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 This dissertation examines agricultural strategies farmers employed to cope with the 

consequences of war and drought in the southern Peruvian Andes during the Late Intermediate 

Period (A.D. 1100-1450) using paleoethnobotanical data from the fortified hilltop site Ayawiri 

and findings from excavations of a terrace complex flanking the site. During the Late 

Intermediate Period, lifeways dissolved into a period of endemic warfare after the collapse of 

Tiwanaku. At the same time a well-documented, century-long drought surely threatened food 

security. Interested in how farmers responded to this political and climatic disjuncture, I 

analyzed 108 flotation samples collected from the residential area of one of the largest hillfort 

communities in the region. Macrobotanical samples were collected from hearths, houses, 

kitchens, patios, and middens at Ayawiri. These data indicate that as trade networks broke down 

and imported lower elevation crops such as maize were no longer options during the Late 

Intermediate Period, residents turned to locally-grown crops including quinoa, potatoes and other 

tubers. I conducted multi-variate analysis of Chenopodium spp. seeds and found both quinoa and 
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kañawa in copious quantities. Weedy chenopod seeds were very rare in these samples. These 

data contribute a deeper understanding of pre-Colonial crop selection, phenotypes, and weed 

management in the Andes. Macrobotanical data also contribute to an understanding of camelid 

grazing strategies employed during the Late Intermediate Period. Herds were intensively grazed 

in fields and foddered on crops and rarely brought to wetland microenvironments.  

I carried out excavations and analysis of the form of the terrace complex that flanks the 

hillfort at Ayawiri to determine when the field complex was constructed and how farmers 

managed this landscape. Using a combination of ceramic sylistic seriation, AMS dating, and a 

novel application of optically stimulated luminescence dating I found that the terraces below the 

site were constructed during the Late Intermediate Period using household labor.  

Macrobotanical data and information from the terrace excavations contribute two 

important conclusions about the impact of drought and consequences of warfare on lifeways 

during the Late Intermediate Period. First, the adoption of an intensification strategy – terrace 

farming – and a dependence on only a limited array of cultivars indicate the consequences of 

warfare profoundly influenced Ayawiri farming strategies. The local community built their fields 

and grazed their herds near their homes rather than taking advantage of lacustrine or riverine 

microenvironments, which would have buffered against crop loss due to climate unpredictability. 

Additionally, I recovered sling stones in the terraces indicating this built landscape served a 

defensive function. The second conclusion I came to is the expansive terrace system around the 

site did not require centralized labor to create or farm, but rather was the product of households 

adapting to the challenges of their time. In sum, this study provides an important understanding 

of agriculture, land use strategies, and sociopolitical organization of farm labor during the Late 

Intermediate Period.  
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Chapter 1. The Research Problem and Organization 

of the Dissertation 
 

 

 

Agriculture has been an arduous undertaking in the central Andes Mountains of South 

America since its advent in the region over four millennia ago. Agropastoralists have thrived 

despite persistent cold temperatures, unpredictable annual rainfall, and nutrient poor soils 

(Erickson 2000; Erickson and Balée 2006:211-212). During the Peruvian Late Intermediate 

Period (LIP; A.D. 1100-1450; also known as the Altiplano Period) farmers’ annual struggle to 

produce enough food was exacerbated by warfare and a prolonged drought (Arkush 2005; Frye 

1997; Julien 1983; Thompson et al. 1985). In this dissertation I identify how an LIP community 

managed their food security when faced with these social tensions and climate fluctuations.  

Near the modern border between Peru and Bolivia in the south-central Andean highlands, 

warring ethnic groups responded to the social hazard of martial conflict during the LIP by 

strategically constructing defensive hilltop forts called pukaras (Guamán Poma de Ayala 1980 

[1616]). Several authors have recently highlighted the role of food procurement difficulties and 

nutritive hardship associated with warfare that have occurred throughout the history of humanity 

(Ferguson 2006; LeBlanc 2006:455; Milner et al. 1991; Otterbein 1999).  When laborers become 

soldiers and valuable resources are diverted to the war effort, concerns about local food security 

cause changes in agricultural practice and foodways. Warfare during the Titicaca basin LIP 

surely caused similar hardships that fundamentally structured economic choices (Arkush 
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2011:1). Plant agriculture and camelid herding (llamas and alpacas) that took place outside 

hillforts walls left inhabitants and their economic pursuits vulnerable to enemy attack.  

Around the same time that warfare intensified during the LIP, there was reduced 

precipitation, colder temperatures, and consequent fluctuations in lake levels that altered the 

altiplano environment that probably impacted farming strategies (Abbott et al. 1997; Binford et 

al. 1997; Calaway 2005; Melice and Roucou 1998; Thompson et al. 1998; Thompson et al. 

1986). Climate change during the LIP has been cited as the cause for political balkanization and 

martial conflict (Seltzer and Hastorf 1990; Stanish 2003). Climate variability increases the 

probability of crop failure (Arkush 2008; Augustine 2010; Howden et al. 2007), which in turn 

leads to increased social tensions between populations (Allen 2008; Lape and Chin-Yung 2008; 

Nel and Righarts 2008). Indeed, archaeologists working in North America have documented how 

similar climate change and subsequent food shortages incited pre-Colonia warfare there 

(Kuckelman 2016).  

In the Andes, the severities of warfare and the impact of drought on LIP lifeways are 

currently contested. In this dissertation research, I aim to use human agricultural adaptation as a 

metric to understand the relative importance of these conditions to peoples’ daily lives. These 

data also contribute to a broader understanding of how people make trade-offs in agricultural 

strategies to deal with different kinds social and environmental variables. 

With this in mind, I frame my research in risk management theory. Researchers have 

previously focused on risk management strategies that mitigate the impact of natural hazards on 

subsistence (Browman 1987; Cashdan 1990; Goland 1993; Stone and Downum 1999; 

Winterhalder 1986). Recently, a few studies have pointed out that populations also adapt 

subsistence strategies to lessen risks due to social tensions (Bollig 2006; Nel and Righarts 2008; 
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Postigo et al. 2008; Zori and Brant 2012). In this dissertation I consider the impacts of both 

environmental hazards (drought) and social tensions (warfare). Altiplano peoples calculated their 

agricultural strategies to account for both types of risk during the LIP. By studying how they 

responded to these risks we can assess the relative importance of social and environmental 

concerns during the LIP to ancient farmers.  

In order to study LIP agricultural risk management, I conducted analysis of 

macrobotanical remains and I directed excavations of an agricultural terraces complex at one of 

the largest known pukaras in the northern altiplano called Ayawiri. This site is known in other 

literature and to the local population by several alternative names including Machu Llaqta, Chila, 

Hatunpata, Ciudad Perdida, and V2 (Vilque site 2). Located on a hilltop west of Lake Titicaca at 

an altitude of 4,100 masl, Ayawiri is adjacent to the modern community of Chila (Figure 1.1). 

The site is a hilltop fortress that dates to the Late Intermediate Period (A.D. 1100-1450), and a 

warring Titicaca basin ethnic group called the Colla lived there (Tschopik 1946:3). Notably, 

there is a significant Late Formative component at Ayawiri and a minor Middle Horizon 

occupation; however, the most visible and well understood occupation at the site dates to the LIP 

and that is the time period targeted for investigation in this dissertation.  

 



4 

 

 

Figure 1.1: Map depicting the location of Ayawiri (rendered 

by E.N. Arkush). 

 

 The hillside surrounding Ayawiri is completely covered in agricultural terraces on the 

western, southern, and eastern escarpments (Figure 1.2). The close association between hillforts 

and terraces has been used as indirect evidence to suggest that the Colla people farmed terraces 

located below pukaras during the LIP (Arkush 2005:229-230; Stanish 2003:226). On the other 

hand, many researchers in the Andes have argued that a centralized political authority was 

necessary to organize and mobilize the labor required to build terraces and manage production on 

terraces (e.g. Niles 1982; Treacy and Denevan 1994). My research aims to directly clarify the 

period of construction and/or use of the Ayawiri terrace complex. It is possible that the terraces 

were initially constructed early on during the first occupation of Ayawiri during the Late 

Formative when there was a crescendo of the coalescence of political authority in the Titicaca 

Basin. Alternatively, the terrace complex could have been built by residents living at the site 
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during political balkanization and martial conflict typifying the LIP. Pinpointing when the 

terrace complex was built illuminates the socio-political context of this monumental agricultural 

engineering feat and sheds light on the prehistory of land management strategies broadly in the 

Titicaca Basin. 

 

 

Figure 1.2: Photo of Ayawiri atop the mesa and surrounded 

by terraces (image courtesy of E.N. Arkush). 

 

 In order to meet the caloric demands of the densely nucleated LIP population residing at 

Ayawiri, a well-adapted subsistence strategy was a surely necessity. While a complex 

agropastoral subsistence strategy has been documented in earlier time periods in other parts of 

the altiplano (Browman 1986; Bruno 2008; Rumold 2011; Whitehead 2007; Wright et al. 2003), 

to date, no paleoethnobotanical research has been carried out on the LIP in the region. We know 

Ayawiri 
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almost nothing about altiplano LIP agriculture and very little about the chronology of terraces in 

the region.  In this dissertation I analyze artifacts that represent agricultural production, crop 

processing, disposal, and landscape use within and around Ayawiri in order to better 

understanding LIP farming strategies. To examine production, I excavated four terraces on the 

hillslope below the fortified site at Ayawiri. I employ multiple dating techniques including 

analysis of ceramics, accelerator mass spectrometry dating (AMS) on wood charcoal, and 

optically stimulated luminescence dating (OSL) on small grains of naturally occurring quartz 

found in buried terrace soils to pinpoint the period of construction and use. To examine plant 

processing and disposal within the pukara habitation area, I analyzed charred macrobotanical 

remains from residential contexts within the fortification at Ayawiri. These materials were 

recovered during excavations carried out by Proyecto Machu Llaqta at Ayawiri directed by Dr. 

Elizabeth Arkush from the University of Pittsburg. As a team member of her project, I served as 

an excavation supervisor and archaeobotanical analyst.  To document changes in cropping 

strategies and landscape use, I compared these data to archaeobotanical studies from earlier time 

periods in the region (Browman 1989; Bruno 2008; Rumold 2011; Whitehead 2007; Wright et al. 

2003). This multi-faceted dissertation project enables me to determine how warfare and/or 

drought impacted and motivated LIP agricultural strategies.  

 

Research Questions 

 

My dissertation research was guided by four general questions. The implications of these 

questions are discussed throughout this dissertation. 
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1) What crops were grown during the LIP? 

2) When was the terrace complex adjacent to Ayawiri constructed?  

3) Where on the landscape did Ayawiri residents graze their camelid herds? 

4) How did warfare and drought impact agriculture and lifeways for Ayawiri residents? 

 

Organization of the Dissertation 

This dissertation is organized into ten chapters. Following the introduction in Chapter 

one, in Chapter Two I describe the geography, climatology, and geology of the altiplano. I focus 

on how these variables shape and condition agricultural practices in the region. I conclude this 

chapter by assessing several paleoclimate proxies used to reconstruct weather patterns during the 

LIP.  

In Chapter Three I present a general overview of culture history in the altiplano that set 

the stage for life at Ayawiri. I describe the long-term development of both sociopolitical and 

ritual culture in the region. Then I turn my attention to describing how lifeways changed during 

the LIP. I conclude by providing a general description of Ayawiri including distinctive 

architectural and environmental features.  

In Chapter Four I turn my attention to describing agropastoral risk management strategies 

and those employed in the altiplano. First I describe the development of plant and animal 

agricultural in the region that underpins rural and city living in the region even to today. Trade 

and exchange with distant regions is central to this system. Then I present the ways ancient 

farmers built fields and domesticated the landscape for agricultural purposes. Lastly I present a 
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model of risk management that explains how Ayawiri farmers may have adapted these age-old 

farming strategies to cope with social hazards and environmental risks of the LIP. This model 

was first published by Langlie and Arkush (2016).   

In Chapter Five I present the excavation methods implemented during each phase of 

research including excavations of the fortified residential sector and the terraces. Then I turn my 

attention to artifact analyses, dating methods, archaeobotanical field methods, and 

macrobotanical laboratory procedures.  

In Chapter Six I present an overview of the types of botanical taxa that I identified in 

samples collected from the residential area within the fortification walls at Ayawiri. I identify the 

various pathways through which plant remains entered the site. Then, in alphabetical order by 

plant family, I detail quantities of each identified plant taxa. Next, I draw on these data to 

describe the general diet of humans and camelids, food-related behaviors, and the grazing 

locations of herds. Lastly, I present the results of a multi-proxy analysis of Chenopodium spp. 

seeds where I pinpoint whether seeds found were domestic crops or collected from wild plant 

stands.  

In Chapter Seven I detail the quotidian contexts where macrobotanical taxa were 

recovered from at Ayawiri. I compare the macrobotanical remains found on structure floors, 

hearths, patios, and middens to determine use of these spaces. I assess where the plant taxa could 

have been collected from on the landscape in proximity to the site. Lastly, I describe evidence of 

intra-site social diversity reflected in the macrobotanical assemblage.  

In Chapter Eight I describe the goals of excavating the terraces at Ayawiri. I detail 

previous research on agricultural landscapes in the altiplano and how these data provided the 

framework for this research. I outline the layout and appearance of the terrace complex at 
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Ayawiri.  Then I turn my attention to describing how sociopolitics of those who built the terraces 

are inscribed on this landscape.  

In Chapter Nine I present the results of the terrace excavations. I focus on describing the 

stratigraphy that I found and the artifacts that pertain to past lifeways carried out in these spaces. 

I provide an assessment of the time period when the terraces were constructed and cultivated 

based on ceramic analysis, AMS dating, and OSL dating. I conclude with a summation 

describing how the terraces shaped lifeways at the site once they were constructed. 

In Chapter Ten I wrap up by synthesizing the findings of my research. I provide an 

overview of the plant economy at Ayawiri based on the macrobotanical remains that I identified. 

Then I return to my research questions and describe how the findings of this dissertation answer 

these questions. I reflect on the effectiveness of the three dating methods I used to identify when 

the terrace complex was constructed. I suggest future avenues of research prompted by my 

findings. I conclude by summarizing how Ayawiri residents managed the risks of the LIP 

through their agropastoral strategies.  
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Chapter 2. Geography, Ecology, and Climatology 
 

 

 

The jutting geography and variable climate throughout the Andean cordillera constrain 

agricultural potential and the predictability of crop yields which, in turn, coerced ancient farmers 

to develop novel coping strategies.  In Chapter Two, I outline the geography, natural ecology, 

and climatology of the Andes, focusing on the natural setting of the altiplano region where the 

study area is located. I describe the natural setting as the background for agricultural production. 

I conclude this chapter with a discussion of the local climate history derived from ice cores, lake 

sediments, and other paleoclimatological datasets that demonstrate climate occurred affected 

during the Late Intermediate Period.  

The Natural Landscape 

The Andes Mountains stretch along the western coast of South America, extending from 

Colombia to southern Chile.  From the arid Pacific coast, the Andes ascend eastward peaking at 

over 5,500 masl.  The rugged character of the Andes affects the structure of the ecological 

setting. Inter-montane valleys and plateaus are surrounded by snowcapped peaks and rolling 

hills.  The eastern slopes of the Andes descend into cloud forests, terminating their altitudinal 

gradient in the lush Amazon rainforest.  In some parts of the Andes, the mountains jut from sea 

level to above 4,500 masl in less than 100 km as the crow flies (Aldenderfer 1998:26). In the 
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south-central Andes on the border between Peru and Bolivia, the horizontal extent of the 

mountains is at its widest measuring 500 km (Brush 1982:19). 

It is precisely in this location where the focus of my research is located in a region 

referred to as the altiplano (also known as the Andean Plateau) that spans between the latitudes 

14°S and 22°S (Figure 2.1). This flat region extends from the border between southern Peru and 

western Bolivia southward to the northern portions of Argentina and Chile, covering 

approximately 200,000 km2 (Dejoux and Iltis 1992:XV). The flat, treeless plateau is situated at 

an elevation of about 3,800 masl, and the area is bordered by towering mountains (Brush 

1982:19). At the juncture of the northern and southern tips of the altiplano, the Andes split into 

two distinct ranges: the Cordillera Real mountain range (also known as the Cordillera 

Occidental) to the west and the Cordillera Blanca range (also known as the Cordillera Oriental) 

to the east.  Rolling hills and snow-capped mountain peaks flank the periphery of the altiplano, 

evoking a sense of intimacy and isolation in the landscape.   
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Figure 2.1: Map depicting the location of the altiplano and 

shaded to illustrate the topography of the surrounding Andes 

mountains. 

 

The craggy geography surrounding the altiplano was created during the Miocene when 

tectonic uplifting formed the mountain ranges that flank the region (Clapperton 1993:94). Within 

the northern part of the altiplano, where my research was carried out, there are several pluvial 

lakes and rivers that once formed massive paleolakes covering the region as recently as the end 

of the Pleistocene. These paleolakes were once fed by glacial melt flowing down from the 

surrounding mountain ranges (Lavenu 1992:5). Geologically the rising and falling water levels 

of the paleolakes in the region deposited lacustrine and alluvial sediments throughout the 

landscape.  Today, the remaining lakes are fed by rainwater and the altiplano drainage basin is 

endorheic.  The fact that water does not drain out of the basin has an insulating effect on the 

ecology of the region. Two bodies of water located in the northern part of the altiplano are 
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particularly relevant to this study: Lago Umayo (also referred to as Laguna Umayo) and Lake 

Titicaca. 

Lago Umayo is located about 10 km northeast of the study site and 17 km northwest of 

the city of Puno. The lake sits at approximately 3,880 masl, covers about 40 km2, and reaches 

depths of about 20 m (Baker et al. 2009:308). This lake is fed by rainfall and runoff flowing into 

two primary tributary rivers, the Rio Vilque and the Rio Challamayo. The Rio Vilque flows 

along the western flanks of the terrace complex at Ayawiri before emptying into Lago Umayo.  

Lago Umayo then slowly drains into Lake Titicaca to the east via the Rio Ilpa.  

Lake Titicaca straddles the Peruvian and Bolivian border and is the largest navigable lake 

in South America by area and volume, covering over 8,000 km2 of land reaching depths up to 

285 m (Dejoux and Iltis 1992:XV). Seasonal rainfall and tributary rivers annually replenish the 

lake. The lake levels fluctuate on average 1 m, rising during the wet season and falling during the 

dry season (Baker et al. 2009:310; Melice and Roucou 1998).  Only five percent of the excess 

water from Lake Titicaca drains southward, down the Desaguadero River, and emptying into 

Lake Uru and Lake Poopó in the southeastern region of the altiplano (Dejoux and Iltis 

1992:XV).  Most water loss of Lake Titicaca is due to evaporation from the combination of the 

harsh tropical sun and the altitude.  The vastness, depth, and hydrology of Lake Titicaca 

moderates the climate of the basin and creates a unique microenvironment in the adjacent littoral 

areas that contrasts the surrounding arid landscape. 

South American Weather Patterns  

As elevation increases in the Andes temperatures and humidity generally decrease (Brush 

1982:20).  Atmospheric air movement compounds this orographic affect. Two anticyclones-- 
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large areas of high pressure around which air circulates--govern much of the climate of South 

America. These anticyclones originate in the Atlantic and Pacific and circulate counter-

clockwise (Eidt 1968:55).  The flow of these air masses is disrupted and transected by the 

towering cordillera (Brush 1982:19), creating unique microclimates within inter-montane valleys 

and drastically different weather on the eastern slopes than the western slopes of the Andes.   

Along the Pacific coast the Humboldt Current System strongly impacts weather patterns. 

This oceanic current originates in the waters of the southern Pacific along Chile and flows 

northward along South America’s coast drawing frigid sub-Antarctic waters all the way up to the 

equator (Thiel et al. 2007).  Localized upwelling of cooler deep ocean waters further contributes 

to colder surface temperatures along the South American coast (Brush 1982:20).  Cooler surface 

temperatures mean that the Pacific anticyclone absorbs little moisture as it sweeps across the 

ocean.  As a result, there is low annual precipitation along the western slopes of the Andes 

(Brush 1982:20) lending to desert-like conditions of this region.  

In the highlands, westerly winds from the Pacific drive weather patterns during the 

austral winter between April and November (Roche et al. 1991). These winds bring cool dry air 

and very little precipitation with them. Southerly winds originating in the Antarctic region also 

blow northward along the cordillera and the eastern slopes of the Andes also during the winter 

(Browman 2003: 297). These polar advections can bring frigid winds with high velocities that 

can lower the temperature in the altiplano by as much as 20oC in a day. When these winds occur 

early or late in the winter, they can threaten young seedlings and harvests in the altiplano. At the 

same time, polar advections are important to agricultural security in the region ensuring that 

temperatures are cold enough to make freeze dried potatoes called chuño that can be stored for 

years without spoiling.  
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The South American Summer Monsoon (SASM) also contributes to continent-wide, 

seasonal precipitation cycles (Zhou and Lau 1998).  For most of the year the Atlantic anticyclone 

produces trade winds, originating in the equatorial Intertropical Convergence Zone (ITCZ, also 

known as the doldrums), carrying warm air and moisture from the Atlantic Ocean, and 

depositing large amounts of precipitation across the Amazon rainforest (Grodsky and Carton 

2003:723). When these air masses, combined with the convective heat and humidity from the 

Amazon, crash into the orographic pressure of the eastern slopes of the Andes, rainfall cascades 

across the region (Zhou and Lau 1998). This precipitation supports lush, rain-fed cloud forests 

along the eastern slopes.  

During the austral summer several SASM dynamics coalesce, leading to a distinct wet 

season in the highlands between December and March (Misra 2007:1).  At the beginning of the 

rainy season in the altiplano, a warm-core anticyclone, referred to as the Bolivian High, develops 

in the upper troposphere over the northwest region of altiplano and moves to the southeast (Zhou 

and Lau 1998:1021), bringing with it seasonal precipitation.  During this time, winds in the 

region blow from the northeast (Roche et al. 1992:68).  As this high-pressure system moves out 

of the altiplano, the rainy season ends, and the westerly-southwesterly wind patterns return along 

with the frigid polar advection winds. Climate scientists are still perplexed about the source and 

cause of the Bolivian High (Liebmann and Mechoso 2011:138).  However, it has been 

determined that the movement of the Bolivian High is related to the concurrent development of 

low atmospheric pressure troughs, the Nordestes and the Gran-Chaco Low, over the tropical and 

sub-tropical south Atlantic near the coast of Northeast Brazil (Marengo et al. 2012:2). The onset 

and duration of the rainy season is fairly unpredictable since it is caused by a combination of so 

many atmospheric and geographic variables. One has only to spend a short time in the region to 
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realize the weather patterns and intra-annual climate variability in the altiplano are extremely 

difficult to understand and predict.  Climate scientists are still working to identify the dynamics 

of weather patterns throughout South America.   

Climate in the Andes is determined by the combination of the oceanic upwelling, 

continent-wide interactions of trade winds, localized anticyclone circulation, low-pressure 

systems, and orographic effects.  Emerging research and better digital modeling of weather 

patterns continue to shed light on the complex interactions of these variables. Nonetheless, the 

complicated climate of the region means it is difficult for farmers to calculate or predict annual 

planting and harvest schedules or yields. 

Climatological Trends in the Lake Titicaca Basin 

Even though the altiplano is located within tropical latitudes, the high elevation subjects 

the region to more typical mountainous conditions, such as intense solar radiation during the day, 

freezing nights, and low humidity.  The median annual temperatures of the altiplano range 

between 7°C and 10°C (Roche et al. 1991:86). Twelve kilometers east of the study site in Puno 

between 1960 and 1990 the mean annual temperature was 8.5°C (INTECSA 1993).  Lake 

Titicaca absorbs and traps solar radiation in the depths of its waters. The resulting heat of the 

lake has a temperature regulating effect on the surrounding landscape, and littoral areas, such as 

Puno, are found to be warmer than models predict (Boulange and Aquize Jaen 1981). Diurnal 

temperature ranges near the lake fluctuate on average 11.7°C, whereas 25 km west of Lake 

Titicaca average temperatures from day to night dip 17.8°C (Baker et al. 2009:309-310).  In 

other words, the lake creates a mild microclimate. Even today, farmers take advantage of this 
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phenomenon to grow crops, such as maize (Zea mays L.), around lakes in the region that would 

not otherwise tolerate the freezing nighttime temperatures of the valley. 

The orographic effects of the Cordillera Real and the Cordillera Blanca disrupt weather 

patterns, and the movement of the Bolivian High causes decreasing humidity and dryness within 

the altiplano. The northern altiplano is semi-humid, whereas the southern region is increasingly 

arid (Lenters and Cook 1997). Additionally, the southern altiplano receives less annual rainfall 

than the northern Titicaca Basin.  These moisture and precipitation gradients are attributed to the 

movement of the Bolivian High from northwest to the southeast. Precipitation in the region 

occurs primarily during the austral summer with 80% falling between December and March 

(Roche et al. 1992). Within the Titicaca Basin annual precipitation varies greatly from year-to-

year, from approximately 500 mm to over 1,500 mm (Roche et al. 1992:87). Additionally, there 

is a precipitation gradient around Lake Titicaca. Areas around the lake receive more rainfall than 

distant regions (Baker et al. 2009:309). Just northeast of the study site, Lago Umayo received on 

average 648 mm of precipitation per year between 1960 and 1990 (Baker et al. 2009:309).  

The planting cycles and livelihoods of farmers in the altiplano, like farmers everywhere, 

are at the mercy of natural climate regimes. If there is too little precipitation, crops dependent on 

sufficient rainfall are at risk of perishing and if there is too much, flooded fields drown out 

seedlings. At the same time, a single nighttime frost, common in the montane environment, can 

threaten a farmer’s entire harvest. The climate data from the altiplano indicate the onset of the 

annual rainy season is unpredictable and highly variable, making it difficult for farmers to figure 

out when to plant fields and what crop varieties to plant. Harvest yields are tricky to anticipate 

due to the uncertainty surrounding the amount of precipitation and variations in temperatures in 

any given year. These unpredictable inter-annual climate fluctuations lead to crop failure that 
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cause altiplano people to rely on their dwindling food stores.  Nonetheless, highland farming 

practices developed over millennia were adapted specifically to cope with the specific 

aberrations of this climate. 

Natural Biotic Zones 

Plant and animal communities throughout the Andes are arranged in ecotopes, or small 

microenvironments, determined by vertical elevation gradients, airflow patterns, precipitation, 

geology, and human landscape modification (Troll 1950). Through an analysis of various 

combinations of these factors, geographers and other researchers have worked to 

cartographically ‘slice and dice’ the region into a multitude of biotic zones since they first 

encountered the ecological diversity in the Andes centuries ago. This geographic history still 

underpins how we divide, map, and think about biotic zones in the Andes today. Here, I outline 

the cartographic ideals of Andean ecology that concern my assessment of the landscape of the 

study region.  

Background on Biotic Classificatory Systems in the Andes 

Cieza de León, a Spanish Conquistador and chronicler who explored South America 

during the 16th century, delineated and mapped three regions (1554): the coast, the mountains, 

and the Amazon.  This colonial conception of the biotic zones in South America is still cited 

when researchers discuss these natural and modified landscapes (Zimmerer 2011:126). During 

the 19th century, Prussian naturalist and geographer Alexander von Humboldt, along with 

botanist Aimé Bonpland, painstakingly mapped the flora of the Andes as a vertical cross section; 

their diagram was strongly influenced by de Léon’s three-part biotic zone system depicting the 
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Pacific Lowlands, the Andes mountains, and the Amazon Basin (von Humboldt and Bonpland 

1805; Zimmerer 2011:128).  Nonetheless, as biologists, meteorologists, and geographers 

gathered more geographic data and analyzed the Andean landscape, they shed this conception of 

space to more acutely delineate biotic zones. In an attempt to break geographic practice with 

colonial legacy, Javier Pulgar Vidal divided the country into eight regions that included an 

assessment of agricultural limitations, intentionally recognizing the millennia of influence 

indigenous farmers made on the natural landscape (Pulgar Vidal 1946).  Notably, Pulgar Vidal 

assigned Quechua words to each of the eight biotic zones.  Around the same time, Troll (1968) 

identified 12 unique biotic zones in the Andes based on solely botanical distributions. Pulgar 

Vidal and Troll’s models are the two most widely cited biotic maps of the region, and they have 

had a lasting influence on how researchers define and conceptualize space in the Andes today.  

Additionally, due to the strategies chosen, both models delineate biota that trace altitudinal 

gradients. Since then, newer classificatory systems have been invented using satellite imagery 

and geographic information systems (GIS), but Pulgar Vidal and Troll’s systems still remain 

relevant. As an archaeologist who studies farming strategies, I subscribe to Pulgar Vidal’s 

foundational conceptions of Andean phytogeography. I do so because in this model he 

holistically assessed both the natural landscape and agricultural potential. However, due to the 

particular nuances of the landscape in the altiplano, I also draw on other phytogeographic 

models, as Pulgar Vidal’s overview lacks detail at the local level.  

Andean Biota 

The altiplano is located in the grassy Andean ecozones referred to as the suni and puna 

(Pulgar Vidal 1946:95-98).  These zones are composed of arid, high desert ecosystems generated 
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by high altitude hypoxic air and salinous infertile soil. Today, trees are rare throughout these 

ecozones except for the occasional native queñua trees (Polylepis spp.) and clumps of Old World 

eucalyptus trees (Eucalyptus spp.) that were introduced to the region during the Colonial era.  

The suni, located between 3,800 and 4,000 masl, is considered more amenable to 

agriculture, and farmers readily grow native varieties of tubers, legumes, and chenopods. The 

puna, located between 4,000 and 4,800 masl, is drier and better for grazing. While Ayawiri is 

technically located in the puna, the terraces are located in the ecotone between the suni and the 

puna.  This location potentially constricts the agricultural potential of the terraced field systems, 

yet supports the health of grazing herds. 

Prehistory of Climate Change in the South-Central Andes 

 As established by meteorologists, the intra- and inter-annual climate in the Andes 

fluctuates considerably. According to paleoclimate scientists, the trends we observe today have 

occurred over the past 4,000 years in the altiplano with only a few major perturbations. 

Significant deviations from the mean annual precipitation and rainfall patterns have been 

recorded in several locally sourced paleoclimate records including ice on tops of mountains, 

sediment in the bottom of lakes the shells of minute aquatic crustaceans, and natural elements 

trapped in peatlands.  Paleoclimate researchers have rigorously reviewed these various lines of 

evidence to construct a history of weather patterns in the altiplano. Here, I compile and outline 

nearby climate research with the intent to describe a prehistory of weather that affected past 

altiplano famers. 

Some of the best manifest and most scrutinized data of climate trends in the region over 

the last few millennia were recovered from the Quelccaya ice cap located on a plateau atop a 
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mountain 5,650 masl near the Vilanota range located between Cuzco and the altiplano (Shimada 

et al. 1991; Thompson 1996; Thompson et al. 1998; Thompson et al. 1979:1240; Thompson et 

al. 2006). In 1974 a research team from the Byrd Polar Research Center from the Ohio State 

University Institute, in collaboration with the Instituto de Geología y Minería, began expeditions 

to this dome-shaped ice cap in order to study climate change. A few cores were taken and Core 

1, a 163.1 m core penetrating the ice cap all the way to the bedrock below, contains a complete 

annual-to-decadal proxy record of the past 1,500 years (Thompson et al. 1985:973). Since 1974, 

weather stations have recorded climate trends atop the Quelccaya ice cap as comparative data 

used as a standard to quantify ice accumulation, construct calibration curves for the cores, and 

determine whether the climate atop the ice cap can be used as a proxy for temperature, 

precipitation, and lake levels in the nearby lower elevation Titicaca Basin (Thompson et al. 

1979).  Sure enough, weather trends, the net mass balance layers of ice, and changes in oxygen 

isotopes ratios, specifically 18O, correlate with changes in the 20th century lake level of Lake 

Titicaca (Baker et al. 2009; Thompson et al. 2006; Thompson et al. 2003).  Therefore, 

researchers believe the ice cores can be used to evaluate past climatological trends.   

According to the Quelccaya researchers, their data are accurate to approximately 20-year 

intervals (Shimada et al. 1991:261) spanning from A.D. 470 to 1984 (Thompson et al. 1986). 

Since precipitation in the Andes is seasonal, as previously outlined, accumulation of ice during 

the rainy months is embedded in the stratigraphy of the cores between layers of dust accumulated 

during the dry months. The net mass balance of layers between dust lenses was measured to 

determine the amount of precipitation in any given year or decade. These cores reveal a wetter 

period between A.D. 750 and 1050 and a much drier period between A.D. 1160 and 1500 that 

was particularly dry between A.D. 1250 and 1310 during the LIP (Thompson et al. 1985:973).  
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There is recent agreement among scientists that the stable oxygen isotope 18O in the 

Quelccaya ice cores is a reasonable measurement of precipitation amount in the southern Andes 

(Baker et al. 2009:2009). A drought is also recorded in stable oxygen isotope ratios in the 

Quelccaya ice cores.  Between A.D. 1110 and 1300, 18O ratios increase significantly above the 

mean of the entire 1,500-year sequence of the core, indicating a significant decrease in 

precipitation (Thompson et al. 2006).  

Since Lake Titicaca is annually replenished by seasonal rainfall, changes in lake levels 

correspond to annual variations in precipitation.  Limnological data from sediment cores taken 

from the southeastern portion of Lake Titicaca provide a paleoclimate history complementary to 

the Quelccaya climate data. Corresponding to the study period, Abbott and his colleagues 

(1997:179) documented low lake levels starting prior to A.D. 1100 and lasting until 1300. 

Although the timing of the onset of this dry period is not well resolved because the lake levels 

are not well defined in these lake cores, the intensity and duration of drought measured in the 

core’s sediments is consistent with the LIP dry period documented in the Quelccaya ice cores 

(Abbott et al. 1997:178).  

Sediment cores retrieved from nearby Lago Umayo also showed evidence of this 

extended period of aridity coinciding with the LIP. Baker and colleagues (Baker et al. 2009) 

looked at the stable oxygen isotopic composition of carbonate fine fraction from lake cores to 

reconstruct a paleoclimate sequence with centennial-scale resolution spanning from 4,456 B.C. 

to A.D. 127. When precipitation in the region decreases, Lago Umayo stops flowing into Lake 

Titicaca and, subsequently, it becomes a closed system with increased salinity (Baker et al. 

2009:316). This team of researchers documented an increase isotopic ratio of carbonate 
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sediments, indicating that drought conditions during between A.D. 1100 and 1400 were 

contemporaneous with an increase in salinous diatoms in the sediment cores.   

Outside of the altiplano, but nearby, climate scientists have documented similar trends 

during the LIP. In the eastern Peruvian Andes, researchers looked at 18O in a well resolved 

sediment core from Lago Pumacocha (Bird et al. 2011). This lake has geological, morphological, 

and liminological features that contributed to the accurate recording of past annual levels of 

precipitation. Temporally refined through radiocarbon dating a series of wood charcoal 

fragments from the sediment column, the core from Lago Pumacocha revealed that levels of 

18O peaked between A.D. 900 and 1100 indicating an extended period of aridity.  

Recent research on peatland from the western Andes of southern Peru and northwestern 

Argentina further corroborates that there was indeed a period of aridity during the LIP. High-

altitude cushion peatlands provide fine-resolution records of the past climate due to their “high 

accumulation rates, range of proxies, and sensitivity to climatic and/or human induced changes” 

(Schittek et al. 2015:2038).  For example, several analyses were carried out on a column of soil 

from Cerro Llamoca peatland in Peru. These analyses include radiocarbon dating on 50 charcoal 

samples recovered from 10 cm sections throughout the core that provided a temporal 

understanding of the column, and analyses of pollen abundances, levels of arsenic, and 

magnesium/iron ratios from the same sections pointed to changes in the ecology and hydrology 

of the region over time (Schittek et al. 2014). Researchers found in sections of the core that 

correspond approximately between A.D. 800 and 1300 that there was a decrease in Poaceae 

pollen, an increase in Asteraceae pollen, a decrease in arsenic, and a lower ratio of Mn/Fe that 

was all caused by increased aridity.  
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A core collected from Quebrada de Pircas peatlands in northwest Argentina showed a 

similar trend. A research team determined the peatlands were well stratified and analyzed pollen 

abundances, magnesium/iron ratios, and iron/titanium ratios to determine past changes in 

precipitation (Schittek et al. 2015). They found that there was a drier period between A.D. 1000 

and 1100 indicated by low Poaceae pollen abundances, increased amounts of Asteraceae pollen, 

accompanied by low Mn/Fe ratios, and a peak in Fe/Ti ratios. There was also a drier period 

between A.D. 1250 and 1330 marked by a decrease in Poaceae pollen and an increased Fe/Ti 

ratio.   

While these two peatland cores were not recovered from the study region, they provide 

complementary evidence of an extended period of aridity during the LIP. Furthermore, these data 

indicate that a decrease in precipitation resulted in ecological changes in hydrology and plant 

communities in the Andes, whereas ice cores and lake cores only provide evidence of climate 

changes. Nonetheless, we still do not know how the LIP climate impacted farming strategies and 

agricultural ecologies.  
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Figure 2.2: Timeline illustrating the onset and duration of 

drought during the LIP measured in several paleoclimate 

records from the altiplano. 

 

Figure 2.2 summarizes the local paleoclimate proxies in this chapter. Each climate record 

shows evidence of low levels of precipitation and other climate aberrations during the early part 

of the LIP in the Titicaca Basin. Without a doubt, severe annual droughts occurred during the 

Late Intermediate Period. Due to the resolution of the ice and sediment cores used to reconstruct 

the paleoclimate in the Andes it is still difficult to pinpoint the onset and severity of this 

extended period of aridity. So, even though measuring ice layer thickness is prone to error and 

there is not a perfect correlation between rises in lake levels, isotope ratios, and annual 

precipitation changes (Calaway 2005; Melice and Roucou 1998), independent lines of evidence 

strongly corroborate an anomalous and dramatic arid time period and change in weather patterns 

during the LIP that surely affected agricultural production.  
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Chapter 3. The Temporal Setting of Ayawiri 
 

  

 

 The goal of Chapter Three is to outline the culture history that underpins life at Ayawiri, 

drawing on data from sources including archaeology and ethnohistory. First, I focus on 

constructing a general chronology describing the development of political, ritual, and cultural 

lifeways in south-central Andes. Then, I turn my attention to a general discussion of primary data 

about Ayawiri including previous research and excavations, site size, layout, a chronology of 

occupation history, and the natural landscape that surrounds the site.   

Culture History 

 In the Andes a variety of historical and evolutionary chronologies have been constructed 

over the years. Pan-Andean historical chronologies are based on ceramic sequences, artistic 

traditions, and widespread political changes. In contrast, evolutionary frameworks consider 

localized processes and evolutionary trajectories including the development of economic 

strategies, religious traditions, and settlement patterns or a combination of these variables 

(Stanish 2003:85). Over time, evolutionary and historical chronologies have been refined and 

even combined. To date, there still is not an agreed upon chronology to which all research teams 

subscribe, even within the Titicaca Basin. Here, I focus on outlining only the chronologies most 

relevant to this research.  
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Constructing Temporal Chronologies in the Andes  

 Rowe, Menzel, and their colleagues (Menzel et al. 1964; Rowe 1960, 1962) developed 

the most commonly cited historical framework used throughout the Andes based on ceramic 

sequences found in the Ica Valley located on the southern Peruvian coast. In this chronology, 

they applied the concept of horizons to describe widespread and brisk temporal transformations 

in artistic traditions, technology, and cultural developments. Horizons were punctuated by 

intermediate periods of waning cultural traditions and sociopolitical reorganization. Radiocarbon 

dating of associated materials established absolute dates for this chronology. The horizons 

concept has been roughly extrapolated to account for widespread cultural changes throughout the 

Andes. In this sequence researchers in the Titicaca Basin include Tiwanaku (the Middle 

Horizon), and Inca (the Late Horizon) (ie. Arkush 2011; Burger et al. 2000; Erickson 1988). 

Ayawiri dates to the Late Intermediate Period between the Middle Horizon and the Late Horizon 

Period in this chronology. Building on this, Ponce Sanginés (1972) deemed it necessary to divide 

up the culture history of the Formative and the Middle Horizon into smaller time periods to 

better interpret political developments of the Tiwanaku state in the altiplano. In this sequence he 

determined that Tiwanaku I and II corresponded to the latter part of the Formative during the rise 

of Tiwanaku. Tiwanaku III and IV are characterized by urbanization. Finally, Tiwanaku V 

corresponds to imperial expansion of Tiwanaku artistic traditions and socioeconomic power into 

distant regions.  

 Lumbreras (1974) developed a chronology that was designed to encompass cultural 

development throughout the Andes including the Titicaca Basin. Although the name of the 

sequence have been modified for the region, this framework underpins chronologies used by 

many researchers throughout the altiplano. Lumbreras defined seven stages in this sequence 
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including the Lithic, Archaic, Regional Development, Wari Empire, Regional States, and the 

Empire of Tawantinsuyu/Inca Periods. In this chronology Ayawiri dates to the Regional States 

Period.   

 Since widespread ceramic traditions and cultural traditions in the Ica Valley did not 

entirely correspond to changes in the Titicaca Basin, the Rowe-Menzel system is not fully 

applicable to the altiplano. Additionally, evolutionary developments in the Andes varied from 

between different geographic locations, so this framework fails to capture regional historical 

developments. The application of these chronologies is further complicated by independent 

histories identified by archaeologists in different areas of the altiplano. With this in mind, 

researchers working in the Titicaca Basin today often employ what Stanish (2003:88) terms the 

dual chronological system. Archaeologists working throughout the altiplano are borrowing from 

evolutionary and historical chronologies today to consider localized temporal developments (for 

examples see Aldenderfer 1998; Hastorf 2008; Klarich 2005; Stanish 2003). Generally, the 

sequences in the dual chronological system include the Early Archaic, the Late Archaic, the 

Terminal Archaic, the Early Formative, the Middle Formative, the Late Formative, Expansive 

Tiwanaku or the Middle Horizon, the Altiplano or the Late Intermediate Period, Expansive Inca 

or the Late Horizon, and Spanish Colonial. See Figure 3.1 for alternative names and variations in 

the onset of each of these time periods in different regions throughout the Lake Titicaca Basin.  

 I subscribe to a dual chronological system that has been refined by researchers working in 

the northern Titicaca Basin through local ceramic sequences, economic shifts, cultural changes, 

and radiocarbon dating specific to the study region (ie. Arkush 2011; Klarich 2005; Stanish 

2003).  Now, I turn my attention to outlining basic economic, political, and cultural 

developments in the region leading up to the occupation at Ayawiri. 
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Figure 3.1: Dual chronology system commonly subscribed 

to in the northern Lake Titicaca Basin.  
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The Archaic Period  

 Hunter-gathers traveling from the Pacific coast first explored the south-central Andes as 

early as 11,500 (Aldenderfer 2008:135). Early explorers made short-term logistical forays into 

the highlands for raw materials such as obsidian, returning to their permanent residences on the 

coast (Sandweiss et al. 1998). Bands of hunter-gatherers eventually inhabited the highlands 

beginning in the Early Archaic (8,000-6,000 B.C.). During the subsequent Late Archaic (5,000-

3,000 B.C.) and the Terminal Archaic Period (3,000-1,500 B.C.) diagnostic projectile points 

multiply in quantity in the hilly flanks of the altiplano indicating intensified hunting activities 

and populations growing in size (Klink and Aldenderfer 2005). Lakeshores were rarely inhabited 

during this time period based on surveys of littoral areas (Bandy 2006). Complex relationships 

between groups of hunter-gatherers formed during the Terminal Archaic. In particular, 

Aldenderfer and his colleagues (2008) found higher amounts of foreign sourced obsidian in 

archaeological assemblages in the altiplano during this time period, indicating substantiated 

trade networks. They also describe a cold-hammered gold-bead necklace that was found in the 

burial of an adult-child at the site Jirskairumoko that points to formalized ritual and ascribed 

status. Indeed, complex relationships and interaction networks preceded settlement in the 

altiplano. Hunter-gatherers’ millennia of interactions with and management of local flora and 

fauna eventually resulted in the domestication of llamas, alpacas, quinoa, potatoes and other 

tubers during the Middle and Terminal Archaic Period (Pearsall 2008). 

The Formative Period 

 By the Early Formative Period (1,500-1,300 B.C.) inhabitants of the region lived in 

incipient sedentary settlements throughout the Titicaca Basin. At the same time, the earliest 
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small ceremonial centers were built and ritual life was institutionalized (Hastorf 1999). The first 

enclosed sunken courts—an architectural form that dominates religious and civic life centuries 

later in the region—show up during this time period at sites such as Huatacoa in the north 

Titicaca Basin (2010) and on the southern shores of Lake Titicaca at Chiripa (Hastorf 2003). 

Within these early ceremonial center, the tradition of ancestor veneration is first documented in 

the region. In particular, the Taraco Archaeological Project found burials containing multiple 

individuals in enclosures adjacent to the sunken platform (Hastorf 2008:548).   

 By the Early Formative in the Titicaca Basin, littoral village residents subsisted on a diet 

of abundant lake fish and other forage foods, while increasingly supplementing their diet with 

cultivated plants and animals (Bruno and Whitehead 2003; Hastorf 2008). At the same time, new 

cooking and serving technologies were employed to cook these foods. Indeed, the earliest 

evidence for ceramics in the region has been found in the first occupation layers of early villages 

including Pukara (Wheeler and Mujica 1981), and Qaluyu (Chávez Mohr 1977) in the northern 

Titicaca Basin, and Chiripa (Browman 1980) in the southern basin.   

 During the Middle Formative (1,300-500 B.C.) increasing territoriality among early 

village groups led to the establishment of more than a dozen regional civic-ceremonial centers 

throughout the Titicaca Basin (Hastorf 2008:548; Stanish 2003:117-120). These centers typically 

have sunken courts, and a few have raised platforms that facilitated collective and elite activities 

(Hastorf 2003:551). Clusters of settlements sprouted up around these centers housing growing 

populations (Hastorf 2008:549). Accompanying these changes was the development of 

established religious systems (Stanish 2003:109). In particular, stone stelae found at regional 

centers depicting the faces, bodies, and appendages of Pajano deities indicate a shared religious 

ideology (also referred to as Yaya-Mama (Chávez and Chávez 1975) or Pa’Ajano) (Browman 
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1972).  These civic and ritual developments are cited as evidence for the emergence of ranked 

social and political life and the establishment of elite and religious ideology shared among 

residents living throughout the region (Stanish 2003:132). 

 By the Late Formative (or Upper Formative from 500 B.C.-A.D. 400) there is an increase 

in the activities and influence of a few dominant regional centers. While local centers such as 

Chiripa continued to be important to nearby residents, the power of Pukara and Tiwanaku 

increased in magnitude (Hastorf 2008:553).  Civic-ceremonial activities drew larger crowds to 

ritual gatherings leading populations to settle nearby. On a hillside at Pukara multiple sunken 

enclosures were constructed on stepped platform terraces in order to house ritual activities. 

Similarly, at Tiwanaku, residents built a raised platform adjacent to a stone-lined, enclosed 

sunken court surrounded by carved anthropomorphic tenoned heads placed in the walls and other 

powerful iconographic representations of deities indicating ceremonial elaboration (Hastorf 

2008:554-555). Long-distance trade, particularly evidenced at large centers including Tiwanaku 

(Hastorf 2008:554), Pukara (Wheeler and Mujica 1981), and Taraco in the northern basin 

(Levine 2013), increased during the Late Formative. Notably, elite sectors of Taraco were 

aggressively burned, and economic activity around the site subsequently declined during the first 

century A.D. This occurred at the same time Pukara continued to increase its power over the 

northern Titicaca Basin (Stanish and Levine 2011). All the while, lifeways for residents living in 

smaller villages and near minor civic-ceremonial centers remained largely the same during the 

Late Formative (Stanish 2003).  
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Tiwanaku and the Middle Horizon 

 Around A.D. 400 Pukara’s power waned and civic-ceremonial power shifted 

predominantly to the southern basin (Klarich 2005).  By the start of the Middle Horizon (A.D. 

400-1100) Tiwanaku’s urban core, located in Bolivia 20 km south of Lake Titicaca in a flat 

valley, exerted regional influence throughout the altiplano and beyond, leading to the 

establishment of the first archaic state in the south-central Andes (Hastorf 2008:557). The rise 

and eventual collapse of Tiwanaku was roughly contemporaneous with the developmental 

trajectories of Wari in the central Andean highlands and Moche on the north coast of Peru 

(Stanish 2003:166).  

 Two models that do not necessarily oppose one another dominate theories on the 

development of Tiwanaku. Trade with distant regions beginning long before the rise of 

Tiwanaku’s importance has been portrayed as the primary mechanism for political centralization 

(Browman 1984; Stanish 2002). Alternatively, Bandy and Hastorf have proposed that ceremonial 

and ritual connections to seasonal cycles led to an increase and institutionalization in festive 

pilgrimages to centralized civic-ceremonial activities (Hastorf 2008:550). With the onset of 

Tiwanaku’s dominant influence, decorated red-slipped pottery suitable for quotidian meals and 

elaborate feasts became popular and widespread throughout the region (Janusek 2008).  

 An elaborate, monumental temple complex initially built in the Late Formative was 

refurbished and expanded under the oversight of elite rulers and architects residing at Tiwanaku 

during the Middle Horizon (Stanish 2008:23). This complex formed the core of the city’s urban 

center and included the Sunken Temple and Kalasasaya platform. Staircases, portals, and 

passages into adjacent ritual spaces within these structures set the stage for dramatic ceremonial 

and religious activities carried out at Tiwanaku (Janusek 2008:110). The Akapana, a massive 
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stepped terrace structure rising into an elevated platform and containing another sunken court 

within, was built during the Middle Horizon adjacent to the Sunken Temple and Kalasasaya 

(Janusek 2004b; Manzanilla 1992). Another slightly smaller sunken temple and platform 

complex called Pumapunka was built several hundred meters away from the Akapana, the 

Sunken Temple, and the Kalasasaya and was also initially constructed during the beginning of 

the Middle Horizon (Vranich 1999). In summary, these ritual complexes were the locus of civic-

ceremonial activities at Tiwanaku’s urban core, and sunken temples were the architectural form 

that facilitated these activities.  

 The monumental complexes at Tiwanaku were surrounded by elite residences, artisan 

communities, and commoner neighborhoods all containing sumptuary goods such as elaborately 

painted ceramics, ceremonial serving vessels, and large chicha jars for production and 

consumption of alcoholic beverages (Janusek 2008:146; Stanish 2003:172). A population 

estimated between 30,000 and 60,000 residents lived in the urban core at Tiwanaku (Kolata and 

Ponce Sanginés 1992). Based on extensive archaeological surveys the valley around the urban 

core and the surrounding countryside were densely populated by farmers and pastoralists 

throughout the Middle Horizon (Albarracin-Jordan and Mathews 1990). Tiwanaku’s sphere of 

influence within the altiplano reached all the way down to Uyuni in Bolivia and north to the 

Juliaca area (Stanish 2003:189). Curiously, Tiwanaku ceramics and other artifacts have rarely 

been found further north in the altiplano, even at Pukara (Klarich 2005:46), indicating the state’s 

influence was weak in the northern region.  

 At the same time that the urban core was growing, the influence of Tiwanaku outside the 

altiplano amplified. This sociopolitical shift informs the name given to the second half of the 

Middle Horizon: Expansive Tiwanaku. Building on trade and exchange relationships established 
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during the Formative Period, Tiwanaku’s urban center formed the foundation for camelid 

caravans trading goods across the south-central Andes (Albarracin-Jordan and Mathews 

1990:23). With increasing importance put on securing these goods for civic-ceremonial 

activities, Tiwanaku residents strategically colonized warm valleys on both the eastern and 

western slopes of the cordillera including those in Cochabamba, Bolivia, and Moquegua, Peru 

(Goldstein 2005). They brought with them Tiwanaku artistic styles such as geometric patterns 

and motifs of anthropomorphic deities. These patterns were painted on locally produced and 

imported quotidian and ceremonial ceramic vessels (Stanish 2003:198). Colonization of distant 

regions in lower elevations ensured reliable and ubiquitous access to ceremonially important 

goods. Distant populations with distinct local cultural traits also migrated to and settled in 

Tiwanaku’s urban core (Janusek 2008:23).  

 Around A.D. 800 Tiwanaku reached its apogee when a massive renovation of civic-

ceremonial structures was initiated (Janusek 2008:23). Ranked hierarchy, particularly among 

political and religious leaders residing in the urban core, reached an all-time high where elite 

residences were embellished and expanded. Colonists in Moquegua ratcheted up production of 

maize that was exported to Tiwanaku’s urban core where it was processed into chicha beer for 

religious and elite consumption (Goldstein 2003). Tiwanaku artistic styles, architecture, and 

lifeways dominated throughout the south-central Andes from A.D. 800 to 1000 (Stanish 

2003:203).  

 Around A.D. 1000 Tiwanaku began to crumble. At the same time, their colony in 

Moquegua collapsed and Tiwanaku power over the region diminished (Owen 2005). Production 

of Tiwanaku style pottery decreased over time, and artistic motifs that were passed down through 

lineages of artisans over millennia fell out of manufacture, signaling the end of a political and 
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economic system (Stanish 2003:207). The collapse of Tiwanaku was a drawn-out and multi-

causal process (Janusek 2008:290). Elite residences at Tiwanaku were abandoned one sector at a 

time (Janusek 2008:294). Within the urban core, even ceremonial spaces were systematically 

destroyed and razed (Couture 2002; Couture and Sampeck 2003).  

 In the central Peruvian highlands, the Wari collapse was roughly contemporaneous and 

tentatively connected to the collapse of Tiwanaku, linking Titicaca Basin culture history into a 

broader Pan-Andean culture history.  By A.D. 1000 many Wari sites were abandoned and 

populations declined (Covey 2008:292). Wide-spread political disintegration marks the end of 

the Middle Horizon Period throughout the central and southern Andes.  

The Late Intermediate Period in the Land of the Colla 

 The end of Tiwanaku marks the beginning of the Late Intermediate Period around A.D. 

1100. Legends of this era were recorded by several Spanish chroniclers in the 16th and 17th 

centuries. They wrote down chronicles described by Inca informants about the warring ethnic 

groups, or legendary señorios, of the circum-Titicaca region before the Inca conquest of the 

region around A.D. 1450. Researchers in the 20th and 21st century have mined these literary 

works in order to construct a culture history of the region during the LIP (Arkush 2011; Hyslop 

1976; Julien 1983; Murra 1968; Stanish 2003). Both Spanish and Inca ethnocentric perspectives 

bias what was recorded in these reports. For example, the Inca often sought to disparage ethnic 

groups they conquered (Stanish 2003:207). Furthermore, the centuries that elapsed between the 

Late Intermediate Period and the colonial era further warped these oral histories (Arkush 

2011:16).  By calibrating the chronicles with archaeological data, researchers have begun to shed 

a great deal of light on the LIP.  
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 According to Guamán Poma de Ayala (1980 [1616]) the Late Intermediate Period was 

referred to by the Inca as the auca runa, or the time of war and warriors.  From northern Chile 

and northwestern Argentina all the way to the northern highlands of Peru there is archaeological 

evidence that populations abandoned valley-bottom urban centers and moved during the LIP to 

fortified hilltop locations (Arkush 2006; Covey 2008; Parsons and Hastings 1988). 

Accompanying this shift in settlement pattern, there were dramatic transformations in political 

power, ritual, craft production, and daily lifeways. These cultural trends are also mirrored in 

developments in the altiplano. Following the collapse of Tiwanaku, most of the population in the 

region dispersed across the landscape settling in small hamlets and villages (Albarracin-Jordan 

1992:277-284; Bandy 2001; Bauer and Stanish 2001; Stanish 1994:322). Warring ethnic groups 

staked their claims over regions in which they resided. The largest ethnic groups in the Titicaca 

basin were the Colla, in the northwest basin, and their rivals the Lupaca, who lived in the 

southwest area of the Titicaca Basin (Arkush 2011:2; Hyslop 1976; Stanish 2003:208). Most 

chronicles consider the Colla the larger and more powerful of the two groups (Arkush 2011:2-3; 

Julien 1983:40-41; Tschopik 1946:3).  

 According to the chronicles, power throughout the Andes was no longer centralized; 

rather, war leaders, referred to as sinchis, only temporarily held sway during periods of war (see 

Arkush 2008:17). At the same time, the Colla were said to have possessed military power that 

rivaled the early Inca Empire (Betzanos 1996 [1557]:93). Fifteenth century Inca indigenous 

informants recounted that before the Inca conquest, a great lord of a hereditary dynasty named 

Zapana ruled over the Colla (Julien 1983:36-37), and his power as a leader surpassed those of 

contemporaneous neighboring lords, such as the Lupaca (Arkush 2011:39).  The power that 

Zapana held over the Colla was not dictatorial.  Rather, in times of battle Zapana was required to 
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solicit assistance from “subordinate and allied warlords” that were the leaders of their respective 

hilltop dwelling communities (Arkush 2011:41-42; Cieza de León 1985 [1553]:157).  Most of 

the time, though, independent villages looked after their own well-being. This thread of history 

indicates that Colla settlements maintained a certain amount of autonomy but were able to 

amalgamate their power for defensive militaristic activities. There is evidence that warfare in the 

Andes was carried out only during the dry season after fields were harvested (D'Altroy 

2002:207; Rostworowski de Diez Canseco 1999:75). With low labor needs on the home front 

between planting cycles, farmers transformed themselves into warriors, and sinchis temporarily 

garnered their power to carry out a season of battles. With the onset of the rains, warriors may 

have then returned their attentions to tending their fields and power was redistributed among 

community members.  

 Sacred architectural forms built and used by residents in the region since the Formative 

Period no longer served ceremonial functions. In fact, Stanish (2003:199) reports that the sunken 

court at the site Palermo was used as a camelid corral during the LIP. The production of 

Tiwanaku vessels and motifs that persisted for over a millennium during the Middle Horizon 

declined through the early part of the LIP and ceased all together by A.D. 1150 (Janusek 

2004a:207; Stanish 2003:207). These data signal a departure from long-held ceremonial 

institutions and an abandonment of previous religious practices and perhaps even beliefs. 

Additionally, instead of large serving vessels used for communal meals, small cooking pots and 

serving vessels become standard kitchenware during the LIP (Janusek 2003). The social 

landscape was fragmented to the point that residents no longer feasted together. Rather, meals 

were primarily shared among small family groups.  
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 Along the same lines, mortuary traditions changed during the LIP. Residents throughout 

the altiplano began mummifying their ancestors and placing them in above ground structures 

called chulpas (Arkush 2008:27; Stanish 2003:229-235). These structures have small doorways 

and niches surrounding the base of the inside that served to house several mummy bundles. 

Arkush (2008:27) suggests that the accessibility of the chulpas indicates offerings and 

ceremonies were regularly carried with the dead. There is a high degree of variability in 

construction material, size, and form of chulpas throughout the altiplano. Some structures are 

round, others are square, some are made of cut stone, and yet others are made of adobe (Stanish 

2003:230-231). Often located on prominent escarpments near settlements, chulpas may have 

served as fixed symbols of ancestral claims to territories. Individuals were also interred in cist 

tombs (one of the few cultural traditions that continued from the Middle Horizon), and groups of 

individuals were buried in slab-cist tombs during the LIP (Arkush 2011:27). New mortuary 

practices signaled the ushering in of new belief systems and traditions during the LIP.  

 Bioarchaeological evidence from throughout the highland Andes indicates increased 

violence and perimortem trauma during the LIP that conform to legendary descriptions of violent 

warfare. In the collapsed Wari heartland in the central Andes, researchers report of significant 

increases in LIP skeletal evidence for warfare including cranial trauma and wounds among men, 

women, and children (Kurin 2016; Tung et al. 2016). Researchers also note pervasive structural 

violence as evidenced in a diminished LIP diet as a result of limited access to a variety of foods.  

 In the southern Andes of the San Pedro de Atacama Desert there is similar evidence of 

skeletal trauma dating to the LIP (Torres‐Rouff and Costa Junqueira 2006). Both ethnohistorical 

accounts and archaeological evidence indicate Colla and Lupaca history is fraught with inter- 

and intragroup violence and conflict (Arkush 2005, 2011; Hyslop 1976; Tschopik 1946:3). In the 
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altiplano 15% of the adult skeletons found in a cave associated with an LIP Lupaca site show 

evidence of cranial trauma associated with violence (De la Vega et al. 2005). Similarly, all nine 

skeletons dating to the LIP found near the western shores of Lake Titicaca show evidence of 

cranial and post-cranial trauma that appears to be inflicted by sling stones and mace heads 

(Juengst et al. 2015). Without a doubt, combat during the LIP was violent, bloody, and deadly. 

 Contemporaneous with this increase in traumatic violence, throughout the highlands 

during the LIP residents retreated to live in defensive settlements (Arkush and Tung 2013:316-

318). These settlements varied in form and size from small refuges to large, permanent, fortified, 

hilltop villages, and there is little evidence of central planning or forethought in their layout 

(Arkush 2008; Covey 2008:293). In the Titicaca Basin there was, however, a great degree of 

planning that went in to where hillforts were built. Pukaras are located on prominent hilltops 

within view of each other. Networks of intervisibility between pukaras allowed residents to 

signal to one another with fire smoke or other methods (Arkush 2008:159-161). Through these 

visual lines of communication, residents could alert allies living at other pukaras to an 

encroaching enemy, raids, or they could even call for reinforcements. These data indicate the 

Colla made choices in the location where they lived to decrease the threat of violent conflict.  

 In the Titicaca Basin, pukara construction, modification, and use intensified towards the 

latter part of the LIP.  Based on a series of 43 radiocarbon dates and a refined ceramic 

chronology, Colla forts were primarily used from A.D. 1300 to 1450 (Arkush 2011:183-185). 

These data are consistent with trends throughout the Andes that indicate warfare intensified 

toward the latter years of the LIP (D'Altroy 2001:89; Hastorf et al. 1989:87).  
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The Late Horizon Period 

The end of the Late Intermediate Period and the beginning of the Late Horizon Period in 

the Titicaca Basin is marked by the conquest of the region by the Inca around A.D. 1450 

(following Rowe 1945:65). Conquered in battle by allied forces of the Inca and the Lupaca, the 

Colla were forcibly incorporated into the Inca Empire. Around A.D. 1471 the Colla rebelled 

against Inca subjugation, and intense bloody conflicts reportedly ensued in the region for almost 

three years (Rowe 1942; Spurling 1992). Tenacious Inca forces eventually prevailed, Colla 

pukaras were abandoned, and remaining populations nucleated in villages located strategically 

on Inca trade routes (Arkush 2011; Julien 1983; Stanish 1997).  The capital city of the Colla 

region, called Huatuncolla, gained prominence as a way station and center of trade located on the 

main highland Inca road (Hyslop 1984:120-121; Julien 1983). Surviving Colla people and their 

offspring participated in the mit’a system by provisioning the Inca Empire and their army with 

surplus foods (Murra 1986:52). Socially, politically, and economically the Colla were integrated 

into the Inca Empire until the Spanish conquered the Andes approximately 90 years later (Rowe 

1945). The power and prestige that the Colla once held in the altiplano was said to have been 

honored in the name for the entire southern quarter of the Inca Empire: Collasuyo or “quarter of 

the Colla” (Stanish 2003:237). 

Ayawiri: The Natural and Cultural Setting 

Ayawiri is one of the largest LIP pukaras in the Titicaca Basin.  Ongoing research at the 

site has helped to unravel the social, political, and civic-ceremonial lifeways of the LIP. 

Furthermore, research at the site elucidates the impact of warfare on residents living in the 

region.  
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Ayawiri is located in the province and department of Puno. The site is located 6.5 km 

south of the town Vilque straddling the districts of Tiquillaca and Vilque. The majority of 

Ayawiri is located on the Tiquillaca side of the district border pertaining to the community of 

Chila.  The UTM coordinates for the site are UTM 365950E, 8249800S (WGS84). The fortress 

covers over 13 hectares of the southern portion of a flat mesa, and it is walled on the northern 

side (Figure 3.2). Short walls, terrace walls, and cliff faces define the western, southern, and 

eastern perimeter of the site. There are three defensive walls measuring between 1.5 m and 2.4 m 

high protecting the northern approach to the site with staggered entrances that Arkush (2011:84). 

Parapets and sling stones found along these walls point to the defensive function of the site.  
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Figure 3.2: Map of the fortified residential area at Ayawiri. 

Created by Proyecto Machu Llaqta and rendered by E.N. 

Arkush. 

 

Arkush (2011; 2012) and Proyecto Machu Llaqta have identified over 1,100 LIP 

structures within the fortification at Ayawiri. These structures are grouped together in 

approximately 120 residential compounds, divided into sectors by stacked-stone elevated 

passageways or causeways. One of these causeways runs from north to south, and two more 

intersect the residential compounds from east to west. The approximately 120 residential 

compounds are defined by 1 to 2 m stacked-stone walls that encompass on average between four 
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to seven house structures. Although only about 100 compounds contain architecture; the rest are 

empty. Within the residential compounds, there are surface remains of at least 660 larger 

structures and 452 small storage structures (Arkush 2011:114; 2015). Structures are clearly 

identifiable when walking over the site today, due to the prominent remaining circular outlines of 

stone foundations. Based on the number of identified structures, Arkush (2011, 2015) estimates 

at least 1,000 to 2,000 Colla people lived at Ayawiri. While the architecture and location of the 

site ensured the safety of such a large population, there is not a water source within the site’s 

walls. Water, necessary for the survival for camelid herds and humans alike was probably 

required a constant labor force. Like many other pukaras in the region (Arkush 2008:93), 

residents and their livestock had to travel 20 to 45 minutes to the nearest spring or river for daily 

drinking water needs.  

