studies have demonstrated optogenetic modulation of peripheral nociceptors [52,90] and 

optogenetic modulation of the sciatic nerve [119,184], the miniaturized and chronic nature of 

these devices make a whole range of long-term or space-restricted studies possible.  

Additionally, unlike previous optical sciatic stimulation systems these devices can be activated 

while the mice are completely untethered.  This crucial capability allows their use in situations 

where having a cable attached to the mouse would interfere such as on exercise wheels or studies 

of restraint stress.  

The untethered, long-term optical stimulation that these devices can generate also opens the door 

to studies of chronic stimulation which were previously impossible.  For example, studies have 

previously suggested that extended periods of high nociceptor activity, or  “afferent barrage,” is a 

crucial element of neuropathic injury that leads to chronic pain [58].  However, whether this 
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burst of activity alone is sufficient to generate hypersensitivity in absence of actual injury has 

never been tested.  With these devices, it would be relatively simple to implant a blue device in a 

mouse expressing ChR2 and use it to drive an “afferent barrage” in the absence of tissue damage 

and assess whether the mouse develops the symptoms of neuropathic injury.  By performing this 

experiment in mice that express ChR2 in different subsets of sensory neurons it would even be 

possible to determine which neuronal populations are sufficient to generate a neuropathic 

phenotype after “afferent barrage.”  The inverse experiment could also provide invaluable 

information by determining which neurons are necessary to generate a neuropathic phenotype.  It 

would involve using green LED devices to silence specific neurons in mice which have had a 

neuropathic injury in order to assess whether those populations decreases the neuropathic 

hypersensitivity.  Both of these relatively simple experiments require the ability to chronically 

illuminate these neurons over long periods while mice in their home cages, which only these 

devices accomplish. 

Despite these advantages, there are some limitations to using these novel devices.  The RF power 

transmission equipment necessary to activate the fully implantable devices is expensive; 

however, once the equipment is purchased there is relatively little additional expense or capital 

required.  This expense also limits the number of devices that can be simultaneously activated, 

although as the sensitivity of the harvesters has improved it has become possible to activate 

many devices with a single transmitter.  Another challenge in using these devices is determining 

the angle at which the antenna must be held so that the harvester is in line with the polarized RF 

wave.  Early versions of these devices required exquisitely precise positioning before the devices 

would activate, but the engineers in Dr. Rogers‟ group have improved the technology to the point 

where the devices generally activate as long as the antenna is pointed towards the proper end of 
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the harvester. Finally, passivation of these devices is critical, and many early struggles with 

failed devices were rooted in inadequate passivation of the electrical components.  Fortunately 

Dr. Rogers‟ group has solved most of these issues as well, and can reliably generate devices that 

can be easily activated in the mice for over 2 months. Thanks to their efforts in overcoming these 

obstacles, these devices are a novel, flexible tool that can be used to investigate the different 

neuronal populations that underlie nociceptive responsiveness.  The results in this chapter 

demonstrating the necessity for TRPV1-lineage and Advillin-expressing neurons in cold 

sensation represent only the tip of the iceberg of studies that can be carried out using this novel 

technology. 
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Summary and Future Directions 
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The CPA is an inexpensive, versatile tool for studying cold responsiveness and adaptation 

The second chapter of this manuscript demonstrates that the CPA is a fast, objective, and 

inexpensive method of measuring cold sensitivity and adaptation in mice.  The assay delivers a 

highly consistent cold stimulus to the mice, the resulting data is highly reproducible, and the 

behavioral responses are unambiguous..  Chapter 2 also shows that the CPA is capable of 

quantifying rapid increases and decreases in cold sensitivity as well as interactions between 

hypersensitivity and analgesia. This alone makes it a significant methodological improvement 

over previously available techniques for assessing cold sensitivity in mice. 