Previous Research 

 Ayawiri was first investigated in the early 1970’s by Felix Tapia for his Bachelor’s thesis 

(Tapia Pineda 1973, 1993).  He excavated 40 structures at the site in five different compounds. 

However, he did not produce a map of these excavations, so we do not know exactly where he 

dug. Tapia describes finding abundant charred bone, smashed ceramics, axes, hoes, and round 

stones that were probably sling stones. Since he found animal bone and broken ceramics without 

evidence of cooking, he determined that the structures were only used to ritually slaughter 

animals. Furthermore, he concluded that there was no domestic architecture at the site. While 

Tapia’s interpretations do not hold up today, his descriptions of the stratigraphy and artifacts he 

encountered provided the framework for research carried out by Proyecto Machu Llaqta at 

Ayawiri 
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 The site was visited again several times from 2001 to 2003 by Pukaras de los Collas 

directed by Dr. Elizabeth Arkush who was surveying LIP pukaras for her dissertation research 

(Arkush 2005). She mapped the extent of the site, the defensive walls, the compound walls, the 

apparent structures, and petroglyphs at the site. She also dug a few test pits in order to recover 

ceramics used to relatively date the site.  

 Building on this research, in 2009 and 2010, Dr. Arkush launched Proyecto Machu Llaqta 

(PML) by conducting full-covered pedestrian survey across 80 km2 surrounding Ayawiri. In 

2011 and 2012 PML carried out excavations in six residential compounds and two cemeteries 

associated with the site. I participated in these excavations and oversaw recovery of botanical 

remains. Here I outline general information about the site. In Chapter Six and Seven, I provide 

details of stratigraphy and particular contexts from these excavations as they relate to the 

macrobotanical findings included in this dissertation.  

Residential Compounds 

 Many pukaras in the Colla region are composed of concentrations of house and storage 

structures scattered across a hilltop and surrounded by one or more defensive walls (Arkush 

2008:98). However, at Ayawiri, there are stacked stone walls that separate groups of house, 

kitchen, and storage structures. Each compound has on average between four and seven house 

and kitchen structures and on average four to five storage structures (there are 0.66 storage 

structures in each compound per house structure, but there’s a lot of variability) (see Figure 3.3). 

This indicates that more than one nuclear family resided in each compound (Arkush 2011:114). 

House and kitchen structures are situated along the south and western side perimeter of 

compounds, and storage structures are generally found along the eastern and northern areas.  
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This layout left open space in the center of each compound that likely functioned as a patio 

where families interacted with one another and food preparation and craft production activities 

were carried out. There are several compounds in the northern sector of Ayawiri that lack any 

sort of architecture. Arkush (2011:107) believes these areas were probably used as corrals for 

camelids. They could have also been used as small civic gathering space.  

 

Figure 3.3: Map of a typical compound at Ayawiri (rendered by E.N. Arkush.). Note the 

structures along the perimeter of the compound and the patio space in the center. 

Social Diversity 

 Prestige goods, collective space, or markers of wealth that were common and discernible 

in the archaeological record in earlier, hierarchically-organized eras of the altiplano are nearly 

absent at Ayawiri. At the site, there is no evident public space or civic architecture where 

political leaders would have gathered, except for the cemetery (Arkush 2011).  There is no 

sunken court, elite housing sector, or raised platform. This signifies there is no strong evidence 

for hierarchically organized political organization at the site. Rather, the space at the site is 
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largely delineated into multi-family household compounds.  These data indicate that daily life 

was predominantly organized at the household level. Sociopolitical relationships at the site were 

probably negotiated between heads of households and labor needs were doled out among 

families living together in compounds.  

Kitchen Houses, Non-Kitchen Houses and Storage Structures 

Within each compound there are larger and smaller house structures and storage 

structures with distinct compact and, sometimes, clay floors littered with artifacts. Each house in 

a compound has a specific function. For example, during excavations we found that smaller 

houses often have hearths and other utilitarian artifacts indicating they are “kitchen structures” 

(Arkush 2014). Larger houses are devoid of food preparation materials, such as grinding stones, 

indicating they served a different function than kitchen structures (Arkush 2014). We refer to 

these structure as “non-kitchen house structures.” Some compounds have more than one kitchen 

structure indicating that perhaps more than one nuclear family resided together. Compound walls 

potentially demarcated the residence of extended family kin groups. House and kitchen 

structures are oriented around the perimeter of each compound with the remnant of doorway 

threshold stones facing inward toward central patios. Each compound has several storage 

structures that measure less than 2 m in diameter. These structures are composed of a layer of 

loose, uneven rocks surrounded by a circular stone foundation that was probably covered in a 

perishable superstructure. The rocky foundation probably ensured drainage and encouraged air 

circulation around stored crops (Arkush 2014). This feature of the storage structures is 

particularly important for preventing spoilage of potatoes and other tubers with high water 

content that are very susceptible to mold growth.  
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The Cemetery 

 To the north of the Ayawiri residential sector between fortification walls, there is a 

cemetery containing more than 120 slab-cist tombs. There is also a cemetery located at the 

southeastern foot of the mesa in the valley bottom. Excavations carried out in 2011 by Matthew 

Velasco confirm stylistic and temporal consistency between the artifacts and burial styles in 

these cemeteries (Arkush 2014). He found that tombs contained one to five individuals with 

modest grave goods, including complete ceramic vessels. While there is no space large enough to 

gather the entire community together within the residential sector at Ayawiri, the northern 

cemetery is large enough to serve this function if an occasion arose.  

Artifacts and Ecofacts found at Ayawiri 

 Artifacts and ecofacts found within the residential sector at Ayawiri elucidate quotidian 

life during the LIP. For example, grinding stones, utilitarian ceramics, chert blade, and spindle 

whorls are evidence of normal Andean women’s work, consisting of cooking and textile 

production. Copper and bronze objects such as a chisel, tupus (Andean shawl pins), a tumi (an 

Andean knife), bell-shaped bronze pendandts, and even a ring shaped like a butterfly were found 

in several kitchen and non-kitchen house structures at the site (Arkush 2014). Camelid bones 

found in just about every compound at the site (Arkush 2014) indicate that Ayawiri residents 

were pastoralists and llama meat was an important food source for the community. Additionally, 

the recovery of a few deer bones and antlers indicate that residents occasionally hunted.  
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Ecotopes at Ayawiri 

 Within the immediate landscape surrounding Ayawiri, I have identified three distinct 

ecotopes (Figure 3.4).  These ecotopes will be of relevance as they elucidate human and herd 

animal landscape use through macrobotanical analysis in Chapter Six and Seven.  First, 

agricultural terraces flanking the site, which are still farmed, contain shrub plants and crop weed 

companions when not in cultivation and crops and weed companions when in cultivation. 

Indigenous crops grown today, and probably in prehistory, on the terraces include quinoa 

(Chenopodium quinoa Willd.) and tubers such as oca (Oxalis tuberosa Molina) and potatoes 

(Solanum tuberosum L.).  Today local farmers can be seen herding their llamas and sheep 

throughout the terraces, particularly on fields left in fallow.  

 

Figure 3.4: Map of the ecotopes surrounding Ayawiri. 
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 Second, to the northeast of the site, there is a floodplain called a chilapampa that floods 

in the rainy season. The saline soils in this valley have very low agricultural potential today. 

However, relic raised fields are distinguishable in satellite imagery in the distant eastern part of 

the valley indicating a vast area of this land was cultivated in the past. While no one living near 

the site today farms in the floodplain, pastoralists frequently graze their herds there on wild 

vegetation. This area is composed of predominantly of bunch grasses (e.g., Stipa ichu (Ruíz & 

Pav.) Kunth).  

 Third, to the south and west of Ayawiri, there is a swampy ecotope with a year-round 

river flowing through it, the Vilque River, which is also abundant in bunch grasses.  Parts of this 

river channel into a rich, swampy bofedal, used as a pasture for herd animals today. Modern 

pastoralists water their llamas and sheep intensively throughout this wetland ecotope. The 

bofedal is rich in riverine plants; however, no Cyperaceae grows there today (Cyperaceae does 

grow near Lago Umayo, a several hour walk north of the site). Today, a big ranch, the Hacienda 

Tercumilla, grazes their cattle herds on the shores of this bofedal.  

The Late Formative Occupation at Ayawiri 

 Evidence of a Late Formative occupation at Ayawiri was found in strata below the LIP 

occupation in five of the six residential compounds excavated by team members of Proyecto 

Machu Llaqta (Arkush 2014). Analysis of artifacts from Late Formative levels revealed that 

obsidian was much more plentiful during this time period than the LIP at the site. This indicates 

that long-distance trade or procurement from Chivay, the main obsidian source for the Titicaca 

Basin, was stronger during the Late Formative.  
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The most deeply stratified and complex Late Formative occupation at the site was found 

in the southern part of Ayawiri. In this location excavators uncovered numerous fill events 

(Arkush 2014). Additionally, they found a floor with a large boulder placed on top of it during 

the Late Formative that measured over 2 m in diameter. In fill, excavators found evidence of 

probable feasting remains that included large camelid bones, a deer cranium, burned bone, ash, 

and carbon. Arkush (2014) determined these Late Formative fill events in the southern part of 

Ayawiri were often domestic, measured less than 30 cm thick, and were efforts to level the 

foundations of houses. The team did not find any evidence of typical large-scale Late Formative 

ceremonial architecture at the site. Nonetheless, it is possible that communal and ceremonial 

architecture are still buried beneath the apparent and wide-spread LIP occupation.  

While we are confident that the Late Formative domestic occupation at Ayawiri spanned 

across a large portion of the site, the context and nature of this this occupation remains unclear 

with the available evidence. Furthermore, many of the Late Formative contexts are from fill 

events, where the architecture and use of that space is still unresolved. Therefore, I have focused 

the scope of my dissertation research on analyzing materials in order to better understand the LIP 

occupation at Ayawiri.  

Discussion 

Archaeologists have just begun to focus on studying the Late Intermediate Period in the 

Lake Titicaca Basin over the past decade. This in part due to having been deemed an 

Intermediate Period betwixt and between the reign of the impressive Tiwanaku and the Inca.  

Recent research, particularly survey and geographic information analyses by Arkush (2005, 

2006, 2008a, b, 2010, 2011), have demonstrated the importance of studying the causes of 
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consequences of warfare and the impact the LIP had on later history in the region. In 

collaboration with Proyecto Machu Llaqta, in this dissertation, I aim to clarify foodways and 

agricultural strategies at Ayawiri during the LIP.   
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Chapter 4. Theory: Coping with Risk in the Altiplano 

and Adapting Farming Strategies during the LIP 
 

 

 

 In Chapter Four, I present an overview of how residents have adapted to and coped with 

the risks ever present in the altiplano. This chapter begins with a summary of the agricultural and 

economic history of the south-central Andes. The long process of the domestication of plants and 

animals in the harsh montane environment was a necessary step in enabling residents to cope 

with the arduous ecology and the ability to settle on the landscape. The agricultural foundations 

of life in the region set the stage for the development of long-lasting social complexity. Then, I 

turn my attention to the importance of zonal complementarity or trade and exchange in the 

Andes, an age-old insurance policy that ensures residents will survive multiple years of lean 

yields. Next, I describe the various ways and time periods that altiplano farmers domesticated 

the landscape for agricultural purposes. Central to this discussion is the methods researchers use 

to date fields. Lastly, I describe risk management theory and how it relates to the research 

problem at hand.  

Sedentary life and the development of cities and sociopolitical authority in the Andes 

were made possible by the production of an agricultural surplus that fed the ever-growing 

population. This means the history of agricultural strategies in the altiplano has been at the heart 

of archaeological research projects for decades. Particularly in the last 30 years, researchers have 

shed light on how ancient farmers coped with the harsh ecology and unpredictable weather in the 

altiplano in three ways. First, several species of indigenous grains and scores of tubers were 

domesticated in the Andes alongside llamas and alpacas (Hastorf 2008; Mengoni and 
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Yacobaccio 2006; Pearsall 2008; Piperno and Pearsall 1998). Second, residents in the altiplano 

have engaged in long-distance trade with neighbors and family members (Murra 1972). In years 

of plenty, symbolically important commodities, such as maize and coca, were traded through 

supply networks. In lean years, long-distance trade functioned as an insurance policy where 

residents could acquire basic food staples from trade partners living in ecozones that prospered.  

Third, an engineered landscape reduced environmental risk and increased predictability in yearly 

crop yields. Farmers domesticated the landscape and made it more congenial for humans by 

constructing raised fields, expanding natural stands of water called bofedales, improving sunken 

rain-fed depressions called qochas (or cochas), and terracing hillsides. Raised fields and to a 

lesser extent qochas have been the foci of several archaeological investigations that relate to the 

development of sociopolitical complexity (Bandy 2005; Erickson 1992, 1993, 2000; Flores 

Ochoa 1987:277-278; Janusek and Kolata 2004; Kolata and Ortloff 1996:113: Smith et al. 1968), 

whereas research on terraces has been largely overlooked in the altiplano.  

Domestication and Agricultural Intensification in the Titicaca Basin 

Crops 

The primary native crops grown in the altiplano are quinoa, other Chenopodium spp. 

grains, potatoes, and other tubers. Farmers in the region have cultivated these crops for at least 

4,000 years (Hastorf 2008; Pearsall 2008; Piperno and Pearsall 1998). Remains of these plants 

have been well documented in archaeological contexts throughout the Titicaca Basin (Table 4.1).  
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Table 4.1: Macrobotanical remains from the Lake Titicaca Basin. 

  
Ubiquity or 

percentage 

presence         

Site Chiripa 
Kala 

Uyuni 
Tiwanaku Tiwanaku Tiwanaku 

Time period 

Formative 

(1500-100 

B.C.E) 

Formative 

(1500 

B.C.E-

C.E. 200) 

Late 

Formative 1 

& 2 (200 

B.C.E.-C.E. 

500) 

Middle 

Horizon 

(Tiwanaku 

IV C.E. 

500-800) 

Middle 

Horizon 

(Tiwanaku V 

C.E. 800-

1150) 

Number of 

samples N=560 N=213 N=24 N=113 N=204 

Reference cited 
Whitehead 

2007 

Bruno 

2008 

Wright et al. 

2003 

Wright et al. 

2003 

Wright et al. 

2003 

Crop plant remains     

Chenopodium 

spp.   99 94/98* 96 99 92 

Tuber fragments 67 92 16 6 3 

Maize 0 0.4 20 43 24 

Crop companion weedy plant remains       

Fabaceae 59 92 ** ** ** 

Relbunium sp.  42 71 ** ** ** 

Rubiaceae 0.18 51 ** ** ** 

Cactaceae 23 10 ** ** ** 

Malvaceae 93 97 ** ** ** 

Verbena sp.  37  ** ** ** 

Riverine and lacustrine plant remains   

Cyperaceae 64 91 ** ** ** 

Herbaceous plant remains         

Poaceae 92 98 40 57 26 

Plantago sp.  4 11 ** ** ** 

Other         

Wood 79 99 80 91 88 

Dung 13 8 88 98 91 

*Includes Chenopodium quinoa and Chenopodium spp. respectively 

**Authors lumped these taxa into single weedy category   

 

Several varieties of chenopods are cultivated today in the altiplano including numerous 

varieties of the globally celebrated species Chenopodium quinoa (quinoa) and the drought 

tolerant Chenopodium pallidicaule Aellen (kañawa). Thought to be domesticated in the region 

approximately five millennia ago (Planella et al. 2015:59), chenopods are thus well adapted to 

the inter-annual variation in the climate and the harsh ecology of the altiplano. Quinoa in 

particular, was a staple food crop to populations residing on the southwestern shores of Lake 

Titicaca by 1,500 B.C. (Bruno and Whitehead 2003), and another domesticated variety was 
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grown in the southern altiplano by 1,200 B.C. (Langlie et al. 2011). As farmers intensified 

production during the Formative Period, chenopods’ social and ritual importance increased 

(Bruno 2014; Bruno and Whitehead 2003), and by Tiwanaku times they were one the most 

ubiquitous and abundant crops recovered from all archaeological contexts (Wright et al. 2003).  

Several tubers and roots were domesticated or semi-domesticated as food crops in the 

Andes, including the potato, oca, mashwa (Tropaeolum tuberosum Ruíz & Pav.), ulluco (Ullucus 

tuberosus Caldas), and maca (Lepidium meyenii Walp.) (Pearsall 2008). These plants are adapted 

to environments with poor soils, constant erosion, and unpredictable rainfall and temperatures. 

These are all environmental characteristics of the steep slopes of the Andes (Flores et al. 

2003:161). The domestication of tubers is difficult to document archaeologically, since they 

preserve poorly and are rarely recovered. Genetic analyses indicate potatoes (Spooner et al. 

2005) and oca, a sweet tasting root tuber (Emshwiller and Doyle 2002), originated in northern 

Bolivia and southern Peru. These studies consistently name the altiplano as a geographic locale 

where domestication occurred. Indeed, native crops were naturally adapted to the climate and 

ecology of the altiplano long before humans began selecting and cultivating them as crops.  

After the residents of the altiplano were conquered by the Inca around A.D. 1450, people 

who resided in the Titicaca Basin were famously productive potato and quinoa farmers and 

camelid herders according to ethnohistoric sources (Murra 1968:52). These commodities were 

provided as staple finance to the Inca Empire. 

Camelids 

Along with these crops, two species of camelids were domesticated in the Andes: the 

llama (Lama glama L.) and the alpaca (Vicugna pacos L.). These animals have long been 
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exploited as sources of meat, hide, fiber, dung for fuel, and beasts of burden (Mengoni and 

Yacobaccio 2006:228). The wild relatives of domesticated camelids were hunted throughout the 

Archaic Period of the southern Andes. According to Mengoni and Yacobaccio (2006:239), 

camelids represented 85-100 % of the faunal assemblage in the south-central Andes from 5300 to 

3000 B.P. This close relationship between humans and their prey resulted in camelid 

domestication. With their larger and sturdier frames and ability to thrive on sparse pasturage 

typical in the altiplano, llamas have been a primary component of the economy in the region 

since the Archaic Period.  

Camelid pastoralism has long shaped lifeways in the altiplano including how 

communities organize daily activities, settlement patterns, and community organization centered 

around tending to herds.  Often anthropologists think of pastoralists as primarily nomadic 

peoples who mobilize their herds to seasonally graze in the most fertile pastures.  However, in 

ethnographic researchers have found that among pastoralists some groups relocate their herds 

and settlements several years apart, rather than annually (Gifford-Gonzalez 2005:188). In the 

altiplano today, pastoralists are sedentary and semi-sedentary and they have long supplemented 

their own and their herds’ diets with homegrown crops. Similarly, in lean years, crops can be 

substituted for llama meat. This crop-meat combination affords farmers in the region higher 

degrees of inter-annual resilience.  

Intensifying Agropastoralism in the Andes 

 Farmers in the altiplano have had two local options to increase their resource base to 

offset food shortages in lean years. They could intensify crop production or increase camelid 

herd size. To intensify agricultural production, farming families could bring more land under 
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cultivation or decrease fallow time. Today, farmers in the region prefer to let their fields lay 

fallow for seven years. To intensify production, they could let fields rest for shorter periods of 

time between plantings (Guillet 1987:87). While these strategies increase output per unit of land 

over the short-term, reducing fallow periods in the altiplano leaches fertility from already 

nutrient-poor soils, leading to decreased yields over the long-term (following Boserup 1965). To 

make this system more sustainable, camelid herding on fallow plots provides much needed 

fertilizer to soils (Guillet 1987:84). However, if herd sizes are increased too much (or fallows are 

decreased too much) problems such as overgrazing and erosion can arise (Browman 1987).  

 To increase herd size, Kuznar (1991) ethnographically documented that herds belonging 

to extended families were grazed collectively on land belonging to nuclear families. Doing so 

ensured that pasturage had the chance to rejuvenate between grazing periods. Indeed, herding in 

the Andes is often organized at the supra-household level because herding a few animals requires 

the same amount of labor as tending to a herd of hundreds (Browman 1987:139). Indeed, I 

witnessed two children around the ages of eight years old bringing in a large mixed herd of 

llamas and sheep near Ayawiri using nothing but slings to drive their animals. At the same time, 

pastoralists do not want to increase herd sizes too much. Highland pastoralists consciously work 

to keep herds low enough to prevent overgrazing, erosion and soil compaction (Browman 1987). 

Zonal Complementarity: Trade Relations and Insurance 

 Andean peoples have long been engaged in trade, exchange, importation, and the 

circulation of goods with family, friends, and neighbors across vertical biotic regions as a type of 

insurance policy to overcome local ecological and climatic challenges. During lean years, 

agropastoralists can rely on goods produced in distant productive ecologies. Indeed, Andean 
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political economy frameworks are anchored in the idea that people have participated in a web of 

trade and exchange with, and colonization of diverse ecologies for millennia. Murra (1968) 

developed an economic model of accessing and distributing resources based on documented 

European observations made of indigenous populations, the Lupaca, living in the altiplano 

during the 16th century.  

 Camelid caravans have played a critical role in these webs of socioeconomic interactions 

in historic eras, transporting large quantities of bulk goods across the cordillera from the coast to 

the Amazon traversing numerous vertical ecologies (Browman 1971:193-194). Extending this 

model back in time, it has been suggested that as the importation and circulation of goods 

intensified across regions, this system produced complex relationships between individuals and 

communities and stable pristine states in several locations in the Andes. These caravans formed 

supply chains across the cordillera starting in the Formative Period. Material goods produced in 

distant regions have been found in altiplano Formative Period contexts including salt, obsidian, 

and craft items (Burger et al. 2000; Janusek 2008:72; Rivera 2001:21-24; Stanish 2003; 

Tripcevich 2010). Similarly, altiplano goods have been found in distant regions including dry 

coastal valleys, such as Moquegua, the Atacama Desert of northern Chile, and humid eastern 

valleys including Huancané and Putina (Goldstein 2000; Mujica 1985). During the Middle 

Horizon, some researchers believe the role of cities, such as Tiwanaku, was to act as hubs 

facilitating trade and exchange for traveling llama caravans (Browman 1978, 1981; Ponce 

Sanginés 1981, 1991). The circulation of goods between the Tiwanaku core and peripheral 

colonies in the lowlands intensified during the Middle Horizon (Browman 1978). Although 

llama caravans continue to facilitate low-volume trade and exchange in parts of the Andes today, 

trains, airplanes, and trucks provide transport in the modern era. 
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 The high altitude, dry and cold weather, and soils with high saline content make it nearly 

impossible to grow maize, coca, and other symbolically valued plants in the altiplano, and thus 

identification in the archaeological record implicates these perishables were brought into the 

region by humans via exchange networks. Maize has proved to grow in small quantities in 

confined ecotopes around Lake Titicaca where nighttime frosts and daytime temperatures are 

mediated by lake temperatures; however, this does not disprove that it has long been traded into 

the region from afar. The earliest evidence of maize in the region was identified by Logan and 

colleagues (2012). They found microbotanical remains in ritual ceremonial contexts, dating back 

to the Middle Formative Period (800-250 B.C.) recovered from the ceremonial mound at Chiripa. 

During the Middle Horizon, imported maize was a cornerstone of the local diet for people who 

resided at Tiwanaku. It was there that researchers found macrobotanical maize remains to be the 

second most ubiquitous crop type recovered (Wright et al. 2003). These researchers argue the 

abundance of maize at Tiwanaku could only have been achieved through importation.  Maize 

cupules, glumes, and kernels have been found in elite, commoner, domestic, and sacred contexts 

at Tiwanaku.  Consumed as chicha beer, maize also served the function as an everyday and 

ritually important beverage. Further research has revealed maize was brought into Tiwanaku 

from Cochabamba and Moquegua, based on distinct morphologies of cobs and kernels of 

archaeological specimens recovered from Tiwanaku (Hastorf et al. 2006).   

 Coca, a mild stimulant, was also imported through trade networks from the eastern slopes 

of the Andes in the lower elevation yungas biotic zone.  Coca was an important ritual plant at 

Tiwanaku (Hastorf 2008:550), and continues to be imported to the region in significant quantities 

today. Perishable goods likely traded through camelid caravans mostly served ritual and 

symbolic functions, such as maize partaken in the form of chicha beer, or coca used as a 
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stimulant during community gatherings. However, in lean years when crops failed due to local 

climatic challenges, altiplano residents may have relied on these exchange networks to 

supplement their basic subsistence needs.  

Domesticated Landscape Types in the Lake Titicaca Basin 

In order to make the harsh Lake Titicaca Basin ecosystem more amenable to 

agropastoralism, ancient farmers engineered the environment. Farmers built raised fields and 

turned ponds into sunken gardens in valley bottoms, they expanded wetlands along lakes and 

rivers, and they terraced hillsides. These field systems each have unique features that increase 

crop yields and provide buffers against climatic perturbations.  

Raised Fields 

 The Titicaca Basin is estimated to contain one of the largest concentrations of pre-

Colonial raised fields in the New World (Turner and Denevan 1985). In Quechua these fields are 

called suka collas, in Ayamara waru (or waru-waru), and in Spanish camellones. Raised fields 

are made up of dug out canals and raised platforms of earth artificially elevated above the natural 

level of soil (Erickson 1992:289). While farmers have abandoned most raised fields since pre-

Colonial times, archaeologists have been able to identify approximately 1,200 km2 of relic-raised 

fields in the region (Kolata and Ortloff 1996:113). These field systems are primarily located in 

areas around Lake Titicaca and other ecotopes that are seasonally inundated with precipitation 

(Erickson 2000:334).  

When field systems are flooded, crops are planted on the earthen platforms (Erickson 

1985:209). Hydraulic infrastructure and the flooding system of the canals are central to the 
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success of raised field cultivation (Erickson 1993:381). Algae that thrives in the canals can be 

mucked out and used as fertilizer to increase the fertility of planting beds. Generally, raised 

fields that have been identified conform to this architectural description; however, the layout of 

canal networks varies from region-to-region (Erickson 2000:333; Kolata and Ortloff 1996:120).  

In the northern part of the Lake Titicaca Basin, researchers have found that raised fields 

were built during the Formative around 1000 B.C. and cultivation continued until A.D. 1476, 

coinciding with the arrival of the Inca conquest of the region (Erickson 1993, 2000). Near 

Tiwanaku in the Southern Lake Titicaca Basin, researchers have found that raised fields were 

constructed during the rise of Tiwanaku around A.D 600, and use significantly dwindled 

between A.D. 1000 and 1476 (Janusek and Kolata 2004:420-421; Kolata 1993:293-294). Why 

were raised fields abandoned in prehistory? Kolata (1993) speculates they were abandoned due 

to a major drought during the Late Intermediate Period. Raised fields are less productive than 

previously thought (Bandy 2005; Swartley 2000, 2002). Additionally, a large amount of labor is 

required to build and maintain raised fields. In the absence of a centralized political authority 

(like Tiwanaku or the Inca) who organized and mobilized farm labor, perhaps there was no 

incentive for local residents to continue farming in this costly way.  

The attention and scrutiny researchers have paid to raised fields in the last three decades 

has shed much light on the history and productive potential of the landscape. Erickson (1982, 

1985, 1987, 1988a, 1992a, 1992b, 1993) Kolata (1986, 1991), and their colleagues have most 

prominently led investigations to unravel the pre-Colonial potential of these earthworks. More 

recently, Swartley (2000, 2002) and Bandy (2005) have contributed a more nuanced 

understanding of the productive capacity of raised fields. This research provides the foundational 

data for understanding the agricultural history that underpinned political developments in the 
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region. Additionally, copious research on raised fields provide a theoretical framework for 

understanding terraces. Furthermore, the methodology previously employed to study raised 

fields, has afforded insights that guided this research on the terraces at Ayawiri.  Throughout this 

dissertation I reference Titicaca Basin raised agricultural fields research, as it is relevant to the 

methodologies I employed, and chronological and theoretical interpretations of the Ayawiri 

terraces.  

Qochas (or cochas)  

In the altiplano any natural or artificial depression in the puna that contains water is 

referred to as a qocha and some have been expanded by humans (Flores Ochoa 1987). They are 

primarily found in isolation; except in the northwest area of the altiplano where there is a 

concentration of qochas that has interlocking canal networks (Erickson 2000). A study by Craig 

et al. (2011) found 11,737 qochas in northern altiplano region of the Rio Pucara-Azángaro 

interfluvial zone. Many of these sunken fields are still used by farmers to grow crops and as 

watering holes for grazing livestock. Like raised fields and terraces, qochas create a small 

microenvironment on the landscape that protects crops from frosts (Erickson 2000:341). 

Qochas are different from raised fields because they rely on rainwater rather than 

groundwater from springs, lakes, or rivers. Qochas, depending on design, permanently or 

seasonally are filled by precipitation. Qocha agriculture does not require large amounts of labor 

to construct or maintain. Indeed, individual families claim ownership and manage up to six or 

seven qochas in the Titicaca Basin today (Erickson 2000:341). Craig et al. (2011) found that 

94% of the qochas in their study area sat on top of lacustrine layers of clay deposited by a 
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Pleistocene paleolake. This clay created a geologically less permeable stratum upon which 

precipitations collects in natural and artificial depressions on the landscape.  

Research on qochas in the northern Titicaca Basin indicates in this region they were 

initially built, expanded, or exploited during the Middle Formative Period based on the recovery 

of ceramic sherds stylistically corresponding to this time period (Craig et al. 2011:2906). These 

qochas were being exploited by at least 500 B.C. and these fields were used continuously up 

until the present day. One of the largest concentrations of qochas in the altiplano is near the Late 

Formative site Pukara (Erickson 2000:341). In the lower Tiwanaku Valley qochas are found in 

close proximity to Early and Middle Formative Period sites dating from 1800 to 900 B.C. 

(Albarracín-Jordan 1996b). The low labor necessary to build, maintain, and farm qochas and the 

small yields from these fields means that there is little chance that state mandate oversaw 

construction or redistribution of harvests. However, this type of agriculture might have provided 

complementary food stores to crops produced in large field systems. Qochas have long been 

used as watering holes for grazing livestock herds and their herders as they travel across the 

region.  

Bofedales 

Found throughout the altiplano, bofedales are managed, and constructed marshes, moors, 

or grassy meadows with standing or running that water collects in the puna (Flores Ochoa 

1987:66). In flat locations or depressions in regions with clay soils the drainage is poor. 

Bofedales are formed when run-off of water from rivers and streams, as well as uphill 

precipitation, snowfields, and glaciers collects in these locations. A reliable water supply 
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encourages natural growth of year-round rich grass stands and sedges that proves essential food 

sources for grazing herds of camelids in the dry season.  

Farmers created and expanded lush bofedales throughout the altiplano by constructing 

small irrigation canals. Canal systems are reinforced and water is rerouted over larger areas of 

land using blocks of sod that take root and form grassy natural water channels (Erickson 

2000:342). Silt reservoirs and silt dams are also built to route running water to form bofedales 

(Lane 2009:172-173). These constructed landscapes need to be constantly maintained, and today, 

bofedales canals are cleaned out once a year (Erickson 2000:342). Today, ownership of 

bofedales is distributed amongst families and passed down patrilineally; however, since the labor 

demands require that silt be regularly removed from the canals, cleaning them requires the 

cooperation of extended families.  

It is thought, based on association with nearby sites, that bofedales in the Illave and upper 

Moquegua River drainages date to the Late Preceramic (2000-1500 B.C.) (Aldenderfer 1998). At 

the time of Spanish conquest, large bofedales supported camelid herds in the Titicaca Basin 

(Guáman Poma de Ayala (1993[1615:780]) of approximately 1.9 million llamas and alpacas 

(Graffam 1992:889). 

Terraces 

 Terracing involves excavating steep hillsides otherwise unsuitable for farming, so that 

flat platforms of earth are formed into viable plots of agricultural land. Terracing guards against 

erosion, moistens the fields by capturing rain water runoff, protects plants from valley-bottom 

frosts, and often increases soil nutrients as compared to conventional agriculture methods (Cook 

1925:108; Dick et al. 1994; Inbar and Llerena 2000; Treacy 1989:212).  
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Researchers hypothesize that terraces were first constructed and farmed during the altiplano 

Formative based on their spatial association with sites and they were expanded during the Middle 

Horizon (Albarracin-Jordan 1996a, 1996b; Isbell 1977; Schreiber 2001; Stanish 2003). If this 

were the case, then terrace construction and production would coincide with general agricultural 

intensification that accompanied the rise of regional social complex. However, terrace 

construction might have been precipitated by LIP warfare and pukara habitation. The location of 

LIP settlements adjacent to hillsides has been used as indirect evidence to suggest that the Colla 

farmed terraces located below many pukaras (Arkush 2005:229-230; Stanish 2003:226). My 

research aims to directly clarify the period of construction and/or use at Machu Llaqta in order to 

illuminate the socio-political context of this monumental agricultural engineering feat.  

Throughout the Andes and many parts of the non-industrialized world, terraces still 

provide farmers with stable and sustainable means of agricultural production.  Erickson 

(1992:287) estimates that over 10,000 km2 of slopes were terraced throughout the Andes in pre-

Colonial times. The labor investment required to build and maintain terraces represents a greater 

amount of person hours than other field system type in the Lake Titicaca Basin (Erickson 2000), 

yet very little research has been devoted to studying the design or chronology of construction.  

Dating the Chronology of Field Systems 

Dating the construction, use, and abandonment of any agricultural field system, 

particularly terraces, is inherently difficult (Treacy and Denevan 1994:105). The contexts of 

ceramic sherds and charcoal are mixed into the soil matrix by the annual tilling necessary for 

agricultural production, so using these traditional methods of dating archaeological deposits is 

insufficient (Kolata and Ortloff 1996:183). Nonetheless, several studies have successfully 
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employed various direct and indirect dating methods. These studies highlight the fact that there is 

no singular or generally accepted method to date the antiquity of agricultural fields. Some studies 

employ several dating technologies, whereas others rely on only one. In this section, first, I focus 

on the methodology employed to build a chronology of raised field construction, use, and 

abandonment in the Titicaca Basin. These studies provide locally relevant examples of how to 

date fields. Then I outline the methodologies used to date qochas and terraces in the region, and 

more broadly terraces throughout the Andes.  

Methods used to Date Raised Fields 

In the Lake Titicaca Basin, there have been scrupulous efforts to reconstruct a chronology 

of raised field agriculture. These studies have employed multiple lines of evidence. During the 

conception of my dissertation research, these previous studies provided me with an 

understanding of which methods were locally viable, and which were problematic. Furthermore, 

they provide an interpretive framework for understanding the local chronology of agricultural 

engineering strategies.  

On the northwestern shores of Lake Titicaca in Peru, Erickson’s research (Erickson 1987; 

1993:389; 2000:226) facilitated a chronology for raised field construction.  His chronology is 

based on thermoluminescence dating of ceramics and AMS dates of charcoal collected during 

excavations of raised field complexes. Erickson’s findings lead him to conclude raised field 

construction and use in the region was initiated around 1000 B.C. and cultivation continued until 

A.D. 1476, coinciding with the Inca conquest of the region (Erickson 1993, 2000).   

  On the southern shores of Lake Titicaca in Bolivia, Janusek and Kolata (2004) used AMS 

dating on mollusk shells and carbon recovered from archaeological excavations of relic raised 
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fields to build a chronology of field construction, use, and abandonment for that region.  Based 

on the ratio of carbon samples dating to different periods, Janusek and Kolata (2004:420-421) 

conclude that raised fields were initially constructed in the region around A.D. 600, construction 

and use increased around A.D. 800, and use significantly dwindled between A.D. 1000 and 1476.  

In both Erickson’s, and Janusek and Kolata’s reconstructions, they used datable materials 

found within the matrix of excavated fields to reconstruct a chronology of construction and use.  

The problem inherent to these studies is that terrace soils are purposefully overturned by farmers 

to promote soil fertility, discourage weeds, and encourage crop growth leading to a disruption of 

the stratigraphy of artifacts. Thus, the stratigraphy and contexts where artifacts, such as ceramics 

and carbon, were found in the fill of these fields is susceptible to high degrees of mixing. 

Artifacts could have been deposited in the soils before they were engineered and then mixed into 

the matrix leading to an erroneous interpretation of the antiquity of field systems. Additionally, 

some soil may have been brought in from places where older artifacts were buried, such as 

Formative Period middens. Artifacts from later time periods discarded by passerbys could lead 

researchers to interpret an incorrect delay in the date of abandonment. While the methodologies 

used by these studies are susceptible to producing a false date of construction and abandonment, 

at the very least, they have begun to shed light on the time periods raised fields were in use.  

Kolata (1993) also looked at data derived from the Quelccaya ice cores procured from a 

nearby glacier to pinpoint the history of raised field use in the Titicaca basin.  Specifically, he 

looked at the ice cores for any evidence of significant levels of soil movement in the region. 

While the ice cores provide a particularly refined regional climatological chronology that I 

explained in Chapter Two (see Thompson et al. 1998; Thompson et al. 1979), Kolata’s (1993) 

interpretation is particularly novel.  He determined that increase in sediment deposition in the 
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cores peaked between A.D. 600 and 920.  The increase in soil accumulation is attributed to the 

dust created by earth-moving that would have been required to construct the apparent raised 

fields in the circum-Titicaca region (Kolata 1993:285).  Additionally, Kolata (1993:293-294) 

determined that after A.D. 1000 declining precipitation led to problems with the irrigation and 

groundwater that fed the raised fields. He postulates that raised fields were subsequently 

abandoned during the fall of the Tiwanaku state. While these interpretations of the Quelccaya ice 

cores are tantalizing, the data the Kolatas used to make these inferences are indirect and, for the 

time being, inconclusive.  While there were development efforts in the 1990s to bring relic raised 

fields back into cultivation, these projects failed (Swartley 2002). Today, raised fields are not 

cultivated in the altiplano.  

Methods used to Date Qochas 

No direct date has been established for the initial construction of qochas in the altiplano. 

Based on close proximity to dated archaeological sites, Kolata (1993:294) believes qochas in the 

southern Titicaca Basin were in use during the Middle Horizon. Albarracín-Jordan (1996b) notes 

qochas in the lower Tiwanku Valley are found near sites that were occupied rom the Formative 

Period (1800-900 B.C.) to the present era.  In the northern Titicaca Basin, Craig et al. 

(2011:2906) found qochas in this region were used as early as the Middle Formative around 500 

B.C. based on the recovery of ceramic sherds that stylistically date to this time period. Qochas 

were most intensively used during the Late Formative Period based on the recovery of large 

quantities of Pukara-style ceramics and their use dwindled in later time periods. Nontheless, this 

team found pottery diagnostic to all time periods thereafter the Late Formative in association 

with qochas indicating perpetual use into the modern era. 
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Kolata (1993:294) predicts during the drought recorded in the Quelccaya ice core around 

A.D 1000, the groundwater dried up and qochas were no longer productive during the LIP.  

Nonetheless, many qochas are still being productively used by farmers and pastoralists (Craig et 

al. 2011). 

Methods used to Date Andean Terraces 

Only one archaeological study that I have found has focused on dating agricultural 

terraces in the Lake Titicaca Basin. On the Copacabana Peninsula, Chavez (2012) recently 

excavated and surveyed agricultural terraces. Based on ceramic styles of artifacts he recovered 

Chavez attributes the inception of terrace construction in this area to the Formative Period. 

Artifacts found during surface collections provide tenuous data, at best, regarding the antiquity 

of terraces. These ceramics could have ended up there in a number of ways unassociated with the 

actual construction and use of the hillside for farming purposes, particularly because a Formative 

site is located above the terrace complex. Nonetheless, Chavez provides valuable insight into the 

potential age and use of terraces in the area. At the same time, this study focuses on one terrace 

complex in the Titicaca Basin, and there are many more throughout the region that remain 

unstudied.  

Elsewhere in the Andes, researchers studying terraces rely on methods similar to those 

used to date raised fields. A recent study in the Chicha-Soras Valley in the Ayacucho region of 

Peru, used AMS to date eight fragments of charcoal obtained from the fill of terraces (Branch et 

al. 2007).  Based on the dates obtained, this team believes the agricultural terraces likely date to 

A.D. 600. In the Colca Valley near Arequipa, Brooks (1998) used seriation of pottery collected 

from survey to date terrace construction and use between A.D. 600 and 1530. In the same valley, 
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a series of 17 radiocarbon dates on bulk soil from terrace fill confirms that terraces have been in 

use since A.D. 500 (Sandor 1992). These projects relied on a single artifact or ecofact type to 

date the antiquity terrace complexes.   

AMS dating of bulk soil samples has been one of the preferred methods used by 

researchers dating terraces (e.g. Sandor 1992). However, this method has been determined faulty 

by soil scientists. Dating bulk soil samples measures the amount of organic material in a sample 

and can both overestimate and underestimate the true age of samples due to differences in 

climate and soil depth (see Wang et al. 1996). Based on this I have chosen not to employ this 

method in my research. 

Hypotheses about the Age Titicaca Basin Terraces 

In the altiplano, researchers have hypothesized that terraces were first constructed and 

farmed during the altiplano Formative Period based on their close proximity with sites and 

expanded during the Middle Horizon (Albarracin-Jordan 1996a; Isbell 1977; Stanish 2003). If 

this were the case, then general terrace construction and use would coincide with general 

agricultural intensification that accompanied the rise of regional complex society and 

centralization of political authority. The location of LIP settlements adjacent to hillsides has been 

employed by a few researchers as indirect evidence that the Colla farmed terraces located below 

many pukaras (Arkush 2005:229-230; Stanish 2003:226). Others believe the Inca were 

responsible for a majority of terrace construction in the region (e.g. Janusek 2008:184). If built 

during the Late Horizon Period, there would have been a centralized political authority to 

organize construction, oversee labor, and schedule production.  
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Drawing on these hypotheses and what is known about the occupation history of Ayawiri, 

it is plausible that the terraces at the site were built in the Formative, the Late Intermediate, or the 

Late Horizon Period. Artifacts found on the surface of the site during survey and evidence found 

during excavations indicate there was a substantial population residing at Ayawiri or nearby 

during all these time periods. My research aims to directly clarify the period of construction and 

use of the terrace complex at Ayawiri in order to illuminate the sociopolitical context of this 

monumental agricultural engineering feat.  

Choosing Safety or Security at Ayawiri 

With this agricultural history in mind, I turn my attention to looking at how farmers 

adapted to both social and climatic challenges in the Lake Titicaca Basin during the LIP. Risk 

management theory in anthropology examines how individual farmers and groups or people 

develop novel economic strategies to cope with inter-annual weather variance and difficult 

environments. For example, in the Cuyo Cuyo region of the Department of Puno, nearby the 

study region, farmers own and annually cultivate numerous small plots of land in various 

microenvironments. Indeed, this practice of field fragmentation is common throughout the 

Andes. Many agroecologists originally considered this practice as inefficient because farmers 

spent an inordinate amount of time and energy traveling and carrying farming tools from one 

field to another and then hauling harvests all the way home. Time could have been better spent 

and yields would rise, according to agroecologists, if farmers cultivated bigger plots of land more 

intensively near the home front. Nonetheless, Carol Goland (1993:318) drew on risk 

management theory and found that while yields were reduced 7% due to travel time to distant 
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plots, the overall variance in farmers’ annual harvest was lessened. In any given year, fields in 

certain microenvironments thrived while others failed, due to minor differences in the climate.   

Traditionally, research on agropastoral risk management has focused on these types of 

farming strategies that mitigate the probabilistic inter-annual variance in climate, which can lead 

to crop failure, food shortages, and even starvation (Adams and Mortimore 1997; Augustine 

2010; Browman 1987, 1997; Gallant 1991; Halstead 1990; Howden et al. 2007; Marston 2011; 

O'Shea 1989). This literature focuses primarily on how present and past agropastoralists adapt to 

the local physical environment, without consideration of the political landscape of an era. In 

contrast, recent research has highlighted the effects of social realities, such as warfare, on food 

procurement and nutritive quality (Ferguson 2006; LeBlanc 2006; LeBlanc and Register 2003; 

Milner et al. 1991; Otterbein 1999; VanDerwarker and Wilson 2016; Zori and Brant 2012). 

Building on this work, I assess both social hazards and environmental risks at Ayawiri. 

Doing so affords more holistic and realistic insights into risk management employed by past 

populations. This model of agropastoral risk management was initially laid out in Langlie and 

Arkush (2016) and is elaborated on in this dissertation. Agropastoral subsistence strategies in the 

Andes are inherently flexible. In years when crops yields are lean populations substitute camelid 

meat and vice versa (Browman 1987). With this flexibility, I assert Andean populations are able 

to adapt to either warfare or climate variability; however, different strategies would be chosen 

depending on which source of risk was prioritized. The relationship between social and 

environmental pressures creates a context for trade-offs seen in ancient peoples’ economic 

choices. By observing the specific combination of agricultural strategies implemented during a 

specific time period, archaeologists can pinpoint whether adjusting to social hazards and 

environmental risk was prioritized by past farmers.  



74 

 

In this context I distinguish among two kinds of risks: 1) environmental risk caused by 

climatic variability; and 2) inter-group hazards caused by conflict between communities or 

enemies. In reviewing ethnographic and archaeological literature about agropastoralism, it is 

apparent that strategies adapted to cope with environmental stress are qualitatively different than 

those adapted to deal with conflict. Thus, I propose that it is possible to measure ancient farmers’ 

perceptions of these stresses in the past, or at least which ones they prioritized in adapting to by 

identifying which risk management strategies were chosen (Table 4.2).   

Environmental Risk 

 In the frost and drought-prone altiplano, perturbations in the climate such as a prolonged 

drought have a specific influence on subsistence strategies. Ayawiri residents would need to have 

mitigated the impact that environmental risks had on the inter-annual variability in the food 

supply.  Farmers deal with inter-annual variability logistically both in terms of crop management 

and choice of field locations.  

Inter-group Hazards 

 The threat of warfare drove resettlement to defensive hilltop fortresses during the LIP, 

often on marginal lands. This choice of location affected food production strategies. Specific 

cropping schemes, field locations, and camelid grazing areas could be adjusted to a context of 

violent conflict if the threat were severe. For example, planting crops and grazing camelids near 

the site would reduce exposure to enemy attack by reducing time spent outside fortifications 

(Milner et al. 1991; VanDerwarker and Wilson 2016).  
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How can we assess the impact of these stresses on the lives of prehistoric populations?  

Drawing on ethnography, traditional ecological knowledge, historical data, and comparative 

archaeology, I devised a model to assess the trade-offs between environmental risk and inter-

group stress. This model is specific to agropastoralism in the altiplano, but has the potential to be 

adapted elsewhere.  The analysis of several behaviors that are sensitive to these risks is targeted 

including choice of field location, grazing strategies, and types of foods present at the site. These 

behaviors can be assessed using data gathered from analyses of macrobotanical remains 

recovered from the residential area of the site, through comparing these data to the landscape 

surrounding Ayawiri, and through dating the chronology of terrace construction and use at the 

site.  

 

Table 4.2: The impact of environmental risk and warfare on 

farming strategies.  

  Effects on :   

Strategy Environmental risk Inter-group risk of attack 

Field location Field fragmentation 

 ↓  risk of  crop failure 
↑ farmers' risk of attack and 

crop raiding 

Intensive farming  ↑  risk of crop failure 

and depletes soil 

nutrients 

 ↓ risk of attack because 

farmers remain closer to fort 

Grazing 

strategy 

Extensive grazing 

and on wild plant 

stands 
 ↓  risk of crop failure  ↑  camelid exposure to theft 

Grazing in fields 

and on crop plants  ↑  risk of crop failure  ↓  camelid exposure to theft 

Type of foods 

consumed 

Diverse diet 
 ↓  risk that harvest will 

fail 

 ↑  risk of exposure to attack 

because traversing diverse 

ecologies 

Constrained diet 
 ↑  risk that harvest will 

fail 

 ↓  risk of exposure to attack 

because traversing diverse 

ecologies 
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Field Location 

 Regarding environmental risk, farmers recognize that micro-environmental differences in 

climate mean that they never know whether a specific crop or variety will prosper in any given 

year (Baksh and Johnson 1990:212). To deal with this issue, farmers often cultivate fields in 

various locations, a practice known as field fragmentation. In the Andean context field 

fragmentation appears as a form of spatial diversification that capitalizes on diverse ecotopes to 

hedge against local climate variability (Browman 1987; Bruno 2011; Chibnik 1990; Goland 

1993; Marston 2011; McCloskey 1976; Stone and Downum 1999). Simultaneously farming in 

multiple ecotopes, such as locating fields in wetlands, at low elevations, and higher up on 

hillsides, takes advantage of natural microclimates (Browman 1987; Bruno 2011; Marston 2011).  

In an environment where water is already scarce, field fragmentation would have increased the 

probability of any individual farmers’ crop success, particularly during periods of drought (Stone 

and Downum 1999:14). If farmers were foddering or grazing their animals on crops, then field 

fragmentation would also provide food security for livestock.   

 For the residents of Ayawiri, spatially extensive field fragmentation may have heightened 

inter-group stresses by increasing time spent outside of defensive zones rendering farmers more 

susceptible to enemy attack. Furthermore, far-away fields left unattended would be exposed to 

possible crop theft or damage by aggressive enemies (Netting 1973).   

Under similar conditions to the social situation at Ayawiri, warring populations in West 

Africa intensified agriculture adjacent to areas of settlement nucleation, and farmers abandoned 

fields near contested frontiers to reduce exposure to inter-group violence (Netting 1973, 1974).  

Similarly, archaeologists working in North America have found that Pre-Columbian warring 

peoples’ diets were constrained due to “feelings of insecurity resulting in excessive caution when 
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conducting subsistence practices” (Milner et al. 1991:591). The threat of war meant that these 

people were scared to venture to river valleys and tree groves where tree nuts and other crops 

grew, so these food items were not a part of their diet.  

If inter-group tensions were high and violence was a perceived threat to Ayawiri farmers, 

then we would expect them to decrease their farming range and intensify agriculture in the 

ecotope nearest the site. In doing so, intensification near the site would reduce the risk of attack 

by other groups because farmers can readily retreat to a defensive position within the fort. 

Nevertheless, intensifying production near the site often causes an increase in environmental risk 

by degrading soil fertility resulting in a subsequent decline in crop yields (Boserup 1965).   

I hypothesize that if LIP Ayawiri residents abandoned frontier zones and intensified 

agriculture production near the site, they would have done so on the adjacent terraces. This 

means they would have built and farmed the terraces during the LIP. Alternatively, the terraces 

could have been built during the Late Formative Period occupation of Ayawiri and then reused 

during the LIP. Alternatively, it is also possible that the terraces were built during the Late 

Horizon under the mandate of the Inca who conquered the region and sought to exploit 

agricultural goods from subjugated populations. Dating the terraces proves critical to 

understanding intensification and the consequences of warfare at Ayawiri, a topic I will return to 

in Chapter Eight. Macrobotanical data yield further evidence regarding field location and grazing 

strategies, a topic I will return to in more detail in Chapter Five. Specifically, abundant and 

diverse macrobotanical remains that grow in multiple ecotopes would point to an extensive 

agropastoral land-use strategy, while a low abundance of plant remains from riverine and the 

valley-bottom ecotopes would point to probable agriculture intensification on the terraces. 
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Grazing Strategies 

 Like field location, peoples’ choices regarding grazing and foddering camelids would 

have been made with sensitivity to both environmental and social stresses.  In other parts of the 

world, if farmers’ yields are lean, then crops are reserved for human consumption, while 

domesticated animals are grazed extensively or foddered on wild plants (Boserup 1965; Marston 

2011). Extensively grazing animals might also decrease intra-group tensions sparked by grazing 

on their neighbors’ field crops. Unless farmers were actively amending the soil with dung, 

extensive grazing might decrease cultivated soil productivity.  Additionally, extensive grazing 

would expose livestock to possible raids.  Nevertheless, it is worth noting that in comparison to 

agricultural field fragmentation, grazing on wild stands requires fewer people to be exposed to 

possible attack outside of defensive hillforts.  Depending on the size of the herd, only a single 

person or a few people need to accompany the herd to pasture (Browman 1987:139), putting very 

few people in harm’s way.   

Food Choices 

 Social and environmental factors affect choices about the varieties of crops grown and 

types of animal protein consumed by populations.  For example, diversification among 

agropastoralists hedges against the risk of failure of any one crop or loss of herd animals due to 

climatic forces (i.e. frost or drought) or disease (i.e. nematodes or animal sickness) through the 

production of multiple agropastoral products with different resistances and different rates of 

maturation (Browman 1987; Marston 2011).  By employing a diverse economic strategy, 

agropastoralists can readily make seasonal, annual, or inter-annual shifts in time spent herding or 

farming in order to account for environmental fluctuations as well as social situations.  However, 
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inter-group conflict can affect a community’s access to fields in distant ecotopes, grazing areas, 

and hunting grounds.  For instance, based on bioarchaeological data, Milner et al. (1991:590) 

inferred that prehistoric warfare in North America actually decreased the types of plants in local 

diets because peoples’ daily activities were constrained; recent macrobotanical analysis in this 

region confirms Milner’s conclusion (VanDerwarker and Wilson 2016). 

Conclusions 

To summarize, agropastoralists in the Andes developed an array of crop varieties, land 

use strategies, and farming systems to cope with the environment. This farming system was 

developed, passed down from one generation of farmers to the next, and finely tuned over 

millennia. During the turmoil of the LIP these strategies were surely impacted in specific ways. 

We know from ice cores and other climate proxy there was a drought during the early part of the 

LIP. While paleoclimate records provide complementary information about the past 

environment, they do not reveal how humans responded to climatic fluctuations. We also know 

that warfare intensified during the latter part of the LIP (Arkush 2008; Arkush and Tung 2013). 

By assessing strategies chosen by Ayawiri farmers in prehistory, insight can be gained, not into a 

perfectly rational set of decisions, but into how farmers perceived environmental risk and social 

hazards in their time. Placed within a paradox of trade-offs, the residents at Ayawiri were forced 

to develop a specific combination of subsistence strategies. The benefit of engaging in any one 

risk mitigation strategy may or may not be offset by an equivalent cost. In this dissertation I aim 

to identify exactly how farmers dealt with environmental risks and social hazards during the LIP. 

In doing so, an assessment can be made of the impact of the drought and the consequences of 

warfare on lifeways at Ayawiri.  
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Chapter 5. Methods 
 

 

 

In Chapter Five I describe methods and procedures followed in the field and in the 

laboratory. This dissertation includes data collected during two seasons of excavations with 

Proyecto Machu Llaqta at Ayawiri, where I oversaw recovery and subsequent analysis of 

botanical remains. There is also data from excavations of the terraces adjacent to the site. Here, I 

outline the excavation methods implemented during each phase of research, permissions received 

from Peru, artifact analyses, dating methods, archaeobotanical field methods, and macrobotanical 

laboratory methods. In this section, there is also an explanation of the terms used to describe 

excavation procedures.  

Excavation Methods 

 In 2011, Dr. Elizabeth Arkush invited me to serve as an excavation supervisor for 

Proyecto Machu Llaqta at the site Ayawiri while simultaneously overseeing collections and 

analysis of archaeobotanical remains.  These excavations were carried out primarily within the 

residential sector and the cemetery of the site from June through July 2011 and June through July 

2012.  During this time a team of researchers originating from the U.S., Peru, Chile, and 

Colombia conducted a formal survey of the site, and both horizontal and deep penetrating 

excavations of houses, domestic spaces, and burials at Ayawiri. During July and August 2013, I 

returned to Ayawiri and directed excavations of the adjacent agricultural terraces.    
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Permissions 

 Each phase of excavation required new permissions from the Ministerio de Cultura de 

Peru. In 2011 and 2012 the project titled Proyecto Machu Llaqta: Jerarquía Social en la Cuence 

del Titicaca – Puno (Excavación) was directed by Dr. Elizabeth Arkush (University of 

Pittsburgh, R.N.A. CA-0052) and Lic. Rolando Paredes Paredes (R.N.A. DP 90-17).  In 2011 

excavations were permitted by Resolución Directoral Nacional No 023-2011 (14 June 2011), and 

in 2012 as part of the Resolución Directoral Nacional No 412-2012 (22 June 2012).  In 2013 the 

project Proyecto Machu Llaqta: Terrazas Agrícolas en la Cuenca del Titicaca, Puno, 

Temporada 2013 was permitted by Resolución Directoral Nacional No 036-2013 (25 July 2013).   

Excavation Protocol  

Excavation methods, procedures, and forms were planned and standardized before 

excavations began in the residential area of Ayawiri in 2011.  For consistency, these same 

methods were implemented in 2012. These protocols are detailed by Arkush and Paredes (2012) 

and Arkush and Paredes (2013). I modified these protocols when I dug the terraces in 2013 due 

to the differences in the goals of the excavations, and because I expected to encounter 

significantly less complicated stratigraphy and a much lower density of artifacts in the terraces 

compared to the residential sector. Here, I detail the vocabulary, coding systems, and excavation 

protocol implemented during the 2011 and 2012 field season (from Arkush and Paredes 2012, 

2013). Throughoutn this chapter, I also explain how procedures and protocols were modified 

during the 2013 terrace excavations.  
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Excavation Vocabulary and Contextual Nomenclature 

  We used a locus system to record all contextual information. For this study, a locus was 

the smallest unit of excavation and could be composed of an arbitrary stratum of soil, part of a 

stratum of soil, a small distinguishable architectural feature such as hearth, or a portion of a floor 

depending on the context.  Loci were laid out in a Harris Matrix (method described by Harris 

1975, 2014) for ease of chronological analysis, and helped us determine ad-hoc the order strata, 

architecture, and artifacts recovered from the archaeological record.   

During excavations of the terraces, loci were grouped into distinguishable events 

whenever possible.  An event was designated as a natural or cultural stratum and could be 

composed of a soil texture or color change, an architectural component such as a wall, a hearth, 

or a burial. Grouping loci together into events allowed excavators to swiftly identify how loci, 

stratigraphy, architectural features, and artifacts were associated with one another in the field 

during excavations, and later how things related to one another in the lab during analysis. 

We used a contextual code during all phases of excavations to record each locus and 

associated artifacts (e.g. V2-1002/4). This code includes the site designation, the locus number, 

and a slash number. The first part of the code, V2, refers to Ayawiri (the second site identified by 

archaeologists working in the Vilque area, and the number is officially registered with the 

Ministerio de Cultura de Peru). The second part of the code is a unique four-digit number 

corresponding to the locus, such as 1002. During 2011 loci are in 1000’s, loci from 2012 are in 

the 2000’s, and during 2013 loci are in the 3000’s. The third part of the code is a unique number 

placed after a slash that refers to specific bags containing artifact classes from every locus, such 

as /3.  Every locus was geo-referenced using a total station during 2011 and 2012, and entered in 
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the project’s geographic information system (GIS).  In 2013, the spatial extent of every locus 

was manually mapped on graph paper and recorded.  

Locations within the Residential Zone 

 The residential area of Ayawiri is divided into residential compounds by stacked stone 

walls and causeways. During a previous survey, Dr. Arkush assigned each compound a unique 

number (e.g. Compound #42).  These compound numbers were used during excavations in 

tandem with a letter to designate excavation units (e.g. Unit #44A).  Within each compound and 

excavation unit, Dr. Arkush used the GIS to lay out an alphanumerical grid system to refer to the 

location of the excavation unit.    

Locations within the Terraces 

 Before excavations of the terraces, I mapped the terrace complex using high-resolution 

satellite imagery. In ArcGIS, a polygon layer was used to demarcate each identifiable terrace. 

This map was used to choose four terraces to excavate.  Numbers were assigned to the terraces 

targeted for excavation. Each excavation unit is referred to by which terrace it placed on (e.g. the 

unit on Terrace-4 is referred to as TZ-4).  Based on the layout and height of each terrace, 

excavators laid out a grid using nails and string in 1 m square units to aid in recording where 

artifacts were recovered. Within each excavation unit, each 1 m square was arbitrarily assigned a 

letter (e.g. A, B, C, D).  
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Logistics of Excavations in the Residential Area 

 During excavations, all contextual information was recorded on a locus form designed 

by Dr. Arkush.  Initially, in each excavation unit we dug approximately 10 cm arbitrary levels 

until a natural level, artificial level, or feature was identified. Then, we followed natural or 

artificial levels unless they exceeded 10 cm in depth, in which case we began a new locus to 

better see changes in the vertical stratigraphy of the site. Ten-liter buckets were used to collect 

the matrix removed from each locus. All soil was sifted through ¼ inch mesh screen. The 

number of buckets removed from each locus was recorded, and can be used to estimate the 

volume of loci and events, and the standardized quantity of artifacts recovered from each 

context. After excavations concluded each season, units were backfilled, leaving as little trace as 

possible of our activities at the site, and preserving unexcavated architecture for future research.   

Logistics of Excavations in the Terraces 

 Initially, in each excavation unit we dug approximately 20 cm arbitrary strata 

corresponding to single loci.  Then, we followed natural or artificial levels unless they exceeded 

20 cm in depth, in which case we begun a new locus. 

Once an area was selected for excavation, we placed a large nail which served as a 

temporary local datum near the unit. During excavations all elevations of units were recorded 

using a string attached to a line level and a measuring tape to measure elevations below the local 

datum. I used a GPS to record the UTM’s and elevation of each local datum. 

We backfilled each excavation unit in the terraces after digging concluded.  I consulted 

with the local landowner to plan the logistics of backfilling since we were reconstructing his 

family’s actively farmed fields. Additionally, the landowner has much experience seasonally 
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rebuilding dilapidated terrace walls on his property. He directed the locally hired excavators to 

first rebuild the primary retaining walls with the largest stones placed near the bottom of the 

walls and smaller stones near the top. I surmise the larger stones provided the most stability near 

the bottom of the terrace riser where the load of the soil would have been the heaviest. Near the 

top the weight of the soil placed on the riser walls was less, so smaller stones were sufficient to 

provide support. Next, the landowner advised that we place large stones in the bottom of the 

excavation unit. This would provide a solid foundation and encourage water runoff. Finally, we 

filled in the excavation unit with the remaining sieved soil, ensuring that our excavation units 

were compressed to the same level as the surrounding terrace. I documented this process of 

reconstruction, as it provided me with ethnographic insight into how local peoples are still using 

and rebuilding the terraces today.  

Recording Excavations in the Residential Area 

 At the termination of each locus, excavators drew a sketch of artifacts in-situ and 

digitally photographed the units.  Nails were placed in the corner of each excavation unit, so that 

they were visible in overhead photographs.  An extendable camera boom was used to take 

overhead photographs. Using a total station, we recorded the location and elevation of nails in 

each photograph. These total station points were used to geo-reference the termination of all loci 

and photographs of events in the project’s GIS.  In conjunction with sketches, these photographs 

were then used to digitally delineate the location of features and artifacts in the GIS.   

Excavators drew and recorded notable events and in-situ artifacts on 1 mm graph paper.  

These notable events included profile and plan views of hearths, architectural elements such as 

wall stones, burials, and concentrations of artifacts. Profiles of every excavation unit were also 
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drawn on 1 mm graph paper. Notable events and significant in-situ artifacts were also digitally 

photographed, georeferenced, and digitally delineated in the project’s GIS.  

Recording Excavations in the Terraces 

During excavations of the terraces, we followed similar recording procedures. The same 

locus forms were used, and the same drawing protocol was implemented. Overhead digital 

photographs were also taken of each unit at the end of every locus.  However, we did not geo-

reference these photos for two reasons: first, there was very little architecture to photomap within 

the terraces; and second, I did not have a total station during these excavations. We documented 

walls and other features on metric graph paper. This was accomplished using metric tape 

measures and a plumb bob to measure point proveniences using X and Y coordinates from the 

edges of excavations units. We used a local datum with a string and line level to record the 

elevations of the loci and features.  The local datum was geo-referenced using a hand-held GPS. 

Cataloguing Artifacts 

 During excavations in 2011 and 2012 in the residential area and during 2013 in the 

terraces, artifacts recovered from the ¼ inch mesh screen, such as ceramic fragments, lithic 

materials, animal bones, and charcoal, were separated into labeled bags according to artifact type 

and noted on excavation forms.  Every bag was labeled with the site number, associated locus, 

and unique slash number corresponding to each bag of artifacts (e.g. V2-1101/1 for ceramics, 

V2-1101/2 for lithics, etc.).  Tyvek tags marked with corresponding catalog numbers in 

permanent marker were placed inside each artifact bag. Soil color, soil composition, general 
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artifact type and density, and any other distinguishable trait of a context were recorded on 

excavation locus forms.   

At the end of each day of excavations, all artifacts recovered in-situ and from the screen 

were brought back to the field laboratory located at the project’s temporary residence in 

Tiquillaca.  Each night, excavators ensured that all artifact bags were accounted for, and properly 

labeled Tyvek tags were placed inside each labeled plastic bag.  All artifacts were then washed, 

dried, counted, weighed, and placed back inside bags by a team of locally hired staff.  After 

excavations, all artifacts were boxed, labeled, registered with the Ministerio de Cultura de Peru, 

Puno, and curated in the Collasuyo Archaeological Research Institute’s storage facility for 

subsequent conservation and analysis.   

Analysis of Artifacts Recovered from the Residential Area 

 Dr. Arkush compiled, consolidated, analyzed, and managed all databases including the 

project’s GIS. Dr. Arkush also digitally illustrated all maps from the excavations within the 

residential area. Cecilia Chavez Justo, a regional ceramics specialist, conducted analysis of 

recovered ceramic sherds and artifacts. Dr. Aimee Plourde oversaw analysis of all animal 

remains.  Dr. Carol Schultz analyzed and interpreted lithic artifacts found at the site.  Matthew 

Velasco oversaw, conserved, and analyzed all human remains found at the site. I oversaw 

collection and analysis of archaeobotanical remains. 

Analysis of Artifacts from the Terraces 

 I compiled and managed the database of artifacts recovered from the terraces. I also 

digitally illustrated all maps from these excavations.  Cecilia Chavez Justo conducted analysis of 
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all ceramics from the terraces.  The full details of Chavez Justo’s analyses are presented in 

Appendix A.  In this dissertation I present the results of this analysis relevant to my research 

questions, including distinguishable ceramic styles (to distinguish time periods of use). 

Dating Methods 

The long occupation, maintenance, and reconstruction of terraces makes the reliability of 

dating their construction difficult. As mentioned in Chapter Four, there is no singular universally 

accepted method or methods to date agricultural fields. Each project does it a little bit differently. 

After surveying the methods employed by other archaeologists, I think cross-checking 

independent methods is important because dating the construction, use, and abandonment of 

agricultural field, particularly terraces, is difficult due to tilling and erosional processes that 

regularly threaten the integrity of the stratigraphy. To overcome the obstacles associated with 

dating the construction and use of fields, in this study, I employ three methods: (1) terminus post 

quem dates on ceramics found in distinct strata; (2) accelerator mass spectrometry (AMS) on 

charcoal recovered from secure contexts during excavations; and (3) optically stimulated 

luminescence (OSL) to measure the age of strata boundaries. Each method proved to have its 

strengths, weaknesses, and particular challenges.  

Terminus Post Quem Ceramic Dates 

Chavez Justo carried out analysis of ceramic sherds from the Ayawiri terraces in the 

Collasuyo Archaeological Research Institute in Puno, Peru, where she had access to laboratory 

equipment such as calipers and scales, and her regional comparative collection that she has 

assembled. Drawing on the locally refined stylistic seriation sequence (first described in detail by 
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Tschopik 1946:21-44), she assessed features, such as slip, painting style, and paste, to determine 

the relative time period when diagnostic sherds were produced.  

Drawing on Chavez Justo’s findings, I assessed terminus post quem dates, which literally 

is translated from latin to “limit after which”, of each stratum based on ceramics and drew on 

dates from the lowest intact levels to identify the earliest possible time period the terraces could 

have been built. I determined the age of each stratum based on styles of ceramics, and I drew on 

dates from the lowest intact levels to identify the terminus post quem, or the earliest possible date 

the terraces could have been built. The terminus post quem is "a date after which the object must 

have found its way into the ground” (Hume 1970:11).  

Accelerator Mass Spectrometry Dating of Wood Charcoal Dating 

 Three samples of wood charcoal from secure contexts were analyzed using accelerator 

mass spectrometry dating (or AMS dating) to assess construction and long-term use of the 

terraces. During excavations of the terraces I collected carbon from a small burial in the terraces 

and embedded within the matrix of riser walls. I did not collect carbon from terrace fill because 

these contexts were subject to tilling, which contributed to mixed stratigraphic contexts. It is 

worthy of noting that very little charcoal was recovered from the terraces, especially from secure 

contexts such as the walls. These samples were collected in small clean plastic vials and exported 

to the US following procedures outlined by the Peruvian Ministry of Culture. Then, I submitted 

these samples to Direct AMS, a lab located in Bothell, Washington where Dr. Ugo Zoppi 

oversaw AMS analysis.   

 

 



90 

 

Optically Stimulated Luminescence Dating 

In an experimental procedure, I collected cores of soil from strata boundaries for 

optimally stimulated luminescence dating (or OSL dating) to look at the geomorphological 

history of the terraces. Optically stimulated luminescence dating measures the time since 

sediments were last exposed to light by looking at the amount of photons still trapped in quartz 

crystals (Aitken 1998). While this last method is an experimental application of OSL dating, it 

provides the most direct proxy for sediment deposition and landform manipulation, including the 

cutting and filling involved in anthropogenic activities and terrace construction.  

I followed Dr. Steve Forman’s protocol for collecting OSL samples in the field. During 

excavations I collected bulk soil samples in two-inch-wide plastic plumbing pipes for OSL 

dating from the paleo-A horizon or the humus layer, where the natural hillside was covered by 

anthropogenic terrace fill (Roberts et al. 2001:478-480). These pipes were duct taped shut and 

wrapped in tinfoil. I submitted these samples to Dr. Steve Forman at Baylor University, where he 

analyzed these samples using a single-aliquot regeneration approach on small quartz buried in 

the sediments. The single-aliquot regeneration method measures radiation in a single quartz 

grain, or subsample, whereas the multiple-aliquot regeneration method measures an average date 

from many subsamples. Recent research proves that the single-aliquot regeneration method, 

while time consuming, is more accurate (Duller 2008; Wintle and Murray 2006). By cross-

checking ceramic, AMS, and OSL data I can better assess the temporal history of the Ayawiri 

terrace complex. The full details and results of OSL dating are presented in Appendix B.  
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Paleoethnobotanical Methods 

For this dissertation, I analyzed paleoethnobotanical samples that were collected from 

targeted contexts by excavators of Proyecto Machu Llaqta during the 2011 and 2012 excavations 

in the residential area at Ayawiri.  I floated these samples in the field, exported them, and 

analyzed samples for macrobotanical remains in Gayle Fritz’s Paleoethnobotanical Laboratory at 

Washington University in Saint Louis. In 2011, 104 soil samples were excavated, processed, 

floated, and exported.  In 2012, 55 soil samples were excavated, processed, and floated; 

however, only 30 samples, determined to be from contexts of interest, were exported. In this 

section I outline the field methods, export permissions and procedures, and laboratory methods 

employed to analyze macrobotanical remains from Ayawiri.  

Paleoethnobotanical Field Methods  

Before excavations began in 2011, a standardized paleoethnobotanical procedure was 

designed as a part of Proyecto Machu Llaqta’s excavation methods.  In a blanket sampling 

strategy, excavators collected soil samples for flotation from almost every feature and 

depositional event (Pearsall 2000:66-67). This strategy is practical and allows me to determine 

ad hoc which contexts are important for analysis.   

Paleoethnobotany Sampling and Recovery Methods 

 Excavators collected on average 10 L samples of soil for macrobotanical analysis 

whenever possible.  However, if contexts were smaller than 10 L, such as hearths, the maximum 

volume of soil was collected.  Excavators used pre-measured buckets to determine the volume of 
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samples. Soil samples for flotation were then placed in plastic bags, and two Tyvek tags that 

included provenience information were placed inside the bags. The Tyvek tags ensured that 

provenience information would not be lost in the float tank. Prior to flotation, provenience 

information for each float sample was recorded first on the excavation form, where each flotation 

sample was assigned a unique slash number. Excavators also noted the quadrant from which the 

flotation sample was taken. The volume of each sample was recorded on the excavation form.  

With a permanent marker, excavators recorded the site number, locus and slash number, unit, 

quadrant, and volume of each soil sample on every Tyvek tag placed inside soil samples.  

Finally, the locus and slash number was written with a permanent marker on the outside of every 

soil sample bag for posterity. This system ensured spatial information was collected for each 

sample and allowed excavators to collect more than one soil sample from each locus.   

In 2013 I collected and floated 10 L soil samples from the fill of the terraces. I scanned 

these samples using a 10-40X stereoscopic light microscope during excavations at the Collasuyo 

Archaeological Research Institute in Puno, Peru. I found there was no carbonized macrobotanical 

remains in these samples. I chose not to intensively sample the terraces based on the lack of 

macrobotanical remains in these initial few samples and based on the assumption that soil 

samples from the terraces would be highly disturbed and mixed contexts.  

Flotation Methods 

 In 2011, I processed and floated macrobotanical samples in the patio of our field lab 

house in Tiquillaca. Due to excessive water and silt accumulation in the patio of our lab in 2011, 

samples were floated in a stream a stream near Tiquillaca in 2012.  For the duration of the 

project, I used a modified version of Watson’s (1976:79-80) SMAP machine, as described by 
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Fritz (2005:780-784) and Pearsall (2000:29-33), to float the samples; however, in 2011 I used a 

settling tank to recycle the water. This flotation machine was made out of 50-gallon plastic 

trashcan with a sluiceway fashioned out of a small bucket attached to the top.  For the inner-

barrel I cut the bottom out of a small plastic trashcan and attached steel geological mesh with an 

aperture of 0.425 mm to the bottom. The inner barrel also had a sluiceway that nested nicely 

inside the outer barrel. The inner barrel was suspended inside the outer barrel by two wires and 

could be easily manipulated and lifted by its two handles. Water was pumped into the machine 

through a garden hose attached to a one-inch plastic pipe and showerhead with ¼ horsepower 

water pump.  The gentle agitation of water flowing upwards through the mesh of the inner barrel 

broke up the soil.  Silt and other residues smaller than 0.425 mm sank through the mesh of the 

inner barrel and collected in the basin of the outer barrel. The water agitation caused buoyant 

organic materials to siphon through the sluiceways of the tank, where these materials were 

captured in chiffon fabric. This light fraction was tied and hung to dry on a clotheslines located 

in a shaded portion of our patio in Tiquillaca. Non-buoyant soil residue and artifacts larger than 

0.425 mm were captured in the inner barrel’s mesh.  This heavy fraction was poured out of the 

drum onto labeled bags and laid out to dry.  After samples dried, the light fraction and the heavy 

fraction were put in separate plastic bags, and labeled in permanent marker with respective locus 

and slash numbers, and the Tyvek tags filled out during excavations were placed inside each bag.   

The heavy fraction was analyzed in the temporary field lab by locally hired staff, and is 

now curated with other artifacts recovered from our excavations at the Collasuyo Archaeological 

Research Institute located in Puno, Peru. While ceramics, microdebitage, and other artifacts were 

recovered from the heavy fraction, no macrobotanical remains were found in this fraction. The 
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light fraction containing carbonized macrobotanical remains, other residues, and buyoant 

artifacts that floated during processing were exported to the U.S. for detailed analysis.  

Macrobotanical Export Permissions 

 Following excavations in 2011 and 2012, soil samples targeted for macrobotanical 

analysis were exported from Peru and imported into the U.S. This process required permission 

from both governments. Permission to export these samples was solicited from and granted by 

the Ministerio de Cultura de Peru. The U.S. Department of Agriculture granted permission to 

import the samples into the U.S.   

Paleoethnobotanical Laboratory Methods  

After light fraction arrived in the U.S., I began to analyze the samples in the 

Paleoethnobotany Laboratory at Washington University in Saint Louis, directed by Dr. Gayle 

Fritz.  To sort these samples, I followed Dr. Frtiz’s standard protocol.  To identify specimens I 

used the comparative type collection in Dr. Fritz’s lab and photos of altiplano seeds and plants 

from Dr. Christine Hastorf’s database and two dissertations (Bruno 2008; Whitehead 2007).  

Due to the sheer density of seeds in macrobotanical samples recovered from Ayawiri, it 

was not possible or necessary to analyze every sample, so I strategically selected samples from 

targeted contexts such as kitchens, and hearths. I also selected samples from a diversity of 

contexts in order to grasp the array of plant use at the site.  

Before analysis, I measured the total weight of each sample to the nearest 1/100th gram. I 

recorded the weight and the contextual information from the outside bag of each sample on a 

sorting form.  I then poured the sample through a graduated series of nested USDA geological 
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sieves. This process separated the samples into four fractions: larger than 2.00 mm (from the 

2.00 mm mesh sieve), larger than 1.00 mm (from the 1.00 mm mesh sieve), larger than 0.5 mm 

(from the 0.5 mm mesh sieve), and smaller than 0.5 mm (from the pan).  I recorded the weight of 

each of these fractions to the nearest 1/100th gram, labeled, and placed them in a tin for sorting.  

To conduct analysis, I used a stereoscopic light microscope with a magnification range of 

10-40X. For the sorted fraction that was larger than 2.00 mm, I sorted all identifiable carbonized 

organic fragments, including woody fragments, seeds, and parenchyma (plant storage tissue that, 

in this case, mostly represents charred tubers).  For fractions smaller than 2.00 mm, I sorted and 

identified carbonized seeds and looked at materials not represented in the larger fraction, had any 

such as squash rind, been present.  I scanned the fraction in the pan (specimens smaller than 0.5 

mm); however, I did not quantify this fraction. Since the screen in the inner barrel of the float 

machine also had 0.425 mm apertures, seeds in less than 0.5 mm fraction were likely 

contaminated between samples and, possibly, from river water.  

Only carbonized seeds and other charred plant remains were systematically removed in 

this project. Uncarbonized plant remains, seeds included, were not systematically removed, on 

account of the identification of bioturbation during excavations (Arkush and Paredes 2012, 

2013).  Additionally, due to the extreme oscillations in annual temperature and seasonality of 

rainfall in the altiplano, it is unlikely that uncharred organic plant remains would preserve, and 

the antiquity of these materials cannot be verified. I kept and curated organic non-carbonized 

materials, other small artifacts (such as bone), and macrobotanical residue in separate plastic 

bags to store in perpetuity along with the sorted macrobotanical remains. 

Woody specimens smaller than 2.00 mm were not removed, because it is difficult to 

identify wood to genus and species below this fraction. Furthermore, there have been no studies 
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of local wood to date that enable taxa-level wood identification. Often archaeologists think of 

wood as a derived from trees; because trees are scarce in the altiplano the wood in this study is 

likely from shrubs. Parenchyma was not sorted from below the 2.00 mm fraction. Wood 

fragments (larger than 2.00 mm) and parenchyma fragments (larger than 2.00 mm) were 

identified and counted. Seeds were identified and counted as closely as possible to scientific 

family, genus, and species. I fully sorted all but two macrobotanical samples, both of which 

contained enormous amounts of seeds. I used a riffle box to sort a manageable fraction of the 

dense samples and then I used these counts to extrapolate how many specimens were in the 

entire samples. I chose to fully sort almost every sample (except caches dense in seeds) because I 

was looking for evidence of rare and imported taxa that would only be present in small numbers.  

All counts and weights of macrobotanical remains were recorded on sorting forms, along 

with relevant site and sample information (i.e. context of sample, locus, volume, etc.).  Other 

pertinent data were also noted on the sorting form, such as the presence of small bones and/or 

other small artifacts.  Finally, these data were entered into a Microsoft Excel spreadsheet.  

Identified macrobotanical specimens were labeled and placed in gelatin capsules or small tins 

and curated along with the rest of the sample in the original bag.  

 

Paleoethnobotanical Methods of Quantification 

This study utilizes four primary quantitative methods of analysis: frequency, ubiquity, 

density, and diversity. These measures are employed to identify and compare depositional events 

at the levels of context, unit, site, and intra-site analysis. 
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Density [Standardized Absolute Counts]   

Density is the measure of the sum of the specimens of a taxon divided by liters of soil 

floated (Miller 1988:72-73; Pearsall 2000:196).  This measurement accounts for the variance in 

soil sample size (Miller 1988:73).  In comparison to ubiquity, it presents a more complete 

expression of taxa distribution throughout the sites because it measures the quantity of plant 

usage or deposition in discrete contexts. Density can also be used to reveal intensity of 

deposition, which Pearsall (1983:129) directly correlates with intensity of occupation.  I use this 

measurement to look at intensity of deposition between contexts and between sites.  I calculated 

density by adding the count of a plant taxon for each locus (absolute count) and dividing by the 

soil volume (liters floated).   

Ubiquity [Expressed as Percentage Presence] 

 Ubiquity is an index of absence and presence.  Ubiquity expressed as percentage 

presence is measured by adding the total number of samples a taxon is present in, dividing it by 

the total number of samples, and multiplying by 100.  Ubiquity disregards absolute counts and, 

therefore, reduces the impact of preservation and recovery issues (in comparison to standardized 

density) (Miller 1988:60-61).  In accordance with Popper, I use this measurement to quantify 

variations in the presence and absence of taxa between contexts and between sites.  

Percent Frequency  

Frequency measures the percent of each seed type in the analyzed assemblage. I 

calculated frequency by summing the seeds of a taxon (for a site or a context) and dividing by 

the total number of seeds analyzed for an assemblage. 
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Diversity 

This measurement accounts for total number of species and the relative evenness of each 

species (Pearsall 2000:209).  “High diversity results when a large number of species are evenly 

distributed, that is, when it is difficult to predict what a randomly selected item would be. Low 

diversity in the number of species present is low when one or a few species account for most of 

the population” (Pearsall 2000:210). I measure diversity by looking at the number of species 

present in each sample or context, and comparing it to other similar samples or contexts at the 

site. I also compare diversity of plant taxa found at Ayawiri to studies carried out by 

paleoethnobotanists working at other sites in the region dating to different timer periods. Ayawiri 

residents should have had access to and used similar plants as residents who lived in the region 

during earlier time periods, so a comparison shows changes in plant use over time.  

SEM Methods 

 I employed scanning electron microscopy (SEM) to carry out detailed analysis of seeds in 

two ways.  First, I took photos of the best preserved seeds of each taxon identified in this study. 

These photos ensure other researchers will be able to compare and contrast morphological 

features, such as testa texture, shape, and size, of the seeds I identified from Ayawiri.  

The second analysis I used SEM for was on chenopod seeds. Researchers working in 

both North and South America have proven the use of SEM in determining the domestication 

status of archaeological chenopod seeds (Bruno 2006; Bruno and Whitehead 2003; Fritz 1986; 

Fritz and Smith 1988; Gremillion 1993; Langlie et al. 2011; Smith 1985a, b; Wilson 1981). The 

precision afforded by SEM enable researchers to measure testa thickness in micrometers. Indeed, 

these studies have shown that the process of domestication and human selection results in a 
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decrease in testa thickness that sometimes negatively correlates with seed diameter size. In 

Chapter Six, I detail how selection impacts the morphology of chenopods and the morphological 

difference between wild and domesticated seeds. Here, I describe the methods I used to carry out 

this analysis.  

 I analyzed the seed diameter, margin configuration, seed coat texture, and beak 

prominence of 997 Chenopodium spp. seeds from Ayawiri. I gathered these data using a light 

microscope under magnification of 10-40X. In order to identify diversity of chenopods across the 

site, I selected 10 of the best chenopods from every analyzed macrobotanical sample for this 

analysis. However, when there were fewer than 10 chenopods, I analyzed as many seeds as 

possible. Generally, I chose to analyze an equal number of chenopods from the > 0.5 mm 

fraction and the > 1.0 mm. I also tried to select chenopods with seed coats intact for this analysis 

whenever possible.  

I conducted chenopod analysis using the same classifications as Bruno (2006) and 

Langlie et al. (2011). Using a light microscope with a built-in ocular micrometer, I measured the 

chenopod seed diameter in millimeters from just adjacent to the radicle across the seed.  
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Figure 5.1: SEM photo depicts location where the diameter 

of chenopod seeds was measured. 

 

I assessed the beak prominence and testa texture. Following the same four categories of 

beak prominence established by Gordon (2006) in her assessment of Mesoamerican chenopods, 

in this study seeds were categorized as having beaks that are very weak, weak, prominent, and 

very prominent (see Figure 5.2).  

 

  

Figure 5.2: SEM images of Ayawiri archaeological examples 

of chenopods with a weak beak (left) and a very prominent 

beak (right). 
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I identified three testa textures including smooth, reticulate, and canaliculated. I also 

took notes on whether a seed possessed the remnants of a pericarp or whether it was shiny; I was 

curious as to whether these features co-varied with any other attributes. Then, I flipped the seed 

on its side to assess the margin configuration. I identified four margin configurations including 

biconvex, equatorially banded, rounded, and truncate (see Figure 5.3). 

 

  

Figure 5.3: SEM images of Ayawiri archaeological examples 

of the margin configuration of a truncate chenopod (left) and 

a rounded margin configuration (right). 

 

 I also analyzed the testa thickness of 73 chenopod seeds using an FEI Company, Nova 

Nano 230 Field Emission brand scanning electron microscope, located in the School of 

Engineering at Washington University in Saint Louis. I used the software measuring capabilities 

of this microscope to obtain testa thickness in μm’s (see Figure 5.4). 
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Figure 5.4: SEM image of Ayawiri archaeological example 

of the measurement of the thickness of a chenopod testa (n = 

9.76 µm). 

 

In order to expose the testa of each seed I used a very thin razor blade to cross-section the 

seeds. While using a razor blade to cu the seed coat tends to destroy part of the seed, doing so 

exposed a portion of the testa that was easier to measure.  I often did not sputter coat the seeds, 

because I was able to measure the testa thickness without doing so. I followed a quantitative 

procedure outlined by Bruno (2006) and Bruno and Whitehead (2003) to compare seed diameter 

to testa thickness.  
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Chapter 6. Macrobotanical Taxa 
 

 

 

In Chapter Six I present an overview of the macrobotanical data analyzed from the 

residential sector at Ayawiri. First, an outline is provided of the three potential sources of 

deposition at Ayawiri. Then, the macrobotanical taxa are presented in alphabetical order by 

family. Drawing on these data I provide a brief examination of diet, behaviors, and grazing 

strategies. Lastly, I present the results of a multi-proxy Chenopodium spp. analysis.  

In total, I analyzed 108 flotation samples (1025.2 L of soil) collected from LIP contexts 

at Ayawiri. Every sample included in this study dates to the LIP, according to analyzed ceramics, 

stratigraphy, and in some cases, AMS dates (Arkush 2014; Arkush and Paredes 2012, 2013). In 

total, this study includes 1,038,288 macrobotanical specimens (this is an extrapolated number 

based on weight). Of these specimens, approximately 1,036,215 are seeds (see Appendix C).  

Sources of Deposition 

 Here, I provide a synopsis of the taphonomic processes impacting macrobotanical 

specimens recovered from Ayawiri. As Thery-Parisot et al. (2010) point out, it is important to 

consider both the natural and anthropogenic processes that lead to the preservation of 

archaeological artifacts. A consideration of the sources of deposition and pathways to 

preservation supports a critical analysis and interpretation of macrobotanical remains.     

 Today, no humans reside in the residential sector at Ayawiri, nor do they use this space 

for growing crops. However, a woman uses the site seasonally to graze her mixed herd of 
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camelids and sheep. Herding activities cause trampling, compaction, and minimal disturbance to 

the surface at the site. There is no evidence that she carries out any burning or soil turning 

activities in the residential sector that could potentially contaminate macrobotanical samples, but 

previous inhabitants may have done so. The well-buried LIP habitation strata Proyecto Machu 

Llaqta encountered at Ayawiri support the fact that these macrobotanical samples have remained 

undisturbed since they were originally deposited.  With this in mind, there are three possible 

sources of prehistoric macrobotanical deposition: direct resource use; indirect resource use; and 

seed rain, all of which I discuss in relation to this study (following Minnis 1981).   

Direct Resource Use   

Direct resource use is the result of intentional “collection, processing, and 

use/consumption” of the plant part, such as the seed or tuber, that is deposited in the 

archaeological record (Minnis 1981:145). There are many instances that a macrobotanical remain 

intended for human consumption can end up being burned and thus preserved in the 

archaeological record. For example, parching water from quinoa in order to store the grains can 

result in a burned mess, if not carefully attended. This is direct resource use because the chef had 

intended to use the seeds in a recipe. Hearths are locations where we would expect to find 

evidence of direct resource use, because many seeds intended for food are accidentally burned in 

these locations. And in fact, Proyecto Machu Llaqta excavators found the remains of numerous 

clay hearths at Ayawiri. Small grains are susceptible to accidentally falling into fires and are 

often preserved through charring in this manner. However, due to their water content, fresh 

tubers and fruits used as direct resources rarely preserve through charring; they more often sizzle 

and burn to ash. Direct resource use of macrobotanicals can be identified in primary or secondary 
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contexts. A hearth is a primary context, whereas a midden where food waste is disposed of, is a 

secondary context.  

Indirect Resource Use 

Many plants that end up preserved in archaeological contexts were never intended to be 

eaten by humans. Even if found in a culinary context, archaeologists cannot assume 

macrobotanical remains are evidence of inclusion in the human diet. Indirect resource use of 

plants is the “result of the use of the plant, not the seed” for a purpose other than human food 

(1981:145). Indirect resource use can be found in both primary contexts (in hearths) and 

secondary depositional contexts (in pits). In particular, plants used for architecture, such as 

thatching for roofs, and beams for structural support are in this category. Plants used for fuel, 

such as shrubs and trees, are other examples of indirect resource use. In both these cases, seeds 

can be accidentally charred, but they were never intended to be consumed by humans. They were 

only a by-product of another use. 

In this study, dung used for fuel is indirect resource use of plants. Miller (1984) notes in 

high altitude areas around the world where trees that produce firewood do not grow and there is 

insufficient oxygen to fuel fires, dung is often used for fuel.  As a highly volatile fuel, the dung 

of herbivores provides a steady source of low-smoke and high-heat flames used for cooking, 

craft production, and to generate heat in cold climates. While humans likely consumed some of 

the wild taxa found in archaeological contexts where dung was also burned, some researchers 

argue “most of the actual specimens of these taxa became charred through the burning of dung as 

fuel” (Miller 1996:524).   
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A portion of the macrobotanical remains recovered from Ayawiri represents the remnants 

of dung burned for fire fuel. This conclusion is based on the eight criteria outlined by Miller 

(1996) and Spengler et al. (2013):  1) Alternative fuel is rare and insufficient in the altiplano; 2) 

based on zooarchaeological analysis (conducted by Dr. Aimee Plourde) of animal bones 

recovered during excavations from the site, camelids were a large part of the Ayawiri economy 

and produced suitable dung for burning; 3) burned fragments of dung and herbaceous seeds were 

ubiquitous; 4) many seeds were poorly preserved or fragmented, likely as a result of mastication 

or digestion; 5) many seed assemblages were mixed and heterogeneous; 6) samples analyzed 

were recovered from domestic use or refuse areas rather than storage contexts; 7) there is an 

ethnographic history of dung used for fuel in the region. Today, dung is still used by residents 

living near Ayawiri and throughout the Andes to fuel cooking and warming fires. Sillar (2000) 

notes in the Cuzco region that potters still prefer dung fire fuel for ceramic craft production 

because it provides more even burning.  Lastly, 8) there is a long archaeological history of dung 

fuel use throughout the altiplano. Browman (1989), Bruno (2008), and Whitehead (2006, 2007) 

identified charred camelid dung from Formative Period archaeobotanical samples recovered 

from sites located in the Titicaca Basin.  Evidence of dung fuel use was pervasive at nearby 

Tiwanaku in various cultural contexts (Hastorf and Wright 1998; Wright et al. 2003).  These 

archaeological data are evidence that dung has long been used for fuel in the region. In addition 

to seeds burned in dung, thatch roofing and woody shrubs used for supplementary fire fuel are 

another form of indirect resource use in this study. 
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Seed Rain 

  This source of deposition is defined as “accidental preservation of the prehistoric seed 

rain unrelated to any use of the seeds or plant” (Minnis 1981:145). Wind is often a source of seed 

rain, because many plant seeds have natural aeolian dispersal mechanisms that can transport 

them directly into anthropogenic environments.  Minnis distinguishes seed rain as plant remains 

not used by humans that accidentally blow into fires. For example, a strong wind may carry 

small seeds a short distance across the site, if they are blown into an open-air fire and are 

preserved through charring, it may be impossible to distinguish seed rain from direct or indirect 

resource use. Seed rain should not be ruled out as a possible pathway to macrobotanical 

preservation.  

Botanical Taxonomy of Identified Plant Remains 

 In this section I present the types of macrobotanical remains found during analysis. The 

morphological features are described that aided in identification. Botanical descriptions and 

ecological information on the local taxa are provided. I also provide information on when and 

where relevant taxa were found by archaeologists working in the region. General statistics and 

interpretations are presented on the use of each taxon at Ayawiri. This information is synthesized 

in Table 6.1. Taxa that could not be identified to family, such as unidentifiable seed fragments, 

wood, and dung are presented at the end of this section. Seeds that could not be identified are 

referred to as unknowns. Unknown seeds possess potentially diagnostic characteristics such as a 

clear seed shape or a distinct seed coat texture. I assigned each morphological unknonwn seed 

type a unique number so that, if they are identified in the future, they can be readily quantified, 

and the ecology and uses of these plants can be assessed.  
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Table 6.1: Summary table of macrobotanical remains from 

Ayawiri. (N=108 samples, 1025.2 L of soil). 

 
         Projected total* 
         Found during excavations+ 

Family Order Genus species or morphotype Common name Absolute 

count 

(*projected 

count)

Standardized 

density 

(count/liter) 

Ubiquity 

(expressed as 

% presence)

Chenopodium spp.* quinoa, kañawa 1035585 1010.13 97%

Brassica Type #2 5 <  0.01 5%

Cactoideae cactus 28 0.03 3%

Opuntoideae Maihuenoposis cf. boliviana cactus 1 <  0.01 1%

Type #1 cf. totora 7 0.01 6%

Type #2 cf. totora 2 <  0.01 2%

Leguminoseae Trifolium amabile 49 0.05 24%

Type #1 mallow family 93 0.1 36%

Unknown mallow family 16 0.02 9%

Plantago sp. 1 <  0.01 1%

Type #1 grass 80 0.08 21%

Type #2 grass 102 0.1 30%

Type #3 grass 3 <  0.01 1%

Type #4 grass 12 0.01 10%

Type #5 grass 10 0.01 8%

Type #6 grass 6 0.01 5%

Unknown grass 150 0.15 27%

cf. Piptochaetium  sp. grass 1 <  0.01 < 1%

Relbunium sp. 8 0.01 6%

cf. Solanum sp. potatoes 4 <  0.01 2%

Verbena sp. 3 <  0.01 2%

14 0.01 13%

35 0.03 11%

1036215 1010.74 N/A

Tuber Solanum tuberosum
+ potates 28 N/A N/A

Parenchyma > 2 mm* cf. tuber tissue 375 0.37 28%

Peduncle 1 <  0.01 < 1%

Wood > 2 mm 1667 1.66 80%

1038288 1012.76 N/A

Dung > 2 mm cf. camelid 15 0.03 4%

Bone

Charred* 1270 1.21 25%

Uncharred* 334 0.32 17%

Eggshell 3 <  0.01 < 1%

Malvaceae

Fabaceae

Amaranthaceae

Brassicaceae

Cactaceae

Cyperaceae

Unknown seeds

Plantaginaceae

Rubiaceae

Solanaceae

Verbenaceae

Poaceae

Unidentifiable seed fragments

TOTAL SEEDS*

Other botanical specimens

TOTAL BOTANICAL SPECIMENS* (Seed + Other)

Other
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Amaranthaceae 

I identified approximately 1,035,585 chenopod seeds in Ayawiri macrobotanical samples 

(standardized density = 1010.13 seeds/liter and 97% presence). This number includes a projected 

total weight of two very dense caches of seeds and 106 samples that I fully sorted. While once 

classified as the Chenopodiaceae family, today botanists consider Chenopodium spp. in the 

Amaranthaceae family. Chenopods have been domesticated in several locations throughout the 

New World. However, the staple crop quinoa and the lesser known kañawa (sometimes spelled 

cañihua) were domesticated in the Andean highlands near the study region.  This genus contains 

several other wild and domesticated species and countless varieties native to the altiplano. 

Recently, Dr. Maria Bruno, Dr. Christine Hastorf, and I have pursued research on defining the 

multiple morphological characteristics of modern chenopod species fruits in the south-central 

Andes (Bruno 2006:43; Bruno and Whitehead 2003; Langlie et al. 2011).  Bruno analyzed both 

modern domesticated and wild varieties including Chenopodium quinoa (quinoa), Chenopodium 

quinoa var. melanospermum Hunz. (quinoa negra), Chenopodium pallidicaule (kañawa), and 

Chenopodium ambrosioides L. (paiko). We have identified evidence of domestication and 

unique morphological varieties dating to the Formative Period. Identifying domesticated, weedy, 

and wild varieties of chenopods in the archaeological assemblage is an integral part of 

reconstructing the diet of ancient Andean peoples and how they exploited their landscape.  For 

example, were Ayawiri residents farming or collecting wild plants? Were their herds grazing in 

fields on crops and weeds, or on wild plant stands? Detailed analysis of chenopod seeds is 

essential in answering these questions.  

 Martin and Barkley (1961) describe chenopod fruits as “circular-lenticular…[with] a 

notch or groove at one point on the margin [that] varies from evident to obscure.”  Chenopod 
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fruits have a central perisperm with an embryo wrapping around the periphery terminating in 

what is referred to as a beak (where the radicle and seed leaves meet) (Figure 6.1). The seeds are 

wrapped in papery thin pericarp. Chenopod plants range in size from a few centimeters to a 

couple meters tall with indehiscent flowers. A single inflorescence typically contains tens of 

thousands, maybe hundreds of thousands of dry fruits. The exceptional health benefits of quinoa 

have supported this pseudocereals’ recent popularity in the culinary world. Indeed, quinoa is 

gluten-free, has a high protein content, and a full suite of essential amino acids (Vega-Gálvez et 

al. 2010).  

 

 

Figure 6.1: SEM image of archaeological Chenopodium sp. 

seed. This seed has a prominent beak, smooth testa texture, 

and rounded margin configuration. There is no pericarp 

covering this seed.  

 

Quinoa is the best known domesticate in this genus. Today, quinoa is grown and 

consumed throughout the Andes, and increasingly, it is consumed throughout the modern world 

(Hellin and Higman 2003:90). Today, there are entire cookbooks dedicated to quinoa recipes. 

Current research indicates that quinoa cultivation in the Titicaca Basin dates to at least 1,500 
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B.C. (Bruno 2006:43; Bruno and Whitehead 2003). However, it is thought that early 

experimentation with quinoa cultivation began around 3,000 B.C. (Pearsall 2008).  

Researchers have paid far less attention to a second Andean chenopod domesticate, 

kañawa. However, Bruno is currently working on deciphering its unique characteristics that 

resulted from human selective pressures.  Kañawa thrives in drier conditions than quinoa and is 

more drought tolerant. 

Chenopodium quinoa var. melanospermum is known commonly as quinoa negra, or in 

local dialect, ajara, due to its black color.  This species often grows as a weed in quinoa fields 

and can be seen in packaged quinoa (its black color standing out). Today food retail stores are 

marketing quinoa negra as a unique health food. Chenopodium ambrosioides, called paiko, is a 

wild chenopod that has not exhibited traits of human selective pressures, but is widely used as 

medicine.   

Wild Andean varieties of chenopods thrive in disturbed ecological zones (Bruno 

2006:32). Camelid herding creates opportune environments for chenopod cultivation, because 

the feces enrich the infertile highland soils, encouraging the plant to grow in anthropogenic 

environments. In fact, Kuznar (1993) points out the co-evolutionary relationship between 

camelids, humans, and chenopods in the Andes probably resulted in the plant specie’s 

domestication. Chenopod seeds are generally durable, and the way they are treated culinarily 

lends to their high preservation rates. The seeds are parched or dried over low heat in ceramic 

vessels prior to storage (Browman 1989:165). Chenopodium spp. seeds can be charred during 

parching, they can spill into the fire during cooking, or be disposed of in fires if there is 

unwanted leftovers. 
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Chenopods have been recovered from archaeological sites in Ecuador, the Peruvian 

Coast, Central Chile, Argentina, Bolivia, and the Peruvian highlands. However, some of the best 

studies that incorporate multiple morphometric analyses are from the alitplano. Here, I focus on 

local studies, because they are the most relevant to this study.  

Humans initiated the domestication process of chenopods during the Archaic Period as 

early as 3,000 B.C., when they began to increase management of wild stands, cultivation, and 

intensification of chenopod production (Bruno 2006:43). In an effort to document this early 

domestication, Eisentraut (1998) studied archaeobotanical samples from sites west of Lake 

Titicaca spanning the Late Archaic and Early Formative (5,000–1,000 B.C.). She identified a 

mixed economy including a wild and domesticated plant assemblage.  Along with several wild 

chenopod species, domesticated and weedy quinoa (black quinoa) seeds were identified. While 

some chenopods came from Archaic Period strata, direct dates on grains returned a much 

younger date during the Formative Period (740 ± 50 B.C.).  

The earliest directly dated evidence of domesticated chenopod cultivation is documented 

at the Formative Period site Chiripa, located on the southern shores of Lake Titicaca.  

Measurable phenotypic change in chenopod seeds associated with human selection pressures 

noted in samples from the Early Formative Period around 1500 B.C. at this site (Bruno and 

Whitehead 2003:350). Importantly, these seeds were directly dated using AMS. During the 

Middle Formative Period (800-200 B.C.) Bruno and Whitehead attribute a decrease in chenopods 

with thick-testa morphotypes to weeding practices associated with intensification. Additionally, 

they found chenopods in ritual contexts, indicating its importance in both the quotidian economy 

and in ceremonies. In the central altiplano at the Wankarani site, La Barca, a unique semi-

domesticated, morphological chenopod seed type found in a Formative Period hearth was 
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excavated by Dr. Marc Bermann and William Castellón Condarco (Langlie et al. 2011). This 

morphological type dates to 1300 B.C. While this morphological type has not been identified in 

living populations of quinoa, we suspect there was introgression between this chenopod and wild 

chenopod populations, or it went extinct in prehistory.  A second semi-domesticated chenopod 

was identified at La Barca that appears to be the ancestor of kañawa.  These studies reveal that 

chenopods were cultivated across the altiplano region during the early part of the Formative 

Period.  

The importance of chenopod crops in the altiplano only grew through time. At the site of 

Tiwanaku and other nearby sites dating to the Middle Horizon Period, Wright et al. (2003) found 

chenopods in ritual and quotidian contexts. She did not carry out multi-variate analysis of these 

chenopods. A multivariate study of these chenopods would be valuable to determine the extent 

of morphological change seeds underwent during this time period. Additionally, these data 

would provide insight about the varieties grown and the weeding strategies carried out during 

this vibrant cultural time period. 

While no previous research has been conducted on LIP chenopods from the Titicaca 

Basin, recent examination of the color of desiccated seeds from storage contexts in the southern 

altiplano region of Lípez, Bolivia show that a wide variety of chenopods were being cultivated 

there during this time period, with several different colors of chenopods present in food stores 

(López and Nielsen 2013). Following the LIP, quinoa was a staple crop for citizens of the Inca 

Empire. The Jesuit priest Father Bernabe Cobo observed while visiting the Andes in the 17th 

century that quinoa was supremely important in the form of chicha beer. He elaborates that at the 

time of conquest chicha, whether made from quinoa, maize, or molle berries (Schinus molle L.) 

was “the height of their glory… [Andean people] never celebrate an event, whether joyful or sad, 
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in any way other than by dancing and drinking to excess” (Cobo 1979:135). I have found that 

altiplano residents prefer to make chicha out of quinoa rather than imported crops, probably 

because quinoa is readily available to them.  

In sum, chenopod crops have nourished people living in the Lake Titicaca Basin since the 

Formative Period. Quinoa’s importance in rituals and quotidian lifeways has been well-

documented. This leads me to ask two questions: 1) was it was even possible to grow quinoa 

during the LIP in the Titicaca Basin due to the drought? and, 2) following the collapse of 

Tiwanaku did the importance of quinoa in the region continue? 

The total numbers of chenopod seeds in this study include two dense caches of charred 

chenopods and whole tubers. These caches were pits found directly below house floors and the 

contents consisted of chenopods and tuber that were completely carbonized. The degree to which 

the caches were carbonized and the excellent preservation of morphological details of the seeds 

indicate the fire was low and slow. There are a few possible interpretations of these caches. The 

first is that these crops are the remnants of accidentally or intentionally burned storage pits. But 

if this were the case, we would not expect such excellent preservation, rather the contents would 

have burned to ash. The second possibility is that these pits were earthen ovens, similar to 

huatyas, a method of cooking still practiced in the region today. However, if this were the case, 

then we would expect the oven to have been cleaned out. The third and most likely scenario is 

that the caches were sub-floor offerings placed there before or during the occupation of the 

house, and the fire was dampened by intentional burial before the contents completely burned.  

The high ubiquity and density of chenopods points to the plant’s critical importance to 

each and every household at Ayawiri. Even though politics, social life, and the climate changed 

dramatically from the Middle Horizon to the LIP, the importance of chenopods in local peoples’ 
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did not. In fact, the percent presence of chenopods at Ayawiri (97% in Table 6.1) is even higher 

than the 93% frequency that Wright et al. (2003) found at Tiwanaku during the Middle Horizon.  

Identifying signatures of domesticated versus wild or weedy chenopod seeds entails a 

detailed multivariate approach that includes the use of scanning electron microscopy analysis of 

the above-described attributes. The details of my SEM analysis of the Ayawiri chenopods are 

presented at the end of this chapter.   

Brassicaceae 

 I identified five Brassicaceae seeds in Ayawiri macrobotanical samples (standardized 

density = <0.1 seeds/liter and 5% presence). Brassicaceae is the mustard family, and the seeds I 

found in this family appear to be Lepidium sp. The morphology of this seed type is exactly the 

same as a morphological type identified by Bruno (2003) on the southern shores of Lake Titicaca 

at Formative Period sites. Bruno (2008:224-225) refers to this taxon as Brassicaceae Type #2. 

Previously, Eisentraut (1998) and Wright et al. (2003) identified this morphological type as 

Rubus sp. However, after careful analysis, Bruno determined this was an incorrect identification. 

I use Bruno’s designation, so that, if the species is eventually identified, we will be able to 

expediently compile our data on this taxon from throughout the region. Brassicaceae Type #2 

seeds have an ellipsoid shape formed by an elongated and folded embryo. The seed is covered by 

a dried seed coat that is D-shaped with an ovoid cross-section. There is a distinct, elongated, and 

hollow hilum on one side of the seed coat.  Additionally, the seed coat has very prominent 

reticulations. These seeds measure approximately 1.6 mm in length and 1.1 mm in width. 
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Figure 6.2: SEM image of archaeological Brassicaceae Type 

#2 seed. 

 

Two native wild mustard species have been identified in botanical surveys in the 

altiplano, including Lepidium chichicara Desv. (Sempertegui et al. 2005:68) and Lepidium 

bipinnatifidum Desv. (Bruno 2008:225; Pestalozzi Schmid et al. 1998:144-145). The latter 

species has been noted to have medicinal properties in Peru (Brack Egg 1999:928). While both 

species grow well as weeds in fertile, disturbed soils, it has been noted that they are toxic to 

animals in large enough quantities.  

While Brassicaceae Type #2 currently cannot be identified to species, there is a 

domesticated Andean crop in this genus. Lepidium meyenii is root crop called maca (Flores et al. 

2003:163). While maca is mostly grown as a cash crop in the central Peruvian highlands today, 

its wild ancestors still grow throughout Peru, Bolivia, and Argentina (Balick and Lee 2002:96). 

Today, maca is globally sought after for its medicinal values. The powder produced from its 

dried roots is mixed into beverages and used as a stimulant and enhancer of male libido. Maca is 

also sold in sporting goods stores and marketed to improve athletic performance. 

 While I only found a small amount of Brassicaceae Type #2, it is a seed type commonly 

found in archaeological samples throughout the altiplano (Bruno 2008; Eisentraut 1998; Wright 
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et al. 2003). Perhaps this plant was once cultivated for its edible roots, although we would not 

expect the seed to preserve in cooking fires if this were the case. A more likely scenario is that 

camelids foraged for the wild species that currently grows in the study region, and the seeds were 

carbonized in dung used for fuel. The fact that Brassicaceae grows locally as weeds supports this 

hypothesis. The extremely low occurrence of this seed may be attributed to the fact that the local 

Lepidium sp. plants are toxic, so foraging camelids avoided it. 

Cactaceae 

I identified 29 Cactaceae seeds in Ayawiri macrobotanical samples (standardized density 

= 0.03 seeds/liter and 3% presence). In this analysis, I identified one type of cactus seed in the 

Opuntoideae sub-family and another in the Cactoideae sub-family. For analytical purposes, I 

grouped these types into their common family because they were similarly consumed by humans 

or camelids. Several cacti have been identified during botanical survey in the altiplano including 

Echinoposis maximiliana Heyder, Opuntia boliviana Salm-Dyck, Opuntia soehrensii Britton & 

Rose, and Trichocereus pasacana (Sempertegui et al. 2005). 

   Opuntoideae seeds are “comparatively large … flattish-subcircular … with a distinct 

groove parallel to the margin[s]” (Martin and Barkley 1961:184).  Bruno (2008:227) collected a 

cactus in northern Bolivia, on the Taraco Peninsula, identified as an Opuntoideae, Maihueniopsis 

cf. boliviana (Sam-Dyck) Kiesling and described the seeds as “round or globular in shape and 

have three thick ridges that meet at a single point.”  In both description and photographic 

comparison, this species appears most similar to the Opuntoideae type from Ayawiri. The 

Opuntia sp. seeds I identified measure between 3.2 and 4.1 mm (Figure 6.3).  The identified 

archaeological Cactoideae seed is large and globular with a smooth seed coat.  They measure 
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between 2.6 and 3.1 mm (Figure 6.3). Currently, I am only able to correlate this seed to scientific 

sub-family. 

 

  

Figure 6.3: SEM images of archaeological Cactaceae seed 

(left) and Opuntia sp. seed (right). 

 

 

 Cacti in the altiplano are generally low-lying, growing only a few feet tall. They produce 

small edible fruits sought after by local people and animals.  Ecologically, cacti are found in just 

about every ecotope in the alitplano. Since they take so long to mature, they primarily grow in 

relatively undisturbed locations. This does not mean that cacti do not grow in anthropogenic 

environments; rather, they grow in locations that escape regular cultivation or foot traffic. For 

example, I found cacti growing in between the stacked stone terrace risers at Ayawiri and within 

the abandoned fortified residential compounds at the site. 

 The cactus family has several known direct and indirect uses in the Andes. Direct uses 

include consumption of their sweet fleshy fruit. Indirect uses include the use of spines for tools, 

the dried stems for fuel (specifically in the Oruro region), and as a hedge plant to keep animals 

away from granaries (Browman 1989:153; Whitehead 2007:176). The seeds of the fruits would 

not be carbonized if the spines were used for tools or if the dried stems were used for fuel, 
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because these uses do not involve contact with fire. Thus, I rule out this source of preservation 

and deposition at Ayawiri. However, this does not necessarily rule out the possibility that cacti 

were used in this way by Ayawiri residents.  

Browman (1989:153) notes that “cactus fruits have been exploited for food at least [for] 

10,000-8000 years” in the Central Andes.  Bruno (2008:226) adds that camelids forage for cactus 

fruits, and Hastorf and Wright (1999:218) identified charred cactus seeds in modern camelid 

dung burned for fuel.  I am currently unable to determine the difference of the intended resource 

use of this plant; however, based on these ethnographic and research data, the presence of cactus 

in this assemblage could be attributed to both humans and camelid dung burned for fuel.  

Humans consumed the fruits and, either deliberately or unintentionally, disposed of the seeds in 

fires, which led to their preservation and recovery.  Or, foraging camelids consumed cactus 

fruits, and seeds were preserved through the process of dung burning.    

 Cactus seeds have been found by every archaeobotanical analyst working in the 

altiplano (Browman 1989; Bruno 2008; Eisentraut 1998; Whitehead 2007; Wright et al. 2003) 

indicating that humans living in the region have long used this plant since the Archaic Period. 

However, differences in density and ubiquity between each assemblage point to differential use 

or availability through time. The comparatively low density and ubiquity of cactus seeds 

compared to other assemblages indicate Ayawiri residents did not rely on cactus as much as at 

other sites. Perhaps this was because their farmlands and the site itself was so disturbed by 

anthropogenic activities, so there were very few cacti growing nearby during the LIP. Or 

perhaps, the LIP drought decreased flowering of cactus plants leading to lower availability of 

fruits.  
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Cyperaceae 

I identified 9 Cyperaceae seeds in the Ayawiri macrobotanical samples (standardized 

density = 0.02 seeds/liter and 7% presence). Plants in the Cyperaceae family are generally 

referred to as sedges. The seeds or dried achenes of sedges are “ovate in outline and ... plano-

convex to lens shaped … [with a] blunt or pointed style base (Martin and Barkley 1961:137).” 

Unable to differentiate species, Bruno (2008:233) argues that the four distinct morphological 

types of Cyperaceae seeds she identified from archaeological contexts on the Taraco peninsula 

were Schoenoplectus sp., Carex sp., or Scirpus sp.  

I distinguished only two morphological seed types of Cyperaceae from Ayawiri samples 

(Figure 6.4)(see Appendix D for seed measurements). The first type is lanceolate shaped, plano-

convex in cross-section, with a blunt base. The surface of these seeds has slight reticulations, 

although some were too charred to identify the surface texture. These seeds measure between 1.1 

and 1.7 mm in height and between 0.8 and 1 mm in width. The second Cyperaceae seed type is 

lanceolate to ovate shaped, and has three ridges that extend from the blunt base to the top of the 

seed. These ridges give the seed a triangular shape in cross section. The surface texture of these 

seeds is reticulate, although a few were so charred that texture was hard to identify. These seeds 

measure between 0.9 mm and 2.0 mm in height and 0.6 and 1.0 mm in width. 
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Figure 6.4: SEM image of archaeological Cyperaceae seeds. 

Type #1(left) and Type #2 (right). 

 

  Schoenoplectus californicus (C.A. Mey.) Soják is a Cyperaceae species cultivated in the 

Andes that has many economic uses. Commonly called totora, it grows in littoral areas in 

shallow stands of water (Bruno 2008:233). Totora is a perennial aquatic sedge (Banack et al. 

2004:11), and ethnographic research has established that stands are intensively managed and 

cultivated in the region (Banack et al. 2004:12; Orlove 1991:6). Today, totora is commonly 

consumed as food (Browman 1989:150-151; Bruno 2008:234); the white, juicy rhizome located 

at the base is the part of the plant that is eaten raw. It does not have much nutritional value, but it 

has a very fresh tasting flavor. Since totora is consumed raw, it is highly unlikely that the seeds 

would be charred from this behavior. Totora is also used as thatching for roofing material, boats, 

mats, tools, cordage, and animal fodder (Browman 1989:151; Whitehead 2007:207; Orlove 

1991:6). Indirect resource use as building materials and animal dung burned for fuel are the most 

likely scenarios by which Cyperaceae was burned and preserved at Ayawiri. 

In addition to totora, Bruno (2008:256) found that several other Cyperaceae species grow 

in the altiplano including Carex cf. maclaviana d’Urv., Eleocharis albibracteata Nees & Meyrn 
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ex. Kunth, Carex cf. pinetorum Liebm., Cyperus sesierioides H.B.K., Scirpus deserticola Phil., 

and Scirpus rigidus (Steed.) Boeckl. Species from all of these genera grow well in wet soils and 

ecotopes partially or seasonally inundated in water. 

Inability to identify whether Cyperaceae seeds are from wild or managed stands makes it 

difficult to assess what it was used for. Research conducted by Hastorf and Wright (1998:218) 

note the presence of charred Cyperaceae seeds in modern camelid dung burned for fuel. Herds 

forage for Cyperaceae plants, but I cannot determine if these seeds are totora. 

Particularly in the altiplano, 12 seeds are an unusually small quantity of Cyperaceae 

seeds in an archaeobotanical assemblage. At other sites in the region, Cyperaceae was found in 

up to 91% of the samples. This is likely due the location of Ayawiri on top of a hill, rather than 

near the lake. Furthermore, Cyperaceae does not grow in the wetlands near the site today. If 

Cyperacee did not grow in the wetlands near the site in the past, then Ayawiri residents would 

have had to travel a couple hours by foot to Lago Umayo to obtain these plants. Since only a few 

Cyperaceae seeds managed to get deposited here, these data indicate that sedges were not 

regularly accessible or used by Ayawiri residents during the LIP. Based on these findings, 

camelid herds were rarely foddered on sedges, and thus the seeds rarely preserved through dung 

burning.  

Fabaceae 

I identified 49 Fabaceae seeds in Ayawiri macrobotanical samples (standardized density 

= 0.05 seeds/liter and 24% presence). Fabaceae is the legume, pea, or bean family. Throughout 

the world, legumes have been domesticated as food crops. In fact, several wild, cultivated, and 

domesticated legumes grow in the altiplano today. Additionally, livestock often consume wild 
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legumes in the Andes (Brack Egg 1999).  Hastorf and Wright (1989:218) found that wild 

legumes are a common plant taxon in camelid dung burned for fuel. On southern shores of Lake 

Titicaca, Bruno (2008:235-237) identified a small legume type in Formative Period assemblages 

as the taxon Trifolium amabile H.B.K. Today, there are Trifolium spp. species that grow readily 

and vigorously in disturbed and agricultural soils in the region, which lends evidence to 

cultivation activities (Bruno 2008:236). The bean crop tarwi (Lupinus mutabilis Sweet) is native 

to the highland Andes. Although not regularly found in archaeobotanical assemblages, farmers 

cultivate tarwi in the region today. Another species of legume commonly used for firewood in 

the region is Adesmia spinosissima Meyen ex Vogel (Bruno 2008:237). Whether cultivated or 

wild, these species all grow in anthropogenic and disturbed environments.  

The distinct Fabaceae seed type I identified as Trifolium amabile is a wild legume that is 

morphologically identical to a type found in other archaeobotanical assemblages throughout the 

region. These seeds are oblong and rounded in cross-section, and the prominent radicle gives the 

seed a mitten shape (Figure 6.5). These seeds measure between 0.7 and 1.3 mm in length and 0.4 

and 0.7 mm in width.  

 

 

Figure 6.5: SEM image of archaeological Fabaceae seed. 
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Trifolium amabile seeds have higher ubiquity values compared to other plant remains in 

the Ayawiri assemblage. However, when I compare this ubiquity value to other archaeobotanical 

assemblages in the Titicaca Basin, it is still low for this taxon. Bruno (2008) and Whitehead 

(2007) found Fabaceae seeds in 48% to 92% of all the Formative Period samples they analyzed.  

These seeds probably entered the site as an indirect resource through camelid dung burning. I 

think camelid herds had less access to this weedy legume than at other altiplano sites due to the 

marginal ecological grazing grounds the Colla used at Ayawiri.   

Malvaceae 

I identified 109 Malvaceae seeds in Ayawiri macrobotanical samples (standardized 

density = 0.12 seeds/liter and 40% presence). Malvaceae is commonly referred to as the mallow 

family and has been domesticated several times throughout the world. For example, cotton and 

cacao are mallows. However, there is no evidence that any Malvaceae species were domesticated 

or cultivated in the ancient altiplano. Malvaceae seeds are easily identified by their distinct 

curved lunate to reniform shape.   

I identified two distinct morphological types of Malvaceae seeds (Figure 6.6) (see 

Appendix E for seed measurements), and I created a third category of unknown Malvaceae seeds 

that have surface treatments that are poorly preserved or undetectable.  Malvaceae Type 1 seeds 

are lunate, rounded on one end, and come to a point at the opposite end. These seeds have 

smooth surface treatment and their height measures between 0.8 and 1.5 mm and their width 

measures between 0.4 and 1.4 mm. Malvaceae Type 2 seeds are exactly the same shape 

Malvaceae Type 1; however, Malvaceae Type 2 has a pitted surface. These seeds measure 1.0 

mm in height and between 0.9 and 1.0 mm in width. Malvaceae Type 3 seeds are also the same 
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shape as Malvaceae Type 1 and Type 2. Due to charring, I could not confidently distinguish a 

surface treatment on the seed coat. They measure between 1.0 and 1.4 mm in height and 0.8 and 

1.0 mm in width. Lack of distinguishing characteristics between species does not currently 

permit genus level identification of Malvaceae seed types. 

 

 

Figure 6.6: SEM image of archaeological Malvaceae Type 

#1 seed. 

 

Several species of Malvaceae grow in the altiplano.  Bruno (2008:240) collected and 

identified modern Urocarpidium shepardae (I. M. Johnst.) Krapov from the Taraco Peninsula.  

Browman (1989:152) notes that Notoriche sp. and Malvastrum sp. grow well in “disturbed 

areas” (irrigation ditches and fallow fields) around Lake Titicaca.  And, in fact, almost all 

altiplano Malvaceae species thrive in disturbed and enriched soils (Browman 1989:151-152; 

Bruno 2008:241; Sempertegui et al. 2005:80) acting as camp followers in the region. 

Additionally, Hastorf and Wright (1998:218) identified charred Malvaceae seeds in modern dung 

burned for fuel. This indicates that grazing camelids consume mallows in the Andes, and their 

dung burned for fuel likely preserved the seeds in many archaeological contexts.  
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The presence of this taxon at Ayawiri indicates two things. First, Malvaceae seeds 

correlate with nearby enriched soils or agricultural fields. It is reasonable to infer that mallows 

grew as weeds on agricultural terraces or fallowed fields near the site. Second, 

ethnoarchaeological work by Hastorf and Wright (1998) lends support to the idea that Malvaceae 

seeds were likely carbonized and deposited at Ayawiri in camelid dung burned for fuel.  

Compared to other taxa at Ayawiri, Malvaceae seeds have a very high ubiquity value (26%). 

However, this percentage presence is low compared to the 76% to 93% ubiquity Bruno (2008), 

Whitehead (2007), and Langlie et al. (2011) identified at Formative Period altiplano sites. I 

believe this indicates Ayawiri residents were intensively weeding their fields, and/or camelids 

ate most edible greens before the plants produced seeds. Additionally, fallow periods may have 

been decreased to feed the large population living at the site so camelids had less access to this 

plant on grazing grounds.  

Plantaginaceae 

I only identified one Plantago sp. seed in Ayawiri macrobotanical samples. This taxon is 

a member of the botanical family Plantaginaceae commonly called the plantain family.  The 

morphology of the identified Plantago sp. seeds are ovoid and rounded in cross-section, and they 

are “hollowed out like a boat” lengthwise on one side (Martin and Barkley 1961:199).  The seeds 

are oblong and compressed lengthwise.  The identified seed measure 1.0 mm in length and 0.5 

mm in width.  

Young, tender leaves of Plantago spp. are sometimes eaten by humans in small amounts 

throughout the Andes (Brack Egg 1999:398). This genus has also been used for medicinal 

purposes. In particular, llanten, a variety of Plantago sp. identified in the modern period in the 
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northern altiplano region around Lake Titicaca, has several medical uses, and it has been noted 

that the presence of this taxon in the archaeological assemblage at Chiripa could be attributed to 

its medicinal value as early as 1300 B.C. (Browman 1989:152-153). Several other species of 

Plantago have been collected during botanical survey in the region, including Plantago australis 

Lam. (Bruno 2008:243), Plantago orbignyana Deone, Plantago sericea Ruiz & Pav. (Pestalozzi 

Schmid 1998:173-174), and Plantago tubulos Decne (Pestalozzi Schmid 1998:173-174). The 

species Plantago sericea R&P also grows in the central altiplano (Sempertegui et al. 2005:27). 

Generally, the preferred habitat for this genus is in undisturbed soils (Bruno 2008:244).   

I only found one Plantago sp. seed at Ayawiri. This seed type is generally found in low 

densities and ubiquities at archaeological sites in the region. For example, Whitehead (2007) 

found Plantaginaceae seeds in only 4% of the samples he analyzed from Formative Period 

Chiripa. It is possible that Ayawiri residents ate the young leaves of Plantago sp. plants. 

However, when harvested at this young stage, the plant does not yet possess seeds. So, it is 

highly unlikely that human consumption of the plant is responsible for the seed found at Ayawiri. 

Plantago sp. plants may have been used for medicinal purposes at Ayawiri, although this is 

difficult to determine based on the single seed I found. It is more likely that camelid herds were 

taken to undisturbed areas for grazing, and llamas foraged and consumed these plants. Then the 

camelid dung was collected and used for fuel at Ayawiri, subsequently charring and preserving 

the Plantago sp. seed at the site.  

Poaceae 

I identified 364 Poaceae seeds in Ayawiri macrobotanical samples (standardized density 

= 0.35 seeds/liter and 61% presence). Poaceae, or the grass family in the altiplano, is represented 
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by a relatively large and diverse group of native wild species. There is no evidence that any 

grasses were cultivated in the region in prehistory (except for maize in very small amounts in 

littoral areas of Lake Titicaca).  The specimens I grouped into Poaceae vary greatly in 

morphology and size. I was able to group the grasses into six distinct morphological types, and 

the seventh Poaceae category, referred to as Poaceae Unknowns, includes seeds that possess no 

distinctive traits. I measured the height and width of 156 grass seeds (see Appendix F for the full 

report of these measurements). Here, I provide general descriptions of each of the morphological 

types that I recognized in the Ayawiri assemblage.  

Poaceae Type 1 is tear-drop shaped and generally measures 1.5 mm in length and 0.4 mm 

in width. It has a smooth surface (Figure 6.7). Poaceae Type 2 is oblong and rounded in cross-

section. It has a distinct lunate shaped base where the embryo broke off and a smooth surface 

(Figure 6.7). This seed type measures approximately 1.3 mm in length and 0.5 mm in width.  

 

  

Figure 6.7: SEM Image of Poaceae Type #1 (right) and 

Poaceae Type #2 (left). 

 

 

Poaceae Type 3 is long and rod shaped (Figure 6.8).  This seed type has an angled attachment 

scar at its base where its embryo broke off. This seed type measures approximately 2.0 mm in 
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length and 0.5 mm in width. Poaceae Type 4 is oblong and rounded (Figure 6.8). It measures 2.0 

mm in length and 0.5 mm in width.  

 

  

Figure 6.8: SEM image of archaeological Poaceae seed 

Type #3 (left) and Type #4 (right). 

 

Poaceae Type 5 is larger measuring between 1.6 and 5.0 mm in length and 0.7 and 1.1 

mm in width. This seed type has a ventral sulcus, or groove, characteristic of the grass genus 

Stipa sp. (Figure 6.9). Poaceae Type 6 is ovoid and flattened on one side. This seed type also has 

a ventral sulcus and measures about 1.0 mm in length and 0.5 mm in width. I identified one seed 

as Piptochaetium sp. This seed is rounded and lenticular with nodules at both ends (Figure 6.9). 

The surface is striated, and the striations run lengthwise curving toward the nodules. There are a 

few, very small raised bumps or protrusions along these ridges. This seed type measures 1.7 mm 

in length and 0.7 mm in width. Poaceae Unknowns comprises all of the seeds that are 

morphologically identifiable as grass; however, they are fragmented or lacked distinct shapes, 

surface textures, or other features that would aid in identification.  
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Figure 6.9: SEM image of fragmented archaeological 

Poaceae seed Type #5 (left) and Piptochaetium sp. seed 

(right). 

 

On the northwestern side of Lake Titicaca near the study region, 24 genera including 85 

species of grass have been identified (Whitehead 2007:222). At least 23 species of grasses have 

been identified growing along the southern shores of Lake Titicaca, some of which are 

introduced Old World grasses (Bruno 2008:246). Grass species identified in a botanical survey 

of the central altiplano include: Nasella meyeniana (Trin&Rupr.) Parodi, Asistida enoides Hack., 

Bromus catharticus Valh., Eragrostis uvula (Schrad.) Needs., Chondrsum simplex (Lag.) Kunth, 

Dactylis glomerate L., Fistula orthophylla Pig., and Bromus catharticus Valh. (Sempertugui et 

al. 2005). Notably, a group commonly referred to as the “ichus” thrive in drier areas in the 

altiplano. This group includes the species Stipa ichu, Stipa leptostachya Griseb., and Stipa 

pseudoichu Caro. Due to similarities in morphologies and sheer number of species in the 

altiplano grasses, I was only able to identify the grasses to family or genus.    

 The ichus are a documented camelid forage food in the altiplano (Bruno 2008:246). They 

are also used as fodder, fuel, rope, and fiber (Whitehead 2007:224).  The plethora of other grass 

species are also used for animal forage, fodder, basketry, and construction material (for thatching 



131 

 

and roofing material) (Bruno 2008:246-247; Whitehead 2007:224). The identified charred 

Poaceae seeds may have been used as construction material that was accidentally or intentionally 

burned as fuel. A more likely scenario is these seeds were charred in camelid dung burned for 

fuel or attached to dried grass stalks used for fuel.  

Rubiaceae 

 I identified eight Relbunium sp. seeds in Ayawiri macrobotanical samples (standardized 

density = 0.01 seeds/liter and 6% presence). The Rubiaceae family is commonly referred to as 

the bedstraw or coffee family. The Relbuniusm sp. seeds I distinguished are oval, plump, and D-

shaped in cross-section. They have a rough, puckered surface. The ventral side of the Relbunium 

sp. seeds are hollowed out like a boat (Figure 6.10). They measure approximately 1.6 mm in 

length and 0.8 mm in width.  

 

 

Figure 6.10: SEM image of archaeological Relbunium sp. 

seed. 

 

 In botanical surveys in the region, several Relbunium spp. have been collected including 

Relbunium ciliatum (Ruiz & Pav.) Hemsl, Relbunium cf. richardianum (Gill ex Hook & Am.) 
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Hicken (Bruno 2008:255). These plants are small shrubs. Additionally, approximately 20 

Relbunium spp. have been identified throughout the Andes (Niemeyer and Agüero 2015).  

Relbunium sp. plants were one of the main sources of red dye used in textile production 

throughout the pre-Colonial Andes (Cardon and Higgitt 2007). The roots of these plants are 

pounded and macerated to release the chemical purpurin. This chemical is then used to dye wool 

and cotton textiles a reddish color. Relbunium spp. have also been noted as camelid forage foods. 

Hastorf and Wright (1998:221) found copious amounts of Relbunium spp. seeds in dung 

collected from the altiplano, even though it is not a ubiquitous plant growing in the region.  

These researchers believe these date indicate that llama herds seek out this plant during foraging.  

The comparatively higher ubiquity of Rubiaceae seeds at other sites in the altiplano has 

been attributed to dung burned as fuel; although, the plant’s use as a dye has not been ruled out 

(Bruno 2008:254-255; Whitehead 2007:202). If it were a sought-after camelid forage food, we 

would expect to see a high percent presence at Ayawiri. We would expect this plant to show up 

in only a few samples if it was used as dye. Indeed, twenty-four seeds are a significant number in 

only two samples from Ayawiri, which might indicate a specific use as dye during the LIP. 

However, since the root is the part of the plant used for dye, the seeds might be remnants of seed 

rain.  