 

Chapter 3 demonstrates how to improve the testing range of the CPA, allowing the users to shift 

the starting temperature of the apparatus from 30°C to 5°C depending on the purpose of the 

study.  This modification significantly extends the usable range of the CPA, and also allows the 

study of cold adaptation, whether by allowing the mice to acclimate at the lower temperature for 

long periods of time, or by testing the cold sensitivity of the mice as the ambient environment is 

cooling.  With these additions, the eCPA becomes the most versatile behavioral tool for 

investigating the mechanisms of cold sensation and adaptation that is currently available 

 

PIP2 modulation of TRPM8 underlies the ability to adapt to cold ambient temperatures 

In Chapter 4 I use the eCPA to confirm the vital role of TRPM8 in cold sensation.  However, 

despite their significant decrease in cold sensitivity, TRPM8-KO mice still responded 

consistently to cold stimuli.  This suggests that there are other cold-sensitive molecules that 

mediate cold responsiveness, or that the mice are responding to tissue damage caused by the 

cold.  Since TRPM8-KO mice exhibit no signs of swelling or hypersensitivity after eCPA 
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testing, we believe that there are cold-sensitive molecules other than TRPM8 that have not yet 

been characterized.  While the literature has suggested that TRPA1 functions as a sensor of 

noxious cold stimuli in vitro, our behavioral studies do not show any difference in the cold 

sensitivity of uninjured TRPA1-KO mice. Other molecular mediators of cold sensation have 

been suggested including the TWIK potassium channels TREK and TRAAK1 [148] and the 

cation channels DEG/ENaC [6,35], although the relatively recent discovery that the calcium-

activated chloride channel Anoctamin-1 functions as a heat sensor [37,91] suggests that there 

may be more families of cold and heat sensors out there that have not been characterized.  The 

eCPA will be a valuable tool in the search for these unidentified cold sensors, and is already 

being adopted by research groups characterizing pathways that modulate cold sensitivity 

[128,140,168]. 

 

I also used the eCPA to demonstrate that PIP2 regulation of TRPM8 is essential for the 

adaptation of cold response thresholds to match environmental temperature changes.  The in 

vitro model that is confirmed by my work suggests that a cooling environment leads to calcium-

induced phospholipase C activation, which hydrolyzes membrane PIP2.  This decrease in PIP2 

leads to decreased TRPM8 sensitivity, which causes lowers cold response threshold to match the 

cooler environment.  While the results above support that PIP2 regulates TRPM8 activity, the 

exact mechanism of this interaction is not well understood.  One protein that has been shown to 

link TRPM8 and PIP2 is the phosphoinositide interacting regulator of TRP (Pirt), which binds to 

PIP2 and is necessary for normal activation of TRPM8 [179].  While it seems plausible that Pirt 

modulation of TRPM8 could underlie the changes observed in cold adaptation, more studies are 

required to assess whether changes in Pirt interaction with TRPM8 occurr during cold 
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adaptation.  These studies could be conducted using Pirt-KO mice both in vitro as has been 

demonstrated previously [66] as well as in vivo using the eCPA. 

 

Another method of TRPM8 modulation that could underlie cold adaptation may involve the 

membrane microdomain localization of TRPM8.  It has been shown that TRPM8 activity 

decreases when it is segregated in lipid rafts [141], but no studies correlating changes in channel 

membrane localization with cold adaptation have been attempted.  In order to test the hypothesis 

that lipid raft segregation of TRPM8 is involved in cold adaptation, future studies could assess 

whether TRPM8 is segregated into lipid rafts during cold adaptation in vitro, and furthermore 

could assess whether Pirt is excluded from these rafts as well.   

 

Advillin-expressing and TRPV1-lineage neurons are both required for normal cold sensation 

In Chapter 5 I use novel bioimplantable LED devices along with optogenetic channels to 

demonstrate that both Advillin-expressing and TRPV1-lineage neurons are necessary for normal 

cold responsiveness.  While some of the myriad research applications for this technology are 

discussed in Chapter 5, there is also significant clinical potential for this technology. Chronic 

pain affects over 100 million American every year [131], and many of these patients have 

conditions characterized by hyperactive peripheral sensory neurons even when the original injury 

is to the central nervous system [207].  A novel, non-pharmacological treatment that could 

directly modulate these overactive neurons over the long term would have broad applicability to 

a number of pain syndromes.  I demonstrate in Chapter 5 that the implantable LED devices can 

modulate the activity of peripheral sensory neurons in mice expressing light-sensitive ion 

channels, which suggests that if human sensory neurons expressed light-sensitive channels these 
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devices could modulate human sensory neurons as well.  While using this approach in humans 

would require gene therapy to express the channels, several clinical trials for gene delivery in 

human sensory neurons are already underway [64,72] and the herpes simplex vectors in those 

trials could be repurposed for delivering optogenetic constructs with relatively little difficulty. 

Although many challenges remain before these devices and techniques can be used clinically, I 

believe that they represent a significant opportunity for long-term treatment of otherwise 

refractory chronic pain conditions. 
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