Solanaceae 

 I identified four cf. Solanum sp. seeds in Ayawiri macrobotanical samples (standardized 

density = <0.01 seeds/liter and 3% presence). Solanaceae is commonly referred to as the 

nightshade family. It is one of the most important economic plant families in the Andes that 

include the food crops potatoes and chili peppers. Chili pepper plants cannot grow in the high 
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elevation and harsh environment of the altiplano. Potatoes, however, were domesticated in the 

highland Andes for their tubers (Flores et al. 2003; Pearsall 2008:107). Indeed, potatoes are 

adapted to environments with poor soils, constant erosion, and unpredictable rainfall and 

temperatures, characteristic of the steep slopes of the Andes (Flores et al. 2003:161).  

 The Solanum sp. seeds I distinguished are obovate and lenticular in cross-section with 

sharp margins. They have a slightly reticulated surface. These seeds measure approximately 1.0 

mm in length and 0.6 mm in width.  

 Floristic taxonomists have found that the potato was domesticated from the wild extant 

species Solanum brevicaule Bitter. Today, there are numerous varieties of this wild nightshade 

found growing across the Andean highlands. Additionally, Bruno (2008:257) found feral or wild 

Solanum tuberosum growing along the edges of cultivated fields near Lake Titicaca. Getic work 

has clarified that there was a single domestication event or monophyletic origin of Solanum 

tuberosum from Solanum brevicaule in the central Peruvian highlands (Spooner et al. 2005). 

Human selection over the past few millennia in the Andes, led to a high diversity of varieties of 

potatoes. In fact, the International Potato Center in Lima has identified at least 3,500 native 

potato varieties (Huamán et al. 1997:23). Indeed, potato varieties grown in the altiplano today 

range just about every color of the rainbow and are a myriad of sizes. Due to the high phenotypic 

plasticity of potatoes, many varieties have been bred to withstand various conditions including 

drought, salinous soils, and different elevations. Other varieties were bred for their size, shape, 

color, and taste profiles. Today, farmers in the altiplano grow several varieties of potatoes in the 

same field, or in the same season to ensure crop yields in the event of unfortunate weather or 

other conditions. See Figure 6.11 for two examples of potato varieties grown on the terraces at 

Ayawiri today.  



134 

 

 

 

Figure 6.11: Photos of two varieties of potatoes grown on the 

Ayawiri terraces today. 

 

 The seeds of wild and domesticated Solanum sp. cannot be distinguished. This is due to 

the fact that humans selected for variations in tuber morphology, not the seeds. The fruit of 

potato plants is not eaten by humans because it contains high levels of the toxic glycoalkloid 

solanine characteristic of the Solanaceae. The tuber is the part of the potato that is consumed and 

used to propagate the plant. However, in wild and some domesticated varieties of potatoes the 

tuber also contain poisonous levels of glycoalkaloids.  Demonstrative of the effects of human 

selection, a domesticated potato has on average fifteen to twenty times less glycoalkoloid content 

than its wild ancestor (Johns 1989). Today, in the altiplano residents still eat varieties of potatoes 

with remarkably high levels of toxins, because they prefer the bitter taste that is a result of the 

glyoalkaloid solanine (Browman and Gundersen 1993; Johns et al. 1989:509). To avoid dying 

and stomachs, these people consume clay that has been transformed into a gravy-like sauce along 

with the bitter-toxic potatoes (Browman and Gundersen 1993). The practice of consuming soil to 

aid in digestion is called geophagy. Johns and his colleagues (1989) found in experimental 

research that clay binds to the solanine, allowing the poisonous potatoes to past through human 
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digestion systems without causing illness (Johns et al. 1989). Additionally, the common highland 

practice of freeze-dying potatoes in the altiplano also rids potatoes of this harmful chemical 

(Johns et al. 1989:509). The cold nights and warm sunny days of the Andes facilitate this cultural 

practice. Freeze-dried potatoes called chuño are a staple in the diet of modern altiplano residents. 

  Thus, it is unlikely the Solanum sp. seeds I found were not brought to the site for food. 

These seeds likely arrived at Ayawiri in camelid dung burned for fuel. Alternatively, based on 

the low density of this taxon, the seeds could also have arrived via seed rain.  

Verbenaceae 

 I identified three Verbenaceae seeds in Ayawiri macrobotanical samples (standardized 

density = <0.01seeds/liter and 2% presence). The Verbenaceae family is also known as the 

verbena or vervain family. The seeds I found are Verbena sp. Morphologically they are oblong 

and round and plump in cross section. The dorsal side of the seed is smooth and slightly indented 

(Figure 6.12). The ventral side has large reticulations. These seeds measure 1.4 mm in length and 

1.6 mm in width.  

  

Figure 6.12: SEM of archaeological Verbena sp. seed dorsal 

side (left) and ventral side (right). 
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 Several verbena species have been collected in botanical surveys in the region in 

including Verbena microphylla Kunth, Verbena cf. bangiana Moldenke, and Verbena 

weberbaueri Hayek (Bruno 2008:260). In the alitplano, verbena plants grow as weeds in 

agricultural fields and on hilly slopes (Bruno 2008:260). There are no recorded uses of verbena 

plants in the region.  

 The low density and ubiquity of verbena seeds indicate it was not an economically 

important plant. With no known uses, this plant was likely brought to the site in dung burned for 

fuel. Or, perhaps it entered and preserved at the site as seed rain.  

Potatoes, Tubers, and Parenchyma 

 I identified 375 parenchyma fragments in Ayawiri macrobotanical samples (standardized 

density = 0.37 fragments/liter and 28% presence). No fewer than 17 species of roots and tubers 

belonging to at least nine plant families were domesticated in the Andes (Flores et al. 2003:161). 

These include the potato (Solanum tuberosum), oca (Oxalis tuberosum), mashwa (Tropaeolum 

tuberosum), ulluco (Ullucus tuberosus), and maca (Lepidium meyenii) (Flores et al. 2003; 

Pearsall 2008:107). All of these tubers and roots are boiled and/or mashed in preparation for 

consumption. Due to this preparation method and the water content of tuber and root crops, they 

are rarely preserved in the archaeological record. Tuber and root fragments do not regularly fall 

into the fire and char the way seeds do. Pearsall (2000:157) states that “the most likely source … 

of tubers are those discarded as spoiled … and any accidentally charred during roasting.” In this 

study, I found evidence of root and tuber crops in three forms: first, I found the aforementioned 

seeds; second, I found whole charred potatoes; and third, I found charred parenchyma or plant 
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storage tissue that I identified as tubers or root crops based on the morphological structure of the 

specimens. Here, I focus on the charred potatoes and parenchyma.  

During excavations two caches of charred potatoes were found in house floors. From 

these caches, I have identified and analyzed 28 charred, almost complete, small potatoes that 

measure between 1.5 and 7 cm in diameter. The remainders of periderm or skin can be seen 

under the microscope on several of these specimens. Additionally, I identified axillary buds on a 

few specimens that are morphologically similar to potatoes (Figure 6.13). Why were these 

potatoes so perfectly preserved through charring? I think these potatoes were charred stores of 

freeze-dried potatoes, or chuño. Without their water content, potatoes easily burn and preserve 

the same way as seeds.  

 

 

Figure 6.13: Photo of carbonized archaeological potato 

depicting the intact periderm and axillary bud. 

 

The potato’s wild ancestors have high levels of toxic chemicals.  Wild and even some 

domesticated varieties of potatoes contain poisonous levels of glycoalkaloids.  Freeze-dried 

potatoes can be stored for up to five years (D'Altroy 2002). These potatoes are then reconstituted 

in soups and stews, retaining much of their caloric and nutritional benefits. Chuño is a staple in 
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the diet of modern Aymara peoples. It is not surprising that Ayawiri residents would be storing 

chuño in their homes that would have been then preserved through an accidental or intentional 

fire.  

Although it is easy to identify carbonized parenchyma, it is extremely difficult to 

determine the family, genus, or species of the tuber.  Hundreds of colloquial varieties of roots 

and tubers of varying morphologies are known in the Andes, which make it even more difficult 

to identify the scientific genus and species of parenchyma/tuber fragments.  An organized 

cellular structure and non-uniform shape help distinguish at the very least a degree of 

identification of carbonized parenchyma/tubers fragments (Pearsall 2000) (Figure 6.14). Future 

research using more advanced techniques and technologies, such as scanning electron 

microscopy, may reveal the identities of the tuber taxa found at Ayawiri.    

  

Figure 6.14: SEM images of archaeological parenchyma 

from Ayawiri. 

 

Unfortunately starch grain analysis currently does not permit differentiation of Andean 

tuber cultivars. A study by Rumold (2010) sought to determine morphological differences in 

starch grains that could be used to distinguish potatoes from oca and ulluco. However, she found 
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considerable overlap in the size and shape of starch grains of these tuber genera. Therefore, 

starch grain analysis of tuber crops is currently very limited in its utility in the Andes. 

The amount of parenchyma I found is not an unusually small or large quantity of 

parenchyma to be preserved in a site in the region. Parenchyma has been found in anywhere 

from 3% (Wright et al. 2003) up to 96 % of the samples (Bruno 2008) from other sites. Based on 

the identification of whole potatoes and charred Solanum sp. seeds, I conclude that at least a 

portion of the parenchyma found are from potatoes. The identification of a charred Lepidium sp. 

seed, raises the possibility that Ayawiri residents were growing and using maca. The parenchyma 

found was likely brought to the site for intended for direct resource use for consumption and was 

charred in cooking accidents, as sub-floor offerings, or disposed of as refuse in fires.   

 

Peduncle  

 I found a single charred peduncle, or stem that supports a fruit or inflorescence. The stem 

is small measuring about 2.2 mm in length. It does not have any morphologically distinct 

characteristics that would aid in identification. Since plants that are burned in dung are partially 

masticated and digested before they are used for fuel, it is unlikely that a small fragile peduncle 

would have survived the digestive tract of a camelid or other animal. This leads me to rule out 

that it was burned in dung for fuel. Rather, this stem was probably burned with the rest of this 

plant to stoke or fuel a small fire.  

Wood  
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 I identified 1,667 fragments of wood weighing 20 g in Ayawiri macrobotanical samples 

(standardized density = 1.66 fragments/liter and 80% presence). Today, trees are sparse in the 

altiplano, and palynological studies from lake sediments indicate that this pattern was well 

established long before the Late Intermediate Period (Gosling and Williams 2013; Paduano et al. 

2003). Indeed, the landscape surrounding Ayawiri is almost completely devoid of trees except 

for a few growing near the base of the terrace complex. I identified these as Polylepsis sp. locally 

referred to as keñua, kewiña, and they have long been used for fuel (Ansión 1986). However, 

there are only a few of these trees. This small population of Polylepis sp. trees would have been 

insufficient to provide for the fuel needs of the large LIP population residing at Ayawiri. In the 

Rosaceae family, keñua trees are knotty and soft. This makes them unsuitable for creating long-

burning and hot fires or for construction material.  

On the other hand, woody shrubs predominate the flora in the region and are common on 

agricultural terrace margins, on the steep hillsides, and on the top of the mesa just north of 

Ayawiri. These shrubs are referred to locally as tholas and include the species Baccharis 

microphylla Kunth and Tetraglochin cristatum (Britton) Rothm. (Bruno 2008; Wright et al. 

2003).  Due to the scarcity of trees in the altiplano, woody shrubs were likely used as a 

complementary fuel source in prehistory throughout the region (Bruno 2008).  Browman 

(1989:155) notes that roots of tholas are occasionally consumed as a famine food, the leaves are 

used in teas and tonics, and they have a few medicinal uses. The recovered woody fragments 

may be the result of direct resource uses; however, it is more likely woody products were used to 

fuel fires.  

Many of the woody specimens I examined from Ayawiri are very small fragments barely 

larger than 2 mm. While this could be a taphonomic issue where carbon was pulverized due to 
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trampling or during excavations, I think the specimens are all small because they are from 

burned shrubs. Trees often produce larger fragments of wood. This indicates Ayawiri residents 

were stoking their fires with the branches of dried woody shrubs. Based on comparable 

ubiquities of wood recovered from Ayawiri to other sites in the region Ayawiri residents were 

using shrubs for fuel in a similar manner to earlier time periods.  

There has not been any research conducted in the region on the anatomy of shrubs or 

trees. At this time, paleoethnobotanists working in the region are unable to differentiate or 

discuss a taxonomic identification of trees or woody bushes. 

Dung 

I identified 15 dung fragments in Ayawiri macrobotanical samples (standardized density 

= 0.03/liter and 4% presence). The sheer presence of charred dung fragments indicates that it was 

used for fuel. I did not identify any complete dung pellets; however, there were several 

fragments that appeared characteristically dung-like. These fragments were identified by their 

unorganized cellular structure, brownish-black color, and contents of organic fragments. The 

comparatively small amounts of dung in the analyzed samples may also be attributed to recovery 

methods. Charred dung is fragile and may have disintegrated to unidentifiable even smaller 

fragments during recovery, flotation, and even laboratory sorting procedures.   

Bone: Charred and Uncharred 

 While analyzing the light fractions, I found small fragments of charred and uncharred 

bone. I separated these from the greater than 2 mm fraction because they shed light on meat 

processing and cooking activities. I found 1,270 fragments of charred bone in Ayawiri 
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macrobotanical samples (standardized density = 1.21 fragments/liter and 25% presence) and 334 

fragments of uncharred bone (standardized density = 0.3 and 17% presence). There is a 

considerably higher and more ubiquitous amount of charred bones than uncharred bone. This is 

perhaps a taphonomic issue, since burned bone is lighter and more likely to float, or maybe this 

indicates that residents were doing more cooking at the site than processing. The residential 

sector at Ayawiri is crowded and cramped. Perhaps butchering of entire camelids took place 

offsite, whereas roasting small cuts of meat and boiling bones in soup was carried out within 

households. These are hypotheses beyond the scope of this dissertation that zooarchaeological 

data that is currently being analyzed might be able to address.  

Human and Camelid Diet and Behaviors 

I assessed the identified macrobotanical taxa in terms of human use. I compare these to 

other local macrobotanical datasets from different time periods to understand changes in plant 

use during the LIP. Then, I follow a method detailed by Marston (2011) and Langlie and Arkush 

(2016), where I query the macrobotanical data to better understand landscape use by Ayawiri 

pastoralists. With the taphonomic understanding that charred herbaceous seeds are fuel remains, 

nuanced questions of grazing behaviors can be answered using macrobotanical remains (Miller 

1996). Thus, analysis of macrobotanical remains from Ayawiri potentially elicits information 

about the diet of humans, their animals, and the ranging behaviors of ancient herds.    

Evidence of Human Diet, Food Plants, and Utilitarian Plants 

 The taxa I identified that Ayawiri residents likely consumed include chenopod crops, 

cactus fruits, and potatoes. There is weak evidence that they also consumed totora rhizomes, 
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plantago greens, maca, and other tubers. These plants are a part of a standard diet in the region 

even today (however, Old World domesticates such as wheat, barley, and rice have been 

incorporated into cropping schemes and the diet throughout the altiplano since the Colonial era). 

Each of the indigenous crops found at Ayawiri can all be locally produced and they have been 

found at nearby archaeological sites dating to the Formative and Middle Horizon Periods. There 

is no evidence that new crops were introduced into the agricultural system of the diet during the 

LIP.  Based on the absence of foreign plant products at Ayawiri, there is evidence that certain 

crops fell out of favor or were no longer available during the LIP.  

I found Chenopodium spp. to be the most ubiquitous and abundant seed taxon at Ayawiri. 

Without a doubt, residents relied on chenopod grains as a primary ingredient in their meals. The 

caches of this crop indicate that people depended on stores of quinoa. Similarly, the caches of 

potatoes and the many parenchyma fragments are strong evidence that roots and tuber crops were 

an integral part of the Ayawiri diet.  

There were several crops plants that were less ubiquitous in the Ayawiri assemblage 

compared to other sites dating to earlier time periods in the region. Cactus seeds were not very 

abundant or common in the Ayawiri assemblage. With the intensive agriculture that was taking 

place around the site, cactus plants may have been eliminated to make room for fields and crops, 

subsequently decreasing the availability of cactus fruits.  

Cyperaceae also decreased in importance based on the comparatively low ubiquity of 

seeds. However, this is not a good measure of the incorporation of totora rhizomes into the diet. 

Consumed raw, there is no known direct resource use that would result in carbonized totora 

seeds. It is highly unlikely that the Cyperaceae seeds I found are the remains of human 

foodways, but this does not dismiss the possibility rhizomes were eaten. Totora may have been 
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used for construction materials such as thatched roofing. An accidental house fire would have 

preserved any seeds attached to the inflorescence.  If this is the case, then it was used less at 

Ayawiri than other sites in the region. Notably, it is a several hour walk to the nearest extant 

stands of totora at Lago Umayo. Due to the limited availability, perhaps Ayawiri residents were 

using totora less for food and construction material than residents living near littoral ecotopes, 

where these plants grow.  

Relbunium sp., another plant with locally known economic importance as a plant dye, 

was also less prominent in the plant economy at Ayawiri than other sites and time periods in the 

region. We know textile production was carried out at Ayawiri. Numerous spindle whorls were 

found discarded on house floors (Arkush and Paredes 2012, 2013) indicating residents were 

producing fiber yarn within the residential area of the fort. If Relbunium sp. plants were used as a 

textile red dye by Ayawiri residents, then my findings indicate it was less important during the 

LIP than previously, where higher ubiquities have been reported. Perhaps residents substituted 

cochineal, a parasitic cactus beetle commonly used to produce red colors, for relbunium dye 

during the LIP. On the other hand, maybe weavers produced fewer luxury textiles during the LIP 

and focused on making un-dyed quotidian pieces. 

The crop notably missing from the Ayawiri assemblage is maize. Today, a maize variety 

adapted to harsh environment is grown in small amounts near lakeshores, where the 

microclimate of the littoral ecotopes protects the lowland crop from nighttime frosts. Maize has 

long been valued in the altiplano.  Logan and colleagues (2012) found microbotanical remains in 

ritual ceremonial contexts dating back to the Middle Formative Period (800-250 B.C.E.). Bruno 

(2007) identified a few morphologically non-local charred maize kernels from secure contexts at 

the Formative Period site Kala Uyuni on the southern shores of Lake Titicaca. During the Middle 
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Horizon (C.E. 500-1100) imported maize was a cornerstone of the local diet for residents at 

Tiwanaku, where researchers found macrobotanical corn remains to be the second most 

ubiquitous crop type recovered (Wright et al. 2003). These researchers argue the importance of 

maize at Tiwanaku could only have been achieved through importation, since maize does not 

readily grow there due to the climate and high elevation of the region. Maize cupules, glumes, 

and kernels have been found in elite, commoner, domestic, and sacred architectural spaces at 

Tiwanaku.  Drunk as chicha beer, maize also served the function as a quotidian and ritually 

important beverage. Whether drunk as a beverage or consumed in soups or other recipes, maize 

has long been, without a doubt, an integral part of altiplano foodways.  

Based on the long-standing, prized use of maize, I had expected to find that both its 

substantive and symbolical value endured during the LIP.  The complete absence of maize at 

Ayawiri points to a transformation of its importance, and potentially a shift in sacred and profane 

plant use during the LIP.  Perhaps, trade networks broke down due to the fear of enemy attack, 

eliminating access to maize. Perhaps, exotic perishable goods were no longer prized or valued 

during the LIP, and the absence of maize signals a transformation in culture and symbolism in 

the region.  Or maybe the absence of maize at Ayawiri is a result of both of the aforementioned 

causes; trade networks broke down, causing a transformation in people’s values, or values 

shifted causing a cessation in trade networks. This economic shift surely signals a change in 

trade relations and access to luxury crops produced in distant regions. Additionally, the absence 

of maize at Ayawiri signifies a transformation in domestic and ritual foodways, in which maize 

had been such an integral part of previously.  Rather than valuing exotically produced crops 

during the LIP, based on the macrobotanical remains at Ayawiri, residents shifted their foodway 

values to prizing locally produced grains and tubers. 
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Camelid Fodder or Grazing Patterns 

 With my findings, I can identify ecotopes where residents grazed their camelid herds.  

Based on information derived from modern Andean camelid foraging studies, we know that 

modern alpaca and llama herds in the Andes eat a diverse and broad diet (Bryant and Farfan 

1984; Flannery et al. 1989). Andean camelids can consume an array of forage plants and 

cultigens (Bonavia 2008). Furthermore, among Andean farmers, it is common practice to share 

cultivars with herd animals (Hastorf and Wright 1998).   

In order to carry out this analysis, I grouped the plant taxa found in samples from 

Ayawiri into four categories based on the ecotopes where they are commonly found. 1) Crop 

plant remains including Chenopodium spp. seeds and parenchyma that are cultivated in fields. 2) 

Crop companion weeds are plants that thrive in disturbed plots of land. They grow as weeds in 

actively managed fields, or as succession plants in agricultural plots lying fallow. In this study, 

these taxa include seeds from Malvaceae, Relbunium sp., Rubiaceae, and Trifolium amabile 

plants. 3) Small herbaceous plants grow wild throughout the region around Ayawiri, but 

particularly in the valley bottoms. The small herbaceous plant seeds I found include Poaceae and 

Plantago sp. 4) Wetland plants are taxa that grow in lacustrine or riverine areas. In this study, the 

only taxon I found that grows solely in wetlands is Cyperaceae. Today, sedges do not grow in the 

nearby bofedal. Therefore, residents would have had to travel further afield to acquire this plant.  

An abundance of crop and crop companion weed plant remains would indicate an 

intensive land use strategy where farmers grazed their herds within agricultural fields and/or 

shared their food with camelids, whereas the remains of wild herbaceous seeds and riverine 

plants that thrive in wetlands would point to an extensive herding strategy and human land use 

pattern.  Abundant and ubiquitous crop, weed, and herbaceous macrobotanical remains would be 
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indicative of a mixed strategy of intensive agriculture in the terraced fields and extensive 

grazing/foddering, 

Based on the abundance of crop and companion weed plants, my findings indicate 

Ayawiri camelids were primarily grazed intensively in cultivated fields, probably on the terraces 

adjacent to site. The exceptionally large concentrations of chenopods are evidence that residents 

foddered camelid herds. However, residents occasionally took their herds to graze in riverine or 

lacustrine areas as indicated by the identification of a small amount of wetland plant remains, 

such as Cyperaceae. Compared to Formative Period sites in the altiplano, the low incidence of 

Cyperaceae plants and other wetland species indicates herds rarely grazed in wetlands. These 

data point to a very constrained grazing and land use strategy during the LIP. 

Cultivated, Weedy or Wild: Chenopod Analysis 

Chenopodium spp. seeds are the most abundant crop at Ayawiri. Indeed, I have identified 

well over one million chenopods (an extrapolated number based on weight) recovered from just 

about every context including kitchen floors, non-kitchen house floors, hearths, pits, and fill. 

This is strong evidence that chenopods were foundational to the diet of Ayawiri residents. These 

findings raise the question: Were Ayawiri people growing the chenopods during the LIP? Or 

were they gathering wild chenopods? If they were cultivating these crops, how intensively did 

farmers weed fields and manage specific chenopod varieties? 

Identifying these behaviors depends on an in-depth analysis of the signatures of 

domesticated, weedy, or wild chenopods. In order to do this, it is necessary to take a multivariate 

approach that includes the use of a light microscope and scanning electron microscopy. This 

approach is based on Chenopodium sp. studies that were initially developed by researchers 
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working on domestication of chenopod species in North America. These projects assess seed 

diameter, testa thickness, seed shape, and testa texture to identify evidence of domestication 

(Fritz 1986; Fritz and Smith 1988; Gremillion 1993; Smith 1985a, b; Wilson 1981). Researchers 

in the Andes have adapted and refined these methods in order to study specific trajectories of 

quinoa and kañawa domestication during the Terminal Archaic and the Formative Period 

throughout the south-central highlands (Bruno 2006; Bruno and Whitehead 2003; Eisentraut 

1998; Langlie et al. 2011). In particular, the addition of an assessment of beak prominence (the 

protrusion of the radicle beyond the margin of the seed) has helped Andean researchers 

distinguish between distinct domesticated varieties (see Langlie et al. 2011). In North American, 

research has demonstrated that wild chenopods have weak beaks, whereas cultigens have 

prominent beaks (Gremillion 1993:497). Gordon (2006) identified a similar trend in 

Mesoamerican chenopods where beak prominence helps to distinguish wild chenopod varieties 

from domesticated ones. Notably, this study on Ayawiri chenopods is the first multi-variate 

analysis of its type of Late Intermediate Period chenopods in the Lake Titicaca Basin.  

Diameter and Seed Coat Thickness 

Under the selective pressures of cultivation throughout the Formative Period, seed size of 

Andean chenopods has been shown to increase (Browman 1989:143-148; Bruno 2001; Bruno 

2006; Bruno and Whitehead 2003). This increase in size was the result of what Harlan (1975) 

has identified as seedbed competition, where the larger seeds out-compete smaller seeds. 

Humans then harvested and sowed the larger seeds, changing the phenotype of subsequent 

generations of saved seeds. During this process farmers also selected the fastest maturing plants. 

The first seeds to germinate in a garden are ones that have thinner testa for the radicle to quickly 
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break through. Thus, a decrease in relative testa thickness is also an indicator of human-induced 

selective pressures (Smith 1989:1568).  

Margin Configuration, Seed Coat Texture, and Beak Prominence 

A change in seed coat texture and margin configuration has been show to accompany 

changes in chenopod seed diameter and testa thickness (Bruno 2006, 2008; Bruno and 

Whitehead 2003; Gremillion 1993; Langlie et al. 2011; Smith 1984). In cross-section thick seed 

coats compress the embryo and perisperm of wild and weedy chenopods, whereas thinner seed 

coats of domesticated chenopod varieties allow the embryo and perisperm to expand in the seed 

coat. This plumping results in a rounded-to-truncate margin where you can distinguish the shape 

of the embryo under the seed coat. In some cases, this also results in an increase in beak 

prominence because the embryo is no longer constricted by the thick seed coat. The complete 

results of these analyses are presented in Appendix G. Here, I focus on the data that point to 

whether the chenopods at Ayawiri were cultivated varieties, wild, or weedy.  

Chenopod Analysis Results 

The mean diameter of the 997 chenopods seeds measured in this study is 1.16 mm (σ =.4, 

Min= 0.4 mm, Max= 2.0 mm). Due to poor preservation of morphological traits, I was able to 

determine the margin configuration and the testa texture of only 456 chenopod seeds (see Table 

6.2 and Figure 6.15).  From the chenopods for which I was able to distinguish both these traits, 

92% have a smooth testa texture with rounded or truncate margin configuration (n=419).  
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Table 6.2: Summary of the margin configurations compared 

to the testa texture for Ayawiri Chenopodium spp. seeds. 

 

 Canaliculate Reticulate Smooth 
No 
Data Totals 

Biconvex 1 1 7 2 11 

Equatorially Banded 0 1 0 0 1 

Rounded 6 13 280 39 338 

Truncate 1 7 139 14 161 

No Data 8 5 265 208 486 

Totals 16 27 691 263 997 

 

 

Figure 6.15: Bar graph of the margin configurations 

compared to testa texture for Ayawiri Chenopodium sp. 

seeds. 

 

While seed diameter was visible on every specimen, it was not always possible to 

distinguish margin configuration, seed coat texture and beak prominence due to charring and 

other taphonomic processes. When seeds were puffed due to conditions of the fire in which they 

were carbonized, the margin configuration was often distorted. Seeds lacking a testa or that were 

poorly preserved did not have a distinguishable seed coat. Sometimes the beak was broken off 

specimens. It is worth noting that for the qualitative portion of this analysis, I often had a hard 

time distinguishing between the choices of shapes or textures. There are three reasons why I 
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think this was difficult. First, charring and puffing distort these features to varying degrees. 

Second, these features are not discrete categories; rather, phenotypic change is the result of 

human selection over time. Third, chenopod plants are wind pollinated (Wilson 1990), so 

introgression between wild, weedy, and cultivated species could have an impact on seed 

morphology. I believe these processes are responsible for overlap in these morphological 

features. In other words, I think these categories should be thought of as a continuum rather than 

discrete categories. This makes sense since human selection occurs over time and this process 

results in small incremental phenotypic change.  

Even when the testa was broken off of specimens, I was still able to determine how far 

the radicle extended past the perimeter of the seed as long as the embryo was still attached to the 

perisperm. I was able to determine the beak shape of 723 chenopods (Table 6.3). Of the seeds 

with intact beaks 58% have prominent beaks and 29% have weak beaks.  

 

Table 6.3: Summary of the beak shape for Ayawiri 

Chenopodium spp. seeds. 

 

Beak 
Shape 

Very 
Prominent 

Prominent Weak 
Very 
Weak 

No 
Data 

Total 

  68 419 210 26 274 997 
 

 

The mean testa thickness of the 73 chenopods that I examined with the SEM is 8.5 µm (σ 

=5.8 µm, Min= 2.2 µm, Max= 36.8 µm). Generally, I found that chenopod seeds with a larger 

diameter had thinner testa textures, and smaller chenopods had a slightly thicker testa texture 

(see Table 6.4, which I sorted in ascending order by the value of the ratio of testa thickness/seed 

diameter).  
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Table 6.4: Summary of the ratio of testa thickness/seed 

diameter of Ayawiri chenopods. 

Specimen # 

Total Testa 

Thickness 

(µm) 

Log Total 

Testa 

Thickness 

Seed 

Diameter 

(µm) 

Log Seed 

Diameter 

Ratio      

Testa/ 

Diameter 

Testa 

Texture 
Margin  Beak 

73 4.4 0.64 1800 3.255 0.002 Smooth Truncate Prominent 

68 4.8 0.68 1700 3.230 0.003 Smooth Truncate Weak 

67 5.2 0.72 1800 3.255 0.003 Smooth Rounded Weak 

42 5 0.70 1500 3.176 0.003 Smooth Truncate Weak 

66 6 0.78 1800 3.255 0.003 Smooth Rounded Prominent 

3 5.4 0.73 1600 3.204 0.003 Smooth Rounded Prominent 

55 6.2 0.79 1700 3.230 0.004 Smooth Rounded Weak 

63 6 0.78 1500 3.176 0.004 Smooth Rounded Weak 

4 6.8 0.83 1500 3.176 0.005 Smooth Rounded Prominent 

43 8 0.90 1700 3.230 0.005 Smooth Truncate Prominent 

65 7.2 0.86 1500 3.176 0.005 Smooth Truncate Prominent 

6 8.8 0.94 1800 3.255 0.005 Smooth Rounded Prominent 

11 5 0.70 1000 3.000 0.005 Smooth Truncate No Data 

71 8.4 0.92 1600 3.204 0.005 Smooth Truncate Prominent 

31 7.4 0.87 1400 3.146 0.005 Smooth Truncate 
Very 

Prominent 

8 9 0.95 1700 3.230 0.005 Smooth Rounded Prominent 

69 9 0.95 1700 3.230 0.005 Smooth Truncate Prominent 

39 7.6 0.88 1400 3.146 0.005 Smooth Truncate Prominent 

36 9 0.95 1600 3.204 0.006 Smooth Rounded 
Very 

Prominent 

61 9 0.95 1600 3.204 0.006 Smooth Truncate Prominent 

57 10.4 1.02 1800 3.255 0.006 Smooth Truncate Prominent 

1 9.5 0.98 1600 3.204 0.006 Smooth Truncate Prominent 

2 10.4 1.02 1700 3.230 0.006 Smooth Rounded Prominent 

35 10 1.00 1500 3.176 0.007 Smooth Truncate Prominent 

54 11 1.04 1600 3.204 0.007 Smooth Truncate Prominent 

62 12.6 1.10 1800 3.255 0.007 Smooth Truncate Prominent 

64 11.4 1.06 1600 3.204 0.007 Smooth Rounded Prominent 

5 11 1.04 1500 3.176 0.007 Smooth Rounded Prominent 

70 12.4 1.09 1600 3.204 0.008 Smooth Rounded Prominent 

58 13.6 1.13 1700 3.230 0.008 Smooth Truncate Prominent 

34 12.2 1.09 1500 3.176 0.008 Reticulate Truncate Prominent 

56 13.2 1.12 1600 3.204 0.008 Smooth Truncate Prominent 

32 14 1.15 1600 3.204 0.009 Reticulate Rounded Prominent 

37 12.4 1.09 1400 3.146 0.009 Smooth Rounded 
Very 

Prominent 

51 8 0.90 900 2.954 0.009 Smooth Rounded Prominent 

60 14.8 1.17 1600 3.204 0.009 Smooth Truncate Prominent 

9 16.8 1.23 1700 3.230 0.010 Smooth Truncate Weak 

38 17.8 1.25 1800 3.255 0.010 Smooth Rounded Prominent 

30 16.2 1.21 1500 3.176 0.011 Reticulate Truncate 
Very 

Prominent 

33 16.2 1.21 1500 3.176 0.011 Reticulate Rounded 
Very 

Prominent 

59 16.6 1.22 1400 3.146 0.012 Smooth Truncate Prominent 

19 11.2 1.05 900 2.954 0.012 Smooth No Data Weak 

47 11.6 1.06 900 2.954 0.013 Smooth Rounded Weak 

41 19.6 1.29 1500 3.176 0.013 Smooth Rounded Prominent 

14 13.4 1.13 1000 3.000 0.013 Smooth Rounded Weak 

22 15.2 1.18 1000 3.000 0.015 Smooth Rounded Weak 
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Specimen # 

Total Testa 

Thickness 

(µm) 

Log Total 

Testa 

Thickness 

Seed 

Diameter 

(µm) 

Log Seed 

Diameter 

Ratio      

Testa/ 

Diameter 

Testa 

Texture 
Margin  Beak 

72 32.2 1.51 1700 3.230 0.019 Smooth Rounded 
Very 

Prominent 

53 15.2 1.18 800 2.903 0.019 Smooth Rounded Weak 

13 17.6 1.25 900 2.954 0.020 Smooth No Data Weak 

7 39 1.59 1800 3.255 0.022 Smooth Rounded 
Very 

Prominent 

21 22.6 1.35 1000 3.000 0.023 Reticulate 
Equatorially 

Banded 
Prominent 

15 22.4 1.35 900 2.954 0.025 Smooth Rounded Prominent 

45 22.4 1.35 900 2.954 0.025 Smooth Rounded Prominent 

29 20.2 1.31 800 2.903 0.025 Smooth Rounded Weak 

48 20.2 1.31 800 2.903 0.025 Smooth Rounded Prominent 

52 20.6 1.31 800 2.903 0.026 Smooth Rounded Prominent 

28 20 1.30 700 2.845 0.029 Smooth Rounded Prominent 

50 20 1.30 700 2.845 0.029 Smooth No Data Prominent 

25 20.2 1.31 700 2.845 0.029 Smooth Rounded Prominent 

27 23.8 1.38 800 2.903 0.030 Smooth No Data Prominent 

26 29.8 1.47 1000 3.000 0.030 Smooth Rounded No Data 

49 27 1.43 900 2.954 0.030 Smooth No Data Weak 

46 24.2 1.38 800 2.903 0.030 Smooth Rounded Prominent 

24 24.4 1.39 800 2.903 0.031 Smooth Rounded Prominent 

40 46.4 1.67 1500 3.176 0.031 Smooth Truncate Prominent 

16 25 1.40 800 2.903 0.031 Smooth Rounded Prominent 

23 25.2 1.40 800 2.903 0.032 Smooth Rounded Prominent 

12 29.2 1.47 800 2.903 0.037 Smooth Rounded Prominent 

17 26 1.41 700 2.845 0.037 Smooth Rounded Weak 

44 32.8 1.52 800 2.903 0.041 Smooth Rounded Prominent 

20 38.8 1.59 700 2.845 0.055 Smooth Rounded Weak 

10 43.8 1.64 700 2.845 0.063 Smooth Rounded Prominent 

18 73.6 1.87 700 2.845 0.105 Smooth Rounded Prominent 
A “Because the testa thickness is measured on only one side of [I], double the testa thickness value in order to 

account for the entire area represented by the testa when calculating the testa/diameter ratio (Bruno and Whitehead 

2006:344).” 
B  “A log was applied to transform the values (Bruno and Whitehead 2006:344).” 
C “To calculate the ratio, [I] divided total testa thickness (microns) by diameter (microns) (Bruno and Whitehead 

2006:344).” 

  

Another trend that I noticed is that smaller chenopods are generally rounded, whereas the 

larger chenopods tend to be truncate. There are no correlations between testa texture, beak 

prominence, and other variables. When I plot out the ratio of the testa compared to the seed 

diameter there are two distinct clusters. Generally, the larger seeds have a lower ratio whereas 

the smaller seeds have a higher ratio (Figure 6.16). Based on this information I have identified 
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two types of chenopods at Ayawiri.  The large type I refer to as Ayawiri Chenopod Type #1 and 

the smaller type I call Ayawiri Chenopod Type #2. 

 

 

Figure 6.16: Scatterplot of log testa thickness compared to 

log diameter of Ayawiri chenopod seeds (n=73).  

 

 

 Based on this scatterplot I divided these data into two samples based on the evident 

discreteness of Chenopod Type #1 (n=43 seeds) and Type #2 (n=30). To evaluate whether seed 

diameter and testa thickness are statistically different between these two types, I twice ran two 

sample Welch’s t-tests. First, I tested whether seed diameter was significantly different between 

the two chenopod types. Then, I tested whether testa thickness was different between the two 

types. Both seed diameter (t=-29.003, df=69, p < 0.001) and testa thickness (t=4.277, df=47, p < 

0.001) are significantly different at the 0.05 level. These tests confirm that the measured samples 

Chenopod Types #1 and Type #2 are from populations that have discretely different mean seed 
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diameters and testa thicknesses. At least for this sample, either testa thickness or seed diameter 

are sufficient measurements that can used to distinguish these populations from one another.  

Comparing Chenopods 

To shed further light on these data, I compare modern and archaeological Andean 

chenopods to the Ayawiri seeds. Modern quinoa has a margin configuration that is truncate 

(Bruno 2008:289). Both kañawa and wild Andean chenopods have round to truncate margin 

configurations, whereas the weed quinoa negra has a biconvex to equatorially banded margin 

(Bruno 2008:289). The chenopods in this study have margin configurations that are typically 

rounded (n=347) to truncate (n=162). These findings indicate that most Ayawiri chenopods are 

crops, but that a few are wild or weedy chenopods. Only 12 chenopods have a biconvex margin 

and one seed has an equatorially banded margin. If these morphological types represent weeds or 

wild chenopods, then there are very few of them in the assemblage.  

The testa texture of modern quinoa is smooth, and kañawa is canaliculate (Bruno 

2008:89). The testa texture of quinoa negra is reticulate, and wild species have a punctate testa 

texture. Almost all the seeds in this study have a smooth testa texture. This could indicate they 

are quinoa or another crop. As I noted, I think charring potentially distorts testa texture. I cannot 

rule out the possibility that I identified seeds as having a smooth testa texture, when in fact they 

were distorted.  

Langlie et al. (2011) found that an archaeological variety of domesticated chenopod from 

the Oruro region has a very prominent beak. This contrasts with the archaeological and modern 

crop varieties described by Bruno (2008) and Bruno and Whitehead (2003). In these studies, the 

beaks of chenopods are prominent to weak (distinguished from photos since these researchers 
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did not include this metric). Quinoa negra in particular appears to have a weak beak. Although 

this requires further research in the Andes, I think an increase in beak prominence goes hand-in-

hand with other domestication syndrome features in chenopods. The Ayawiri chenopods 

generally have prominent beaks, providing further support they are crops.        

Researchers have demonstrated that samples of modern quinoa and the weed quinoa 

negra overlap in diameter (Bruno and Whitehead 2003:343; Nordstrom 1990:11). Modern 

charred quinoa measures 1.6 to 2.2 mm; whereas, the weed quinoa negra measures 1.4 to 1.6 mm 

(Bruno 2008:289). This demonstrates that seed diameter alone is insufficient in the Andes to 

distinguish weeds from crops. Charred seeds of the crop kañawa measure 0.8 to 1.4 mm (Bruno 

2008:289), and wild chenopod species measure about 0.7 to 1.2 mm (Bruno 2008:289; Browman 

1989:146). The measurements of the diameter of the Ayawiri chenopods spans the entire range 

of wild, weedy, and cultivated species. However, the mean diameter of 1.16 mm is smaller than 

that of either modern quinoa or quinoa negra populations.  

On the other hand, the Ayawiri chenopods are similar in diameter to other archaeological 

specimens that were identified as cultivated crops. Chenopod grain sizes increase through time at 

Chiripa.  Browman (1989:145) found seed diameter, during the latest time period at Chiripa 

measured on average 1.0 mm (however, he may have included a type of very small Amaranthus 

sp.). He reports this increase in seed diameter through time was the result of human selection. 

Similarly, Bruno and Whitehead (2006:349) found archaeological quinoa and quinoa negra seeds 

from Formative Period Chiripa are smaller than modern specimens. Today, quinoa is under 

different selective pressures than it was in the past. Indeed, modern farming practices could be 

responsible for the seed diameter difference between ancient and modern quinoa. This means 

that I cannot rule out the possibility that the Ayawiri chenopods include cultivated varieties.  
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The testa thicknesses of modern quinoa range between 1.2 and 3.75 m, and kañawa 

range from 4.25 to 7.5 m (Bruno 2006:38-39). The testa thickness of weedy quinoa negra 

ranges from 22 to 51 m and the wild species paiko testa thickness ranges from 11 to 14.5 m 

(Bruno 2006:38-39).  Of the two types of seeds that I examined from Ayawiri, Ayawiri 

Chenopod Type #1 seeds have a testa thickness consistent with both quinoa and kañawa. 

Ayawiri Chenopod Type #2 seeds have testa thickness well within the range of wild chenopods, 

but they do not have testa thickness as thick as the weed quinoa negra. Only one chenopod, 

Specimen #18, has a testa thickness within the range of quinoa negra.  

Bruno and Whitehead (2003:344) found the values of the testa thickness to seed diameter 

ratio for quinoa are between .001 and 0.004 and ratios for quinoa negra range 0.031 to 0.068. 

The low value of the ratio for quinoa reflects the larger seed diameter and thinner testa. The 

comparatively higher value for negra reflects the thicker testa. Kañawa should be closer to testa 

thickness/seed diameter values of quinoa, whereas wild chenopods should be slightly less than 

the quinoa negra ratio range. Of the two types of chenopods I identified from the site, Ayawiri 

Chenopod Type #1 has a testa thickness to seed diameter ratio that is within the range of quinoa. 

Ayawiri Chenopod Type #2 has a ratio similar to wild chenopods and kañawa (when compared 

to Bruno 2008:303 Table 8.12).  

Chenopods as a Proxy for Behavior 

 My analysis has revealed, based on multiple qualitative and quantitative measurements, 

that Ayawiri Chenopod Type #1 resembles quinoa. It has a rounded to truncate margin, a smooth 

testa texture, a prominent beak, and a low testa thickness to seed diameter ratio. Although 
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Ayawiri Chenopod Type #1 has a smaller seed diameter than the modern quinoa, it is well within 

the range of archaeological quinoa specimens.  

 Ayawiri Chenopod Type #2 has a testa thickness/seed diameter ratio consistent with both 

kañawa and wild chenopods. Notably, I did find large quantities of this chenopod type in the 

cache below a house floor that likely indicates it was a cache of cultivated seeds rather than 

indirect resource use in dung burned for fuel. Based on this contextual information, I think this is 

evidence that Ayawiri Chenopod Type #2 is also a cultivar. 

I found chenopod seeds with morphological features of quinoa negra (thick testa, 

equatorially banded) in less than 1% of the samples I analyzed. At Formative Period Chiripa, 

Bruno and Whitehead (2003) found higher amounts of quinoa negra in early contexts and lower 

amounts in later contexts. They suggest this indicates that Chiripa residents meticulously weeded 

their fields later in time coinciding with agricultural intensification. I think the low incidence of 

quinoa negra type seeds in Ayawiri samples also indicates residents were carefully weeding their 

fields. It is also possible that camelids and/or humans may have been eating the quelites of 

quinoa negra before these plants went to seed. 

As I have documented, there is overlap between the morphological features of the 

different types of archaeological chenopods in this study. There are also disparities between 

archaeological chenopods and modern seeds that are pronounced. Bruno and Whitehead 

(2008:350) note sharp distinctions between Formative Period quinoa and modern specimens. 

They attribute this difference to human selection over time. However, there are fewer 

distinctions between Late Formative Period quinoa and LIP chenopods than there are between all 

measured archaeological chenopods from the altiplano and modern specimens. Based on this, I 

posit human selection postdating the LIP resulted in the sharp disparities in morphological 
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features between chenopod crops, weeds, and wild seeds. Perhaps, there was a selective pressure 

during the modern era, such as a colonial preference for quinoa real, the variety sold in grocery 

stores today, that caused these differences. Going forward, further research is needed on Middle 

Horizon Period chenopods and chenopods from other time periods in the region to clarify this 

trend. 

Based on this analysis, I conclude that Ayawiri residents were cultivating quinoa and 

potentially kañawa. While both crops do not require much rainfall to thrive, kañawa requires less 

precipitation than quinoa. Except in the case of the cached storage pit of chenopods, it is difficult 

to determine whether the Ayawiri chenopods were brought to the site through direct resource use 

or in dung burned for fuel. Furthermore, it is not possible to differentiate whether residents were 

foddering their livestock on crops or grazing them in fields. I found chenopods in just about 

every sample I analyzed and often in abundance. I think this is evidence that Ayawiri residents 

were indeed consuming quinoa and kañawa and sharing their crops with their animals. The 

paucity of quinoa negra type chenopods indicates residents were intensively weeding and 

managing their fields. Even though the LIP was an arduous time period climatically and socially, 

famers took great care tending their quinoa fields.  

Conclusions 

 In conclusion, Ayawiri residents relied on a plant economy that was not too different than 

their ancestors in the region. For their primary carbohydrates and plant proteins they ate quinoa, 

possibly kañawa, potatoes, and other tubers. Sometimes residents ate sweet cactus fruits, but not 

as much as Formative peoples or Middle Horizon city dwellers living in the southern Titicaca 

Basin. This rich carbohydrate and grain heavy diet was likely supplemented by chenopod 
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quelites and perhaps even Plantago sp. leafy greens. Maize was not a part of the Ayawiri 

economy. This signals a departure from Middle Horizon foodways and focus on drinking of 

maize chicha. Furthermore, these data indicate a termination of exchange of staple goods with 

lower elevation peoples who supplied the maize. Ayawiri peoples burned camelid dung to fuel 

warming and cooking fires. This means that macrobotanical remains also provide insight into 

grazing strategies. Herds were primarily grazed within fields or foddered on chenopods. This is a 

departure from the dependence on wetland plants and grazing areas during the Middle Horizon 

and Formative. Herders rarely ventured to lacustrine or riverine ecotopes, indicating a very 

constrained use of the landscape.  
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Chapter 7. Contextual Analysis of Macrobotanical 

Remains from Ayawiri 
 

 

 

In Chapter Seven I examine and compare the contexts of macrobotanical remains from 

Ayawiri. Drawing on this analysis, the locations where plants were used and for what purposes is 

identified. In addition, I assess the ecotopes where plant taxa likely grew in the area near the site 

to determine land use strategies employed by different groups of residents. Using this data, 

evidence of social diversity in foodways is determined among residential households living at 

Ayawiri during the LIP. I begin this chapter by briefly detailing the archaeological contexts 

where macrobotanical remains were recovered, focusing on five compounds. I examine 

macrobotanicals found in each compound to determine residents’ quotidian plant use in these 

spaces. Then, I turn my attention to comparing macrobotanical remains between contexts 

including non-kitchen house structures, kitchens, hearths, patios, and middens. Lastly, I examine 

similarities and difference in the plant remains between household compounds to pinpoint 

evidence of intra-site social diversity. The goals of this analysis is to shed light on how and 

where residents used plants in their daily lives at Ayawiri.  

 In total, Proyecto Machu Llaqta archaeologists excavated approximately 200 m2 in six 

residential compounds in different areas of the Ayawiri site in 2011 and 2012 (see Figure 7.1) 

(Arkush 2014). Generally, our team found intact LIP house floors and artifacts in situ within 10 

to 30 cm below the surface level. We did find a few modest Formative Period contexts at the site. 

While I mention these in my descriptions of the excavations, these samples are excluded from 

this study because the data is not relevant to my research goals and the form and function of the 
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Formative contexts are unresolved (see Appendix H for Formative Period macrobotanical 

findings). Drawing on excavation reports (Arkush and Paredes 2012, 2013), I detail the findings 

of excavations from contexts where I analyzed macrobotanical remains.  

 

 

Figure 7.1: Excavations in the residential sector at Ayawiri 

(map rendered by E.N. Arkush). 

Compound 6 

Compound 6 is located in the southern sector of the site. Arkush (2015) found that this 

area of the site is the oldest based on lichenometry data. She also notes that the southern sector is 
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the safest because the hillside there is too steep to climb, and it furthest from the northern 

approach. Additionally, there are more and bigger houses per compound in this area of the site. 

In Compound 6 we excavated three units. Full details of these excavations are provided by 

Arkush and Paredes (2012), and I draw on their manuscript to describe excavation findings. 

Within these units the excavation team targeted three house structures, a portion of the interior 

patio in the compound, and midden behind one house (see Figure 7.2). 

 

 

 

Figure 7.2: Compound 6 delineating the excavation units 

(map rendered by E.N. Arkush). 
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Unit 6A Non-Kitchen House Structure 

In Unit 6A we excavated a large non-kitchen house structure that measures 

approximately 3 m in diameter. The foundation of this house is composed of a ring of vertically 

positioned white foundation slabs made of limestone. Within the house, excavations uncovered a 

compact floor impressed with red and white clay inclusions. There was no hearth in this 

structure, but we did find a stone axe.  

Unit 6A Non-Kitchen House Structure Macrobotanical Remains 

 I analyzed two macrobotanical samples from the LIP occupational layer of the floor of 

the non-kitchen house structure in Unit 6A (Table 7.1). Sample V2-2305/5 was collected from 

the interior of the structure just to the left of the door. This sample has a low density (5.6 

seeds/liter) and a low richness (one taxon present). Sample V2-2305/23 was collected from the 

floor opposite the doorway near the back wall of the structure. This sample has medium density 

(30.2 seeds/liter) and richness (three taxa present). There is a large quantity of Chenopodium spp. 

seeds in this sample. Bone was found in both flotation samples from this context. This presence 

of food remains and the absence of other culinary preparation artifacts indicate that the structure 

was likely used for food consumption. The lower density of macrobotanical residues near the 

door might be evidence of regular cleaning activities, whereas the concentration near the back of 

the house was where unwanted materials were swept out of the way. The small amount of the 

crop companion weed seed Malvaceae was probably brought into this house in dung burned for 

fuel.  
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        Table 7.1: Macrobotanical remains found in Unit 6A. 

 

 

Unit 6B Non-Kitchen House Converted into a Kitchen House 

In unit 6B we excavated a non-kitchen house similar in size to 6A. This structure also has 

a foundation of vertically positioned white limestone slabs encircling the perimeter of the 

structure. Excavators found an incomplete and partially destroyed compact red clay floor in this 

house. There were very few artifacts associated with this floor except near the doorway, where 

there was a small concentration of broken ceramics. I did not analyze macrobotanical artifacts 

from this non-kitchen house structure. However, I did analyze macrobotanical remains from 

subsequent excavations below this floor. Through deeper excavations we found the non-kitchen 

house was built on top of an earlier LIP kitchen house, based on the identification of a hearth and 

associated cooking artifacts. In other words, the kitchen house was converted into a non-kitchen 

Locus # V2-2305/5 V2-2305/23

Unit 6A 6A

Context Occupation/ 

Floor

Occupation/ 

Floor

Chenopodium spp. 5.60 29.70

Malvaceae 0.00 0.20

Wood (Ct.) 0.20 1.90

Uncharred Bone 1.20 0.00

Charred Bone 0.00 2.30

Total Density Seeds 5.6 30.2

RICHNESS 1 3

CROP COMPANION WEED SEEDS

FUEL

OTHER

TOTALS

Taxa Standardized Density                                          

(Specimen/L of Soil Floated)

CROP PLANT REMAINS
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house later in the LIP. In this unit we also excavated a portion of the patio in front of the kitchen 

structure. Excavators noted fill mixed with artifacts and portions of a red clay floor.  

Unit 6B Kitchen Structure Macrobotanical Remains 

 From Unit 6B I analyzed one macrobotanical sample collected from the floor of the 

kitchen structure, one from the matrix found inside the hearth, and one sample from the patio 

(Table 7.2). Sample V2-2329/3 was collected from the floor of the kitchen structure along the 

wall opposite the doorway. I found a high density of chenopods in this sample (237.13 

seeds/liter), charred bone, and a few fragments of dung. Sample V2-2331/6 was collected from 

inside the hearth. This sample has an exceptionally high density of chenopods (6560.2 

seeds/liter). There was also a small tuber and charred bone in the hearth. I found fragments of 

charred wood, but no small seeds indicative of dung burning in the hearth. This indicates wood, 

probably the shrub thola, was the primary fuel the last time residents used this hearth. Based on 

the comparatively high density of food remains in this structure, it was a space used for culinary 

purposes.  

Samples V2-2340/6 was collected from the patio in front of the kitchen structure. A 

medium density of chenopods (between 13.9 seeds/liter) was found in this sample that are likely 

residues of cooking, probably from inside the kitchen structure. These residues were discarded in 

the patio. The presence of burned dung, Malvaceae, Trifolium amabile, and Cyperaceae seeds 

indicate dung from herds grazed in fields and wetlands was indeed used for fire fuel in this 

compound. Residents then cleaned out their hearths and brushed the remains out onto the patio 

floor.  
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Table 7.2: Macrobotanical results from Unit 6B kitchen 

house. 

 

 

 

Unit 6C Kitchen Structure 

 We excavated a kitchen structure in Unit 6C. This is the largest kitchen structure we 

excavated at the site, measuring approximately 3 m in diameter. In the middle of the structure 

there was a large concentration of artifacts abandoned in situ including grinding stones, lithic 

flakes, broken ceramic vessels, and fragments of camelid bone (Figure 7.3). Excavators also 

noted a low bench composed of a row of stones along the interior of the eastern wall of the 

structure. Just inside the doorway in the eastern portion of the structure, we found a small clay 

Locus # V2-2329/3 V2-2331/6 V2-2340/6

Unit 6B 6B 6B

Context Floor Hearth with 

artifacts 

associated

Occupation/ 

Floor of 

patio

Chenopodium spp. 237.13 6560.20 13.90

Tubers/Parenchyma 0.00 0.00 0.00

Malvaceae 0.00 0.00 0.00

Trifolium amabile 0.00 0.00 0.00

Brassicaceae 0.00 0.00 0.00

Cyperaceae 0.00 0.00 0.00

Dung 0.13 0.00 0.00

Wood (Ct.) 0.00 1.60 0.00

Uncharred Bone 0.13 0.28 0.00

Charred Bone 0.00 8.50 1.70

Total Density Seeds 237.125 6560.4 13.9

RICHNESS 1 3 1

Taxa Standardized Density                                                                     

(Specimen/L of Soil Floated)

CROP PLANT REMAINS

CROP COMPANION WEED SEEDS

SMALL HERBACEOUS SEEDS

WETLAND PLANT SEEDS

FUEL

OTHER

TOTALS
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hearth that measured 10 x 20 cm. Even though there was a dense concentration of artifacts on the 

kitchen floor, excavators noted only a few pieces of ceramic and burned bone near the hearth.  

 

 

Figure 7.3: Unit 6C is a kitchen structure (left photo) with a 

dense concentration of food preparation artifacts. A small 

clay hearth along the interior bench of 6C (right photo). 

 

Unit 6C Kitchen Structure Macrobotanical Remains 

 From Unit 6C I analyzed four macrobotanical samples collected from the occupation 

level of the kitchen structure floor and one sample recovered from inside the hearth (Figure 7.3). 

All samples from this structure have low-to-medium densities of chenopods ranging from 6.9 to 

23.6 seeds/liter. Parenchyma was also found in three samples. These food remains provide 

further evidence that cooking was indeed carried out in this house. The presence of Malvaceae 

and Trifolium amabile throughout the structure floor and the medium density of wood in the 

hearth (59.5 fragments/liter) indicate dung and wood were used for fire fuel. Additionally, the 

camelids that produced this dung were grazed primarily in fields on crop companion weeds and, 

possibly, chenopods.  
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          Table 7.3: Macrobotanical results from unit 6C. 

 
 

Compound 44  

 Compound 44 is located in the south-central sector of the site along the eastern side of the 

elevated causeway. This compound is one of the largest at Ayawiri and contains the most 

structures. In Compound 44 we excavated three units that encompassed the remains of three 

house structures, a storage structure, patio, and midden behind one house (Figure 7.4). Full 

details of these excavations are provided by Arkush and Paredes (2012), and I draw on this 

manuscript to describe excavation findings.  

Locus # V2-2354/27 V2-2355/29 V2-2357/21 V2-2359/1 V2-2361/1

Unit 6C 6C 6C 6C 6C

Context Occupation/ 

Floor

Occupation/ 

Floor

Occupation/ 

Floor

Occupatio

n/ Floor

Hearth

CROP PLANT REMAINS

Chenopodium spp. 12.30 23.60 6.40 11.20 6.00

Tubers/Parenchyma 0.00 0.10 0.10 0.10 0.00

CROP COMPANION WEED SEEDS

Malvaceae 0.00 0.10 0.20 0.50 0.50

Trifolium amabile 0.00 0.00 0.30 0.10 0.00

FUEL

Wood (Ct.) 0.10 0.00 0.00 1.00 59.50

OTHER

Uncharred Bone 0.00 0.00 0.20 0.00 0.00

TOTALS

Total Density Seeds 12.4 23.9 7.2 12.5 6.5

RICHNESS 2 3 4 5 2

Taxa Standardized Density                                                                                                                

(Specimen/L of Soil Floated)
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Figure 7.4: Compound 44 delineating the excavation units 

(map rendered by E.N. Arkush). 

 

 

Unit 44A Non-Kitchen House Structure 

In Unit 44A we excavated one of the largest non-kitchen house structures at the site 

measuring 5 m in diameters. We also excavated a portion of the patio in front of this structure 

and a midden located behind the structure adjacent to the elevated causeway. The foundation of 

the house has a row of vertically positioned white limestone slabs encircling the foundation 

(Figure 7.5). The floor is composed of compact red clay and is particularly well preserved in the 

north and northwest portions of the structure. Excavators found a few ceramic sherds, bones, and 

lithics on the floor. A burned area that excavators interpreted as an informal hearth was identified 
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in the middle of the structure. This informal hearth is composed of charred layers and looks 

nothing like the well-preserved formal clay cooking hearths found in kitchen structures. 

Excavators made no clear suggestions about what this structure was used for.  

  

 

Figure 7.5: Non-kitchen house structure in Unit 44A. Note 

row of the foundation’s vertically positioned white limestone 

slab stones. 

 

 

Unit 44A Non-Kitchen House Structure Macrobotanical Remains 

 I analyzed macrobotanicals from two strata of the Unit 44A house floor. Excavators 

referred to the first stratum as the use surface because artifacts were found in situ (Figure 7.4). 

Excavators called the stratum below the use surface the red clay floor (Table 7.5). The use 

surface has a moderate density of macrobotanicals ranging from 0.6 to 45.8 seeds/liter. On the 

other hand, four samples from the red clay floor have high densities of chenopod seeds ranging 
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from 148.8 to 333.6 seeds/liter. The red clay floor also has higher richness values of 

macrobotanical specimens. I think the macrobotanical remains in the red clay floor were 

compacted into this stratum during repeated use, whereas the use surface stratum represents 

residues that were not cleaned from the final occupation of the house and soil that accumulated 

there after abandonment. In both the use surface stratum and the red clay floor macrobotanical 

samples with higher densities were recovered from the perimeter of the structure, whereas lower 

density samples were collected from the center of the structure. I think these data reflect cleaning 

activities, where debris was swept to the perimeter against the structure walls.  

What was this non-kitchen house used for? Based on the intensity of deposition of food 

remains including chenopod seeds and parenchyma/tubers I think communal eating activities, or 

perhaps even feasting events, were carried out in this enclosed space. The house is large enough 

to host more than one family. Perhaps, the small informal hearth was used as a warming fire.  
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Table 7.4: Macrobotanical remains from the use surface of 

the non-kitchen house structure in Unit 44A. 
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Table 7.5: Macrobotanical remains from the red clay floor 

of the non-kitchen house strcture in Unit 44A. 
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Unit 44A Midden 

West of the structure in Unit 44A, excavators noted there was a stratum of wall collapse. 

Stacked stones from the elevated causeway tumbled into this area. Below the wall collapse, they 

found evidence of a trash midden consisting of lithic debris, ceramics sherds, and animal bone. 

Excavators interpreted these findings as the product of residents or passerbys traveling along the 

elevated causeway periodically discarding their trash behind the house. To the east of the non-

kitchen house, excavators dug a trench from the doorway extending into the center of the patio, 

where they found the remains of a compact, reddish clay floor indicating the interior of the house 

floor extended into the patio. Excavators noted animal bones, obsidian debitage, and ceramic 

fragments on the patio floor. These data indicate domestic activities were carried out in the patio 

of 44. 

Unit 44A Midden Macrobotanical Remains 

 I analyzed five macrobotanical samples from the midden behind the non-kitchen house 

and two samples from the patio in front of the structure in Unit 44A. I found there is a low-to-

medium density of macrobotanical specimens deposited in the samples from the midden behind 

the structure ranging between 0.5 and 22.7 seeds per liter (Table 7.6). The density of crop plant 

remains from this area is equally low. These macrobotanicals, along with the discarded broken 

ceramics and animal bone, are evidence of the disposal of eating activities. This further affirms 

that the non-kitchen house structure in Unit 44A was used for eating, probably communal meals, 

rather than food preparation. The low amounts of small herbaceous seeds that were discarded in 

the midden and the wood indicate both dung and woody plants were used for fire fuel by 

residents living in this compound. The camelids that produced the dung burned for fuel were 
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primarily grazed in fields and only rarely visited wetland ecotopes. Samples V2-1128/5 and 

1128/6 were recovered from the patio in front of the structure. These samples contained a low 

density of seeds ranging from 0.6 to 3.6 specimens per liter. Residents were not regularly 

throwing out charred cooking residues or emptying out the contents of cooking hearths in this 

area. Or if they were, they subsequently cleaned the patio and swept rubbish behind their houses 

along the perimeter of the compound. 

 

Table 7.6: Macrobotanical remains from Unit 44A midden. 

 

 

Unit 44B Superimposed Storage Structure and Non-Kitchen House Structure 

Unit 44B and 44C are adjacent to one another in the southwestern area of the compound. 

In Unit 44B we found several structures and events superimposed over the top of one another. 

Structure C is a small storage structure that measures about 1.6 m in diameter. This structure is 

Locus # V2-1002/4 V2-1003/2 V2-1007/4 V2-1008/7 V2-1009/4 V2-1128/5 V2-1128/6

Unit 44A 44A 44A 44A 44A 44A 44A

Context Midden Midden 

dark soil 

lens

Midden Midden Midden Patio Patio

Chenopodium spp. 0.40 2.20 2.80 3.20 13.70 3.60 0.60

Tubers/Parenchyma 0.00 0.00 0.00 0.10 0.00 0.00 0.00

Malvaceae 0.00 0.00 0.20 0.00 0.60 0.00 0.00

Trifolium amabile 0.00 0.00 0.00 0.10 0.00 0.00 0.00

Brassicaceae 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cyperaceae 0.00 0.00 0.00 0.00 0.30 0.00 0.00

Wood (Ct.) 0.00 0.40 0.80 2.50 0.60 0.20 0.80

Uncharred Bone 0.00 0.00 0.00 0.00 0.40 0.00 0.00

Charred Bone 0.00 0.40 0.10 0.00 0.00 0.00 0.00

Total Density Seeds 0.5 2.6 3.6 3.8 22.7 3.6 0.6

RICHNESS 2 2 3 3 4 1 1

Taxa Standardized Density

(Specimen/L Soil Floated)

CROP PLANT REMAINS

FUEL

OTHER

CROP COMPANION WEED SEEDS

SMALL HERBACEOUS SEEDS

WETLAND PLANT SEEDS

TOTALS
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composed of a layer of compacted stones surrounded by a circular stone foundation. Structure C 

was built on top of an earlier house structure, Structure B. Based on the stratigraphy of these two 

structure, the excavators determined the western wall of Structure B was reused to form a small 

portion of the foundation wall of Structure C (see Figure 7.6). 

 

 
                  Figure 7.6: Structures in Unit 44B. 

 

 

Unit 44B Storage Structure and House Structure Macrobotanical Remains 

 I analyzed four samples from the house structure that was later reused as a storage 

structure in 44B (Table 7.7). These samples were discretely collected from the fill and the use 
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surface of the floor of Structure B, the house structure. I found a low-to-medium density of 

chenopods in the house, ranging between 7.7 and 13.7 seeds/liter. I found fragments of tuber and 

parenchyma in these samples and very few small herbaceous seeds. Similar amounts of wood 

were recovered from all loci associated with this context. The density of crop remains from the 

house structure floor may indicate that it was used as a kitchen structure. Without having 

excavated the eastern portion of this structure, where we would expect to find a hearth, the use of 

this space is unclear.  

 

Table 7.7: Macrobotanical remains from Storage Structure 

and House Structure in Unit 44B. 

 

 
 

Unit 44B Midden and Tomb 

Structure D is another storage structure located in the northern part of the unit. This 

storage structure is similar in construction to Structure C; however, it measures only 0.9 m in 

Locus # V2-1114/4 V2-1114/14 V2-1116/13 V2-1116/14

Unit 44B 44B 44B 44B

Context Fill and 

floor of 

Structure 

B

Fill and 

floor of 

Structure 

B

Use 

surface, 

structure B

Use 

surface, 

structure B

Chenopodium  spp. 13.60 8.40 13.70 7.70

Tubers/Parenchyma 0.00 0.00 0.10 0.40

Malvaceae 0.00 0.20 0.10 0.00

cf. Solanum sp. 0.20 0.00 0.00 0.00

Wood (Ct.) 2.50 0.40 1.20 0.60

Charred Bone 0.20 0.00 0.00 0.00

Total Density Seeds 14.2 9.5 14.5 8

RICHNESS 3 3 3 2

CROP COMPANION WEED SEEDS

FUEL

Taxa Standardized Density

(Specimen/L Soil Floated)

CROP PLANT REMAINS

OTHER

TOTALS
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diameter. Below the Structure D there was an ash pit with deer antlers that was interpreted as a 

ritual offering. This structure was partially built adjacent to a small slab cist tomb (Figure 7.7). 

This tomb is lined in stone slabs, contains two vessels, and at the bottom excavators found the 

broken cranium of an infant placed under an overturned bowl. According to the excavation 

report, it is unclear whether Structure C and D are contemporaneous; however, based on the 

stratigraphic superimposition, it is clear that the tomb predates the storage structures and that the 

storage structures were placed so that they did not disturb the tomb. In the area excavated around 

these structures, high densities of artifacts indicate the space was used as a midden.  

 

 

Figure 7.7: An offering of deer antlers found below 

Structure D (left photo) located next to a small cist tomb 

containing an infant cranium placed under an overturned 

bowl (right photo) in unit 44B. 

Unit 44B Midden and Tomb Macrobotanical Remains 

 I analyzed four macrobotanical samples from the midden surrounding Structures C and 

D, three samples from the area that was interpreted as a ritual offering and area of ash with deer 

antlers below Structure D, and three samples from inside the tomb (Table 7.8). The four flotation 



180 

 

samples from the midden contained varying amounts of crop remains and very few small 

herbaceous seeds. I found fragments of dung and wood in these samples. This mixed assemblage 

could be the residues of cooking lending further evidence to the interpretation the excavators 

made in the field that this area was used as a midden. Excavators interpreted the ash pit below 

Structure D as a ritual offering. I found a low-to-medium density of chenopods (5.3-19.6 

seeds/liter) and fragments of tuber/parenchyma. There is also charred bone in this sample. These 

plant residues were likely an offering of food laid on top of the tomb and burned after the tomb 

was sealed shut. There were macrobotanical remains in the soil matrix inside the tomb. These 

could have been mixed into this soil from the offering on top, or perhaps soil that covered the 

burial was gathered from the nearby midden. 
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           Table 7.8: Macrobotanical remains from Unit 44B. 
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Unit 44C Kitchen Structure 

 In Unit 44C excavators found a kitchen structure measuring a little less than 3 m meters 

in diameter. This structure contained a small clay hearth sitting on an intact occupation layer 

dense in domestic artifacts (Figure 7.8). In this occupation layer we found a stack of stone hoes 

(locally referred to as chaquitallcas), grinding stones, mortars and pestles, stone knives, spindle 

whorls, sling stones, camelid bones, and numerous broken utilitarian cooking pots. There is also 

a flattened platform of rocks that measures 70 cm in diameter adjacent to the west side of the 

hearth that appeared to have served as a food preparation area. This dense concentration of 

artifacts sat on top of a red clay floor that was particularly evident near the doorway located on 

the eastern side of the structure.  
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Figure 7.8: Distribution of artifacts found in the kitchen 

structure of Unit 44C (map rendered by E.N. Arkush). 

 

 

Unit 44C Kitchen Structure Macrobotanical Remains 

 I analyzed six macrobotanical samples from the use surface of the kitchen structure 

(Table 7.9). This stratum represents what was left sitting on the floor of the structure during 

abandonment. Excavators gathered these flotation samples from the stratum with the high 

density of artifacts mapped in Figure 7.8. Samples V2-1124/21 and 1124/26 were collected from 

the eastern side of the structure near the doorway. These samples each have only one chenopod 



184 

 

seed in them. Sample V2-1142/15 was collected from the northern side around the stack of hoes. 

Sample V2-1142/15 was collected from the northern side of the structure, and samples V2-

1144/2 and V2-1147/9 were collected from the center of the structure. These samples have a 

moderate density of chenopods with low densities of wood. Sample V2-1146/2 was collected 

from the western side of the structure opposite the doorway and contains a high density of 

chenopods (116.3 seed/liter) and a few fragments of charred bone. This distribution of 

macrobotanical remains reveals cleaning behaviors inside this kitchen structure. The floor was 

kept clean in front of the doorway, and the burned cooking residues were swept to the back of 

the structure. The near absence of small herbaceous seeds and higher densities of wood indicate 

residents of 44C primarily used woody shrubs to fuel their fires.  
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Table 7.9: Macrobotanical remains from Unit 44C.

 

 

I analyzed six macrobotanical samples collected from the compact clay floor of the 

kitchen structure, one from the fill of the flat platform of rocks, and one from inside the hearth in 

Unit 44C (Table 7.10). The samples collected from the clay floor would have been compacted 

into the floor over the use life of the structure. Samples V2-1150/2 and V2-1306/2 were collected 

from around the hearth. These two samples have higher densities of chenopod seeds than 

samples collected elsewhere in the structure. Generally, there was a low density of crop 

companion weed seeds and even fewer small herbaceous seeds in the floor samples. There were 

also a few fragments of wood charcoal in these samples. These data indicate that as food remains 

were accidentally burned and dropped around the hearth they were compacted into the floor 

around the hearth over time. Sample V2-1309/1 collected from inside the hearth contained only a 

few chenopods and a fragment of parenchyma.  This indicates the hearth was cleaned out before 

abandonment of the structure, or the fire inside burned so hot that even the fuel incinerated into 

ash.  

Locus # V2-1124/21 V2-1124/26 V2-1142/15 V2-1144/2 V2-1146/2 V2-1147/9

Unit 44C 44C 44C 44C 44C 44C

Context Use 

surface

Use 

surface

Use surface Use 

surface

Use 

surface

Use 

surface

Chenopodium  spp. 0.10 0.10 12.20 5.60 116.30 17.00

Unknown Seeds 0.00 0.00 0.00 0.00 0.20 0.00

Wood (Ct.) 0.00 0.00 0.40 0.50 0.30 0.60

Uncharred Bone 0.00 0.00 0.00 0.00 0.60 0.00

Charred Bone 0.00 0.00 0.30 0.00 0.00 0.00

Total Density Seeds 0.1 0.1 12.3 5.7 120.5 17.2

RICHNESS 1 1 2 2 4 1

CROP PLANT REMAINS

SMALL HERBACEOUS SEEDS

FUEL

OTHER

TOTALS

Taxa Standardized Density

(Specimen/L Soil Floated)



186 

 

 

Table 7.10: Macrobotanical remains from the kitchen 

structure in Unit 44C. 

 
 

Compound 59 

 Compound 59 is located in the central sector of the site along the eastern side of the 

elevated causeway. This compound is average in size and contains an average number of 

structures compared to other compounds at Ayawiri. There are a couple unusually large houses 

in this compound that have a foundation composed of a row of vertically positioned white 

limestone slabs. In Compound 59 we excavated two units that contained a house structure that 

has a foundation of white vertically positioned limestone slabs, a portion of the patio in front of 

Locus # V2-1149/5 V2-1150/2 V2-1150/4 V2-1303/5 V2-1303/11 V2-1306/2 V2-1258/1

Unit 44C 44C 44C 44C 44C 44C 44C

Context Floor Floor Floor Floor Floor Floor Circular 

arrangem

ent of 

stones

Chenopodium spp. 18.90 29.20 7.70 1.70 9.33 34.70 9.00

Tubers/Parenchyma 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Malvaceae 0.40 0.00 0.10 0.00 0.17 0.30 0.17

Relbunium  sp. 0.00 0.10 0.00 0.10 0.00 0.00 0.00

Trifolium amabile 0.10 0.10 0.00 0.00 0.00 0.00 0.17

Unknown Seeds 0.00 0.20 0.00 0.00 0.00 0.00 0.00

Wood (Ct.) 0.30 0.90 1.00 0.00 0.83 0.30 0.17

Uncharred Bone 0.50 0.00 0.20 0.00 0.00 0.60 0.00

Charred Bone 0.00 0.20 0.00 0.00 0.00 0.00 0.00

Total Density Seeds 20 29.9 7.8 1.80 9.83 35.20 9.83

RICHNESS 4 5 2 2 3 3 4

FUEL

OTHER

SMALL HERBACEOUS SEEDS

TOTALS

CROP PLANT REMAINS

CROP COMPANION WEED SEEDS

(Specimen/L Soil Floated)

Taxa Standardized Density
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this structure, and a storage structure (Figure 7.9). Full details of these excavations are provided 

by Arkush and Paredes (2013), and I draw on their manuscript to describe excavation findings. I 

only analyzed macrobotanical remains from the kitchen structure, so I focus on describing this 

context. 

 

 

Figure 7.9: Compound 59 delineating excavations units 

(map rendered by E.N. Arkush). 

 

Unit 59A House Structure 

In Unit 59A a portion of a large house structure was located in the southwest area of the 

compound. The foundation of this house is ringed by a row of vertically situated white limestone 

slabs and measures about 3 m in diameter. The excavation team found a small concentration of 

ceramic sherds and animal bones in one corner of the house, but the floor was relatively clean 
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and devoid of artifacts compared to other excavated structures. There were remnants of a red 

clay floor, but it did not extend through the entire house. While the whole house was not 

excavated, no hearth was identified in the excavation unit in the locations adjacent to the 

threshold of the door where hearths had been found in other structures. Based on the presumed 

absence of a hearth and other culinary artifacts, it is likely that this structure is a large house 

structure. Additionally, the clay floor and white vertical slab stones are characteristic of house 

structures in other compounds. In the southeast corner of the unit excavators found a pit that 

extended below the floor that contained loose, organic dark soil and a large quantity of the 

burned remains of potatoes and quinoa. Twenty-eight carbonized potatoes (weighing 17.11 g) 

were hand collected and the rest of the soil from this context was floated. Excavators noted this 

feature looks nothing like a clay hearth found on top of floors in kitchen houses. The contents of 

this pit were incredibly well carbonized indicating the fire the was low and slow preserving 

morphological features of the potatoes and chenopod seeds. This indicates that the fire was set 

intentionally rather than accidentally, which supports the interpretation that the feature is likely a 

sub-floor offering. Since the floor did not extend over this part of the structure it is not possible 

to determine whether the cache predates the construction of the structure or if it was cut into the 

floor during occupation. Notably, there was no evidence that the entire structure was burned. 

Excavators found carbon only in the part of the structure where the cache was found. 

Unit 59A Cache inside House Structure Macrobotanical Remains 

 I analyzed one macrobotanical sample from Unit 59A. This sample was collected from 

the burned pit. This sample has a high density of chenopods and fragments of tubers (Table 

7.11). There is also a high density of wood and charred bone in this sample. These findings 
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indicate that this pit did indeed contain a cache of food remains. This quantity of chenopods 

alone would have fed a nuclear family for at least two meals. The charred potatoes are 

remarkably well preserved. Therefore, I think the charred potatoes were stored in their freeze-

dried form as chuño. Quinoa, chuño, and chunks of camelid meat would have made a hearty stew 

for residents living in Compound 59.  

 

        Table 7.11: Macrobotanical remains from Unit 59A. 

 

  

Compound 72 

 Compound 72 is located in the northern sector of the site along the western side of the 

elevated causeway. This compound is medium-sized and contains an average number of 

structures compared to other compounds at Ayawiri. Arkush and Paredes (2013:23) note none of 

the structures in this compound are particularly large. In Compound 72 five units were excavated 

Locus # 2506/4

Unit 59A

Context Pit with burnt 

material

Chenopodium  spp. 94865.2*

Tubers/Parenchyma 20.48

Wood (Ct.) 47.80

Charred Bone 68.28

Total Density Seeds 94865.2

RICHNESS 1

* Estimated compuation based on weight

TOTALS

Taxa Standardized Density 

(Specimen/L of Soil Floated)

CROP PLANT REMAINS

FUEL

OTHER



190 

 

in 2011 that encompassed midden, several house structures and kitchens that contained 

numerous hearths located in the western, southern, and southeastern part of the compound, a 

central part of the patio, and a storage structure in the northeastern part of the compound (Figure 

7.4). Full details of these excavations are provided by Arkush and Paredes (2012). Six units were 

excavated in 2012 in Compound 72, including three more structures, part of the patio, and areas 

of midden adjacent to structures. Full details of these excavations are provided by Arkush and 

Paredes (2013), and I draw on this manuscript to describe excavation findings. I focus on 

describing excavations and architecture from contexts where I analyzed macrobotanical remains. 

 

Figure 7.10: Compound 72 delineating excavation units 

(map rendered by E.N. Arkush). 
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Unit 72A Two Kitchen Structures 

In Unit 72A, located in the southeastern area of the compound we found two kitchen 

structures that each had small clayed hearths (Figure 7.11). The northern kitchen structure, 

referred to as Structure A, measures approximately 2.5 m in diameter and the southern kitchen 

structure, referred to as Structure B, measures less than 2 m in diameter. In Structure A, there 

was a concentration of ceramic sherds and a grinding stone next to the hearth. The clay of the 

hearth itself was not as hardened as other hearths (Figure 7.12). Excavators suggested this might 

indicate it was not used for very long. There was a complete ceramic vessel sitting in or on top of 

this hearth, possibly indicating residents rapidly abandoned this structure. This hearth was also 

surrounded by a small circle of rocks. Structure B was not evident from the surface before 

excavation began because it was covered in rocks that had fallen from the compound walls. 

Below these rocks excavators found a dense concentration of quotidian artifacts including 

grinding stones, ceramics, and even a small, stone pendant carved into a human figure (Figure 

7.12). The hearth in Structure B is composed of fire-hardened clay typical of the other hearths we 

found at Ayawiri; however, it was partially destroyed. According to excavators there was no 

evidence of ash inside the hearth, indicating it was cleaned out before it was abandoned. In the 

area excavated around the exterior of these structures, excavators noted they found grinding 

stones and small amounts of trash such as broken ceramic and animal bones.  
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Figure 7.11: Two kitchen structures referred to as Structure 

A and Structure B with small clay hearths in Unit 72 A. 

 

 

Figure 7.12: Partially fire-hardened hearth in Unit 72A 

Structure A (left photo). Stone pendant in the shape of a 

human figure (right photo). 
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Unit 72A Two Kitchen Structures Macrobotanical Remains 

 I analyzed four macrobotanical samples from Unit 72A (Figure 7.12). Two samples were 

collected from the hearth in Structure A, one sample was collected from the floor of Structure B, 

and one sample was recovered from the hearth in Structure B. The only crop food remains found 

in samples from these structures are chenopods. Even from the hearths, I only found a low 

density of chenopods ranging between 4.33 and 4.9 seeds/liter. I found Malvaceae seeds and 

wood fragments in both hearths. The presence of only crop companion weeds seeds indicates 

dung burned for fuel in these structures was gathered from camelids who were grazed in fields. 

The similarity in the densities of macrobotanical remains and taxa present in the hearths might 

indicate inhabitants were fueling the hearths with the same fuel, and perhaps they used these 

structures for the same amount of time.  
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Table 7.12: Macrobotanical remains from Structure A and B 

in Unit 72A. 

 

 

Unit 72B Kitchen Structure and Non-Kitchen House Structure 

 In Unit 72B located in the western part of the compound, excavators found a kitchen 

structure adjacent to the northwest corner of a non-kitchen house structure (Figure 7.13). The 

kitchen structure, referred to as Structure A, measures about 2 m in diameter and has two oval 

slab stones placed vertically inside the threshold. These stones probably formed the frame of the 

doorway. Inside the structure, excavators found a dense concentration of artifacts adjacent to a 

small clay hearth just to the left side of the doorway including a few broken ceramic vessels, 

lithics, a canine of a camelid, and a copper or bronze knife that may have been a tumi (the handle 

was broken off). While there is nothing exceptional about this cooking structure, the last use of 

the oven was anomalous: antler was shoved in oven vent, and burned camelid bones and teeth 

were put inside the oven. Perhaps the last meal prepared in this space was for a special occasion 

or served for a ritual. Or maybe these items were placed there to ritually terminate the life of the 

Locus # V2-1453/2 V2-1454/6 V2-1463/7 V2-1469/1

Unit 72A 72A 72A 72A

Context Hearth, 

Structure A

Hearth, 

structure A

Use 

surface/floor, 

Structure B

Hearth/floor 

Structure B

Chenopodium  spp. 0.20 4.90 0.30 4.33

Malvaceae 0.00 0.10 0.00 1.67

Trifolium amabile 0.00 0.10 0.00 0.00

Wood (Ct.) 0.20 1.30 0.20 0.67

Total Seeds 0.3 5.2 0.3 6

RICHNESS 2 4 1 2

(Specimen/L of Soil Floated)

Taxa Standardized Density

FOOD

FUEL

SMALL HERBACEOUS SEEDS

TOTALS
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hearth. The fire hardened clay hearth measured 20 x 35 cm and, unlike other hearths at the site, 

was still filled with burned materials.  The floor of the structure was composed of a layer of 

compact soil. 

 

 

Figure 7.13: A kitchen structure referred to as Structure A 

located north of a non-kitchen house structure referred to as 

Structure B in Unit 72B (left photo).  The hearth and 

associated artifacts in Structure A (right photo). 

 

 

Structure B is the largest structure in Compound 72 measuring over 4 m in diameter 

(Figure 7.14). In the northern part of this structure excavators found several complete ceramic 

vessels. In the western part of Structure B, excavators found a lithic axe, a large copper chisel, 

fragments of deer antler, and the articulated leg of a camelid. The remnants of a red clay floor 

were noted in a few parts of Structure B.  
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Figure 7.14: Artifacts found in situ on the floor of Unit 72B 

Structure B (map rendered by E.N. Arkush). 

 

Unit 72B Kitchen Structure and Non-Kitchen House Structure Macrobotanical Remains 

 I analyzed three macrobotanical samples from the floor of Structure A, one from the 

hearth, and five from the floor of Structure B (Figure 7.13). Samples from the floor of Structure 

A have a low density of crop remains (3.6-5.2 chenopod seeds/liter) and barely any small 

herbaceous seeds, fuel, or bone fragments. Sample V2-1360/5 from the hearth in Structure A has 

a medium, density of chenopods (67.0 seeds/liter).  There is also parenchyma and charred bone 

in this sample. Compared to the floor, there is also a higher density of wood (12.2 

fragments/liter) and small herbaceous seeds in the hearth. Based on the artifacts found in this 

structure and crop remains in the hearth, this structure was no doubt used for food preparation. 

The high density of plant remains in the hearth indicate it was not cleaned out before 

abandonment. 
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 All five samples from the floor of Structure B contain chenopods, mostly in low densities 

of 2.5 to 8.4 seeds/liter. Sample V2-1402/4 contains medium density of chenopods (21.0 

seeds/liter). Very few tubers or small herbaceous seeds were recovered from this structure. 

Charred bone was found in a few samples in Structure B, whereas only uncharred bone was 

found in Structure A. These data indicate that food preparation and cooking were carried out in 

Structure A. After it was cooked, it was consumed in Structure B and inhabitants may have 

accidentally or intentionally discarded the burned bone and charred bits of plant foods on the 

floor.  
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      Table 7.13: Macrobotanical remains from Unit 72B. 
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Unit 72C Kitchen Structure 

In Unit 72C located in the southwestern area of the compound, excavators found another 

kitchen structure that measures about 3 m in diameter. This structure was deemed a kitchen 

structure because excavators found two small, fire-hardened clay hearths located just to the left 

of the doorway, in the southeastern part of the structure (Figure 7.16). This structure is much 

larger than other kitchen structures, and the identification of two hearths, instead of one, is 

anomalous. Excavators noted the hearth to the west, referred to as Hearth 1, is squared off on one 

end and the elevation is slightly lower than Hearth 2. There are no artifacts associated with 

Hearth 1, whereas broken ceramics were found in and around Hearth 2. Additionally, Hearth 2 is 

rounded and similar in form to other hearths at the site. Unfortunately, excavators found that 

Hearth 2 was partly destroyed. Based on the superimposition of the stratigraphy, Hearth 1 

appears to be older than Hearth 2. In the northern area of this structure, excavators found a dense 

concentration of utilitarian ceramic vessels, animal bones, mortars, pestles, and grinding stones 

below the floor (Figure 7.15). This concentration of artifacts is interpreted as a sub-floor 

offering. 
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Figure 7.15: Artifacts from a sub-floor offering of the 

kitchen structure in Unit 72C. 

 

 

 

 

Figure 7.16: Photo (left) and corresponding map (right) of 

two hearths found in Unit 72 C. 
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Unit 72C Kitchen Structure Macrobotanical Remains 

 I analyzed six samples from Unit 72C (Table 7.14).  Three samples were collected from 

the floor, one sample was collected from the sub-floor artifact offering, and two from the hearths. 

I found a low density of crop remains samples and a very low density of small herbaceous seeds, 

wood, and charred bone in the structure floor samples and the sub-floor offering. Both hearths 

contained low densities of chenopods (0.5-0.9 seeds/liter). The hearths also contained very little 

herbaceous seeds or wood. Perhaps, the hearths were cleaned out regularly. Alternatively, the 

hearths may not have been used very much or for very long before abandonment.  

 

Table 7.14 : Macrobotanical remains from Unit 72C. 

 

  

 

Locus # V2-1407/4 V2-1407/12 V2-1407/13 V2-1408/3 V2-1408/5 V2-1409/11

Unit 72C 72C 72C 72C 72C 72C

Context Use 

surface

Use 

surface/ 

floor

Use 

surface/ 

floor

Hearth Hearth Sub-floor 

artifact 

offering

Chenopodium  spp. 0.30 4.70 4.10 0.90 0.50 4.30

cf. Solanum sp. 0.00 0.00 0.00 0.00 0.00 0.10

Tubers/Parenchyma 0.00 0.00 0.10 0.00 0.00 0.20

Malvaceae 0.00 0.00 0.20 0.00 0.00 0.40

Relbunium sp. 0.00 0.00 0.00 0.10 0.00 0.00

Trifolium amabile 0.00 0.10 0.00 0.00 0.00 0.00

Unknown Seeds 0.00 0.00 0.10 0.00 0.00 0.00

Wood (Ct.) 0.30 0.10 0.60 0.10 0.00 0.50

Charred Bone 0.00 0.00 0.00 0.30 0.00 0.10

Total Seeds 0.3 4.8 4.6 1 0.6 4.9

RICHNESS 1 2 4 2 2 4

SMALL HERBACEOUS SEEDS

FUEL

OTHER

TOTALS

(Specimen/L of Soil Floated)

FOOD

Taxa Standardized Density
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Unit 72D Central Patio 

 In Unit 72 D, located in the central patio of the compound, excavators noted did not find 

many artifacts. They did find a couple of grinding stones on the occupation level and lithic 

debitage, indicating crop processing and food preparation were carried out in this area. 

Additionally, there was a large stone in the middle of the compound that was placed vertically. 

This stone looked like an uncarved monolith, leading excavators to speculate it had a ritual or 

special use; however, no use was determined and very few artifacts were found that would 

elucidate the purpose of this stone. 

Unit 72D Central Patio Macrobotanical Remains 

 I analyzed one macrobotanical sample from Unit 72D (Table 7.15). This sample was 

collected from the occupation level of the central patio of Compound 72. I only found one 

burned chenopod seed in this sample. Cooking or food consumption clearly did not take place in 

the central patio. Additionally, this area was kept quite clean of rubbish.  

  

        Table 7.15: Macrobotanical remains from Unit 72D. 

 

  

Locus # V2-1364/4

Unit 72D

Context Context of 

light use??

FOOD

Chenopodium  spp. 0.10

TOTALS

Total Seeds 0.1

RICHNESS 1

Taxa Standardized Density

(Specimen/L of Soil Floated)
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Unit 72E Storage Structure and Fill 

 In Unit 72E located in the northeastern corner of the compound, excavators found a small 

storage structure measuring approximately 1 m in diameter (Figure 7.17). Excavators note that 

the structure is similar in form to the storage structure in 44B. It has a circular stone foundation 

and a layer of flattened rocks that would provide airflow and drainage for stored goods. A few 

ceramic fragments were found in the fill of this structure, but no other artifacts were found that 

would shed light on its intended use.  

 

 

Figure 7.17: Photo of stone rubble lining the storage 

structure in Unit 72E. 

 

Unit 72E Storage Structure and Fill Macrobotanical Remains 

 I analyzed two samples from Unit 72E (Table 7.16). One sample was collected from the 

stone rubble that composed the base of the storage structure and the other was recovered from 

the fill around the structure. Sample V2-1476/4 from the stone rubble base of the storage 
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structure contained only four chenopod seeds, one Malvaceae seed, and a fragment of wood. 

This low density of plant remains is not surprising. Food would have been stored in a raw state, 

and if any crops were left in the structure they would have decomposed. Cooking, other burning 

activities, or refuse disposal were clearly not carried out in this location. Excavators identified 

sample V2-1480/4 as collected from midden around the storage structure. Very few 

macrobotanical remains were found in this sample, indicating either uncharred perishables were 

discarded in this location, or the stratum just contained fill.  

 

       Table 7.16: Macrobotanical remains from Unit 72E. 

 

 

Unit 72F Midden 

 In Unit 72F, located in the northwest area of the compound, excavators found a midden. 

It is located between the western compound wall and behind the structures in Units 72B and 

Locus # V2-1476/4 V2-1480/4

Unit 72E 72E

Context Stone 

covering, 

structure

Fill/midden

Chenopodium  spp. 0.40 1.70

Malvaceae 0.10 0.00

Unknown Seeds 0.00 0.10

Wood (Ct.) 0.10 1.20

Uncharred Bone 0.00 0.10

Total Seeds 0.5 2

RICHNESS 2 3

(Specimen/L of Soil Floated)

Taxa Standardized Density

FOOD

SMALL HERBACEOUS SEEDS

FUEL

OTHER

TOTALS
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72G. Excavators found grinding stones, broken ceramics, and bones strewn throughout the 

matrix of this unit.  

Unit 72F Midden Macrobotanical Remains 

 I analyzed one macrobotanical sample from Unit 72F (Table 7.17) containing a low 

density of chenopod seeds (3.8 seeds/liter) and a single Malvaceae seed. These remains provide 

weak but complementary evidence that this part of the compound was used as a midden.  

 

          Table 7.17: Macrobotanical remains from Unit 72F. 

 

 

Unit 72G Non-Kitchen House Structure 

 In Unit 72G, located in the northwest area of the compound, excavators found a 3 m wide 

house structure that did not have a hearth. I did not analyze any macrobotanical samples from 

this structure.  

 

Locus # V2-2112/1

Unit 72F

Context Midden

FOOD

Chenopodium  spp. 3.80

SMALL HERBACEOUS SEEDS

Malvaceae 0.10

TOTALS

Total Seeds 4.1

RICHNESS 3

Taxa Standardized Density

(Specimen/L of Soil Floated) 
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Unit 72H Patio in front of Non-Kitchen House Structure  

Unit 72H is located in the western part of the compound and extends into the patio in 

front of the house structure of Unit 72B. Excavators found a compact surface and a few small 

artifacts laying on this surface. 

Unit 72H Patio in front of a Non-Kitchen House Structure Macrobotanical Remains 

 I analyzed one sample from Unit 72H (Table 7.18). This sample was collected from the 

patio in front of the house structure in Unit 72B. I only found a few charred chenopod seeds in 

this sample (1.67 seeds/liter). These seeds likely ended up in this location through seed rain or 

refuse disposal.  

 

Table 7.18: Macrobotanical remains from Unit 72H Patio. 

 

  

Unit 72J Non-Kitchen House Structure 

 Unit 72J is a non-kitchen house structure that measures almost 4 m in diameter located 

along the southern perimeter of the compound adjacent to the kitchen structures found in Unit 

72A. This structure does not have a hearth or a row of white vertically situated limestone slabs 

encircling its foundation. Excavators noted that there was not a hearth in this structure, and they 

Locus # V2-2154/2

Unit 72H

Context Use 

surface/floor

FOOD

Chenopodium  spp. 1.67

TOTALS

Total Seeds 1.67

RICHNESS 1

(Specimen/L of Soil Floated)

Taxa Standardized Density



207 

 

found a concentration of rocks in the middle of the floor (Figure 7.18).  Arkush (personal 

communication, 2016) notes that it is still unclear why these rocks were found in the middle of 

the structure or what they were used for. She suggests that perhaps these rocks were put there to 

intentionally terminate the use-life of the structure. They do not look like roof collapse. 

Additionally, excavators commented that they found small obsidian lithic fragments in just about 

every locus from the house floor. However, analysis revealed that the obsidian density for this 

structure is close to the average for house floors and not especially high. There is no significant 

evidence that cooking was carried out in this house. 

 

 

Figure 7.18: House structure in Unit 72J showing 

concentration of rocks in the center of the floor. 
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Unit 72J Non-Kitchen House Structure Macrobotanical Remains 

 I analyzed one sample from this structure (Table 7.19). There was only a single fragment 

of charred wood from this context. This is a lower density of macrobotanical remains than in 

samples from fill or midden in Compound 72. While a single sample is insufficient to draw any 

conclusions, this low density of plant remains points to very little cooking activities or even 

consumption in this structure.  At the same time, these findings rule out the possibility food 

processing took place in this location.  

 

Table 7.19: Macrobotanical remains from Unit 72J. 

 

  

Unit 72K Kitchen House Structure 

 In Unit 72K, located along the southcentral perimeter of the compound adjacent to the 

western side of Unit 72J, excavators found another kitchen house. Within this structure they 

found one of the largest hearths at the site measuring 40 x 30 cm. The hearth is oblong-shaped 

and made of fire-hardened clay, similar in form to the other hearths at the site (Figure 7.19). 

Additionally, the hearth is surrounded by a circle of stones similar to the hearth in Unit 72A 

Structure A. Burned matrix containing wood charcoal was found inside the hearth. They also 

found a broken tupu and sling stones in the structure. There was concentration of utilitarian 

cooking vessels, spindle whorls, and animal bones found in situ, particularly around the hearth. 

These artifacts are all associated with domestic and cooking activities indicating the structure 

Locus # V2-2054/6

Unit 72J

Context Use surface/floor

Wood (Ct.) 0.10

FUEL

Taxa Standarized Density

(Specimen/L of Soil Floated)
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was indeed used as a kitchen. The floor of this structure was composed of compact clay. Below 

the clay floor in the northwest part of the structure adjacent to the doorway, excavators found a 

concentration of burned material including charred bone and wood that could be a sub-floor 

offering. 

 

 

Figure 7.19:  Unit 72K hearth in kitchen structure. 

 

Unit 72K Kitchen Structure Macrobotanical Remains 

 I analyzed two macrobotanical samples from Unit 72K ( Table 7.20). One sample was 

collected from inside and around the hearth and the other from the burned feature below the 

floor. Sample V2-2007/5 from the hearth contained a low density of chenopods (7.88 seeds/liter). 

There were no other small herbaceous seeds in this sample even though there were fragments of 

dung. This indicates the charred chenopods in the hearth were probably from dung from 

camelids foddered on crops. I also found wood. This indicates that dung and wood, probably 

woody shrubs, were also used to fuel the hearth. Sample V2-2008/1 was collected from the 

burned feature below the floor. This feature has a very high density of chenopods (116.8/liter), a 

few Malvaceae seeds, fragments of wood charcoal, and medium density of charred bone (33.4 
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fragments/liter). While there is no parenchyma or tuber in this sample, the location and 

appearance of this feature is quite similar to the burned feature below the floor in Unit 59A. 

While the feature in 72K is not as dense as the one in Unit 59A, it still contains a high density of 

chenopods and burned bone. These data are strong evidence that this feature is a burned storage 

feature or an offering below the structure.  

 

 Table 7.20: Macrobotanical remains from Unit 72K. 

 

  

Compound 118 

 Located in the northeastern area of the residential sector at Ayawiri, Compound 118 is 

relatively small and contains only three visible structures. In Compound 118, three units were 

excavated that contained a three kitchen structures (Figure 7.20). Full details of these 

Locus # V2-2007/5 V2-2008/1

Unit 72K 72K

Context Hearth and 

associated 

artifacts

Burnt area 

below 

floor

Chenopodium  spp. 7.88 116.80

Malvaceae 0.00 0.40

Dung 0.25 0.00

Wood (Ct.) 0.50 6.20

Charred Bone 0.00 33.40

Total Seeds 8.625 117.8

RICHNESS 3 3

(Specimen/L of Soil Floated)

FOOD

Taxa Standarized Density

SMALL HERBACEOUS SEEDS

FUEL

OTHER

TOTALS
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excavations are provided by Arkush and Paredes (2013), and I draw on this manuscript to 

describe excavation findings. 

 

  

Figure 7.20: Compound 118 delineation excavation units 

(map rendered by E.N. Arkush). 

 

Unit 118A Kitchen Structure 

In Unit 118A, located along the southern perimeter of the compound, excavators found a 

large kitchen structure that measures about 3 m in diameter (Figure 7.21). A small, fire-hardened 

clay hearth was found in the eastern part of the structure. This hearth is similar in form to other 

hearths found at the site. The hearth was partly destroyed and pieces of burned clay were found 

strewn across the clay floor of the structure. Excavators speculated that this hearth may have 

been kicked or knocked over. Ceramic fragments, spindle whorls, and camelid bone were found 
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around the hearth. A concentration of lithics was found on the western side of the structure. 

These artifacts indicate food preparation and cooking were clearly carried out in this structure. 

Below the floor of this structure, excavators found a small Late Formative Period context 

containing ash, ceramics, and lithics. There was no architecture encapsulating this deposit. Based 

on this, excavators noted the purpose or use of this feature was unclear and was perhaps a 

secondary deposit or a midden.  

 

 

Figure 7.21: Kitchen Structure in Unit 118A. Note the 

hearth on the eastern side of the structure and a 

concentration of lithics on the western side. 

Unit 118A Kitchen Structure Macrobotanical Remains 

 I analyzed three macrobotanical samples from Unit 118A (Table 7.21). Two of these 

samples were collected from the floor of the kitchen structure and one was recovered from inside 

and around the hearth. All three samples have comparatively low densities of plant remains 

measuring between 1.3 and 6.2 seeds/liter. At the same time, two samples have higher richness 
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values between five and six taxa. Small amounts of crop companion weeds were found in all 

three samples, indicating the dung burned for fuel in this structure was collected from camelids 

grazed in agricultural fields. The low density of seeds in these samples, particularly samples 

collected from the floor, are evidence this kitchen was not occupied for very long or it was kept 

very clean.  

 

Table 7.21: Macrobotanical remains from Unit 118A. 

 

 

Unit 118B Kitchen Structure 

In Unit 118B, located along the southwest perimeter of the compound, excavators found 

another kitchen structure measuring less than 3 m in diameter. This kitchen structure was 

covered by a layer of large stones that appeared to have collapsed from the wall and causeway 

running along the south and west perimeter of the compound (Figure 7.22). Inside this structure 

Locus # V2-2203/10 V2-2203/29 V2-2204/4

Unit 118A 118A 118A

Context Use surface/ 

floor

Use surface/ 

floor

Hearth and 

associated 

artifacts

Chenopodium  spp. 1.70 1.20 5.40

Malvaceae 0.10 0.00 0.30

Relbunium sp. 0.10 0.00 0.00

Trifolium amabile 0.20 0.10 0.20

Unknown Seeds 0.10 0.00 0.00

Cyperaceae 0.00 0.00 0.10

Wood (Ct.) 2.40 1.40 0.40

Total Seeds 2.6 1.3 6.2

RICHNESS 6 2 5

Taxa Standardized Density

(Specimens/L of Foil Floated)

CROP PLANT REMAINS

CROP COMPANION WEED SEEDS

FUEL

TOTALS

SMALL HERBACEOUS SEEDS

WETLAND PLANT SEEDS
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excavators found a fire-hardened clay hearth sitting on top of charred rocks with a broken 

cooking pot inside of it. They also found several complete or almost complete utilitarian ceramic 

cooking vessels, camelid bones, spindle whorls, small lithic grinding stones, and small obsidian 

tools. Additionally, a small ring made out of copper or bronze was found that was shaped like a 

butterfly. There was no evidence of a clay or compact floor in this structure.  

 

 

 

 
Figure 7.22: Kitchen structure in Unit 188B. Note the stone 

collapse laying on top of the level of occupation.  

 

Unit 118B Macrobotanical Remains from Kitchen Structure 

 I analyzed one macrobotanical sample from the hearth in Unit 118B (Table 7.22). This 

sample contains a low density of chenopods. Perhaps the hearth was regularly cleaned out, or the 

structure was not occupied for very long, resulting in a low intensity of deposition.  
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Table 7.22: Macrobotanical remains from Unit 118B hearth. 

 

  

Unit 118C Kitchen Structure 

 In Unit 118C located on an elevated area along the northwestern perimeter of the 

compound excavators found a third kitchen structure in the compound measuring almost 3 m in 

diameter and partly sitting on top of a large boulder (Figure 7.23). This boulder forms the floor 

of part of this structure. In the excavation notes it was hypothesized that this location was 

somehow special in this compound. However, the artifacts that the excavators found were typical 

utilitarian objects.  

 

 

Locus # 2230/V2-2

Unit 118B

Context Hearth and 

associated 

artifacts

Chenopodium  spp. 0.90

Total Seeds 0.9

RICHNESS 1

Taxa Standardized Density

(Specimens/L of Soil Floated)

CROP PLANT REMAINS

TOTALS
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Figure 7.23: Kitchen structure in Unit 118C. Note the 

structure sits on a large boulder discernible in the southern 

portion of the photo. 

 

The floor of the kitchen structure in Unit 118C is composed of compacted soil. In the 

southeastern part of the structure excavators found a hearth made of fire-hardened clay (Figure 

7.24). Excavators note that part of the hearth was rebuilt using a ceramic fragment. Ceramic 

cooking pots and vessels were found around the hearth, along with animal bones. Fragmented 

lithics were found sitting on the floor throughout the structure.  

 

 

 
 

   Figure 7.24: Clay hearth found in Unit 118C. 
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Unit 118C Kitchen Structure Macrobotanical Remains 

 I analyzed three macrobotanical samples from the kitchen structure in Unit 118C (Table 

7.23). Two samples were collected from the hearth and one sample was collected from the floor 

in the center of the structure. Sample V2-2255/8 was collected from the ash lens above the hearth 

has a low density of seeds (6.0 seeds/L) and sample V2-2259/5 from inside the hearth has a 

moderate density of seeds (25.3 seeds/L). There were also a couple fragments of parenchyma in 

the hearth. These data indicate that the hearth was used for cooking and/or it contained dung 

burned for fuel from camelids foddered on crops, and is was not cleaned out after it was used. 

Sample V2-2256/11 collected from the floor in the center of the structure also has a low density 

of seeds (6.5 seeds/liter). These materials were probably deposited there as the result of someone 

regularly cleaning out the hearth, or debris from cooking accidents. Even though this structure 

was located on a prominent large boulder elevated above the rest of the compound, I did not find 

any evidence of special use among the macrobotanical remains. I think residents used this 

structure as a quotidian cooking space.  
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Table 7.23: Macrobotanical remains recovered from Unit 

118C. 

 

 

 

Comparing Macrobotanical Remains across Contexts 

 In this section, I compare macrobotanical remains from similar contexts. In particular, I 

focus on comparing hearths to identify how they were used by Ayawiri residents. Then an 

assessment is made of plant remains from kitchen houses and non-kitchen house structures to 

determine the activities that were carried out in these spaces.  

Locus # V2-2255/8 V2-2259/5 V2-2256/11

Unit 118C 118C 118C

Context Dark lens 

above 

hearth

Hearth Structure 

floor

Chenopodium  spp. 5.67 24.00 5.60

Tubers/Parenchyma 0.00 0.20 0.00

Malvaceae 0.17 0.60 0.30

Trifolium amabile 0.00 0.30 0.40

Wood (Ct.) 1.83 7.50 0.20

Uncharred Bone 0.00 0.00 0.20

Charred Bone 0.00 0.40 0.00

Total Seeds 6 25.3 6.5

RICHNESS 3 4 5

(Specimen/L of Soil Floated)

Taxa Standardized Density 

FUEL

OTHER

TOTALS

CROP PLANT REMAINS

CROP COMPANION WEED SEEDS
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Hearths 

I analyzed macrobotanical remains from the soil of nine hearths (Table 7.24). Houses 

with hearths were clearly spaces for food preparation, and as I noted, excavators often found 

artifacts associated with food preparation on the floors of these structures such as small lithics 

and grinding stones. Every hearth contained chenopod seeds, whereas only three of the hearths 

contained fragments of carbonized tubers. Additionally, I found a tuber in one of the hearths. 

These remains indicate the hearths were clearly used for cooking food. The differences in the 

standardized densities of macrobotanical remains between hearths is likely due to cleaning 

activities. The small size and shallow depth of the hearths means a single fire would have 

resulted in charcoal and ash building up very quickly. Residents probably had to clean out the 

hearths after every meal or at least every other meal in order to keep reusing them. The hearths 

with higher densities of plant remains were probably not cleaned out before abandonment. 

Table 7.24: Standardized density of macrobotanical remains 

from hearths. 

Unit #  Context C
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  Count/liter 

44C Hearth 1.2 0.1 

72B 

Hearth, structure 

A 67 0.3 

72C Hearth 2 0.9 0 

72C Hearth 1 0.5 0 

72A 

Hearth, structure 

A 2.55 0 

72K Hearth  31.5 0 

118C Hearth 14 0.1 

6B Hearth 6560.2 0 

6C Hearth 6 0 
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Comparing Plants from Different Contexts 

If structures with hearths are cooking spaces at the site, then we would expect these areas 

to have comparatively higher densities of macrobotanicals from food processing, cooking 

accidents, snacks, meals, and quotidian activity. Thus, the data found in these areas provide a 

baseline for comparison and understanding activities carried out in other areas of the site.   

Arkush (personal communication, 2016) notes house structures with a row of vertically 

positioned white limestone slabs encircling the perimeter of structures may have had a special 

purpose because they are larger than houses without white slabs, they are not found in every 

compound, and they are not evenly distributed across the site. Many houses, including kitchen 

house have rows of vertically positioned slab stones, but large house structures with limestone 

foundations seemed to be exceptional. Could these structures be used for special purposes? By 

comparing macrobotanical remains between cooking structures and the floors of nearby house 

structures with white vertically positioned limestone slab foundations and those without, it is 

possible to gain insight of the use of these spaces. The differences in the density of 

macrobotanical remains between nearby structures in a compounds are more likely to be the 

product families carrying out different activities in difference spaces rather than the total length 

of time the space has been occupied. Since different areas of the site were occupied for different 

lengths of time, it is particularly important to compare cooking structures to nearby house 

structures in the same compound to control for intensity of deposition associated with length of 

occupancy of any single compound.  

 Structures found in Units 6A and 44A are both non-kitchen house structures with a row 

of vertically positioned white limestone slabs encircling the foundation. Excavations did not find 
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artifacts that indicated the use of these structures, or evidence these spaces were used for 

activities that were particularly exceptional. These structures also have red clay floors.  

Unit 72B structure B is a large structure without a hearth that lacks white vertical slab 

stones around the perimeter of the foundation, but it does have remnants of a red clay floor 

similar to the ones found in Units 6A and 44A. Through excavations, nearby kitchen structures 

were found in both Compounds 6 and 44 and adjacent to the house structure referred to as Unit 

72 structure B. Here, I compare macrobotanical food remains from these house and kitchen 

structures.  

 I found a higher density of food remains on the floor of the non-kitchen house in Unit 6A 

than 6C, a nearby kitchen structure (Table 7.25). The floor of the structure in Unit 44A has the 

highest standardized density of food remains from any structure floor at the site. Additionally, 

this unit contained twice as many chenopod seeds per liter of soil as the floor of the structure in 

Unit 44C, a nearby kitchen structure that contained a high density of cooking artifacts found in 

situ. This indicates that activities taking place in 6A and 44A involved at the very least, the 

incorporation of crop remains into the floors. Based on the higher density of crop remains in 

house structures with vertically positioned white limestone slab foundations than kitchen 

structures in the same compound and absence of cooking related artifacts, I suggest these non-

kitchen houses were used as enclosed communal eating areas.   

 While I only analyzed one sample from the house structure in Unit 59A, the 

macrobotanical remains recovered from this context further support the idea that large house 

structures were areas where communal eating were carried out. Like non-kitchen houses in Unit 

6A and 44A, the foundation of the house in Unit 59A was also ringed by a row of vertically 

situated white limestone slabs and the floor was lined in red clay. No hearth was found in the 
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excavation unit indicating it was likely not used as a kitchen structure (see comments about the 

determination of this earlier in this chapter). Nonetheless, a cache of burt chenopods, potatoes, 

and tubers was found below the floor of this structure. In the cache I found about 95,000 

chenopod seeds/L and 20 tuber fragments/L of soil. In addition, I identified numerous fragments 

of charred animal bone in this sample. These remains could be evidence of communal feasting 

that was commonly carried out in large structures with foundations composed of vertical white 

limestone slabs. Or perhaps a food offering was placed below the floor to consecrate the feasting 

activities regularly carried out in the structure.  

 Even though Unit 72B did not have a foundation composed of vertically oriented white 

limestone slabs, it is one of the largest structures in Compound 72 and has a kitchen adjacent to 

it. Furthermore, it had a red clay floor similar to house structures foundations composed of white 

limestone slabs. The house structure in Unit 72B contained lower standardized densities of food 

remains than the adjacent kitchen structure. Nonetheless, the house structure still contained a 

medium density of chenopods and parenchyma, even though no hearth was found in this 

structure. Perhaps the purpose of the house structure in Unit 72B was for communal eating, but 

these events were smaller scale and less formal than feasting carried out in structures with 

vertically positioned white limestone slab stone foundations. Only further excavations of houses 

and adjacent kitchens at Ayawiri can clarify this pattern.  
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Table 7.25: A comparison of the standardized density of 

macrobotanical remains from non-kitchen houses and 

kitchen houses. 

        C
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    Standardized Density 

Unit # Context White Slab 

Foundation 

N= (Specimens/L of soil floated) 

44A House Structure Yes 26 46.3 0.13 

44C 

 

Kitchen 

Structure 

No 13 20.5 0.05 

6A House Structure Yes 2 17.65 0 

6C 
Kitchen 

Structure 
No  5 13.02 0.07 

72B House Structure No 5 8.4 0.08 

72B 

 

Kitchen 

Structure 

No 4 19.95 0.13 

 

The location of the structures in Unit 6A, 44A, 59A, and the house structure in Unit 72B 

within normal compounds indicate they were owned by households, rather than the broader 

community. While they may have been used as a quotidian dining space for the households that 

resided in each compound, the macrobotanical residues incorporated into the floors, particularly 

in comparison to kitchen structures, is exceptional.  Perhaps structures with white limestone slab 

foundations were used as spaces where community leaders congregated to hash out community 

relations over feasts of large amounts of quinoa and tubers, or local crops. Since there are other 

similar structures in size and layout in other compounds, small-scale communal meals between 

households may have rotated from one compound to another. Households would have been 
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responsible for facilitating these small and manageable meals, and doing so would have required 

reciprocal relationship among residents at the site. However, large white limestone slab 

foundation structures are not found in every compound. This indicates several extended family 

groups may have gathered in these spaces. 

During earlier times in the region, components of feasts and large communal meals 

included exotic crops such as maize that were important symbolic and substantive foods.  With 

the termination of access to exotic crops at Ayawiri during the LIP, I suggest there was a 

transformation in the components of feasts. Instead of an abundance of maize, the high quantity 

of chenopod remains found in both structures in Units 6A and 44A are the distinguishing 

characteristics of feasting activities. According to my findings, during the LIP at Ayawiri, locally 

grown quinoa, kañawa, potatoes, and other tubers were cooked in kitchen structures and 

transformed into a cuisine worthy of communal consumption. These foods were eaten in separate 

non-kitchen house structures. Often these house structures were marked by a ring of white 

vertically positioned limestone slabs around the foundation (some kitchen structures also have 

this architectural feature), red clay floors, and the interior of these spaces was large enough to 

host extended families and, perhaps, participants from outside the hosting household.  

Comparing Chenopods from Different Contexts 

 Drawing on the multi-variate analysis I conducted on Ayawiri chenopods, I compared 

seeds found in hearths, kitchen houses, and non-kitchen houses (Table 7.26). This analysis 

determines whether different chenopod seed morphological types are more common in certain 

contexts and less common in others. Any differences may point to different uses of specific 

chenopod types.  
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Table 7.26: Chenopod measurements sorted by context. 
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Chenopods measured (n=) 49 21 40 226 132 

       

Mean Seed Diameter (mm) 1.18 1.2 1.1 1.2 1.2 

Standard Deviation  0.36 0.4 0.4 0.4 0.37 

       

Beak Prominence Very Weak 0 0 0 7 0 

% Frequency Weak 20 42 23 24 37 

 Prominent 77 58 73 55 52 

 Very Prominent 3 0 4 14 11 

       

Margin Configuration Biconvex 4 0 14 2 3 

% Frequency Rounded 68 17 50 63 68 

 Truncate 28 83 36 36 30 

       

Testa Texture Canaliculate 0 0 16 0 3 

% Frequency Reticulate 12 0 3 2 3 

  Smooth 88 100 81 98 94 

 

 There is very little difference in the mean diameter or standard deviation of chenopod 

seeds from hearths, kitchen houses, and non-kitchen houses. The beak prominence of chenopod 

seeds from all contexts is generally weak or prominent. There are more truncate seeds (83%) 

than rounded seed (17%) in Unit 6A non-kitchen house. Whereas in the other structures and the 

hearths there are generally less truncate seeds than rounded seeds. Over 88% of all chenopods 

seeds from these contexts have smooth testa textures. Notably, 100% of the seeds from Unit 6A 

non-kitchen house have a smooth seed coat.  
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 These data indicate that the chenopods found in all five contexts at Ayawiri are generally 

similar. Chenopod seeds from Unit 6A house structure are the most morphological homogenous 

indicating they are, perhaps, the same variety.  

When I compared seed diameter to testa thickness in Chapter Six I determined there are 

two distinct chenopod types in the Ayawiri assemblage. Therefore, it is predictable the 

distribution of the mean should be bimodal if both types are found every context. The mean and 

standard deviation are insufficient to detect the presence of these two populations, so I plotted 

the seed diameter in histograms to further discern chenopods morpho-types between contexts 

(Table 7.27).  

 

Table 7.27: Histograms comparing chenopod seed diameter 

between contexts. 
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 These histograms depict a bimodal distribution of chenopod seed diameter in all five 

contexts. These data indicate that the same chenopods varieties, Chenopod Type #1 and Type #2 

in particular, were used and discarded in hearths, kitchen structuers, and on the floors of houses. 

If camelids ate only kañawa, and quinoa was reserved for human consumption, then we would 

expect there to be differences between the residues found in hearths where dung was burned and 

the chenopod seeds in non-kitchen houses where I have determined humans were partaking in 

meals. However, there is no difference between these contexts. These data provide further 

support that Ayawiri residents were sharing their crops with their herds. These data also indicate 

chenopod varieites in compound 44 and 6 are similar. Residents in both compounds used quinoa 

and kañawa. To shed further light on social diversity evident in plant use at the site, it is 

necessary to analyze all plant taxa found in different compounds.  

Social Diversity and Plant Remains 

Since extended family kin groups resided in discrete compounds, a comparison of food 

crops and other plant remains between compounds elucidates differences between families living 

at the site. These data are another piece of evidence in the puzzle regarding the nature of social 
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diversity and status among residents at Ayawiri, and more generally among groups during the 

LIP.  

Household Compounds: Similarities in Crops 

Generally, I found chenopods and parenchyma/tubers to be the primary crops in each 

compound. Chenopodium spp. seeds compose 99% of the total assemblage of identified 

macrobotanical remains. A comparison between compounds reveals chenopods were no less than 

86% of the total identified plant remains within any compound. I found parenchyma/tubers in 

samples in every compound. The amount of parenchyma found is highly dependent on 

taphonomic processes. Therefore, I do not think it effective to compare differences in frequency 

or density between compounds. My findings indicate there is no clear evidence that any one of 

the analyzed compounds at the site had a different staple crop economy. There is no evidence 

that any of the five compounds from which I analyzed macrobotanical samples had access to 

different types or amounts of crops. Clearly quinoa and tubers were essential crops for each 

household, and each family group had access to large amounts of this crop. These data lead me 

to conclude that households from across the site had a generally standardized plant diet. While 

further and supplementary data are needed, including the results form bioarchaeological and 

zooarchaeological analysis, based on my findings, there was a fairly generalized food economy 

at Ayawiri pointing to egalitarian access between households. These findings parallel analyses 

including architectural and other artifact classes at the site that point to a fairly even distribution 

of status, prestige, and power among household groups (Arkush 2015).  
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Rare and Ritually Important Plants 

I did not find any plant remains that possess sacred or ritual importance. I fully sorted all 

but two flotation samples with the intention of finding rarely used ritual plant remains. I did not 

find any tobacco seeds, coca, maize, or evidence of hallucinogenic plant use documented in 

earlier time periods in the region. I did find a few Relbunium sp. seeds in samples from the red 

clay floor of the non-kitchen house structure in Unite 44A and the floor of the kitchen structure 

in Unit 44C. While these seeds were likely burned in camelid dung, it is possible they are the 

evidence that the plant was used for dye. If this is the case, then not every compound at the site 

used or had access to this plant. Based on the numerous spindle whorls we found in almost every 

kitchen structure, there is substantial evidence that textile production was a common activity that 

took place in every compound at Ayawiri. While very tenuous, the presence of Relbunium sp. 

seeds in only a few compound point to the possibility that red dyed textiles were rarely produced 

at the site and only by a limited number of families. 

Household Compounds: A Difference in Dung Composition 

In addition to studying the crops in each compound, analysis of macrobotanical remains 

allows for an assessment of where herds were grazed. These data show residents in different 

compounds burned dung for fuel from herds that were grazed in different ecotopes. In order to 

do this, I compared the percent frequency between compounds of wetland plant remains 

(Cyperaceae) to crop companion weed seeds (Trifolium amabile, Relbunium sp., Verbena sp. and 

cf. Solanum sp.) to small herbaceous seeds (Brassicaceae, Cactaceae, Plantago sp., and Poaceae) 

(Figure 7.25).  
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Before these data are presented, it is important to mention chenopods were found in large 

quantities in every compound at Ayawiri and sometimes in the absence of artifacts and other 

direct evidence for cooking. Indeed, I found more chenopods than all other taxa combined in 

each compound. To me, this shows that camelids also consumed chenopods. The signatures of 

dung burning throughout the site indicate that herds were either grazed in chenopod fields, or 

residents foddered their llama herds on crops.  

Macrobotanical samples from all compounds contained comparatively low frequencies of 

wetland plant seeds: between zero and ten percent. This indicates the camelids that produced the 

dung burned throughout the site were rarely taken to lacustrine or riverine locations for grazing. 

Compound 118, located in the northeastern sector of the site, contained the highest percent 

frequency of weedy plant remains and an equivalent frequency of small herbaceous seeds. This 

indicates the dung burned in this compound was collected from herds that were grazed in both 

fields and valleys. Compounds 72, 44, and 6 contained a burned dung signature of herds that 

were grazed primarily in valleys and less frequently in fields. 
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Figure 7.25: Percent frequency comparison between 

compounds of lacustrine/riverine seeds to small herbaceous 

seeds. 

Conclusions 

 In sum, contextual analysis of macrobotanical remains sheds light on Ayawiri foodways, 

use of space, social diversity, and grazing strategies. Based on the food crop remains in 

structures with hearths, I determined these spaces were indeed used for cooking. In a few cases, 

there were high concentrations of charred remains concentrated right around the hearths. 

Doorways of kitchen structures were generally swept clean, whereas areas near the back wall of 

structures were not. Macrobotanical remains from hearths indicate that at least four were cleaned 

before abandonment, while the other five contained the charred residues of fuel, including both 

dung and wood.  

 Macrobotanical remains support the interpretations made by excavators that spaces 

behind houses were locations where garbage were discarded. Patios on the other hand were kept 
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quite clean. Macrobotanical remains were sparse in front of structures and in the central part of 

compounds.  

 Macrobotanical analysis is the key dataset that sheds light on the use of the large non-

kitchen structures at Ayawiri. While these structures lack many artifacts or features related to the 

activities carried out inside these structures, based on the high density of charred chenopods I 

determined eating took places in these spaces. The high density of chenopods recovered from 

non-kitchen house floors indicates communal meals consisting of locally produced foods was the 

standard plant food in meals. The size of these feasts was constrained by the number of people 

that could fit into 4 to 5 m wide structures. These meals were hosted in residential space among 

extended family kin groups.  

 Macrobotanical remains provide further evidence that there was very little difference in 

social differentiation among extended families residing at the site, at least as far as food stuffs 

were concerned. Compounds in the southern, central, and northern part of the site contained 

similar kinds of crop remains. There was no evidence of non-local crops or ritual plant use 

among the samples I analyzed. Chenopods and tubers provided the foundation of foodstuffs for 

all families at the site. The plant portion of the Ayawiri diet was focused on locally produced 

crops.  

 The very few plant taxa identified in samples from Ayawiri is exceptional. Often 

archaeobotanists working in the region find two to three times more taxa. The low diversity 

cannot be attributed to sampling error since I fully sorted 106 of 108 LIP samples in order to 

detect rare taxa. A low diversity of plant taxa indicate Ayawiri residents had a constrained use of 

plants available to them and potentially a restricted a diet compared to earlier populations 

residing in the Titicaca Basin. 
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 Macrobotanical data also indicate camelid herds had a constrained diet compared to 

earlier time periods and the modern era. Camelids were primarily grazed or foddered on crops. 

Additionally, they were grazed in fields and in valleys based on the identification of 

macrobotanical remains that usually grow in these ecotopes. Herds were rarely brought to 

lacustrine or riverine based on the low incidence of wetland crops. These data are strong 

evidence that Ayawiri farmers and herders rarely ventured far from the fortress. Rather, they 

remained close to safe confines of the site.  
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Chapter 8. Terraces: Design, Layout, and Labor 
  

 

 

In Chapter Eight I provide background information on agricultural terraces.  Then, I 

assess the layout of the terraces at Ayawiri using aerial images and information gathered while I 

was in the field. Through this analysis an assessment is made of the basic design features and 

sociopolitical organization of the farmers who constructed and maintained the terrace complex at 

Ayawiri.   

Agricultural Terrace Design 

Most terraces are constructed by embanking soil against an earthen ridge or stacked-stone 

retaining wall (also referred to as a terrace riser).  In doing so, farmers reduce the gradient of the 

hillside, transforming land otherwise unsuitable for agricultural production into arable plots. 

Leveled platforms are easily tilled and planted with crops.  When farmers modify hillsides into 

agricultural terraces, they are, foremost, increasing the productive capacity of the landscape. This 

aspect of terrace design is what deems it a form of agricultural intensification (following Boserup 

1965). 

Agricultural terraces are considered one of the oldest agricultural earthworks methods 

that preserve water and prevent soil degradation (Dorren and Rey 2004).  Prehistoric farmers 

independently invented this landscape engineering strategy in several locations around the world, 

including Ethiopia (Watson 2009), the Philippines (Acabado 2010), southeast China (Conklin 

1980; Hallsworth 1987), the North American Southwest (Donkin 1979; McGuire and Villapando 
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2015), Mesoamerica (Rodriguez 2006), and the Andes (Cook 1916, 1925).  Many research 

projects from various branches of agrarian sciences have focused on studying the sustainable and 

productive capacity of terrace farming in the past, present, and even future projections (ie. 

Dorren and Rey 2004; FAO 2000; Goodman-Elgar 2008). In fact, agrarian researchers are still 

championing agricultural terraces as a best management strategy for conserving soil quality and 

managing water for growing crops in arid environments (Wheaton and Monke 2001). 

 Beyond their agricultural value, terraces represent significant inputs of human labor in 

initial construction and maintenance. While a large labor force is required to construct riser walls 

and mound the earth to level growing area, very few tools or technologies are required to 

construct or farm terrace fields. Digging sticks and shovels are sometimes used to build terraces 

but are not required. Terraces can be built simply by means of human hands stacking stones and 

moving earth. 

In addition to providing land to grow crops, terraces are locations where various daily 

activities take place. As a result, the artifacts found in terraces are evidence of the palimpsest of 

the social and historical circumstances under which they were constructed and maintained. While 

archaeologists most often target residential spaces and quotidian areas for information regarding 

ancient lifeways, it is possible to study the broader anthropological value of landscape 

modification, agricultural production, and the human use of the land through time by conducting 

archaeological investigations of agricultural terraces. 

Maintenance 

 As agricultural terraces require a large amount of human labor to build, they also require 

ongoing maintenance. Terrace riser walls must be strong enough to withstand gravity, heavy 
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sediments, regular intervals of anthropogenic activities, and weather. The combination of these 

forces often causes risers to swell, degrade, slump, and collapse (Inbar and Llerena 2000:77).  

Additionally, large plants and vegetation with deep penetrating roots growing on terrace riser 

walls can threaten the integrity of terraces (Tarolli et al. 2014:20). Wild plants growing on 

terraces need to be constantly trimmed back because pulling them out can actually loosen soil 

and encourage erosion.  

Farmers need to constantly maintain riser walls to ensure long-term viability. A constant 

labor force is required for terrace maintenance; a labor shortage often leads to riser collapse, 

terrace degradation, and landslides (Inbar and Llerena 2000; Vogel 1988). 

Types 

Numerous agricultural terrace classification systems have been developed to analyze the 

wide variety of field systems around the world (for examples see FAO 2000; Morgan 2005; 

Niles 1982). For example, in the Cuzco Valley in Peru terraces have been categorized into three 

types based on masonry and apparent function (Niles 1982). However, the Ayawiri terraces lack 

these stylistic characteristics. This leads me to focus on the terrace classification most commonly 

cited and relevant to this study, specifically those developed in the Andes. Spencer and Hale 

(1961:10) define two types of terraces: bench terraces and broadfield terraces (also referred to as 

broad-based, common, or normal terraces).  

Constructed on slopes that are steeper than a 20% gradient (FAO 2000), bench terracing 

involves constructing vertical stacked-stone riser walls parallel to the declivity of hillsides and 

manually embanking soil behind and atop risers (Spencer and Hale 1961).  This process creates 

leveled flat land tracts that are congenial for crops.  
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Broadfield terraces, on the other hand, are plowed areas on natural breaks of shallow 

hills. These field systems are built on slopes with gradients less than 20% (FAO 2000).  To 

create a broadfield terrace, farmers construct short embankments of mounded earth, rocks, or 

small stacked-stone walls parallel to the hillside gradient. Through time, agricultural activities 

such as tilling, planting, harvesting, and other erosive processes result in soil naturally mounding 

against constructed riser walls.  With minimal effort farmers capitalize on gravity and erosion to 

construct broad flattened agricultural plots.  

Enhancing the Agricultural Landscape 

By design, terraces increase the fertility and agricultural sustainability of the natural 

landscape in three ways.  First, terraces guards against erosion, resulting in the maintenance of 

soil fertility. Second, terraces capture rainwater runoff and ensure soils are sufficiently 

moistened.  And third, the design of terraces creates convective action that increases the soil 

temperature enabling crops to germinate sooner each season and guarding against nighttime frost 

damage (Cook 1925; Dick et al. 1994; Inbar and Llerena 2000; Treacy 1989). Using terraces as a 

location to graze livestock increases the fertility through dung amendment.  

Particularly in the mountains where thin topsoil is susceptible to gravitational erosion 

(mass wasting) and aeolian processes, transforming hillsides into agricultural terraces stabilizes 

vulnerable soils (Goodman-Elgar 2008:3072). Micromorphological research on terrace soil 

indicates, like any agricultural soil, the sustainability of terrace soil fertility is susceptible to 

overuse (Goodman-Elgar 2008:3085). Farmers must implement soil management strategies to 

capitalize on terrace fertility by managing fallow periods. Resting the soil for a year or several 
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years between planting cycles ensures minimal loss and rejuvenation of important soil nutrients 

essential to crops, including nitrogen, phosphorus, and potassium.   

Agricultural terrace systems also help keep the soil moistened for crops.  Instead of 

rainwater freely flowing down hillsides, the leveled surfaces of terraces force precipitation to 

infiltrate the soils (Dorren and Rey 2004:98). This design ensures that rain water penetrates to 

the roots of crop plants, while simultaneously preventing rainwater from causing topsoil runoff.  

Environmental Implications of Abandoned Terraces 

Terracing hillsides for agriculture greatly impacts local ecosystems. One study found that 

past agricultural activities leave distinguishable micromorphological signatures centuries later in 

terrace sediments including higher concentrations of phosphorous, organic carbon, and nitrogen 

as compared to the surrounding unaltered landscape (Sandor and Eash 1995).  Chemical changes 

of this nature affect long-term floral and faunal changes.  

Environmental changes are precisely what farmers intend to happen when they engineer 

hillsides. The process of terracing transforms locations otherwise unsuitable for farming into 

viable agricultural plots. Indeed, terrace agricultural can be considered a form of niche 

construction where humans consciously or not make the environment more amenable for their 

species (Smith 2011). As such, terraces should be considered an important part of the legacy of 

past cultures that needs to be protected and preserved. 

On the other hand, when farmers cease to farm and maintain terraces, the environmental 

results are often negative, impacting entire local ecosystems. For example, Treacy (1989) found 

that abandoned terraces in the Colca Valley of Peru have higher rates of soil erosion and 

sediment yield values than cultivated terraces. Other researchers point out that abandoned 
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terraces cause increased soil erosion, slumping, collapse of terrace walls, and even landslides 

(Inbar and Llerena 2000; Lasanta et al. 2001).  Tarolli et al. (2014) found that when terraces are 

abandoned eroding hillsides can also change hydrological dynamics over a large region. 

In addition to environmental effects, abandonment of terraces has far reaching social 

implications. In particular, landslides caused by eroding abandoned terraces are a particular 

problem for populations living below. In Italy, there is a concern that eroding abandoned terraces 

threaten the lives of residents living in many cities (Tarolli et al. 2014).  

Terraces in the Andes  

 

 First researched by Cook (1916), agricultural terraces compose a large percentage of the 

viable farmland throughout the Andean cordillera. To date, there is no accurate measurement of 

the amount of terraced land in the Andes. Nonetheless, a few researchers have calculated 

estimates of the land coverage of Andean terraces. For example, CEPAL (1989) suggests that 

there are approximately two million hectares of terraced agricultural lands in Peru, whereas 

Erickson (1992a:287) estimates there are roughly 10,000 km2 (or one million hectares) of 

modified hillsides in the country. Almost all Andean agricultural terraces were constructed in 

prehistory.  Unfortunately, 50 to 75% of the terraces have fallen into disuse since the Spanish 

conquest (Denevan 1988). This can be partly attributed to violent colonial encounters and the 

changing sociopolitics of the Andes over the past few centuries. Terraces also have fallen into 

disuse because modern agricultural methods are not amenable to this type of farming.  Bench 

terraces in particular are not accessible to plows drawn by draft animals or tractors. As the 

modern era progresses and new farming technology is introduced into the Andes, it is predictable 
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that terrace agriculture will decrease that will have widespread impacts on the environment and 

human groups residing there. Currently, terrace agriculture continues to be an environmentally 

sustainable agricultural method particularly suited to the altiplano. 

Ayawiri Terraces 

In this section, I present a description synthesizing the layout of the Ayawiri terraces 

based on satellite imagery and limited survey conducted during excavations. I describe previous 

research on the layout of raised field systems to provide a comparative local framework for 

assessing the layout of the terraces. Additionally, I assess the sociopolitics imprinted in the 

layout and construction manner of the terraces.  

The layout of terraces reflects the social, economic, and political circumstances under 

which they were constructed and used.  Initial planning of terrace construction required 

cooperation among families and within the community. Annual cropping and fallow regimes 

needed to be constantly negotiated between farmers. The foods produced on terraces needed to 

be distributed amongst the community. If farmed long-term, erosion necessitated the need for 

ongoing maintenance and stabilization. These activities are all imprinted in the land and 

embedded in the soils of the terrace complex surrounding Ayawiri.   

  The terraces at Ayawiri are mostly bench terraces that follow the natural contours of the 

hillside (Figure 8.1). Niles (1982) argues that this terrace form increases stability of terraces, 

because terraces that are built along the contours of a hillside preserves natural hydrology, 

whereas heavily modified hillsides with equal sized bench terraces in straight lines loosen soil 

and disturb the hydrology of an area threatening the integrity of slopes.  
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The Ayawiri bench terraces are composed of stacked stone retaining walls and earth 

mounded behind these walls. The tallest retaining wall measured was over 5 m tall, while the 

smallest wall measured was only 0.5 m. Terraces adjacent to one another were quite variable in 

height. Similarly, the orientation of the terraces follows the curves and undulations of the 

hillside. This feature of the terrace complex is particularly noticeable on the southern hillside.  

 

 
Figure 8.1: Bench terraces that follow the natural contours 

of the hillslope at Ayawiri. 

 

At the base of the terrace complex abutting the valley bottom, there are a few rows of 

broadfield terraces.  These terraces have significantly shorter stacked stone risers and broader 

tracts of arable land than the bench terraces.  The broadfield terraces are adjacent to camelid 

corrals and residential compounds of several families that live in Chila today.   

Since we were excavating the terraces during the Andean winter (July through August), 

fields were not in full bloom.  However, the remains of dried plants from previous agricultural 

seasons shed light on the cropping regime of the modern era. It was apparent that not all terraces 

were farmed the previous year. Based on the abundance of overgrown weedy plants, many 
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terraces were left fallow. The locations of the terraces that were farmed the previous year were 

quite variable. For example, one farmer that I talked to had cultivated a handful of fields at the 

bottom of the terrace complex, several in the middle, and a few high up on the hillside near the 

fortified residential area at Ayawiri.  However, very few of the terraces cultivated in 2012 were 

located next to one another.   

Several stacked stone walls run perpendicular to the declivity of the hillside extending 

from the top of the mesa to the valley bottom. These walls are visible from the ground and in 

satellite images. There is no earth mounded up against these walls, so they are not load-bearing.  

Initially, I suspected these were used to help demarcate fallowing cycles; however, based on the 

random location of fields farmed in 2012, these walls are not used that way today. The farmers 

from Chila suggested the walls demarcated property, and they were able to tell me who owned 

which vertical section of terraces. So, a single extended family group farmed several terraces at 

the base, middle, and atop their section of the complex, while numerous terraces lay fallow 

within in their landholdings.   

The Ayawiri terraces rely primary on precipitation for water; I only encountered one 

crude irrigation channel located on the southern escarpment while surveying the terraces. The 

irrigation channel was composed of a few large flat stones lined up with a small dirt ditch 

between them that directs rainwater runoff. Local farmers confirmed the lack of irrigation 

throughout the terrace complex. There are two natural springs located about midway up the 

terrace complex (Arkush 2011); one is located on the eastern slopes, and the other is located on 

the western slopes. These springs only produce a very small amount of water, and they are often 

completely dry during the winter. Along with other members of Proyecto Machu Llaqta, I 

measured the amount of water the eastern spring produced in June 2012 and found it put out 
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about one to two liters of water per hour. We attempted to carry out this same measurement with 

the western spring, but it was completely dry during the winter months while we were there. 

While the springs likely fed crops growing on the terraces right next to these sources, there were 

no detectable irrigation channels directing the flow of the running water that would indicate these 

sources were significant to past or present farmers working the terraces.  

Due to the lack of irrigation networks and steep slope of the hillside, Ayawiri terraces are 

particularly susceptible to degradation and riser collapse. The seasonality of precipitation and 

extreme daily temperature fluctuations loosen the sediments, increasing the risk of sediment 

runoff and riser collapse. Furthermore, sparse vegetation has been linked to higher rates of 

erosion in the Andes (Inbar and Llerena 2000:78). The sparse weedy vegetation found on fields 

left in fallow at Ayawiri points to how vulnerable this particular terrace system is to erosion and 

collapse of retaining walls. 

While surveying the terraces I identified many instances of riser wall conservation and 

stabilization. Local farmers informed me that natural erosional processes often compromise the 

integrity of riser walls, resulting in a collapse.  Farmers then rebuild the walls and re-mound the 

earthen planting platform. These processes of reconstruction are quite apparent.  Lichens on the 

rocks of retaining walls were particularly useful indicators of recent reconstruction events. On 

many ancient risers, lichens covered almost the entire exposure of rock faces, whereas on 

recently reconstructed terraces the rock surface with lichens was irregular, disturbed, and, 

sometimes, buried.  Evidence of these maintenance and reconstruction efforts suggest long-term 

cultivation and use of the terrace complex.  
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Sociopolitics Mapped on Field Systems 

Several sound models have been developed to assess the sociopolitical organization of 

the labor required to build raised field systems in the Titicaca Basin (Bandy 2005; Erickson 

1993; Kolata 1993). This type of research has not been conducted on terraces in the region, or 

other field systems for that matter. Thus, I draw on models developed to assess sociopolitics 

mapped onto raised fields to provide local, analogous frameworks for studying societal 

organization that underpinned agriculture in the Lake Titicaca Basin. These data shed light on 

the broader sociopolitical organization of intra-community relations in the region and the 

motivations for agricultural intensification through time.  

Generally, interpretations of the sociopolitical organization of the construction of raised 

fields and general agricultural production fall into two models that are largely contradictory to 

one another: 1) a top-down model and 2) a bottom-up model (Janusek and Kolata 2004). The 

top-down model asserts that elites mandated construction and oversaw production and 

maintenance of raised fields. On the other hand, in the bottom-up model local farmers 

cooperatively built raised fields and oversaw production. These models of raised field production 

hinge on three lines of data: 1) layout; 2) surface features; and 3) time period of construction. 

Raised field researchers in the Titicaca Basin have particularly focused on the analysis and 

interpretations of the layout and surface features to provide insight into the administration of 

agricultural production. Timing of the construction and abandonment of raised fields has been 

tied to culture histories. Specifically, researchers have tied agriculture chronology to the 

historical rise of centralized authorities and elites.  Notably, both those who subscribed to the 
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top-down and the bottom-up model agree that local power structures embedded in kin groups 

were essential to the organization of raised field agriculture.   

In the top-down model, it is contended that political elites directed labor required to build 

and farm raised fields in the Titicaca basin.  Kolata (1986) was the first to argue that Tiwanaku 

elites owned raised fields and oversaw their production. By 1996 Kolata and Ortloff suggest that 

elites collaborated with local leaders to oversee construction and management of raised fields.  

Similarly, Stanish (1994) argues that before the rise of the Tiwanaku state, local elites oversaw 

raised field agriculture. Later during the Middle Horizon, Stanish believes Tiwanaku elites took 

on the role of managing raised fields and extracting surplus.  Bandy (2005) links the top-down 

model to a staggered production cycle model. Raised field systems created convection patterns of 

air movement that resulted in warmer microenvironments that allowed crops to be planted earlier 

than in other agricultural fields. Elites could centrally mandate early season labor, and then the 

surplus harvests from the raised fields without interrupting or straining normal local dryland 

subsistence farming strategies. In other words, farmers could work for the government on raised 

fields for a duration, then they could go home and oversee their own farms all in the same 

season. Bandy argues the top-down model best fits the ecology and seasonality of the Titicaca 

basin.  

 Alternatively, Erickson (1992b, 1993, 1999) argues state mandated organization of labor 

was unnecessary to construct the raised fields in the Titicaca Basin. Rather, he favors the bottom-

up model, in which communities and kin-based social groups possessed social control over labor, 

and local farmers possessed the skills to organize raised field construction efforts. Particularly in 

the Huatta region of the Titicaca basin where Erickson (1993) asserts raised fields were 

constructed before the rise of Tiwanaku, he notes the raised fields are laid out in segments 
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indicating they were constructed in an incremental fashion. Additionally, he argues farming 

raised fields persisted long after the Middle Horizon. Based on this timing, he asserts the 

invention of raised fields preceded the development of a centralized authority, and farming these 

fields persisted long after sociopolitical collapse and decentralization of authority. According to 

this chronology, Erickson concludes that a bottom-up model of raised field production is the only 

viable model.  

Kolata and his colleagues (Kolata 1991; Kolata and Ortloff 1989, 1996) argue that 

regional features linking raised field systems were built so that elites could oversee production.   

Particularly in the Koani Pampa region, causeways, dikes, and canals that linked field systems 

were indicative of powerful elite control over production. Furthermore, artificial canalization of 

the Katari River and control of water resources could only have been accomplished by a 

considerable and centralized organization of labor that saturated the ground of hundreds of 

hectares of raised fields. 

Erickson (1993) stresses that the variable layout and character of raised fields provide 

data about the decentralized political authority that oversaw construction and production. 

Generally, in the circum-Titicaca region the reticulated platforms of raised fields are arranged in 

two distinct patterns oriented on the landscape: a checkerboard pattern, or irregular polygons. 

The checkerboard pattern consists of a group of five to seven parallel platforms that have been 

called bundles. Bundles alternate direction and orientation (Erickson 1993:390).  The irregular 

polygon pattern of raised fields is quite variable in form. Most commonly, canals radiate out 

from a central location (Erickson 1993:391). Based on these layouts, raised field construction 

was mandated by local power structures, and maintenance was carried out under the direction of 

locally organized farm labor, likely amongst kin groups. Variability in size and orientation of 
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raised fields indicates that there was not a common blueprint, and, therefore, local groups likely 

oversaw construction. Additionally, Erickson concludes that rocks located between raised fields 

delineated property boundaries of certain groups.  He attributes variability in these marker rocks 

to stylistic signatures of certain groups, probably kin affiliations.  

Regardless whether researchers subscribe to a top-down or bottom-up model, all 

researchers studying raised fields have speculated that kin groups were essential to organizing 

raised field production. The debate lies in whether kin groups were sufficient to manage labor, or 

whether elites intervened. At the heart of this debate is the well documented kin-based social 

organization termed the ayllu, which still exists in the region today. Formally in the Andes, an 

ayllu is a named clan group that commensally and reciprocally socializes, shares landholdings, 

sponsors festivals, and performs public labor projects (Urton 1993:230). Ayllus are composed of 

ten to hundreds of individuals; these group communally owns land (Kolata 1993:215). In Urton’s 

(1993) ethnography of modern ayllus in the central highlands of Peru, he found that the kin 

groups are responsible for organizing communal labor required to farm cash crops, and they 

negotiated between groups the cycles of fallowing potato fields.  

 Kolata (1993:215-221) asserts ayllu groups were responsible for innovating raised field 

agriculture in the Titicaca Basin. In his model, a single ayllu worked together to move earth and 

construct platforms and canals, and, with the rise of the Tiwanaku state during the first 

millennium A.D., lords and elites garnered increasing control over planning and production of 

raised fields. This model is based on excavations on the Bolivian side of the lake that revealed 

limited evidence of habitation structures adjacent to massive networks of raised fields (Kolata 

1993:219). These findings are viewed as evidence that the state was concerned with procuring 

large quantities of agricultural surplus, rather than a village growing crops for local consumption.   
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 Erickson, on the other hand, argues the ayllus maintained control over raised field 

construction and production throughout the first millennium A.D. (Erickson 1993:388-399). He 

argues that variability in raised field layout represent local ayllu-level planning that might also 

symbolize “ethnicity and style” (Kolata 1993:391). Erickson directly refutes the top-down model 

by arguing that if Tiwanaku authorities planned and scheduled construction of raised fields, there 

would be less variability (Kolata 1993:391).   

Erickson and Kolata initiated raised field rehabilitation projects in Peru and Bolivia 

respectively (Erickson 1988; Kolata 1993). To oversee these projects, teams of kin-groups that 

resembled ayllu organization were employed to farm the land. Working with these local social 

groups surely informed political and economic models for prehistoric raised field construction. 

The major distinction between the integration of the ayllu model in Kolata’s and Erickson’s 

models is that Kolata perceives the ayllu as a system that the state eventually exploited for labor, 

whereas Erickson believes that the ayllu is a social system that ensured that the state did not 

intervene in agricultural production. I believe the ayllu system could have been a necessary 

organizing principle in the construction of the Ayawiri terraces. The question remains: How was 

labor organized to construct the Ayawiri terraces?  

Assessing the Layout of the Ayawiri Terraces 

The basis of analysis of the sociopolitical organization of raised field production can be 

applied to the study of terraces. Based on the layout and architectural features of the Ayawiri 

terraces, the nature of these interpersonal and community-level political relations can be inferred.  

Ayawiri terraces are so expansive that they can easily be identified in satellite imagery 

(Figure 8.2), rendering analysis of the layout straightforward.  The sheer amount of earth that 
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was moved to build the terraces constitutes communal construction projects carried out by a 

large community. The maintenance and cultivation of terraces required the establishment of a 

social organization that scheduled labor and distributed responsibilities among residents.  

While there is a cemetery at Ayawiri, there is no other formal communal space or civic 

architecture. The open areas between the three northern defensive walls and a few of the 

compounds in the northern residential sector may have been places where residents congregated. 

However, residents did not invest in creating architecture to facilitate these types of meetings 

such as a plaza or court. The raised causeways that intersect the site would have surely been a 

space where community members interacted as they passed one another while exiting and 

entering the site, but these spaces are not large enough for gathering of more than a few people. 

The terraces may have been used during the LIP as space where interpersonal and civic 

engagement took place among residents. As farmers and families spent time tending to their 

crops, they would have regularly passed one another traveling to their terraced fields. Many of 

the terraces are large enough to have hosted larger gatherings of many families.  

 
Figure 8.2: Google Earth image of the terraces that flank the 

fortress at Ayawiri. 
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 If constructing the terraces at Ayawiri were an activity sponsored by a central authority 

we would expect forethought and planning to result in rigid uniformity; whereas, decentralized 

labor and lack of civic planning often result in irregular field design (Donkin 1979; Erickson 

1988; Kolata 1993; Rodriguez 2006). For example, the discernible linearity, remarkable 

masonry, and dimensions of high prestige Inca terraces reflect a centralized planning authority 

(Niles 1982:165-167). However, there is a high degree in variability in height and size of the 

terraces at Ayawiri. Like raised fields, this indicates there was no common blueprint to which 

terrace builders adhered. At Ayawiri there does not seem to be the rigid uniformity in the layout 

or architecture indicative of centrally organized labor. The irregularity in terrace spacing, 

architecture, and size indicates long-term and small-scale incremental labor investments. This 

patchwork design represents a decentralized labor organization that, as Erickson (1988, 1994) 

argues, results from localized negotiations between kin groups.  

The stones used to build riser walls at Ayawiri are uncut and crudely stacked (Figure 

8.3). There is uniformity in orientation of the riser stones and I did not observe any evidence that 

clay or mortar was used to consolidate the walls. These data provide further evidence that the 

terraces were constructed through a decentralized system of labor organization where planning 

and oversight of construction was minimal.  
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Figure 8.3: Photos of stacked stone riser wall. Note the 

unworked stone that are irregularly stacked in various 

orientations. 

 

 The walls that run from the fortress to the valley, perpendicular to the declivity of the 

terrace slopes are used today to demarcate familial property ownership (visible in Figure 8.2). 

Marking possession of agricultural landholdings in the Andes seems to be a long-held cultural 

feature, also documented in raised field systems. Perhaps the perpendicular walls that vertically 

transected the terraces were constructed to delineate kin group ownership of tracts of terraces at 

Ayawiri. The marker walls that transect the terraces are similar in architectural style and form to 

the division of space within the fortified residential sector of Ayawiri.  Both consist of uncut 

filed stones stacked upon one another in no particular pattern. Houses at Ayawiri appear to be 

organized into family and extended family compound groups demarcated by stacked stoned 

walls (Arkush 2011:120). The walls that transect the terraces further reinforce the notion that 

political authority and labor organization were coordinated amongst kin groups on the terraces. 

These findings indicate farm labor and the goods produced on the terraces was likely organized 

amongst extended family groups. 
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Notably, the walls that transect the terraces may have served other functions. For 

example, they may reduce wind that makes working on the terraces miserable for both humans 

and herds. Alternatively, the walls may provide drainage. Without further research on these 

walls, speculations can only be made.   

 Today, to walk from the valley to the highest terraces and even the fortified residential 

sector located atop the mesa at Ayawiri, you must take one of a few trails. Although these trails 

are not well marked, the design of the switchbacks makes the hike relatively easy; deviating from 

the trails results in a very difficult climb often straight up precarious terrace risers. Following the 

trails is logistically necessary to travel the steep slopes. Notably, the pathways transect the 

vertical marker walls that run from the fortress to the valley.  Thus, residents regularly traversed 

neighboring kin-groups’ terraced fields, and in fact, this still occurs today.  

It has been argued that causeways linking raised fields were indicative of elite 

administration of agricultural production (Kolata 1991; Kolata and Ortloff 1989, 1996). 

However, I interpret the pathways as evidence of functionally significant cooperation between 

neighbors.  The pathways were also locations of interaction between kin groups. Working in 

their fields and traveling across their neighbors’ lands, terrace farmers at Ayawiri worked side-

by-side on the hillsides. Terraces served the purpose of a public area where neighbors could 

socialize.   

Conclusions 

In sum, the Ayawiri terraces are mostly bench terraces, with a few broadfield terraces 

located at the bottom of the complex. The terraces follow the natural contours of the hillside and 

there is no evidence of large-scale irrigation networks that would require cooperation between 
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groups living at the site in order to distribute water. Riser walls are composed of unworked 

stacked stones and there is no evidence of clay or mortar used to construct the walls. There is no 

conformity in the orientation of the stacked stones. These data indicate no centralized planning 

authority oversaw construction of the terraces. Small-scale and long-term labor investment 

organized among kin groups oversaw construction and maintenance of the Ayawiri terraces. 

However, cooperation amongst the community was necessary to build and regulate access to the 

terrace complex. Farmers had to follow meandering trails that cut across various sectors of the 

terraces that probably belong to their neighbors. These trails likely served as de facto public 

space where neighbors regularly socialized.  
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Chapter 9. Terrace Excavation Results and Findings 
 

 

 

In Chapter Nine I describe the results from the 2013 field season at Ayawiri, where I 

oversaw excavations of four terraces located on the eastern escarpment below the fortified 

residential area of the site. The primary goal of these excavations was to determine when the 

terraces were constructed. First, I describe the location of each excavated terrace with respect to 

the pukara. Then, the appearance and layout of each excavated terrace is presented. I also 

describe data from excavations including the soil type, color, and texture. Then I summarize the 

identified soil strata and note significant cultural material recovered from each stratum. Lastly, I 

provide an interpretation of the past use of each terrace based on the excavation findings.  

Selecting Terraces 

 All four of the excavated terraces were located on the slopes east of Ayawiri on lands 

owned by persons living in Chila. I targeted excavations of terraces located on the eastern 

hillside primarily because Chila residents were more amenable to archaeological collaboration 

than the community living to the west of the site. I hired numerous members of the Chila 

community to assist in excavations. I selected four agricultural terraces to excavate: TZ3, TZ-4, 

TZ-5, and TZ-6 (Figure 9.1).  Two of the excavated terraces were located near the site, one was 

located approximately half way between the valley bottom and eastern approach to the perimeter 

walls of the pukara, and the fourth excavated terrace was located along the valley bottom near an 

Inca Period chulpa (burial tower).  There was a second similar chulpa located near the valley that 
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was destroyed in the 20th century by local residents who needed cut stone. Within each of the 

four excavated terraces, we dug one excavation unit.  Each of the excavated terraces was a 

different shape and height, consequently we adjusted the layout of each unit to account for these 

differences.  In total we excavated 23 m2.  

 

Figure 9.1: Aerial map depicting location of excavated 

terraces at Ayawiri in relation to the fortified residential 

sector. 
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Terrace-4 

Terrace-4 (TZ-4) is located high on the hillside near the northeast part of the residential 

area of the fortress (see Figure 9.1).  This terrace is relatively shallow compared to nearby 

terraces, vertically measuring about 1 m (Figure 9.2). Modern furrows and the remains of dried 

crop plants were apparent, indicating this area was cultivated the previous season. The local 

landowner confirmed TZ-4 is still regularly being used to produce crops such as potatoes, oca, 

and other tubers. Before we began excavations we cleaned and removed the remaining stems of 

last year’s crops including those of wheat and potatoes. 

 

 
                  Figure 9.2: Photo of TZ-4 riser wall. 

 

The excavation unit on TZ-4 was a 1 x 6 m trench that was oriented perpendicular to and 

intersecting the terrace riser.  The trench was oriented this way to expose the natural downward 

sloping paleo-A horizon and bedrock of the hillside buried below the terrace, and to understand 
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how the terrace wall was constructed.  We positioned the northeast corner of the unit at UTM 

19S 336058E 8249765S (WGS84), and the elevation of the modern surface of this terrace is 

approximately 4,101 masl. Within the excavation unit, the terrace riser measures 80 cm tall.  The 

terrace wall has two levels: the upper and the lower (Figure 9.3). The upper level is located 40 

cm west or upslope from the lower level.  

 

 
           Figure 9.3: Map of the modern surface of TZ-4. 

 

During excavations we identified five distinct strata that were grouped into depositional 

events including the modern surface (Event 1), agricultural fill (Event 2), two distinct portions of 

the wall (Event 3 and 4), and bedrock (Event 5).  Based on the shallow depth of this terrace, 

tilling likely penetrated to bedrock, completely overturning the soil matrix and superimposing 

any in-situ artifacts. The full inventory of artifacts recovered from TZ-4 is presented in Appendix 

I.  
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Figure 9.4 : Northern profile of TZ-4. 

 

Event 1 (Loci V2-3001) Modern Surface 

 In this level we identified a semi-compact modern surface stratum of brown (10YR4/3) 

silty loam soil mixed with dried stems and roots of modern crop plants. During excavations I 

noted a low density of small stone inclusions, measuring 5 to10 cm in diameter, mixed 

throughout the matrix. I found a traditional stone hoe (a chaquitallca) protruding through the 

modern surface in quadrant A (Figure 9.5) that was used in antiquity to prepare agricultural beds 

for crops.  

 
Figure 9.5: Traditional stone hoe, locally referred to as a 

chaquitaclla found embedded in TZ-4. 
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Event 2 (Loci V2-3002, 3003, 3004, 3005, 3006, 3008, and 3013) Agricultural Fill/Plow Zone  

Located below the modern surface, this level was composed of compacted dark grayish 

brown (10YR4/2) silty loam soil. This level was still within the modern plow zone based on the 

identification of modern roots and furrows extending throughout the trench. A low density of 

medium rocks, measuring 10 to 20 cm in diameter, was dispersed throughout the fill.   During 

excavations a high density of ceramic fragments and a moderate density of lithic artifacts was 

noted in this level. I collected Soil Core #6 from locus V2-3013 and submitted it for OSL 

analysis. This sample dates to 105 ± 15 B.P. (Table 9.1).  

Event 3 (Loci V2-3009, 3010, 3011, and 3012) Upper Level of Terrace Wall 

  This level was composed primarily of large stacked stones that measured 20 to 40 cm in 

diameter and brown (7.5YR4/2) compact silty loam soil fill in-between the rocks. These stacked 

stones form the upper portion of the riser wall. A broken grinding stone was found in quadrant E.  

Additionally, a low density of ceramic fragments and lithic artifacts were recovered from the soil 

matrix between the riser stones. I collected Soil Core #3 from locus V2-3010 and submitted it for 

OSL analysis. This sample dates to 155 ± 15 B.P. (Table 9.1). 

Event 4 (Loci V2-3014, 3015, and 3016) Lower Level of Terrace Wall 

  Forty centimeters east of and below the upper level of the terrace riser, we identified a 

distinct lower portion of the retaining wall. This level was also composed of primarily large wall 

rocks that measured 20 to 40 cm in diameter and dark brown (7.5YR3/2) compact silty loam 

matrix. During excavations I noted a low density of ceramic fragments and lithic artifacts in the 

matrix fill embedded between the wall rocks.  
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Event 5 (Locus V2-3007) Bedrock 

This level was composed of very compact dark brown (7.5YR3/2) rock, and was sterile 

of cultural artifacts or natural inclusions. We only dug into this level in quadrants A and B to 

confirm that we had indeed, reached sterile bedrock that appeared to extend beneath the entire 

trench sloping downhill to the east. 

 

             Table 9.1:  Results of OSL dates from TZ-4. 

 
Sample # Locus # Laboratory # OSL age 

(yr)f 

Core 3 V2-3010 BG3980 155 ± 15 

Core 6 V2-3013 BG3984 105 ± 15 

Diagnostic Ceramics from TZ-4 

 Analysis of ceramics found in TZ-4 indicates that 95% date to the Late Intermediate 

Period.  Three ceramic sherds were found in the agricultural fill/plow zone that date to earlier 

time periods of the Middle Horizon and Late Formative (Table 9.2).  These sherds likely eroded 

or tumbled down the hillside and were mixed into this stratum either during construction of the 

terrace or subsequent agricultural tilling. The diagnostic ceramics found in the first terrace wall 

all date to the LIP, or early part of the Late Horizon, suggesting that the terrace was constructed 

during these time periods or later.  
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Table 9.2: Summary table of diagnostic ceramic sherds recovered from TZ-4. 

 

Interpretation of TZ-4  

I found that TZ-4 consists of a short riser and soil naturally eroded and mounded behind 

the wall. This terrace is unique because it is a broadfield terrace located high up on the hillside 

near the fortified residential area of the site. Most of the terraces around it are bench terraces, 

whereas the broadfield terraces are mostly found at the bottom of the terrace complex along the 

fringes of the valley.   

 The stratigraphy and construction sequence of TZ-4 was straightforward.  First, the 

terrace retaining wall was constructed right on top of bedrock.  Then, the terrace was loaded with 

soil, probably originating from uphill.  Then, a second wall was constructed slightly up hill and 

vertically above the first wall.  Based on the steep slope of the modern surface, I suspect the 

second wall was constructed specifically to halt soil erosion. Soil was mounding up over the top 

of the second wall and would likely erode over the top of these stones in heavy rain. The 

chaquitallca is evidence of past agricultural activities in this location. The broken grinding stone, 

and early ceramic sherds found in the agricultural fill of TZ-4 probably were discarded as 

rubbish from the fort and tumbled downhill. These artifacts were then mixed into the fill during 
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tilling. Based on the diagnostic ceramics embedded in the wall of TZ-4, it was constructed no 

earlier than the LIP. The two OSL dates obtained from this terrace indicate it was disturbed, 

stabilized, or constructed one or two centuries ago. 

Terrace-5 

Terrace-5 (TZ-5) is located on the hillside east of the fortress residential area about half-

way between the eastern fortification walls and the valley bottom (see Figure 9.1). The height of 

this terrace riser is average as compared to those nearby, vertically measuring approximately 1.5 

m.  Before we began excavations, TZ-5 was covered in modern weedy and wild plants, 

indicating that it was not planted with crops the previous year. No artifacts were apparent on the 

modern surface.  

We chose to position our excavation unit on the eastern edge of the terrace.  This 

excavation unit was a 1 x 4.6 m trench oriented perpendicular to and intersecting the terrace wall. 

The trench was positioned in this location because there was less vegetation there. Within the 

excavation unit, the terrace wall vertically measures 1.38 m and was composed of stacked, 

unworked stones that measured between 20 and 60 cm in diameter (Figure 9.6).  
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Table 9.3: Map of the surface of the modern/second wall of  

TZ-5. 

 

 

 

 

                Figure 9.6:  Photo of TZ-5 retaining wall. 

 

 

During excavations we identified six distinct events including the modern surface (Event 

1), the modern terrace wall (Event 4, second terrace wall), another buried, earlier retaining wall 

built behind the modern terrace wall (Event 2, first terrace wall), plow zones/agricultural fill 
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associated with each wall (Events 3 and 5), and agricultural fill associated with the modern 

terrace wall (Event 6) (Figure 9.7). The full inventory of artifacts recovered from TZ-5 is 

presented in Appendix I.  

 

 

                  Figure 9.7 : Northern profile of TZ-5. 

Event 1 (Locus V2-3201) Modern Surface 

 This modern surface level was composed of semi-compact dark brown (7.5YR3/3) silty 

loam. Before we began excavations, we identified predominantly weedy and wild vegetation 

growing on the surface.  The roots from this vegetation penetrated through the stratum.  

Event 2 (Loci V2-3211, 3212, 3213, and 3214) First Terrace Wall 

This wall was located west or uphill of the second/modern terrace wall and was not 

visible until we excavated through the modern surface level (Figure 9.8). I first identified it 
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based on a row of stones that bisected the trench. Based on the location behind the modern wall, 

and the stratigraphy of the soil, the first terrace wall likely predates the second modern wall. This 

wall was composed of stacked stones that measured between 20 and 60 cm in diameter. There 

was compact dark reddish brown (5YR3/3) clay loam embedded between the rocks. I collected 

Soil Core #20 from locus V2-3212 that penetrated below the wall and submitted it for OSL 

analysis. This sample dates to 2105 B.P. ± 200 (Table 9.4). 

 

 

Figure 9.8 : Map of the first wall of TZ-5. 

 

 

 

 

 

Event 3 (Loci V2-3202, and 3203) Plow Zone of First Terrace Wall   

Located below the modern surface level and west of first terrace wall, we found a level 

was found composed of semi-compact dark brown (7.5YR3/3) silty loam soil with inclusions 
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smaller than 5 cm in diameter. Based on the soil color and the penetration of modern roots in this 

level, I identified this stratum as plow zone. A low density of ceramic fragments and lithic 

artifacts was noted throughout this level.   

Event 41 (Loci V2-3207, 3208, 3209, and 3210) Second/Modern Terrace Wall 

This level was composed primarily of large stacked stone that measured 20 to 50 cm in 

diameter and semi-compact dark brown (7.5YR3/3) silty loam embedded between the riser 

stones.  During excavations a low density of artifacts in the matrix was noted, including ceramic 

fragments, lithic artifacts, and a few uncharred animal bones. I also found two sling stones 

embedded between rocks that formed the riser wall (Figure 9.9). These sling stones measured 

between 3.5 cm and 5 cm in diameter. I collected Soil Core #29 from locus V2-3209 from the 

matrix of the wall and submitted it for OSL analysis. This sample dates to 490 ± 45 B.P. (Table 

9.4). 

 

               Table 9.4: Results of OSL ages for TZ-5. 

 
Sample 

# 

Locus # Laboratory 

number 

OSL age 

(yr) 

Core 20 V2-3212 BG3982 2105 ± 200 

Core 29 V2-32z09 BG3985 490 ± 45 

 

                                                 
1 Both loci V2-3209 and V2-3210 were excavated from Event 4, the second/modern terrace wall and 

Event 6, the agricultural fill.  While the wall was likely constructed at the same time the agricultural fill 

was deposited in the terrace, I chose to separate these events for analytical purposes because Event 6 

was likely subjected to annual agricultural processes resulting in further mixing of the soil. 
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Figure 9.9: Photo of a large sling stone found in TZ-5. Scale 

in centimeters. 

 

Event 5 (Locus V2-3204) Plow Zone of Second/Modern Terrace Wall   

Located below the modern surface stratum and east of the first terrace wall, this level was 

composed of semi-compact dark brown (7.5YR3/3) silty loam and a low density of fill rocks that 

measured 10 to 20 cm in diameter. I identified this level as plow zone based on the modern roots 

penetrating throughout this level and the overturned appearance of the matrix. During 

excavations I noted a low density of ceramic and lithic artifacts in this level.   

Event 6 (Loci V2-3205, 3206, 3209*, 3210*, and 3215) Agricultural Fill associated with Second 

Terrace Wall 

Located below the plow zone of the second terrace wall and east of the first terrace wall, 

this level was composed of semi-compact dark brown (7.5YR3/4) silty loam soil with small 

pebble inclusions that measured 5 to 10 cm in diameter. I noted a low density of artifacts 

dispersed throughout this level including fragments of ceramics, lithic artifacts, and a few 

fragments of uncharred animal bone.  Additionally, I found another sling stone and a fossilized 

invertebrate in this stratum (Figure 9.10). Arkush (personal communication, 2016) noted that 

1 cm 
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similar fossils were found at Ayawiri and other sites in the region, and people probably collected 

them.  

 

 

      Figure 9.10: Fossil invertebrate found in TZ-5 Event 6.  

Diagnostic Ceramics from TZ-5 

   Analysis of ceramics found in TZ-5 revealed that 100% of the diagnostic sherds date to 

the Late Intermediate Period or the end of the LIP and the early part of the Late Horizon (  
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Table 9.5). The ceramic sherds in the agricultural fill, including the Late Horizon ones, were 

likely mixed due to tilling and could have been deposited there well after the LIP.  The ceramic 

sherds embedded in first terrace wall all date to the LIP, whereas the ceramics in the second wall 

date to the latter part of the LIP and/or the Late Horizon.  

.   
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Table 9.5 : Summary table of diagnostic ceramics recovered 

from TZ-5. 

 

 

Interpretations of TZ-5 

TZ-5 is an unstable bench terrace with two construction phases. First, a stacked stone 

terrace retaining wall was built, and soil was mounded into a small flat platform suitable for 

planting. However, this retaining wall was weak and eventually collapsed. In order to halt 

erosive processes, a second wall was constructed downslope to stabilize the terrace.  While 

initially, soil was mounded behind this second riser wall, erosion continued. At the time of 

excavations, the second/modern wall appeared to be slumping and partly collapsed. I think, in a 

heavy rain, the structural integrity of the wall will be compromised.   

While an OSL sample from below the first riser wall dates to the Late Formative Period 

over 2,000 years ago, I believe it was constructed during the LIP. The OSL core penetrated too 

deep and the OSL date measures a natural buried paleosol. Based on the diagnostic ceramics 

found in the terraces walls, TZ-5 was constructed at the very earliest during the LIP. Ceramics 
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*These events were combined for analytical purposes because one loci contained 

materials from both events. 
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found in the first terrace wall all date securely to the LIP, whereas the ceramics embedded in the 

second/modern terrace wall date to later part of the LIP and early part of the Late Horizon. The 

ceramics support the interpretation that first wall was constructed before the second wall.  

Furthermore, ongoing stabilization of TZ-5 also took place during the LIP or later. Indeed, the 

OSL date from this wall indicates there was work on this wall during the 16th century.  

 The sling stones found embedded in TZ-5 are quite large. Today, farmers at Ayawiri use 

small pebbles for sling stones to herd their animals by throwing them at those who stray from the 

pack.  However, the large sling stones found in TZ-5 would have rendered anyone or any animal 

unconscious. The sling stones could have been hurled from atop the fortress as defense, or they 

could have been used by farmers to protect their fields.  

Terrace-6 

Terrace-6 (TZ-6) is located on the hillside east of the pukara about halfway between the 

eastern fortification walls and the valley (see Figure 9.1). TZ-6 is near an Inca Period burial 

tower, or chulpa. The height of this terrace riser wall vertically measures between 1 and 2 m.  I 

noted there were agricultural furrows and remnants of crops plants on the surface of TZ-6.  

Further discussions with local farmers confirm this field is still used for agricultural production, 

and it was used to grow potatoes and oca in 2013. 
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Table 9.6: Inca burial tower or chulpa located near the base 

of the terrace complex (photo by E.N. Arkush).  

 

In the location where we initially planned to excavate, the terrace riser wall did not have 

lichen growing on it and the soil appeared loose. A discussion with local farmers confirmed my 

suspicions that this part of the terrace was reconstructed and reinforced in the past decade. Thus, 

the excavation unit was moved to the northern end of terrace where the modern riser appeared 

undisturbed.  

We excavated a 1 x 5 m unit trench that was oriented perpendicular to and intersecting 

the terrace wall (Figure 9.11). Within the unit of excavation, the modern terrace wall was 

composed of stacked stones that measured between 20 and 60 cm in diameter. In the excavation 

unit, the modern terrace riser measured 1.05 m in height to the top of the stacked stones, but the 

soil is mounded up over the wall to 1.53 m. 
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Figure 9.11: Map of the surface of the modern/third wall of 

TZ-6. 

 

 

 

               Figure 9.12 : Photo of TZ-6 retaining wall. 

 

 

During excavations seven distinct events were identified including the modern surface 

(Event 1), plow zone (Event 2), the modern/third terrace wall (Event 3), two earlier walls (first 

and second terrace wall) (Events 5 and 7 respectively), and agricultural fill behind each wall 
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(Events 4 and 6) (Figure 9.13). The full lists of artifacts recovered from TZ-6 is presented in 

Appendix I.  

 

 

                     Figure 9.13: Northern profile of TZ-6. 

 

Event 1 (Locus V2-3301) Modern Surface 

 The modern surface stratum was semi-compact reddish brown (5YR4/3) silty loam soil 

with the remains dried crop plants and furrows. A few fragments of ceramic sherds were 

recovered from this level.  
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Event 2 (Loci V2-3302, and 3303) Plow Zone   

Located below the modern surface, this level was composed of semi-compact reddish 

brown (5YR4/3) silty loam with small pebbles that measured 1 to 5 cm in diameter.  A low 

density of ceramic sherds, lithics, and animal bone fragments was noted from this stratum.  

Event 32 (V2-Loci 3304, 3306, 3307, 3308, 3309, 3310, 3311, 3312, 3313, 3324, 3325, and 

3326) Third/Modern Terrace Wall  

This level was composed primarily of stacked stones that measure 20 to 60 cm in 

diameter (Figure 9.11).  There was semi-compact brown (10YR4/3) silty loam between the 

rocks. A low density of ceramic sherds, lithic artifacts, and animal bone fragments from matrix 

of the riser wall were recovered from excavations. I collected Soil Core #31 from locus V2-3309 

located in the middle of the wall and Soil Core #40 from locus V2-3325 from the matrix 

underneath the wall. These samples were submitted for OSL analysis and date to 21,875 ± 620 

B.P. and 920 ± 70 B.P. respectively (Table 9.8).  

                                                 
2 Loci V2-3307, 3308, 3309, 3310, and 3311 were excavated from both Event 3, the third/modern terrace wall and 

Event 4, the agricultural fill.  While the wall was likely constructed at the same time the agricultural fill was 

deposited in the terrace, Event 4 was likely subjected to annual agricultural tilling, planting, and other disturbances 

resulting in further mixing of the soil. 
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        Figure 9.14: Map of the first terrace wall of TZ-6. 

 

Event 4 (Loci V2-3305, 3307, 3308, 3309, 3310, 3311, 3312, and 3313) Agricultural Fill 

associated with Third/Modern Terrace Wall  

Located west of and uphill of the third/modern terrace wall and east of the second 

modern terrace wall, this level was composed of semi-compact reddish brown (5YR4/3) silty 

loam. During excavations, I noted a medium density of randomly dispersed fill rocks that 

measured 10 to 30 cm in diameter.   

Event 5 (Loci V2-3316, 3317, 3318, and 3320) Second Terrace Wall   

Located below the modern surface and plow zone and west or uphill of the third/modern 

wall, this level was composed primarily of stacked stones that measure 20 to 50 cm in diameter.  

There was reddish brown (5YR4/3) silty loam between the rocks. A low density of ceramic 

sherds, and fragmented animal bones from this level was noted during excavations. I collected 

two wood charcoal samples that were securely embedded in different parts of the matrix of the 
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riser. AMS analysis of the first sample of wood charcoal dates to A.D. 1223-1285 (p=95.4%), 

and the second sample is roughly contemporaneous, dating to A.D. 1226-1232 (p=1.1%), 1244-

1299 (p=93.6%), or 1373-1377 (p=0.6%) (calibrated at 2ơ using the program OxCal 4.2 (Bronk 

Ramsey 2009) and the IntCal13 calibration curve (Reimer et al. 2013) (Table 9.7).  

 

Table 9.7: AMS radiocarbon dates from second terrace wall 

samples V2-3320/1 and V2-3317/1. 

 

 

 

Event 6 (Loci V2-3314, 3315, 3319, and 3321) Agricultural Fill Associated with Second Terrace 

Wall 

Located to the west or uphill of the second terrace wall and below the plow zone, this 

level was composed mostly of rocks that measured 10 to 30 cm in diameter and dark brown 

(7.5YR3/3) silty loam between the rocks. Only a low density of ceramic sherds, animal bone 

fragments, and a few pieces of carbon from this level was noted during excavations. I collected 

Soil Core #34 from locus V2-3219 that penetrated through the bottom fill of this stratum down to 

bedrock and submitted it for OSL analysis. This sample dates to 5985 ± 450 B.P. (Table 9.8). 

 

 

δ13C
per mil

D-AMS 013418 V2-3320/1 Wood charcoal 751 ±25 -36 1223-1285 (p=95.4%)

D-AMS 013417 V2-3317/1 Wood charcoal 727 ±28 -31.8 1226-1232 (p=1.1%), 

1244-1299 (p=93.6%), 

1373-1377 (p=0.6%)

*Radiocarbon dates were calibrated using the program OxCal 4.2 (Bronk Ramsey 2009) and the IntCal13 calibration curve 

(Reimer 2013) .

Locus # 14C ± ̀δ Yrs B.P. 

δ13C-Corrected

Cal. A.D. Yrs ± 2σ  Laboratory 

Number

Material
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Event 7 (Loci V2-3322, and 3323) First Terrace Wall and Fill   

Located to the west of the second terrace wall and below the plow zone, this level was 

composed primarily of wall rocks and compact dark reddish gray (5YR4/2) clay loam fill 

between the rocks. Only a few fragments of ceramic sherds and animal bones were noted in this 

level during excavations. I collected Soil Core #37 from locus V2-3322 that passed through soil 

between two stones in the lowest course of the wall down to bedrock and submitted it for OSL 

analysis. This sample dates to 5050 ± 200 B.P. (Table 9.8). 

 

               Table 9.8: Results of OSL ages for TZ-6. 

 
Sample 

# 

Locus # Laboratory 

# 

OSL age (yr B.P.) 

Core 31 V2-3309 BG3986 21,875 ± 620 

Core 34 V2-3319 BG3983 5985 ± 450  

Core 37 V2-3322 BG3910 5050 ± 450 

Core 40 V2-3325 BG3909 920 ± 70 

Diagnostic Ceramics from TZ-6  

 Analysis of ceramics found in TZ-6 indicate that 100% date to the Late Intermediate 

Period or the end of the LIP and the early part of the Late Horizon (Table 9.9). The ceramic 

sherds in the agricultural fill were likely mixed due to tilling and planting, and could have been 

redeposited there well after the LIP. While no ceramics were found in the first terrace wall, 

sherds embedded in second and third/modern terrace wall all date to the LIP or the latter part of 

the LIP and/or the Late Horizon. 
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 Table 9.9: Diagnostic ceramics recovered from TZ-6. 
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*These events were combined because one loci contained materials from both events. 
 

Interpretation of TZ-6 

TZ-6 is a deeply stratified bench terrace.  Excavations revealed there were three phases of 

construction. First, a wall consisting of a single layer of large stones stacked next to one another 

was built directly on bedrock. Soil was mounded up behind this wall. Then, as soil eroded down 

the hillside, it appears that this short riser was no longer stable. A second retaining wall was built 

to halt erosion. Soil was then mounded into a flat arable platform. Over time, the second 

retaining wall was also compromised by soil eroding down the mounting.  To halt this process, a 

third wall was constructed.  While the modern/third wall was covered in sloping eroding soil, the 

flatness of the modern surface of the terrace indicates TZ-6 is fairly stable today. 

During excavations a large amount of unworked stones were found in the fill of this 

terrace, discernible in Figure 9.13. These stones may have been intentionally placed in this 
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deeply stratified terrace to encourage drainage of rainwater runoff down to other terraces. On the 

other hand, they might be the result of regular erosional processes of heavy stones naturally 

found on the hillside.   

The four OSL dates obtained from this terrace shed light on the soil formation, geological 

history, and anthropogenic history of the terraces. Core #31, recovered from terrace fill, dates to 

the Pleistocene 21,875 ± 620 B.P. This core was collected from a stratum above Core #40 that 

dates to 920 ± 70 B.P. This stratigraphic superimposition was the result of the creation of the 

terraces where soil fill was mounded without being fully exposed to light. I believe Core #40, 

securely collected from below a terrace riser, reflects the date the terrace was actually 

constructed. Cores #34 and #37 date to approximately 6,000 B.P. These dates reflect soil 

formation processes rather than anthropogenic activities.  

Based on the diagnostic ceramics found in the terraces walls, TZ-6 was constructed at the 

very earliest during the LIP. Based on the ceramics identified in the second and third/modern 

terrace wall, reconstruction and stabilization happened during the LIP or later. Two AMS dates 

on wood charcoal from securely within the terrace wall affirm construction and stabilization was 

carried out on the terrace complex during the latter half of the LIP.  

Terrace-3 

Terrace-3 is located near the east walls of the pukara high up on the hillside (see Figure 

9.1).  The terrace measures between 2.5 and 3.5m in height. The surface of this terrace was 

covered in modern agricultural furrows, and dried remnants of crops plants. I spoke with the 

landowner, who confirmed that he grew potatoes on TZ-3 in 2013. We noticed fragments of LIP 

ceramics strewn across the modern surface of the terrace.  Notably, there were three 
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concentrations of carbon on the modern surface that local informants attributed to cooking pits, 

locally referred to as huatyas, used during last year’s harvest.  However, we decided not to dig in 

these areas to avoid contamination by recent cooking activities.  

The excavation unit on TZ-3 was located on the eastern edge of the terrace, intersecting 

the central portion of the retaining wall. We excavated a 2 x 4 m unit trench that was oriented 

perpendicular to and intersecting the terrace riser wall of TZ-3. Within the excavation unit, the 

modern terrace wall was composed of stacked stones that measured between 20 and 80 cm in 

diameter. The modern terrace wall measured 3.05 mm in height to the top of the stacked stones 

(Figure 9.15 and Figure 9.16).  

 

 

Figure 9.15: Map of the surface of the upper part of the modern wall of TZ-3. 
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             Figure 9.16 : Photo of TZ-3 retaining wall. 

 

 

During excavations nine distinct events were identified including the modern surface 

(Event 1), plow zone (Event 2), two types of agricultural fill (Events 3 and 4), a sub-adult burial 

(Event 5), a level containing am arrangement of stones of unknown purpose or use (Event 6), 

two distinct levels of the terrace wall (Events 7 and 8), and a reddish-color soil that comprised 

the terrace riser foundation (Event 9) (Figure 9.17). The full inventory of artifacts recovered 

from TZ-6 is presented in Appendix I.  
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Figure 9.17:  Northern profile of TZ-3. Note Event 5, a sub-

adult burial found near the southern profile, is not visible in 

this profile.  

 

Event 1 (Loci V2-3101, and 3115) Modern Surface 

The modern surface level was a loose dark grayish brown (10YR4/2) silty loam soil with 

the remains of dried crop plants atop visible agricultural furrows.  The roots of these dried crop 

plants penetrated through this level. There was a moderate density of ceramic sherds, and a low 

density of lithic artifacts and fragmented animal bones from the surface level.  
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Event 2 (Loci V2-3102, and 3116) Plow Zone   

Located west of the terrace wall, the plow zone was composed of semi-compact brown 

(10YR5/3) silty loam and small pebbles that measured 1 to 3 cm in diameter.  In this level there 

was a high density of ceramic sherds, and a moderate density of lithic artifacts.  

 

Event 3 (Loci V2-3103, 3104, 3117, and 3118) Fill of the Upper of the Terrace 

Located below the plow zone, this level was semi-compact brown (7.5YR4/2) silty loam 

with small inclusions measuring less than 5 cm in diameter.  During excavations I identified 

three concentrations of darker soil that I refer to as soil stains in this level; however, no artifacts 

were recovered from these areas. The first soil stain was identified between quadrants A, B, C, 

and D, measured 20 x 13 cm in diameter, and penetrated 2 cm deep into this level. The second 

soil stain was brown (7.5YR4/3), it was found between quadrants A and C, measured 9 x 7 cm in 

diameter, and penetrated 2 cm deep into this level. The third soil stain was located between 

quadrants C and D, measured 25 x 12 cm in diameter, and extended 2 cm deep into this level.  

Around these soil stains I found a high density of ceramic sherds and lithic artifacts, but based on 

their orientation, none looked to be in a primary context.   

Event 4 (Loci V2-3105, 3106, 3107, 3111, 3119, 3120, 3127, and 3128) Fill of the Lower 

Terrace 

Located directly below the fill of the upper part of the terrace event, this level consisted 

of semi-compact brown (7.5YR4/2) silty loam with some clay, and a low density of rocks that 

measured between 10 and 80 cm in diameter. I noted a high density of ceramic fragments, animal 

bones, and lithic artifacts dispersed throughout this level.  Additionally, we found a 
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concentration of charcoal in the southwest corner of quadrant C (Loci V2-3107 and 3108) that 

was the remains of an earthen oven on the terrace surface. Since the terraces at Ayawiri are still 

actively cultivated, and the proximity of the carbon to the surface, I suspect this huatya is 

modern. 

Event 5 (Locus V2-3130) Burial 

Near the southern profile of the excavation unit, below the fill of the lower part of the 

terrace I found a small circle of rocks that contained the remains of a sub-adult human (Figure 

9.18). The circle measured approximately 20 cm in diameter. The soil was semi-compact very 

dark gray (7.5YR3/1) silty loam. I found a fragmented base of a ceramic bowl that stylistically 

dates to the Late Intermediate Period overturned on top of the long bones. I also found several 

other ceramic fragments mixed within the matrix of the burial. The placement of the fragmented 

ceramic bowl indicates that it was intentionally placed over the burial in an inverted position. I 

only found a few long bones, teeth and part of the mandible of the sub-adult. The position of the 

bowl and the bones is quite similar to the burial found in Unit 44B in the residential sector of the 

site. Arkush (personal communication, 2016) notes that there are a couple of other cases of 

overturned bowls in offerings at Ayawiri, and these data may mean that this was appropriate for 

signaling ending or completion, or at least "retiring" the bowl from service.  Additionally, the 

pattern in tombs at Ayawiri is secondary burial and selective retention and placement of crania 

and long bones, so we would not expect to see an intact articulated skeleton. Nonetheless, the 

fragmentation of the bowl and the other ceramics found in the matrix around the burial indicates 

that the burial was disturbed, possibly by agricultural activity or erosional processes. A sample of 

wood charcoal was collected from the fill next to this burial. AMS analysis indicates this sample 
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dates to A.D. 1678-1765 (p=34.8%), A.D. 1800-1892 (p=45.3%), or A.D. 1908-1940 (p=15.4%) 

(calibrated at 2ơ using the program OxCal 4.2 (Bronk Ramsey 2009) and the IntCal13 calibration 

curve (Reimer et al. 2013) (Table 9.10). This affirms my suspicions during excavations that the 

burial was indeed disturbed during the last few centuries.  

 

  

Figure 9.18: Map (left) and photo (right) of a sub-adult 

burial found in TZ-3 locus V2-3130. 

 

 

Table 9.10: AMS radiocarbon date from burial found in TZ-

3 V2-3130. 

 

 

Event 6 (Loci V2-3121, 3122, 3123, 3124, and 3125) Stone Arrangements  

Located below the lower terrace fill, the stone arrangements are features composed of 

two distinct concentrations of slab stones in quadrants G and H.  The soil inside and around these 

δ13C

per mil

D-AMS 013416 V2-3130/5 Wood charcoal 131 ±21 -24.7 1678-1765 (p=34.8%), 

1800-1892 (p=45.3%), 

1908-1940 (p=15.4%)

*Radiocarbon dates were calibrated using the program OxCal 4.2 (Bronk Ramsey 2009) and the IntCal13 

calibration curve (Reimer 2013) .

Laboratory 

Number

Locus # 14C ± δ̀ Yrs B.P. 

δ13C-Corrected

Cal. A.D. Yrs ± 2σ  Material
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features is composed of loose brown (7.5YR5/4) silty loam and a couple of the rocks were 

burned. Additionally, I found a concentration of carbon, ceramic fragments, and charred camelid 

bone inside and adjacent to this rock feature. In the northwest corner of quadrant H, I found 

another circle of rocks. The rocks measured 20 to 40 cm in diameter and were arranged in a 

circle that extended into the northwest unit wall. In this feature, I noted a high density of ceramic 

fragments and camelid bones and a low density of lithics. These two rock features appear to be 

roasting pits.  Below these features there was bedrock.   

Event 7 (Loci V2-3108, 3109, 3110, 3112, 3113, 3114, and 3126) Upper Terrace Wall 

Located below the modern surface stratum and east of the terrace fill event, the upper 

terrace wall was composed of primarily large stacked stones that measured between 20 and 70 

cm in diameter. There was brown (7.5YR4/2) silty loam compacted between the wall rocks. 

During excavations a moderate concentration of ceramic fragments and a low density of lithics 

and animal bones was noted in the wall matrix.  

Event 8 (Loci 3129, 3131, 3132, 3133) Lower Terrace Wall 

 Located underneath and about 50 cm to the east or downslope of the upper terrace wall, 

the lower terrace wall is composed of large stacked stones that measure 20 to 60 cm in diameter, 

small fill rocks that measured 5 to 20 cm in diameter, and dark brown (7.5YR3/2) silty loam 

packed between these wall rocks (Figure 9.19). A high density of ceramic sherds, a moderate 

density of lithics, and a low density of animal bones was embedded in the wall.  I collected Soil 

Box #1 from locus V2-3135 from the western profile of the transition between Event 8 and 9 
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below the lower terrace wall and submitted it for OSL analysis. This sample dates to 39,120 ± 

2970 B.P. (Table 9.11). 

 

 

Figure 9.19: Map of the lower wall of TZ-3. 

 

Event 9 (Loci V2-3134, and 3135) Terrace Wall Foundation 

Located below the lowest course of stacked stones of the riser, this level composed the 

foundation of the terrace riser wall. This level was dark reddish brown (2.5YR3/4) compact clay 

loam. There was a moderate density of stone inclusions that measured 0.5 to10 cm in diameter 

throughout this level.  There was also a low density of ceramic sherds, lithic artifacts, and animal 

bones in this level. I collected Soil Core #11 from locus V2-3133 through the same soil color 

change between Event 8 and 9 below the lower terrace wall and submitted it for OSL analysis. 

This sample dates to 9565 ± 780 B.P. (Table 9.1). 
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             Table 9.11: Results of OSL ages for TZ-3. 

 
Sample 

# 

Locus # Laboratory 

# 

OSL age (yr) 

Box 1 V2-3135 BG3987 39,120 ± 2970 

Core 11 V2-3133 BG3981 9565 ± 780 

 

Diagnostic Ceramics from TZ-3 

Analysis of ceramics found in TZ-3 indicates that of the 367 diagnostic ceramic sherds found, 

86% date to the LIP or the LIP/Late Horizon. Only 3% date to the Formative and 5% date to the 

Middle Horizon. Of the 57 sherds embedded in the terrace wall, only one sherd predates the LIP. 

Based on the abundance of LIP sherds and the terminus post quem date, the terrace was 

constructed at the very earliest during the LIP (  
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Table 9.12).  Most of the ceramic sherds that predate the LIP were found mixed into fill. 

Although a diagnostically Middle Horizon Tiwanaku sherd was found in relation to the disturbed 

sub-adult buried in TZ-3, the overturned painted bowl that covered the bones is characteristic of 

the LIP. This indicates the burial dated to the LIP or later.   
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Table 9.12: Summary table of diagnostic ceramics 

recovered from TZ-3. 
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1 Modern Surface LIP/LH 8 0 1 4 1 1 1

2 Plow Zone LIP/LH 15 0 2 5 3 2 3

3

Fill of the upper 

part of the upper 

part of the terrace

LIP/LH 40 4 0 18 10 5 3

4
Fill of the lower 

part of the terrace
LIP/LH 140 2 11 79 25 12 11

5 Burial LIP/LH 8 0 1 5 2 0 0

6
Stone 

arrangements
LIP/LH 60 3 2 38 13 6 1

7
Upper terrace 

wall
LIP/LH 32 0 0 21 7 1 3

8
Lower terrace 

wall
LIP/LH 30 0 1 20 3 2 2

9
Terrace wall 

foundation
LIP 3 0 0 3 0 0 0

 

Interpretation of TZ-3 

 TZ-3 is a deeply stratified bench terrace.  Excavations uncovered ceramic sherds and 

other debris that likely eroded downhill from the residential area at Ayawiri.  However, this 

terrace also contained the material remains of agricultural activities and everyday lifeways that 

took place in this location. Analysis of the stratigraphy of this terrace revealed a retaining wall 

was initially constructed, and soil mounded into a platform behind this wall.  Thereafter, a sub-

adult was buried in the fill of this terrace. This burial appeared to be disturbed and overturned, 

perhaps by agricultural tilling and planting, or by erosion a couple centuries later. 
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The concentrations of carbon, stone arrangements, and camelid bones found in TZ-3 look 

to be in situ evidence of a roasting pit and larger-scale activities that took place on the terrace. 

Perhaps these material remains are the evidence of midday meals farmers prepared for 

themselves in their fields. Or maybe TZ-3 was used as an area for larger scale preparation of 

food that was then carried up to be consumed within the fortified residential area at Ayawiri.  

Eventually, erosional processes compromised the integrity of the retaining wall of TZ-3.  

To halt this process, the wall was reinforced and repurposed. Based on the stratigraphy of the 

terrace, stones were stacked vertically atop the earlier part of the wall slightly uphill. Then 

agricultural fill was mounded behind this part of the riser increasing the depth of the terrace.    

OSL ages from this terrace dating to the Pleistocene and early Holocene are too early to 

measure anthropogenic activity. Rather, they date soil formation and the geological history in the 

region.  

 While some of the artifacts found in TZ-3 are evidence of activities that took place there, 

many of the ceramic sherds probably tumbled and wash down the hillside from the hilltop 

residential area. A few ceramic sherds found in the fill of the terrace date to the Late Formative 

and the Middle Horizon. Beside these sherds I found no evidence of a Late Formative or Middle 

Horizon occupation on the terraces. However, there was a Late Formative period occupation atop 

the mesa and a few Middle Horizon ceramic sherds were also found there. Since there is no clear 

evidence of the context of these earlier occupations on the terraces, it is most likely that LIP and 

Middle Horizon sherds were either intentionally discarded on the terraces after their use-life 

expired from atop the mesa or they tumbled down the hillside due to natural erosional processes. 

Most sherds found in the fill date to the LIP. Ceramics embedded in both the lower and upper 

part of the wall, particularly the lowest stratum, indicate this terrace was constructed at the very 
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earliest during the LIP.  Stabilization of the upper part of the terrace retaining wall also dates to 

the LIP or later based on diagnostic ceramics found embedded in the wall. Nonetheless, OSL 

dates and an AMS date affirm stratigraphic interpretations that the sub-adult buried in the upper 

part of the terrace was disturbed at some point in the last few centuries. This disturbance was 

likely the product of normal soil turning and tilling associated with the annual agricultural cycle. 

Synthesizing Evidence from the Terrace Excavations 

The goals of excavating the terraces adjacent to Ayawiri were primarily to identify when 

the fields were constructed and when agriculture intensified on the hillsides near the fortress.  

While ceramic data shed light on the earliest time periods the terraces could have been 

constructed, findings from excavations provide information about much more.  I pinpointed how 

erosional processes affected the stratigraphy of terraces. I identified how the fields were 

constructed, stabilized, and maintained over time. Finally, artifacts found embedded in the matrix 

of the terraces shed light on quotidian activities and events that residents carried out in these 

locations.    

Farmers who built and farmed the terraces were constantly trying to grapple with and 

counteract erosional process. Evidence from excavations indicate the steep slope of the hillside, 

combined with gravity and seasonal rainfall, caused soil, stones, and other artifacts to tumble 

downslope. Apparent in the profiles of TZ-4, TZ-5, and TZ-6 the stones and soil matrix of the 

modern retaining walls are slumping downslope. The retaining walls of TZ-3 and TZ-4 were 

both reinforced at least once by adding another level of stacked stones slightly uphill the initial 

wall. However, these efforts to stabilize the terraces were not always sufficient. Evidence from 

TZ-5 and TZ-6 indicates that sometimes walls could not be stabilized and entire new walls were 
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constructed down slope. I found two of these earlier unstable walls embedded inside TZ-6, and 

one buried wall in TZ-5. Local farmers that still cultivate these terraces informed me that 

building another wall downslope of a compromised retaining wall is how they stabilize and halt 

erosional processes. The labor that was required to build the terraces was substantial. The 

stabilization events that were only evident through excavations indicate that maintaining the 

terrace complex was even greater than initial construction. Buried inside some terraces are one or 

two more riser walls. Therefore, it is nearly impossible to estimate the labor hours that went into 

building the Ayawiri terrace complex. Nonetheless, stabilization efforts would have taken place 

over generations and centuries.  

Material remains were also susceptible to the same erosional processes as the terrace 

risers. The impacts of erosional processes are documented in the abundance of ceramic sherds 

found throughout the matrix of all four terraces. Furthermore, sherds dating to the Late 

Formative, Middle Horizon, LIP, and later are all mixed together in the agricultural fill of TZ-3 

and TZ-4. This mixing occurred as sherds washed down the hillside and were incorporated into 

the matrix of each terrace during construction. The soil containing these sherds was turned over 

during tilling and planting, further mixing the deposition of artifacts.   

Only a small percentage of the ceramics found in the terraces predate the LIP, and these 

are mixed in strata containing LIP ceramics. Additionally, Middle Horizon and Late Formative 

ceramics were only found in the agricultural fill of the terraces indicating they ended up there as 

a result of secondary deposition, rather than during construction of the risers in the lowest strata. 

Ceramic evidence also indicates all four excavated terraces were constructed during the LIP or 

later. The terminus post quem dates of sherds found in the walls of all four terraces correlates to 

the LIP or the cusp of the LIP and the Late Horizon Periods. These data indicate ancient farmers 
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constructed the terraces to grow food to sustain the population that lived within the fortified 

habitation area of the site.  

AMS dates confirm the terraces were built during the LIP and continuously maintained 

into the modern era. OSL dates on the other hand, elucidate the geological history, dates of 

terrace construction, and maintenance. These dating methods provide complementary data to 

ceramic terminus post quem dates from secure stratigraphic events. 

The traditional stone hoe found in TZ-4 is evidence of past agricultural activities carried 

out there.  In addition to being used for crop production, the density and type of artifacts indicate 

the terraces were used for other purposes. Ceramic fragments, animal bones, and lithics reveal 

that cooking and domestic activity took place on the terraces. Particularly on TZ-3, the terraces 

were used as a space for roasting meat based on the identification of the circles of stone 

containing layers of carbon and burnt camelid bone. The sub-adult buried in TZ-3 indicates that 

the terraces also functioned as a place to occasionally inter the dead.  

Ayawiri Terraces as a Tactic of Warfare 

With the understanding that the terraces at Ayawiri were constructed during the LIP, a 

consideration can be made of how intensification and this built landscape impacted life for 

residents living at the fort. Analysis of the landscape can also be used to identify how past people 

used the land (both naturally and constructed) to facilitate warfare strategies for residents living 

at Ayawiri. Here, I draw on previous research on warfare in the region and my own experiences 

traversing this landscape to shed light on how the terraces also served to provide protection to the 

fortified community. 
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Excavation data indicate the terraces also served a defensive function. I found several 

sling stones buried in the terraces and the terrace walls. I propose these sling stones could have 

been slung there from the fringes of fortified residential area atop the mesa, using force and 

gravity to ward off aggressors. Alternatively, farmers could have kept stores of sling stone in 

their fields to have them at the ready in case an enemy suddenly attacked. Hurling sling stones 

down the hillside would have protected residents and quite literally, the fruits of their labor. 

While personal security and safety would have been a primary concern for Ayawiri residents, 

being able to defend crops growing on the terraces would have ensured sustenance and long-term 

survival.  

Previously, Arkush (2011) used viewshed analysis in a GIS to identify that there are 

networks of inter-visibility between hillforts in the Andes. If LIP people could see neighboring 

forts, then the terrace complexes would have been even more apparent. Generally, the terraces 

surrounding these settlements are more expansive than the hilltop habitation areas. The high 

visibility of terraces to an encroaching enemy and their representation of the labor force of the 

people who resided there indicate that the modified landscape served as a signal to neighboring 

populations and, perhaps, it dissuaded aggressive enemies. 

Terraces were easily discernible from great distances due to the geology and ecology of 

the altiplano. This flat and treeless landscape allows people to see an encroaching enemy long 

before their arrival at the site (Figure 9.20). This would have given Ayawiri residents sufficient 

time, if they saw an enemy coming, to retreat to defensive positions. The visibility of the 

modified hillside at Ayawiri conspicuously signals economic security. Particularly within the 

context of warfare and political unrest, terraces were an important and intimidating symbol of the 

physical force of the people residing at the site and the community to mobilize farming labor, 



297 

 

and even personnel for battle. LIP people who chose to live nestled in the fortress atop the 

terraces were not trying to hide; rather they lived in perhaps the most conspicuous location on the 

landscape.  The terraces overtly signaled precisely where large groups of people resided.  

 

 

Figure 9.20: Photo of the surrounding landscape taken from the fortified 

residential area. 

 

 

 

Terraces may have simultaneously worked against the security of Ayawiri residents. As 

conflict escalated between warring factions during the latter half of the LIP (Arkush and Tung 

2013), an encroaching enemy could identify exactly where to attack. The modified landscape 

revealed the location of residents, compromising their security in the face of a concerted force. 

Furthermore, to an enemy, the terraces would have been enticing to raid or even seize the already 

improved agricultural land if they were fighting over resources. 

Security logistics are also apparent in the terrace layout.  At Ayawiri, in order to get from 

the base of the terrace complex to the edge of the fortified residential sector you must walk up 

for at least 30 minutes across the modified hillside, following meandering trails that may not be 
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apparent without prior knowledge or experience.  Because of the pitch, it is almost impossible to 

climb straight up the terraces, as you would a hillside. Instead, you must follow a series of 

switchbacks that exposed hikers from above. The inaccessibility created by the terraces increases 

security for fortress residents. The time required to travel up the hillside and the exposure 

afforded fortress residents sufficient time to retreat to the pukara to defend themselves. 

Notably, the western slope below the fortress is not cultivated today, yet it was terraced 

anyway.  According to farmers from Chila living below the eastern slopes of the site, the western 

slopes do not receive enough sun to regularly melt nighttime altiplano frost, which they believe 

makes cultivating this particular area nearly impossible.  Today the western terraces are owned 

by pastoralists belonging to the Teracumilla Ranch, and they seem to have no interest in 

cultivating this landscape.  

Nonetheless, it is possible the western terraces were farmed in antiquity. The western 

terraces are certainly colder than the eastern terraces and could have been the first to be 

abandoned during the colonial era. If these fields were less desirable than the eastern slopes, then 

why was the western hillside area terraced?  It is possible that this area was terraced in order to 

increase production for the large population living at the site. Additionally, risers may have been 

constructed to impede access from the western approach, further increasing security for Ayawiri 

residents.  Modifying the western slopes would have increased the visibility of the site from the 

western approach, again, serving as a visual deterrent to encroaching enemies. Regardless of 

whether these western fields were productive, Ayawiri residents were well protected living atop 

their terraced defenses provided by the modified landscape. Further archaeological research on 

the western slopes is needed to clarify when the western terraces constructed, and agronomic 

research will be necessary to determine if it is even possible to grow crops there.   
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Conclusion 

Findings from excavations of the terraces at Ayawiri indicate they were constructed 

during the LIP, a period of warfare and decentralized political authority. These findings stand in 

contrast to traditional assumptions that the construction of large-scale field systems require a 

centralize political authority to mobilize and direct labor and manage production. Furthermore, 

these data expand our knowledge of the various ways in which terraces were used during this 

time. Terraces were an important part of the LIP landscape, first and foremost for their value as 

agriculturally productive lands; Ayawiri terraces were also used for quotidian activity.  They 

were considered as a place important enough to inter a sub-adult.  Finally, the terraces were 

logistically beneficial during war times. Residents could defend themselves and their crops by 

hurling sling stones down the terrace complex.   
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Chapter 10. Discussion and Concluding Remarks 
 

 

 

In Chapter Ten I present a discussion of the findings of my dissertation research. First, I 

return to the questions that provided the framework for my research and discuss how my findings 

answered these questions. Then, an assessment is made of the effectiveness of dating methods 

employed in terrace excavations. Suggestions are provided for future research that arose from 

results of this dissertation. I conclude with a discussion regarding how this research contributes 

to a broader understanding of both climate history and culture history in the south-central Andes.  

Results from the analysis of macrobotanical remains collected from domestic contexts at 

Ayawiri pinpoint the crops that farmers grew, the plants that residents used, and the locations on 

the landscape that herders grazed their camelids during the Late Intermediate Period. 

Additionally, I analyzed an array of qualitative and quantitative features of archaeological 

Chenopodium spp. seeds. This study is the first paleoethnobotanical study of LIP plant use and 

chenopod morphology in the Lake Titicaca Basin. Since very little research has been conducted 

on the LIP in the altiplano, these data fill in a gap in our understanding of prehistoric plant use in 

the Andes. Also my excavations within the terrace complex flanking the hillside below the fort 

shed light on when the terraces were constructed and how the landscape was used and modified 

in prehistoric times. This research is novel because I applied three dating techniques in tandem, 

including optically stimulated luminescence dating, to identify when a field complex was built 
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and cultivated. With these data, I return to the questions that provided the framework for my 

dissertation research.  

Research Questions 

1) What crops were grown during the LIP? 

The most significant crops in terms of quantity recovered in the Ayawiri assemblage are 

chenopods. Based on multivariate analysis, I have determined that residents grew and consumed 

both quinoa and kañawa. Chenopods were found in all but three flotation samples from the site, 

often in large quantities. This indicates chenopod cultivars were essential to the diet of the entire 

community living at Ayawiri. Chenopod grains provided residents a stable food source, rich in 

protein and amino acids.  

Chenopods in the diet were complemented by potatoes and possibly other tubers. 

Although parenchyma fragments were less common than chenopods in analyzed samples, this 

does not indicate that tubers were any less important in the Ayawiri diet. The high water content 

of tubers means they are less likely to preserve than seed crops. Future analysis of starch grains 

that I collected from grinding stones might shed light on the diversity of tubers crops grown 

during the LIP, although currently our ability to identify diversity in tuber taxa from starch grains 

is limited (see Rumold 2011). Charred potato specimens like those that I found in caches are a 

rare occurrence in the archaeological record. They were likely stored freeze dried potatoes, or 

chuño, that burned in situ as an offering. The traditional highland practice of freeze-drying 

potatoes would have made it easier for specimens to carbonize in a fire. 
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Chenopods and tubers provided Ayawiri residents with a hearty and stable food source. 

These crops can be locally grown, are more or less tolerant to the low precipitation typical in the 

region and can be stored for multiple years. Two caches containing large quantities of chenopods 

and potatoes were found found below structure floors. The discovery of these caches below a 

house floor and their burned condition indicates they were possibly offerings. Based on the 

stratigraphy encountered during excavations it is unclear whether the caches predate the 

occupation of the structures and were put there before the houses were built, or whether residents 

dug out pits in their structures and placed the offerings there during the occupation of the houses. 

Regardless, the inclusion of these local foodstuffs in sub-floor house offerings indicate that 

quiona and potatoes held ritual importance during the LIP.  

This diet was surely supplemented by leafy greens. Chenopod plants are quelites that 

have spicy edible leaves. Plantago sp. was found and remains of this plant could be evidence that 

its tender greens were eaten raw or added to stews.  

I also found Cactaceae and Opuntia sp. seeds in a few samples. Cactus fruits would have 

provided Ayawiri residents a sweet seasonal treat that broke up the bland flavors of chenopods 

and tubers. If humans consumed cactus, they did so rarely, or residents did not discard the seeds 

in ways that would have resulted in them being carbonized and preserved like people did at other 

sites in the region during earlier time periods. 

 

2) Where on the landscape did Ayawiri residents graze their herds? 

Small fragments of charred dung and small quantities of herbaceous seeds indicate that 

camelid dung was used to fuel fires at Ayawiri. As a result, analysis of macrobotanical remains 
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also sheds light on camelid grazing behaviors. Based on the large quantities of chenopods, 

Ayawiri residents both consumed these crops and grazed their herds in chenopod fields. 

Lacustrine and riverine plant remains were nearly absent in flotation samples, whereas crop 

companion weeds and even small herbaceous seeds were ubiquitous. These data indicate that 

herds were rarely grazed in wetland areas. Instead, grazing most commonly occurred in fallowed 

fields.  

 

3) When was the terrace complex adjacent to Ayawiri constructed?  

Before excavations, I hypothesized that the terraces surrounding Ayawiri could have been 

built during the Late Formative, Middle Horizon, LIP, or the Late Horizon. I found the terraces 

were built during the Late Intermediate Period. These field systems are rain fed, and there is only 

one small irrigation network throughout the entire field complex. Ceramic types, AMS dating, 

and OSL dating indicate the terraces have been used in an ongoing basis since the LIP. 

Additionally, terrace riser walls buried inside a few terraces indicate that farmers have long been 

stabilizing and reconstructing dilapidated terrace walls to ensure their continued viability.  

  

4) How did warfare and drought impact agriculture and lifeways for Ayawiri residents? 

My findings indicate that Ayawiri residents gave stronger consideration to the threat of 

warfare than the LIP drought in the design of their agricultural strategies. Compared to earlier 

time periods in the region, Ayawiri residents depended on only a limited array of locally grown 

crops. I found no evidence of foreign produced plants at Ayawiri. Maize, coca, and other plants 

grown in lower elevations and imported to the Titicaca Basin were integral to ritual and domestic 

life in earlier time periods in the region. Trade relations had long ensured that if one region had a 
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lean agricultural year, residents could rely on friends and relatives in other regions to supplement 

their food stores where crop yields were sufficient. This was not the case at Ayawiri. The 

absence of foreign produce goods indicates that trade networks broke down probably over the 

fear of enemy attack. As a result, Ayawiri residents relied on locally produced goods. While it is 

impossible to determine whether Ayawiri was a wholly self-reliant community, my findings 

indicate that any food not produced by fortress residents was produced locally in nearby 

ecozones. 

I found no evidence that Ayawiri residents were intensively cultivating or exploiting 

wetland environments. In earlier time periods totora (Cyperaceae), a managed wetland plant that 

is locally used as food and for construction material, is common in archaeological assemblages. 

In contrast, I found very few totora seeds. This indicates Ayawiri residents chose not to farm or 

exploit wetland ecotopes that would have buffered against crop loss during dry years. 

Additionally, based on the absence of lacustrine or riverine plants, residents rarely took their 

herds to graze in wetland ecotopes. Extensively grazing herds on wild plant stands rather than 

foddering them would have ensured sufficient crop stores for humans in case a drought caused 

crop failure. Instead, Ayawiri herds were grazed intensively in fallowed fields and on crops. 

These data indicate that residents were more concerned about keeping their herds near the safety 

and protection of the fort than about the risks of overgrazing and crop failure due to drought.  

The LIP construction of the terraces on the eastern slopes of Ayawiri demonstrates that 

residents were intensifying crop production near their homes. A field scattering strategy in which 

an array of crops was grown in different microenvironments would have also buffered against 

crop loss due to inter-annual climate variation in the Titicaca Basin; however, Ayawiri residents 

chose to build and cultivate their fields near their homes. By growing crops and grazing herds 
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near their homes, Ayawiri residents ensured that humans, plants, and animals alike were not 

exposed to the threat of raids or enemy attack.  

Further research is needed to clarify when the terraces on the western slopes of Ayawiri 

were constructed and how they were used by farmers of the past. Due to the lack of sun 

necessary to warm the soil and melt nighttime frosts, farmers from Chila believe the western 

slopes are unproductive and less desirable than the eastern slopes. Yet the area was terraced in 

prehistory anyway. Foremost, terracing the western slopes would have increased arable land. 

Furthermore, terracing the western slopes adjacent to the hillfort during the LIP would have 

increased defensible fields near the fort, thereby increasing the carrying capacity of environment 

near the site. Additionally, terracing in this location may have increased nearby grazing grounds 

for camelids, allowing herds to stay closer to the safety of the fort. Logistically, terracing may 

have increased security of the hilltop fort because the modified hillside would have made it more 

difficult to climb that side of the hill. Future research on the western terrace complex has the 

potential to elucidate when the hillside was modified, what quotidian activities were carried out 

there, and perhaps, why it was terraced in the first place. Future agronomic research is necessary 

to shed light on the productive potential of the western slopes in comparison to the eastern 

slopes.  

Based on my findings that the eastern terraces were built during the LIP, I believe that 

Ayawiri residents farming the terraces were able to protect both their food stores and their herds 

from enemy raids. Not only did terraces bolster food security, they also increased the protection 

of residents in the fort. The modified hillside was more difficult to climb up than an unaltered 

hill. Lack of knowledge of the switchbacks and trails would have slowed down approaching 

aggressors. Furthermore, sling stones found in the terraces indicate that Ayawiri residents were 
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prepared to defend their fort and fields. While terraces are primarily an agricultural strategy, for 

Ayawiri residents, they also functioned as a strategic form of defense in a time of warfare.  

Discussion of Terrace Dating Methods 

The three methods used to date the agricultural terraces are central to understanding how 

the landscape was constructed and used at Ayawiri. Here, I provide a brief assessment of the 

utility of each method.  

I found terminus post quem dates from ceramic styles particularly valuable to 

determining the antiquity of deeply stratified terraces where modern tilling would not penetrate 

to the lowest levels. While ceramics found on the surface and in fill are susceptible to post-

depositional mixing, ceramics at the base of tall terraces likely date to the time period the 

terraces were constructed. 

Although I thought I had identified the paleo-A horizon of the natural hillside buried 

below many terraces, OSL dating instead returned a wide range of dates beginning in the 

Pleistocene. As a result, my application of OSL sheds light on both the anthropogenic and the 

geological history of the terraces. Optically stimulated luminescence dating may still be useful to 

date agricultural fields in combination with other dating methods and a rigorous 

geoarchaeological methodology for assessing terrace stratigraphy. I view my application of OSL 

as a pilot study that, with refinement, can be applied in the future to study both the geological 

and anthropogenic history of agricultural fields. 

Accelerator mass spectrometry dating of 14C decay was quite valuable in this study. 

However, only carbon with a clear provenience and secure stratigraphic context was submitted 

for dating. Carbon within modern or ancient plow zones was eschewed. Unfortunately, due to the 
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small quantity of carbon found in clear and undisturbed contexts during excavations, this method 

has its limitations. Because each method used to date terraces has weaknesses, I think a multi-

proxy approach to dating agricultural fields should be employed whenever possible.  

Discussion of the Broader Implications  

This research contributes to a broader understanding of farming practices, sociopolitics, 

and lifeways during the LIP in the Lake Titicaca Basin. While a few studies have focused on 

documenting early morphological changes in chenopod seeds during the Formative Period, this 

study examines an assemblage of fully domesticated pre-Colonial chenopods. I found two 

distinct morphological types that appear to be ancestral to modern quinoa and kañawa. Even 

though these seeds date to three millennia after initial domestication, they are quite small. 

Nonetheless, they exhibit similar morphological features to modern varieties including testa 

texture, margin configuration, beak prominence, and ratios comparing testa thickness to seed 

diameter. These findings lead to me conclude that quinoa grown and sold today is markedly 

larger and more homogenous in morphology than that grown in pre-Colonial times. Further 

research is needed on chenopod morphology during the Middle Horizon and LIP to document the 

diversity of pre-Colonial chenopods over time and region, and during the Late Horizon and 

Colonial Period to identify how seed morphology was impacted by the political subjugation of 

the region.  

Compared to the Middle Horizon and Formative Periods, crop diversity and the number 

of plant taxa used sharply decreased during the LIP at Ayawiri. Archaeologists studying warfare 

in different geographic locations have documented a similar trend (Kuckelman 2016; Kurin 
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2016; Milner 1999, 2007; VanDerwarker and Wilson 2016). Several of these researches have 

also documented a decrease in overall human health corresponding to increasing violence 

(Kuckelman 2016; Kurin 2016; Tung et al. 2016) and declining nutrition (Kuckelman 2016; 

Kurin 2016). A decrease in the diversity of dietary plants should not necessarily correlate with a 

decline in general human health. Supplemented by camelid meat, a diet of potatoes and quinoa is 

very nutritious, even if rather bland. This means that Ayawiri residents were potentially quite 

healthy. Importantly, quinoa is one of the only crops in the world that provides all essential 

amino acids and it is exceptionally high in protein for a grain (Repo-Carrasco et al. 2003; Vega-

Gálvez et al. 2010). Potatoes contain high amounts of carbohydrates required for day-to-day 

energy expenditure and important minerals such as iron, Vitamin B, and Vitamin C (Kolasa 

1993:376-378). Based on this nutritional profile, there is no expectation that health would 

necessarily decrease. Bioarchaeological findings from skeletal remains found at Ayawiri will 

hopefully shed light on this issue.  

The foodways I identified through studying the contexts of plant remains from Ayawiri 

point to a transformation in sociopolitical interactions from the Middle Horizon to the Late 

Intermediate Period. The location of house structures in compounds indicate that social 

structures and perhaps even farm labor were organized by extended family kin groups. 

Furthermore, communal eating of locally produced crops was carried out within this familial 

context. While patio spaces in compounds would have facilitated the congregation of larger 

groups of people for meals or feasts, I found no evidence in the macrobotanical data that any 

cooking or consumption took place in these locations. Patios were kept quite clean of debris. 

Rather, cooking was carried out in the confines of kitchen structures and meals were eaten in 

house structures. The number of people attending communal meals was limited to the dozen or 
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so persons that could comfortably fit inside these non-kitchen houses. Additionally, the small 

number of participants in meals that consisted of only locally produced crops stand in contrast to 

the elaborate and ostentatious public feasting on local and exotic foods documented during both 

the Formative Period and the Middle Horizon Period in the Lake Titicaca Basin.  

Prestige goods, collective space, or markers of wealth that are common and discernible in 

the archaeological record of early hierarchically-organized eras in the altiplano are nearly absent 

at Ayawiri. The layout of compounds and location of activity areas indicate that households were 

responsible for managing their own food storage, processing, and consumption. Kitchen hearths 

were only large enough to cook a meal sufficient for a nuclear or extended family. I found that 

crop stores and residues of crops were present in the living spaces of households in the northern, 

central and southern parts of the pukara. Additionally, my analysis of the organization of of 

space of the terraces flanking the site points to a household organization of labor and agricultural 

production. These actions enforced relative economic autonomy and equality among residents. 

My finding that the construction of the Ayawiri terrace complex occurred during the LIP 

sheds new light on the chronology and motivations behind field construction in the altiplano. 

Generally, it is believed that a centralized political authority is needed to organize, mobilize, and 

manage the labor required to build terraces and large field systems and oversee production. In 

accordance with this theory, other researchers working the region have found that raised fields, 

sunken gardens, and even a terrace complex were built during the Formative and Middle Horizon 

when political power was coalescing so that a central authority could oversee the construction, 

maintenance, and production of corporate farming systems. The Ayawiri terrace complex, 

however, was constructed through household labor and during a period of political 

fragmentation. The construction of terraces was motivated, in part, by fears of warfare, the need 
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to produce food for sustenance, and to create pasture near the fortress to protect llama herds from 

raids. Further research throughout the region is needed to elucidate if the chronology of terrace 

construction at Ayawiri fits a pattern of LIP agricultural intensification. Additionally, research is 

needed on other terrace complexes adjacent to Formative, Middle Horizon, and Late Horizon 

sites in the region to determine when and why they were built.  

Ayawiri residents seem to have been primarily concerned with the threat of warfare. 

Based on paleoenvironmental data, researchers working throughout the Andes have proposed 

that drought and subsequent agricultural crises precipitated warfare during the LIP (Nielsen 

2002; Nielsen 2001; Seltzer and Hastorf 1990; Torres‐Rouff and Costa Junqueira 2006). While 

ice cores and lake cores provide valuable information about the past climate, they do not predict 

or show causal relationships of how farmers and communities responded to climate changes. In 

order to measure how farmers responded to these risks, it is necessary to evaluate the residues of 

their actions. Even though a drought occurred during the LIP, Ayawiri residents prioritized 

implementing farming strategies to cope with warfare. The community chose farming and 

grazing strategies that increase physical safety and community security rather than extensive 

strategies that would have buffered against crop loss due to drought. Perhaps there were crop 

failures and food shortages during the early part of the LIP, but by the later part of the LIP when 

conflict intensified and Ayawiri was fully populated, families of this farming community were 

able to employ intensive agropastoral strategies, rely on rainfed field systems to produce 

abundant stores of chenopod and tuber crops.  

During the Late Horizon, after the Colla were conquered in battle and incorporated into 

the Pan-Andean empire trade networks throughout the Lake Titicaca Basin were reopened by the 

Inca. Populations in the region resettled in valley bottoms and farmers were required to provision 
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the Inca Empire and their army with surplus foods (Murra 1986:52). Even though Ayawiri was 

abandoned during the Late Horizon, terrace farming and the terrace complex at the site was not 

necessarily abandoned. Two chulpas, or burial towers located at the base of the terrace complex 

symbolize Late Horizon economic interests in the area (note one of these chulpas was destroyed 

and mined for cut stone by local residents in the 20th century). These chulpas were likely built by 

a local lord in emulation of Inca style chulpas. By burying their dead in a conspicuous structure, 

Late Horizon political authorities marked their claims to the agricultural landscape and perhaps 

even crop surpluses produced in this location. In this manner, the ancestors of the new Late 

Horizon political regime watched over the management of terrace farming from the vantage of 

the chulpas Currently, there have been no studies conducted in the northern Lake Titicaca Basin 

on Late Horizon archaeobotanical remains, so we do not know the extent of changes in local 

farming strategies or foodways following the LIP. Further research is needed to clarify the 

dynamic changes in farming and ecosystem management that occurred when the Inca conquered 

the region. 

Avenues for Future Research 

 

This dissertation provides new data about Late Intermediate Period farming strategies in  

in the Lake Titicaca Basin. At the same time, this research was limited by time constraints, 

funding, and scope.  Here, I suggest avenues for potential future research spurred by these 

findings.  

 During excavations in the residential sector of the LIP fort, Proyecto Machu Llaqta 

archaeologists found a few Late Formative contexts including a potential domestic hearth. 



312 

 

Several archaeobotanical studies have been carried out on Formative ritual and ceremonial sites 

in the southern Lake Titicaca basin particularly on the Taraco Peninsula (Browman 1989; Bruno 

2006, 2008, 2011, 2014; Langlie et al. 2011; Whitehead 2007). Future research on Ayawiri Late 

Formative samples has the potential to provide complementary data to these studies on domestic 

foodways and a more regional understanding of farming strategies as practiced during this 

pivotal time period of the initial coalescence of sociopolitical authority and rise of Tiwanaku. 

However, this analysis is currently constrained by an unresolved understanding of the Formative 

occupation at the site.   

 This dissertation research examined the farming and foodways of a single LIP 

community. Further analysis of archaeobotanical samples from other LIP sites is essential to 

understanding regional farming strategies and foodways during this tumultuous time period. In 

order to capture the diversity of farming strategies employed during the LIP, it would be useful 

to analyze macrobotanical remains and field systems of LIP communities living in different 

microenvironments, such as near lakes and wetlands. Perhaps these communities relied more on 

lacustrine resources. Additionally, it is important to consider scale; Ayawiri is one of the largest 

hillforts in the region. Perhaps smaller hillfort communities practiced different farming 

strategies. The size and the strength of the labor force at smaller forts would have surely resulted 

in different land use strategies.  

 This brings me to the importance of studying field systems throughout the region. 

Research on terrace agriculture has been largely overshadowed by studies on raised fields and 

even sunken gardens. Raised fields are a curiosity in the region since they are so expansive, and 

their prehistoric abandonment has far reaching implications. However, terraces are one of the 

primary indigenous field systems still used by farmers. The food produced on terraces still 
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supports communities living throughout the region. The food security that terraces provided in 

prehistory to communities in the Lake Titicaca Basin surely underpinned socioeconomic 

development as much as raised fields. With this in mind, more research is needed to understand 

when, where, why, and how terraces were constructed.   

While terraces remain a sustainable and productive agricultural strategy in the Andes, it is 

estimated that 50-75% of terraced fields have fallen into disuse since the Spanish conquest 

(Denevan 1988; Denevan et al. 1987; Donkin 1979; Erickson 1994). This abandonment can be 

attributed to a variety of political and economic reasons, including forced resettlement of 

populations by the Inca, then the Spanish, then encroaching industrialization throughout the 

modern era, and recently by younger generations moving to the cities for more employment 

opportunities.  

More broadly, this research documents food security strategies during a period of warfare 

and climate uncertainty. In a recent report released by the U.S. Department of Defense, Secretary 

of Defense Chuck Hagel refers to climate change as a “threat multiplier” that will intensify the 

challenges of global instability, hunger, poverty, and conflict (U.S. Department of Defense 

2014:2). Human societies need to calculate ways to respond to the global changes prompted by 

the imminent 1 to 4OC increase in annual temperature predicted in the next 100 years.  How our 

species responds to these risks will determine our success or demise. Political ecologists and 

ethnobotanists stress the importance of a response that considers locally developed indigenous 

strategies (e.g. Salick and Byg 2007).  These strategies have “a fundamental importance in the 

management of local resources, in the husbanding of the world’s biodiversity, and in providing 

locally valid models for sustainable living” (Turner et al. 2000:1275).  Local models, such as the 

one documented in this dissertation, are socially sensitive, agriculturally sustainable and will be 
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essential to prevent food insecurity (while at the same time grappling with violent conflict) in the 

long-term.  

 

Concluding Remarks 

While others have pointed out that an agropastoral lifeway is flexible and resilient to 

inter-annual weather variability (ie. Browman 1987; Marston 2011), my findings show that it is 

also a durable subsistence strategy during times of warfare. Titicaca Basin residents were able to 

adapt their cropping schemes, herding strategies, and field systems to survive a period of martial 

conflict. These strategies and even these field systems have survived millennia. Indeed, the 

terraces around Ayawiri are still being sown with quinoa and potatoes today.  

During times of crisis, vulnerabilities in food systems are quickly revealed, sometimes 

overnight (Endres and Endres 2009:410). The Late Intermediate Period was an era of political, 

social, and environmental crisis. When a community’s survival depends on procuring its own 

food, its members make strategic choices that ensure their survival. My dissertation findings 

pinpoint the resilient agricultural choices the people who resided at Ayawiri made during the 

LIP.  

Development agencies have emphasized the need for policy and agricultural reform to 

ensure food security in the current era, with specific focus on climate change risk management 

strategies in arid regions (Howden et al. 2007; Rosengrant 2011). Today, research teams and 

NGO’s are working to preserve the myriad indigenous varieties of potatoes in Peru (Olson 

2013). They see these cultivars as an important part of cultural heritage, and curating this genetic 

diversity may hold the key to grappling with future agrarian issues such as climate change, 



315 

 

disease, or pestilence. I argue terraces are also part of this legacy and could provide solutions to 

some of the challenges of climate change. The microclimates that terraces provide ensured past 

farmers could produce crops at various altitudes and an array of climatic and sociopolitical 

conditions, as I have demonstrated in this dissertation. Terraces are part of the cultural and 

ecological legacy left by ancient farmers. Abandoning terraces results in their rapid degradation, 

landslides, and loss of this agrarian legacy that past generations left to us. 

In the Andean highlands, while both terrace complexes and the martial conflict of the LIP 

have been until recently, overlooked by researchers, both have left their impact on the modern 

day landscape.  Farmers continue to use traditional methods to cultivate the terraced hillside 

adjacent to Ayawiri. Property negotiations are still primarily organized locally, and labor is 

largely organized amongst kin groups.  Potato and quinoa farming on terraces is still a major part 

of life in the local community, as can be seen in the trench profiles and notes from the terrace 

excavations. Ayawiri farmers imprinted their history by modifying the landscape surrounding 

their villages, they left genetic diversity in quinoa, potatoes, and other crops that they selected 

and grew each year, and they passed on the knowledge necessary to survive in this harsh 

environment to their offspring and their successors still farming the region today.  
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Appendix A. Results of Ceramic Analysis 
 

Results of ceramic analysis from TZ-3 
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Modern 

Surface

V2-3101 LIP/LH 1 36 0 0 1 0 0

V2-3115 LIP/LH 7 18 1 3 1 1 1

Totals 8 54 0 1 4 1 1 1

2 Plow Zone

V2-3102 LIP/LH 4 34 0 2 2 0 0 0

V2-3116 LIP/LH 11 36 0 0 3 3 2 3

Totals 15 70 0 2 5 3 2 3

3

Fill of the 

upper part of 

the upper 

part of the 

terrace

V2-3103 LIP/LH 6 38 4 0 0 1 0 1

V2-3104 LIP 6 35 0 0 3 3 0 0

V2-3117 LIP/LH 16 74 0 0 9 3 2 2

V2-3118 LIP/LH 12 58 0 0 6 3 3 0

Totals 40 205 4 0 18 10 5 3

4

Fill of the 

lower part of 

the terrace

V2-3105 LIP/LH 8 62 0 1 2 2 2 1

V2-3106 LIP/LH 15 36 0 3 6 2 2 2

V2-3107 LIP/LH 13 72 0 1 10 1 0 1

V2-3111 LIP/LH 24 163 0 0 9 4 4 7

V2-3119 LIP/LH 10 56 0 0 8 1 1 0

V2-3120 LIP/LH 7 17 0 1 4 1 1 0

V2-3127 LIP/LH 34 232 1 3 24 5 1 0

V2-3128 LIP/LH 29 131 1 2 16 9 1 0

Totals 140 769 2 11 79 25 12 11

5 Burial

V2-3130 LIP/LH 8 54 0 1 5 2 0 0

Totals 8 54 0 1 5 2 0 0

6

Stone 

arrangemen

ts

V2-3121 LIP/LH 10 3 0 0 10 3 0 0

V2-3122 LIP/LH 8 3 0 0 3 4 0 1

V2-3123 LIP/LH 29 109 2 2 14 5 6 0

V2-3124 LIP/LH 3 11 0 0 3 0 0 0

V2-3125 LIP/LH 10 49 1 0 8 1 0 0

Totals 60 175 3 2 38 13 6 1
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Upper 

terrace wall

V2-3108 LIP 1 14 0 0 1 0 0 0

V2-3109 LIP/LH 1 5 0 0 0 0 0 1

V2-3110 LIP/LH 7 26 0 0 5 2 0 0

V2-3112 LIP/LH 2 13 0 0 1 1 0 0

V2-3113 LIP/LH 11 38 0 0 6 2 1 2

V2-3114 LIP/LH 9 27 0 0 8 1 0 0

V2-3126 LIP/LH 1 9 0 0 0 1 0 0

Totals 32 132 0 0 21 7 1 3

8

Lower 

terrace wall

V2-3129 LIP/LH 2 9 0 0 0 0 2 0

V2-3131 LIP/LH 6 95 0 0 3 1 0 0

V2-3132 LIP/LH 19 109 0 1 14 2 0 2

V2-3133 LIP 3 23 0 0 3 0 0 0

Totals 30 236 0 1 20 3 2 2

9

Terrace wall 

foundation

V2-3134 LIP 3 3 0 0 3 0 0 0

Totals 3 3 0 0 3 0 0 0
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Results of ceramic analysis from TZ-4 
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2

Agricultural 
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zone
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V2-3008 LIP/LH 10 83 0 1 4 5 0 0

V2-3013 LIP/LH 1 27 0 0 1 0 0 0

Totals 37 250 2 1 20 13 1 0

3

Upper level 

of terrace 

wall

V2-3009 LIP 1 49 0 0 1 0 0 0

V2-3010 LIP/LH 1 36 0 0 0 1 0 0

V2-3011 LIP/LH 7 75 0 0 6 1 0 0

V2-3012 LIP/LH 2 38 0 0 1 0 1 0

Totals 11 198 0 0 8 2 1 0

4

Lower level 

of terrace 

wall

V2-3014 LIP/LH 1 26 0 0 0 0 1 0

V2-3015 LIP/LH 9 42 0 0 2 4 2 1

V2-3016 LIP 1 3 0 0 1 0 0 0

Totals 11 71 0 0 3 4 3 1

5 Bedrock

V2-3007 N/A 0 0 0 0 0 0 0 0
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Results of ceramic analysis from TZ-5 
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2

First terrace 

wall

V2-3212 LIP 2 2 0 0 2 0 0 0

V2-3213 LIP 1 1 0 0 1 0 0 0

V2-3214 LIP 3 3 0 0 3 0 0 0

Totals 6 6 0 0 6 0 0 0

3

Plow zone of 

first terrace wall

V2-3202 LIP 4 4 0 0 4 0 0 0

V2-3203 LIP/LH 4 4 0 0 3 0 1 0

Totals 8 8 0 0 7 0 1 0

4

Second/modern 

terrace wall

6

Agricultural fill 

associated with 

second terrace 

wall

V2-3207 LIP/LH 1 3 0 0 0 0 1 0

V2-3208 LIP 2 3 0 0 2 0 0 0

V2-3209*LIP 3 3 0 0 3 0 0 0

V2-3215*LIP 5 5 0 0 2 3 0 0

Totals 11 14 0 0 7 3 1 0

5

Plow zone of 

second/modern 

terrace wall

V2-3204 LIP 3 5 0 0 1 2 0 0

Totals 3 5 0 0 1 2 0 0
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Results of ceramic analysis from TZ-6 
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Totals 6 6 0 0 5 0 0 0 1

2 Plow zone

V2-3302 LIP/LH 14 0 0 11 2 1 0 0

V2-3303 LIP/LH 1 0 0 0 1 0 0 0

Totals 15 0 0 11 3 1 0 0

3

Third/modern 

terrace wall

4

Agricultural fill 

associated with 

third/modern 

terrace wall

V2-3304* LIP 1 6 0 0 1 0 0 0 0

V2-3305* LIP 2 2 0 0 2 0 0 0 0

V2-3306 LIP/LH 1 1 0 0 1 0 0 0 0

V2-3307* LIP/LH 2 2 0 0 1 1 0 0 0

V2-3308* LIP/LH 7 8 0 0 6 0 0 1 0

V2-3309* LIP/LH 2 5 0 0 2 0 0 0 0

V2-3310* LIP/LH 1 4 0 0 1 0 0 0 0

V2-3311* LIP/LH 3 3 0 0 2 1 0 0 0
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5

Second terrace 

wall

V2-3317 LIP 1 1 0 0 1 0 0 0 0
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Totals 6 8 0 0 5 0 0 1 0

6

Agricultural fill 

associated with 

second terrace 

wall

V2-3319 LIP/LH 4 12 0 0 3 1 0 0 0

V2-3321 LIP/LH 3 3 0 0 3 0 0 0 0

Totals 7 15 0 0 6 1 0 0 0
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Detailed Results of 
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Appendix C. Raw results of Macrobotanical 

Analysis 
 

Locus # V2-

Unit

Volume (liters)

Cactaceae seeds

Opuntia sp. seeds

Chenopodium sp. seeds

 Poaceae type #1 seeds

Poaceae type #2 seeds

Poaceae type #3 seeds

Poaceae type #4 seeds

Poaceae type #5 seeds

>0.5 mm Poaceae type #6

Poaceae Unknown seed type

 Piptochaetium sp.  Seeds

Malvaceae seed type #1

Malvaceae unknown seed type

Cyperaceae seed type #1

Cyperaceae seed type #2

Trifolium amabile seeds

Relbunium sp. seeds

Brassica seed type #2

Plantago sp. seeds

Verbena sp. seeds

cf. Solanaceae seeds

Unknown Seeds

Unidentifiable Seeds

Total Seeds

1
0

0
2

/4
4

4
A

1
0

4
1

5

1
0

0
3

/2
4

4
A

1
0

2
2

1
3

2
6

1
0

0
7

/4
4

4
A

1
0

2
8

2
2

1
1

2
3

6

1
0

0
8

/7
4

4
A

1
0

3
2

3
1

1
1

3
8

1
0

0
9

/4
4

4
A

1
0

1
3

7
3

1
7

4
3

6
2

1
2

2
7

1
0

3
3

/7
4

4
A

5
1

9
8

2
1

1
2

2
0

4

1
0

3
5

/5
4

4
A

1
0

3
9

4
1

3
9

5

1
0

3
5

/1
2

4
4

A
1

0
4

5
3

1
4

4
5

8

1
0

3
5

/2
0

4
4

A
1

0
2

7
1

1
2

7
2

1
0

3
8

/7
4

4
A

1
0

3
3

1
2

1
3

7

1
0

3
8

/9
4

4
A

1
0

4
1

4
1

1
0

3
8

/1
2

4
4

A
1

0
1

2
1

2

1
0

3
8

/1
8

4
4

A
1

0
1

7
6

1
1

7
7

1
0

3
8

/2
2

4
4

A
1

0
6

6
1

1
6

8

1
0

3
8

/2
3

4
4

A
1

0
6

6

1
0

3
8

/3
1

4
4

A
1

0
1

8
1

1
9

1
0

4
1

/1
4

4
4

A
1

0
1

7
9

1
1

2
6

5
2

5
2

1
9

1
0

4
1

/1
5

4
4

A
1

0
1

7
9

7
1

2
2

1
4

1
1

8
3

5

1
0

4
1

/1
6

4
4

A
1

0
1

8
1

6
2

1
8

1
8

1
0

4
3

/7
4

4
A

1
0

0
1

1

1
0

4
3

/1
0

4
4

A
1

0
2

8
1

2
9

1
0

4
3

/2
5

4
4

A
1

0
3

7
4

1
5

1
1

2
1

1
3

8
6

A
p

p
en

d
ix

 C
. 
R

a
w

 r
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u
lt

s 
o
f 

M
a

cr
o
b

o
ta

n
ic

a
l 

A
n

a
ly

si
s 
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Locus # V2-

Unit

Volume (liters)

Cactaceae seeds

Opuntia sp. seeds

Chenopodium sp. seeds

 Poaceae type #1 seeds

Poaceae type #2 seeds

Poaceae type #3 seeds

Poaceae type #4 seeds

Poaceae type #5 seeds

>0.5 mm Poaceae type #6

Poaceae Unknown seed type

 Piptochaetium sp.  Seeds

Malvaceae seed type #1

Malvaceae unknown seed type

Cyperaceae seed type #1

Cyperaceae seed type #2

Trifolium amabile seeds

Relbunium sp. seeds

Brassica seed type #2

Plantago sp. seeds

Verbena sp. seeds

cf. Solanaceae seeds

Unknown Seeds

Unidentifiable Seeds

Total Seeds

1
0

4
4

/8
4

4
A

1
0

2
4

1
2

5

1
0

4
5

/1
3

4
4

A
1

0
3

3
6

6
1

5
2

1
1

1
3

3
7

7

1
0

4
6

/7
4

4
A

1
0

3
2

2
3

4

1
0

4
6

/8
4

4
A

1
0

2
2

8
2

2
3

0

1
0

4
6

/9
4

4
A

1
0

6
8

1
1

1
1

7
2

1
0

4
6

/1
1

4
4

A
1

0
1

6
6

1
1

1
6

8

1
0

4
6

/1
2

4
4

A
1

0
1

9
0

1
9

0

1
0

4
6

/2
1

4
4

A
1

0
1

4
8

5
1

2
1

4
8

8

1
0

4
6

/2
2

4
4

A
1

0
3

8
6

3
1

3
9

0

1
0

6
0

/5
4

4
B

1
0

3
0

1
2

1
1

1
3

6

1
0

6
1

/5
4

4
B

1
0

1
2

2
1

4

1
0

6
6

/5
4

4
B

1
0

9
4

1
2

9
7

1
0

7
0

/4
4

4
B

1
0

1
9

6
1

1
1

1
1

1
2

0
2

1
0

7
1

/4
4

4
B

1
0

1
3

5
4

1
1

4
0

1
0

7
2

/1
4

4
B

1
0

1
6

6
4

1
1

3
1

1
7

6

1
0

7
3

/4
4

4
B

1
0

5
3

1
2

5
6

1
0

7
4

/5
4

4
B

1
0

2
4

1
2

5

1
0

7
4

/8
4

4
B

1
0

8
7

1
2

4
3

1
1

9
9

1
0

7
4

/2
2

4
4

B
1

0
1

8
1

5
1

2
5

1
0

8
3

/2
U

T
-1

A
-1

5
1

0
3

1
8

2
1

1
0

8
8

/1
3

U
T

-1
A

-1
3

4
1

0
0

0

1
0

9
2

/1
8

U
T

-1
A

-1
2

5
0

.2
1

1
1

1
1

1
4

1
1

1
4

/4
4

4
B

1
0

1
3

6
4

2
1

4
2
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Locus # V2-

Unit

Volume (liters)

Cactaceae seeds

Opuntia sp. seeds

Chenopodium sp. seeds

 Poaceae type #1 seeds

Poaceae type #2 seeds

Poaceae type #3 seeds

Poaceae type #4 seeds

Poaceae type #5 seeds

>0.5 mm Poaceae type #6

Poaceae Unknown seed type

 Piptochaetium sp.  Seeds

Malvaceae seed type #1

Malvaceae unknown seed type

Cyperaceae seed type #1

Cyperaceae seed type #2

Trifolium amabile seeds

Relbunium sp. seeds

Brassica seed type #2

Plantago sp. seeds

Verbena sp. seeds

cf. Solanaceae seeds

Unknown Seeds

Unidentifiable Seeds

Total Seeds

1
1

1
4

/1
4

4
4

B
1

0
8

4
7

2
2

1
9

6

1
1

1
6

/1
3

4
4

B
1

0
1

3
7

7
1

1
4

5

1
1

1
6

/1
4

4
4

B
1

0
7

7
2

1
8

0

1
1

2
4

/2
1

4
4

C
1

0
1

1

1
1

2
4

/2
6

4
4

C
1

0
1

1

1
1

2
8

/5
4

4
A

1
0

3
6

3
6

1
1

2
8

/6
4

4
A

1
0

6
6

1
1

4
2

/1
5

4
4

C
1

0
1

2
2

1
1

2
3

1
1

4
4

/2
4

4
B

1
0

5
6

1
5

7

1
1

4
6

/2
4

4
C

1
0

2
4

1
1

6
3

1
5

1
0

2
2

1
2

0
7

1
1

4
7

/9
4

4
C

1
0

1
7

0
2

1
7

2

1
1

4
9

/5
4

4
C

1
0

1
8

9
3

3
4

1
2

0
0

1
1

5
0

/2
4

4
C

1
0

2
9

2
3

1
1

2
2

3
0

1

1
1

5
0

/4
4

4
C

1
0

7
7

1
7

8

1
2

5
8

/1
4

4
C

6
5

4
3

1
1

5
9

1
3

0
3

/5
4

4
C

1
0

1
7

1
1

8

1
3

0
3

/1
1

4
4

C
6

5
6

2
1

5
9

1
3

0
6

/2
4

4
C

1
0

3
4

7
1

1
3

3
5

2

1
3

0
9

/1
4

4
C

1
0

1
2

1
1

3

1
3

5
6

/1
6

7
2

B
1

0
5

2
5

2
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3

5
8
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B
1

0
3

6
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6
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3

5
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7
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B
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4
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1
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4
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1
3

6
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/5
7

2
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1
0

6
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0
3

7
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2
1

9
1

1
1

1
7
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1
3

6
4
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7

2
D

1
0

1
1

1
4
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/1
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1
0

3
8

1
3

9

1
4

0
2

/3
7

2
B

1
0

2
5

1
2

6
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Locus # V2-

Unit

Volume (liters)

Cactaceae seeds

Opuntia sp. seeds

Chenopodium sp. seeds

 Poaceae type #1 seeds

Poaceae type #2 seeds

Poaceae type #3 seeds

Poaceae type #4 seeds

Poaceae type #5 seeds

>0.5 mm Poaceae type #6

Poaceae Unknown seed type

 Piptochaetium sp.  Seeds

Malvaceae seed type #1

Malvaceae unknown seed type

Cyperaceae seed type #1

Cyperaceae seed type #2

Trifolium amabile seeds

Relbunium sp. seeds

Brassica seed type #2

Plantago sp. seeds

Verbena sp. seeds

cf. Solanaceae seeds

Unknown Seeds

Unidentifiable Seeds

Total Seeds

1
4

0
2

/4
7

2
B

1
0

2
1

0
1

1
2

1
2

1
4

0
2

/1
1

7
2

B
1

0
6

3
2

6
5

1
4

0
7

/4
7

2
C

1
0

3
3

1
4

0
7

/1
2

7
2

C
1

0
4

7
1

4
8

1
4

0
7

/1
3

7
2

C
1

0
4

1
2

2
1

1
4

7

1
4

0
8

/3
7

2
C

1
0

9
1

1
0

1
4

0
8

/5
7

2
C

1
0

5
1

6

1
4

0
9

/1
1

7
2

C
1

0
4

3
1

4
1

4
9

1
4

5
3

/2
7

2
A

1
0

2
1

3

1
4

5
4

/6
7

2
A

1
0

4
9

1
1

1
5

2

1
4

6
3

/7
7

2
A

1
0

3
3

1
4

6
9

/1
7

2
A

3
1

3
2

3
1

8

1
4

7
6

/4
7

2
E

1
0

4
1

5

1
4

8
0

/4
7

2
E

1
0

1
7

2
1

2
0

2
0

0
7

/5
7

2
K

8
6

3
2

4
6

9

2
0

0
8

/1
7

2
K

5
5

8
4

3
1

1
5

8
9

2
0

5
4

/6
7

2
J

1
0

0
0

2
1

1
2

/1
7

2
F

1
0

3
8

1
1

1
4

4
5

2
1

5
4

/2
7

2
H

6
1

0
1

0

2
2

0
3

/1
0

1
1

8
A

1
0

1
7

4
1

2
1

1
1

3
3

9

2
2

0
3

/2
9

1
1

8
A

1
0

1
2

1
1

3

2
2

0
4

/4
1

1
8

A
1

0
5

4
1

1
3

1
2

6
2
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Locus # V2-

Unit

Volume (liters)

Cactaceae seeds

Opuntia sp. seeds

Chenopodium sp. seeds

 Poaceae type #1 seeds

Poaceae type #2 seeds

Poaceae type #3 seeds

Poaceae type #4 seeds

Poaceae type #5 seeds

>0.5 mm Poaceae type #6

Poaceae Unknown seed type

 Piptochaetium sp.  Seeds

Malvaceae seed type #1

Malvaceae unknown seed type

Cyperaceae seed type #1

Cyperaceae seed type #2

Trifolium amabile seeds

Relbunium sp. seeds

Brassica seed type #2

Plantago sp. seeds

Verbena sp. seeds

cf. Solanaceae seeds

Unknown Seeds

Unidentifiable Seeds

Total Seeds

2
2

3
0

/2
1

1
8

B
1

0
1

9
1

0

2
2

5
5

/8
1

1
8

C
6

3
4

1
1

3
6

2
2

5
6

/1
1

1
1

8
C

1
0

5
6

1
2

1
4

1
6

5

2
2

5
9

/5
1

1
8

C
1

0
2

4
0

2
2

4
2

3
2

5
3

2
3

0
5

/5
6

A
1

0
5

6
5

6

2
3

0
5

/2
3

6
A

1
0

2
9

7
3

2
3

0
2

2
3

2
9

/3
6

B
8

1
8

9
7

1
8

9
7

2
3

3
1

/6
6

B
1

0
6

5
6

0
2

1
6

5
6

0
3

2
3

4
0

/6
6

B
1

0
1

3
9

1
3

9

2
3

5
4

/2
7

6
C

1
0

1
2

3
1

1
2

4

2
3

5
5

/2
9

6
C

1
0

2
3

6
2

1
3

2
4

2

2
3

5
7

/2
1

6
C

1
0

6
4

2
1

2
3

7
2

2
3

5
9

/1
6

C
1

0
1

1
1

2
1

5
5

1
1

2
5

2
3

6
1

/1
6

C
2

1
2

1
1

3

2
5

0
6

/4
5

9
A

1
0

9
4

8
6

5
2

9
4

8
6

5
2

T
o

ta
l 

1
0

2
5

.2
2

8
1

1
0

3
5

5
8

5
8

0
1

0
2

3
1

2
1

0
6

1
5

0
1

9
3

1
6

7
2

4
9

8
5

1
3

4
1

4
3

5
1

0
3

6
2

1
5
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U
n

it

V
o

lu
m

e
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li
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)

>
2

 m
m

 P
a

re
n

c
h

y
m

a
 C

t.
 

>
2

 m
m

 P
a

re
n

c
h

y
m

a
 W

t.
 (

g
) 

T
u

b
e

rs
 H

a
n

d
 C

o
ll
e

c
te

d
 C

t.
 

T
u

b
e

rs
 H

a
n

d
 C

o
ll
e

c
te

d
 W

t.
 (

g
)

>
2

 m
m

 W
o

o
d

 C
t.

>
2

 m
m

 W
o

o
d

 W
t.

 (
g

)

>
 2

.0
 m

m
 D

u
n

g

B
u

rn
e

d
 B

o
n

e

U
n

c
h

a
rr

e
d

 B
o

n
e

1002/4 44A 10

1003/2 44A 10 4 0.02 4

1007/4 44A 10 8 0.05 1

1008/7 44A 10 1 0.11 25 0.13

1009/4 44A 10 6 0.07 4

1033/7 44A 5 2 0.01

1035/5 44A 10 13

1035/12 44A 10 13 0.21 1

1035/20 44A 10 7 0.05

1038/7 44A 10

1038/9 44A 10 4 0.05

1038/12 44A 10

1038/18 44A 10 7 0.03 1

1038/22 44A 10 1 0.01

1038/23 44A 10 1 0.01 1 0.01

1038/31 44A 10 3 0.01

1041/14 44A 10 14 0.22 11 0.04 2

1041/15 44A 10 31

1041/16 44A 10 32 0.2 8

1043/7 44A 10 15 1

1043/10 44A 10

1043/25 44A 10 83 0.78

1044/8 44A 10 8 0.11

1045/13 44A 10 36 0.42 2

1046/7 44A 10 5 0.01

1046/8 44A 10 41 0.2 1

1046/9 44A 10 1 0

1046/11 44A 10 2 0.01 3 0 1

1046/12 44A 10 86 1.7 128

1046/21 44A 10 11 0.2 5

1046/22 44A 10 3 0.01 5 0.06 12

1060/5 44B 10 40.23 5 0.06

1061/5 44B 10 40 0.72

1066/5 44B 10 3 0.02 2 0.01 2 8
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 W
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rs
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n
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 C

t.
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u
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e

rs
 H
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n

d
 C
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te

d
 W
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 (

g
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>
2
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m
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>
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m
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o
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 W
t.

 (
g
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 2
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 m

m
 D
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n

g

B
u

rn
e

d
 B

o
n

e

U
n

c
h

a
rr

e
d

 B
o

n
e

1070/4 44B 10 23 0.15

1071/4 44B 10 1 0.01 13 0.2

1072/1 44B 10 15 0.09 22 0.13 3

1073/4 44B 10 5 0.11 13 0.28 5

1074/5 44B 10 2

1074/8 44B 10 3 0.02 12 0.17 8 3

1074/22 44B 10

1083/2

UT-1A-

15 10 2 0.01

1088/13

UT-1A-

134 10

1092/18

UT-1A-

125 0.2 1 1

1114/4 44B 10 25 0.4 2

1114/14 44B 10 4 0.04

1116/13 44B 10 1 0.04 12 0.09

1116/14 44B 10 4 0.02 6 0.16

1124/21 44C 10

1124/26 44C 10

1128/5 44A 10 2 0.01

1128/6 44A 10 8 0.2

1142/15 44C 10 4 0.04 3

1144/2 44B 10 5 0.05

1146/2 44C 10 3 0.02 6

1147/9 44C 10 6 0.05

1149/5 44C 10 3 0.02 5

1150/2 44C 10 9 0.07 2

1150/4 44C 10 10 0.11 2

1258/1 44C 6 1 0.01

1303/5 44C 10

1303/11 44C 6 6 0.05 5 0.06

1306/2 44C 10 3 0.01 6

1309/1 44C 10 1 0.01

1356/16 72B 10 2 0.03 1 0.04 3

1358/21 72B 10
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1358/22 72B 10 1 0.01 9

1360/5 72B 10 3 0.08 122 1.53 264

1364/4 72D 10

1402/1 72B 10 2 0.11 12 0.28 6

1402/3 72B 10 1 0.04 2 0.01 3

1402/4 72B 10 1 0.12

1402/11 72B 10 22 0.2 101

1407/4 72C 10 3 0.01

1407/12 72C 10 1 0.01

1407/13 72C 10 1 0.01 6 0.08

1408/3 72C 10 1 0.01 3

1408/5 72C 10

1409/11 72C 10 2 0.01 5 0.04 1

1453/2 72A 10 2 0.01

1454/6 72A 10 13

1463/7 72A 10 2 0.02

1469/1 72A 3 2 0.01

1476/4 72E 10 1 0.01

1480/4 72E 10 12 0.06 1

2007/5 72K 8 4 0.03 2

2008/1 72K 5 31 0.47 167

2054/6 72J 10 1 0.01

2112/1 72F 10

2154/2 72H 6

2203/10 118A 10 24 0.19

2203/29 118A 10 14 0.06

2204/4 118A 10 4 0.04

2230/2 118B 10

2255/8 118C 6 11 0.09

2256/11 118C 10 2 0.04 2

2259/5 118C 10 2 0.01 75 0.45 4

2305/5 6A 10 2 0.01 12
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2305/23 6A 10     19 0.14  23  

2329/3 6B 8       1  1 

2331/6 6B 10 1 0.02   16 0.13  85 2.84 

2340/6 6B 10        17  

2354/27 6C 10     1 0.01    

2355/29 6C 10 1 0.01        

2357/21 6C 10 1 0.01       2 

2359/1 6C 10 1    10 0.09    

2361/1 6C 2     119 1.67    

2506/4 59A 10 204.84 22.3 28 17.11 477.96 7.51  682.8  

Total    1025.2 375 24.07 28 17.11 1667 20 15 1270 334 
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Locus # V2-
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Time period
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Cactaceae seeds

Opuntia sp. seeds

Chenopodium sp. seeds

 Poaceae type #1 seeds
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>0.5 mm Poaceae type #6

Poaceae Unknown seed type

 Piptochaetium sp.  Seeds

Malvaceae seed type #1
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Malvaceae unknown seed type

Cyperaceae seed type #1

Cyperaceae seed type #2
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Appendix D. Measurements of Cyperaceae Seeds 

 

Locus # 
Cyperaceae 

Seed Type 
Height Width 

Surface 

Treatment 
Shape 

V2-1072/1 1 1.4 0.9 Reticulate 2 sided 

V2-1060/5 1 1.7 1 Reticulate 2 sided 

V2-1060/5 1 1.5 1 Reticulate 2 sided 

V2-1114/14 1 1.4 0.9 Grotty 2 sided 

V2-2213/4 1 1.3 0.8 Reticulate 2 sided 

V2-2213/4 1 1.3 1 Reticulate 2 sided 

V2-1009/4 1 1.2 0.9 Reticulate 2 sided 

V2-1009/4 1 1.1 0.8 Grotty 2 sided 

V2-1046/22 2 2 1 Reticulate 4 sided 

V2-1360/5 2 1.1 0.6 Reticulate 4 sided 

V2-2344/5 2 1 0.7 Reticulate 4 sided 

V2-1074/8 2 0.9 0.6 Grotty 4 sided 

V2-1041/14 2 1.4 0.9 Reticulate 4 sided 

V2-1009/4 2 0.9 0.6 Grotty 4 sided 
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Appendix E. Measurements of Malvaceae Seeds 

Locus # 
Malvaceae 

Seed Type 

Height 

(mm) 

Width 

(mm) 

Surface 

Treatment 

V2-1007/4 3 1.4 1.1 grotty 

V2-1007/4 3 0.8 0.8 grotty 

V2-1035/20 1 1.2 1.4 smooth 

V2-1041/16 3 1.3 1.1 grotty 

V2-1041/16 1 1.1 0.8 smooth 

V2-1041/15 3 1.2 8 grotty 

V2-1043/25 3 1 0.9 grotty 

V2-1046/9 1 1.4 0.9 smooth 

V2-1075/1 2 1 1 reticulate 

V2-1075/5 2 1 0.9 reticulate 

V22-1046/21 1 1 0.9 smooth 

V22-1046/21 1 1.2 1 smooth 

V2-1101/5 3 1.3 1 grotty 

V2-1101/5 3 1.2 1 grotty 

V2-1114/14 1 1.3 1 smooth 

V2-1114/14 1 1.1 0.7 smooth 

V2-1116/13 1 1.1 0.9 smooth 

V2-1146/2 1 1 0.8 smooth 

V2-1146/2 1 1.2 1 smooth 

V2-1146/2 1 1 1 smooth 

V2-1146/2 1 1.2 1 smooth 

V2-1146/2 1 1.3 1 smooth 

V2-1150/2 1 1 0.9 smooth 

V2-1150/4 1 1.2 1.2 smooth 

V2-1258/1 1 1 0.8 smooth 

V2-1303/11 1 1.4 1 smooth 

V2-1306/2 3 1.2 1 grotty 

V2-1306/2 3 - 0.9 grotty 

V2-1306/2 3 1.4 1 grotty 

V2-1307/2 1 1.1 0.8 smooth 

V2-1307/2 1 1 0.7 smooth 

V2-1307/2 1 1.1 1 smooth 

V2-1307/2 1 1 0.7 smooth 

V2-1307/2 1 1.1 1 smooth 

V2-1307/2 3 1.2 0.9 grotty 

V2-1307/2 3 1.1 1 grotty 

V2-1307/2 1 1.3 1 smooth 

V2-1307/2 3 1.2 1 grotty 

V2-1360/5 1 1.3 0.9 smooth 

V2-1360/5 1 1.3 1.1 smooth 

V2-1360/5 3 1 0.7 grotty 

V2-1360/5 1 1.1 0.9 smooth 
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Locus # 
Malvaceae 

Seed Type 

Height 

(mm) 

Width 

(mm) 

Surface 

Treatment 

V2-1360/5 1 0.9 0.7 smooth 

V2-1360/5 1 0.9 0.4 smooth 

V2-1360/5 1 1 0.8 smooth 

V2-1360/5 1 0.9 0.9 smooth 

V2-1360/5 1 1 1 smooth 

V2-1360/5 1 1.2 1 smooth 

V2-1360/5 1 1.3 1.2 smooth 

V2-1360/5 1 1.5 1 smooth 

V2-1360/5 1 1.2 0.9 smooth 

V2-1360/5 1 1.2 0.9 smooth 

V2-1360/5 1 1.2 0.9 smooth 

V2-1360/5 1 1 0.9 smooth 

V2-1360/5 1 1.1 1 smooth 

V2-1360/5 1 1.1 1 smooth 

V2-1360/5 1 1.2 1 smooth 

V2-1402/3 1 1.1 0.9 smooth 

V2-1402/4 1 1.2 1 smooth 

V2-1402/11 1 1.1 0.7 smooth 

V2-1402/11 1 1.1 0.9 smooth 

V2-1407/13 1 1 0.9 smooth 

V2-1407/13 1 1.2 1 smooth 

V2-1454/6 1 1.2 0.9 smooth 

V2-1469/1 3 1.3 1.1 grotty 

V2-1469/1 1 1.3 0.9 smooth 

V2-1469/1 1 1.1 1 smooth 

V2-1469/1 3 1.2 1 grotty 

V2-1469/1 3 1.2 1 grotty 

V2-2008/1 1 1.2 0.9 smooth 

V2-2008/1 3 1.2 1 grotty 

V2-2112/2 1 1.3 1.4 smooth 

V2-2112/2 1 1.1 0.9 smooth 

V2-2203/10 1 1 0.8 smooth 

V2-2204/4 1 1.3 1 smooth 

V2-2204/4 1 1 0.8 smooth 

V2-2204/4 1 1 0.8 smooth 

V2-2210/6 1 1.3 1.1 smooth 

V2-2210/6 1 1.1 1 smooth 

V2-2213/4 1 1.3 1 smooth 

V2-2213/4 1 1.2 0.9 smooth 

V2-2213/4 1 1.1 0.7 smooth 

V2-2213/4 1 1 0.8 smooth 

V2-2213/4 1 1.1 0.9 smooth 

V2-2213/4 1 1 0.6 smooth 

V2-2213/4 1 1.2 1.1 smooth 

V2-2213/4 1 1.1 0.9 smooth 

V2-2213/4 1 1.2 1 smooth 
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Locus # 
Malvaceae 

Seed Type 

Height 

(mm) 

Width 

(mm) 

Surface 

Treatment 

V2-2213/4 1 1 1 smooth 

V2-2213/4 1 1.2 0.9 smooth 

V2-2255/8 1 1.2 1 smooth 

V2-2256/11 3 1.2 1.1 grotty 

V2-2256/11 1 1 0.9 smooth 

V2-2256/11 1 1 0.9 smooth 

V2-2259/5 3 0.9 0.7 grotty 

V2-2259/5 1 1.2 1 smooth 

V2-2259/5 1 0.9 0.7 smooth 

V2-2259/5 3 1 0.8 grotty 

V2-2259/5 1 0.8 0.6 smooth 

V2-2259/5 1 1.4 1.2 smooth 

V2-2305/23 1 1.2 0.8 smooth 

V2-2305/23 1 1 0.9 smooth 

V2-2316/9 1 1 0.8 smooth 

V2-2316/9 1 1.2 1 smooth 

V2-2344/5 1 1 0.9 smooth 

V2-2344/5 1 1.1 0.8 smooth 

V2-2344/5 1 1.3 0.9 smooth 

V2-2344/5 1 1.2 1 smooth 

V2-2344/5 1 0.9 0.6 smooth 

V2-2344/5 1 1.2 0.9 smooth 

V2-2344/5 1 1 0.9 smooth 

V2-2344/5 1 1.2 1 smooth 

V2-2344/5 1 1.4 1 smooth 

V2-2344/5 1 1.2 0.6 smooth 

V2-2344/5 1 1 0.7 smooth 

V2-2344/5 1 1 0.8 smooth 

V2-2344/5 1 1.1 1.1 smooth 

V2-2344/5 1 1.5 1.3 smooth 

V2-2355/29 1 1.5 1 smooth 

V2-2357/21 1 1.2 0.8 smooth 

V2-2357/21 1 0.9 0.7 smooth 

V2-2359/1 1 0.8 0.7 smooth 

V2-2359/1 1 1 0.8 smooth 

V2-2359/1 1 1 0.9 smooth 

V2-2359/1 1 1.5 1 smooth 

V2-2359/1 1 1 1.1 smooth 

V2-2361/1 1 1.2 0.9 smooth 

V2-1476/4 1 1.3 1 smooth 

V2-1045/13 1 1.4 0.9 smooth 

V2-1045/13 1 1 0.6 smooth 

V2-1045/13 1 1 0.7 smooth 

V2-1045/13 1 1.4 0.9 smooth 

V2-1045/13 1 1.2 0.9 smooth 

V2-1074/8 1 1.2 1 smooth 
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Locus # 
Malvaceae 

Seed Type 

Height 

(mm) 

Width 

(mm) 

Surface 

Treatment 

V2-1074/8 1 1.3 1 smooth 

V2-1074/8 1 1.2 1 smooth 

V2-1359/22 1 0.9 0.9 smooth 

V2-1061/5 1 1 0.8 smooth 

V2-1061/5 1 1.1 0.8 smooth 

V2-1309/1 1 1.1 0.9 smooth 

V2-1074/5 1 0.8 0.6 smooth 

V2-1098/12 1 1.4 1 smooth 

V2-1033/7 1 1.1 0.9 smooth 

V2-1409/11 1 1 0.8 smooth 

V2-1409/11 1 1.1 1 smooth 

V2-1409/11 1 1 1 smooth 

V2-1409/11 1 1.2 0.9 smooth 

V2-1149/5 1 1.2 0.9 smooth 

V2-1149/5 1 0.9 0.7 smooth 

V2-1149/5 1 1 0.8 smooth 

V2-1149/5 1 1 0.8 smooth 

V2-1009/4 1 1 0.9 smooth 

V2-1009/4 1 1 0.8 smooth 

V2-1009/4 1 1 0.8 smooth 

V2-1009/4 1 1 0.9 smooth 

V2-1009/4 1 1.1 0.9 smooth 

V2-1009/4 1 1 0.8 smooth 
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Appendix F. Measurements of Poaceae Seeds 
 

Locus # 
Poaceae 

Type 

Height 

(mm) 

Width 

(mm) 

V2-1002/4 6 1.5 0.5 

V2-1003/2 2 1.5 0.4 

V2-1003/2 2 1.1 0.5 

V2-1003/2 2 1.3 0.5 

V2-1003/2 1 1.2 0.5 

V2-1007/4 4 2 0.5 

V2-1007/4 5 5 1.4 

V2-1007/4 5 4 1.1 

V2-1007/4 2 1.2 0.5 

V2-1007/4 2 1.4 0.6 

V2-1007/4 4 1.6 0.5 

V2-1008/7 1 1.6 0.4 

V2-1008/7 1 1.4 0.4 

V2-1008/7 2 1.1 0.5 

V2-1008/7 4 2 0.7 

V2-1038/7 1 1.6 0.3 

V2-1038/7 2 1.5 0.4 

V2-1038/7 2 1.3 0.4 

V2-1038/18 2 1.1 0.4 

V2-1038/22 1 1.6 0.4 

V2-1043/10 2 1.1 0.4 

V2-1041/15 2 1 0.4 

V2-1041/15 2 1 0.3 

V2-1041/15 2 1 0.4 

V2-1041/15 2 0.9 0.4 

V2-1041/15 2 0.9 0.3 

V2-1041/15 1 1.2 0.2 

V2-1041/15 1 1.5 0.4 

V2-1041/15 1 1.1 0.3 

V2-1041/15 1 1.5 0.3 

V2-1041/15 1 1.4 0.3 

V2-1043/25 6 2 0.8 

V2-1043/25 1 1.3 0.2 

V2-1043/25 2 1 0.4 

V2-1043/25 2 1.1 0.5 

V2-1043/25 2 0.9 0.4 

V2-1043/25 2 1.2 0.3 

V2-1043/25 2 1 0.4 

V2-1044/8 2 1 0.5 

V2-1046/8 1 1.6 0.3 

V2-1056/9 2 1.5 0.6 

V2-1046/11 2 1.6 0.5 

V2-1075/5 1 1.7 0.3 
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Locus # 
Poaceae 

Type 

Height 

(mm) 

Width 

(mm) 

V2-1075/5 2 2 0.5 

V2-1075/5 1 1.5 0.3 

V2-1073/4 2 1.5 0.4 

V2-1073/4 2 1.5 0.3 

V2-1073/4 2 1.6 0.4 

V2-1073/4 1 1.5 0.3 

V2-1072/1 2 1.4 0.5 

V2-1072/1 2 1.4 0.4 

V2-1072/1 2 1.6 0.6 

V2-1072/1 2 1.4 0.4 

V2-1071/4 5 2.5 0.8 

V2-1071/4 5 3 0.9 

V2-1070/4 1 1.2 0.3 

V2-1070/4 2 1.1 0.4 

V2-1066/5 5 2.4 0.8 

V2-1046/22 2 1.3 0.5 

V2-1046/22 2 1.5 0.5 

V2-1046/22 2 1.1 0.3 

V2-1046/21 2 1.2 0.5 

V2-1101/5 2 1.1 0.4 

V2-1101/5 2 1 0.4 

V2-1114/4 2 1.2 0.5 

V2-1114/4 2 1.3 0.4 

V2-1114/4 2 1.1 0.4 

V2-1114/4 2 1 0.3 

V2-1114/14 2 1.1 0.5 

V2-1114/14 2 1.3 0.5 

V2-1114/14 2 1.1 0.5 

V2-1114/14 2 1 0.3 

V2-1114/14 2 1.2 0.4 

V2-1116/14 2 1.2 0.4 

V2-1116/14 2 1.1 0.5 

V2-1142/15 2 1.2 0.4 

V2-1144/2 2 1.3 0.5 

V2-1146/2 1 1.4 0.3 

V2-1147/9 2 1.2 0.4 

V2-1147/9 2 1.5 0.5 

V2-1258/1 2 1.2 0.5 

V2-1258/1 2 1.1 0.5 

V2-1258/1 2 1.4 0.4 

V2-1303/11 2 1.1 0.5 

V2-1303/11 2 1.1 0.5 

V2-1306/2 2 1.3 0.5 

V2-1360/5 1 1.5 0.4 

V2-1360/5 1 1.6 0.3 

V2-1360/5 1 1.4 0.3 
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Locus # 
Poaceae 

Type 

Height 

(mm) 

Width 

(mm) 

V2-1360/5 2 1.2 0.4 

V2-1360/5 2 1.5 0.5 

V2-1360/5 2 1.4 0.4 

V2-1360/5 2 1.3 0.4 

V2-1360/5 2 1.2 0.4 

V2-1360/5 2 1.2 0.4 

V2-1360/5 2 1 0.3 

V2-1407/13 1 1.5 0.3 

V2-1407/13 1 1.4 0.3 

V2-1454/6 Piptochaetium 1.4 0.7 

V2-2008/1 1 1.6 0.4 

V2-2008/1 1 1.5 0.4 

V2-2008/1 1 1.8 0.3 

V2-2112/2 1 1.5 0.3 

V2-2203/10 2 1.2 0.6 

V2-2203/10 2 1.1 0.5 

V2-2203/10 2 1 0.5 

V2-2203/10 2 1 0.5 

V2-2204/4 2 1.2 0.5 

V2-2210/6 2 1.2 0.5 

V2-2210/6 2 1.5 0.5 

V2-2213/4 2 1.3 0.5 

V2-2213/4 2 1.3 0.5 

V2-2213/4 2 1.4 0.5 

V2-2213/4 2 1.1 0.5 

V2-2213/4 2 1.5 0.5 

V2-2213/4 5 1.6 0.5 

V2-2213/4 5 1.8 0.5 

V2-2256/11 2 1.4 0.6 

V2-2259/5 1 1.3 0.3 

V2-2259/5 1 1.5 0.4 

V2-2305/23 2 1.4 0.4 

V2-2305/23 2 1.2 0.4 

V2-2305/23 2 1.2 0.5 

V2-2344/5 5 2.6 0.9 

V2-2344/5 5 2.1 0.8 

V2-2344/5 5 2.1 0.7 

V2-2357/21 2 1.3 0.5 

V2-2357/21 2 1.4 0.5 

V2-2359/1 1 1.5 0.3 

V2-1074/8 1 1.5 0.3 

V2-1358/22 1 1.4 0.4 

V2-1358/22 1 1.1 0.5 

V2-1033/7 1 1.5 0.2 

V2-1074/22 1 1.4 0.2 

V2-1149/5 1 1.5 0.2 
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Locus # 
Poaceae 

Type 

Height 

(mm) 

Width 

(mm) 

V2-1149/5 1 1.5 0.2 

V2-1149/5 1 1.5 0.3 

V2-1041/14 5 2.4 0.7 

V2-1041/14 1 1.3 0.3 

V2-1009/4 2 1.1 0.3 

V2-1009/4 2 1.1 0.3 

V2-1009/4 2 1 0.4 

V2-1009/4 2 1 0.3 

V2-1009/4 2 1.3 0.4 

V2-1009/4 2 1.1 0.4 

V2-1009/4 2 1.4 0.5 

V2-1009/4 1 1.8 0.2 

V2-1009/4 1 1.2 0.3 

V2-1009/4 1 1.4 0.2 

V2-1009/4 1 1.5 0.3 

V2-1009/4 1 1.1 0.3 

V2-1009/4 1 1.5 0.3 

V2-1009/4 1 1.4 0.3 

V2-1009/4 1 1.2 0.4 

V2-1009/4 1 1.4 0.3 

V2-1009/4 1 1.4 0.3 
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Appendix G. Measurements of Chenopodium spp.  

Seeds 

Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1002/4 1.5 Rounded Smooth   

V2-1002/4 1.3       

V2-1002/4 1.4       

V2-1002/4 0.75       

V2-1003/2 0.8 Rounded Smooth   

V2-1003/2 0.8       

V2-1003/2 0.5 Rounded Smooth   

V2-1003/2 0.9       

V2-1003/2 0.9       

V2-1003/2 1.8 Rounded     

V2-1003/2 1.6 Rounded     

V2-1003/2 1.5       

V2-1003/2 1.2       

V2-1003/2 1.4 Rounded Smooth   

V2-1007/4 1.3       

V2-1007/4 1.1       

V2-1007/4 1.2       

V2-1007/4 1.4       

V2-1007/4 1.7       

V2-1007/4 1.1       

V2-1007/4 1 Truncate     

V2-1007/4 0.8 Rounded     

V2-1007/4 0.8 Rounded     

V2-1007/4 0.7 Rounded     

V2-1007/4 0.9 Rounded     

V2-1008/7 1.4 Rounded Smooth   

V2-1008/7 1.2       

V2-1008/7 1.1       

V2-1008/7 1.2       

V2-1008/7 1.1       

V2-1008/7 0.5 Rounded Smooth   

V2-1008/7 1.1   Smooth   

V2-1008/7 0.8   Smooth   

V2-1008/7 0.8   Smooth   

V2-1008/7 0.8 Rounded Smooth   

V2-1009/4 1.6 Rounded Reticulate   

V2-1009/4 1.7 Truncate Smooth   

V2-1009/4 1.4   Reticulate   

V2-1009/4 1.3 Rounded Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1009/4 1.2       

V2-1009/4 1 Rounded Smooth   

V2-1009/4 0.7       

V2-1009/4 0.6   Smooth   

V2-1009/4 0.6       

V2-1009/4 0.7   Smooth   

V2-1033/7 1.7 Truncate Smooth   

V2-1033/7 1.3 Rounded Smooth   

V2-1033/7 1.5 Rounded Smooth   

V2-1033/7 1.5   Reticulate   

V2-1033/7 1.6       

V2-1033/7 0.9   Smooth   

V2-1033/7 0.7   Smooth   

V2-1033/7 0.6   Smooth   

V2-1033/7 0.8   Smooth   

V2-1033/7 0.5       

V2-1035/12 1 Rounded Smooth   

V2-1035/12 0.9   Smooth   

V2-1035/12 0.9   Smooth   

V2-1035/12 0.6   Smooth   

V2-1035/12 0.8   Smooth   

V2-1035/12 1.4   Smooth   

V2-1035/12 1.8 Rounded     

V2-1035/12 1.5 Truncate Smooth   

V2-1035/12 1.4       

V2-1035/12 1.7 Rounded Smooth   

v2-1035/20 1   Smooth   

v2-1035/20 0.9   Smooth   

v2-1035/20 0.7       

V2-1035/20 0.9   Smooth   

V2-1035/20 0.8   Smooth   

V2-1035/20 1.8 Truncate Smooth   

V2-1035/20 1.7 Rounded Reticulate   

V2-1035/20 1.4 Rounded Smooth   

V2-1035/20 1.5 Truncate Smooth   

V2-1035/20 1.7 Rounded Smooth   

V2-1038/7 1.3 Rounded Smooth   

V2-1038/7 0.7   Smooth   

V2-1038/7 1   Smooth   

V2-1038/7 1       

V2-1038/7 0.9   Smooth   

V2-1038/7 1.2 Truncate Smooth   



377 

 

Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1038/7 1.5   Smooth   

V2-1038/7 1.7       

V2-1038/7 1.4 Rounded Smooth   

V2-1038/7 1.3 Truncate Smooth   

V2-1038/9 1.4 Rounded Smooth   

V2-1038/9 1.3       

V2-1038/9 1.3 Rounded     

V2-1038/9 1.4   Smooth   

V2-1038/9 1.6 Truncate Smooth   

V2-1038/9 0.9 Rounded     

V2-1038/9 0.9   Smooth   

V2-1038/9 1.2       

V2-1038/9 0.8   Smooth   

V2-1038/9 0.8       

V2-1038/12 1.4 Truncate     

V2-1038/12 1.6 Rounded Smooth   

V2-1038/12 1.3       

V2-1038/12 1.3   Smooth   

V2-1038/12 1.2       

V2-1038/12 0.8 Rounded Smooth   

V2-1038/12 0.8   Smooth   

V2-1038/12 0.7   Smooth   

V2-1038/12 1 Truncate Smooth   

V2-1038/12 0.9 Rounded     

V2-1038/18 1.3 Rounded Smooth   

V2-1038/18 1.6 Rounded Smooth   

V2-1038/18 1.5       

V2-1038/18 1.3   Smooth   

V2-1038/18 1.5 Rounded     

V2-1038/18 1.6   Smooth   

V2-1038/18 1.2       

V2-1038/18 1.2       

V2-1038/18 1.2       

V2-1038/18 1       

V2-1038/22 1.6 Rounded Smooth   

V2-1038/22 1.4   Smooth   

V2-1038/22 1.1   Smooth   

V2-1038/22 1.2       

V2-1038/22 1.1   Smooth   

V2-1038/22 0.7 Truncate     

V2-1038/22 0.6   Smooth   

V2-1038/22 0.7   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1038/22 0.6   Smooth   

V2-1038/22 0.5       

V2-1038/23 1.4       

V2-1038/23 1.4       

V2-1038/23 1.5       

V2-1038/23 1.1       

V2-1038/23 1       

V2-1038/23 0.7   Smooth   

V2-1038/31 1.6 Rounded Smooth   

V2-1038/31 1.2 Rounded Smooth   

V2-1038/31 1.2       

V2-1038/31 1.3       

V2-1038/31 1.2   Smooth   

V2-1038/31 1       

V2-1038/31 1       

V2-1038/31 0.9   Smooth   

V2-1038/31 1.2 Rounded Smooth   

V2-1038/31 0.5 Rounded Smooth   

V2-1041/14 0.7   Smooth   

V2-1041/14 0.8   Smooth   

V2-1041/14 0.8 Truncate Smooth   

V2-1041/14 0.9 Rounded Smooth   

V2-1041/14 0.6   Smooth   

V2-1041/14 1.8 Rounded Smooth   

V2-1041/14 1.6 Rounded Smooth   

V2-1041/14 1.4 Rounded Smooth   

V2-1041/14 1.5   Smooth   

V2-1041/14 1.4   Smooth   

V2-1041/15 1.1 Rounded Smooth   

V2-1041/15 1.3 Rounded Smooth   

V2-1041/15 1.2 Rounded Smooth   

V2-1041/15 1.5 Rounded Smooth   

V2-1041/15 1.4 Truncate Smooth   

V2-1041/15 0.9   Smooth   

V2-1041/15 0.8   Smooth   

V2-1041/15 0.9   Smooth   

V2-1041/15 0.7 Rounded Smooth   

V2-1041/15 0.8 Rounded Smooth   

V2-1041/16 1.4 Rounded Smooth   

V2-1041/16 1.2       

V2-1041/16 1.5 Rounded Smooth   

V2-1041/16 1.7 Rounded Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1041/16 1.5 Truncate Smooth   

V2-1041/16 0.9 Rounded Smooth   

V2-1041/16 1       

V2-1041/16 0.8 Rounded Smooth   

V2-1041/16 0.7   Smooth   

V2-1041/16 0.8 Truncate Smooth   

V2-1041/16 1 Truncate Smooth   

V2-1043/10 1.4 Rounded Smooth   

V2-1043/10 1.5 Truncate Smooth   

V2-1043/10 1.1 Rounded Smooth   

V2-1043/10 1.2       

V2-1043/10 1.7 Truncate Smooth   

V2-1043/10 0.5   Smooth   

V2-1043/10 0.9       

V2-1043/10 0.6   Smooth   

V2-1043/10 0.9   Smooth   

V2-1043/10 0.4       

V2-1043/25 1.5 Rounded Smooth   

V2-1043/25 1.3 Rounded Smooth   

V2-1043/25 1.5 Rounded     

V2-1043/25 1.2 Rounded Smooth   

V2-1043/25 1.6 Truncate Smooth   

V2-1043/25 1 Rounded Smooth   

V2-1043/25 1.2 Truncate Smooth   

V2-1043/25 0.7   Smooth   

V2-1043/25 0.9   Smooth   

V2-1043/25 0.7 Rounded Smooth   

V2-1044/8 1.3   Smooth   

V2-1044/8 1.5 Truncate Reticulate   

V2-1044/8 1.4 Truncate Smooth   

V2-1044/8 1.4   Smooth   

V2-1044/8 1.3 Rounded Smooth   

V2-1044/8 0.8 Rounded     

V2-1044/8 1 Rounded Smooth   

V2-1044/8 0.6       

V2-1044/8 0.8       

V2-1045/13 1.5 Truncate Smooth   

V2-1045/13 1.8   Smooth   

V2-1045/13 1.7 Truncate Smooth   

V2-1045/13 1.8 Rounded Smooth   

V2-1045/13 1.4 Truncate Smooth   

V2-1045/13 0.9   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1045/13 1       

V2-1045/13 0.6   Smooth   

V2-1045/13 0.7   Smooth   

V2-1045/13 0.8       

 V2-1046/7 1.6 Rounded Reticulate   

 V2-1046/7 1.3 Rounded Smooth   

 V2-1046/7 1.6 Truncate Smooth   

 V2-1046/7 1.2   Smooth   

 V2-1046/7 1.2   Smooth   

 V2-1046/7 1 Rounded Smooth   

 V2-1046/7 0.8 Biconvex Smooth   

 V2-1046/7 0.9   Smooth   

 V2-1046/7 0.9   Smooth   

 V2-1046/7 0.8 Rounded Smooth   

V2-1046/8 1.4 Truncate Smooth   

V2-1046/8 1.5 Truncate Smooth   

V2-1046/8 1.6 Truncate Smooth   

V2-1046/8 1.5 Rounded Smooth   

V2-1046/8 1.4       

V2-1046/8 0.8 Truncate Smooth   

V2-1046/8 0.6 Rounded Smooth   

V2-1046/8 0.7   Smooth   

V2-1046/8 0.8 Rounded Smooth   

V2-1046/8 0.9 Rounded Smooth   

V2-1046/9 1.8 Rounded Smooth   

V2-1046/9 1.6 Truncate Smooth   

V2-1046/9 1.6 Rounded Smooth   

V2-1046/9 1.5 Truncate Smooth   

V2-1046/9 1.7       

V2-1046/9 1 Rounded Smooth   

V2-1046/9 0.7   Smooth   

V2-1046/9 1.1 Rounded Smooth   

V2-1046/9 0.6   Smooth   

V2-1046/9 0.7   Smooth   

V2-1046/12 1.6 Rounded Smooth   

V2-1046/12 1.4 Rounded Smooth   

V2-1046/12 1.6 Truncate Smooth   

V2-1046/12 1.5 Truncate Smooth   

V2-1046/12 1.6 Truncate Smooth   

V2-1046/12 1 Truncate Smooth   

V2-1046/12 0.9   Smooth   

V2-1046/12 1 Rounded     
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1046/12 0.9       

V2-1046/12 0.7       

V2-1046/21 1.5 Truncate Smooth   

V2-1046/21 1.8 Rounded Smooth   

V2-1046/21 1.6 Rounded Smooth   

V2-1046/21 1.3   Smooth   

V2-1046/21 1.5 Truncate Smooth   

V2-1046/21 1 Rounded Smooth   

V2-1046/21 0.8 Rounded Smooth   

V2-1046/21 0.8   Smooth   

V2-1046/21 0.8   Smooth   

V2-1046/21 0.9   Smooth   

V2-1046/22 1.3 Rounded Smooth   

V2-1046/22 1.4 Truncate Smooth   

V2-1046/22 1.5 Truncate Smooth   

V2-1046/22 1.6 Truncate Smooth   

V2-1046/22 1.5 Truncate Smooth   

V2-1046/22 0.6   Smooth   

V2-1046/22 0.7 Rounded Smooth   

V2-1046/22 0.8 Biconvex Smooth   

V2-1046/22 0.8       

V2-1046/22 0.7   Smooth   

V2-1060/5 1.7   Smooth   

V2-1060/5 1.5   Smooth   

V2-1060/5 1.5 Truncate Smooth   

V2-1060/5 1.5 Truncate Smooth   

V2-1060/5 1.3       

V2-1060/5 1 Rounded Smooth   

V2-1060/5 0.9   Smooth   

V2-1060/5 0.9 Rounded Smooth   

V2-1060/5 0.9 Biconvex Smooth   

V2-1060/5 0.9   Smooth   

V2-1060/5 0.7 Rounded     

V2-1061/5 1.4       

V2-1061/5 0.9   Smooth   

V2-1061/5 0.8       

V2-1061/5 0.8       

V2-1061/5 0.9       

V2-1061/5 0.9       

V2-1061/5 0.9       

V2-1066/5 1.6 Truncate Smooth   

V2-1066/5 1.3 Rounded Reticulate   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1066/5 1.6 Rounded Smooth   

V2-1066/5 1.7 Rounded Reticulate   

V2-1066/5 1.7 Truncate Smooth   

V2-1066/5 0.8 Rounded Smooth   

V2-1066/5 1 Rounded Smooth   

V2-1066/5 0.9   Smooth   

V2-1066/5 0.8 Rounded     

V2-1066/5 0.8       

V2-1070/4 1.4 Rounded Smooth   

V2-1070/4 1.4 Truncate Smooth   

V2-1070/4 1.6 Rounded Smooth   

V2-1070/4 1.4   Smooth   

V2-1070/4 1.7 Truncate Smooth   

V2-1070/4 0.7 Rounded Smooth   

V2-1070/4 0.8   Smooth   

V2-1070/4 0.8 Rounded Smooth   

V2-1070/4 0.9   Smooth   

V2-1070/4 1   Smooth   

V2-1071/4 1.7 Rounded Smooth   

V2-1071/4 1.4 Truncate Smooth   

V2-1071/4 1.4 Rounded Smooth   

V2-1071/4 1.3 Rounded Smooth   

V2-1071/4 1.3       

V2-1071/4 1 Truncate     

V2-1071/4 0.7 Rounded Smooth   

V2-1071/4 0.6 Rounded Smooth   

V2-1071/4 0.8 Rounded     

V2-1071/4 0.6 Rounded Smooth   

V2-1072/1 1.6 Rounded Smooth   

V2-1072/1 1.3   Smooth   

V2-1072/1 1.4 Rounded Smooth   

V2-1072/1 1.4 Rounded Smooth   

V2-1072/1 1.5 Truncate Reticulate   

V2-1072/1 1.2 Rounded Smooth   

V2-1072/1 0.8 Rounded Smooth   

V2-1072/1 0.9 Truncate Reticulate   

V2-1072/1 1 Rounded Smooth   

V2-1072/1 0.8 Rounded Smooth   

V2-1073/4 1.6       

V2-1073/4 1.2 Rounded     

V2-1073/4 1.4 Rounded Smooth   

V2-1073/4 1.4   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1073/4 1.5 Truncate Smooth   

V2-1073/4 1 Rounded Smooth   

V2-1073/4 0.9 Rounded     

V2-1073/4 1   Smooth   

V2-1073/4 0.7 Rounded Smooth   

V2-1073/4 0.9 Rounded Smooth   

V2-1074/5 1.7 Truncate Smooth   

V2-1074/5 1.3 Rounded Smooth   

V2-1074/5 1.2       

V2-1074/5 1.5       

V2-1074/5 1.6       

V2-1074/5 0.7   Smooth   

V2-1074/5 0.8       

V2-1074/5 0.6       

V2-1074/5 0.9       

V2-1074/5 0.7   Smooth   

V2-1074/8 1.5 Rounded     

V2-1074/8 1.7 Rounded Smooth   

V2-1074/8 1.4 Rounded     

V2-1074/8 1.2   Smooth   

V2-1074/8 1.5 Rounded Smooth   

V2-1074/8 1 Rounded Smooth   

V2-1074/8 1 Rounded Smooth   

V2-1074/8 0.6   Smooth   

V2-1074/8 0.7 Biconvex Smooth   

V2-1074/8 0.9 Rounded Smooth   

V2-1074/22 1.4   Smooth   

V2-1074/22 1.3   Smooth   

V2-1074/22 1.6       

V2-1074/22 1.3       

V2-1074/22 1   Smooth   

V2-1074/22 0.9       

V2-1074/22 1   Canaliculate   

V2-1083/2 1.1       

V2-1083/2 1.4       

V2-1083/2 1.2       

V2-1083/2 1.3       

V2-1083/2 1.4       

V2-1083/2 1       

V2-1083/2 1.7   Smooth   

V2-1083/2 0.8       

V2-1083/2 0.9       
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1083/2 1       

V2-1114/4 1.5 Truncate Smooth   

V2-1114/4 1.7 Truncate Smooth   

V2-1114/4 1.4 Rounded Smooth   

V2-1114/4 1.5 Rounded Smooth   

V2-1114/4 1.5   Smooth   

V2-1114/4 0.9       

V2-1114/4 0.8   Smooth   

V2-1114/4 0.6 Rounded Smooth   

V2-1114/4 0.7   Smooth   

V2-1114/4 0.9 Rounded Smooth   

V2-1114/14 1.5 Rounded Smooth   

V2-1114/14 1.3   Smooth   

V2-1114/14 1.2 Rounded Smooth   

V2-1114/14 1.5 Rounded Smooth   

V2-1114/14 2 Truncate     

V2-1114/14 0.7   Smooth   

V2-1114/14 1 Rounded Smooth   

V2-1114/14 1   Smooth   

V2-1114/14 0.5       

V2-1114/14 0.9 Rounded Smooth   

V2-1116/13 1.4 Rounded Smooth   

V2-1116/13 1.3 Truncate Smooth   

V2-1116/13 1.3 Rounded Reticulate   

V2-1116/13 1.5 Truncate Smooth   

V2-1116/13 1.1   Smooth   

V2-1116/13 0.5 Rounded Smooth   

V2-1116/13 1   Smooth   

V2-1116/13 0.9 Rounded Smooth   

V2-1116/13 0.9   Smooth   

V2-1116/13 1 Rounded Smooth   

V2-1116/14 1.8 Truncate Smooth   

V2-1116/14 1.5   Smooth   

V2-1116/14 1.5 Rounded Smooth   

V2-1116/14 2 Rounded Smooth   

V2-1116/14 1.6 Truncate     

V2-1116/14 1.1 Truncate Canaliculate   

V2-1116/14 0.9 Rounded Smooth   

V2-1116/14 0.9   Smooth   

V2-1116/14 0.6 Rounded Smooth   

V2-1116/14 0.7   Smooth   

V2-1124/21 1.7 Rounded Canaliculate   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1124/26 1   Smooth   

V2-1128/5 1.8 Truncate Smooth   

V2-1128/5 1.2 Rounded Smooth   

V2-1128/5 1.8 Rounded Smooth   

V2-1128/5 1.5 Rounded     

V2-1128/5 1.8 Truncate Reticulate   

V2-1128/5 0.9 Rounded Canaliculate   

V2-1128/5 0.8   Smooth   

V2-1128/5 1 Rounded Smooth   

V2-1128/5 0.8   Smooth   

V2-1128/5 1 Rounded Smooth   

V2-1128/6 1.2   Smooth   

V2-1128/6 1.4   Smooth   

V2-1128/6 1.2       

V2-1128/6 1.3       

V2-1128/6 1.5   Smooth   

V2-1128/6 1.5       

V2-1142/15 1.8 Truncate Smooth   

V2-1142/15 1.8 Rounded Reticulate   

V2-1142/15 1.5 Truncate Smooth   

V2-1142/15 1.4 Rounded Smooth   

V2-1142/15 1.9 Rounded Smooth   

V2-1142/15 0.9 Rounded Canaliculate   

V2-1142/15 1.1 Rounded Smooth   

V2-1142/15 1 Rounded Smooth   

V2-1142/15 0.9   Smooth   

V2-1142/15 0.8   Smooth   

V2-1144/2 1.8 Rounded Smooth   

V2-1144/2 1.3   Smooth   

V2-1144/2 1.7 Truncate Smooth   

V2-1144/2 1.2   Smooth   

V2-1144/2 1.7 Rounded Smooth   

V2-1144/2 0.9 Rounded Smooth   

V2-1144/2 0.7   Smooth   

V2-1144/2 0.7   Smooth   

V2-1144/2 0.8   Smooth   

V2-1144/2 0.7   Canaliculate   

V2-1124/26 1   Smooth   

V2-1146/2 1.6 Rounded Smooth   

V2-1146/2 1.6 Truncate Smooth   

V2-1146/2 1.5   Smooth   

V2-1146/2 1.6 Truncate     
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1146/2 1.5 Truncate Reticulate   

V2-1146/2 0.9 Rounded Smooth   

V2-1146/2 1   Smooth   

V2-1146/2 0.7   Smooth   

V2-1146/2 0.8   Smooth   

V2-1146/2 1.1   Smooth   

V2-1146/2 1.6 Truncate Smooth 4.75 

V2-1146/2 1.7 Rounded Smooth 5.2 

V2-1146/2 1.6 Rounded Smooth 2.7 

V2-1146/2 1.5 Rounded Smooth 3.4 

V2-1146/2 1.5 Rounded Smooth 5.5 

V2-1146/2 1.8 Rounded Smooth 4.4 

V2-1146/2 1.8 Rounded Smooth 19.5 

V2-1146/2 1.7 Rounded Smooth 4.5 

V2-1146/2 1.7 Truncate Smooth   

V2-1146/2 1.7 Truncate Smooth 8.4 

V2-1146/2 0.7 Rounded Smooth 21.9 

V2-1146/2 1 Truncate Smooth 2.5 

V2-1146/2 0.8 Rounded Smooth 14.6 

V2-1146/2 0.9   Smooth 8.8 

V2-1146/2 1 Rounded Smooth 6.7 

V2-1146/2 0.9 Rounded Smooth 11.2 

V2-1146/2 0.8 Rounded Smooth 12.5 

V2-1146/2 0.7 Rounded Smooth 13 

V2-1146/2 0.7 Rounded Smooth 36.8 

V2-1146/2 0.9   Smooth 5.6 

V2-1147/9 1.7 Truncate Smooth   

V2-1147/9 1.8 Rounded Smooth   

V2-1147/9 1.8 Rounded Smooth   

V2-1147/9 1.3 Rounded Smooth   

V2-1147/9 1.3   Smooth   

V2-1147/9 0.9   Smooth   

V2-1147/9 0.8 Rounded Smooth   

V2-1147/9 0.9   Smooth   

V2-1147/9 0.9   Smooth   

V2-1147/9 1       

V2-1149/5 1.6 Truncate Smooth   

V2-1149/5 1.7 Truncate     

V2-1149/5 1.5 Truncate Smooth   

V2-1149/5 1.3       

V2-1149/5 1.6 Rounded Smooth   

V2-1149/5 0.8   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1149/5 1 Rounded Smooth   

V2-1149/5 0.7       

V2-1149/5 0.7   Smooth   

V2-1149/5 0.8   Smooth   

V2-1150/2 1.5 Truncate Smooth   

V2-1150/2 1.6 Rounded Reticulate   

V2-1150/2 1.6 Rounded Smooth   

V2-1150/2 1.5 Rounded Smooth   

V2-1150/2 1.8 Truncate Smooth   

V2-1150/2 0.8   Smooth   

V2-1150/2 0.9   Smooth   

V2-1150/2 1 Rounded Smooth   

V2-1150/2 0.9   Smooth   

V2-1150/2 0.8       

V2-1150/4 1.5 Truncate Smooth   

V2-1150/4 1.6 Truncate Smooth   

V2-1150/4 1.4 Rounded Smooth   

V2-1150/4 1.5 Rounded Smooth   

V2-1150/4 1.7 Rounded     

V2-1150/4 1 Truncate Smooth   

V2-1150/4 1 Rounded Smooth   

V2-1150/4 0.9   Smooth   

V2-1150/4 1 Rounded Smooth   

V2-1150/4 0.8   Smooth   

V2-1258/1 1.2 Rounded Smooth   

V2-1258/1 1.4   Canaliculate   

V2-1258/1 1.6   Smooth   

V2-1258/1 1.4   Smooth   

V2-1258/1 1.3       

V2-1258/1 0.8 Truncate Smooth   

V2-1258/1 0.9   Smooth   

V2-1258/1 0.8 Rounded Smooth   

V2-1258/1 0.6   Smooth   

V2-1258/1 0.8   Smooth   

V2-1503/5 1.7 Truncate Smooth   

V2-1503/5 1.5 Biconvex     

V2-1503/5 1.1       

V2-1503/5 1.6 Rounded Smooth   

V2-1503/5 1.5   Smooth   

V2-1503/5 0.8   Smooth   

V2-1503/5 0.9       

V2-1503/5 0.5 Biconvex     
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1503/5 0.8       

V2-1503/5 0.9       

V2-1303/11 1.6 Rounded Smooth   

V2-1303/11 1.5 Rounded Smooth   

V2-1303/11 1.6 Rounded Smooth   

V2-1303/11 1.4 Rounded Smooth   

V2-1303/11 1.7   Smooth   

V2-1303/11 1 Truncate Smooth   

V2-1303/11 1 Truncate Smooth   

V2-1303/11 0.9 Rounded Smooth   

V2-1303/11 0.7 Rounded Smooth   

V2-1303/11 0.9       

V2-1306/2 1.4 Rounded     

V2-1306/2 1.5 Rounded Smooth   

V2-1306/2 1.6 Truncate Smooth   

V2-1306/2 1.3   Smooth   

V2-1306/2 1.4 Truncate Smooth   

V2-1306/2 0.9 Rounded Smooth   

V2-1306/2 1 Rounded Smooth   

V2-1306/2 0.7   Smooth   

V2-1306/2 0.7 Rounded Smooth   

V2-1306/2 0.6       

V2-1309/1 1.1       

V2-1309/1 1.4       

V2-1309/1 1.3       

V2-1309/1 1.4       

V2-1309/1 0.8       

V2-1309/1 0.9 Rounded Smooth   

V2-1309/1 1.1 Rounded Smooth   

V2-1309/1 1       

V2-1309/1 0.8       

V2-1309/1 0.8       

V2-1356/16 1.5 Rounded Smooth   

V2-1356/16 1.5 Rounded Smooth   

V2-1356/16 1.3       

V2-1356/16 1.6   Smooth   

V2-1356/16 1.5       

V2-1356/16 0.9   Canaliculate   

V2-1356/16 1 Rounded Smooth   

V2-1356/16 1.1   Smooth   

V2-1356/16 1   Smooth   

V2-1356/16 0.9       
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1358/21 1.2 Truncate Smooth   

V2-1358/21 1.5 Truncate Smooth   

V2-1358/21 1.7 Rounded Smooth   

V2-1358/21 1.4       

V2-1358/21 1.5 Rounded Smooth   

V2-1358/21 1 Rounded Smooth   

V2-1358/21 1 Rounded Smooth   

V2-1358/21 0.8   Smooth   

V2-1358/21 0.7   Smooth   

V2-1358/21 0.8       

V2-1358/22 1.7 Rounded     

V2-1358/22 1.6 Rounded Smooth   

V2-1358/22 1.6 Rounded Smooth   

V2-1358/22 1.4   Smooth   

V2-1358/22 1.6 Rounded Smooth   

V2-1358/22 0.8   Smooth   

V2-1358/22 0.9   Smooth   

V2-1358/22 0.8       

V2-1358/22 0.9       

V2-1358/22 0.6   Smooth   

V2-1360/5 1.4 Truncate Smooth   

V2-1360/5 1.6 Truncate Smooth   

V2-1360/5 1.6 Truncate Smooth   

V2-1360/5 1.5 Rounded Smooth   

V2-1360/5 1.7 Rounded Smooth   

V2-1360/5 2 Rounded Smooth   

V2-1360/5 0.9 Rounded Smooth   

V2-1360/5 0.8 Rounded Smooth   

V2-1360/5 0.6 Rounded Smooth   

V2-1360/5 0.9   Smooth   

V2-1364/4 1.2 Rounded Smooth   

V2-1402/1 1.3 Rounded     

V2-1402/1 1.6 Rounded Smooth   

V2-1402/1 1.6 Truncate Smooth   

V2-1402/1 1.7 Rounded     

V2-1402/1 1.3 Rounded     

V2-1402/1 0.9   Smooth   

V2-1402/1 0.6       

V2-1402/1 1 Rounded Smooth   

V2-1402/1 0.8 Rounded     

V2-1402/1 1.1 Rounded Smooth   

V2-1402/3 1.5 Rounded Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1402/3 1.5   Smooth   

V2-1402/3 1.5 Rounded Smooth   

V2-1402/3 1.4   Smooth   

V2-1402/3 1.1   Smooth   

V2-1402/3 0.8       

V2-1402/3 0.8   Smooth   

V2-1402/3 0.8 Rounded Smooth   

V2-1402/3 0.7       

V2-1402/3 0.8   Smooth   

V2-1402/4 1.5 Rounded Smooth   

V2-1402/4 1.4 Rounded Smooth   

V2-1402/4 1.7 Truncate Smooth   

V2-1402/4 1       

V2-1402/4 1 Rounded Smooth   

V2-1402/4 1.8   Smooth   

V2-1402/4 0.9   Smooth   

V2-1402/4 0.6   Smooth   

V2-1402/4 1 Rounded     

V2-1402/4 0.8       

V2-1402/11 1.5   Smooth   

V2-1402/11 1.4 Truncate     

V2-1402/11 1.6   Smooth   

V2-1402/11 1.2       

V2-1402/11 1.4   Smooth   

V2-1402/11 1 Rounded Smooth   

V2-1402/11 1 Rounded Smooth   

V2-1402/11 0.9   Smooth   

V2-1402/11 1 Rounded Smooth   

V2-1402/11 0.8 Rounded Smooth   

V2-1407/4 1 Rounded Smooth   

V2-1407/4 0.8       

V2-1407/4 0.7       

V2-1407/12 1.3 Truncate Smooth   

V2-1407/12 1 Rounded     

V2-1407/12 1 Rounded     

V2-1407/12 1.1 Truncate     

V2-1407/12 0.6   Smooth   

V2-1407/12 0.7 Rounded Smooth   

V2-1407/12 0.5   Smooth   

V2-1407/12 0.5   Smooth   

V2-1407/12 0.4       

V2-1407/12 0.5   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1407/13 1.6 Rounded Smooth   

V2-1407/13 1.5 Truncate Smooth   

V2-1407/13 1.6   Smooth   

V2-1407/13 1.4   Smooth   

V2-1407/13 1.9   Reticulate   

V2-1407/13 0.7   Smooth   

V2-1407/13 0.6 Rounded Smooth   

V2-1407/13 1 Rounded Smooth   

V2-1407/13 1   Smooth   

V2-1407/13 0.8   Smooth   

V2-1408/3 1.4 Biconvex Reticulate   

V2-1408/3 1.5   Smooth   

V2-1408/3 1.4       

V2-1408/3 1.4       

V2-1408/3 1.4       

V2-1408/3 0.8   Smooth   

V2-1408/5 0.7       

V2-1408/5 0.6   Smooth   

V2-1408/5 0.8       

V2-1408/5 0.6       

V2-1408/5 1 Rounded Smooth   

V2-1409/11 1.5 Rounded Smooth   

V2-1409/11 1.4 Rounded Smooth   

V2-1409/11 1.2       

V2-1409/11 1.4       

V2-1409/11 1.6       

V2-1409/11 1   Smooth   

V2-1409/11 0.7       

V2-1409/11 1   Smooth   

V2-1409/11 0.9       

V2-1409/11 0.9       

V2-1453/2 1       

V2-1453/2 0.8   Smooth   

V2-1454/6 1.2 Rounded Smooth   

V2-1454/6 1.1 Rounded Smooth   

V2-1454/6 1.9 Rounded Smooth   

V2-1454/6 1.6 Truncate Smooth   

V2-1454/6 1.5       

V2-1454/6 0.9 Rounded Smooth   

V2-1454/6 0.9 Biconvex Smooth   

V2-1454/6 0.7 Rounded Smooth   

V2-1454/6 0.9   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-1454/6 0.6       

V2-1463/7 1.5 Rounded Smooth   

V2-1463/7 1.2 Rounded     

V2-1463/7 1.4 Rounded Smooth   

V2-1469/1 1.1 Rounded     

V2-1469/1 1.8   Smooth   

V2-1469/1 1.2       

V2-1469/1 1.4       

V2-1469/1 1.4       

V2-1469/1 0.6   Smooth   

V2-1469/1 1 Rounded Smooth   

V2-1469/1 0.7 Truncate Smooth   

V2-1469/1 0.9 Rounded Smooth   

V2-1469/1 1 Rounded Smooth   

V2-1476/4 1.2       

V2-1476/4 1.5       

V2-1476/4 1.2       

V2-1476/4 0.9   Smooth   

V2-1480/4 1.4       

V2-1480/4 1.5       

V2-1480/4 1.2       

V2-1480/4 1.5       

V2-1480/4 1.2       

V2-1480/4 1   Smooth   

V2-1480/4 0.8   Smooth   

V2-1480/4 0.9   Smooth   

V2-1480/4 0.7       

V2-1480/4 0.5       

V2-2007/5 1.5 Truncate Smooth   

V2-2007/5 1.7 Rounded Smooth   

V2-2007/5 1.7 Truncate Smooth   

V2-2007/5 1.2   Smooth   

V2-2007/5 1 Rounded Smooth   

V2-2007/5 0.9 Rounded Smooth   

V2-2007/5 0.8 Rounded Smooth   

V2-2007/5 0.8 Rounded Smooth   

V2-2007/5 0.8   Smooth   

V2-2007/5 0.8   Smooth   

V2-2008/1 1.5 Truncate Smooth   

V2-2008/1 1.5 Truncate Smooth   

V2-2008/1 1.6 Rounded Smooth   

V2-2008/1 1.4 Truncate Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-2008/1 1.6   Smooth   

V2-2008/1 0.7 Rounded Smooth   

V2-2008/1 0.8 Rounded Smooth   

V2-2008/1 0.6       

V2-2008/1 0.9 Truncate Smooth   

V2-2008/1 0.8 Rounded Smooth   

V2-2154/2 1.4       

V2-2154/2 1.1       

V2-2154/2 0.9       

V2-2154/2 0.6       

V2-2154/2 0.7   Smooth   

V2-2154/2 0.7       

V2-2154/2 0.7       

V2-2154/2 0.7       

V2-2203/10 1.5   Smooth   

V2-2203/10 1.5   Smooth   

V2-2203/10 1.1       

V2-2203/10 1.3       

V2-2203/10 1.5 Rounded     

V2-2203/10 0.8   Smooth   

V2-2203/10 1       

V2-2203/10 0.8   Smooth   

V2-2203/10 0.8   Smooth   

V2-2203/10 0.8   Smooth   

V2-2203/29 1.7   Smooth   

V2-2203/29 1.8   Smooth   

V2-2203/29 1       

V2-2203/29 1.1       

V2-2203/29 0.7   Smooth   

V2-2203/29 0.6       

V2-2203/29 0.8       

V2-2203/29 0.6       

V2-2203/29 0.9   Smooth   

V2-2203/29 0.7       

V2-2204/4 1.7 Truncate Smooth   

V2-2204/4 1.1   Smooth   

V2-2204/4 1.4 Rounded     

V2-2204/4 1.1       

V2-2204/4 1.5       

V2-2204/4 1 Rounded Smooth   

V2-2204/4 0.9   Smooth   

V2-2204/4 0.9 Truncate Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-2204/4 0.9   Smooth   

V2-2204/4 0.7       

V2-22230/2 1.3       

V2-22230/2 1.4       

V2-22230/2 1.8       

V2-22230/2 0.8 Rounded     

V2-22230/2 0.7   Smooth   

V2-22230/2 1 Rounded Smooth   

V2-22230/2 0.9       

V2-2331/6 1.3 Truncate Smooth   

V2-2331/6 1.6 Rounded Reticulate   

V2-2331/6 1.7 Rounded Reticulate   

V2-2331/6 1.4   Smooth   

V2-2331/6 1.5 Rounded Smooth   

V2-2331/6 1.6 Truncate Smooth   

V2-2255/8 1.5 Truncate Smooth   

V2-2255/8 1.4   Smooth   

V2-2255/8 1       

V2-2255/8 1.4   Smooth   

V2-2255/8 1.4       

V2-2255/8 1   Smooth   

V2-2255/8 0.9   Smooth   

V2-2255/8 0.8   Smooth   

V2-2255/8 1.1   Smooth   

V2-2255/8 0.5   Smooth   

V2-2256/11 1.4 Rounded Smooth   

V2-2256/11 1.8 Rounded Smooth   

V2-2256/11 1.2       

V2-2256/11 1.2 Rounded Smooth   

V2-2256/11 1.5 Truncate Smooth   

V2-2256/11 0.5 Rounded Smooth   

V2-2256/11 0.9   Smooth   

V2-2256/11 0.6 Rounded Smooth   

V2-2256/11 0.7   Smooth   

V2-2256/11 0.7       

V2-2259/5 1.4 Truncate Smooth   

V2-2259/5 1.5 Truncate Smooth   

V2-2259/5 1.6 Rounded Smooth   

V2-2259/5 1.6 Rounded Smooth   

V2-2259/5 1.6 Rounded     

V2-2259/5 0.8 Rounded Smooth   

V2-2259/5 0.8 Rounded Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-2259/5 0.9   Smooth   

V2-2259/5 0.5   Smooth   

V2-2259/5 0.7   Smooth   

V2-2305/5 1.7 Truncate Smooth   

V2-2305/5 1.3   Smooth   

V2-2305/5 1.7   Smooth   

V2-2305/5 1.2       

V2-2305/5 1.4       

V2-2305/5 1.2   Smooth   

V2-2305/5 0.6   Smooth   

V2-2305/5 0.9   Smooth   

V2-2305/5 0.9 Rounded Smooth   

V2-2305/5 0.8       

V2-2305/23 1.6 Truncate Smooth   

V2-2305/23 1.7       

V2-2305/23 1.6       

V2-2305/23 1.8 Truncate Smooth   

V2-2305/23 1.4       

V2-2305/23 1.8 Truncate Smooth   

V2-2305/23 0.7   Smooth   

V2-2305/23 0.8   Smooth   

V2-2305/23 1 Truncate Smooth   

V2-2305/23 0.9   Smooth   

V2-2305/23 0.5   Smooth   

V2-2329/3 0.7 Rounded Smooth 19.4 

V2-2329/3 1 

Equatorially 

Banded Reticulate 11.3 

V2-2329/3 1 Rounded Smooth 7.6 

V2-2329/3 0.6   Smooth   

V2-2329/3 0.8 Rounded Smooth 12.6 

V2-2329/3 0.8 Rounded Smooth 12.2 

V2-2329/3 0.7 Rounded Smooth 10.1 

V2-2329/3 1 Rounded Smooth 14.9 

V2-2329/3 0.8   Smooth 11.9 

V2-2329/3 0.7 Rounded Smooth 10 

V2-2329/3 0.8 Rounded Smooth 10.1 

V2-2329/3 1.5 Truncate Smooth   

V2-2329/3 1.4 Rounded Smooth   

V2-2329/3 1.3   Canaliculate   

V2-2329/3 1.7 Rounded     

V2-2329/3 1.5 Rounded Canaliculate   

V2-2329/3 0.9       

V2-2329/3 0.7   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-2329/3 0.5   Smooth   

V2-2329/3 0.9 Rounded Canaliculate   

V2-2329/3 1       

V2-2331/6 1.5 Truncate Reticulate 8.1 

V2-2331/6 1.4 Truncate Smooth 3.7 

V2-2331/6 1.6 Rounded Reticulate 7 

V2-2331/6 1.5 Rounded Reticulate 8.1 

V2-2331/6 1.5 Truncate Reticulate 6.1 

V2-2331/6 1.5 Truncate Smooth 5 

V2-2331/6 1.6 Rounded Smooth 4.5 

V2-2331/6 1.4 Rounded Smooth 6.2 

V2-2331/6 1.8 Rounded Smooth 8.9 

V2-2331/6 1.4 Truncate Smooth 3.8 

V2-2331/6 1.5 Truncate Smooth 23.2 

V2-2331/6 1.5 Truncate Smooth   

V2-2331/6 1.5 Rounded Smooth 9.8 

V2-2331/6 1.5 Truncate Smooth 2.5 

V2-2331/6 1.7 Truncate Smooth 4 

V2-2331/6 0.8 Rounded Smooth 16.4 

V2-2331/6 0.9 Rounded Smooth 11.2 

V2-2331/6 0.8 Rounded Smooth 12.1 

V2-2331/6 0.9 Rounded Smooth 5.8 

V2-2331/6 0.8 Rounded Smooth 10.1 

V2-2331/6 0.9   Smooth 13.5 

V2-2331/6 0.7   Smooth 10 

V2-2331/6 0.9 Rounded Smooth 4 

V2-2331/6 0.8 Rounded Smooth 10.3 

V2-2331/6 0.8 Rounded Smooth 7.6 

V2-2340/6 1.5 Truncate Smooth   

V2-2340/6 1.5 Truncate     

V2-2340/6 1.3       

V2-2340/6 1.6 Rounded Smooth   

V2-2340/6 1.2   Smooth   

V2-2340/6 0.6   Smooth   

V2-2340/6 0.6   Smooth   

V2-2340/6 0.7   Smooth   

V2-2340/6 0.7   Smooth   

V2-2340/6 0.8       

V2-2354/27 1.5 Truncate Smooth   

V2-2354/27 1.6 Truncate Smooth   

V2-2354/27 1.6 Rounded Canaliculate   

V2-2354/27 1.5   Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-2354/27 1.4 Rounded Reticulate   

V2-2354/27 0.7   Smooth   

V2-2354/27 0.7   Smooth   

V2-2354/27 0.6       

V2-2354/27 0.5       

V2-2354/27 1   Canaliculate   

V2-2355/29 1.7   Smooth   

V2-2355/29 1.5   Smooth   

V2-2355/29 1.2 Rounded Smooth   

V2-2355/29 1.7 Rounded Smooth   

V2-2355/29 1.6   Smooth   

V2-2355/29 1 Rounded Smooth   

V2-2355/29 0.8   Smooth   

V2-2355/29 0.7   Smooth   

V2-2355/29 1       

V2-2355/29 0.6   Smooth   

V2-2357/21 1.3   Canaliculate   

V2-2357/21 1.6   Smooth   

V2-2357/21 1.5       

V2-2357/21 1.8   Smooth   

V2-2357/21 1.3   Canaliculate   

V2-2357/21 0.6   Smooth   

V2-2357/21 1 Rounded Smooth   

V2-2357/21 0.9 Biconvex Smooth   

V2-2357/21 0.7       

V2-2357/21 0.7   Smooth   

V2-2359/1 1.5   Smooth   

V2-2359/1 1.7 Truncate Smooth   

V2-2359/1 1.6 Truncate     

V2-2359/1 1.3       

V2-2359/1 1.4 Truncate     

V2-2359/1 0.8 Rounded Smooth   

V2-2359/1 0.6   Smooth   

V2-2359/1 0.8 Biconvex Canaliculate   

V2-2359/1 0.8   Smooth   

V2-2359/1 0.9   Smooth   

V2-2361/1 1.2       

V2-2361/1 1.3   Reticulate   

V2-2359/1 1.3 Truncate     

V2-2359/1 1.5       

V2-2359/1 1.4   Reticulate   

V2-2359/1 0.9 Biconvex Smooth   
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Locus # 
Chenopod 

Diameter 

(mm) 

Margin  
Testa 

texture 

Testa 

Thickness 

(μm) 

V2-2359/1 0.7       

V2-2359/1 0.9       

V2-2361/1 0.8   Smooth   

V2-2361/1 0.8       

V2-2506/4 1.5 Truncate Smooth   

V2-2506/4 1.8 Truncate Smooth   

V2-2506/4 1.7 Truncate Smooth   

V2-2506/4 1.8 Truncate Smooth   

V2-2506/4 1.9 Rounded Smooth   

V2-2506/4 1.8 Truncate Smooth   

V2-2506/4 1.7 Truncate Smooth   

V2-2506/4 1.5       

V2-2506/4 1.8 Truncate Smooth   

V2-2506/4 1.6 Truncate Smooth   

V2-2506/4 1.6 Truncate Smooth 5.5 

V2-2506/4 1.7 Rounded Smooth 3.1 

V2-2506/4 1.6 Truncate Smooth 6.6 

V2-2506/4 1.8 Truncate Smooth 5.2 

V2-2506/4 1.7 Truncate Smooth 6.8 

V2-2506/4 1.4 Truncate Smooth 8.3 

V2-2506/4 1.6 Truncate Smooth 7.4 

V2-2506/4 1.6 Truncate Smooth 4.5 

V2-2506/4 1.8 Truncate Smooth 6.3 

V2-2506/4 1.5 Rounded Smooth 3 

V2-2506/4 1.6 Rounded Smooth 5.7 

V2-2506/4 1.5 Truncate Smooth 3.6 

V2-2506/4 1.8 Rounded Smooth 3 

V2-2506/4 1.8 Rounded Smooth 2.6 

V2-2506/4 1.7 Truncate Smooth 2.4 

V2-2506/4 1.7 Truncate Smooth 4.5 

V2-2506/4 1.6 Rounded Smooth 6.2 

V2-2506/4 1.6 Truncate Smooth 4.2 

V2-2506/4 1.7 Rounded Smooth 16.1 

V2-2506/4 1.8 Truncate Smooth 2.2 
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Appendix H. Formative and Mixed Time Period 

Macrobotanical Samples 
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Appendix I. Artifacts from Terrace Excavations 

Inventory of Artifacts from TZ-3 

Box # Locus Unit Material Count Weight (g) 

201 V2-3128/3 TZ-3 human bone 1 0 

201 V2-3130/1 TZ-3 human bone 1 23 

201 V2-3130/2 TZ-3 human bone 4 29 

201 V2-3130/3 TZ-3 human bone 2 29 

201 V2-3130/4 TZ-3 human bone 1 112 

201 V2-3130/6 TZ-3 human bone 3 12 

202 V2-3101/1 TZ-3 ceramic sherd 4 65.1 

202 V2-3102/1 TZ-3 ceramic sherd 34 97 

202 V2-3103/1 TZ-3 ceramic sherd 38 183 

202 V2-3104/1 TZ-3 ceramic sherd 35 158 

202 V2-3105/1 TZ-3 ceramic sherd 62 264 

202 V2-3106/1 TZ-3 ceramic sherd 36 322 

202 V2-3107/1 TZ-3 ceramic sherd 72 314 

202 V2-3107/4 TZ-3 ceramic sherd 6 16 

202 V2-3108/1 TZ-3 ceramic sherd 14 53 

202 V2-3109/1 TZ-3 ceramic sherd 5 12 

202 V2-3110/1 TZ-3 ceramic sherd 26 90 

202 V2-3111/1 TZ-3 ceramic sherd 41 131 

202 V2-3111/4 TZ-3 ceramic sherd 22 54 

202 V2-3111/6 TZ-3 ceramic sherd 60 216 

202 V2-3111/9 TZ-3 ceramic sherd 40 141 

202 V2-3112/1 TZ-3 ceramic sherd 13 74 

202 V2-3113/1 TZ-3 ceramic sherd 38 206 

202 V2-3114/1 TZ-3 ceramic sherd 27 138 

202 V2-3115/1 TZ-3 ceramic sherd 18 106 

202 V2-3116/1 TZ-3 ceramic sherd 36 130 

202 V2-3117/1 TZ-3 ceramic sherd 74 378 

202 V2-3119/1 TZ-3 ceramic sherd 56 285 

203 V2-3120/1 TZ-3 ceramic sherd 17 34 

203 V2-3121/2 TZ-3 ceramic sherd 51 283 

203 V2-3122/1 TZ-3 ceramic sherd 33 230 

203 V2-3123/1 TZ-3 ceramic sherd 30 177 
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Box # Locus Unit Material Count Weight (g) 

203 V2-3123/4 TZ-3 ceramic sherd 79 568 

203 V2-3124/3 TZ-3 ceramic sherd 1 16 

203 V2-3124/4 TZ-3 ceramic sherd 10 71 

203 V2-3125/2 TZ-3 ceramic sherd 16 102 

203 V2-3125/4 TZ-3 ceramic sherd 30 350 

203 V2-3126/1 TZ-3 ceramic sherd 9 41 

203 V2-3127/1 TZ-3 ceramic sherd 68 256 

203 V2-3127/3 TZ-3 ceramic sherd 64 391 

203 V2-3127/6 TZ-3 ceramic sherd 21 104 

203 V2-3127/8 TZ-3 ceramic sherd 79 395 

203 V2-3128/1 TZ-3 ceramic sherd 131 576 

203 V2-3129/1 TZ-3 ceramic sherd 9 47 

203 V2-3130/7 TZ-3 ceramic sherd 5 29 

203 V2-3130/8 TZ-3 ceramic sherd 49 227 

203 V2-3131/1 TZ-3 ceramic sherd 95 392 

203 V2-3132/1 TZ-3 ceramic sherd 109 643 

203 V2-3133/1 TZ-3 ceramic sherd 23 100 

203 V2-3134/1 TZ-3 ceramic sherd 3 5 

204 V2-3102/2 TZ-3 lithic 1 6 

204 V2-3103/2 TZ-3 lithic 13 366 

204 V2-3104/2 TZ-3 lithic 4 44 

204 V2-3105/2 TZ-3 lithic 2 16 

204 V2-3106/2 TZ-3 lithic 11 39 

204 V2-3107/2 TZ-3 lithic 5 318 

204 V2-3107/5 TZ-3 lithic 1 4 

204 V2-3108/2 TZ-3 lithic 1 2 

204 V2-3111/11 TZ-3 lithic 6 55 

204 V2-3111/3 TZ-3 lithic 4 136 

204 V2-3111/5 TZ-3 lithic 8 155 

204 V2-3111/7 TZ-3 lithic 2 2 

204 V2-3114/3 TZ-3 lithic 3 24 

204 V2-3115/2 TZ-3 lithic 4 60 

204 V2-3116/2 TZ-3 lithic 6 37 

204 V2-3117/2 TZ-3 lithic 6 24 

204 V2-3122/3 TZ-3 lithic 2 5 

204 V2-3123/2 TZ-3 lithic 2 1176 

204 V2-3123/6 TZ-3 lithic 1 144 

204 V2-3124/2 TZ-3 lithic 4 154 
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Box # Locus Unit Material Count Weight (g) 

204 V2-3125/5 TZ-3 lithic 1 413 

204 V2-3126/2 TZ-3 lithic 1 277 

204 V2-3127/4 TZ-3 lithic 4 61 

204 V2-3127/7 TZ-3 lithic 2 8 

204 V2-3128/2 TZ-3 lithic 8 158 

204 V2-3130/9 TZ-3 lithic 5 8 

204 V2-3131/2 TZ-3 lithic 3 63 

204 V2-3132/3 TZ-3 lithic 2 37 

204 V2-3133/2 TZ-3 lithic 6 5 

204 V2-3134/3 TZ-3 lithic 1 0 

205 V2-3106/3 TZ-3 carbon 27 3 

205 V2-3107/3 TZ-3 carbon 23 11 

205 V2-3121/1 TZ-3 carbon 1 0.18 

205 V2-3121/3 TZ-3 carbon 2 1.03 

205 V2-3111/10 TZ-3 animal bone 3 1 

205 V2-3111/2 TZ-3 animal bone 7 3 

205 V2-3111/8 TZ-3 animal bone 6 2 

205 V2-3114/2 TZ-3 animal bone 2 24 

205 V2-3115/3 TZ-3 animal bone 1 2 

205 V2-3121/4 TZ-3 animal bone 30 45 

205 V2-3122/2 TZ-3 animal bone 6 32 

205 V2-3123/3 TZ-3 animal bone 8 27 

205 V2-3123/5 TZ-3 animal bone 40 104 

205 V2-3124/1 TZ-3 animal bone 9 24 

205 V2-3124/5 TZ-3 animal bone 13 16 

205 V2-3125/1 TZ-3 animal bone 20 20 

205 V2-3125/3 TZ-3 animal bone 30 145 

205 V2-3127/2 TZ-3 animal bone 8 20 

205 V2-3127/5 TZ-3 animal bone 14 34 

205 V2-3127/9 TZ-3 animal bone 2 9 

205 V2-3132/2 TZ-3 animal bone 13 52 

205 V2-3134/2 TZ-3 animal bone 21 27 

205 V2-3135/1 TZ-3 animal bone 1 0 

205 V2-3119/3 TZ-3 

flotation 

sample N/A 29 
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Inventory of Artifacts from TZ-4 

Box # Locus Unit Material Count 
Weight 

(g) 

202 V2-3001/1 TZ-4 ceramic sherd 65 170.1 

202 V2-3002/1 TZ-4 ceramic sherd 89 302.5 

202 V2-3002/3 TZ-4 ceramic sherd 1 399 

202 V2-3003/1 TZ-4 ceramic sherd 16 92.8 

202 V2-3004/1 TZ-4 ceramic sherd 7 16.3 

202 V2-3005/1 TZ-4 ceramic sherd 18 51.4 

202 V2-3006/1 TZ-4 ceramic sherd 9 39.6 

202 V2-3008/1 TZ-4 ceramic sherd 83 197 

202 V2-3009/1 TZ-4 ceramic sherd 49 91 

202 V2-3010/1 TZ-4 ceramic sherd 36 55 

202 V2-3011/1 TZ-4 ceramic sherd 75 204 

202 V2-3012/1 TZ-4 ceramic sherd 38 107 

202 V2-3013/1 TZ-4 ceramic sherd 27 62 

202 V2-3014/1 TZ-4 ceramic sherd 26 51 

202 V2-3015/1 TZ-4 ceramic sherd 42 112 

202 V2-3016/1 TZ-4 ceramic sherd 3 15 

204 V2-3001/2 TZ-4 lithic 2 70 

204 V2-3001/3 TZ-4 lithic 1 880 

204 V2-3002/2 TZ-4 lithic 29 79.3 

204 V2-3003/2 TZ-4 lithic 2 97.3 

204 V2-3004/2 TZ-4 lithic 2 1.4 

204 V2-3005/2 TZ-4 lithic 1 1.4 

204 V2-3008/2 TZ-4 lithic 1 2 

204 V2-3009/2 TZ-4 lithic 6 13 

204 V2-3010/2 TZ-4 lithic 4 5 

204 V2-3011/2 TZ-4 lithic 5 78 

204 V2-3012/2 TZ-4 lithic 2 2 

204 V2-3013/2 TZ-4 lithic 1 5 

204 V2-3015/2 TZ-4 lithic 1 2 

205 V2-3004/3 TZ-4 

flotation 

sample N/A 86 

205 V2-3010/3 TZ-4 

flotation 

sample N/A 203 

205 V2-3014/3 TZ-4 

flotation 

sample N/A 88 
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Inventory of Artifacts from TZ-5 

Box # Locus Unit Material Count 
Weight 

(g) 

203 V2-3201/1 TZ-5 ceramic sherd 2 4.1 

203 V2-3202/1 TZ-5 ceramic sherd 4 2.6 

203 V2-3203/1 TZ-5 ceramic sherd 4 5.9 

203 V2-3204/1 TZ-5 ceramic sherd 5 13.5 

203 V2-3207/1 TZ-5 ceramic sherd 3 72 

203 V2-3208/1 TZ-5 ceramic sherd 3 37 

203 V2-3209/3 TZ-5 ceramic sherd 3 6 

203 V2-3212/1 TZ-5 ceramic sherd 2 2 

203 V2-3213/1 TZ-5 ceramic sherd 1 0.4 

203 V2-3214/2 TZ-5 ceramic sherd 3 10 

203 V2-3215/2 TZ-5 ceramic sherd 5 44 

204 V2-3202/2 TZ-5 lithic 4 6.1 

204 V2-3203/2 TZ-5 lithic 1 2 

204 V2-3204/2 TZ-5 lithic 2 18.8 

204 V2-3205/1 TZ-5 lithic 1 9.4 

204 V2-3206/1 TZ-5 lithic 1 8 

204 V2-3208/2 TZ-5 lithic 1 141 

204 V2-3209/1 TZ-5 lithic 1 353 

205 V2-3215/1 TZ-5 

flotation 

sample N/A 117 

205 V2-3209/2 TZ-5 animal bone 1 1.13 

205 V2-3214/1 TZ-5 animal bone 9 3.29 
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Inventory of Artifacts from TZ-6 

Box # Locus Unit Material Count 
Weight 

(g) 

203 V2-3301/1 TZ-6 ceramic sherd 6 11.2 

203 V2-3302/1 TZ-6 ceramic sherd 43 104 

203 V2-3302/4 TZ-6 ceramic sherd 9 35 

203 V2-3303/1 TZ-6 ceramic sherd 15 69 

203 V2-3304/1 TZ-6 ceramic sherd 6 9 

203 V2-3305/2 TZ-6 ceramic sherd 2 3 

203 V2-3306/1 TZ-6 ceramic sherd 1 3 

203 V2-3307/1 TZ-6 ceramic sherd 2 13 

203 V2-3308/1 TZ-6 ceramic sherd 8 37 

203 V2-3309/1 TZ-6 ceramic sherd 5 42 

203 V2-3310/1 TZ-6 ceramic sherd 4 47 

203 V2-3311/1 TZ-6 ceramic sherd 3 9 

203 V2-3315/2 TZ-6 ceramic sherd 3 16 

203 V2-3317/2 TZ-6 ceramic sherd 1 5 

203 V2-3318/1 TZ-6 ceramic sherd 1 0 

203 V2-3319/1 TZ-6 ceramic sherd 12 82 

203 V2-3320/2 TZ-6 ceramic sherd 6 32 

203 V2-3321/2 TZ-6 ceramic sherd 3 6 

203 V2-3322/1 TZ-6 ceramic sherd 3 9 

203 V2-3325/1 TZ-6 ceramic sherd 9 39 

204 V2-3302/2 TZ-6 lithic 2 2 

204 V2-3312/1 TZ-6 lithic 1 17 

204 V2-3324/1 TZ-6 lithic 3 99 

204 V2-3325/2 TZ-6 lithic 6 15 

205 V2-3317/1 TZ-6 carbon 1 19 

205 V2-3320/1 TZ-6 carbon 1 8 

205 V2-3302/3 TZ-6 animal bone 4 0.2 

205 V2-3305/1 TZ-6 animal bone 12 14 

205 V2-3308/2 TZ-6 animal bone 1 0.48 

205 V2-3309/2 TZ-6 animal bone 1 19 

205 V2-3314/1 TZ-6 animal bone 4 4 

205 V2-3315/1 TZ-6 animal bone 9 6 

205 V2-3317/3 TZ-6 animal bone 6 9 

205 V2-3318/2 TZ-6 animal bone 5 2 
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Box # Locus Unit Material Count 
Weight 

(g) 

205 V2-3319/2 TZ-6 animal bone 4 0 

205 V2-3320/3 TZ-6 animal bone 8 16 

205 V2-3321/1 TZ-6 animal bone 4 8 

205 V2-3323/1 TZ-6 animal bone 7 25 

205 V2-3313/1 TZ-6 

flotation 

sample N/A 147 
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